
A Stochastic RTL Circuit Generator for FPGA
Architecture and CAD Evaluation

by

Motahareh Mashayekhi

B.Sc. Sharif University of Technology, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

February 2017

c©Motahareh Mashayekhi, 2017

Abstract

The performance and capacity of Field-Programmable Gate Arrays (FPGAs) have dramat-

ically improved in recent years. Today these devices are emerging as massively reconfig-

urable and paralleled hardware computation engines in data centers and cloud computing

infrastructures. These emerging application domains require better and faster FPGAs. De-

signing such FPGAs requires realistic benchmark circuits to evaluate new architectural

proposals. However, the number of available benchmark circuits is small, outdated, and

few of these are representative of realistic circuits.

A potential method to obtain more benchmark circuits is to design a generator that is

capable of generating as many circuits as desired that are realistic and have specific char-

acteristics. Previous work has focused on generating benchmark circuits at the netlist level.

This limits the usefulness of these circuits in evaluating FPGA Computer Aided Design

(CAD) algorithms since it does not allow for the evaluation of synthesis or related mapping

algorithms. In addition, these netlist level circuit generators were calibrated using specific

synthesis tools, which may no longer be state of the art. In this thesis, we introduce an

Register Transfer Level (RTL) level circuit generator that can automatically create bench-

mark circuits that can be used for FPGA architecture studies and for evaluating CAD tools.

Our generator can operate in two modes: as a random circuit generator or as a clone circuit

generator.

The clone circuit generator works by first analyzing an input RTL circuit then it gen-

ii

erates a new circuit based on the analysis results. The outcome of this phase is evaluated

by measuring the distance between certain post-synthesis characteristics of the generated

clone circuit and those of the original circuit. In this study we generated a clone circuit for

each of the VTR set of Verilog benchmark circuits. We generate clones with post-synthesis

characteristics that are within 25% of the corresponding characteristic of the original cir-

cuits. In the other mode, the random circuit generator extracts the analysis results from

a set of RTL circuits and uses that data to generate a random circuit with post-synthesis

characteristics in an acceptable range.

iii

Preface

This dissertation is original, independent work by the author, M. Mashayekhi, under the

supervision of Professor Steve Wilton.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . ix

List of Figures . xi

List of Codes . xii

Acknowledgments . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Thesis Organization . 4

2 Background and Previous Work . 5

2.1 Overview . 5

2.2 Field Programmable Gate Arrays . 5

v

2.2.1 FPGA Architecture and Experimentation 6

2.2.2 CAD Algorithms and Experimentation 9

2.2.3 FPGA Evaluation . 10

2.3 Previous Work . 11

2.3.1 Graph Based . 11

2.3.2 Glue of Logic . 13

2.3.3 Mutation . 15

2.4 Summary . 17

3 Circuit Analysis . 18

3.1 Overview . 18

3.2 Definitions and Terminology . 18

3.3 Circuit Analysis . 22

3.3.1 Module Topology Graphs . 22

3.3.2 Basic Enumerated Features . 23

3.3.3 Process Patterns . 24

3.3.4 Expression Patterns . 30

3.4 Data Flow Graph . 31

3.4.1 Definition . 31

3.4.2 Analysis . 34

3.5 Implementation . 34

3.6 Summary . 36

4 Clone Circuit Generation . 37

4.1 Introduction . 37

4.2 Overview . 37

4.3 Motivation . 38

vi

4.4 Clone Module Generator . 39

4.4.1 Step One - Ports and Variables Selection 40

4.4.2 Step Two - Assignment Generation 40

4.4.3 Step Three - Process Generation 41

4.4.4 Step Four - Operator Selection . 43

4.4.5 Step Five - Operands Selection . 43

4.5 Connecting Modules . 47

4.6 Implementation . 48

4.7 Summary . 48

5 Random Circuit Generation . 49

5.1 Introduction . 49

5.1.1 Random Generator Overview . 49

5.2 Random Module Generator . 51

5.2.1 Step one - Assignment Generation 52

5.2.2 Step Two - Process Generation . 53

5.2.3 Step Three - Ports and Variables Selection 54

5.2.4 Step Four - Operator Selection . 57

5.2.5 Step Five - Operands Selection . 57

5.2.6 Step Six - Operand Width Selection 58

5.3 Implementation . 60

5.4 Summary . 60

6 Results and Validation . 61

6.1 Introduction . 61

6.2 Clone Results and Validation . 61

6.2.1 Overview of Experimentation Methodology 61

vii

6.2.2 Runtime Optimization . 63

6.2.3 Experimental Results . 64

6.3 Random Results and Characterization . 67

6.3.1 Overview of Experimentation Methodology 67

6.3.2 Correlation . 69

6.4 Comparison to Earlier Circuit Generators 72

6.4.1 RTL Circuit Generator vs. Netlist Circuit Generator 72

6.4.2 Comparison against previous benchmark generators 73

6.5 Summary . 75

7 Conclusion . 78

7.1 Summary . 78

7.2 Limitations and Future Work . 80

Bibliography . 82

viii

List of Tables

Table 3.1 Number of assignments, processes, assignments, blocking/nonblocking

statements, case-conditions, and if-conditions for each module of bgm

circuit . 24

Table 3.2 Number of assignments, processes, assignments, blocking/nonblocking

statements, case-conditions, and if-conditions of VTR benchmark circuits 25

Table 3.3 Number of assignments, processes, assignments, blocking/nonblocking

statements, case-conditions, and if-conditions of VTR benchmark circuits 26

Table 3.4 Instructions and corresponding keywords 27

Table 3.5 Calculation results of how common different process patterns of two

sequential modules (one with 99 processes of pattern p1 and the other

with one process of pattern p2) based on the naive approach 29

Table 3.6 Calculation results of how common different process patterns of two se-

quential modules (one with 99 processes of pattern p1 and the other with

one process of pattern p2) based on the
1

number o f processes in module
approach . 29

Table 3.7 Pattern of Processes . 30

Table 3.8 Pattern of Expressions . 31

Table 3.9 longest path and number of nodes of DFG of all VTR benchmark circuits. 35

ix

Table 6.1 CAD Flow and the architecture setup used in clone generator and ran-

dom generator experiments . 62

Table 6.2 Results of the Clone Circuit Generator for generating a clone for each

Verilog circuit of the VTR benchmark suit 65

Table 6.3 Acceptable ranges of critical path, minimum channel width and number

of CLBs based on set of input circuits divided into two groups. 69

Table 6.4 Pattern of Processes of Modules with One Process 71

Table 6.5 Expression Patterns that were found in processes with 0 : sequential−1 :

conditional−2 : seqblock−3 : nonblockingassign pattern 72

Table 6.6 Random Circuit Generator Results . 72

Table 6.7 CAD Flow and the architecture setup used in comparison to earlier cir-

cuit generators experiment . 73

x

List of Figures

Figure 2.1 Overview of an FPGA routing structure and logic resources (CB = Con-

nection Block, I/O = Input and output). 7

Figure 3.1 Module topology of bgm circuit. 23

Figure 3.2 Data flow Graph of Verilog Code 3.5 32

Figure 3.3 Data flow graph of Verilog code 3.6 33

Figure 3.4 Data flow Graph of Verilog code 3.7 34

Figure 4.1 (a) Clone Circuit Generation Flow. (b) Random Circuit Generation Flow. 38

Figure 6.1 The relationship between size of circuit (CLBs) and critical path de-

lay of our input set of circuits to demonstrate that this relation has no

specific trend. 68

Figure 6.2 Demonstrating that a randomly generated circuit with channel width of

40 and critical path of 100ns is not realistic. Dividing the input set of

circuits into two groups based on their size. 69

Figure 6.3 Number of Nets Comparison . 75

Figure 6.4 Minimum Channel Width Comparison 76

Figure 6.5 Critical Path Comparison . 76

Figure 6.6 Average Net Length Comparison . 77

xi

List of Codes

Code 3.1 A Sample Verilog Circuit . 18

Code 3.2 A Process Pattern Sample 1 . 28

Code 3.3 A Process Pattern Sample 2 . 28

Code 3.4 Sample Verilog code 3. 30

Code 3.5 A basic combinational Verilog code to demonstrate a basic DFG . . . 31

Code 3.6 Sample Verilog code to demonstrate a basic data flow graph 32

Code 3.7 Sample Verilog code to demonstrate a basic data flow graph 33

Code 4.1 Pseudocode of the clone circuit generator 39

Code 4.2 The progress of generating a clone module M after the first step. . . . 40

Code 4.3 The progress of generating module M after second step. 41

Code 4.4 The progress of generating module M after process pattern selection . 42

Code 4.5 The progress of generating module M after step 3. 42

Code 4.6 Pseudocode of preventing combinational loop algorithm. 45

Code 4.7 The progress of generating module M after step 5. 46

Code 4.8 Pseudocode of the pairing algorithm. 47

Code 5.1 Pseudocode of the random circuit generator 50

Code 5.2 The progress of generating module M after the first step. 52

Code 5.3 The progress of generating module M after step 2. 53

Code 5.4 The progress of generating module M after labeling each LHS signalref. 55

xii

Code 5.5 The progress of generating module M by the end of step 3. 57

Code 5.6 The progress of generating module M after step 5. 57

Code 5.7 The progress of generating module M after step 6. 59

Code 6.1 Pseudocode of the clone circuit generation algorithm. 64

Code 6.2 An Optimizable Example Code . 66

xiii

Acknowledgments

I would like to thank Professor Steve Wilton for his patience and guidance.

xiv

Chapter 1

Introduction

1.1 Motivation

Recent years have seen dramatic improvements in the capabilities of Field-Programmable

Gate Arrays (FPGAs). Early FPGAs were optimized to implement glue logic. The avail-

ability of larger FPGAs enabled entire systems on programmable devices, and this lead to

FPGAs containing embedded memories, digital signal processing (DSP) blocks, special-

ized I/O interface circuitry, and full-featured embedded processors. Today, we are seeing

the emergence of FPGA technology in the cloud and in data centers, as as evidenced by In-

tel’s recent aquisition of Altera and Microsoft’s efforts to bring FPGA technology into the

cloud [35]. This emerging application domain has the potential to change the way FPGAs

are used and built. As the capabilities and use cases of FPGAs expand, there is an increas-

ing need to design new FPGAs. Not only do new devices need to be larger and faster, but it

is conceivable that both the architecture (internal structure) of the FPGA as well as the as-

sociated computer-aided design algorithms need to change. Current FPGA CAD tools take

hours (or even a day) to compile a large design; while this may be acceptable for hardware

designers, it may not be acceptable for the new breed of designers using FPGAs to accel-

1

erate cloud-based applications. Providing new compilation tools requires both a change in

the algorithms as well as the FPGA fabric to which the algorithm is mapping.

Designing a new FPGA, however, is challenging. FPGA architects must provide just

enough programmability in their devices; too much programmability leads to wasted power

and slow devices, while too little programmability (or misplaced programmability) leads to

devices that are not flexible enough. Moreover, FPGA architects need to balance the desire

to include new embedded blocks (such as new embedded computational units) with the

desire to create truly general devices that can be used by a wide variety of their customers.

Finally, it is well-known that the design and optimization of FPGA architecture and the

associated compilation tools cannot be performed in isolation. An architectural feature that

cannot be efficiently be used by the CAD tools represents wasted silicon. Only by co-

optimizing the architecture and CAD can efficient programmable system and ecosystems

be developed.

Although some work has been performed on analytical modeling of FPGAs [11], most

FPGAs today are designed using experimental techniques. Engineers create models of

potential architectures and CAD tools, and use experimental CAD tools to map a set of

benchmark circuits to each potential device [27]. Detailed area and delay models provide

estimates of the efficiency of each architecture, allowing the architect to make informed de-

cisions regarding the trade off between flexibility and efficiency. The selection of suitable

benchmark circuits is critical in this process. Benchmark circuits must be representative of

circuits that will eventually be implemented on the FPGA being developed. Many studies

use circuits that are far too small to adequately exercise any modern CAD tool or architec-

ture. Researchers have recently made progress towards releasing larger benchmark suites

[32], however, even these are typically representative of existing circuits, not circuits that

will be used on future devices.

A potential solution is to use automatically-generated synthetic benchmark circuits

2

[31], [15], [21], [23] [41]. Typically, these circuits are created using a circuit generator

which creates synthetic netlists according to constraints that ensure the netlists share many

of the structural characteristics of real circuits. Although these circuits are not “real”, this

approach has a number of advantages: a researcher can generate as many circuits as de-

sired, the circuits can be of any size, and often the generator can be further tuned to create

only circuits with certain properties (eg. dataflow circuits [23]). This latter advantage is

critical during early evaluation, when it is important to understand what types of circuits

work well and what types do not.

1.2 Contribution

In this thesis, we describe a synthetic benchmark circuit generator which unlike previous

generators, generates circuits at the register-transfer level (RTL); as we will describe in the

next chapter, benchmark circuits expressed in RTL are much more suitable for the types of

architecture and CAD studies that researchers often want to perform. In order to ensure our

generator produces realistic circuits, we base our generation on a set of statistics obtained

from existing circuits and then generate synthetic circuits guided by those statistics. In

addition our generator works in two different modes, generating a clone from one specific

circuit or it generating a random circuit based on the information gathered from multiple

circuits. It worth mentioning that our generated circuits are based on patterns and statistics

rather than implementing a specific functionality. Therefore our circuits are useful for

evaluating the impact of architectural or CAD algorithm enhancements on major FPGA

design metrics such as delay and area. However, evaluating the impact of new designs

on power consumption using our circuits is not practical since the major source of power

consumption in FPGAs are dynamic switching which is dependent on the functionality of

the circuit.

3

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we provide background on FPGA archi-

tecture, CAD algorithms, FPGA experimental evaluation techniques, and discuss previous

work on generating synthetic circuits. Chapter 3 then describes our characterization pro-

cess, where we gather information about common RTL designs. Chapter 4 shows how we

then use this information to generate a clone from an RTL design and Chapter 5 shows

how we generate a random RTL design. The suitability of the circuits obtained from our

generator is evaluated in Chapter 6. Finally, Chapter 7 concludes the thesis and suggests

the future work.

4

Chapter 2

Background and Previous Work

2.1 Overview

In this chapter, we first briefly introduce FPGAs and two major area of related research:

architecture and CAD algorithms. Second, we review FPGA architecture and the works

that have focused on architectural refinements. Third, we discuss different stages of CAD

algorithms and the attempts to improve the FPGA efficiency based on improving each stage.

Then we explain the necessity of proper benchmark circuits for FPGA research validation.

Finally we summarize the previous studies on generating benchmark circuits to facilitate

FPGA experimental evaluation.

2.2 Field Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) have gained significant popularity for fast pro-

totyping of digital systems in a variety of application domains such as embedded systems,

cloud data bases, networking, and cryptography due to their high performance, high flexi-

bility, fast time-to-market along with massive parallelism. The flexibility of FPGAs allows

FPGA-based designs to be easily upgraded, recover from failures, and adopt to new stan-

5

dards. Such high flexibility, however, comes at considerable cost. FPGAs consume more

power and require more area to implement a circuit than their Application-Specific Inte-

grated Circuits (ASIC) counterparts. The area gap is reported to be about 40 times between

FPGAs and ASICs [24]. Increased area directly increases the static power consumption of

the device. In addition, it results in longer interconnects and therefore lower performance.

Previous works have tried to reduce the area, performance, power, and reliability gap of

FPGAs and ASICs by enhancing the FPGA architecture, or modifying Computer Aided

Design (CAD) algorithms.

2.2.1 FPGA Architecture and Experimentation

The island style routing architecture is commonly used in commercial FPGAs such as

Xilinx Virtex-6 [43] and Altera Cyclone-V [2]. This routing architecture which is also

commonly used in academic FPGA CAD tools such as VPR [5], consists of a pool of

interconnect resources surrounding a two-dimensional array of cluster logic blocks (CLBs).

In modern FPGAs, there are also various full-custom blocks available as logic resources

such as Digital Signal Processing (DSP) processors, block RAMs, and multipliers.

As shown in Figure 2.1 there are four programmable resources in island style FPGAs:

CLBs, Connection Blocks (CBs), Switch Matrix or Switch Boxes (SBs), and Input/Out-

puts (IOs). CLBs are goups of logic blocks (LBs) and LBs consists of either reconfigurable

Logic Elements (LEs) or prefabricated full-custom complex blocks performing specific

operations such as multiplication. A typical LE is made of a Look-Up Table (LUT) and a

sequential element such as Flip-Flop (FF). LBs are connected to interconnect resources via

CBs. Routing interconnects are also connected to SBs and IOs. SBs provide the connec-

tions between vertical and horizontal interconnects.

The amount of silicon area dedicated to the routing fabric is usually dominant in FP-

GAs. Since routing resources do not perform any computation by themselves, they are

6

Figure 2.1: Overview of an FPGA routing structure and logic resources (CB = Con-
nection Block, I/O = Input and output).

usually considered circuit overhead.

Logic Fabric Experimentation

The high level of flexibility provided by LUTs results in an excessive usage of silicon area

compared to hard logic blocks. In addition, soft blocks are slower and less reliable than

hard blocks. LUT size is an important parameter in FPGAs. Bigger LUTs result in lack of

utilization and slower circuits when implementing simple functions while smaller LUTs re-

quire significant usage of the routing fabric to implement large functions and are therefore

slower. A mixture of LUTs with different sizes can be used to improve LUT utilization and

enhance performance by preventing LUT cascading to implement complex functions such

as [9] and [10]. Hard logic cells have been used to improve the area efficiency of FPGAs

7

by employing efficient logic block that are capable of efficiently employing a limited set of

functions [33] and [19]. These studies try to design efficient logic block that are capable

of covering a fraction of all functions. The idea of hard logic blocks is widely employed

in todays industrial FPGAs to the extent that full processors, memory blocks, and DSP

blocks are implemented as hard cores [2] and [43]. A different approach in logic block

optimization was taken by [17] which employed Clos networks between intra-cluster rout-

ing and logic element inputs to provide further flexibility in logic clusters. This approach

has managed to reduce area and increase utilization by a proposed logic cluster also keeps

the same performance despite increased logic depth. All of the above mentioned solutions

have only contributed to a small fraction of the total silicon area. Hence, optimizing logic

blocks in terms of area without addressing the routing fabric cannot effectively alleviate

the FPGA/ASIC gap.

Routing Fabric Experimentation

Due to importance of the routing fabric, previous studies have aimed to improve perfor-

mance, power, or dependability by modifying the routing fabric. Shadow clustering has

been proposed to utilize the routing fabric in areas where hard logic has remained un-

used. Its main goal is to reduce the area overhead imposed by the routing fabric when

employing hard logic cells [22]. To some extent, this technique manages to use silicon

area more efficiently and avoids waste of resources. The method presented in [42], called

Hard Wired Routing Patterns (HARP), reduces the area of routing fabric by using hard

wired switch box patterns [38]. The optimum distribution of segments and combination of

routing buffers with pass transistors have also been found to make the routing fabric more

effective [6]. The use of short interconnect segments can reduce both power consumption

and net delays in FPGAs at the cost of logic density [26]. Different modes of operation can

also be employed in FPGAs to reduce power consumption in routing switches [4].

8

2.2.2 CAD Algorithms and Experimentation

The binary sequence used to program an FPGA is called a bit-stream. However engineers

create their designs at higher levels of description such as register transfer language (RTL)

level. The process of converting an RTL design to an FPGA bit-stream is a multi-stage and

complex process which is done by CAD Algorithms including:

• RTL synthesis: The process of converting an RTL level design to a gate level and

applying technology dependent and independent optimization.

• Technology mapping: Finding the optimal mapping solution of a gate level design to

the available gate library of the target technology.

• Clustering: A clustering algorithm groups LBs into cluster logic blocks(CLBs) such

that interconnect pattern of LBs within a cluster are similar to each other and those

of LBs from different clusters are dissimilar.

• Placement: Locates each CLB on a specific resource of the target technology while

attempting to minimizing the total interconnect length required or the critical path.

• Routing: Making the required connections between CLBs of the target technology

using its available routing resources.

At any of these stages, modifications to existing algorithms can help reduce the FPGA-

ASIC gap. While this approach may not reduce the gap as significantly as architectural

modifications, it may still prove useful due to its low NRE cost and flexibility of modifi-

cations. Technology mapping algorithms can be modified to optimize any of the design

parameters. Manohararajah et al. has proposed a technology mapping tool that can op-

timize designs for performance [28]. Cong and Ding [7] have investigated the trade-off

between depth and area in technology mapping . It is also possible to optimize technology

9

mapping for dependability [8] or power [3]. Such modifications can also be made during

clustering. [37] has proposed a clustering scheme to reduce area and power consumption

of FPGAs. Placement and routing algorithms can also optimize a design. Sterpone and

Violante have proposed a reliability oriented placement and routing algorithm to enhance

FPGA reliability [39]. Wang et al. have also presented a power-efficient placement and

routing algorithm [42].

2.2.3 FPGA Evaluation

In the previous section we discussed the previous research on architectural refinements and

CAD Algorithm modifications to mitigate the FPGA and ASIC gap. All these potential

enhancements require verification using experimental techniques. In another words re-

searchers first need to model their potentially enhanced version of the FPGA architecture

and CAD tool then synthesize benchmark circuits using them and measure the area, perfor-

mance and power. Research validate their potential enhancements by comparing their new

measurements to those obtained from the available technologies. This design and evalua-

tion require which is proper benchmark circuits. Ideally a benchmark circuit is a customer

circuit or a representative of the circuits that costumers are implementing on FPGAs. Both

industrial and academic researchers indicate that obtaining such examples is challenging.

A solution to the lack of real circuits is to design a circuit generator that is capable of

generating an arbitrary number of circuits with specific properties. Although there have

been previous circuit generators, all of them characterize and generate circuits at the net

list level or lower. This limits the usefulness of these circuits to evaluate physical design

CAD algorithms (such as place and route algorithms) and does not allow for the evaluation

of synthesis or related mapping algorithms. In addition, these gate-level circuit generators

were calibrated using specific synthesis tools, which may no longer be state of the art.

Thus, the gate level circuits may be unrealistic. In contrast, most designers specify circuits

10

at a higher-level of abstraction (RTL level) As will be described in the next sections, our

work characterizes and generates circuits at the RTL level, which is fundamentally different

than these previous works. In the next section we review some of these previous circuit

generators, then in the following chapters we introduce a model of RTL designs, explain

the algorithm of our RTL level circuit generator and verify its results.

2.3 Previous Work

We categorize the previous circuit generator approaches into graph-based, glue of logic and

mutation. In this section we review some of the previous work from each category.

2.3.1 Graph Based

There have been several earlier efforts to generate synthetic circuits. Previous work in this

area first model netlist circuit using graphs and then generates new netlist circuits based on

these graphs.

Gnl

Stroobandt et al. in [40] presents a generator based on a multi-terminal net model which

can generate netlists with a precise Rent exponent value [25], the relationship between the

number of pins and the blocks in a partition of a logic design. The Rent exponent value,

the number of LBs and input and outputs of each LB is defined by user. The algorithm first

initiates the user defined number of LBs, then based on a bottom-up approach it pairs the

LBs together to generate a CLBs. The number of pins after each pairing is decided based

on the preset Rent exponent value. After all the LBs were grouped into CLBs, it pairs

CLBs to generate a netlist. However a number of constraints have to be satisfied since not

all set of user defined inputs will lead to a feasible netlist circuit. Stroobandt et al. in [41]

add timing to their pervious work by using predefined cells as their lowest level cells. The

11

predefined cells can be a FF or any gates. As a result this approach can generate circuits

with a functionality in contrast with their previous work that merely generates directed

graphs.

GEN

Hutton et al. have proposed a method of generating a netlist of LUTs based on pre-processing

MCNC benchmark circuits [1]. They model netlist of a combinational circuit using a di-

rected acyclic graph and describe it using the following characteristics:

• The circuit size and the number of inputs and output pins.

• Combinational delay: Combinational delay of a node in the netlist is the longest path

to reach that node starting from an input pin.

• Circuit shape: Circuit shape is the distribution function of nodes with different com-

binational delays.

• Edge length distribution: When an edge connects a node with a combinational delay

a to another node with combinational delay b, the length of the edge is |a−b| . The

edge length distribution is the distribution function of edges with different lengths.

• Fanout distribution: Fanout is the number of edges leaving a node and fan-out distri-

bution is the distribution function of this value.

• Reconvergence: When edges that have a common ancestor have the same node as a

sink.

In order to generate a new netlist all the aforementioned items are given as an input

to the generator. Then the generator algorithm construct a netlist based on the inputs: the

number of nodes at each combinational delay is known using the shape function and using

12

the edge length distribution the number of edges and the length of each edge are also known.

In addition based on the fanout distribution, a set of valid fanouts for the nodes is known.

As a result the generation problem is now formulated as the problem of constructing a

graph given these constraints on the delays, edge lengths, and the fanouts. In this study a

heuristic algorithm is described to address this problem. In their following work [21] they

add backedges to their netlists graph in order to be able to generate sequential circuits.

2.3.2 Glue of Logic

Work in PartGen [34] and Mark [31] intuited that circuits are composed of several different

kinds of logic connected using structured interconnect patterns (such as a bus or network

on chip). By varying the proportion of these various types of logic, as well as the way

they are interconnected, these generators are able to mimic different kinds of circuits in a

realistic manner. More details on these previous work is as follows:

Mark

Mark et al. modeled circuits at netlist level as a network of modules [31]. Modules are

categorized as processors such as CPUs, interfaces such as a UART, controllers such as

USB controllers, and others. Networks categories are:

• Bus: A bi-directional data transfer between three or more modules.

• Star: A bi-directional data transfer between a master and a few slave modules.

• Dataflow: A uni-directional data transfer between a chain of modules.

• Others

The input circuit library in this work is the netlist of 66 circuits. According to their model

each circuit is hierarchy of modules connected to each other using one of the network types.

Based on these 66 circuits, they collected the following set of data:

13

• Distribution of different module types. For example 12% of the modules existing in

their input circuit library are processors.

• Distribution of different network types.

• Distribution of hierarchy depth. For example 80% of their input circuit library have a

zero hierarchy depth, i.e. 80% of them are consisting of a few leaf modules connected

to each other by a single network.

• The average number of networks at a hierarchy level. The number of networks for

the circuits with a hierarchy depth of zero is always one and for circuits with a hier-

archy depth of one is two. The number of networks for the circuits with a maximum

hierarchy depth of one is 1.81.

• Distribution of the number of leaf modules for each network type.

They generate netlist level circuits by using networks to glue leaf modules while using the

collected data to ensure the generated circuits mimic the input circuits. They have divided

their input circuit library to the four module category and used them as the leaf modules.

To validate this work, they have demonstrated that the trend of the post-synthesis results

(eg. critical path versus number of LUTs) of their generated circuits is more realistic than

previous generators, GEN and Gnl. They validation process is based on the trends of

characteristics because the size of largest circuit that they can generate has 72625 number of

four-input-LUTs which is much smaller than their available set of realistic circuits, eASIC

circuits [12]. The eASIC circuits are a set of industrial circuits commonly used for verifying

placement algorithms. These circuits are broken into 10 parts to be able to get simulated

using academic CAD flows and fit in FPGAs [30].

They were successful in generating new circuits to match the eASIC post-synthesis

trends. However, the largest size of circuit that they can generated is small. This can be

14

improved by updating their collected data using a library of larger circuits, which is not

practical since that phase is done manually based on the distributed datasheets. In addition

they have decomposed their input circuits up to three levels of hierarchy and used the result

as leaf modules to generate new circuits.

PartGen

PartGen is a generator based on GEN which can generate netlist benchmarks with an arbi-

trary size [34]. They categorized partial netlists into five different categories: regular com-

binational logic, irregular combiational logic (the bridge between large functional blocks),

memory blocks, controller logic (consists of both combinational and sequential eg. cache

controller), and interconnections. They propose a generator algorithm that connects differ-

ent number of blocks from each categories to make a complete netlist. These new circuit

are suitable for evaluating the partitioning algorithm phase of the CAD flow.

2.3.3 Mutation

Another method of generating circuits is the mutation approach, as presented by [18], [13]

and [15]. Portions of the logic are modified, but structural characteristics such as path

length, I/O, and wirelength are kept the same. This method is effective at generating a

family of circuits similar to an existing circuit, but they lack the ability to generate new

circuits of different size or of different structure. More details on each approach is as

follows:

Harlow

A combinational circuit is an implementation of the truth table of a Boolean function which

can also be represented by a binary decision tree. A reduced ordered binary decision dia-

grams(BDD) is the optimized version of a binary decision tree [36]. [18] models combi-

naitonal netlists by their BDDs. In this work netlists are classified based on their entropy

15

which is directly related to probability of their outputs being high. As a result two one-

output functions with the same probability of being high will be in the same class. Gen-

erally an entropy invariant mutation is any modification to a function that results in a new

function with the same entropy. Using these definitions new classes of BDDs are generated

to measure the sensitivity of CAD algorithms among different classes of circuits.

Ghosh

Ghosh et al. develop a graph-based canonical representation for netlists of a combinational

circuits which is a bipartite uni-directional graph based on the topological ordering of the

wires and gates [13]. Using this model they introduce circuit perturbation and mutation.

Perturbation is randomly eliminating a percentage of wires at each topological order level.

Since perturbation might disconnect all the fan-in of a node and leave it floating, a process

of adding wires to revive such nodes is required. This process is named mutation. Pertur-

bation and mutation can greatly transform a netlist. In order to prevent this, they define

classes of circuits based on the characteristics of their canonical representation and impose

a limit on the type of perturbation and mutation that can be performed so that the new

netlist is in the same class of the original one. By generating a number of equivalence class

with many circuit members they evaluate the performance of CAD algorithms.

Grant

Grant and Lemieux in [14] generate new circuits by partially substituting a real circuit with

its mutated version while preserving the post-synthesis characteristics. Such classes of par-

tially different circuits are suitable for evaluating incremental place and route algorithms.

In this work a netlist is modeled as a graph. Its nodes represent LUTs or FFs and its edges

represent wires. In order to create a mutated version of a circuit, first the height of all nodes

of the graph is calculated while assigning height one to the inputs and the outputs of FFs.

16

Second a height h is selected and a list of edges that connect the nodes of height h to height

h+1 is created. Third, a percentage of edges of the list swap sinks with each other. Swaps

may change switch the structure of the circuit because it is not a locality aware algorithm.

For example, consider swapping wires of two independent buses. In order to prevent such

swaps they limited the candidate nodes to swaps with each other to the ones that have a

common ancestor within a certain depth.

Grant et al. in [16] generate new circuit by stitching partial circuits to each other while

avoiding combinaitonal loops. Stitching together circuits may cause a combinational loop

because of an input to output dependency. In this work such connections are avoided by

formulating and solving it as a graph monophormism problem.

Grant and Lemieux in [15] combine their two previous works while introducing a new

mutation algorithm which can scale a circuit to become larger or smaller than the original

circuit. Scaling down is performed by removing a specific number of nodes of the graph.

Scaling up is done by replicating a selected portion of the graph.

2.4 Summary

In this chapter we first introduced FPGAs and the reseach areas of CAD algorithm and

architecture. Then we discussed the importance of benchmark circuits for an effective

FPGA research and the fact that a lack of these sample circuits is imposing a barrier on the

advancement of the field. Finally we categorized and discussed some of the previous work.

The previous work are not good enough since they are generating circuits at netlist level or

lower levels of abstraction. In addition their generators are tuned using outdated tools and

the circuits that they generate are small.

17

Chapter 3

Circuit Analysis

3.1 Overview

In this chapter we explain how we analyze all the VTR 7.0 set of benchmark circuits in

order to extract the necessary data to tune our circuit generators. The input to our analyzer

is an RTL design from which a set of parameters, patterns and graphs will be extracted. In

this chapter, first we define a terminology to be able to properly refer to different parts of

an RTL design in study. Using the stated terminology, a model for different parts of RTL

circuits is then introduced and analyzed.

3.2 Definitions and Terminology

In this section we define terms that are used in our circuit analysis and generator.

Code 3.1: A Sample Verilog Circuit
1 module power(clock, reset, pow, X, result, DONE);
2 input [7:0] pow, X;
3 input clock, reset;
4 output [7:0] result;
5 output DONE;
6 wire [1:0] state;
7 wire Z;
8

18

9 StateMachine(clock, reset, Z, state, DONE);
10 DataPath(clock, state, X, pow, result, Z);
11 endmodule
12
13 module DataPath(clock, state, X, pow, result, Z, W);
14 input clock;
15 input [1:0] state;
16 input [7:0] pow, X;
17 output reg [7:0]result;
18 output reg Z;
19 output wire W;
20 reg [7:0] cnt;
21 wire Y;
22 assign Y = 3’b100;
23 assign W = Y * result + 2’b11;
24 always @(posedge clock)
25 if (state == 0) begin
26 result <= 1;
27 cnt <= pow;
28 end else if(state == 1) begin
29 result <= X * result;
30 cnt <= cnt - 1;
31 end
32 always @(*)
33 if (cnt <= 0)
34 Z = 1;
35 else
36 Z = 0;
37 endmodule
38
39 module DataPath(clock, state, X, pow, result, Z);
40 input clock, reset;
41 input [1:0] state;
42 input [7:0] pow, X;
43 output reg [7:0]result;
44 output reg Z;
45 reg [7:0] cnt;
46
47 always @(posedge clock)
48 if (state == 0) begin
49 result <= 1;
50 cnt <= pow;
51 end else if(state == 1) begin
52 result <= X * result;
53 cnt <= cnt - 1;
54 end
55
56 always @(*)
57 if (CNT <= 0)
58 Z = 1;
59 else

19

60 Z = 0;
61 endmodule
62
63 module StateMachine(clock, reset, Z, state, DONE);
64 input clock, reset, Z;
65 output reg DONE;
66 output reg [1:0] state;
67 reg [1:0] next_state;
68
69 always @(posedge clock, negedge reset)
70 if (reset == 0) begin
71 state <= 0;
72 DONE <= 0;
73 end else begin
74 case (state)
75 0: next_state <= 1;
76 1: if (Z == 1) begin
77 next_state <= 2;
78 DONE <= 1;
79 end
80 default: next_state <= 0;
81 endcase
82 state <= next_state;
83 end
84 endmodule

• Module and Instance: The building blocks of Verilog circuits are modules. Modules

are connected to each other via instantiation. The module that is not instantiated in

any modules of the circuit is called the top module. A Verilog circuit must have a top

module and possibly one or more lower level modules. For example, Code 3.1 has

three modules. Module power is the top module which has two instances, DataPath

and StateMachine.

• Operands: There are two types of operands in a Verilog circuit; ports and local

operands.

– Port: Ports are the means that a module interfaces with other modules and its

surroundings. A port can be an input, output, or inout. Inputs are used to set

values and outputs are to read values of a modules from the outside. Inout ports

20

can be used to do both. For example in Code 3.1, module power has six ports,

four inputs and two outputs.

– Local operand: To describe a circuit using Verilog, it is often necessary to have

local operands in addition to the ports. Local operands can be used inside of a

module but they cannot be accessed or modified by other modules. For example

in Code 3.1, module power has two local variables called state and Z.

• Wire and register: Ports and local variables of a verilog circuit can be defined as a

wire or a register. A Wire provides the connection between two points in the circuit,

as a result it does not have a storage ability. Registers are implemented by flip-flops

and can store a value if there are used in a sequential process (defined in the next

item) or they are implemented as wires if they are used in a combinational process

(defined in the next item). For example in Code 3.1, module power has a local wire

called state which is used to make a connection between modules DataPath and

StateMachine and module DataPath has an output register called result which is

used to store a value.

• Process and Sensitivity List: There are two types of processes; initial blocks and

always blocks. Initial block are used for writing test benches and they are not syn-

thesisable. In addition, the code inside of an initial block executes only once at the

beginning of a test bench. On the contrary, Always blocks can be implemented by

hardware and they are executed whenever one of the items in their following paren-

thesis changes. Such items are called the sensitivity list of an always block. The

following items are the instructions that can be used in a process:

– Assignment statement or statement: An Assignment statement is simply assigns

an expression to another expression inside a process. For example in line 26 of

21

Code 3.1, the right hand side (RHS) expression which is a multiplication of

two operands, X ∗ result, is being assigned to the left hand side (LHS) expres-

sion which is an operand, result. To simplify this discussion we use the term

statement instead of assignmentstatement. There are two types of statements,

blocking and nonblocking:

∗ Blocking statements (LHS expression = RHS expression): All blockingstatements

in an always block are executed sequentially. In another words the ex-

ecution of the next statements are blocked until the execution of current

blockingstatement is finished.

∗ Non-blocking statements (LHS expression <= RHS expression): All non−

blockingstatement are executed without blocking the other statements as a

result all nonblockingstatements are executed in parallel.

– Control statements

∗ if-statement, conditional-statement, and else-statement: For example line

31 of Code 3.1 is an i f − statement and line 33 is an else− statement.

∗ case-statement and case-item: For example a case−statement starts at line

48 of Code 3.1 and it has two case− items in lines 49 and 50.

• Assignment: An assignment is used to assign a LHS expression to a RHS expression

outside of an always block (assign LHS expression = RHS exprssion).

3.3 Circuit Analysis

3.3.1 Module Topology Graphs

As already described in Section 3.1 every RTL design is built of one or more modules, con-

nected to each other in a hierarchical fashion. The topology of modules connections can be

22

modeled by a directed acyclic graph (DAG) in which nodes represent modules and edges

represent instantiations. For example there is an edge from node a to node b if module b

was instantiated in module a. Figure 3.1 shows the module topology of the bgm circuit (one

of VTR benchmark circuits) which has 15 modules. The name of its root is bgm which is

the top module of bgm circuit. There are three outgoing edges from the bgm node to three

other nodes which are the modules that are instantiated in the bgm module. Our circuit ana-

lyzer reads all VTR benchmark circuits and generates their corresponding module topology

graph and stores them in a pool called the pool of module topology graphs.

Figure 3.1: Module topology of bgm circuit.

3.3.2 Basic Enumerated Features

A typical RTL module is made up of a number of assignments, processes, blocking/non-

blocking statements, case-conditions, and if-conditions. Table 3.2 reports the number of

all aforementioned features of VTR benchmark circuits. Its first column is the name of

the benchmark circuit and the second column is number of modules that each circuit con-

tains. The numbers reported in rest of the columns are the cumulative number of the feature

among all modules for each benchmark circuit. For example as it is shown in Table 3.1,

bgm circuit has 15 modules and the sum of number of processes among those 15 mod-

ules are 119. Another set of data that can be collected from a circuit is the number of its

operands, their types and whether they are declared locally or as a port. Table 3.3 reports

23

this information for the top module in the VTR benchmark circuits. It worth mentioning

that the reported number of inputs and outputs might be different from what a CAD tool

reports. The reason is our study is based on the circuit at RTL level but the CAD reports

the number after the complete CAD flow and several possible optimizations.

Table 3.1: Number of assignments, processes, assignments, blocking/nonblocking
statements, case-conditions, and if-conditions for each module of bgm circuit

Module Name #assignment #process #blocking #nonblocking #case #if
add sub27 1 0 0 0 0 0

b left shifter 0 1 49 0 1 0

b left shifter new 0 1 57 0 1 0

b right shifter 0 1 49 0 1 0

b right shifter new 0 1 28 0 1 0

bgm top 1 0 0 0 0 0

delay5 1 1 0 1 0 0

except 4 24 0 24 0 0

fpu add 14 30 0 38 0 0

fpu mul 24 33 1 40 0 0

mul r2 0 2 0 2 0 0

post norm 109 2 8 0 0 0

pre norm 29 15 44 12 0 0

pre norm fmul 28 7 4 6 0 0

pri encoder 1 1 49 0 0 49

sum 212 119 289 123 4 49

3.3.3 Process Patterns

As already mentioned an RTL module consists of one or more processes. In this study we

have limited our focus to synthesizable processes. In another words only always blocks that

fit in one of the following categories are analyzed and later generated by our RTL circuit

generator. There are three categories of synthesizable processes; purely combinational,

24

Table 3.2: Number of assignments, processes, assignments, blocking/nonblocking
statements, case-conditions, and if-conditions of VTR benchmark circuits

Circuit #module #assignment #process #blocking #nonblocking #case #if
bgm 15 212 119 289 123 4 49

blob merge 2 3 2 61 379 2 183

boundtop 13 40 22 465 341 7 166

ch intrinsics 2 1 4 7 36 4 4

diffeq1 1 1 1 0 16 0 3

diffeq2 1 1 1 0 6 0 2

LU32PEEng 29 313 58 500 826 14 335

LU64PEEng 29 441 58 564 890 14 367

LU8PEEng 29 217 58 452 778 14 311

mcml 36 240 121 2593 3053 20 297

mkDelayWorker32B 16 760 87 106 430 17 280

mkPktMerge 7 76 30 2 108 0 106

mkSMAdapter4B 8 576 51 100 252 17 154

or1200 16 126 78 331 272 38 124

raygentop 15 34 23 595 238 12 145

sha 1 11 4 0 1604 3 13

spree 29 154 16 21 425 14 18

stereovision0 25 58 27 0 851 4 66

stereovision1 16 11 24 61 643 9 50

stereovision2 24 9 26 0 367 5 28

stereovision3 1 1 5 135 274 2 37

sequential, and sequential with asynchronous reset. 1

• Combinational: Process p is a combinational process if it does not have any non-

blocking statements and its sensitivity list includes all the signals that are on the right

hand side of blocking statements. For example in Code 3.1, the always block in lines

30 to 34 is a combinational process.

• Sequential: Process p is a sequential process if it does not have any blocking state-

1Some tools might handle other patterns, but this is the simplified version that is commonly used by RTL
designers.

25

Table 3.3: Number of assignments, processes, assignments, blocking/nonblocking
statements, case-conditions, and if-conditions of VTR benchmark circuits

Circuit #Output Regs #Output Wires #Inputs #Local Regs #Local Wires
bgm 0 192 1548 3283 5619

blob merge 100 0 132 1684 70

boundtop 0 386 550 1821 2069

ch intrinsics 98 32 99 231 0

diffeq1 96 0 162 97 32

diffeq2 96 0 66 0 32

LU32PEEng 0 306 342 13954 33997

LU64PEEng 0 306 342 27301 67319

LU8PEEng 0 306 342 3900 8953

mcml 990 0 1080 185309 154536

mkDelayWorker32B 0 8848 8208 5028 18622

mkPktMerge 0 1092 2177 278 3810

mkSMAdapter4B 0 1640 1584 2279 4290

or1200 0 394 388 0 909

raygentop 0 2745 2295 986 1715

sha 32 4 38 879 423

spree 0 864 3564 620 4263

stereovision0 2163 1974 3549 20051 8674

stereovision1 0 1160 1064 10720 11185

stereovision2 462 3360 3129 20136 10054

stereovision3 29 1 23 128 0

ment 2 and it is sensitive to edge of only one signal. This signal represents clock and

is should not be used as an operand at any statements in the body of p. For example

in Code 3.1, the always block in lines 21 to 28 is a sequential always block.

• Sequential with asynchronise reset: Process p is of the third category if it does not

have any blocking statements and it is sensitive to the rising or falling edge of exactly

2Processes can have mixed blocking and non-blocking statements. However none of the processes in our
input set circuits consists of a mix blocking and non-blocking statements. As a result we assume that all
statements in a process are either blocking or non-blocking.

26

two signals. One of these signals is the clock signal and another signal represents

reset. The reset signal must be used as a condition for an if-statement. For example

in Code 3.1, the always block in lines 43 to 57 is a sequential with asynchronise reset

always block.

Table 3.4: Instructions and corresponding keywords

Instruction Type Instruction Example Keyword
if statement if (reset == 1) conditional

non-blocking statement q = 4’b0; nonblocking

blocking statement out <= q + 1; blocking

case statement case state: case

case item 1: caseitem

sequential block begin seqblock

In Table 3.2 we report the number of processes and different instructions that are used

inside a process for each VTR benchmark circuit. Although this data is useful for deciding

the new the numbers for a new RTL circuit, it is not enough information for our circuit

generator to come up with the RTL code for each new process. In addition the hardware

that an RTL circuit will synthesize to is dependent on type and sequence of statements in its

processes. It possible to combine or separate the statements and modify the number of pro-

cesses in a module without affecting the module functionally or its synthesized hardware.

To model the processes of a RTL circuits we came up with an approach that considers type

and sequence of statements in each process and the operands and operators in expressions.

We developed an RTL parser on top of Invio which converts the body of each process to a

sequence of a keywords and numbers. Keywords represent the statement type and numbers

represent the nesting level. For example, the obtained sequence from Code 3.2 is:

0:conditional - 1:seqblock - 2:nonblocking - 2:nonblocking - 1:seqblock - 2:nonblocking

- 2:nonblocking and the obtained sequence from Code 3.3 is 0:conditional - 1:seqblock -

27

2:nonblocking - 2:nonblocking - 1:seqblock - 2:nonblocking - 0:nonblocking

Using a number to specify the nesting level of instruction as a part of each element of the

sequence is necessary. To elaborate, consider Code 3.2 and Code 3.3; the only difference

between these examples is the nesting level of the last non-blocking statement. In Code

3.2 the last non-blocking statement is nested under else but in Code 3.2, it is simply a part

of the main body. As a result the nesting level of last nonblocking assignment in code 3.2

is 2 but in Code 3.3 is 0.

Code 3.2: A Process Pattern Sample 1
1 always @(posedge clock) begin
2 if (reset == 1) //0:conditional
3 begin //1:seq block
4 q = 4’b0; //2:nonblocking
5 out = 1’b0; //2:nonblocking
6 end else begin //1:seq block
7 q = 4’b0101; //2:nonblocking
8 out = q + 1; //2:nonblocking
9 end

10 end

Code 3.3: A Process Pattern Sample 2
1 always @(posedge clock) begin
2 if (reset == 1) //0:conditional
3 begin //1:seqblock
4 q = 4’b0; //2:nonblocing
5 out = 1’b0; //2:nonblocing
6 end else begin //1:seqblock
7 q = 4’b1010; //2:nonblocking
8 end
9 out = q + 1; //0:nonblocking

10 end

To analyze processes in existing benchmark circuits we categorized each them into the three

type of synthesizable processes (combinaitonal, sequential and sequential with asynchro-

nise reset) and converted their instruction to the aforementioned sequence. Interestingly

our experiments shows that most processes convert to the same sequence. This suggests

28

that RTL designers tend to repeatedly use the same patterns while designing RTL circuits.

Table 3.7 shows the result of studying 815 processes. The third column of this table is the

processpattern, the second column states the process type that the pattern is used and the

first column is a percentage that shows how common each pattern is.

Some process patterns are more common than others. The naive approach to calculate

how common each process pattern is (first column of Table 3.7), to divide how many times

is it repeated by the total number of processes. The outcome of this approach will be biased

to the module that has the highest number of processes. For example, suppose we study

only two sequential modules, one with 99 processes of pattern p1 and with one has one

process of pattern p2. The table reporting this case study is Table 3.5, biased to the first

circuit. In order to avoid this issue instead of counting each repetition of a pattern as 1 it

is counted as
1

number o f processes in module
. With this modification the reported data of

our case study will become Table 3.6.

Table 3.5: Calculation results of how common different process patterns of two se-
quential modules (one with 99 processes of pattern p1 and the other with one
process of pattern p2) based on the naive approach

Percentage Process Category Pattern
99% Sequential P1

1% Sequential P2

Table 3.6: Calculation results of how common different process patterns of two se-
quential modules (one with 99 processes of pattern p1 and the other with one

process of pattern p2) based on the
1

number o f processes in module
approach

Percentage Process Category Pattern
50% Sequential P1

50% Sequential P2

29

Table 3.7: Pattern of Processes

Percentage Process Category Pattern
13.05% Sequential 0 : nonblockingassign

9.25% Sequential
0 : conditional−1 : nonblockingassign−0 : conditional−1 : nonblockingassign−
0 : conditional−1 : nonblockingassign−0 : conditional−1 : nonblockingassign

4.31% Sequential 0 : seqblock−1 : conditional−2 : seqblock−3 : nonblockingassign

4.18% Combinational

0 : seqblock−1 : case−2 : caseitem−3 : blockingassign−
2 : caseitem−3 : blockingassign−2 : caseitem−3 : blockingassign−

2 : caseitem−3 : blockingassign

3.67% Sequential 0seqblock−1 : nonblockingassign−1 : nonblockingassign−1 : nonblockingassign

3.04% Sequential
0 : conditional−1 : nonblockingassign−0 : conditional−1 : nonblockingassign

−0 : conditional−1 : nonblockingassign−0 : conditional−1 : nonblockingassign

2.66% Sequential

0 : seqblock−1 : conditional−2 : nonblockingassign−1 : conditional

−2 : nonblockingassign−1 : conditional−2 : nonblockingassign−1 : conditional

−2 : nonblockingassign

2.40% Sequential with Sync Reset
seqblock−1 : conditional−2 : nonblockingassign−2 : conditional

−3 : nonblockingassign

1.64% Sequential 0 : seqblock−1 : nonblockingassign−1 : nonblockingassign

1.52% Combinational

0:case - 1:caseitem- 2:blockingassign - 1:caseitem-

2:blockingassign - 1:caseitem- 2:blockingassign - 1:caseitem-

2:blockingassign - 1:caseitem- 2:blockingassign)

54.24% - otherpatterns

3.3.4 Expression Patterns

Assignments and statements have a RHS and a LHS expression. These expressions can be

modeled by the pre-order traversal of their corresponding expression tree. For example the

expression pattern of the right hand side of the first blocking statement in Code 3.4 is:

binary concat constant signalref range constant constant constant

Results for the right hand side of non-blocking statements are reported in Table 3.8.

Similarly to process patterns, if we report the percentage according to the number of repe-

titions of each expression pattern the outcome will be biased to the circuit with the highest

number of expressions. In order to avoid this issue we count each repetition of an expres-

sion pattern as
1

number o f expressions inthe module
. Table 3.8 shows the

Code 3.4: Sample Verilog code 3.
1 always @(*) begin

30

2 q <= {1’b1, c[2:0] >> 2}; //0)blocking
3 out <= q + 1; //0)blocking
4 end

Table 3.8: Pattern of Expressions

Percentage Pattern Example
35.00% constant a = 1’b1;

34.08% signalref a = c;

9.10% binary constant signalref a = c + 1;

4.55% signalref range constant constant a = c[15:8];

2.43% binary concat constant signalref range constant constant constant a = 1’b1, c[7:0] >>3’b100;

2.24% concat signalref range constant constant constant a[7:0] = c[15:8], 1’b0;

2.24% concat signalref range constant constant constant a = b[7:0] <<5’b00001;

1.23% paramref a = some parameter;

1.12%
concat binary signalref range constant constant signalref range

constant constant constant
a = d[46:23] - c[23:0], 23’b0;

1.02%
concat binary signalref range constant constant signalref signalref

range constant constant
a = c[94:63] - d, e[62:0];

6.29% other patterns -

3.4 Data Flow Graph

3.4.1 Definition

We model the flow of data in assignments and statements of an RTL circuit by a directed

acyclic graph (DAG). This method is similar to Hutton’s approach in [20]. Each node of

the graph represents a signal in the RTL circuit and each directed edge indicates a depen-

dency. For example in Code 3.5 a is dependant on b and c. In the second assignment c is

dependant on d and b. These data relationships are modeled by the DAG in Figure 3.2.

Code 3.5: A basic combinational Verilog code to demonstrate a basic DFG
1 always @(*) begin
2 a = b + c;
3 c = d - b;

31

4 end

Figure 3.2: Data flow Graph of Verilog Code 3.5

It is important to note that if the statements in code 3.5 were nonblocking the data flow

model would be different. In a process with nonblocking statements, all the left hand side

signals will keep their old value from the previous clock cycle but the right hand side sig-

nals will get updated. In order to represent the data flow graph of a nonblocking statement,

two nodes are necessary for demonstrating a signal that is being used both on the LHS and

RHS, one to represent the old value and the other one to represent the new value. We can

see such a sequential version in Code 3.6. Signal c has the dual usage description and it is

represented by two different nodes in its data flow graph in Figure 3.3.

Code 3.6: Sample Verilog code to demonstrate a basic data flow graph
1 always @(posedge clock) begin
2 a <= b + c; // a <= b + c_old;
3 c <= d - b; // c_new <= d - b;
4 end

RTL circuits are usually include controlling statements such as if-conditions and case-

conditions. For example in code 3.7, based on value of reset only parts of code will get

executed. Hence the value of a and c are dependent on reset in addition to the operands

of their LHS expressions. In order to keep our data flow graph simple, we assume that all

32

Figure 3.3: Data flow graph of Verilog code 3.6

instruction are executed regardless of the controlling instructions. Later on we show that

this assumption does not materially affect our collected data.

Naming ports solely based on their name in the Verilog code is not sufficient since

signal names are localized to their module scope, meaning two different signals can have

the same name as long as they are defined in different modules. For example signal e in

code 3.7 is an input port in the module top and a local wire in module instance0. To avoid

merging these two signals we incorporate the module name into each node name. The data

flow graph of code 3.7 is shown by Figure 3.4.

Code 3.7: Sample Verilog code to demonstrate a basic data flow graph
1 module top (b, e, d, a, c, f, reset);
2 input b, e, d, reset;
3 output a, c, f;
4 reg a, c;
5 always @(*) begin
6 if(reset) begin
7 a = e + 1;
8 c = e + 2;
9 end else begin

10 a = b + c;
11 c = d - b;
12 end
13 end
14 instance0 inst(a, c, f, reset);
15 endmodule
16
17 module instance0(x, y, z, reset);
18 input x, y, reset;
19 output z;
20 wire e;
21 e = 1’b1;
22 assign z = x * y >> e;
23 endmodule

33

Figure 3.4: Data flow Graph of Verilog code 3.7

3.4.2 Analysis

The data flow graph of an RTL design contains a lot of information. However, these graphs

tend to have many nodes and edges that makes identifying specific features difficult. Hence

in this study we focus on two important features extracted from each graph. Table 3.9 shows

the number of nodes and the longest path of the DFG of the VTR benchmark circuits.

3.5 Implementation

The circuit analysis phase of this study resulted in a software package, implemented in the

Python programming language consisting of 3 files containing 1297 lines of code. One file

of this software package is a python script to get advantage of an Industrial platform called

34

Table 3.9: longest path and number of nodes of DFG of all VTR benchmark circuits.

Circuit #Nodes Longest Path
bgm 471 25

blob-merge 49 19

boundtop 537 3

ch-intrinsics 19 3

diffeq1 3 1

diffeq2 3 1

LU8PEEng 630 25

LU32PEEng 725 25

LU64PEEng 854 25

mcml 6022 7

mkDelayWorker32B 898 9

mkPktMerge 160 6

mkSMAdapter4B 624 11

or1200 545 8

raygentop 494 2

sha 9 3

spree 361 4

stereovision0 780 2

stereovision1 471 3

stereovision2 324 2

stereovision3 9 1

Invio, from Invionics Inc. The Invio platform is an RTL processing engine, which allows

designers to quickly parse, search, and modify RTL designs.

This software package gets a Verilog file and the name of its top module as the input,

analyzes it, and generates the proper output. The input file needs to be self-contained i.e.

it should contain all module definitions that have been instantiated except for common

primitive modules. The modules that are defined but not instantiated will be ignored. Our

35

feature analysis technique is a combination of a parser and using the Invionics platform,

called Invio.

3.6 Summary

In this chapter we represented our analysis techniques and results of our input set of cir-

cuits. We modeled circuits at RTL level and then profiled our input set of circuits using our

model using different profiling schemes. Our first profiling scheme collects basic numeric

information such as number of ports, assignments, processes, and different statements.

Since it is not possible to generate a new RTL circuit merely based on these numerical in-

formation, we employed a second profiling scheme which collects sequences of statements

in processes and sequences of operands and operators in expressions. Lastly we gathered

graph-based information such as the topology of module instantiations and the DFG of an

RTL circuit and its longest path.

36

Chapter 4

Clone Circuit Generation

4.1 Introduction

This describes the details of our clone circuit generator and how it uses the data gathered

from analyzing one Verilog circuit to generate a clone circuit. Using our clone circuit

generator researchers can reproduce a class of circuits similar to specific circuit that they

are interested in. For example if a specific circuit does not work well on a proposed FPGA

architecture, it is possible to investigate the reasons by using a class of similar circuits.

This chapter is organized as follows. In Section 4.2 first discusses the difference be-

tween a clone circuit and a random circuit. Then it provides a high level explanation of our

clone circuit generation algorithm. Section 4.4 provides details on how we generate a clone

module for each node of a given topology graph. Section 4.5 discuss how we connect the

generated clone modules to create a complete clone circuit.

4.2 Overview

We first differentiate between clone circuit generator (this chapter) and random circuit gen-

erator (Chapter 5). The difference between a clone circuit and a random circuit is that

37

the clone circuit is generated based on the analysis of one specific circuit and is validated

based on how close its post-synthesis characteristics are to those of the original circuit. In

contrast, a random circuit is generated based on the analysis results of all available bench-

mark circuits and is validated based on the acceptable ranges for each of its post-synthesis

characteristics. Figure4.1 shows the flow of these two different generators.

4.3 Motivation

Cloned circuits are interesting for

Figure 4.1: (a) Clone Circuit Generation Flow. (b) Random Circuit Generation Flow.

The input to our clone circuit generator is the set of analysis results for one Verilog

circuit as we described in Chapter 4, which are:

• Parameters consisting of a module topology graph, similar to Figure 3.1, and the

number of assignments, processes, and different operands for each node of that graph,

38

similar to Table 3.3.

• Process patterns, similar to Table 3.7

• Expression patterns, similar to Table 3.8.

The pseudocode shown in Code 4.1 is an overview of our clone circuit generator algo-

rithm. It starts by generating as many single modules as the number of nodes of the input

topology graph, clone module generator, then it connects them to each other to make them

a circuit, connect module. In Section 4.4 clone module generator is explained in detail

and Section 4.5 presents the details of connect module.

Code 4.1: Pseudocode of the clone circuit generator
1 clone_circuit_generator(){
2 for each node of the input topology graph:
3 clone_module_generator()
4 connect_module()
5 }
6
7 clone_module_generator(){
8 ports_and_variable_selection
9 assignment_generation

10 process_generation
11 operator_selection
12 operands_selection
13 }

4.4 Clone Module Generator

The following summarizes how we generate a clone module:

• Step one: Our module generator begins by determining the number and width of

inputs, outputs, local register, and local wires.

• Step two: It choose the number of assignments and determines a left hand side (LHS)

and a right hand side (RHS) expression pattern for each assignment.

39

• Step three: It determines how many processes this module is going to have, and then

selects the patterns for each process. After that it completes each process pattern by

choosing expression patterns.

• Step four: The generator then selects an operator for each binary or unary keyword

in the selected expression patterns.

• Step five: It then chooses an operand for each signalre f keyword in the selected

expression patterns.

4.4.1 Step One - Ports and Variables Selection

Generating a clone module starts with selecting the same number and width as the original

circuit for the inputs, output wires, output registers, local wires and local registers. Such as

the example in Code 4.2.

Code 4.2: The progress of generating a clone module M after the first step.
1 module M (output_2, input_1, output_1, input_2, output_3, output_4,
2 reset, clock);
3 input reset, clock;
4 input [7:0]input_1;
5 input [3:0]input_2;
6 output [7:0]output_1, output_2;
7 output [3:0] output_3, output_4;
8 reg [3:0] output_3, output_4;
9 endmodule

4.4.2 Step Two - Assignment Generation

At this step as many assignments as the original circuit is generated. For each assignment

an LHS and an RHS expression pattern is chosen from the given expression table, using

the repetition percentages as weights. For example, based on Table 3.8, the repetition per-

centage of pattern constant is 35.00%, signalre f is 34.08%, and binary constant signalre f

is 9.10%. As a result the chance of choosing pattern constant is
35.00
9.10

times higher than

40

binary constant signalre f and the chance of choosing signalre f is
34.08
9.10

times higher than

binary constant signalre f . The generator progress up to this step is shown in Code 4.3.

Code 4.3: The progress of generating module M after second step.
1 module M (output_2, input_1, output_1, input_2, output_3, output_4,
2 reset, clock);
3 input reset, clock;
4 input [7:0]input_1;
5 input [3:0]input_2;
6 output [7:0]output_1, output_2;
7 output [3:0] output_3, output_4;
8 reg [3:0] output_3, output_4;
9

10 assign signalref = binary constant signalref
11 assign signalref = concat signalref signalref
12 endmodule

4.4.3 Step Three - Process Generation

In the third step, the clone module generator chooses as many processes as the original

circuit from the given process pattern table while using the repetition percetages as the

weight for its random decision. For example suppose that it is determined that module M

has one sequential process and the following pattern is chosen for this process:

0 : conditional,1 : seqblock2 : nonblocking2 : nonblocking1 : seqblock2 : nonblocking

0 : nonblocking

(4.1)

In this example the process pattern consists of one conditional and four non-blocking state-

ments so five pairs of proper LHS and RHS expression patterns need to be selected. The

generator progress up to this point is shown in Code 4.4. Note that the process category is

decided simultaneously with the process pattern. In other words, for each process, one row

of the Table 3.7 is chosen; The row indicates the process category as well as the process

pattern.

41

Code 4.4: The progress of generating module M after process pattern selection
1 module M (output_2, input_1, output_1, input_2, output_3, output_4,
2 reset, clock);
3 input reset, clock;
4 input [7:0]input_1;
5 input [3:0]input_2;
6 output [7:0]output_1, output_2;
7 output [3:0] output_3, output_4;
8 reg [3:0] output_3, output_4;
9

10 assign signalref = binary constant signalref
11 assign signalref = concat signalref signalref
12
13 always @(posedge clock)
14 begin
15 conditional(conditional expression) begin
16 nonblocking: LHS expression <= RHS expression
17 nonblocking: LHS expression <= RHS expression
18 end else begin
19 nonblocking: LHS expression <= RHS expression
20 nonblocking: LHS expression <= RHS expression
21 end
22 end
23 endmodule

As shown in Code 4.4 the expression patterns used in the process statements are still

unknown. The next step is to choose a pattern for each of these expressions based on the

data that is collected for each expression type such as Table 3.8. This leads to a code such

as Code 5.3. As we described in Chapter 2, if the process category is sequential with an

asynchronous reset then the process pattern is always an if-else statement with reset as

the condition. This means that in these cases the conditional expression pattern is always

signalre f .

Code 4.5: The progress of generating module M after step 3.
1 module M (output_2, input_1, output_1, input_2, output_3, output_4,
2 reset, clock);
3 input reset, clock;
4 input [7:0]input_1;
5 input [3:0]input_2;
6 output [7:0]output_1, output_2;
7 output [3:0] output_3, output_4;
8 reg [3:0] output_3, output_4;
9

42

10 assign signalref = binary constant signalref
11 assign signalref = concat signalref signalref
12 always @(posedge clock)
13 begin
14 conditional(unary signalref)
15 begin
16 signalref <= constant
17 signalref <= constant
18 end else begin
19 signalref <= signalref range constant constant
20 signalref <= binary signalref signalref
21 end
22 end
23 endmodule

4.4.4 Step Four - Operator Selection

An operator, such as +, -, %, *, etc needs to be chosen for every binary and unary key-

word in the selected expression patterns. The selection can be done randomly or based

on a distribution. Alternatively, it would be possible to modify the expression pattern to

include the operators. In another words, while the post order tree traversal is being done

we store exactly which operator is being used. After this modification, the expression pat-

tern percentage also shows how often a specific type of logic (add, sub, etc) have been

used. For example an expression pattern will look like add constant signalre f instead of

binary constant signalre f . All these three approaches are included in our generator imple-

mentation. The default approach is the latter, storing the operator type, unless modified by

user.

4.4.5 Step Five - Operands Selection

At this point, the skeleton of the circuit is generated and all inputs, output wires, output

registers, local wires and local registers are declared. In this step we choose an operand

from the ports or local variables for each signalre f keyword. A naive approach to operand

selection would be to simply select operands randomly for each signalre f keyword. This

43

method will not work well, because not all resources match all signalre f s (e.g. the LHS

of an assignment must be a wire). Using an unsuitable operand causes several issues. The

following is a list of possible issues and how we resolve each of them:

• Invalid operand type: When a wire is used as the LHS in a process or a register is

used on the LHS of an assignment.

This is easily prevented by making selections out of the proper pools of operands.

We define a proper pool for each signalre f based on whether is being used in an

assignment or a statement, also whether its on the LHS or RHS. Given these points,

the proper pools used by our generator are as follows:

– LHS of assignments pool = all wires = [local wires + output wires]

– LHS of statements pool = all registers = [output registers + local registers]

– RHS of assignments pool = RHS of statement pool = wires + registers = all

operands = [local wires + local registers + output wires + output registers +

inputs]

• Combinational loops: If the DFG of the generated circuit is not acyclic it means at

least one combinational loop exists.

To address this issue, a greedy algorithm could be used to build the DFG after select-

ing all operands and checking it for cycles. If the DFG is not acylic, the algorithm

could redo all the operand selections. This solution will find a valid selection but it

is not runtime efficient.

Instead, our solution is to incrementally create the DFG and make sure it remains

acyclic after each update. In other words, all operands of one assignment or statement

are selected and the DFG is updated by adding the necessary edges and nodes. If the

updated DFG is acyclic we move on to the next operand selection, otherwise we redo

44

the current operand selection. The most time consuming part of this algorithm is

checking for cycles after each update by running a depth first search (DFS) algorithm

on each node to check if any back edges exist. However, if the updated DFG is cyclic

this means that at least one of the edges from the cycle was added in the previous

update. Therefore, we only need to run the DFS from the nodes for which the number

of incident edges were modified in the previous update of the DFG. Code 4.6 shows

a pseudocode of this algorithm.

Code 4.6: Pseudocode of preventing combinational loop algorithm.
1 for all assignments and statements:{
2 done = 0
3 while(done == 0){
4 select operands from the proper pool
5 update DFG
6 if DFG is acyclic:
7 done = 1
8 else:
9 revert DFG

10 }
11 }

• Optimizable code: We are generating code based on patterns and statistics rather than

implementing a functionality like an RTL designer. In addition if a piece of generated

code does have any effects on outputs, it will be optimized away by the compiler. In

addition typically a real RTL circuit does not include a large portion of optimizable

code. As a result we need to avoid generating optimizable code.

A piece of Verilog code is optimizable if it consists of an operand that is assigned a

value but it has never been used on the RHS as a driver. This occurs when a local

operand is used on the LHS but never on the RHS. Similarly, when a local operand

is used on the RHS as a driver while it has never received a value. We use two con-

straints to guarantee that all parts of the generated code will synthesize to a piece of

hardware. At each iteration of the operands selection (Code 4.6) only those operands

45

of an RHS pool can be selected to be used on the RHS that are inputs or have already

been used on the LHS and received a value. In addition, each of the operands in

the RHS pool is given an initial weight to be used as the probability in the random

RHS selection. Each time an operand is selected to be used on the RHS, its weight is

divided by two to minimize the possibility of selecting one operand many times and

leave some operands unused.

• Inferred Latches: A latch is inferred when in a combinational process:

– case-statements and case-items:

∗ There must be a case-item for all possible values of a case-condition. In

other words, the number of case-items must be equal to the 2case−condition width

otherwise there must be a de f ault case-item.

∗ Any operands that are assigned in one case-item must be assigned in all

case-items.

– if and else-statements:

∗ There must be an else-statement for each if-statement.

∗ Any operands that are assigned in an if-statement must be assigned in the

else-statement.

Code 4.7: The progress of generating module M after step 5.
1 module M (output_2, input_1, output_1, input_2, output_3, output_4,
2 reset, clock);
3 input reset, clock;
4 input [7:0]input_1;
5 input [3:0]input_2;
6 output [7:0]output_1, output_2;
7 output [3:0] output_3, output_4;
8 reg [3:0] output_3, output_4;
9 assign output_2 = input_1 ˆ 8’b01010101;

46

10 assign output_1 = output_3 & output_4;
11 always @(posedge clock)
12 begin
13 if(! reset)
14 begin
15 output_3 <= 4’b0;
16 output_4 <= 4’b0;
17 end else begin
18 output_3 <= output_2[3:0];
19 output_4 <= output_3 + input_2;
20 end
21 end
22 endmodule

4.5 Connecting Modules

After generating as many modules as the number of nodes of the topology graph using the

aforementioned steps, we need to pair each with a node of the topology graph. Then we

make the connections between them based on the directed edges in another words for each

directed edge we add an instance of the sink module to the source module. The important

points to keep in mind while pairing modules with nodes is as follows:

• A module containing a sequential process cannot be a successor of a module without

a clock port.

• A module without a reset port cannot be a predecessor of a module with a reset port.

In order to come up with a proper paring, we make an ordered list of generated modules

starting from sequential modules with asynchronous reset then sequential modules and

finally the combinational modules. Finally we traverse the topology graph in level order

fashion and pair each node with the ordered list satrting from the begining. The pseudocode

of this algorithm is shown in Code 4.8.

Code 4.8: Pseudocode of the pairing algorithm.
1 Connecting_modules(single_modules_to_connect, topology_graph){
2 for m in single_modules_to_connect:{

47

3 if m is sequential with reset:
4 add m to the end of ordered_list_1
5 if m is sequential without reset:
6 add m to the end of ordered_list_2
7 if m is combinational:
8 add m to the end of ordered_list_3
9 }

10
11 ordered_list_all = ordered_list_1 + ordered_list_2 + ordered_list_3
12
13 for n in level-order traversal of topology_graph:{
14 pair n with the front of ordered_list_all
15 remove the front of list_all
16 }
17 }

4.6 Implementation

We implemented the described clone circuit generation algorithm in the Python program-

ming language consisting of 21 files containing 8001 lines of code. This software package

gets the outputs of the circuit analysis package that is described in Chapter 3, which are

a set of parameters, patterns and constraints tunes the clone generator algorithm and to

outputs a clone of the input circuit.

4.7 Summary

In this chapter we explained our algorithm for generating a clone circuit using the analysis

data of an input circuit. Our clone generation algorithm generate as many modules as the

input circuit. After that it connects them to each other based on the topology graph of the

input circuit. A clone module is generated in five steps. First the number and width of in-

puts, outputs, local register, and local wires is determined. Then the number of assignments

and an LHS and an RHS expression pattern for each assignment is chosen. After that the

number of processes and their patterns is determined. Finally the operators and operands

are selected for each chosen expression pattern.

48

Chapter 5

Random Circuit Generation

5.1 Introduction

In this chapter we describe how we generate a random circuit based on the analysis results

of all available benchmark circuits. Our random circuit generator can be used to generate

many different circuits. FPGA researchers can use such a variety of circuits to evaluate the

impact of their CAD algorithm or FPGA architectural innovations. This chapter is orga-

nized as follows. First we present an overview of our random circuit generation algorithm.

Section 5.2 provides details on how we generate one random module. Finally, in Section

5.3, the implementation details are discussed.

5.1.1 Random Generator Overview

We describe a random circuit generation algorithm that takes the analysis results (process

and expression patterns and distribution of the number of assignments and the number of

processes in modules) of all available benchmark circuits and generates a new circuit which

has post-synthesis characteristics in a valid range. The validation range is defined based

on the minimum and maximum of a post-synthesis characteristics of the input circuits.

49

For example, the minimum critical path of all VTR benchmark circuits is 2.67 ns and the

maximum critical path of all VTR benchmark circuits is 115.29 ns. This means if the

critical path of the new circuit is more than 115.29 ns or less than 2.67 ns then we discard

it and repeat the algorithm until we generate a random circuit that fit to the specified range.

This flow is shown in Figure 4.1.

The input to our random circuit generator is the analysis results of a set of Verilog

circuits as we described in Chapter 4 which are:

• A pool of module topology graphs similar to Figure 3.1 and the number of assign-

ments, processes, and different operands for each node of that graph similar to Table

3.3.

• All process patterns that were used in the input circuits, similar to Table 3.7

• All expression patterns that were used in the input circuits, similar to Table 3.8.

The pseudocode shown in Code 4.1 is an overview of our random circuit generator

algorithm. It starts with choosing a topology graph then it generates as many random

modules as the number of nodes of the chosen topology graph, random module generator.

It then connects them to each other to make them a circuit, called connect module. In

Section 4.4 details of clone module generator is explained in detail. Section 4.5 present

the details of connect module.

Code 5.1: Pseudocode of the random circuit generator
1 random_circuit_generator{
2 topology_graph = random(pool of available topology graphs)
3 for each node of topology_graph:
4 random_module_generator()
5 connect_module()
6 }
7
8 random_module_generator(){
9 random_assignment_generation()

10 random_process_generation()

50

11 random_ports_and_variables_selection()
12 random_operator_selection()
13 random_operand_selection()
14 random_operand_width_selection()
15 }

5.2 Random Module Generator

Our random module generator begins by selecting a topology graph. This graph can be user

specified or chosen randomly from the pool of topology graphs of available benchmarks

described in Section 3.3.1. After selecting the topology graph, our generator creates one

module for each node of the chosen topology graph.

To generate one module a naive approach is to first choose the number of ports and local

variables. This imposes a limit on the pattern and number of processes or assignments can

be in the module. For example, if we begin by determining that the number of output ports

is three wires and the number of local wires is zero, then the number of assignments must

be three. Choosing more than three assignments results in an output wire with multiple

drivers and choosing fewer than three outputs results in at least one wire without a driver.

As a result our random module generator after choosing a topology graph, determines the

number of processes and expressions and a pattern for each. Then it chooses the necessary

operands.

A simplified overview of our approach for generating a module is as follows. The

pseudocode of our module generator is shown in Code 5.1 and the details of each step are

discussed in Section 4.4.

• Step one: Our random module generator begins by determining the number of as-

signments. It then decides a LHS and a RHS expression pattern for each assignment.

• Step two: It then determines how many processes this module is going to have, and

then selects a pattern for each process. After that it completes each process pattern

51

by choosing expression patterns based on the statement type (conditional, blocking,

nonblocking, etc).

• Step three: It determines the number of input and output operands as well as local

wires and registers.

• Step four: Selects an operator for each binary or unary keyword in the selected

expression patterns.

• Step five: Chooses an operand for each signalre f keyword in the selected expression

patterns.

• Step Six: Finally it specifies the width of each operand.

5.2.1 Step one - Assignment Generation

Generating a module starts with determining how many assignments it contains using the

distribution of number of assignments in the input set of circuits. However, this decision

can also be made by picking a random number from a valid range or simply using a user

defined number. After that we take the same approach as the second step of the clone circuit

generator to choose a RHS and LHS expression pattern for each assignment as described

in Subsection 4.4.2. In our example we decided that module M has two assignments. The

generator progress up to this step is shown in Code 5.2.

Code 5.2: The progress of generating module M after the first step.
1 module M();
2 assign signalref = binary constant signalref
3 assign signalref = concat signalref signalref
4 endmodule

52

5.2.2 Step Two - Process Generation

In the second step, our generator determines the number of processes for the module then

chooses a pattern for each process based on the distribution of the number of processes in

the input set of circuits. In our example we determined that module M has one sequential

process and with the following pattern:

0 : conditional1 : seqblock2 : nonblocking2 : nonblocking1 : seqblock

2 : nonblocking0 : nonblocking.
(5.1)

Then we determined the number of processes we take the same approach as Subsection

.This leads to a code such at what is shown in Code 5.3.

Code 5.3: The progress of generating module M after step 2.

1 module M();

2 assign signalref = binary constant signalref

3 assign signalref = concat signalref signalref

4 always @(posedge clock)

5 begin

6 if(unary signalref) begin

7 signalref <= constant

8 signalref <= constant

9 end else begin

10 signalref <= signalref range constant constant

11 signalref <= binary signalref signalref

12 end

13 end

14 endmodule

53

5.2.3 Step Three - Ports and Variables Selection

By the end of step two the skeleton of the random module is generated and there is enough

information to choose the number of inputs, output wires, output registers, local wires and

local registers. In order to simplify the explanation of this step, all of following rules and

equations are based on the assumption that the LHS expression pattern is always has a

signalre f pattern and the length of all operands is one bit. Later, we generalize our find-

ings to cover all LHS patterns and bus operands.

The LHS of an assignment must be a wire. To avoid multiple drivers a wire must be

used only once as a LHS operand of assignments. As a result the number of wires used on

the LHS is the same as number of assignments of the module, as stated in Equation 5.2. In

addition, a wire can be declared as a local variable, an output port or an input port. Since

inputs cannot be used on the LHS we can write Equation 5.3. Equation 5.4 follows from

Equation 5.2 and 5.3. Since, the number of assignments was determined in step 1, so this

equation has two unknowns. For example, the sum of the total number of local wires and

outputs wires of Code 5.3 is two.

#assignments = #le f t hand side wires (5.2)

#le f t hand side wires = #local wires+#out put wires (5.3)

#assignments = #local wires+#out put wires (5.4)

The LHS of a statement must be a register. A register can be used as a LHS only in a

single process otherwise it result in multiple drivers for the LHS. On the other hand, in

a single process, a register can be used multiple times on the LHS as long as only one

54

of them executes according to the if-statements and case-statements.1 It is also important

to consider that according to specified conditions only some statements get executed. As a

result in a sequential processes if a register gets a value only in some cases and not in others,

it will get synthesized using an inferred latch to maintain its value when it is unspecified,

which is usually not the intended outcome.

In order to avoid inferred latches we came up with an algorithm to label all the signalre f

keywords used on the LHS in a way that if a register was driven in one condition according

to the i f and case statements it will be driven in all others as well. In addition when two

different signalre f have the same label it means they will be mapped to the same register

so the number of unique registers can be counted, as in Equation 5.5. Our example code

is as shown in Code 5.4 after the labeling algorithm is performed. Since a register can

be declared as both a local variable and an output port it is possible to write Equation 5.6

leading to Equation 5.7. The total number of local registers and output registers of Code

5.4 is two.

#unique le f t hand side registers = #registers (5.5)

#registers = #local registers+#out put registers (5.6)

#unique le f t hand side registers = #local registers+#out put registers (5.7)

Code 5.4: The progress of generating module M after labeling each LHS signalref.
1 module M();
2 assign signalref = binary constant signalref
3 assign signalref = concat signalref signalref
4
5 always @(posedge clock)
6 begin
7 if(unary signalref)
8 begin
9 signalref_label1 <= constant

10 signalref_label2 <= constant

1Overriding registers is not considered in this study since academic synthesis tools do not support it.

55

11 end else begin
12 signalref_label1 <= signalref range constant constant
13 signalref_label2 <= binary signalref signalref
14 end
15 end
16 endmodule

Both wire and register operands can be used on the RHS of assignments and statements

and each of them can be used multiple times, as shown in Equation 5.8.

#wires+#registers = #inputs∗A+#local wires∗B+#local registers∗C+

#out puts wires∗D+#out puts registers∗E
(5.8)

Since we have three equations and ten unknown, there are more than one solution for

the unknowns. Our generator randomly selects one of them. For example in sample Code

5.4 we have:

2 = #local wires+#out put wires

2 = #local registers+#out put registers

6= #inputs∗A+#local wires∗B+#local registers∗C+#out puts wires∗D+#out puts registers∗

E

One possible solution is as follows:

#inputs = 2

#out puts wires = 2

#out puts registers = 2

#local wires = 0

#local registers = 0

A = B =C = D = E = F = 1

Also clock and reset signals need to be declared as inputs if they were used in the sensitivity

list of any of the selected process patterns. The progress of generating module M by the

56

end of step three is shown in Code5.5.

Code 5.5: The progress of generating module M by the end of step 3.
1 module M(input_1, input_2, output_1, output_2, output_3, output_4,
2 clock, reset);
3 input reset, clock;
4 input input_1;
5 input input_2;
6 output output_1, output_2;
7 output output_3, output_4;
8 reg output_3, output_4;
9

10 assign signalref = binary constant signalref
11 assign signalref = concat signalref signalref
12
13 always @(posedge clock)
14 begin
15 if(unary signalref)
16 begin
17 signalref_label1 <= constant
18 signalref_label2 <= constant
19 end else begin
20 signalref_label1 <= signalref range constant constant
21 signalref_label2 <= binary signalref signalref
22 end
23 end
24 endmodule

5.2.4 Step Four - Operator Selection

In this step we select an operator for each binary or unary keyword of the selected expres-

sion patterns while using the same approach as the operator selection of our clone circuit

generator, described in Subsection 4.4.4.

5.2.5 Step Five - Operands Selection

At this point, the skeleton of the circuit is generated and all necessary inputs, output, local

wire, and local registers are declared. In this step we choose an operand from the ports

or local variables for each signalre f keyword based on the same approach as described in

Subsection 4.4.5 of our clone circuit generator.

57

Code 5.6: The progress of generating module M after step 5.
1 module M(output_2, input_1, output_1, input_2, output_3, output_4,
2 reset, clock);
3 input reset, clock;
4 input input_1;
5 input input_2;
6 output output_1, output_2;
7 output output_3, output_4;
8 reg output_3, output_4;
9

10 assign output_2 = input_1 ˆ constant;
11 assign output_1 = output_3 & output_4;
12
13 always @(posedge clock)
14 begin
15 if(! reset)
16 begin
17 output_3 <= constant;
18 output_4 <= constant;
19 end else begin
20 output_3 <= output_2;
21 output_4 <= output_3 + input_2;
22 end
23 end
24 endmodule

5.2.6 Step Six - Operand Width Selection

Typically, Verilog circuits deal with operands which are wider than a bit. To explain how

our generator handles buses, first we describe a width selection algorithm that we have

developed then we present the modifications to the ports and variables deceleration, and

operand selection steps to make them support bus operands.

in this step we randomly choose a number as the width for the LHS of each assignment

and statement from an acceptable range, defined by the user. Then we use these randomly

selected numbers to indicate the width of RHS and LHS operands based on the selected

operators in the expression pattern.

• The RHS operator is a unary: The LHS width is always one and the selected number

determines the width of LHS operand.

58

• The RHS operator is a binary operator other than multiplication: The LHS and RHS

width are the same and the selected number determines all of the width of all LHS

operands.

• Concatenation and Multiplication: The LHS width is the sum of the width of the

RHS operands as a result the randomly selected width must be more than the number

of RHS operands. The width of RHS operands will be determined in a way that sum

of them equals the randomly selected width. For example if the randomly selected

width for the LHS is 10 and there are three RHS operands, any three numbers more

than zero that sum up to 10 are acceptable as the RHS widths:

a[9 : 0] = b[1 : 0]∗ c[2 : 0]∗d[4 : 0]

Our example code after the final step is shown in Code 5.7.

Code 5.7: The progress of generating module M after step 6.
1 module M (output_2, input_1, output_1, input_2, output_3, output_4
2 , reset, clock);
3 input reset, clock;
4 input [7:0]input_1;
5 input [3:0]input_2;
6 output [7:0]output_1, output_2;
7 output [3:0] output_3, output_4;
8 reg [3:0] output_3, output_4;
9

10 assign output_2 = input_1 ˆ 8’b01010101;
11 assign output_1 = output_3 & output_4;
12
13 always @(posedge clock)
14 begin
15 if(! reset)
16 begin
17 output_3 <= 4’b0;
18 output_4 <= 4’b0;
19 end else begin
20 output_3 <= output_2[3:0];
21 output_4 <= output_3 + input_2;
22 end
23 end
24 endmodule

59

5.3 Implementation

We implemented the described random circuit generation algorithm in the Python program-

ming language on top of our clone circuit generation, described in Chapter 4. We added 2

files containing 2055 lines of code to the previous package. This software package gets the

outputs of analysis package of all available circuits, which are a set of patterns, acceptable

ranges and constraints. The output of this package is a random circuit that has the post-

synthesis characteristics which fall within the acceptable range.

5.4 Summary

In this chapter we altered our clone generator algorithm to generate random circuits using

the analysis information extracted form all available RTL circuits.

60

Chapter 6

Results and Validation

6.1 Introduction

In this chapter we present our experimental methodology and results. This chapter is or-

ganized as follows. In Section 6.2 we describe our experimental methodology and present

the results using our clone circuit generator. In Section 6.3 we define an acceptable random

circuit and present results using our random circuit generator showing how using corre-

lated input data will enhance the chance of generating an acceptable random circuit. In

Section 6.4 we compare the circuits generated using our random circuit generator to earlier

generators.

6.2 Clone Results and Validation

6.2.1 Overview of Experimentation Methodology

We generated a clone circuit for 19 Verilog circuits from the VTR set of benchmark circuits,

shown in Table 6.2 and explained in detail in Subsection 6.2.3. We synthesized, packed,

placed, and routed all clone and original circuits using VPR 6.0 on an architecture based on

the Altera Stratix IV, characterized by logic cluster size of 10, 33 inputs per cluster, 6-input

61

LUTs, cluster input and output flexibilities of Fcin = 0.33 and Fcout = 0.33, respectively,

and channels with segment length of 4, summarized in Table 6.1.

As shown in Figure 4.1, our clone circuit generator starts by analyzing an input Ver-

ilog circuit. It then repeatedly generates clone circuits until it generates an acceptable clone

based on the distance of the clone’s post-synthesis characteristics from those of the original.

As explained in Chapter 4, a clone circuits is acceptable if its constrained post-synthesis

characteristics are within a specific range. Note that the higher the number of constrained

post-synthesis characteristics and the smaller acceptable range, the more attempts will typ-

ically be required to find an acceptable clone circuit.

Table 6.1: CAD Flow and the architecture setup used in clone generator and random
generator experiments

CAD Flow Property Value
CAD Flow VPR 6.0

Target FPGA Similar to Altera Stratix IV

LUT Size 6

Cluster Size N = 10

Fcin 0.33

Fcout 0.33

Channel Segment Length 4

Input Pins per Cluster 33

Optimization Timing (assuming minimum channel width)

In this experiment the minimum channel width, critical path and number of cluster logic

blocks (CLBs) of all generated clone circuits are constrained to be within 25% of the origi-

nal Verilog circuit, computed using Equation 6.1. We also imposed a time limit of 48 hours

on the amount of time that is spent to generate an acceptable clone. If a clone circuit with

acceptable characteristics it not generated before the time limit, the program will be termi-

62

nated. In this case, the best clone circuit generated in the past 48 hours is considered as the

accepted clone circuit. The best clone circuit is the one that the has the minimum sum of

the computed value of Equation 6.1 for all of its constrained post-synthesis characteristics.

Original Postsynthesis Characteristics−Cloned Postsynthesis Characteristics
Original Postsynthesis Characteristics

∗100%

(6.1)

6.2.2 Runtime Optimization

The time required to analyze a given circuit, as described in Chapter 3, and to generate a

clone circuit, as described in Chapter 4, is negligible in comparison with running a circuit

through the CAD flow. In addition, as described in Section 4.4, we are generating a circuit

based on patterns and statistics rather than implementing a specific functionality. As a

result, the generated clone circuit may contain an unreasonably long critical path. Such a

clone circuit is not an acceptable clone and running it through the CAD flow to measure its

critical path is highly time consuming.

As shown in Table 3.9 the longest path of the data flow graph is correlated with the

critical path of the circuit. This observation can be used to discard the generated clone

circuits with unreasonably high critical path without running them through the CAD flow.

Hence after generating a clone circuit, the longest path in its DFG is measured. If it is

longer than a user defined limit the generated circuit is discarded. By setting the limit to a

low value the chance of discarding circuits with an unreasonably long critical path is higher,

however there is a higher risk of discarding an acceptable clone. The default longest path

limit is set to 30 DFG nodes since the longest path among all experimental set of circuits is

25 DFG nodes. The pseudocode of our acceptable clone generator is shown in Code 6.1.

An alternative approach is to avoid unreasonably long critical path is to modify our

clone circuit generation algorithm to prevent generating a circuit that its DFG has a longest

63

path higher than a limit. In another words, at each iteration of operand selection, described

in Subsection 4.4.5, in addition to updating the DFG and checking it for cycles, we would

also update its longest path and check if it is higher than a limit. If it is, the DFG would

be reverted to its previous version and operand selection is performed again to select new

operands. This approach was not persuaded because of concerns about the convergence of

the algorithm.

Code 6.1: Pseudocode of the clone circuit generation algorithm.
1
2 Clone_circuit_generator(input_circuit){
3 parameters, patterns, constraints = analyze(input_circuit)
4 while(time < 48 hours){
5 new_circuit = clone_circuit_generator (parameters, patterns)
6 DFG_longest_path = DFG_longest_path(new_circuit)
7 if(DFG_longest_path < 30 nodes){
8 post_synthesis_characteristics = CAD_flow(new_circuit)
9 if(|post_synthesis_characteristics| < 25%){

10 found = 1
11 accepted_clone_circuit = new_circuit
12 break
13 }
14 }
15 }
16 if (found == 0)
17 accepted_clone_circuit = best generated clone
18 }

6.2.3 Experimental Results

Number of Attempts, Number of Discards, Clone Time and Time Limit

Column 11 of Table 6.2 shows the number o f attempts to generate an acceptable clone for

each benchmark circuit. Column 12 shows the number o f discards which is the number

of generated circuits that are discarded because is has a DFG with a longest path more

than 30 nodes. Column 13 shows the normalized clone time, which is the time that it

takes to generate an acceptable clone circuit divided by the time spent to run the original

64

Table 6.2: Results of the Clone Circuit Generator for generating a clone for each Ver-
ilog circuit of the VTR benchmark suit

Original Circuit Results Accepted Clone Circuit Results Percentages Using 6.1 Other
Circuit Channel Width Critical Path Delay (ns) #CLBs Channel Width Critical Path Delay (ns) #CLBs Channel Width Critical Path Delay (ns) #CLBs #Attemps #Discards Normalized Clone Time Time Limit

bgm 116 26.46 2930 120 21.39 3781 -3.45 19.16 -29.04 % 34 7 4.36x 1

blob merge 74 10.34 543 88 12.44 653 -18.92 -20.29 -20.26 % 25 2 3.24x 0

boundtop 60 6.46 233 50 4.93 285 16.67 23.69 -22.32 % 56 0 71.32x 0

ch intrinsics 50 3.94 37 38 2.70 33 24.00 31.34 10.81 % 76 0 47.16x -1

diffeq1 52 22.52 36 43 16.53 47 17.31 26.61 -30.56 % 51 1 91.37x 1

diffeq2 52 16.53 27 68 18.59 35 -30.77 -12.49 -29.63 % 43 1 52.41x 0

LU8PEEng 114 115.29 2104 122 137.03 1527 -7.02 -18.86 27.42 % 53 11 7.56x 1

LU32PEEng 174 115.06 7128 129 121.97 6102 25.86 -6.01 14.39 % 31 18 1.42x 1

mcml 104 79.64 6615 140 55.55 4391 -34.62 30.25 33.62 % 53 27 1.73x 1

mkDelayWorker32B 76 7.30 447 60 7.18 416 21.05 1.63 6.94 % 42 0 13.49x 0

mkPktMerge 46 4.57 15 41 5.28 19 10.87 -15.45 -26.67 % 67 0 8.34x -1

mkSMAdapter4B 56 5.65 165 49 5.72 148 12.50 -1.28 10.30 % 89 0 6.32x 0

or1200 74 13.34 257 60 14.99 250 18.92 -12.44 2.72 % 32 1 35.72x 0

raygentop 68 5.04 173 53 4.10 200 22.06 18.70 -15.61 % 75 0 24.83x 0

sha 50 13.64 209 37 11.71 236 26.00 14.17 -12.92 % 94 3 52.07x 1

stereovision0 60 4.36 905 68 5.89 968 -13.33 -35.03 -6.96 % 32 0 21.62x 0

stereovision1 104 5.75 889 124 7.43 623 -19.23 -29.16 29.92 % 112 0 74.36x 1

stereovision2 154 17.39 2395 127 11.38 2972 17.53 34.56 -24.09 % 93 38 1.74x 1

stereovision3 34 2.67 13 38 3.13 17 -11.76 -17.24 -30.77 % 88 0 30.76x -1

circuit through the CAD flow. As mentioned in Subsection 6.2.2, the dominant portion

of time spent for generating an acceptable clone is running the generated clones through

the CAD flow. As a result Equation 6.2 is approximately the same as Equation 6.3. The

time limit (Column 14), is 1 if an acceptable clone is not generated in less than 48 hours

and 0 otherwise.

total time spent to generate an acceptable clone circuit
time spent to run the original circuit through the CAD f low

(6.2)

time spent to run the generated clones through the CAD f low
time spent to run the original circuit through the CAD f low

(6.3)

For example to come up with an acceptable clone for blob merge circuit, shown in Row 3

of Table 6.2, 25 clone circuits are generated and 2 of them are discarded. Hence only 23

of them are run through the CAD flow. Running these 23 clone circuit takes 3.24 times

longer than running blob merge circuit through the CAD flow. An acceptable clone circuit

is generated in less than 48 hours.

The clone time is less than number of circuits that are run through the CAD flow, except

for two cases (circuits bound top and or1200). The reason is that most generated clone

circuits have fewer CLBs and a lower critical path than the original circuit. This can have

65

two reasons:

• The generated clone is based on patterns and statistics rather than to implement a

specific functionality as a result its DFG might be not as complex as the DFG of the

original circuit.

• There are other situations that cause optimizable code which are not considered in

Subsection 4.4.5. For example 6.2 will be optimized to b = b+a;.

• Mixing certain process patterns and expression patterns creates unsynthesisable Ver-

ilog code or a code that is not supported by the CAD flow, hence the CAD flow fails

at early stages.

Code 6.2: An Optimizable Example Code
1 case(a) begin
2 0: b = b;
3 1: b = b + 1;
4 2: b = b + 2;
5 3: b = b + 3;
6 end

The clone time for circuits bound top and or1200 is more than the number of circuits

that are run through the CAD flow. The reason is that for both of these, a few generated

clones have an unreasonably long critical path that were not eliminated using our runtime

optimization approach described in Subsection 6.2.2.

The number of discarded generated clone circuits is higher when the critical path of the

original circuit is longer. This is because those original Verilog circuits are more likely to

contain an expression and process patterns that results in a DFG with the longest path more

than the limit.

66

Minimum Channel Width, Critical Path and Number of CLBs

Columns 2 to 4 of Table 6.2 show the post-synthesis characteristics of the original Verilog

circuits. Columns 5 to 7 show the post-synthesis characteristics of the generated clone

circuit. Columns 8 to 10 show the result of the Equation 6.1 for each post-synthesis char-

acteristics of the generated clone circuit. These percentages are less than 25% unless the

48 hours time limit is reached while generating the clone circuit.

In addition, if the critical path delay of the original circuit is short, generating an ac-

ceptable clone circuit will take several attempts since the acceptable range is also small. As

a result the generated clone circuits for which the critical path delay is not within 25% of

the original circuit but their difference is less than 2 ns are considered as acceptable clones,

such as ch intrinsics in row 2. For the same reason the generated clone circuits for which

the number of CLBs is not within 25% of the original circuit but their difference is less

than 5 CLBs are also acceptable clones, such as mkPktMerge in row 12 and stereovision3

in the last row.

6.3 Random Results and Characterization

6.3.1 Overview of Experimentation Methodology

We analyzed 19 Verilog circuits from the VTR set of benchmarks as the input set of circuits

to obtain the necessary set of data. This data consists of a pool of module topology graphs,

a table of process patterns, a table of expression patterns, the distribution of the number of

assignments and the distribution of the number of processes. We used this set of data to

tune our random circuit generator and generate random circuits as described in Chapter 5.

One of challenges of designing a random circuit generators is verifying the realism of the

circuits that it generates, since there is no specific definition of real circuit. One pos-

sible solution could be demonstrating that the random generated circuits have the same

67

trend as the input set of circus. However our studies show that it is difficult to identify

trends in our input set of circuits. For example, Figure 6.1 shows the relationship between

size o f circuit(CLBs) and critical path delay of our input set of circuits and Figures 6.3

to 6.6 show the relationships between the size of circuit and four different post-systhesis

characteristics of eASIC circuits which occupy a region rather forming a trend.

Figure 6.1: The relationship between size of circuit (CLBs) and critical path delay of
our input set of circuits to demonstrate that this relation has no specific trend.

An alternative verification approach is determining if a randomly generated circuit has

post-synthesis characteristics are within a predetermine range.For example we could verify

that the circuit’s critical path, number of CLBs and minimum channel width are within the

corresponding renges for the input set of circuits. Based on this verification approach the

acceptable ranges are (2.667ns, 115.29ns) for the critical path, (34, 174) for the channel

width, and (13, 7128) for the number of CLBs. However these acceptable ranges are wide,

and not all circuits in these ranges may be realistic. For example, a randomly generated

circuit with channel width of 40 and critical path of 100ns is not realistic, as illustrated

in Figure 6.2. Hence we divide our input set of circuit into two groups: those with fewer

than 1000 CLBs and those with more than 1000 CLBs, and define two separate acceptable

ranges based on each group, as shown in Table 6.3.

68

Table 6.3: Acceptable ranges of critical path, minimum channel width and number of
CLBs based on set of input circuits divided into two groups.

Circuit Group Critical Path Range Minimum Channel Width Range #CLBs Range
VTR circuits with less than 1000 CLBs (2.667ns, 22.523ns) (34, 104) (13, 1000)

VTR circuits with more than 1000 CLBs (17.385ns, 115.29s) (104, 174) (1000, 7128)

Figure 6.2: Demonstrating that a randomly generated circuit with channel width of
40 and critical path of 100ns is not realistic. Dividing the input set of circuits
into two groups based on their size.

6.3.2 Correlation

Out of 50 circuits that we generated using our random generation algorithm described in

Chapter 5, 19 are in acceptable ranges, from Table 6.3. Generally, the generated random

circuits that are not in the acceptable range have fewer CLBs or a shorter critical path

than the circuits that are in the acceptable range. Hence our random circuit generator is

generating unrealistic circuits. the following subsections describe the modifications that

we applied to our random circuit generation algorithm to make it more realistic. Table 6.6

shows how many circuits were acceptable when we generated 50 different circuits using

our random circuit generator in each different mode.

69

Correlation Between Number of Processes in a Module and the Pattern of its
Processes

Our random circuit generator may generate a module with one process. In this case its

process pattern is most likely a sequential process containing a non-blocking assignment,

according to Table 3.7. The post-synthesis characteristics of this module, including the

number of CLBs and critical path, are small. However, such a small module does not exist

in our input set of circuits. There are 11 patterns that are found in the modules with one

process; Table 6.4 shows how common each of them are, their process category, number of

keywords that each process pattern has and the first five keywords. As a result choosing a

process pattern solely based on how common each pattern is in the input set of circuits is

not realistic.

In order to make our process pattern decision more realistic, we create tables similar to

Table 6.4 for each number of processes that a module can have. Then in our random circuit

generator algorithm while choosing a process pattern for a module with p processes, we

choose from the table that stores the process pattern from modules with p processes. We

generated 50 random circuits using this modified algorithm. The outcome is shown in

Table 6.6. The number of accepted random generated circuits is 7 more than that from

theprevious experiment using the unmodified algorithm.

We applied the same modification on expressions patterns of assignments, however the

improvement to number of accepted circuits was not significant.

Correlation Between Process Patterns and Expression Patterns

We also address the correlation between process pattern and expression patterns. As an ex-

ample, consider a sequential process with the 0 : sequential−1 : conditional−2 : seqblock−

3 : nonblockingassign pattern. This is the third most common process pattern, according to

Table 3.7. As described in Subsection 5.2.2, if our random circuit generator chooses this

70

Table 6.4: Pattern of Processes of Modules with One Process

Percentage Process Category #Keywords First Five Keywords of the Process Pattern
25% Sequential 11 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 3:nonblockingassign

25% Sequential 24 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 3:nonblockingassign

6.25% Sequential 29 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 3:nonblockingassign

6.25% Sequential 1765 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 3:nonblockingassign

6.25% Sequential 12 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 2:seqblock

6.25% Sequential 9 0:seqblock - 1:conditional - 2:nonblockingassign - 2:conditional - 3:nonblockingassign

5% Sequential 412 0:seqblock - 1:case - 2:caseitem - 3:seqblock - 4:nonblockingassign

5% Sequential 11 0:seqblock - 1:nonblockingassign - 1:nonblockingassign - 1:nonblockingassign - 1:conditional

5% Combinational 269 0:seqblock - 1:case - 2:caseitem - 3:seqblock - 4:blockingassign ...

5% Sequential 27 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 2:seqblock ...

5% Sequential 20 0:seqblock - 1:conditional - 2:seqblock - 3:nonblockingassign - 1:nonblockingassign ...

process pattern then it needs to choose an expression pattern for 3 : nonblockingassign part

of this pattern. According to Table 3.8 this would be a constant or a signalre f with 69.08%

possibility such a pattern is implemented by wiring and does not require any complicated

circuitry. However in our input set of circuits the expression pattern of this non-blocking

statements contains at least one binary operation, as shown in Table 6.5. As a result choos-

ing an expression pattern solely based on how common each pattern is in the input set of

circuits is not realistic.

In order to make our expression pattern decision more realistic we created a table sim-

ilar to Table 6.5 for each process pattern. Then we modified our clone circuit generation

algorithm in a way that it chooses the expression pattern for each process pattern from

its specific table. For example the expression pattern for the non-blocking statement of

0 : sequential−1 : conditional−2 : seqblock−3 : nonblockingassign process will be de-

cided based on Table 6.5. We generated 50 random circuits using this modified algorithm

and 23 of the generated circuits were in the acceptable range, 4 which is more that the

original version our random circuit generator.

71

Table 6.5: Expression Patterns that were found in processes with 0 : sequential− 1 :
conditional−2 : seqblock−3 : nonblockingassign pattern

Percentage Pattern
16.27% binary signalref signalref

16.27% binary binary signalref signalref constant

67.45% binary signalref constant

Table 6.6: Random Circuit Generator Results

Random Generator Mode #Attempts #Accepted
No Correlation 50 19

#Processes in a Module and Process Patterns 50 26

Process Patterns and Expression Patterns 50 23

6.4 Comparison to Earlier Circuit Generators

In this section, we discuss why generating circuits at the RTL level is fundamentally advan-

tageous compared to generating circuits at lower levels of abstraction. Then we compare

the post-synthesis characteristics of our random circuit generator against previous bench-

mark generators: Mark [31], GEN [21] and Gnl [41] and eASIC circuits [30].

6.4.1 RTL Circuit Generator vs. Netlist Circuit Generator

Unlike previous generators, ours generates circuits at the RTL which are much more suit-

able for the types of architecture and CAD studies that researchers often want to perform.

The reason is that CAD tools are created to synthesize circuits at RTL level which is the

level of abstraction at which designers specify their circuits. However, all previous works

characterize and generate circuits at the netlist level or gate level which limits the useful-

ness of their generated circuits for evaluating physical design CAD algorithms and does

not allow for the evaluation of synthesis related mapping algorithms.

72

6.4.2 Comparison against previous benchmark generators

This section compares results obtained form the eASIC circuits to those obtained using

our random circuit generator as well as Mark, GEN, Gnl. We introduced eASIC circuits

in Subsection 2.3.2 and more details on the data collected from the eASIC circuits can be

found in [30].

The Mark generator validated its results by demonstrating that her generator is capable

of generating circuits with post-synthesis characteristics that scales well to mimic eASIC

circuits in comparison with previous generators, GEN and Gnl, with respect to circuit size.

Mark’s, GEN and Gnl were calibrated using specific input set of circuits and synthesis

tools, which may no longer be state of the art. As a result in order to compare our results

we used the numbers reported in [31] for 18 circuits of varying sized from 5687 to 72625

four-input LUTs. These circuits were synthesized using T-VPACK and VPR 5.0’s timing-

driven clustering, placement, and mapped to a minimum-sized FPGA with minimum chan-

nel width. Moreover, we generated 5 random circuits using our random generator and

synthesized them using CAD Flow and the architecture setup as shown in Table 6.7.

Table 6.7: CAD Flow and the architecture setup used in comparison to earlier circuit
generators experiment

CAD Flow Property Value
CAD Flow VTR 5.0

Target FPGA Similar to Altera Stratix

LUT Size 4

Cluster Size N = 6

Fcin 0.33

Fcout 0.33

Channel Segment Length 4

Input Pins per Cluster 15

Optimization Area (assuming minimum channel width)

73

The relationship of the number of nets versus the size of circuit based on number of

four-input LUTs of these four different generators and eASIC circuits are shown in Figure

6.3. A dataset provided by Mark was used to obtain data for the previous generator as well

as the eASIC circuits [29]. Each group of circuits is labeled by its name. Circuits generated

by our random circuit generator are labeled as New. The eASIC circuits are shown as

scattered dots however the generated circuits of each generator are connected together using

a solid line in order to demonstrate trends. Figures 6.4, 6.5 and 6.6 were produced in the

same manner and show the relationship of a different post-synthesis characteristics to the

size of circuit. In the following subsections we discuss each of these figures.

Number of Nets

Figure 6.3 shows the relationship between the number of nets and the size of circuit for each

of eASIC circuits and the circuits generated by the four generators, Mark, GEN, Gnl, and

New. The largest circuit generated by Mark, GEN, and Gnl are much smaller than eASIC

circuits; as a result the only possible way to evaluate them is extrapolating their trends.

Doing so indicates that all three of them have a high possibility of colliding with the region

that eASIC circuits are scattered. However our generator is capable of generating circuits

almost as big as the eASIC circuits; moreover the number of nets in our circuits are in the

range of eASIC circuits.

Critical Path and Minimum Channel Width

Figures 6.4 and 6.5 represent the relationships of the critical path delay and the minimum

channel width versus the size of circuit. Trends for GEN and Gnl are not likely to reach the

region of the eASIC circuits. However the Mark’s trend will reach eASIC circuits and our

random generated circuits have the correct ranges.

74

Average Net Length

Figure 6.6 shows the average net length of eASIC circuits and the circuits generated by each

of the four generators. Mark’s circuits show correct trend related to the eASIC circuits.

However, the trends of GEN and Gnl are not likely to reach that region. One of our random

generated circuits has a higher average net length compared to the eASIC circuits. The

other four of our circuits are in a less crowded region. This suggests that our random

generator is generating circuits with a higher average net length than the realistic circuits.

Since their number of nets were reasonable according to Figure 6.3, we can conclude that

nets of our circuits are longer than realistic circuits. Long nets are used to connect parts of

circuits that are futhur away form each other. As a result our circuits have less locality.

Figure 6.3: Number of Nets Comparison

6.5 Summary

In order to evaluate the efficiency of our clone circuit generator algorithm we generated

a clone circuit for each of the VTR set of Verilog benchmark circuits. We were able to

generate clones with post-synthesis characteristics (critical path, channel width and number

of cluster logic blocks) that fall within 25% range of corresponding characteristic of the

original circuits. Generating these circuits requires, on average, 23.89x the run-time of

75

Figure 6.4: Minimum Channel Width Comparison

Figure 6.5: Critical Path Comparison

synthesizing the original circuit using the VTR flow.

Our random circuit generator is evaluated based on the number of the candidate circuits

with characteristics that fall within an acceptable range random circuits. By exploring

possible correlations we increased the number of acceptable circuits. In our experiments

46% of our random generated candidate circuits fell in the acceptable range bounded by

the minimum and maximum of post-synthetic characteristics in our input set of circuits.

We also demonstrated that our generated circuits have characteristics that fell within the

range of large industrial circuits while the circuits generated by the previous work are much

smaller than large industrial circuits and do not scale well.

76

Figure 6.6: Average Net Length Comparison

77

Chapter 7

Conclusion

7.1 Summary

Today FPGAs are emerging as essential components of data centers and cloud computing

infrastructures. In order to keep up with such quickly changing application domains, FP-

GAs that are more dencse consume less power and run faster are required. However, the

process of enhancing FPGAs is hindered by the lack of proper benchmark circuits (required

for evaluation of new designs). In this thesis we introduced an approach for generating RTL

level benchmark circuits.

The first phase of this thesis describes our analysis techniques and presents the analysis

results from our input set of circuits. In this phase we first modeled circuits at RTL level.

We then profiled our input set of circuits based on our model using different profiling

techniques. Our first profiling technique collects basic numeric information such as number

of ports, assignments, processes, and different types of statements. Since it is not possible

to generate a new RTL circuit merely based on this numerical information, we employed

a second profiling technique in which we collected graph-based information such as the

topology of module instantiations and the DFG of an RTL circuit and its longest path.

78

Lastly we studied possible sequences of statements in processes (process patterns) and

possible sequences of operand and operators in a expressions (expression patterns).

In the second phase of this thesis, we developed an algorithm to generate a clone for an

input circuit. Our algorithm first analyzes the input circuit and extracts all the numerical and

graph-based information as well as process and expression patterns that exist in the circuit.

Then it generates new candidate circuits using the extracted information and runs them

through the CAD flow. When a candidate circuit fits within a predefined range of selected

post-synthesis characteristics, it will be outputted as the clone circuit and the algorithm

terminates. In order to evaluate the efficiency of our clone circuit generator algorithm we

generated a clone circuit for each of the VTR set of Verilog benchmark circuits. We were

able to generate clones with post-synthesis characteristics (critical path, channel width and

number of cluster logic blocks) that fall within 25% of the corresponding characteristic in

the original circuits. Generating these circuits requires, on average, 23.89 times the run-

time of synthesizing the original circuit using the VTR flow.

In third phase we altered our clone generator algorithm to generate random circuits us-

ing the analysis information extracted form all available RTL circuits. Our random circuit

generator is evaluated based on the number of the candidate circuits with characteristics

that fall within an acceptable range. By exploring possible correlations we increased the

number of acceptable circuits. In our experiments 46% of our random generated candi-

date circuits fell in the acceptable range bounded by the minimum and maximum of post-

synthetic characteristics in our input set of circuits. We also showed that our generator

is able to generate random circuits with post-synthesis characteristics that fall within the

range of large industrial circuits.

It is known that not all circuits written at RTL level are synthesizable and only a subset

of them are supported by all CAD flows. Since our generator mixes different process

and expression patterns it is capable of generating circuits that are not supported by CAD

79

tools. This issue increases the number of necessary attempts to generate an acceptable

circuit. However, the discarded circuits can be used as examples in studies targeting CAD

algorithm improvements.

7.2 Limitations and Future Work

The circuit generator algorithm introduced in this thesis generates circuits based on col-

lected data and statistics rather than specific functionalities. One issue with this approach

is the it is possible to generate a circuit with an unusually long critical path (addressed

in 6.2.2). A second issue is that the locality of our generated circuits may be lower than

realistic circuits. Hence their average wirelength will be higher than normal as shown in

Figure 6.6. However, the gap is not large since our generator creates a circuit by connecting

individually generated modules based on the module topology graph. As a result the com-

munication between modules is limited to ports and all the internal signals are localized

within a module. However, to address this issue, one possible solution is to add the average

wire-length to the list of selected post-synthesis characteristics. This approach is not desir-

able since increasing the number of selected post-synthesis characteristics will increase the

required number of attempts to generate an acceptable circuit. A better approach is to study

the DFGs of available modules and generate new module with DFGs that are isomorphic

to the DFGs of the available modules.

The complexity of process and expression patterns that will be used in a generated

circuit is limited to those that are found in the input set of circuits. For example none of

our input set of RTL circuits have a f or loop. Hence none of the circuits generated using

this set of data has a f or loops.

One area of potential improvement is decreasing the generation runtime by eliminating

the number of necessary attempts. The unsuccessful attempts are the result of generating

circuits containing unrealistic patterns. We eliminated some of them by applying the corre-

80

lations between process pattern and number of processes, as well as expression patterns and

process patterns, as described in Section 6.3.2. The same idea could be applied to the other

input parameters. However, no other significant correlations were found due to the small

number of input circuits. We expect that exploring possible correlations within a much

larger set of circuits and using the findings to tune the generator significantly decrease the

average number of attempts to generate an acceptable circuit.

Another area of future research is to enhance our benchmark circuit generator algorithm

so that it can generate circuits consisting embedded blocks such as memories, processors,

and multipliers. Embedded blocks are an important part of realistic RTL circuits. In order to

achieve this, a careful circuit analysis study on input and output parameters of these blocks

and the type of circuits and hierarchy level that they appear in is required. In addition the

generation algorithm needs to be modified to be able to properly instantiate these blocks.

81

Bibliography

[1] S. N. Adya, M. C. Yildiz, I. L. Markov, P. Villarrubia, P. N. Parakh, and P. H. Madden.
Benchmarking for large-scale placement and beyond. volume 23, pages 472–487,
2004. → pages 12

[2] Altera. Cyclone v device handbook vol. 1: Device interfaces and integration. 2015.
→ pages 6, 8

[3] J. H. Anderson and F. N. Najm. Power-aware technology mapping for lut-based fpgas.
In Proceedings of the 2002 IEEE International Conference on Field-Programmable
Technology, FPT 2002, Hong Kong, China, December 16-18, 2002, pages 211–218.
→ pages 9

[4] J. H. Anderson and F. N. Najm. Low-power programmable FPGA routing circuitry.
volume 17, pages 1048–1060, 2009. → pages 8

[5] V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. In W. Luk, P. Y. K. Cheung, and M. Glesner, editors, Field-Programmable
Logic and Applications, 7th International Workshop, FPL ’97, London, UK, Septem-
ber 1-3, 1997, Proceedings, volume 1304 of Lecture Notes in Computer Science,
pages 213–222. Springer, 1997. → pages 6

[6] V. Betz and J. Rose. FPGA routing architecture: Segmentation and buffering to opti-
mize speed and density. In FPGA, pages 59–68, 1999. → pages 8

[7] J. Cong and Y. Ding. On area/depth trade-off in lut-based FPGA technology mapping.
volume 2, pages 137–148, 1994. → pages 9

[8] J. Cong and K. Minkovich. Lut-based FPGA technology mapping for reliability. In
S. S. Sapatnekar, editor, Proceedings of the 47th Design Automation Conference, DAC
2010, Anaheim, California, USA, July 13-18, 2010, pages 517–522. ACM, 2010. →
pages 9

[9] J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: Enabling a general and
efficient FPGA mapping solution. In FPGA, pages 29–35, 1999. → pages 7

82

[10] J. Cong and S. Xu. Delay-optimal technology mapping for fpgas with heterogeneous
luts. In DAC, pages 704–707, 1998. → pages 7

[11] J. Das, A. Lam, S. J. E. Wilton, P. H. W. Leong, and W. Luk. An analytical model
relating FPGA architecture to logic density and depth. volume 19, pages 2229–2242,
2011. → pages 2

[12] ePrize1. 2008. → pages 14

[13] D. Ghosh, N. Kapur, F. Brglez, and J. E. H. III. Synthesis of wiring signature-invariant
equivalence class circuit mutants and applications to benchmarking. In P. Dewilde,
F. J. Rammig, and G. Musgrave, editors, 1998 Design, Automation and Test in Europe
(DATE ’98), February 23-26, 1998, Le Palais des Congrès de Paris, Paris, France,
pages 656–663. IEEE Computer Society, 1998. → pages 15, 16

[14] D. Grant, S. Chin, and G. G. Lemieux. Semi-synthetic circuit generation using graph
monomorphism for testing incremental placement and incremental routing tools. In
Proceedings of the 2006 International Conference on Field Programmable Logic and
Applications (FPL), Madrid, Spain, August 28-30, 2006, pages 1–4. IEEE, 2006. →
pages 17

[15] D. Grant and G. Lemieux. Perturber: semi-synthetic circuit generation using ancestor
control for testing incremental place and route. In G. A. Constantinides, W. Mak,
P. Sirisuk, and T. Wiangtong, editors, 2006 IEEE International Conference on Field
Programmable Technology, FPT 2006, Bangkok, Thailand, December 13-15, 2006,
pages 189–196. IEEE, 2006. → pages 16

[16] D. Grant and G. G. Lemieux. Perturb+mutate: Semisynthetic circuit generation for
incremental placement and routing. volume 1, pages 16:1–16:24, 2008. → pages 3,
15, 17

[17] J. W. Greene, S. Kaptanoglu, W. Feng, V. Hecht, J. Landry, F. Li, A. Krouglyan-
skiy, M. Morosan, and V. Pevzner. A 65nm flash-based FPGA fabric optimized
for low cost and power. In J. Wawrzynek and K. Compton, editors, Proceedings
of the ACM/SIGDA 19th International Symposium on Field Programmable Gate Ar-
rays, FPGA 2011, Monterey, California, USA, February 27, March 1, 2011, pages
87–96. ACM, 2011. → pages 8

[18] J. E. Harlow, III, and F. Brglez. Synthesis of esi equivalence class combinational
circuit mutants. Technical report, CBL, CS DEPT., NCSU, BOX 7550, 1997. →
pages 15

[19] Y. Hu, S. Das, S. Trimberger, and L. He. Design and synthesis of programmable logic
block with mixed LUT and macrogate. volume 28, pages 591–595, 2009. → pages 8

83

[20] M. D. Hutton, J. Rose, and D. G. Corneil. Automatic generation of synthetic sequen-
tial benchmark circuits. volume 21, pages 928–940, 2002. → pages 3, 13, 72

[21] M. D. Hutton, J. Rose, J. P. Grossman, and D. G. Corneil. Characterization and
parameterized generation of synthetic combinational benchmark circuits. volume 17,
pages 985–996, 1998. → pages 12, 31

[22] P. A. Jamieson and J. Rose. Enhancing the area efficiency of fpgas with hard circuits
using shadow clusters. volume 18, pages 1696–1709, 2010. → pages 8

[23] P. D. Kundarewich and J. Rose. Synthetic circuit generation using clustering and
iteration. volume 23, pages 869–887, 2004. → pages 3

[24] I. Kuon and J. Rose. Measuring the gap between fpgas and asics. volume 26, pages
203–215, 2007. → pages 6

[25] B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions of
logic graphs. volume C-20, pages 1469–1479, Dec 1971. → pages 11

[26] M. Lin and A. E. Gamal. A low-power field-programmable gate array routing fabric.
volume 17, pages 1481–1494, 2009. → pages 8

[27] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr,
S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and V. Betz. VTR 7.0:
Next generation architecture and CAD system for fpgas. volume 7, pages 6:1–6:30,
2014. → pages 2

[28] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuristics for area minimization
in lut-based FPGA technology mapping. volume 25, pages 2331–2340, 2006. →
pages 9

[29] C. Mark. A system-level synthetic circuit generator for fpga architectural analysis.
2006. → pages 74

[30] C. Mark, S. Y. L. Chin, L. Shannon, and S. J. E. Wilton. Hierarchical benchmark
circuit generation for FPGA architecture evaluation. volume 11, pages 42:1–42:25,
2012. → pages 3, 13, 72, 73

[31] C. Mark, A. Shui, and S. J. E. Wilton. A system-level stochastic circuit generator
for FPGA architecture evaluation. In T. A. El-Ghazawi, Y. Chang, J. Huang, and
P. Saha, editors, 2008 International Conference on Field-Programmable Technology,
FPT 2008, Taipei, Taiwan, December 7-10, 2008, pages 25–32. IEEE, 2008.→ pages
14, 72, 73

84

[32] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Titan: Enabling large and
complex benchmarks in academic CAD. In 23rd International Conference on Field
programmable Logic and Applications, FPL 2013, Porto, Portugal, September 2-4,
2013, pages 1–8. IEEE, 2013. → pages 2

[33] Y. Okamoto, Y. Ichinomiya, M. Amagasaki, M. Iida, and T. Sueyoshi. COGRE: A
configuration memory reduced reconfigurable logic cell architecture for area mini-
mization, pages 304–309. 12 2010. → pages 8

[34] J. Pistorius, E. Legai, and M. Minoux. Partgen: a generator of very large circuits to
benchmark thepartitioning of fpgas. volume 19, pages 1314–1321, 2000. → pages
13, 15

[35] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J. Kim, S. Lanka, J. R. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-scale data-
center services. volume 59, pages 114–122, 2016. → pages 1

[36] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In M. R.
Lightner and J. A. G. Jess, editors, Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design, 1993, Santa Clara, California, USA, Novem-
ber 7-11, 1993, pages 42–47. IEEE Computer Society / ACM, 1993. → pages 15

[37] A. Singh and M. Marek-Sadowska. Efficient circuit clustering for area and power
reduction in fpgas. In Proceedings of the 2002 ACM/SIGDA Tenth International Sym-
posium on Field-programmable Gate Arrays, FPGA ’02, pages 59–66, New York,
NY, USA, 2002. ACM. → pages 9

[38] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, and E. Bozorgzadeh.
HARP: hard-wired routing pattern fpgas. In H. Schmit and S. J. E. Wilton, edi-
tors, Proceedings of the ACM/SIGDA 13th International Symposium on Field Pro-
grammable Gate Arrays, FPGA 2005, Monterey, California, USA, February 20-22,
2005, pages 21–29. ACM, 2005. → pages 8

[39] L. Sterpone and M. Violante. A new reliability-oriented place and route algorithm for
sram-based fpgas. volume 55, pages 732–744, 2006. → pages 10

[40] D. Stroobandt, J. Depreitere, and J. V. Campenhout. Generating new benchmark
designs using a multi-terminal net model. volume 27, pages 113–129, 1999. → pages
11

[41] D. Stroobandt, P. Verplaetse, and J. M. V. Campenhout. Generating synthetic bench-
mark circuits for evaluating CAD tools. volume 19, pages 1011–1022, 2000.→ pages
3, 11, 72

85

[42] G. Wang, S. Sivaswamy, C. Ababei, K. Bazargan, R. Kastner, and E. Bozorgzadeh.
Statistical analysis and design of HARP fpgas. volume 25, pages 2088–2102, 2006.
→ pages 8, 10

[43] Xilinx. Virtex-6 fpga configuration user guide. 2015. → pages 6, 8

86

