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Abstract

The design of aircraft depends increasingly on the use of Computational Fluid Dy-

namics (CFD) in which numerical methods are employed to obtain approximate solu-

tions for fluid flows. One route to improve the numerical accuracy of CFD simulations

is higher-order discretization methods. Moreover, finite volume discretizations are the

method of choice in commercial CFD solvers and also in computational aerodynamics

because of intrinsic conservative and shock-capturing properties. Considering that

nearly all practical flows with aerodynamic applications are classified as turbulent, we

develop a higher-order finite volume solver for the Reynolds Averaged Navier-Stokes

(RANS) solution of turbulent compressible flows on unstructured meshes.

Higher-order flow solvers must account for boundary curvature. Since turbulent

flow simulations require anisotropic cells in shear layers, we use an elasticity analogy

to project the boundary curvature into the interior faces and prevent faces from in-

tersecting near curved boundaries. Furthermore, we improve the accuracy of solution

reconstruction and output quantities on highly anisotropic cells with curvature us-

ing a local curvilinear coordinate system. A robust turbulence model for higher-order

discretizations is fully coupled to the system of RANS equations and an efficient solu-

tion strategy is adopted for the convergence to the steady-state solution. We present

our higher-order results for simple and complicated configurations in two dimensions.

These results are verified by comparison against well-established numerical and ex-

perimental values in the literature. Our results show the advantages of higher-order

methods in obtaining a more accurate solution with fewer degrees of freedom and

also fast and efficient convergence to the steady-state solutions.

Moreover, we propose an hp-adaptation algorithm for the unstructured finite vol-

ume solver based on residual-based and adjoint-based error indicators. In this ap-

proach, we enhance the local accuracy of the discretization via h-refinement or p-

enrichment based on the smoothness of the solution. Mesh refinement is carried out

by local cell division and introducing non-conforming interfaces in the mesh while
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order enrichment is obtained by local increase of the polynomial order in the recon-

struction process. Our results show that this strategy leads to accuracy and efficiency

improvements for several types of compressible flow problems.
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Chapter 1

Introduction

The behavior of fluid flows is governed by a set of partial differential equations

(PDEs), which relate flow field variables to their derivatives in time and space. The

solution of these equations enables us to predict the dynamics of the fluid by knowing

the values of flow quantities, such as pressure, temperature and velocity at desired

locations and times. These PDEs, which are typically obtained by some complicated

physical models, have an analytic solution only in a limited number of cases derived

by non-trivial mathematical techniques [1]. As a result, we need to use alternative

options such as experimental or numerical methods in most of the cases with complex

geometries and/or physical models.

Experimental fluid dynamics, which dates back to ancient times, has been used

over the centuries to give insight into flow patterns and measure field quantities. In

recent years, a considerable amount of efforts have been put to improve the accuracy

and efficiency of experimental techniques. However, these methods still suffer from

many restrictions related to their accuracy and reproducibility. There are some errors

that stem from the disturbances induced by inserting probes into the flow field and

reduce the fidelity of experimental data. The measurements are often restricted to

one quantity at sampled points every time and thus the measurement of the whole

flow field requires a large amount of time and resources. Nevertheless, there are some

cases where once a model is built, a lot of data can be measured. The experiments

provide prediction only for a laboratory-scale model of simple prototypes whereas

many real life cases (e.g., such as reentry of space vehicles) cannot be investigated in

laboratories since similarity conditions are not achieved.

With the recent progress in computational resources and numerical algorithms,

Computational Fluid Dynamics (CFD) has emerged as a reliable tool to examine

complex flows and realistic operating conditions. In this method, which has shown a

remarkable ability in quantitative prediction of flow phenomena with high resolution

in time and space, numerical techniques are employed to provide the solution to the
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Chapter 1. Introduction

Figure 1.1: General steps in a CFD simulation

PDEs describing flow behavior. CFD is also popular due to its lower cost compared

to experiments and its great advantage in computing many flow variables which are

not accessible in an experiment. The ultimate goal of CFD is to find an accurate

and reliable solution to fluid dynamic problems in a short amount of time and with

minimum computational resources.

The numerical simulation of flow fields by means of CFD requires three essential

elements [2]: physical modeling of the flow; domain decomposition, which is referred

to as mesh generation; and the numerical approximation of the governing equations

arising from the physical modeling using a robust, efficient and accurate solver. These

steps are illustrated in Figure 1.1.

The first element includes the mathematical modeling of the flow physics. In
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Chapter 1. Introduction

this phase of the process, the system of governing equations is specified along with

the geometry of the domain to be decomposed later and the appropriate physical

boundary conditions. This process is fairly straightforward for simple flow scenarios

(e.g., subsonic inviscid or viscous laminar flows) with trivial geometries. However,

it exhibits complications for more complex situations such as those with multiphase,

turbulence and hydromagnetic field effects for which an exact mathematical descrip-

tion of the physical problem is impossible or infeasible, and so physical modeling

is required. Therefore, this modeling process leads to a known source of errors in

CFD simulations, referred to as physical modeling error. For instance, the turbu-

lence models used to predict the behavior of turbulent flows are tuned based on only

a limited number of physical cases and thus fail to provide a general and accurate

estimation of turbulence properties in many other applications. Nevertheless, they

seem to be the only feasible approach [3, 4] since the Direct Numerical Simulation

(DNS) of turbulent flows will not be practical for the next couple of decades due to

computing limitations.

The next step is to create a mesh on which the solution is approximated. In this

process, the physical domain is tessellated with shapes that are recognizable by the

solver. Considering that the governing equations are discretized on the mesh, an

appropriate domain decomposition is essential to compute an accurate solution. As a

result, high quality mesh generation is considered as one of the most crucial elements

in CFD.

There are basically two different types of meshes: structured and unstructured. In

a structured mesh, all cells and vertices have the same topology and their connectivity

is specified by their indices. For example, cell (i, j) is always topologically to the right

of cell (i− 1, j). Such implicit information leads to faster processing by the solver

but restricts the topology of the mesh which in turn makes the automation of grid

generation challenging for complex geometries. On the other hand, the vertices in

unstructured meshes are topologically different and thus their connectivity must be

declared. These meshes are typically formed as a collection of polygons in 2D and

polyhedrons in 3D. Despite the fact that the processing time of the solver is longer for

unstructured meshes, they exhibit a higher flexibility and thus are better candidates

for arbitrary geometries. The use of unstructured meshes is becoming more popular

in modern CFD applications as they promise to be more capable and successful for

complex aerodynamic problems [5]. Figure 1.2 illustrates the two types of the meshes

3



Chapter 1. Introduction

(a) Structured (b) Unstructured

Figure 1.2: Example of mesh types over a 2D airfoil

around a 2D airfoil.

After physical modeling and mesh generation are complete, the infinitely accurate

governing PDEs must be turned into a finite approximation of flow quantities over

the mesh. This process is known as discretization whose error can be expressed

as O (hp+1) for problems with smooth solution, where h is a characteristic length

for the mesh and p + 1 is the asymptotic order of accuracy. Clearly, the accuracy

of a numerical solution can be increased via h-refinement (finer mesh) and/or p-

enrichment (higher-order accurate discretization). In the CFD community, those

discretization schemes where p > 1 (higher than second-order accurate), are typically

known as higher-order schemes. The discretization is typically performed by one of

the following methods: finite difference, finite element and finite volume.

The finite difference method is the most traditional method and has historical

importance. In this method, the point wise quantities are approximated using a

difference relation obtained by the Taylor series expansion of the solution on a struc-

tured mesh. Finite difference methods can be easily programmed and their extension

to higher-order is straightforward; however, the corresponding solution does not nec-

essarily conserve mass, momentum and energy. Also, the method is impractical for

unstructured meshes. Due to recent interest in simulating complex geometries, which

is most easily accomplished by the use of unstructured meshes, finite difference is less
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Chapter 1. Introduction

frequently used in CFD codes nowadays.

The finite element method originated from the structural analysis of solids but is

also applicable to fluid flows. In this method, the solution is represented by local basis

functions over the elements of the mesh. The degree of the polynomial basis function

is chosen based upon the desired order of solution accuracy. While the solution

represented by the polynomial does not completely satisfy the governing equations,

the polynomial coefficients are chosen so as to minimize the residuals weighted by a

test function. The extension of the finite element method to higher-order solutions

can be easily carried out using a basis function with higher degree. Also, it can be used

for elements with arbitrary shape and thus is well suited for unstructured meshes.

Although the conservation of mass, momentum and energy may be achieved in the

finite element formulation, it is not trivial, particularly in flows with discontinuities.

The finite volume method has been designed based on the control volume analysis

used for thermodynamics or fluid dynamics systems. The finite volume method dis-

cretizes the governing equations in conservative form over cells in the mesh to yield

the conservation of mass, momentum and energy across the boundaries of control vol-

umes. The conservation property enhances the capability of the finite volume method

in capturing discontinuous phenomena such as shock waves. In this technique, con-

trol volume averages are used to find the reconstructed piecewise polynomial over

each finite volume. The volume boundary fluxes are computed based on the recon-

structed polynomial, and the flux integrals are used to update the control volume

averages. The finite volume technique, which shows remarkable flexibility for com-

plex geometries and unstructured meshes, can be extended to higher-order accuracy

[6, 7], although with more difficulty compared to the finite difference or finite element

methods.

In this thesis, we focus on finite volume methods for compressible flows encoun-

tered in computational aerodynamics. In particular, we are interested in higher-order

methods on unstructured meshes for turbulent flows in 2D. In what follows, a brief

review of turbulence modeling approaches employed in CFD simulations is given.

Moreover, the state of the art in higher-order CFD methods used in computational

aerodynamics is reviewed. This chapter continues with a clear description of objec-

tives set for this thesis and ends with the outline of the following chapters.
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1.1 Turbulence Modeling in CFD

Turbulence is frequently observed in nearly all areas of fluid mechanics ranging from

turbomachinery and combustion engines to the design of cars and aircraft. A great

deal of effort has been put into experimental and theoretical studies to improve the

understanding of the turbulent motions. However, a universal turbulence theory

which is able to predict the features of turbulent flows in different applications is not

yet available.

Numerical simulation of turbulent flows has practical importance in science and

engineering. In the context of CFD, there exist three approaches to simulate turbulent

flows. These approaches are the Direct Numerical Simulation (DNS), the Large Eddy

Simulation (LES), and the Reynolds-Averaged Navier-Stokes equations (RANS).

In the DNS approach, the deterministic Navier-Stokes equations are solved with-

out the incorporation of any turbulence model. As a result, the whole range of spatial

and temporal scales of the turbulent motions must be resolved to obtain an accurate

prediction of the flow field. The smallest turbulence scales, which are referred to as

the Kolmogorov micro-scales, must be captured by the computational length scale

(mesh size) and time step. The calculations show that the smallest spatial and tem-

poral scales scale with the Reynolds number of turbulent flows as Re−3/4 and Re−1/2,

respectively [8]. This induces huge memory and computational power requirements

for realistic flow problems at relatively high Reynolds numbers (Re > 106). As an

example, the computation of the turbulent flow around an aircraft in one second of

the flight time would require several thousand years and 1016 grid points using a

supercomputer with 1012 Flops [9]. Therefore, the application of the DNS approach

has been limited to simple geometries and flows with low Reynolds number [10, 11].

In the DNS simulations, higher-order approximations are typically employed to over-

come the numerical dissipation of the lower-order methods [12, 13]. In addition,

explicit time integration is mostly used due to the large memory requirements and

the need to resolve small time scales.

In LES, the computational cost of DNS is reduced by ignoring the smallest turbu-

lence scales. The main idea behind LES is to extract the large scale energy containing

components by the convolution of the dependent variables of the Navier-Stokes equa-

tions with a predefined low-pass filter, which can be effectively viewed as a spatial

and temporal averaging. Therefore, the information about the small scales, which is
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removed from the numerical solution, must be modeled using a subgrid scale model

[8]. In other words, the numerical solution accounts for the geometry dependent large

scale eddies of the flow, while the universal smaller scale eddies are captured implic-

itly. This separation of scales is possible away from walls where the turbulence is

not in equilibrium but cannot be applied close to solid boundaries where turbulence

manifests in the form of coherent structures [14]. Therefore, an accurate modeling

of wall effects is a dominant challenge in LES. Even though LES is computationally

less expensive compared to DNS, it still needs a considerable amount of resources for

large scale engineering problems with high Reynolds number. In recent years and

with significant progress in computational power, LES is reaching a level of maturity

and is becoming a reliable tool for engineering and industrial computations [15]. The

overall success of LES is dependent on the accuracy of discretization method and the

performance of the simulation in a time- and cost-effective manner [8].

The most common approach for the modeling of turbulent flows with engineering

applications is RANS. In this approach, which is extensively used for steady flow

problems, the physical quantities are decomposed via the Reynolds decomposition

into time-averaged and fluctuating components. The substitution of the decomposed

quantities into the Navier-Stokes equations yields the governing equations for the

mean flow variables. This process leads to the appearance of non-linear Reynolds

stresses which are dependent on the fluctuating velocity components. Additional

modeling is required for such terms to provide the closure for the system of RANS

equations.

Most of the turbulence models used in engineering practice employ the Boussinesq

assumption in which the Reynolds stresses in the Reynolds-averaged momentum and

energy equations are assumed to be proportional to the mean strain tensor. In this

approximation, the constant of proportionality is isotropic and is called the turbulent

viscosity. The turbulent viscosity can be related to the mean flow quantities, as in

algebraic (zero-equation) models [16, 17] or be obtained by one or more auxiliary

field equations for the turbulent kinetic energy and time scales [18, 19, 20].

On the other hand, the Reynolds stress transport models, which do not use the

Boussinesq assumption, are considered as the highest level of available closure for

the system of RANS equations [21]. These models are superior to the turbulent

viscosity models because they remove the assumption that the Reynolds stresses

respond immediately to changes in the mean strain rate. Moreover, they take into
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account the anisotropy of turbulence. However, this comes with the price of solving

additional PDEs for each component of the Reynolds stress tensor and thus they are

more expensive compared to the turbulent viscosity models in terms of CPU time and

memory usage. In addition, numerical stability problems arise due to the absence of

the turbulent viscosity and strong coupling [22].

Most of the numerical investigations in the field of computational aerodynamics

have been based on steady low-order RANS simulations during the last few decades.

This is due to the fact that the second-order RANS simulations became robust and af-

fordable on small CPU clusters. Most commercial CFD solvers use RANS turbulence

models for different applications. However, it is well understood that the RANS mod-

els are unable to provide good predictions for flows with separation and/or vortex

dominated flows [23]. Considering that such problems are encountered in aerody-

namic problems (e.g., landing and take-off with high lift configurations), more pow-

erful modeling tools are required. With the recent advances in hardware technology,

higher level CFD approaches such as higher-order methods [24], hybrid RANS/LES

[25, 26] and LES [27] are being examined in the field of computational aerodynamics.

1.2 Higher-order Methods

Higher-order (higher than second-order) discretizations of the fluid dynamic equa-

tions have recently received substantial attention due to their potential advantages

in obtaining more accurate solutions with lower cost. With higher-order accurate

methods, the computational cost increases on a fixed mesh; however, a coarser mesh

can be used to save time and memory and increase accuracy as well. Several families

of higher-order methods have been developed over the years in the CFD community

to solve different types of problems. In this section, a short review of previous work

using higher-order methods for the solution of compressible flows is given.

Many higher-order methods used in computational aerodynamics have been suc-

cessfully developed for computations on structured meshes [28, 29]. Although higher-

order unstructured methods are advantageous for complex geometries, it has been

shown that the finite difference method on structured meshes are superior in terms

of computational cost and efficiency for boundary layer simulations [30]. Considering

that structured single-block generation of high quality meshes is challenging for realis-

tic problems, higher-order multi-block finite difference solvers have become attractive

8
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in recent years [31]. In these methods, higher-order finite difference approximations

are employed on each block and some type of interface conditions is applied to transfer

information between adjacent blocks [32, 33, 34]. Some other higher-order schemes

such as the Essentially Non-Oscillatory finite volume methods (ENO/WENO) have

been designed for the solution of hyperbolic equations on multi-dimensional struc-

tured meshes. In these methods, which rely on the conservation of flow quantities in

each control volume, the one-dimensional ENO/WENO reconstruction operators are

applied along the coordinate lines to provide a higher-order approximation of numer-

ical fluxes across the interfaces. The reconstruction operators use adaptive stencils

so that higher-order accuracy and non-oscillatory properties near discontinuities are

obtained [35, 36]. For structured meshes, it has been shown that, for practical levels

of accuracy, using a higher-order accurate method can be more efficient both in terms

of solution time and memory usage [37, 6].

Research in high-order unstructured solvers is motivated by the accuracy and ef-

ficiency advantages demonstrated in the application of these schemes on structured

meshes with the flexibility of unstructured meshes in adaptivity and for complex

geometries. As described, the finite element approach can be easily implemented

on the unstructured meshes and offers a simple path to higher-order discretiza-

tions. However, the standard, continuous Galerkin method is inappropriate for use

on convection-dominated problems due to its stability issues and shortcomings in

shock capturing. In recent years, a class of the finite element methods known as

the Discontinuous Galerkin (DG) schemes have become very popular particularly

in the context of compressible flow simulations. In these methods, the basis func-

tions are chosen so that jumps in the solution are allowed across element interfaces.

The discontinuous approximation space provides stability for convection problems.

The work by Cockburn et al. [38, 39], where DG methods were employed to solve

non-linear time dependent hyperbolic equations, led to the rapid development of

higher-order DG solvers. The compactness and flexibility of DG methods for higher-

order discretizations on unstructured meshes make them attractive even though the

number of degrees of freedom grows rapidly with polynomial degree, making these

schemes very expensive per element. These methods have been extensively used for

the higher-order solution of compressible Euler [40, 41] and Navier-Stokes [42, 43]

equations. Also, recent studies have demonstrated the ability of DG in computing

RANS turbulent flows with shock waves [44, 45].
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Considering that the finite volume methods are traditionally the most popular

method in computational aerodynamics because of intrinsic conservative and shock-

capturing properties, the use of higher-order finite volume on unstructured meshes is

quite attractive. The first step in the extension of finite volume methods to higher-

order discretizations on unstructured meshes dates back to the quadratic reconstruc-

tion operator developed by Barth and Frederickson [46] for the Euler Equations.

Third- and fourth-order discretizations of these methods have been successfully ap-

plied to the Euler and Navier-Stokes equations [47, 7, 48, 49]. These methods have

shown their ability for efficient computations of flows with/without discontinuities

with promising accuracy on irregular meshes. From the mathematical point of view,

finite volume schemes can be written as a Petrov-Galerkin variant of the discontinu-

ous Galerkin method regardless of the type of reconstruction operator [50]. The next

major step towards the general adoption of higher-order finite volume methods for

use in CFD solvers is turbulence modeling which is the subject of this thesis.

1.3 Objectives

The higher-order unstructured finite volume solver previously developed at the Ad-

vanced Numerical Simulation Lab at UBC is capable of solving inviscid and viscous

laminar compressible flow problems on unstructured meshes. Considering that com-

mon types of flow in aerodynamic applications are turbulent, the accuracy that can

be achieved in a flow simulation strongly depends on the prediction of the character-

istics of the turbulent flow field. Important physical phenomena, such as boundary

layer separation and shock-boundary layer interaction, can be predicted with highly

accurate simulation of turbulent flows. The first objective of this thesis is to extend

the capabilities of the current flow solver so that it can compute higher-order RANS

solutions on unstructured meshes over two-dimensional aerodynamic configurations.

Having accomplished the first objective, a higher-order unstructured finite vol-

ume solver for a wide range of aerodynamic problems from inviscid subsonic to high-

Reynolds viscous turbulent will be in hand. However, higher-order accuracy is ad-

vantageous only in smooth regions of the solution where there is no discontinuity

in the solution. In aerodynamic applications, several sources of discontinuities such

as shocks and contact discontinuities exist which negate the benefit of using higher-

order discretizations. Therefore, we can enhance the efficiency (and also robustness)
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of the solver using a so-called hp-adaptation technique. hp-adaptation combines grid

refinement (i.e., h-refinement) and order enrichment (i.e., p-enrichment) into a single

adaptive method where the level and location of refinement are determined based on

an a posteriori error estimation. The second objective of this thesis is to develop an

hp-adaptive algorithm for our compressible flow solver and apply that on different

classes of problems which are of particular interest in computational aerodynamics.

1.4 Outline

This thesis is organized as follows.

Chapter 2 provides an overview of the finite volume solver that has been used

as the existing infrastructure for the fulfillment of our objectives. Several aspects

of the solver including solution reconstruction, flux functions, integration rules and

time advancement schemes are discussed in detail. Also, the elements required for

extension to RANS simulation of compressible aerodynamic flows, which is our first

objective, are introduced briefly. The details of each of these elements is the subject

of the next two chapters.

Chapter 3 explains the treatment of anisotropic meshes considering that cells with

very high aspect ratio are necessary for turbulent flow simulations. These treatments

include curving the interior faces of a linear mesh for higher-order computations,

cubic mesh pre-processing algorithms and accurate and well-conditioned solution re-

construction on highly anisotropic meshes.

In addition, we require a robust and accurate RANS turbulence model for higher-

order computations and an effective solution strategy for obtaining the steady-state

solution of the flow field. These elements are described in Chapter 4 along with our

numerical results for a variety of 2D turbulent aerodynamic problems.

Chapter 5 is devoted to the hp-adaptive algorithm proposed to accomplish our

second objective. This chapter describes in detail the error estimation methods used

to drive adaptation, and the mesh refinement and order enrichment techniques em-

ployed. Also, the results of our adaptive solver, including its efficiency and accuracy

advantages, are presented for different flow conditions ranging from inviscid to tur-

bulent flows.

Finally, Chapter 6 summarizes the research in this thesis, provides conclusions

based on the results, and proposes some future work.
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Chapter 2

Background

This chapter provides background material relevant for the current research. This

work is based on the higher-order unstructured finite volume solver previously devel-

oped at the Advanced Numerical Simulation Lab (ANSLib) for inviscid and viscous

laminar flows. The background includes an overview of relevant aspects of this CFD

solver and those elements that are necessary for its extension to turbulent flows.

Finite volume methods use the fully conservative control volume form of the

governing equations that describe fluid flows. These methods compute control volume

averages of the unknowns over a set of finite volumes that cover the domain. ANSLib

is capable of supporting two types of control volumes that are widely used to tessellate

a two-dimensional domain: (1) cell-centered type where the cells of the mesh form the

control volumes with their centroid as reference locations and (2) vertex-centered type

in which the mesh vertices are chosen as the control volumes reference points and the

perimeter of each control volume (median-dual) is defined as the lines surrounding

a vertex connecting the midpoint of edges to the centroid of the cells. Figure 2.1

illustrates the definition of both types of control volumes on a triangular mesh. In

three-dimensions, ANSLib only supports cell-centered data structure as the formation

of vertex-centered control volumes requires a large number of quadrature points per

cell.

To discretize the flow equations using the finite volume method, the governing

equations should be recast in fully conservative form as:

∂U

∂t
+ ∇ · ~F = 0 (2.1)

in which U denotes the conserved solution vector and ~F is the flux vector.

Integrating Equation 2.1 over an arbitrary control volume in 2D and using the

divergence theorem gives the finite volume formulation of the governing equations in

the form of an area and a surface integral, Equation 2.2, where dA is the infinitesimal

area and n̂ and ds represent the outward unit normal vector and infinitesimal length
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(a) Cell-center control volume (b) Vertex-center control volume

Figure 2.1: Control volume illustration in 2D

along the surface, respectively.

ˆ ˆ

CV

∂~U

∂t
dA+

˛

CS

~F · n̂ ds = 0 (2.2)

Assuming the discretized physical domain does not change in time, U can be brought

out from the integral in Equation 2.2, as the average solution vector of the control

volume:

ACVi

dU i

dt
= −

˛

CSi

~F · n̂ ds (2.3)

The left hand side of Equation 2.3 is the time derivative of the average solution

vector in the ith control volume. The right hand side is called the flux integral or

residual of the control volume, which is dependent on the solution vector in general

and represents the spatial discretization of the same control volume:

ACVi

dU i

dt
= −R

(
U i

)
(2.4)

The residual is evaluated by numerical integration along the interfaces of a control

volume using sufficient quadrature points.
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2.1 Governing Equations

Considering that the focus of this research is on two-dimensional compressible flow

problems, we turn our attention to 2D descriptions. The conservative form of the

compressible Navier-Stokes equations describing the conservation of mass, momentum

and total energy in two dimensions is given as:

∂U

∂t
+ ∇ ·

(
~Fc (U) − ~Fv (U,∇U)

)
= 0 (2.5)

where U is the conserved solution vector, ~Fc is the convective flux, which depends on

solution only and ~Fv is the viscous flux, which is dependent on both the solution and

gradient. For a compressible viscous laminar flow, the solution and flux vectors are:

U =




ρ

ρu

ρv

Et



, F x

c =




ρu

ρu2 + P

ρuv

u (Et + P )



, F y

c =




ρv

ρuv

ρv2 + P

v (Et + P )




F x
v =




0

τxx

τxy

uτxx + vτxy + cp

(
µ

P r

)
∂T
∂x



, F y

v =




0

τyx

τyy

uτyx + vτyy + cp

(
µ

P r

)
∂T
∂y




(2.6)

where ρ is the fluid density, ~V = (u, v) are the Cartesian velocity components, P is

the fluid pressure, Et is the total energy, cp is the specific heat at constant pressure,

T is the fluid temperature, Pr is the Prandtl number and τij is the viscous stress

tensor. Assuming a Newtonian fluid, the viscous stress term becomes:

τij = 2µγ̇ij (2.7)

γ̇ij =
1

2

(
∂Vi

∂xj
+
∂Vj

∂xi

)
− 1

3

∂Vk

∂xk
δij
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in which µ is the fluid dynamic viscosity. The fluid pressure can be related to the

total energy by introducing the ideal gas equation of state given as:

P = (γ − 1)
[
Et − 1

2
ρ
(
u2 + v2

)]
(2.8)

Note that the conserved solution vector is different from primitive variables, W =

(ρ u v P )T . We assume that the working fluid is air, γ = 1.4, Pr = 0.72. The viscous

flux is zero in the case of an inviscid flow governed by Euler’s equation.

2.2 Solution Reconstruction

The spatial accuracy of the finite volume solution depends on the accuracy of the flux

integral. A high-order accurate flux integral in a control volume requires an accurate

numerical flux and accurate integration. An accurate numerical flux is obtained by an

accurate approximation of the unknown variable in the control volume. Assume that

the unknown variable represented by φ is one of the primitive variables of the flow

field such as density, pressure, or velocity components. The flow solver approximates

the unknown variables of the flow field in the control volume by reconstructing a

piecewise polynomial about the control volume’s reference point (xi, yi).

φR
i (x, y) = φ|i +

∂φ

∂x

∣∣∣∣∣
i

(x− xi) +
∂φ

∂y

∣∣∣∣∣
i

(y − yi) +
∂2φ

∂x2

∣∣∣∣∣
i

(x− xi)
2

2

+
∂2φ

∂x∂y

∣∣∣∣∣
i

(x− xi) (y − yi) +
∂2φ

∂y2

∣∣∣∣∣
i

(y − yi)
2

2
+ ... (2.9)

In Equation 2.9, φi is the value of the reconstructed solution and ∂n+mφi

∂xn∂ym are its

derivatives at the reference point of control volume i. These values are the coefficients

of the Taylor polynomial. The degree of the reconstructed polynomial determines

the order of accuracy of the solution. For example, a second-order accurate solution

approximation can be achieved by knowing the gradient of the solution at the control

volume reference point and reconstructing a linear polynomial in the control volume.

φR
i (x, y) = φ|i +

∂φ

∂x

∣∣∣∣∣
i

(x− xi) +
∂φ

∂y

∣∣∣∣∣
i

(y − yi) + O
(
∆x2,∆y2

)
(2.10)
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2.2. Solution Reconstruction

Higher order solutions require the values of higher derivatives at the reference point

and a higher order polynomial.

For compressible flow simulations, the hyperbolic system of equations may lead

to discontinuities in the solution. Therefore, the reconstruction operator must ensure

the desired order of accuracy while capturing discontinuities such as shocks. Essen-

tially non-oscillatory (ENO) finite volume schemes were first developed for structured

meshes [36] and then extended to irregular unstructured meshes by Abgrall [51] and

Sonar [52]. In this family of schemes, including weighted ENO (WENO) schemes, the

reconstruction stencil is selected based on the solution smoothness and thus stencils

containing discontinuities are avoided. In this way, the reconstructed solution falls

within the expected order of accuracy and sharp changes in the solution are captured

automatically. Nevertheless, these higher-order finite volume schemes suffer from

difficulties in selecting the appropriate stencil for multi-dimensional problems with

a large number of variables. For these problems, the selection of a different stencil

for each flow variable results in complexities and computational costs that limit their

widespread use in general applications.

The construction of a k-exact reconstruction operator is another candidate to

reconstruct a solution polynomial based on the control volume data such that the

truncation error of the solution in each control volume remains at the desired order

of accuracy. This method dates back to Barth and Frederickson’s work designing a

quadratic reconstruction operator to estimate the advective flux of the Euler equa-

tions [46]. Also, Barth incorporated the reconstruction operator into a upwind finite

volume scheme to solve a range of advection-diffusion equations [53]. Later, Ollivier-

Gooch and Van Altena [54] described a new k-exact reconstruction procedure for the

higher-order approximation of gradients within a cell which are essential for diffusive

fluxes. They demonstrated the high-order accuracy of the reconstruction operator

for an advection-diffusion problem. In this approach, a fixed stencil is used and a

least-squares system is formed that gives the reconstruction coefficients at the refer-

ence point of each control volume. For hyperbolic system of equations, the k-exact

reconstruction procedure can be combined with a higher-order limiting strategy to

capture flow discontinuities [55].

Our flow solver uses k-exact reconstruction where the coefficients are computed

by minimizing the error in predicting the mean value of nearby control volumes [54].
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2.2. Solution Reconstruction

The conservation of the mean within a control volume requires that

1

Ai

ˆ

Vi

φR
i dA = φ̄i (2.11)

By expanding the left-hand side of Equation 2.11 term by term, one can easily show

that

1

Ai

ˆ

Vi

φR
i dA = φ|i+

∂φ

∂x

∣∣∣∣∣
i

xi+
∂φ

∂y

∣∣∣∣∣
i

yi+
∂2φ

∂x2

∣∣∣∣∣
i

x2
i

2
+

∂2φ

∂x∂y

∣∣∣∣∣
i

xyi+
∂2φ

∂y2

∣∣∣∣∣
i

y2
i

2
+... (2.12)

where

xnym
i =

1

Ai

ˆ

Vi

(x− xi)
n (y − yi)

mdA. (2.13)

In addition, the error of the mean value of the reconstructed solution for control vol-

umes in the stencil {Vj}i should be minimized. In other words, the difference between

the actual control volume average φ̄j and the average of φR
i over control volume j

is minimized. The mean value for a single control volume Vj of the reconstructed

solution φR
i is

1

Aj

ˆ

Vj

φR
i dA = φ|i +

∂φ

∂x

∣∣∣∣∣
i

{
1

Aj

ˆ

Vj

(x− xi) dA

}
+
∂φ

∂y

∣∣∣∣∣
i

{
1

Aj

ˆ

Vj

(y − yi) dA

}

+
∂2φ

∂x2

∣∣∣∣∣
i

{
1

2Aj

ˆ

Vj

(x− xi)
2 dA

}

+
∂2φ

∂x∂y

∣∣∣∣∣
i

{
1

Aj

ˆ

Vj

(x− xi) (y − yi) dA

}

+
∂2φ

∂y2

∣∣∣∣∣
i

{
1

2Aj

ˆ

Vj

(y − yi)
2 dA

}
+ ... (2.14)

To avoid computing moments of each control volume in {Vj}i about the reference

point of control volume i, replace x − xi and y − yi with (x− xj) + (xj − xi) and
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2.2. Solution Reconstruction

(y − yj) + (yj − yi), respectively. Using Equation 2.13, we obtain

1

Aj

ˆ

Vj

φR
i dA = φi +

∂φ

∂x

∣∣∣∣∣
i

(xj + (xj − xi)) +
∂φ

∂y

∣∣∣∣∣
i

(
yj + (yj − yi)

)

+
∂2φ

∂x2

∣∣∣∣∣
i

(
x2

j + 2xj (xj − xi) + (xj − xi)
2

2

)

+
∂2φ

∂x∂y

∣∣∣∣∣
i

(
xyj + xj (yj − yi) + (xj − xi) yj + (xj − xi) (yj − yi)

)

+
∂2φ

∂y2

∣∣∣∣∣
i


y

2
j + 2yj (yj − yi) + (yj − yi)

2

2


+ ... (2.15)

The geometric terms in this equation are just dependent on the mesh and can be

computed once and stored. Using the parallel axis theorem, it is possible to show

that these terms have the general form of

x̂nym
ij ≡ 1

Aj

ˆ

Vj

((x− xj) + (xj − xi))
n · ((y − yj) + (yj − yi))

m dA (2.16)

=
n∑

l=0

m∑

k=0

n!

l! (n− l)!

m!

k! (m− k)!
(xj − xi)

k · (yj − yi)
l · xn−kym−l

j

Hence, Equation. 2.15 can be re-written as

φ̄j = φ|i +
∂φ

∂x

∣∣∣∣∣
i

x̂ij +
∂φ

∂y

∣∣∣∣∣
i

ŷij (2.17)

+
∂2φ

∂x2

∣∣∣∣∣
i

x̂2
ij

2
+

∂2φ

∂x ∂y

∣∣∣∣∣
i

x̂yij +
∂2φ

∂y2

∣∣∣∣∣
i

ŷ2
ij

2
+ · · ·

This equation is written for every control volume within the stencil of control volume

i. The minimum number of neighboring control volumes in the stencil is equal to the

number of reconstruction coefficients. The control volumes are chosen [54] based on

their topological proximity to the reconstruction control volume as all neighbors at

a given level are added one by one until the number of control volumes in the stencil

reaches the number requested for each order of accuracy. The requested number is

typically 50% more than the minimum to result in more robust solution reconstruction

in the presence of non-smooth and/or vigorously oscillatory data. Figure 2.2 gives

this choice of stencil for an interior control volume labeled R for a cell-centered case;

the numeric labels show the order of accuracy at which a control volume is added to
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2.2. Solution Reconstruction

the stencil. The resulting least-squares problem is

R 22

3
2 3

33

4

4

4

4

4

4 4
33

4

Figure 2.2: Cell-centered stencil




1 xi yi x2
i xyi y2

i · · ·
wi1 wi1x̂i1 wi1ŷi1 wi1x̂2

i1 wi1x̂yi1 wi1ŷ2
i1 · · ·

wi2 wi2x̂i2 wi2ŷi2 wi2x̂2
i2 wi2x̂yi2 wi2ŷ2

i2 · · ·
wi3 wi3x̂i3 wi3ŷi3 wi3x̂2

i3 wi3x̂yi3 wi3ŷ2
i3 · · ·

...
...

...
...

...
...

. . .

wiN wiN x̂iN wiN ŷiN wiN x̂2
iN wiN x̂yiN wiN ŷ2

iN · · ·







φ
∂φ
∂x
∂φ
∂y

1
2

∂2φ
∂x2

∂2φ
∂x ∂y
1
2

∂2φ
∂y2

...




i

=




φ̄i

wi1φ̄1

wi2φ̄2

wi3φ̄3

...

wiN φ̄N




(2.18)

where N is the number of nearby control volumes in the stencil and the line separates

the conservation of mean constraint from equations to be solved by least-squares.

In this problem, geometric weights wij can be set to emphasize the importance of

geometrically nearby data:

w
ij

=
1

|~rj − ~ri|t
(2.19)

Throughout this thesis, the unweighted LS refers to the case where t = 0 while

the weighted LS implies t = 1. Note that increasing the value of t in Equation 2.19,
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2.3. Flux Functions

highlights the importance of geometrically closer cells in the reconstructed polynomial

regardless of the order of accuracy. The least-squares system of Equation 2.18 is a

standard least-squares problem with the mean constraint. Gaussian elimination is

applied for the constraint, replacing the sub-diagonal entries in the first column with

zeros, and the remaining unconstrained (reduced) least-squares problem is solved for

every control volume by the singular value decomposition (SVD) method [56]. In the

case of viscous flow simulations, the Dirichlet boundary conditions pertaining to the

no-slip condition at the walls are also added to the least-squares system. Although

this can be done by enforcing those conditions as extra hard constraints [54], we just

leave them for least-squares minimization with a much larger weight.

Having computed the coefficients of the piecewise polynomial, the flux vectors

must be evaluated at the quadrature points along the interfaces of a control volume

to obtain the numerical flux integral. Considering that the flux vectors depend on

the solution and/or gradient of the solution, the Taylor series expansions must be

used to yield such values in an arbitrary quadrature point within the control volume,

(xg, yg):

φg = φ|i +
∂φ

∂x

∣∣∣∣∣
i

(xg − xi) +
∂φ

∂y

∣∣∣∣∣
i

(yg − yi) +
∂2φ

∂x2

∣∣∣∣∣
i

(xg − xi)
2

2

+
∂2φ

∂x∂y

∣∣∣∣∣
i

(xg − xi) (yg − yi) +
∂2φ

∂y2

∣∣∣∣∣
i

(yg − yi)
2

2
+ ... (2.20)

∂φ

∂x

∣∣∣∣∣
g

=
∂φ

∂x

∣∣∣∣∣
i

+
∂2φ

∂x2

∣∣∣∣∣
i

(xg − xi) +
∂2φ

∂x∂y

∣∣∣∣∣
i

(yg − yi) + ... (2.21)

∂φ

∂y

∣∣∣∣∣
g

=
∂φ

∂y

∣∣∣∣∣
i

+
∂2φ

∂x∂y

∣∣∣∣∣
i

(xg − xi) +
∂2φ

∂y2

∣∣∣∣∣
i

(yg − yi) + ... (2.22)

2.3 Flux Functions

The solutions and gradients reconstructed at the two sides of an arbitrary quadrature

point using Equations 2.20 to 2.22 are not necessarily equal (Figure 2.3). However,

the conservation property of finite volume method requires that the flux leaving a

control volume must enter its neighbor. A numerical flux function is required to
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2.3. Flux Functions

construct a unique flux vector from the two different ones obtained from each side.

Flux functions used for the computation of numerical fluxes are divided into two

major categories: convective (inviscid) and diffusive (viscous) flux functions. These

two groups are characterized based on the physical properties of convection and

diffusion. The transport of properties with the velocity of flow field is known as

convection whereas the mixing or mass transport without requiring bulk motion is

referred to as diffusion. Convective fluxes only depend on the solution while viscous

fluxes are also dependent on the gradient of the solution as shown in Equation 2.6.

The flux functions used for each category should respect the physical characteristics

of the fluid flow to provide a robust and accurate discretization of the governing

equations. Here, we explain the flux functions used in ANSLib for each type for the

Euler/Navier-Stokes equations.

Figure 2.3: Solution and gradient reconstruction from two sides for flux integration

2.3.1 Convective Fluxes

The convective (inviscid) part of the governing equations for compressible flow prob-

lems is a classic example of a system of non-linear hyperbolic partial differential

equations (PDEs). To have an idea about the appropriate treatment of convective

fluxes, it is helpful to start from the first-order linear wave equation known as the

21



2.3. Flux Functions

simplest hyperbolic PDE:
∂φ

∂t
+ a

∂φ

∂x
= 0 (2.23)

This equation governs the propagation of waves traveling at a wave speed a. For

positive values of a, the wave propagates strictly from left to right along the x axis as

shown in Figure 2.4. According to the physical characteristics of the model equation,

it is evident that the information in the field is propagating in the wave direction (left

to right). Therefore, the solution at point i is influenced by the solution at point i−1

and the solution at point i+ 1 will not physically affect point i. As a result, in finite

difference methods, it is reasonable to replace ∂φ
∂x

by φi−φi−1

∆x
rather than forward or

central differencing. Such a treatment is called upwind discretization where the in-

formation is borrowed from upstream in the direction of “wind”. It is well understood

that using central or forward differencing can cause non-physical and/or oscillatory

behavior and often leads to instability in the solution as these schemes do not follow

the physical characteristics of the governing equation. Upwind discretization in the

direction where the information travels is ideal for other hyperbolic equations.

Figure 2.4: Propagation of a linear wave in positive direction

The Euler equations, which form the convective part of the governing equations,

are a more complex example of hyperbolic equations due to the non-linearity and

vector form. In this case, the information travels along the characteristic lines whose
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2.3. Flux Functions

slopes are the eigenvalues of the normal flux Jacobian, ∂F n
c

∂U
:

F n
c = F x

c n̂x + F y
c n̂y =




ρun̂x + ρvn̂y

(ρu2 + P ) n̂x + ρuvn̂y

ρuvn̂x + (ρv2 + P ) n̂y

u (Et + P ) n̂x + v (Et + P ) n̂y




∂F n
c

∂U
=




0 n̂x n̂y 0

(γ − 1) qn̂x − uVn Vn − (γ − 2)un̂x un̂y − (γ − 1) vn̂x (γ − 1) n̂x

(γ − 1) qn̂y − vVn vn̂x − (γ − 1)un̂y Vn − (γ − 2) vn̂y (γ − 1) n̂y

((γ − 1) q − ht)Vn htn̂x − (γ − 1) uVn htn̂y − (γ − 1) vVn γVn




q =
1

2

(
u2 + v2

)
, Vn = u n̂x + v n̂y, ht = h + q (2.24)

It is possible to show that the eigenvalues of this matrix are :

λi =
[
Vn Vn Vn + a Vn − a

]
(2.25)

where a is the sound speed. These characteristics lines provide the right direction for

upwind discretization. Several classes of upwind methods such as flux vector splitting

[57, 58], flux difference splitting [59] and advection upstream splitting methods [60, 61]

have been proposed to discretize the hyperbolic system of compressible flows.

In our solver, we use Roe’s approximate Riemann solver [62] for inviscid flux

discretizations. The Roe flux function, which is classified as one of the flux difference

splitting methods, includes the average of the two convective flux vectors computed

from each side minus a dissipation term which splits (upwinds) the difference of the

two fluxes:

Fc (UL, UR) =
1

2
(Fc (UL) + Fc (UR)) − 1

2

∣∣∣Ã
∣∣∣ (UR − UL) (2.26)

The details of the flux difference splitting is very complicated and beyond the scope

of this section. In this formulation,
∣∣∣Ã
∣∣∣ is the flux Jacobian matrix in diagonalized

form as: ∣∣∣Ã
∣∣∣ = X̃−1

∣∣∣Λ̃
∣∣∣ X̃,

∣∣∣Λ̃
∣∣∣ = Diag

(∣∣∣λ̃i

∣∣∣
)

(2.27)
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Note that (̃) means evaluations at Roe’s average state defined as:

ρ̃ =
√
ρLρR

ũ =
√
ρLuL +

√
ρRuR√

ρL +
√
ρR

ṽ =
√
ρLvL +

√
ρRvR√

ρL +
√
ρR

h̃t =
√
ρLht,L +

√
ρRht,R√

ρL +
√
ρR

(2.28)

2.3.2 Viscous Fluxes

As described earlier, the evaluation of diffusive fluxes requires estimates of the so-

lution gradient at the quadrature points of a face. The diffusive (viscous) part of

the governing equations by itself can be considered as a system of elliptic PDEs. It

is well-known that central differencing is an optimal choice for the discretization of

elliptic problems such as Poisson’s equation. Even though for a structured scheme,

a central differencing based on the cell averages of neighboring control volumes is

usually computed to the desired order [63], this approach is problematic for unstruc-

tured grids, because the cell centroids are often far from lying on the perpendicular

bisector of the face between them. This drawback decreases the order of accuracy of

the computed gradient and therefore affects the total accuracy of solvers.

Instead, the face gradient can be determined by averaging the two gradients re-

constructed from each side of a quadrature point using Equations 2.21 and 2.22. The

most obvious way is arithmetic averaging in which equal weights are set for the two

cell gradients; however, the weight of averaging can be tuned by some geometrical

considerations within the cell. Volume weighted averaging (area weighted in 2D) or

linear interpolation based on the distance of the opposite cell centroid to the face

midpoint can be used as alternatives [64]. In ANSLib, we calculate the interface gra-

dients of the primitive variables as the arithmetic average of the two reconstructed

gradients:

(∇φ)F =
1

2
((∇φ)R + (∇φ)L) (2.29)

Likewise, the values of those primitive variables involved in the calculation of viscous
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fluxes are obtained by arithmetic averaging:

φF =
1

2
(φR + φL) (2.30)

Using the averaged gradients and values of Equations 2.29 and 2.30, the unique

components of viscous flux vectors in Equation 2.6 can be calculated easily. Note

that this strategy is robust and efficient for low-Reynolds laminar problems where

nearly isotropic meshes are used. In those cases where highly anisotropic meshes are

required, such a scheme leads to instability as will be shown later.

2.4 Integration

Numerical integration is involved in several parts such as residual evaluation, source

term integration and control volume moment calculation. In all of these elements,

numerical integration must be accurate enough not to degrade the overall accuracy

of the discretization. A summary of quadrature rules and integration method used

for each one is given in this section.

2.4.1 Flux Integral

To compute the flux integral for each control volume, numerical fluxes should be

integrated over control volume faces. The accuracy of flux integration should be

equal or higher than the accuracy of solution reconstruction. In other words, for a

p+ 1-order accurate solution, we should be able to integrate a polynomial of degree

p accurately. Gauss quadrature gives the capability of evaluating a definite integral

with the integrand evaluated at only a few points [65]. For instance, one quadrature

point located at the mid-face is sufficient for a linear reconstruction, i.e., second-order

solution. For higher than second-order, more quadrature points per edge are required.

Figure 2.5 shows the quadrature points for the flux integration schematically. It is

possible to verify that these quadrature points are sufficient to obtain higher-order

accurate flux integrals [66]. Comprehensive information regarding the locations and

weights of the Gauss quadrature integration points has been discussed in the work of

Stroud and Secrest [65].

The control volume flux integral in Equation 2.3 is approximated as the summa-

tion of flux integrals over the faces. The flux is integrated along each interior face only
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(a) 2nd order/1 Gauss point per face (b) 3rd and 4th order/2 Gauss points per
face

Figure 2.5: Schematic illustration of Gauss quadrature points on straight faces

once and then added to the control volume with outward unit normal vector and sub-

tracted from the other one. In this way, we can decrease the cost of flux integration

by a factor of two, as well as ensuring local conservation to machine precision.

For those problems with curved boundaries, a piecewise linear representation of

the boundary is not adequate for higher-order discretizations. This comes from the

fact that the line segments between boundary vertices are separated from the actual

curve by a distance that is O (h2) for face length h. In general, the discrete approxima-

tion of the boundary must converge to the real boundary shape with the same order of

accuracy as the order of discretization. For flux integration along curved boundaries,

special care must be taken that the locations, unit normals and integration weights

reflect the shape of the boundary appropriately. For general curved boundaries such

as aerodynamic configurations in two-dimensions, we represent the geometry by a

piecewise cubic spline which is sufficient up to fourth-order discretization (the dis-

tance from the actual curve is O (h4) ). Flux integration along such curves uses the

boundary representation directly in setting up the information of Gauss integration

points [66]. It should be noted that the locations of the quadrature points are deter-

mined based on fractions of arc length, which are calculated iteratively for a cubic

curve. Having the parametric representation of the curved geometry, the unit normal

vectors can be obtained. Finally, the weights of integration are assigned based on arc

length. Figure 2.6 shows the correct (points Gb1 and Gb2) and wrong (points G′
b1 and

G′
b2) locations of Gauss points along a curved boundary face with their corresponding
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normals. It is worth mentioning that two quadrature points along curved boundaries

are used for flux integration of third- and fourth-order methods.

(a) Correct quadrature points (b) Wrong quadrature points

Figure 2.6: Schematic illustration of higher than second-order quadrature points on
curved boundary faces

2.4.2 Source Term

Even though the Euler and Navier-Stokes equations do not have a source term, we

need the capability of accurate source term integration for some model problems (e.g.,

Poisson’s equation) and also testing manufactured solutions. In the case of having

a source term, S (U,∇U), the residual evaluation includes both the flux and source

term integrals on control volumes:

R
(
U i

)
=

˛

CS

~F · n̂ ds−
ˆ

CV

S (U,∇U) dA (2.31)

In contrast with the flux integral that is evaluated along the interfaces of a control

volume, source term integral requires accurate numerical integration over control

volumes. In this way, the source term integral can be approximated as:

ˆ

CV

S (U,∇U) dA ≈
Nq∑

q=1

wq S (xq, yq) ACV (2.32)

where Nq represents the number of quadrature points and wq is the corresponding

weight of integration for quadrature point q. Table 2.1 shows the number of quadra-
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ture points required for each order of accuracy for different types of cell-centered

elements in 2D and 3D. It is possible to verify the nominal accuracy of source term

integration numerically using the reported number of quadrature points. Note that

the locations of quadrature points for quads and hexes are obtained from the tensor

product of Gauss points in 1D on a mapped reference element. The details about the

location of quadrature points and weights of integration for triangles and tetrahedra

can be found in Ref. [66]. The quadrature rule used for source term integration

in 2D is exactly valid for flux integration in 3D where the faces of control volumes

are triangles and quadrilaterals. Figure 2.7 shows the location of these points in 2D

schematically for a fourth-order scheme.

2nd order 3rd order 4th order

2D
triangle 1 3 4

quadrilateral 1 4 4
3D

tetrahedron 1 4 5
hex 1 8 8

Table 2.1: Number of quadrature points required for source term integration on cell-
centered meshes

 

Figure 2.7: Schematic illustration of quadrature points for fourth-order integration
of source terms over 2D cells

For accurate integration over those boundary cells that are adjacent to a curved
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boundary, we can use the same approach employing ideas from isoparametric finite

elements. However, we choose instead to use an approach for integration over ir-

regularly shaped control volumes which guarantees exact integration for polynomials

of degree p (and thus is p + 1-order accurate). Such a strategy has the advantage

of reducing the number of quadrature points for vertex-centered meshes in 2D as it

removes the necessity of breaking a vertex-centered control volume into constituent

parts. Furthermore, it only requires the calculation of moments of area, which must

be computed for reconstruction anyway. More information about the implementation

of this method for arbitrary control volumes is available in Ref. [66].

2.4.3 Moments of Area

The computation of moments of area, which is necessary for reconstruction, requires

integration over the surface of each control volumes. To have a high fidelity solution

reconstruction, we need to calculate these moments exactly. It is possible to calculate

the moments using the same rule as source term integration:

xnym
i =

1

Ai

Nq∑

q=1

wq (xq − xi)
n (yq − yi)

mAi (2.33)

However, the integration rule for arbitrarily shaped control volumes such as vertex-

centered ones or those adjacent to curved boundaries needs the computation of mo-

ments beforehand as described earlier. As a result, we compute the moment by using

the Gauss’s theorem to convert them into integrals around each control volume:

xnym
i =

1

(n + 1)Ai

˛

CS

(x− xi)
n+1 (y − yi)

m n̂x ds (2.34)

where n̂x is the x-component of the outward unit normal vector on the control volume

boundary. In this way, we will have a unified framework for the calculation of mo-

ments for all types of control volumes as opposed to computing them using Equation

2.33 for straight cell-centered control volumes and using Equation 2.34 for irregu-

larly shaped ones. The integral of Equation 2.34 is evaluated by using a Gaussian

quadrature of appropriate order along each segment of the surface of each control

volume as summarized in Table 2.2. The values given in this table are for straight

control volume boundaries where the normal vector is constant. For control volumes
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with curved boundaries, three Gauss points are used along the boundary face for all

moments to account for variations in the direction of the unit normal vector.

Moment Required for order > No. of Gauss points

Area 1 1
x̄, ȳ 2 2

x2, xy ,y2 3 2

x3, x2y ,xy2,y3 4 3

Table 2.2: Number of quadrature points required for computing moments by integra-
tion around the control volumes

2.5 Time Advance Schemes

For time-dependent solutions, Equation 2.4 must be integrated in time to yield the

solution at different time levels. This time integration can be done either explicitly or

implicitly. In explicit time advance schemes, the spatial discretization represented by

the residual vector is performed based on the solution at the current time level. The

easiest explicit time integration scheme is known as explicit Euler where the known

solution data at the current time level n is used to approximate the time derivative

of the solution vector at control volume i:

Ai
Ūn+1

i − Ūn
i

∆t
= −R

(
Ūn

i

)
(2.35)

The solution in the next time level n + 1 is obtained directly by solving the above

equation. Explicit Euler is only first-order in time and will degrade the overall ac-

curacy of time-dependent solutions if combined with higher than first-order spatial

discretizations. In general, the same order of time integration as the order of spatial

discretization is required to obtain a high-order time-dependent solution. In ANSLib,

we use multi-stage explicit Runge-Kutta schemes with appropriate order for time in-

tegration. Equation 2.36 gives a two-stage scheme which is second-order accurate in

time and can be used for spatial discretizations up to second-order:

Ai
Ūn+1

i − Ū∗
i

∆t
= −R

(
Ū∗

i

)
(2.36)
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Ai
Ū∗

i − Ūn
i

∆t/2
= −R

(
Ūn

i

)

In this formulation, the intermediate state, Ū∗
i , is obtained based on the solution

at current time level n; the solution in the next time level requires another residual

evaluation at the intermediate time level. Explicit time advance schemes are easy to

program and exhibit robustness in many cases. However, they suffer from time-step

restrictions enforced by the Courant-Friedrichs-Lewy (CFL) stability constraint that

result in taking very small time steps, particularly for higher-order discretizations

and fine meshes. In many engineering applications in which we seek the steady-

state solution of the system, taking small time steps prohibitively slows down the

convergence rate.

On the other hand, implicit time advance schemes use the next time level solution

for spatial discretization. Implicit Euler, which is again first-order in time, can be

written as:

Ai
Ūn+1

i − Ūn
i

∆t
= −R

(
Ūn+1

i

)
(2.37)

= −
[
R
(
Ūn

i

)
+
∂R

∂U

(
Ūn+1

i − Ūn
i

)
+ O

((
Ūn+1

i − Ūn
i

)2
)]

or (
I

∆t/Ai
+
∂R

∂U

)
δUi = −R

(
Ūn

i

)
, Ūn+1

i = Ūn
i + δUi (2.38)

where ∂R
∂Ū

is a large sparse matrix called the flux Jacobian representing the sensitivity

of the spatial discretization to the control volume averages exist in the stencil and I

is the identity matrix. The solution at the next time level is obtained by solving the

linear system of Equation 2.38 and computing the update vector, δUi.

For steady-state problems, R
(
Ūi

)
= 0, we do not care about the temporal ac-

curacy of the solution. In this case, one may want to solve the non-linear system of

equations by the direct application of Newton’s methods for steady-state problems

as:
∂R

∂U
δUi = −R

(
Ūn

i

)
, Ūn+1

i = Ūn
i + δUi (2.39)

However, Newton’s method will diverge if the initial guess is too far from the real

solution. As a result, the linear system is augmented by a damping term which

mimics the time derivative in the original time-dependent equations and prevents
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2.5. Time Advance Schemes

the evolution of non-physical solution at each iteration. This is called the implicit

pseudo time-stepping method, which has considerably less strict time-step restrictions

compared to explicit methods and offers a significantly faster convergence to the

steady-state solution.

Nevertheless, we must solve the large sparse linear system of Equation 2.38. The

direct solution of the linear system is computationally intensive, so we use iterative

methods for solving the linear system. In particular, we use the Generalized Min-

imum Residual (GMRES) method, which is a preferable choice for non-symmetric

linear systems. GMRES, which approximates the solution by a vector with minimal

residual in the Krylov subspace [67], has shown good performance for complex CFD

problems [68, 69, 47]. The convergence properties of GMRES are highly sensitive to

the conditioning of the matrix. As a result, a good approximation of the left-hand

side matrix and a robust preconditioning strategy are required. Stationary methods

such as Gauss Seidel and SOR are easy to implement and they are effective in damp-

ing high frequency errors. However, they often have restrictive stability conditions

reducing the benefits of Newton’s method. Alternatively, Incomplete Lower-Upper

factorization methods, ILU(k), have proven to be a robust strategy for GMRES pre-

conditioning [70, 7]. The number p shows the fill-level which determines the memory

usage and the accuracy of ILU decomposition; using larger fill-level often leads to a

more accurate factorization increasing the quality of preconditioning. However, there

is a restriction in increasing the fill-level in practice due to memory limitations.

2.5.1 Jacobian Matrix

In addition, we need to obtain the global Jacobian matrix from our spatial discretiza-

tion. This section describes how we calculate this matrix explicitly [49]. As stated

before, the global Jacobian matrix represents the sensitivity of the residual vector

to the control volume averages in the conservative form. For now, we assume that

the residual vector only consists of the flux integral. In the case of having a source

term that is dependent on the solution and/or gradient, the same procedure can be

generalized. Using the chain rule, the global Jacobian can be expanded as:

∂R

∂Ū
=

∂FluxInt

∂CVar

=
∂FluxInt

∂Flux

∂Flux

∂RecSol

∂RecSol

∂RecCoef

∂RecCoef

∂PVar

∂PVar

∂CVar
(2.40)
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2.6. Extension to Turbulent Flows

in which FluxInt is the flux integral, Flux is the numerical normal flux obtained by

the application flux functions, RecSol are the reconstructed solutions and derivatives

at Gauss points, RecCoef are the coefficients of reconstructed polynomial obtained

by solving the least-squares system, PVar and CVar are the average of primitive

and conserved variables over control volumes. To compute the Jacobian, each term is

found for each Gauss point along the interfaces of a control volume using the following

procedure:

1. ∂PVar
∂CVar

is computed for each problem based on the relation between primitive

and conserved variables.

2. The∂RecCoef
∂PVar

term can be found by using the pseudoinverse of the reconstruction

matrix in the least-squares system of Equation 2.18. The pseudoinverse can

be obtained by the SVD method once and stored since it is only dependent on

geometric terms and does not change between iterations.

3. ∂RecSol
∂RecCoef

term, which is also a geometric term and only dependent on the location

of the Gauss point, is found using Equations 2.20 to 2.22.

4. Flux is defined as the dot product of numerical fluxes and unit normal vectors,
~F · n̂, at each Gauss point. Therefore, ∂Flux

∂RecSol
is found based on the choices of

flux function for inviscid and viscous fluxes described in Section 2.3.

5. ∂FluxInt
∂Flux

is easily computed as the weight of integration for the corresponding

Gauss point.

Table 2.3 gives the breakdown of memory requirement for a simple subsonic inviscid

flow around a multi-element airfoil with zero angle of attack [49]. The values in the

table show the memory requirement in terms of the number of floating point num-

bers per control volume for the reconstruction matrix pseudoinverse, global Jacobian

matrix, ILU factorized matrix and Krylov subspace.

2.6 Extension to Turbulent Flows

All the elements described so far lead to a higher-order unstructured finite volume

solver for compressible inviscid and viscous laminar flows which is efficient in com-

puting steady-state solutions. Figure 2.8 shows how the major elements of the solver
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2.6. Extension to Turbulent Flows

Order Preconditioner Recon. Jacobian ILU matrix Krylov subsp. Total

2 ILU(0) 11.7 299.2 299.2 252 862.1
2 ILU(1) 11.7 299.2 480.3 156 947.2
3 ILU(0) 88 585 585 172 1430
3 ILU(1) 88 585 1011.7 124 1808.6
4 ILU(0) 179.2 615.2 615.2 164 1573.7
4 ILU(1) 179.2 615.2 1087.6 108 1990

Table 2.3: Breakdown of memory requirement for an inviscid subsonic flow problem

are combined together to obtain the solution. In the pre-processing stage, an un-

structured mesh of arbitrary type (e.g., cell-centered) and a desired physics, which

includes all the information about flux functions and source term, are used to re-

construct an appropriate initial solution field to a desired order. Note that all those

reconstruction elements (e.g., pseudoinverse and geometric terms) that are indepen-

dent of solution are created in this stage and stored. The reconstructed solution is

used to compute the residual vector and global Jacobian matrix using an appropri-

ate quadrature rule. The residual and Jacobian are exported to the implicit pseudo

time-stepper to update the solution vector. The new solution vector is brought back

to recompute the reconstructed solution and thus residual (fluxes and source term)

for the next iteration. This process continues until we converge to the steady-state

solution which satisfies the discrete residual operator to some tolerance.

As stated earlier, one objective of this thesis is to extend the capabilities of the

current flow solver so that we can compute subsonic and transonic turbulent flows on

mixed-element meshes over aerodynamic configurations in two dimensions. For this

purpose, we need several additional pieces highlighted by the gray boxes in Figure

2.8.

For turbulent flow simulations, it is common to have highly anisotropic cells in

the mesh as the change of properties in one direction is considerably larger than

the other one in turbulent boundary layer and wake regions. So the first required

element is the ability to curve the interior faces of a mesh. As discussed, a high-order

scheme needs a high-order representation of curved surfaces. For isotropic cells or

cells with small aspect ratio which are preferable for the Euler and laminar Navier-

Stokes equations, we can use the high-order representation in setting up the Gauss

integration points of individual boundary cells with the method described in Section
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2.6. Extension to Turbulent Flows

Figure 2.8: Combination of unstructured finite volume solver elements and required
pieces for extension to turbulent flows

2.4. For turbulent flows with high aspect ratio cells, on the other hand, this strategy

results in the intersection of boundary face with interior faces and thus non-physical

meshes as will be shown later. Therefore, we need a mechanism to propagate the

boundary curvature to interior faces. The details of this mechanism is described in

Chapter 3.

Having curved the interior faces, we should pre-process the mesh. Considering

that the median-duals for curved vertex-centered control volumes are difficult even

to define uniquely, we choose to add the capability of handling curved meshes (with
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2.6. Extension to Turbulent Flows

curved interior faces) for cell-centered control volumes. Although there is no differ-

ence in the connectivity information between curved and straight cell-centered cases,

some other geometric properties (such as moments, quadrature points, etc.) are

computed differently, as discussed in Chapter 3.

It is also well-known that solution reconstruction on high aspect ratio meshes

suffers from two known issues: poor conditioning of the least-squares system and

poor accuracy for high-aspect ratio meshes in the presence of curvature. We will

show later that both of these problems originate from the natural choice of Cartesian

coordinate system for reconstruction. To resolve the issues, we need the capability

of performing accurate solution reconstruction in other coordinate systems such as

local principal and curvilinear systems. For this purpose, we must be able to find

the mapping coefficients from Cartesian coordinates and also compute the moments

of area in the appropriate coordinate system. The details of such a treatment are

explained in Chapter 3.

In addition, we need a RANS turbulence model for the simulation of turbulent

flows. In computational aerodynamics, it is quite standard to use either the Spalart-

Allmaras one equation turbulence model [19] or some variant of the k − ω two-

equation turbulence model [71, 72]. Both of these models have non-linear source

terms dependent on the solution and gradient of the flow field, which is not the case

for the other governing equations solved by our solver. Therefore, we need to enhance

the ability of Jacobian calculations to include the sensitivity of the source term with

respect to solution using the strategy described in Section 2.5. In this thesis, we use a

variant of the Spalart-Allmaras (SA) model designed for higher-order discretizations

and fully couple the evolution equation of turbulence working variable with RANS

equations as will be discussed in Chapter 4.

The last element that needs to be modified is the implicit solver. For turbulent

flow simulations, highly anisotropic cells induce significant stiffness into the discrete

equations and have the potential to hamper the solution procedure. This also be-

comes worse for higher-order discretizations with smaller numerical dissipation. In

addition, there is significant difference in the order of magnitude of flow field vari-

ables. Consequently, special attention should be taken to the solution strategy for

these problems. This will be done by a robust selection of time-step, appropriate

under-relaxation of the solution update and proper scaling of governing equations as

will be described in Chapter 4.
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Chapter 3

Anisotropic Mesh Treatment

In the context of turbulent flows for aerodynamic applications, it is quite common

to have cells with high aspect ratio to resolve the flow properties in one direction

as opposed to the direction where quantities change slowly. A typical example is

turbulent boundary layer where the gradient of velocity components is quite high

across the boundary layer whereas the gradients are small along the direction of flow.

Obtaining sufficient resolution in such regions using isotropic cells leads to additional

unnecessary work including huge computational cost and memory usage due to the

large number of degrees of freedom.

As mentioned earlier, the presence of anisotropic cells in the mesh requires special

treatment. An effective interior curving strategy, pre-computing geometrical proper-

ties of a mesh with curved faces and finally accurate and well-conditioned solution

reconstruction on anisotropic cells are among those elements that need to be consid-

ered. This chapter explains each of these in detail.

3.1 Interior Curving Strategy

The effect of curvature must be taken into account in higher-order solvers by a more

accurate representation of boundary faces. When the mesh is comprised of isotropic

triangles, it is typically possible to just deform the boundary of the elements which

are in contact with the curved boundary. However, this strategy fails when the cells

are highly anisotropic as is common in boundary layer regions. Figure 3.1 shows

the layers of anisotropic triangles over a curved boundary represented by the dashed

red line. It can be seen that even for such a moderate aspect ratio, curving the

boundary faces causes intersection with the interior faces and this will be more severe

for triangles/quadrilaterals with higher aspect ratio. In this situation, it is necessary

to propagate the mesh deformation into the domain interior to prevent faces from

intersecting near curved boundaries.
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3.1. Interior Curving Strategy

---- Curved Boundary

Figure 3.1: Curved boundary intersection with interior faces for anisotropic meshes

To curve the interior faces of a mesh, Luo [73] suggested a Bezier-based approach

to assign curvature to interior faces based on the curvature of the boundary. Also,

Sherwin et al. [74] proposed a type of hybrid meshing using quad elements close to the

curved boundary and a curvature based refinement procedure. More recently, Persson

and Peraire [75] devised a method for generating well-shaped curved unstructured

meshes using a non-linear elasticity analogy. They used the high-order finite element

method to solve a non-linear elasticity problem with the boundary curvature acting

as an input deformation; the equilibrium displacement from the elasticity problem

defines the curvature of internal faces.

In the current thesis, a modified linear elasticity method is used to project the

boundary curvature into the interior edges. In this method, which has been used by

Wang et al. [76], the geometry of the domain to be meshed is considered as an elastic

solid that obeys the isotropic linear elasticity relations. For the initial linear mesh in

which the Cartesian coordinates are denoted by (X, Y ), the elasticity equation can

be recast in the following form:

∂

∂X

(
d11

∂δX

∂X
+ d12

∂δY

∂Y

)
+

∂

∂Y

(
d33

(
∂δX

∂Y
+
∂δY

∂X

))
= 0

∂

∂X

(
d33

(
∂δX

∂Y
+
∂δY

∂X

))
+

∂

∂Y

(
d21

∂δX

∂X
+ d22

∂δY

∂Y

)
= 0 (3.1)

δ = (δX , δY ) represents the nodal displacement vector in the Cartesian coordinate
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direction and the coefficients, d, are defined as follows:

d11 = d22 =
E (1 − ν)

(1 + ν) (1 − 2ν)

d12 = d21 =
Eν

(1 + ν) (1 − 2ν)
(3.2)

d33 =
E

2 (1 + ν)

in which E is assumed to be a constant throughout the domain and thus canceled

and ν denotes Poisson’s ratio, which is set to be 0.25. Equation 3.1 can be re-written

in the following form:

∇ · S = 0 (3.3)

where S represents the stress tensor.

S =


 σXX σXY

σY X σY Y


 (3.4)

For the finite element discretization, Equation 3.3 is multiplied by an arbitrary test

function, z (X, Y ), and integrated over the domain A. Integration by parts gives the

weak formulation of the system of equations:

ˆ

A

S (δX , δY ) · ∇z (X, Y ) dA = 0 (3.5)

where the boundary term is not present because the test functions vanish on bound-

aries due to essential Dirichlet boundary conditions. Following the standard finite

element technique, the discrete displacement vector is represented at the nodes using

nodal basis functions, φ (X, Y ):

~δ (x, y) =
∑

k

~δkφk (X, Y ) (3.6)

Using the Galerkin finite element method, the test function is set equal to the nodal

basis function at each node and thus the system of Equation 3.5 can be written as

Kδ = f where the stiffness matrix entries are 2 × 2 matrices:
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Kij =




´

A

(
d11

∂φi

∂X

∂φj

∂X
+ d33

∂φi

∂Y

∂φj

∂Y

)
dA

´

A

(
d12

∂φi

∂X

∂φj

∂Y
+ d33

∂φi

∂Y

∂φj

∂X

)
dA

´

A

(
d33

∂φi

∂X

∂φj

∂Y
+ d21

∂φi

∂Y

∂φj

∂X

)
dA

´

A

(
d33

∂φi

∂X

∂φj

∂X
+ d22

∂φi

∂Y

∂φj

∂Y

)
dA


 (3.7)

To compute the stiffness matrix, nodal basis functions are found for each element up

to the desired order of accuracy. For this purpose, Lagrange cubic (10-node) elements

for triangles and serendipity cubic (12-node) elements for quadrilaterals are used

to represent the boundary geometry up to fourth-order accuracy. The serendipity

cubic (12-node) element is chosen instead of a tensor-product cubic (16-node) element

to decrease the cost of solving the linear elasticity problem. Figure 3.2 shows the

reference element for both cases in the reference space of (ξ, η). The nodal basis

functions for both the cubic reference elements are given in Appendix A. Note that the

derivatives of basis functions in the physical space,
(

∂φ
∂X
, ∂φ

∂Y

)
, are needed in Equation

3.7 rather than those in the reference space,
(

∂φ
∂ξ
, ∂φ

∂η

)
. By knowing the mapping from

the reference element to any of the physical cells, (ξ, η) → (X, Y ), which is linear for

triangles and bilinear for quadrilaterals, these derivatives can be computed at any

arbitrary point by using:




∂φ
∂X

∂φ
∂Y


 =




∂X
∂ξ

∂Y
∂ξ

∂X
∂η

∂Y
∂η




−1 


∂φ
∂ξ

∂φ
∂η


 (3.8)

The integrals of Equation 3.7 are computed using sixth-order quadrature rules [65]

by evaluating Equation 3.8 in quadrature points of the reference elements, (ξq, ηq).

The computed elemental stiffness matrices are assembled into a global matrix to form

the left-hand side of the system of equations.

On the boundary of the domain, the displacement can be obtained for the two

middle nodes of each boundary face by representing the geometry by a higher-order

curve (Figure 3.3). The location of these nodes in the linear mesh is found by linear

interpolation between the two end points of the corresponding face:

Xk = Xa + k
Xb −Xa

3
, Yk = Ya + k

Yb − Ya

3
for k = 1, 2 (3.9)
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(a) Triangle (b) Quadrilateral

Figure 3.2: Illustration of cubic reference elements

Using piecewise cubic splines for the geometry ((xB (t) , yB (t)), where t = [0, 1] for

each curved boundary face), the two middle nodes are assumed to be displaced to

the locations obtained by interpolation in the parametric space of the same boundary

face, (xB,i (t) , yB,i (t)):

xk = xB,i

(
t =

k

3

)
, yk = yB,i

(
t =

k

3

)
for k = 1, 2 (3.10)

Therefore, the boundary displacement which is imposed as a Dirichlet boundary

condition is found as δi = (xi −Xi, yi − Yi). Solving the system of equations arising

from Equation 3.1 gives the displacement, and thus the location of nodes in the curved

mesh. The linear system is solved via GMRES method preconditioned by ILU(1).

Note that the Cartesian coordinates are represented by (x, y) in the higher-order

curved mesh and by (X, Y ) in the initial linear mesh. Figure 3.4 shows higher-order

elements near the leading edge of the NACA 0012 geometry obtained by curving

the initial linear mesh shown by dashed lines. As seen, all the interior faces are

curved in this way to prevent the intersection of boundary and interior. Far from the

curved surface, the deformations are considerably smaller although the cells are still

represented by cubic faces.
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3.2. Curved Mesh Support

Figure 3.3: Schematic representation of boundary displacement for curving the inte-
rior faces of a linear mesh

Figure 3.4: Representation of cubic cells obtained by interior curving of a linear
mesh around the geometry of NACA 0012 (dashed lines: linear mesh, solid lines:
cubic mesh)

3.2 Curved Mesh Support

After interior curving, the cells of the mesh are not triangles/quadrilaterals with

straight faces. Therefore, special care should be taken to compute those geometri-

cal features required for a finite volume solver. These include flux integral quadra-

ture points on the interfaces along with corresponding normal vector and integration

weight, and quadrature points and weights required for source term integration and

moments of area, which are essential for solution reconstruction.

3.2.1 Flux Integral

A face of a higher-order mesh is comprised of four nodes coming directly from solving

the linear elasticity equations at the nodes of each cubic element. Therefore, a cubic

mapping from a reference straight line segment into each curved face (Figure 3.5) can
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be created as:

x (ξ) =
4∑

k=1

xkφk (ξ) , y (ξ) =
4∑

k=1

ykφk (ξ) (3.11)

where (xi, yi) are the coordinates of the nodes and φi (ξ) are the Lagrangian cubic

interpolation functions in 1D (see Appendix A). Having this, we can also map flux

integration along curved faces into flux integration along the straight reference line

segment as:

˛

CS

~F · n̂ ds =

˛

CS

~F · n̂
√
dx2 + dy2 =

˛

CS

~F · n̂

√√√√
(
dx

dξ

)2

+

(
dy

dξ

)2

dξ (3.12)

To evaluate the integral of Equation 3.12, we can use appropriate Gauss quadrature

rules for the reference line segment. However, the flux vector must be evaluated at

the quadrature points mapped to the physical space whose locations are obtained

from Equation 3.11. The unit normal vectors at the quadrature points are found

as (−dy/dξ, dx/dξ). Due to the changes in the direction of unit normal vector, we

use a quadrature rule that is able to integrate a polynomial of degree 2p+ 1 exactly

on the reference line segment for a (p+ 1)-accurate discretization. Our numerical

experiments showed that this number of quadrature points is always sufficient.

Figure 3.5: Illustration of mapping from a reference line segment into a general cubic
face

3.2.2 Source Term

To compute the source term integral over a curved cell, we use the idea of isoparamet-

ric finite elements in which element geometry and displacement vector components

are represented by the same type of basis functions. In other words, the Cartesian

coordinates inside each cubic triangle/quadrilateral can be interpolated by the same
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cubic basis functions used to solve the linear elasticity problem:

x (ξ, η) =
N∑

k=1

xkφk (ξ, η) , y (ξ) =
N∑

k=1

ykφk (ξ, η) (3.13)

Note that the number of nodes, N , is 10 for a cubic triangle and 12 for a cu-

bic serendipity quadrilateral. Figure 3.6 shows such a mapping for cubic triangles

schematically. To calculate the integral of a source term over a curved cell, we can

use coordinate transformation to the reference element space as:

ˆ

CV

S (U,∇U) dA =

ˆ

CV

S (U,∇U) dxdy =

ˆ

CV

S (U,∇U)

∣∣∣∣∣
∂ (x, y)

∂ (ξ, η)

∣∣∣∣∣ dξdη (3.14)

in which
∣∣∣∂(x,y)

∂(ξ,η)

∣∣∣ = | J | denotes the determinant for the Jacobian of the coordinate

transformation:

| J | =

∣∣∣∣∣
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

∣∣∣∣∣ (3.15)

Therefore, the integral of Equation 3.14 can be evaluated using a quadrature rule

that is able to integrate a polynomial of degree 2p exactly over the reference element.

Note that the source term, S (U,∇U), must be evaluated at the quadrature points

mapped to the physical space whose coordinates are found using Equation 3.13.

Figure 3.6: Illustration of mapping from a reference triangle into an arbitrary cubic
triangular cell
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3.2. Curved Mesh Support

3.2.3 Moments of Area

As described in Chapter 2, the least-squares solution reconstruction requires the

moments of each control volume about its reference point. For this purpose, we can

use the same strategy as source term integral since the moments of area are defined

as volume integrals:

xnym
i =

1

Ai

ˆ

CVi

(x− xi)
n (y − yi)

m| J | dξdη (3.16)

where the (xi, yi) is the coordinate of the reference point of a control volume. This

point is obtained by mapping point
(

1
3
, 1

3

)
for triangles and point (0, 0) for quadrilat-

erals from the reference element to the physical space using Equation 3.13. To obtain

sufficiently accurate moments, we use a quadrature rule that is able to integrate a

monomial of degree 2p + 1 exactly on the reference element for a (p+ 1)-accurate

reconstruction.

To assess the accuracy of curved boundary representation and moment calcula-

tions, the moments of area of a quarter-annulus, whose inner and outer radii are 7/8

and 9/8, are found about the origin and compared with the exact values. For this

purpose, the moments of each element are computed first and then translated to the

origin by the use of the parallel axis theorem. The error involved in computing the

moments has been tabulated in Table 3.1 for two different N values which represent

the number of divisions in both the radial and azimuthal directions. The ratio of

error observed for different moments verifies the fourth-order accuracy of the curved

boundary representation and also sufficient accuracy of numerical integration up to

fourth order.

3.2.4 Distance Function

Another geometrical property that must be computed for anisotropic curved meshes

is the distance of the cell reference location from the closest curved boundary. This

quantity is needed for accurate solution reconstruction on high aspect ratio meshes

near curved geometries as will be shown in the next section. In addition, the source

term of the Spalart-Allmaras turbulence model is dependent on the distance from

the closest wall. As a result, we need to pre-compute and store the distance from the

closest wall boundary for all of the quadrature points used to compute the integral
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3.2. Curved Mesh Support

Moment
|E|N |E|20

|E|40N = 20 N = 40
A 7.37 × 10−8 4.61 × 10−9 15.97
x 5.71 × 10−8 3.66 × 10−9 15.60
y 5.71 × 10−8 3.66 × 10−9 15.60
x2 1.04 × 10−7 6.24 × 10−9 16.61
xy 4.80 × 10−8 3.38 × 10−9 14.19
y2 1.03 × 10−7 6.23 × 10−9 16.48
x3 1.34 × 10−7 8.05 × 10−9 16.69
x2y 5.67 × 10−8 3.70 × 10−9 15.31
xy2 5.62 × 10−8 3.70 × 10−9 15.19
y3 1.33 × 10−7 8.05 × 10−9 16.49

Table 3.1: Error in calculating the moments of area for a quarter-annulus

of the source term. In this section, the method by which the distance from a higher-

order curve is calculated for an arbitrary point (reference location and quadrature

points) is described.

As discussed, we represent curved geometries with a piecewise cubic spline. Note

that the cubic polynomial representing boundary face i (one piece of the spline) is

different from other boundary faces:

xB,i (t) = α3,it
3 + α2,it

2 + α1,it+ α0,i (3.17)

yB,i (t) = β3,it
3 + β2,it

2 + β1,it+ β0,i

To find the closest point to an arbitrary point of (x0, y0) on the curved geometry,

we need to identify the boundary face on which the closest point exists (Figure 3.7).

For this purpose, we compute the unit normal vectors at the two end points of each

boundary face (n̂1 and n̂2). It is worth-mentioning that the first derivative and thus

unit normal vector of a cubic spline are continuous at the points. We also find the

vectors that connect each of the two end points to point (x0, y0). Computing the

cross product of this vector, ~ri , and corresponding unit normal vector, n̂i, the closest

point lies on the boundary face where the two cross products have different signs,

i.e., ((~r1 × n̂1) · (~r2 × n̂2)) < 0. Note that the cross product of two vectors in two-

dimensions is a scalar. Having found the appropriate boundary faces, the distance
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3.3. Reconstruction on Anisotropic Meshes

squared of each point on that face from (x0, y0) is:

D2 =
(
α3,it

3 + α2,it
2 + α1,it+ α0,i − x0

)2
+
(
β3,it

3 + β2,it
2 + β1,it+ β0,i − y0

)2

(3.18)

The closest point is obtained as the one with minimum distance squared whose cor-

responding parameter satisfies dD2

dt
= 0. This minimization problem is solved for

parameter tc via Newton’s method to machine zero tolerance. The corresponding

parameter is substituted in Equation 3.17 to find the Cartesian coordinates of the

closest point on the curved geometry. If we do not find any boundary face where the

cross product changes sign, the closest point on the surfaces will be one of the corner

points of the cubic spline (e.g., trailing edge). The distances from all of the corner

points are measured and compared to find the closest point on the wall.

Figure 3.7: Illustration of distance function calculation for an arbitrary point

3.3 Reconstruction on Anisotropic Meshes

A known issue for k-exact solution reconstruction on highly anisotropic meshes is the

poor conditioning of the least-squares (LS) system. This is exacerbated for higher-

order computations as the presence of geometric terms with higher exponents results

in a considerable difference in the magnitude of matrix columns. Furthermore, aero-

dynamic configurations typically consist of curved surfaces on which a flow boundary

layer develops. Previous studies have demonstrated that least-squares reconstruction
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3.3. Reconstruction on Anisotropic Meshes

on high aspect ratio meshes with finite curvature suffers from poor accuracy, even

with straight-sided cells. Mavriplis [77] examined the accuracy of the least-squares

technique for second-order discretization on unstructured meshes. He used a non-

linear function of distance to the wall as a test function to evaluate the accuracy of

the reconstruction on highly stretched meshes in the presence of surface curvature.

The results showed that unweighted least-squares reconstruction fails to estimate the

solution gradient; however, the accuracy can be recovered using an inverse distance

weighting for vertex-centered discretizations. For a cell-centered method on triangu-

lar meshes, none of the control volumes within the stencil may be sufficiently close

to the cell center under consideration. Therefore, inverse-distance weighting does not

help and least-squares reconstruction exhibits poor accuracy. To improve the accu-

racy of reconstructed gradient on the curved meshes with high aspect ratio, Diskin

et al. [78] proposed a least-squares minimization in a mapped domain using a local

curvilinear coordinate system aligned with the wall. The mapped domain is con-

structed using the distance function, which is the nearest distance to the boundary,

to estimate the solution and gradient at the face mid-points. Although this method

produces more accurate gradient for second-order schemes, it does not satisfy con-

servation of mean within each control volume nor can it be used for higher-order

methods. Petrovskaya introduced the concept of numerically distant points to ex-

plain the poor accuracy of a weighted LS method on stretched meshes [79]. She

also studied quadratic least-squares reconstruction on triangular cells with high as-

pect ratio and concluded that the weighting of distant stencil points does not lead

to more accurate approximation because of numerically distant points in the stencil

[80]. More recently, Petrovskaya [81] designed a new approach that allows one to

measure the distance between points in the data space instead of the physical space

for second-order accuracy and devised a new weighting function that de-emphasizes

the points which are far from the original point in the data space.

In this and the next sections, we will investigate the accuracy of high-order so-

lution reconstruction on highly anisotropic meshes with or without curvature for

cell-centered discretization along with the conditioning of the least-squares problems.

We will show that the condition number of the LS system grows rapidly with mesh

refinement and increasing aspect ratio even on meshes without curvature. We will

suggest some modification for solving the LS system that improves the condition-

ing considerably. In addition, our numerical results reinforce the notion that the
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3.3. Reconstruction on Anisotropic Meshes

cell-centered least-squares reconstruction in its traditional form degrades solution ac-

curacy on high aspect ratio meshes with finite curvature in the sense that the error

in the reconstructed coefficients are relatively large compared to the exact values and

do not attain the expected order of accuracy. While this has already been proven for

second-order methods on triangles, we will demonstrate that the issue remains for

higher-order LS reconstruction and adding a weight function does not improve the

accuracy. Consequently, a new least-squares reconstruction framework is proposed

in which the solution and derivatives are approximated in a local tangential-normal

coordinate system obtained by solving an auxiliary LS problem. We will show that

the k-exact reconstruction in the new coordinate system improves the accuracy and

conditioning significantly for high aspect ratio cells with finite curvature and satisfies

the expected order of error reduction with mesh refinement.

3.3.1 Least-Squares Conditioning

The reduced least-squares system of Equation 2.18 can be written in the form of

Ax = b (3.19)

where A is the reconstruction matrix after one step of the Gaussian elimination, x

is the reconstruction coefficients vector and b is the weighted/unweighted difference

of control volume averages of the solution within the stencil. Given an SVD of the

reconstruction matrix, the pseudoinverse A† can be obtained

A† = VΣ†UT (3.20)

in which the columns of U and V are the left and right singular vectors of A and

Σ† is a diagonal matrix containing the reciprocal of singular values of A. Since the

reconstruction matrix only includes geometric weights, it does not change between

iterations [49]. Therefore, its pseudoinverse is precomputed and stored to yield the

reconstruction coefficients by a matrix-vector multiplication

x = A†b (3.21)

To have an accurate estimate of the reconstruction coefficients, the least-squares
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3.3. Reconstruction on Anisotropic Meshes

problem should be well-conditioned in the sense that a small error in b (the control

volume averages in this case) does not cause a large error in x. This property is typi-

cally investigated by the condition number of the reconstruction matrix A (equivalent

to the condition number of A†) which is defined as the ratio of the maximum to the

minimum singular value. The condition number bounds the relative inaccuracy in the

estimate of the unknown components. A least-squares problem with a large condition

number is said to be ill-conditioned.

-0.5 0.5

-0.2

0.2

(a)

(b)

h

Figure 3.8: Anisotropic triangular meshes with uniform stencil: (a) aligned with the
Cartesian coordinate system; (b) rotated 15◦ in the counter clock-wise direction

As a preliminary test, we consider the least-squares reconstruction on anisotropic

triangles obtained from similar splitting of quadrilaterals as shown in Figure 3.8.

We employ the unweighted LS method to investigate the effect of aspect ratio and

mesh size on the condition number. Note that in such a mesh, the stencil is uniform

throughout all interior triangles and thus all control volumes have the same condition

number. The columns of the reconstruction matrix of Equation 2.18 contain the

moments of area that are scaled by both the size and aspect ratio of the triangular

cells. Increasing the aspect ratio of the cells and/or decreasing the mesh spacing

results in a huge difference in the order of magnitude of matrix columns that in

turn leads to large condition numbers. This difference is asymptotically larger for

higher order reconstruction whose matrix includes higher moments of area. This

brief discussion suggests the idea of matrix scaling with the largest entry of each

column [82] which also was used by Ivan and Groth to improve the conditioning

of a central ENO reconstruction for viscous flows [83]. In this way, all the entries

of the reconstruction matrix are in the range of [−1, 1] and the conditioning of the

least-squares problem improves. Also, the entry with the maximum absolute value
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3.3. Reconstruction on Anisotropic Meshes

is stored to recover the right reconstruction coefficients later. Figure 3.9 shows how

the condition number of the unweighted reconstruction matrix changes with aspect

ratio and mesh spacing with/without column scaling for the mesh that is aligned

with the Cartesian coordinate system. Our results show that the condition number

of matrix A is proportional to ARk−1/hk−2 for a k-th order reconstruction. However,

the column scaling makes the conditioning independent of the mesh size and aspect

ratio.
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Figure 3.9: Condition number of reconstruction matrix for uniform stencil meshes
aligned with the Cartesian coordinate system

Now, we turn our attention to the mesh being rotated 15◦ in Figure 3.8. For this

case, the condition number has been plotted in Figure 3.10 for the same variations

of aspect ratios and mesh sizes. As seen, the condition number of the scaled recon-

struction matrix still grows with the aspect ratio in a way analogous to the unscaled

system although the values are smaller by several orders of magnitude. This is in

contrast with the case where the cells were aligned with the Cartesian coordinate

system and column scaling led to independence from both the aspect ratio and mesh

size. This can be explained by the fact that the Cartesian coordinate system is al-

most aligned with the principal axes1 as the aspect ratio increases in that mesh. So

the combination of column scaling and principal coordinate system makes the mesh

1Principal axes are the two directions around which the second moments of area are minimum
and maximum and obtained via Mohr’s circle in 2D
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3.3. Reconstruction on Anisotropic Meshes

isotropic and resolves the conditioning issue for high-order reconstruction on high

aspect ratio meshes. It is worth mentioning that this happens just for meshes where

the principal axes are almost parallel for the cells within the stencil (Figure 3.8).

Nevertheless, for more general cases such as anisotropic meshes over curved surfaces

where the orientation of principal axes changes across the stencil, we will show that

the combination of column scaling and principal coordinate system is still helpful in

reducing the condition number.

AR

C
on

di
tio

n 
N

um
be

r

101 102 103

101

103

105

107

109

1011

1013

1015 unscaled-2nd order
unscaled-3rd order
unscaled-4th order
scaled-2nd order
scaled-3rd order
scaled-4th order

Slope = 2.0

Slope = 3.0

Slope = 1.0

(a) Effect of AR, h = 0.1

h

C
on

di
tio

n 
N

um
be

r

0.04 0.08 0.12

101

103

105

107

109

1011

1013

Slope = 1.0

Slope = 2.0

(b) Effect of h, AR = 1000

Figure 3.10: Condition number of reconstruction matrix for uniform stencil meshes
aligned rotated 15◦

3.3.2 Curvilinear Coordinates

As mentioned earlier, the simulation of high Reynolds number turbulent flows requires

sufficiently accurate polynomial approximation on high aspect ratio meshes with finite

curvature. It is well understood that the cell-centered k-exact LS reconstruction

suffers from poor accuracy on highly anisotropic meshes over curved surfaces for

second-order. Our numerical results in Section 3.4 yield the same conclusion for

higher than second-order reconstruction even after weighting the least-squares system

by geometrically close data. This problem is alleviated for those cells that are far

from the wall and thus have smaller curvature.

52



3.3. Reconstruction on Anisotropic Meshes

To improve the accuracy of the cell-centered reconstructed gradient on curved

meshes with high aspect ratio, the local mapping proposed by Diskin et al. [78] is

quite inspiring. However, this method is only applicable to second-order accurate re-

construction as it only gives the point-wise first-order face gradient in the curvilinear

coordinate system constructed at the middle of each face. This also takes the advan-

tage of the fact that the solution values at the cell centroids are equal to the control

volume averages for second-order and the reconstruction matrix is only comprised

of ∆x and ∆y. For higher-order methods, this scheme cannot be incorporated with

the moments of area and real control volume averages that differ from the point-wise

values at the centroid. Therefore, a higher-order polynomial cannot be reconstructed

within a cell to give the solution and the gradient vector.

Instead, we construct a higher-order local curvilinear coordinate system at the

reference point of each control volume. For this purpose, we define a mapping from

the physical space into a tangential-normal coordinate system for cells with high

curvature near the walls:

t = a1 (x− xi) + a2 (y − yi) + a3 (x− xi)
2 + a4 (x− xi) (y − yi) + ... (3.22)

n = b1 (x− xi) + b2 (y − yi) + b3 (x− xi)
2 + b4 (x− xi) (y − yi) + ...

A cubic mapping from (x, y) to (t, n) is sufficient for reconstruction up to fourth-

order. The mapping is obtained by the distance function and constructed tangential

direction at the cell’s reference points. The difference in distance from the wall

determines the normal coordinate, n(i)
j = Dj − Di, while the tangent coordinate

is obtained by the projection of the vector connecting two reference points on the

constructed tangential direction, t(i)j = ~rij · t̂i. This tangential direction is defined

as the perpendicular direction to the normal to the wall direction as seen in Figure

3.11. The two sides of Equation 3.22 are evaluated for the same handful of control

volumes used in the reconstruction stencil of a particular control volume. To find the

mapping coefficients, an auxiliary least-squares system is solved to give the values of

ai and bi in Equation 3.22.

It should be noted that the auxiliary least-squares problem will suffer from the

same conditioning issue explained before since the moments of area in the reconstruc-

tion matrix are replaced by some other geometric terms that have the same order

of magnitude and are scaled in an unsatisfactory manner with mesh refinement and
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Figure 3.11: Illustration of tangential-normal coordinate construction

increasing aspect ratio. Consequently, the auxiliary LS problem is also brought to

the principal coordinate system denoted by (x′, y′) and its origin is fixed on the cell’s

reference point (Figure 3.11). The new mapping is defined from (x′, y′) to (t, n) as

t = a′
1x

′ + a′
2y

′ + a′
3x

′2 + a′
4x

′y′ + ... (3.23)

n = b′
1x

′ + b′
2y

′ + b′
3x

′2 + b′
4x

′y′ + ...

and column scaling is applied to improve the conditioning.

Having computed the mapping coefficients, it is possible to find the coordinates

of any arbitrary point with respect to the local tangential-normal system of a certain

control volume by applying the curvilinear mapping of Equation 3.23. For solution

reconstruction in the new curvilinear coordinates, we require the moments of control

volume i about its reference point:

tnnm
i =

1

Ai

ˆ

Vi

tnnmdA (3.24)

The integration is performed over the curved cells using the method described in

Section 3.2.3. For this purpose, the location of each quadrature point in the physi-

cal space (xq, yq) is obtained by Equation 3.13 with its corresponding Jacobian of

transformation Then, the appropriate rotation transformation is applied to map

(xq − xi, yq − yi) to
(
x′

q, y
′
q

)
and finally the non-linear mapping of Equation 3.23 is

employed to find (tq, nq). This procedure can also be extended to compute the mo-
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ments of control volume j about the reference point of control volume i, i.e., t̂nnm
ij .

For these moments, the quadrature points of control volume j must be combined with

the curvilinear mapping coefficients of control volume i. Contrary to the reconstruc-

tion in the Cartesian coordinate system, these moments need to be calculated one by

one since the parallel axis theorem cannot be used for non-parallel local curvilinear

coordinates.

The final point about the curvilinear coordinate system is the transformation of

solution (or derivatives) to an arbitrary location in the physical space, (xp, yp). As

described for the quadrature points, it is possible to find the curvilinear coordinates

of the desired point, (tp, np). Therefore, the solution can be found as:

up (t, n) = u|i +
∂u

∂t

∣∣∣∣∣
i

tp +
∂u

∂n

∣∣∣∣∣
i

np +
∂2u

∂t2

∣∣∣∣∣
i

t2p
2

+
∂2u

∂t∂n

∣∣∣∣∣
i

tpnp +
∂2u

∂n2

∣∣∣∣∣
i

n2
p

2
+ ... (3.25)

Similarly, the gradient at any location can be computed in the local coordinate sys-

tem, (∂u/∂t, ∂u/∂n)p. One can transform the gradient to the Cartesian coordinate

system by applying the change of variables and the chain rule:

∂u

∂x

∣∣∣∣∣
p

=
∂u

∂t

∣∣∣∣∣
p

.
∂t

∂x′

∣∣∣∣∣
p

.
∂x′

∂x

∣∣∣∣∣
p

+
∂u

∂t

∣∣∣∣∣
p

.
∂t

∂y′

∣∣∣∣∣
p

.
∂y′

∂x

∣∣∣∣∣
p

(3.26)

+
∂u
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.
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.
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3.4 Numerical Tests

In this section, we present the results for k-exact least-squares reconstruction on

anisotropic meshes. First, we show the accuracy and conditioning results correspond-

ing to unweighted and weighted LS reconstructions of an empirical flat plate boundary
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layer profile on straight meshes where the variation of principal axis orientation is

small between adjacent triangles. Then, we consider anisotropic triangular meshes

over curved surfaces. For this purpose, we generate anisotropic triangular meshes

over a circular arc and reconstruct a boundary layer type function. The reconstruc-

tion procedure both in its traditional form but along principal axes and on the new

curvilinear coordinate system is performed and the results are compared. Then, we

extend the analysis to more general meshes by testing reconstruction scenarios on

the anisotropic boundary layer region over the NACA 0012 airfoil.

3.4.1 Straight Meshes

We start the analysis with anisotropic straight meshes where the alignment changes

slowly when moving from one triangle to another. These meshes are typically used for

anisotropic flows over non-curved surfaces on which a boundary layer develops (e.g.,

flat plate) and/or wake regions behind single objects. Anisotropic meshes over curved

surfaces can fall in this category provided that the radius of curvature is considerably

larger than the cell spacing.

To investigate the accuracy of reconstructed derivatives, the method of manufac-

tured solution is employed. Considering that anisotropic meshes are used to capture

solution anisotropy, an anisotropic function must be manufactured for reconstruction

tests. One of the obvious candidates for such a function is the turbulent boundary

layer velocity profile. In this paper, we make use of Reichardt’s empirical boundary

layer profile [84] :

u =

{
2.5 ln

(
1 + 0.4 y+

)
+ 7.8

(
1 − exp

(
−y+

11

)
− y+

11
exp

(
−0.33 y+

))}
u∗ (3.27)

where y+ is the non-dimensional distance from the wall and u∗ is the friction velocity:

y+ =
yu∗

ν
u∗ =

√
τw

ρ
(3.28)

In Equation 3.28, τw is the wall shear stress which can be related to the friction factor

Cf,x =
τw

1
2
ρU2

∞

(3.29)
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and approximated by the one-seventh power law:

Cf,x =
0.027

(Rex)1/7
, Rex =

U∞x

ν
(3.30)

Using Equations 3.28 to 3.30, it is possible to simplify u∗ and y+ :

u∗ =

√√√√ 0.0135

(ReL.x̄)1/7
, y+ = ȳ.ReL.

√√√√ 0.0135

(ReL.x̄)1/7
(3.31)

where x̄ and ȳ are the non-dimensional coordinates based on the length of plate, L,

for a plate whose leading edge is at the origin. We assume that L = 1 and take

ReL = 107 to provide highly anisotropic behavior for ū = u/U∞ near the wall. Note

that u∗ and y+ are both singular at x = 0 and thus the region close to the leading

edge must be avoided. For our reconstruction tests, we assume that the leading edge

is at (−1, 0) and only consider the zone between x = −0.5 and x = 0.5. Therefore, x̄

is replaced with x+1 in Equation 3.31. The grid is generated with (N+1)×(2N + 1)

nodes which are uniformly distributed along the plate but stretched out from the wall

with a factor of s. The thickness of the first layer is set such that one control volume

exists in the viscous sublayer (y+ < 5) for the coarsest mesh; this is shrunk by a

factor of two at each level of refinement. The quadrilaterals formed by these nodes

are randomly divided into two triangles and nodes are perturbed in both directions

with a factor of rhy where r is a random number in [−0.25, 0.25] and hy is local

vertical spacing. We consider three different mesh sizes in which N = 8, 16, 32 and

s = 1.6, 1.25, 1.12, respectively. It is worth mentioning that for all these meshes, the

maximum aspect ratio is about 10, 000. This value is obtained by considering the

number of divisions in the horizontal direction and the necessity of having one cell in

the viscous sublayer region for the coarsest mesh. Figure 3.12 shows the anisotropic

solution on a randomly triangulated mesh where N = 16 both in a far view and very

close to the wall.

To assess the accuracy of reconstruction, the L2-norm of error in the reconstructed

solution and first derivatives at the reference point of each triangle is considered for

both unweighted and weighted least-squares systems. In all these cases, the re-

construction has been performed along the principal axes of each control volume to

improve the conditioning of the least-squares problem. In this framework, the deriva-
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Figure 3.12: Anisotropic manufactured solution for a straight mesh (y-axis has been
scaled)

tives have been brought to the Cartesian coordinate system and compared against the

exact derivatives obtained from the manufactured solution. Figure 3.13 shows asymp-

totic error convergence for second-, third- and fourth-order solution reconstruction. In

all cases, the order of error in the reconstructed solution matches the expected order

of reconstruction. Likewise, the reconstructed derivatives are one order less accurate

than the solution, as expected. Note that the y−derivatives are larger due to the

anisotropic property of the test function and thus their relative errors are reported to

be comparable with the x−derivatives. As seen in this figure, the difference in solu-

tion error is less noticeable between weighted (red) and unweighted (black) for second-

and fourth-order but is about one order of magnitude for third-order reconstruction.

Moreover, the unweighted LS yields more accurate derivatives particularly in the

x−direction for all orders of accuracy. These results suggest that the unweighted LS

provides more accurate reconstructed values for anisotropic straight meshes.

In addition to error norms, the local accuracy of reconstruction is important.

Figure 3.14 compares the solutions and y-derivatives obtained by second- and fourth-

order unweighted LS reconstruction with the exact values at different distances from

the wall at x = 0.1. As expected, the reconstructed values match well with the

exact profiles even at small distances in which the triangles are highly skewed. Also,
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Figure 3.13: Accuracy of LS reconstruction for anisotropic straight meshes
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the error is reduced by increasing the order of accuracy. This can be more clearly

noticed for the y-derivatives that are one order less accurate and more scattered in

magnitude.
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Figure 3.14: Reconstructed vs. exact values at different distances from the wall
(x = 0.1)

To address the conditioning of the LS reconstruction for straight meshes, we

consider the maximum condition number, κ∞ (A), corresponding to the least-squares

systems. This is given by Table 3.2 for different conditions. In this table, ARmax

refers to the maximum aspect ratio which occurs in the first layer. Increasing ReL

in the solution reduces the thickness of viscous sub-layer and thus the first interior

layer which increases the maximum aspect ratio in the mesh. Clearly, column scaling

improves the conditioning of the LS system in all cases. Also, the unweighted system

after column scaling exhibits remarkably better conditioning for higher than second-

order as it leads to considerably smaller condition numbers for similar meshes and

the condition number remains almost constant when changing the maximum aspect

ratio and/or mesh size. On the other hand, the weighted system even after column

scaling produces condition numbers proportional to aspect ratio for third- and fourth-

order reconstructions. This result implies more accurate reconstruction at extremely

anisotropic meshes using unweighted LS combined with column scaling.
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ARmax h Col. Scale
κ∞ (A)

k = 2 k = 3 k = 4
unweighted LS

3.15 × 103 0.0625 yes 2.21 13.78 107.12

9.65 × 103 0.125 yes 2.00 16.69 107.46
9.65 × 103 0.0625 yes 2.20 17.35 106.77
9.65 × 103 0.0625 no 1.43 × 104 1.44 × 1010 6.19 × 1015

9.65 × 103 0.03125 yes 2.39 15.55 104.71

2.67 × 104 0.0625 yes 2.21 15.53 95.52
2.67 × 104 0.0625 no 4.07 × 104 1.26 × 1011 1.39 × 1017

weighted LS
3.15 × 103 0.0625 yes 2.74 1.41 × 104 6.48 × 104

3.15 × 103 0.03125 yes 2.76 1.43 × 104 6.83 × 104

9.65 × 103 0.0625 yes 2.78 4.28 × 104 2.07 × 105

9.65 × 103 0.0625 no 8.10 × 103 5.96 × 109 2.67 × 1015

2.67 × 104 0.03125 yes 2.76 1.27 × 105 6.20 × 105

2.67 × 104 0.03125 no 2.48 × 104 1.17 × 1011 3.26 × 1017

Table 3.2: Maximum condition number for reconstruction along principal axes on
straight meshes

3.4.2 Curved Meshes

Now, we focus on meshes varying anisotropically over curved surfaces. For these

meshes, the alignment varies considerably between adjacent triangles. This is usually

encountered in high-Reynolds turbulent flow simulations over curved walls on which

a boundary layer exists and/or wake regions of upstream objects in multi-element

configurations.

As the first step for testing different reconstruction scenarios, we generate anisotropic

cells over a circular arc and reconstruct a boundary layer type function. For this pur-

pose, we use the boundary layer profile of Equation 3.27 and replace y with distance

from the wall and x with the horizontal distance from the leading edge. Even though

this function does not give the velocity profile over a cylinder with stream-wise pres-

sure gradient, it has similar characteristics and exhibits strong normal gradients, and

vanishing stream-wise gradients. To prevent singularities given by Equation 3.27
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at the cylinder’s leading edge, we consider a 40◦ circular arc whose initial edge is

sufficiently away from the leading edge, θ = −π/2 (Figure 3.15). Again, we use

(N + 1) × (2N + 1) nodes with the aforementioned values for N and diagonalize

quadrilaterals randomly (in the case of triangular meshes) along with a node pertur-

bation based on local radial spacing. Note that the nodes are placed with uniform

spacing along the arc but are stretched towards the wall with the stretching factors

already mentioned for straight meshes. We still ensure the presence of at least one

control volume in the region where y+ based on distance from the wall is less than

5 and set ReL = 107. Figure 3.15 shows the anisotropic solution and mesh where

ARmax ≃ 6320, N = 16 and s = 1.25.

-0.4 0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Axis of symmetry

Figure 3.15: Anisotropic boundary layer type solution on a circular arc

Having manufactured an appropriate solution, we examine the accuracy of higher-

order reconstruction in its traditional form described in Chapter 2 but using the

principal coordinate system to make the conditioning better. For the results shown

in this section, the boundary faces on the circular arc are curved using the method

described in Section 3.1 which is accurate up to fourth-order. Figure 3.16 shows the

L2 norm of solution reconstruction error for the manufactured function of Figure 3.15

and the three mesh sizes described earlier for both the triangular and quadrilateral

meshes.

For triangles, it is seen that the asymptotic order of error in the unweighted

LS is not consistent with the order of reconstruction in the range of mesh sizes

considered here. Even though there is a chance of achieving the order expected in

reconstruction with more levels of refinement, this negates the advantage of higher-
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order computations. Weighting the least-squares system corrects the asymptotic

order of error but at the same time is associated with a noticeable increase in the

value of error. Comparing the error values with the solution magnitude illustrated in

Figure 3.15 implies a large relative error which is not acceptable.

For quadrilateral meshes, the unweighted LS delivers the right asymptotic order

of convergence. However, increasing the order of accuracy degrades the accuracy

of reconstructed solution at the cell reference points. Likewise, adding the distance

weight to the LS system increases the magnitudes of reconstruction error. Therefore,

it is accurate to say that traditional higher-order least-squares reconstruction suffers

from accuracy issues for anisotropic meshes over curved surface regardless of the

weighting function and cell type.
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Figure 3.16: Solution reconstruction error using principal coordinate system

To shed more light on this issue, the reconstructed solution and normal derivatives

on a fixed position across the arc, θ = −1◦, have been plotted against the exact values

in Figure 3.17 for the second triangular mesh. These are computed at different

distances from the wall for a weighted LS reconstruction (Figure 3.16). At small

distances from the wall where high aspect ratio triangles exist, the second-order

approximation of solution and corresponding normal derivatives are highly off the

exact solution in some locations. This can be explained by the lack of sufficiently

close control volumes to the cell center under consideration as Mavriplis showed in his
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work [77] for second-order reconstruction on triangular meshes. For fourth-order, the

stencil becomes larger and includes geometrically close control volumes that improve

the estimate of normal derivatives; however, the reconstructed values are notably off

the exact curve for the weighted LS reconstruction.
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Figure 3.17: Weighted LS reconstructed values in the principal coordinate system
against exact values at different distances from the wall (θ = −1◦)

On the other hand, the asymptotic order of reconstruction error using the new

curvilinear coordinate system is consistent with the order of reconstruction and the

error values are smaller by several orders of magnitude compared to the principal

coordinates. Figure 3.18 shows the reconstruction error for second- to fourth-order

reconstruction in the tangential-normal coordinate system for triangular and quadri-

lateral cells. Also, the first derivative in the normal direction is one order less accurate

than the solution, as expected. For both types of cells, the unweighted LS produces

more accurate reconstruction coefficients, particularly for quadrilateral cells where

the difference in the error of reconstructed solution is more than one order of mag-

nitude in some cases. For normal derivatives, the differences between weighted and

unweighted LS become smaller by increasing the order of reconstruction although

the unweighted LS outperforms in all of the cases. In general, the unweighted LS

reconstruction in the curvilinear coordinate system solves the accuracy issues related

to high aspect ratio meshes in the presence of curvature.

Again, the solution and normal derivatives reconstructed by unweighted LS on

the curvilinear coordinate system at θ = −1◦ are plotted against the exact values
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Figure 3.18: Reconstruction error (relative for normal derivatives) using curvilinear
t− n coordinate system

on the second triangular mesh (Figure 3.19). In contrast to the results obtained by

reconstruction on principal coordinates, both the solution and normal derivatives are

reasonably close to the exact values and become more accurate by increasing the

order of accuracy.

Now, we turn our attention to the conditioning of the least-squares reconstruction

in each coordinate system. Table 3.3 gives the maximum condition number of LS sys-

tem for reconstruction along principal or Cartesian coordinates for triangular meshes.

Note that “no” in principal coordinates column implies the traditional reconstruction

in the Cartesian coordinate system. Clearly, the use of principal coordinates and col-

umn scaling highly enhance the conditioning as they reduce κ∞ (A) particularly for

higher orders by several orders of magnitude. Even though the combination of these

two does not make the condition number independent of mesh properties in this case,

it is highly recommended even for the auxiliary LS problem having the same features.

Having this in mind, one can compare the maximum condition numbers for the

scaled system in principal coordinates for different ARmax and h. Second-order recon-

struction is always well-conditioned regardless of weight function and mesh properties.

For higher-order, the unweighted LS gives the condition number being scaled linearly
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Figure 3.19: Reconstructed values in the curvilinear coordinate system against exact
values at different distances from the wall (θ = −1◦)

with mesh spacing at a constant aspect ratio whereas the changes are smaller for the

weighted system. Likewise, the changes with ARmax at a constant h are more se-

vere for the unweighted LS. In general, weighting gives smaller condition numbers for

higher-order on curved meshes; however, it does not guarantee a perfect conditioning

particularly for fourth-order reconstruction on high aspect ratio meshes.

On the other hand, the unweighted LS along the curvilinear coordinate system is

always well-conditioned as shown by Table 3.4. Based on the conditioning results re-

ported so far, we know that column scaling is essential for higher-order reconstruction

on anisotropic meshes. Therefore, we just consider the maximum condition number

for the scaled LS system. The conditioning results for the curvilinear coordinates

are completely similar to those obtained for principal axes on straight meshes. The

condition numbers become independent of mesh properties for all orders of accuracy

for the unweighted system. On the other hand, they are scaled with ARmax but

remain independent of h for the weighted case. As a result, the unweighted LS on

the curvilinear coordinates outperforms other schemes for anisotropic curved meshes

in terms of both accuracy and conditioning. Note that the same type of conclusion

can be drawn for the conditioning of solution reconstruction on quadrilateral meshes

although we skip their results for brevity.
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ARmax h Col. Scale Princ. Coord.
κ∞ (A)

k = 2 k = 3 k = 4
unweighted LS

2.06 × 103 0.0436 yes yes 2.43 254.94 3.46 × 103

2.06 × 103 0.0436 yes no 54.53 5.46 × 103 2.81 × 106

2.06 × 103 0.0218 yes yes 2.43 135.15 1.88 × 103

2.06 × 103 0.0218 no yes 193.84 6.14 × 106 4.57 × 1011

6.32 × 103 0.0436 yes yes 4.98 842.41 1.05 × 104

6.32 × 103 0.0436 yes no 79.49 5.61 × 103 8.36 × 106

6.32 × 103 0.0436 no no 158.90 8.02 × 105 6.84 × 1010

1.75 × 104 0.0218 yes yes 2.44 1.15 × 103 1.56 × 104

1.75 × 104 0.0218 yes no 117.13 2.55 × 104 1.56 × 108

weighted LS
2.06 × 103 0.0436 yes yes 2.21 30.65 561.58
2.06 × 103 0.0218 yes yes 2.22 42.88 501.29

6.32 × 103 0.0872 yes yes 15.50 53.99 6.64 × 103

6.32 × 103 0.0436 yes yes 17.35 162.56 3.81 × 103

6.32 × 103 0.0436 yes no 55.85 3.53 × 103 2.25 × 106

6.32 × 103 0.0436 no yes 119.23 2.42 × 106 4.35 × 1010

6.32 × 103 0.0218 yes yes 13.70 399.98 2.74 × 103

1.75 × 104 0.0436 yes yes 2.22 48.93 4.77 × 103

1.75 × 104 0.0436 yes no 53.69 3.00 × 103 6.52 × 106

Table 3.3: Maximum condition number for reconstruction along principal(Cartesian)
axes on curved meshes

3.4.3 General Meshes

As a more general case for anisotropic meshes over curved surfaces, we use the struc-

tured grids generated for turbulent RANS simulations by NASA Langley Research

Center [85]. For experiments on triangular meshes, we also randomly triangulate

the quadrilaterals (Figure 3.20). We curve the interior faces of the mesh to fourth-

order using a cubic spline representation of the airfoil surface. We only consider the

unweighted LS because of the conditioning issues discussed earlier.

The meshes typically used for viscous flow simulations are comprised of different

regions: anisotropic cells with curvature very close to solid walls (R1), anisotropic
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ARmax h column scaling
κ∞ (A)

k = 2 k = 3 k = 4
unweighted LS

2.06 × 103 0.0436 yes 1.74 13.99 101.81
2.06 × 103 0.0218 yes 1.74 13.86 97.48

6.32 × 103 0.0872 yes 2.06 13.58 91.49
6.32 × 103 0.0436 yes 2.23 15.61 97.17
6.32 × 103 0.0218 yes 2.31 17.47 105.36

1.75 × 104 0.0218 yes 1.73 13.84 97.43
weighted LS

2.06 × 103 0.0436 yes 2.21 4.85 × 103 4.17 × 104

2.06 × 103 0.0218 yes 2.22 5.29 × 103 4.50 × 104

6.32 × 103 0.0436 yes 2.20 2.86 × 104 1.51 × 105

1.75 × 104 0.0436 yes 2.22 4.07 × 104 3.53 × 105

Table 3.4: Maximum condition number for reconstruction along local curvilinear axes
on curved meshes
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Figure 3.20: Unstructured triangular mesh over NACA 0012
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straight cells often seen in wake regions (R2) and isotropic cells sufficiently far from

the walls (R3). Since the calculation of mapping coefficients and moments of area

are computationally more expensive for the curvilinear coordinate system, we need

to isolate the regions that require this treatment. We already know that higher-order

least-squares reconstruction even in Cartesian coordinate system provides accurate

results along with good conditioning for isotropic cells. In addition, our previous

results for anisotropic straight meshes suggest a principal coordinate system and

column scaling for accurate and well-conditioned LS reconstruction. As a results, only

cells with high aspect ratio and significant curvature demand curvilinear coordinates.

Such cells can be recognized as those that have a large aspect ratio (AR > 10 here)

and are fairly well aligned with a wall. The latter can be understood by the angle

between the line that connects the reference location to the closest point on the

wall and the principal axis around which the second moment of area is minimum

(γ < 10◦). Note that the cells in R2 only satisfy the first criterion. Figure 3.21 shows

the separation of regions for NACA 0012 meshes using the mentioned procedure.
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Figure 3.21: Separate regions for NACA 0012 meshes

For reconstruction tests, we just consider R1 colored by blue because that is the

region where traditional LS suffers from accuracy issues. Note that the cells in R2

are identical to straight meshes we considered in Section 3.4.1. To prove that the

improvements in LS reconstruction on curvilinear coordinate system is not limited

only to simple geometries, we perform our accuracy tests on the cells of R1 for

the unstructured meshes around the NACA 0012. For this purpose, an anisotropic

solution is manufactured for this region and some layers of neighbors in other regions.

We re-employ the boundary layer profile of Equation 3.27 for the cells with a reference

location in −0.1 < y < 0.1 and x > −0.15 and initialize other control volume averages

with zero. In Equation 3.31, ȳ is replaced with distance from the wall for the cells
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near the wall with a reference location in 0 < x < 1 and x̄ is replaced with x+ 0.2 to

prevent singularities near the leading edge:

ue
i (x, y) =

{
2.5 ln

(
1 + 0.4 y+

)
+ 7.8

(
1 − exp

(
−y+

11

)
− y+

11
exp

(
−0.33 y+

))}
u∗

u∗ =

√√√√ 0.0135

(ReL. (x+ 0.2))1/7
, y+ = d.ReL.u

∗ (3.32)

Also, ReL = 6 × 106 as this is the Reynolds number for which numerical results have

been reported in Ref. [85] and thus matches the anisotropy in the mesh. Figure

3.22 illustrates the manufactured solution at different locations near the wall on the

coarsest mesh.
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Figure 3.22: Manufactured solution for reconstruction accuracy test on NACA 0012

The accuracy test is performed on a sequence of quadrilateral and triangular

meshes. For this purpose, the average of the absolute value of the reconstruction

error, Ēh , is calculated over each control volume as:

∣∣∣Ēh

∣∣∣
i
=

1

ACVi

ˆ ˆ

CVi

∣∣∣uR
i (x, y) − ue

i (x, y)
∣∣∣ dA (3.33)
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Figure 3.23: Error norms of reconstructed solution on anisotropic cells of NACA 0012

where ACVi
is the surface are for control volume i, uR

i (x, y) is the reconstructed solu-

tion profile in the control volume and ue
i (x, y) is the exact solution profile obtained

by Equation 3.32 at each point of the control volume. The integral of Equation 3.33

is computed by employing a sixth-order quadrature rule and evaluating the differ-

ence between exact and reconstructed values at the quadrature points of each control

volume.

One can compare the error norms obtained for unweighted LS reconstruction

using principal and curvilinear coordinate systems. Using the local curvilinear co-

ordinate system leads to a significant improvement in the accuracy of reconstructed

solutions as seen in Figure 3.23. The error values become considerably smaller for

both the quad and triangular anisotropic cells and the nominal order of reconstruc-

tion is obtained by mesh refinement. On the other hand, higher than second-order

reconstruction yields slightly better than second-order reconstructed solutions using

principal coordinates. It is clear that the approximation of the flux vector and source

term with low-order reconstructed solutions cannot lead to a higher-order accurate

solution at the end. Although this improvement was shown only for the reconstruc-

tion of a particular manufactured solution, its advantage in evaluating more accurate

solutions and outputs will be shown later in the next chapter.
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Chapter 4

RANS Simulation of Turbulent

Flows

With the success of Discontinuous Galerkin (DG) methods in obtaining more accu-

rate solutions in computational aerodynamics, more realistic flow conditions such as

turbulent flows governed by the Reynolds Averaged Navier-Stokes (RANS) equations

have been tackled in recent years. The earliest success in this area was the implicit

higher-order RANS solver of Bassi et al. [86] based on the k − ω turbulence model

in which the solutions of turbulent flows on a flat plate and turbine blades were

investigated. Later, Nguyen et al. [87] used the one equation turbulence model of

Spalart-Allmaras (SA) in their higher-order DG solver for the solution of turbulent

flat plate and 2D airfoil test cases. In recent years, a great deal of effort has been

devoted to increase the efficiency and robustness of higher-order DG RANS solvers

[88, 89, 90] and also to expand the capability of solving turbulent flow problems with

more complex geometries [91]. In addition to these, some other discretization meth-

ods such as streamline upwind/Petrov Galerkin (SUPG) [92] or residual distribution

(RD) [93] schemes have been used to deliver a higher-order solution of RANS equa-

tions. These methods are less expensive as the solution is assumed to be continuous

across the interfaces and thus the number of degrees of freedom grows less rapidly

when increasing the order of polynomial.

On the other hand, the higher-order finite volume methods, which have shown

their ability for efficient computations of inviscid and viscous laminar flow with

promising accuracy on irregular meshes, have not been used for the solution of tur-

bulent compressible flows. In this chapter, we describe the remaining challenges

encountered in the extension of higher-order unstructured finite volume methods to

RANS simulations and also the treatments required to tackle each of these issues.

This chapter presents the development of an implicit higher-order unstructured finite

volume solver for turbulent aerodynamic flows.

73



4.1. Governing Equations

One of the challenges in the application of higher-order methods to RANS sim-

ulations with the Spalart-Allmaras model is the abrupt change in the slope of the

turbulence working variable at the edge of boundary layer. This behavior results

in negative values of the turbulence working variable and ultimately causes solver

failure. Several modifications [88, 94] have been proposed for this model to make it

benign for higher-order discretizations across the slope discontinuity. In the present

work, we use the SA-neg model developed by Allmaras et al. [95]. We also fully cou-

ple the turbulence model equation with the mean flow equations and the RANS-SA

system is considered as a complete system of equations.

Another important task in a higher-order flow solver is robust and efficient con-

vergence to the steady-state solution. For a turbulent flow simulation, anisotropic

cells induce significant stiffness into the discrete equations and hamper solution con-

vergence. Consequently, special attention should be paid to the solution strategy for

these problems. In this work, we adopt a solution strategy originally developed for a

higher-order DG RANS solver [90], with minor modifications.

An outline of this chapter is as follows. In Section 4.1, the governing equations in-

cluding the negative variant of the SA model are described. We present the numerical

flux functions used for the fully-coupled RANS-SA system in Section 2.3. Section 4.3

briefly reviews the solution strategy used for the steady-state solution of turbulent

flows. Four numerical examples, including a turbulent flat plate, subsonic and tran-

sonic airfoils, and finally a multi-element configuration are presented in Section 4.4

to highlight the ability of higher-order methods to obtain a more accurate solution

on coarser meshes and also efficient convergence to the steady-state solution.

4.1 Governing Equations

In this work, the RANS equations are coupled to the one equation turbulence model

of Spalart and Allmaras (SA model) [19]. The original SA model admits only non-

negative values of the working variable. Recent studies in the context of higher-order

DG methods have found difficulties in the robust application of the Spalart-Allmaras

model due to non-smooth solution behavior of this turbulence model at the edge of the

flow boundary layer [89]. This behavior results in negative values of the SA working

variable and ultimately causes solver failure. These negative values are generated

by Gibbs phenomena that stem from employing high-order approximations across a
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discontinuity in slope. Alternatively, we use the negative variant of the SA model

proposed by Allmaras et al. [95]:

∂ρν̃

∂t
+ ∇ ·

(
ρν̃ ~V

)
− ∇ ·

(
(µ+ µ′fnρν̃) ∇ν̃

σ

)
= ρ (P −D) +

µ′

σ
cb2ρ∇ν̃ · ∇ν̃

− 1

σ
(ν + µ′ν̃) ∇ρ · ∇ν̃ (4.1)

where µ′ = 1000 is a scaling factor used to improve the convergence rate of the

implicit Newton-Krylov solver by making the turbulence working variable comparable

in magnitude to other physical quantities [96]. In Equation 4.1, P and D denote the

production and destruction of eddy viscosity which depend on the sign of the eddy

viscosity and are defined as:

P =




cb1 (1 − ft2) S̃ν̃ ν̃ ≥ 0

cb1 (1 − ct3)Sν̃ ν̃ < 0
, D =




µ′
(
cw1fw − cb1

κ2 ft2

) (
ν̃
d

)2
ν̃ ≥ 0

−µ′cw1

(
ν̃
d

)2
ν̃ < 0

(4.2)

In Equation 4.2, S̃ is the modified vorticity, which must always remain positive:

S̃ =




S + S̄ S̄ ≥ −cv2S

S +
S(c2

v2
S+cv3S̄)

(cv3−2cv2)S−S̄
S̄ ≤ −cv2S

(4.3)

S =

∣∣∣∣∣
∂u

∂y
− ∂v

∂x

∣∣∣∣∣ (4.4)

S̄ =
µ′ν̃fv2

κ2d2

and d is the distance to the closest wall. The functions fv1 and fv2 are :

fv1 =
χ3

χ3 + c3
v1

, fv2 = 1 − χ

1 + χfv1
, χ =

µ′ν̃

ν
(4.5)

and functions fn and ft2 are defined as:

fn =
cn1 + χ3

cn1 − χ3
, ft2 = ct3 exp

(
−ct4χ

2
)

(4.6)
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The destruction term coefficients are:

r = min

(
µ′ν̃

S̃κ2d2
, 10

)

g = r + cw2

(
r6 − r

)
(4.7)

fw = g

[
1 + c6

w3

g6 + c6
w3

]

The constant values used in this model are as follows: σ = 0.66, κ = 0.41, cv1 = 7.1,

cv2 = 0.7, cv3 = 0.9, cb1 = 0.1355, cb2 = 0.622, cw1 = cb1

κ2
+ 1+cb2

σ
, cw2 = 0.3, cw3 = 2.0,

ct3 = 1.2, ct4 = 0.5, cn1 = 16.

The conservative form of the compressible Reynolds Averaged Navier-Stokes (RANS)

equations combined with the SA-neg turbulence model equation can be re-arranged

as:
∂U

∂t
+ ∇ ·

(
~Fc (U) − ~Fv (U,∇U)

)
= S (U,∇U) (4.8)

The solution, flux and source term vectors for the coupled system of RANS-SA in

two-dimensions are given as:

U =




ρ

ρu

ρv

Et

ρν̃




, F x
c =




ρu

ρu2 + P

ρuv

u (Et + P )

ρuν̃




, F y
c =




ρv

ρuv

ρv2 + P

v (Et + P )

ρvν̃




F x
v =




0

τxx

τxy

uτxx + vτxy + cp

(
µ

P r
+ µT

P rT

)
∂T
∂x

1
σ

(µ+ µ′fnρν̃) ∂ν̃
∂x




, F y
v =




0

τyx

τyy

uτyx + vτyy + cp

(
µ

P r
+ µT

P rT

)
∂T
∂y

1
σ

(µ+ µ′fnρν̃) ∂ν̃
∂y




S =




0

0

0

0

ρ (P −D) + µ′

σ
cb2ρ∇ν̃ · ∇ν̃ − 1

σ
(ν + µ′ν̃) ∇ρ · ∇ν̃




(4.9)
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where Pr
T

is the turbulent Prandtl number, µT is the turbulent eddy viscosity and

the other variables are the same as those described for the Navier-Stokes equations

in Chapter 2. We assume that the working fluid is air with Pr
T

= 0.9; the turbulent

eddy viscosity is given as:

µT =




µ′ρν̃fv1 ν̃ ≥ 0

0 ν̃ < 0
(4.10)

Also, the total viscous stress tensor, τij , including the Boussinesq approximated

Reynolds stresses is found as:

τij = 2 (µ+ µT ) γ̇ij (4.11)

4.2 Flux Functions

Many turbulent flow solvers discretize the turbulence model equation in a loosely-

coupled manner, which treats the convection term as though it were a scalar transport

equation evolving with a prescribed velocity field. However, this treatment neglects

the fact that the velocity field, which convects the turbulence model quantities, is

heavily influenced by the turbulence model solution. Recent work by Burgess and

Mavriplis [45] demonstrated the importance of full coupling of the RANS equations

with the one equation SA model. In this section, we describe the numerical flux

functions used for the discretization of convective and viscous fluxes.

4.2.1 Convective Fluxes

The RANS equations closed with the SA turbulence model results in a total of five

equations in two spatial dimensions whose flux function must be re-derived. To use

a flux-difference splitting method, we need the eigenvalues of the Jacobian of the

normal convective flux for the system of RANS equations:

F n
c =




ρun̂x + ρvn̂y

(ρu2 + P ) n̂x + ρuvn̂y

ρuvn̂x + (ρv2 + P ) n̂y

u (Et + P ) n̂x + v (Et + P ) n̂y

ρuν̃n̂x + ρvν̃n̂y




(4.12)
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4.2. Flux Functions

It is possible to show that the eigenvalues of ∂F n
c

∂U
are:

λ1 = ~V · n̂− a λ2 = λ3 = λ4 = ~V · n̂ λ5 = ~V · n̂ + a (4.13)

in which a is the sound speed. We use the numerical flux function of Roe and Pike

[97] that was derived by Burgess and Mavriplis [45] for the RANS-SA system:

Fc (UL, UR) =
1

2
(Fc (UL) + Fc (UR) −D) (4.14)

where D is the dissipative component of the numerical flux, which is given as:

D =




∣∣∣λ̃2

∣∣∣ (ρL − ρR) + δ1∣∣∣λ̃2

∣∣∣ (ρuL − ρuR) + δ1ũ+ δ2n̂x∣∣∣λ̃2

∣∣∣ (ρvL − ρvR) + δ1ṽ + δ2n̂y∣∣∣λ̃2

∣∣∣ (Et,L −Et,R) + δ1H̃ + δ2 (ũn̂x + ṽn̂y)∣∣∣λ̃2

∣∣∣ (ρν̃L − ρν̃R) + δ1
˜̃ν




(4.15)

δ1 =


−

∣∣∣λ̃2

∣∣∣+

∣∣∣λ̃1

∣∣∣+
∣∣∣λ̃5

∣∣∣
2


 ∆P

ã2
+

∣∣∣λ̃5

∣∣∣−
∣∣∣λ̃1

∣∣∣
2

ρ̃

ã
(n̂x∆u+ n̂y∆v)

δ2 =


−

∣∣∣λ̃2

∣∣∣+

∣∣∣λ̃1

∣∣∣+
∣∣∣λ̃5

∣∣∣
2


 ρ̃ (n̂x∆u+ n̂y∆v) +

∣∣∣λ̃5

∣∣∣−
∣∣∣λ̃1

∣∣∣
2

∆P

ã

Note that in Equation 4.15, ∆ () = ()L − ()R and X̃ refers to quantity X evaluated

at the Roe state [59]. In particular, ˜̃ν is the turbulence model working variable at

Roe’s state. This flux function is computationally less expensive compared to the

implementation of Roe’s flux function available in our solver as it does not require

any matrix-matrix or matrix-vector multiplication.

4.2.2 Viscous Fluxes

As described in Chapter 2, the gradient at the face quadrature points can be calcu-

lated by the average of the two reconstructed gradients and that value is employed

to calculate the diffusive fluxes. However, this strategy fails for highly anisotropic

meshes. To shed light on this issue, we consider the Poisson equation, ∇2φ = S, as

a model of viscous discretization along with the method of manufactured solutions
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on anisotropic meshes. For this purpose, we create irregular anisotropic meshes on

a rectangular domain (x, y) ∈ [0, 1] × [0, 0.05] using the procedure that has been

described in detail by Diskin et al [98]. Figure 4.1 depicts the anisotropic mesh test

case with 20 × 20 cells. For generating the test case, the first step is stretching a

regular rectangular grid with (N + 1) × (N + 1) nodes toward the bottom line y = 0

using a stretching factor s and the maximum aspect ratio ARmax. The y-coordinates

of the horizontal grid lines in the top half of the domain are defined as:

yk = yk−1 +
s

k

ARmax · N (4.16)

in which

y0 = 0 , k = 1, 2, ..., N (4.17)

Then, irregularities are introduced by random shifts on interior nodes in vertical and

horizontal directions and finally each perturbed quadrilateral is randomly triangu-

lated with one of the two choices for its diagonal. In Figure 4.1 where N = 20, the

stretching factor and the maximum aspect ratio are set as s = 1.14 and ARmax = 100

to yield triangles whose aspect ratios vary approximately between 10 and 100. This

mesh consists of anisotropic triangles which are long in the x-direction and thin in

the y-direction.

In this study, these meshes with N = 10, 20, 40, 80 are used where the stretching

factors are s = 1.28, 1.14, 1.065, 1.0335, respectively. The s values are chosen so as

to keep the the length scale reduction in the y-direction the same as the x−direction.

Since the anisotropic meshes are used for anisotropic solutions, the function being

used for test purposes is manufactured to comply with the cells’ aspect ratio. The

anisotropic mesh of Figure 4.1 is stretched toward the horizontal line y = 0 using

Equation 4.16 which is strongly dependent on the y-coordinates. The variations in

the x-direction are introduced by an exponential function to yield isotropic behavior

in this direction and homogeneous boundary conditions:

φ (x, y) =
exp (x (x− 1) y (y − 0.05)) − 1

s
ARmax

+N
(
1 − 1

s

)
y

(4.18)

In this part, Equation 4.18 is used as the test function with geometric values

corresponding to the coarsest mesh (N = 10 and s = 1.28). Figure 4.1 depicts the
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4.2. Flux Functions

manufactured solution on one of the constructed anisotropic mesh along with its y-

derivative which is too large near the bottom line with highly stretched cells and is

reduced smoothly in the vertical direction compliant with cells’ aspect ratio.
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(a) Solution
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 / y

(b) y-derivative

Figure 4.1: Anisotropic solution and derivative on a stretched grid with 20 × 20 cells

Figure 4.2 shows the eigenvalues of the global Jacobian matrix for a second-order

discretization of Poisson’s equation on this mesh. It is worth-mentioning that the

global Jacobian matrix of a linear problem is independent of the solution. Note

that pure averaging of the two reconstructed gradients for viscous flux discretization

leads to the appearance of eigenvalues in the right-half plane that has potential to

make the solution procedure unstable. However, a jump term which comes from the
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discontinuous solution at the Gauss points can be added to the face gradient [99]:

(∇φ)F =
1

2
((∇φ)R + (∇φ)L) +

α

|~rij .n̂| (φL − φR) n̂ (4.19)

where α is an arbitrary value (we use α = 1 ), ~rij is the vector that connects the

reference points of the two control volumes that share the face and n̂ is the outward

unit normal vector at the Gauss point. The jump term has the role of stabilizing by

damping high-frequency errors. This can also be seen in Figure 4.2 as adding this

term pushes all the eigenvalues to the left-half plane [100]. We generalize this idea

to the complicated case of the non-linear RANS equations on anisotropic meshes and

use Equation 4.19 to compute the gradients involved in the viscous fluxes of Equation

4.9.
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Figure 4.2: Comparison of eigenvalue spectra for the discretization of viscous fluxes
on anisotropic meshes

4.3 Solution Method

In the context of RANS simulations with finite volume solvers, it is common to use

explicit Runge-Kutta time-stepping even for the steady-state solution of the flow field.

However, these methods slow down the convergence significantly unless combined

with multigrid solution techniques [101]. Alternatively, we use the implicit pseudo

time-stepping method described in Section 2.5 to accelerate the convergence of our

flow solver: (
I

∆t/A
+
∂R

∂Ū

)
δU = −R

(
Ūn
)

(4.20)
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For the sake of brevity, we re-write this equation as:

L δUi = −R
(
Ūn
)

(4.21)

The convergence to the steady-state solution can be posed as an optimization

problem where we search for the minimum of an objective function. We define our

objective function as:

f
(
Ũ
)

=
1

2

∣∣∣Rt

(
Ũ
)∣∣∣

2
=

1

2
RT

t

(
Ũ
)
Rt

(
Ũ
)

(4.22)

where the unsteady residual is defined as:

Rt

(
Ũ
)

=
I

∆t/A

(
Ũ − Ūn

)
+R

(
Ũ
)

(4.23)

In other words, we seek a trial solution, Ũ , that minimizes the norm of the unsteady

residual vector. Multiplying both sides of Equation 4.21 by the transpose of its

left-hand side gives

δUT LT L δU = −δUT LT R
(
Ūn

i

)
= −δUT ∂f

∂Ũ

∣∣∣∣∣
Ūn

> 0 (4.24)

where the inequality comes from the fact that the left-hand side is the dot product

of a non-zero vector with itself. Considering that

δUT ∂f

∂Ũ

∣∣∣∣∣
Ūn

< 0, (4.25)

δU is a descent direction for the scalar function f
(
Ũ
)
. As a result, we can incorporate

a line search algorithm with the implicit solver to enhance the robustness. For this

purpose, an under-relaxation factor, ωn , is used at each iteration to update the

solution:

Ūn+1 = Ūn + ωnδU (4.26)

The under-relaxation factor can be found in a way to guarantee sufficient decrease in

the norm of the unsteady residual vector such that
∥∥∥Rt

(
Ũ
)∥∥∥

2
<
∥∥∥R

(
Ūn
)∥∥∥

2
. However,
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Ceze and Fidkowski showed that relaxing the sufficient decrease condition to

∥∥∥Rt

(
Ũ
)∥∥∥

2
< κLS

∥∥∥R
(
Ūn
)∥∥∥

2
(4.27)

with κLS > 1 is helpful in accelerating the convergence of a fully coupled RANS solver

[90]. In our work, we use κLS = 1.2 as the relaxation parameter for the sufficient

non-increase condition. We also need to choose the under-relaxation factor so as to

ensure a physical solution at the next iteration. Note that the physicality of the

solution state is verified by checking the positivity of density and pressure at all

quadrature points. Therefore, we start with the initial guess of ωn = 1 and check

if the new solution state is physical and satisfies the relaxed decrease condition. If

not, we halve the under-relaxation factor every time until the both conditions are

satisfied.

For time accurate solutions, the time step in Equation 4.20 must be the same for

all control volumes. However, local time-stepping with a global CFL number can be

used when we seek the steady-state solution to accelerate the convergence process.

The control volume wise time steps at each iteration are obtained as:

∆tni =
CFLn · hi

λmax, i
(4.28)

where λmax, i is the eigenvalue of the convective flux Jacobian with the largest mag-

nitude obtained from Equation 4.13, and hi is a characteristic size for the control

volume. In the first stages of the computations, the initial solution does not satisfy

the boundary conditions and thus strong transients take place in the solution. It is

important to keep the global CFL number small at these stages to make the solution

follow a physical path. As we proceed, the CFL number must be increased to make

the convergence to the steady-state solution faster. Therefore, an evolution strategy

is required for the CFL from its initial value to a large value such that Equation 4.20

becomes Newton’s method and the solution approaches the steady state. We use the

exponential progression with under-relaxation strategy proposed by Ceze and Fid-

kowski [96] in which the size of CFL growth is tuned by the under-relaxation factor.

This strategy can be summarized as:
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CFLn+1 =





β · CFLn ωn = 1

CFLn ωmin < ωn < 1

κ · CFLn ωn < ωmin

(4.29)

In our work, we set the parameters to β = 1.5, κ = 0.1 and ωmin = 0.01. Note

that when we search for the appropriate under-relaxation factor which satisfies both

the relaxed sufficient decrease and physicality conditions, we terminate the search

process for ωn < ωmin and cut the global CFL number according to Equation 4.29.

4.4 Results

In this section, we present our results for four fully turbulent cases: subsonic flow over

a flat plate, subsonic flow over the NACA 0012 airfoil, transonic flow over the RAE

2822 airfoil and flow around a high-lift multi-element configuration [102]. Our results

include verification of the turbulence model discretization, accuracy advantages ob-

tained by higher-order discretizations and the convergence behavior of each case. For

all these test cases, the no-slip and zero turbulent viscosity boundary conditions on

the walls are applied by adding an extra constraint to the least-squares system for

solution reconstruction for each boundary Gauss point. In addition, the adiabatic

wall condition is applied weakly by zeroing the heat flux components in Equation 4.9

for wall boundary faces. For inflow, we specify the values of total pressure, velocity

components and turbulent viscosity while the static pressure is the only pre-specified

condition at the outflow; other quantities are obtained from solution reconstruction.

No point vortex correction is done for the far-field boundaries. Also, the dynamic

viscosity is obtained by Sutherland’s law.

4.4.1 High Reynolds Number Flow Over a Flat Plate

For this test case, we consider the 2D flat plate verification case from the NASA

Turbulence Modeling Resource (TMR) website [85]. Figure 4.3 shows the problem

geometry and boundary conditions for this problem with Re = 5×106 and Ma∞ = 0.2.

The range of the computational domain in the x-direction is [−0.33, 2] with the

leading edge of the flat plate at x = 0. The size of the domain in the y-direction is 1.

At y = 0, the symmetry boundary condition is applied for −0.33 ≤ x ≤ 0 weakly by
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forcing the normal derivatives to be zero in the flux vectors and the no slip adiabatic

boundary condition is imposed for 0 ≤ x ≤ 2. Note that this causes a singularity

in the solution at the leading edge. The free-stream value of the turbulent working

variable is ν̃/ν∞ = 3.0.

X

Y

-0.5 0 0.5 1 1.5 2

0

0.5

1
farfield Reimann BC

outflow

symmetry

inflow

adiabatic solid wall

Figure 4.3: Turbulent flat plate test case mesh and geometry

For this test case, we generated a sequence of nested grids with quadrilateral cells.

The coarsest mesh, which has 2040 cells has 61 nodes in the x- and 35 nodes in the

y-direction. The grid is highly stretched near the wall such that the height of the

first cell is 9.2 × 10−6. Considering that our higher-order discretization employs a

larger stencil for the Taylor series expansion, having anisotropic cells near singularities

causes instability in the solution process. Therefore, we cluster the cells near the

leading edge to produce nearly isotropic cells (AR = O(1)) in that region. Finer

meshes are obtained by uniform refinement of the coarsest mesh.

Figure 4.4 shows the skin friction along the wall and turbulent viscosity at x = 0.97

near the wall for second- to fourth-order discretizations on a mesh with 32, 640 control

volumes. These profiles are converging to the grid-converged values obtained by

the FUN3D solver from NASA Langley [85], which uses the SA-Neg model, on a

much finer mesh. As expected, higher-order discretizations lead to more accurate

estimates of the flow field on the same mesh. Closer views of the plots show that

third- and fourth-order results are closer to the expected values. In addition, the

fourth-order results for 32, 640 control volumes are comparable with second-order

results on the next finer mesh (n.DoF = 130, 560). Note that in the context of

finite volume methods, the number of degrees of freedom (n.DoF) per equation is

defined as the number of control volumes in the mesh independent of the order of
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accuracy. These figures verify the correctness of our RANS flow solver and also show

the accuracy advantages obtained by employing higher-order discretizations.

We also examine the convergence of friction drag coefficient on the sequence of

systematically refined meshes for different orders. Table 4.1 shows the values of CD on

different meshes and error in the drag coefficient, defined as CD, Err = |CD − CD, Ref |.
Note that the reference value is obtained by fourth-order discretization on the finest

mesh with 130, 560 control volumes. As expected, the error decreases by increasing

the order of accuracy on the same mesh. Also, the drag values converge faster using

a higher-order discretization so that the error associated with fourth-order on the

second finest mesh is smaller than the error of the second-order scheme on the finest

mesh.

n.DoF
CD CD,Err

2nd 3rd 4th 2nd 3rd 4th
2040 0.003617 0.002163 0.002329 7.54 × 10−4 7.00 × 10−4 5.34 × 10−4

8160 0.002979 0.002803 0.002849 1.16 × 10−4 6.0 × 10−5 1.4 × 10−5

32640 0.002873 0.002862 0.002862 1.0 × 10−5 2 × 10−6 1 × 10−6

130560 0.002865 0.002864 0.002863 2 × 10−6 1 × 10−6 0

Table 4.1: Friction drag coefficient of turbulent flat plate for different orders and
mesh sizes

To investigate the iterative convergence properties of our flow solver, relevant

parameters have been tabulated in Table 4.2 for each order and three mesh sizes. This

table gives the number of linear and non-linear iterations, total CPU time on a single

core of an i7-4790 (3.60 GHz) CPU, and total number of work units until convergence

(CPU time divided by the time of a single residual evaluation). In addition, the

time for residual evaluation, Jacobian matrix formation and linear system solution

averaged over the non-linear iterations is listed. Note that the Jacobian matrix is

calculated to full order to enhance the convergence speed of the solver. The initial

solution is the uniform free stream condition everywhere and the linear system solver

is GMRES preconditioned with ILU(2). The size of the Krylov subspace is 100 for

all the cases and the relative residual of the linear solver is ηl = 10−3. Quotient

minimum degree (QMD) re-ordering is applied at the time of preconditioning. The

convergence process terminates when the L2-norm of the residual vector drops below

10−8.

An interesting observation is that the number of non-linear iterations is constant
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Figure 4.4: Distribution of wall friction factor and turbulent viscosity for flat plate
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independent of the order on the same mesh and the number of linear iterations

decreases with increasing order. With mesh refinement, the number of non-linear

iterations slightly increases although considerably more linear iterations are required.

As expected, the total time of computation increases with mesh and order refinement.

It should be noted that the time of residual evaluation and Jacobian matrix formation

are fully scalable as they increase by a factor of 4 in each level of mesh refinement.

However, the time spent to solve the linear system does not linearly increase with

the number of degrees of freedom. This is also expected since mesh refinement leads

to a larger linear system with larger condition number while the size of the Krylov

subspace is fixed.

Figure 4.5 shows the convergence history for the flat plate test case on a mesh

with 32, 640 cells. The drop in the L2-norm of the residual vector in terms of non-

linear iteration count is very similar for different orders. However, the difference can

be found by considering the numbers of work unit. For all meshes, the number of

work units is almost the same between second- and third-order and is about twice as

large for fourth-order. This can be explained by the extra time required to form the

Jacobian matrix with more non-zeros and factorize it for preconditioning in the case

of fourth-order.

Order n.DoF
No. of CPU Work Average Time (Sec.)

iterations Time
Unit

Res. Jac. LS
Linear Non-linear (Sec.) Eval. Form. Solver

2nd
2, 040 291 28 6.08 1330 0.004 0.112 0.099
8, 160 696 29 27.28 1690 0.016 0.411 0.510
32, 640 2701 31 207.03 2840 0.073 1.644 4.954

3rd
2, 040 155 28 16.68 1770 0.009 0.274 0.311
8, 160 318 29 74.64 2030 0.036 1.071 1.466
32, 640 668 31 366.17 2430 0.150 4.327 7.323

4th
2, 040 98 28 31.70 1810 0.017 0.347 0.772
8, 160 269 29 164.82 3630 0.045 1.379 4.256
32, 640 576 31 865.84 4850 0.178 5.653 22.078

Table 4.2: Convergence properties of turbulent RANS solver for high Reynolds num-
ber flat plate
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Figure 4.5: Convergence history of finite volume solver for high-Reynolds turbulent
flat plate for n.DoF = 32,640

89



4.4. Results

4.4.2 Subsonic Flow Over a NACA 0012 Airfoil

The second test case considered is the subsonic flow over a NACA 0012 airfoil at

angle of attack α = 10◦; the Mach number based on the free stream condition is

Ma∞ = 0.15 and the Reynolds number based on the airfoil chord is Rec = 6 × 106.

This is also among the verification test cases of the TMR, which documents results

obtained by established codes for different families of structured meshes. We use the

meshes with the smallest spacing near the trailing edge (meshes of Family II [85])

where the solution is singular. We also convert the structured quad meshes into hybrid

meshes comprised of a few quad layers near the wall and triangles (obtained by split-

ting quads) in other regions to have truly unstructured meshes. Computations are

performed on a sequence of four meshes with 6, 272, 25, 088, 100, 352, 401, 408 control

volumes. Figure 4.6 shows an example of these meshes. No-slip adiabatic boundary

conditions are imposed on the airfoil surface and far-field conditions (inflow/outflow

based on the direction of velocity vector) are applied on the outer boundary located

500c away from the airfoil. Again, the free-stream value of the turbulent working

variable is ν̃/ν∞ = 3.0.

Figure 4.6: Example of unstructured hybrid meshes used for subsonic flow over NACA
0012 airfoil with 25, 088 degrees of freedom

Figure 4.7 shows the contours of turbulence working variable obtained by second-

and fourth-order discretizations on a hybrid mesh with 25, 088 degrees of freedom.

The fourth-order method resolves the wake region more accurately and provides a

smoother distribution of scaled turbulent viscosity.

Figure 4.8 shows the distribution of pressure and friction coefficients on the wall

for second- and fourth-order methods using a mesh with 100, 352 cells. For both
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methods, the values are consistent with the distributions obtained by FUN3D on a

super fine mesh (with about 1M cells); fourth-order gives more accurate values near

the leading and trailing edges as expected. Note that these results are obtained by

employing a curvilinear coordinate system for highly anisotropic cells near the wall

with the procedure explained in Section 3.3.

Table 4.3 gives the values of pressure drag, viscous drag and lift coefficients on

different meshes for all discretization orders using curvilinear and Cartesian coordi-

nate systems. This table highlights the importance of accurate reconstruction on the

final solution obtained by the solver. Comparing the values of coefficients with the

reference values reported by TMR in the limit of mesh refinement reveals the fact

that reconstruction in a curvilinear coordinate system leads to grid converged values

considerably faster. As shown in Table 4.3a, coefficients of lift and drag converge

to the reference values with mesh and order refinement. Also, the convergence rate

increases for higher-order discretizations. Note that the second- and third-order re-

sults on the finest mesh and fourth-order result on the second finest mesh are very

close to the reference values. On the other hand, using a Cartesian coordinate system

gives poor output values, particularly for second- and fourth-order, even on very fine

meshes (Table 4.3b). Although the values of drag and lift coefficients may converge

to the reference values on super fine meshes, this is in contrast with the motivation of

higher-order methods, which is supposed to produce more accurate results on coarser

meshes.

Similarly, parameters related to the iterative convergence of our flow solver is

listed in Table 4.4. The linear solver settings are the same as those reported for

the flat plate test case and initial solution is set to uniform free stream values for

all cases. The number of work units changes more slowly with mesh refinement for

third-order than for second- and fourth-order. This comes from the larger number of

linear iterations required for these cases and is related to the structure of Jacobian

matrix. For all the cases, the solver converges in a reasonable number of non-linear

iterations and work units although the linear solver is not perfectly scalable.

Figure 4.9 shows the convergence histories in terms of non-linear iteration count

and number of work units for a mesh with 100, 352 control volumes.
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n.DoF CD,p CD,v CL

Reference 0.00606 0.00620 1.0910

2nd order
6, 272 0.02748 0.00998 1.0466
25, 088 0.01095 0.00704 1.0778
100, 352 0.00685 0.00623 1.0881
401, 408 0.00614 0.00617 1.0908

3rd order
6, 272 0.00019 0.00220 0.9432
25, 088 0.00380 0.00556 1.0817
100, 352 0.00587 0.00615 1.0877
401, 408 0.00607 0.00619 1.0904

4th order
6, 272 0.00090 0.06200 0.5813
25, 088 0.00544 0.00582 1.0951
100, 352 0.00615 0.00623 1.0905

(a) Curvilinear coordinates

n.DoF CD,p CD,v CL

Reference 0.00606 0.00620 1.0910

2nd order
6, 272 0.02221 0.00084 1.1384
25, 088 0.00443 0.00103 1.1765
100, 352 0.00204 0.00207 1.1625
401, 408 0.00321 0.00417 1.1353

3rd order
6, 272 0.00443 0.00818 0.8166
25, 088 0.00740 0.00789 1.0199
100, 352 0.00644 0.00662 1.0776
401, 408 0.00612 0.00619 1.0899

4th order
6, 272 0.03832 0.00477 0.6857
25, 088 0.01084 0.00862 1.0257
100, 352 0.00749 0.00695 1.0724

(b) Cartesian coordinates

Table 4.3: Convergence of drag and lift coefficients with mesh refinement for subsonic
flow around NACA 0012

Order n.DoF
No. of CPU Work Average Time (Sec.)

iterations Time
Unit

Res. Jac. LS
Linear Non-linear (Sec.) Eval. Form. Solver

2nd
6, 272 837 36 52.72 2140 0.025 0.61 0.82
25, 088 2521 43 301.72 3040 0.10 2.37 4.50
100, 352 7281 46 2126.52 5260 0.40 9.88 35.64

3rd
6, 272 662 50 88.10 2260 0.039 0.92 0.77
25, 088 2210 56 486.05 3270 0.15 3.83 4.39
100, 352 6638 47 2432.71 4010 0.60 14.70 36.04

4th
6, 272 389 55 203.19 4000 0.05 1.31 2.72
25, 088 1269 46 777.48 3810 0.20 5.29 11.12
100, 352 11673 76 8306.67 10220 0.81 21.25 85.30

Table 4.4: Convergence properties of turbulent RANS solver for subsonic flow over a
NACA 0012 airfoil
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(a) Second-order solution

(b) Fourth-order solution

Figure 4.7: Distribution of scaled turbulence working variable for subsonic flow over
NACA 0012 on a mixed-element mesh (n.DoF = 25, 088)

4.4.3 Transonic Flow Over a RAE 2822 Airfoil

In this test case, we consider a transonic, turbulent flow over a RAE 2822 airfoil.

The free stream Mach number is Ma∞ = 0.73, the Reynolds number based on the

chord is Rec = 6.5 × 106 and the angle of attack is α = 2.79◦. For this problem,

which is the same as case 9 in the experimental investigation of Cook et al. [103],

a shock wave appears on the upper surface of the airfoil and interacts with the

turbulent boundary layer, forming a small recirculation behind the shock. As a

result, the convergence to the steady-state solution is more challenging, particularly

for a higher-order discretization. This test case can examine the robustness of our

solver for non-trivial flow situations with the presence of shock and singularities.

For this test case, we use a family of C-meshes consisting of triangles and quads

with three levels of refinement (four levels for second-order). The far-field boundary

is placed 20c away from the airfoil surface and adiabatic no-slip conditions are applied

on the wall. The flow is assumed to be fully turbulent with free stream turbulent

viscosity of ν̃/ν∞ = 3.0.
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Figure 4.8: Distribution of surface pressure and friction coefficients for second- and
fourth-order and comparison with FUN3D
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Figure 4.9: Convergence history of finite volume solver for subsonic flow over NACA
0012 for n.DoF = 100,352
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Figure 4.10 shows the contours of pressure and scaled turbulence working variable

for the third-order solution on a mesh with 35, 840 control volumes. Note that the

shock wave and small recirculation bubble behind the shock have been captured

automatically without any change in the flux functions or using slope limiters. In

addition, the turbulence working variable predicted by the SA-neg model is largest

in the wake region and negative at the edge of boundary layer.

The distributions of pressure and friction coefficients obtained by different orders

of discretizations are shown in Figure 4.11. There is a good match, including the

location of the shock on the upper surface, between our computed pressure coefficients

and experimental data. However, the difference between second- and higher-order

values is less clear.

Figure 4.12 shows the convergence of drag and lift coefficients for this test case

with mesh refinement. Similar to the other cases, the advantage of higher-order

methods is observed as they converge faster to grid converged values. In addition,

the error associated with fourth-order discretization is smaller on coarser meshes

compared to second- and third-order discretizations.

As described earlier, the initial condition for the previous test cases were the uni-

form free stream states. However, the presence of shock wave in this case makes the

convergence of our iterative solver slower as a considerable number of iterations are

required to locate the shock properly. On the other hand, starting from a good ini-

tial guess, which gives the location of shock approximately, can help the convergence

and even robustness in some cases. As is common in the higher-order community, a

lower-order solution can be used as the initial state for the higher-order discretiza-

tions. Figure 4.13 shows the convergence history of our solver for different conditions

on a mesh with 35, 840 degrees of freedom. Note that starting directly from free

stream values leads to about the same number of non-linear iterations for second-

and third-order and non-convergence for fourth-order. Alternatively, starting from

the converged second-order solution results in fast convergence in a small number of

iterations and work units. The iterative convergence properties tabulated for higher-

order discretizations in Table 4.5 are for the conditions started from the second-order

solution on the same mesh. Note that for the second-order cases, more iterations and

work units are necessary compared to the previous cases, which illustrates the chal-

lenge in computing the solution of this case. To obtain a higher-order solution on the

same mesh, only a few more work units are required which are perfectly affordable
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(a) Pressure

(b) Turbulence working variable

Figure 4.10: Third-order solution of transonic flow over RAE 2822 on a mixed-element
mesh (n.DoF = 35, 840)
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Figure 4.11: Distribution of surface pressure and friction coefficients for different
orders and comparison with experiment
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Figure 4.12: Convergence of drag and lift coefficients with mesh refinement for tran-
sonic flow around RAE 2822
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for grid converged mesh resolutions.

Order n.DoF
No. of CPU Work Average Time (Sec.)

iterations Time
Unit

Res. Jac. LS
Linear Non-linear (Sec.) Eval. Form. Solver

2nd
8, 960 3000 60 123.24 3460 0.035 0.87 1.07
35, 840 13853 125 1429.55 9460 0.15 3.41 7.32
143, 360 27105 146 9126.80 14340 0.63 13.58 45.98

3rd
8, 960 1164 44 104.77 1700 0.06 1.34 0.88
35, 840 2864 35 415.20 1810 0.23 5.25 6.29
143, 360 12167 59 4706.12 4990 0.94 21.24 55.65

4th
8, 960 628 32 130.68 1560 0.084 1.91 2.06
35, 840 1831 36 696.62 2220 0.31 7.55 11.35
143, 360 6022 55 5840.08 4560 1.28 30.76 71.38

Table 4.5: Convergence properties of turbulent RANS solver for transonic flow over
a RAE 2822 airfoil

4.4.4 High-lift Multi-element Airfoil

As our final test case, we consider turbulent flow over the three-element airfoil MDA

30P30N configuration. The free stream Mach number is Ma∞ = 0.2, the Reynolds

number is Re = 9 × 106 and the angle of attack is α = 16◦. The geometry of the

multi-element airfoil, which consists of a leading edge slat, a main center element and

a trailing edge flap, has a number of sharp corners. This is considered a hard test

case in 2D because of the complex geometry, various flow structures and high angle

of attack [104, 105].

For this test case, we only demonstrate the capability of our flow solver for one

single mesh with 45, 802 mixed cells, Figure 4.14. It is known that higher-order

solution reconstruction on anisotropic meshes near singularities leads to solver failure

even for simple geometries [106]. As a result, the mesh consists of isotropic cells near

the sharp corners. Other cells that are sufficiently far from the sharp corners and

still close to the walls have high aspect ratio. The new curvilinear coordinate is only

constructed for these cells with high aspect ratio; isotropic cells still use the Cartesian

coordinate system. Figure 4.14c shows the choice of reconstruction coordinate for

control volumes near the slat.

Figure 4.15 shows the contours of the turbulence working variable for a fourth-
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Figure 4.13: Convergence history of finite volume solver for transonic flow over RAE
2822 for n.DoF = 35,840
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(a)

(b) (c)

Figure 4.14: Mixed element mesh illustration for the high-lift three-element configu-
ration

Figure 4.15: Fourth-order solution of turbulence working variable over multi-element
airfoil on a mixed-element mesh (n.DoF = 45, 802)
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order discretization. Note that the slat wake continues all the way over the main

element and flap and joins the wakes of the two other elements. Also, Figure 4.16

compares the distribution of pressure coefficient obtained by different orders of dis-

cretizations with experimental data available in Ref. [92]. As seen, there is a good

match between the computed pressure coefficients and experimental data.
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Figure 4.16: Distribution of surface pressure coefficient over multi-element airfoil

Finally, the convergence history of this test case is shown in Figure 4.17. Note

that order sequencing has been used to accelerate the convergence to the steady-

state solution. For this test case, we solve the linear system of Equation 4.20 with

the tighter tolerance of ηl = 10−6 to obtain a more accurate solution update at each

non-linear iteration as suggested by Ceze and Fidkowski [90]. The solver exhibits

remarkable robustness for this complex test case as the solutions of all orders of

accuracy converge in a small number of non-linear iterations.
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Figure 4.17: Convergence history of finite volume solver for flow over multi-element
airfoil
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Chapter 5

Adaptive Mesh Refinement and

Order Enrichment

As noted, higher-order discretizations of fluid dynamic equations have received a great

deal of attention due to their potential advantages in obtaining more accurate solu-

tions with less cost. However, higher-order accuracy is only obtained in the smooth

regions of the solution where there is no discontinuity in the solution or gradient. In

aerodynamic applications, several sources of discontinuities such as shocks, contact

discontinuities, and the turbulence working variable at the edge of boundary layer

(e.g., in SA model), can deteriorate the order of accuracy in non-smooth regions and

also cause solver failure in some cases. This motivates the idea of simultaneous mesh

refinement (h-refinement) and order enrichment (p-enrichment) in higher-order com-

pressible flows solvers. In other words, the order of solution approximation can be

increased in those parts of the domain where the solution is smooth whereas the mesh

resolution is enhanced in non-smooth regions in which a lower-order discretization is

employed.

For compressible flow simulations, the combination of such a strategy with output-

based adaptation (known as hp-adaptation) has been used by several Discontinuous

Galerkin (DG) solvers where the number of degrees of freedom increases rapidly with

the order of discretization. In this way, it is possible to optimally place degrees of

freedom within a problem and achieve required accuracy with minimal costs [107, 108,

44]. In addition, it has the advantage of solver robustness by employing a first-order

discretization of flow field variables near a shock wave without using slope limiters or

artificial dissipation [109, 110]. hp-adaptive methods have been successfully applied

to the other variants of Galerkin-based schemes such as hybridized-DG [111] and

Petrov-Galerkin [112, 113] and also the correction procedure via reconstruction (CPR)

method [114].

In contrast to compact schemes such as DG and its variants, higher-order finite
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volume discretizations extend the stencil to obtain a more accurate estimate of the

solution. In such schemes, there is no coupling between the number of degrees of

freedom and order of discretization as the number of control volumes remains con-

stant on a mesh with a fixed number of elements regardless of the order of accuracy.

Nevertheless, a higher-order polynomial for solution approximation requires a larger

number of derivatives to reconstruct at each iteration [54]. Also, in the case of using

an implicit time advance scheme for the convergence to the steady-state solution,

higher-order methods lead to a larger number of non-zero entries in the Jacobian ma-

trix. This increases the memory usage and computational cost due to a larger storage

requirement and also solving a denser linear system [49, 7] which must be precondi-

tioned by a factorization method (e.g., Incomplete LU). As a result, hp-adaptation

methodology, which has originally been designed for compact discretization schemes,

has certain advantages for being used in higher-order finite volume flow solvers. In

this way, the extra number of derivatives are only reconstructed in those regions

where needed and the Jacobian matrix becomes sparser with a smaller bandwidth.

Furthermore, this strategy is capable of automatic limiting for flows with inherent

discontinuities as we can start from a lower-order solution everywhere and increase

the order of polynomial in smooth regions while the mesh is refined near disconti-

nuities. This can be viewed as an alternative to typical limiting approaches where

the slope limiter designed to be active only near discontinuities may deteriorate so-

lution accuracy even in smooth regions [55] and/or hamper the convergence to the

steady-state due to non-differentiability [115].

This chapter discusses the development of an hp-adaptive unstructured finite vol-

ume solver and its application to two-dimensional compressible flow problems ranging

from inviscid flows governed by the Euler equations to viscous turbulent flows gov-

erned by the RANS equations and the Spalart-Allmaras turbulence model. In par-

ticular, we adapt the mesh resolution and discretization order based on an estimate

of error in the computed solution at each level of refinement.

The quality of the adaptive schemes relies on the accuracy of error estimates. The

conventional method of adaptation is based on feature-based criteria that highlight

the distinctive features such as shock waves and boundary layers in the flow field [116,

117, 118]. This approach, which is simple and effective in some CFD applications,

requires trial and error to determine the appropriate flow features and thus fails to

provide a general and robust error estimate [119, 120]. Alternatively, the adaptation
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procedure can be carried out using residual-based approaches in which the truncation

error of the fluid flow quantities constructs the adaptation criteria [121, 122, 123].

Moreover, output-based adaptation criteria based on solutions to the so-called adjoint

(dual) problem, which is derived for an output of interest, has become very mature

in recent years [124]. In this type of error estimates, the solution of the adjoint

problem is multiplied by the local contribution of the truncation error estimate to

provide information about the interaction of the error in different components of the

solution [125] and subsequently those locations that require more resolution (typically

h-refinement) for a more accurate estimate of the output quantity [126, 127]. It has

been shown that the inclusion of the adjoint solution improves the effectiveness of

the adaptation procedure over the traditional residual-based approaches [120]. These

techniques have been used to perform adaptive mesh refinement (only h-refinement)

in second-order unstructured finite volume methods for inviscid [128] and viscous

laminar flows [120]. In addition, they have been used in the context of DG methods

for inviscid [41], viscous laminar [129] and turbulent RANS [130, 89, 88] simulations.

In our work, we use residual-based and adjoint-based error estimation methods for

hp-adaptation in our unstructured finite volume solver. In the former approach, we

employ a higher-order residual operator to estimate the truncation error of a lower-

order discretization scheme. The magnitude of the estimated truncation error is used

as a local error indicator for h- or p-refinement. For the adjoint-based hp-adaptation,

we compute the discrete adjoint solution obtained by a single linear system solve at

each refinement level and multiply the adjoint solution by the higher-order estimate

of the truncation error to find a different error indicator. The adjoint problem is

formed by evaluating one order higher operators based on the lower-order solution.

In either approach, a certain fraction of control volumes contribute most to the total

error are flagged for refinement. The decision for h-refinement versus p-enrichment

is based on local smoothness of the primal problem. It is worth mentioning that

we allow for non-conforming interfaces (i.e., hanging nodes) in the mesh once we do

the h-refinement to be able to handle triangles and quadrilaterals in the same way,

including meshes containing both.
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5.1 Error Estimation

As mentioned, a reliable error indicator is required for any adaptation procedure.

For residual-based adaptation, a local estimate of the error in flow field quantities is

used whereas such an estimate is weighted by the solution of an adjoint problem for

output-based adaptations. In our work, we use a higher-order operator to obtain an

estimate of the truncation error.

Consider the following continuous non-linear problem for which U is the exact

solution:

R (U) = 0 (5.1)

A lower-order discrete approximation of the exact solution, Up−1, satisfies the lower-

order discrete non-linear residual as:

Rp−1 (Up−1) = 0 (5.2)

The exact truncation error for the lower-order discrete problem is defined as the

amount by which the discrete lower-order solution does not satisfy the continuous

PDE. Such an error property can be estimated by applying a higher-order discrete

operator, Rp, on the lower-order solution [125, 131, 132]:

R (Up−1) ≈ Rp (Up−1) (5.3)

Therefore, the local contribution of control volume i to the total error can be obtained

by the norm of the estimated truncation error in the corresponding control volume:

ǫi = |Rp (Up−1)|i (5.4)

For adjoint-based adaptation, the error involved in the computation of an out-

put functional based on a lower-order solution, Jp−1 (Up−1), is estimated. For this

purpose, a higher-order estimate of the output functional based on a higher-order so-

lution can be obtained by expanding a Taylor series expansion about the lower order

solution projected to the higher-order space, Up−1→p. Note that in the context of fi-

nite volume methods, the lower-order solution containing the control volume averages

can be identically mapped into the higher-order space (Up−1→p = Up−1). Therefore,
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the higher-order functional can be expanded as:

Jp (Up) = Jp (Up−1) +

(
∂Jp

∂Up

)

Up−1

(Up − Up−1) + ... (5.5)

where Jp (Up−1) and
(

∂Jp

∂Up

)
Up−1

are the higher-order functional and its sensitivity with

respect to the higher-order solution both evaluated at the lower-order solution state.

Considering that a higher-order solution is not in hand, a Taylor series expansion can

be used for the higher-order residual to eliminate (Up − Up−1) in Equation 5.5:

Rp (Up) = Rp (Up−1) +

(
∂Rp

∂Up

)

Up−1

(Up − Up−1) + ... (5.6)

The higher-order solution satisfies its corresponding discrete operator, Rp (Up) = 0.

So Equation 5.6 can be re-arranged to solve for the higher-order unknown solution

as:

(Up − Up−1) ≈ −
(
∂Rp

∂Up

)−1

Up−1

Rp (Up−1) (5.7)

Substituting Equation 5.7 into Equation 5.5 yields the following expression for the

estimate of the error in the functional:

Jp (Up) − Jp (Up−1) ≈ −
(
∂Jp

∂Up

)

Up−1

(
∂Rp

∂Up

)−1

Up−1

Rp (Up−1) (5.8)

Next, the higher-order discrete adjoint solution is defined as the variable Zp such

that: (
∂Rp

∂Up

)T

Up−1

ZP =

(
∂Jp

∂Up

)T

Up−1

(5.9)

Note that both sides of Equation 5.9, which show the sensitivity of the higher-order

residual and functional to the higher-order solution, are evaluated at the available

lower-order solution. The functional error can be re-written in terms of the discrete

adjoint solution as:

Jp (Up) − Jp (Up−1) ≈ −ZT
p Rp (Up−1) (5.10)

For adaptation purposes, we require a local error indicator. Therefore, the magnitude

of the contribution to the functional error from a particular control volume i can be
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approximated as:

ǫi =
∣∣∣ZT

p Rp (Up−1)
∣∣∣
i

(5.11)

5.2 Adaptation Methods

In our hp-adaptive process, we use both error indicators of Equation 5.4 and 5.11 to

compare the effectiveness of the two estimates. Following Ceze and Fidkowski [108],

we flag a certain percentage of control volumes, fadapt, with the largest error indicators

for refinement at each step of the adaptive procedure. For this purpose, a sorted list

of the control volumes based on the value of their corresponding error indicator from

the highest to the lowest is created. A loop over the list is executed and the control

volumes are flagged for p-enrichment or h-refinement procedure where appropriate

until the pre-specified target (NCV × fadapt) is reached. This ensures that only the

control volumes with the highest error magnitude are refined for highly non-uniform

error distributions and thus those parts of the computational domain which have

negligible contribution to the error in a functional output of interest are excluded

from refinement.

As described, accuracy enhancement in each control volume can be attained by

decreasing the mesh size (h) or increasing the order of accuracy (p). In what follows,

we discuss the details of each method in isolation and then how they are combined

to give the hybrid hp-adaptive scheme for our unstructured finite volume solver.

5.2.1 h-refinement

To be able to handle triangular and quadrilateral cells in the same way, we use a non-

conforming mesh refinement framework where hanging nodes are allowed regardless

of the type of elements. In such a refinement, a triangle or quadrilateral is divided

into four sub-cells. A triangle is refined using mid-point subdivision so that a node

is placed at the mid-point of the faces whereas an additional node is required at the

center of the cell for a quadrilateral. Figure 5.1 shows the refinement pattern for

both types of the cells in a four-to-one basis recognizing that the sub-cells created

through refinement inherit the approximation order from the original cell.

The existence of hanging nodes complicates the computation of flux integrals and

also selection of reconstruction stencils. Any face connecting two vertices is identified
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(a) Triangular cells

(b) Quadrilateral cells

Figure 5.1: Schematic illustration of h-refinement pattern for 2D cells

as a unique face on which integration quadrature points are placed. In addition, the

indices of the cells at the two sides of such a face is stored to retrieve the indices of the

first layer of neighbors in the process of stencil selection. In this approach, a triangle

with one hanging node is represented by four faces (or similarly a quadrilateral with

one hanging node is represented by five faces).

To provide a smooth distribution of cell size throughout the mesh, we set up two

standard rules for the refinement. First, a cell is automatically flagged for refinement

if all of its faces are split due to the refinement of the neighbors. This rule has the

advantage of limiting the number of hanging nodes to two and three for triangles

and quadrilaterals, respectively in addition to removing potential un-refined holes

from the mesh. Figure 5.2 shows the implementation of this rule for triangular and

quadrilateral cells. Note that the red cells are refined due to large error indicator or

non-smooth primal while the blue cell is refined just because all of its neighbors have

been refined.

The second rule enforces that all non-conforming faces have a 2:1 face length ratio

by controlling the subdivision of half length non-conforming faces. If a fine cell with
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(a) Triangular cells

(b) Quadrilateral cells

Figure 5.2: Schematic illustration of the first rule for the refinement of 2D cells

a half length face needs to be refined, the coarse cell on the other side containing

the half length face must be divided as well to balance the face length ratio between

adjacent cells. Figure 5.3 depicts the implementation of the second rule for triangular

and quadrilateral cells. In this case, the red cells are those need to be refined due to

a large error indicator or non-smooth primal while the blue cells are refined to keep

the 2:1 face length ratio.

As described earlier, higher-order simulation on highly anisotropic meshes re-

quires curving the interior faces of the mesh to prevent intersection with higher-order

boundary representations. When considering non-conforming meshes, special atten-

tion must be paid to how to curve the cells that have hanging nodes. One tedious way

is taking the linear mesh, applying the necessary refinement and re-curving the mesh

112



5.2. Adaptation Methods

(a) Triangular cells

(b) Quadrilateral cells

Figure 5.3: Schematic illustration of the second rule for the refinement of 2D cells

by solving the linear elasticity equation at each level of refinement. Considering that

we use the continuous Galerkin finite element method to solve the elasticity equation,

this approach necessitates the enforcement of a constraint over non-conforming inter-

faces to ensure that the faces defined from both sides conform to the same mapping.

This comes from the fact that the refined faces on a non-conforming interface contain

different number of degrees of freedom from each side (Figure 5.4). Alternatively,

we can assume that the initial mesh represents the geometry sufficiently accurately

and no further geometry information is added throughout the refinement. In this ap-

proach, we only curve the initial conforming mesh and use the mapping information

to create higher-order non-conforming meshes at the next levels. The mapping from

each linear cell of the initial mesh to its corresponding cubic cell is computed and

stored. At each level of refinement, the top parent for each sub-cell is found. The

cubic mapping corresponding to the top parent is used to create the cubic sub-cells
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within the cubic top parent cell without the loss of geometry due to non-conforming

mapping.

 

Figure 5.4: Different number of degrees of freedom for linear elasticity problem on
half-length non-conforming face

5.2.2 p-enrichment

The implementation of p-enrichment is easier as it does not lead to any geometrical

complexity and remains the same for triangular and quadrilateral cells. Recall that

the primitive variables of the flow field are approximated throughout a control volume

by a Taylor series expansion about the reference point as:

φR
i (x, y) = φ|i +

∂φ

∂x

∣∣∣∣∣
i

(x− xi) +
∂φ

∂y

∣∣∣∣∣
i

(y − yi) +
∂2φ

∂x2

∣∣∣∣∣
i

(x− xi)
2

2

+
∂2φ

∂x∂y

∣∣∣∣∣
i

(x− xi) (y − yi) +
∂2φ

∂y2

∣∣∣∣∣
i

(y − yi)
2

2
+ ... (5.12)

To enhance the accuracy by p-enrichment, the order of this polynomial is incremented

by one and a larger least-squares system with more control volumes in the stencil is

solved to find the derivatives of the primitive variables at the reference point. Figure

5.5 shows the p-enrichment of a cell from p = 1 (second-order) to p = 2 (third-order)

schematically.

We also apply some rules over the order of accuracy which mimic the rules used

in h-refinement for uniform distribution of cell size and lead to uniform distribution

of order of accuracy throughout the mesh. First, if the order of accuracy in all

neighboring cells is larger, we increment the order within the cell by one. Second, we

modify the order of polynomial in neighboring control volumes not to end up with a

jump of more than one order between adjacent cells.
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Figure 5.5: Schematic illustration of p-enrichment for an arbitrary cell from second-
order to third-order

The number of integration quadrature points is determined based on the maxi-

mum order (max (p+, p−)) of the two cells on each side of a face to ensure that the

higher-order reconstructed polynomial is integrated sufficiently accurately along the

faces.

5.2.3 hp-refinement

The final step in the adaptation procedure is the decision between h-refinement and

p-enrichment. As mentioned, this is typically decided based on the smoothness of the

primal solution [111, 110, 109] so that the mesh size is reduced near discontinuities

and order is increased in the smooth regions of the primal solution. In our work,

the smoothness is determined by an inter-element jump indicator designed for shock

detection in a DG solver [133]. This indicator has also been successfully used for

the decision between mesh refinement and order enrichment in other hp-adaptive DG

solvers [109, 110] and can be easily fit in our unstructured finite volume solver. The

value of the jump for an arbitrary quantity of the flow field, φ, in a cell (cell i) is

given as:

Si =
1

|∂Ωi|

˛

∂Ωi

∣∣∣∣∣
φ+ − φ−

1
2

(φ+ + φ−)

∣∣∣∣∣ ds (5.13)

where φ+ and φ− are the reconstructed solutions at the two sides of a quadrature

point, |∂Ωi| is the perimeter of the cell and ds is the infinitesimal length along the

faces of the cell. For smooth solutions, the jump in the reconstructed solution and

thus Si are expected to be small whereas the indicator should return a value of O (1)
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near a discontinuity such as a shock wave since the jump and average flow properties

are of the same order of magnitude. Therefore, the choice between whether to apply

h-refinement or p-enrichment is made by:




Si >

1
Kφ
, h-refinement

Si <
1

Kφ
, p-enrichment

(5.14)

where Kφ is a constant required to be large enough to capture discontinuities properly.

In this work, we apply the jump indicator only on pressure for non-turbulent flows

and on pressure and turbulence working variable of SA model for turbulent flows.

The proper values of the jump indicator constants are found by several numerical

experiments. In our solver, the values of of 200 ≤ KP ≤ 400 for pressure and

10≤ Kν̃ ≤ 20 for turbulence working variable seem to be effective choices for our

problems. However, the best choices of constants in these ranges can be obtained by

considering the flow regimes governed by important non-dimensional groups (Mach

and Reynolds number).

5.3 Numerical Results

The hp-adaptation method proposed is evaluated for four different flow conditions

over the NACA 0012 geometry: inviscid subsonic and transonic flows governed by

the Euler equations, laminar subsonic flow governed by the Navier-Stokes equations

and turbulent subsonic flow governed by the RANS equations and SA-negative tur-

bulence model. In each case, the efficiency of the residual-based and adjoint-based

hp-adaptive schemes are compared with second- and higher-order uniform refine-

ments in terms of the number of degrees of freedom per equation and also CPU time

required to obtain a grid-converged value of an output of interest. The presented

number of degrees of freedom is the number of control volumes in each level and the

wall clock time for the various test cases is based on simulations on a single core of an

i7-4790 (3.60 GHz) CPU. In the adjoint-based adaptation method, the time includes

the solution of both the primal and adjoint whereas only the primal solve time is

included for the uniform refinement and residual-based adaptations.

Considering that our solver supports up to fifth-order discretizations (p = 4),

once a control volume with the polynomial degree of pmax = 3 is flagged for extra
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refinement in smooth regions of the solution, we perform h-refinement instead of

p-enrichment since we need one order higher discrete operator for error estimation

(Equations 5.4 and 5.11). However, this strategy fails for highly anisotropic meshes

with curvature and leads to solver failure. For such problems, the highly anisotropic

cells close to curved walls (those using the curvilinear coordinate system as described

in Chapter 3) are taken out of the error indicator list once they reach p = 3. Instead,

some other control volumes with lower discretization order and/or other regions of

the mesh are flagged for p-enrichment or h-refinement as appropriate. In this way,

we can still reduce the error without breaking the structure of anisotropic cells near

the wall.

5.3.1 Inviscid Subsonic Flow

As our first test case, we consider the inviscid subsonic flow over the NACA 0012

with chord length of c = 1 and zero thickness at the trailing edge. The flow is

characterized by the free stream Mach number of Ma∞ = 0.5 and angle of attack

of α = 2◦ . For residual-based adaptation, we use the L2-norm of the truncation

error obtained by the application of one order higher residual operator on all four

components of the solution for each control volume. For adjoint-based adaptation,

we consider the target functional of the pressure drag coefficient given by:

J (U) =

ˆ

∂Ω

ψ · (P n̂) ds (5.15)

where n̂ is the outward unit normal vector and ψ = 1
C∞

(cos α, sin α)T along the wall

boundaries and 0 everywhere else. C∞ is a normalized reference value defined as:

C∞ =
1

2
γMa∞P∞c (5.16)

In the hypothetical case of infinitely far outer boundary, the drag force for this isen-

tropic inviscid flow must converge to zero. However, we place the outer boundary

100c away from the wall boundaries and thus the pressure drag coefficient converges

to a finite small value. The adaptation process starts with the second-order solution

on a baseline coarse mesh with 2, 776 triangular cells. At each level of the adap-

tive procedure, fadapt = 15% of control volumes with the largest error indicators are

flagged for p-enrichment or h-refinement. Considering that the solution of this prob-

117



5.3. Numerical Results

lem is smooth almost everywhere in the computational domain, we choose the upper

bound of the pressure smoothness indicator, KP = 200, for the decision between

p-enrichment and h-refinement.

The efficiency of the hp-adaptive refinement schemes is shown in Figure 5.6 in

comparison with uniform refinement of different discretization order. A reference

value for this problem is obtained by a fourth-order solution on a mesh with 197, 891

cells. The adjoint-based adaptation outperforms the other refinement strategies as

it converges to the grid converged drag coefficient after a few cycles with a smaller

number of degree of freedom. The change in the values of the functional becomes

small after 6 cycles of adaptations and remains almost constant in the last three con-

secutive cycles. The residual-based adaptation converges to the same value but after

more refinement cycles and with a larger number of control volumes. In terms of the

CPU time, the adjoint-based method takes slightly longer due to the extra adjoint

solver. For this problem with a smooth solution, the fourth-order uniform refinement

produces reasonably accurate output values with sufficient number of degrees of free-

dom which takes longer in term of CPU time. However, the second- and third-order

uniform refinement procedures are far from the grid converged value except for the

finest mesh with about 80, 000 control volumes.

Figure 5.7 illustrates the baseline mesh and also the order of accuracy and mesh

resolution after 6 cycles of the adjoint-based hp-adaptation for this test case. Note

that the region near the leading edge in which the flow experiences high gradients

towards the stagnation point is refined the most considering that the resolution of

the initial mesh is not sufficient there. It is also worth-mentioning that the order of

accuracy far from the wall remains equal to 2 which leads to less numerical complexity

compared to uniformly higher-order discretizations .

In addition, the contours of the Mach number on the two meshes with the pre-

scribed order of accuracy for each control volume is shown in Figure 5.8. As expected,

the hp-adapted mesh produces a smoother distribution of the Mach number near the

airfoil.

5.3.2 Inviscid Transonic Flow

As our second test case, we consider the transonic inviscid flow around the NACA

0012 with free stream Mach number of Ma∞ = 0.8 and angle of attack of α = 1.25◦.
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(a) Drag coefficient evolution with respect to degrees of freedom
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(b) Drag coefficient evolution with respect to CPU time

Figure 5.6: Convergence of drag coefficient for inviscid subsonic test case (Ma∞ = 0.5
and α = 2◦)
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(a) Baseline mesh with 2, 776 triangular cell (purely second-order)

(b) adjoint-based hp-adapted after 6 adaptation cycles (second- to fourth-
order)

Figure 5.7: Mesh resolution and discretization order for inviscid subsonic test case
(Ma∞ = 0.5 and α = 2◦)
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(a) Initial mesh with purely second-order discretization

(b) adjoint-based hp-adapted after 6 levels of adaptation

Figure 5.8: Contours of Mach number for inviscid subsonic test case (Ma∞ = 0.5 and
α = 2◦)
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For this test case, a strong shock and a weak shock appear on the upper and lower

surfaces of the airfoil, respectively. Therefore, this is a good example to demonstrate

the capability of the proposed hp-adaptation method for shock capturing. Similar to

the inviscid subsonic case, we use the L2-norm of the truncation error for residual-

based adaptation and pressure drag coefficient as the functional of interest for the

adjoint-based method. The other adaptation parameters are chosen as fadapt = 15%

and KP = 300. As described, the hp-adaptation framework can be an alternative to

slope limiting procedure for compressible problems with shocks and so can be used

to enhance the robustness of an unstructured finite volume solver. This suggests we

allow for first-order approximations near the shock as traditional slope limiters reduce

the order of accuracy to one close to singularities. Although it is possible to start

from a first-order solution everywhere and increasing the order in smooth regions of

the flow field, this approach leads to the over-refinement of the initial mesh due to

the the non-smooth behavior of the first-order solution. This is also repeated in the

next cycles since the order is not increased in all of the h-refined cells (with order =

1). Instead, we start from a purely second-order solution on the same baseline mesh

as the subsonic test case but we reduce the order of discretization by one (provided

that the order is larger than 1) whenever a cell is flagged for h-refinement due to

non-smooth primal solution. In this way, we can attain the first-order approximation

near the singularities after the first cycle.

For uniform refinement studies, we only employ the second- and third-order dis-

cretizations with the slope limiter of Venkatakrishnan [134] and avoid the fourth-order

discretization since it suffers from stability issues for such a problem with a strong

shock. Figure 5.9 compares the efficiency of different refinement scenarios for this

case. A reference drag coefficient is obtained by a second-order solution of this prob-

lem on an unstructured mesh with 308, 470 cells. It is evident that the third-order

discretization is not converging to a fixed value as the slope limiter degrades the

accuracy of the solution. Furthermore, the tunable parameter in the slope limiter

is adjusted for each mesh to get the solution to converge and this exacerbates the

asymptotic convergence to a single value. Therefore, increasing the order of accuracy

for problems with locally non-smooth solutions does not lead to more accurate an-

swers as expected. On the other hand, the adjoint-based hp-adaptive method reaches

the grid converged value after a small number of adaptation cycles so that the change

in the drag coefficient becomes less than 0.2% in the last three consecutive cycles.
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Note that such a good estimate of the drag coefficient is found on an hp-adapted mesh

with about 20, 000 control volumes. In term of the CPU time, the adjoint-based adap-

tation obviously outperforms uniform refinement considering the fact that the drag

predicted by the second-order scheme on the finest mesh is not still sufficiently close

to the reference value and takes about 5 times longer. The residual-based adaptation

is also approaching the reference value but with a larger number of refinement cycles,

degrees of freedom and CPU time compared the adjoint-based.

The difference between the drag coefficients predicted by the two adaptation error

indicators can be explained by the refinement pattern obtained from each one. Figure

5.10 compares the mesh resolution and local order of accuracy in the last cycle of the

adjoint-based and residual-based adaptations. The residual-based indicator mainly

focuses on the strong shock of the upper surface with minimal refinement of the

leading and trailing edges. This behavior was previously reported by Woopen et al.

[135] in residual-based mesh adaptation for their hybridized discontinuous Galerkin

(HDG) method. In their study, the drag coefficients obtained on the residual-based

adapted meshes differ by a constant amount from the values of the adjoint-based

adapted meshes after a few refinement cycles. Conversely, the adjoint-based error

indicator exhibits a more accurate refinement pattern as the the area close to the weak

shock on the lower surface is refined properly in addition to the sufficient refinement

of the leading and trailing edges. This implies that weighting the local residuals with

the discrete adjoint solution provides a more accurate error indicator that captures

all important features of the flow field during the refinement process. It should be

noted that the first-order approximation is maintained close to the upper surface

strong shock as magnified in Figure 5.10a which is ideal for regions with singular

solution. Such a strategy is advantageous as it results in the efficiency of the solver

in obtaining a grid converged output value with small number of degrees of freedom

and also its robustness by employing a low-order solution in the singular regions of

the flow field.

Figure 5.11 shows the contours of Mach number close to the airfoil for the initial

and final adjoint-based adapted meshes of this test case. As expected, the two shocks

sharpen as we proceed and increase the mesh resolution in their vicinity. Also, the

use of first-order approximation in these regions prevents any overshoots in the final

solution. In the smooth regions of the flow, the solution becomes smoother as we

provide extra resolution by p-enrichment.
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Figure 5.9: Convergence of drag coefficient for inviscid transonic test case (Ma∞ = 0.8
and α = 1.25◦)
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(a) Adjoint-based adaptation

(b) Residual-based adaptation

Figure 5.10: Final hp-adapted mesh and order for inviscid transonic test case (Ma∞ =
0.8 and α = 1.25◦)
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(a) adjoint-based hp-adapted after 1 adaptation cycle (first adapted
mesh)

(b) adjoint-based hp-adapted after 9 adaptation cycles (final adapted
mesh)

Figure 5.11: Contours of Mach number for inviscid transonic test case (Ma∞ = 0.8
and α = 1.25◦) 126
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Figure 5.12: Comparison of pressure profiles near the upper surface strong shock
between adjoint-based hp-adapted meshes for inviscid transonic test case at y = 0.3

Figure 5.12 compares the pressure profiles near the strong shock at y = 0.3 be-

tween different levels of adjoint-based hp-adaptation. On the initial mesh, the shock

spans a wide distance with several jumps in the magnitude of pressure. However,

it gradually becomes thinner and sharper such that the shock computed on the last

level is around 50 times thinner than the first one. This plot reveals the advantage

of hp-adaptation in shock capturing in flows with singularities.

Also, Figure 5.13 compares the pressure profile at y = 0.3 between adjoint-based

and residual-based methods after the final cycle of adaptation. Note that the residual-

based adaptation refines the region near the strong shock more than the adjoint-based

as expected. This can be understood by the larger number of piecewise constant

pressure values (first-order solutions) in the vicinity of the shock.

5.3.3 Laminar Subsonic Flow

Now we turn our attention to viscous laminar subsonic flow around the NACA 0012

airfoil with a free stream Mach number of Ma∞ = 0.5, Reynolds number of Re = 5000
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Figure 5.13: Comparison of pressure profiles near the upper surface strong shock
between adjoint-based and residual-based hp-adaptation at y = 0.3

with constant dynamic viscosity and angle of attack of α = 1◦. In this flow, a

thin boundary layer appears on the surface of the airfoil and is followed by a wake

downstream of the trailing edge. Similarly, the L2-norm of the truncation error is

used for residual-based adaptation, whereas the drag coefficient obtained as the total

of the pressure and viscous drag coefficients is employed for the adjoint-based method.

The total drag functional is defined as:

J (U,∇U) =

ˆ

∂Ω

ψ · (P n̂− τn̂) ds (5.17)

in which n̂ is the outward unit normal vector, τ is the viscous stress tensor and

ψ = 1
C∞

(cos α, sin α)T along the wall boundaries and 0 everywhere else. We start

the adaptations with a second-order solution on an unstructured mesh with 10, 797

triangular cells. The adaptation parameters for this problem with smooth solution

are set to fadapt = 10% and KP = 200.

Figure 5.14 compares the efficiency of the hp-adaptation methods with uniform

refinement of second-, third- and fourth-order discretizations. For this purpose, the
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convergence of the total drag coefficient versus the number of degrees of freedom

and CPU time is plotted. For this problem, a reference drag coefficient is found by

a fourth-order discretization on a mesh with 308, 470 cells. The advantage of hp-

adaptation over uniform refinement is very clear for this test case with thin shear

layers: the hp-adapted meshes reach grid convergence with about as many degrees

of freedom as the first uniform refinement. At this resolution, the second-order dis-

cretization on the uniformly refined mesh has not yet begun to improve the results.

The higher than second-order schemes (particularly fourth-order) converge faster as

expected for this problem with smooth solution; however, the CPU time required to

get close to the reference drag coefficient is more than 6 times larger compared with

hp-adaptation. Similar to the previous test cases, the adjoint-based adaptation is

more successful than the residual-based. Even though the residual-based converges

to the same output value, it adds a number of unnecessary degrees of freedom in each

cycle that do not improve functional accuracy. Note that the increase in the number

of degrees of freedom for this problem typically originates from those fourth-order

control volumes which need more resolution and thus are refined via h-refinement.

On the other hand, the adjoint-based adaptation indicator optimally increases the

resolution to be able to deliver a very accurate functional for which the adaptation

is performed. It is worth mentioning that the time required for solving the discrete

adjoint problem is a small portion of the total CPU time. Interestingly, the output

value becomes almost constant in the last three cycles of the adjoint-based adaptation

which highlights its efficiency.

Figure 5.15 depicts the mesh resolution and local order for the control volumes

of the initial mesh and also adjoint-based hp-adapted mesh after 7 cycles. As re-

quired, the order of accuracy increases in the boundary layer and wake regions via

p-enrichment. Since some of the control volumes in these regions still contribute to

the error the most even after the p-enrichment, we apply h-refinement so that we can

reduce the error in the next cycles effectively and converge to the reference output

value as fast as possible. To provide such a resolution with uniform refinement, we

require considerably more cells in the mesh, most of which are far from the airfoil

and do not contribute to the total error. Note that the mesh size and order do not

change sufficiently far from the viscous dominated regions in the hp-adapted mesh.

Finally, the contours of Mach number on the initial and final hp-adapted meshes

are shown in Figure 5.16. The longer wake region and smoother velocity distribution
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Figure 5.14: Convergence of drag coefficient for laminar subsonic test case (Ma∞ =
0.5, Re = 5000 and α = 1◦)
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(a) Baseline mesh with 10, 797 triangular cells

(b) adjoint-based hp-adapted after 7 adaptation cycles (second- to fourth-
order)

Figure 5.15: Mesh resolution and discretization order for laminar subsonic test case
(Ma∞ = 0.5, Re = 5000 and α = 1◦)
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5.3. Numerical Results

(a) Initial mesh with purely second-order discretization

(b) adjoint-based hp-adapted final mesh

Figure 5.16: Contours of Mach number for laminar subsonic test case (Ma∞ = 0.5,
Re = 5000 and α = 1◦)

near the airfoil on the final mesh are clearly visible.

5.3.4 Turbulent Subsonic Flow

As our final test case, we compute the turbulent subsonic flow around the NACA

0012 airfoil described in Chapter 4. This flow is characterized by a free stream Mach

number of Ma∞ = 0.15, Reynolds number of Re = 6 × 106 and angle of attack of

α = 10◦. As demonstrated by the previous test cases, the adjoint-based method is

superior to the residual-based adaptation. Therefore, we only consider the adjoint-

based error indicator for hp-adaptation. The lift coefficient is used as the output
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functional of interest and is defined as:

J (U,∇U) =

ˆ

∂Ω

ψ · (P n̂− τn̂) ds (5.18)

with ψ = 1
C∞

(− sin α, cos α)T along the wall boundaries and 0 everywhere else. The

computations are performed on the second family of structured quadrilateral meshes

available on the NASA turbulence modeling resource [85]. For simplicity, we assume

that the dynamic viscosity is constant.

For uniform refinement, we consider second- to fourth-order discretization on three

nested meshes with 14, 336, 57, 344 and 229, 376 control volumes. The adjoint-based

hp-adaptation starts with the second-order solution on the coarsest mesh (Figure

5.17). As described earlier, those highly anisotropic cells near the wall for which the

curvilinear coordinate is employed come out of consideration for further refinement

once they reach p = 3. The other adaptation parameters are set to KP = 200,

Kν̃ = 20 and fadapt = 10%.

Figure 5.17: The coarsest quadrilateral mesh for turbulent subsonic flow

Figure 5.18 compares the efficiency of the adjoint-based hp-adaptation with uni-

form refinement of different discretization orders. The reference lift coefficient is the

value reported by the NASA turbulence modeling resource for these meshes. Again,

adaptive refinement is considerably more successful than uniform refinement as it

requires 5 times smaller number of control volumes to obtain the grid converged out-

put. This is expected since adaptive refinement places sufficient resolution in the

boundary layer and wake regions without unnecessary refinement of other regions.
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Such a resolution can only be obtained on super fine meshes in the case of uniform

refinement. More importantly, the CPU time on the final adapted mesh is 6, 9 and

24 times smaller than that of second-, third- and fourth-order discretizations on the

finest mesh, respectively. This is also expected since the extra derivatives required for

higher-order approximations are only computed in a small fraction of control volumes

and also the Jacobian matrix has fewer entries.

Figure 5.19 shows the final adapted mesh and also order of accuracy for the

control volumes close to the airfoil. Note that the adaptive refinement focuses on

the boundary layer, the wake behind the trailing edge and the stagnation line at the

leading edge. It is also worth mentioning that the order of accuracy at the edge of

the boundary layer and wake regions where the derivative of the turbulence working

variable is discontinuous does not increase even though the mesh is refined.

Figure 5.20 compares the turbulence working variable between the initial and final

hp-adapted solutions. The viscous dominated parts of the flow, including the wall

boundary layer and wake are captured properly. Moreover, the region at the edge

of viscous regions where ν̃ is negative becomes thinner as we refine. The smooth

contours of the turbulence working variable and the peak value in the wake region

show the improvement in the solution of the hp-adapted mesh compared to the initial

mesh.
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Figure 5.18: Convergence of lift coefficient for turbulent subsonic test case (Ma∞ =
0.15, Re = 6 × 106 and α = 10◦)
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(a) Mesh

(b) Local order of accuracy

Figure 5.19: Illustration of final hp-adapted mesh for turbulent subsonic flow
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(a) Initial mesh with purely second-order discretization

(b) adjoint-based hp-adapted final mesh

Figure 5.20: Contours of turbulence working variable for turbulent subsonic test case
(Ma∞ = 0.15, Re = 6 × 106 and α = 10◦)
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Chapter 6

Concluding Remarks

6.1 Summary

This thesis described RANS simulation of turbulent compressible aerodynamic flows

using a higher-order unstructured finite volume discretization of governing equations.

In addition an hp-adaptation framework was developed to improve the efficiency and

robustness of the flow solver for the two dimensional problems that are of interest in

computational aerodynamics.

The solution of turbulent flows necessitates the use of highly anisotropic meshes

since the gradients of flow properties normal to the shear layers are considerably

larger than the gradients along them. Considering that all higher-order accurate

solvers must account for boundary curvature, we curved the interior faces for highly

anisotropic meshes to prevent faces from intersecting near curved boundaries. For

this purpose, we used an elasticity analogy to project the boundary curvature into

the interior assuming that the domain to be meshed behaves as an elastic solid. The

geometrical features of the higher-order mesh were calculated using the coordinate

transformation from the curved cells to the original straight cells.

Moreover, the higher-order cell-centered finite volume solution reconstruction pro-

cedure was revisited on highly anisotropic meshes over curved surfaces to address two

known issues: poor conditioning of the least-squares system and poor accuracy of re-

constructed values on anisotropic meshes over curved surfaces. For highly anisotropic

meshes, the least-squares system suffers from ill-conditioning and this issue is exac-

erbated for higher-order computations as the presence of the higher moments of area

results in a considerable difference in the order of magnitude of matrix columns. We

also investigated the accuracy and conditioning of the k-exact reconstruction on a

wide range of unstructured anisotropic meshes from straight triangles to more gen-

eral cases used for turbulent simulations over aerodynamic configurations. For this

purpose, we manufactured anisotropic functions that mimic the characteristics of real
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anisotropic solutions in aerodynamic problems.

For turbulent flow simulations, the negative variant of the Spalart-Allmaras tur-

bulence model, developed for higher-order discretizations, was fully coupled to the

system of RANS equations. The convective fluxes of the coupled system were ob-

tained by the Roe-Pike flux function and the gradients used in the viscous fluxes were

calculated by the average of the two reconstructed gradients plus a jump term hav-

ing a stabilization property. An implicit time stepping method combined with a line

search algorithm was employed to solve the discrete system of equations efficiently.

At each non-linear iteration, the GMRES method preconditioned with ILU(k) was

used to solve the linear system. We also presented our numerical results for simple

and complicated turbulent flow problems in 2D.

Finally, an hp-adaptation method was proposed to enhance the capabilities of the

solver and improve its efficiency. Considering that the higher-order approximations

are only advantageous in smooth regions of the solution, we employed either h- or

p-refinement based on the smoothness of the solution. This procedure was carried

out for those cells that contribute to the total error the most using residual-based and

adjoint-based error indicators. For mesh refinement, we allowed for non-conforming

interfaces in the mesh to be able to handle triangles and quadrilaterals in the same.

We presented the result of our adaptive solver for different compressible flow problems

including inviscid, laminar and turbulent cases.

6.2 Conclusions

To conclude this thesis, a short review of the highlights observed in each step is

presented.

For solution reconstruction on anisotropic meshes, our results showed that column

scaling using the maximum entry of each column and performing the reconstruction

procedure along principal axes alleviates the poor conditioning of the least-squares

systems significantly. As a result, the condition number of the scaled matrix in the

principal coordinate system can be used as the measure of conditioning.

Furthermore, our reconstruction results demonstrated that the unweighted sys-

tem produces more accurate reconstruction coefficients in the case of straight meshes

where the orientation of principal axes of control volumes change only slightly. More-

over, the condition number of the scaled LS system is small and independent of mesh
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size and aspect ratio for the unweighted system. For curved meshes, the recon-

structed values using the unweighted LS method in its traditional form do not give

the expected order of accuracy. Although adding a weight function to the LS system

resolves this issue, it leads to large relative errors for the reconstructed solution and

poor estimate of normal derivatives. Also, the condition number of the scaled LS

system grows with aspect ratio and mesh refinement in both cases particularly for

fourth-order reconstruction. Instead, we proposed a new baseline where a curvilinear

coordinate system aligned with the wall is constructed and used for reconstruction.

The accuracy results in the proposed coordinates have small values of error and match

the expected order of accuracy with or without geometric weights. Nevertheless, the

unweighted LS errors are noticeably smaller and thus outperform the weighted LS

method. Likewise, the unweighted LS problem is well-conditioned as the condition

numbers are small and do not change with mesh size and aspect ratio. Finally, we

extended our analysis to general meshes such as those used for turbulent simulations

over NACA 0012 airfoils. These meshes are comprised of anisotropic regions near

the curved walls and in wake region and also isotropic triangles sufficiently far from

these regions. We presented a method for separating the mesh into different regions

where different coordinate systems are required for accurate reconstruction. More-

over, we demonstrated the advantage of the new curvilinear coordinate system in

approximating anisotropic solutions in the boundary layer region of these meshes.

In terms of turbulent flow simulations, numerical results were presented for several

test cases: the turbulent flow over the flat plate, the subsonic flow over the NACA

0012 airfoil, the transonic flow over the RAE 2822 airfoil and the turbulent flow over

the three-element airfoil. The solutions of these case were verified by comparison

against the solutions of well-established codes or experimental data. For the flat

plate and single airfoil test cases, the accuracy advantage of higher-order discretiza-

tions was shown by obtaining a more accurate solution on a coarser mesh. It was also

shown that solution reconstruction in the newly developed curvilinear coordinates re-

sults in more accurate values of drag and lift coefficients for the curved geometries.

In addition, the convergence to the steady-state solution from a free stream uniform

solution was shown to be fast and efficient for the flat plate and subsonic airfoil test

cases for all order of accuracy (second- to fourth-order). However, for the more chal-

lenging test case of transonic airfoil in which a shock wave interacts with turbulent

boundary layer, starting from a lower-order solution helps the convergence signifi-
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cantly. We also used order sequencing to accelerate the convergence for the difficult

case of multi-element airfoil. The results of this test case were presented to show the

robustness of our solver for complex geometries with several flow structures.

In the previous chapter, the results of the hp-adaptation algorithm developed for

an unstructured finite volume solver in this thesis were presented for the subsonic

inviscid, transonic inviscid, subsonic laminar and subsonic turbulent flows around

the NACA 0012 airfoil. In each case, uniform refinement of second- and higher-order

methods was compared against residual-based and adjoint-based adaptations in terms

of the number of degrees of freedom and CPU time required to reach a reference

value. In all of the cases, it was shown that the adjoint-based hp-adaptive method

outperforms the other refinement procedures and is more successful in capturing the

flow features that affect the accuracy of an output functional. Moreover, it was shown

that the hp-adaptive method is capable of shock capturing and automatic limiting of

flows with discontinuities (such as the transonic inviscid case) by mesh refinement and

lowering the order of accuracy to one in those regions, simultaneously. For such flows

where increasing the order of accuracy in non-smooth regions of the solution does not

lead to more accurate solutions or sometimes causes solver failure, such a strategy

is superior. Also, the advantage of the adaptive methods were sufficiently clear in

the case of viscous laminar and turbulent cases where thin shear layers are present

in the solution. For these cases, the adaptive methods place enough resolution in

the viscous dominated regions and thus provide a good estimate of functional values

as opposed to the uniform refinements where many control volumes are needed to

resolve those regions accurately.

6.3 Recommended Future Work

This thesis demonstrated an hp-adaptive unstructured finite volume solver for RANS

simulations over 2D configurations with aerodynamic applications. There are a num-

ber of areas to which this research could be extended.

1. The linear elasticity approach used to curve the interior faces of meshes with

highly anisotropic cells was successful for the cases discussed in the thesis. How-

ever, for complex configurations with high curvature in several regions, a more

powerful curving strategy is required. There are some other analogy approaches
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such as those that use non-linear elasticity equations [75] or incorporate ther-

mal stress terms into the state equation [136] to enhance the quality of the

higher-order mesh.

2. Although the non-linear convergence of our solver is quite good in most cases,

the CPU time spent by the linear system solver does not scale linearly with

the number of degrees of freedom. Such behavior could be obtained by using

a more powerful preconditioner such as hp-multigrid with agglomeration and

directional coarsening in the boundary layer region where highly anisotropic

meshes exist [137].

3. Higher-order simulation of 2D turbulent flows is challenging as described and

requires several modifications. Considering that the ultimate goal in the nu-

merical simulation of flows with engineering applications is the accurate and

efficient computation of 3D turbulent flows, this work could be extended to 3D

problems later by generalizing the ideas explained in this thesis for 2D problems.

However, this requires several considerations:

• The curvilinear coordinate system developed in this thesis must be ex-

tended to 3D. This can be achieved by introducing the unit normal direc-

tion, n̂i, in the same way as 2D by finding the unit vector that connects

the closest point on the wall to the reference location of the target control

volume. For the two other axes (we call them t̂i and b̂i), we can use the

two principal directions of the polygon obtained by the intersection of the

cross plane (normal to n̂i) and the target control volume. The first axis,

t̂i, is defined as the one that forms the minimum angle with the projection

of the free stream velocity vector on the cross plane and the second axis

is defined so that b̂i = t̂i × n̂i.

• For turbulence modeling in 3D, the negative variant of SA model could still

be used. However, the current status of computation power and resources

allows one uses LES or hybrid RANS/LES for those flows encountered in

computational aerodynamics.

• Also, a very powerful solution strategy particularly for the solution of the

linear system is a need. For 3D problems, the size of the linear system is

very large and thus better preconditioning techniques are required. Note
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that the solution of 3D turbulent problems requires parallel processing

with many nodes and thus a scalable linear solver cannot be avoided.

4. In the current setting of our hp-adaptive algorithm, second-order discretization

is used in those regions that do not affect the functional accuracy. It might

be advantageous to add a de-refinement strategy to the adaptive methods to

decrease the number of cells in such regions and make the solver even less

expensive.

5. Finally, the hp-adaptive technique proposed here must be extended to 3D prob-

lems since obtaining grid-converged output values is not affordable by uniform

refinement in 3D.
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Appendix A: Cubic Interpolation

Functions

As discussed in Chapter 3, cubic interpolation functions on 1D/2D reference elements

are required for flux integration over curved faces, curving the interior faces of an

anisotropic mesh and source term integration over cubic cells. Here we present the

interpolation functions for each type.

Figure A.1: Reference line segment for face integration

For a reference line segment (Figure A.1), interpolation functions are:

φ1 (ξ) =
1

2
(1 − ξ) (1 − 3ξ) (2 − 3ξ)

φ2 (ξ) =
9

2
(1 − ξ) ξ (2 − 3ξ)

φ3 (ξ) =
9

2
(1 − ξ) ξ (3ξ − 1)

φ4 (ξ) =
1

2
ξ (3ξ − 1) (3ξ − 2)

For a reference triangular element (Figure A.2), we use cubic Lagrangian inter-

polation functions. To simplify the formulation of these functions, three dependent

variables are defined as [138]:

L1 = 1 − ξ − η , L2 = ξ , L3 = η
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Appendix A: Cubic Interpolation Functions

Figure A.2: Reference cubic triangular element

The interpolation functions are given as:

φ1 (ξ, η) =
1

2
L1 (3L1 − 1) (3L1 − 2)

φ2 (ξ, η) =
9

2
L1L2 (3L1 − 1)

φ3 (ξ, η) =
9

2
L1L2 (3L2 − 1)

φ4 (ξ, η) =
1

2
L2 (3L2 − 1) (3L2 − 2)

φ5 (ξ, η) =
9

2
L2L3 (3L2 − 1)

φ6 (ξ, η) =
9

2
L2L3 (3L3 − 1)

φ7(ξ,η) =
1

2
L3 (3L3 − 1) (3L3 − 2)

φ8 (ξ, η) =
9

2
L3L1 (3L3 − 1)

φ9 (ξ, η) =
9

2
L3L1 (3L1 − 1)

φ10 (ξ, η) = 27L1L2L3

For a reference quadrilateral element (Figure A.3), we use cubic serendipity in-
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Figure A.3: Reference cubic quadrilateral element

terpolation functions. These functions are given as [139]:

φ1 (ξ, η) =
1

32
(1 − ξ) (1 − η)

(
−10 + 9ξ2 + 9η2

)

φ2 (ξ, η) =
9

32
(1 − 3ξ)

(
1 − ξ2

)
(1 − η)

φ3 (ξ, η) =
9

32
(1 + 3ξ)

(
1 − ξ2

)
(1 − η)

φ4 (ξ, η) =
1

32
(1 + ξ) (1 − η)

(
−10 + 9ξ2 + 9η2

)

φ5 (ξ, η) =
9

32
(1 + ξ)

(
1 − η2

)
(1 − 3η)

φ6 (ξ, η) =
9

32
(1 + ξ)

(
1 − η2

)
(1 + 3η)

φ7 (ξ, η) =
1

32
(1 + ξ) (1 + η)

(
−10 + 9ξ2 + 9η2

)

φ8 (ξ, η) =
9

32
(1 + 3ξ)

(
1 − ξ2

)
(1 + η)

φ9 (ξ, η) =
9

32
(1 − 3ξ)

(
1 − ξ2

)
(1 + η)

φ10 (ξ, η) =
1

32
(1 − ξ) (1 + η)

(
−10 + 9ξ2 + 9η2

)
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φ11 (ξ, η) =
9

32
(1 − ξ)

(
1 − η2

)
(1 + 3η)

φ12 (ξ, η) =
9

32
(1 − ξ)

(
1 − η2

)
(1 − 3η)
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Appendix B: Non-dimensional

Equations

In most CFD solvers, a non-dimensional set of equations are discretized to keep the

magnitude of flow quantities close to each other. In this Appendix, we describe the

non-dimensional parameters and groups used in our solver.

To non-dimensionalize the system of RANS equations given in Chapter 4, we need

to define reference variables to scale the flow field quantities. For this purpose, we

set the speed of sound, density, temperature and viscosity at the free stream as the

reference variables:

ρref = ρ∞, uref = a∞, vref = a∞, Tref = T∞, µref = µ∞ (B.1)

The reference variables for the other flow quantities can be obtained using the vari-

ables of Equation B.1 and a characteristic length, L, as:

Pref = ρ∞a
2
∞, ν̃ref =

µ∞

ρ∞
, µT,ref = µ∞, tref =

L

a∞
, xref = L, yref = L (B.2)

We also define our non-dimensional groups as:

Ma∞ =
V∞

a∞
, Re=

ρV∞L

µ∞
(B.3)

A non-dimensional variable for a quantity of interest is defined as X∗ = X/Xref.

However, we choose to show the non-dimensional variables without an asterisk to

simplify our notation. Using the reference values and non-dimensional groups, we

can re-write the conservation of mass, momentum and energy in the non-dimensional

form as:
∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0 (B.4)
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∂ (ρu)

∂t
+
∂ (ρu2)

∂x
+
∂ (ρuv)

∂y
= −∂P

∂x
+

Ma∞

Re

(
∂τxx

∂x
+
∂τyx

∂y

)
(B.5)

∂ (ρv)

∂t
+
∂ (ρuv)

∂x
+
∂ (ρv2)

∂y
= −∂P

∂y
+

Ma∞

Re

(
∂τxy

∂x
+
∂τyy

∂y

)
(B.6)

∂Et

∂t
+
∂ (uEt)

∂x
+
∂ (vEt)

∂y
= −

(
∂ (uP )

∂x
+
∂ (vP )

∂y

)
(B.7)

+
Ma∞

Re

(
∂ (uτxx + vτxy)

∂x
+
∂ (yτyx + vτyy)

∂y

+
γ

γ − 1

(
µ

Pr
+

µT

PrT

)(
∂2T

∂x̄2
+
∂2T

∂y2

))

Similarly, the governing equation of the SA-negative turbulence model must be

non-dimensionalized using the same reference variables:

∂ (ρν̃)

∂t
+
∂ (ρuν̃)

∂x
+
∂ (ρvν̃)

∂y
=

Ma∞

Re · σ

(
∂

∂x

(
(µ+ µ′fnρν̃)

∂ν̃

∂x

)

+
∂

∂y

(
(µ+ µ′fnρν̃)

∂ν̃

∂y

)

+ cb2 µ
′ ρ



(
∂ν̃

∂x

)2

+

(
∂ν̃

∂y

)2



−
(
µ

ρ
+ µ′ν̃

)(
∂ρ

∂x

∂ν̃

∂x
+
∂ρ

∂y

∂ν̃

∂y

))

+ ρ (P −D) (B.8)

The non-dimensional production and destruction terms are defined as:

P =




cb1 (1 − ft2) S̃ν̃ ν̃ ≥ 0

cb1 (1 − ct3)Sν̃ ν̃ < 0
, D =





Ma∞

Re
µ′
(
cw1fw − cb1

κ2 ft2

) (
ν̃
d

)2
ν̃ ≥ 0

−Ma∞

Re
µ′cw1

(
ν̃
d

)2
ν̃ < 0

(B.9)

where

S̃ =




S + S̄ S̄ ≥ −cv2S

S +
S(c2

v2
S+cv3S̄)

(cv3−2cv2)S−S̄
S̄ ≤ −cv2S

(B.10)
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Appendix B: Non-dimensional Equations

S =

∣∣∣∣∣
∂u

∂y
− ∂v

∂x

∣∣∣∣∣ (B.11)

S̄ =
Ma∞

Re

µ′ν̃fv2

κ2d2

and the wall function contributing to the destruction term is obtained as:

r = min

(
Ma∞

Re

µ′ν̃

S̃κ2d2
, 10

)

g = r + cw2

(
r6 − r

)
(B.12)

fw = g

[
1 + c6

w3

g6 + c6
w3

]

The other constants and functions are the same as the dimensional form of the SA-

negative model.
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