
Error Estimation and Mesh
Adaptation Paradigm for
Unstructured Mesh Finite

Volume Methods
by

Mahkame Sharbatdar

B.Sc., Mechanical Engineering, University of Tehran, 2010
M.ASc., Mechanical Engineering, The University of British Columbia, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

January 2017

c© Mahkame Sharbatdar 2017

Abstract

Error quantification for industrial CFD requires a new paradigm in which a robust
flow solver with error quantification capabilities reliably produces solutions with known
error bounds. Error quantification hinges on the ability to accurately estimate and
efficiently exploit the local truncation error. The goal of this thesis is to develop a
reliable truncation error estimator for finite-volume schemes and to use this truncation
error estimate to improve flow solutions through defect correction, to correct the output
functional, and to adapt the mesh.

We use a higher-order flux integral based on lower order solution as an estimation of
the truncation error which includes the leading term in the truncation error. Our results
show that using this original truncation error estimate is dominated by rough modes
and fails to provide the desired convergence for the applications of defect correction,
output error estimation and mesh adaptation. So, we tried to obtain an estimate of the
truncation error based on the continuous interpolated solution to improve their per-
formance. Two different methods for interpolating were proposed: CGM’s 3D surfaces
and C1 interpolation of the solution.

We compared the effectiveness of these two interpolating schemes for defect cor-
rection and using C1 interpolation of the solution for interpolating is more helpful
compared to CGM, so we continued using C1 interpolation for other purposes. For
defect correction, although using the modified truncation error does not improve the
order of accuracy, significant quantitative improvements are obtained.

Output functional correction is based on the truncation error and the adjoint so-
lution. Both discrete and continuous adjoint solutions can be used for functional cor-
rection. Our results for a variety of governing equations suggest that the interpolating
scheme can improve the correction process significantly and improve accuracy asymp-
totically.

Different adaptation indicators were considered for mesh adaptation and our results
show that the estimate of the truncation error based on the interpolated solution is a
more accurate indicator compared to the original truncation error. Adjoint-based mesh

ii

Abstract

adaptation combined with modified truncation error provides even faster convergence
of the output functional.

iii

Preface

The research ideas and methods explored in this thesis are the fruits of a close working
relationship between Dr. Carl Ollivier-Gooch and Mahkame Sharbatdar. The imple-
mentation of the methods, the data analysis, and the manuscript preparation were done
by Mahkame Sharbatdar with invaluable guidance from Carl Ollivier-Gooch through-
out the process. The following papers, directly related to this PhD thesis, have been
published or are in the submission process.

• M. Sharbatdar, A. Jalali, C. Ollivier-Gooch, “Smoothed Truncation Error in
Functional Error Estimation and Correction using Adjoint Methods in an Un-
structured Finite Volume Solver”. Computers & Fluids, 140:406-421, 2016. Some
of the results from this paper are included in Chapter 5.
A. Jalali is a PhD student in our research group who developed the discrete ad-
joint solver for his PhD thesis. I developed the continuous adjoint solver, and
truncation error estimate used in this work, run all the cases, and wrote the
paper.

• M. Sharbatdar, C. Ollivier-Gooch, “Adjoint-based Functional Correction for Un-
structured Mesh Finite Volume Methods”. submitted, 2016. Some of the results
from this paper are included in Chapters 5 and 6.

• M. Sharbatdar, C. Ollivier-Gooch, “Mesh Adaptation Using Smoothed Trunca-
tion Error for Unstructured Mesh Finite Volume Methods”. In preparation for
submission. Some of the results from this paper are included in Chapter 6.

The following paper uses the eigenanalysis of the Jacobian, described in Chapter 2, as
a tool to relate the two forms of the numerical error. This paper is the outcome of A.
Jalali’s PhD thesis.

• A, Jalali, M. Sharbatdar, C. Ollivier-Gooch, “Accuracy Analysis of Unstructured
Finite Volume Discretization Schemes for Diffusive Fluxes”, Computers & Fluids,
101:220-232, 2014.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

Nomenclature . xiii

Acknowledgments . xvi

1 Introduction . 1
1.1 Structured and Unstructured Meshes 2
1.2 The Finite Volume Method . 4

1.2.1 Spatial Discretization . 7
1.2.2 Solution Reconstruction . 8
1.2.3 Flux Integration . 9
1.2.4 Solution Method . 12

1.3 Truncation and Discretization Error 13
1.4 Truncation Error Estimation Methods 16

1.4.1 Exact Truncation Error . 17
1.4.2 Estimating Truncation Error using a Finer Mesh 18
1.4.3 Estimating Truncation Error using a Higher-Order Scheme . . 18

1.5 Application of Truncation Error Estimation 18
1.5.1 Defect Correction . 19
1.5.2 Output Error Estimation . 20
1.5.3 Mesh Adaptation . 23

v

Table of Contents

1.6 Objectives . 26
1.7 Outline . 26

2 Eigenanalysis of the Truncation Error 28
2.1 Truncation and Discretization Error on Structured and Unstructured

Meshes . 28
2.1.1 Error Distribution on Meshes 29
2.1.2 p-TE Method on Unstructured Meshes 31

2.2 Eigendecomposition of the Truncation Error 36
2.3 Rough Mode Dominance in Truncation Error 37

2.3.1 Poisson Equation . 37
2.3.2 Euler Equation . 41
2.3.3 Discussion . 45

3 Truncation Error based on Interpolated Solution 48
3.1 Truncation Error Computation Using the Continuous Solution 50
3.2 Spline Interpolation using the Common Geometry Module (CGM) . . 51
3.3 C1 Interpolation of the Solution . 55

4 Defect Correction . 66
4.1 General Algorithm . 66
4.2 Defect Correction Based on Exact Truncation Error 68
4.3 Defect Correction for a Perfect Mesh 70
4.4 Defect Correction for an Unstructured Mesh 73
4.5 Defect Correction Based on Continuous p-Truncation Error 75

4.5.1 Poisson . 75
4.5.2 Advection . 76
4.5.3 Discussion . 79

5 Output Error Estimation and Correction 80
5.1 Discrete Adjoint . 81
5.2 Continuous Adjoint . 82

5.2.1 Advection Equation . 83
5.2.2 Poisson Equation . 84
5.2.3 Euler Equations . 85
5.2.4 Navier-Stokes Equations . 90

vi

Table of Contents

5.3 Output Functional Correction . 92
5.4 Advection Equation . 94
5.5 Poisson Equation . 96
5.6 Euler Equations . 100

5.6.1 Supersonic Flow . 100
5.6.2 Subsonic Flow . 104

5.7 Navier-Stokes Equations . 107
5.7.1 Supersonic Flow . 107
5.7.2 Subsonic Flow . 111

5.8 Remarks on Computational Costs and Discussion on Results 113

6 Mesh Adaptation . 116
6.1 Residual-based Mesh Adaptation . 117
6.2 Adjoint-based Mesh Adaptation by Correction Term 117
6.3 Adjoint-based Mesh Adaptation by Error in the Correction Term . . . 119
6.4 Poisson Equation . 120
6.5 Subsonic Inviscid Flow on NACA 0012 124
6.6 Subsonic Inviscid Flow on Multi-Element Airfoil 127
6.7 Subsonic Viscous Flow on NACA 0012 130
6.8 Transonic Inviscid Flow on NACA 0012 133
6.9 Discussion . 136

7 Concluding Remarks . 139
7.1 Summary . 139
7.2 Conclusions . 141
7.3 Recommendations for Future Work . 145

Bibliography . 147

Appendices

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the
Solution . 157

Appendix B: Transforming the Non-conserved Adjoint Euler Equation
to Conserved Equation . 191

vii

List of Tables

1.1 Comparison of features of structured and unstructured meshes 4

2.1 Extremal eigenvalues for the Poisson test case 38
2.2 Extremal eigenvalues for the Euler test case 44

3.1 Non-zero coefficients in Eq. 3.3 for the Argyris reference element 63
3.2 CPU time (sec) comparison for solution and C1 interpolation of the solution 64

5.1 Number of required boundary conditions 89
5.2 Coefficients for manufactured primal and adjoint solution used in Eq.

5.40 and 5.41. 108

viii

List of Figures

1.1 Mesh topology . 3
1.2 Discretization methods . 5
1.3 Control Volume illustration . 6
1.4 Cell-centered flux calculation . 9
1.5 Upwind flux illustration . 11
1.6 Discretization stencil for Laplace equation 14
1.7 Mesh adaptation strategies . 24

2.1 Coefficient of error term in the leas-squares gradient on a general un-
structured mesh for Poisson, λxx coefficients 29

2.2 Comparison of truncation and discretization error for structured and
unstructured meshes for Poisson in 2D 30

2.3 The Poisson solution . 32
2.4 LpUp+1 +Lp+1Up for an unstructured mesh for Poisson problem of Figure

2.3 . 33
2.5 Comparison of truncation error measures based on second order solution 34
2.6 Comparison of truncation error measures based on third order solution 35
2.7 Truncation error behavior with mesh refinement for Poisson 36
2.8 Eigenvalue spectra of the Poisson problem 38
2.9 Largest eigenvalue versus mesh size for the Poisson problem 39
2.10 Eigendecomposition of truncation and discretization error for Poisson . 40
2.11 Eigendecomposition of truncation and discretization error for a perfect

quadrilateral mesh for Poisson . 42
2.12 Exact solution of supersonic vortex . 43
2.13 Eigenvalue spectra, supersonic vortex 44
2.14 Largest eigenvalue versus mesh size for the Euler problem 46
2.15 Eigendecomposition of truncation and discretization error for Euler . . 47

ix

List of Figures

3.1 Two different fluxes at quadrature points 49
3.2 Conversion of the solution from cell-centered finite-volume based to vertex-

centered . 49
3.3 CGM’s input surface . 51
3.4 Finding the solution on quadrature points by projection on the 3D spline

interpolation using CGM . 52
3.5 The normal and solution calculation using CGM 53
3.6 Inaccurate normal calculation using CGM 54
3.7 Comparison of truncation error based on interpolated solution by CGM 54
3.8 Error in calculating the truncation error using the discrete solution and

interpolated solution by CGM . 55
3.9 Argyris reference element . 56
3.10 Linear mapping from physical to Argyris reference element 59
3.11 Normal derivative directions for C1 interpolation of the solution 61
3.12 Comparison of truncation error based on C1 interpolation of the solution 65
3.13 Error in calculating the truncation error using the discrete solution and

C1 interpolation of the solution . 65

4.1 Defect correction based on exact truncation error for Poisson 68
4.2 Exact solution of the advection problem 69
4.3 Defect correction based on exact truncation error for advection 70
4.4 Poisson solution for the perfect mesh 71
4.5 Discretization error of the original and corrected solutions for perfect

triangular mesh . 72
4.6 Defect correction based on p-TE method for perfect mesh 73
4.7 Defect correction based on p-TE method for Poisson on general unstruc-

tured mesh . 74
4.8 Defect correction based on p-TE method for advection on general un-

structured mesh . 75
4.9 Defect correction results using continuous p-truncation error for Poisson 77
4.10 Defect correction results using continuous p-truncation error for advection 78

5.1 Adjoint solutions for advection problem 95
5.2 Convergence history for the advection problem 96
5.3 Exact solution of the Poisson problem 97

x

List of Figures

5.4 Adjoint solutions for Poisson problem 97
5.5 The L2-norm of the difference between the discrete and continuous ad-

joint solutions for Poisson . 98
5.6 Convergence history for Poisson . 99
5.7 Convergence results for the truncation error estimates, supersonic vortex 100
5.8 x−momentum adjoint solutions for supersonic vortex 101
5.9 Convergence history for the functional values for the supersonic vortex 103
5.10 Solution distribution for Euler, NACA-0012, Ma∞ = 0.5, α = 2◦ . . . 104
5.11 x-velocity adjoint solutions for Euler, NACA-0012, Ma∞ = 0.5, α = 2◦ 105
5.12 Convergence history for the functional values for Euler, NACA-0012,

Ma = 0.5, α = 2◦ . 106
5.13 Exact solution of Navier-Stokes problem with manufactured solution . 108
5.14 Adjoint solutions for Navier-Stokes problem with manufactured solution,

y−momentum . 109
5.15 Convergence history for the functional values for Navier-Stokes problem

with manufactured solution . 110
5.16 Adjoint consistency for Navier-Stokes 110
5.17 Solution distribution for Navier-Stokes, NACA-0012, Ma∞ = 0.5, α =

1◦, Re = 5000 . 111
5.18 x-momentum component of the adjoint solutions for drag functional,

Navier-Stokes NACA-0012, Ma∞ = 0.5, α = 1◦, Re = 5000 112
5.19 Convergence history for Navier-Stokes, NACA 0012 for drag functional,

Ma∞ = 0.5, α = 1◦, Re = 5000 . 112
5.20 The error ratio for different correction terms for all test cases based on

second-order functional . 115

6.1 Exact solution of the Poisson problem 120
6.2 Convergence history for Poisson on the adapted meshes 122
6.3 Adapted meshes by different adaptation indicators for Poisson 123
6.4 Discretization error of the primal problem on the adapted meshes for

Poisson . 124
6.5 Convergence history for subsonic inviscid flow around NACA 0012 on

the adapted meshes, Ma∞ = 0.5, α = 2◦ 125
6.6 Adapted meshes by different adaptation indicators for subsonic inviscid

flow around NACA 0012 for the drag functional, Ma∞ = 0.5, α = 2◦ . . 126

xi

List of Figures

6.7 Adapted meshes by different adaptation indicators for subsonic inviscid
flow around NACA 0012 for the lift functional, Ma∞ = 0.5, α = 2◦ . . . 126

6.8 Initial mesh and the primal solution distribution for subsonic inviscid
flow on the multi-element airfoil, Ma = 0.2, α = 3◦ 127

6.9 Normalized energy component of the adjoint solution for subsonic invis-
cid flow on the multi-element airfoil, Ma = 0.2, α = 3◦ 128

6.10 CPU time comparison for primal and adjoint solutions and C1 interpola-
tion of the solution for subsonic inviscid flow on the multi-element airfoil,
Ma = 0.2, α = 3◦ . 129

6.11 Convergence history for subsonic inviscid flow around multi-element air-
foil on the adapted meshes for the lift functional, Ma∞ = 0.2, α = 3◦ . 130

6.12 Adapted meshes by different adaptation indicators for subsonic inviscid
flow around multi-element airfoil for the lift functional, Ma∞ = 0.2, α = 3◦131

6.13 CPU time comparison for primal and adjoint solutions and C1 inter-
polation of the solution for subsonic viscous flow around NACA 0012,
Ma∞ = 0.5, α = 1◦, Re = 5000 . 132

6.14 Convergence history for subsonic viscous flow around NACA 0012 on the
adapted meshes for the drag functional, Ma∞ = 0.5, α = 1◦, Re = 5000 132

6.15 Adapted meshes by different adaptation indicators for subsonic viscous
flow around NACA 0012 for the drag functional, Ma∞ = 0.5, α = 1◦,
Re = 5000 . 133

6.16 Initial mesh and the primal solution distribution for transonic inviscid
flow on NACA 0012 airfoil, Ma = 0.8, α = 1.25◦ 134

6.17 x-momentum adjoint solution for the lift functional, transonic inviscid
flow on NACA 0012 airfoil, Ma = 0.8, α = 1.25◦ 134

6.18 Convergence history for transonic inviscid flow around NACA 0012 on
the adapted meshes for lift functional, Ma∞ = 0.8, α = 1.25◦ 135

6.19 Adapted meshes using different adaptation indicators for transonic in-
viscid flow around the NACA 0012 for the lift functional, Ma∞ = 0.8,
α = 1.25◦ . 135

6.20 The error ratio for different adaptation indicators for all test cases based
on second-order functional . 138

xii

Nomenclature

Roman Symbols

x Right eigenvector

y Left eigenvector

A Convective flux Jacobian matrix

A area

a Weights in eigendecomposition of truncation error

B Boundary operator

b Weights in eigendecomposition of discretization error

C Boundary weight operator

c Argyris element coeefficients

D Viscous flux Jacobian matrix

f Primal source term

g Adjoint source term

h Enthalpy

I Identity matrix

J Output functional

L Linear operator

l Length scale

Ma Mach number

xiii

Nomenclature

P Pressure

Pr Prandtl number

R Reconstruction matrix

r position vector

Re Reynolds number

s length of control volume edges

T Temperature

t time

u, v velocity components

x, y Cartesian coordinates

Z Adjoint solution

~F flux vector

n̂ unit normal vector

~U solution vector

Greek Symbols

α Angle of attack

γ Specific heat ratio

λ Eigenvalues, Taylor series expansion coefficient

µ viscosity

ρ Density

τ Truncation error

ε Discretization error

ϕ Basis functions

xiv

Nomenclature

ξ, η Coordinates in the reference element

Superscripts

L Left side

n non-smoothed truncation error

R Right side, reconstructed function

s smoothed truncation error

Subscripts

c Correction based on continuous adjoint solution

CS control surface

CV control volume

d Correction based on discrte adjoint solution

h Mesh characteristic size

p Order of accuracy, error correspondong to the primal problem

xv

Acknowledgments

First I would like to thank my supervisor, Dr. Carl Ollivier-Gooch for his constant
availability for discussion and for his invaluable help throughout the course of this
research.

I would also like to thank my lovely family for their endless encouragement and love:
the kindest person I have ever known, my mother, Mahtab; the most reliable person I
have ever talked to, my father, Amir; and the dearest brother in all the world, Kamran.

Finally, my deepest appreciation is for my husband, Alireza, for his limitless pa-
tience, support, encouragement and love in my life.

xvi

Chapter 1

Introduction

Fluid dynamics is described by a set of Partial Differential Equations (PDEs) and
as a result of their complexity, there is not any general analytical solution for them.
Therefore, the flow properties need to be predicted by physical experiment or numerical
solution of the flow equations. Since for most real applied cases, the solution has a
multi-scale nature, the cost of experimental analysis is too much. Considering these
limitations, numerical solutions are now commonly used as an important analysis tool
in the solution of scientific and engineering problems. While the efficiency of such
methods has been dramatically improved, there is still a strong industrial desire to
produce more accurate numerical solutions.

Computational Fluid Dynamics (CFD) has shown remarkable capability for fluid
analysis and also produces accurate and efficient results, both in terms of memory usage
and time. Nowadays, CFD is used extensively and successfully in industry throughout
the design process, from preliminary design to shape optimization. Increasing com-
puting power has resulted in the development of new computational techniques and
algorithms, enhancing the versatility of CFD applications.

Modeling, mesh generation and numerical solution are the three essential compo-
nents involved in numerical simulations:

• Modeling: The partial differential equations describing the physics of the prob-
lem must be defined. Modeling includes these governing equations, the problem
geometry, the initial condition and the boundary conditions.

• Mesh Generation: To solve the PDEs numerically, the continuous domain being
studied should be tessellated into shapes recognized by the solver. This process,
referred to as mesh generation, is one of the most time consuming parts of CFD
solution. Since the discretization of the fluid flow equations is carried out on the
mesh, the CFD solution will be inaccurate without a proper domain discretization.

• Numerical Solution: Once the PDEs describing the problem are defined and dis-
cretized over the domain in the form of a large system of algebraic equations, the

1

1.1. Structured and Unstructured Meshes

system of equations is solved and the numerical solution for the flow of interest
is obtained.

Greater emphasis is being placed on quantifying the accuracy of numerical solutions
as the complexity of problems simulated using CFD has grown. The two error terms
describing the accuracy of the scheme are discretization error and truncation error
and these error terms are the main focus of this thesis. Historically, the main tool
for quantifying solution accuracy has been grid refinement studies. However, for real-
world application problems, the baseline simulation often pushes the limits of available
computing resources, so the cost of finer mesh simulation for a grid refinement study
is prohibitive. Such studies are also complicated by modeling issues, notably in the
near wall behavior of turbulence models. Meeting this need for error quantification
for industrial scale CFD requires a new paradigm in which a robust flow solver with
adaptive and error quantification capabilities reliably produces solutions with known
error bounds with minimal human intervention.

The goal of this thesis is to prototype methods for error quantification in a framework
consistent with numerics employed in modern commercial CFD solvers. Commercial
CFD software typically handles complex geometry using unstructured meshes (Section
1.1), for which accuracy issues are not as well understood as for structured meshes.
Furthermore, commercial CFD software currently uses finite volume method almost
exclusively; the essential parts of the finite volume method is described in Section 1.2.
The error quantification paradigm discussed in this thesis is based on the truncation
error. The definition of the truncation error and how it is different form the discretiza-
tion error is described in Section 1.3. Section 1.4 is devoted to different techniques
for estimating the truncation error for use in improving flow solutions through defect
correction, estimating the solution functional error and driving the mesh adaptation as
discussed in Section 1.5. Finally, this chapter concludes by describing the objective of
the thesis in details, Section 1.6, and providing an overview of the thesis, Section 1.7.

1.1 Structured and Unstructured Meshes

In a structured mesh, all cells and vertices have the same fixed and predictable topology.
As a result, each cell and vertex can be identified by indices. As an example, in a
structured mesh, Figure 1.1a, cell (i, j) is always topologically between cell (i+ 1, j)
and cell (i− 1, j) which are located on the topological right and left of the reference

2

1.1. Structured and Unstructured Meshes

cell, respectively.

(a) Structured mesh (b) Unstructured mesh

Figure 1.1: Mesh topology

Unstructured meshes on the other hand have elements with irregular and variable
topologies in the sense that the connectivity is not predictable and must be explicitly
stored. For an unstructured mesh, Figure 1.1b, there is no particular topology which
indicates the neighbors of control volume 1, for instance. The mesh adjacency data
must therefore be stored to know the neighbors of a given cell.

From the numerical point of view, structured meshes are attractive as a result of
their predictable topology, implying that storing the neighboring cells is not necessary.
Besides, as a result of the regular topology, the linear system arising from implicit time
discretization have a simple matrix structure and can be solved faster. Furthermore,
a fixed interpolation, or extrapolation, can be used for flux integration. For more
clarification, flux computation in finite volume method is considered: a fixed template
is sufficient for flux computation in structured meshes; accordingly, faster solution with
reduced memory usage can be developed by capitalizing on their predictable topology
[27]. However, the task of generating structured meshes around complex configurations
has proved to be a considerable challenge. Obtaining a structured mesh of a complex
domain often involves time-consuming human intervention that can easily offset the
saving realized by the solver itself. Furthermore, generalizing mesh adaptation in this
approach is still not an easy task and needs significant effort.

3

1.2. The Finite Volume Method

On the other hand, for unstructured meshes evaluating the same flux as discussed
above for finite volume method requires performing a polynomial reconstruction of the
solution over each control volume. In spite of the higher cost for the solver, unstructured
meshes are generally much easier to generate automatically around arbitrary complex
geometries. Moreover, unstructured meshes are more flexible than structured meshes
in refinement based on the geometry and adaptation based on the solution features
and gradients. Accordingly, the time and effort required by the user to produce an
acceptable mesh can be reduced significantly [51]. These features of structured and
unstructured meshes are summarized in Table 1.1.

Structured mesh Unstructured mesh
Memory usage less memory more memory

Stencil fixed variable
Topology regular irregular

Solution time shorter longer
Mesh generation significant effort less effort
Adaptability significant effort less effort

Industrial usage trend less common more common

Table 1.1: Comparison of features of structured and unstructured meshes

Considering all these differences, unstructured meshes are the most common choice
for complex geometries; associated solvers are becoming more common in modern CFD
applications and promise to be more capable and successful for complex aerodynamic
problems.

1.2 The Finite Volume Method

Once the flow field is discretized and the mesh, either structured or unstructured, is
generated, the fluid flow equations should be solved over the discretized domain. The
fluid flow equations are generally discretized by finite difference, finite element or finite
volume methods.

The finite difference method uses a point-wise representation of the flow field. The
flow equations are solved only for variables defined at mesh vertices and the point-
wise solution derivatives are approximated using a difference relation obtained by the
Taylor series expansion of the solution. Figure 1.2a depicts a five-point stencil that
might be used in a 2D centered finite difference method. The finite difference scheme

4

1.2. The Finite Volume Method

was the original approach to the CFD problems and is well suited for structured grids.
However, it is difficult to be implemented on unstructured meshes and moreover, it
does not necessarily conserve mass, momentum, and energy of the flow, implying that
it is not a proper choice for some practical applications such as flows with shocks.

(a) Finite difference method

𝑝 −2 reference element 𝑝 −3 reference element

(b) Finite element method

𝐶𝑉𝑖

First layer of neighbors

(second-order)

Second layer of neighbors

(third-order)

(c) Finite volume method

Figure 1.2: Discretization methods

The finite element method is a well established mathematical approach for numerical
solution of PDEs. In this method, equations are multiplied by a test function and then
integrated over the discretized domain. The finite element solution is represented by
local basis functions over the elements of the mesh. The extension of the method to
higher-order solutions is as easy as using higher-order degree test and basis functions,
Figure 1.2b. As implementing the approach to arbitrary shapes is not an issue, it can
be extended to unstructured meshes as well. Similar to the finite difference method,
the challenge with using continuous Galerkin methods for the finite element approach
is conservation of mass, momentum and energy; although conservation is achievable, it

5

1.2. The Finite Volume Method

is not an easy task particularly in flows with discontinuities.
The finite volume approach is based on control volume analysis and discretizes the

governing equations in integral form. Consequently, it conserves mass, momentum
and energy. As a result of the conservation property, the capability of the finite volume
method in capturing discontinuities in the flow is enhanced. The solution is represented
by reconstructed piecewise polynomials based on the control volume averages and the
governing equations are discretized the by computing a discrete flux integral. Similar to
the finite element method, it is very flexible for complex geometries and unstructured
meshes. Higher-order application of finite volume methods is possible by using a higher-
order polynomial inside each control volume [57], Figure 1.2c. However, high-order
finite volume methods are more complicated compared to finite element method; we
will discuss this in more detail later.

Finite volume solvers can support two common types of control volumes that are
widely used to tessellate an unstructured mesh. Cell-centered control volumes are
the same as geometric cells of the mesh and the geometric cell centroid is typically
chosen as the reference location of the control volume, Figure 1.3a. In vertex-centered
control volumes, the mesh vertices are chosen as the control volume reference point and
the control volume is defined by connecting cell centroids with face centroids of the
neighboring cells in the primal mesh, Figure 1.3b.

(a) Cell-centered control volume (b) Vertex-centered control vol-
ume

Figure 1.3: Control Volume illustration

Among the three methods described above for discretizing the governing equation,
we are using the finite volume approach as a result of its capability in simulating
complex flows and the fact that most commercial CFD software currently uses this
method, particularly for compressible flows.

6

1.2. The Finite Volume Method

1.2.1 Spatial Discretization

To discretize the flow equations using the finite volume method, the governing equations
should be recast in fully conservative form as:

∂~U

∂t
+∇ · ~F = 0 (1.1)

where −→U denotes the solution vector and −→F is the flux vector which is a combination
of both convective, ~Fc, and diffusive flux, ~Fv vectors.

~F = ~Fc − ~Fv (1.2)

Integrating Eq. 1.1 over an arbitrary control volume and using the divergence theorem
gives the 2D finite volume formulation of the governing equations in the form of a
volume integral and a surface integral

¨

CV

∂~U

∂t
dA+

˛

CS

~F · n̂ ds = 0 (1.3)

where n̂ represents the outward unit normal vector, CV and CS are the control volume
and control surface (the boundary of the control volume), respectively and ds is the
infinitesimal. Assuming that the discretized physical domain does not change in time,
U can be brought out from the integral in Eq. 1.3, as the average solution vector of
the control volume

dU i

dt
= − 1

ACVi

˛

CSi

~F · n̂ ds (1.4)

The left hand side is the time derivative of the average solution vector in the ith control
volume. The right hand side is called the flux integral or residual of the control volume
and represents the spatial discretization of the same control volume. The flux integral
is a function of the solution vector and can be re-written as

dU i

dt
= −Ri

(
U i

)
(1.5)

7

1.2. The Finite Volume Method

1.2.2 Solution Reconstruction

To obtain an accurate numerical approximation to the residual, we reconstruct a poly-
nomial representation of the solution within each control volume. The solution within
each control volume is represented by the Taylor series expansion:

UR
i (x− xi, y − yi) = U |i + ∂U

∂x

∣∣∣∣∣
i

(x− xi) + ∂U

∂y

∣∣∣∣∣
i

(y − yi) + ∂2U

∂x2

∣∣∣∣∣
i

(x− xi)2

2

+ ∂2U

∂x∂y

∣∣∣∣∣
i

(x− xi) (y − yi) + ∂2U

∂y2

∣∣∣∣∣
i

(y − yi)2

2 + ... (1.6)

where UR
i is the value of the reconstructed solution and ∂k+1Ui

∂xkyl
are its derivatives at

the reference point (xi, yi) of control volume i. These values are the coefficients of the
Taylor polynomials and the degree of the polynomial determines the order of accuracy
of the solution. To obtain conservation of the mean within a control volume, we need
to satisfy

U i = 1
Ai

ˆ
Vi

UR
i dA = U |i + ∂U

∂x

∣∣∣∣∣
i

xi + ∂U

∂y

∣∣∣∣∣
i

yi + ∂2U

∂x2

∣∣∣∣∣
i

x2
i

2

+ ∂2U

∂x∂y

∣∣∣∣∣
i

xyi + ∂2U

∂y2

∣∣∣∣∣
i

y2
i

2 + ... (1.7)

where xpyqi are the moments of area:

xpyqi = 1
Ai

ˆ
Vi

(x− xi)p (y − yi)qdA. (1.8)

The error magnitude or the difference between the actual control volume average U j

and the average of UR
i for control volumes in the stencil {Vj}i should be minimized

[66]. Eq. 1.7 is written for every control volume within the stencil of control volume i.
The number of these control volumes must be more than the number of reconstructed
solution coefficients to yield a least-squares system. Once the polynomial coefficients
are known, the reconstructed flow properties at any point in the control volume can
easily be found using Eq. 1.6. This is a general overview of the solution reconstruction
and more details are available in literature [9, 52].

8

1.2. The Finite Volume Method

1.2.3 Flux Integration

To compute the flux integral for each control volume, Eq. 1.5, numerical fluxes should
be integrated over control volume edges. The accuracy of flux integration should be
equal or higher than the accuracy of solution reconstruction. This integration is done
by the Gauss quadrature integration rule. Gauss quadrature gives the capability of
accurately evaluating a definite integral with the integrand evaluated at only a few
points [88].

Consider the two interior control volumes shown in Figure 1.4. The flux vector is
calculated by solution reconstruction described in previous section and the numerical
flux formula. The conservation property of the finite volume method requires that the
flux leaving a control volume must enter its neighbor, so along edge ab, the flux leaving
control volume i should enter control volume j. However, the solutions and gradients
reconstructed at the two sides of a Gauss point are not necessarily equal. Therefore, a
flux function is essential to yield a unique flux vector. By knowing the solutions and
gradients by solution reconstruction and the unit normal by the geometry of the mesh,
the flux integral can be evaluated by the numerical flux formula.

𝑖

𝑗

𝑏

𝑎

𝑥𝑔

(a) Second-order

𝑖

𝑗

𝑏

𝑎

𝑥𝑔1

𝑥𝑔2

(b) Third and fourth order

Figure 1.4: Cell-centered flux calculation

For the second order solution or linear reconstruction case, one quadrature point
per edge is used which is at the middle of the corresponding edge. The flux integral for
each edge can be approximated by knowing the numerical flux at the edge midpoint
and the length of the edge. For higher order cases, more quadrature points per edge
are required which are used with the proper weightings. Comprehensive information
regarding the locations and weights of the Gauss quadrature integration points has been

9

1.2. The Finite Volume Method

given by Van Altena [92]. The control volume flux integral in Eq. 1.4 is approximated
as the summation of flux integrals over the edges and the flux is the subtracted from
the flux integral for control volume i and added to the flux integral for control volume
j, following the direction of the normal.

Convective Fluxes

Consider the advective equation that describes the two-dimensional transport of a con-
served scalar φ in a constant velocity field ~V = (u, v).

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= 0 (1.9)

The solution and flux vector are

U = φ , ~F =


uφ

vφ

 (1.10)

and the flux vector is only dependent on the solution and not the solution gradient.
There are two major schemes that are used for numerical convective flux computation:
central and upwind schemes.

For the central flux formulation, the flux function is simply the arithmetic average
of the two flux vectors computed from each side, ~F

(
UL
)
and ~F

(
UR

)
, :

~Fc =
~F
(
UL
)

+ ~F
(
UR

)
2 (1.11)

Considering that information in the flow field is propagating at the wave speed, the
solution at each point is influenced by the solution upstream and the solution down-
stream does not physically affect it. The upwind scheme gives the numerical flux at
the face quadrature points based on the direction of the velocity vector at those points.
For instance, in Figure 1.5, the numerical flux at the common edge is given as:

~Fab =


~FL ~V · n̂ ≥ 0
~FR ~V · n̂ < 0

(1.12)

10

1.2. The Finite Volume Method

𝑖

𝑗

𝑉

𝑛

𝑈𝐿
𝑈𝑅

(a) ~V · n̂ > 0⇒ ~F = ~FL

𝑖

𝑗

𝑉 𝑛

𝑈𝐿
𝑈𝑅

(b) ~V · n̂ < 0⇒ ~F = ~FR

Figure 1.5: Upwind flux illustration

Diffusive Fluxes

Consider the general form of unsteady two-dimensional diffusion

∂φ

∂t
−
(
∂2φ

∂x2 + ∂2φ

∂y2

)
= 0. (1.13)

Recasting this equation in the form of Eq. 1.1 yields the unknown solution and flux
vector as:

U = φ , ~F =


−∂φ
∂x

−∂φ
∂y

 = −∇φ (1.14)

and the flux vector is only dependent on gradients. For diffusive fluxes, the face gradient
is obtained by arithmetic averaging of the gradients of two neighboring cell plus a
solution jump term that enhances the stability of the scheme and does not change the
consistency of the discretization [37, 61].

~Fv =
~F
(
UL
)

+ ~F
(
UR

)
2 + α

−→rij · n̂
(
UL − UR

)
n̂ (1.15)

where ~F
(
UL
)
and ~F

(
UR

)
are the viscous flux vectors computed at each side and the

second term on right hand side is the jump term in which −→rij is the vector from the
reference point of cell i to its immediate neighbor, cell j and α is a constant.

11

1.2. The Finite Volume Method

1.2.4 Solution Method

In this thesis, we look for steady-state solutions for which integration in time of the
spatially discretized equation, Eq. 1.5, can be implemented explicitly or implicitly. In
explicit time integration, the space discretization is performed at the previous time level
using the known flow quantities found at the previous time iteration.

U
n+1
i − Un

i

∆t = −R
(
U
n
i

)
(1.16)

where Un

i is the solution average vector at the current time level and U
n+1
i is the

solution at the next time level. In implicit time integration, both the space and the
time discretizations are performed at the current time level where the flow quantities
are needed as unknowns.

U
n+1
i − Un

i

∆t = −R
(
U
n+1
i

)
(1.17)

Implicit methods do not suffer from the stability restrictions of explicit methods and
large time steps can be taken. As a result, faster convergence to the steady-state
solution is possible when implicit time-stepping techniques are used. To solve Eq.
1.17 numerically, both sides of the equation should be evaluated at time level n + 1.
This is implemented by backward time differencing of the left hand side and residual
linearization in time for the right hand side about the state Un

i :

U
n+1
i − Un

i

∆t = −R
(
U
n+1
i

)
= −

[
R
(
U
n
i

)
+ ∂R

∂U

(
U
n+1
i − Un

i

)
+O

(
U
n+1
i − Un

i

)2
]

⇒
(
I

∆t + ∂R

∂U

)
δU i = −R

(
U
n

i

)
(1.18)

where δU i = U
n+1
i −Un

i and ∂R
∂U

is the global Jacobian matrix resulting from flux integral
or residual linearization. Eq. 1.18 is a large linear system of equations which needs to
be solved at each time step to obtain an update for the vector of unknowns.

The global Jacobian matrix can be represented explicitly as:

∂R

∂U
= ∂FluxInt

∂Flux
∂Flux
∂RecSol

∂RecSol
∂RecCoef

∂RecCoef
∂U

(1.19)

12

1.3. Truncation and Discretization Error

The last term ∂RecCoef
∂U

is found by using the pseudoinverse of the reconstruction matrix,
∂RecSol
∂RecCoef is a geometric term dependent on the location of the Gauss points, ∂Flux

∂RecSol

is based on the flux function and ∂FluxInt
∂Flux is computed using the appropriate Gauss

integration weight and the length of edges [52].
The computational cost, both in terms of memory usage and time, of flux com-

putation, flux integration, Jacobian matrix calculation and other associated numerical
calculations per cell increase when higher-order methods are implemented; however, as
a result of using a coarser mesh, the overall computational cost to obtain a determined
accuracy is less if higher-order methods are used [53, 56, 58, 64].

1.3 Truncation and Discretization Error

There are two error terms describing the accuracy of the scheme: discretization er-
ror and truncation error1. Discretization error is defined as the difference between
the discrete solution obtained by the CFD simulation of the governing equation and
the exact solution of the problem. The initial source of these numerical errors is the
truncation error, the amount by which the discrete solution fails to satisfy the PDE
locally. Assume an exact solution Ũ to a linear differential linear equation L

(
Ũ
)

= 0
and its discrete analog Lh

(
Ũh
)

= 0. We can project the continuous solution onto a
mesh with characteristic size h to get IhŨ which does not satisfy the discrete equation
Lh
(
IhŨ

)
6= 0:

Lh
(
IhŨ

)
= Lh

(
Ũh
)

+ ∂Lh
∂Uh

(
IhŨ − Ũh

)
+O

(
IhŨ − Ũh

)2
(1.20)

where the left-hand side is the truncation error, τ , the first term on the right-hand side
is zero; ∂Lh

∂Uh
is the flux Jacobian described above and IhŨ − Ũh is the discretization

error, ε. This is called the error transport equation which relates the truncation and
discretization error. Error transport equation has been used for error estimation [80].

As an example, consider the finite volume discretization of Laplace equation on the
one-dimensional grid shown on Figure 1.6:

d2T

dx2 = 0. (1.21)

This finite volume discretization of this equation is considered. The averages over
1We are not considering the roundoff error and iterative error.

13

1.3. Truncation and Discretization Error

𝑥
𝑖−
3
2
 𝑥

𝑖−
1
2
 𝑥

𝑖+
1
2
 𝑥

𝑖+
3
2

𝑖 𝑖 − 1 𝑖 + 1

Δ𝑥 Δ𝑥 Δ𝑥

Figure 1.6: Discretization stencil for Laplace equation

control volume i is taken:

d2T

dx2 = 1
4x

x
i+ 1

2ˆ
x
i− 1

2

(
d2T

dx2

)
dx =

dT
dx

∣∣∣
i+ 1

2
− dT

dx

∣∣∣
i− 1

2

4x
≈

dT
dx

∣∣∣
i+1
− dT

dx

∣∣∣
i−1

24x (1.22)

Using the Taylor series expansion, the control volume averages are obtained in terms
of derivatives at point i:

dT

dx

∣∣∣∣∣
i+1

= 1
∆x

ˆ x
i+ 3

2

x
i+ 1

2(
dT

dx

∣∣∣∣∣
i

+ d2T

dx2

∣∣∣∣∣
i

(x− xi) + 1
2
d3T

dx3

∣∣∣∣∣
i

(x− xi)2 + 1
6
d4T

dx4

∣∣∣∣∣
i

(x− xi)3 ...

)
dx

= dT

dx

∣∣∣∣∣
i

+ d2T

dx2

∣∣∣∣∣
i

(∆x) + 13
24

d3T

dx3

∣∣∣∣∣
i

(∆x)2 + 5
24

d4T

dx4

∣∣∣∣∣
i

(∆x)3 +O (∆x)4

dT

dx

∣∣∣∣∣
i−1

= 1
∆x

ˆ x
i− 1

2

x
i− 3

2(
dT

dx

∣∣∣∣∣
i

+ d2T

dx2

∣∣∣∣∣
i

(x− xi) + 1
2
d3T

dx3

∣∣∣∣∣
i

(x− xi)2 + 1
6
d4T

dx4

∣∣∣∣∣
i

(x− xi)3 ...

)
dx

= dT

dx

∣∣∣∣∣
i

− d2T

dx2

∣∣∣∣∣
i

(∆x) + 13
24

d3T

dx3

∣∣∣∣∣
i

(∆x)2 − 5
24

d4T

dx4

∣∣∣∣∣
i

(∆x)3 +O (∆x)4

Substituting these control volume averages into Eq. 1.22 gives the finite volume ap-

14

1.3. Truncation and Discretization Error

proximation of the second derivative as:

d2T

dx2 = d2T

dx2

∣∣∣∣∣
i

+ 5
24

d4T

dx4

∣∣∣∣∣
i

(∆x)2 +O (∆x)4 (1.23)

in which 5∆x2

24
∂4T
∂x4

∣∣∣
i
is the leading order term in the truncation error.

Historically, truncation error analysis for structured mesh schemes is a routine appli-
cation of Taylor series analysis, while analysis of unstructured mesh schemes has lagged
behind. Recent work on analysis of unstructured mesh schemes includes verification of
unstructured mesh solvers [91], accurately predicting flow properties on unstructured
meshes [14], numerical studies of error for mixed element finite-volume schemes [17],
accuracy of discretization schemes on irregular grids [18], error comparisons for cell-
centered or vertex-centered discretizations [20], and Taylor-based accuracy assessment
of cell-centered discretizations [36].

Local analysis of truncation error is needed as some local mesh configurations may
result in asymptotically larger errors than others. Mesh features, including cell size,
anisotropy, shape and connectivity, can have an adverse interaction with discretization
schemes that affects the solution accuracy. Error quantification hinges on the ability
to accurately estimate and efficiently exploit the local truncation error.

Ultimately, we need information about configurations in a mesh producing large
error locally, which implies a need for local analysis of truncation error for arbitrary cells.
Most truncation error estimation schemes produce estimates of the overall truncation
error on a cell-by-cell basis. Ollivier-Gooch and Van-Altena [66] performed Taylor
series truncation error analysis for the Laplacian on regular triangular meshes, and
this was extended to general stencils by Jalali and Ollivier-Gooch [36]. The output
of this analysis is a set of Taylor series coefficients for the truncation error for each
control volume which can be combined with local solution derivatives to compute the
truncation error.

Several researchers, including Diskin and Thomas [17, 19], and Jalali and Ollivier-
Gooch [36], have demonstrated that the truncation error for unstructured finite volume
schemes is asymptotically larger than the discretization error which in turn is typically
of the same order as the solution approximation error in the scheme. This behavior is
in contrast with the structured mesh case for which the truncation error has the same
asymptotic order of accuracy as the discretization error.

Another feature of the truncation error for unstructured mesh schemes is its noisy

15

1.4. Truncation Error Estimation Methods

appearance, caused by the discontinuous jump of the coefficients of the terms in the
Taylor series expansion of the error from one control volume to another. This is in
contrast with structured mesh schemes where the truncation error is smooth. These
two features of the truncation error for unstructured mesh finite volume schemes, non-
smoothness and large magnitude, are related to each other by the eigensystem of the
discrete problem as shown by Ollivier-Gooch and Roy [65]. Sharbatdar and Ollivier-
Gooch [84] have shown by eigenanalysis of the truncation error that the rough modes
dominate the unstructured mesh truncation error. Details of eigenanalysis of the trun-
cation and discretization error will be described in Chapter 2.

1.4 Truncation Error Estimation Methods

Consider a steady partial differential equation with exact solution of Ũ :

L
(
Ũ
)

= 0 (1.24)

where L is a partial differential operator. Let Lh be a discrete approximation to L

on a mesh with characteristic size h and Ũh denote the exact solution to the discrete
problem. The discrete form of Eq. 1.24 is written as:

Lh,p
(
Ũh,p

)
= 0 (1.25)

where the original discrete problem is solved to order p. The exact solution, Ũ , when
projected onto the mesh, does not satisfy the discrete equation:

Lh,p
(
IhŨp

)
6= 0 (1.26)

where Ih denotes a restriction operator that projects a continuous function onto the
discrete space. Roy [80] showed that the truncation error, τh,p (U), can be defined as:

Lh,p
(
IhU

)
= IhL (U) + τh,p (U) (1.27)

in which U is any continuous function.
Quantifying the truncation error in the sense of finding corresponding coefficients to

each spatial derivative is well understood for one-dimensional discretization using either
finite difference, finite element or finite volume methods. Extending the analysis to the

16

1.4. Truncation Error Estimation Methods

multi-dimensional Cartesian discretization is straightforward as well. However, the
truncation error analysis of discretization schemes being used for unstructured meshes
is more difficult because the local shape and connectivity of the mesh is more varied.
Besides, for non-linear equations, finding the coefficients in the Taylor series expansion
is very complicated. As a result, other methods are required for obtaining an estimation
of the truncation error. In this section, a number of common methods for estimating
the truncation error are considered.

Truncation error estimation in the finite element context has been throughly studied;
see [3] for the seminal discussion. These methods have been extended to the Discontinu-
ous Galerkin framework [2, 41]. Most of these methods work better for elliptic problems
than for hyperbolic problems. Moreover, discontinuities, singularities, and geometrical
complexities can significantly reduce the reliability of these error estimation methods.
In finite elements, using the same mesh with different orders of accuracy is an alter-
native for estimating the truncation error. Mavriplis [50] estimated the local error by
measuring the energy norm associated with the different method. Finite element resid-
ual methods make use of the continuous representation provided by the approximate
finite element solution to evaluate a continuous representation of the residual [3].

In the finite volume context, there are several options for estimating the truncation
error including using the exact solution, using the solution on a finer mesh, and using
a higher order discretization scheme.

1.4.1 Exact Truncation Error

When Ũ , the exact solution of the PDE, is available, then the the first term on the
right-hand side in Eq. 1.27 is zero and the p-order truncation error is simply:

Lh,p
(
IhŨ

)
= τh,p

(
Ũ
)

(1.28)

For finite-volume methods, this implies taking control volume averages of the exact
solution and computing a flux integral based on that. Even though calculating the
truncation error by this approach provides us with the exact truncation error, applying
the method to general problems with unknown exact solution is not possible. However,
this approach may be utilized as a reference value to compare other estimations with.

17

1.5. Application of Truncation Error Estimation

1.4.2 Estimating Truncation Error using a Finer Mesh

Instead of the exact solution of the PDE, the discrete solution on a finer mesh with
characteristic size h

2 may approximate the exact solution. When the solution is in
the asymptotic range and the scheme is p−order accurate, the residual on a finer mesh
Lh

2

(
I
h/2
h Uh

)
will be a factor of 2p smaller than the truncation error. This method, called

the h-truncation error estimate, or h-TE, is used locally in finite element adjoint-based
adaptation schemes by Darmofal et al. [94, 95] for both viscous and inviscid flows, Ne-
mec and Aftosmis [59, 60] and Hartmann [48]. However, for a global truncation error
estimate, the requirement that the solution be in the asymptotic range for truncation
error to be correct is undesirable. Furthermore, the requirement of the residual compu-
tation on the fine mesh implies more computational cost in terms of time and memory
compared to a single mesh method.

1.4.3 Estimating Truncation Error using a Higher-Order
Scheme

Another approach for estimating the truncation error which is not limited to problems
with exact solution uses a higher order discretization to find the leading order terms
in the truncation error estimate, producing the p-truncation error estimate, or p-TE.
The residual computed to p-order in Eq. 1.25 is necessarily zero. If we used the p-
order solution in a p+ 1 order discretization, we will get the leading order terms in the
truncation error of the p-order scheme:

Lh,p+1(Uh,p) = τh;p→p+1 (Uh,p) (1.29)

The accuracy of this estimate could be improved by using even higher order discretiza-
tions, p+ 2 instead of p+ 1, and adding the next higher order terms to the truncation
error estimates. This scheme was used for optimizing an unstructured mesh to reduce
the truncation error [65].

1.5 Application of Truncation Error Estimation

Error quantification hinges on the ability to accurately estimate and efficiently exploit
the local truncation error. The truncation error estimate can be used directly to improve
the solution through defect correction. Furthermore, it can be combined with the

18

1.5. Application of Truncation Error Estimation

solution to an auxiliary partial differential equation, the adjoint problem, to estimate the
error in an output quantity of engineering interest [26]. Another important application
of the estimation of the truncation error is to drive mesh adaptation to improve the
efficiency of the simulation.

1.5.1 Defect Correction

Over the years, there have been numerous attempts to estimate the error in discrete
solutions or, equivalently, to improve the accuracy of the solution. Two widely appli-
cable approaches are Richardson extrapolation and defect correction. Although both
approaches are used in an iterative fashion, defect correction proceeds on the original
grid of the discretization while Richardson extrapolation needs repeated grid refinement
and yet produces answers on the original grid only.

Defect correction methods are based on a particular way to estimate local or global
errors. The use of simple integration schemes in combination with defect (residual) eval-
uation leads to computable error estimates and, in an iterative fashion, yields improved
numerical solutions. Approximating the residual by discretization is the standard ap-
proach for more traditional uses of defect correction [73, 87] and requires the use of
higher-order discretization than used in the primal equation.

Consider the a steady partial differential equation with source term f as:

L (U) = f (1.30)

The discrete form can be written as:

Lh (Uh) = 0

and the amount by which the discrete solution fails to satisfy the PDE is the exact
truncation error as

Ihf − Lh
(
IhU

)
= τ

So the original discrete equation is

Lh
(
IhU

)
= Ihf − τ (1.31)

which implies that if the truncation error is added to the source term of the problem,

19

1.5. Application of Truncation Error Estimation

Eq. 1.30,
L (U) = f + τ (1.32)

the exact solution is obtained, referring back to Eq. 1.31.

Lh (Uh) = Ihf + τ − τ = Ihf.

Lh (Uh) = Ihf (1.33)

In the defect correction procedure, the higher order discrete operator is applied to the
lower order solution [12, 24, 29, 49, 69, 70, 86, 87] instead of the exact truncation error.
This defect correction method provides local discretization error estimates driven by
the p-TE estimate based on higher order discretization and treats the truncation error
estimate as a source term to drive the original problem toward a higher-order solution.
Theoretically, adding the exact truncation error to the source term of the problem gives
us the exact solution, and adding the p-TE estimate to the source term gives us the
solution which converges to the exact solution at p-order.

1.5.2 Output Error Estimation

In the field of computational aerodynamics and fluid dynamics, lift and drag are out-
put functionals of interest and the desire for efficient computational methods producing
reliable and accurate lift and drag values drives algorithm research in the field. The ad-
joint method has played an important role in this context because of the great flexibility
it offers with regard to the physics model and to the definition of output functionals.
The history of the use of adjoint equations in fluid dynamics design goes back to the
work by Pironneau [74] and particularly in the field of computational aerodynamics
design to the work by Jameson [39]. Since then, adjoint methods have been used for
design applications for both internal and external flows [38, 39, 43, 44, 54, 75]. The
adjoint theory was first presented in the context of linear algebra by using the algebraic
equations obtained from the discretization of the original problem. This is the basis
for the discrete adjoint approach. The continuous adjoint approach, on the other hand,
is formulated based on the adjoint PDE which is discretized and solved independently
[26].

Consider a partial differential equation arising from a finite volume discretization

20

1.5. Application of Truncation Error Estimation

of the original fluid dynamic equations which is discretized and written as an algebraic
equation:

Rh

(
Uh

)
= 0. (1.34)

For a scalar output, Jh
(
Uh

)
such as lift or drag, the associated discrete adjoint vector,

Zh, must satisfy the discrete adjoint equation:
(
∂Rh

∂Uh

)T
Zh +

(
∂Jh
∂Uh

)T
= 0. (1.35)

As discussed in Section 1.2, the implicit Jacobian matrix can be computed in our solver
and hence the transpose of the Jacobian matrix,

(
∂Rh
∂Uh

)T
, can be calculated easily.

The continuous primal problem can be posed as

Determine J = (U, g)D + (CU, h)∂D
given that LU = f inD

BU = e in ∂D

(1.36)

where (U, V)D =
´
D
UTV dv is an integral over the domain and (U, V)∂D =

´
∂D
UTV dA

is an integral over the boundary of the domain. The objective in the analytic approach
is to convert the primal problem using integration by parts into an equivalent adjoint
problem

Determine J = (Z, f)D + (C∗Z, e)∂D
given that L∗Z = g inD

B∗Z = h on ∂D

(1.37)

where L∗ is the linear PDE which is adjoint to L. B and B∗ are boundary condition
operators for the primal and adjoint problems, respectively, and C and C∗ are possible
differential weight boundary operators used in the functionals; these four operators
may have different dimensions on different parts of the boundary. The two forms of the
problem are equivalent provided that

J = (Z,LU)D + (C∗Z,BU)∂D = (L∗Z,U)D + (B∗Z,CU)∂D (1.38)

which is the adjoint consistency condition. The left hand side is the output functional
based on the adjoint solution and the right hand side is the output functional based on
the primal problem.

The adjoint problem plays a key role in estimating and reducing the error in output

21

1.5. Application of Truncation Error Estimation

functional. Within the context of finite element methods, output functional correction
has been outlined by Becker and Rannacher [10] and Larson and Barth [47] based on
structural finite element methods [3]. The adjoint-based error correction technique
developed by Pierce and Giles [72] extends the inherent super-convergence properties
of finite element methods to cover numerical results obtained from finite difference and
finite volume without natural super-convergence properties. Moreover, the technique
can be used to improve the accuracy of super-convergent functionals obtained from finite
element methods by constructing smoother, higher-order interpolants of the primal and
adjoint solutions [72].

It is easy to show that the exact error in the output functional can be written as:

J = (U, g) = (Uh, gh)− (Zh, τh) + H .O.T (1.39)

where U − Uh is the discretization error and the higher order terms (H.O.T) involves
the unknown discretization error in the PDE and the truncation error for the adjoint
problem.

For numerical efficiency, computing the functional value to a higher order of accuracy
than the primal solution is advantageous. A super-convergent estimate of the functional
may be obtained by computing the leading error term in the original functional estimate
and using this as a correction. Pierce and Giles [73] showed that the error in the func-
tional value based on the reconstructed primal solution can be expressed as a function
of the truncation error, implying that truncation error estimation is required for output
error estimation. This error estimation technique has been exploited for large-scale CFD
simulations in the discontinuous Galerkin community [23, 31, 32, 33, 59, 68, 94, 95],
where higher asymptotic convergence rates are routinely obtained. Venditti and Darmo-
fal presented an error estimation strategy based on adjoint formulation for estimating
errors in functional outputs for one and two-dimensional problems and their error esti-
mation procedure was applied to a standard, second-order finite volume discretization
[93]. The h-TE method is used for estimating the truncation error, the solution on a
finer mesh, and the discrete adjoint solution.

More details of obtaining the adjoint solution and correcting the output functional
will be described in Chapter 5.

22

1.5. Application of Truncation Error Estimation

1.5.3 Mesh Adaptation

The accuracy of the final solution is highly dependent on the mesh spacing. Accordingly,
one approach for achieving a more accurate solution is to repeat the problem with
increasingly finer meshes until an acceptable variation, i.e. within some tolerance from
one solution to another is obtained; however, this approach is inefficient and time
consuming. Assessing and minimizing discretization error by this method requires time
consuming mesh dependence analysis or computation of solutions on meshes that are
finer than the required solution accuracy dictates. Furthermore, a local difference in
element shape, orientation and size can influence the solution. Hence, mesh refinement,
especially for unstructured meshes, is only asymptotically guaranteed to produce a more
accurate solution.

One method employed to overcome this problem is mesh adaptation, in which the
mesh is locally fit to the particular features of the flow. Mesh adaptation strategies can
usually be classified as one of the three general types: r−refinement, p−refinement, and
h−refinement. r−refinement is modification of the mesh resolution, without chang-
ing mesh connectivity or the number of vertices in the mesh. The mesh vertices in
r−refinement are moved such that the density of points in particular regions of the
mesh with more interesting flow features such as boundary layers increases while the
number of mesh points in other regions decreases, Figure 1.7a. Increased resolution
is achieved by increasing the order of accuracy of the polynomials in each element if
p−refinement is implemented. This is depicted in Figure 1.7b for a nodal finite element
scheme, increasing order of accuracy from second to third for a triangular element.
h−adaptation decreases the mesh spacing directly by splitting the cell into cells with
smaller size, Figure 1.7c. I will use h−refinement in this thesis, so adaptation implies
h−refinement throughout this thesis.

Mesh adaptation seeks to automate the process of minimizing discretization error
by first computing the solution on a coarse mesh and then successively refining the
mesh so that the optimal mesh for the solution being computed is produced [81, 83].
A mesh generator should aim at achieving the best possible mesh using as few mesh
points as possible since the computational costs (both in terms of memory usage and
time) increases with the number of elements in the mesh. It is useful to make the mesh
finer in certain regions where the solution details must be captured, near boundaries for
instance, while keeping it coarse everywhere else (such as far fields). One of the most
important properties of a proper mesh for numerical simulations is that the density

23

1.5. Application of Truncation Error Estimation

(a) r-refinement

(b) p-refinement

(c) h-refinement

Figure 1.7: Mesh adaptation strategies

of mesh points should be easily controllable and allowed to vary quickly over a short
distance [27]. This property, which is easily available in adaptive schemes, saves sim-
ulation time since it prevents time from being wasted in regions that would otherwise
be over-resolved.

Several different adaptation indicators may be exploited to drive mesh adaptation.
Feature-based grid adaptation uses solution gradient, solution curvature, or even iden-
tified solution features to drive the adaptation process. This commonly-used approach
relies on a priori knowledge of the flow, including whether the solution contains shock
waves, boundary layers, etc., as well as a reliable feature-detection system. The main
advantage of explicitly detecting features is that more specific refinement is possible. On
the other hand, feature-based adaptation may result in over-refined features while some
other features are not refined enough [79]. In some cases, feature-based refinement can
actually increase the solution error [3, 79]. Dwight [22] has shown the failure of feature-
based adaptation for the inviscid transonic flow over an airfoil using an unstructured
finite-volume discretization. Adaptation based on solution gradients initially shows a
reduction in the discretization error, but then subsequent adaptation steps show an
increase in the discretization error.

24

1.5. Application of Truncation Error Estimation

Using local solution approximation error as an error indicator has had some success.
These error estimators identify locations where the solution is not well represented on
the mesh. This typically implies estimating the lowest-order solution derivatives that
are not directly computed during the solution process and using these to create a metric
definition for the solution [4, 13, 21, 28, 67]. The mesh is then adapted to match the
metric. This approach has recently been extended for use with high-order methods [67].

Because truncation error, the amount by which the discrete solution fails to satisfy
the PDE locally, is the source term in the error transport equation for discretization er-
ror, using truncation error to drive adaptations adds degrees of freedom to a simulation
precisely where additional accuracy will reduce discretization error directly [79]. Small
errors from one location of the mesh can be convected to regions which are relatively
far away since the error in values used in the Taylor approximation are passed on to the
interpolated value which will affect other Taylor expansion terms and so on [67]. Those
PDEs containing strong convective terms, such as the Euler equations, suffer from this
drawback of the residual-based error estimation. Accordingly, the disadvantage of using
this method is that features may be detected in the wrong location as a consequence
of convected errors.

Adjoint-based mesh adaptation is another common adaptation indicator [8, 31, 73,
93, 95]. It was shown in the previous section that the error in an output functional can
be expressed as an inner product of the local residual errors and the adjoint solution.
By estimating the local contribution of each cell to the error in any solution functional
of interest, this approach localizes mesh refinement to those parts of the computational
domain that most influence the accuracy of the selected outputs [60] and so optimally
reduces error in an output functional. Becker and Rannacher [11] have developed this
output-based adaptive procedure by exploiting finite element orthogonality properties.
This approach has been extended to the finite volume method; for example, Venditti
and Darmofal [94] successfully applied this approach for inviscid and viscous flow over
airfoils solved to second-order accurate. For situations where the only desired output is
a function of the solution, adjoint-based methods are ideal because they do not refine
areas of the mesh where the solution has no effect on that function. Analyzing the drag
force on an airfoil is an example; the mesh created by adjoint-based refinement provides
more accurate drag prediction than other meshes of similar size as will be shown in
Chapter 6. Adjoint-based mesh adaptation is widely used for all finite difference [45],
finite element [23, 30, 85, 97, 98] and finite volume [16, 25] methods.

25

1.6. Objectives

1.6 Objectives

The goal of this thesis is to develop and benchmark a reliable truncation error estimate
for finite-volume schemes on unstructured meshes and to use this truncation error esti-
mate to improve the solution through defect correction, to estimate solution functional
error, and to drive mesh adaptation.

The commonly-used method for estimating the truncation error on structured meshes
is using a higher-order discretization to find the leading order term in the truncation
error, p-TE method. However, there is no guarantee that the performance of the p-TE
method is the same for unstructured meshes. Eigenanalysis is used as a tool to study
the behavior of the truncation error on unstructured meshes. If using the original p-TE
based on the discrete solution is not sufficient for our purposes when unstructured mesh
is used, we need to develop a modified estimation of the truncation error that can be
computed using quantities available in a typical second-order finite volume solver.

We will investigate the effectiveness of the developed estimation of the truncation
error for application to defect correction, output functional error estimation, and mesh
adaptation. In all cases, the success of our truncation error estimate will be its effec-
tiveness in reducing error is the solution and output functional.

As test cases, we will focus initially on two-dimensional problems with known, man-
ufactured solutions. In this context, we use the exact solution for computing discretiza-
tion error and functional output error and to produce a reference value of truncation
error by computing the flux integral from control volume averages of the exact solution.
We will be applying this technique to two-dimensional compressible flow problems. Be-
cause these techniques are mathematical in origin rather than physical, subsequently
applying them to other physical problems will not be difficult.

1.7 Outline

An overview of the eigenanalysis of truncation error is described in Chapter 2 and the
smoothness of the truncation error on unstructured meshes is compared to the struc-
tured meshes. As rough modes of the truncation error are dominant for unstructured
meshes, a smooth estimation of truncation error is required.

Chapter 3 is devoted to the solution interpolation techniques. We originally hope
to get a smooth estimation of truncation error. For this purpose, we developed an
estimation of the truncation error based on the interpolation of the solution. Two

26

1.7. Outline

different interpolation schemes are described in this chapter, CGM and C1 interpolation.
CGM is a code library providing geometry functionality for mesh generation, and C1

interpolation approximates the reconstructed finite volume solution with continuity
along the edges between elements of a triangulation. Although the estimate of the
truncation error based on either one does not have a smooth distribution, it will be
shown that the truncation error estimate based on C1 interpolated solution leads to
similar behavior obtained by smooth truncation error on structured meshes.

The general algorithm of defect correction is described in Chapter 4 and the per-
formance of defect correction with discrete p-TE and continuous p-TE is compared for
scalar problems of Poisson and advection with manufactured solution.

Chapter 5 is devoted to output error estimation and correction and the different
functionals are corrected based on the continuous p-truncation error multiplied by both
continuous and discrete adjoint solutions. Scalar model problems and inviscid and
viscous compressible flow problems are considered.

In Chapter 6, the performance of the continuous p-truncation error as adaptation
indicator is compared to the discrete p-TE estimate. As described, using truncation
error to drive adaptation adds degrees of freedom to a simulation precisely where addi-
tional accuracy will reduce discretization error directly and a variation on this approach
is to weight the truncation error with the adjoint solution, either continuous or discrete
adjoint solution. Adaptation based on the weighted truncation error reduces error in
an output functional by refining the mesh in places where the PDE is poorly solved
and that error has a large impact on the output of interest. The performance of these
weighted truncation error indicators are also compared to the truncation error itself as
an error indicator.

The thesis concludes in Chapter 7 with a summary of the research, contributions,
conclusions based on the results and recommendations for future work.

27

Chapter 2

Eigenanalysis of the Truncation
Error

The behavior of truncation error for unstructured mesh solvers is qualitatively different
from structured meshes. Roe studied the behavior of the local truncation error for
second-order accurate scheme on a general unstructured meshes and he showed that
the local truncation error is not necessarily second-order accurate [78]. Consider an
unstructured discretization of the Laplacian, for instance. A typical second-order accu-
rate scheme will compute a first order accurate gradient for which the flux integration
results in a zero-order residual. Second-order accurate solutions are obtained as a result
of cancellation of the contribution of these large local errors to the overall solution. On
a structured mesh, on the other hand, as a consequence of smoothness and symmetry in
the mesh, cancellation of errors leads to second order flux integrals. Hence, the behavior
of truncation error on structured and unstructured mesh are completely different.

In this chapter, we will use eigenanalysis of the Jacobian matrix as a tool to inves-
tigate the truncation error distribution on unstructured meshes. As truncation error is
the source of discretization error, the discretization error distribution is also different
from structured meshes. Eigenanalysis of truncation error is done for two test cases:
one model problem, the Poisson equation with a manufactured solution, and an inviscid
compressible flow problem.

2.1 Truncation and Discretization Error on
Structured and Unstructured Meshes

The solution and both the discretization and truncation errors have smooth distribu-
tions when computed using structured meshes because symmetry and smoothness in
the mesh leads to cancellation in the error. The truncation error can easily be derived
using Taylor series analysis [6, 99]. On the other hand, the truncation error, and conse-

28

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

Figure 2.1: Coefficient of error term in the leas-squares gradient on a general unstruc-
tured mesh for Poisson, λxx coefficients

quently the discretization error, for unstructured mesh schemes has a noisy appearance,
caused by the discontinuous jump of the coefficients of the terms in the Taylor series
expansion of the error from one control volume to another. Taylor series truncation
error analysis can be extended to any arbitrary stencil in an unstructured mesh [35].
The truncation error for the Poisson equation can be written as

τ = h0
(
λxx

∂2T

∂x2 + λxy
∂2T

∂x∂y
+ λyy

∂2T

∂y2

)
+O (h) (2.1)

as described in Jalali’s thesis [35]. Figure 2.1 depicts one of the coefficients, λxx, in
the Taylor series expansion for each cell. As shown in this figure, the coefficients are
different for neighboring cells. In this section, the different truncation error distributions
are illustrated for structured and unstructured meshes.

2.1.1 Error Distribution on Meshes

Consider the Poisson problem in a (1× 1) square domain with Dirichlet boundary
conditions. The manufactured solution [62] is set as

U = π

8 sin (πx) sin (πy) + 1
sinh (π) sin (πx) sinh (πy)

for which the source term is obtained:

∂2U

∂x2 + ∂2U

∂y2 = −π
3

4 sin (πx) sin (πy) (2.2)

29

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

2

4

6

8

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(a) Structured mesh solution

2

4

6

8
­1.0E­04

­1.5E­04

­2.0E­04

­2.5E­04

­3.0E­04

­3.5E­04

­4.0E­04

­4.5E­04

­5.0E­04

­5.5E­04

­6.0E­04

­6.5E­04

­7.0E­04

(b) Structured mesh DE

2

4

6

8
9.0E­03

8.0E­03

7.0E­03

6.0E­03

5.0E­03

4.0E­03

3.0E­03

2.0E­03

1.0E­03

(c) Structured mesh TE

0

2

4

6

8 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(d) Unstructured mesh solution
0

2

4

6

8 6.0E­04

4.0E­04

2.0E­04

0.0E+00

­2.0E­04

­4.0E­04

­6.0E­04

­8.0E­04

­1.0E­03

­1.2E­03

­1.4E­03

(e) Unstructured mesh DE
0

2

4

6

8 1.6E+01

1.4E+01

1.2E+01

1.0E+01

8.0E+00

6.0E+00

4.0E+00

2.0E+00

0.0E+00

­2.0E+00

­4.0E+00

­6.0E+00

­8.0E+00

­1.0E+01

(f) Unstructured mesh TE

Figure 2.2: Comparison of truncation and discretization error for structured and un-
structured meshes for Poisson in 2D

The problem is solved to second order accuracy for both structured and unstructured
mesh with about the same number of degrees of freedom, for which the solutions are
shown in Figure 2.2a and 2.2d, respectively. As a manufactured solution is used, the
exact solution is known and the discretization error, the difference between the discrete
solution and the exact solution, can be calculated easily. Similarly, the second-order
control volume averages may be computed based on the exact solution and used to
compute the exact second-order truncation error.

The discretization error is rough for the unstructured mesh, Figure 2.2e, but the
maximum error magnitude is reasonable in comparison with the discretization error on
structured mesh as depicted in Figure 2.2b.

The truncation error on the structured mesh, Figure 2.2c, is smooth and although
it is larger than the discretization error, is still small, whereas on the unstructured
mesh, Figure 2.2f, the truncation error is quite noisy, with a peak value three orders of
magnitude larger than on the structured mesh. This is the expected behavior for the
second-order finite-volume discretization of the Laplacian on unstructured meshes as
shown by Jalali and Ollivier-Gooch [36]. To illustrate this difference, consider the flux

30

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

integral for the Laplacian:
FI = 1

A

˛
∇Uds. (2.3)

where the order of ds is the mesh size, ds ∼ h, and 1
A
∼ 1

h2 . For a structured mesh, the
gradient can be evaluated using central differences, yielding a second order accurate
gradient for which the error varies smoothly. Therefore, in finding the second order
accurate flux integral, additional cancellation is obtained. For an unstructured mesh,
however, the gradient is evaluated by least-square reconstruction, which yields a first-
order gradient with non-smooth error. So, with no cancellation, a zero order flux
integral is obtained.

2.1.2 p-TE Method on Unstructured Meshes

Among the different methods for estimating the truncation error, the p-TE method
which uses higher order flux integral is one of easiest to apply. We can solve the
original discrete problem to order p, where the residual computed to this accuracy is
necessarily zero:

Lh,p (Uh,p) = 0. (2.4)

Lh,p is a discrete approximation to a linear partial differential operator L with order of
accuracy p on a mesh with characteristic size of h. For estimating the truncation error,
a higher order discretization is used to find the leading order terms in the truncation
error estimate:

Lh,p+1(Uh,p) = τh;p→p+1 (Uh,p) . (2.5)

If accuracy order is very large, p → ∞, the continuous estimation of the truncation
error is obtained. Conversely, consider that the p-order operator is applied to the
higher-order solution which is a proxy for the continuous solution.

Lh;p (Uh;p+1) = Lh;p (Uh;p + δU) (2.6)

31

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

­1 ­0.8 ­0.6 ­0.4 ­0.2 0

Figure 2.3: The Poisson solution

where δU is the difference between the two solutions, δU = Uh,p+1 − Uh,p. Eq. 2.6 can
be expanded by using the linearity of the operator as:

Lh;p (Uh;p+1) = (Lh;p+1 − (Lh;p+1 − Lh;p)) (Uh;p + δU)

= Lh;p+1 (Uh;p+1)− (Lh;p+1 − Lh;p) (Uh;p + δU)

= 0− (Lh;p+1 − Lh;p) (Uh;p)− (Lh;p+1 − Lh;p) (δU)

= −Lh;p+1 (Uh;p) + Lh;p (Uh;p)− Lh;p+1 (δU) + Lh;p (δU)

= −Lh;p+1 (Uh;p) + 0− Lh;p+1 (δU) + Lh;p (δU) . (2.7)

For a structured mesh, as a result of symmetry and smoothness in the mesh, the problem
is well-behaved and the last two terms in the above equation are of order of p+ 1 and
p, respectively. Hence, for a structured mesh,

Lh;p (Uh;p+1) = −Lh;p+1 (Uh;p)−O
(
hp+1

)
+O (hp)⇒

Lh;p (Uh;p+1) = −Lh;p+1 (Uh;p) +H.O.T. (2.8)

where the left hand side is the leading-order term in the exact truncation error in
the sense of being the truncation error associated with the leading-order term in the
discretization error, and the right-hand side is a higher-order flux integral based on
the pth-order solution. However, for the unstructured mesh with no smoothness in the

32

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

­27 ­21 ­15 ­9 ­3 3 9 15

(a) L3U2

­27 ­21 ­15 ­9 ­3 3 9 15

(b) L2U3

­16 ­12 ­8 ­4 0 4 8

(c) L3U2+L2U3

Figure 2.4: LpUp+1 + Lp+1Up for an unstructured mesh for Poisson problem of Figure
2.3

truncation error, the orders of the last two terms in Eq. 2.7 are not the same as for
a structured mesh. Numerical experiments show that by applying the linear operator
on δU , we lose orders in computing these terms. For the Laplacian, for instance, two
orders are lost and consequently:

Lh;p (Uh;p+1) = −Lh;p+1 (Uh;p) + Lh;p (Uh;p)− Lh;p+1 (δU) + Lh;p (δU)

= −Lh;p+1 (Uh;p) + 0−O
(
hp−1

)
+O

(
hp−2

)
= −Lh;p+1 (Uh;p) +O

(
hp−2

)
(2.9)

Although the sum of the last two terms in Eq. 2.8 are close to zero for a structured
mesh, LpUp+1 + Lp+1Up 6= 0 for unstructured mesh according to Eq. 2.9 as illustrated
in Figure 2.4. Consider the Poisson problem in a (1× 1) square, with homogeneous
Dirichlet boundary condition with the manufactured solution

U = − sin (πx) sin (πy)

for which the source term is obtained as:

f = 2π2 sin (πx) sin (πy)

Figure 2.3 shows the solution inside the domain.
Knowing this difference for the unstructured mesh, the accuracy of p-TE method

is investigated here. Since the exact solution to this Poisson problem is known, the

33

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

­12 ­3 6 15 24

(a) L2Uexact

­30 ­21 ­12 ­3 6 15 24

(b) L3U2

­30 ­21 ­12 ­3 6 15 24

(c) L4U2

­27 ­21 ­15 ­9 ­3 3 9 15

(d) L3U2 − L2Uexact
Y

­27 ­21 ­15 ­9 ­3 3 9 15

(e) L4U2 − L2Uexact

Figure 2.5: Comparison of truncation error measures based on second order solution

exact truncation error can be calculated and used to compare the truncation error
estimate. Figure 2.5 shows the results based on the second order solution. The top
row is the second-order flux integral based on the exact solution, 2.5a, third-order
flux integral based on second-order solution, 2.5b, and fourth-order flux integral based
on second-order solution, 2.5c, respectively. The differences between the estimates of
the truncation error and the exact truncation error are shown at the bottom row.
Careful investigation of these two figures reveals that the differences are higher near
the boundaries.

The same experiment has been done for third order solution and shown in Fig-
ure 2.6. The top row is the exact third order truncation error and an estimation of the
truncation error calculated by the fourth order flux integral based on third order solu-
tion. Not surprisingly, the truncation error is less for this case; O (1) for the third-order
in comparison with O (20) for the second order solution, and the difference between the
error estimates, Figure 2.6c, is significantly smaller. However, similar to the previous

34

2.1. Truncation and Discretization Error on Structured and Unstructured Meshes

­0.7 ­0.3 0.1 0.5 0.9

(a) L3Uexact

­1.5 ­1.1 ­0.7 ­0.3 0.1 0.5 0.9

(b) L4U3

­0.6 ­0.4 ­0.2 0.0 0.2 0.4

(c) L4U3 − L3Uexact

Figure 2.6: Comparison of truncation error measures based on third order solution

case, the difference is larger near the boundaries.
Figure 2.7 illustrates the convergence of the L2−norm of the truncation error with

mesh refinement for different orders of exact truncation error and estimates of the
truncation error obtained by p-TE approach for this Poisson problem. In calculating the
flux integral for the Poisson problem, one order of accuracy is lost in calculating the flux
(the gradients) and another order is lost in calculating the flux integral. Consequently,
the exact second order truncation error shown by the solid black line is zero order and
similarly for the exact third and fourth order truncation error which are first and second
order, respectively. Not surprisingly, by increasing the order of accuracy, the magnitude
of the truncation error decreases. Similarly, if the truncation error is estimated by a
higher-order flux integral based on the second order solution, zero order convergence
is obtained, as plotted by the dashed lines with squares, and first order convergence
results from a fourth order flux integral based on the third order solution, as plotted
by the dashed line with triangles.

35

2.2. Eigendecomposition of the Truncation Error

(#CV)
1/2

L
2
(
)

20 30 40 50 60 70

10
­4

10
­3

10
­2

10
­1

10
0

L
2
U

exact
:0.05

L
3
U

exact
:0.84

L
4
U

exact
:2.08

L
3
U

2
:0.26

L
4
U

2
:0.25

L
4
U

3
:0.87

Figure 2.7: Truncation error behavior with mesh refinement for Poisson

2.2 Eigendecomposition of the Truncation Error

The discretization error, ε, can be directly related to the truncation error, τ , by the
error transport equation [80]:

∂Rh

∂Uh
ε = τ (2.10)

in which the truncation error estimated based on the numerically approximated solution
serves as a source term and ∂Rh

∂Uh
is the discrete Jacobian matrix. Both truncation and

discretization errors can be expanded as a combination of right eigenvectors of the
Jacobian, giving

∂Rh

∂Uh

∑
i

bixi =
∑
i

aixi (2.11)

where ai and bi are the weights in the eigendecomposition of the truncation and dis-
cretization error, respectively. Arranging the left hand side, we get:

∑
i

bi
∂Rh

∂Uh
xi =

∑
i

aixi (2.12)

and using the definition of eigenvalues, λi

∑
i

biλixi =
∑
i

aixi (2.13)

36

2.3. Rough Mode Dominance in Truncation Error

Because the xi are linearly independent, we must have

ai = biλi (2.14)

which links the eigendecomposition of the two forms of error. Since the discrete Jacobian
is not symmetric, the right xj and left eigenvectors yi

2 are different and with proper
normalization, the two sets of eigenvectors are orthonormal:

yi · xj = δij (2.15)

This property can be used to evaluate the coefficients in the eigendecomposition of the
truncation error:

yi · τ = yi ·
∑
i

aixi =
∑
i

aiyi · xi =
∑
i

aiδij = aj (2.16)

and consequently the discretization error coefficients by Equation 2.14. We have used
eigenanalysis as a novel tool to relate the discretization and truncation error to each
other and to compare the behavior of a wide range of different discretization schemes
commonly used for diffusive flux approximation in a cell-centered unstructured finite
volume solver [37]. Here, we focus on what eigenanalysis can tell us about truncation
error estimation.

2.3 Rough Mode Dominance in Truncation Error

In this section, we will show that the rough modes dominate the truncation error
for unstructured meshes and therefore, the p-TE estimation method is not capable of
estimating the truncation error on unstructured mesh as accurately as on a structured
mesh.

2.3.1 Poisson Equation

The complex eigenvalues for a second-order cell-centered discretization of the problem
described above is depicted for four meshes in Figure 2.8. As the Jacobian matrix is
asymmetric, the eigenvalues are complex, though the magnitude of the imaginary part

2yi, the ith left eigenvector, is a row vector.

37

2.3. Rough Mode Dominance in Truncation Error

Re()

Im
g
(
)

­10000 ­8000 ­6000 ­4000 ­2000 0

­20

­10

0

10

20

(a) 456 CVs
Re()

Im
g
(
)

­30000 ­25000 ­20000 ­15000 ­10000 ­5000
­60

­40

­20

0

20

40

60

(b) 1252 CVs

Re()

Im
g
(
)

­50000 ­40000 ­30000 ­20000 ­10000 0

­150

­100

­50

0

50

100

150

(c) 2436 CVs
Re()

Im
g
(
)

­100000 ­80000 ­60000 ­40000 ­20000 0

­300

­200

­100

0

100

200

300

(d) 4040 CVs

Figure 2.8: Eigenvalue spectra of the Poisson problem

Mesh
size

Max EV
(rightmost

EV)
Min EV

(leftmost EV)

456 -19.728 -10275.74
1252 -19.730 -30352.41
2436 -19.739 -55207.65
4040 -19.738 -99286.94

Table 2.1: Extremal eigenvalues for the Poisson test case

38

2.3. Rough Mode Dominance in Truncation Error

(#CV)
1/2

m
a
x
|(
R
e
(
)|

20 30 40 50 60 70

40000

80000

120000

2.05

Figure 2.9: Largest eigenvalue versus mesh size for the Poisson problem

never exceeds about one percent of the magnitude of the real part. In all cases, there
are a handful of eigenvalues scattered to the left of the rest of the distribution; because
the eigenvectors associated with these eigenvalues are non-zero only in a handful of
cells adjacent to the boundary, we expect these eigenvectors to be very sensitive to
boundary condition implementation. The leftmost (largest) and the rightmost (small-
est) eigenvalues for these meshes are shown in Table 2.1; by increasing the number
of mesh points and consequently decreasing the cell size, the magnitude of leftmost
eigenvalues increases while the rightmost eigenvalue is effectively zero regardless of the
mesh size. Therefore, the leftmost eigenvalue scales linearly with the mesh size and is
proportional to h−2 as shown in Figure 2.9 where the square root of the number of cells
is considered as the mesh size.

A full eigendecomposition of both truncation and discretization error is performed
on the 1252 cell mesh and depicted in Figure 2.10. The magnitude of the weights in its
decomposition is plotted against the real part of the eigenvalue, Re (λ), and as indicated
the rough modes dominate the unstructured mesh truncation error. To visualize the
error weights more effectively, a logarithmic scale is used for both weights and real part
of the eigenvalue. The scheme is stable and consequently Re (λ) is negative and so the
negative of the real part of the eigenvalue, −Re (λ), is plotted instead. The truncation
error is visually rough and this is supported by the magnitude of the the weights in
its decomposition. The eigenvalues vary in magnitude from O (1) to O (h−2), with the

39

2.3. Rough Mode Dominance in Truncation Error

­8 ­5 ­2 1 4 7 10

(a) Truncation error (b) Weights in decomposition of truncation er-
ror

­0.013 ­0.008 ­0.003 0.002 0.007

(c) Discretization error (d) Weights in decomposition of discretization
error

Mode 784Mode 13 Mode 439Mode 1

(e) Mode shapes

Figure 2.10: Eigendecomposition of truncation and discretization error for Poisson
40

2.3. Rough Mode Dominance in Truncation Error

latter corresponding to rough modes. This implies that rough modes in the truncation
error will be de-amplified by a factor of O (h2) as we solve the linear system, restoring
the design order of accuracy for the discretization error and simultaneously making
the discretization error much smaller than the truncation error. Investigation of this
figure also reveals that the weight of the rough modes in the decomposition of the
discretization error are much reduced. The largest weight in the eigendecomposition of
the truncation error is 2× 10−1, while the corresponding weight for discretization error
is much smaller and is close to 6× 10−4 .

Four mode shapes are shown in Figure 2.10e. The smoothest mode corresponds
to the sin (πx) sin (πy) mode expected for homogeneous Dirichlet boundary conditions.
The next mode shown is still a reasonable facsimile of a single Fourier mode. However,
the next modes appear progressively more local and noisy.

These rough modes in the truncation error are the consequences of using an un-
structured mesh. If a perfect quadrilateral mesh is used instead, the Jacobian matrix is
symmetric and consequently the imaginary part of the eigenvalue is zero for all modes
as shown in Figure 2.11a. The number of cells for this perfect quadrilateral mesh is the
same as the unstructured mesh shown in Figure 2.10. The weights in the eigendecom-
position of truncation and discretization error are depicted in Figure 2.11b and 2.11c,
respectively. The weights of the error terms for this perfect mesh are much smaller
than the corresponding weights shown in Figure 2.10. This is expected since the per-
fect mesh provides more symmetry and smoothness. More smoothness is also proved
by investigation of Figure 2.11d for which all highlighted modes in Figure 2.11b and
2.11c including the leftmost mode and the mode with largest weight have a smooth
distribution. It should be noted that although the perfect mesh is used, the spatial
discretization is for the unstructured mesh. Consequently, despite the fact that there
is symmetry in the mesh, the full cancellation, similar to the structured mesh, is not
obtained.

2.3.2 Euler Equation

The supersonic vortex is an inviscid compressible (Euler) flow problem with an exact
solution. Therefore, the exact truncation error can be calculated easily. The exact
solution is:

41

2.3. Rough Mode Dominance in Truncation Error

Re()

Im
g
(
)

­8000 ­6000 ­4000 ­2000 0
­0.1

­0.05

0

0.05

0.1

(a) Eigenvalue spectra

­Re()

a
i

10
2

10
3

10
­12

10
­6

439

1

13

784

(b) Weights of truncation error

­Re()

b
i

10
2

10
3

10
­25

10
­20

10
­15

10
­10

10
­5 439

13

784

1

(c) Weights of discretization error

Mode 13Mode 1 Mode 439 Mode 784

(d) Mode shapes

Figure 2.11: Eigendecomposition of truncation and discretization error for a perfect
quadrilateral mesh for Poisson

42

2.3. Rough Mode Dominance in Truncation Error

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

2.4

2.2

2

1.8

1.6

1.4

1.2

1

(a) Density

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

(b) x−velocity

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0

­0.2

­0.4

­0.6

­0.8

­1

­1.2

­1.4

­1.6

­1.8

­2

(c) y−velocity

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

2.5

2.3

2.1

1.9

1.7

1.5

1.3

1.1

0.9

0.7

(d) Pressure

Figure 2.12: Exact solution of supersonic vortex

43

2.3. Rough Mode Dominance in Truncation Error

Re()

Im
g
(
)

­20 ­15 ­10 ­5 0

­15

­10

­5

0

5

10

15

(a) 64 CVs
Re()

Im
g
(
)

­45 ­40 ­35 ­30 ­25 ­20 ­15 ­10 ­5 0

­30

­20

­10

0

10

20

30

(b) 172 CVs

Re()

Im
g
(
)

­60 ­50 ­40 ­30 ­20 ­10 0
­60

­40

­20

0

20

40

60

(c) 452 CVs
Re()

Im
g
(
)

­120 ­100 ­80 ­60 ­40 ­20 0

­80

­60

­40

­20

0

20

40

60

80

(d) 1044 CVs

Figure 2.13: Eigenvalue spectra, supersonic vortex

Mesh
size

Max EV
(rightmost

EV)
Min EV

(leftmost EV)

64 -0.431 -20.154
172 -0.502 -42.503
452 -0.391 -64.706
1044 -2.102 -98.787

Table 2.2: Extremal eigenvalues for the Euler test case

44

2.3. Rough Mode Dominance in Truncation Error

ρ =
(

1 + γ − 1
2

(
1− R2

i

R2

)
M2

i

) 1
γ−1

ux = yRiMi

R2

uy = −xRiMi

R2

p = ργ

γ

where we take Ri = 2.0 as the inner radius and Mi = 2.0 is the inlet Mach number.
The four components of the solution for the supersonic vortex are depicted in Figure
2.12. The eigenvalue decomposition is shown in Figure 2.13 for four different meshes.
By increasing the number of mesh points and consequently decreasing the cell size,
the magnitude of the leftmost eigenvalues increases while the rightmost eigenvalue is
effectively zero regardless of mesh size. Table 2.2 summarizes the maximum and mini-
mum eigenvalues for these four meshes and the last column of the table illustrates that
the leftmost eigenvalue scales with the square root of the mesh size, and therefore is
proportional to h−1 as depicted in Figure 2.14. For the Poisson problem, Figure 2.8,
the order of magnitude of the imaginary part of the eigenvalue is much smaller than
the order of magnitude of the real part. Nevertheless, the magnitude of the imaginary
part of the eigenvalue is comprable to the real part as shown Figure 2.13 and for several
modes, the imaginary part of the eigenvalue is nonzero.

For the second finest mesh, eigendecomposition of truncation error and discretization
error has been done and the results are shown in Figure 2.15 for the weights of these
error terms in eigendecomposition. Similar to the Poisson test case, the weight of the
truncation error is plotted versus the negative of the real part of the eigenvalue and the
weights of the truncation error are larger than for the discretization error. The density
component of the three highlighted modes are also depicted in Figure 2.15e. The left
most mode is completely rough although a smooth distribution exists for the rightmost
mode.

2.3.3 Discussion

As mentioned earlier, the truncation error is rough as a result of discontinuous jumps
between control volumes in the coefficients of the terms in the Taylor series expansion
of the error. Eigenanalysis and numerical experiments provide valuable insight into the
behavior of truncation and discretization error for unstructured mesh discretization.

45

2.3. Rough Mode Dominance in Truncation Error

(#CV)
1/2

m
a
x
|R
e
(
)|

10 15 20 25 30 35 40

20

40

60

80

100

120

1.11

Figure 2.14: Largest eigenvalue versus mesh size for the Euler problem

We have demonstrated that the differences in asymptotic behavior of the truncation
and discretization error for unstructured meshes and the features of the truncation error
can be predicted by the eigendecomposition of the discrete problem. The dominance
of rough modes makes truncation error estimation more challenging when arbitrary
unstructured meshes are used. If a perfectly symmetric mesh is used, the truncation
error is much smoother and easier to estimate accurately even in high frequency modes.
Nevertheless, it is not possible to generate perfect symmetric meshes for real application
cases. Therefore, the dominance of rough error modes in the unstructured mesh trun-
cation error suggests the need to develop a smooth truncation error estimate that can
be computed using quantities already available in a typical finite volume flow solver.

46

2.3. Rough Mode Dominance in Truncation Error

0 0.5 1 1.5 2 2.5 3

0.02

0.017

0.014

0.011

0.008

0.005

0.002

­0.001

­0.004

­0.007

­0.01

(a) Density component of truncation error

­Re()

a
i

204060
10

­8

10
­6

10
­4

10
­2

10
0

1

1808

819

(b) Weights in decomposition of truncation
error

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

­0.0002

­0.0004

­0.0006

­0.0008

­0.001

(c) Density component of discretization er-
ror

­Re()

b
i

204060
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

1

819

1808

(d) Weights in decomposition of discretiza-
tion error

Mode 1 Mode 819 Mode 1808

(e) Mode Shapes

Figure 2.15: Eigendecomposition of truncation and discretization error for Euler

47

Chapter 3

Truncation Error based on
Interpolated Solution

In the previous chapter, we have shown that the rough modes are dominant in unstruc-
tured mesh truncation error. As a consequence , the simple p-truncation error estimate
is not accurate. We do not expect to be able to use this p-truncation error estimate to
improve the solution through defect correction or to estimate output functional error.
In fact, we will show in the next chapters that the lack of smoothness of the truncation
error is responsible for the poor performance of defect correction, output error estima-
tion and mesh adaptation. Therefore, developing a smooth truncation error estimate
is essential.

It has been discussed that the non-smooth distribution of the truncation error is the
result of discontinuous jumps between control volumes. Using p-TE for estimating the
truncation error, the higher-order flux integral is calculated based on the lower order
solution for which the numerical fluxes are integrated over each control volume edges.
The flux vector is calculated by solution reconstruction for each control volume at two
sides of each edge separately, as shown in Figure 3.1, and therefore two different values
are obtained for each quadrature point. By using an interpolation to approximate the
solution data, we can find a single solution at each quadrature point and consequently,
a smoother distribution of the truncation error may be obtained. Computing the trun-
cation error using this continuous data is explained in Section 3.1. We have explored
two approaches for solution interpolation: a simple spline interpolation (discussed in
Section 3.2) and a more accurate C1 interpolation of the solution (described in Section
3.3). Both of these interpolating schemes require vertex based data, but the solution
we have is a cell-centered finite volume-based solution for which control volume aver-
ages are known. Accordingly, we need to convert the control-volume averaged data to
point-wise data at vertices as shown schematically in Figure 3.2. We will reconstruct
the control-volume data to the vertices of each cell and by averaging the solution from
all cells incident on a vertex, we can find a single solution, or first and second deriva-

48

Chapter 3. Truncation Error based on Interpolated Solution

𝑖

𝑗
𝑔1

𝑔2

Reconstruction from cell i

Reconstruction from cell j

𝑎

𝑏

Figure 3.1: Two different fluxes at quadrature points

tives, at each vertex. We can then use the point-wise date to produce a continuous
approximation of the solution. For the spline interpolation method, knowing the so-
lution at vertices is enough. However, for C1 interpolation, the solution and first and
second derivatives are required. The pseudo-code for doing this conversion is shown in
Algorithm 3.1 in which sol[vert] is the solution or derivatives at each vertex.

 Cell-centered Data

Vertex-based Data

Figure 3.2: Conversion of the solution from cell-centered finite-volume based to vertex-
centered

49

3.1. Truncation Error Computation Using the Continuous Solution

Algorithm 3.1 Conversion algorithm from cell-centered finite-volume
based to vertex-based

for all cells

 for all three vertices

 sol[Vert]+=reconstructed solution at the vertex

for all vertices

 sol[Vert]/=number of cells incident on the vertex

3.1 Truncation Error Computation Using the
Continuous Solution

Once a single value is obtained for the solution at each quadrature point, the corre-
sponding flux vector can be calculated using this continuous solution. Instead of using
a combination of the solution obtained from two neighboring cells, such as averaging,
adding a jump term or the Roe’s scheme, a single value for each quadrature point is
obtained. To compute the flux integral for each control volume, numerical fluxes calcu-
lated based on the continuous data should be integrated over the control volume edges.
The integration is done by the Gauss quadrature integration rule described in Chapter
1. As described, the truncation error estimate is the higher order flux integral based
on the lower-order solution. As an example, consider using third-order flux integra-
tion based on the second-order solution to estimate the truncation error. To find the
truncation error estimate based in the continuous data, we need to follow these steps.

1. The spline interpolation or the C1 interpolation of the second-order converged
solution should be obtained from the reconstructed data.

2. The continuous data is used to find the solution at two quadrature points on each
edge.

3. The analytic flux vector is calculated based on the solution data on the quadrature
points.

50

3.2. Spline Interpolation using the Common Geometry Module (CGM)

4. The higher order flux integral is calculated by integrating the flux over the control
volume edges with the proper weight for each quadrature point as

− 1
ACVi

˛

CSi

~F · n̂ ds = − 1
ACVi

˛

CSi

((
~Fg1 · n̂

)
Wg1 +

(
~Fg2 · n̂

)
Wg2

)
ds (3.1)

where the coordinates of the quadrature points are

g1 = xb + xa
2 + xb − xa

2
√

3
g2 = xb + xa

2 − xb − xa
2
√

3

n̂ = (ya − yb, xb − xa)
|xa − xb|

(3.2)

3.2 Spline Interpolation using the Common
Geometry Module (CGM)

The Common Geometry Module (CGM) is a code library providing geometry func-
tionality for mesh generation. CGM includes a facet-based modeler which constructs a
spline approximation to a three-dimensional surface triangulation [89, 90]. To generate
this 3D surface, we provide a surface for which the x and y coordinates are the same as
the coordinates of the original 2D mesh, and the z component is the numerical solution
at that vertex. CGM produces a smooth cubic 3D surface spline from this data. Us-

(a) solution (left) and the CGM input surface (right)
colored by the z−normal

(b) 3D view of the CGM surface colored by the
x−normal

Figure 3.3: CGM’s input surface

51

3.2. Spline Interpolation using the Common Geometry Module (CGM)

ing this smooth surface, a unique solution value is obtained at each quadrature point
because there is a surface fitted to the solution as depicted in Figure 3.3. It should be
noted that the splines are generated based on the coordinates of the mesh and the solu-
tion at vertices. Accordingly, there is no guarantee that a point with exactly the same
x and y components of the quadrature points exists on the 3D surface. This implies
that it is not possible to find the continuous solution of a quadrature points just by
specifying its coordinates and there is not a specific value for any arbitrary z (x, y). We
find the projection of the point with the x and y coordinates of the quadrature point on
the 3D surface and use the x and y coordinates of the projected point and continue the
process until the coordinates of the projected point are close to the quadrature point
within a specified tolerance as shown in Figure 3.4. The blue line represents the 3D
surface, the black point shows the coordinates of the quadrature point and the red point
is the projected point on the 3D surface. The z coordinate of the projected point is the
single value solution at the quadrature point calculated from two neighboring cells. As
finding the diffusive flux requires the gradients, we use the functions available in this
code library to find the normal on each facet as shown on Figure 3.3b and the x and y
components of the normal vector is proportional to the derivative of the solution with
respect to x and y, respectively or the gradients in these directions.

(x,y,0)

(x`,y`, z)

Figure 3.4: Finding the solution on quadrature points by projection on the 3D spline
interpolation using CGM

52

3.2. Spline Interpolation using the Common Geometry Module (CGM)

We have generated a fourth order spline based on exact solutions at vertices for which
the expected accuracy of the solution and gradients are fourth order and third order,
respectively. Figure 3.5 illustrates the order of accuracy of the solution and gradient for
the Poisson test case described in the previous chapter. As a manufactured solution is
set, the solution and gradients at any arbitrary point including quadrature points can
be calculated easily and in this figure, the L2-norm of the error is plotted versus the
mesh size. The solution at quadrature points is fourth order accurate as expected, but
the gradient calculation is only second-order. Inaccurate normal computation is the
consequence of assigning a single normal per facet as shown in Figure 3.6 where two
neighboring cells sharing the quadrature point have different normal vectors. Therefore,
computing gradients based on this normal calculation is inaccurate.

(# CV)
1/2

E
rr

o
r

40 60 80

10
­10

10
­8

10
­6

10
­4

Solution

Gradient

pp98

4.41

2.36

Figure 3.5: The normal and solution calculation using CGM

The interpolated values of the solution are used to calculate the flux integral for each
control volume as an estimate of the truncation error. The comparison between the
exact second-order truncation error, the original estimate of the truncation error (based
on the non-smoothed discrete solution) and the modified estimate of the truncation error
(based on the smoothed interpolated solution) is shown on the top row of Figure 3.7.
Detailed investigation of the differences between the exact and estimated truncation
error on the bottom row shows that the modified estimation of the truncation error is
smoother than the original one and is closer to the exact value. It should be noted that
we do not expect to obtain a smooth distribution of the truncation error, similar to

53

3.2. Spline Interpolation using the Common Geometry Module (CGM)

Figure 3.6: Inaccurate normal calculation using CGM

­5 ­3 ­1 1 3 5 7 9

(a) L2Uexact

Y

­9 ­7 ­5 ­3 ­1 1 3 5 7 9

(b) Lnon−smooth
3 U2

Y

­9 ­7 ­5 ­3 ­1 1 3 5 7 9

(c) Lsmooth,CGM
3 U2

(d) L2Uexact-Lnon−smooth
3 U2

(e) L2Uexact−Lsmooth,CGM
3 U2

Figure 3.7: Comparison of truncation error based on interpolated solution by CGM

54

3.3. C1 Interpolation of the Solution

the truncation error on structured meshes, and the only goal of interpolating is to find
a single value for solutions and gradients at quadrature points. As the exact solution
is known, the exact truncation error can be calculated easily. The error in calculating
the truncation error is shown for three different meshes in Figure 3.8 for the original
estimate of the truncation error using the discrete solution and the interpolated solution
by CGM. The error using the interpolated solution is less than the discrete solution.

Figure 3.8: Error in calculating the truncation error using the discrete solution and
interpolated solution by CGM

Generally, inspite of having a unique solution value, a single value for gradients
is not obtained if CGM is used as the interpolating technique. Accordingly, a more
accurate interpolated scheme which gives smoothed solution and gradients is needed.

3.3 C1 Interpolation of the Solution

To overcome the gradient problem with CGM’s spline interpolation, we have chosen to
compute a C1 interpolation that approximates the reconstructed finite volume solution
and then we use this interpolation to evaluate the analytic fluxes and integrate them
to compute a truncation error estimate.

To compute the C1 interpolation, we use the Argyris element because of its high rate
of spatial convergence and simplicity of implementation compared to other elements.
The Argyris triangle [7, 15], which is a form of Hermite interpolation, is based on the
fifth order space of quintic polynomials over a triangle. This element produces C2

continuity at the vertices and full C1 continuity along the edges between elements of a

55

3.3. C1 Interpolation of the Solution

 Point evaluation

Point evaluation of all first derivatives

Point evaluation of all second derivatives

Point evaluation of directional derivatives

(0,0) (1,0)

(0,1)

(
1

2
,
1

2
)

(
1

2
, 0)

(0,
1

2
)

ξ

η

Figure 3.9: Argyris reference element

triangulation, which suffices for our case as it is able to provide us the same flux vector
based on the solution and gradients in two neighboring cells.

Quintic polynomials in R2 are a 21-dimensional space; the Argyris triangle specifies
these 21 degrees of freedom by using six pieces of data per vertex and one per edge. The
vertex degrees of freedom are the solution, two first derivatives to specify the gradient,
and three second derivatives to specify the unique components of the (symmetric) Hes-
sian matrix; the edge degree of freedom is the normal derivative as shown in Figure 3.9.
To compute these values, we first reconstruct the finite volume solution to higher (third
or fourth) order. For each edge or vertex, the reconstruction gives multiple values for
the solution and its derivatives, one per cell. For a pth order reconstruction, these solu-
tion values will differ only by O (hp) for smooth data, with derivatives losing one order
each. We take an arithmetic average of these values as our input to the interpolation

56

3.3. C1 Interpolation of the Solution

as described at the beginning of this chapter. The solution is then represented as

u = u(0,0)ϕ0 + ∂u

∂ξ

∣∣∣∣∣
(0,0)

ϕ1 + ∂u

∂η

∣∣∣∣∣
(0,0)

ϕ2 + ∂2u

∂ξ2

∣∣∣∣∣
(0,0)

ϕ3 + ∂2u

∂ξ∂η

∣∣∣∣∣
(0,0)

ϕ4 + ∂2u

∂η2

∣∣∣∣∣
(0,0)

ϕ5

+u(1,0)ϕ6 + ∂u

∂ξ

∣∣∣∣∣
(1,0)

ϕ7 + ∂u

∂η

∣∣∣∣∣
(1,0)

ϕ8 + ∂2u

∂ξ2

∣∣∣∣∣
(1,0)

ϕ9 + ∂2u

∂ξ∂η

∣∣∣∣∣
(1,0)

ϕ10 + ∂2u

∂η2

∣∣∣∣∣
(1,0)

ϕ11

+u(0,1)ϕ12 + ∂u

∂ξ

∣∣∣∣∣
(0,1)

ϕ13 + ∂u

∂η

∣∣∣∣∣
(0,1)

ϕ14 + ∂2u

∂ξ2

∣∣∣∣∣
(0,1)

ϕ15 + ∂2u

∂ξ∂η

∣∣∣∣∣
(0,1)

ϕ16 + ∂2u

∂η2

∣∣∣∣∣
(0,1)

ϕ17

+
(
∂u

∂ξ
nξ + ∂u

∂η
nη

)∣∣∣∣∣(1
2 ,0)

ϕ18

+
(
∂u

∂ξ
nξ + ∂u

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)
ϕ19

+
(
∂u

∂ξ
nξ + ∂u

∂η
nη

)∣∣∣∣∣(0, 1
2)
ϕ20 (3.3)

where the ϕi are the 21 basis functions for the Argyris element. Each of these has a
value of one for its own variable and zero for all others. For instance, the derivative of
ϕ7 with respect to ξ is nonzero at point (1, 0), ∂ϕ1

∂ξ

∣∣∣
(1,0)

= 1, and all other derivatives
are zero at that point. The magnitude and all derivatives of ϕ1 are zero at the other
points. Each basis function is a quintic polynomial:

ϕi (ξ, η) = c0,0

+ c1,0ξ + c0,1η

+ c2,0ξ
2 + c1,1ξη + c0,2η

2

+ c3,0ξ
3 + c2,1ξ

2η + c1,2ξη
2 + c0,3η

3

+ c4,0ξ
4 + c3,1ξ

3η + c2,2ξ
2η2 + c1,2ξη

3 + c0,4η
4

+ c5,0ξ
5 + c4,1ξ

4η + c3,2ξ
3η2 + c2,3ξ

2η3 + c1,4ξη
4 + c0,5η

5 (3.4)

each of which has exactly 21 degrees of freedom. To determine these basis functions,
these 21 constants should be evaluated based on non-zero constraints. The non-zero
constraint on the basis functions are:

57

3.3. C1 Interpolation of the Solution

ϕ0|(0,0) = 1 , ϕ6|(1,0) = 1 , ϕ12|(0,1) = 1
∂ϕ1
∂ξ

∣∣∣
(0,0)

= 1 , ∂ϕ7
∂ξ

∣∣∣
(1,0)

= 1 , ∂ϕ13
∂ξ

∣∣∣
(0,1)

= 1
∂ϕ2
∂η

∣∣∣
(0,0)

= 1 , ∂ϕ8
∂η

∣∣∣
(1,0)

= 1 , ∂ϕ14
∂η

∣∣∣
(0,1)

= 1
∂2ϕ3
∂ξ2

∣∣∣
(0,0)

= 1 , ∂2ϕ9
∂ξ2

∣∣∣
(1,0)

= 1 , ∂2ϕ15
∂ξ2

∣∣∣
(0,1)

= 1
∂2ϕ4
∂ξ∂η

∣∣∣
(0,0)

= 1 , ∂2ϕ10
∂ξ∂η

∣∣∣
(1,0)

= 1 , ∂2ϕ16
∂ξ∂η

∣∣∣
(0,1)

= 1
∂2ϕ5
∂η2

∣∣∣
(0,0)

= 1 , ∂2ϕ11
∂η2

∣∣∣
(1,0)

= 1 , ∂2ϕ17
∂η2

∣∣∣
(0,1)

= 1(
∂ϕ18
∂ξ
nξ + ∂ϕ18

∂η
nη
)∣∣∣(1

2 ,0)
= ∂ϕ18

∂η

∣∣∣(1
2 ,0)

= 1(
∂ϕ19
∂ξ
nξ + ∂ϕ19

∂η
nη
)∣∣∣(1

2 ,
1
2) = −

√
2

2

(
∂ϕ19
∂ξ

+ ∂ϕ19
∂η

)∣∣∣(1
2 ,

1
2) = 1(

∂ϕ20
∂ξ
nξ + ∂ϕ20

∂η
nη
)∣∣∣(0, 1

2) = −∂ϕ20
∂ξ

∣∣∣(0, 1
2) = 1

All elements are mapped into a unique Argyris element and the solution and derivatives
are computed in the reference element and mapped back to the physical element. Figure
3.10 shows the linear transformation from the original element to the reference element.
The linear transformation is of the form:

x = a0 + a1ξ + a2η

y = b0 + b1ξ + b2η (3.5)

where according to the coordinates of the reference element: x1 = a0

y1 = b0
,

 x2 = a0 + a1

y2 = b0 + b1
,

 x3 = a0 + a2

y3 = b0 + b2
(3.6)

Substituting in Eq. 3.5, the linear transformation constant is obtained as:

x = x1 + (x2 − x1) ξ + (x3 − x1) η

y = y1 + (y2 − y1) ξ + (y3 − y1) η (3.7)

Or ξ and η in terms of x and y as:

ξ = x (y3 − y1) + y (x1 − x3) + y1x3 − x1y3

(y3 − y1) (x2 − x1)− (x3 − x1) (y2 − y1)

η = x (y2 − y1) + y (x1 − x2) + y1x2 − x1y2

(y2 − y1) (x3 − x1)− (x2 − x1) (y3 − y1) (3.8)

58

3.3. C1 Interpolation of the Solution

(𝑥1, 𝑦1) (𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝜉1, 𝜂1) = (0,0) (𝜉2, 𝜂2) = (1,0)

(𝜉3, 𝜂3) = (0,1) Linear

transformation

Figure 3.10: Linear mapping from physical to Argyris reference element

According to Eq. 3.3, the solution is a function of the derivatives of the solution with
respect to the coordinates of the reference element. To be able to calculate everything
in the reference space, we must write these derivatives in terms of the derivatives in
the physical space, which are easy to calculate by reconstruction, and the geometric
transformation:

∂u

∂ξ
= ∂u

∂x

∂x

∂ξ
+ ∂u

∂y

∂y

∂ξ
= ∂u

∂x
(x2 − x1) + ∂u

∂y
(y2 − y1)

∂u

∂η
= ∂u

∂x

∂x

∂η
+ ∂u

∂y

∂y

∂η
= ∂u

∂x
(x3 − x1) + ∂u

∂y
(y3 − y1) (3.9)

In addition to the first derivatives, the second derivatives are required to obtain the C1

59

3.3. C1 Interpolation of the Solution

interpolation of the solution according to Eq. 3.3. Second derivatives are calculated as:

∂2u

∂ξ2 = ∂

∂ξ

(
∂u

∂x

∂x

∂ξ
+ ∂u

∂y

∂y

∂ξ

)
= ∂2x

∂ξ2
∂u

∂x
+ ∂2y

∂ξ2
∂u

∂y

+
(
∂x

∂ξ

)2
∂2u

∂x2 + 2∂x
∂ξ

∂y

∂ξ

∂2u

∂x∂y
+
(
∂y

∂ξ

)2
∂2u

∂y2

∂2u

∂ξ∂η
= ∂

∂ξ

(
∂u

∂x

∂x

∂η
+ ∂u

∂y

∂y

∂η

)
= ∂2x

∂ξ∂η

∂u

∂x
+ ∂2y

∂ξ∂η

∂u

∂y

+ ∂x

∂ξ

∂x

∂η

∂2u

∂x2 +
(
∂x

∂ξ

∂y

∂η
+ ∂y

∂ξ

∂x

∂η

)
∂2u

∂x∂y
+ ∂y

∂ξ

∂y

∂η

∂2u

∂y2

∂2u

∂η2 = ∂

∂η

(
∂u

∂x

∂x

∂η
+ ∂u

∂y

∂y

∂η

)
= ∂2x

∂η2
∂u

∂x
+ ∂2y

∂η2
∂u

∂y

+
(
∂x

∂η

)2
∂2u

∂x2 + 2∂x
∂η

∂y

∂η

∂2u

∂x∂y
+
(
∂y

∂η

)2
∂2u

∂y2 (3.10)

which are summarized as:

∂2u

∂ξ2 = (x2 − x1)2 ∂
2u

∂x2 + 2 (x2 − x1) (y2 − y1) ∂2u

∂x∂y
+ (y2 − y1)2 ∂

2u

∂y2

∂2u

∂ξ∂η
= (x2 − x1) (x3 − x1) ∂

2u

∂x2 + (y2 − y1) (y3 − y1) ∂
2u

∂y2

+ ((x3 − x1) (y2 − y1) + (x2 − x1) (y3 − y1)) ∂2u

∂x∂y

∂2u

∂η2 = (x3 − x1)2 ∂
2u

∂x2 + 2 (x3 − x1) (y3 − y1) ∂2u

∂x∂y
+ (y3 − y1)2 ∂

2u

∂y2 . (3.11)

Accordingly, all terms in Eq. 3.3 are known and the interpolated solution and derivatives
can be calculated easily. The final point that needs to be considered here is the normal
derivative directions. It was mentioned that there are six piece of data for each vertex
and the other three are from the normal derivatives at the center of each edge. The
normal derivative directions are shown in Figure 3.11. The constants that we obtained
for the basis functions using Eq. 3.3 are based on these normal directions.

60

3.3. C1 Interpolation of the Solution

(−
 𝟐

𝟐
, −

 𝟐

𝟐
)

ξ

η

(-1,0)

(0,1)

Figure 3.11: Normal derivative directions for C1 interpolation of the solution

As an example, consider the nonzero equation corresponding to ϕ6 :

ϕ6|(1,0) = c0,0 + c1,0ξ + c0,1η + c2,0ξ
2 + c1,1ξη + c0,2η

2 + c3,0ξ
3 + c2,1ξ

2η

+ c1,2ξη
2 + c0,3η

3 + c4,0ξ
4 + c3,1ξ

3η + c2,2ξ
2η2 + c1,2ξη

3 + c0,4η
4

+ c5,0ξ
5 + c4,1ξ

4η + c3,2ξ
3η2 + c2,3ξ

2η3 + c1,4ξη
4 + c0,5η

5

= c0,0 + c1,0 + c2,0 + c3,0 + c4,0 + c5,0 = 1

and all other equations corresponding to ϕ6 are zero, including the the basis function
at other two vertices:

ϕ6|(0,0) = ϕ6|(1,1) = 0

or all derivatives of ϕ6 at all three vertices:

∂ϕ6

∂ξ

∣∣∣∣∣
(1,0)

= c1,0 + 2c2,0ξ + c1,1η + 3c3,0ξ
2 + 2c2,1ξη + c1,2η

2 + 4c4,0ξ
3 + 3c3,1ξ

2η

+ 3c2,2ξη
2 + c1,2η

3 + 5c5,0ξ
4 + 4c4,1ξ

3η + 3c3,2ξ
2η2 + 2c2,3ξη

3 + c1,4η
4

= c1,0 + 2c2,0ξ + 3c3,0 + 4c4,0 + 5c5,0 = 0

61

3.3. C1 Interpolation of the Solution

and the normal derivatives at all three edge centers:
(
∂ϕ6

∂ξ
nξ + ∂ϕ6

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2

(
∂ϕ6

∂ξ
+ ∂ϕ6

∂η

)
= 0

As a result, there are 21 equations corresponding to each basis function from each one
is nonzero and the other 20 equations are zero. The full list of constraint equations is
shown in Appendix A. These 21 equations are set for 21 basis functions and a (21× 21)
system should be solved to obtain the ci,j coefficients. This system of (21× 21) equa-
tions is independent of the solution data and the corresponding coefficients for the basis
functions are as listed in Table 3.1. It should be noted that this system of equations is
solved only once and all elements are mapped into a single Argyris reference element
and accordingly this post-processing step is cheap in terms of time and memory. A
comparison between the CPU time required for second, third and fourth-order solu-
tions and finding the C1 interpolation of the solution is shown in Table 3.2 for two
problems described in the previous chapter. Investigation of Table 3.2 shows that the
post processing time required for C1 interpolation of the solution is small compared
to the solution time, and scales linearly with problem size, whereas the solution time
grows faster than linearly. The CPU time required for C1 interpolation increases with
increasing reconstruction order, because the cost of reconstructing the solution and first
and second derivatives of the solution increases.

62

3.3.
C

1
Interpolation

ofthe
Solution

c0,0 c1,0 c0,1 c2,0 c1,1 c0,2 c3,0 c2,1 c1,2 c0,3 c4,0 c3,1 c2,2 c1,3 c0,4 c5,0 c4,1 c3,2 c2,3 c1,4 c5,0

ϕ0 1 −10 −10 15 −30 15 −6 30 30 −6

ϕ1 1 −6 −11 8 10 18 −3 1 −10 −8

ϕ2 1 −11 −6 18 10 8 −8 −10 1 −3

ϕ3 0.5 −1.5 1.5 −1.5 −0.5 1.5 1

ϕ4 1 −4 −4 5 10 5 −2 −6 −6 −2

ϕ5 0.5 −1.5 −1.5 1.5 1 1.5 −0.5

ϕ6 10 −15 15 6 −15 −15

ϕ7 −4 7 −3.5 −3 3.5 3.5

ϕ8 −5 14 18.5 −8 −18.5 −13.5

ϕ9 0.5 −1 0.25 0.5 −0.25 −0.25

ϕ10 1 −3 −3.5 2 3.5 2.5

ϕ11 1.25 −0.75 −1.25

ϕ12 10 15 −15 −15 −15 6

ϕ13 −5 18.5 14 −13.5 −18.5 −8

ϕ14 −4 −3.5 7 3.5 3.5 −3

ϕ15 1.25 −1.25 −0.75

ϕ16 1 −3.5 −3 2.5 3.5 2

ϕ17 0.5 0.25 −1 −0.25 −0.25 0.5

ϕ18 16 −32 −32 16 32 16

ϕ19 8
√

2 −8
√

2 −8
√

2

ϕ20 −16 32 32 −16 −32 −16

Table 3.1: Non-zero coefficients in Eq. 3.3 for the Argyris reference element

63

3.3. C1 Interpolation of the Solution

2ndorder 3rdorder 4thorder
#CV s solution solution C1 interp solution C1 interp

Poisson

1260 0.143 0.353 0.069 0.615 0.201
5004 0.795 1.635 0.306 2.635 0.852
19862 9.305 14.418 1.257 18.495 3.251
80430 76.875 130.210 5.092 158.069 13.192

Euler

1044 0.197 0.448 0.063 0.843 0.171
4408 0.959 2.072 0.291 3.915 0.723
16256 7.787 10.993 1.111 18.658 2.718
65502 94.411 202.422 4.446 264.728 11.626

Table 3.2: CPU time (sec) comparison for solution and C1 interpolation of the solution

The interpolated values of the solution are used to calculate the flux integral for each
control volume as an estimate of the truncation error. The comparison between the
original estimate of the truncation error (based on the non-smoothed discrete solution)
and the modified estimate of the truncation error (based on the smoothed solution by
C1 interpolation of the solution) is shown on the top row of Figure 3.12. The comparison
of the difference between the exact truncation error and the estimate of the truncation
error is shown on the bottom row and careful investigation shows that the smoothed
estimation of the truncation error is smoother than the non-smoothed one and is closer
to the exact value.

The same error plot is shown in Figure 3.13 for the original estimate of the truncation
error using the discrete solution and the C1 interpolation of the solution. The error
using the interpolated solution is less than the discrete solution.

64

3.3. C1 Interpolation of the Solution

­5 ­3 ­1 1 3 5 7 9

(a) L2Uexact

Y

­9 ­7 ­5 ­3 ­1 1 3 5 7 9

(b) Lnon−smooth
3 U2

Y

­9 ­7 ­5 ­3 ­1 1 3 5 7 9

(c) Lsmooth,C1

3 U2

(d) L2Uexact-Lnon−smooth
3 U2

(e) L2Uexact − Lsmooth,C1

3 U2

Figure 3.12: Comparison of truncation error based on C1 interpolation of the solution

Figure 3.13: Error in calculating the truncation error using the discrete solution and
C1 interpolation of the solution

65

Chapter 4

Defect Correction

The history of defect correction in CFD goes back to the work by Pereyra [69]. The goal
is to iteratively correct the original numerical solution so that it converges to the exact
solution, Stetter [87] generalized this work. Kurzen et al. [46] used a global spline
fit to generate one-dimensional and two-dimensional functions based on a numerical
solution. The global spline fit was treated as a known exact solution and a second
discrete solution was computed with appropriate source terms (similar to the method
of manufactured solutions) to compute the error in the nearby problem. A slightly
different method of defect correction was used by Naumovich et al. [55] which was
a discrete approach. Instead of finding or creating a nearby solution to estimate the
discretization error, the numerical solution is passed into a higher order discretization
scheme to compute a residual. A first-order numerical solution is computed and defect
correction is used to correct the solution to second-order accuracy. The motivation is
that first-order problems are more robust and have better conditioned linear systems.
The result is a quicker, more robust second-order accurate solution compared with
solving the second-order problem directly.

4.1 General Algorithm

The basis of defect correction discretization error estimation relies on adding the trun-
cation error as a source term which removes the local source of error related to the
discretization of the domain and governing equations.

To perform defect correction, we should first solve the continuous problem with the
source term f :

L (U) = f (4.1)

discretely at order p to get Uh,p . The discretization error of the discrete solution
converges at order p with mesh refinement. If the exact truncation error is added to

66

4.1. General Algorithm

the source term of the problem:

L (U) = f︸ ︷︷ ︸
Continuous

+Lp (Uh,exact)︸ ︷︷ ︸
Discrete

(4.2)

we can solve the modified discrete problem at p order to obtain a defect corrected
solution. In theory, this defect corrected solution is the exact solution and therefore,
the exact solution is obtained by solving the problem at p order which can be as cheap
as solving the problem at second order. Note that this requires the exact truncation
error.

Instead of using the exact pth order truncation error, an estimation of the truncation
error may be used. As mentioned earlier, the higher order flux integral based on lower
order solution is an estimation of the truncation error which can be added to the source
term of the original problem:

L (U) = f︸ ︷︷ ︸
Continuous

+Lp+j (Uh,p)︸ ︷︷ ︸
Discrete

(4.3)

We can solve the modified discrete problem at lower order and the discretization error
of this new defect corrected problem is reduced at order p + j with mesh refinement
instead of pth order which means that higher order convergence is obtained by solving
the problem at lower order. This is the behavior of defect correction on structured
meshes. On unstructured meshes, on the other hand, the accuracy of the truncation
error estimate may be an issue as described in Chapter 2.

Defect correction methods are extremely simple to implement as they only require
the formulation of the truncation error estimate and the ability to include a source
term in the discrete solver. In addition, defect correction methods are generally much
less costly to solve than the original discrete system as they can be initialized using the
already available discrete solution.

67

4.2. Defect Correction Based on Exact Truncation Error

4.2 Defect Correction Based on Exact Truncation
Error

Consider the Poisson problem in a (1× 1) square

∂2U

∂x2 + ∂2U

∂y2 = 2π2 sin (πx) sin (πy)

with homogeneous Dirichlet boundary condition for which the exact solution is:

Uexact = − sin (πx) sin (πy)

Since the exact solution is known, the exact truncation error can be computed and
added to the source term to correct the solution as depicted in Figure 4.1. The dashed
lines are the original second, third and fourth order solution which are shown in black,
blue and red, respectively. The second order solution converges quadratically and, the
fourth order solution converges quartically as expected, but the third order solution

(#CV)
1/2

D
is

c
r
e
ti

z
a

ti
o
n

 E
r
r
o

r

50 100 150 200 250
10

­17

10
­15

10
­13

10
­11

10
­9

10
­7

10
­5

10
­3

2.00

4.00

Figure 4.1: Defect correction based on exact truncation error for Poisson

68

4.2. Defect Correction Based on Exact Truncation Error

converges quadratically and not cubically. This is the typical behavior of diffusive
fluxes for third-order finite volume unstructured schemes. The solid lines are the defect
corrected solutions based on adding the exact truncation error of the same order to the
source term. The discretization error of all three corrected solutions are at the order
of machine zero, implying that the exact solution is obtained. Therefore, the theory of
defect correction works properly for the Poisson problem if the exact truncation error
is added to the source term.

Having studied the diffusive fluxes using the Poisson equation, the performance of
defect correction based on the exact solution is examined for convective fluxes. For
this purpose, the advection equation with zero source term is considered. The velocity
vector is set in x direction as (1, 0), and the inlet velocity is set as sin (πy), so the
problem and its exact solution are

∂u

∂x
= 0⇒ uexact = sin (πy)

The problem domain considered is a (5× 1) rectangular channel and the exact solution
is shown in Figure 4.2. Similar to the Poisson problem, the convergence results are
shown in Figure 4.3. The dashed lines are the original solutions and the solid lines are
defect corrected solution based on exact solution. In contrast to the Poisson case, the
third order solution converges cubically with mesh refinement. The discretization error
of the corrected solutions are again at the order of machine zero, implying that the
exact solution is obtained. Accordingly, the theory of defect correction works properly
for the advection problem if the exact truncation error is added to the source term.

Y

0 1 2 3 4 5
0

1

0 0.15 0.3 0.45 0.6 0.75 0.9

Figure 4.2: Exact solution of the advection problem

69

4.3. Defect Correction for a Perfect Mesh

(#CV)
1/2

D
is

c
r
e
ti

z
a
ti

o
n

 E
r
r
o
r

50 100 150 200
10

­16

10
­14

10
­12

10
­10

10
­8

10
­6

10
­4

10
­2

2.09
2.72

4.10

Figure 4.3: Defect correction based on exact truncation error for advection

4.3 Defect Correction for a Perfect Mesh

Instead of adding the exact truncation error to the source term for defect correction,
an estimation of truncation error based on a higher order flux integral may be used.
For this purpose, a perfect mesh with equilateral triangle elements is considered. The
exact solution is set such that a zero boundary condition is obtained:

Uexact = − sin (πy) sin
(
π
(
y −
√

3x
))

sin
(
π
(
y +
√

3x−
√

3
))

(4.4)

Figure 4.4 shows the solution distribution in this equilateral triangular domain. Calcu-
lating the corresponding source term for this problem is easy.

The discretization error of the original second order problem and the defect corrected
solution calculated by third and fourth order flux integrals based on the second order
solution is depicted in Figure 4.5. The discretization error of the corrected solution by
the exact truncation error is approximately zero as expected, but the corresponding
error of the corrected solution by p-TE method is larger and comparable to the original
problem. Not surprisingly, if L4 (U2) is added to the source term, the discretization

70

4.3. Defect Correction for a Perfect Mesh

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
0.05

­0.2

­0.45

­0.7

­0.95

Figure 4.4: Poisson solution for the perfect mesh

error is less compared to adding L3 (U2) as higher order terms are approximated.
The convergence of discretization error with mesh refinement is shown in Figure 4.6.

Dashed lines are the discretization error of the original second, third and fourth order
solution and the green line depicts the error for interior points of third order solution.
As mentioned earlier, the third order discretization is second order accurate, however
if just the interior cells are considered, the convergence is better than quadratic for the
perfect mesh. Solid lines with square symbols are the defect corrected solutions based
on second order solutions adding third and fourth order flux integrals as truncation
error estimates. Despite the fact that the nominal expected convergence rate is third
and fourth, both of them are quadratic. Although the magnitude of the error of the
corrected solution by L4 (U2) is less than L3 (U2), supported by comparing Figures
4.5c and 4.5d, both of them are larger than the original non-corrected second order
solution. On the other hand, correcting the third order solution by using fourth order
flux integral, solid line with triangles, has a different behavior. The magnitude of the
error is much smaller than the original third order solution and is approximately the
same as the fourth order solution. Furthermore, it converges quartically which is the
expected order. Therefore, for a perfect mesh, defect correction based on the third
order solution is as good as expected; however, the performance of defect correction
based on the second order solution is not good.

71

4.3. Defect Correction for a Perfect Mesh

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
0.007

0.004

0.001

­0.002

(a) Original problem

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

5E­16

2E­16

­1E­16

­4E­16

­7E­16

(b) Corrected by exact TE

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

0.007

0.004

0.001

­0.002

(c) Corrected by L3 (U2)

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

0.007

0.004

0.001

­0.002

(d) Corrected by L4 (U2)

Figure 4.5: Discretization error of the original and corrected solutions for perfect tri-
angular mesh

72

4.4. Defect Correction for an Unstructured Mesh

(#CV)
1/2

D
is

c
r
e
ti

z
a
ti

o
n

 E
r
r
o
r

50 100 150 200 250
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

3.87

2.00

2.43

3.71

Figure 4.6: Defect correction based on p-TE method for perfect mesh

4.4 Defect Correction for an Unstructured Mesh

Having investigated the performance of defect correction on a perfect mesh, we study
defect correction using the p-TE method on a general unstructured mesh for the same
two model problems.

Figure 4.7 shows defect correction results for the Poisson problem; similar to the
perfect mesh, defect correction based on the second order solution is not helpful and
the magnitude of the error for the corrected solution is even more than the original
second order problem. In contrast to the perfect mesh, defect correction based on the
third order solution is not able to provide the nominal convergence rate. Although the
magnitude of the error of the corrected solution is less than the third order solution, it
is much larger than the error of the fourth order solution. Therefore, the performance
of defect correction for a general unstructured mesh for diffusive fluxes are not as good
as expected in terms of the convergence rate and magnitude of the error for the second
order solution and in terms of convergence rate for the third order solution.

The same experiment is done for the advection problem and the results are shown

73

4.4. Defect Correction for an Unstructured Mesh

(#CV)
1/2

D
is

c
r
e
ti

z
a
ti

o
n

 E
r
r
o
r

50 100 150 200
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

2.00

4.08

2.45

Figure 4.7: Defect correction based on p-TE method for Poisson on general unstructured
mesh

in Figure 4.8. For convective fluxes, the error of the defect corrected solution based
on the second order solution is less than the original second order one. The difference
is more noticeable when the fourth order flux integral is added to the source term;
however both converge quadratically and hence, the nominal order is not achieved.
The same behavior exists for the corrected solution based on the third order solution.
It converges cubically rather than quartically. Therefore, the performance of defect
correction for convective fluxes is good in terms of error magnitude but not in terms of
the convergence rate.

In conclusion, the expected convergence rate is not achievable by correcting the
solutions based on the p-TE method either for diffusive fluxes or for convective fluxes.
It should be noted that the same convergence results are obtained even on finer meshes
as the solutions on the meshes we have shown here are in asymptotic range.

74

4.5. Defect Correction Based on Continuous p-Truncation Error

(#CV)
1/2

D
is

c
r
e
ti

z
a
ti

o
n

 E
r
r
o
r

50 100 150 200
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

2.09

2.63

4.10

2.72

1.75

Figure 4.8: Defect correction based on p-TE method for advection on general unstruc-
tured mesh

4.5 Defect Correction Based on Continuous
p-Truncation Error

Considering the fact that defect correction based on original p-TE method is not helpful
for diffusive and convective fluxes, we try to use the continuous p-estimate of the trun-
cation error to perform defect correction. Both CGM and C1 interpolation are used for
interpolating the solution and the results are shown for diffusive and convective fluxes.

4.5.1 Poisson

Our results based on the discrete p-TE method shows that the performance of defect
correction is not as good as expected. Figure 4.9 depicts the results for the Poisson
problem using continuous p-truncation error by both schemes discussed in the previous
chapter where the dash-dotted lines show the original non-corrected solution, solid
lines represent defect corrected solution based on discrete p-truncation error and the
dashed lines are the corrected solution by the continuous p-truncation error, so LspUq
representing the continuous p-truncation error calculated by p order flux integration

75

4.5. Defect Correction Based on Continuous p-Truncation Error

based on q order converged solution.
Using CGM for interpolating the second order solution corrects the solution such

that the discretization error is less than the corrected solution by the discrete p-TE
method; however, the corresponding discretization error is larger than the second-order
non-corrected solution. Furthermore, both discretization errors of the corrected solu-
tions by third and fourth order flux integrals based on the interpolated second order
solution converge quadratically with mesh refinement which is not the expected order.
Defect correction based on the third order interpolated solution by CGM is not help-
ful in terms of the magnitude of the error or the convergence rate, compared to the
corrected solution based on the discrete p-truncation error.

Using C1 interpolation of the solution based on second order solution, on the other
hand, provides a corrected solution with smaller discretization error compared to the
discrete solution. Moreover, the convergence rate is faster compared to the corrected
solution based on discrete p-truncation error. Correction based on the third order
solution is not helpful even with the continuous p-truncation error using C1 interpolation
of the solution.

In conclusion, for the Poisson problem, defect correction based on continuous p-
truncation error based on interpolated solution by CGM is not helpful neither for second
order nor for third order solution. C1 interpolation of the solution is able to provide
corrected solutions with smaller discretization error when the second order solution is
used and produces a convergence rate that is faster than quadratic.

4.5.2 Advection

The same experiment has been done for the advection problem and the results are
shown in Figure 4.10. Interpolating by CGM for either the second order or the third
order solution is not helpful in terms of convergence rate. Even though the conver-
gence rate of the corrected solution by using the fourth order flux integral based on
the interpolated second order solution is faster than quadratic, it is still significantly
different from the nominal order. However, by using C1 interpolation to obtain the
continuous p-truncation error, the discretization error of the corrected solution is less
than the discretization error of the corrected solution by discrete p-truncation error,
even though the convergence rate is not as good as expected. The same behavior in
terms of convergence rate exists for the third order solution.

76

4.5. Defect Correction Based on Continuous p-Truncation Error

(#CV)
1/2

D
is

c
r
e
ti

z
a

ti
o

n
 E

r
r
o

r

50 100 150 200
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

(a) Solution interpolation by CGM

(#CV)
1/2

D
is

c
r
e
ti

z
a

ti
o

n
 E

r
r
o

r

50 100 150 200
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

(b) C1 interpolation of the solution

Figure 4.9: Defect correction results using continuous p-truncation error for Poisson

77

4.5. Defect Correction Based on Continuous p-Truncation Error

(#CV)
1/2

D
is

c
r
e
ti

z
a

ti
o

n
 E

r
r
o

r

50 100 150 200

10
­5

10
­4

10
­3

10
­2

10
­1

(a) Solution interpolation by CGM

(#CV)
1/2

D
is

c
r
e
ti

z
a

ti
o

n
 E

r
r
o

r

50 100 150 200

10
­5

10
­4

10
­3

10
­2

10
­1

(b) C1 interpolation of the solution

Figure 4.10: Defect correction results using continuous p-truncation error for advection

78

4.5. Defect Correction Based on Continuous p-Truncation Error

4.5.3 Discussion

In summary, the performance of defect correction based on discrete p-truncation error
is not helpful in terms of the convergence rate and the magnitude of the discretization
error for diffusive and convective fluxes. Using CGM for interpolating the solution is
not able to improve the performance of defect correction significantly either. For both
diffusive and convective fluxes, using C1 interpolation provides a corrected solution with
smaller discretization error, but the converge rate is still not as good as expected. In
particular, the performance is significantly better for correction based on the second-
order solution than on the third-order solution.

As a consequence of poor performance of CGM for defect correction, we will continue
with C1 interpolation of the solution. CGM will not be used for interpolating in output
error estimation and mesh adaptation discussed in the following chapters.

Although C1 interpolation of the solution is not able to improve the performance
of defect correction significantly, particularly in terms of convergence rate, this does
not necessarily mean that it is not able to improve an output functional or effectively
adapt the mesh. In the next two chapters, we will show the performance of output
error estimation and mesh adaptation using the continuous p-truncation error by C1

interpolation of the solution.

79

Chapter 5

Output Error Estimation and
Correction

The adjoint theory was first presented in the context of linear algebra by using the
algebraic equations obtained from the discretization of the original problem. This is
the basis for the discrete adjoint approach. The continuous adjoint approach, on the
other hand, is formulated based on the adjoint PDE which is discretized and solved
independently [26]. In this chapter, we will start by the derivation of both discrete
and continuous adjoint solutions. The continuous adjoint formulation is derived for
different governing equations; scalar equations containing both convective and diffusive
terms and system of equations for both Euler and Navier-Stokes.

The adjoint solution, either the discrete adjoint or continuous adjoint, can be mul-
tiplied by the truncation error to obtain the correction term used to correct the output
functional of interest. Popular output functionals in aerodynamics are lift and drag.
Both discrete and continuous p-truncation error may be weighted by the adjoint solu-
tion to obtain the correction term. If the higher-order flux integral is calculated based
on the lower-order solution as an estimation of the truncation error and this estimate of
the truncation error is weighted by the adjoint solution, the corrected output functional
converges to the exact value as fast as using the higher-order solution directly.

The effect of using the discrete and continuous adjoint solution multiplied by both
discrete and continuous p-truncation error in correcting the output functional is dis-
cussed in this chapter. The test cases include scalar equations, the advection and Pois-
son problem with exact solutions, and system of equations, Euler and Navier-Stokes
using both manufactured solution and real-flows.

80

5.1. Discrete Adjoint

5.1 Discrete Adjoint

Consider a partial differential equation R
(
U
)

= 0. This can be discretized — in our
case using a finite volume discretization — and written as an algebraic equation:

Rh

(
Uh

)
= 0 (5.1)

Given a scalar output, Jh
(
Uh

)
such as lift or drag, the associated adjoint vector, Zh,

is the sensitivity of Jh to an infinitesimal residual perturbation, added to the nonlinear
system:

δJh ≡ Jh
(
Uh + δUh

)
− Jh

(
Uh

)
≡ ZT

h δRh (5.2)

where δUh is the infinitesimal solution perturbation satisfying

∂Rh

∂Uh

δUh = δRh (5.3)

which is obtained by linearizing Eq. 5.1. The linearization assumes the discrete equa-
tions are differentiable. Furthermore, assuming that the output is also differentiable

δJh = ∂Jh
∂Uh

δUh = ZT
h δRh = −ZT

h

∂Rh

∂Uh

δUh (5.4)

For this equation to hold for all perturbations requires that

∂Jh
∂Uh

= −ZT
h

∂Rh

∂Uh

from which Zh must satisfy the discrete adjoint equation:
(
∂Rh

∂Uh

)T
Zh +

(
∂Jh
∂Uh

)T
= 0 (5.5)

As discussed in Chapter 1, the implicit Jacobian matrix can be computed in our solver
and hence the transpose of the Jacobian matrix,

(
∂Rh
∂Uh

)T
, can be calculated easily. The

discrete adjoint solution is used for mesh adaptation and optimization [59, 60].
If we assume that both the equations and the functional J have been linearized, the

discrete approach can be described as a mapping from the original problem Jh = (Uh, g)
given that AUh = f into an equivalent adjoint problem Jh = (Zh, f) given that ATZh =
g. The inner product is a vector dot product (V, U) = V TU and the equivalence of the

81

5.2. Continuous Adjoint

two problems is easily proved to be

(Zh, f) = (Zh, AUh) ≡
(
ATZh, Uh

)
= (g, Uh) (5.6)

Note that the inhomogeneous term f in the discrete equations in the primal problem,
enters the functional in the adjoint problem, and correspondingly the inhomogeneous
term g in the adjoint problem comes from the functional of the primal problem.

5.2 Continuous Adjoint

The continuous primal problem can be posed as

Determine J = (U, g)D + (CU, h)∂D
given that LU = f inD

BU = e in ∂D

(5.7)

where (U, V)D =
´
D
UTV dv is an integral over the domain and (U, V)∂D =

´
∂D
UTV dA

is an integral over the boundary of the domain. The objective in the analytic approach
is to convert the primal problem using integration by parts into an equivalent adjoint
problem

Determine J = (Z, f)D + (C∗Z, e)∂D
given that L∗Z = g inD

B∗Z = h on ∂D

(5.8)

where L∗ is the linear PDE which is adjoint to L. B and B∗ are boundary condition
operators for the primal and adjoint problems, respectively, and C and C∗ are (possibly
differential) weight boundary operators used in the functionals; these four operators
may have different dimensions on different parts of the boundary.

The two forms of the problem are equivalent provided that

J = (Z,LU)D + (C∗Z,BU)∂D = (L∗Z,U)D + (B∗Z,CU)∂D (5.9)

which is the adjoint consistency condition. The left hand side is the output functional
based on the adjoint solution and the right hand side is the output functional based on
the primal problem. The continuous adjoint has been used for optimizing wing shape
[40] and correcting the output functional [5, 82].

82

5.2. Continuous Adjoint

Comparing the discrete adjoint to the continuous adjoint reveals that although the
discrete adjoint solves a system of equations based on the transpose of the Jacobian
matrix and the derivative of the functional with respect to the solution, the continuous
adjoint is an independent PDE which needs to be discretized and solved by itself. This
implies that boundary conditions should be set for the continuous adjoint problem and
those boundary conditions are dependent on the functional. In this section, the adjoint
PDE, L∗, and the boundary conditions for different problems based on correspond-
ing functionals are discussed. We start by examining convective and diffusive fluxes
separately using the advection and Poisson problems, respectively. Hence, two model
problems are defined by the method of manufactured solutions [76]. For systems of
equations, both inviscid and viscous flows are considered.

5.2.1 Advection Equation

Consider the 2D steady linear advection equation with zero source term:

∇ · (bU) = 0 inD

U = uin on ∂Di (5.10)

where b is the velocity vector and uin is the solution at the inlet ∂Di. The left hand
side of Eq. 5.10 is multiplied by Z, integrated over the domain D and integrated by
parts to obtain the continuous adjoint equation:

(∇ · (bU) , Z)D + (U,−b · n̂Z)∂Di = (U,−b · ∇Z)D + (U,b · n̂Z)∂Do (5.11)

where n̂ is the outward normal vector. Comparing to Eq. 5.9, we see that LU = ∇·(bU)
in D and

BU = U, CU = 0 on ∂Di

BU = 0, CU = U on ∂Do

for the primal problem and L∗Z = −b · ∇Z in D and

B∗Z = 0, C∗Z = −b · n̂Z on ∂Di

B∗Z = b · n̂z, C∗Z = 0 on ∂Do

83

5.2. Continuous Adjoint

for the continuous adjoint problem. The output functional is defined as

J =
ˆ
D

(∇ · (bU))ZdA+
ˆ
∂Di

uin (−b · n̂Z) ds

=
ˆ
D

(−b · ∇Z)UdA+
ˆ
∂Do

(b · n̂Z)uds (5.12)

For a constant velocity vector, the adjoint equation to the advection problem is an
advection equation in the reverse direction.

5.2.2 Poisson Equation

Consider the 2D Poisson equation:

4U = f inD

U = bD on ∂DD

n̂ · ∇U = bN on ∂DN (5.13)

where bD is the Dirichlet boundary condition on ∂DD and bN is the Neumann boundary
condition on ∂DN , with ∂DD∪∂DN = ∂D and ∂DD∩∂DN = 0. Similar to the advection
problem, the left hand side of Eq. 5.13 is multiplied by Z, integrated over the domain
D and integrated by parts to obtain the continuous adjoint equation:

(4U,Z)D = − (∇U,∇Z)D + (n̂ · ∇U,Z)∂D
= (U,4Z)D − (U, n̂ · ∇Z)∂D + (n̂ · ∇U,Z)∂D (5.14)

splitting the boundary terms according to ∂DD ∪ ∂DN = ∂D , and shuffling terms:

(4U,Z)D + (U, n̂ · ∇Z)∂DD + (n̂ · ∇U,−Z)∂DN =

(U,4Z)D + (n̂ · ∇U,Z)∂DD + (U,−n̂ · ∇Z)∂DN

Comparing to Eq. 5.9, we end up with LU = 4U in D and

BU = U, CU = n̂ · ∇U on ∂DD

BU = n̂ · ∇U, CU = U on ∂DN

for the primal problem and L∗Z = 4Z in D and

84

5.2. Continuous Adjoint

B∗Z = Z, C∗Z = n̂ · ∇Z on ∂DD

B∗Z = −n̂ · ∇Z, C∗Z = −Z on ∂DN

for the continuous adjoint problem. Comparing L and L∗ shows that the primal and
adjoint operators are the same and as a result, Poisson is self adjoint implying that
the Poisson adjoint problem is a Poisson problem itself for which the source term
and boundary conditions are defined based on the functional of interest. The output
functional is defined as:

J =
ˆ
D

4UZdA+
ˆ
∂DD

U (n̂ · ∇Z) ds+
ˆ
∂DN

(n̂ · ∇U) (−Z) ds

=
ˆ
D

4ZUdA+
ˆ
∂DD

(n̂ · ∇U)Zds+
ˆ
∂DN

(−n̂ · ∇Z)Uds (5.15)

5.2.3 Euler Equations

Consider the linearized steady-state Euler equations:

LU = ∂

∂x
(AxU) + ∂

∂y
(AyU) = f (5.16)

where U =
(
ρ ρu ρv ρe

)T
is the conserved solution vector and Ax = ∂F cx

∂U
and

Ay = ∂F cy
∂U

are the flux Jacobian in which Fx and Fy are the convective flux functions:

F c
x =


ρu

ρu2 + p

ρuv

ρuh

 , F c
y =


ρv

ρuv

ρv2 + p

ρvh

 . (5.17)

where h = e+ p
ρ

= Pγ
ρ(γ−1) + 1

2 (u2 + v2) is the enthalpy and γ = Cp
Cv

is the ratio of specific
heats. Consequently, the flux Jacobians are:

Ax = ∂Fx
∂U

=


0 1 0 0

γ−1
2 (u2 + v2)− u2 (3− γ)u (1− γ) v γ − 1

−uv v u 0
u
(
γ−1

2 (u2 + v2)− h
)

h− (γ − 1)u2 (1− γ)uv γu



85

5.2. Continuous Adjoint

Ay = ∂Fy
∂U

=


0 0 1 0
−uv v u 0

γ−1
2 (u2 + v2)− v2 (1− γ)u (3− γ) v γ − 1

v
(
γ−1

2 (u2 + v2)− h
)

(1− γ)uv h− (γ − 1) v2 γv


Note that we are using Roe’s scheme [77] for evaluating the flux function. Using this
scheme, the flux function at the face between cell i and j is evaluated as:

F (Ui, Uj) = 1
2
[
(F (Ui) + F (Uj))−

∣∣∣Ã∣∣∣ (Uj − Ui)] . (5.18)

Ã is the Jacobian matrix evaluated based on the Roe’s average properties defined as:

ρ̃ = √
ρiρj

ũ =
√
ρiui +√ρjuj√
ρi +√ρj

ṽ =
√
ρivi +√ρjvj√
ρi +√ρj

h̃ =
√
ρihi +√ρjhj√
ρi +√ρj

(5.19)

and
∣∣∣Ã∣∣∣ can be written in diagonalized form as:

∣∣∣Ã∣∣∣ = X̃−1
∣∣∣Λ̃∣∣∣ X̃. (5.20)

X̃ is a matrix whose columns are the right eigenvectors and the components of Λ̃ are
the eigenvalues of the Jacobian matrix:

∣∣∣Λ̃∣∣∣ =


|ũn| 0 0 0

0 |ũn| 0 0
0 0

∣∣∣ũn + C̃
∣∣∣ 0

0 0 0
∣∣∣ũn − C̃∣∣∣

 (5.21)

86

5.2. Continuous Adjoint

where ũn = nxũ+nyṽ is the normal velocity and C̃ =
√

(γ − 1)
(
h̃− 1

2 (ũ2 + ṽ2)
)
is the

sound velocity.
To obtain the continuous adjoint equation, Eq. 5.16 is multiplied by Z, integrated

over the domain D and integrated by parts:(
∂

∂x
(AxU) + ∂

∂y
(AyU) , Z

)
D

=
(
U,−ATx

∂Z

∂x
− ATy

∂Z

∂y

)
D

(5.22)

+ ((nxAx + nyAy)U,Z)∂D .

Comparing to Eq. 5.9, we find that

L∗Z = −ATx
∂Z

∂x
− ATy

∂Z

∂y
(5.23)

for the continuous adjoint problem. Note that the primal PDE, Eq. 5.16, is written in
the conservative form; however, the adjoint PDE, Eq. 5.23 is not in conserved form and
we need to transform that to the conserved form; this transformation is described in
detail in Appendix B. The continuous adjoint fluxes are calculated by the Lax-Friedrich
method based on the maximum eigenvalue of the Euler Jacobian:

F (Ui, Uj) = 1
2 [(F (Ui) + F (Uj))− λmax (Uj − Ui)] (5.24)

To be able to solve the continuous adjoint equation, we need to define the boundary
operators for the solid wall where the output functional is defined, as well as supersonic
and subsonic inflow and outflow.

Solid Wall

The output functional corresponding to drag or lift is:

J =
ˆ

∂Dwall

pn̂ · ψds (5.25)

where ψ = (cosα, sinα)T for drag and ψ = (−sinα, cosα)T for lift, and α is the angle of
attack. Using the primal boundary operator in the right hand side of Eq. 5.22 for the
slip wall boundary condition, ~u · n̂ = unx + vny = 0, and multiplying by the adjoint

87

5.2. Continuous Adjoint

solution, we obtain:

((nxAx + nyAy)U,Z)∂D =
([

0 pnx pny 0
]T
,
[
Z1 Z2 Z3 Z4

]T)
= pnxZ2 + pnyZ3

Comparing to the functional of interest, Eq. 5.25, we obtain the continuous adjoint
boundary condition as

nxZ2 + nyZ3 = n̂ · ψ (5.26)

Supersonic inflow/outflow

The solution components are set for supersonic inflow for the primal problem and for
supersonic outflow, they are obtained by reconstruction. Eq. 5.23 shows that the char-
acteristic behavior of the adjoint problem is similar to that of the primal Euler equation,
but with the sign of each characteristic velocity reversed so that the characteristic infor-
mation travels in the opposite direction, similar to the advection problem as described.
All characteristics are coming into the domain for supersonic inflow, and so for the
adjoint state, the characteristics are coming out and hence no boundary condition is
set at the supersonic inflow for the adjoint problem and it is obtained by reconstruc-
tion directly. For the supersonic outflow, on the other hand, since for most applied
problems, the output functional is defined as the lift or drag on the solid wall and the
outflow does not have any contribution in the functional, the boundary condition for
the adjoint problem is zero at the supersonic outflow [5]. A supersonic outflow has no
influence on any quantity.

Subsonic inflow/outflow

At a subsonic inflow boundary, there are three characteristics entering the domain for
the primal problem and therefore, there is only one adjoint characteristic that leaves the
domain. Accordingly, one boundary condition should be specified for adjoint subsonic
inflow. It can be written in a simplified form as:

C1Z1 + C2Z2 + C3Z3 + C4Z4 = 0 (5.27)

88

5.2. Continuous Adjoint

where the coefficients are given by [34]:

C1 = nxu+ nyv

2

(
2− γ + γ2 − 2γe (γ − 1)

u2 + v2

)

C2 = (2− γ + γ2)nxu2 + 2 (1− γ + γ2)nyuv
2 − (γ − 1) γnxv2

2

−γe (γ − 1) (2nyuv + nx (u2 − v2))
(u2 + v2)

C3 = −γ (γ − 1)nyu4 + 2nyu2v2

2 (u2 + v2) + (1− γ + γ2)nx (u3v + uv3)
(u2 + v2)

+(2− γ + γ2)nyv4 + 2γe (γ − 1) (ny (u2 − v2)− 2nxuv)
2 (u2 + v2)

C4 = (nxu+ nyv) ((γ − 1) (u2 + v2)− 2γe) ((2− γ + γ2) (u2 + v2)− 2γe (γ − 1))
−4 (u2 + v2)

In the case of a subsonic outflow boundary, the adjoint problem has three incoming
characteristics entering the domain implying that three boundary conditions are needed.
They can be written as:

Z1 = 1
2
(
2eγ − (γ − 1)

(
u2 + v2

))
Z4

Z2 =
(
−2eγnx + (γ − 2)nxu2 − 2nyuv + γnxv

2

2 (nxu+ nyv)

)
Z4

Z3 =
(
−2eγny + (γ − 2)nyv2 − 2nxuv + γnyu

2

2 (nxu+ nyv)

)
Z4

Table 5.1 summarizes the number of boundary conditions required for different bound-
aries according to the characteristics.

Primal Adjoint
Supersonic Inflow 4 0
Supersonic Outflow 0 4
Subsonic Inflow 3 1
Subsonic Outflow 1 3

Table 5.1: Number of required boundary conditions

89

5.2. Continuous Adjoint

5.2.4 Navier-Stokes Equations

Consider the linearized steady-state Navier-Stokes equations for constant viscosity:

LU = ∂

∂x

(
AxU −Dxx

∂U

∂x
−Dxy

∂U

∂y

)

+ ∂

∂y

(
AyU −Dyx

∂U

∂x
−Dyy

∂U

∂y

)
= f (5.28)

where Ax and Ay are the derivatives of the convective flux function, Eq. 5.17, with
respect to the solution as defined before and the other Dij matrices are the derivatives
of viscous flux with respect to the solution gradients

Dxx = ∂F vx
∂(∂U∂x) , Dyx = ∂F vy

∂(∂U∂x)

Dxy = ∂F vx
∂(∂U∂y) , Dyy = ∂F vy

∂(∂U∂y)

where F v represents the viscous flux function:

F v
x =



0
Ma
Re
µ
(

4
3
∂u
∂x
− 2

3
∂v
∂y

)
Ma
Re
µ
(
∂u
∂y

+ ∂v
∂x

)
Ma
Re
µ
(
u
(

4
3
∂u
∂x
− 2

3
∂v
∂y

)
+ v

(
∂u
∂y

+ ∂v
∂x

))
+ µγMa

RePr(γ−1)

(
ρ ∂P
∂x
−P ∂ρ

∂x

ρ2

)



F v
y =



0
Ma
Re
µ
(
∂u
∂y

+ ∂v
∂x

)
Ma
Re
µ
(

4
3
∂v
∂y
− 2

3
∂u
∂x

)
Ma
Re
µ
(
u
(
∂u
∂y

+ ∂v
∂x

)
+ v

(
4
3
∂v
∂y
− 2

3
∂u
∂x

))
+ µγMa

RePr(γ−1)

(
ρ ∂P
∂y
−P ∂ρ

∂y

ρ2

)



where Ma =
√
u2+v2

C
is the Mach number, µ is the dynamic viscosity coefficient, Re is

the Reynolds number and Pr is the Prandtl number. Consequently, the Dij matrices,

90

5.2. Continuous Adjoint

the derivatives of viscous fluxes with respect to the solution gradients are:

Dxx = µ

ρ


0 0 0 0
−4

3u
4
3 0 0

−v 0 1 0
−
(

4
3u

2 + v2 + γ
Pr

(e− u2 − v2)
) (

4
3 −

γ
Pr

)
u

(
1− γ

Pr

)
v γ

Pr



Dxy = µ

ρ


0 0 0 0
2
3v 0 −2

3 0
−u 1 0 0
−1

3uv v −2
3u 0

 , Dyx = µ

ρ


0 0 0 0
−v 0 1 0
2
3u −2

3 0 0
−1

3uv −
2
3v u 0



Dyy = µ

ρ


0 0 0 0
−u 1 0 0
−4

3v 0 4
3 0

−
(
u2 + 4

3v
2 + γ

Pr
(e− u2 − v2)

) (
1− γ

Pr

)
u

(
4
3 −

γ
Pr

)
v γ

Pr


Eq. 5.28 is multiplied by Z, integrated over the domain D and integrated by parts

to obtain the continuous adjoint equation:(
∂

∂x

(
AxU −Dxx

∂U

∂x
−Dxy

∂U

∂y

)
+ ∂

∂y

(
AyU −Dyx

∂U

∂x
−Dxy

∂U

∂y

)
, Z

)
D

=(
−Ax

∂Z

∂x
− ∂

∂x

(
DT
xx

∂Z

∂x
+DT

yx

∂Z

∂y

)
− Ay

∂Z

∂y
− ∂

∂y

(
DT
xy

∂Z

∂x
+DT

yy

∂Z

∂y

)
, U

)
D

+(
nx

(
AxU −Dxx

∂U

∂x
−Dxy

∂U

∂y

)
+ ny

(
AyU −Dyx

∂U

∂x
−Dyy

∂U

∂y

)
, Z

)
∂D

+(
∂Z

∂x
, (nxDxx + nyDyx)U

)
∂D

+
(
∂Z

∂y
, (nxDxy + nyDyy)U

)
∂D

(5.29)

Comparing to Eq. 5.9, we end up with

L∗Z = −ATx
∂Z

∂x
− ATy

∂Z

∂y

− ∂

∂x

(
DT
xx

∂Z

∂x
+DT

yx

∂Z

∂y

)
− ∂

∂y

(
DT
xy

∂Z

∂x
+DT

yy

∂Z

∂y

)
(5.30)

for the continuous adjoint problem where the first term on right-hand side is the same
as the adjoint PDE for the Euler equation and the second term is already in conserved

91

5.3. Output Functional Correction

form.
The most popular output functional of interest in viscous compressible flows are the

total (i.e., pressure plus viscous) drag and lift. So, the output functional is defined as:

J =
ˆ

∂Dwall

(pn̂− τ n̂) · ~ψds =
ˆ

∂Dwall

(pni − τijnj)ψids (5.31)

where ψ is the same as defined above and the viscous stress term is defined by

τ =
 4

3
∂u
∂x
− 2

3
∂v
∂y

∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

4
3
∂v
∂y
− 2

3
∂u
∂x

 (5.32)

Using the primal boundary operator in the right hand side of Eq. 5.29 for the adiabatic
no-slip wall boundary condition

u = 0

v = 0

n̂ · ∇T = 0 (5.33)

and multiplying by the adjoint solution, we obtain the continuous adjoint boundary
condition for the adiabatic no-slip wall:

Z2 = ψ1

Z3 = ψ2

n̂ · ∇Z4 = 0 (5.34)

The convective part of the boundary condition for the inflows and outflows are the same
as the continuous adjoint for the Euler problem.

5.3 Output Functional Correction

Pierce and Giles have developed a method to estimate error in the functional [73] and an
overview of the method is discussed here. Considering Eq. 5.9 and for given continuous

92

5.3. Output Functional Correction

approximate solutions Uh and Zh of the discrete solution:

J = (g, U)D + (h,CU)∂D
= (g, Uh + (U − Uh))D + (h,C (Uh + (U − Uh)))∂D
= (L∗Zh, Uh)D + (L∗Zh, U − Uh)D + (g − L∗Zh, U − Uh)D + (g − L∗Zh, Uh)D
+ (B∗Zh, CUh)∂D + (B∗Zh, C (U − Uh))∂D
+ (h−B∗Zh, C (U − Uh))∂D + (h−B∗Zh, CUh)∂D (5.35)

By using integration by parts, we can re-write the above equation as

J = (L∗Zh, Uh)D + (B∗Zh, CUh)∂D +

(Zh, L (U − Uh))D + (C∗Zh, B (U − Uh))∂D +

(Z − Zh, L (U − Uh))D + (C∗ (Z − Zh) , B (U − Uh))∂D (5.36)

The two terms in the first line are the influence of bulk and boundary integrals in the
discrete functional, the terms in the second line represent computable adjoint error
estimates and the terms in the third line are the higher order remaining errors which
are negligible compared to other terms. Accordingly, the estimated error in calculating
the functional is:

δJ ≈ (Zh, L (U − Uh))D + (C∗Zh, B (U − Uh))∂D
= (Zh, f − LUh)D + (C∗Zh, e−BUh)∂D
= (Zh, τ)D + (C∗Zh, e−BUh)∂D (5.37)

where τ is the primal truncation error. Hence, an estimate of the truncation error
is needed to find the correction term for the output functional. The estimate of the
truncation error based on the interpolated solution is multiplied by the adjoint solution
to find the correction term added to the output functional to have a more accurate
functional which converges to the exact value with a higher-order rate. It should be
noted that the correction term of Eq. 5.37 is the summation over all control volumes of
the truncation error estimated by computing the higher-order flux integral based on the
lower-order solution multiplied by the adjoint solution of the same order as the primal
problem

δJ = (Zh, τ)D =
∑
CV

(˛
~F p+1
p · n̂ds

)
Z̄p

93

5.4. Advection Equation

The higher-order flux integration can be computed to order p+ 2 as well.
We will compare the effectiveness of using the original discrete p-TE estimate and

the continuous p-TE estimate for different governing equations with different physical
behavior, for both convective and diffusive fluxes. Both scalar and system problems are
considered. For each case, the domain of the problem is introduced and then corrections
based on the discrete and continuous p-truncation error are compared for both discrete
and continuous adjoint problems.

To verify our approach to improving the functional, we use problems with exact
solutions so that we can calculate the exact functional to compare the magnitude of the
error and also the convergence rate of the corrected functional with mesh refinement.
Since this technique is mathematical in origin rather than physical, applying it to other
problems, with or without exact solutions, follows exactly the same procedure. We are
focusing on the problems with exact solutions only to have an exact reference value for
comparison purposes.

5.4 Advection Equation

The velocity vector in Eq. 5.10 is set as b = (1, 0) and the primal problem is the same
as the advection problem described in Chapter 4, Figure 4.3. The problem domain
considered is a (5× 1) rectangular channel and the output functional is defined as

J = (U, g)D + (CU, h)∂D0
= 0 + (U, h)∂D0 =

1ˆ

0

sin (πy) sin (πy) dy = 0.5

implying that the adjoint problem boundary condition should be set as sin (πy). The
functional is defined intentionally such that the adjoint problem has exactly the same
distribution as the primal problem. Both continuous and discrete adjoint solutions are
depicted in Figure 5.1 and as their distributions should be the same as the the exact
primal problem, so comparing continuous and discrete adjoint is easier. Although both
solutions are qualitatively similar to the desired solution, the continuous adjoint is
smoother and more accurate, as expected, as a consequence of solving the continuous
adjoint PDE instead of solving the transposed Jacobian system arising from the discrete
solution. This increased accuracy is reflected in the correction process as well.

Before showing the numerical results, the nomenclature we are using should be
described; J is the functional, CJ is the corrected functional and C’s superscript rep-

94

5.4. Advection Equation

Y

0 1 2 3 4 5
0

1

0 0.15 0.3 0.45 0.6 0.75 0.9

(a) Continuous adjoint

Y

0 1 2 3 4 5
0

1

0 0.15 0.3 0.45 0.6 0.75 0.9

(b) Discrete adjoint

Figure 5.1: Adjoint solutions for advection problem

resents whether the correction is based on truncation error using the discrete solution,
Cn, or is based on the truncation error using the interpolated solution, Cs. J ’s sub-
script shows the primal solution order of accuracy and the superscript shows the order
of reconstruction and flux integration used as an estimation of the truncation error.

The error in calculating the functional is depicted in Figure 5.2 using both continu-
ous and discrete adjoint solutions. Comparing the functional based on the second-order
solution with the corrected functional based on the discrete solution shows poor perfor-
mance of the correction in terms of error magnitude and also asymptotic convergence
rate for both continuous and discrete adjoint solutions. On the other hand, correcting
the functional by using the truncation error based on the interpolated solution, CsJ3

2 ,
has smaller error compared to the second-order functional and the rate of convergence
is 4.06 and 3.31 for continuous and discrete adjoint, respectively. In this case, we have
super-convergence with the continuous adjoint and the convergence is quartic instead
of cubic. Using fourth order flux integration for estimating the truncation error based
on the interpolated second-order solution, CsJ4

2 , further reduces the error. Comparing
the error magnitudes of these corrected solutions based on second-order solution with
the error of the third-order solution reveals that this correction scheme based on the
interpolated solution is even more accurate than the higher-order functional. Instead

95

5.5. Poisson Equation

(#CV)
1/2

E
r
r
o
r

50 100 150 200
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

J
2
: 1.61

C
n
J

2

3
:2.52

C
s
J

2

3
: 4.06

C
s
J

2

4
:4.09

J
3
: 2.76

C
s
J

3

4
:3.69

(a) Continuous adjoint

(#CV)
1/2

E
r
r
o

r

50 100 150 200
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

J
2
: 1.61

C
n
J

2

3
:2.06

C
s
J

2

3
:3.31

C
s
J

2

4
:3.76

J
3
: 2.76

C
s
J

3

4
:3.67

(b) Discrete adjoint

Figure 5.2: Convergence history for the advection problem

of using the second-order functional, the third-order functional may be corrected based
on fourth-order flux integration, CsJ4

3 . Similarly, the convergence is quartic for the
corrected solution although the original functional is cubic.

Since the same range is used for errors for both continuous and discrete adjoints, the magnitudes of the errors may be compared easily and it is obvious that for almost all cases, the magnitude of the error in the corrected functional based on the continuous adjoint is less than the corresponding value for the discrete adjoint. This is expected behavior as a result of solving the continuous adjoint PDE. Furthermore, the convergence rates are faster for all cases using the continuous adjoint. In conclusion, for advection, significant improvement is obtained by correcting the functional by the truncation error based on the interpolated solution, whether the continuous or discrete adjoint is used, although the continuous adjoint is more successful.

5.5 Poisson Equation

The primal problem is defined on a (1× 1) square domain as

∂2U

∂x2 + ∂2U

∂y2 = −π
3

4 sin (πx) sin (πy) , U = sin (πx) on y = 1

⇒ Uexact = π

8 sin (πx) sin (πy) + 1
sinh (π) sin (πx) sinh (πy) (5.38)

and the exact solution is shown in Figure 5.3.
Setting the adjoint source term as g = π5

2 x (1− x) y (1− y), the adjoint boundary
condition is obtained as h = x (1− x) on y = 0 and zero elsewhere by Eq. 5.9. The

96

5.5. Poisson Equation

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

Figure 5.3: Exact solution of the Poisson problem

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

­0.45 ­0.25 ­0.05 0.15

(a) Continuous adjoint

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

­0.45 ­0.25 ­0.05 0.15

(b) Discrete adjoint

Figure 5.4: Adjoint solutions for Poisson problem

97

5.5. Poisson Equation

(#CV)
1/2

L
2
(|
D
is
S
o
l­
C
o
n
tS
o
l|
)

50 100 150 200

0.001

0.002

Figure 5.5: The L2-norm of the difference between the discrete and continuous adjoint
solutions for Poisson

output functional is defined as:

J = (U, g)D + (CU, h)∂DD = (U, g)D + (n̂ · ∇U, h)∂DD

=
ˆ 1

0

ˆ 1

0
Uexact ×

π5

2 x (1− x) y (1− y) dxdy +
ˆ 1

0
−π sin (πx)

(
π

8 + 1
sinh (π)

)
x (1− x) dx

= 1.832245378− 0.19424836 = 1.637997017

The continuous and discrete adjoint solutions are depicted in Figure 5.4 and as indicated
the boundary condition is non-zero at the bottom wall and zero elsewhere. For the
Poisson problem, the difference between the continuous and discrete adjoint solution
distributions is less than the advection problem, at least qualitatively. Figure 5.5 shows
the L2-norm of the difference between the continuous and discrete adjoint solution for
both second order and third order solutions. By decreasing the mesh size, the difference
between the discrete and continuous adjoint solutions become smaller.

We correct the functional using these adjoint solutions; the results are shown in
Figure 5.6. Similar to the advection problem, comparing the functional based on the
second-order solution with the corrected functional based on the discrete solution, CnJ3

2 ,
shows poor performance of the corrected functional for both continuous and discrete ad-

98

5.5. Poisson Equation

(#CV)
1/2

E
r
r
o
r

50 100 150 200
10

­7

10
­6

10
­5

10
­4

10
­3

J
2
: 1.55

C
n
J

2

3
:1.20

C
s
J

2

3
: 2.73

C
s
J

2

4
:3.85

J
3
: 1.95

J
4
: 3.87

(a) Continuous adjoint

(#CV)
1/2

E
r
r
o

r

50 100 150 200
10

­7

10
­6

10
­5

10
­4

10
­3

J
2
: 1.55

C
n
J

2

3
:1.78

C
s
J

2

3
:2.78

C
s
J

2

4
:3.17

J
3
: 1.95

J
4
: 3.87

(b) Discrete adjoint

Figure 5.6: Convergence history for Poisson

joint solutions. On the other hand, CsJ3
2 has smaller error compared to the second-order

functional and it converges cubically. A significant improvement — fourth-order con-
vergence — is obtained for CsJ4

2 based on continuous adjoint for which the magnitude
of the error is even smaller than the fourth-order solution. Using the discrete adjoint,
cubic convergence is obtained with comparable error magnitude to the fourth-order
functional. For the Poisson problem, we are comparing the error to the fourth-order
functional instead of the third-order one since the convergence of the third-order func-
tional is only quadratic. This is the behavior of diffusive fluxes for third-order finite
volume unstructured schemes and as the third-order functional is not third-order, as
shown in Figure 5.6, correcting it with fourth-order flux integration is not helpful either.

Summarizing, for Poisson, significant improvement is obtained by correcting the
functional by the truncation error based on the interpolated solution, when either the
continuous or discrete adjoint is used, particularly for CsJ4

2 , although the improvement
is more significant when the continuous adjoint is used.

99

5.6. Euler Equations

5.6 Euler Equations

In this part, two different test cases are considered; supersonic flow with an exact
solution and subsonic flow with the solution on a very fine mesh as the comparison
solution.

5.6.1 Supersonic Flow

The supersonic vortex is an Euler problem with an exact solution for which the exact
functional value can be calculated. The exact solution is shown in Chapter 2, Figure
2.11. For the x-momentum component, the convergence results are shown in Figure
5.7 comparing the discretization error for second order accurate solution and the exact
truncation error. As mentioned earlier, the magnitude of the truncation error for the
unstructured mesh is larger than the discretization error and the convergence rate is
slower. The estimation of the truncation error using the discrete p-TE method is also
compared to the continuous p-truncation error and the truncation error magnitude is
smaller for the interpolated estimate.

(#CV)
1/2

E
rr

o
r

40 60 80 100 120 140

10
­4

10
­3

10
­2

Discretization error

Exact truncation error

p­TE

Smoothed TE

2.00

1.00

Figure 5.7: Convergence results for the truncation error estimates, supersonic vortex

Considering drag or lift on the inner wall of the supersonic vortex and using Eq.
5.25 for calculating the functional based on the exact pressure distribution, the exact

100

5.6. Euler Equations

0 1 2 3
0

1

2

3

­8 ­6.5 ­5 ­3.5 ­2 ­0.5

(a) Continuous adjoint for drag functional

0 1 2 3
0

1

2

3

­8 ­6.5 ­5 ­3.5 ­2 ­0.5

(b) Discrete adjoint for drag functional

0 1 2 3
0

1

2

3

­8 ­6.5 ­5 ­3.5 ­2 ­0.5

(c) Continuous adjoint for lift functional

0 1 2 3
0

1

2

3

­8 ­6.5 ­5 ­3.5 ­2 ­0.5

(d) Discrete adjoint for lift functional

Figure 5.8: x−momentum adjoint solutions for supersonic vortex

101

5.6. Euler Equations

value for the functional is obtained as:

J =
ˆ

inner wall

pn̂ · ~ψds

= 1
γ

π
2ˆ

0

Rin̂ · ~ψdθ = 1.42857 (5.39)

It should be noted that the same magnitude is obtained for both drag and lift.
The continuous and discrete adjoint solutions based on drag and lift functionals

on the lower wall are depicted in Figure 5.8. Similar to the advection test case, the
continuous adjoint solution distribution is smoother than the discrete adjoint. While
both functionals show high sensitivities near the wall, the drag functional adjoint shows
high sensitivities along a longer extent than the lift functional due to the need to
accurately convect information to the outflow region, where a large amount of the drag
force is produced.

Functional correction based on these adjoint solutions is applied and the results are
shown in Figure 5.9. If the discrete p-truncation error is used for functional correction,
CnJ3

2 , the magnitude of the error in the functional is more than the second order func-
tional and the convergence is approximately quadratic for both drag and lift functionals
using both continuous and discrete adjoint solutions. The corrected functional based on
the interpolated solution, CsJ3

2 , has smaller error compared to the second-order func-
tional and converges cubically. Fourth-order convergence is obtained for CsJ4

2 based
on the continuous adjoint for both functionals; however, using the discrete adjoint for
CsJ4

2 , lift and drag have different behaviors. Although the convergence for drag is even
better than quartic, the convergence rate for lift is only 2.54. Generally, using the con-
tinuous adjoint for functional corrections provides us with more consistent results, as
it is less sensitive to the errors arising from discretization.

If the third-order solution is used for calculating and correcting the functional,
the same convergence behavior is obtained using the continuous and discrete adjoint
solutions; investigation of convergence behavior for CsJ4

3 using the continuous adjoint
shows the significant improvement of correction by using the interpolated solution. The
convergence rate is fourth-order and the magnitude of the error is less than the third-
order solution. However, using the discrete adjoint for correction is not helpful for
CsJ4

3 , either in terms of convergence rate, or in terms of the error magnitude.
Consequently, as a general conclusion, correcting the functional based on the dis-

102

5.6. Euler Equations

(#CV)
1/2

E
r
r
o
r

40 60 80 100 120 140

10
­6

10
­5

10
­4

10
­3

J
2
: 2.31

C
n
J

2

3
:2.09

C
s
J

2

3
: 3.19

C
s
J

2

4
:3.99

J
3
: 2.79

C
s
J

3

4
:3.52

(a) Continuous adjoint for drag functional

(#CV)
1/2

E
r
r
o
r

40 60 80 100 120 140

10
­6

10
­5

10
­4

10
­3

J
2
: 2.31

C
n
J

2

3
:1.46

C
s
J

2

3
:2.93

C
s
J

2

4
:4.79

J
3
: 2.79

C
s
J

3

4
:2.35

(b) Discrete adjoint for drag functional

(#CV)
1/2

E
r
r
o
r

40 60 80 100 120 140

10
­6

10
­5

10
­4

10
­3

J
2
: 2.18

C
n
J

2

3
:1.93

C
s
J

2

3
: 2.95

C
s
J

2

4
:4.10

J
3
: 2.85

C
s
J

3

4
:4.20

(c) Continuous adjoint for lift functional

(#CV)
1/2

E
r
r
o

r

40 60 80 100 120 140

10
­6

10
­5

10
­4

10
­3

J
2
: 2.18

C
n
J

2

3
:1.79

C
s
J

2

3
:3.32

C
s
J

2

4
:2.54

J
3
: 2.85

C
s
J

3

4
:1.95

(d) Discrete adjoint for lift functional

Figure 5.9: Convergence history for the functional values for the supersonic vortex

103

5.6. Euler Equations

crete solution is not helpful at all and interpolating the solution and computing the
correction term based on the interpolated solution is capable of improving the func-
tional significantly. More accurate results with the expected convergence behavior is
obtained if the continuous adjoint solution is used for correction.

5.6.2 Subsonic Flow

The capability of our interpolating scheme in correcting the functional for an Euler
problem with an exact solution was shown for the supersonic vortex. In this section,
output functionals of drag and lift are calculated and corrected for the subsonic inviscid
flow around NACA 0012 with Ma∞ = 0.5 and angle of attack α = 2◦. Since this
problem does not have an exact solution, the solution on a very fine mesh is considered
as the exact solution. The capability of our solver in approximating the drag and lift

0 0.25 0.5 0.75 1

­0.25

0

0.25

0.88 0.98 1.02

(a) Density

0 0.25 0.5 0.75 1

­0.25

0

0.25

0 0.2 0.4 0.6

(b) x-velocity

0 0.25 0.5 0.75 1

­0.25

0

0.25

­0.2 0 0.1 0.35

(c) y-velocity

0 0.25 0.5 0.75 1

­0.25

0

0.25

0.6 0.705 0.8

(d) pressure

Figure 5.10: Solution distribution for Euler, NACA-0012, Ma∞ = 0.5, α = 2◦

for inviscid flow around NACA 0012 with Ma∞ = 0.5 and α = 2◦ was shown in the
First International Higher-Order Workshop [1]. The solution is depicted in Figure 5.10

104

5.6. Euler Equations

and the farfield boundary is a circle of radius 500 chords centered at the leading edge
of the the airfoil and consequently, the errors arising from boundary placement can be
neglected. Theoretically, the exact drag value for this case should be zero, however
farfield effects keep it from being zero numerically. The second-order solution on a
mesh with characteristic size nine times smaller in area than the finest mesh for which
correction is applied is considered as the exact solution to the problem.

0 0.25 0.5 0.75 1

0.25

0

0.25

­1.05 ­0.6 ­0.15 0.3

(a) Continuous adjoint for drag functional

0 0.25 0.5 0.75 1

0.25

0

0.25

­1.05 ­0.6 ­0.15 0.3

(b) Discrete adjoint for drag functional

Figure 5.11: x-velocity adjoint solutions for Euler, NACA-0012, Ma∞ = 0.5, α = 2◦

The adjoint solution distributions based on drag functional are shown in Figure 5.11
for both continuous and discrete adjoints and not surprisingly, the continuous adjoint
has a smoother distribution.

Functional correction based on these adjoint solutions is applied and the results are
summarized in Figure 5.12. Again, using the discrete p-truncation error for correcting
the functional is not helpful. For the drag functional, the error of the corrected func-
tional based on discrete p-truncation error is more than the second order non-corrected
solution. For the lift functional using the discrete adjoint solution, the behavior is the
same; however, using the continuous adjoint solution, the magnitude of the error is less
but the convergence rate is only 0.86.

Similar to the other cases tested so far, comparing the functional based on the
second-order solution with the corrected functional based on the interpolated solution,
CsJ3

2 and CsJ4
2 , shows that the latter has smaller error and faster convergence rate.

For the drag functional, although the non-corrected solution is first-order, the corrected
solution based on the continuous p-truncation error converges much faster for both
continuous and discrete adjoint solutions. For lift as the output functional, third-order
reconstruction of the solution seems to provide us with significant cancellation when

105

5.6. Euler Equations

(#CV)
1/2

E
r
r
o
r

50 100 150
10

­6

10
­5

10
­4

10
­3

J
2
: 1.03

C
n
J

2

3
:1.39

C
s
J

2

3
: 2.62

C
s
J

2

4
:2.83

J
3
: 1.41

(a) Continuous adjoint for drag functional

(#CV)
1/2

E
r
r
o

r

40 60 80 100 120 140 160
10

­6

10
­5

10
­4

10
­3

J
2
: 1.03

C
n
J

2

3
:1.31

C
s
J

2

3
:2.64

C
s
J

2

4
:3.09

J
3
: 1.41

(b) Discrete adjoint for drag functional

(#CV)
1/2

E
r
r
o
r

50 100 150

10
­5

10
­4

10
­3

10
­2

J
2
: 1.97

C
n
J

2

3
:0.86

C
s
J

2

3
: 3.63

C
s
J

2

4
:3.61

J
3
: 2.21

(c) Continuous adjoint for lift functional

(#CV)
1/2

E
r
r
o

r

40 60 80 100 120 140 160

10
­5

10
­4

10
­3

10
­2

J
2
: 1.97

C
n
J

2

3
:1.13

C
s
J

2

3
:5.09

C
s
J

2

4
:4.22

J
3
: 2.21

(d) Discrete adjoint for lift functional

Figure 5.12: Convergence history for the functional values for Euler, NACA-0012,Ma =
0.5, α = 2◦

106

5.7. Navier-Stokes Equations

combined with either the continuous or discrete adjoints, but similar to the previous
test cases, more consistent results are obtained for CsJ4

2 when the continuous adjoint
solution is used. The magnitude of the error is much smaller than the third-order
solution for both drag and lift.

5.7 Navier-Stokes Equations

In this section, two different test cases are considered; supersonic flow with a manu-
factured solution and subsonic flow with the solution on a very fine mesh as the exact
solution.

5.7.1 Supersonic Flow

Since there are not any commonly-used Navier-Stokes problems with exact solutions
in the literature, we use a manufactured solution [62] to verify the performance of our
interpolating scheme for correcting the functional. We use a manufactured solution for
both primal [71] and adjoint problems. The general form of the manufactured primal
solution is

U (x, y) = a0 + ax sin (bxπx+ cxπ) + ay sin (byπy + cyπ) + axy sin (bxyπy + cxyπ) (5.40)

and the general form of the manufactured adjoint solution is

Z (x, y) = a0 [sin (π (1− x)) sin (π (1− y)) sin (bxπx+ cxπ)

sin (byπy + cyπ) sin (bxyπy + cxyπ) + (1− x) (1− y)] (5.41)

where the coefficients for four components are as illustrated in Table 5.2 where c is the
speed of sound and SI units are used. The inlet Mach number is set as Mai = 2.5 and
the Reynolds number is defined as

Re = ρiuiL

µi
= 800

where the characteristic length is L = 1.0, ρi = 1.0 and µi = 1.0.
The exact primal solution is shown in Figure 5.13. Since we are using a manufac-

tured solution for both primal and adjoint problems, the functional is directly obtained
by the adjoint definition, Eq. 5.9. The source term and boundary conditions of the

107

5.7. Navier-Stokes Equations

ρ u v P

a0 1.0 800/c 800/c 105/c2

ax 0.15 50/c −75/c −2× 104/c2

bx 2.0 0.66 1.66 0.5
cx 0.33 0.5 −0.5 0.5
ay −0.1 −30/c 40/c 5× 104/c2

by 1.0 1.5 3.0 1.0
cy −0.2 −0.125 0.0 −0.5
axy −0.05 −60/c 60/c −1× 104/c2

bxy 1.0 1.5 1.5 0.75
cxy 0.25 0.125 0.125 −0.25

Table 5.2: Coefficients for manufactured primal and adjoint solution used in Eq. 5.40
and 5.41.

manufactured primal and adjoint solutions are calculated easily and the corresponding
weight boundary operators are found by integration by parts, similar to the Dirichlet
and Neumann boundary operators obtained for the Poisson problem.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0.72 0.86 1 1.14

(a) Density

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.86 2 2.14 2.28

(b) x-velocity

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.9 2.08 2.26 2.44

(c) y-velocity

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0.26 0.46 0.66 0.86

(d) Pressure

Figure 5.13: Exact solution of Navier-Stokes problem with manufactured solution

The y−momentum adjoint solution distribution is depicted in Figure 5.14 for both
continuous and discrete adjoints. Functional correction based on these adjoint solutions
is applied and the results are shown in Figure 5.15. Similar to the Euler problem, by in-
terpolating the solution and computing the truncation error based on the interpolated
solution, CsJ3

2 , the magnitude of the error compared to the second-order functional
becomes smaller and it converges cubically using the continuous adjoint for correction.
Correcting the functional by the same adjoint solution, fourth-order convergence is ob-
tained for CsJ4

2 . However, using the discrete adjoint for both CsJ3
2 and CsJ4

2 gives a

108

5.7. Navier-Stokes Equations

corrected functional with smaller error but only quadratic convergence. Alternatively,
functional correction may be based on the third-order solution; investigation of conver-
gence behavior for CsJ4

3 shows improvement if correction is applied by the interpolated
solution and the continuous adjoint. The convergence rate is almost fourth-order and
the error is smaller than the error for the third-order solution. However, by using the
discrete adjoint for correction, the magnitude of the error is less than the uncorrected
functional and convergence is cubic. Similar to the conclusion for the previous test
case, using continuous adjoint for correction is able to improve the functional more and
provide us a faster convergence as well.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

­1.5 ­0.8 ­0.1 0.6 1.3 2

(a) Continuous adjoint

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

­1.5 ­0.8 ­0.1 0.6 1.3 2

(b) Discrete adjoint

Figure 5.14: Adjoint solutions for Navier-Stokes problem with manufactured solution,
y−momentum

As the manufactured solution is set for the adjoint problem, the magnitude of the
error of the adjoint solution can be calculated. Figure 5.16a depicts the error for both
discrete and continuous solutions. Not surprisingly, the magnitude of the error in calcu-
lating the continuous adjoint is less than the discrete adjoint and the difference becomes
smaller by decreasing the mesh size; both converge quadratically. Adjoint consistency is
verified for this test case, as it is a system of equations with both convective and diffusive
terms. Adjoint consistency for the discrete adjoint solution for this test case is depicted
in Figure 5.16b which shows that almost the same functional value is obtained either

109

5.7. Navier-Stokes Equations

(#CV)
1/2

E
r
r
o
r

50 100 150 200

10
­5

10
­4

10
­3

10
­2

J
2
: 2.06

C
n
J

2

3
:2.05

C
s
J

2

3
: 2.97

C
s
J

2

4
:3.56

J
3
: 2.49

C
s
J

3

4
:3.46

(a) Continuous adjoint

(#CV)
1/2

E
r
r
o
r

50 100 150 200

10
­5

10
­4

10
­3

10
­2

J
2
: 2.06

C
n
J

2

3
:2.06

C
s
J

2

3
:1.94

C
s
J

2

4
:2.05

J
3
: 2.49

C
s
J

3

4
:2.63

(b) Discrete adjoint

Figure 5.15: Convergence history for the functional values for Navier-Stokes problem
with manufactured solution

(#CV)
1/2

E
rr

o
r

50 100 150 200
10

­3

10
­2

10
­1

Continuous adjoint

Discrete adjoint

1.95

(a) Continuous and discrete adjoint solutions

(#CV)
1/2

E
rr

o
r

50 100 150 200

10
­3

10
­2

10
­1

J
 primal

J
adjoint

2.06

(b) Adjoint Consistency

Figure 5.16: Adjoint consistency for Navier-Stokes

110

5.7. Navier-Stokes Equations

based on the primal solution or the adjoint solution and the difference decreases with
mesh refinement, implying that the discretization is asymptotically adjoint consistent.

5.7.2 Subsonic Flow

In this section, drag is calculated and corrected for the subsonic viscous flow around
NACA 0012 withMa∞ = 0.5, angle of attack α = 1◦ and Reynolds number Re = 5000.
The farfield boundary is a circle of radius 100 chords centered at the leading edge of
the the airfoil. Since this problem does not have an exact solution, the drag calculated
using the second-order solution on a mesh with characteristic size thirteen times smaller
in area than the finest mesh is considered as the exact solution.

0 0.25 0.5 0.75 1 1.25

0.25

0

0.25

.85 0.9 0.95 1 1.05 1.1

(a) Density

0 0.25 0.5 0.75 1 1.25

0.25

0

0.25

.02 0.12 0.26 0.4 0.54

(b) x-velocity

0 0.25 0.5 0.75 1 1.25

0.25

0

0.25

­0.22 ­0.1 0.02 0.14 0.26

(c) y-velocity

0 0.25 0.5 0.75 1 1.25

0.25

0

0.25

.63 0.67 0.71 0.75 0.79 0.83

(d) pressure

Figure 5.17: Solution distribution for Navier-Stokes, NACA-0012, Ma∞ = 0.5, α = 1◦,
Re = 5000

Four components of the solution are depicted in Figure 5.17. The adjoint solution
distributions based on the drag functional are shown in Figure 5.18 for both continuous
and discrete adjoints.

111

5.7. Navier-Stokes Equations

.5 ­0.25 0 0.25 0.5 0.75 1 1.25

­0.25 0.15 0.55 0.95

(a) Continuous adjoint ­0.5 ­0.25 0 0.25 0.5 0.75 1 1.25
.5

5

0

­0.25 0.15 0.55 0.95

(b) Discrete adjoint

Figure 5.18: x-momentum component of the adjoint solutions for drag functional,
Navier-Stokes NACA-0012, Ma∞ = 0.5, α = 1◦, Re = 5000

(#CV)
1/2

E
r
r
o
r

60 80 100 120 140 160 180

10
­5

10
­4

10
­3

J
2
: 2.01

C
n
J

2

3
:2.16

C
s
J

2

3
: 2.93

C
s
J

2

4
:3.55

(a) Continuous adjoint

(#CV)
1/2

E
r
r
o

r

60 80 100 120 140 160 180

10
­5

10
­4

10
­3

J
2
: 2.01

C
n
J

2

3
:2.02

C
s
J

2

3
:2.91

C
s
J

2

4
:3.47

(b) Discrete adjoint

Figure 5.19: Convergence history for Navier-Stokes, NACA 0012 for drag functional,
Ma∞ = 0.5, α = 1◦, Re = 5000

112

5.8. Remarks on Computational Costs and Discussion on Results

Functional correction based on these adjoint solutions is applied and the results are
summarized in Figure 5.19. Correcting the drag based on the discrete p-truncation
error, CnJ3

2 , is not helpful compared to the original second order solution. Correcting
the functional by the continuous p-truncation error is able to improve the functional.
In particular, cubic and approximately quartic convergence is obtained by correcting
the functional using the continuous p-truncation error calculated by third and fourth
order flux integration, respectively. Similar to other test cases, using the continuous
adjoint solution provides more consistent results.

5.8 Remarks on Computational Costs and
Discussion on Results

The point that needs to be considered about computational cost is the time comparison
between continuous and discrete adjoint solutions. For the discrete adjoint, the com-
putational cost includes finding the transpose of the Jacobian and the derivative of the
functional with respect to the solution and then solving the system of equations once
for which the computational cost is of the order of one linear iteration of the solution.
On the other hand, for the continuous adjoint, the computational time is at the same
order of computational time required for the primal problem. Hence, the total time for
correcting the second-order functional using our method with the continuous solution
adjoint is twice as large as solving the primal problem, while the computational time
for correction using the discrete adjoint is the equal to the time for solving the primal
problem plus one non-linear iteration.

The significant improvement in functional correction is obtained just by interpo-
lating the primal solution and finding the truncation error based on this interpolated
solution and then multiplying the truncation error by the adjoint solution of the same
order as the primal solution. It is not necessary to interpolate the adjoint solution to
obtain significant improvement in convergence rates.

A summary of the results for different test cases described is shown in this section.
For each case, the error in calculating the functional based on the second-order solution
is considered as the reference value and the ratio of the error in the corrected functional
to the non-corrected second-order functional is compared for different test cases and
shown in Figure 5.20. The nomenclature is the same as described earlier and the
comparison is depicted for correcting based on the discrete and continuous p-truncation

113

5.8. Remarks on Computational Costs and Discussion on Results

error for both continuous and discrete adjoint solutions for all test cases described in
this chapter. Correcting based on the discrete p-truncation error is not helpful and in
many cases, the ratio of the error is even more than one. The same behavior exists for
both discrete and continuous adjoint solution.

Using the continuous p-truncation error, on the other hand, the error of the cor-
rected functional is smaller than the original non-corrected one and using the continu-
ous adjoint solution, it becomes smaller with mesh refinement. As mentioned earlier,
continuous adjoint solution provides more consistent results. Moreover, the ratio of
the corrected functional using the fourth-order flux integral with respect to the non-
corrected second-order functional is less than the corresponding ratio for the third-order
flux integration. Note that the same scale is used for the plots using the continuous
p-truncation error.

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200

2

4

6

8
Advection

Poisson

Euler, supersonic, drag

Euler, supersonic, lift

Euler, subsonic, drag

Euler, subsonic, lift

NS, supersonic

NS, subsonic, drag

(a) CnJ3
2 using the continuous adjoint solution

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200

2

4

6

8

Advection

Poisson

Euler, supersonic, drag

Euler, supersonic, lift

Euler, subsonic, drag

Euler, subsonic, lift

NS, supersonic

NS, subsonic, drag

(b) CnJ3
2 using the discrete adjoint solution

114

5.8. Remarks on Computational Costs and Discussion on Results

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200

10
­2

10
­1

10
0

10
1

Advection

Poisson

Euler, supersonic, drag

Euler, supersonic, lift

Euler, subsonic, drag

Euler, subsonic, lift

NS, supersonic

NS, subsonic, drag

(c) CsJ3
2 using the continuous adjoint solution

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200

10
­2

10
­1

10
0

10
1

Advection

Poisson

Euler, supersonic, drag

Euler, supersonic, lift

Euler, subsonic, drag

Euler, subsonic, lift

NS, supersonic

NS, subsonic, drag

(d) CsJ3
2 using the discrete adjoint solution

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200

10
­2

10
­1

10
0

10
1

Advection

Poisson

Euler, supersonic, drag

Euler, supersonic, lift

Euler, subsonic, drag

Euler, subsonic, lift

NS, supersonic

NS, subsonic, drag

(e) CsJ4
2 using the continuous adjoint solution

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200

10
­2

10
­1

10
0

10
1

Advection

Poisson

Euler, supersonic, drag

Euler, supersonic, lift

Euler, subsonic, drag

Euler, subsonic, lift

NS, supersonic

NS, subsonic, drag

(f) CsJ4
2 using the discrete adjoint solution

Figure 5.20: The error ratio for different correction terms for all test cases based on
second-order functional

115

Chapter 6

Mesh Adaptation

The equidistribution of error, or of weighted error, is the principle of all mesh adaptation
strategies [42]. The objective of equidistribution is defined as finding a mesh such that
the integral of the weight function defined on a domain takes a given constant value
over each element or equivalently, such that the weight function is equidistributed over
the chosen mesh. For mesh adaptation, we need to set a length scale for each vertex
and the length scale is calculated based on an adaptation indicator.

Consider residual-based adaptation in which the truncation error, τ is chosen as the
adaptation indicator. The average truncation error, τh is defined as:

τh =

N∑
i=1
Aiτi

N∑
i=1
Ai

(6.1)

where τi is the truncation error on each cell i, Ai is the area of the cell and the N is
the total number of cells. The target area for each cell is set as:

A∗i = τh
2τi

Ai (6.2)

which reduces area by a factor of 2, on average. The length scale for regenerating the
unstructured mesh using a Delaunay mesh algorithm is defined as:

l∗i = Cl
√
A∗i (6.3)

where Cl =
√

3. For isotropic meshes, the length scale assigned to each vertex can
be calculated simply by averaging the length scales associated with all cells sharing
that vertex. For generating the initial mesh and the adapted meshes, the GRUMMP
meshing library is used [63]. In Eq. 6.1 and 6.2, the truncation error may be replaced by
the truncation error weighted by the adjoint solution or any other adaptation indicator.

As mentioned in Chapter 1, different adaptation indicators may be exploited. Three

116

6.1. Residual-based Mesh Adaptation

different adaptation indicators, residual-based, adjoint-based and adaptation based on
higher-order error in the correction term are described in this chapter.

As test cases, we will start with a Poisson problem with exact solution, so the exact
error in calculating the functional of interest on the adapted mesh can be calculated.
The flow test cases being investigated here are the subsonic inviscid flow around a
NACA 0012 airfoil and a multi-element airfoil, and subsonic viscous flow and transonic
inviscid flow around a NACA 0012 airfoil. Similar to the real flow test cases described
in the previous chapter, we will use the solution on a very fine mesh for test cases with
unknown exact solution.

6.1 Residual-based Mesh Adaptation

A typical residual-based mesh adaptation uses an estimate of the truncation error as
the adaptation indicator. The higher-order flux integral based on the lower-order so-
lution or the discrete p-TE estimate is a common indicator for residual-based mesh
adaptation. However, it may be replaced by the continuous p-TE estimate we have
developed using the C1 interpolation of the solution. We will compare the effectiveness
of the original discrete p-TE estimate and the the continuous p-TE estimate as the
adaptation indicator in this chapter.

6.2 Adjoint-based Mesh Adaptation by Correction
Term

The truncation error weighted by the adjoint solution, or adjoint-based adaptation, is
based on a method developed by Pierce and Giles for estimating error in the functional
[73]. For a given smoothly interpolated primal, Uh, and adjoint, Zh, solutions, the
output functional is obtained as:

J = (g, U)D + (h,CU)∂D
= (L∗Zh, Uh)D + (L∗Zh, U − Uh)D + (g − L∗Zh, U − Uh)D + (g − L∗Zh, Uh)D +

(B∗Zh, CUh)∂D + (B∗Zh, C (U − Uh))∂D +

(h−B∗Zh, C (U − Uh))∂D + (h−B∗Zh, CUh)∂D (6.4)

117

6.2. Adjoint-based Mesh Adaptation by Correction Term

By using integration by parts, we can re-write the above equation as

J = (L∗Zh, Uh)D + (B∗Zh, CUh)∂D +

(Zh, L (U − Uh))D + (C∗Zh, B (U − Uh))∂D +

(Z − Zh, L (U − Uh))D + (C∗ (Z − Zh) , B (U − Uh))∂D (6.5)

The two terms in the first line are the influence of bulk and boundary integrals in the
discrete functional, the terms in the second line represent computable adjoint error
estimates and the last two terms in the third line are the higher order remaining errors.

Neglecting the last two higher-order terms, the estimated error in calculating the
functional is:

δJ = (Zh, L (U − Uh))D + (C∗Zh, B (U − Uh))∂D
= (Zh, f − LUh)D + (C∗Zh, e−BUh)∂D
= (Zh, τ)D + (C∗Zh, e−BUh)∂D (6.6)

Therefore, the dot product of the adjoint solution and the truncation error of the
primal problem is used as the adaptation indicator for adjoint-based adaptation. For
this purpose, there are multiple options: using the original p-TE estimate by higher
order flux integration based on the lower order solution or the continuous p-TE estimate
as described in previous chapter. Either of these estimates of the truncation error may
be weighted by the discrete or continuous adjoint solution.

As described in Chapter 5, the correction term of Eq. 6.6 is the summation over all
control volumes of the truncation error calculated by higher-order flux integral based on
lower-order solution multiplied by the adjoint solution of the same order as the primal
problem

δJ = (Zh, τ)D =
∑
CV

(˛
~F p+1
p · n̂ds

)
Z̄p (6.7)

in contrast to the finite-element method where the higher-order adjoint solution is
required to find the correction term.

118

6.3. Adjoint-based Mesh Adaptation by Error in the Correction Term

6.3 Adjoint-based Mesh Adaptation by Error in
the Correction Term

An adaptive strategy may be based on improving the accuracy of the computable error
estimates instead of improving the accuracy of the functional directly. The latter could
lead in some cases to refining or coarsening in regions where the adjoint solution is not
sufficiently resolved and as a consequence, an adaptation indicator which is based on
both the primal and adjoint residual errors may result in improvement in the quality
of the error estimates. Furthermore, it leads to improvement in the base value of the
functional even before correction.

In Eq. 6.6, the higher order error terms have been ignored, but if all terms are
considered, we will get:

δJ = (Zh, f − LUh)D + (C∗Zh, e−BUh)∂D +

(Z − Zh, L (U − Uh))D + (C∗ (Z − Zh) , e−B (Uh))∂D
= (Zh, τ)D + (C∗Zh, e−BUh)∂D +

(Z − Zh, L (U − Uh))D + (C∗ (Z − Zh) , e−B (Uh))∂D (6.8)

The first term in the last line is the truncation error of the primal problem weighted
by the discretization error of the adjoint solution which is used here as the adaptation
indicator. Calculating the discretization error of the adjoint problem is not easy for
general problems where the exact adjoint solution is not known; however, this term can
be recast as a function of the Jacobian matrix [94]:

(Z − Zh, L (U − Uh))D =
L (Z − Zh) ,

(
∂R

∂Uh

)−1

L (U − Uh)

D

(6.9)

where the first term is the truncation error of the adjoint solution. This is evaluated by
higher-order flux integration based on the lower-order solution and is already available.
Evaluating the second term is as easy as solving a linear system of:

X =
(
∂R

∂Uh

)−1

L (U − Uh)⇐⇒
(
∂R

∂Uh

)
X = L (U − Uh) (6.10)

Accordingly, this term can be used as the adaptation indicator capable of reducing the

119

6.4. Poisson Equation

error in corrected functional.
In the following sections, the effectiveness of these adaptation indicators are studied

for several test cases.

6.4 Poisson Equation

The primal problem is defined on a (1× 1) square domain with zero boundary conditions
such that the solution has a peak value and is almost zero elsewhere. This has been
chosen so that the adaptation effect is noticeable.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 1 2 3 4 5 6

(a) Solution contour (b) 3D view

Figure 6.1: Exact solution of the Poisson problem

The exact primal solution is:

uexact = 100xy (1− x) (1− y) e−81(x−0.4)2−25(y−0.6)2
(6.11)

The exact solution is shown as a 3D surface in Figure 6.1 to emphasis the peak point.
Setting the adjoint source term as g = π5

2 x (1− x) y (1− y) with zero boundary condi-

120

6.4. Poisson Equation

tion, the exact output functional is obtained as:

J = (u, g)D

=
ˆ 1

0

ˆ 1

0
uexact ×

π5

2 x (1− x) y (1− y) dxdy

= 2.936927271

We have shown in Chapter 5 that using the continuous p-truncation error weighted
by the continuous adjoint solution as the correction term provides the best correc-
tion in the output functional. Therefore, we are comparing the results with the best
corrected functional on each mesh, using the continuous adjoint solution and the con-
tinuous p-truncation error. As the exact functional is known, calculating the error in
the functional for each case is easy.

Before showing the results, the nomenclature we are using should be described; UCJ
is the corrected functional on the uniformly refined mesh where C’s superscript repre-
sents whether the correction is based on truncation error using the discrete solution, Cn,
or is based on the truncation error using the interpolated solution, Cs. C’s subscript
represents whether continuous adjoint solution, Cc, or discrete adjoint solution, Cd, is
used for obtaining the correction term. Similar to the Chapter 5, J ’s subscript shows
the primal solution order of accuracy and the superscript shows the order of reconstruc-
tion and flux integration used as an estimation of the truncation error. The solid lines
shown by A () are the adapted meshes and the adaptation indicator is defined inside
the parenthesis. (τn) is residual-based mesh adaptation using the discrete p-truncation
error, (τ s) is residual-based using the continuous p-truncation error based on interpo-
lated solution, (τ s, D) is the adjoint-based adaptation using continuous p-truncation
error weighted by the discrete adjoint solution, (τ s, C) is the adjoint-based adaptation
using the continuous p-truncation error weighted by continuous adjoint solution, and(
τ sp , εa

)
is the primal truncation error weighted by adjoint discretization error as the

adaptation indicator representing adaptation based on higher-order error in correction
term.

The convergence results for the functional on the adapted meshes are shown in
Figure 6.2. The dashed red line is the corrected functional based on the continuous
adjoint and the continuous p-truncation error on uniformly refined meshes and the solid
lines are the adapted meshes. The gradient symbol denotes using the truncation error
as the adaptation indicator, the square symbol represents adjoint-based adaptation

121

6.4. Poisson Equation

(#CV)
1/2

E
r
r
o
r

50 100 150 200 250

10
­5

10
­4

10
­3

Figure 6.2: Convergence history for Poisson on the adapted meshes

indicator using the correction term based on the continuous p-truncation error, Eq. 6.7
discussed in section 6.2, and the triangle symbol denotes the adjoint-based adaptation
indicator using higher-order terms, Eq. 6.9, discussed in section 6.3. It should be
noted that the uniformly refined meshes are set such that the number of cells are
approximately comparable to number of cells of the adapted meshes.

The magenta line is the adapted mesh based on discrete p-truncation error and
as shown, the magnitude of the error is more than the corresponding error on the
uniformly refined meshes and the convergence rate is slower. Adaptation based on con-
tinuous p-truncation error, however, gives results comparable to the uniformly refined
meshes. Using the correction term as the adaptation indicator based on continuous p-
truncation error and adjoint solution provides functionals with smaller error and faster
convergence. The adjoint solution type does not matter: both the discrete adjoint (the
blue line) and the continuous adjoint (the red line) have approximately the same be-
havior. Furthermore, if the higher-order terms representing the error in calculating the
correction term are used for mesh adaptation (the green line) the convergence rate im-
proves significantly and the magnitude of the error is much smaller compared to other
adapted meshes. It should be noted that for this case, as the exact primal solution is
known, the discretization error of the primal solution is easily computable. Accordingly,
instead of using Eq. 6.9, an alternative dual form of this equation is used which is a
function of the discretization error of the primal problem and the truncation error of

122

6.4. Poisson Equation

(a) Uniform, 18016 cells (b) (τn), 18225 cells (c) (τs), 18059 cells

(d) (τs, D), 18137 cells (e) (τs, C), 18624 cells (f) (τs
a , εp), 17682 cells

Figure 6.3: Adapted meshes by different adaptation indicators for Poisson

the adjoint problem:

(Z − Zh, L (U − Uh))D = (L (Z − Zh) , U − Uh)D (6.12)

which is obtained by integration by parts.
The second finest mesh for each refinement sequence is shown in Figure 6.3. As

depicted in Figure 6.3a, there is unnecessary refinement on the uniformly refined mesh
at regions not having remarkable contribution in the functional. However, the mesh
resolution near the peak value in the primal solution is significantly higher than other
parts for the adapted meshes. Using the discrete p-truncation error as the adaptation
indicator, Figure 6.3b, results in irregular refinement far from the peak point; however,
using the continuous p-truncation error provides a more reasonable mesh. The adapted
mesh based on the continuous p-truncation error weighted by the continuous adjoint

123

6.5. Subsonic Inviscid Flow on NACA 0012

solution has high resolution at the peak point.

(#CV)
1/2

E
r
r
o
r

50 100 150 200 250

10
­4

10
­3

Figure 6.4: Discretization error of the primal problem on the adapted meshes for Poisson

Another point that needs to be considered is that the main goal of adaptation in this
case is obtaining a more accurate functional value and the discretization error of the
primal problem, for instance, does not behave in the same way as shown in Figure 6.2.
The convergence of the discretization error of the primal problem with mesh refinement
is shown in Figure 6.4. Although the discretization error for all adapted meshes are
smaller than the second order solution on the uniformly refined mesh, the dash-dotted
line, the convergence behaviors are not exactly the same as Figure 6.2. The discretiza-
tion error on the adapted mesh based on the discretization error of the primal problem
and the truncation error of the adjoint problem, the green line, which has the smallest
error when output functional is calculated, is not the best one when discretization er-
ror is considered. This is not surprising since the goal of adaptation is improving the
functional value and it does not necessarily guarantee that the discretization error or
the error in calculating any other output functional is less on the same adapted mesh.

6.5 Subsonic Inviscid Flow on NACA 0012

Output functionals of drag and lift are considered for the subsonic inviscid flow around
a NACA 0012 with Ma∞ = 0.5 and angle of attack α = 2◦, the same test case as

124

6.5. Subsonic Inviscid Flow on NACA 0012

discussed in Chapter 5. The exact drag and lift is considered as the second-order
solution on a mesh with characteristic size thirteen times smaller in area than the finest
uniformly refined mesh. The farfield boundary is a circle of radius 500 chords centered
at the leading edge of the the airfoil and consequently, the errors arising from boundary
placement is small. Theoretically, the exact drag value for this case should be zero;
however, farfield effects keep the computed comparison value from being zero.

(#CV)
1/2

E
r
r
o
r

50 100 150
10

­7

10
­6

10
­5

10
­4

(a) Drag functional

(#CV)
1/2

E
r
r
o
r

50 100 150

10
­5

10
­4

10
­3

(b) Lift functional

Figure 6.5: Convergence history for subsonic inviscid flow around NACA 0012 on the
adapted meshes, Ma∞ = 0.5, α = 2◦

The convergence results on the adapted meshes are shown in Figure 6.5 for both
drag and lift functionals. The brown dash-dotted line is the non-corrected second-
order functional on the uniformly refined mesh and the dashed red line is the corrected
functional on the same mesh using the continuous p-truncation error estimate and the
continuous adjoint solution as the best corrected functional. The solid lines are as
discussed in Section 6.4 except that the adaptation indicator for the green line is the
higher-order terms in Eq. 6.9. Using continuous p-truncation error estimate weighted by
the continuous adjoint solution as the adaptation indicator, the solid red line, provides
the best results for the lift functional and the second best for the drag functional. The
fastest convergence rate for the drag functional is obtained using the dot product of the
primal truncation error and the adjoint discretization error as the adaptation indicator;
however, for the lift functional, this indicator is not as successful as for drag. Adjoint-

125

6.5. Subsonic Inviscid Flow on NACA 0012

based mesh adaptation predicts more accurate results compared to residual-based mesh
adaptation, as expected.

(a) Uniform, 27538 cells (b) (τs), 28925 cells

(c) (τs, C), 26808 cells (d)
(
τs

p , εa

)
, 20734 cells

Figure 6.6: Adapted meshes by different adaptation indicators for subsonic inviscid flow
around NACA 0012 for the drag functional, Ma∞ = 0.5, α = 2◦

(a) Uniform, 27538 cells (b) (τs), 28701 cells

(c) (τs, C), 22167 cells (d)
(
τs

p , εa

)
, 13508 cells

Figure 6.7: Adapted meshes by different adaptation indicators for subsonic inviscid flow
around NACA 0012 for the lift functional, Ma∞ = 0.5, α = 2◦

The finest mesh for different adaptation indicators is shown in Figure 6.6 and 6.7
for drag and lift functionals, respectively. As both lift and drag are mainly affected by
the mesh resolution at leading and trailing edges, the close-up view at these two regions

126

6.6. Subsonic Inviscid Flow on Multi-Element Airfoil

are shown here. The mesh is over-refined at a large region near the trailing edge only
on the uniformly refined mesh; however, both trailing and leading edge are refined for
adjoint-based and higher-order error-based mesh adaptation and the mesh resolution is
finer in small regions near trailing edge. The residual-based mesh adaptation fails to
have enough resolution at the trailing edge.

6.6 Subsonic Inviscid Flow on Multi-Element
Airfoil

We now consider a more complicated geometry, a multi-element airfoil, with Ma∞ = 0.2
and angle of attack α = 3◦. The second-order solution on a mesh with characteristic
cell size eight times smaller in area than the finest mesh for which correction is applied
is considered as the exact solution to the problem. The initial mesh consisting of 1877
cells is shown in Figure 6.8a. The pressure distribution for the primal problem is also
depicted in Figure 6.8b.

(a) Close-up of multi-element airfoil mesh consisting of 1877
cells

1.67 1.71 1.74 1.77 1.78 1.81 1.83

(b) Pressure distribution

Figure 6.8: Initial mesh and the primal solution distribution for subsonic inviscid flow
on the multi-element airfoil, Ma = 0.2, α = 3◦

As this multi-element airfoil is a high-lift configuration design, the lift is consid-

127

6.6. Subsonic Inviscid Flow on Multi-Element Airfoil

ered as the output functional of interest. The adjoint energy component of the both
continuous and discrete adjoint solutions for the lift functional are depicted in Figure
6.9. Similar to the comparison discussed in Chapter 5, the discrete and continuous
adjoint solutions are qualitatively similar. The time comparison for these adjoint solu-
tion is shown in Figure 6.10 where the time for the second-order primal problem, the
second-order continuous adjoint and the discrete adjoint problems used for correction
and the CPU time required to obtain the C1 interpolation of the solution for finding
the continuous p-TE estimate are compared. The four meshes shown in this figure are
the uniformly refined meshes. Time comparison shows that the post processing time
required for C1 interpolation of the solution is small compared to the solution time,
and scales linearly with problem size. Sensitivity of the functional with respect to the
primal solution is only a function of pressure in the case of inviscid flow. Therefore, the
time required for solving the system of equations to obtain the discrete adjoint solution
is significantly smaller than the time required to solve the continuous adjoint PDE for
the inviscid case, because there is no physical dissipation to enhance the stability of the
solution. For this inviscid case, the continuous adjoint solver oscillates before getting
close to the solution, after which a larger time step can be used to obtain the converged
solution.

­0.95 ­0.6 ­0.25 0.1 0.45 0.8

(a) Continuous adjoint for lift functional

­0.95 ­0.6 ­0.25 0.1 0.45 0.8

(b) Discrete adjoint for lift functional

Figure 6.9: Normalized energy component of the adjoint solution for subsonic inviscid
flow on the multi-element airfoil, Ma = 0.2, α = 3◦

The convergence results for the lift functional are depicted in Figure 6.11a. Both
the non-corrected and the corrected functionals using the continuous p-truncation error
estimate and continuous adjoint solution on the uniformly refined mesh are compared
to the adapted meshes. Not surprisingly, on the adjoint-based adapted meshes the
functional is more accurate and converges faster to the exact value compared to the
residual-based adapted meshes. Furthermore, the adapted meshes generated using the
continuous p-truncation error are more accurate than the discrete p-truncation error.

128

6.6. Subsonic Inviscid Flow on Multi-Element Airfoil

C
P

U
 t

im
e
 (

S
e
c
)

0

10

20

30

40

50

60

Primal problem

C
1
 interpolation

Continuous adjoint

Discrete adjoint

5344 cells1877 cells 2988 cells 9398 cells

Figure 6.10: CPU time comparison for primal and adjoint solutions and C1 interpolation
of the solution for subsonic inviscid flow on the multi-element airfoil, Ma = 0.2, α = 3◦

Using the higher-order term as the adaptation indicator provides the most accurate
results with the fastest convergence rate.

The results for adjoint-based adapted meshes shown in Figure 6.11a are the corrected
solutions and these corrected functionals are compared to the original non-corrected
ones in Figure 6.11b for both the discrete and continuous adjoint solutions. Two points
need to be considered here. First, since the same scale is used for both figures, com-
paring the second-order non-corrected functional on the uniformly refined mesh with
non-corrected adjoint-based adapted mesh, the dash-dotted lines in Figure 6.11b, shows
that the adjoint-based adapted mesh provides a considerably more accurate functional
compared to the uniformly refined mesh even without correction. Second, correcting
the functional calculated on the adapted mesh provides us even a more accurate value
which converges to the exact value faster.

The finest mesh for each series is shown in Figure 6.12. Although on the uniformly
refined mesh, all cells around the solid wall get refined, the adapted mesh focuses
mainly on the leading and trailing edges of each element, the regions where the lift is
affected significantly. This is more noticeable when adjoint-based mesh adaptation or

129

6.7. Subsonic Viscous Flow on NACA 0012

(#CV)
1/2

E
r
r
o
r

50 60 70 80 90 100
10

­6

10
­5

10
­4

10
­3

(a) Adaptation indicators

(#CV)
1/2

E
r
r
o
r

50 60 70 80 90 100
10

­6

10
­5

10
­4

10
­3

(b) Correction effect

Figure 6.11: Convergence history for subsonic inviscid flow around multi-element airfoil
on the adapted meshes for the lift functional, Ma∞ = 0.2, α = 3◦

adaptation based on higher-order error in the correction term is considered. That is the
reason why a more accurate functional is obtained on the adapted meshes using these
two adaptation indicators in spite of the fact that the total number of cells is less than
the uniformly refined mesh.

6.7 Subsonic Viscous Flow on NACA 0012

Next, we consider viscous subsonic flow around a NACA 0012 airfoil with a free-stream
Mach number of Ma∞ = 0.5, a Reynold number of Re = 5000, and an angle of attack
α = 1◦. The second-order solution on a mesh with characteristic cell size thirteen times
smaller in area than the finest mesh for which correction is applied is considered as the
exact solution to the problem. The farfield boundary is a circle of radius 100 chords
centered at the leading edge of the the airfoil and consequently, the errors arising from
boundary placement are small. As viscous flow is studied, the total drag is considered
as the output functional. Discrete and continuous adjoint solution distributions for this
case have been discussed in Chapter 5 and in this section, we only compare the time
required to obtain the second-order primal and adjoint solutions to the time required
to obtain the C1 interpolation of the solution. Figure 6.13 shows that the time required

130

6.7. Subsonic Viscous Flow on NACA 0012

(a) Uniform, 9398 cells (b) (τs), 9371 cells

(c) (τs, C), 4687 cells (d)
(
τs

p , εa

)
, 3861 cells

Figure 6.12: Adapted meshes by different adaptation indicators for subsonic inviscid
flow around multi-element airfoil for the lift functional, Ma∞ = 0.2, α = 3◦

for obtaining the C1 interpolation of the solution is much smaller the time for solving
the primal problem. However, the time for solving the continuous and discrete adjoint
solutions are comparable. As a consequence of the viscous terms, convergence of the
continuous adjoint PDE is faster compared to the inviscid case and it does not oscillate
before getting close to the solution. Furthermore, the sensitivity of the functional with
respect to the solution is more complicated in the case of viscous flow and consequently
solving the linear system to obtain the discrete adjoint solution needs more time.

The convergence results for the drag functional are depicted in Figure 6.14a. Similar
to the other test cases being studied so far, all adapted meshes outperform the non-
corrected functional on the uniformly refined mesh, the brown dash-dotted line, in
terms of the error magnitude and convergence rate. Moreover, all of them except for
the residual-based adaptation using the discrete p-truncation error, the magenta line,
outperform the corrected functional on the uniformly refined mesh, the dashed red line.
The results for the adjoint-based adapted meshes using the continuous adjoint solution
are more accurate than residual-based ones and the adjoint-based using the discrete
adjoint solution. The convergence behavior is quite similar to the adapted mesh based
on the higher-order terms in the correction term, the green line.

The corrected functionals are compared to the non-corrected one and the result is
shown in Figure 6.14b; the behavior is the same as discussed in Section 6.6.

131

6.7. Subsonic Viscous Flow on NACA 0012

C
P

U
 t

im
e
 (

S
e
c
)

0

50

100

150 Primal problem

C
1
 interpolation

Continuous adjoint

Discrete adjoint

12218 cells2617 cells 4822 cells 27538 cells

Figure 6.13: CPU time comparison for primal and adjoint solutions and C1 interpolation
of the solution for subsonic viscous flow around NACA 0012, Ma∞ = 0.5, α = 1◦,
Re = 5000

(#CV)
1/2

E
r
r
o
r

50 100 150
10

­6

10
­5

10
­4

10
­3

(a) Adaptation indicators

(#CV)
1/2

E
r
r
o
r

50 100 150
10

­6

10
­5

10
­4

10
­3

(b) Correction effect

Figure 6.14: Convergence history for subsonic viscous flow around NACA 0012 on the
adapted meshes for the drag functional, Ma∞ = 0.5, α = 1◦, Re = 5000

132

6.8. Transonic Inviscid Flow on NACA 0012

The finest mesh for each case is shown in Figure 6.15. Although the uniformly
refined mesh focuses only on the leading and trailing edges, the adapted mesh has
enough resolution along the boundary layer. The mesh resolution along the boundary
layer is higher for the adjoint-based adapted mesh and the mesh adapted based on the
higher-order error in the correction term. The wake region is another feature of the
viscous flow and the adjoint-based adapted mesh is more successful in resolving this
part of the flow.

(a) Uniform, 27538 cells (b) (τs), 23015 cells

(c) (τs, C), 26686 cells (d)
(
τs

p , εa

)
, 27426 cells

Figure 6.15: Adapted meshes by different adaptation indicators for subsonic viscous
flow around NACA 0012 for the drag functional, Ma∞ = 0.5, α = 1◦, Re = 5000

6.8 Transonic Inviscid Flow on NACA 0012

Finally, inviscid transonic flow around the NACA 0012 airfoil with a free-stream Mach
number of Ma∞ = 0.8 and an angle of attack α = 1.25◦ is considered. The second-
order solution on a mesh with characteristic cell size eight times smaller in area than
the finest mesh for which correction is applied is considered as the exact solution to the
problem. The farfield boundary is a circle of radius 100 chords centered at the leading
edge of the airfoil. The initial mesh consisting of 1998 cells is shown in Figure 6.16a.
The pressure distribution for the primal problem is also depicted in Figure 6.16b.

The discrete adjoint solution distribution for the lift functional is shown in Figure
6.17. For this case, due to some robustness issues for the continuous adjoint solution,
we just show the results for the discrete adjoint.

133

6.8. Transonic Inviscid Flow on NACA 0012

0 0.25 0.5 0.75 1

0

5

.5

(a) Close-up of NACA 0012 airfoil mesh consisting
of 1998 cells

0 0.25 0.5 0.75 1

0

5

1.6 1.94 2.24 2.5

(b) Normalized energy distribution

Figure 6.16: Initial mesh and the primal solution distribution for transonic inviscid flow
on NACA 0012 airfoil, Ma = 0.8, α = 1.25◦

0 0.25 0.5 0.75 1

0

5

­5 ­3 ­1 1 3 5

Figure 6.17: x-momentum adjoint solution for the lift functional, transonic inviscid flow
on NACA 0012 airfoil, Ma = 0.8, α = 1.25◦

The convergence results for the adapted meshes are shown in Figure 6.18. The calcu-
lated functional on the adjoint-based adapted meshes and the residual-based adapted
meshes using the continuous p-truncation error are more accurate compared to non-
corrected and corrected functionals on the uniformly refined mesh. For this test case, the
discrete adjoint-based mesh adaptation using the discrete and continuous p-truncation
error are compared and the continuous p-truncation error estimate is again more accu-
rate.

The finest mesh for each case is shown in Figure 6.19. The strong shock on the upper
surface of the airfoil is resolved using all three adaptation indicators; however, using
the continuous p-truncation error, either for residual-based or adjoint based adapted
meshes, a sharper shock region is detected. The residual-based indicator using the

134

6.8. Transonic Inviscid Flow on NACA 0012

(#CV)
1/2

E
r
r
o
r

50 100 150 200
10

­4

10
­3

10
­2

Figure 6.18: Convergence history for transonic inviscid flow around NACA 0012 on the
adapted meshes for lift functional, Ma∞ = 0.8, α = 1.25◦

(a) Uniform, 27048 cells (b) (τs), 36985 cells

(c) (τn, D), 24745 cells (d) (τs, D), 22427 cells

Figure 6.19: Adapted meshes using different adaptation indicators for transonic inviscid
flow around the NACA 0012 for the lift functional, Ma∞ = 0.8, α = 1.25◦

135

6.9. Discussion

continuous p-truncation error focuses mainly on the upper shock but the adjoint-based
indicator using the continuous p-truncation error refines the weak shock on the lower
surface as well.

6.9 Discussion

A summary of the results for all test cases is as follow:

• For all test cases studied in this chapter, the functional on the adapted mesh is
calculated more accurately compared to the non-corrected one calculated on the
uniformly refined mesh.

• The results for residual-based adaptation using the continuous p-truncation er-
ror, adjoint based adaptation, and adaptation based on the higher-order error in
the correction term are more accurate compared to the corrected functional on
the uniformly refined mesh almost for all cases except for the lift functional for
subsonic inviscid flow on the NACA 0012.

• Residual-based adaptation using the discrete p-truncation error does not neces-
sarily provide a significantly more accurate functional than the corrected one on
the uniformly refined mesh.

• Residual-based mesh adaptation using continuous p-truncation error is much bet-
ter than using the discrete p-truncation error for all test cases.

• Adjoint-based mesh adaptation outperforms the residual-based mesh adaptation
for all test cases.

• Adjoint-based mesh adaptation using the continuous adjoint solution is always
better than the discrete adjoint, or at least, they are comparable.

• The results using the higher-order error in the correction term as the adaptation
indicator are more accurate or comparable to the adjoint-based mesh adaptation
using the continuous adjoint solution for almost all test cases except for the lift
functional for subsonic inviscid flow on the NACA 0012.

In summary, mesh adaptation based on the continuous p-truncation error weighted by
the continuous adjoint solution, for cases where the adjoint solution is easy to calculate,

136

6.9. Discussion

provides the best results. When this is feasible, using the higher order error in the
correction term is a very good choice as well. Otherwise, if the continuous adjoint
solution is not available, or if it is expensive to compute, using the continuous p-
truncation error weighted by the discrete adjoint solution is also helpful. The same
comparison as described at the end of Chapter 6 is shown here for the adapted meshes.
The error in calculating the second-order non-corrected functional on the uniformly
refined mesh is considered as the reference value and the ratio of the error of the
functional on the adapted meshes to this reference value is shown here. In Chapter 5,
the same meshes were used, but in the case of the adapted meshes, the best line that
fits the four points is considered and the reference value corresponding to the mesh with
the same number of control volumes, or the non-corrected functional error, is found on
that line. The results are summarized in Figure 6.20. Since the same scale is used for
all five plots, comparing the residual based adaptation to the adjoint-based adaptation
shows that the magnitude of the error for the adapted meshes using the truncation error
weighted by the adjoint solution is smaller. Moreover, adaptation based on continuous
adjoint solution provides more consistent results for all test cases. Adaptation based on
the higher-order error in the correction terms provides the functional with the smallest
error and the results are quite consistent for all test cases except for the lift functional
for the subsonic inviscid flow around NACA 0012.

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200 250

10
­2

10
­1

10
0

Poisson

Subsonic, inviscid, drag

Subsonic, inviscid, lift

Multi­element, lift

Subsonic, viscous, drag

Transonic, inviscid, lift

(a) (τn)

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200 250

10
­2

10
­1

10
0

Poisson

Subsonic, inviscid, drag

Subsonic, inviscid, lift

Multi­element, lift

Subsonic, viscous, drag

Transonic, inviscid, lift

(b) (τs)

137

6.9. Discussion

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200 250

10
­2

10
­1

10
0

Poisson

Subsonic, inviscid, drag

Subsonic, inviscid, lift

Multi­element, lift

Subsonic, viscous, drag

(c) (τs, C)
(#CV)

1/2

E
rr

o
r

ra
ti

o

50 100 150 200 250

10
­2

10
­1

10
0

Poisson

Subsonic, inviscid, drag

Subsonic, inviscid, lift

Multi­element, lift

Subsonic, viscous, drag

Transonic, inviscid, lift

(d) (τs, D)

(#CV)
1/2

E
rr

o
r

ra
ti

o

50 100 150 200 250

10
­2

10
­1

10
0

Poisson

Subsonic, inviscid, drag

Subsonic, inviscid, lift

Multi­element, lift

Subsonic, viscous, drag

(e)
(
τs

p , εa

)
Figure 6.20: The error ratio for different adaptation indicators for all test cases based
on second-order functional

138

Chapter 7

Concluding Remarks

7.1 Summary

As the capabilities of CFD software grow, the size and complexity of industrial CFD
problems are increasing as well. These new large scale problems are challenging. As
part of analyzing these flows, important flow features should be identified and resolved
and the accuracy of the solution should be characterized. CFD software users would
benefit from automatic numerical error control through defect correction, a posteriori
estimation of the error in outputs of engineering interest, and goal-based adaptation.
Taken together, these improvements would pave the way for truly mature CFD, in
which users would need to specify only geometry, flow conditions, output quantities of
interest, and an error tolerance.

Accurate estimation of the truncation error plays an important role in error quan-
tification and consequently, developing a reliable truncation error estimator for un-
structured meshes, which are used to handle the complex problem geometry, is needed.
Truncation error can be used to improve the flow solution through defect correction,
output functional error estimation and correction, and goal-based adaptation.

There are multiple options for estimating the truncation error. If the exact solution
is known, we can calculate the flux integrals based on the exact solution to get the exact
truncation error. However, this is not possible for general problems with unknown exact
solution. Instead, a higher-order flux integral can be calculated based on the lower-order
solution. This method, called the discrete p-TE method, includes the leading term in
the truncation error and consequently can be considered as an estimate of the truncation
error.

We have demonstrated that — in contrast with the structured mesh case for which
the truncation error has the same asymptotic order of accuracy as the discretization
error — the truncation error for unstructured finite volume schemes is asymptotically
larger than the discretization error, which in turn is typically of the same order as
the solution approximation error in the scheme. Furthermore, the truncation error for

139

7.1. Summary

unstructured meshes is rough as a result of the irregular topology of the mesh.
The differences in asymptotic behavior of the truncation and discretization error

for unstructured meshes and the features of the truncation error can be predicted by
the eigendecomposition of the discrete problem. Our results based on the eigenanalysis
of the truncation error have shown that the rough error modes dominate the unstruc-
tured mesh truncation error. The dominance of rough modes makes truncation error
estimation more challenging when arbitrary unstructured meshes are used. If a perfect
symmetric mesh is used, the truncation error is much smoother and easier to estimate
accurately even in the high frequency modes. Nevertheless, it is not possible to gen-
erate perfectly symmetric meshes for real application cases. Therefore, the dominance
of rough error modes in the unstructured mesh truncation error suggests the need to
develop a smooth truncation error estimate that can be computed using quantities al-
ready available in a typical finite volume flow solver. As mentioned, the discontinuous
jumps of the coefficients of the leading terms in the Taylor series expansion of the er-
ror from one control volume to another is responsible for the rough distribution of the
truncation error. Since we are using the p−truncation error approach for estimating
the truncation error, which computes the higher-order flux integration based on the
lower-order solution, two different values are obtained from reconstruction of the solu-
tion at the quadrature points at the common face of the two neighboring cells where
the flux integral is calculated. By using a continuous interpolation of the solution, we
can obtain a single value for the flux vector from two neighboring cells. The smooth
solution and consequently the smooth flux vector gives us an estimation of the trunca-
tion error based on the continuous solution which was shown to provide us with p-sharp
convergence.

Two different approaches were used to obtain a continuous interpolation of the
solution: using CGM, a 3D CAD query engine for meshing, and C1 interpolation of the
solution. Using CGM, the solution at each point is considered as the third component
and consequently, a smooth 3D surface with the coordinates of the 2D mesh and the
solution is obtained in which there is a single solution at the quadrature points at
the common face of the two adjacent cells. Although this method gives us a unique
solution, this is not sufficient, as the gradient is not calculated accurately and we need
a unique gradient at the quadrature points as well. Consequently, we have presented a
C1 interpolation scheme to obtain continuous solution and gradients at the quadrature
points.

The performance of the original discrete p-TE method is compared to the perfor-

140

7.2. Conclusions

mance of the continuous p-truncation error for defect correction, output functional
correction and mesh adaptation for a variety of test cases, including model problems
with a manufactured solution, Euler and Navier-Stoke equation with a manufactured
solution, and realistic flow test cases.

7.2 Conclusions

The idea of defect correction is that if the exact truncation error is added to the source
term of the problem and the new discrete equation with the modified source term is
solved, the exact solution is obtained. Alternatively, if the p-TE estimate obtained
based on higher-order flux integral, which is an estimation of the truncation error, is
added to the source term of the problem, the defect corrected solution should ideally
be p-sharp, implying that it converges as fast as the higher-order reconstructed solu-
tion used in calculating the flux integral. This is the result for structured meshes. For
unstructured meshes, our results show that if the original p-TE method is used for
defect correction, either for the Poisson equation with diffusive fluxes or the advection
equation with convective fluxes, p-sharp convergence is not obtained. Moreover, the
magnitude of the discretization error of the corrected solution is more than the uncor-
rected one. Consequently, the continuous p-TE estimate of the truncation error is used
for defect correction. Using CGM to interpolate the solution is not able to improve the
performance of defect correction significantly either. For both diffusive and convective
fluxes, using C1 interpolation to compute the continuous p-truncation error estimate
provides a corrected solution with smaller discretization error, but the convergence rate
is still not as good as expected.

As a consequence of the poor performance of CGM for defect correction, we contin-
ued with using C1 interpolation for functional correction and goal-based mesh adapta-
tion. Although C1 interpolation of the solution is not able to improve the performance
of defect correction significantly, particularly in terms of convergence rate, this does
not necessarily mean that it is not able to improve an output functional or effectively
adapt the mesh.

The truncation error, when multiplied by the adjoint solution, is used to compute
a correction term for an output functional of interest. Both discrete and continuous
adjoint solutions can be used. The discrete adjoint is obtained by solving a linear
system where the left-hand side is the transpose of the Jacobian matrix and the right-

141

7.2. Conclusions

hand side is the sensitivity of the output functional with respect to the primal solution.
The continuous adjoint solution, on the other hand, is an independent PDE which needs
to be discretized and solved separately. The performance of output functional correction
using both discrete and continuous C1 interpolated truncation error weighted by the
discrete and continuous adjoint solutions were compared. Scalar equations (the Poisson
and advection equations) with a manufactured solution and systems of equations (the
Euler and Navier-Stokes equations) using both manufactured solutions and real flow
test cases are considered. Our results showed that using the discrete truncation error
weighted by either continuous or discrete adjoint solution is not helpful in improving
the output functional in terms of convergence rate. On the other hand, using the C1

interpolated solution improves the functional significantly. The second-order solution is
used to find a continuous flux integral based on the third or fourth-order reconstruction,
giving third or fourth-order convergence for the functional while only solving the primal
and adjoint problems at second-order. Using fourth-order flux integration based on the
third-order solution provides us with similar improvement in convergence rate and for
both cases, the magnitude of the functional error is also less than the magnitude of the
uncorrected functional error. More accurate corrected functionals are obtained when
correction is based on the continuous adjoint since this gives a more accurate adjoint
solution compared to solving a linear system which gives the discrete adjoint solution.
As a result, more consistent and accurate results for a range of cases are obtained using
the continuous adjoint. Computational time for the continuous adjoint problem is
about the same as computational time for the primal problem. For the discrete adjoint
problem, the computational time is the time of solving a linear system, so about the
cost of one time step for the primal. Sensitivity of the functional with respect to the
primal solution is only a function of pressure in the case of inviscid flow. Therefore, the
time required for solving the system of equations to obtain the discrete adjoint solution
is significantly smaller than the time required to solve the continuous adjoint PDE
for the inviscid case where there is not any viscous term which enhances the stability
of the problem. For the inviscid case, the residual for the continuous adjoint solver
oscillates before getting close to the solution, after which a larger time step can be used
to obtain the converged solution. However, for the viscous case, the time for solving
the continuous and discrete adjoint solutions are comparable. As a consequence of the
viscous terms, convergence of the continuous adjoint PDE is faster compared to the
inviscid case. Furthermore, the sensitivity of the functional with respect to the solution
is more complicated in the case of viscous flow and consequently finding the discrete

142

7.2. Conclusions

adjoint solution requires more time.
This significant improvement in functional correction is obtained just by C1 inter-

polating the primal solution and finding the truncation error based on this interpolated
solution and then multiplying the truncation error by the adjoint solution of the same
order as the primal solution. It is not necessary to find the C1 interpolation of the
adjoint solution to obtain significant improvement in convergence rates. By estimating
the truncation error based on a C1 interpolated solution, higher order convergence of
the functional is obtained by using the lower order solution. Hence, paying the extra
cost of computing the higher-order solution to obtain a more accurate functional which
converges to the exact value with higher-order rate is not required and the higher-order
convergence is obtained. Time comparison showed that the post processing time re-
quired for C1 interpolation of the solution is small compared to the solution time, and
scales linearly with problem size. As a result, it is a reasonable post-processing step to
obtain the higher-order convergence.

The truncation error can also be used as an indicator for mesh adaptation, called
residual-based adaptation, or can be weighted by the adjoint solution, called adjoint-
based mesh adaptation. The adaptation indicator for the adjoint-based adaptation
is the same as the correction term used for functional correction. Furthermore, the
higher-order error in the correction term can be used as an adaptation indicator. The
effectiveness of different adaptation indicators using discrete or continuous truncation
error were compared. Different test cases were considered. For all test cases stud-
ied, the functional on the adapted mesh is calculated more accurately compared to
the non-corrected one calculated on the uniformly refined mesh. This result holds for
residual-based adaptation using the continuous p-truncation error, adjoint based adap-
tation, and adaptation based on the higher-order error in the correction term. Although
residual-based adaptation using the original discrete p-truncation error estimate does
not necessarily provide a significantly more accurate functional than the corrected one
on the uniformly refined mesh, residual-based mesh adaptation using the C1 interpo-
lated continuous truncation error always provide a more accurate functional compared
to the functional calculated on the uniformly refined mesh. Our results show that
adjoint-based mesh adaptation out performs the residual-based mesh adaptation and
using the continuous adjoint solution is always better than the discrete adjoint, or at
least, they are comparable. The results using the higher-order error in the correction
term as the adaptation indicator are more accurate or comparable to the adjoint-based
mesh adaptation using the continuous adjoint solution.

143

7.2. Conclusions

The following points summarize the main contributions of this thesis:

• We have developed a reliable truncation error estimate for unstructured meshes
using quantities already available in a typical finite volume flow solver. This
estimate of the truncation error should be general and not dependent on the
geometry, the properties of the solution, or the governing equation such that it
can be easily generalized to any problem. The method of our choice is the p-TE
method.

• As the original discrete p-TE method is not able to provide p-sharp convergence for
output functional correction or mesh adaptation, we developed a C1 interpolation
of the solution which gives us a unique solution and gradients at the quadrature
point at the common face of the two neighboring cells where the flux function is
evaluated.

• Evaluating the C1 interpolation of the solution is a cheap post-processing step
which uses the data already available for the lower-order solution and using a set
of basis functions which needs to be solved only once and can be used for any
problem regardless of the geometry, the governing equations or other properties
of the solution.

• The truncation error estimate calculated using C1 interpolation of the solution
can be multiplied by the adjoint solution to get the correction term used in out-
put functional correction. Both the discrete and continuous adjoint solutions can
be used. Using the continuous adjoint solution for correcting the output func-
tional provides more consistent results and more accurate functionals compared
to the discrete adjoint solution. For finding the discrete adjoint solution, we only
need the sensitivity of the output functional with respect to the primal solution
and the Jacobian matrix; however, finding the continuous adjoint solution re-
quires discretizating the continuous adjoint PDE and setting the corresponding
the boundary conditions. Once, the continuous adjoint PDE has been discretized
and the proper boundary conditions are implemented, using the continuous ad-
joint solution is more recommended as it provides more consistent results.

• Using the truncation error estimate calculated using C1 interpolation of the so-
lution multiplied by the adjoint solution to correct the functional provides the
p-sharp functional convergence which convergences to the exact value as fast as

144

7.3. Recommendations for Future Work

the higher-order reconstruction order used in calculating the truncation error.
On the other hand, using the original p-TE method using the discrete solution,
the convergence of the functional is the same as the primal solution order. The
higher-order convergence of the output functional is obtained only by solving both
the primal and adjoint problems at lower-order, in contrast to the finite element
method where the higher-order adjoint solution is required. Furthermore, it is
not necessary to find the C1 interpolation of the adjoint solution to get p-sharp
convergence.

• The truncation error estimate calculated using C1 interpolation of the solution
can also be used as the adaptation indicator which provides faster convergence of
the output functional compared to using the original estimate of the truncation
error based on the discrete solution as the adaptation indicator.

• Adjoint-based mesh adaptation using the truncation error estimate calculated
using C1 interpolation of the solution weighted by the continuous adjoint solu-
tion, the same as the correction term, gives us more accurate functional which
converges to the exact value faster. Even more accurate results are obtained by
correcting the functional. Note that, the correction step does not require any
further information and is available when adjoint-based adaptation is used.

• Significant improvement is obtained if adaptation is based on the higher-order
error in the correction term. Again, no further calculation is required to obtain
this higher-order error term.

7.3 Recommendations for Future Work

We examined both scalar and systems of equations for both manufactured solutions
and real flow test cases. The real flow test cases involve inviscid and viscous flows, in
the subsonic, transonic and supersonic flow regimes for simple and complex geometries.
This work may be extended to 2D turbulent flows for which an anisotropic mesh is
required to resolve the anisotropic features of the flow along the boundary layer near the
solid wall. Using the same Argyris element to obtain the C1 interpolation of the solution
is easy; however, anisotropic curved meshes are required along the boundary layer to
resolve the curved solid wall. In this case, a linear transformation form the physical

145

7.3. Recommendations for Future Work

element to the reference element is not sufficient and a cubic coordinate transformation
is needed.

For the transonic case, we only used the discrete adjoint for adjoint-based mesh
adaptation. The continuous adjoint solution does not converge efficiently. We used
the Lax-Friedrich method for calculating the continuous adjoint fluxes. Using a more
accurate flux function may be useful in improving the robustness of the continuous
adjoint for transonic flow.

The output functional correction and mesh adaptation using the continuous adjoint
solution was more helpful compared to the discrete adjoint solution. If the discretization
scheme is adjoint-consistent, the effectiveness of output correction and mesh adaptation
are the same using the discrete and continuous adjoint solutions. Therefore, improving
our discretization scheme such that it is adjoint consistent would also be helpful.

The interpolation scheme we developed can be extended to any other two-dimensional
problem without any difficulties as it worked properly for both viscous and inviscid flows
which involve diffusive and convective terms. Extending that to 3D problems involves
finding the proper polynomials for the 3D reference element, similar to the Argyris ele-
ment for 2D, and then solving the system of equations arising from the basis functions
once to obtain the constants. The 3D reference element which provides C1 continuity
is described by Walkington [96].

146

Bibliography

[1] First International Workshop on High-Order CFD Methods.
http://people.ku.edu/z651w035/hiocfd.html, 2012. Sponsored by the AIAA
Fluid Dynamics Technical Committee, the US Air Force Office of Scientific
Research, and the Deutsches Zentrum fur Luft- und Raumfahrt.

[2] S. Adjerid, K. D. Devine, J. E. Flaherty, and L. Krivodonova. A posteriori error
estimation for discontinuous galerkin solutions of hyperbolic problems. Computer
methods in applied mechanics and engineering, 191(11):1097–1112, 2002.

[3] M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Wiley-Interscience, John Wiley and Sons, 2000.

[4] D. Ait-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, and
M. G. Vallet. Anisotropic mesh adaptation: Towards user-independent, mesh-
independent and solver-independent CFD. Part II: Structured grids. International
Journal for Numerical Methods in Fluids, 39(8):657–673, July 2002.

[5] F. Alauzet and O. Pironneau. Continuous and discrete adjoints to the Euler equa-
tions for fluids. International Journal for Numerical Methods in Fluids, 70:135–157,
2012.

[6] Dale A. Anderson, John C. Tannehill, and Richard H. Pletcher. Computational
Fluid Mechanics and Heat Transfer. Series in Computational Methods in Mechan-
ics and Thermal Sciences. Hemisphere Publishing Corporation, New York, 1984.

[7] J.H. Argyris, I. Fried, and D.W. Scharpf. The tuba family of plate elements for the
matrix displacement method. The Aeronautical Journal of the Royal Aeronautical
Society, 72:701–709, 1968.

[8] R. Balasubramanian and J.C. Newman III. Comparison of adjoint-based and
feature-based grid adaptation for functional outputs. International Journal for
Numerical Methods in Fluids, 53:1541–1569, 2007.

147

Bibliography

[9] Timothy J. Barth and Paul O. Frederickson. Higher order solution of the Euler
equations on unstructured grids using quadratic reconstruction. AIAA paper 90-
0013, January 1990.

[10] R. Becker and R. Rannacher. Weighted a posteriori error control in finite element
methods. In Proceedings of ENUMATH-97, Heidelberg, 1998.

[11] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica, 2001:1–102, 2000.

[12] K. Bohmer, P. Hemker, and H. Stetter. The defect correction approach, in K.
Bohmer, H. Stetter (Eds), Defect Correction Methods: Theory and Application.
Springer, Berlin, 1984.

[13] Gustavo C. Buscaglia and Enzo A. Dari. Anisotropic mesh optimization and its
application in adaptivity. International Journal for Numerical Methods in Engi-
neering, 40:4119–4136, 1997.

[14] Andrew W. Cary, Andrew J. Dorgan, and Mori Mani. Towards accurate flow
predictions using unstructured meshes. In Proceedings of the Nineteenth AIAA
Computational Fluid Dynamics Conference, 2009. AIAA paper 2009-3650.

[15] Phillippe G. Ciarlet. The finite element method for elliptic problems. Society for
Industrial and Applied Mathematics, 2002.

[16] J. M. Derlaga, T. Phillips, C. J. Roy, and J. Borggaard. Adjoint and trunca-
tion error based adaptation for finite volume schemes with error estimates. In
In 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech. American Institute of
Aeronautics and Astronautics, 2015.

[17] B. Diskin and J.L. Thomas. Accuracy analysis for mixed-element finite-volume
discretization schemes. Technical Report 2007-08, National Institute of Aerospace,
2007.

[18] Boris Diskin and James Thomas. Notes on accuracy of finite-volume discretization
schemes on irregular grids. Applied Numerical Mathematics, 60:224–226, 2010.
Rebuttal of Svard 2008.

148

Bibliography

[19] Boris Diskin, James L. Thomas, Eric J. Nielsen, Hiroaki Nishikawa, and Jeffrey A.
White. Comparison of node-centered and cell-centered unstructured finite-volume
discretizations. Part I: Viscous fluxes. In Proceedings of the Forty-Seventh AIAA
Aerospace Sciences Meeting, 2009. AIAA paper 2009-597.

[20] Boris Diskin, James L. Thomas, Eric J. Nielsen, Hiroaki Nishikawa, and Jeffrey A.
White. Comparison of node-centered and cell-centered unstructured finite-volume
discretizations: Viscous fluxes. AIAA Journal, 48(7):1326–1338, July 2010.

[21] J. Dompierre, M. G. Vallet, Y. Bourgault, M. Fortin, and W. G. Habashi.
Anisotropic mesh adaptation: Towards user-independent, mesh-independent and
solver-independent CFD. Part III. Unstructured meshes. International Journal for
Numerical Methods in Fluids, 39(8):675–702, July 2002.

[22] R.P. Dwight. Heuristic a posteriori estimation of error due to dissipation in finite
volume schemes and application to mesh adaptation. Journal of Computational
Physics, 227:2845–2863, 2008.

[23] Krzysztof Fidkowski and David Darmofal. Reviw of Output-Based Error Esti-
mation and Mesh Adaptation in Computational Fluid Dynamics. AIAA Journal,
49(4):673–694, 2011.

[24] L. Fox. Some improvements in the use of relaxation methods for the ordinary and
partial differential equations. Proc. Roy. Soc. London A, 190:31–59, 1947.

[25] F. Fraysse, E. Valero, and J. Ponsin. Comparison of mesh adaptation using the
adjoint methodology and truncation error estimates. AIAA Journal, 50(9):1920–
1932, 2012.

[26] M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design.
Flow, Turbulence, and Combustion, 65(3–4):393–415, 2000.

[27] Serge Gosselin. Delaunay refinement mesh generation of curve-bounded domains.
PhD thesis, The University of British Columbia, Department of Mechanical Engi-
neering, 2009.

[28] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and
M. G. Vallet. Anisotropic mesh adaptation: Towards user-independent, mesh-
independent and solver-independent CFD. Part I: General principles. International
Journal for Numerical Methods in Fluids, 32(6):725–744, March 2000.

149

Bibliography

[29] W. Hackbusch. Local defect correction method and domain docomposition tech-
niques, in: K. Bohmer, H. Stetter, Defect Correction Methods: Theory and Ap-
plications. Springer, Berlin, 1984.

[30] R. Hartmann, J. Held, and T. Leicht. Adjoint-based error estimation and adaptive
mesh refinement for the rans and k-w turbulence model equations. Journal of
Computational Physics, 230(11):4268–4284, 2011.

[31] Ralf Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing
for the compressible Navier–Stokes equations. International Journal for Numerical
Methods in Fluids, 51(9–10):1131–1156, 2006.

[32] Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element
methods for the compressible Euler equations. Journal of Computational Physics,
183(2):508–532, 2002.

[33] Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element
methods for nonlinear hyperbolic conservation laws. SIAM Journal of Scientific
Computing, 24(3):979–1004, 2003.

[34] Marcelo Hayashi, Marco Ceze, and Ernani Volpe. Characteristic-based boundary
conditions for the Euler adjoint problem. International Journal for Numerical
Methods in Fluids, 71:1297–1321, 2013.

[35] Alireza Jalali. Truncation error analysis of unstructured finite volume discretization
schemes. Master’s thesis, The University of British Columbia, Department of
Mechanical Engineering, 2012.

[36] Alireza Jalali and Carl Ollivier-Gooch. Accuracy assessment of finite volume dis-
cretizations of diffusive fluxes on unstructured meshes. In Proceedings of the Fifti-
eth AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and As-
tronautics, 2012. AIAA Paper 2012-0608.

[37] Alireza Jalali, Mahkame Sharbatdar, and Carl Ollivier-Gooch. Accuracy assess-
ment of finite volume discretization schemes on unstructured meshes. Computers
and Fluidss, 101:220–232, 2014.

[38] Anthony Jameson, Luigi Martinelli, and Niles A. Pierce. Optimum aerodynamic
design using the Navier-Stokes equations. Theoretical and Computational Fluid
Dynamics, 10(1–4):213–237, 1998.

150

Bibliography

[39] Antony Jameson. Aerodynamic design via control theory. Journal of Scientific
Computing, 3(3):233–260, 1988.

[40] Antony Jameson, Sriram Shankaran, and Luigi Martinelli. Continuous Adjoint
Methods for Unstructured Grids. AIAA Journal, 46:1226–1239, 2008.

[41] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinu-
ous galerkin approximation of second-order elliptic problems. SIAM Journal on
Numerical Analysis, 41(6):2374–2399, 2003.

[42] J. Kautsky and N. K. Nichols. Equidistributing meshes with constraints. SIAM J.
SCI. STAT, COMPUT., 1(4):499–511, 1980.

[43] H. Kim and K. Nakahashi. Unstructured Adjoint Method for Navier-Stokes Equa-
tions. JSME International Journal Series B, 48:202–27, 2005.

[44] H. Kim, D. Sasaki, S. Obayashi, and K. Nakahashi. Aerodynamic Optimization of
Supersonic Transport Wing Using Unstructured Adjoint Method. AIAA Journal,
39:1011–1020, 2001.

[45] H. L. Kline, Thomas D. Economon, and Juan J. Alonso. Multi-objective optimiza-
tion of a hypersonic inlet using generalized outflow boundary conditions in the
continuous adjoint method. In 54th AIAA Aerospace Sciences Meeting, 2016.

[46] M. Kurzen, T. S. Phillips, and C. J. Roy. Method of nearby problems for generating
exact solutions to 1D unsteady and 2D steady problems. Technical report, AIAA-
2009-3652, 2009.

[47] M. G. Larson and T. J. Barth. A posteriori Error Estimation for Discontinu-
ous Galerkin Approximations of Hyperbolic Systems. In NAS Technical Report,
number NAS-99-010, 1999.

[48] Tobias Leicht and Ralf Hartmann. Anisotropic mesh refinement for discontinuous
Galerkin methods in two-dimensional aerodynamic flow simulations. International
Journal for Numerical Methods in Fluids, 56:2111–2138, 2008.

[49] B. Lindberg. Error estimation and iterative improvement for discretization algo-
rithms. BIT, 20:486–500, 1980.

151

Bibliography

[50] C. A. Mavriplis. Adaptive mesh strategies for the spectral element method. Com-
puter Methods in Applied Mechanics and Engineering,, 116(14), 1994.

[51] Fotis Mavriplis. CFD in aerospace in the new millenium. Canadian Aeronautics
and Space Journal, 46(4):167–179, 2000.

[52] Christopher Michalak. Efficient high-order accurate unstructured finite-volume al-
gorithms for viscous and inviscid compressible flows. PhD thesis, The University
of British Columbia, Department of Mechanical Engineering, 2009.

[53] Christopher Michalak and Carl Ollivier-Gooch. Globalized matrix-explicit Newton-
GMRES for the high-order accurate solution of the Euler equations. Computers
and Fluids, 39:1156–1167, 2010.

[54] Bijan Mohammadi and Olivier Pironneau. Shape Optimization in Fluid Mechanics.
Annu. Rev. Fluid Mech, 36:11.1–11.25, 2004.

[55] A. Naumovich, M. Foerster, and R. Dwight. Algebraic multigrid within defect
correction for the linearized euler equations. Numerical Linear Algebra with Ap-
plications, 17:307–324, 2009.

[56] Amir Nejat and Carl Ollivier-Gooch. A high-order accurate unstructured GMRES
algorithm for inviscid compressible flows. In Proceedings of the Seventeenth AIAA
Computational Fluid Dynamics Conference. American Institute of Aeronautics and
Astronautics, June 2005.

[57] Amir Nejat and Carl Ollivier-Gooch. A high-order accurate unstructured finite
volume Newton-Krylov algorithm for inviscid compressible flows. Journal of Com-
putational Physics, 227(4):2592–2609, 2008.

[58] Amir Nejat, Carl Ollivier-Gooch, and Christopher Michalak. Accuracy assessment
methodology for a high-order unstructured finite volume solver. In Proceedings of
the Eighteenth AIAA Computational Fluid Dynamics Conference, 2007.

[59] M. Nemec and M. J. Aftosmis. Adjoint error estimation and adaptive refinement
for embedded-boundary cartesian meshes. In Proceedings of the Eighteenth AIAA
Computational Fluid Dynamics Conference. American Institute of Aeronautics and
Astronautics, 2007.

152

Bibliography

[60] Marian Nemec, Michael J. Aftosmis, and Mathias Wintzer. Adjoint-based adaptive
mesh refinement for complex geometries. In Forty-sixth AIAA Aerospace Sciences
Meeting, 2008. AIAA 2008-725.

[61] Hiroaki Nishikawa. Beyond interface gradient: A general principle for constructing
diffusion scheme. In Proceedings of the Fortieth AIAA Fluid Dynamics Conference
and Exhibit, 2010. AIAA paper 2010-5093.

[62] W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Com-
puting. Cambridge University Press, 2010.

[63] Carl Ollivier-Gooch. GRUMMP version 0.7.0 user’s guide. Technical report, De-
partment of Mechanical Engineering, The University of British Columbia, 2015.

[64] Carl Ollivier-Gooch, Amir Nejat, and Christopher Michalak. On obtaining high-
order finite-volume solutions to the Euler equations on unstructured meshes. In
Proceedings of the Eighteenth AIAA Computational Fluid Dynamics Conference,
2007. AIAA-2007-4464.

[65] Carl Ollivier-Gooch and Christopher Roy. Reducing truncation error on unstruc-
tured meshes by vertex movement. In Proceedings of the Forty-Second AIAA Fluid
Dynamics Conference, 2012-2712. American Institute of Aeronautics and Astro-
nautics, 2012.

[66] Carl F. Ollivier-Gooch and Michael Van Altena. A high-order accurate unstruc-
tured mesh finite-volume scheme for the advection-diffusion equation. Journal of
Computational Physics, 181(2):729–752, 2002.

[67] Doug Pagnutti and Carl Ollivier-Gooch. A generalized framework for high order
anisotropic mesh adaptation. Computers and Structures, 87:670–679, 2009.

[68] Michael Andrew Park. Adjoint-based, three-dimensional error prediction and grid
adaptation. AIAA Journal, 42(9):1854–1862, 2004.

[69] V. Pereyra. On improving an approximate solution of a functional equation by
deferred corrections. Numer. Math., 8:376–391, 1966.

[70] V. Pereyra. Iterated deferred corrections for nonlinear boundary value problems.
Numer. Math, 11:111–125, 1968.

153

Bibliography

[71] Tyrone Phillips, Christopher Roy, and Jeff Borggaard. Error Transport Equa-
tion Boundary Conditions for the Euler and Navier-Stokes Equations. In 52nd
Aerospace Sciences Meeting, AIAA SciTech, 2014-1432, 2014.

[72] Niles Pierce and Michael Giles. Adjoint recovery of superconvergent functionals
from PDE approximations. SIAM Review, 42(2):247–264, June 2000.

[73] Niles Pierce and Michael Giles. Adjoint and defect error bounding and correction
for functional estimates. Journal of Computational Physics, 200(2):769–794, 2004.

[74] O. Pironneau. On Optimum Design in Fluid Mechanics. J. Fluid Mech., 64:97–110,
1974.

[75] Z. Qiao and X. Yang. Wing Design by Solving Adjoint Equations. In 40th AIAA
Aerospace Sciences Meeting & Exhibit, 2002-0263. American Institute of Aeronau-
tics and Astronautics, 2002.

[76] Patrick J. Roache. Code verification by the method of manufactured solutions.
Journal of Fluids Engineering, 124(1):4–10, March 2002.

[77] P. L. Roe. Characteristic-based schemes for the Euler equations. In Annual Review
of Fluid Mechanics, volume 18, pages 337–365. Annuals Reviews, Inc., 1986.

[78] Phillip Roe. Error estimate for cell-vertex solutions od the compressible Eeler
equations. Technical report, NASA Report, 1987.

[79] Christopher Roy. Strategies for driving mesh adaptation in CFD. In Proceed-
ings of the Forty-Seventh AIAA Aerospace Sciences Meeting. American Institute
of Aeronautics and Astronautics, 2009.

[80] Christopher Roy. Review of discretization error estimators in scientific computing.
In Proceedings of the Forty-Eighth AIAA Aerospace Sciences Meeting. American
Institute of Aeronautics and Astronautics, 2010. AIAA Paper 2010-0126.

[81] Mahkame Sharbatdar. Anisotropic mesh adaptation: Recovering quasi-structured
meshes. Master’s thesis, The University of British Columbia, Department of Me-
chanical Engineering, 2012.

[82] Mahkame Sharbatdar, Alireza Jalali, and Carl Ollivier-Gooch. Smoothed Trunca-
tion Error in Functional Error Estimation and Correction using Adjoint Methods

154

Bibliography

in an Unstructured Finite Volume Method. Computers & Fluids, 140:406–421,
2016.

[83] Mahkame Sharbatdar and Carl Ollivier-Gooch. Anisotropic mesh adaptation: Re-
covering quasi-structured meshes. In Proceedings of the Fifty-First AIAA Aerospace
Sciences Meeting. AIAA 2013-0149, 2013.

[84] Mahkame Sharbatdar and Carl Ollivier-Gooch. Eigenanalysis of truncation and
discretization error on unstructured meshes. In 21st AIAA Computational Fluid
Dynamics Conference, 2013-3089. American Institute of Aeronautics and Astro-
nautics, 2013.

[85] Lei Shi and Z.J. Wang. Adjoint-Based Error Estimation and hp-Adaptation for
the High-Order CPR Methods. In 51st AIAA Aerospace Science Meeting, 2013.

[86] R. Skeel. A thoritical framework for proving accuracy results for deferred correc-
tions. SIAM J. Numer. Anal., 19:171–196, 1981.

[87] H.J. Stetter. The defect correction principle and discretization methods. Numer.
Math., 29:425–443, 1978.

[88] A. H. Stroud and Don Secrest. Gaussian Quadrature Formulas. Prentice-Hall,
Englewood Cliffs, N.J., 1966.

[89] T. J. Tautges. CGM: A geometry interface for mesh generation, analysis and other
applications. Engineering with Computers, 17(3):299–314, 2001.

[90] T.J. Tautges. The common geometry module (CGM): A generic, extensible geom-
etry interface. In Proceedings of the 9th International Meshing Roundtable, Sandia
report SAND 2000-2207, pages 337–359. Sandia National Laboratories, 2000.

[91] James L. Thomas, Boris Diskin, and Christopher Rumsey. Towards verification of
unstructured-grid solvers. In Forty-sixth AIAA Aerospace Sciences Meeting, 2008.
AIAA 2008-666.

[92] Michael Van Altena. High-order finite-volume discretisations for solving a modified
advection-diffusion problem on unstructured triangular meshes. Master’s thesis,
The University of British Columbia, Department of Mechanical Engineering, Oc-
tober 1999.

155

[93] D. A. Venditti and D. L. Darmofal. Adjoint error estimation and grid adapta-
tion for functional outputs: Application to quasi-one-dimensional flow. Journal of
Computational Physics, 164(1):204–227, October 2000.

[94] D. A. Venditti and D. L. Darmofal. Grid adaptation for functional outputs: Ap-
plication to two-dimensional inviscid flows. Journal of Computational Physics,
175(1):40–69, February 2002.

[95] D. A. Venditti and D. L. Darmofal. Grid adaptation for functional outputs: Ap-
plication to two-dimensional viscous flows. Journal of Computational Physics,
187:22–46, 2003.

[96] N. J. Walkington. A C1 tetrahedral finite element without edge degrees of freedom.
SIAM Journal of Numerical Analysis, 52(1):330–342, 2014.

[97] L . Wang and D. Mavriplis. Adjoint-based h-p Adaptive Discontinuous Galerkin
Methods for the Compressible Euler Equations. Journal of Computational Physics,
2009.

[98] M. Woopen, G. May, and J. Schutz. Adjoint-Based Error Estimation and Mesh
Adaptation for Hybridized Discontinuous Galerkin Methods. International Journal
for numjerical methods in fluids, 76:811–834, 2014.

[99] D. Zingg, S. De Rango, M. Nemec, and T. Pulliam. Comparison of several spatial
discretizations for the Navier-Stokes equations. Journal of Computational Physics,
160:683–704, 2000.

156

Appendix A: Constraints Equations
for Obtaining C1 Interpolation of
the Solution

Each basis function used for C1 interpolation of the solution is a quintic polynomial:

ϕi (ξ, η) = ci0,0

+ ci1,0ξ + ci0,1η

+ ci2,0ξ
2 + ci1,1ξη + ci0,2η

2

+ ci3,0ξ
3 + ci2,1ξ

2η + ci1,2ξη
2 + ci0,3η

3

+ ci4,0ξ
4 + ci3,1ξ

3η + ci2,2ξ
2η2 + ci1,2ξη

3 + ci0,4η
4

+ ci5,0ξ
5 + ci4,1ξ

4η + ci3,2ξ
3η2 + ci2,3ξ

2η3 + ci1,4ξη
4 + ci0,5η

5

The first derivatives are:

∂ϕ

∂ξ
= c1,0 + 2c2,0ξ + c1,1η + 3c3,0ξ

2 + 2c2,1ξη + c1,2η
2 + 4c4,0ξ

3 + 3c3,1ξ
2η

+ 2c2,2ξη
2 + c1,2η

3 + 5c5,0ξ
4 + 4c4,1ξ

3η + 3c3,2ξ
2η2 + 2c2,3ξη

3 + c1,4η
4

∂ϕ

∂η
= c0,1 + c1,1ξ + 2c0,2η + c2,1ξ

2 + 2c1,2ξη + 3c0,3η
2 + c3,1ξ

3 + 2c2,2ξ
2η

+ 3c1,2ξη
2 + 4c0,4η

3 + c4,1ξ
4 + 2c3,2ξ

3η + 3c2,3ξ
2η2 + 4c1,4ξη

3 + 5c0,5η
4

and the second derivatives are:

157

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ

∂ξ2 = 2c2,0 + 6c3,0ξ + 2c2,1η + 12c4,0ξ
2 + 6c3,1ξη +

2c2,2η
2 + 20c5,0ξ

3 + 12c4,1ξ
2η + 6c3,2ξη

2 + 2c2,3η
3

∂2ϕ

∂ξ∂η
= c1,1 + 2c2,1ξ + 2c1,2η + 3c3,1ξ

2 + 4c2,2ξη +

3c1,2η
2 + 4c4,1ξ

3 + 6c3,2ξ
2η + 6c2,3ξη

2 + 4c1,4η
3

∂2ϕ

∂η2 = 2c0,2 + 2c1,2ξ + 6c0,3η + 2c2,2ξ
2 + 6c1,2ξη +

12c0,4η
2 + 2c3,2ξ

3 + 6c2,3ξ
2η + 12c1,4ξη

2 + 20c0,5η
3

and the normal derivatives are:

∂ϕ

∂ξ
nξ + ∂ϕ

∂η
nη = (c1,0 + 2c2,0ξ + c1,1η + 3c3,0ξ

2 + 2c2,1ξη + c1,2η
2 + 4c4,0ξ

3 + 3c3,1ξ
2η +

2c2,2ξη
2 + c1,2η

3 + 5c5,0ξ
4 + 4c4,1ξ

3η + 3c3,2ξ
2η2 + 2c2,3ξη

3 + c1,4η
4)nξ

(c0,1 + c1,1ξ + 2c0,2η + c2,1ξ
2 + 2c1,2ξη + 3c0,3η

2 + c3,1ξ
3 + 2c2,2ξ

2η +

3c1,2ξη
2 + 4c0,4η

3 + c4,1ξ
4 + 2c3,2ξ

3η + 3c2,3ξ
2η2 + 4c1,4ξη

3 + 5c0,5η
4)nη

The full list of 21 constraints for the 21 degrees of freedom, in Figure 3.8, which generate
the full (21× 21) system of equations is shown here. The constrains corresponding to
ϕ0:

ϕ0|(0,0) = c0
0,0 = 1

ϕ0|(1,0) = c0
0,0 + c0

1,0 + c0
2,0 + c0

3,0 + c0
4,0 + c0

5,0 = 0

ϕ0|(0,1) = c0
0,0 + c0

0,1 + c0
0,2 + c0

0,3 + c0
0,4 + c0

0,5 = 0

158

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ0

∂ξ

∣∣∣∣∣
(0,0)

= c0
1,0 = 0

∂ϕ0

∂ξ

∣∣∣∣∣
(1,0)

= c0
1,0 + 2c0

2,0 + 3c0
3,0 + 4c0

4,0 + 5c0
5,0 = 0

∂ϕ0

∂ξ

∣∣∣∣∣
(0,1)

= c0
1,0 + c0

1,1η + c0
1,2 + c0

1,2 + c0
1,4 = 0

∂ϕ0

∂η

∣∣∣∣∣
(0,0)

= c0
0,1 = 0

∂ϕ0

∂η

∣∣∣∣∣
(1,0)

= c0
0,1 + c0

1,1 + c0
2,1 + c0

3,1 + c0
4,1 = 0

∂ϕ0

∂η

∣∣∣∣∣
(0,1)

= c0
0,1 + 2c0

0,2 + 3c0
0,3 + 4c0

0,4 + 5c0
0,5 = 0

∂2ϕ0

∂ξ2

∣∣∣∣∣
(0,0)

= 2c0
2,0 = 0

∂2ϕ0

∂ξ2

∣∣∣∣∣
(1,0)

= 2c0
2,0 + 6c0

3,0 + 12c0
4,0 + 20c0

5,0 = 0

∂2ϕ0

∂ξ2

∣∣∣∣∣
(0,1)

= 2c0
2,0 + 2c0

2,1 + 2c0
2,2 + 2c0

2,3 = 0

∂2ϕ0

∂ξ∂η

∣∣∣∣∣
(0,0)

= c0
1,1 = 0

∂2ϕ0

∂ξ∂η

∣∣∣∣∣
(1,0)

= c0
1,1 + 2c0

2,1 + 3c0
3,1 + 4c0

4,1 = 0

∂2ϕ0

∂ξ∂η

∣∣∣∣∣
(0,1)

= c0
1,1 + 2c0

1,2 + 3c0
1,2 + 4c0

1,4 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(0,0)

= 2c0
0,2 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(1,0)

= 2c0
0,2 + 2c0

1,2 + 2c0
2,2 + 2c0

3,2 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(0,1)

= 2c0
0,2 + 6c0

0,3 + 12c0
0,4 + 20c0

0,5 = 0

159

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ0

∂ξ
nξ + ∂ϕ0

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ0

∂η

∣∣∣∣∣(1
2 ,0)

= c0
0,1 + 1

2c
0
1,1 + 1

4c
0
2,1 + 1

8c
0
3,1 + 1

16c
0
4,1 = 0

(
∂ϕ0

∂ξ
nξ + ∂ϕ0

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c0

1,0 + c0
2,0 + c0

1,1 + 3
4c

0
3,0 + 3

4c
0
2,1 + 3

4c
0
1,2 + 1

2c
0
4,0 +

1
2c

0
3,1 + 1

2c
0
2,2 + 1

2c
0
1,2 + 5

16c
0
5,0 + 9

16c
0
4,1 + 7

16c
0
3,2 +

7
16c

0
2,3 + 5

16c
0
1,4 + c0

0,1 + c0
0,2 + 3

4c
0
0,3 + 1

2c
0
0,4 + 5

16c
0
0,5) = 0(

∂ϕ0

∂ξ
nξ + ∂ϕ0

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ0

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c0

0,1 + c0
0,2 + 3

4c
0
0,3 + 1

2c
0
0,4 + 5

16c
0
0,5

)
= 0

The constrains corresponding to ϕ1:

ϕ1|(0,0) = c1
0,0 = 0

ϕ1|(1,0) = c1
0,0 + c1

1,0 + c1
2,0 + c1

3,0 + c1
4,0 + c1

5,0 = 0

ϕ1|(0,1) = c1
0,0 + c1

0,1 + c1
0,2 + c1

0,3 + c1
0,4 + c1

0,5 = 0

∂ϕ1

∂ξ

∣∣∣∣∣
(0,0)

= c1
1,0 = 1

∂ϕ1

∂ξ

∣∣∣∣∣
(1,0)

= c1
1,0 + 2c1

2,0 + 3c1
3,0 + 4c1

4,0 + 5c1
5,0 = 0

∂ϕ1

∂ξ

∣∣∣∣∣
(0,1)

= c1
1,0 + c1

1,1η + c1
1,2 + c1

1,2 + c1
1,4 = 0

∂ϕ1

∂η

∣∣∣∣∣
(0,0)

= c1
0,1 = 0

∂ϕ1

∂η

∣∣∣∣∣
(1,0)

= c1
0,1 + c1

1,1 + c1
2,1 + c1

3,1 + c1
4,1 = 0

∂ϕ1

∂η

∣∣∣∣∣
(0,1)

= c1
0,1 + 2c1

0,2 + 3c1
0,3 + 4c1

0,4 + 5c1
0,5 = 0

160

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ1

∂ξ2

∣∣∣∣∣
(0,0)

= 2c1
2,0 = 0

∂2ϕ1

∂ξ2

∣∣∣∣∣
(1,0)

= 2c1
2,0 + 6c1

3,0 + 12c1
4,0 + 20c1

5,0 = 0

∂2ϕ1

∂ξ2

∣∣∣∣∣
(0,1)

= 2c1
2,0 + 2c1

2,1 + 2c1
2,2 + 2c1

2,3 = 0

∂2ϕ1

∂ξ∂η

∣∣∣∣∣
(0,0)

= c1
1,1 = 0

∂2ϕ1

∂ξ∂η

∣∣∣∣∣
(1,0)

= c1
1,1 + 2c1

2,1 + 3c1
3,1 + 4c1

4,1 = 0

∂2ϕ1

∂ξ∂η

∣∣∣∣∣
(0,1)

= c1
1,1 + 2c1

1,2 + 3c1
1,2 + 4c1

1,4 = 0

∂2ϕ1

∂η2

∣∣∣∣∣
(0,0)

= 2c1
0,2 = 0

∂2ϕ1

∂η2

∣∣∣∣∣
(1,0)

= 2c1
0,2 + 2c1

1,2 + 2c1
2,2 + 2c1

3,2 = 0

∂2ϕ1

∂η2

∣∣∣∣∣
(0,1)

= 2c1
0,2 + 6c1

0,3 + 12c1
0,4 + 20c1

0,5 = 0

(
∂ϕ1

∂ξ
nξ + ∂ϕ1

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ1

∂η

∣∣∣∣∣(1
2 ,0)

= c1
0,1 + 1

2c
1
1,1 + 1

4c
1
2,1 + 1

8c
1
3,1 + 1

16c
1
4,1 = 0

(
∂ϕ1

∂ξ
nξ + ∂ϕ1

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c1

1,0 + c1
2,0 + c1

1,1 + 3
4c

1
3,0 + 3

4c
1
2,1 + 3

4c
1
1,2 + 1

2c
1
4,0 +

1
2c

1
3,1 + 1

2c
1
2,2 + 1

2c
1
1,2 + 5

16c
1
5,0 + 9

16c
1
4,1 + 7

16c
1
3,2 +

7
16c

1
2,3 + 5

16c
1
1,4 + c1

0,1 + c1
0,2 + 3

4c
1
0,3 + 1

2c
1
0,4 + 5

16c
1
0,5) = 0(

∂ϕ1

∂ξ
nξ + ∂ϕ1

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ1

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c1

0,1 + c1
0,2 + 3

4c
1
0,3 + 1

2c
1
0,4 + 5

16c
1
0,5

)
= 0

The constrains corresponding to ϕ2:

ϕ2|(0,0) = c2
0,0 = 0

ϕ2|(1,0) = c2
0,0 + c2

1,0 + c2
2,0 + c2

3,0 + c2
4,0 + c2

5,0 = 0

ϕ2|(0,1) = c2
0,0 + c2

0,1 + c2
0,2 + c2

0,3 + c2
0,4 + c2

0,5 = 0

161

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ2

∂ξ

∣∣∣∣∣
(0,0)

= c2
1,0 = 0

∂ϕ2

∂ξ

∣∣∣∣∣
(1,0)

= c2
1,0 + 2c2

2,0 + 3c2
3,0 + 4c2

4,0 + 5c2
5,0 = 0

∂ϕ2

∂ξ

∣∣∣∣∣
(0,1)

= c2
1,0 + c2

1,1η + c2
1,2 + c2

1,2 + c2
1,4 = 0

∂ϕ2

∂η

∣∣∣∣∣
(0,0)

= c2
0,1 = 1

∂ϕ2

∂η

∣∣∣∣∣
(1,0)

= c2
0,1 + c2

1,1 + c2
2,1 + c2

3,1 + c2
4,1 = 0

∂ϕ2

∂η

∣∣∣∣∣
(0,1)

= c2
0,1 + 2c2

0,2 + 3c2
0,3 + 4c2

0,4 + 5c2
0,5 = 0

∂2ϕ2

∂ξ2

∣∣∣∣∣
(0,0)

= 2c2
2,0 = 0

∂2ϕ2

∂ξ2

∣∣∣∣∣
(1,0)

= 2c2
2,0 + 6c2

3,0 + 12c2
4,0 + 20c2

5,0 = 0

∂2ϕ2

∂ξ2

∣∣∣∣∣
(0,1)

= 2c2
2,0 + 2c2

2,1 + 2c2
2,2 + 2c2

2,3 = 0

∂2ϕ2

∂ξ∂η

∣∣∣∣∣
(0,0)

= c2
1,1 = 0

∂2ϕ2

∂ξ∂η

∣∣∣∣∣
(1,0)

= c2
1,1 + 2c2

2,1 + 3c2
3,1 + 4c2

4,1 = 0

∂2ϕ2

∂ξ∂η

∣∣∣∣∣
(0,1)

= c2
1,1 + 2c2

1,2 + 3c2
1,2 + 4c2

1,4 = 0

∂2ϕ2

∂η2

∣∣∣∣∣
(0,0)

= 2c2
0,2 = 0

∂2ϕ2

∂η2

∣∣∣∣∣
(1,0)

= 2c2
0,2 + 2c2

1,2 + 2c2
2,2 + 2c2

3,2 = 0

∂2ϕ2

∂η2

∣∣∣∣∣
(0,1)

= 2c2
0,2 + 6c2

0,3 + 12c2
0,4 + 20c2

0,5 = 0

162

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ2

∂ξ
nξ + ∂ϕ2

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ2

∂η

∣∣∣∣∣(1
2 ,0)

= c2
0,1 + 1

2c
2
1,1 + 1

4c
2
2,1 + 1

8c
2
3,1 + 1

16c
2
4,1 = 0

(
∂ϕ2

∂ξ
nξ + ∂ϕ2

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c2

1,0 + c2
2,0 + c2

1,1 + 3
4c

2
3,0 + 3

4c
2
2,1 + 3

4c
2
1,2 + 1

2c
2
4,0 +

1
2c

2
3,1 + 1

2c
2
2,2 + 1

2c
2
1,2 + 5

16c
2
5,0 + 9

16c
20
4,1 + 7

16c
2
3,2 +

7
16c

2
2,3 + 5

16c
2
1,4 + c2

0,1 + c2
0,2 + 3

4c
2
0,3 + 1

2c
2
0,4 + 5

16c
2
0,5) = 0(

∂ϕ2

∂ξ
nξ + ∂ϕ2

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ2

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c2

0,1 + c2
0,2 + 3

4c
2
0,3 + 1

2c
2
0,4 + 5

16c
2
0,5

)
= 0

The constrains corresponding to ϕ3:

ϕ3|(0,0) = c3
0,0 = 0

ϕ3|(1,0) = c0
0,0 + c0

1,0 + c0
2,0 + c0

3,0 + c0
4,0 + c0

5,0 = 0

ϕ3|(0,1) = c0
0,0 + c0

0,1 + c0
0,2 + c0

0,3 + c0
0,4 + c0

0,5 = 0

∂ϕ3

∂ξ

∣∣∣∣∣
(0,0)

= c3
1,0 = 0

∂ϕ3

∂ξ

∣∣∣∣∣
(1,0)

= c3
1,0 + 2c3

2,0 + 3c3
3,0 + 4c3

4,0 + 5c3
5,0 = 0

∂ϕ3

∂ξ

∣∣∣∣∣
(0,1)

= c3
1,0 + c3

1,1η + c3
1,2 + c3

1,2 + c3
1,4 = 0

∂ϕ3

∂η

∣∣∣∣∣
(0,0)

= c3
0,1 = 0

∂ϕ3

∂η

∣∣∣∣∣
(1,0)

= c3
0,1 + c3

1,1 + c3
2,1 + c3

3,1 + c3
4,1 = 0

∂ϕ3

∂η

∣∣∣∣∣
(0,1)

= c3
0,1 + 2c3

0,2 + 3c3
0,3 + 4c3

0,4 + 5c3
0,5 = 0

163

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ3

∂ξ2

∣∣∣∣∣
(0,0)

= 2c3
2,0 = 1

∂2ϕ3

∂ξ2

∣∣∣∣∣
(1,0)

= 2c3
2,0 + 6c3

3,0 + 12c3
4,0 + 20c3

5,0 = 0

∂2ϕ3

∂ξ2

∣∣∣∣∣
(0,1)

= 2c3
2,0 + 2c3

2,1 + 2c3
2,2 + 2c3

2,3 = 0

∂2ϕ3

∂ξ∂η

∣∣∣∣∣
(0,0)

= c3
1,1 = 0

∂2ϕ3

∂ξ∂η

∣∣∣∣∣
(1,0)

= c3
1,1 + 2c3

2,1 + 3c3
3,1 + 4c3

4,1 = 0

∂2ϕ3

∂ξ∂η

∣∣∣∣∣
(0,1)

= c3
1,1 + 2c3

1,2 + 3c3
1,2 + 4c3

1,4 = 0

∂2ϕ3

∂η2

∣∣∣∣∣
(0,0)

= 2c3
0,2 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(1,0)

= 2c3
0,2 + 2c3

1,2 + 2c3
2,2 + 2c3

3,2 = 0

∂2ϕ3

∂η2

∣∣∣∣∣
(0,1)

= 2c3
0,2 + 6c3

0,3 + 12c3
0,4 + 20c3

0,5 = 0

(
∂ϕ3

∂ξ
nξ + ∂ϕ3

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ3

∂η

∣∣∣∣∣(1
2 ,0)

= c3
0,1 + 1

2c
3
1,1 + 1

4c
3
2,1 + 1

8c
3
3,1 + 1

16c
3
4,1 = 0

(
∂ϕ3

∂ξ
nξ + ∂ϕ3

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c3

1,0 + c3
2,0 + c3

1,1 + 3
4c

3
3,0 + 3

4c
3
2,1 + 3

4c
3
1,2 + 1

2c
3
4,0 +

1
2c

3
3,1 + 1

2c
3
2,2 + 1

2c
3
1,2 + 5

16c
3
5,0 + 9

16c
3
4,1 + 7

16c
3
3,2 +

7
16c

3
2,3 + 5

16c
3
1,4 + c3

0,1 + c3
0,2 + 3

4c
3
0,3 + 1

2c
3
0,4 + 5

16c
3
0,5) = 0(

∂ϕ3

∂ξ
nξ + ∂ϕ3

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ3

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c3

0,1 + c3
0,2 + 3

4c
3
0,3 + 1

2c
3
0,4 + 5

16c
3
0,5

)
= 0

The constrains corresponding to ϕ4:

ϕ4|(0,0) = c4
0,0 = 0

ϕ4|(1,0) = c4
0,0 + c4

1,0 + c4
2,0 + c4

3,0 + c4
4,0 + c4

5,0 = 0

ϕ4|(0,1) = c4
0,0 + c4

0,1 + c4
0,2 + c4

0,3 + c4
0,4 + c4

0,5 = 0

164

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ4

∂ξ

∣∣∣∣∣
(0,0)

= c4
1,0 = 0

∂ϕ4

∂ξ

∣∣∣∣∣
(1,0)

= c4
1,0 + 2c4

2,0 + 3c4
3,0 + 4c4

4,0 + 5c4
5,0 = 0

∂ϕ4

∂ξ

∣∣∣∣∣
(0,1)

= c4
1,0 + c4

1,1η + c4
1,2 + c4

1,2 + c4
1,4 = 0

∂ϕ4

∂η

∣∣∣∣∣
(0,0)

= c4
0,1 = 0

∂ϕ4

∂η

∣∣∣∣∣
(1,0)

= c4
0,1 + c4

1,1 + c4
2,1 + c4

3,1 + c4
4,1 = 0

∂ϕ4

∂η

∣∣∣∣∣
(0,1)

= c4
0,1 + 2c4

0,2 + 3c4
0,3 + 4c4

0,4 + 5c4
0,5 = 0

∂2ϕ4

∂ξ2

∣∣∣∣∣
(0,0)

= 2c4
2,0 = 0

∂2ϕ4

∂ξ2

∣∣∣∣∣
(1,0)

= 2c4
2,0 + 6c4

3,0 + 12c4
4,0 + 20c4

5,0 = 0

∂2ϕ4

∂ξ2

∣∣∣∣∣
(0,1)

= 2c4
2,0 + 2c4

2,1 + 2c4
2,2 + 2c4

2,3 = 0

∂2ϕ4

∂ξ∂η

∣∣∣∣∣
(0,0)

= c4
1,1 = 1

∂2ϕ4

∂ξ∂η

∣∣∣∣∣
(1,0)

= c4
1,1 + 2c4

2,1 + 3c4
3,1 + 4c4

4,1 = 0

∂2ϕ0

∂ξ∂η

∣∣∣∣∣
(0,1)

= c4
1,1 + 2c4

1,2 + 3c4
1,2 + 4c4

1,4 = 0

∂2ϕ4

∂η2

∣∣∣∣∣
(0,0)

= 2c4
0,2 = 0

∂2ϕ4

∂η2

∣∣∣∣∣
(1,0)

= 2c4
0,2 + 2c4

1,2 + 2c4
2,2 + 2c4

3,2 = 0

∂2ϕ4

∂η2

∣∣∣∣∣
(0,1)

= 2c4
0,2 + 6c4

0,3 + 12c4
0,4 + 20c4

0,5 = 0

165

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ4

∂ξ
nξ + ∂ϕ4

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ4

∂η

∣∣∣∣∣(1
2 ,0)

= c4
0,1 + 1

2c
4
1,1 + 1

4c
4
2,1 + 1

8c
4
3,1 + 1

16c
4
4,1 = 0

(
∂ϕ4

∂ξ
nξ + ∂ϕ4

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c4

1,0 + c4
2,0 + c4

1,1 + 3
4c

4
3,0 + 3

4c
4
2,1 + 3

4c
4
1,2 + 1

2c
4
4,0 +

1
2c

4
3,1 + 1

2c
4
2,2 + 1

2c
4
1,2 + 5

16c
4
5,0 + 9

16c
4
4,1 + 7

16c
4
3,2 +

7
16c

4
2,3 + 5

16c
4
1,4 + c4

0,1 + c4
0,2 + 3

4c
4
0,3 + 1

2c
4
0,4 + 5

16c
4
0,5) = 0(

∂ϕ4

∂ξ
nξ + ∂ϕ4

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ4

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c4

0,1 + c4
0,2 + 3

4c
4
0,3 + 1

2c
4
0,4 + 5

16c
4
0,5

)
= 0

The constrains corresponding to ϕ5:

ϕ5|(0,0) = c5
0,0 = 0

ϕ5|(1,0) = c5
0,0 + c5

1,0 + c5
2,0 + c5

3,0 + c5
4,0 + c5

5,0 = 0

ϕ5|(0,1) = c5
0,0 + c5

0,1 + c5
0,2 + c5

0,3 + c5
0,4 + c5

0,5 = 0

∂ϕ5

∂ξ

∣∣∣∣∣
(0,0)

= c5
1,0 = 0

∂ϕ5

∂ξ

∣∣∣∣∣
(1,0)

= c5
1,0 + 2c5

2,0 + 3c5
3,0 + 4c5

4,0 + 5c5
5,0 = 0

∂ϕ5

∂ξ

∣∣∣∣∣
(0,1)

= c5
1,0 + c5

1,1η + c5
1,2 + c5

1,2 + c5
1,4 = 0

∂ϕ5

∂η

∣∣∣∣∣
(0,0)

= c5
0,1 = 0

∂ϕ5

∂η

∣∣∣∣∣
(1,0)

= c5
0,1 + c5

1,1 + c5
2,1 + c5

3,1 + c5
4,1 = 0

∂ϕ5

∂η

∣∣∣∣∣
(0,1)

= c5
0,1 + 2c5

0,2 + 3c5
0,3 + 4c5

0,4 + 5c5
0,5 = 0

166

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ5

∂ξ2

∣∣∣∣∣
(0,0)

= 2c5
2,0 = 0

∂2ϕ5

∂ξ2

∣∣∣∣∣
(1,0)

= 2c5
2,0 + 6c5

3,0 + 12c5
4,0 + 20c5

5,0 = 0

∂2ϕ5

∂ξ2

∣∣∣∣∣
(0,1)

= 2c5
2,0 + 2c5

2,1 + 2c5
2,2 + 2c5

2,3 = 0

∂2ϕ5

∂ξ∂η

∣∣∣∣∣
(0,0)

= c5
1,1 = 0

∂2ϕ5

∂ξ∂η

∣∣∣∣∣
(1,0)

= c5
1,1 + 2c5

2,1 + 3c5
3,1 + 4c5

4,1 = 0

∂2ϕ5

∂ξ∂η

∣∣∣∣∣
(0,1)

= c5
1,1 + 2c5

1,2 + 3c5
1,2 + 4c5

1,4 = 0

∂2ϕ5

∂η2

∣∣∣∣∣
(0,0)

= 2c5
0,2 = 1

∂2ϕ5

∂η2

∣∣∣∣∣
(1,0)

= 2c5
0,2 + 2c5

1,2 + 2c5
2,2 + 2c5

3,2 = 0

∂2ϕ5

∂η2

∣∣∣∣∣
(0,1)

= 2c5
0,2 + 6c5

0,3 + 12c5
0,4 + 20c5

0,5 = 0

(
∂ϕ5

∂ξ
nξ + ∂ϕ5

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ5

∂η

∣∣∣∣∣(1
2 ,0)

= c5
0,1 + 1

2c
5
1,1 + 1

4c
5
2,1 + 1

8c
5
3,1 + 1

16c
5
4,1 = 0

(
∂ϕ5

∂ξ
nξ + ∂ϕ5

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c5

1,0 + c5
2,0 + c5

1,1 + 3
4c

5
3,0 + 3

4c
5
2,1 + 3

4c
5
1,2 + 1

2c
5
4,0 +

1
2c

5
3,1 + 1

2c
5
2,2 + 1

2c
5
1,2 + 5

16c
5
5,0 + 9

16c
5
4,1 + 7

16c
5
3,2 +

7
16c

5
2,3 + 5

16c
5
1,4 + c5

0,1 + c5
0,2 + 3

4c
5
0,3 + 1

2c
5
0,4 + 5

16c
5
0,5) = 0(

∂ϕ5

∂ξ
nξ + ∂ϕ5

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ5

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c5

0,1 + c5
0,2 + 3

4c
5
0,3 + 1

2c
5
0,4 + 5

16c
5
0,5

)
= 0

The constrains corresponding to ϕ6:

ϕ6|(0,0) = c6
0,0 = 0

ϕ6|(1,0) = c6
0,0 + c6

1,0 + c6
2,0 + c6

3,0 + c6
4,0 + c6

5,0 = 1

ϕ6|(0,1) = c6
0,0 + c6

0,1 + c6
0,2 + c6

0,3 + c6
0,4 + c6

0,5 = 0

167

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ6

∂ξ

∣∣∣∣∣
(0,0)

= c6
1,0 = 0

∂ϕ6

∂ξ

∣∣∣∣∣
(1,0)

= c6
1,0 + 2c6

2,0 + 3c6
3,0 + 4c6

4,0 + 5c6
5,0 = 0

∂ϕ6

∂ξ

∣∣∣∣∣
(0,1)

= c6
1,0 + c6

1,1η + c6
1,2 + c6

1,2 + c6
1,4 = 0

∂ϕ6

∂η

∣∣∣∣∣
(0,0)

= c6
0,1 = 0

∂ϕ6

∂η

∣∣∣∣∣
(1,0)

= c6
0,1 + c6

1,1 + c6
2,1 + c6

3,1 + c6
4,1 = 0

∂ϕ6

∂η

∣∣∣∣∣
(0,1)

= c6
0,1 + 2c6

0,2 + 3c6
0,3 + 4c6

0,4 + 5c6
0,5 = 0

∂2ϕ6

∂ξ2

∣∣∣∣∣
(0,0)

= 2c6
2,0 = 0

∂2ϕ6

∂ξ2

∣∣∣∣∣
(1,0)

= 2c6
2,0 + 6c6

3,0 + 12c6
4,0 + 20c6

5,0 = 0

∂2ϕ6

∂ξ2

∣∣∣∣∣
(0,1)

= 2c6
2,0 + 2c6

2,1 + 2c6
2,2 + 2c6

2,3 = 0

∂2ϕ6

∂ξ∂η

∣∣∣∣∣
(0,0)

= c6
1,1 = 0

∂2ϕ6

∂ξ∂η

∣∣∣∣∣
(1,0)

= c6
1,1 + 2c6

2,1 + 3c6
3,1 + 4c6

4,1 = 0

∂2ϕ6

∂ξ∂η

∣∣∣∣∣
(0,1)

= c6
1,1 + 2c6

1,2 + 3c6
1,2 + 4c6

1,4 = 0

∂2ϕ6

∂η2

∣∣∣∣∣
(0,0)

= 2c6
0,2 = 0

∂2ϕ6

∂η2

∣∣∣∣∣
(1,0)

= 2c6
0,2 + 2c6

1,2 + 2c6
2,2 + 2c6

3,2 = 0

∂2ϕ6

∂η2

∣∣∣∣∣
(0,1)

= 2c6
0,2 + 6c6

0,3 + 12c6
0,4 + 20c6

0,5 = 0

168

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ6

∂ξ
nξ + ∂ϕ6

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ6

∂η

∣∣∣∣∣(1
2 ,0)

= c6
0,1 + 1

2c
6
1,1 + 1

4c
6
2,1 + 1

8c
6
3,1 + 1

16c
6
4,1 = 0

(
∂ϕ6

∂ξ
nξ + ∂ϕ6

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c6

1,0 + c6
2,0 + c6

1,1 + 3
4c

6
3,0 + 3

4c
6
2,1 + 3

4c
6
1,2 + 1

2c
6
4,0 +

1
2c

6
3,1 + 1

2c
6
2,2 + 1

2c
6
1,2 + 5

16c
6
5,0 + 9

16c
6
4,1 + 7

16c
6
3,2 +

7
16c

6
2,3 + 5

16c
6
1,4 + c6

0,1 + c6
0,2 + 3

4c
6
0,3 + 1

2c
6
0,4 + 5

16c
6
0,5) = 0(

∂ϕ6

∂ξ
nξ + ∂ϕ6

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ6

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c6

0,1 + c6
0,2 + 3

4c
6
0,3 + 1

2c
6
0,4 + 5

16c
6
0,5

)
= 0

The constrains corresponding to ϕ7:

ϕ7|(0,0) = c7
0,0 = 0

ϕ7|(1,0) = c7
0,0 + c7

1,0 + c7
2,0 + c7

3,0 + c7
4,0 + c7

5,0 = 0

ϕ7|(0,1) = c7
0,0 + c7

0,1 + c7
0,2 + c7

0,3 + c7
0,4 + c7

0,5 = 0

∂ϕ7

∂ξ

∣∣∣∣∣
(0,0)

= c7
1,0 = 0

∂ϕ7

∂ξ

∣∣∣∣∣
(1,0)

= c7
1,0 + 2c7

2,0 + 3c7
3,0 + 4c7

4,0 + 5c7
5,0 = 1

∂ϕ7

∂ξ

∣∣∣∣∣
(0,1)

= c7
1,0 + c7

1,1η + c7
1,2 + c7

1,2 + c7
1,4 = 0

∂ϕ7

∂η

∣∣∣∣∣
(0,0)

= c7
0,1 = 0

∂ϕ7

∂η

∣∣∣∣∣
(1,0)

= c7
0,1 + c7

1,1 + c7
2,1 + c7

3,1 + c7
4,1 = 0

∂ϕ7

∂η

∣∣∣∣∣
(0,1)

= c7
0,1 + 2c7

0,2 + 3c7
0,3 + 4c7

0,4 + 5c7
0,5 = 0

169

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ7

∂ξ2

∣∣∣∣∣
(0,0)

= 2c7
2,0 = 0

∂2ϕ7

∂ξ2

∣∣∣∣∣
(1,0)

= 2c7
2,0 + 6c7

3,0 + 12c7
4,0 + 20c7

5,0 = 0

∂2ϕ7

∂ξ2

∣∣∣∣∣
(0,1)

= 2c7
2,0 + 2c7

2,1 + 2c7
2,2 + 2c7

2,3 = 0

∂2ϕ7

∂ξ∂η

∣∣∣∣∣
(0,0)

= c7
1,1 = 0

∂2ϕ7

∂ξ∂η

∣∣∣∣∣
(1,0)

= c7
1,1 + 2c7

2,1 + 3c7
3,1 + 4c7

4,1 = 0

∂2ϕ7

∂ξ∂η

∣∣∣∣∣
(0,1)

= c7
1,1 + 2c7

1,2 + 3c7
1,2 + 4c7

1,4 = 0

∂2ϕ7

∂η2

∣∣∣∣∣
(0,0)

= 2c0
0,2 = 0

∂2ϕ7

∂η2

∣∣∣∣∣
(1,0)

= 2c7
0,2 + 2c7

1,2 + 2c7
2,2 + 2c7

3,2 = 0

∂2ϕ7

∂η2

∣∣∣∣∣
(0,1)

= 2c7
0,2 + 6c7

0,3 + 12c7
0,4 + 20c7

0,5 = 0

(
∂ϕ7

∂ξ
nξ + ∂ϕ7

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ7

∂η

∣∣∣∣∣(1
2 ,0)

= c7
0,1 + 1

2c
7
1,1 + 1

4c
7
2,1 + 1

8c
7
3,1 + 1

16c
7
4,1 = 0

(
∂ϕ7

∂ξ
nξ + ∂ϕ7

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c7

1,0 + c7
2,0 + c7

1,1 + 3
4c

7
3,0 + 3

4c
7
2,1 + 3

4c
7
1,2 + 1

2c
7
4,0 +

1
2c

7
3,1 + 1

2c
7
2,2 + 1

2c
7
1,2 + 5

16c
7
5,0 + 9

16c
7
4,1 + 7

16c
7
3,2 +

7
16c

7
2,3 + 5

16c
7
1,4 + c7

0,1 + c7
0,2 + 3

4c
7
0,3 + 1

2c
7
0,4 + 5

16c
7
0,5) = 0(

∂ϕ7

∂ξ
nξ + ∂ϕ7

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ7

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c7

0,1 + c7
0,2 + 3

4c
7
0,3 + 1

2c
7
0,4 + 5

16c
7
0,5

)
= 0

The constrains corresponding to ϕ8:

ϕ8|(0,0) = c8
0,0 = 0

ϕ8|(1,0) = c8
0,0 + c8

1,0 + c8
2,0 + c8

3,0 + c8
4,0 + c8

5,0 = 0

ϕ8|(0,1) = c8
0,0 + c8

0,1 + c8
0,2 + c8

0,3 + c8
0,4 + c8

0,5 = 0

170

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ8

∂ξ

∣∣∣∣∣
(0,0)

= c8
1,0 = 0

∂ϕ8

∂ξ

∣∣∣∣∣
(1,0)

= c8
1,0 + 2c8

2,0 + 3c8
3,0 + 4c8

4,0 + 5c8
5,0 = 0

∂ϕ8

∂ξ

∣∣∣∣∣
(0,1)

= c8
1,0 + c8

1,1η + c8
1,2 + c8

1,2 + c8
1,4 = 0

∂ϕ8

∂η

∣∣∣∣∣
(0,0)

= c8
0,1 = 0

∂ϕ8

∂η

∣∣∣∣∣
(1,0)

= c8
0,1 + c8

1,1 + c8
2,1 + c8

3,1 + c8
4,1 = 1

∂ϕ8

∂η

∣∣∣∣∣
(0,1)

= c8
0,1 + 2c8

0,2 + 3c8
0,3 + 4c8

0,4 + 5c8
0,5 = 0

∂2ϕ8

∂ξ2

∣∣∣∣∣
(0,0)

= 2c8
2,0 = 0

∂2ϕ8

∂ξ2

∣∣∣∣∣
(1,0)

= 2c8
2,0 + 6c8

3,0 + 12c8
4,0 + 20c8

5,0 = 0

∂2ϕ8

∂ξ2

∣∣∣∣∣
(0,1)

= 2c8
2,0 + 2c8

2,1 + 2c8
2,2 + 2c8

2,3 = 0

∂2ϕ8

∂ξ∂η

∣∣∣∣∣
(0,0)

= c8
1,1 = 0

∂2ϕ8

∂ξ∂η

∣∣∣∣∣
(1,0)

= c8
1,1 + 2c8

2,1 + 3c8
3,1 + 4c8

4,1 = 0

∂2ϕ8

∂ξ∂η

∣∣∣∣∣
(0,1)

= c8
1,1 + 2c8

1,2 + 3c8
1,2 + 4c8

1,4 = 0

∂2ϕ8

∂η2

∣∣∣∣∣
(0,0)

= 2c8
0,2 = 0

∂2ϕ8

∂η2

∣∣∣∣∣
(1,0)

= 2c8
0,2 + 2c8

1,2 + 2c8
2,2 + 2c8

3,2 = 0

∂2ϕ8

∂η2

∣∣∣∣∣
(0,1)

= 2c8
0,2 + 6c08

0,3 + 12c8
0,4 + 20c8

0,5 = 0

171

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ8

∂ξ
nξ + ∂ϕ8

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ8

∂η

∣∣∣∣∣(1
2 ,0)

= c8
0,1 + 1

2c
8
1,1 + 1

4c
8
2,1 + 1

8c
8
3,1 + 1

16c
8
4,1 = 0

(
∂ϕ8

∂ξ
nξ + ∂ϕ8

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c8

1,0 + c8
2,0 + c8

1,1 + 3
4c

8
3,0 + 3

4c
8
2,1 + 3

4c
8
1,2 + 1

2c
8
4,0 +

1
2c

8
3,1 + 1

2c
8
2,2 + 1

2c
8
1,2 + 5

16c
8
5,0 + 9

16c
8
4,1 + 7

16c
8
3,2 +

7
16c

8
2,3 + 5

16c
8
1,4 + c8

0,1 + c8
0,2 + 3

4c
8
0,3 + 1

2c
8
0,4 + 5

16c
8
0,5) = 0(

∂ϕ8

∂ξ
nξ + ∂ϕ8

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ8

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c8

0,1 + c8
0,2 + 3

4c
8
0,3 + 1

2c
8
0,4 + 5

16c
8
0,5

)
= 0

The constrains corresponding to ϕ9:

ϕ9|(0,0) = c9
0,0 = 0

ϕ9|(1,0) = c9
0,0 + c9

1,0 + c9
2,0 + c9

3,0 + c9
4,0 + c9

5,0 = 0

ϕ9|(0,1) = c9
0,0 + c9

0,1 + c9
0,2 + c9

0,3 + c9
0,4 + c9

0,5 = 0

∂ϕ9

∂ξ

∣∣∣∣∣
(0,0)

= c9
1,0 = 0

∂ϕ9

∂ξ

∣∣∣∣∣
(1,0)

= c9
1,0 + 2c9

2,0 + 3c9
3,0 + 4c9

4,0 + 5c9
5,0 = 0

∂ϕ9

∂ξ

∣∣∣∣∣
(0,1)

= c9
1,0 + c9

1,1η + c9
1,2 + c9

1,2 + c9
1,4 = 0

∂ϕ9

∂η

∣∣∣∣∣
(0,0)

= c9
0,1 = 0

∂ϕ9

∂η

∣∣∣∣∣
(1,0)

= c9
0,1 + c9

1,1 + c9
2,1 + c9

3,1 + c9
4,1 = 0

∂ϕ9

∂η

∣∣∣∣∣
(0,1)

= c9
0,1 + 2c9

0,2 + 3c9
0,3 + 4c9

0,4 + 5c9
0,5 = 0

172

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ9

∂ξ2

∣∣∣∣∣
(0,0)

= 2c9
2,0 = 0

∂2ϕ9

∂ξ2

∣∣∣∣∣
(1,0)

= 2c9
2,0 + 6c9

3,0 + 12c9
4,0 + 20c9

5,0 = 1

∂2ϕ9

∂ξ2

∣∣∣∣∣
(0,1)

= 2c9
2,0 + 2c9

2,1 + 2c9
2,2 + 2c9

2,3 = 0

∂2ϕ9

∂ξ∂η

∣∣∣∣∣
(0,0)

= c9
1,1 = 0

∂2ϕ9

∂ξ∂η

∣∣∣∣∣
(1,0)

= c9
1,1 + 2c9

2,1 + 3c9
3,1 + 4c9

4,1 = 0

∂2ϕ9

∂ξ∂η

∣∣∣∣∣
(0,1)

= c9
1,1 + 2c9

1,2 + 3c9
1,2 + 4c9

1,4 = 0

∂2ϕ9

∂η2

∣∣∣∣∣
(0,0)

= 2c9
0,2 = 0

∂2ϕ9

∂η2

∣∣∣∣∣
(1,0)

= 2c9
0,2 + 2c9

1,2 + 2c9
2,2 + 2c9

3,2 = 0

∂2ϕ9

∂η2

∣∣∣∣∣
(0,1)

= 2c9
0,2 + 6c9

0,3 + 12c9
0,4 + 20c9

0,5 = 0

(
∂ϕ9

∂ξ
nξ + ∂ϕ9

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ9

∂η

∣∣∣∣∣(1
2 ,0)

= c9
0,1 + 1

2c
9
1,1 + 1

4c
9
2,1 + 1

8c
9
3,1 + 1

16c
9
4,1 = 0

(
∂ϕ9

∂ξ
nξ + ∂ϕ9

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c9

1,0 + c9
2,0 + c9

1,1 + 3
4c

9
3,0 + 3

4c
9
2,1 + 3

4c
9
1,2 + 1

2c
9
4,0 +

1
2c

9
3,1 + 1

2c
9
2,2 + 1

2c
9
1,2 + 5

16c
9
5,0 + 9

16c
9
4,1 + 7

16c
9
3,2 +

7
16c

9
2,3 + 5

16c
9
1,4 + c9

0,1 + c9
0,2 + 3

4c
9
0,3 + 1

2c
9
0,4 + 5

16c
9
0,5) = 0(

∂ϕ9

∂ξ
nξ + ∂ϕ9

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ9

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c9

0,1 + c9
0,2 + 3

4c
9
0,3 + 1

2c
9
0,4 + 5

16c
9
0,5

)
= 0

The constrains corresponding to ϕ10:

ϕ10|(0,0) = c10
0,0 = 0

ϕ10|(1,0) = c10
0,0 + c10

1,0 + c10
2,0 + c10

3,0 + c10
4,0 + c10

5,0 = 0

ϕ10|(0,1) = c10
0,0 + c10

0,1 + c10
0,2 + c10

0,3 + c10
0,4 + c10

0,5 = 0

173

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ10

∂ξ

∣∣∣∣∣
(0,0)

= c10
1,0 = 0

∂ϕ10

∂ξ

∣∣∣∣∣
(1,0)

= c10
1,0 + 2c10

2,0 + 3c10
3,0 + 4c10

4,0 + 5c10
5,0 = 0

∂ϕ10

∂ξ

∣∣∣∣∣
(0,1)

= c10
1,0 + c10

1,1η + c10
1,2 + c10

1,2 + c10
1,4 = 0

∂ϕ10

∂η

∣∣∣∣∣
(0,0)

= c10
0,1 = 0

∂ϕ10

∂η

∣∣∣∣∣
(1,0)

= c10
0,1 + c10

1,1 + c10
2,1 + c10

3,1 + c10
4,1 = 0

∂ϕ10

∂η

∣∣∣∣∣
(0,1)

= c10
0,1 + 2c10

0,2 + 3c10
0,3 + 4c10

0,4 + 5c10
0,5 = 0

∂2ϕ10

∂ξ2

∣∣∣∣∣
(0,0)

= 2c10
2,0 = 0

∂2ϕ10

∂ξ2

∣∣∣∣∣
(1,0)

= 2c10
2,0 + 6c10

3,0 + 12c10
4,0 + 20c10

5,0 = 0

∂2ϕ10

∂ξ2

∣∣∣∣∣
(0,1)

= 2c10
2,0 + 2c10

2,1 + 2c10
2,2 + 2c10

2,3 = 0

∂2ϕ10

∂ξ∂η

∣∣∣∣∣
(0,0)

= c10
1,1 = 0

∂2ϕ10

∂ξ∂η

∣∣∣∣∣
(1,0)

= c10
1,1 + 2c10

2,1 + 3c10
3,1 + 4c10

4,1 = 1

∂2ϕ10

∂ξ∂η

∣∣∣∣∣
(0,1)

= c10
1,1 + 2c10

1,2 + 3c10
1,2 + 4c10

1,4 = 0

∂2ϕ10

∂η2

∣∣∣∣∣
(0,0)

= 2c10
0,2 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(1,0)

= 2c10
0,2 + 2c10

1,2 + 2c10
2,2 + 2c10

3,2 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(0,1)

= 2c10
0,2 + 6c10

0,3 + 12c10
0,4 + 20c10

0,5 = 0

174

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ10

∂ξ
nξ + ∂ϕ10

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ10

∂η

∣∣∣∣∣(1
2 ,0)

= c10
0,1 + 1

2c
10
1,1 + 1

4c
10
2,1 + 1

8c
10
3,1 + 1

16c
10
4,1 = 0

(
∂ϕ10

∂ξ
nξ + ∂ϕ10

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c10

1,0 + c10
2,0 + c10

1,1 + 3
4c

10
3,0 + 3

4c
10
2,1 + 3

4c
10
1,2 + 1

2c
10
4,0 +

1
2c

10
3,1 + 1

2c
10
2,2 + 1

2c
10
1,2 + 5

16c
10
5,0 + 9

16c
10
4,1 + 7

16c
10
3,2 +

7
16c

10
2,3 + 5

16c
10
1,4 + c10

0,1 + c10
0,2 + 3

4c
10
0,3 + 1

2c
10
0,4 + 5

16c
10
0,5) = 0(

∂ϕ10

∂ξ
nξ + ∂ϕ10

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ10

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c10

0,1 + c10
0,2 + 3

4c
10
0,3 + 1

2c
10
0,4 + 5

16c
10
0,5

)
= 0

The constrains corresponding to ϕ11:

ϕ11|(0,0) = c11
0,0 = 0

ϕ11|(1,0) = c11
0,0 + c11

1,0 + c11
2,0 + c11

3,0 + c11
4,0 + c11

5,0 = 0

ϕ11|(0,1) = c11
0,0 + c11

0,1 + c11
0,2 + c11

0,3 + c11
0,4 + c11

0,5 = 0

∂ϕ11

∂ξ

∣∣∣∣∣
(0,0)

= c11
1,0 = 0

∂ϕ11

∂ξ

∣∣∣∣∣
(1,0)

= c11
1,0 + 2c11

2,0 + 3c11
3,0 + 4c11

4,0 + 5c11
5,0 = 0

∂ϕ11

∂ξ

∣∣∣∣∣
(0,1)

= c11
1,0 + c11

1,1η + c11
1,2 + c11

1,2 + c11
1,4 = 0

∂ϕ11

∂η

∣∣∣∣∣
(0,0)

= c11
0,1 = 0

∂ϕ11

∂η

∣∣∣∣∣
(1,0)

= c11
0,1 + c11

1,1 + c11
2,1 + c11

3,1 + c11
4,1 = 0

∂ϕ11

∂η

∣∣∣∣∣
(0,1)

= c11
0,1 + 2c11

0,2 + 3c11
0,3 + 4c11

0,4 + 5c11
0,5 = 0

175

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ11

∂ξ2

∣∣∣∣∣
(0,0)

= 2c11
2,0 = 0

∂2ϕ11

∂ξ2

∣∣∣∣∣
(1,0)

= 2c11
2,0 + 6c11

3,0 + 12c11
4,0 + 20c11

5,0 = 0

∂2ϕ11

∂ξ2

∣∣∣∣∣
(0,1)

= 2c11
2,0 + 2c11

2,1 + 2c11
2,2 + 2c11

2,3 = 0

∂2ϕ11

∂ξ∂η

∣∣∣∣∣
(0,0)

= c11
1,1 = 0

∂2ϕ11

∂ξ∂η

∣∣∣∣∣
(1,0)

= c11
1,1 + 2c11

2,1 + 3c11
3,1 + 4c11

4,1 = 0

∂2ϕ11

∂ξ∂η

∣∣∣∣∣
(0,1)

= c11
1,1 + 2c11

1,2 + 3c11
1,2 + 4c11

1,4 = 0

∂2ϕ11

∂η2

∣∣∣∣∣
(0,0)

= 2c11
0,2 = 0

∂2ϕ11

∂η2

∣∣∣∣∣
(1,0)

= 2c11
0,2 + 2c11

1,2 + 2c11
2,2 + 2c11

3,2 = 1

∂2ϕ11

∂η2

∣∣∣∣∣
(0,1)

= 2c11
0,2 + 6c11

0,3 + 12c11
0,4 + 20c11

0,5 = 0

(
∂ϕ11

∂ξ
nξ + ∂ϕ11

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ11

∂η

∣∣∣∣∣(1
2 ,0)

= c11
0,1 + 1

2c
11
1,1 + 1

4c
11
2,1 + 1

8c
11
3,1 + 1

16c
11
4,1 = 0

(
∂ϕ11

∂ξ
nξ + ∂ϕ11

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c11

1,0 + c11
2,0 + c11

1,1 + 3
4c

11
3,0 + 3

4c
11
2,1 + 3

4c
11
1,2 + 1

2c
11
4,0 +

1
2c

11
3,1 + 1

2c
11
2,2 + 1

2c
11
1,2 + 5

16c
11
5,0 + 9

16c
11
4,1 + 7

16c
11
3,2 +

7
16c

11
2,3 + 5

16c
11
1,4 + c11

0,1 + c11
0,2 + 3

4c
11
0,3 + 1

2c
11
0,4 + 5

16c
11
0,5) = 0(

∂ϕ11

∂ξ
nξ + ∂ϕ11

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ11

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c11

0,1 + c11
0,2 + 3

4c
11
0,3 + 1

2c
11
0,4 + 5

16c
11
0,5

)
= 0

The constrains corresponding to ϕ12:

ϕ12|(0,0) = c12
0,0 = 0

ϕ12|(1,0) = c12
0,0 + c12

1,0 + c12
2,0 + c12

3,0 + c12
4,0 + c12

5,0 = 0

ϕ12|(0,1) = c12
0,0 + c12

0,1 + c12
0,2 + c12

0,3 + c12
0,4 + c12

0,5 = 1

176

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ12

∂ξ

∣∣∣∣∣
(0,0)

= c12
1,0 = 0

∂ϕ12

∂ξ

∣∣∣∣∣
(1,0)

= c12
1,0 + 2c12

2,0 + 3c12
3,0 + 4c12

4,0 + 5c12
5,0 = 0

∂ϕ12

∂ξ

∣∣∣∣∣
(0,1)

= c12
1,0 + c12

1,1η + c12
1,2 + c12

1,2 + c12
1,4 = 0

∂ϕ12

∂η

∣∣∣∣∣
(0,0)

= c12
0,1 = 0

∂ϕ12

∂η

∣∣∣∣∣
(1,0)

= c12
0,1 + c12

1,1 + c12
2,1 + c12

3,1 + c12
4,1 = 0

∂ϕ12

∂η

∣∣∣∣∣
(0,1)

= c12
0,1 + 2c12

0,2 + 3c12
0,3 + 4c12

0,4 + 5c12
0,5 = 0

∂2ϕ12

∂ξ2

∣∣∣∣∣
(0,0)

= 2c12
2,0 = 0

∂2ϕ12

∂ξ2

∣∣∣∣∣
(1,0)

= 2c12
2,0 + 6c12

3,0 + 12c12
4,0 + 20c12

5,0 = 0

∂2ϕ12

∂ξ2

∣∣∣∣∣
(0,1)

= 2c12
2,0 + 2c12

2,1 + 2c12
2,2 + 2c12

2,3 = 0

∂2ϕ12

∂ξ∂η

∣∣∣∣∣
(0,0)

= c12
1,1 = 0

∂2ϕ12

∂ξ∂η

∣∣∣∣∣
(1,0)

= c12
1,1 + 2c12

2,1 + 3c12
3,1 + 4c12

4,1 = 0

∂2ϕ12

∂ξ∂η

∣∣∣∣∣
(0,1)

= c12
1,1 + 2c12

1,2 + 3c12
1,2 + 4c12

1,4 = 0

∂2ϕ12

∂η2

∣∣∣∣∣
(0,0)

= 2c12
0,2 = 0

∂2ϕ12

∂η2

∣∣∣∣∣
(1,0)

= 2c12
0,2 + 2c12

1,2 + 2c12
2,2 + 2c12

3,2 = 0

∂2ϕ12

∂η2

∣∣∣∣∣
(0,1)

= 2c12
0,2 + 6c12

0,3 + 12c12
0,4 + 20c12

0,5 = 0

177

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ12

∂ξ
nξ + ∂ϕ12

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ12

∂η

∣∣∣∣∣(1
2 ,0)

= c12
0,1 + 1

2c
12
1,1 + 1

4c
12
2,1 + 1

8c
12
3,1 + 1

16c
12
4,1 = 0

(
∂ϕ12

∂ξ
nξ + ∂ϕ12

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c12

1,0 + c12
2,0 + c12

1,1 + 3
4c

12
3,0 + 3

4c
12
2,1 + 3

4c
12
1,2 + 1

2c
12
4,0 +

1
2c

12
3,1 + 1

2c
12
2,2 + 1

2c
12
1,2 + 5

16c
12
5,0 + 9

16c
12
4,1 + 7

16c
12
3,2 +

7
16c

12
2,3 + 5

16c
12
1,4 + c12

0,1 + c12
0,2 + 3

4c
12
0,3 + 1

2c
12
0,4 + 5

16c
12
0,5) = 0(

∂ϕ12

∂ξ
nξ + ∂ϕ12

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ12

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c12

0,1 + c12
0,2 + 3

4c
12
0,3 + 1

2c
12
0,4 + 5

16c
12
0,5

)
= 0

The constrains corresponding to ϕ13:

ϕ13|(0,0) = c13
0,0 = 0

ϕ13|(1,0) = c13
0,0 + c13

1,0 + c13
2,0 + c13

3,0 + c13
4,0 + c13

5,0 = 0

ϕ13|(0,1) = c13
0,0 + c13

0,1 + c13
0,2 + c13

0,3 + c13
0,4 + c13

0,5 = 0

∂ϕ13

∂ξ

∣∣∣∣∣
(0,0)

= c13
1,0 = 0

∂ϕ13

∂ξ

∣∣∣∣∣
(1,0)

= c13
1,0 + 2c13

2,0 + 3c13
3,0 + 4c13

4,0 + 5c13
5,0 = 0

∂ϕ13

∂ξ

∣∣∣∣∣
(0,1)

= c13
1,0 + c13

1,1η + c13
1,2 + c13

1,2 + c13
1,4 = 1

∂ϕ13

∂η

∣∣∣∣∣
(0,0)

= c13
0,1 = 0

∂ϕ13

∂η

∣∣∣∣∣
(1,0)

= c13
0,1 + c13

1,1 + c13
2,1 + c13

3,1 + c13
4,1 = 0

∂ϕ13

∂η

∣∣∣∣∣
(0,1)

= c13
0,1 + 2c13

0,2 + 3c13
0,3 + 4c13

0,4 + 5c13
0,5 = 0

178

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ13

∂ξ2

∣∣∣∣∣
(0,0)

= 2c13
2,0 = 0

∂2ϕ13

∂ξ2

∣∣∣∣∣
(1,0)

= 2c13
2,0 + 6c13

3,0 + 12c13
4,0 + 20c13

5,0 = 0

∂2ϕ13

∂ξ2

∣∣∣∣∣
(0,1)

= 2c13
2,0 + 2c13

2,1 + 2c13
2,2 + 2c13

2,3 = 0

∂2ϕ13

∂ξ∂η

∣∣∣∣∣
(0,0)

= c13
1,1 = 0

∂2ϕ13

∂ξ∂η

∣∣∣∣∣
(1,0)

= c13
1,1 + 2c13

2,1 + 3c13
3,1 + 4c13

4,1 = 0

∂2ϕ13

∂ξ∂η

∣∣∣∣∣
(0,1)

= c13
1,1 + 2c13

1,2 + 3c13
1,2 + 4c13

1,4 = 0

∂2ϕ13

∂η2

∣∣∣∣∣
(0,0)

= 2c13
0,2 = 0

∂2ϕ13

∂η2

∣∣∣∣∣
(1,0)

= 2c13
0,2 + 2c13

1,2 + 2c13
2,2 + 2c13

3,2 = 0

∂2ϕ13

∂η2

∣∣∣∣∣
(0,1)

= 2c13
0,2 + 6c13

0,3 + 12c13
0,4 + 20c13

0,5 = 0

(
∂ϕ13

∂ξ
nξ + ∂ϕ13

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ13

∂η

∣∣∣∣∣(1
2 ,0)

= c13
0,1 + 1

2c
13
1,1 + 1

4c
13
2,1 + 1

8c
13
3,1 + 1

16c
13
4,1 = 0

(
∂ϕ13

∂ξ
nξ + ∂ϕ13

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c13

1,0 + c13
2,0 + c13

1,1 + 3
4c

13
3,0 + 3

4c
13
2,1 + 3

4c
13
1,2 + 1

2c
13
4,0 +

1
2c

13
3,1 + 1

2c
13
2,2 + 1

2c
13
1,2 + 5

16c
13
5,0 + 9

16c
13
4,1 + 7

16c
13
3,2 +

7
16c

13
2,3 + 5

16c
13
1,4 + c13

0,1 + c13
0,2 + 3

4c
13
0,3 + 1

2c
13
0,4 + 5

16c
13
0,5) = 0(

∂ϕ13

∂ξ
nξ + ∂ϕ13

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ13

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c13

0,1 + c13
0,2 + 3

4c
13
0,3 + 1

2c
13
0,4 + 5

16c
13
0,5

)
= 0

The constrains corresponding to ϕ14:

ϕ14|(0,0) = c14
0,0 = 0

ϕ14|(1,0) = c14
0,0 + c14

1,0 + c14
2,0 + c14

3,0 + c14
4,0 + c14

5,0 = 0

ϕ14|(0,1) = c14
0,0 + c14

0,1 + c14
0,2 + c14

0,3 + c14
0,4 + c14

0,5 = 0

179

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ14

∂ξ

∣∣∣∣∣
(0,0)

= c14
1,0 = 0

∂ϕ14

∂ξ

∣∣∣∣∣
(1,0)

= c14
1,0 + 2c14

2,0 + 3c14
3,0 + 4c14

4,0 + 5c14
5,0 = 0

∂ϕ14

∂ξ

∣∣∣∣∣
(0,1)

= c14
1,0 + c14

1,1η + c14
1,2 + c14

1,2 + c14
1,4 = 0

∂ϕ14

∂η

∣∣∣∣∣
(0,0)

= c14
0,1 = 0

∂ϕ14

∂η

∣∣∣∣∣
(1,0)

= c14
0,1 + c14

1,1 + c14
2,1 + c14

3,1 + c14
4,1 = 0

∂ϕ14

∂η

∣∣∣∣∣
(0,1)

= c4
0,1 + 2c14

0,2 + 3c14
0,3 + 4c14

0,4 + 5c14
0,5 = 1

∂2ϕ14

∂ξ2

∣∣∣∣∣
(0,0)

= 2c14
2,0 = 0

∂2ϕ14

∂ξ2

∣∣∣∣∣
(1,0)

= 2c14
2,0 + 6c14

3,0 + 12c14
4,0 + 20c14

5,0 = 0

∂2ϕ14

∂ξ2

∣∣∣∣∣
(0,1)

= 2c14
2,0 + 2c14

2,1 + 2c14
2,2 + 2c14

2,3 = 0

∂2ϕ14

∂ξ∂η

∣∣∣∣∣
(0,0)

= c14
1,1 = 0

∂2ϕ14

∂ξ∂η

∣∣∣∣∣
(1,0)

= c14
1,1 + 2c14

2,1 + 3c14
3,1 + 4c14

4,1 = 0

∂2ϕ14

∂ξ∂η

∣∣∣∣∣
(0,1)

= c14
1,1 + 2c14

1,2 + 3c14
1,2 + 4c14

1,4 = 0

∂2ϕ14

∂η2

∣∣∣∣∣
(0,0)

= 2c14
0,2 = 0

∂2ϕ14

∂η2

∣∣∣∣∣
(1,0)

= 2c14
0,2 + 2c14

1,2 + 2c14
2,2 + 2c14

3,2 = 0

∂2ϕ14

∂η2

∣∣∣∣∣
(0,1)

= 2c14
0,2 + 6c14

0,3 + 12c14
0,4 + 20c14

0,5 = 0

180

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ14

∂ξ
nξ + ∂ϕ14

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ14

∂η

∣∣∣∣∣(1
2 ,0)

= c14
0,1 + 1

2c
14
1,1 + 1

4c
14
2,1 + 1

8c
14
3,1 + 1

16c
14
4,1 = 0

(
∂ϕ14

∂ξ
nξ + ∂ϕ14

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c14

1,0 + c14
2,0 + c14

1,1 + 3
4c

14
3,0 + 3

4c
14
2,1 + 3

4c
14
1,2 + 1

2c
14
4,0 +

1
2c

14
3,1 + 1

2c
14
2,2 + 1

2c
14
1,2 + 5

16c
14
5,0 + 9

16c
14
4,1 + 7

16c
14
3,2 +

7
16c

14
2,3 + 5

16c
14
1,4 + c14

0,1 + c14
0,2 + 3

4c
14
0,3 + 1

2c
14
0,4 + 5

16c
14
0,5) = 0(

∂ϕ14

∂ξ
nξ + ∂ϕ14

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ14

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c14

0,1 + c14
0,2 + 3

4c
14
0,3 + 1

2c
14
0,4 + 5

16c
14
0,5

)
= 0

The constrains corresponding to ϕ15:

ϕ15|(0,0) = c15
0,0 = 0

ϕ15|(1,0) = c15
0,0 + c15

1,0 + c15
2,0 + c15

3,0 + c15
4,0 + c15

5,0 = 0

ϕ15|(0,1) = c15
0,0 + c15

0,1 + c15
0,2 + c15

0,3 + c5
0,4 + c15

0,5 = 0

∂ϕ15

∂ξ

∣∣∣∣∣
(0,0)

= c15
1,0 = 0

∂ϕ15

∂ξ

∣∣∣∣∣
(1,0)

= c15
1,0 + 2c15

2,0 + 3c15
3,0 + 4c15

4,0 + 5c15
5,0 = 0

∂ϕ15

∂ξ

∣∣∣∣∣
(0,1)

= c15
1,0 + c15

1,1η + c15
1,2 + c15

1,2 + c15
1,4 = 0

∂ϕ15

∂η

∣∣∣∣∣
(0,0)

= c15
0,1 = 0

∂ϕ15

∂η

∣∣∣∣∣
(1,0)

= c15
0,1 + c15

1,1 + c15
2,1 + c15

3,1 + c15
4,1 = 0

∂ϕ15

∂η

∣∣∣∣∣
(0,1)

= c15
0,1 + 2c15

0,2 + 3c15
0,3 + 4c15

0,4 + 5c15
0,5 = 0

181

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ15

∂ξ2

∣∣∣∣∣
(0,0)

= 2c15
2,0 = 0

∂2ϕ15

∂ξ2

∣∣∣∣∣
(1,0)

= 2c15
2,0 + 6c15

3,0 + 12c15
4,0 + 20c15

5,0 = 0

∂2ϕ15

∂ξ2

∣∣∣∣∣
(0,1)

= 2c15
2,0 + 2c15

2,1 + 2c15
2,2 + 2c15

2,3 = 1

∂2ϕ15

∂ξ∂η

∣∣∣∣∣
(0,0)

= c15
1,1 = 0

∂2ϕ15

∂ξ∂η

∣∣∣∣∣
(1,0)

= c15
1,1 + 2c15

2,1 + 3c15
3,1 + 4c15

4,1 = 0

∂2ϕ15

∂ξ∂η

∣∣∣∣∣
(0,1)

= c15
1,1 + 2c15

1,2 + 3c15
1,2 + 4c15

1,4 = 0

∂2ϕ15

∂η2

∣∣∣∣∣
(0,0)

= 2c15
0,2 = 0

∂2ϕ15

∂η2

∣∣∣∣∣
(1,0)

= 2c15
0,2 + 2c15

1,2 + 2c15
2,2 + 2c15

3,2 = 0

∂2ϕ15

∂η2

∣∣∣∣∣
(0,1)

= 2c15
0,2 + 6c15

0,3 + 12c15
0,4 + 20c15

0,5 = 0

(
∂ϕ15

∂ξ
nξ + ∂ϕ15

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ15

∂η

∣∣∣∣∣(1
2 ,0)

= c15
0,1 + 1

2c
15
1,1 + 1

4c
15
2,1 + 1

8c
15
3,1 + 1

16c
15
4,1 = 0

(
∂ϕ15

∂ξ
nξ + ∂ϕ15

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c15

1,0 + c15
2,0 + c15

1,1 + 3
4c

15
3,0 + 3

4c
15
2,1 + 3

4c
15
1,2 + 1

2c
15
4,0 +

1
2c

15
3,1 + 1

2c
15
2,2 + 1

2c
15
1,2 + 5

16c
15
5,0 + 9

16c
15
4,1 + 7

16c
15
3,2 +

7
16c

15
2,3 + 5

16c
15
1,4 + c15

0,1 + c15
0,2 + 3

4c
15
0,3 + 1

2c
15
0,4 + 5

16c
15
0,5) = 0(

∂ϕ15

∂ξ
nξ + ∂ϕ15

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ15

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c15

0,1 + c15
0,2 + 3

4c
15
0,3 + 1

2c
15
0,4 + 5

16c
15
0,5

)
= 0

The constrains corresponding to ϕ16:

ϕ16|(0,0) = c16
0,0 = 0

ϕ16|(1,0) = c16
0,0 + c16

1,0 + c16
2,0 + c16

3,0 + c16
4,0 + c16

5,0 = 0

ϕ16|(0,1) = c16
0,0 + c16

0,1 + c16
0,2 + c16

0,3 + c16
0,4 + c16

0,5 = 0

182

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ16

∂ξ

∣∣∣∣∣
(0,0)

= c16
1,0 = 0

∂ϕ16

∂ξ

∣∣∣∣∣
(1,0)

= c16
1,0 + 2c16

2,0 + 3c16
3,0 + 4c16

4,0 + 5c16
5,0 = 0

∂ϕ16

∂ξ

∣∣∣∣∣
(0,1)

= c16
1,0 + c16

1,1η + c16
1,2 + c16

1,2 + c16
1,4 = 0

∂ϕ16

∂η

∣∣∣∣∣
(0,0)

= c16
0,1 = 0

∂ϕ16

∂η

∣∣∣∣∣
(1,0)

= c16
0,1 + c16

1,1 + c16
2,1 + c16

3,1 + c16
4,1 = 0

∂ϕ16

∂η

∣∣∣∣∣
(0,1)

= c16
0,1 + 2c16

0,2 + 3c16
0,3 + 4c16

0,4 + 5c16
0,5 = 0

∂2ϕ16

∂ξ2

∣∣∣∣∣
(0,0)

= 2c16
2,0 = 0

∂2ϕ16

∂ξ2

∣∣∣∣∣
(1,0)

= 2c16
2,0 + 6c16

3,0 + 12c16
4,0 + 20c16

5,0 = 0

∂2ϕ16

∂ξ2

∣∣∣∣∣
(0,1)

= 2c16
2,0 + 2c16

2,1 + 2c16
2,2 + 2c16

2,3 = 0

∂2ϕ16

∂ξ∂η

∣∣∣∣∣
(0,0)

= c16
1,1 = 0

∂2ϕ06

∂ξ∂η

∣∣∣∣∣
(1,0)

= c16
1,1 + 2c16

2,1 + 3c16
3,1 + 4c16

4,1 = 0

∂2ϕ16

∂ξ∂η

∣∣∣∣∣
(0,1)

= c16
1,1 + 2c16

1,2 + 3c16
1,2 + 4c16

1,4 = 1

∂2ϕ16

∂η2

∣∣∣∣∣
(0,0)

= 2c16
0,2 = 0

∂2ϕ16

∂η2

∣∣∣∣∣
(1,0)

= 2c16
0,2 + 2c16

1,2 + 2c16
2,2 + 2c16

3,2 = 0

∂2ϕ16

∂η2

∣∣∣∣∣
(0,1)

= 2c16
0,2 + 6c16

0,3 + 12c16
0,4 + 20c16

0,5 = 0

183

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ16

∂ξ
nξ + ∂ϕ16

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ16

∂η

∣∣∣∣∣(1
2 ,0)

= c16
0,1 + 1

2c
16
1,1 + 1

4c
16
2,1 + 1

8c
16
3,1 + 1

16c
16
4,1 = 0

(
∂ϕ16

∂ξ
nξ + ∂ϕ16

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c16

1,0 + c16
2,0 + c16

1,1 + 3
4c

16
3,0 + 3

4c
16
2,1 + 3

4c
16
1,2 + 1

2c
16
4,0 +

1
2c

16
3,1 + 1

2c
16
2,2 + 1

2c
16
1,2 + 5

16c
16
5,0 + 9

16c
16
4,1 + 7

16c
16
3,2 +

7
16c

16
2,3 + 5

16c
16
1,4 + c16

0,1 + c16
0,2 + 3

4c
16
0,3 + 1

2c
16
0,4 + 5

16c
16
0,5) = 0(

∂ϕ16

∂ξ
nξ + ∂ϕ16

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ16

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c16

0,1 + c16
0,2 + 3

4c
16
0,3 + 1

2c
16
0,4 + 5

16c
16
0,5

)
= 0

The constrains corresponding to ϕ17:

ϕ17|(0,0) = c17
0,0 = 0

ϕ17|(1,0) = c17
0,0 + c17

1,0 + c17
2,0 + c17

3,0 + c17
4,0 + c17

5,0 = 0

ϕ17|(0,1) = c17
0,0 + c17

0,1 + c17
0,2 + c17

0,3 + c17
0,4 + c17

0,5 = 0

∂ϕ17

∂ξ

∣∣∣∣∣
(0,0)

= c17
1,0 = 0

∂ϕ17

∂ξ

∣∣∣∣∣
(1,0)

= c17
1,0 + 2c17

2,0 + 3c17
3,0 + 4c17

4,0 + 5c17
5,0 = 0

∂ϕ17

∂ξ

∣∣∣∣∣
(0,1)

= c17
1,0 + c17

1,1η + c17
1,2 + c17

1,2 + c17
1,4 = 0

∂ϕ17

∂η

∣∣∣∣∣
(0,0)

= c17
0,1 = 0

∂ϕ17

∂η

∣∣∣∣∣
(1,0)

= c17
0,1 + c17

1,1 + c17
2,1 + c17

3,1 + c17
4,1 = 0

∂ϕ17

∂η

∣∣∣∣∣
(0,1)

= c17
0,1 + 2c17

0,2 + 3c17
0,3 + 4c17

0,4 + 5c17
0,5 = 0

184

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ17

∂ξ2

∣∣∣∣∣
(0,0)

= 2c17
2,0 = 0

∂2ϕ17

∂ξ2

∣∣∣∣∣
(1,0)

= 2c17
2,0 + 6c17

3,0 + 12c17
4,0 + 20c17

5,0 = 0

∂2ϕ17

∂ξ2

∣∣∣∣∣
(0,1)

= 2c17
2,0 + 2c17

2,1 + 2c17
2,2 + 2c17

2,3 = 0

∂2ϕ17

∂ξ∂η

∣∣∣∣∣
(0,0)

= c17
1,1 = 0

∂2ϕ17

∂ξ∂η

∣∣∣∣∣
(1,0)

= c17
1,1 + 2c17

2,1 + 3c17
3,1 + 4c17

4,1 = 0

∂2ϕ17

∂ξ∂η

∣∣∣∣∣
(0,1)

= c17
1,1 + 2c17

1,2 + 3c17
1,2 + 4c17

1,4 = 0

∂2ϕ0

∂η2

∣∣∣∣∣
(0,0)

= 2c17
0,2 = 0

∂2ϕ17

∂η2

∣∣∣∣∣
(1,0)

= 2c17
0,2 + 2c17

1,2 + 2c17
2,2 + 2c17

3,2 = 0

∂2ϕ17

∂η2

∣∣∣∣∣
(0,1)

= 2c17
0,2 + 6c17

0,3 + 12c17
0,4 + 20c17

0,5 = 1

(
∂ϕ17

∂ξ
nξ + ∂ϕ17

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ17

∂η

∣∣∣∣∣(1
2 ,0)

= c17
0,1 + 1

2c
17
1,1 + 1

4c
17
2,1 + 1

8c
17
3,1 + 1

16c
17
4,1 = 0

(
∂ϕ17

∂ξ
nξ + ∂ϕ17

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c17

1,0 + c17
2,0 + c17

1,1 + 3
4c

17
3,0 + 3

4c
17
2,1 + 3

4c
17
1,2 + 1

2c
17
4,0 +

1
2c

17
3,1 + 1

2c
17
2,2 + 1

2c
17
1,2 + 5

16c
17
5,0 + 9

16c
17
4,1 + 7

16c
17
3,2 +

7
16c

17
2,3 + 5

16c
17
1,4 + c17

0,1 + c17
0,2 + 3

4c
17
0,3 + 1

2c
17
0,4 + 5

16c
17
0,5) = 0(

∂ϕ17

∂ξ
nξ + ∂ϕ17

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ17

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c17

0,1 + c17
0,2 + 3

4c
17
0,3 + 1

2c
17
0,4 + 5

16c
17
0,5

)
= 0

The constrains corresponding to ϕ18:

ϕ18|(0,0) = c18
0,0 = 0

ϕ18|(1,0) = c18
0,0 + c18

1,0 + c18
2,0 + c18

3,0 + c18
4,0 + c18

5,0 = 0

ϕ18|(0,1) = c18
0,0 + c18

0,1 + c18
0,2 + c18

0,3 + c18
0,4 + c18

0,5 = 0

185

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ18

∂ξ

∣∣∣∣∣
(0,0)

= c18
1,0 = 0

∂ϕ18

∂ξ

∣∣∣∣∣
(1,0)

= c18
1,0 + 2c18

2,0 + 3c18
3,0 + 4c18

4,0 + 5c18
5,0 = 0

∂ϕ18

∂ξ

∣∣∣∣∣
(0,1)

= c18
1,0 + c18

1,1η + c18
1,2 + c18

1,2 + c18
1,4 = 0

∂ϕ18

∂η

∣∣∣∣∣
(0,0)

= c18
0,1 = 0

∂ϕ18

∂η

∣∣∣∣∣
(1,0)

= c18
0,1 + c18

1,1 + c18
2,1 + c18

3,1 + c8
4,1 = 0

∂ϕ18

∂η

∣∣∣∣∣
(0,1)

= c18
0,1 + 2c18

0,2 + 3c18
0,3 + 4c18

0,4 + 5c18
0,5 = 0

∂2ϕ18

∂ξ2

∣∣∣∣∣
(0,0)

= 2c18
2,0 = 0

∂2ϕ18

∂ξ2

∣∣∣∣∣
(1,0)

= 2c18
2,0 + 6c18

3,0 + 12c18
4,0 + 20c18

5,0 = 0

∂2ϕ18

∂ξ2

∣∣∣∣∣
(0,1)

= 2c18
2,0 + 2c18

2,1 + 2c18
2,2 + 2c18

2,3 = 0

∂2ϕ18

∂ξ∂η

∣∣∣∣∣
(0,0)

= c18
1,1 = 0

∂2ϕ18

∂ξ∂η

∣∣∣∣∣
(1,0)

= c18
1,1 + 2c18

2,1 + 3c18
3,1 + 4c18

4,1 = 0

∂2ϕ18

∂ξ∂η

∣∣∣∣∣
(0,1)

= c18
1,1 + 2c18

1,2 + 3c18
1,2 + 4c18

1,4 = 0

∂2ϕ18

∂η2

∣∣∣∣∣
(0,0)

= 2c18
0,2 = 0

∂2ϕ18

∂η2

∣∣∣∣∣
(1,0)

= 2c18
0,2 + 2c18

1,2 + 2c18
2,2 + 2c18

3,2 = 0

∂2ϕ18

∂η2

∣∣∣∣∣
(0,1)

= 2c18
0,2 + 6c18

0,3 + 12c18
0,4 + 20c18

0,5 = 0

186

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ18

∂ξ
nξ + ∂ϕ18

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ18

∂η

∣∣∣∣∣(1
2 ,0)

= c18
0,1 + 1

2c
18
1,1 + 1

4c
18
2,1 + 1

8c
18
3,1 + 1

16c
18
4,1 = 1

(
∂ϕ18

∂ξ
nξ + ∂ϕ18

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c18

1,0 + c18
2,0 + c18

1,1 + 3
4c

18
3,0 + 3

4c
18
2,1 + 3

4c
18
1,2 + 1

2c
18
4,0 +

1
2c

18
3,1 + 1

2c
18
2,2 + 1

2c
18
1,2 + 5

16c
18
5,0 + 9

16c
18
4,1 + 7

16c
18
3,2 +

7
16c

18
2,3 + 5

16c
18
1,4 + c18

0,1 + c18
0,2 + 3

4c
18
0,3 + 1

2c
18
0,4 + 5

16c
18
0,5) = 0(

∂ϕ18

∂ξ
nξ + ∂ϕ18

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ18

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c18

0,1 + c18
0,2 + 3

4c
18
0,3 + 1

2c
18
0,4 + 5

16c
18
0,5

)
= 0

The constrains corresponding to ϕ19:

ϕ19|(0,0) = c19
0,0 = 0

ϕ19|(1,0) = c19
0,0 + c19

1,0 + c19
2,0 + c19

3,0 + c19
4,0 + c19

5,0 = 0

ϕ19|(0,1) = c19
0,0 + c19

0,1 + c19
0,2 + c19

0,3 + c19
0,4 + c19

0,5 = 0

∂ϕ19

∂ξ

∣∣∣∣∣
(0,0)

= c19
1,0 = 0

∂ϕ19

∂ξ

∣∣∣∣∣
(1,0)

= c19
1,0 + 2c19

2,0 + 3c19
3,0 + 4c19

4,0 + 5c19
5,0 = 0

∂ϕ19

∂ξ

∣∣∣∣∣
(0,1)

= c19
1,0 + c19

1,1η + c19
1,2 + c19

1,2 + c19
1,4 = 0

∂ϕ19

∂η

∣∣∣∣∣
(0,0)

= c19
0,1 = 0

∂ϕ19

∂η

∣∣∣∣∣
(1,0)

= c19
0,1 + c19

1,1 + c19
2,1 + c19

3,1 + c19
4,1 = 0

∂ϕ19

∂η

∣∣∣∣∣
(0,1)

= c19
0,1 + 2c19

0,2 + 3c19
0,3 + 4c19

0,4 + 5c19
0,5 = 0

187

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂2ϕ19

∂ξ2

∣∣∣∣∣
(0,0)

= 2c19
2,0 = 0

∂2ϕ19

∂ξ2

∣∣∣∣∣
(1,0)

= 2c19
2,0 + 6c19

3,0 + 12c19
4,0 + 20c19

5,0 = 0

∂2ϕ19

∂ξ2

∣∣∣∣∣
(0,1)

= 2c19
2,0 + 2c19

2,1 + 2c19
2,2 + 2c19

2,3 = 0

∂2ϕ19

∂ξ∂η

∣∣∣∣∣
(0,0)

= c19
1,1 = 0

∂2ϕ19

∂ξ∂η

∣∣∣∣∣
(1,0)

= c19
1,1 + 2c19

2,1 + 3c19
3,1 + 4c19

4,1 = 0

∂2ϕ19

∂ξ∂η

∣∣∣∣∣
(0,1)

= c19
1,1 + 2c19

1,2 + 3c19
1,2 + 4c19

1,4 = 0

∂2ϕ19

∂η2

∣∣∣∣∣
(0,0)

= 2c19
0,2 = 0

∂2ϕ19

∂η2

∣∣∣∣∣
(1,0)

= 2c19
0,2 + 2c19

1,2 + 2c19
2,2 + 2c19

3,2 = 0

∂2ϕ19

∂η2

∣∣∣∣∣
(0,1)

= 2c19
0,2 + 6c19

0,3 + 12c19
0,4 + 20c19

0,5 = 0

(
∂ϕ19

∂ξ
nξ + ∂ϕ19

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ19

∂η

∣∣∣∣∣(1
2 ,0)

= c19
0,1 + 1

2c
19
1,1 + 1

4c
19
2,1 + 1

8c
19
3,1 + 1

16c
19
4,1 = 0

(
∂ϕ19

∂ξ
nξ + ∂ϕ19

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c19

1,0 + c19
2,0 + c19

1,1 + 3
4c

19
3,0 + 3

4c
19
2,1 + 3

4c
19
1,2 + 1

2c
19
4,0 +

1
2c

19
3,1 + 1

2c
19
2,2 + 1

2c
19
1,2 + 5

16c
19
5,0 + 9

16c
19
4,1 + 7

16c
19
3,2 +

7
16c

19
2,3 + 5

16c
19
1,4 + c19

0,1 + c19
0,2 + 3

4c
19
0,3 + 1

2c
19
0,4 + 5

16c
19
0,5) = 1(

∂ϕ19

∂ξ
nξ + ∂ϕ19

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ19

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c19

0,1 + c19
0,2 + 3

4c
19
0,3 + 1

2c
19
0,4 + 5

16c
19
0,5

)
= 0

The constrains corresponding to ϕ20:

ϕ20|(0,0) = c20
0,0 = 0

ϕ20|(1,0) = c20
0,0 + c20

1,0 + c20
2,0 + c20

3,0 + c20
4,0 + c20

5,0 = 0

ϕ20|(0,1) = c20
0,0 + c20

0,1 + c20
0,2 + c20

0,3 + c20
0,4 + c20

0,5 = 0

188

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

∂ϕ20

∂ξ

∣∣∣∣∣
(0,0)

= c20
1,0 = 0

∂ϕ20

∂ξ

∣∣∣∣∣
(1,0)

= c20
1,0 + 2c20

2,0 + 3c20
3,0 + 4c20

4,0 + 5c20
5,0 = 0

∂ϕ20

∂ξ

∣∣∣∣∣
(0,1)

= c20
1,0 + c20

1,1η + c20
1,2 + c20

1,2 + c20
1,4 = 0

∂ϕ20

∂η

∣∣∣∣∣
(0,0)

= c20
0,1 = 0

∂ϕ20

∂η

∣∣∣∣∣
(1,0)

= c20
0,1 + c20

1,1 + c20
2,1 + c20

3,1 + c20
4,1 = 0

∂ϕ20

∂η

∣∣∣∣∣
(0,1)

= c20
0,1 + 2c20

0,2 + 3c20
0,3 + 4c20

0,4 + 5c20
0,5 = 0

∂2ϕ20

∂ξ2

∣∣∣∣∣
(0,0)

= 2c20
2,0 = 0

∂2ϕ20

∂ξ2

∣∣∣∣∣
(1,0)

= 2c20
2,0 + 6c20

3,0 + 12c20
4,0 + 20c20

5,0 = 0

∂2ϕ20

∂ξ2

∣∣∣∣∣
(0,1)

= 2c20
2,0 + 2c20

2,1 + 2c20
2,2 + 2c20

2,3 = 0

∂2ϕ20

∂ξ∂η

∣∣∣∣∣
(0,0)

= c20
1,1 = 0

∂2ϕ20

∂ξ∂η

∣∣∣∣∣
(1,0)

= c20
1,1 + 2c20

2,1 + 3c20
3,1 + 4c20

4,1 = 0

∂2ϕ20

∂ξ∂η

∣∣∣∣∣
(0,1)

= c20
1,1 + 2c20

1,2 + 3c20
1,2 + 4c20

1,4 = 0

∂2ϕ20

∂η2

∣∣∣∣∣
(0,0)

= 2c20
0,2 = 0

∂2ϕ20

∂η2

∣∣∣∣∣
(1,0)

= 2c20
0,2 + 2c20

1,2 + 2c20
2,2 + 2c20

3,2 = 0

∂2ϕ20

∂η2

∣∣∣∣∣
(0,1)

= 2c20
0,2 + 6c20

0,3 + 12c20
0,4 + 20c20

0,5 = 0

189

Appendix A: Constraints Equations for Obtaining C1 Interpolation of the Solution

(
∂ϕ20

∂ξ
nξ + ∂ϕ20

∂η
nη

)∣∣∣∣∣(1
2 ,0)

= ∂ϕ20

∂η

∣∣∣∣∣(1
2 ,0)

= c20
0,1 + 1

2c
20
1,1 + 1

4c
20
2,1 + 1

8c
20
3,1 + 1

16c
20
4,1 = 0

(
∂ϕ20

∂ξ
nξ + ∂ϕ20

∂η
nη

)∣∣∣∣∣(1
2 ,

1
2)

= −
√

2
2 (c20

1,0 + c20
2,0 + c20

1,1 + 3
4c

20
3,0 + 3

4c
20
2,1 + 3

4c
20
1,2 + 1

2c
20
4,0 +

1
2c

20
3,1 + 1

2c
20
2,2 + 1

2c
20
1,2 + 5

16c
20
5,0 + 9

16c
20
4,1 + 7

16c
20
3,2 +

7
16c

20
2,3 + 5

16c
20
1,4 + c20

0,1 + c20
0,2 + 3

4c
20
0,3 + 1

2c
20
0,4 + 5

16c
20
0,5) = 0(

∂ϕ20

∂ξ
nξ + ∂ϕ20

∂η
nη

)∣∣∣∣∣(0, 1
2)

= −∂ϕ20

∂ξ

∣∣∣∣∣(0, 1
2)

= −
(
c20

0,1 + c20
0,2 + 3

4c
20
0,3 + 1

2c
20
0,4 + 5

16c
20
0,5

)
= 1

190

Appendix B: Transforming the
Non-conserved Adjoint Euler
Equation to Conserved Equation

Consider the linearized steady-state Euler equations:

LU = ∂

∂x
(AxU) + ∂

∂y
(AyU) = f (1)

where

Ax = ∂Fx
∂U

=


0 1 0 0

γ−1
2 (u2 + v2)− u2 (3− γ)u (1− γ) v γ − 1

−uv v u 0
u
(
γ−1

2 (u2 + v2)− h
)

h− (γ − 1)u2 (1− γ)uv γu



Ay = ∂Fy
∂U

=


0 0 1 0
−uv v u 0

γ−1
2 (u2 + v2)− v2 (1− γ)u (3− γ) v γ − 1

v
(
γ−1

2 (u2 + v2)− h
)

(1− γ)uv h− (γ − 1) v2 γv


To obtain the continuous adjoint equation, Eq. 1 is multiplied by Z, integrated over
the domain D and integrated by parts:(

∂

∂x
(AxU) + ∂

∂y
(AyU) , Z

)
D

=
(
U,−ATx

∂Z

∂x
− ATy

∂Z

∂y

)
D

(2)

+ ((nxAx + nyAy)U,Z)∂D .

191

Appendix B: Transforming the Non-conserved Adjoint Euler Equation to Conserved Equation

We end up with L∗Z = −ATx ∂Z∂x − A
T
y
∂Z
∂y

for the continuous adjoint problem which is
not in conserved form. The left-hand side can be written as:

− ∂

∂x



(
(γ−1)

2 (u2 + v2)− u2
)
Z2 − uvZ3 + u

(
γ−1

2 (u2 + v2)− h
)
Z4

Z1 + (3− γ)uZ2 + vZ3 + (h− (γ − 1)u2)Z4

(1− γ) vZ2 + uZ3 + (1− γ)uvZ4

(γ − 1)Z2 + γuZ4



− ∂

∂y


−uvZ2 +

(
γ−1

2 (u2 + v2)− v2
)
Z3 + v

(
γ−1

2 (u2 + v2)− h
)
Z4

vZ2 + (1− γ)uZ3 + (1− γ)uvZ4

Z1 + uZ2 + (3− γ) vZ3 + (h− (γ − 1) v2)Z4

(γ − 1)Z3 + γvZ4



+


Z2

∂
∂x

(
(γ−1)

2 (u2 + v2)− u2
)
− Z3

∂
∂x

(uv) + Z4
∂
∂x

(
u
(
γ−1

2 (u2 + v2)− h
))

Z2
∂
∂x

(3− γ)u+ Z3
∂
∂x

(v) + Z4
∂
∂x

(h− (γ − 1)u2)
Z2

∂
∂x

((1− γ) v) + Z3
∂
∂x

(u) + Z4
∂
∂x

((1− γ)uv)
Z2

∂
∂x

(γ − 1) + Z4
∂
∂x

(γu)



+


−Z2

∂
∂y

(uv) + Z3
∂
∂y

(
γ−1

2 (u2 + v2)− v2
)

+ Z4
∂
∂y

(
v
(
γ−1

2 (u2 + v2)− h
))

Z2
∂
∂y

(v) + Z3
∂
∂y

((1− γ)u) + Z4
∂
∂y

((1− γ)uv)
Z2

∂
∂y

(u) + Z3
∂
∂y

((3− γ) v) + Z4
∂
∂y

(h− (γ − 1) v2)
Z3

∂
∂y

(γ − 1) + Z4
∂
∂y

(γv)


where the first two terms are now in conserved form and the last two terms are consid-
ered as the source term.

192

