
Efficient Feasibility Checking in Reverse Clock Auctions
for Radio Spectrum

by

Neil Newman

BA.Sc. in Engineering Science, University of Toronto, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

January 2017

c© Neil Newman, 2017

Abstract

We investigate the problem of building a feasibility checker to repack stations in the

reverse auction part of the FCC’s ongoing, multi-billion-dollar “incentive auction”.

In this work, we describe the design of a feasibility checker, SATFC, that has been

adopted by the FCC for use in the incentive auction. We also construct a reverse

auction simulator both in order to evaluate SATFC and also to gain insight into how

the performance of the feasibility checker impacts the overall cost and efficiency of

the auction. Through running simulations that differ only in the feasibility checker

used, we show that the feasibility checker has a significant impact on auction cost

and efficiency.

ii

Preface

A significant fraction of Chapter 3 was published in the Thirtieth AAAI Conference

on Artificial Intelligence held in 2016 as “Solving the Station Repacking Problem”

[17]. This paper was authored by Alexandre Fréchette, myself, and my supervisor

Kevin Leyton-Brown. I was involved in writing text, running experiments, analyz-

ing data, and coding SATFC. The remainder of this thesis has not been published

elsewhere. I wrote the code for the simulator described in Chapter 4, and performed

all of the experiments and data analysis in Chapter 5.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Glossary . x

Acknowledgments . xii

1 Introduction . 1

2 The Reverse Auction . 6
2.1 The Reverse Auction Limited to UHF Stations 6

2.1.1 Computing Prices . 7

2.1.2 Scoring Rule . 7

2.2 Generalizing the Reverse Auction to Include VHF Stations 8

2.2.1 Computing Prices with Multiple Bands 9

2.2.2 Placing Bids . 11

2.2.3 Bid Processing . 11

2.2.4 Provisional Winners . 12

2.2.5 Removing Stations That Can Never Become Winners . . . 12

iv

2.2.6 Termination . 13

3 Designing an Efficient Feasibility Checker 14
3.1 The Station Repacking Problem 14

3.2 Structure of Constraints . 15

3.3 Structure of Station Repacking Problems in the Reverse Auction . 16

3.4 Complete and Local Search Solvers 17

3.5 Encodings . 18

3.5.1 MIP Encoding . 18

3.5.2 SAT Encodings . 18

3.6 Using the Previous Solution . 20

3.6.1 Locally Altering the Previous Solution 20

3.6.2 Starting Near the Previous Solution 21

3.7 Problem Simplification . 22

3.7.1 Arc Consistency . 22

3.7.2 Unconstrained Station Removal 22

3.7.3 Problem Decomposition 24

3.8 Meta-Algorithmic Techniques 24

3.9 Containment Caching . 25

3.10 SATFC . 29

4 Designing a Reverse Auction Simulator 31
4.1 Station Bidding Model . 31

4.2 Station Valuation Model . 32

4.3 Determining Clearing Target . 33

4.4 Feasibility Checker . 34

4.5 Revisiting Timeouts . 34

4.6 Reusing Solutions Within a Simulation 36

5 Experiments . 37
5.1 Simulations . 37

5.2 Creating a Test Set of Non-Trivial Problems 39

5.3 Evaluating Test Set Performance 39

5.4 Containment Cache Evaluation 42

v

5.5 Simulations with Different Feasibility Checkers 43

5.5.1 Comparing Reverse Auction Outcomes 43

5.5.2 Comparing the Reverse Auction and VCG 45

5.5.3 National Simulation Results 47

6 Discussion and Conclusions . 51

Bibliography . 53

vi

List of Tables

Table 3.1 A breakdown of the different solvers composing SAT-based Fea-

sibility Checker (SATFC) showing the different ideas from this

chapter that are used in each algorithm. 30

Table 5.1 A breakdown of the marginal value of adding each new config-

uration to our portfolio by building the portfolio greedily. . . . 41

vii

List of Figures

Figure 3.1 Interference graph derived from the Federal Communications

Commission (FCC)’s November 2015 constraint data [14]. . . 17

Figure 3.2 The first two subproblems in a series of applying the “locally

altering the previous solution” method. In 3.2a we allow the

newly added station (blue) and its neighbors (green) to take on

any channel in their domains, but hold the remaining stations

(orange) fixed on their channels. If a feasible solution cannot

be found in the first subproblem, we unfix neighbors of neigh-

bors and try again (see 3.2b). 21

Figure 3.3 This figure shows a solution to a graph coloring problem S

that can trivially be made into a solution for the graph coloring

problem S′ by restricting the solution for S to vertices in S′.

This is analogous to how our Propositional Satisfiability (SAT)

cache works. 27

Figure 3.4 Translating six sets (left) into integers (right) according to a

secondary cache ordering. 28

Figure 3.5 A visualization of looking up a superset in a secondary cache.

Only one secondary cache is shown in these figures, but mul-

tiple secondary caches can be used to decrease the number of

elements to search over. 29

Figure 4.1 An illustration of the greedy feasibility checker. Only the newly

added station (blue) can vary on its domain, other stations are

all fixed on their channels. 35

viii

Figure 5.1 Empirical Cumulative Distribution Function (ECDF) of run-

times for default configurations of Mixed-Integer Programming

(MIP) and SAT solvers on our test set. The legend is ordered

by percentage of problems solved before the cutoff. The bars

show fraction of SAT and unsatifiable (UNSAT) instances binned

by their (fastest) runtime. Although present, unsatisfiable in-

stances form an insignificant portion of instances solved. . . . 40

Figure 5.2 SATFC performance on test set broken down by configuration

(numbers in names correspond to Table 5.1). The bold red line

is the parallel portfolio performance. 42

Figure 5.3 Bar chart where each bar represents the fraction of instances

solvable by a cache filled with problems from the other auctions. 43

Figure 5.4 Interference graph of the set of 218 ultra high frequency (UHF)

stations within two edges of a New York station. Each edge

represents the existence of at least one pairwise binary con-

straint between two stations under a 126 MHz clearing target. 48

Figure 5.5 Fraction of Vickrey-Clarke-Groves (VCG) cost versus fraction

of VCG value loss plotted for three different feasibility check-

ers (indicated by colors) for five different value profiles (indi-

cated by markers). All VCG points lie at (1,1). SATFC 2.3.1

and the best single configuration had equivalent outcomes on

the second value profile (the markers coincide). 49

Figure 5.6 Value loss and cost of national simulations using three differ-

ent feasibility checkers for 20 value profiles. Both axes are

normalized by the cost and value loss of the corresponding

SATFC 2.3.1 simulation. The figure also contains a second

SATFC 2.3.1 series which revisit timeouts. 50

ix

Glossary

FCC Federal Communications Commission

SATFC SAT-based Feasibility Checker

VHF very high frequency

UHF ultra high frequency

LVHF lower VHF

HVHF higher VHF

BIA BIA Kelsey

NAB National Association of Broadcasters

SAT Propositional Satisfiability

UNSAT unsatifiable

MIP Mixed-Integer Programming

SMAC Sequential Model-based Algorithm Configuration

ALO at least one

AMO at most one

NP nondeterministic polynomial time

VCG Vickrey-Clarke-Groves

x

CSP Constraint Satisfaction Problem

AC-3 Arc Consistency Algorithm #3

ECDF Empirical Cumulative Distribution Function

xi

Acknowledgments

I would like to thank my supervisor Kevin Leyton-Brown for all of his support

throughout my degree and for giving me the opportunity to work on such an ex-

citing project. I would also like to thank Alexandre Fréchette, who helped me

settle into graduate school by providing mentoring and guidance, and for laying

the groundwork for this research direction.

I am indebted to Paul Milgrom for many helpful conversations on the topic of

the incentive auction and for his efforts in transforming my research into software

used in production. I also want to recognize Ilya Segal for providing clarifica-

tions of the incentive auction rules and for his and Paul’s valuable inputs on the

simulation experiments.

I gratefully acknowledge support from Auctionomics and the FCC.

I am grateful to Hu Fu for taking the time to be my second reader.

SATFC was enhanced by the contributions of several undergraduate students,

of which I had the pleasure of working directly with Paul Cernek and Emily Chen.

Thanks for all of your hard work!

Lastly, I want to thank everyone in our GTDT research group—Jason, Chris,

Alice, Lars, James and Hedayat—for many stimulating conversations, both re-

search related and not. The positive and friendly lab culture has been one of my

favorite parts of graduate school.

xii

For Mom, Dad, and Robert. Thanks for all your support.

xiii

Chapter 1

Introduction

Many devices, including cell phones, operate by sending and receiving electro-

magnetic signals. These signals can interfere with each other, so transmission

is regulated to ensure that devices can effectively communicate. In the US, this

regulation is enforced by the Federal Communications Commission (FCC), a gov-

ernment body that allocates licenses to broadcast over specific frequency bands

in a geographic region. Since electromagnetic spectrum bands suitable to wire-

less transmission are scarce, the FCC has used spectrum auctions to allocate these

licenses efficiently since 1994.

Presently, the FCC is running a novel spectrum auction known as the incentive

auction. What makes the incentive auction unique compared to prior spectrum

auctions is that rather than allocating previously unlicensed spectrum, this auction

reallocates spectrum currently held by television broadcasters. These broadcasters

hold licenses in either the very high frequency (VHF) band, spanning channels 2-

13, or the ultra high frequency (UHF) band, spanning channels 14-51. The UHF

frequencies, which are in the 600 megahertz (Mhz) range, are particularly well

suited to wireless data transmission on mobile devices, as they can penetrate walls

and travel long distances [28]. Given that over-the-air television has become more

redundant with the rise of cable, satellite, and streaming services1, and that in

parallel demand for mobile data is increasing, the incentive auction is a unique

1A 2012 estimate says that only roughly 10% of viewers rely solely on over-the-air broadcasts
for video programming [10].

1

opportunity to reallocate spectrum to higher-value use.

The reallocated spectrum is most useful to mobile carriers if the same channels

can be acquired across the country. Therefore, the auction process removes stations

from the upper channels of the UHF band, either moving each station into the lower

channels or purchasing that station’s broadcast rights when this cannot be achieved.

Broadcast rights must be acquired for some stations because stations interfere with

each other, so it will not be possible to pack all of the existing stations into the

reduced channel set. Once the upper channels are cleared of stations, broadcast

licenses in those channels can be auctioned off.

The incentive auction is thus composed of two related parts: a reverse auction

in which the FCC will acquire spectrum from some broadcasters while remaining

broadcasters will be “repacked” into a reduced set of channels, and a forward auc-

tion in which the FCC sells the freed up channels to mobile carriers. The choice

of how many channels to reallocate, known as the clearing target, links these two

parts. The incentive auction alternates between the two parts in a series of stages

with progressively shrinking clearing targets until demand in the forward auction

covers the cost of purchasing and reassigning stations in the reverse auction. While

the forward auction process resembles prior spectrum auctions, the reverse auction

was designed specifically for the incentive auction and is an unprecedented under-

taking; this thesis will focus exclusively on the reverse auction.

The reverse auction mechanism decides which stations will be winners (have

their broadcast rights purchased) and which stations to reassign to a new chan-

nel, and must do so in a way that does not violate interference constraints. There

will be many feasible partitions—how should it choose between them? A sensi-

ble efficiency-related goal for the reverse auction might be, for any given clearing

target, to maximize the total value of the stations that remain on-the-air, or equiva-

lently, to minimize the total value of the winning stations. This suggests a straight-

forward maximization problem (e.g., a Vickrey-Clarke-Groves (VCG) mechanism),

but in practice at the national scale this is computationally intractable.2

The FCC chose to use a descending-clock auction for the reverse auction. Roughly,

2An approximate VCG solution is not a promising direction either, as even small optimization
errors can lead to dramatic pricing errors and destroy strategy-proofness, as laid out by Milgrom and
Segal (2014).

2

it works as follows: stations are approached in a round-robin fashion and made a

series of decreasing price offers for their spectrum. When a station declines an of-

fer, it exits the auction and is guaranteed to be assigned a channel in its pre-auction

band when the auction concludes. As more and more stations exit over time, it

may no longer be possible to make this guarantee to certain stations: a feasibility

checker is used to determine whether or not there is a way to assign channels to a

station along with all of the exited stations that does not cause interference. When

the feasibility checker detects that a station can no longer safely exit, that station’s

spectrum is acquired at its most recently accepted price offer.

This auction format does not escape computational intractability either, as the

job of the feasibility checker—determining whether or not a set of stations can

be packed into a set of channels—is a nondeterministic polynomial time (NP)-

complete problem, meaning that it belongs to a class of problems not known to be

tractable. Since the reverse auction must conclude in a timely manner, and since

the feasibility checker will be queried tens of thousands of times throughout the

auction, a tight cutoff—on the order of minutes—is imposed on each query. There

is no guarantee that a proof of feasibility or infeasibility will be found in the alloted

time. In the event of a timeout, the auction proceeds as if the result was infeasible.

The consequences of mislabeling an answer are not symmetric: it would be

terrible to incorrectly conclude that a repacking problem is feasible (this could

make the auction outcome infeasible), whereas wrongly claiming that a problem

is infeasible prevents a price offer from being lowered, possibly decreasing the

auction’s efficiency and causing the government to overpay for a station, but does

not pose a fundamental problem for the auction itself. Nevertheless, these timeouts

should be minimized for the sake of both the efficiency and cost of the auction (the

descending clock is geometric, so early individual unsolved problems can cost the

FCC millions of dollars each!).

We built SAT-based Feasibility Checker (SATFC), the feasibility checker used

in the reverse auction.3 Our goal was to design an efficient feasibility checker that

minimizes timeout results. Working with anonymized versions of repacking prob-

3The reverse auction uses SATFC 2.3.1, released April 13, 2016.

3

lems from FCC simulations45, we combined a Propositional Satisfiability (SAT) en-

coding, constraint graph decomposition, algorithm configuration, algorithm port-

folios, local and complete search, domain-specific heuristics, and a novel caching

scheme to create an efficient feasibility checker. This thesis describes both SATFC

and a reverse auction simulator that we use to evaluate SATFC’s performance. We

also use the simulator to explore ways in which the feasibility checker affects the

efficiency and cost of the reverse auction by comparing simulations that differ only

in their feasibility checkers.

The incentive auction is interesting to study both due to its novelty and its eco-

nomic importance: the spectrum reallocation is expected to improve social welfare

by putting spectrum to a higher-value use, and, according to the Congressional

Budget Office, the resale of spectrum is forecast to net tens of billions of dollars

for the US government [5]. As a result, the auction has been the subject of con-

siderable recent study by the research community, mostly focused on elements of

auction design [3, 9, 25, 29, 33, 35, 40]. From a theory perspective, the reverse

auction is a deferred-acceptance auction [34], an auction that selects its alloca-

tion by repeatedly rejecting the least attractive bids. Deferred acceptance clock

auctions have many desirable properties: They are obviously strategy-proof [30],

since an agent can conclude that deviating from honest reporting can never lead

to better payoffs regardless of how other agents behave (and, in this context, can

come to this conclusion even without understanding the details of how price offers

are decremented!). These auctions are also weakly group strategy-proof, meaning

that there are no profitable group deviations from honest reporting that benefit each

agent in the deviating group. However, the highly non-uniform interference con-

straints used in feasibility checking make it difficult to analyze the reverse auction

4In order to validate the auction design, the FCC ran extensive simulations of the auction, based
on a wide variety of assumptions about station participation and bidding behavior. These simulations
explored a very narrow set of answers to the questions of which stations would participate and how
bidders would interact with the auction mechanism; they do not represent a statement either by us
or by the FCC about how these questions are likely to be resolved in the real auction. It is of course
impossible to guarantee that variations in the assumptions would not have yielded computationally
different problems.

5Note that there is an interesting bootstrapping problem here, as the reverse auction simulator
and feasibility checker co-evolve, and so the problems generated by the simulator change as the
feasibility checker improves and handles denser packings.

4

solely with theory. Simulations have been used as a tool to forecast the cost of real-

locating spectrum and the amount of spectrum that might be cleared [2]; to evaluate

methods for setting price decrements [36]; to determine what must happen in any

repacking solution based on the interference constraints (i.e., without appealing to

the reverse auction process or prices) [26]; and to evaluate the impact of proposed

rule changes, such as alternative scoring rules6 [6]. Each of these works solves sta-

tion repacking problems, although efficient feasibility checking is not their primary

focus and none of them use SATFC, the feasibility checker optimized for this ex-

act setting and deployed in the live incentive auction. While the station repacking

problem has been studied in other contexts, falling under the umbrella of frequency

assignment problems7, we are not aware of other work with the goal of optimizing

feasibility checking in the setting of the incentive auction.

The remainder of this document is as follows: Chapter 2 describes the reverse

auction algorithm. Chapter 3 details the station repacking problem and our method-

ology for designing an efficient feasibility checker. Chapter 4 walks through the

design of our reverse auction simulator. Chapter 5 shows experimental results of

evaluating our feasibility checker on our reverse auction simulator. Finally, Chap-

ter 6 provides directions for future research.

6Scoring rules are used to set station-specific prices in the reverse auction. They are covered in
more detail in Section 2.1.2.

7See e.g., Aardal et al. (2007) for a survey and a discussion of applications to mobile telephony,
radio and TV broadcasting, satellite communication, wireless LANs, and military operations.

5

Chapter 2

The Reverse Auction

The goal of this chapter is to present the reverse auction algorithm used in the in-

centive auction, which is the mechanism by which the FCC decides from which

stations to purchase broadcast licenses and at what prices. Both UHF and VHF

stations participate in the reverse auction: Even though VHF stations do not have

broadcast rights in the more valuable UHF band, removing VHF stations creates

space to move UHF stations into VHF. While utilizing the VHF band leads to more

efficient solutions, it complicates the auction’s rules significantly. We therefore be-

gin with a simplified description which only considers UHF stations in Section 2.1,

and then extend our description to handle VHF stations in Section 2.2. For a more

detailed description of the auction process see Appendix D of the FCC’s December

2014 public notice [12].

2.1 The Reverse Auction Limited to UHF Stations
We now proceed with a description of the reverse auction in a world with only UHF

stations. First, stations respond to opening clock prices and decide to participate in

the auction or exit permanently. Next, the feasibility checker identifies a feasible

assignment for all non-participating stations. The auction then proceeds over a

series of rounds, which consist of: (1) decrementing the clock and offering new

prices, (2) collecting bids, and (3) processing bids. Only the processing step is

not straightforward: Bids are considered sequentially. When processing a bid, the

6

feasibility checker first determines whether a station is still packable along with

the exited stations. If it is packable, the station either accepts the new clock price

or exits the auction. Otherwise, the station becomes frozen, meaning that it can

no longer be packed in its original band. The station is now a provisional winner1

and will be paid according to its most recently accepted offer. To complete this

description we now show how prices are computed.

2.1.1 Computing Prices

The prices offered to each station differ based on station-specific characteristics.

These characteristics are captured by a volume, which is computed by a scoring

rule. The price P for a station s at round t is computed by multiplying its volume

with a base clock price ct . The base clock price is decremented each round by dt ,

the maximum of 5% of its previous value or 1% of its initial value. More formally,

dt = max{0.05 · ct−1,0.01 · c0} (2.1)

ct = ct−1−dt (2.2)

Ps,t = ct ·Volume(s) (2.3)

where c0 is the initial base clock price, used to compute the opening prices.

2.1.2 Scoring Rule

Scoring rules compute station volumes. The choice of scoring rule is important

because varying the prices non-uniformly between stations is a way to influence

the order in which stations exit and the prices they are paid, which impacts the

auction’s efficiency and cost. For example, it may be advantageous to encourage a

station that causes much interference to remain in the auction, because by exiting

it could freeze many other stations (and if it exits early, they would be frozen at

very high prices!). Similarly, from a cost perspective, it might be possible to save

money by offering lower prices to stations that service smaller populations, with

the expectation that a station’s value for its broadcast rights is proportional to the

1Provisional in the sense that the winning offer is conditional on the auction terminating in its
current stage, which depends on demand in the forward auction.

7

size of the population it serves. The FCC uses a scoring rule that considers both of

these issues, in which a station’s score is proportional to both a heuristic estimating

how difficult it makes other stations to repack and its population:

Volume(s) = A ·
√

Interference(s) ·
√

Population(s) (2.4)

In this formula, Interference(s) is computed by taking the sum over each other

station s′ of the maximum number of channels that s can prohibit s′ from being

assigned to, Population(s) is the interference-free population that s reaches, and

A is a scaling constant used to make the maximum volume one million (therefore

capping the largest price offer at one million times the initial base clock price).

Volumes for each station are computed only once before the auction begins—they

do not vary throughout the auction.

2.2 Generalizing the Reverse Auction to Include VHF
Stations

We now extend our description of the reverse auction to handle participation by

VHF stations. VHF can be further divided into lower VHF (LVHF) (channels
{2, . . . ,6}) and higher VHF (HVHF) (channels {7, . . . ,13}). In what follows, we

refer to the band that a station is on prior to the reverse auction as the home band

of that station. The relinqushiment options—that is, the ending states for stations

in the auction—are therefore going off air (OFF), LVHF, HVHF, and UHF, ordered

in terms of quality. When we say that one band is above or below another, we refer

to this ordering. The reverse auction places restrictions on the options that stations

can bid on. First, a station cannot bid on an option above its home band. Second,

the reverse auction is a ladder auction, meaning that if a station ever bids to move

to a band b, it will no longer be allowed to bid on options below b. The ladder

restriction helps the auction set prices and prevents complex bidding strategies,

making the auction simpler from a bidder’s perspective. Simplicity is an important

goal of the auction in order to encourage participation.

8

2.2.1 Computing Prices with Multiple Bands

The reverse auction can no longer simply calculate a single price for each station,

but must instead calculate a price for each option available to each station. We now

explain how these prices are computed.

An Ideal Case: Similar Stations

The easiest case to reason about is when there are three stations which serve iden-

tical populations: a UHF station, an HVHF station, and an LVHF station, with the

property that none of these stations can co-exist on the same band, and that if any

station moves to a lower band, its interference constraints in the new band are iden-

tical to the station it displaces. There are then four ways to clear the UHF channel,

each of which create the same amount of value and hence should cost the same

amount.

1. The UHF station can go to OFF for a price of $X

2. The UHF station can go LVHF for a price of $Y (where $Y < $X) and the

LVHF station can go to OFF at a price of $X−$Y

3. The UHF station can move to HVHF for a price of $Z (where $Z < $Y) and

the HVHF station can go OFF at a price of $X−$Z

4. The UHF station can move to HVHF for a price of $Z, the LVHF station can

go to OFF for a price of $X −$Y , and the HVHF station can go to LVHF at a

price of $Y −$Z.

Benchmark Prices

The reverse auction uses benchmark prices based on the above thought experiment:

the auction first pretends that we are in the scenario of the above example where

comparable stations exist and computes a benchmark price (which we will denote

p), which it later transforms into an actual price as described below.

To compute the benchmark price for a station s in round t for the option of

moving into b, a base clock decrement dt is computed as before in Equation 2.1,

except that now the previous round’s price is decremented by a fraction of dt . This

9

fraction is called a reduction coefficient, rt,s,b. We will describe the computation of

reduction coefficients in Section 2.2.1.

pt,s,b = pt−1,s,b− rt,s,b ·dt (2.5)

The initial benchmark prices, denoted p0,b, are chosen prior to the auction (with

p0,UHF = 0). The benchmark price is then converted to an actual price as follows.

Pt,s,b = Volume(s) ·max
{

0,min
{

pt,s,OFF, pt,s,b− pt,s,Home-Band(s)
}}

(2.6)

Let us break down this formula: The prices are weighted by volume as before.

The max ensures the price is non-negative and the min upper bounds the price

by the price offered to a UHF station to go to OFF. Lastly, the second term in

the min reflects the pricing division described in Section 2.2.1, where the total

payments for each of the four possibilities sum to the same amount (e.g., a UHF

station moving to HVHF would get paid pt,s,HVHF, an HVHF station moving to LVHF

would get paid pt,s,LVHF− pt,s,HVHF, and an LVHF station moving to OFF would get

paid pt,s,OFF− pt,s,LVHF, all of which sum together to a total payment of pt,s,OFF).

Vacancy

Before describing the calculation of reduction coefficients, we need to describe

one more concept, known as vacancy. Vacancy, denoted Vt,s,b, is a heuristic that

estimates the competition that a station s faces for a spot in band b in round t, with

higher values indicating less competition. More formally, vacancy is a volume

weighted average of a function f over potential competitors for the vacant space

in the band: Let G(t,s,b) denote the set containing both s and stations which have

the possibility to interfere with s in b which are currently bidding on options below

b. The function f is computed by taking the number of channels in b to which

s can be feasibly assigned (given the current assignment of the exited stations)

and normalizing by the number of channels in b. If s cannot be assigned to any

channels, 0.5 is used in place of the numerator.

10

f (t,s,b) =
of feasible channels for s in b in round t

of channels in b
(2.7)

Vt,s,b =
∑s′∈G(t,s,b) Volume(s′) · f (t,s′,b)

∑s′∈G(t,s,b) Volume(s′)
(2.8)

Reduction Coefficients

We now provide equations for computing the reduction coefficients. The full decre-

ment is always applied to going off-air, that is rt,s,OFF = 1.

The reduction coefficient for moving to HVHF is:

rt,s,HVHF =
p0,HVHF ·

√
Vt,s,UHF

(p0,OFF− p0,HVHF) ·
√

Vt,s,HVHF + p0,HVHF ·
√

Vt,s,UHF
(2.9)

Finally, the reduction coefficient for moving to LVHF is:

rt,s,LVHF =

(
(p0,LVHF− p0,HVHF) ·

√
Vt,s,HVHF

(p0,OFF− p0,LVHF) ·
√

Vt,s,LVHF +(p0,LVHF− p0,HVHF) ·
√

Vt,s,HVHF

)
·

(1− rt,s,HVHF)+ rt,s,HVHF

2.2.2 Placing Bids

A station is presented with prices for each permissible option as described above, as

well as the option to exit the auction and receive no compensation. It then submits

its preferred option. If a station bids to move to a VHF band that it is not already

in, the station must also submit a fallback bid to be used in case the feasibility

checker is unable to pack the station into the preferred band. The fallback bid must

be either to retain the currently held option or to exit the auction.

2.2.3 Bid Processing

In this section we describe how the algorithm processes the stations’ bids. Bids are

all placed in a queue, sorted in order of the ratio between the price reduction for

the station’s currently held option in this round and the station’s volume, with ties

11

broken randomly. The auction system then begins a loop in which it finds the first

station in the queue that is feasible in its home band, processes that station’s bid,

and removes it from the queue. This phase completes when the queue is empty or

every station in the queue is frozen. When a station’s bid is processed, if the bid

requires a fallback option, the feasibility of the move is first tested: if the move is

feasible, the station is moved, otherwise the station’s fallback bid is processed. If

a station moves bands, the tentative assignment is updated accordingly.

2.2.4 Provisional Winners

A station becomes a provisional winner once the auction determines that the station

will be frozen for the remainder of the stage. A UHF station becomes a provisional

winner as soon as it is frozen: being frozen for this UHF station means that it cannot

be repacked along with the current set of exited UHF stations, and since exiting is a

permanent move, this set will not lose any members throughout the auction. There-

fore, if a UHF station becomes unpackable in UHF at any point during the auction,

it will remain unpackable in UHF for the duration of the auction. However, this is

not true for VHF stations: e.g., if an LVHF station bids for OFF, and a UHF station

moves into LVHF, the LVHF station may become frozen. However, the UHF station

may later move out of LVHF, which might unfreeze the LVHF station. Therefore, at

the end of the bid processing step, the reverse auction checks each frozen station to

see if it has become a provisional winner. For a VHF station s, this means using the

feasibility checker to determine that it is not possible to pack s into its home band

alongside all of the exited stations and provisional winners in s’s home band.

2.2.5 Removing Stations That Can Never Become Winners

It may be possible to determine over the course of the reverse auction that a station

will always remain repackable in its home band regardless of the actions taken by

other stations. Such a station will never become a winner: the reverse auction can

continue to lower the compensation offered to that station all the way down to zero,

and at some point the station will be better off exiting. Therefore, when the reverse

auction identifies such a station, it forces that station to exit in order to speed up

the inevitable.

12

In order to determine whether a station s with home band b can never become

a winner, the reverse auction first identifies the set of stations X that might finish

the auction in b: these are stations that are either already in b or else are in a band

below b, are not provisionally winning, and have home bands weakly greater than

b. Once the set X has been identified, in order to prove that s can never become a

winner, the reverse auction must show that no matter which stations in Y ⊆ X wind

up in b at the end of the auction, it will be feasible to repack {s}∪Y in b. This may

become easier to show as the auction progresses, since X can shrink as stations

that might have finished the auction in b become provisional winners on bands

other than b or move to bands above b. The reverse auction relies on a sound but

incomplete heuristic to identify these stations. The heuristic works by computing

once at the start of the auction the maximum number of channels for each pair of

stations s,s′ that s′ can prevent s from being assigned to in s’s home band. If this

sum taken over all s′ ∈ X is smaller than the number of channels on which s can be

placed in its home band, then s can never become a winner.

2.2.6 Termination

A stage of the reverse auction terminates when a round concludes and every station

has either exited the auction or is a provisional winner.

13

Chapter 3

Designing an Efficient Feasibility
Checker

In this chapter, we provide a detailed description of feasibility checking and ex-

plain the design of our feasibility checker SATFC. We begin with a more formal

description of the station repacking problem. Then we explain ways in which the

problem can be encoded into SAT and Mixed-Integer Programming (MIP) form. We

then turn to some domain-specific heuristics we use to solve problems, as well as

ways in which problems can be simplified into smaller problems. We then discuss

how algorithm configuration can be used to combine all of these ideas. Lastly, we

describe a caching scheme for station repacking problems and explain how all of

the aforementioned ideas combine to form our solver, SATFC. In what follows, we

will sometimes say that a problem is SAT or unsatifiable (UNSAT) meaning it is

feasible or infeasible respectively.

3.1 The Station Repacking Problem
Each television station in the US and Canada s ∈ S is currently assigned to a chan-

nel cs ∈ C ⊆ N that ensures that it will not excessively interfere with other, nearby

stations. The FCC reasons about what interference would be harmful via a com-

plex, grid-based physical simulation (“OET-69” [11]), but has also processed the

results of this simulation to obtain a Constraint Satisfaction Problem (CSP) style

14

formulation listing forbidden pairs of stations and channels, which it has publicly

released [14]. These constraints prohibit channel reassignments in which one sta-

tion would reduce the interference-free population served by another station by

more than 0.5%, so that after the incentive auction each station that remains on-

the-air will serve roughly the same viewers that it served prior to the auction [13].

Let I ⊆ (S ×C)2 denote a set of forbidden station–channel pairs {(s,c),(s′,c′)},
each representing the proposition that stations s and s′ may not concurrently be

assigned to channels c and c′, respectively. The effect of the auction will be to re-

move some broadcasters from the airwaves completely, and to reassign channels to

the remaining stations from a reduced set of channels. This reduced set is defined

by a clearing target: some channel c ∈ C such that all stations are only eligible

to be assigned channels from C = {c ∈ C | c < c}. The clearing target is fixed for

each stage of the reverse auction. Each station can only be assigned a channel on

a subset of C, given by a domain function D : S → 2C that maps from stations

to these reduced sets. The station repacking problem is then the task of finding

a repacking γ : S → C that assigns each station a channel from its domain that

satisfies the interference constraints, i.e., for which γ(s) ∈ D(s) for all s ∈ S, and

γ(s) = c⇒ γ(s′) 6= c′ for all {(s,c),(s′,c′)} ∈ I. A problem instance thus corre-

sponds to a choice of stations S⊆S and channels C⊆C to pack into, with domains

D and interference constraints I implicitly being restricted to S and C; we call the

resulting restrictions D and I.

3.2 Structure of Constraints
Interference constraints are more structured than in the general formulation. All

constraints are of the form ADJ(s,s′,c, i) with i ∈ {0,1,2} prohibiting concurrent

assignment of s to c and s′ to any channel in [c,c+ i]. Note that when i = 0 a

constraint simply says that two stations may not be concurrently assigned to a

particular channel; these are known as co-channel constraints. When i > 0 the

constraint is known as an adjacent-channel constraint. Notice that it is very sim-

ple to translate the constraints into a large set of forbidden station–channel pairs

of the form {(s,c),(s′,c)}, {(s,c),(s′,c+ 1)}, or {(s,c),(s′,c+ 2)}. One notable

structural feature of the constraints is that adjacent-channel constraints always im-

15

ply the existence of a set of related constraints: the property holds that for i > 0,

ADJ(s,s′,c, i) =⇒ ADJ(s,s′,c+1, i−1). This means, for example, that each

i = 1 adjacent-constraint between two stations on c implies a co-channel constraint

between the two stations on c+1. Other structural features include that constraints

where i = 2 always involve a Canadian station and that no interference constraint

involves channels in more than one frequency band.

Finally, it is interesting to visualize the constraint structure. Let us define the

interference graph as an undirected graph in which there is one vertex per station

and an edge exists between two vertices s and s′ if the corresponding stations par-

ticipate together in any interference constraint: i.e., if there exist c,c′ ∈C such that

{(s,c),(s′,c′)} ∈ I. If we were dealing exclusively with co-channel constraints,

station repacking problems would be graph coloring problems, where stations are

vertices and channels are colors, which is a simple way to see that the station pack-

ing problem is NP-complete. Figure 3.1 shows the US and Canada interference

graph. Notice that the graph is very densely connected in areas such as New York.

While this graph includes both UHF and VHF constraints, it is interesting to note

that when restricting the graph to only showing UHF constraints, the eastern com-

ponent of the graph is disconnected from the western components.

3.3 Structure of Station Repacking Problems in the
Reverse Auction

Why should we hope that an NP-complete problem can be solved effectively in

practice? First, we only need to be concerned with problems involving subsets of

a fixed set of stations and a fixed set of interference constraints: those describ-

ing the television stations currently broadcasting in the United States and Canada.

Furthermore, we are not interested in worst-case performance (i.e., the hardest pos-

sible problems within these limits), or even average case performance, but rather in

good performance on the sort of instances generated by actual reverse auctions. For

example, the repacking problems encountered depend on the order in which sta-

tions exit the auction, which depends on stations’ valuations, which depend in turn

(among many other factors) on the size and character of the population reached

by their broadcasts. The distribution over repacking problems is hence far from

16

Figure 3.1: Interference graph derived from the FCC’s November 2015 con-
straint data [14].

uniform. Second, descending clock auctions repeatedly generate station repacking

problems by adding a single station s+ to a set S− of provably repackable stations.

This means that every station repacking problem (S−∪{s+},C) comes along with

a partial assignment γ− : S−→C which we know is feasible on restricted station

set S−.

3.4 Complete and Local Search Solvers
Before heading into a discussion of problem solving techniques, we quickly re-

view the differences between complete and local search SAT solvers, since some

of our techniques only make sense for one or the other. Complete solvers are

typically based on backtracking algorithms such as DPLL [7] in which variables

are tentatively assigned and the consequences of the assignments are propagated

until a conflict emerges, at which point the solver backtracks, or until a feasible

assignment is found. These solvers are able to exhaust the search space and prove

17

that a problem has no feasible solution. Local search solvers, on the hand, work

by searching a space of complete assignments and seeking a feasible point, typ-

ically following gradients to minimize an objective function that counts violated

constraints, and periodically randomizing. Unlike complete solvers, local search

solvers cannot prove that a problem is infeasible. A final important difference is

that while local search solvers maintain a full assignment of the variables as part

of their state, complete solvers do not.

3.5 Encodings
In this section we describe various ways of encoding the station repacking problem

so that it can be solved using standard methods.

3.5.1 MIP Encoding

The FCC’s initial investigations included modeling the station repacking problem

as a MIP and using off-the-shelf solvers paired with problem-specific speedups.

Unfortunately, the problem-specific elements of this solution were not publicly

released, so we do not discuss them further in this document. The station repacking

problem can be encoded as a MIP straightforwardly as follows:

xs,c + xs′,c′ ≤ 1 ∀
{
(s,c) ,

(
s′,c′

)}
∈ I (3.1)

∑
c∈D(s)

xs,c = 1 ∀s ∈ S (3.2)

xs,c ∈ {0,1} ∀c ∈ D(s)∀ s ∈ S (3.3)

Constraint 3.1 ensures that no interference constraints are violated, Constraint 3.2

ensures that each station gets assigned to exactly one channel, and lastly, Con-

straint 3.3 makes the variables integral.

3.5.2 SAT Encodings

We decided to instead consider SAT encodings: this formalism is well suited to

station repacking, which is a pure feasibility problem (no objective function) with

18

only combinatorial constraints.1 A SAT encoding has the advantage of making

it possible to leverage the research community’s vast investment into developing

high-performance SAT solvers (see e.g., Järvisalo et al. (2012)). In all of the fol-

lowing encodings, we create a variable xs,c ∈ {0,1} for every station–channel pair,

representing the proposition that station s is assigned to channel c. Many SAT en-

codings for our problem are possible (see e.g., Prestwich (2003) for a number of

applicable encodings). Here we focus on two relatively straightforward encodings:

the direct encoding, and the multivalued encoding.

Direct SAT Encoding

The direct SAT encoding is analogous to the MIP encoding. We create three kinds

of clauses:

∨
d∈D(s)

xs,d ∀s ∈ S (3.4)

¬xs,c∨¬xs,c′ ∀s ∈ S, ∀c,c′ 6= c ∈ D(s) (3.5)

¬xs,c∨¬xs′,c′ ∀{(s,c),(s′,c′)} ∈ I ∀c ∈ D(s) ∀ s ∈ S (3.6)

Clause 3.4 is an at least one (ALO) constraint, ensuring that every station gets

assigned a channel. Clause 3.5 is an at most one (AMO) constraint, ensuring that

every station gets assigned at most one channel (so together, these clauses ensure

that every station gets exactly one channel). Finally Clause 3.6 ensures that inter-

ference constraints are not violated.

Multivalued SAT Encoding

The multivalued encoding is exactly the same as the direct encoding without

Clause 3.5, the AMO constraint. It is trivial to transform a solution to the multival-

ued problem into a solution of the original problem: if a station is assigned more

than one channel, we can simply pick one channel from these arbitrarily. This en-

coding significantly reduces the number of constraints (recall that there is an AMO

1Of course, it may nevertheless be possible to achieve good performance with MIP or other tech-
niques; we did not investigate such alternatives in depth.

19

constraint for every pair of channels in a station’s domain in the direct encoding),

and it increases the size of the feasible region by allowing solutions where stations

occupy more than one channel. This encoding is well suited to local search solvers,

which cannot benefit from the constraint propagation of the AMO constraints in the

same way that a complete solver can.

3.6 Using the Previous Solution
In this section we present two methods that leverage the partial assignment γ− to

quickly solve problems.

3.6.1 Locally Altering the Previous Solution

On a majority of problem instances, a simple transformation of γ− is enough to

yield a satisfiable repacking: we consider whether it is possible to assign s+ to a

channel and update the channel assignments of the stations in s+’s neighborhood,

holding the rest of γ− fixed. Specifically, we find the set of stations Γ(s+)⊆ S that

neighbor s+ in the interference graph, then solve the reduced repacking problem in

which all non-neighbors S\Γ(s+) are fixed to their assignments in γ−. Observe that

a feasible repacking for this reduced problem is also feasible on the full set; on the

other hand, if we prove that the reduced problem is infeasible, we cannot conclude

anything. The value of this approach is in its speed: often a station’s immediate

neighborhood in the induced problem’s interference graph is very small, hence the

reduced problem can be solved very quickly. Also note that if the reduced problem

is infeasible, we can unfix additional stations and try again: a natural second step

would be to also unfix stations in Γ(s′),s′ ∈ Γ(s+), that is, neighbors of neighbors

of s+, though of course other expansion rules are possible. We proceed in this

manner until a solution is found or we wind up with the initial problem. Figure 3.2

illustrates the approach. Note that it may happen that later subproblems in the series

are easier to solve than earlier ones, so we impose a cutoff on each problem in the

series to ensure the solver gets to attempt later subproblems even if it gets stuck on

earlier ones. Also note that complete solvers have an advantage in applying this

idea because they can prove problems are infeasible, whereas a local search solver

would need to exhaust its entire cutoff before expanding.

20

{14, 15, 16}

{14, 15, 16}{15, 16}

14

16

17

18

17

(a) Locally altering the previous solution

{14, 15, 16}

{14, 15, 16}{15, 16}

{14, 15}
{16, 17, 18}

{15, 16, 17}

17

18

(b) Expanding the set of unfixed stations

Figure 3.2: The first two subproblems in a series of applying the “locally al-
tering the previous solution” method. In 3.2a we allow the newly added
station (blue) and its neighbors (green) to take on any channel in their
domains, but hold the remaining stations (orange) fixed on their chan-
nels. If a feasible solution cannot be found in the first subproblem, we
unfix neighbors of neighbors and try again (see 3.2b).

3.6.2 Starting Near the Previous Solution

When working with local search solvers, which maintain a full variable assignment

in their state, we can leverage γ− by assigning the stations in γ− to their channels in

γ− and randomly assigning a channel for s+. If a solution exists “near” this starting

point, i.e., γ− can be converted into a solution with only a few variable changes,

such an initialization can help us to find it much more quickly (although there is

no guarantee that the solver will not immediately randomize away to another part

of the space), so we interleave initializations to the previous solution with random

restarts. We observe that this approach does not generalize the “locally altering the

previous solution” approach discussed in Section 3.6.1, as we do not constrain the

local search algorithm to consider only s+’s (extended) neighborhood.

21

3.7 Problem Simplification
In this section we provide three preprocessing methods that can be used to take a

station repacking problem and transform it into a more manageable, smaller prob-

lem.

3.7.1 Arc Consistency

Station repacking problems are CSPs where all constraints are between pairs of

variables. We can therefore use local consistency techniques to reduce the search

space. In particular we can make a given station repacking problem arc consistent

using the well known polynomial time Arc Consistency Algorithm #3 (AC-3) [32].

A station s is arc consistent with another station s′ if whenever s is assigned to any

channel c∈D(s) ,∃c′ ∈D(s′)such that{(s,c),(s′,c′)} 6∈ I. If c does not satisfy this

property, then no feasible assignment can ever assign s to c and so we can prune c

from D(s). Enforcing arc consistency therefore works as a preprocessing step to

create smaller problems, though it is also possible for it to prune all of the channels

in a station’s domain thereby proving a problem is infeasible.

3.7.2 Unconstrained Station Removal

In a given repacking problem (S,C), there may exist stations with the following

property: given any feasible assignment of all of the other stations in S \ s, there

will always exist a channel in D(s) into which s can be feasibly packed. We call

these stations unconstrained, since we can remove them from the problem and

solve a smaller problem (S\Sunconstrained,C). If the smaller problem is infeasible,

so is the larger problem. If a feasible solution is found, we can sequentially add the

unconstrained stations back by iterating over their domains until a feasible channel

is found. Testing whether or not a station is unconstrained is a co-NP hard problem,

so we rely on a sound but incomplete set of heuristics to identify unconstrained

stations.

Consider that each neighbor s′ ∈ Γ(s) can be assigned to any channel c′ ∈
D(s′), and in doing so would make any solution where s was assigned to a channel

in {c | c ∈ D(s) ,{(s,c),(s′,c′)} ∈ I} infeasible. A station is unconstrained if there

is no feasible way for the neighbors to select channels in such a way that they block

22

out all of D(s). We can relax the problem by removing the requirement that the

neighbors’ assignment must be feasible. If a station is unconstrained in the relaxed

problem, it will also be unconstrained in the base problem since imposing a feasible

assignment on the neighbors only makes blocking out channels more difficult.

Unblockable Channel Heuristic

Our first heuristic is simple: If there exists a channel on s’s domain that no neigh-

bor has the ability to block, then s is unconstrained since it can always be as-

signed to this channel. More formally, s is unconstrained if ∃ c ∈ D(s) such that

∀s′ ∈ Γ(s) , ∀c′ ∈ D(s′) ,{(s,c),(s′,c′)} 6∈ I. This heuristic can be computed in

timeO (|Γ(s)| · |D(s)| ·d), where d is the size of the largest neighbor’s domain and

checking whether or not a constraint exists in I is an O(1) operation.

Worst Case Selection Heuristic

Our second heuristic is based on upper bounding the number of channels that

neighboring stations can block. If this upper bound is smaller than |D(s) |, s is

unconstrained. To compute this upper bound, we observe that every neighboring

station s′ has at least one channel that it could be assigned to on which it blocks the

maximum number of channels possible for s′ to block on D(s). Let Blocks
s′ be the

maximum number of channels s′ can block for s:

Blocks
s′ = max

c′∈D(s′)

∣∣{c ∈ D(s) |
{
(s,c) ,

(
s′,c′

)}
∈ I
}∣∣ (3.7)

We compute an upper bound on the total number of channels that can be blocked

for s by assigning all of the neighbors to such a maximum blocking channel and

assuming that the blocked sets are non-overlapping. If ∑s′∈Γ(s) Blocks
s′ ≤ |D(s) |,

then s has more channels on its domain than can possibly be blocked by other

stations, so s is unconstrained. This heuristic is also computable in time

O (|Γ(s)| · |D(s)| ·d).
Our two heuristics complement each other: the first heuristic only applies when

a station has a constraint-free channel, whereas the second heuristic can fail to

identify a station with a constraint-free channel as unconstrained but can identify

23

unconstrained stations that do not posses such a channel.

Recursively Unconstrained Stations

We use the above two heuristics to identify unconstrained stations. Notice how-

ever that in the smaller problem induced by removing unconstrained stations, new

stations may become unconstrained that were not unconstrained in the original

problem. Therefore, we recursively run our unconstrained station removal proce-

dure until it can no longer remove any stations. Note that when adding back the

unconstrained stations after solving the smallest induced problem, we must add

stations back at same the level of recursion in which they were removed, since un-

constrained stations at higher recursion depths are only unconstrained conditional

on the removal of stations at shallower recursion levels.

3.7.3 Problem Decomposition

The interference graph induced by a problem may consist of multiple connected

components; we can separate them in linear time. We only need to solve the one

component that contains s+, as we can directly leverage γ− to fill in a feasible as-

signment for the other components. This is particularly useful for complete solvers,

which cannot otherwise leverage γ−. Note that arc consistency and unconstrained

station removal can remove edges and links in the interference graph, possibly

shrinking the size of the component containing s+.

3.8 Meta-Algorithmic Techniques
In recent years, there has been increasing development of artificial intelligence

techniques that reason about how existing heuristic algorithms can be modified or

combined together to yield improved performance on specific problem domains

of interest. These techniques are called meta-algorithmic because they consist of

algorithms that take other algorithms as part of their input. For example, algo-

rithm configuration consists of setting design decisions exposed as parameters to

optimize an algorithm’s average performance across an instance distribution. This

approach has proven powerful in the SAT domain, as many SAT solvers expose pa-

rameters that can drastically modify their behavior, from the probability of random

24

restarts to the choice of search heuristics or data structures [22]. We performed con-

figuration using Sequential Model-based Algorithm Configuration (SMAC) [21] in

order to tune the performance of generic SAT solvers to station repacking problems.

Many ideas in this chapter, such as the choice of what encoding to use discussed

in Section 3.5, or the preprocessing ideas in Section 3.7 can be exposed as meta-

parameters to an algorithm configurator; we did so whenever possible.

Unfortunately, even after performing algorithm configuration, it is rare to find

a single algorithm that outperforms all others on instances of an NP-complete prob-

lem such as SAT. This inherent variability across solvers can be exploited by algo-

rithm portfolios [19, 37]. Most straightforwardly, one selects a small set of algo-

rithms with complementary performance on problems of interest and, when asked

to solve a new instance, executes them in parallel.

Finally, algorithm configuration and portfolios can be combined. Hydra [41] is

a technique for identifying sets of complementary solvers from highly parameter-

ized design spaces via algorithm configuration. It operates by altering an algorithm

configurator to optimize an algorithm’s marginal gains over an existing portfolio:

this allows for discovery of algorithms that might perform poorly where existing

algorithms are known to do well but that can outperform known configurations

on other problems. In each iteration, Hydra greedily adds configurations that make

the greatest possible marginal contribution to an existing portfolio. Specifically, we

create a (parallel) portfolio by greedily selecting the algorithm that most improves

its performance.

3.9 Containment Caching
We know that every repacking problem we encounter will be derived from a re-

striction of the interference graph to some subset of S. We know this graph in

advance of the auction; this suggests the possibility of doing offline work to pre-

compute solutions. However, this graph involves a total of |S| = 2990 stations,

and the number of possible subsets is exponential in this number. Thus, it is not

possible to exhaustively range over all possible subsets prior to the auction.

One possibility would simply be to store the solution to every repacking prob-

lem we encounter and build a giant cache, but in practice we found that identical

25

problems were rarely encountered across auction simulations. However, observe

that if we know whether or not it is possible to repack a particular set of stations S,

we can also answer many different but related questions. Specifically, if we know

that S was packable then we know the same is true for every S′ ⊆ S (and indeed,

we know the packing itself—the packing for S restricted to the stations in S′). Sim-

ilarly, if we know that S was unpackable then we know the same for every S′ ⊇ S.

This observation dramatically magnifies the usefulness of each cached entry S, as

S can be used to answer queries about an exponential number of subsets or super-

sets (depending on the feasibility of repacking S). This is especially useful because

sometimes it can be harder to find a repacking for subsets of S than it can be to find

a repacking for S (it may be that the added interference constraints constrain the

search space in a way that makes a solution easier to find). Analogously, it might

sometimes be easier to prove a smaller subset of S is infeasible than S itself.

We call a cache meant to be used in this way a containment cache, because it

is queried to determine whether one set contains another (i.e., whether the query

contains the cache item or vice versa). To the best of our knowledge, containment

caching is a novel idea. A likely reason why this scheme is not already common

is that querying a containment cache is nontrivial, as we will explain below. We

observe that containment caching is applicable to any family of feasibility testing

problems generated as subsets of a master set of constraints, not just to spectrum

repacking.

In more detail, containment caching works as follows. We maintain two caches,

a feasible cache and an infeasible cache, and store each problem we solve in the

appropriate cache. We store full instances for SAT problems and the smallest sim-

plified component (created by applying all of the methods from Section 3.7 to a

problem instance) for UNSAT problems, in order to be able to service the largest

number of possible queries. When asked whether it is possible to repack station

set S, we proceed as follows. First, we check whether a subset of S belongs to the

infeasible cache, in which case the original problem is infeasible. If we find no

matches, we decompose the problem into its smallest simplified component and

check if the feasible cache contains a superset of those stations, in which case the

original problem is feasible.

Containment caching is less straightforward than traditional caching, because

26

Figure 3.3: This figure shows a solution to a graph coloring problem S that
can trivially be made into a solution for the graph coloring problem S′

by restricting the solution for S to vertices in S′. This is analogous to
how our SAT cache works.

we cannot simply index entries with a hash function. Instead, an exponential num-

ber of keys could potentially match a given query. We were nevertheless able to

construct an algorithm that solved this problem quickly2 Specifically, our approach

proceeds as follows. Offline, we build (1) a traditional cache C indexed by a hash

function and—in the case of feasible problems—storing solutions along with each

problem; and (2) a secondary cache Co containing only a list of station sets that

appear in C. This secondary cache is defined by an ordering o over S, which we

choose uniformly at random. We represent each station set stored in Co as a bit

vector, with the bit in position k set to 1 if and only if the k-th station in ordering o

belongs to the given station set. We say that one station set is larger or smaller than

another by interpreting both station set bit vectors as integers under the ordering

o and then comparing the integers. Appealing to this ordering, we sort the entries

of Co in descending order. Figure 3.4 illustrates a set of six subsets of the power

set 2{a,b,c,d,e} and a secondary cache constructed based on these sets along with a

random ordering over their elements. As the figure suggests, secondary caches are

very compact: we can thus afford to build multiple secondary caches Co1 , . . . ,Co` ,

based on the same set of station sets but ` different random orderings.

We now explain how to query for a superset, as we do to test for feasible solu-

tions; the algorithm for subsets is analogous. A sample execution of this algorithm

is illustrated in Figure 3.5. Given a query S, we perform binary search on each of

the ` secondary caches to find the index corresponding to S itself (if it is actually

2There is a literature on efficiently finding subsets and supersets of a query set [4, 20, 39]. How-
ever, our algorithm was fast in our setting and we did not explore alternatives; indeed, our approach
may be of independent interest.

27

0 1 2 3 4

b d a e c

c b

d c a

b d

e a d c

a c b

c d e

0 1 2 3 4

b d a e c

0 1 1 1 1 (30)

0 1 0 1 1 (26)

0 1 1 0 1 (22)

1 0 1 0 1 (21)

1 0 0 0 1 (17)

1 1 0 0 0 (3)

Figure 3.4: Translating six sets (left) into integers (right) according to a sec-
ondary cache ordering.

stored in the cache) or of the smallest entry larger than S (if not); denote the index

returned for cache Cok as ik. If we find S, we are done: we retrieve its corresponding

solution from the main cache. Otherwise, the first i1 entries in cache Co1 contain

a mix of supersets of S (if any exist) and non-supersets that contain one or more

stations not in S that appear early in the ordering o1. Likewise, the first i2 entries

in Co2 contain the same supersets of S (because Co1 and Co2 contain exactly the

same elements) and a different set of non-supersets based on the ordering o2, and

so on. We have to search through the first ik entries of some cache Cok ; but it does

not matter which Cok we search. We thus choose the shortest list: k = argmin j i j.

This protects us against unlucky situations where the secondary cache’s ordering

yields a large ik: this is very unlikely to happen under all ` random orderings for

large enough `. The superset search itself can be performed efficiently by testing

whether the cached bit vector is bitwise logically implied by the query bit vector.

If we find a superset, we query the main cache to retrieve its solution.

28

Get a superset of:

d c

0 1 2 3 4

b d a e c

0 1 1 1 1 (30)

0 1 0 1 1 (26)

0 1 1 0 1 (22)

1 0 1 0 1 (21)

1 0 0 0 1 (17)

1 1 0 0 0 (3)

Get a superset of:

0 1 0 0 1 (18)

0 1 2 3 4

b d a e c

0 1 1 1 1 (30)

0 1 0 1 1 (26)

0 1 1 0 1 (22)

1 0 1 0 1 (21)

1 0 0 0 1 (17)

1 1 0 0 0 (3)

Figure 3.5: A visualization of looking up a superset in a secondary cache.
Only one secondary cache is shown in these figures, but multiple sec-
ondary caches can be used to decrease the number of elements to search
over.

3.10 SATFC
We combined all of the methods described in this chapter to create our feasibility

checker, SATFC. Using problems from FCC simulations, we performed algorithm

configuration as described in Section 3.8 on 18 different SAT solvers, obtained

mainly from SAT solver competition entries collected in AClib [23]. We observed

good performance from the solvers Clasp [18] and SATenstein [27]. Clasp is a

highly-parameterized complete solver that relies on conflict-driven nogood learn-

ing, and SATenstein is a local search framework that can instantiate most existing

high-performance local search algorithms for SAT in the literature, as well as novel

solvers that have never been thought of before. We then used Hydra to create an

eight-algorithm portfolio of various parameterizations of these two solvers. To-

gether with the cache described in Section 3.9 these algorithms make up SATFC

29

Portfolio

Clasp (Direct encoding, Locally altering the previous solution)
Clasp (Direct encoding, Fully simplified problems)
Clasp (Direct encoding, Fully simplified problems)
SATenstein (Direct encoding, Previous solution restarts)
SATenstein (Multivalued encoding, Previous solution restarts)
SATenstein (Multivalued encoding, Previous solution restarts, Problem decomposition)
SATenstein (Multivalued encoding, Previous solution restarts, Problem decomposition)
SATenstein (Multivalued encoding, Previous solution restarts, Fully simplified problems)

Table 3.1: A breakdown of the different solvers composing SATFC showing
the different ideas from this chapter that are used in each algorithm.

2.3.1, the version used by the FCC.3 In particular, the portfolio contains three

Clasp threads, all of which use the direct encoding. One is used for the locally

altering the previous solution idea of Section 3.2a and the other two operate on

fully simplified components. The remaining five threads are SATenstein, all of

which sometimes restart to previous solutions, and four of which use the multival-

ued encoding. The portfolio composition is outlined in Table 3.1.

3The set of configuration experiments that produced this version’s portfolio are unpublished. We
acknowledge some limitations of these experiments here. Firstly, instead of merging the design
spaces of Clasp and SATenstein and then running Hydra on the merged design space, we per-
formed separate runs of Hydra on each of their design spaces in isolation. As a result, we were only
able to exploit complementarity available within each of these solvers’ design spaces—and not across
them—during configuration. We assembled the final portfolio greedily by evaluating configurations
from both Hydra runs on a validation set, so complementarity could be exploited between the two
design spaces amongst the configurations that were found. A second issue with our configuration
experiments is that we did not extract the “locally altering the previous solution” idea described in
Section 3.6.1 as a meta-parameter, and instead tuned it manually. This work does not contain any
new configuration experiments, and hence does not address either of these flaws.

30

Chapter 4

Designing a Reverse Auction
Simulator

One of our main contributions is a simulator for the reverse auction algorithm.

Much of the work involved in building a simulator is implementing all of the auc-

tion rules, which we explained in Chapter 2 and do not repeat here. In this chapter,

we focus on what still needs to be specified in order to actually run a simulation.

First, we need a model of how stations will bid in the auction, which we give

in Section 4.1. Next, we need to come up with value profiles for these stations;

we describe how we generate these in Section 4.2. We also need to select what

clearing target to use; we go over how we select clearing targets in Section 4.3.

Another decision is what feasibility checker to use: SATFC is one option; we de-

scribe another in Section 4.4. Section 4.5 explains two methodologies for dealing

with timeouts. Lastly, Section 4.6 describes how we can save calls to the feasibil-

ity checker by reasoning about cases where a station must have remained feasible

between checks.

4.1 Station Bidding Model
In order to actually run a simulation, we need a model of how stations bid. We

assume that each station s has a private value for broadcasting on each of its per-

missible bands, vs,b, and that in each bidding round, a station selects the offer that

31

myopically maximizes its utility Pb,s,t + vb,s. Fallback options (see Section 2.2.2),

when required, are also selected in this manner.

4.2 Station Valuation Model
In this section we describe how we generate value profiles for each station. Let

vs,OFF = 0, since a station gets no value if it gives up its license. To assign the

remaining values, we turned to the valuation model developed by Doraszelski et al.

(2016). Their work uses data from the MEDIA Access Pro Database from BIA

Kelsey (BIA) and the Television Financial Report from the National Association of

Broadcasters (NAB) to estimate station valuations for UHF stations. In their model,

a station’s value is the maximum of its cash-flow value and its stick value, where

the former reflects the “the price a TV station expects if it sells itself on the private

market as a going concern” and the latter purely reflects the value of the broadcast

license.

vs,UHF = max{vCF
s ,vStick

s } (4.1)

The cash flow value is computed by multiplying a station’s cash flow CFs with a

cash flow multiple MultipleCF
s .

vCF
s = CFs ·MultipleCF

s (4.2)

The stick value is proportional to the interference-free population that a station

reaches and a stick multiple MultipleStick
s .

vStick
s = MultipleCF

s ·6Mhz ·Population(s) (4.3)

where 6 Mhz is the size of a channel. While we know the population values for each

station, we need to estimate cash flows and both of the multiples in order to apply

this model. The authors of Doraszelski et al. (2016) shared with us distributions

that we can use to sample estimates of these unknown values. This allows us to

apply the above equations to produce samples of vs,UHF. Now that we have entries

for vs,UHF, we fill in the VHF values by making the simplifying assumption that

vs,HVHF = 2
3 vs,UHF and that vs,LVHF = 1

3 vs,UHF.

32

4.3 Determining Clearing Target
In order to simulate a reverse auction, we need to select a clearing target. Prior

to the auction, the FCC announced a series of ten clearing targets, ranging from

126–42 Mhz (corresponding to a maximum allowable channel of 29–44). In the

incentive auction, in order to avoid limiting the clearing target by the most con-

strained regions of the country, some impairments are allowed, meaning that some

stations can be placed on channels otherwise disallowed by the clearing target. Sec-

tion 3 of an FCC public notice [15] details the initial clearing target determination

procedure, which involves optimizing a tentative assignment for every clearing tar-

get and selecting the most aggressive clearing target that meets a standard set for

tolerable impairments. One other role of the initial clearing target determination

procedure is to set the starting band of each participating station. Prior to the auc-

tion, stations select all of the options that they would be willing to consider at the

opening prices. While there is unlimited room in OFF, if too many stations restrict

their willingness to participate only to VHF bands it may be impossible to find an

initial feasible assignment that accommodates all of them in their preferred op-

tions. The initial clearing target determination procedure decides which stations

to initially place on each band. If a station did not indicate OFF as an allowable

option, it may place the station on its home band, causing it to exit.

The initial clearing target determination procedure is somewhat complex, and

we do not simulate it. Instead, we use the following procedure to determine the

clearing target and find an initial assignment. In our simulator, only those stations

that are offered more to go off-air than their values for broadcasting in their home

bands (i.e., those stations for which P0,s,OFF > vs,HOME-BAND(s)) will participate in

the auction. Our simulator places all participating stations in OFF at the beginning,

even if their most preferred offer would have led them to starting in a VHF band

(though they are free to bid for their preferred option in the first round). As a con-

sequence of this restriction, we do not allow stations that would have had positive

utility for starting in one of the VHF bands but negative utility from starting in OFF

to participate in the auction in our simulator. We make this restriction to ensure that

stations always have positive utilities for participating: our concern is that a station

might freeze in the first round before it is able to move to its preferred option, and

33

then it would have a negative utility for participating.

After the set of participating stations is determined, we select a clearing target

by iterating through all possible clearing targets in order, starting with the most

aggressive, and selecting the first clearing target for which we are able to find

a feasible assignment for the non-participating stations. We do not simulate the

possible multi-stage nature of the incentive auction, so this clearing target will be

used throughout the entire simulation.

4.4 Feasibility Checker
In order to run a reverse auction simulation, we need to select a feasibility checker.

Since we want to investigate the impact that the quality of a feasibility checker

has on the efficiency and cost of the reverse auction, we need alternative feasibility

checkers to compare with SATFC. We propose what is perhaps the simplest rea-

sonable feasibility checker, which we call the greedy feasibility checker. It simply

iterates through the domain of s+ checking to see if any channel results in a feasible

assignment when augmented with γ− (as shown in Figure 4.1). It does not alter γ−

in any way. If it cannot find a feasible channel for s+, the greedy feasibility checker

reports a timeout. We use the greedy feasibility checker as a zero reference point

for feasibility checker quality in order to measure the impact of feasibility checker

quality on auction efficiency and cost (although we do not know that either of these

two metrics monotonically improve with feasibility checker quality).

4.5 Revisiting Timeouts
Recall that the bid processing step of the reverse auction (see Section 4.5) loops

over a queue of stations, processing the first station found to be feasible, removing

it form the queue, and continuing in this manner until an iteration in which it cannot

prove any remaining stations in the queue are feasible. We need to decide how to

handle timeouts during this step of the reverse auction. If a station is found infeasi-

ble in UHF, it will remain that way until the end of the auction (because no stations

leave UHF). Therefore, when we find a station to be infeasible in UHF in one loop

iteration of the bid processing step, then in subsequent loops over the queue we can

skip the call to the feasibility checker for that station because that station must still

34

{14, 15, 16}

1615

14

16

17

18

17

Figure 4.1: An illustration of the greedy feasibility checker. Only the newly
added station (blue) can vary on its domain, other stations are all fixed
on their channels.

be infeasible. However, if instead the result of a UHF feasibility check is a time-

out, a future call to the feasibility checker in that same bid processing step may

be able to prove that the station is actually feasible in UHF (as more stations exit,

the problem of finding a feasible repacking for that station could become easier).

In other words, just because a station is skipped over the first time it is examined

in the queue does not mean it should necessarily be skipped over again during the

next iteration. We therefore need to decide whether to run our feasibility checker

again the next time the station is processed in bid processing and other stations

have exited to UHF since the last check (we refer to this as revisiting timeouts), or

to simply declare that the station is infeasible because it timed out once and will

likely time out again. The latter approach can save computational resources, but

may harm the reverse auction’s cost and efficiency. Our simulator has supports

both approaches, with the default behavior being to not revisit timeouts.

35

4.6 Reusing Solutions Within a Simulation
Within a given auction simulation, we can reuse feasible solutions to UHF problems

in order to reduce the number of queries to the feasibility checker. The idea is that

once a station s is proven feasible to pack in UHF, it will remain so as long as no

other station s′ exits into UHF where s and s′ are in the same connected component

of the interference graph. Therefore, once we find a feasible assignment for s

in UHF, we mark that s is feasible and skip future calls to the feasibility checker

regarding placing s in UHF (since we know that s remains feasible). Whenever

a station exits to UHF, we clear our stored results for any stations in the same

component of the interference graph as the exited station.

36

Chapter 5

Experiments

In this chapter, we perform experiments using the reverse auction simulator de-

scribed in Chapter 4 in order to evaluate the performance of SATFC and to investi-

gate the feasibility checker’s impact on reverse auction outcomes. First, we explain

how we ran our simulations (Section 5.1). Next, we create a test set of problems

(Section 5.2) and use it to evaluate solvers (Section 5.3). We then evaluate the con-

tainment cache (Section 5.4). Lastly, we compare the reverse auction mechanism

with VCG and observe how replacing SATFC 2.3.1 in our simulator with alternate

feasibility checkers affects reverse auction outcomes (Section 5.5).

5.1 Simulations
We ran 20 reverse auction simulations. For each simulation, we used a different

random seed to create a value profile as described in Section 4.1. The FCC released

a document announcing the opening prices for each station on November 2015

[16]. To initialize benchmark prices (see Section 2.2.1) we followed this document

and set p0,UHF = 0, p0,HVHF = 360, p0,LVHF = 675, and p0,OFF = 900. We also used

the volumes for each station that were listed in this document, so that our opening

prices matched up with the incentive auction’s opening prices. We furthermore

used the opening price document as our eligibility criteria for the simulator: we

allowed any station that was offered an opening price to participate in the reverse

auction in our simulations. The document lists stations for which “the auction

37

system has determined that this station will always have a feasible channel assign-

ment in its pre-auction band at all of the possible auction clearing targets”—we

simply dropped such stations from our simulations. We also dropped stations for

which our valuation model contains no information, which can happen due to any

of three reasons: Firstly, Doraszelski et al. only considered stations in mainland

US and Hawaii, so we did not have valuations for stations outsides of these ar-

eas. Secondly, Doraszelski et al. did not model VHF station values, so we dropped

all 39 eligible US LVHF stations and all 378 eligible US HVHF stations from our

simulations. Lastly, since Doraszelski et al. used a different source to determine

eligibility, we were unable to use their model to sample valuations for some of the

stations that were eligible in our source but not in theirs1. After dropping these

stations, we were left with 1,638 eligible US UHF stations.

Canadian stations are also involved in the reverse auction. They act exactly

like stations that decide not to participate: they cause interference with other sta-

tions and must be repacked. Since Canadian stations are not bidders in the reverse

auction, we did not need to model their valuations and hence we included all of

the Canadian stations in all our simulator. In total, we included 113 Canadian

LVHF stations, 332 Canadian HVHF stations, and 348 Canadian UHF stations in our

simulations.

We downloaded the interference constraints and station domains from the FCC’s

website [14] posted November 12, 2015. For each simulation, we determined par-

ticipation and set the clearing target using the method described in Section 4.3.

In all cases this led to a clearing target of 84 Mhz, corresponding to a maximum

allowable channel of 36 for US stations and 35 for Canadian stations.2 We used

SATFC 2.3.1 as our feasibility checker, with a cutoff of 60 seconds and did not

revisit timeouts. All of our experiments were run on Intel Xeon E5-2640 v2 pro-

cessors on nodes with 96 GB of RAM running Red Hat Enterprise Linux Server

release 6.7. We allocated 8 cores to each simulation, so that all 8 configurations

in SATFC 2.3.1 could run in parallel. The simulations took between 3.52 and 4.02

1Specifically we dropped 25 UHF stations with the following facility IDs: 4353, 259, 71425,
70414, 70415, 70423, 70426, 70428, 168094, 41375, 38562, 38437, 17830, 57905, 8500, 68406,
51656, 34894, 34341, 34342, 14315, 27501, 57456, 66549, 69753.

2At every clearing target, the maximum allowable channel for Canadian stations is always 1
channel below the maximum US channel.

38

hours to run (wall time), of which the majority of the time—between 2.52 and

3.07 hours—was spent within SATFC solving UHF problems. In each simulation

between 1,553 and 1,571 stations participated at the opening prices.

5.2 Creating a Test Set of Non-Trivial Problems
The feasibility checker must solve tens of thousands of station repacking problems

in a single auction simulation. However, the vast majority of these problems are

not very difficult to solve. For example, even in our earliest official release, SATFC

1.3, we never observed any timeouts on VHF problems, likely because these bands

contain at most 7 channels and are home to fewer stations. In addition, most UHF

problems, especially earlier in the auction, can be solved by the simple greedy

feasibility checker described in Section 4.4; we observed that across all of our

simulations 97.39% of UHF problems can be solved this way. When creating a test

set of station repacking problems, we first filter out these “trivial” problems. Across

all of our simulations, this left us with a pool of 60,057 problems. We then sampled

10,000 of these problems uniformly at random to use as our test set.3 This test set

consists of 9,482 feasible problems, 121 infeasible problems, and 397 problems

that timed out at our one minute cutoff and therefore have unknown feasibility.

5.3 Evaluating Test Set Performance
As mentioned in Section 3.10, in our initial experiments [17] we configured SAT

solvers from AClib [23] in order to determine which SAT solvers to include in

SATFC. We do not repeat these configuration experiments here (i.e., try to build a

newer, better SATFC) and instead study the version of SATFC that is actually being

used in the reverse auction.4 Figure 5.1 shows the performance of the default
3We acknowledge that a test set is an imperfect way to evaluate a feasibility checker, since unless

the test set is generated by a perfect feasibility checker that never times out, scoring well on a test
set does not necessarily imply good performance in practice. We generated our test set using SATFC

2.3.1 as our feasibility checker, which encounters relatively few timeouts, and for which we have
observed that most unsolved problems turn out to be infeasible (and hence would not change the
problem trajectory of an auction). Nevertheless, it is difficult to reason about the true ceiling in
this setting, and there is certainly a larger gap than that implied merely by the fraction of unsolved
problems in our test set.

4This is not to say that running new configuration experiments would not be very interesting—on
the contrary, we view this as promising future work!

39

Figure 5.1: ECDF of runtimes for default configurations of MIP and SAT

solvers on our test set. The legend is ordered by percentage of problems
solved before the cutoff. The bars show fraction of SAT and UNSAT

instances binned by their (fastest) runtime. Although present, unsatisfi-
able instances form an insignificant portion of instances solved.

configurations of 20 SAT solvers from AClib5 as well as what are arguably the two

best-performing MIP solvers—CPLEX and Gurobi.6

Note that with one exception, the SAT solvers outperformed the MIP solvers.

We observed that one solver, Gnovelty+PCL, was able to solve the largest num-

ber of problems in our test set within the cutoff—79.96% of the problems in 41.74

hours. The parallel portfolio of all of these 22 solvers together was able to solve

81.58% of the problems in 38.08 hours. In our previous experiments [17] we ob-

served the best performance (post algorithm configuration) from clasp and DCCA

[31]. DCAA is a local search solver with no exposed parameters. We recruited an

undergraduate student, Paul Cernek, who integrated DCAA into SATenstein and

5At the time of writing, there are 22 SAT solvers in AClib. In two cases (clasp and
lingeling) AClib contains submissions from multiple years; we use only the latest submissions.

6We used CPLEX 12.6.2 and Gurobi 6.0.0.

40

Solved % ∆ % Time (s)

1 92.91 - 53, 874
2 94.42 1.51 39, 415
3 95.14 0.72 37, 751
4 95.59 0.45 34, 967
5 95.78 0.19 34, 329
6 95.92 0.14 33, 650
7 96.01 0.09 32, 569
8 96.03 0.02 32, 503

Table 5.1: A breakdown of the marginal value of adding each new configura-
tion to our portfolio by building the portfolio greedily.

exposed 3 parameters.

As was described previously in Section 3.10, SATFC is composed of 8 config-

urations of clasp and SATenstein. Figure 5.2 shows the performance of SATFC

2.3.1 and each individual configuration in SATFC 2.3.1 on the test set. SATFC 2.3.1

was able to solve 96.03% of the test set’s problems in 9.03 hours (wall time), solv-

ing 87.73% of the problems in under one second. The figure shows five individual

configurations in SATFC 2.3.1 which outperform any of the default solver configu-

rations.

Another result that stands out from the figure is that the gap between the portfo-

lio performance and the performance of the single best configuration is quite small.

Table 5.1 quantifies this gap, breaking down the marginal gains of each configura-

tion to SATFC by constructing its portfolio greedily. From this table we conclude

that if SATFC 2.3.1 only ran a single configuration, it would still be able to solve

92.92% of the problems in the test set, only 3.12% fewer than the entire portfolio

was able to solve. How much are the extra seven configurations contributing to the

reverse auction? To better understand the value of the extra configurations, we de-

fine a new feasibility checker, the best single configuration, consisting solely of the

top SATenstein configuration; we will have more to say about it in Section 5.5.

We conclude by noting that the returns on both problems solved and runtime di-

minish fairly quickly after the fourth configuration is added.

41

Figure 5.2: SATFC performance on test set broken down by configuration
(numbers in names correspond to Table 5.1). The bold red line is the
parallel portfolio performance.

5.4 Containment Cache Evaluation
We cannot evaluate our caching scheme from Section 3.9 by looking at its test set

performance as we do the rest of SATFC’s portfolio because we would first need

to decide with what solutions the cache should be initialized. One idea might be

to initialize the cache with all of the problems that we did not include in the test

set, but doing so could overstate cache performance because related instances from

the same auction simulation could appear both in the initialization set and the test

set. We avoided this concern by performing a “leave-one-out” analysis: For each

auction we built a cache composed of problems from all of the other auctions, and

then computed what fraction of the non-trivial problems this cache would have

been able to solve in that auction. Before performing this analysis, we checked

to make sure that the problems across each simulation did not overlap (i.e., that

a conventional cache would not have sufficed). We observed no auction shared

42

Figure 5.3: Bar chart where each bar represents the fraction of instances solv-
able by a cache filled with problems from the other auctions.

any non-trivial problems in common with any other auction (where we define a

problem for this purpose by the set of stations to repack, ignoring the previous

assignment), so a conventional cache would have a hit rate of 0% in our setting.

Our results for the containment cache are shown in Figure 5.3. At worst the cache

was able to solve 9.3% of the problems, and at best 32.4%, with a median of 22.6%

problems solved. We note that these numbers would only improve if we added

more simulations to grow the cache.

5.5 Simulations with Different Feasibility Checkers

5.5.1 Comparing Reverse Auction Outcomes

The outcome of the reverse auction is a channel assignment γ for stations that re-

main on-the-air and a set of prices that winning stations will be paid to go off-air.

We compare reverse auction outcomes based on their efficiency and cost. A natural

43

way to measure efficiency is by the value preserved by the auction, in other words

by defining an efficient repacking as one that maximizes the total value of the par-

ticipating stations that remain on-the-air. We instead choose to measure efficiency

by the total value lost by the auction, defining an efficient repacking as one that

minimizes the total value loss of winning stations, which for any given station is

measured as the difference between that station’s value for broadcasting in its home

band and its post-auction band. Note that an efficient repacking satisfying one def-

inition also satisfies the other. We prefer the latter definition because it is only

influenced by stations that a feasibility checker is unable to repack in their home

bands and therefore does not assign credit for easy to repack stations. For example,

holding everything else constant, increasing the value of an easy to repack station

arbitrarily high would make the value preserved arbitrarily high as well, but value

loss would be unaffected. We therefore feel that the value loss definition allows

for more meaningful comparisons between different feasibility checkers. If we can

find an efficient repacking γ∗, then we have an upper bound on efficiency. We can

use γ∗ to relate the total value loss of another repacking to the optimal total value

loss through a value loss ratio:

Value Loss Ratio =
∑s∈S vs,HOME-BAND(s)− vs,POST-AUCTION-BAND(γ,s)

∑s∈S vs,HOME-BAND(s)− vs,POST-AUCTION-BAND(γ∗,s)
(5.1)

where POST-AUCTION-BAND is a function that takes in a channel assignment

and a station and returns the band that the station is assigned to, or OFF if it is not

assigned to a band. Since γ∗ is optimal, a value loss ratio will always be weakly

greater than 1.

To get a feel for what this ratio means, imagine a setting containing two stations

each with values of $25 and one station with a value of $100 for broadcasting in

their home bands. Furthermore, imagine that the optimal repacking in this setting

causes the two $25 stations to go off-air for a total value loss of $50. If we have a

non-optimal repacking that instead causes the $100 station to go off-air for a total

value loss of $100, then the value loss ratio of this solution would be 2, since twice

as much value has been lost as in the optimal solution.

Unfortunately we cannot compute γ∗ at a national scale, so we cannot compare

to an optimal repacking in our national simulations. However, we can still compare

44

the value loss between two assignments to see which is more efficient.

For computing cost, we define a price function P : S → R that maps from

a station to its payment (returning 0 for stations that are not winners). Then an

outcome’s cost is:

Cost = ∑
s∈S
P (s) . (5.2)

We prefer outcomes with value loss ratios close to 1 and low cost. It is straightfor-

ward to compare two outcomes if one Pareto dominates the other with respect to

efficiency and cost, otherwise any comparison is at least partially subjective.

5.5.2 Comparing the Reverse Auction and VCG

In this section we compare the FCC’s reverse auction mechanism to a VCG mech-

anism. We chose to compare to VCG because it computes a globally efficient out-

come and is truthful for bidders.

VCG Encoding

We now specialize VCG to our setting to code for the relevant constraints. We

encode the global repacking problem as a MIP. We differentiate between non-

participating stations that must be repacked in their home bands, Snon-participating,

and participating stations, Sparticipating, that can be repacked on any band weakly

below their homes or placed off-air. For simplicity, we use an objective function

that maximizes the value preserved, noting that a solution to this maximization

problem also minimizes the total value loss.

maximize ∑
s∈Sparticipating

∑
c∈D(s)

xs,c · vs,CHANNEL-TO-BAND(c)

subject to xs,c + xs′,c′ ≤ 1 ∀{(s,c) ,
(
s′,c′

)
} ∈ I (5.3)

∑
c∈D(s)

xs,c ≤ 1 ∀s ∈ Sparticipating (5.4)

∑
c∈D(s)

xs,c = 1 ∀s ∈ Snon-participating (5.5)

xs,c ∈ {0,1} ∀c ∈ D(s)∀ s ∈ S (5.6)

45

The objective function maximizes the aggregate on-the-air value of the partic-

ipating stations by summing over the channel indicator variables for each partici-

pating station multiplied by its value for broadcasting in that channel’s band. Note

that if a station is placed off-air, it does not contribute to the objective function, and

that a station contributes most to the objective function when it is placed where it

has the highest value, i.e., in its home band. The rest of our encoding is very similar

to the MIP encoding of the station repacking problem presented in Section 3.5.1. In

fact, besides the objective function there is only one difference, which is that here

we differentiate between participating stations, which Constraint (5.4) says may

be assigned or unassigned, and non-participating stations, which Constraint (5.5)

ensures are assigned to a channel in their home band.7

The VCG price for a winning station s is calculated as the difference (excluding

the value of s) in the value of the optimal packing γ∗ and the value of the optimal

packing γ∗−s when s is added to Snon-participating. The price paid to any losing station

is zero. The |Swinners| pricing problems can be solved in parallel once the initial

allocation has been found.

VCG Simulations

We were unable to compute the VCG allocation with all of the eligible stations even

after several days of computing time. To make the problem tractable, we restricted

ourselves in the following manner: We dropped all of the Canadian stations and

restricted ourselves to the UHF band using the smallest possible clearing target,

126 MHz, corresponding to a maximum allowable of channel of 29. Using the

interference graph induced by these restrictions, we furthermore dropped every

station that was not reachable by following at most two interference constraints

from stations in New York City. We chose New York City as it is one of the most

densely connected areas of the interference graph. The induced constraint graph

contains 218 stations and is shown in Figure 5.4.

We computed the optimal repackings and pricing problems using CPLEX 12.6.2,

with 8 cores available, solving all MIPs optimally to within 10−6 absolute MIP gap

tolerance. Since the VCG experiments were computationally very expensive (it

7We implicitly restrict D(s) to the home band for each non-participating station.

46

took a mean of 93.92 days CPU time to compute the allocation and prices for each

value profile), we only ran them for our first five value profiles. We then ran reverse

auction simulations in the same New York setting using the following feasibility

checkers: SATFC 2.3.1, the greedy feasibility checker, and the best single config-

uration. Figure 5.5 plots the cost and value loss normalized by the corresponding

VCG cost and value loss for each of these simulations. The SATFC 2.3.1 simula-

tions had a mean value loss ratio of 1.047, so the reverse auction achieved outcomes

with value losses very near to optimal in this setting and at lower cost than the VCG

prices. Both the SATFC 2.3.1 and best single configuration runs Pareto dominated

the greedy runs. Averaging across all results, greedy runs cost 1.732 times more

and had value loss ratios 1.424 times higher than the SATFC 2.3.1 runs. SATFC

2.3.1 is a strictly more powerful feasibility checker than the best single config-

uration because SATFC 2.3.1 contains the best single configuration as part of its

portfolio. The performance of SATFC 2.3.1 and the best single configuration were

very similar in this setting, though we observed in three cases that the best single

configuration actually led to a slightly higher value loss ratio than using SATFC

2.3.1. These results show that reverse auction performance does not always im-

prove monotonically with a better feasibility checker.

5.5.3 National Simulation Results

While we could not simulate VCG at the national scale, we were still able to com-

pare the cost and value loss resulting from substituting different feasibility checkers

into our national simulations. Using the same value profiles as for our original na-

tional simulations, we ran new two new sets of simulations replacing SATFC 2.3.1

with the greedy feasibility checker and the best single configuration. We observed

how the cost and efficiency of each auction varied with the new feasibility checkers.

The results are shown in Figure 5.6, which plots the value loss and cost of each sim-

ulation normalized by the corresponding SATFC 2.3.1 simulation. Similarly to the

VCG results, we observed that each SATFC 2.3.1 simulation and best single config-

uration simulation Pareto dominated their greedy counterparts. Averaging over all

of our observations, the greedy simulations cost 3.550 times ($5.114 billion) more

and had value losses 2.850 times ($2.030 billion) higher than the SATFC 2.3.1 sim-

47

Figure 5.4: Interference graph of the set of 218 UHF stations within two edges
of a New York station. Each edge represents the existence of at least
one pairwise binary constraint between two stations under a 126 MHz
clearing target.

ulations. The gaps between SATFC 2.3.1 and the greedy feasibility checker in both

the cost and efficiency dimensions were significantly larger at the national scale

than in the smaller New York setting. The best single configuration simulations

had values losses on average 1.101 times ($110 million) higher and were 1.142

times ($284 million) more expensive than their SATFC counterparts. The SATFC

2.3.1 simulations Pareto dominated the best single configuration simulations in all

but one sample, in which the best single configuration simulation had a value loss

0.05% ($569 thousand) smaller than its corresponding SATFC 2.3.1 simulation, but

was 6.8% ($137 million) more expensive. This is quite different from how these

two feasibility checkers compared in our VCG simulations, where the best single

configuration performed more favorably. These results strengthen our intuition that

while the efficiency and cost of a reverse auction may not improve monotonically

with a better feasibility checker, in general we expect that improvements to the

performance of the feasibility checker will improve both of these metrics. An-

other intuition, also validated by these results, is that in larger settings with harder

repacking problems, the importance of a strong feasibility checker is amplified.

Finally, recall that Section 4.5 described how a feasibility checker could revisit

48

Figure 5.5: Fraction of VCG cost versus fraction of VCG value loss plotted for
three different feasibility checkers (indicated by colors) for five different
value profiles (indicated by markers). All VCG points lie at (1,1). SATFC

2.3.1 and the best single configuration had equivalent outcomes on the
second value profile (the markers coincide).

timeouts within a bid processing round. We ran SATFC 2.3.1 simulations that revis-

ited timeouts for each of the 20 simulations. These simulations took much longer

than the runs that did not revisit timeouts, spending on average between 24.4 and

54.5 hours on solving UHF problems. We observed that this extra computation time

on average led to better outcomes. The runs that did not revisit timeouts cost 1.011

times ($21 million) more and had value losses that were 1.010 times ($10 million)

higher on average than the runs that did revisit timeouts.

49

Figure 5.6: Value loss and cost of national simulations using three different
feasibility checkers for 20 value profiles. Both axes are normalized by
the cost and value loss of the corresponding SATFC 2.3.1 simulation.
The figure also contains a second SATFC 2.3.1 series which revisit time-
outs.

50

Chapter 6

Discussion and Conclusions

Station repacking in the reverse auction of the “incentive auction” is a difficult

problem, but one in which progress is translatable into both large monetary sums

and social welfare. We presented our feasibility checker, SATFC, which com-

bines state-of-the-art SAT solvers, recent meta-algorithmic techniques, and further

speedups based on domain-specific insights to yield a feasibility checker that meets

the performance needs of the real incentive auction. We also presented our re-

verse auction simulator, which we used to explore the effect that the reverse auc-

tion’s choice of feasibility checker has on the reverse auction’s efficiency and cost.

Specifically we showed that using SATFC vastly outperforms a very naı̈ve feasi-

bility checker, and that even substituting SATFC with a feasibility checker that is

nearly as good as SATFC still results in significant losses in efficiency and increased

cost. Pointers to source code and documentation for both SATFC and our reverse

auction simulator are available at http://www.cs.ubc.ca/labs/beta/Projects/SATFC/.

There are many possible directions for future work. First, it would be interest-

ing to continue to work towards a feasibility checker that can perform perfectly in

this domain. This would involve further improvements to SATFC, such as adding

new encodings and heuristics, or performing another round of configuration ex-

periments. It would also be interesting to be able to compare the value loss from

repackings generated by the reverse auction to the value loss of globally optimal

repackings in larger settings (i.e., beyond just stations near New York City). This

could be achieved by improving the performance of computing optimal repackings

51

http://www.cs.ubc.ca/labs/beta/Projects/SATFC/

(e.g., by applying algorithm configuration and new encodings to our VCG MIP) so

that optimal repackings can be computed over larger sets of stations, or by bound-

ing the value loss of optimal repackings if they cannot be computed exactly. There

are other research questions that could be answered with some additions to our sim-

ulator: For example, we could enhance the valuation model to include values for

VHF stations. This would allow for more realistic simulation results and could an-

swer questions such as how much efficiency is gained by adding the complexity of

the VHF bands. Other improvements that we could make to our simulator would be

to enhance it to handle the initial clearing target optimization and the multi-stage

nature of the incentive auction, which would allow us to answer questions such

as whether the multi-stage nature of the auction decreases efficiency. We close by

adding that even with the current simulator, there are many more interesting experi-

mental questions that can be answered. For example, we can investigate alternative

scoring rules, or better understand the tradeoffs involved in using fixed timeouts of

one minute for each feasibility checking problem, as compared to longer timeouts

or dynamic alternatives.

52

Bibliography

[1] K. I. Aardal, S. P. Van Hoesel, A. M. Koster, C. Mannino, and A. Sassano.
Models and solution techniques for frequency assignment problems. Annals
of Operations Research, 153(1):79–129, 2007. → pages 5

[2] C. Bazelon, C. L. Jackson, and G. McHenry. An engineering and economic
analysis of the prospects of reallocating radio spectrum from the broadcast
band through the use of voluntary incentive auctions. TPRC, 2011. → pages
5

[3] M. Calamari, O. Kharkar, C. Kochard, J. Lindsay, B. Mulamba, and C. B.
Scherer. Experimental evaluation of auction designs for spectrum allocation
under interference constraints. In Systems and Information Design
Symposium, pages 7–12. IEEE, 2012. → pages 4

[4] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query,
partial match, orthogonal range searching, and related problems. In
Automata, Languages and Programming, pages 451–462. Springer, 2002.
→ pages 27

[5] Congressional Budget Office. Proceeds from auctions held by the Federal
Communications Commission. https://www.cbo.gov/publication/50128,
2015. Accessed 2015-04-21. → pages 4

[6] P. Cramton, H. Lopez, D. Malec, and P. Sujarittanonta. Design of the reverse
auction in the broadcast incentive auction. 2015. → pages 5

[7] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962. →
pages 17

[8] U. Doraszelski, K. Seim, M. Sinkinson, and P. Wang. Ownership
concentration and strategic supply reduction. 2016. → pages 32, 38

53

https://www.cbo.gov/publication/50128

[9] P. Dütting, V. Gkatzelis, and T. Roughgarden. The performance of
deferred-acceptance auctions. In Proc. of EC, EC ’14, pages 187–204, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2565-3.
doi:10.1145/2600057.2602861. → pages 4

[10] FCC. In the matter of expanding the economic and innovation opportunities
of spectrum through incentive auctions. FCC Notice of Proposed
Rulemaking, FCC 12-118, September 2012. → pages 1

[11] FCC. Office of engineering and technology releases and seeks comment on
updated OET-69 software. FCC Public Notice, DA 13-138, February 2013.
→ pages 14

[12] FCC. Comment sought on competitive bidding procedures for broadcast
incentive auction 1000, including auctions 1001 and 1002. FCC Public
Notice, 14-191, December 2014. → pages 6

[13] FCC. In the matter of expanding the economic and innovation opportunities
of spectrum through incentive auctions. FCC Report & Order, FCC 14-50,
June 2014. particularly section IIIB. → pages 15

[14] FCC. Repacking constraint files.
http://data.fcc.gov/download/incentive-auctions/Constraint Files/, 2015.
Accessed 2015-11-20. → pages viii, 15, 17, 38

[15] FCC. Procedures for competitive bidding in auction 1000, including bidding
in auction 1000, including initial clearing target determination, qualifying to
bid, and bidding in auctions 1001 (reverse) and 1002 (forward). FCC Public
Notice, FCC 15-78, August 2015. section III. → pages 33

[16] FCC. Reverse auction opening prices. http://wireless.fcc.gov/auctions/
incentive-auctions/Reverse Auction Opening Prices 111215.xlsx, 2015.
Accessed 2015-11-15. → pages 37

[17] A. Fréchette, N. Newman, and K. Leyton-Brown. Solving the station
repacking problem. 2016. → pages iii, 39, 40

[18] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A
conflict-driven answer set solver. In Logic Programming and Nonmonotonic
Reasoning, pages 260–265. Springer, 2007. → pages 29

[19] C. P. Gomes and B. Selman. Algorithm portfolios. AIJ, 126(1):43–62, 2001.
→ pages 25

54

http://dx.doi.org/10.1145/2600057.2602861
http://data.fcc.gov/download/incentive-auctions/Constraint_Files/
http://wireless.fcc.gov/auctions/incentive-auctions/Reverse_Auction_Opening_Prices_111215.xlsx
http://wireless.fcc.gov/auctions/incentive-auctions/Reverse_Auction_Opening_Prices_111215.xlsx

[20] J. Hoffmann and J. Koehler. A new method to index and query sets. 1999.
→ pages 27

[21] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Proc. of LION, page
507523, 2011. → pages 25

[22] F. Hutter, M. Lindauer, S. Bayless, H. Hoos, and K. Leyton-Brown.
Configurable SAT solver challenge (CSSC) (2014). 2014. Accessed
2015-11-01. → pages 25

[23] F. Hutter, M. López-Ibáñez, C. Fawcett, M. Lindauer, H. H. Hoos,
K. Leyton-Brown, and T. Stützle. AClib: A benchmark library for algorithm
configuration. In LION, pages 36–40. Springer, 2014. → pages 29, 39

[24] M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon. The international SAT
solver competitions. AI Magazine, 33(1):89–92, 2012. → pages 19

[25] E. Kazumori. Generalizing deferred acceptance auctions to allow multiple
relinquishment options. SIGMETRICS Performance Evaluation Review, 42
(3):41–41, 2014. → pages 4

[26] M. Kearns and L. Dworkin. A computational study of feasible repackings in
the FCC incentive auctions. CoRR, abs/1406.4837, 2014. URL
http://arxiv.org/abs/1406.4837. Accessed 2016-05-09. → pages 5

[27] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown. Satenstein:
Automatically building local search sat solvers from components. → pages
29

[28] R. Knutson and T. Gryta. Verizon, AT&T May Face Bidding Limits in
Spectrum Auction. Wall Street Journal, Apr. 2014. ISSN 0099-9660. URL
http://www.wsj.com/articles/
SB10001424052702304626304579510154106120342. Accessed
2016-12-12. → pages 1

[29] E. Kwerel, P. LaFontaine, and M. Schwartz. Economics at the FCC,
2011–2012: Spectrum incentive auctions, universal service and intercarrier
compensation reform, and mergers. Review of Industrial Organization, 41
(4):271–302, 2012. → pages 4

[30] S. Li. Obviously strategy-proof mechanisms. Available at SSRN 2560028,
2015. → pages 4

55

http://arxiv.org/abs/1406.4837
http://www.wsj.com/articles/SB10001424052702304626304579510154106120342
http://www.wsj.com/articles/SB10001424052702304626304579510154106120342

[31] C. Luo, S. Cai, W. Wu, and K. Su. Double configuration checking in
stochastic local search for satisfiability. In AAAI, 2014. → pages 40

[32] A. K. Mackworth. Consistency in networks of relations. Artificial
intelligence, 8(1):99–118, 1977. → pages 22

[33] M. J. Marcus. Incentive auction: a proposed mechanism to rebalance
spectrum between broadcast television and mobile broadband [spectrum
policy and regulatory issues]. Wireless Communications, 20(2):4–5, 2013.
→ pages 4

[34] P. Milgrom and I. Segal. Deferred-acceptance auctions and radio spectrum
reallocation. In Proc. of EC. ACM, 2014. → pages 2, 4

[35] P. Milgrom, L. Ausubel, J. Levin, and I. Segal. Incentive auction rules
option and discussion. Report for Federal Communications Commission.
September, 12, 2012. → pages 4

[36] T.-D. Nguyen and T. Sandholm. Optimizing prices in descending clock
auctions. In Proc. of EC, pages 93–110. ACM, 2014. → pages 5

[37] E. Nudelman, K. Leyton-Brown, G. Andrew, C. Gomes, J. McFadden,
B. Selman, and Y. Shoham. Satzilla 0.9. Solver description, International
SAT Competition, 2003. → pages 25

[38] S. Prestwich. Local search on sat-encoded colouring problems. In
International Conference on Theory and Applications of Satisfiability
Testing, pages 105–119. Springer, 2003. → pages 19

[39] I. Savnik. Index data structure for fast subset and superset queries. In
Availability, Reliability, and Security in Information Systems and HCI, pages
134–148. Springer, 2013. → pages 27

[40] A. Vohra. On the near-optimality of the reverse deferred acceptance
algorithm. 2014. → pages 4

[41] L. Xu, H. H. Hoos, and K. Leyton-Brown. Hydra: Automatically
configuring algorithms for portfolio-based selection. In AAAI, pages
210–216, 2010. → pages 25

56

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 The Reverse Auction
	2.1 The Reverse Auction Limited to UHF Stations
	2.1.1 Computing Prices
	2.1.2 Scoring Rule

	2.2 Generalizing the Reverse Auction to Include VHF Stations
	2.2.1 Computing Prices with Multiple Bands
	2.2.2 Placing Bids
	2.2.3 Bid Processing
	2.2.4 Provisional Winners
	2.2.5 Removing Stations That Can Never Become Winners
	2.2.6 Termination

	3 Designing an Efficient Feasibility Checker
	3.1 The Station Repacking Problem
	3.2 Structure of Constraints
	3.3 Structure of Station Repacking Problems in the Reverse Auction
	3.4 Complete and Local Search Solvers
	3.5 Encodings
	3.5.1 MIP Encoding
	3.5.2 SAT Encodings

	3.6 Using the Previous Solution
	3.6.1 Locally Altering the Previous Solution
	3.6.2 Starting Near the Previous Solution

	3.7 Problem Simplification
	3.7.1 Arc Consistency
	3.7.2 Unconstrained Station Removal
	3.7.3 Problem Decomposition

	3.8 Meta-Algorithmic Techniques
	3.9 Containment Caching
	3.10 SATFC

	4 Designing a Reverse Auction Simulator
	4.1 Station Bidding Model
	4.2 Station Valuation Model
	4.3 Determining Clearing Target
	4.4 Feasibility Checker
	4.5 Revisiting Timeouts
	4.6 Reusing Solutions Within a Simulation

	5 Experiments
	5.1 Simulations
	5.2 Creating a Test Set of Non-Trivial Problems
	5.3 Evaluating Test Set Performance
	5.4 Containment Cache Evaluation
	5.5 Simulations with Different Feasibility Checkers
	5.5.1 Comparing Reverse Auction Outcomes
	5.5.2 Comparing the Reverse Auction and VCG
	5.5.3 National Simulation Results

	6 Discussion and Conclusions
	Bibliography

