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Abstract 

Laser Induced Breakdown Spectroscopy (LIBS) is a geoanalytical tool capable of 

identifying elements, and measuring element concentrations and the composition of rock samples. 

LIBS is a method based on a laser energy pulse that creates an ablation in the surface of a rock 

sample and the ionization of photons to produce a breakdown of the sample’s elemental 

composition. The ionization process can be captured to produce a spectrum that contains 

information about elemental composition. The wavelength is used to identify elements, and its 

intensity peaks are used to identify the concentrations of the element.  

The mining production cycle involves such processes as rock support, drilling, blasting, 

loading, hauling, dumping, reclamation and ventilation, depending on the mining method. 

Although pre-sorting, pre-concentration and classification techniques have been applied to aspects 

of mineral processing after the mining cycle, this research proposes the use of LIBS in the mining 

cycle, and defines the basic capabilities of a sensor with potential applications in the drilling and 

loading cycle, particularly with respect to shovels, drills and belt conveyors.  

The purpose of LIBS is not to provide an accurate measurement of the target mineral, which 

in this research is Copper ore, but responses from different elements that can be mineralogically 

and statistically related to obtain a predicted concentration of the target mineral. In this paper, the 

methodologies and the foundations of LIBS have been developed as a sensor and proxy to an ore 

sorting system for the real-time in situ classification of rock material.  

The research is based on samples from the Escondida Mine located in the north of Chile. 

The samples are divided into groups of Oxides and Sulphides. The results reveal the ability to 

predict Oxides, Sulphides and the discrimination of Oxide and Sulphide ores. The prediction 

regarding the target ores is obtained by comparing the LIBS data to Certified Analysis with ICP 
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techniques. The results include models for the prediction of Cu content for Oxides and Sulphide 

ore types by LIBS analysis, as well as the discrimination of Oxide ores from Sulphide ores using 

this technology.  
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Chapter 1: Introduction and Thesis Outline 

1.1 Motivation  

Laser Induced Breakdown Spectroscopy (LIBS) is an optical spectrochemical method used 

for the identification of elements. It has a wide variety of applications. LIBS produces a stimulated 

emission spectroscopy that uses a light beam laser and releases 2 or more photons, resulting in an 

ionization stage. This spectrochemical method produces a spectrum that is read by a Czerny-

Turner monochromator, and is ultimately sent to a photodiode array. This array produces a 

readable spectrum with data that has been converted into peaks of Intensity (counts-units) on the 

y-axis and Wavelength (nm-units) on the x-axis.  

Minesense Ltd. (the sponsor company for this current research) focuses on the use of 

sensors for ore sorting. Currently, the main sensor techniques used at Minesense are X-Ray 

Fluorescence (XRF) and High Frequency Electro Magnetic Spectroscopy (HFEMS). LIBS has 

been identified as potentially being highly complementary to these modes on account of its use of 

the direct measurement principle, as well as the superior range of elements that it can detect when 

compared with, for example, XRF. The ultimate goal of defining LIBS’ capabilities is to eventually 

integrate this technique as a possible sensor for ore sorting at Minesense. In this research, we will 

review a set of proposed methodologies with the aim of gaining a better understanding of the 

applications of the LIBS machine in its use as a sensor for sorting ore.  

Some of the main challenges currently faced by the mining industry involve creating more 

effective processes to decrease energy consumption, decrease the costs of extraction, and develop 

techniques for mining mineral deposits that were not economically feasible in the past due to either 

their low grade or metallurgical complexity. The majority of the mineral deposits located close to 

the surface, and with high metal concentrations, have already been mined. As such, mineral 
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deposits of high complexity have been left underground, waiting for such a time that technology 

and other developments are advanced enough to allow the deposits to be economically feasible to 

mine. Ore sorting is a potential solution for the pre-concentration and classification of ores for 

more cost effective metallurgical extraction.  

 

1.2 Former research work done with LIBS in the mining industry 

Several applications of LIBS have been developed for the mining industry such as 

monitoring grade concentrations, inline volume flow grade analysis of minerals on a belt conveyor, 

laboratory analysis, and during exploration using fast scanning (SECOPTA). However, no 

evidence regarding any previous work on LIBS sensors with respect to an ore sorting system in 

the mining production cycle could be found.  

Significant research regarding LIBS applications in mining was conducted by APTI (now 

British Aerospace) in conjunction with Idaho National Laboratories and the University of Utah 

(Idaho Nationl Engineering & Environmental Lab, Bechtel BWXT). However, the purpose of 

work done at APTI was to develop an ore grading device, while the purpose of this research is to 

develop an automated proxy between the primary target ore and related mineralogy, in order to 

provide a response for the ore sorting system.  

Other academic work has been conducted by the Italian National Research Council (G. S. 

Senesi) in “Laser-Induced Breakdown Spectroscopy applied to terrestrial and extraterrestrial 

analogue geomaterials with emphasis to characterize minerals and rocks.” This work provides a 

chemometric approach to the identification and concentration of elements in rock samples, and 

discusses the quality and quantity of the data obtained from LIBS in comparison to concentrations 

determined by chemical analysis.  
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1.3 Significance of the research 

This research provides an initial approach regarding the capabilities of LIBS as a sensor for the 

sorting of Copper porphyry ores. Ore sorting has been mostly applied to the mineral processing 

system. This research involves one of the first attempts to include sorting as part of the mining 

production system. The mining production system is defined in the “SME Mining Engineering 

Handbook” (Darling) as 10 tasks for surface mining and 8 tasks for underground mining. 

Primarily, these tasks can be summarized as rock support, drilling, blasting, loading, hauling, 

dumping, reclamation of the land, and ventilation for underground mining methods. In the mining 

production cycle, the best location to assess ore quality such that material classified is during 

drilling and loading. Currently, ore quality is controlled by using reconciliation procedures 

between the grades of the drill holes and the grade estimated during the exploration cycle. Usually 

the reconciliation procedure creates a difference between the grades known as discrepancy. This 

analysis can monitor the expected ore grade, however it does not offer any possibility for control 

other than through setting the location boundaries of the ore, and estimating its dilution. An ore 

sorting system could improve grade control by providing an intelligent interface for a shovel 

operator in the loading cycle to help him/her make decisions regarding the quality of the material 

in the shovel so that a decision can be made regarding the correct destination for the loaded 

material.  

The sorting would not only provide a reduction in the dilution and pre-concentration of the 

material, it could potentially be applied to decreasing the cut-off grade of the whole mine 

operation. This suggests an improvement in flotation capabilities and recovery efficiency during 

mineral processing.   
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If sorting systems could improve performance in mine operations, operating cost could be 

decreased. There is an opportunity to improve performance by increasing control of the grade 

processed in the concentrator.  Also, characterization of ore properties such as Oxide versus 

Sulphide would allow ore to be diverted to the appropriate process stream (eg heap leach versus 

flotation). 

 

1.4 Outline 

The focus of this dissertation is the presentation of a methodology that could be used to 

incorporate LIBS as a new sensor for ore sorting systems, and to delineate the capabilities of LIBS 

in making correlations and yielding results. With respect to the intents of this dissertation, Chapter 

2: explains the chemistry basics of LIBS, and highlights the important features of LIBS that need 

to be considered in order to achieve valid results in characterizing ore materials. Chapter 3: 

explains the experimental procedures, techniques and algorithms used to process the spectrum and 

data from LIBS. This chapter further describes some of the mathematical tools used to develop the 

scripts to acquire data, and also explains some of the challenges posed by laboratory testing, and 

the ways to address the existing challenges.  

Chapter 4: presents a characterization of Oxide porphyry samples using LIBS, and a 

regression analysis of the results, ultimately providing a potential prediction equation for Cu 

content. This equation attempts to present a methodology rather than a criterion for sorting ore at 

the Escondida Mine. Furthermore, the methodology used for regression in Chapter 5:. Chapter 5: 

presents a characterization of Sulphide porphyry samples using LIBS, as well as regression 

analysis and prediction equations for Cu content.  
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Chapter 6: presents a potential methodology for differentiating between Oxide and Sulphide 

samples for ore sorting systems. Here, the chemistry background needed to understand this 

distinction is explained. Chapter 7: provides a discussion of the methodology and its potential for 

improving the results. Finally, Chapter 8: provides a set of conclusions that encompass the 

outcomes of the LIBS applications found in this research for sorting of Copper porphyry ores.  



6 

 

Chapter 2: Laser Induced Breakdown Spectroscopy Background 

2.1 What is LIBS? 

LIBS (Laser Induced Breakdown Spectroscopy) is an optical spectrochemical method 

based on spontaneous emission (DAGDIGIAN) that utilizes an intense laser pulse to determine 

the elemental composition of a sample. LIBS uses high temperature micro-plasma read by a lens 

according to a determined time frame. The time frame consists of a 1.5 nanosecond pulse, followed 

by 10 microseconds of energy dissipation.   

 

 

Figure 2-1: LIBS machine used for this experiment: a FiberLIBS model (SECOPTA) 

Figure 2-1 shows an image of the LIBS machine that was used for this research project. 

LIBS emits a laser beam through the measurement head.  This laser beam creates a plasmatic 

formation at the surface of a sample. Once an electrical breakdown is created by the laser in the 

plasma, LIBS detects the photon movement of the spontaneous emission through a spectrometer 

and a detector. A detector for LIBS consists of a Charge-Couple Device (CCD) that receives image 

information from the spectrometer and transforms it into a digital signal. The photon movement 
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describes the wavelength, which is unique for every ionization stage of an element. This 

wavelength allows LIBS and the computer to identify the elements in a sample, or elements in 

specific rock samples in an operation.  

 

Figure 2-2: Spectrochemical methods for the currently most used sample analysis methods in mining 

The current techniques for sample analysis use similar optical spectrochemical methods to 

those used by LIBS. Figure 2-2 shows the more popular methods for spectrochemical analysis 

used in mining. This thesis research project bases its calibrations and comparison analysis on 

Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) and Inductively Couple 

Plasma – Mass Spectroscopy (ICP-MS) Certified Analysis.  

The most common type of analysis of Fire Assay beads is either Atomic Absorption 

Spectroscopy (ASS) or ICP-MS.  The method used to determine the Cu content from the samples 

was by Aqua Regia digestion and ICP-AES.  
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2.2 Wavelengths 

LIBS photon excitation has a random direction that is captured by the lens in the 

measurement head.  LIBS produces a visible spectrum of light that can be seen in ambient 

conditions. The wavelength is separated by diffraction grating. 

The grating is used to diffract the light source generated by the photon excitation that is 

read by the lens. The grating diffracts the light source into different colours that are calibrated to 

provide a signal for a determined wavelength. This wavelength bandwidth is processed by a 

photodiode that calculates the intensity for the different wavelengths.  

  

Figure 2-3: Diffraction grating schematic (Fleischer) 

LIBS provides factory specifications for wavelengths. The LIBS machine used in this 

research is a SECOPTA FiberLIBS unit with wavelengths from 2.29*10^-7 to 5*10^-7 m. 

Different commercial LIBS machines can observe and process wavelengths from approximately 

50 nm up to 2000 nm. One characteristic aspect of LIBS wavelengths is that LIBS does not use 

ionizing radiation as do the XRF and Prompt Gamma methods. 
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Figure 2-4: Electromagnetic spectrum for light sources (Cyberphysics group) 

2.3 Apparatus Fundamentals 

Figure 2-5 shows the basic schematic of a LIBS machine. The computer sends a signal to 

the laser to emit the light beam over the rock sample, resulting in the vaporization of the sample, 

which is also known as ablation. Once emitted, the optical spectrometer reads the intensity of light 

as a function of wavelength. A spectrometer consists of a combination of a monochromator and a 

detector (CCD). There are two types of monochromators: a) Bunsen prism, and b) Czerney-Turner. 



10 

 

 

Figure 2-5: Basic schematic of a LIBS machine 

LIBS uses the Czerney-Turner monochromator, which is capable of reading wavelengths 

from 190 to 1000 nm. Optical resolution ranges from a pixel size of 0.05 to 1 nm as part of the 

spectrometer features. However, the optical resolution, as defined for FiberLIBS, varies from 

0.135 nm to 0.15 nm. The FiberLIBS machine used in this research has 2048 pixels with 

wavelengths from 229.21 to 499.58 nm.  

Table 2-1: Specification of FiberLIBS for its spectrometer 

Spectrometer 

1 or 2 thermal stabilized Czerny-Turner spectrometers 

Wavelength range:190-1000 nm 

Optical Resolution: 0.05 - 1 nm (depending on application) 

 

The monochromator, or spectrometer, acts as a photodiode array that receives the light 

source diffracted by the grating. The lens works with a slit in the measurement head, allowing 

the lens to capture only one part of the plasmatic formation that occurs after the ablation of the 

surface of the rock sample. The laser beam created out of the ablation and radiative flux goes 

through the slit and reflects on concave mirrors to reflect over the grating, and then once again 
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over another concave mirror. This effect allows the light beam to be diffracted, as shown in 

Figure 2-6.  

 

Figure 2-6: Schematic of LIBS spectrometer (Rehse) 

2.4 Importance of the Diffraction Grating 

2.4.1 Young’s Double Slit example 

In order to explain the importance of the grating in the LIBS apparatus, it is necessary to 

define how the spectrum is generated. A simple way to explain the functionality of LIBS from a 

physics perspective is through an understanding of Young’s Double Slit experiment. Young’s 

Double Slit experiment can be performed with a laser pen and 3 pencil leads. Three leads are held 

parallel so that two slits are created on either side of the center lead. The laser pen has to light 

through 2 slits created by the 3 pencil leads that are held parallel to each other, and reflected on a 

wall. The diffraction of the laser pen will result in the laser beam multiplying the reflected light on 

the wall with a high intensity in the center, and a lower intensity as it gets farther from the center.  
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The same principle is at play with the LIBS machine. The effect of the grating is similar to 

that which occurs in Young’s Double Slit experiment. As seen in Figure 2-7, the light sources pass 

through two slits. The interaction of the waves creates both constructive and destructive harmonics. 

The central Δx= 0 has a complete constructive harmonic and defines the higher intensity peak in 

the spectrum. The location of this point can be found by following the center of the two waves 

exactly in the middle of the 2 wavelets. When Δx= 0.5λ, the superposition of the waves is 

destructive. The next harmonic Δx= λ already has the destructive effect and the intensity is lower 

than Δx= 0. After the third harmonic, the signal to noise ratio is too high and is no longer 

considered efficient. This spectrum is the main indicator of efficiency in the Czerney-Turner 

monochromator. The spectroscope spectrum reflects the intensity of light that is read by the 

detector as intensity, and the intensity is calibrated in order to calculate the concentration of the 

photon excited by the light source. 
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Figure 2-7: How the spectrum is generated in LIBS (Cremers and Radziemski)  
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2.4.2 Diffraction grating calculation 

Even though the design of the LIBS machine is not part of the ore sorting analysis, it is 

important to have a full understanding of the internal specifications of the LIBS machine.  This is 

important in order to hold control over the quality of the responses and the concentrations 

measured as outputs of the spectrum. The equation for the incident angle of the light beam over 

the grating is shown in Figure 2-8. The incident light is reflected over the grating with “d” as the 

spacing between slits, “α” as the incident light beam and “β” as the diffracted light beam.  

 

Figure 2-8: Incident light beam over a grating (Ryer) 

Table 2-2: Specifications for average spectrometers used in the construction of LIBS sensors 

Spectrometer 

Type Czerny-Turner 

Bandwidth 190 to 800 nm 

Grating 2400 l/mm & 600 l/mm 

Resolution 2 angstroms 

Coverage 65 nm 
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“m” in Figure 2-8 or “n” in the equation below is the harmonic.  For this example, the calculation 

uses data from the TRACER™ 2100 Laser Element Analyzer, a grating slit of 2000 lines per 

millimeter (l/mm), an incident angle of 48 degrees and a diffracted (or refractive “r”) angle of 20 

degrees.  

 

“d” is transformed to nm/l units and λ is calculated for the first harmonic. Table 2-3 shows the 

calculation for the harmonic with varying refracted angles.  

Table 2-3: Harmonic calculation for the grating 

  n 

r 1 2 3 

20 542.58 271.29 180.86 

10 458.40 229.20 152.80 

0 371.57 185.79 123.86 

-10 284.75 142.37 94.92 

-20 200.56 100.28 66.85 

 

Table 2-3 shows that for a given wavelength of 500 nm of the laser beam and a spacing of 

2000 l/nm, the harmonics has an effective bandwidth from 180 to 540 nm. Also, the table suggests 

that readings in the range of 180 to 270 nm will be less responsive or noisy in terms of the spectrum 
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because these wavelengths belong to the second or third harmonic. As explained through Young’s 

Double Slit experiment, these harmonics are less intense and slightly noisier. It is not 

recommended to work with harmonic values greater than 3 because the spectrum becomes too 

noisy to give a good reading.  

2.5 LIBS machine specifications 

The LIBS machine used for this research work is the FiberLIBS from Secopta. The basic 

specifications for its laser are provided in Table 2-4. LIBS machines have ranges from 1 mJ to 10 

mJ of pulse energy. This machine has a frequency of 100 Hz as a pulse rate, meaning that it is 

capable of taking 100 readings in 1 second.  

 

Table 2-4: Laser specification for FiberLIBS 

 

 

Table 2-5: Spectrometer specification for FiberLIBS 
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The spectrometer for FiberLIBS has a10 micron entry slit and a bandwidth of 229.21 to 499.58 

nm. The resolution of a peak varies from 0.135 nm to 0.15 nm, which is described by the 

Resolution Full Width at Half Maximum (FWHM). This term shows the half power point 

resolution for the peak. 

 

2.6 White colouring problem 

LIBS has difficulty reading white surfaces since white surfaces are more likely to reflect 

the laser beam rather than absorb the light energy and as a result a good spectrum is not generated 

by the LIBS machine. If the laser is reflected and not absorbed, then the plasma formation and 

ablation will not produce enough breakdown of the photon to reproduce the desired spectrum in 

order to identify elements and measure concentrations. The reason for the reflectance of the laser 

beam or any other light source is that molecules and atoms of white surfaces do not absorb any of 

the visible colours of light, while other colours do absorb the light.  

Current industrial laser cutters use intense power to cut steel accurately. It is a common 

practice with this technology to paint the surface black prior to the cutting procedure as the black 

surface improves the effectiveness of the laser. At the very least, the surface must have a dark 

colouration in order to allow the molecules and atoms on the surface to absorb the energy so that 

the material could be cut successfully.   

The Kirchhoff rules of spectroscopy indicate that a good reflective material is a poor 

absorber, while a good absorber is a good re-emitter. This means that if LIBS reads a material that 

reflects the light spectrum, then the amount of energy absorbed will be low. If not enough energy 

is captured by the surface of a rock material, then LIBS won’t be able to create the plasma 

formation and subsequently, readings will be noisy and of poor spectrum quality.  
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Chapter 3: Experimental Approach 

A key goal of this research project is to develop a sensor that is capable of collecting data 

from elements that are not traceable with XRF and HFEMS. The objectives of this program are to 

develop and demonstrate the effectiveness of the LIBS system in characterizing Copper porphyry 

ore, to test and analyze the repeatability of the bench scale LIBS system, and to demonstrate the 

efficiency of the LIBS system for Copper ore. In particular, there was a desire to explore the 

applications of LIBS in discriminating Oxides vs. Sulphides, where XRF has been shown to be 

ineffective. 

Although current XRF sensors at Minesense Ltd. (the sponsor company for this research) 

are similar to the LIBS sensor, the physical-chemical analysis conducted by both systems is 

significantly different. In XRF sensors, the X-ray process involves the electromagnetic radiation 

of a short wave produced by the deceleration of electrons (Skoog y Leary). In contrast, LIBS 

involves plasma formation as a result of an intense laser pulse of a high-temperature followed by 

the process of optical spectroscopy. LIBS is considered by many material manufacturers as the 

new option for sensing alloy properties that XRF is not capable of accomplishing. This relegates 

the XRF to the position of a proven technology that nevertheless is limited in certain areas. 

However, no real research has been conducted regarding the use of LIBS responses in correlations 

for ore sorting sensors. 

One of the improvements with respect to material recognition in which LIBS is superior to XRF 

is the lack of radiation passing over the work area. Current technology has improved significantly, 

and has evolved to the point where portable LIBS systems have been developed for use as hand 

tools. For this reason, the topic of radiation is an important one to consider.  



19 

 

This chapter highlights the details of the experiment that was performed for this research, 

as well as the challenges involved in developing a LIBS sensor for sorting ore. 

 

3.1 Experimental design 

The experiment was divided in 2 parts: 

1. Project initiation: LIBS identification and calibration 

2. LIBS correlation 

3.1.1 Project Initiation: LIBS Identification and Calibration 

The rock samples for this research were taken from ore deposits from the Escondida Mine, in 

Chile. Escondida is a Copper mine in the Atacama Desert. 

 

 

 

 

 

 

 

 

 

 

This research used forty-one samples from the Oxide ores, 38 samples from the Sulphide ores, and 

1 chipped sample of the Sulphide ore was not ultimately used in this research.  

Figure 3-1: Escondida Mine samples. Left: sample #26 Oxide sample, Right: sample #12 Sulphide sample 
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One of the characteristics of LIBS is that it does not require any sample preparation. This 

research therefore took an “as-is” approach regarding the rock samples that were taken from the 

mine site and as such, they were not washed, polished, or cut.  

The samples were weighed, and then scanned by the LIBS machine. The samples were read with 

the LIBS on 4 faces of the rock, and 10 readings were taken per face. In the initial phases of 

experimentation and trial, readings were taken randomly, usually at the default value of 100 

readings per shot. One of the most time-consuming tasks during this stage was to solve the white 

colouring problem with respect to the Sulphide rock samples.  

Upon the completion of this stage, the experiment was focused on the identification and 

characterization of the rock samples. To identify the rocks, it was important to have a valid 

reference regarding the wavelength and spectroscopy observed in the LIBS spectrums. In order to 

understand the behaviour of the LIBS system, it was necessary to shoot over the known surfaces, 

such as the pure Copper or steel layers, in order to start developing an understanding regarding 

how the literature and online references matched the reality of the LIBS spectrum.  

Finally, the construction of a Python Script was initiated in order to transform the spectrum 

information into a readable format. The development of the initial script was attempted in 

MATLAB, but as a result of the amount of information processed, and the continuous data coming 

from LIBS, it was decided to migrate the data and algorithms to Python. Several techniques from 

the computer sciences, data analysis, and liner programming were applied into this construction in 

conjunction with the basics of physical chemistry.  
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3.2 Geology and Geochemistry of Escondida Mine Rocks for Correlation 

Escondida Mine is a Copper porphyry deposit that is located in the north of Chile, and is 

one of the largest mining operations in the world. It belongs to a big supergene Copper deposit 

morpho-techtonic with the intervention of shallow gravel-filled basins.  

The mineralogy groups are as follows: 

1. Hypogene Sulphides 

2. Supergene sulfides 

3. Copper Oxides 

In order to decide which Mineralogy group should be accepted into the equation, Table 3-1 

was developed to provide detailed information about each mineral, or type of rock expected from 

every geological region (Ruben Padilla Garza). This table consolidates information from a variety 

of reference sources, but has a strong focus on “Geology of the Escondida Porphyry Copper 

Deposit, Antofagasta Region, Chile” (Ruben Padilla Garza). Mineralogical references are very 

important at this stage in order to create associations between the elements and minerals. Although 

no direct mineral association can be made here because LIBS is not able to identify minerals 

directly, we can create associations between the elements and the ion responses. 

 

Table 3-1: Summary of Mineralogy of Escondida Mine by Mineralogical Groups and Elements  

Mineralogical group Mineral/Rock Elements 

Advanced Argillic Alteration Pyrite Fe S               

  

Bornite Cu Fe S             

Chalcopyrite Cu Fe S             

Sulfides S                 

Covellite Cu S               

Enargite Cu As S             

Chalcocite Cu S               
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Mineral/Rock Elements 

Galena Pb S               

Sphalerite Zn Fe S             

Alunite K Al S O H         

Quartz-Sericite Quartz Si O               

  

Sericite Na Al Si O H         

Chalcopyrite Cu Fe S             

Pyrite Fe S               

Molybdenite Mo S               

Sericite-Chlorite Chalcopyrite Cu Fe S             

  

Pyrite Fe S               

Molybdenite Mo S               

Biotitic Biotite K Mg Fe Al Si O H F   

  Chlorite Mg Fe Ni Mn Al Si O H Cl 

Potassic Alteration k-feldspar Biotite K Mg Fe Al Si O H F   

  

Anhydrite Ca S O             

Chalcopyrite Cu Fe S             

Bornite Cu Fe S             

Orthoclase K Al Si O           

Potassic Alteration Biotitic Biotite K Mg Fe Al Si O H F   

  

Magnetite Fe O               

Bornite Cu Fe S             

Chalcopyrite Cu Fe S             

Propylitic Alteration Calcite Ca C O             

  

Chalcopyrite Cu Fe S             

Grossular Ca Al Si O           

Chlorite Mg Fe Ni Mn Al Si O H Cl 

Epidote Ca Al Fe Si O H       

Sulfide enrichment blanket Chalcocite Cu S               

The best Copper grades of the 
supergene zone 

Andesite Si O               

Atacamite Cu Cl O H           

Covellite Cu S               

Digenite Cu S               

Idaite Cu Fe S             

Pyrite Fe S               

Leached capping zone Limonite Fe O H             

  

Hematite Fe O               

Covellite Cu S               

Copper Oxides Brochantite Cu H S O           

  Antlerite Cu S O H           

Elements

Al

As

C

Ca

Cl

Cu

F

Fe

H

K

Mg

Mn

Mo

Na

Ni

O

Pb

S

Si

Zn
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Mineral/Rock Elements 

Atacamite Cu Cl O H           

Chrysocolla Cu Al Si H O         

Tenorite Cu O               

Chlorite Mg Fe Ni Mn Al Si O H Cl 

Sericite Na Al Si O H         

Andesite Si O               

  

3.3 LIBS correlation 

To use LIBS as a measuring device, the quality of the response relies on the limits of 

detection, the concentration calibration that is based on the analysis of pure samples (Cremers and 

Radziemski). At its core, this research investigates another method through which to develop 

correlations with respect to the LIBS spectrum. This in turn makes a difference with respect to 

other LIBS research projects. It was not the intention of this project, however, to develop LIBS’ 

capabilities in accurately calculating the grade of a rock because this is not the purpose of an ore 

sorting sensor.  

The technical capabilities of LIBS can be seen with respect to LIBS’ ability to function as 

an ore sorting sensor. It is necessary to define which elements can be identified, and compare these 

to a certified analysis. The technical capabilities represent the basic resources through which to 

build correlations from the responses to the target element, Cu content, for this project.  

From this perspective, this section of the research was focused on: 

1. Completing the identification of wavelengths for the elements. 

2. Comparing the readings of the elements obtained from LIBS with the readings of the 

elements obtained from the Certified ICP analysis. 

3. Developing a logical thought process regarding to how the spectrums can be processed 

with the tools and resources available. 
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4. Application of several types of regression analysis in a trial and error scheme to develop 

correlations. 

5. Validation of the data. 

 

3.4 Main problems expected when using LIBS as an ore sorter  

While attempting to record LIBS spectra, two measurement challenges were encountered.  

Firstly, it was difficult to obtain good quality spectrum from white surfaces and secondly how to 

assess LIBS for sorting applications as compared to sample analysis.  

 

3.4.1 White colouring problem solution approach 

Initially, LIBS was expected to be able to read any surface or rock sample. As explained 

in section 2.6, the white colour on a surface stops the absorption of the energy of a laser beam 

because white colours reflect the light. After the initiation of the project, several samples were 

used in experimentation, including white rocks that belonged to the categories of Escondida 

Sulphides and “mixto” ore (Spanish word for “mixed” that refers to the geological interaction zone 

between Oxide and Sulphide ores). The initial reading process using LIBS was to place the 

measurement head in a static position at the indicated distance provided by the manufacturer. The 

white samples could not be read for several weeks. The problem was solved by taking the 

measurement head and moving it along the surface. It was an unexpected solution that may be 

related to the Interaction of Light with Matter Theory and the low absorption capabilities of white 

minerals, as explained in section 2.6. 
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3.4.2 Spectrum analysis 

One of the key problems to solve involved how to train LIBS as an ore sorting sensor rather 

than a laboratory measurement device. In contrast to in the laboratory, in mining, bulk material 

handling systems using either in a shovel or a belt conveyor will not allow the operation to stop in 

order to read one rock several times at the exact same spot. As such, it was necessary to develop a 

reliable method that was capable of reading data instantly, and that did not involve repetitive 

readings. Even though a moving rock can be hit twice, or even several times, it is very unlikely 

that it will be hit in the exact same point in subsequent hits.  

 

 

Figure 3-2: Twenty readings of Silica/Oxide sample spectrum from Escondida mine 

Figure 3-2 provides evidence that the spectrum can vary due to impurities or to the white 

colouration effect. The first three peaks differ from the fourth peak; and after the fifth reading, the 

spectrum develops stability. The peak in red is likely to be a bad reading, and LIBS has the option 

to average all peaks to avoid this variation in the spectrum. However, a LIBS sensor for ore sorting 
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cannot focus on the same point over several milliseconds which is required to average several 

peaks. 

For this reason, it was necessary to build an algorithm or computer script to reveal which 

peaks should, and should not, be used. The development of this script was based on statistics and 

basic methods in Artificial Intelligence. This script evolved according to the needs of the project’s 

changing parameters, as will be explained later.  

 

3.5 Sulphide samples difficult to read with LIBS 

The Sulphide samples were difficult to be read with the LIBS sensor because of the white 

colouration of the rocks. As shown in Figure 3-3 and Figure 3-4, several attempts were made to 

obtain responses from the LIBS machine. The rocks were placed both horizontally and vertically, 

measuring the respective mirror’s effective focal lengths, as described in the machine’s manual.  

 

Figure 3-3: LIBS reading Sulphide samples from the top 
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Figure 3-4: LIBS reading Sulphide samples from the side 

 

Figures 3-3 and 3-4 shows the laser beam shooting the rock samples at different positions. 

The structure that holds the laser measurement head kept the laser beam perpendicular with respect 

to the rock surface. Even though several angles were attempted, problems came up while taking 

the readings. Figure 3-5 illustrates the LIBS computer screen as data is being collected while LIBS 

is working. “Mat.” stands for the type of material, and consists of input information that is not 

relevant for our correlation. “Sampl.” is the sample number for the current set of readings, e.g. 4 

samples were taken with 10 readings per sample. For the last example, the number of readings 

requested by the LIBS operator is reflected in “spectra.” “Now” indicates the current number of 

readings obtained until that moment. Finally, “del” shows the number of samples deleted because 

they did not fit the LIBS machine default threshold. As seen, there are 7896 samples deleted, and 

only 1 that was accepted. When the machine ran for several minutes, if the number of readings 

requested were not obtained, it automatically stopped the reading.  
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Figure 3-5: LIBS computer screen for Sulphide samples 

 

 

 

Figure 3-6: LIBS computer screen for Sulphide sample #14 
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This difficulty in reading the samples will prove to be a serious problem if the LIBS sensor 

reaches the stage of proof of concept. As such, it is likely that some of the data for the Sulphide 

samples is not as reliable as it is for the Oxide samples, which do not show the white colouring. 

Good data is obtained, but over longer periods of times, and this data does not depend on the length 

of exposure of the laser to the rock surface, as with the XRF sensors. Rather, obtaining reliable 

data depends on how much power the laser beam emits while not being interrupted by the light 

reflection. Figure 3-6 indicates that although good spectrums are being obtained, it takes relatively 

long to acquire the data. As seen within Table 3-6, 10 readings were obtained after deleting 50283. 

If the sensor has a frequency of 100 Hz, then the 10 readings took 60 seconds instead of 0.1 

seconds. 

 

3.6 Identification of Wavelength List 

The wavelength list identifies the characteristic wavelength of a particular ion of an 

element from the periodic table. In order to create this wavelength list, certain parameters, which 

will be discussed later, were taken into account. Figure 3-7 shows the spectrum of a pure Copper 

layer sample. The peaks can be recognized by matching the wavelength from the x-axis with the 

ID wavelength proposed in Table 3-5. This ID wavelength acts as a primary key for the 

identification of elements in the Python Script that is described in section 3.7, and attached in 

Appendix C  . 

To build a table for the identification of wavelengths, data was acquired from the National 

Institute of Standards and Technology (NIST) database (Laboratory). The selection regarding the 

ID wavelength is based on the likelihood and certainty of finding the ionization stage in that 
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particular wavelength. For this reason, the main parameter for quantifying this likelihood is the 

Aki, which is the transition probability, also known as the Einstein Coefficient. 

 

 

 

 

 

 

 

 

 

 

Furthermore, Aki is the emission transition probability of the ion stage excited to move to 

another ionization stage, and which has been excited by the LIBS laser. Another element related 

to the likelihood of this transition is the Absorption Oscillator Strength (𝑓𝑖𝑘), also known as the f-

value. However, the Aki is directly proportional to the f-value, and because of this, it is redundant 

to analyze the f-value as well. 

It was very important to have certainty with respect to the readings. The best indicator is 

the Accuracy (Acc.). Accuracy can be understood as a rating for the likelihood that a transition of 

the ionization stage takes place. David A. Cremers defines it as: “how close a measurement result 

is to the “true” value of the property measured” (Cremers and Radziemski). The likelihood is 

measured in the NIST database following the pattern shown in Table 3-2. Relevant information 

was retrieved from the NIST website (National Institute of Standards and Technology NIST). 
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Figure 3-7: Spectrum of pure Copper layer sample showing the characteristic peaks at 324.75 and 327.39 for 

Cu I 
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Table 3-2: Accuracy for transition strength 

AAA ≤ 0.30% 

AA ≤ 1% 

A+ ≤ 2% 

A ≤ 3% 

B+ ≤ 7% 

B ≤ 10% 

C+ ≤ 18% 

C ≤ 25% 

D+ ≤ 40% 

D ≤ 50% 

E > 50%. 
 

Table 3-3 shows a proposed set of values for each accuracy rating in order to quantify the 

accuracies, and include them with the Relative Intensity. The weighting factors were created for 

this project as a tool through which to provide significance to the values with higher Acc. ratings. 

The logic used was to provide a maximum of 400 for an Acc. of 400. Subsequently, decrease 50 

units to the next lower levels of Acc. The sequence was intended to end at D+ where the accuracy 

is not significant for the selection of wavelengths. 

  Table 3-3: Weighting factors 

AAA 400 

AA 350 

A+ 300 

A 250 

B+ 200 

B 150 

C+ 100 

C 50 

D+ 1 

D 1 

E 1 

 1 
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This pattern was created in order to quantify the Acc. rating into numbers, and to highlight 

the elements that are likely to be seen in the spectrum. The relative Intensity number (14000) in 

Table 3-4 has been multiplied by the Acc. values from Table 3-3 (150). This value is shown in the 

column titled “Weighted Relative Intensity in Table 3-4. The final Weighted Relative Intensity is 

2100000 is used to sort the higher values for Weighted Relative Intensity, and depends on 

likelihood and the intensity. The final proposed pattern for the ID wavelength is presented in Table 

3-5 below. 

Table 3-4: Example of the database and the classifications of the ratings 

 

Ion 
Observed 

Wavelength 
Air (nm) 

Ritz 
Wavelength 

Air (nm) 
Acc. 

Rel. Int. 
number 

Weighted 
Rel. 

Intensity 

Ca III 289.9785 289.9785 B 14000 2100000 

Ca III 337.2671 337.2679 B 10000 1500000 

Ca III 292.4326 292.4331 B 7000 1050000 

 

 

Table 3-5 was included in the Ritz Wavelength. The main difference between the observed 

wavelength and the Ritz wavelength is that the Ritz is a calculated wavelength, while the Observed 

Wavelength refers to the results of experiments. Most of the Observed Wavelengths have been 

tracked and repeatedly found from different experiments. NIST provides detailed information 

about the wavelengths. A Python Script was developed for the purposes of this research. Observed 

wavelength is being used here unless only a Ritz Wavelength is available. Although it is suggested 

to use the Observed Wavelength, the Ritz wavelength provides critical information in Chapter 6: 

with respect to the discrimination of Oxides and Sulphides. For this reason, it is important to 

include this value as part of the input for the Python Script.  
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Ion

Observed 

Wavelength 

Air (nm)

Ritz 

Wavele

ngth Air Acc.

Rel . Int. 

number Aki Ion

Observed 

Wavelengt

h Air (nm)

Ritz 

Wavelength 

Air (nm) Acc.

Rel . Int. 

number Aki

Ag II 232.02 232.02 B 730000 2.9E+08 Mn II 261.02 261.02 C 10000 3E+08

Ag II 241.32 241.32 B+ 470000 2.1E+08 Mo VI 329.33 329.33 30000 7.2E+08

Al  I I 281.62 281.62 A 4000 3.6E+08 Mo VI 338.70 338.70 50000 4.5E+08

As  I 234.98 350 3.1E+08 N II 399.50 399.50 A 1000 1.2E+08

Au I 267.60 267.59 3400 1.6E+08 N IV 347.87 347.87 B 570 1.1E+08

Au I 242.80 242.79 2600 2E+08 Na II 298.42 298.42 B 1300 1.7E+07

Ba I 350.11 350.11 B 860 3.5E+07 Na II 307.83 307.83 A 550 1.2E+08

Ba II 455.40 455.40 B 9300 1.1E+08 Ni  I 349.30 349.30 C+ 5500 9.8E+07

Be II 272.89 272.89 AA 310 3.2E+07 Ni  I 341.48 341.48 C 8200 5.5E+07

Be II 482.82 482.81 A 710 7870000 O V 278.10 278.10 B 1000 1.4E+08

Be II I 448.73 448.70 AAA 100 2.1E+08 O III 245.50 245.50 B 200 3.4E+08

Bi  I 289.80 289.79 4000 1.5E+08 O III 393.48 393.48 C+ 9.93E+07

Bi  I 306.77 306.77 9000 1.7E+08 P IV 334.77 334.77 C+ 650 2.1E+08

Br I 447.77 20000 1300000 P I 253.56 253.56 C 950 9.5E+07

C I 247.86 247.86 C+ 800 2.8E+07 Pb I 283.31 283.31 35000 5.8E+07

C II 283.67 283.67 B+ 1000 3.3E+07 Pb I 280.20 280.19 25000 1.6E+08

C III 229.69 229.69 A+ 800 1.4E+08 Pd I 340.46 340.46 24000 1.3E+08

Ca I 422.67 422.67 B+ 50 2.2E+08 Rh I 369.24 369.24 9400 9.1E+07

Ca II 317.93 317.93 C 180 3.6E+08 Ru I 372.80 372.80 11000 8.2E+07

Ca II I 289.98 289.98 B 14000 2.5E+08 S VI 420.08 420.08 AA 50 4.8E+07

Cd II 274.85 1000 2.8E+08 S VI 419.89 419.89 AA 120 2.9E+08

Cl  I I 479.46 479.46 C 99000 1E+08 Sb I 231.15 231.15 2500 1.7E+08

Cl  I I 481.01 481.01 C 29000 9.9E+07 Sc II I 273.40 273.40 D 230 3.3E+08

Co I 347.40 347.40 B 8000 5.6E+07 Sc II I 269.91 269.91 C 350 3.4E+08

Co II 258.03 258.03 B+ 210000 2.1E+08 Si  I 288.16 288.16 B 1000 2.2E+08

Co II 237.86 237.86 B+ 140000 1.9E+08 Si  I I 413.09 413.09 B 500 1.7E+08

Cr I 427.48 427.48 B 2500 3.1E+07 Sn II 328.31 328.31 B+ 15000 1.7E+08

Cr I 425.44 425.43 B 2480 3.2E+07 Sn II 335.20 335.20 B+ 13000 1.8E+08

Cu I 324.75 324.75 AA 10000 1.4E+08 Ta I 362.66 980 7100000

Cu I 327.40 327.40 AA 10000 1.4E+08 Te I 238.58 238.58 1200000 8.1E+07

Cu II 271.35 700 6.8E+07 Ti  I 399.86 399.86 A 10000 4.8E+07

F II 350.56 350.56 C 220 2.9E+08 Ti  I I 376.13 376.13 A 11900 1.2E+08

Fe I 374.95 374.95 A 1150000 7.6E+07 Ti  I I I 251.61 251.60 D 25 3.4E+08

Fe II 234.35 234.35 A+ 1000000 1.7E+08 Tl  I 276.79 276.79 4400 1.3E+08

Fe II 238.20 238.20 B+ 1800000 3.1E+08 Tl  I 351.92 351.92 20000 1.2E+08

Ga I 294.36 294.36 1.3E+08 V I 411.18 411.18 B 8900 1E+08

Ge I 265.12 265.12 2E+08 V II 292.40 292.40 B 2400 1.7E+08

Hf I 368.22 368.22 2200 2.6E+07 W I 400.88 400.87 B 1000 1.6E+07

Hg II 284.77 284.77 3500000 3E+08 W II 248.92 248.92 B 422 7E+07

In II 294.10 294.10 B 9600 3.4E+08 Y I 410.24 1800 1.3E+08

Ir I 269.42 269.42 3000 4.8E+07 Y II 371.03 13000 1.5E+08

Mg I 285.21 285.21 A 50 4.9E+08 Zn I 334.50 800 1.7E+08

Mg II 279.55 279.55 A+ 13 4.8E+08 Zn II 491.16 800 1.6E+08

Mg III 239.51 239.52 A 20 1.7E+08 Zr II I 266.43 266.43 5000000 3.2E+08

Mn I 279.83 279.83 C 5100 3.6E+08 Zr II I 262.06 262.06 10000000 3.9E+08

Table 3-5: ID Wavelength proposed for the LIBS machine used in this research 
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3.7 The Python Script 

The Python Script is attached in Appendix C  . This script uses the ID Wavelength file and 

the spectrum data from LIBS as input. An extraction of this file is shown in Table 3-6. This table 

contains the wavelength from 229.21 to 499.58 nm in the columns, and shows each rock sample 

(Su1), the shot number (S1) and the reading number (1,2,3,…) in the rows.  

The script starts with asking the sample wanted to be plotted, and the user has the option to select 

the spectrum to plot. The Python Script attempts to solve the problem of reading data that is not 

averaged because within the mining cycle, it is impossible to take several readings in 1 spot. 

 

Table 3-6: Extraction of the spectrum data from LIBS 

wavelength Su1,S1,0 Su1,S1,1 Su1,S1,2 Su1,S1,3 Su1,S1,4 Su1,S1,5 Su1,S1,6 Su1,S1,7 Su1,S1,8 

229.21 856 809 699 700 703 901 820 735 828 

229.36 907 869 730 717 685 1011 854 766 909 

229.5 856 815 705 694 721 943 826 763 844 

229.65 756 733 691 723 690 795 745 694 738 

229.79 806 749 685 699 731 810 743 725 775 

229.94 786 770 737 692 701 822 770 729 766 

230.08 759 722 677 674 668 745 719 701 730 

230.22 784 785 708 723 704 797 767 721 762 

230.37 776 778 685 725 725 795 748 741 763 

230.51 763 756 710 711 699 745 751 720 765 

230.66 753 751 682 704 712 759 733 714 739 

230.8 689 737 710 669 692 732 735 688 723 

230.95 766 734 712 675 682 756 731 678 739 

231.09 750 747 710 736 724 753 732 690 695 

231.24 759 742 713 703 707 726 741 714 732 

231.38 736 745 705 698 720 713 700 713 725 

231.53 744 726 725 704 698 762 723 724 727 

231.67 703 753 696 697 715 744 731 715 729 

 

Due to the heterogeneity of the geology and the constant movement of a belt conveyor or 

mining shovel, it was necessary to gather LIBS data that had previously been validated. In contrast 

to laboratory test work, samples in a production line cannot be taken apart for analysis because of 

the mining production cycle and the efficiency expected with respect to mining machinery. As 
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such, it was necessary to build data filters to simulate that which could be read in several readings 

in one static test, in only one reading, and in constant movement.  

There are 3 filters proposed for validating the data without the need to average several readings 

over a static sample: 

1. Minimum peak of 10 counts 

2. Local maximum using the second derivate kernel smoother density at 1.0 

3. A low pass filter analyzing the noise frequency using the Fast Fourier Transform (FFT) 

 

3.8 Technical potential 

Table 3-7 provides a summary of the 43 elements obtained from the responses of LIBS 

over the porphyry Copper samples from Escondida Mine. Table 3-7  has been constructed based 

on data that was collected, and is attached in Appendix A   and Appendix F  . This table indicates 

which elements LIBS has been able to detect based on wavelength identification. In contrast, Table 

3-8 shows only the 26 elements that have been identified through LIBS and the ICP Certified 

Analysis for both Oxide and Sulphide samples of Escondida Mine. 

Table 3-7: Technical potential summary 

Ag Cd Hg Ni Sn Zr 

Al Cl In O Ta Co 

Au Cr Ir P Ti Sc 

Ba Cu Mg Pb Tl  

Be F Mn Pd V  

Bi Fe Mo S W  

C Ga N Sb Y  

Ca Hf Na Si Zn  

 

Table 3-8: Technical potential summary skewed by Certified ICP Analysis 

Ag Ca Mg Sb Co 
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Al Cd Mn Si Sc 

Au Cr Mo Sn   

Ba Cu Na Ti   

Be Fe Ni Zn   

Bi Hg Pb Zr   

 

3.9 The Pearson Correlation 

The Pearson Correlation is a ratio or percentage of the dependence between 2 variables. 

This value is calculated by dividing the covariance by the partial standard deviations.  

𝒓 =
𝝈𝒔𝒚

𝑺𝒙𝑺𝒚

 

Equation 1 Pearson Correlation Coefficient 

This coefficient is used to measure the dependence of the Certified ICP Results and the 

LIBS responses.  

 

3.10 Confidence level over technical potential 

The identification of elements through LIBS is based on the likelihood of the occurrence 

of the transition of ionization stage. Wavelengths with possible false identification are summarized 

in this section. The main reason for this problem is the lack of an Identification of Wavelength set 

provided by the manufacturer of FiberLIBS, for that reason the wavelengths are vulnerable to 

error. Even when identified precisely, wavelengths can have error with respect to overlap (Cremers 

and Radziemski). As such, the best approach to verifying the wavelengths is through comparing 

them with the results of the Certified ICP analysis of the Oxide and Sulphide samples.  
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Table 3-9: Confidence levels for technical potential to detect elements 

 ICP data    ICP data  

 unit Min Max Confidence   unit Min Max Confidence 

Ag II@232.02 ppm <2 <2 Good  N IV@347.87       Unknown 

Ag II@241.32 ppm <2 <2 Good  N II@399.5       Unknown 

Al II@281.62 % 0.41 1.94 Good  Na II@298.42 % 0.03 0.11 Very Good 

Au I@242.8       Unknown  Na II@307.83 % 0.03 0.11 Good 

Ba II@455.4 ppm <5 64 Good  Ni I@341.48 ppm <1 10 Good 

Be II@272.89 ppm <0.5 <0.5 Poor  Ni I@349.3 ppm <1 10 Poor 

Be III@448.73 ppm <0.5 <0.5 Poor  O III@393.48       Unknown 

Bi I@306.77 ppm <5 <5 Poor  O V@278.1       Unknown 

C I@247.86       Unknown  P I@253.56 % <0.01 0.05 Good 

C III@229.69       Unknown  P IV@334.77 % <0.01 0.05 Good 

Ca I@422.67 % <0.01 0.13 Good  Pb I@280.2 ppm <2 154 Very Good 

Ca II@317.93 % <0.01 0.13 Poor  Pb I@283.31 ppm <2 154 Good 

Cd II@274.85 ppm <11 <11 Poor  Pd I@340.46       Unknown 

Cl II@481.01       Unknown  S VI@419.89 % 0.08 4.48 Poor 

Co I@347.4 ppm <1 47 Good  S VI@420.08 % 0.08 4.48 Poor 

Cr I@427.48 ppm <1 3 Poor  Sb I@231.15 ppm <5 <5 Poor 

Cu I@324.75 ppm 393 25700 Very Good  Sc III@269.91 ppm <0.5 1.1 Good 

Cu I@327.4 ppm 393 25700 Very Good  Si I@288.16* % 45.9 70 Very Good 

Cu II@271.35 ppm 393 25700 Poor  Si II@413.09 % 45.9 70 Poor 

F II@350.56       Unknown  Sn II@335.2 ppm <10 <10 Poor 

Fe I@374.95 % 0.07 8.31 Very Good  Ta I@362.66       Unknown 

Fe II@234.35 % 0.07 8.31 Very Good  Ti I@399.86 % <0.01 0.07 Good 

Fe II@238.2 % 0.07 8.31 Very Good  Ti II@376.13 % <0.01 0.07 Good 

Ga I@294.36       Unknown  Ti III@251.61 % <0.01 0.07 Good 

Hf I@368.22       Unknown  Tl I@276.79       Unknown 

Hg II@284.77 ppm <1 1 Poor  Tl I@351.92       Unknown 

In II@294.1       Unknown  V I@411.18 ppm 3 38 Poor 

Ir I@269.42       Unknown  V II@292.4 ppm 3 38 Poor 

Mg I@285.21 % 0.01 0.51 Very Good  W I@400.88 ppm <10 <10 Good 

Mg II@279.55 % 0.01 0.51 Good  W II@248.92 ppm <10 <10 Good 

Mg III@239.51 % 0.01 0.51 Good  Y II@371.03 ppm <0.5 4.3 Unknown 

Mn I@279.83 ppm 6 296 Poor  Zn I@334.5 ppm <1 207 Good 

Mn II@261.02 ppm 6 296 Poor  Zn II@491.16 ppm <1 207 Good 

Mo VI@329.33 ppm 7 1830 Poor  Zr III@262.06 ppm <0.5 1.5 Good 

Mo VI@338.7 ppm 7 1830 Poor  Zr III@266.43 ppm <0.5 1.5 Very Good 

      * Si calculated based on SiO concentrations  

 

Table 3-9 provides a summary of the confidence levels for the technical potential of the whole 

sample in providing a source of information with respect to choosing the ions for prediction 

equations. The confidence levels are classified as follows: 

 Very good: Wavelengths with obvious correlation to those identified in the ICP 

 Good: Wavelengths with some correlation to those identified in the ICP 
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 Poor: Wavelengths that are present in the LIBS responses, but no real correlation can be 

identified 

 Unknown: Wavelengths seen in LIBS spectrum but not in the ICP 

The values in this table define the limits for the identification of elements, and classify the elements 

as either belonging to the area of chemical analysis or to that of mining technology, the latter of 

which is the focus of this thesis.  

Based on the approach that was used for this study, elements corresponding to wavelengths 

that have very low concentrations, as indicated by ICP, are likely to be falsely identified and 

therefore the wavelengths are likely represent a different element. However, the regression 

analysis indicated that the magnitude of the peak at this wavelength is significant, and therefore 

the unknown elements associated with the wavelength are considered significant. 

For the purpose of this thesis and for ease of presentation, for the elements identified by the 

approaches used in this chapter, the element label is used to represent the wavelength. 
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Chapter 4: Analysis of Oxide Rock Samples with Laser Induced Breakdown 

Spectroscopy  

The purpose of this research is to generate a response for a sensor using correlations 

between LIBS responses and Certified ICP assays, and not to measure the actual grades. One 

significant obstacle in developing a response from LIBS involves being able to generate 

repeatability with respect to the sensor.  This is because the spot area that LIBS targets on the rock 

surface is 1 mm, which represents a statistically small sample size for classifying a much larger 

particle and rock sample. Rock samples of this research were in the size range of 3 to 5 cm. 

Following an idealization of a perfect spherical rock sample, the typical rock used had a surface 

area of 11,309 mm2.  This signifies that there is a chance of 0.008% (1 mm2/ 11,309 mm2) that 

LIBS is able to hit the same point on a rock sample.  

Previous research has demonstrated that LIBS capabilities are superior in terms of accuracy 

to those of other techniques such as ICP-AES, therefore, as a system, LIBS is favoured (G. S. 

Senesi). LIBS has shown a higher degree of accuracy in a variety of studies, and has reached 

accuracies from 1.82% to 6.25% based on ICP-AES Certified Analysis as compared with prepared 

and homogenized rock samples from Phosphate mines (INEEL). One of the significant problems 

encountered however, is the small amount of area covered by the laser beam that takes the reading. 

The analysis of the samples starts with the compilation of the data taken from all of the samples 

and put into one data file. The LIBS data was processed through the use of a Python Script, as 

explained in Chapter 3:. Output data is shown in Appendix A  .  

A spectrum from the Oxide samples is shown in Figure 4-1. The spectrum was processed with the 

Python script proposed in Appendix C  . The blue line belongs to the spectrum representing a 
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potential peak in the area highlighted in grey. Some notable readings can be seen close to 

wavelengths 324 and 327 in the x-axis, leading to a correspondence of both wavelengths to Copper. 

Furthermore, another characteristic feature includes the 3 peaks from 394 to 396, which this thesis 

proposes as a ratio for Oxides versus Sulphides.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Characteristic Oxide sample spectrum processed with the Python script 

 

The data shown in Table 4-1 includes the rock sample name, followed by the face-sample 

that it was taken from (S1 to S4), and then the reading taken (0 to 9). In order to obtain a significant 

measurement, 4 faces of the rock were sampled, with 10 readings for each sample, yielding a total 

of 40 readings per rock. In total there were 21,458 elements identified (including repetitions in the 

same rock) along with all of the readings.  
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“Peak Wavelength” refers to the wavelength read in the sample that might differ from the 

theoretical wavelength shown in the column “Observed Wavelength Air.” The difference between 

these columns occurs because LIBS needs a calibration of the wavelengths along its photodiode 

array.  

Table 4-1: Output of Python Scripts for the Oxide samples from Escondida Mine (Wavelength are in nm). 

 

Sample 
Rock 

Peak 
Wavelength 

Element Intensity Acc. Observed 
Wavelength 

Air 

0 15B1,S1,0 350.55 F II 1119 C 350.563 

1 15B1,S1,0 294.46 Ga I 957  294.3636 

2 15B1,S1,0 279.56 Mg II 1332 A+ 279.5528 

… …     … 

21455 21B1,S4,9 288.15 Si I 1612 B 288.1579 

21456 21B1,S4,9 251.54 Ti III 1588 D 251.6053 

21457 21B1,S4,9 276.73 Tl I 955  276.787 

21458 21B1,S4,9 266.53 Zr III 887  266.4286 
 

 

“Element” shows the ionization state of the element. “Intensity” measures the relative 

concentration of the element, and has arbitrary units since different LIBS machines will have 

different Intensity scales. This intensity varies from experiment to experiment depending on the 

configuration and features of the LIBS machine in use. In the same way, the NIST database 

(Laboratory) provides a Relative Intensity that consists of a ratio of the Intensity to its real 

concentration, which is used to represent the strengths of the lines in the spectrum. This might vary 

depending on the machines used. “Acc” (Accuracy), as described in Table 3-2, is a rating for the 

likelihood that a transition of the ionization stage occurs. This rating represents a direct “quality” 

factor of confidence for the data read.  
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4.1 Data integration and analysis 

Once the data has been processed through the Python script, the data is grouped by element 

and ionization stage. This table groups data according to ion and element, as shown in Appendix 

A  . The units of the table are considered to be “counts” or “arbitrary units.” 

Each of the blank values in Appendix A   represent readings that cannot be detected using the 

filters in the Python script. One of the main challenges of grouping elements is determining the 

uncertainty of the ID wavelength chosen for the Python script.  

 

4.2 Regression Analysis for the Oxide Rocks 

Once the samples had been reviewed with respect to any possibility for error, the data was 

taken into a regression analysis. A Stepwise regression was used to develop this correlation. The 

main purpose of this research was to elicit a response from the sensor to provide an indicator of 

the presence of ore, Sulfide or Oxide. It is possible to elicit such a response by conducting a 

multilinear regression analysis that will predict the target element, in this case Copper.  

 

4.3 Correlation of LIBS Cu Oxides response to ICP analysis 

This section presents an analysis of the direct correlation between the LIBS responses with 

respect to Copper versus those of the ICP Copper assays. The direct response of Copper has been 

obtained through the LIBS response. The Copper wavelengths analyzed correspond to Cu I at 

324.75 and Cu I at 327.39. The wavelengths provide readings only in the areas covered by the 

LIBS laser beam, and it is for this reason that the LIBS response might not represent an accurate 

measurement of the Copper. However, as shown below, useful results have been obtained.  
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Figure 4-2: LIBS responses for Copper at wavelengths 324.75 and 327.39 vs ICP Cu (ppm) 

 

 

Figure 4-3: LIBS responses for Copper at wavelengths 324.75 and 327.39 vs ICP Cu (ppm) with secondary axis 

The intention behind showing two charts with the same information is to provide a 

perspective regarding the relationship of the correlation between the LIBS response and the ICP 

assays for Copper. Figure 4-2 provides the correlation using the same primary axis, and Figure 4-3 
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shows the correlation with different axes. The correlation shown in Figure 4-4 is a normalization 

(from 0 to 1) of the two variables, and the Pearson Correlation Coefficient is 0.48.  

 

Figure 4-4: Correlation of Cu I at 324.75 nm 

The reason that these variables have been normalized is because they do not have a 

common unit, as it is ppm for ICP Cu, and counts for LIBS Cu.  The optimum number would be 1 

on this regression, however obtaining a value of 0.48 means that the value is significant for the 

whole correlation developed in later sections of this chapter.  
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Figure 4-5: Correlation of Cu I at 327.39 

In the same way, Figure 4-5 shows the correlation between the ion Cu I at 327.39 nm. The Pearson 

Correlation Coefficient is 0.45, and the interaction between these two variables is more clear in 

Figure 4-3. However, a coefficient in the range of 0.5 +-0.1 suggests a moderate uphill relationship.  

Direct LIBS correlations is recommended depending on the geology type. For example, coal seams 

that have low heterogeneity and can produce a good response using this direct correlation. Copper 
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ore deposits do not match these characteristics, and as such, LIBS responses will not follow 

properly with this type of correlation.  

 

4.4 Element regression analysis for Oxide samples 

The data, as shown in Appendix A  , is a compendium of the large database of responses 

from LIBS readings over Oxide rocks. Appendix B  shows the results of the Certified ICP results. 

The responses were taken into MATLAB to process the Stepwise Fit regression analysis. The input 

data is 0 and the second input to fit all of these elements is Cu concentration (ppm) from Appendix 

B  . 

As shown in Table 4-2, the results of this analysis provide a coefficient for the ion, a 

standard deviation and a p-value. The regression selection is based on the p-value, which 

represents the null-hypothesis where the coefficient is equal to zero.   

It is important to mention that the software (MATLAB) does not accept empty data into 

the matrices to create this correlation. This is a source of non-measurable error because empty cells 

are being filled with zeros “0” in order to calculate the correlation prediction. There is no solution 

to this problem because the LIBS responses and the predictions may be contaminated as a result 

of garbage data even when the LIBS responses are compared with the ICP assays because ICP 

provides a geochemical analysis for the entire sample rather than a surface reading, as does LIBS. 

Although not directly the subject of this research, it is therefore recommended to develop a 

mathematical algorithm that does not fill empty spaces with zeros in the matrices when calculating 

the predictions using Stepwise regression.  

 

Table 4-2: Results of regression analysis over LIBS responses 
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Element Coefficient Std. Error p value 

Ag II@232.02 3.665 2.203 0.105 

Ag II@241.32 1.402 1.157 0.234 

Al II@281.62 -1.719 1.039 0.107 

Ba II@455.4 0.369 2.018 0.855 

Be II@272.89 0.165 1.002 0.86 

Be III@448.73 0 22.10 1 

Bi I@306.77 -1.96 1.007 0.060 

Ca I@422.67 -1.12 12.78 0.9302 

Ca II@317.93 -0.7 1.059 0.465 

Cd II@274.85 -2.38 2.635 0.371 

Cl II@481.01 0.365 2.149 0.8661 

Co I@347.4 -2.776 4.350 0.527 

Cr I@427.48 4.0494 2.058 0.057 

Cu I@324.75 50.50 18.02 0.0083 

Cu I@327.4 -56.6 24.00 0.024 

Cu II@271.35 -1.3188 0.95 0.174 

F II@350.56 -1.261 1.413 0.378 

Fe I@374.95 -1.013 1.493 0.502 

Fe II@234.35 1.0135 2.75 0.714 

Fe II@238.2 -3.157 3.531 0.3776 

Ga I@294.36 -0.02 1.597 0.9851 

Hf I@368.22 -2.6298 3.501 0.4579 

In II@294.1 -0.822 1.369 0.552 

Ir I@269.42 -1.38 1.1206 0.225 

Mg I@285.21 -4.744 12.72 0.711 

Mg II@279.55 -0.615 3.604 0.8654 

Mg III@239.51 -4.3487 4.3426 0.323 

Mn I@279.83 7.7559 1.713 7.01E-05 

Mn II@261.02 -1.55 6.0825 0.799 

N II@399.5 -0.5061 2.4213 0.835 

N IV@347.87 -1.0638 1.615 0.514 

Na II@298.42 0.5653 3.01 0.852 

Na II@307.83 -2.2515 0.700 0.0028 

Ni I@349.3 -0.162 1.3748 0.906 

O III@393.48 9.80552 15.88 0.541 

O V@278.1 1.52244 0.899 0.100 

P I@253.56 0.3609 1.098 0.744 

P IV@334.77 -0.7648 0.77 0.332 

Pb I@280.2 -1.156 0.98 0.248 

Pb I@283.31 0.67120 1.443 0.645 

S VI@419.89 -0.612 1.407 0.66 

S VI@420.08 -0.28 1.2408 0.821 

Sc III@269.91 5.417 3.580 0.13 

Si I@288.16 -26.35 5.374 2.29E-05 

Si II@413.09 -0.042 1.241 0.9730 

Sn II@335.2 4.7879 2.123 0.0305 

Ta I@362.66 -0.63 3.34 0.849 

Ti I@399.86 0.44 1.37 0.745 

Ti II@376.13 0.453 1.66 0.787 

Ti III@251.61 -15.76 12.8 0.229 

Tl I@276.79 0.32 1.76 0.855 

Tl I@351.92 1.07 1.899 0.575 

V II@292.4 0.1568 1.285 0.903 
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Element Coefficient Std. Error p value 

W I@400.88 5.140 3.397 0.139 

W II@248.92 -0.29 1.117 0.795 

Y II@371.03 0.824 1.183 0.490 

Zn I@334.5 1.712 1.266 0.185 

Zn II@491.16 5.479 3.622 0.139 

Zr III@266.43 0.124 1.233 0.920 

 

The p-value represents how extreme the measure is with respect to its model. The p-value 

for this statistical analysis provides the significance of the term inside the regression analysis. For 

practical purposes, only p-values below 0.05 will be considered for the regression. In Table 4-2, 

p-values with values below 0.05 have been highlighted in red. A summary of the results, including 

the intercept for the equation, is shown in Table 4-3 below. 

 

Table 4-3: Selected elements for regression analysis 

Element Coefficient Std. Error p value Occurrence Occurrence% 

Cu I@324.75 50.505 18.021 8.31E-03 1461 90% 

Cu I@327.39 -56.664 24.009 2.41E-02 1334 82% 

Mn I@279.82 7.756 1.714 7.01E-05 1 0% 

Na II@307.83 -2.252 0.701 2.88E-03 82 5% 

Si I@288.15 -26.351 5.375 2.29E-05 1247 77% 

Sn II@335.19 4.788 2.123 3.07E-02 4 0% 

Intercept         42,336          
 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑢(𝑝𝑝𝑚)

= 42,336 + [50.50 ∗ 𝐶𝑢 𝐼@324.75] − [56.66 ∗ 𝐶𝑢 𝐼@327.39]

+ [7.75 ∗ 𝑀𝑛 𝐼@279.82] − [2.25 ∗ 𝑁𝑎 𝐼𝐼@307.83] − [26.35 ∗ 𝑆𝑖 𝐼@288.15]

+ [4.78 ∗ 𝑆𝑛 𝐼𝐼@335.19] 

This formula was used to plot the y-axis for Figure 4-6. For the purposes of this chart, the 

size ratio was adjusted to 1:1 to provide a realistic graphical plot of the predictive model.  
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Figure 4-6: Predicted Copper vs Certified ICP Copper (ppm) 

 

The Pearson Correlation provides an idea of how disperse the 2 models are. It also 

resembles a moment of inertia, and can be considered to be a precision. In this case, the correlation 

does not appear to be a reliable model for sorting. Although there is no standard with respect to 

dispersion for sorting sensors, some logic standards can be used as a pattern. The average cut-off 

grade for an open pit mine operation ranges between 0.27% to 0.5% Cu, or 2700 to 5000 ppm. 

Ideally, the results would fall along the 1:1 line, however this is not the case. The prediction tells 
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us that 23% (1-0.7703) will be off the predicted value. This means that if we work with a cut-off 

of 0.27% Cu, we might attain readings of 0.2% Cu or vice versa, which could result in wrong 

sensor responses and indeed, loose ore.  

 

Figure 4-7: ICP Cu vs Predicted Cu trending line along the 41 rock samples 

Figure 4-7 shows the predicted Copper levels versus those of the certified analysis for the 

sample. This figure provides an idea of the accuracy of the sensor prediction through a basic 

multivariable regression analysis.  The accuracy for this response has been calculated as the 

average of the individual accuracies, giving a final value of 77%. The individual accuracies have 

been calculated as: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝒂𝒃𝒔(𝑰𝑪𝑷 𝑪𝒖 − 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝑪𝒖)

𝑰𝑪𝑷 𝑪𝒖
 

Equation 2 Accuracy calculation for the correlation 

 

Table 4-4: ICP Cu vs Predicted Cu values in ppm 

Accuracy ICP Cu Predicted Cu 
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Accuracy ICP Cu Predicted Cu 

20% 12100 9721 

10% 13700 12271 

120% 3080 6770 

49% 4750 7099 

153% 3130 7905 

13% 9320 8139 

64% 2890 4735 

16% 5600 4710 

30% 7170 9291 

64% 3600 5903 

151% 2350 5901 

21% 8440 6653 

15% 9720 8303 

73% 774 209 

65% 1680 2773 

11% 13800 12350 

39% 12900 7865 

44% 2990 4307 

16% 3410 3956 

26% 5680 7147 

7% 2100 1947 

138% 1110 2637 

15% 9150 7779 

14% 5230 4494 

26% 7480 5562 

16% 7310 8498 

11% 1930 1718 

30% 15300 10725 

986% 370 -3280 

406% 1940 9809 

2% 8790 8626 

23% 4710 5784 

122% 1530 3390 

92% 1410 2713 

39% 7360 4470 

83% 3450 6298 

5% 7820 7425 

79%   

 

The accuracy of the response is 79%. In previous chapters it was explained that, as a result 

of the time frame and LIBS capabilities with respect to number of readings, accuracy is not as 

important as precision. Accuracy can be estimated and improved upon by taking more than one 

reading per sample once the sensor is working in a sorting system. However, 79% means that only 

21% of the readings are aimed at the target. This might be critical, even if a high level of precision 

is expected.  
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In contrast, precision can be achieved if we understand the statistical behavior of the sample.  

Table 4-5: Histogram data of the 41 Oxide samples 

Bin Frequency 
Cumulative 

% 

-3 0 0.00% 

-2 1 2.50% 

-1 4 12.50% 

0 13 45.00% 

1 17 87.50% 

2 4 97.50% 

3 1 100.00% 

More 0 100.00% 

 

 

Figure 4-8: Histogram of the 41 Oxide samples 

Figure 4-8 and Table 4-5, shows the historic data of the regression analysis. This chart is a 

Pareto chart that has been calculated with the 3 standard deviations obtained from the correlation 

of ICP Cu and Predicted Cu. The histogram plays a significant role with respect to the correlation 

because we are taking responses from cut-off grades. The histogram suggests that the bias tends 

to the positive side (mean is greater than the predicted value) and is less likely to trend to the 

negative side (mean is lesser than the predicted value). This suggests that if there is a cut-off grade 
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of 0.3% Cu, then 25% will be below the cut-off, and the other 75% will be around or greater than 

the target. In contrast, in Figure 4-9 the trend indicates that from 0 to 3% Cu, the prediction turns 

to be negative.   

 

Figure 4-9: Standard Deviation dispersion of the predicted Copper 

 

4.5 Interaction effect analysis using multilinear regression analysis for Oxide samples 

The analysis of the interaction effects begins with the development of another Python 

Script to multiply each element response by another element response. The input of this script is 

shown in the table in Appendix A  . In the script there are 59 elements, giving an output of 3481 

interaction effects of elements, including repetitions such as “Ag II@232.02*Ag II@232.02”. The 

problem described in section 4.4 in terms of zeros in the matrices calculations is increased here. 

Every single space has been calculated as the multiplication of 2 responses, and if one or two of 

the responses are empty (or zero for the calculation), then the result will also be empty, or zero.  
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Table 4-6: Truth Table using AND logic 

AND 

A B AB 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

To gain an understanding of how this will effect the results of the calculations, Table 4-6 

shows the results of a Truth Table with the operator AND. In this case, A represents one ion and 

B another ion in the multiplication script. A zero represents an empty space, and 1 represents a 

numeric response different than an empty space. As such, it is indicated that only 25% of the 

possibilities will provide a numeric response for the 3481 binomial elements. This increases the 

potential for error, and it is recommended that this situation be investigated in more detail.  

The multiplication provides responses that are in the numerical range of squared power because 

they have been multiplied. Evidence of this is shown in the extract of the output of the script in  

Table 4-7. This chart simply provides a random extraction from the whole table. This portion of 

the table, however, has been shown on purpose to provide at least some visible data because most 

of the tables have no interaction effect responses.  

The interaction effects are developed with the purpose of creating links between the target 

ore (Copper) and the host minerals. The mineralogy of the bearing minerals of the target ore 

provides a good trace for the presence of the target element. However, this approach is appropriate 

for ores such as gold, in that direct gold readings are unlikely through LIBS or any other sensor, 

due to particle size. Massive ore bodies such as Copper porphyries do not allow for the creation of 

strong links to a specific mineralization because of the natural and complex geological formation 

of the ore body. Because of this, the current research focuses on the statistical analysis of the 

interaction of the elements and not on the mineral-bearing association of host minerals, also 
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referred to as ore genesis. For example, host minerals of gold provide a strong response to the 

presence of gold because the fine, or very fine grain size of gold might not be read by a sensor. As 

such, the gold associated to Tellurides, Sulphides, Arsenopyrites or Carbonaceous materials, and 

can be difficult to read as gold. However, the association to gold would be easier if the predictive 

equation searches for Arsenic, Antimony or Tellurium, depending on the local ore genesis. This 

would provide a good tool for searching over high grade veins where gold is occluded into the 

mentioned host minerals. However, if the ore body is a massive disseminated porphyry, then the 

interaction effect might limit the statistical capacity of predicting the element concentration by not 

accepting some of the elements. Indeed, the best approach to the interaction effect is to provide 

some logical acceptance or rejection of the variables under the geological perspective based on 

their mineralogical associations. Copper porphyry deposit genesis typically belongs to a 

hydrothermal magmatic fluid for which a better approach might be geo-spatial characterization via 

geostatistical analysis rather than heterogeneity and host mineralization.  

Table 4-7: Extract of binomial multiplication of the ion responses from LIBS 

Rock 

Mg 
I@285.21*Be 
III@448.73 

Mg 
I@285.21*Bi 
I@306.77 

Mg 
I@285.21*Ca 
I@422.67 

Mg 
I@285.21*Ca 
II@317.93 

Mg 
I@285.21*Cd 
II@274.85 

Mg 
I@285.21*Cl 
II@481.01 

Mg 
I@285.21*Co 
I@347.4 

1     1052956   1173146.9     

2     1012570   1194120.2     

3     1045180 1062383.85 1129281.0     

4     1045832   1197269.8     

5     1051358 996808.1515 1037441.6 823450.2   

6     978493   1067929.7     

7     1045516   1052351.5     

8   1361130.225 1034371   1455831.0     

9     1111389 1161952.0 1315768.1 957001.3   

10   1260264.6 1045583   1420121.4     

11     1117576 1508004.4 1268463.3     

12   1269411.11 1014349 1078216.8 2131788.4     

13     1040576   1190350.9     

14     949752   1134324.3     

15     867266   979689.1     

16     1026289   1089395.4 936682   

17 973928.7   959216 1093710.791 1170050.6     

18   1095843.214 1070755 1127179.8 1792358.7     
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Rock 

Mg 
I@285.21*Be 
III@448.73 

Mg 
I@285.21*Bi 

I@306.77 

Mg 
I@285.21*Ca 

I@422.67 

Mg 
I@285.21*Ca 

II@317.93 

Mg 
I@285.21*Cd 

II@274.85 

Mg 
I@285.21*Cl 
II@481.01 

Mg 
I@285.21*Co 
I@347.4 

19   1099832.767 1033135 1112472.288 1362796.2     

20   1034505 1047562 1082070.9 1076614.5     

21     971638 956096.7 1191059.4 895723.2   

22   1444833.113 1032193   1732889.3     

23   1254677.907 1002130   1184938.5     

24   1131976.625 1054606 1237411.5 1486248.5   1032334.8 

25     1014031 1057703.4 1150800.1     

26   1242154.05 1048500 1004045.2 1410501.7     

27     1084227 1168885.1 1198292.6     

28     1028212 1084348.35 1398646.7     

29     1058327   1140914.1     

30     1021557 1130917.282 1368772.1     

31     990900   1287859.9     

32     991509   1266436.2     

33     1044814   1116409.9     

34     1040522 1008561.8 1128178.6 981586.075   

35     1102378 1144697.88 1389501.3     

36     1003450 1050617 1112683.3     

37     1007754 1009750.3 1239945.7     

38   1396766.7 1085700 1093554 1904927.6     

39     997601   1494442.3     

40     1087467 1109302.074 1031189.2     

41     1088747   1314198.8 1003087.05   

 

This numerical range will disable the sensitivity of the ion responses from LIBS because 

the numbers are higher in quantity than are the raw LIBS responses. As such, values in Table 4-7 

were re-calculated as the square root for all of the values. As in Table 4-7, this part is shown on 

purpose for the reason of providing some visible data. 

Table 4-8: Extract of the square root of the binomial multiplication of the ion responses 

Rock 

Zr 
III@266.43*Ag 
II@232.02 

Zr 
III@266.43*Ag 
II@241.32 

Zr 
III@266.43*Al 
II@281.62 

Zr 
III@266.43*Ba 
II@455.4 

Zr 
III@266.43*Be 
II@272.89 

Zr 
III@266.43*Be 
III@448.73 

1 0 0 900 0 912 0 

2 0 0 0 0 926 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 946 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 1153 0 1263 0 

9 0 1060 1025 0 1321 0 

10 0 0 0 0 1015 0 

11 0 0 996 916 1207 0 
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Rock 

Zr 
III@266.43*Ag 

II@232.02 

Zr 
III@266.43*Ag 

II@241.32 

Zr 
III@266.43*Al 

II@281.62 

Zr 
III@266.43*Ba 

II@455.4 

Zr 
III@266.43*Be 

II@272.89 

Zr 
III@266.43*Be 

III@448.73 

12 0 1021 0 0 1244 0 

13 0 0 0 994 1084 0 

14 0 0 0 0 0 0 

15 0 0 0 0 0 0 

16 0 0 0 0 0 0 

17 0 0 0 914 1059 929 

18 0 0 966 0 1033 0 

19 0 0 0 0 1046 0 

20 0 0 920 0 957 0 

21 0 0 0 856 924 0 

22 0 0 1069 0 1245 0 

23 0 1062 1081 0 1314 0 

24 0 0 989 0 1089 0 

25 0 0 0 0 951 0 

26 0 0 0 0 1153 0 

27 0 0 0 0 0 0 

28 0 0 0 939 1100 0 

29 0 0 0 0 0 0 

30 0 0 0 842 940 0 

31 0 0 0 0 1045 0 

32 1084 1242 0 0 0 0 

33 0 1084 1068 1079 1240 0 

34 0 0 884 844 0 0 

35 0 0 0 0 1028 0 

36 0 0 0 0 0 0 

37 0 0 0 0 1072 0 

38 0 0 0 0 1161 0 

39 0 0 0 0 978 0 

40 0 0 0 0 0 0 

41 0 0 0 0 1179 0 

 

An extraction of the 3481 square rooted binomials is shown in Table 4-8. This numerical 

range is similar to that of the LIBS responses. The empty spaces were filled with zeros to make 

the computing of the responses possible. Table 4-8 will not be included into this thesis due to its 

size, but can be easily replicated through the use of the Python Script included in Appendix D  . 

 

4.6 First procedure run analysis for the regression for Oxide samples 

The first run for the regression uses data from Table 4-8. The entire table was processed 

with the MATLAB Stepwise fit function, providing statistical results for the 3481 binomials. The 
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results indicate that 3443 values, or 98.9 % of all of the binomials provided a NaN result for the 

p-value. MATLAB (MathWorks) describes NaN returns as “Not-a-Number” values that result 

from operations with undefined numerical results. For all of these NaN results for p-value, the 

calculated coefficient was zero. Table 4-9 shows the calculated values of p-values and coefficients 

in MATLAB for the first run in the algorithm. It is expected that the calculated p-value of zero “0” 

is due to the large amount of variables processed by the software. The values were calculated for 

Copper in ppm from the ICP Certified Results (ICP certified assay results for the 41 Oxide 

Escondida samples), a target dependent variable. The maximum allowed p-value was set at 0.05.   

 

Table 4-9: Results of the first run using Stepwise Fit regression in MATLAB for Copper 

Binomials p-value Coefficient 

Al II@281.62*Ba II@455.4 0 4.7660 

Ba II@455.4*Ca II@317.93 0 -0.7830 

Ba II@455.4*Fe I@374.95 0 -3.7101 

Be II@272.89*Ca I@422.67 0 -13.306 

Be II@272.89*Cu I@324.75 0 163.232 

Be II@272.89*Cu I@327.4 0 -132.49 

Be II@272.89*Na II@298.42 0 -19.509 

Be II@272.89*Ti I@399.86 0 -13.512 

Be III@448.73*Cr I@427.48 0 6.0267 

Ca I@422.67*Mg III@239.51 0 7.2111 

Ca II@317.93*Al II@281.62 0 0.2186 

Ca II@317.93*Cl II@481.01 0 -2.3148 

Ca II@317.93*Cr I@427.48 0 -4.6994 

Cd II@274.85*Mn II@261.02 0 -0.0390 

Cd II@274.85*Ti II@376.13 0 0.0333 

Cl II@481.01*Ir I@269.42 0 1.0694 

Cr I@427.48*P I@253.56 0 -0.078 

F II@350.56*Si II@413.09 0 0.5143 

Fe I@374.95*Fe I@374.95 0 -2.0133 

Fe II@234.35*P I@253.56 0 -13.075 

Ga I@294.36*Ni I@349.3 0 1.7984 

Ga I@294.36*Pb I@280.2 0 0.0006 

In II@294.1*W II@248.92 0 0.4223 

In II@294.1*Y II@371.03 0 0.0001 

Mg III@239.51*Si I@288.16 0 -31.205 

N II@399.5*P I@253.56 0 -2.7507 

O III@393.48*P I@253.56 0 15.6554 

O III@393.48*P IV@334.77 0 -0.206 

P I@253.56*F II@350.56 0 -6.006 

P I@253.56*Zr III@266.43 0 0.0197 
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Binomials p-value Coefficient 

P IV@334.77*Sn II@335.2 0 -0.6383 

P IV@334.77*Ti II@376.13 0 -1.0461 

Pb I@280.2*Tl I@276.79 0 0.7423 

Pb I@280.2*Tl I@351.92 0 0.8022 

S VI@419.89*V II@292.4 0 0.2601 

Ti I@399.86*V II@292.4 0 -0.6404 

Ti I@399.86*Zr III@266.43 0 9.3700 

Ti II@376.13*Tl I@276.79 0 2.1956 

 

Table 4-9 represents a preselection of the set of variables from Table 4-8. All of these 

interaction effects have a higher statistical interdependence with respect to the target value, and 

were selected based on t-statistics assumptions in order to build an equation with respect to which 

variables provide a better fit to the target dependent variable (Cu ppm).  

 

4.7 Second procedure run analysis for the regression 

Once the first set of variables was selected, the set of responses for each of these binomials 

was re-entered into MATLAB in order to process the data. The same process employed in the first 

run was used for this stage, but the dataset consisted of the binomials selected in Table 4-10. 

Table 4-10: Second run using Stepwise Fit regression in MATLAB 

Binomials p-value Coefficient 

Be II@272.89*Ti I@399.86 1.26E-16 -13.512 

Ti I@399.86*Zr III@266.43 2.00E-16 9.370 

Be II@272.89*Cu I@324.75 9.34E-16 163.23 

P I@253.56*F II@350.56 1.50E-15 -6.006 

Al II@281.62*Ba II@455.4 8.78E-15 4.765 

Be II@272.89*Cu I@327.4 1.41E-14 -132.5 

Mg III@239.51*Si I@288.16 1.43E-14 -31.21 

Ca II@317.93*Cr I@427.48 5.45E-14 -4.699 

Ca II@317.93*Cl II@481.01 5.92E-14 -2.314 

Ba II@455.4*Fe I@374.95 1.15E-13 -3.709 

O III@393.48*P I@253.56 1.21E-13 15.65 

N II@399.5*P I@253.56 2.27E-13 -2.750 

Fe I@374.95*Fe I@374.95 2.71E-13 -2.014 

Ti II@376.13*Tl I@276.79 2.88E-13 2.196 

Be II@272.89*Na II@298.42 2.99E-13 -19.50 

Fe II@234.35*P I@253.56 4.06E-13 -13.07 

Be III@448.73*Cr I@427.48 4.79E-13 6.026 

Pb I@280.2*Tl I@276.79 1.02E-12 0.742 



60 

 

Binomials p-value Coefficient 

Ga I@294.36*Ni I@349.3 3.64E-12 1.798 

Ba II@455.4*Ca II@317.93 6.56E-12 -0.783 

Ca I@422.67*Mg III@239.51 9.90E-12 7.202 

F II@350.56*Si II@413.09 1.66E-11 0.515 

Be II@272.89*Ca I@422.67 1.87E-11 -13.30 

Pb I@280.2*Tl I@351.92 2.19E-11 0.801 

Ti I@399.86*V II@292.4 3.28E-11 -0.640 

Cl II@481.01*Ir I@269.42 5.62E-11 1.0676 

P IV@334.77*Ti II@376.13 8.94E-11 -1.046 

Ca II@317.93*Al II@281.62 4.36E-10 0.2193 

P IV@334.77*Sn II@335.2 6.11E-10 -0.638 

S VI@419.89*V II@292.4 1.99E-09 0.260 

In II@294.1*W II@248.92 2.57E-09 0.42 

O III@393.48*P IV@334.77 4.64E-08 -0.205 

Cr I@427.48*P I@253.56 1.08E-06 -0.076 

Cd II@274.85*Ti II@376.13 5.44E-06 0.03 

P I@253.56*Zr III@266.43 7.25E-05 0.018 

Cd II@274.85*Mn II@261.02 0.0044785 -0.032 

Ga I@294.36*Pb I@280.2 0.2195562 0.0003 

In II@294.1*Y II@371.03 0.5953761 -0.0003 

The calculations depend on the number of statistical variables because they are matrix 

multipliers, and as such, p-values might change for different runs. Values highlighted in red do not 

fit the minimum standard of 0.05 for p-value, and will be removed from the set of variables. The 

above table is sorted from smallest to largest p-value.  

 

4.8 Proposed Method A 

The variables with the smaller p-values were taken from the set of values in Table 4-10 to 

continue with the algorithm. The reason for choosing this set of values is that a reasonable equation 

for predicting Copper values cannot hold “too many variables,” meaning that there should be no 

more than 10 or 12 variables in the equation. Smaller p-values show a higher interdependence 

between the dependent and interdependent variables, which is the key target in the sorting 

algorithm.  

For this method, we used the first 20 interaction effects shown in Table 4-10. These effects 

have the smallest p-values in the correlation matrix, and are added to the 6 elements from Table 
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4-3. The reason that it is necessary to add elements to this binomial set is because the geological 

variable interaction corresponds directly to some presence of the elements. In this case, our target 

is Copper, and Copper alone must be added. Silicon, Magnesium and Sodium are found in 

abundance on the earth’s crust (Yaroshevsky), and they show a statistical correlation with the 

target variable (ICP Copper assays).  

The final input for the computation of the correlation will include 26 variables, as shown 

in Table 4-11. This table indicates the p-values and the coefficients for each variable computed. 

Unexpectedly, the p-value for elements such as Cu, I, or Na II are high, and do not fit with the 

standards suggested for inclusion into a prediction equation.  

Table 4-11: Results for correlation for Oxide rocks 

Variables p-value Coefficient 

Be II@272.89*Ti I@399.86 1.95E-12 -11.883 

Ti I@399.86*Zr III@266.43 9.52E-11 8.623 

Be II@272.89*Cu I@324.75 7.36E-10 142.45 

P I@253.56*F II@350.56 2.98E-09 -4.478 

Al II@281.62*Ba II@455.4 4.72E-04 2.99 

Be II@272.89*Cu I@327.4 1.03E-06 -119.8 

Mg III@239.51*Si I@288.16 6.70E-09 -25.62 

Ca II@317.93*Cr I@427.48 0.0786 -1.492 

Ca II@317.93*Cl II@481.01 0.056 -1.253 

Ba II@455.4*Fe I@374.95 0.006 -2.585 

O III@393.48*P I@253.56 4.63E-07 3.07 

N II@399.5*P I@253.56 0.0012 -2.943 

Fe I@374.95*Fe I@374.95 0.012 -1.805 

Ti II@376.13*Tl I@276.79 0.0064 1.446 

Be II@272.89*Na II@298.42 0.00019 -24.93 

Fe II@234.35*P I@253.56 0.825 -0.678 

Be III@448.73*Cr I@427.48 1 0 

Pb I@280.2*Tl I@276.79 0.027 0.919 

Ga I@294.36*Ni I@349.3 0.188 0.68 

Ba II@455.4*Ca II@317.93 0.011 -2.6411 

Cu I@324.75 0.601 -1.188 

Cu I@327.4 0.560 -1.669 
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Variables p-value Coefficient 

Mn I@279.83 9.39E-06 3.2323 

Na II@307.83 0.354 0.291 

Si I@288.16 0.755 -0.999 

Sn II@335.2 0.275 0.839 

 

Appendix A  shows the responses for Mn I at 279.83 nm. For this particular ion, only one 

response was found. While the stepwise regression suggests that the Mn term is significant, it does 

not provide a significant amount of information and was therefore eliminated from the model. 

By comparing Table 4-11 and Table 3-1, some of the interaction effects proposed for building the 

predicted Copper formula can be confirmed. Magnesium and Silicon are likely to be found 

together, and to create a numerical correlation to Copper because the Biotitic and Quartz-Sericite 

mineral groups contain these two elements. The elements shown in the mineralogical group are 

not necessarily good predictors for copper. The 1st and 2nd Interaction Effect indicators show the 

confidence level of the identification of each. These indicators are based on Table 3-9. 

 

Table 4-12: Final prediction equation for Predicted Copper 

1st I. E. 2nd I. E. Variables Coefficient p-value 
Poor Good Be II@272.89*Ti I@399.86 -11.78 1.33E-08 
Good Very Good Ti I@399.86*Zr III@266.43 8.71 1.14E-07 
Poor Very Good Be II@272.89*Cu I@324.75 157.8 1.63E-08 
Good Unknown P I@253.56*F II@350.56 -3.16 0.00041 Intercept: 37480.607 
Poor Very Good Be II@272.89*Cu I@327.4 -160.5 3.16E-08 
Good Very Good Mg III@239.51*Si I@288.16 -30.32 1.11E-07 

Unknown Good O III@393.48*P I@253.56 1.968 0.01079 
Poor  Mn I@279.83 4.11 0.0002 

 

The values were computed with Stepwise Fit in MATLAB, the variables in this table are 

used to build the predictive equation for copper. This final equation with its intercept, is used to 

plot Figure 4-10. This chart shows a very good correlation of 0.9614 that has the highest Pearson 
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Coefficient found for the Oxide samples. However, this method is inconsistent, and needs to be 

subject to revision. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑢(𝑝𝑝𝑚) = 37480.6 − 11.78 ∗ Be II@272.89 ∗ Ti I@399.86 + 8.71 ∗ Ti I@399.86 ∗ Zr III@266.43 + 157.87 ∗
Be II@272.89 ∗ Cu I@324.75 − 3.16 ∗P I@253.56*F II@350.56-160.59* Be II@272.89*Cu I@327.4-30.32* Mg 
III@239.51*Si I@288.16+1.96* O III@393.48*P I@253.56+4.11* Mn I@279.83 

Equation 3 Predicted Copper for Oxide samples - Method A 

 

Figure 4-10: Correlation equation for LIBS Copper responses 
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The negative coefficient indicates that there is an inverse correlation between the Copper 

grade and the response parameter or element. For example, the high concentration of an element 

associated with a gangue mineral would imply a low concentration of Copper.   

A common mistake that is made while developing regression analysis is to follow the patterns that 

had been developed during former projects. In this case, LIBS has a different set of values. This 

set of values varies with regard of the amount of information present, such as for example, Mn I 

at 279.83 nm. 

 

Figure 4-11: Histogram for the correlation equation for LIBS Copper responses 

The LIBS responses fit very well, and this histogram shows how the trend does not reach 
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As mentioned, this information is quite good, and fits very well with respect to the intended 

target. However, this method is not reliable because it does not consider the number of responses 

available from the interaction effects. It is necessary to see how many responses can be counted in 

order to fill this regression.  

Also, the number of responses available are not explicitly shown in Appendix A   because this is 

a pivot table that provides a lump sum of the total responses from LIBS. The real responses are 

shown in Table 4-1. The data fits very well in this prediction, but will not function well in the real 

world once the sensors are built-in to the belt conveyors, or the buckets of shovels or front end 

loaders.  

 

4.9 Proposed Method B 

This method is similar in procedure to Method A but includes the amount of responses 

obtained from LIBS in its analysis. Appendix E  indicates the amount of LIBS responses attained 

for each of the 41 samples from Escondida Mine. It is important to know the number of responses 

in order to determine the mathematical error. Calculating mathematical error does not need to be 

considered because it will be assessed as part of the proof of concept but it is expected to be taken 

into account once the algorithm is applied to a sensor system either on a belt conveyor or a mining 

shovel, for ore sorting. The mathematical error refers to the availability of responses for the terms 

in the Predicted Formula. Some variables, such as Pb I@280.2 or Tl I@276.79 included in Table 

4-11, have a positive statistical correlation with the target variable and are mathematically viable. 

However, once inserted into a correlation equation, they will not work as expected because there 

are not enough responses to feed the model in a sorter device.  
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As a result of the mathematical error, LIBS will loose its potential to produce the elements 

used for the interaction effects. If one of the elements needed for one interaction effect variable is 

not easily read in the first readings, then the predictive equation will be incomplete and the 

prediction inaccurate. The reading will not necessarily be taken several times on the same rock, 

and the likelihood of getting a response from a binomial with two ions will be low, and as such, 

will result in a high level of inaccuracy and low level of precision. A clear presentation of this 

problem will be done later in this chapter.  

 

It is important to mention that a low amount of data for an independent variable provides 

higher correlation because there is less squared error to be taken into account. These variables can 

be computed successfully, but will not provide optimal results.   

 

4.9.1 Quantification of the number of responses 

In order to quantify which independent variables should be chosen to create a prediction, 

one proposed method is to weigh the p-values times the occurrences of the response along the 

whole data set. 

Table 4-13 shows an extraction of the way in which these readings have been quantified. 

It is true that the average value for each ion can be processed to calculate the binomial value for 

the predictive equation. However, there is no guarantee that each single rock will be shot with 

LIBS enough times to elicit a valid response. A valid response is understood as a reading using 

LIBS capable to generate values for all of the elements in the predictive equation, particularly 

elements in the interaction effects. In order to fix this potential hazard, it is necessary to obtain an 

individual analysis for each LIBS reading. Table 4-13 below indicates the rock number and its 
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respective readings. As mentioned previously, every rock sample was shot 40 times, obtaining 4 

samples (S1 to S4) of 10 readings per sample.  

Table 4-13: Extraction of the quantification process for the binomials 

Rock Reading 
Be II 
272.89 

Ti I 
399.86 5   Rock Reading 

Be II 
272.89 

Cu I 
327.4 125 

1           1         

  S1,2 1         S1,0   1   

  S1,9   1       S1,1   1   

  S4,3   1       S1,2 1 1 1 

  S4,4   1       S1,3   1   

  S4,5   1       S1,6   1   

  S4,6   1       S1,8   1   

  S4,7   1       S1,9   1   

  S4,8   1       S2,0   1   

  S4,9   1       S2,1   1   

2             S2,2   1   

  S1,6   1       S2,3   1   

  S3,2   1       S2,4   1   

  S4,7 1         S2,5   1   

  S4,8 1 1 1     S2,6   1   

3             S2,7   1   

  S1,2   1       S2,8   1   

  S1,8   1       S2,9   1   

  S3,8   1       S3,0   1   

4             S3,1   1   

  S1,0   1       S3,2   1   

5             S3,3   1   

  S2,2   1       S3,4   1   

6             S4,1   1   

  S2,3   1       S4,2   1   

  S2,5   1       S4,3   1   

  S3,9   1       S4,4   1   

7           2         

  S3,3   1       S1,0   1   

  S4,8   1       S1,3   1   

8             S1,4   1   

  S1,2 1         S1,5   1   

  S1,3 1         S1,6   1   

  S1,4 1 1 1     S1,7   1   

  S1,5 1 1 1     S1,8   1   

  S1,7 1         S1,9   1   

  S1,8 1         S2,0   1   

  S1,9 1         S2,1   1   

  S2,3   1       S2,2   1   

9             S2,3   1   

  S2,9 1 1 1     S2,4   1   

  S4,0 1 1 1     S2,5   1   
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An individual analysis of these readings provides a clear breakdown of what we can get 

from LIBS as a sorting sensor. The “1” in the third column means that there exists a reading for 

the ion Be II@272.89, and the same for Ti I@399.86. The next column can show either a “1” 

meaning a valid reading for each of the two components of the interaction effect; or “-“, meaning 

no valid interaction. For example, no valid value can be obtained for the interaction from rock 1. 

For rock 2 only one valid interaction value can be obtained. The lump sum of all possible valid 

binomial values is 5 for Be II@272.89*Ti I@399.86. For the next interaction effect, Be 

II@272.89*Cu I@327.4, a valid lump sum of 125 binomial values is obtained. In this way, the 

values were obtained for each pre-selected binomial. Table 4-14 provides a summary of the 

number of responses of LIBS for each ion, and for each of the 41 samples. The maximum possible 

value of number of responses is 40 readings x 41 numbers of readings/samples, resulting in 1640.   

 

Table 4-14: Summary of number of responses for the 41 Oxide samples 

Maximum 264 

Maximum possible 1640 

Number of samples 40 

Number of readings/sample 41 

 

1640 is the maximum number of responses that could be obtained for any binomial or ion 

variable in this project for the 41 Oxide samples. Table 4-15 shows the 20 binomials that were pre-

selected from Table 4-10 with higher p-values. It is curious to note that the computation of this set 

of interaction effects included Fe I@374.95*Fe I@374.95, but Fe I@374.95 alone was not 

included when computing the ions in Table 4-2, obtaining a p-value of 0.71 (the maximum ideal 

p-value allowed is 0.05).  

mailto:I@327.4
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The maximum number of responses that could be obtained from this pre-selection is 266. 

The number of occurrences per maximum number of occurrences from Table 4-15 is 32/264=12%, 

and for the number of occurrences per maximum possible occurrences, it is 32/1640=1.95%.  

Table 4-15: Number of occurrences for the binomials analyzed 

Binomials 
Number of 

occurrences 

N 
occurrences 

/ Max N 
occurrences 

N 
occurrences 

/ Max 
possible 

Be II@272.89*Ti I@399.86 32 12% 1.95% 

Ti I@399.86*Zr III@266.43 46 17% 2.80% 

Be II@272.89*Cu I@324.75 126 47% 7.68% 

P I@253.56*F II@350.56 4 2% 0.24% 

Al II@281.62*Ba II@455.4 0 0% 0.00% 

Be II@272.89*Cu I@327.4 120 45% 7.32% 

Mg III@239.51*Si I@288.16 158 59% 9.63% 

Ca II@317.93*Cr I@427.48 0 0% 0.00% 

Ca II@317.93*Cl II@481.01 0 0% 0.00% 

Ba II@455.4*Fe I@374.95 1 0% 0.06% 

O III@393.48*P I@253.56 35 13% 2.13% 

N II@399.5*P I@253.56 0 0% 0.00% 

Fe I@374.95*Fe I@374.95 266 100% 16.22% 

Ti II@376.13*Tl I@276.79 26 10% 1.59% 

Be II@272.89*Na II@298.42 127 48% 7.74% 

Fe II@234.35*P I@253.56 32 12% 1.95% 

Be III@448.73*Cr I@427.48 1 0% 0.06% 

Pb I@280.2*Tl I@276.79 91 34% 5.55% 

Ga I@294.36*Ni I@349.3 16 6% 0.98% 

Ba II@455.4*Ca II@317.93 1 0% 0.06% 

 

This method provides a mathematical quantification to allow a greater significance for the 

binomials that are more likely to be seen. Table 4-16 shows the full pre-selection of ions and 

binomials, and it is already sorted by p-value/occurrence. For each of these independent variables, 

their respective coefficient, p-value, occurrence ratio and p-value per occurrence are shown.  

Table 4-16: Weighting of the binomials 

Binomials & Elements Coefficient p-value 
Occurrence 
% 

p-value / 
Occurrence 

Be II@272.89*Ti I@399.86 -11.883 1.95E-12 1.95% 9.98918E-11 

Ti I@399.86*Zr III@266.43 8.6230 9.52E-11 2.80% 3.39557E-09 

Be II@272.89*Cu I@324.75 142.45 7.36E-10 7.68% 9.5787E-09 

Mg III@239.51*Si I@288.16 -25.625 6.70E-09 9.63% 6.95332E-08 

P I@253.56*F II@350.56 -4.478 2.98E-09 0.24% 1.22368E-06 
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Binomials & Elements Coefficient p-value 
Occurrence 

% 
p-value / 

Occurrence 

Be II@272.89*Cu I@327.4 -119.80 1.03E-06 7.32% 1.41409E-05 

O III@393.48*P I@253.56 3.0743 4.63E-07 2.13% 2.17127E-05 

Be II@272.89*Na II@298.42 -24.9375 0.00019267 7.74% 0.00248 

Mn I@279.83 3.2323 9.39E-06 0.06% 0.0154 

Fe I@374.95*Fe I@374.95 -1.805 0.012 16.22% 0.0754 

Ti II@376.13*Tl I@276.79 1.4465 0.0064 1.59% 0.4084 

Pb I@280.2*Tl I@276.79 0.91964 0.0279 5.55% 0.5040 

Cu I@324.75 -1.1882 0.6015 91.46% 0.6577 

Cu I@327.4 -1.6698 0.5600 83.66% 0.6695 

Si I@288.16 -0.999 0.7555 78.60% 0.9613 

Na II@307.83 0.2915 0.3545 6.46% 5.485 

Ba II@455.4*Fe I@374.95 -2.585 0.0060 0.06% 9.851 

Ba II@455.4*Ca II@317.93 -2.641 0.0115 0.06% 19.006 

Ga I@294.36*Ni I@349.3 0.6803 0.188 0.98% 19.353 

Fe II@234.35*P I@253.56 -0.6785 0.8258 1.95% 42.32427175 

Sn II@335.2 0.8393 0.2757 0.24% 113.04 

Be III@448.73*Cr I@427.48 0 1 0.06% 1640 

Al II@281.62*Ba II@455.4 2.990 0.0004 0.00% No occurrence 

Ca II@317.93*Cr I@427.48 -1.492 0.0786 0.00% No occurrence 

Ca II@317.93*Cl II@481.01 -1.253 0.056 0.00% No occurrence 

N II@399.5*P I@253.56 -2.9436 0.0012 0.00% No occurrence 

 

The idea behind this statistical sort is to select the interaction effects or ions with the smaller 

p-values and the higher occurrences. The values with smaller p-value/occurrence ratios are located 

at the top of the table, while those with higher ratios are at the bottom.  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 ↓

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 % ↑
 

Some of these variables have no occurrence. However, while being computed, these values 

could have been selected for correlation. This provides clear evidence of the error and the 

importance of analyzing the variables independently.  

 

4.9.2 Final correlation for the Oxide samples  

The final selection of the variables consists of the top 8 binomials listed in Table 4-16. 

Furthermore, the two Copper ions available from LIBS responses were also added because they 

have a high occurrence, and provide a direct response for the predicted copper. Silicon was also 
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included as part of the variables because it has a high occurrence, and it is geologically related to 

Copper. The 1st Interaction Effect (I.E.) and 2nd Interaction Effect provide a reference for the 

confidence of the value with regard to the identification of the elements. 

Table 4-17: Final correlation for Copper Oxides 

1st I. E. 2nd I. E. Elements/Binomials Coefficient p-value 
Poor Good Be II@272.89*Ti I@399.86 -11.867 2.63E-07 
Good Very Good Ti I@399.86*Zr III@266.43 8.243 5.49E-06 
Poor Very Good Be II@272.89*Cu I@324.75 158.5 1.10E-06 
Good Very Good Mg III@239.51*Si I@288.16 -36.10 1.74E-08 
Good Unknown P I@253.56*F II@350.56 -3.835 0.0002 
Poor Very Good Be II@272.89*Cu I@327.4 -160.4 2.06E-06 
Unknown Good O III@393.48*P I@253.56 2.317 0.009 
Poor Very Good Be II@272.89*Na II@298.42 -10.13 0.343 
Very Good Very Good Cu I@324.75 -1.43 0.946 
Very Good Very Good Cu I@327.4 6.111 0.041 
Very Good Very Good Si I@288.16 5.678 0.2876 

  Intercept 37480.6 

 

The final proposed predictive equation for Oxide Copper given the 41 samples is: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑢(𝑝𝑝𝑚) = 37480.6 −  11.86 ∗ 𝐵𝑒 𝐼𝐼@272.89 ∗ 𝑇𝑖 𝐼@399.86 +  8.24 ∗ 𝑇𝑖 𝐼@399.86 ∗ 𝑍𝑟 𝐼𝐼𝐼@266.43 +
158.59 ∗ 𝐵𝑒 𝐼𝐼@272.89 ∗ 𝐶𝑢 𝐼@324.75 −  36.10 ∗ Mg III@239.51*Si I@288.16-3.83* P I@253.56*F II@350.56 - 160.45*Be 
II@272.89*Cu I@327.4 + 2.31 O III@393.48*P I@253.56-10.13* Be II@272.89*Na II@298.42-1.43* Cu I@324.75 + 6.11* 
Cu I@327.4 + 5.67* Si I@288.16 

Equation 4 - Predicted Copper for Oxide Samples Method B 

 
 

The prediction has a Pearson Correlation Coefficient of 0.949. Although it shows a slightly 

lower value than the coefficient in the last regression of 0.961, this value is more reliable. The 

standard deviation is 1779. The histogram below provides evidence that the Predicted Cu values 

tend to be lower values than the real values (assumed as the ICP Copper). Figure 4-14 shows a 

map of standard deviations for the 41 samples. The critical numbers for correlation prediction land 

on values near to those for the cut-off of the mine. 0 to 5000 ppm (0 to 0.5%) is a typical range for 

cut-off grades. Further research is suggested in order to group grade ranges for different mines so 

that error could be better controlled at grades close to the cut-off ranges.  
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It is notable that there is a negative correlation between the Copper concentration, as 

indicated by the coefficient for the wavelength 324.75. As shown in Table 4-4 there is a positive 

correlation between Copper grade and the magnitude of the Copper peak from LIBS at this 

wavelength. Therefore, the negative correlation is an artifact of the regression analysis that uses 

more than 1 wavelength to represent Copper.   
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Figure 4-12: Final correlation for Copper Oxides 
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Figure 4-13: Histogram for the final correlation of Oxide samples 

 

 

 

Figure 4-14: Standard deviation for the final correlation of Oxide samples 
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Chapter 5: Analysis of Sulphides with Laser Induced Breakdown Spectroscopy 

LIBS responses were obtained by shooting 38 Sulphide samples from Escondida Mine. 

Each sample was shot on 4 faces, had 10 readings per face, with a total of 40 readings per sample.  

The methodology for the analysis of the Sulphide samples is similar to the methodology used for 

the Oxide samples. Thirty-eight Sulfuro (Sulphide) samples were analyzed with LIBS, and the 

responses are attached in Appendix F  . The ICP Sulfuro results shown in Appendix H  include 

Sulfuro-3, which is not included in the LIBS responses. Sulfuro-3 is a dust-type material that is 

difficult, if not impossible, to read it using LIBS. Because of this, it was not included in this 

analysis. 

An extraction of the output of the Python Script for the Sulphide sample analysis is shown 

in Table 5-1, and the compiled output is attached in Appendix F  .  Table 5-1 includes the rock 

sample, as well as each ion identified in the reading of that rock. 

Table 5-1: Extraction of the output of the Python Script for the Sulphide samples 

 

Sample 
Rock 

Peak 
Wavelength 

Element Intensity Acc. Observed 
Wavelength 

Air 

0 Su1,S1,0 274.89 Cd II 1211  274.854 

1 Su1,S1,0 324.82 Cu I 2530 AA 324.754 

2 Su1,S1,0 327.43 Cu I 2145 AA 327.3957 

3 Su1,S1,0 374.88 Fe I 1002 A 374.9485 

4 Su1,S1,0 234.42 Fe II 897 A+ 234.3495 

5 Su1,S1,0 238.17 Fe II 1100 B+ 238.2037 

6 Su1,S1,0 285.2 Mg I 860 A 285.2127 

7 Su1,S1,0 279.56 Mg II 942 A+ 279.5528 

8 Su1,S1,0 239.61 Mg III 1012 A 239.5149 

9 Su1,S1,0 298.37 Na II 927 B 298.4186 

10 Su1,S1,0 419.97 S VI 841 AA 420.083 

11 Su1,S1,0 419.97 S VI 841 AA 419.89 

12 Su1,S1,0 288.15 Si I 1220 B 288.1579 
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5.1 Correlation of LIBS Cu Sulphide response to ICP analysis  

The initial LIBS correlations for the Sulphide samples using only the LIBS responses for 

Copper ions are shown in Figure 5-1. In comparison to the values shown in Figure 4-4 and Figure 

4-5, these samples reveal a very low correlation coefficient of 0.077 for Cu I at 327.4, and -0.06 

for Cu I at 324.75. The correlation coefficient is based on the standard deviations. The same value 

for the correlation coefficient was obtained using the raw data from LIBS, or through normalizing 

the data. The normalization of the data was initially done by taking the maximum peak of a 

spectrum and then setting that value as 1. The noise was calculated in a similar manner as it had 

been for Table J-4, with the noise value set at 0. However, the correlation coefficient is the same. 

It is important to note that the Sulphide samples have a white colouration, which makes it more 

difficult to read using LIBS, and increases the noise in the spectrum.  

In order to improve this correlation coefficient, it is suggested to determine the Lower Limit 

of Detection and the range for the LIBS machine. The Lower Limit of Detection can be calculated 

by reading pure metal samples with known concentration to develop a calibration curve for each 

ion.  Such a calibration renders LIBS a powerful device for measuring concentration. However, 

this research does not aim to develop the measuring capabilities of LIBS, but rather its intention is 

to develop LIBS’ correlation capabilities in a geological environment.  
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Figure 5-1: LIBS responses for Copper ions for Sulphide samples 

 

 

Figure 5-2: Basic correlation between ICP Cu vs LIBS Copper ions responses 
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5.2 Element correlation for LIBS responses for Sulphide samples 

The ion responses in Appendix F  were used to build a basic correlation based on “t-

statistics” and p-values. The first interpretation of this correlation suggests a new unexpected 

component with respect to the list of ions for Sulphides - the presence of the Carbon element. The 

presence of C III at 229.69 was not expected to be present, and the ICP results in Appendix H  do 

not report the presence of Carbon. In addition, there are no readings of C III at 229 in the Oxide 

LIBS responses, making the presence of the element even more suspicious. However, even small 

responses in LIBS could be accepted as good responses because of the particle size of the elements. 

ICP is bulk testing while LIBS is a superficial test. Appendix G  shows the number of responses 

for the C III ion, and as expected, the responses are small in number in comparison to other ions 

in the same table.   

A geological interpretation of this unexpected scenario may be that Sulphide oxidation 

takes place during the natural weathering process, thus generating acid that will dissolve 

carbonates. As such, Carbon responses are not present in the Oxide samples.  

The predicted Copper correlation was conducted in MATLAB once the responses were processed 

in the Python Script. The results for the basic correlation are shown in Figure 5-2. They have a 

Pearson Correlation Coefficient of 0.824, which is high in comparison to the 0.77 coefficient for 

the Oxide samples that were seen in Figure 4-6. 

Table 5-2: Predicted Copper correlation using ions for Sulphide samples 

Elements Coefficient Std. Error p-value Occurrence Occurrence% 

C III@229.69 -6.036 2.0991 0.0075 29 2% 

Ag II@241.32 6.1057 2.0347 0.0055 79 6% 

Al II@281.62 -6.317 1.6232 0.0005 57 4% 

Ba II@455.4 -6.816 2.0373 0.0023 31 2% 

Ga I@294.36 -6.959 2.2109 0.0038 144 11% 

Mg III@239.51 -4.554 1.2981 0.0015 421 32% 

Ta I@362.66 -7.451 2.8549 0.0142 4 0% 

Zr III@262.06 -3.819 1.6705 0.0297 37 3% 

Intercept 23165     
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Figure 5-3: Predicted Copper correlation using ions for Sulphide samples 

 

One issue not discussed in the chapter regarding the Oxide sample analysis was the 

relationship to the low p-value, which is the key element for the selection of the independent 

variables. A suspiciously high correlation coefficient was found in Table 5-2. There exists a 

relationship between the p-value, standard error, and the number of responses obtained from LIBS. 

As in  Table 4-3, Table 5-2 shows that the p-value is significantly small (good for correlation) 

when occurrence is low. Occurrence calculation involves the sum of responses for each ion, and 
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between the two tables mentioned provides evidence to affirm that there is a relationship between 

the low number of responses and a possible low p-value.  

Sections 4.8 and 4.9 explain in detail the reasons that a low occurrence of responses in a laboratory 

research project should be avoided.  

 

5.3 Interaction effect analysis using multilinear regression analysis for Sulphide samples 

Binomial regression analysis is performed to find possible interaction effect variables that 

can generate a good response for the LIBS sensor correlation. Much like the methodology 

described for the Oxide samples, the Sulphide samples were processed using the Python Script 

that can be found attached in Appendix C  . The 65 samples from Appendix F  were processed, 

obtaining 4225 binomials. These binomials will generate numbers in different magnitudes than 

found in the ion responses. To solve this issue, the square root was applied to all the binomials 

obtained from the Python Script. Once the sheets were ready to be processed, the data was analysed 

with MATLAB in order to find potential interaction effect responses to meet the requirements for 

mathematical correlation.  

The mathematical correlation defines the p-value at 0.05 as a standard, which means that 

1 in 20 samples will exceed the 2 standard deviations. The Stepwise procedure will remove 

elements from the list that do not meet this criterion.  

The LIBS responses were processed using the Python Script that is attached in Appendix 

D  . This multiplication was processed in MATLAB using the Stepwise Fit procedure. The 

correlation was not successful with respect to the small number of significant interaction effects 

and the geological interpretation of those effects. Table 5-3 shows the binomial correlation if a p-

value of 0.05 is imposed.  
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Table 5-3: Binomial correlation for Sulphide samples with maximum 0.05 p-value 

Binomial Coefficient p-value Std. Error 

Al II@281.62*Cd II@274.85 -5.48 4.11E-04 1.394 

Ba II@455.4*Ca II@317.93 -14.52 7.49E-04 3.908 

C III@229.69*Ga I@294.36 -9.61 9.86E-06 1.844 

Cu I@324.75*Cu I@324.75 -8.16 1.38E-02 3.139 

Intercept 33084.15   

 

In comparison to the Oxide samples that used a p-value of 0.05, using 0.05 for the Sulphide 

rocks does not provide a good output to use for correlation. Only 4 binomials passed the p-value 

requirement, and one of them is Cu I@324.75*Cu I@324.75, which has a bigger p-value when 

analyzed through the element analysis described in section 5.2.  

This regression analysis was not successful because of the small number of significant variables.  

Therefore, other types of linear correlation were attempted. One of the functions tested was 

Stepwiselm in MATLAB, which performs a linear regression analysis using forward and backward 

elimination for arriving at the final model, and provides a decision based on the Akaike 

Information Criterion (AIC). The AIC value for this correlation is 747.93. A lower number for the 

AIC represents a better correlation. The AIC value for the Oxide samples was 772.55. However, 

there was no need to use this tool because the correlation output was satisfactory.  

The results of Stepwiselm used the data from Appendix F  and the final output is shown in Table 

5-4.  
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Table 5-4: Stepwiselm output using the Sulphide ion responses 

 

 

 

 

 

 

 

Where X# stands for: 

X Elements 

2 C III@229.69 

4 Ag II@241.32 

5 Al II@281.62 

7 Ba II@455.4 

22 Ga I@294.36 

29 Mg III@239.51 

52 Ta I@362.66 

64 Zr III@262.06 

 

Stepwiselm will use the independent variables for computing either alone or multiplied by 

another independent variable. This means that for the Sulphide samples, there are no binomials 

that will show a good fit for the correlation using a p-value threshold of 0.05. 

Using this information, it was inferred that the p-value of 0.05 was too low to invalidate 

the correlation. It was necessary to increase the threshold p-value to 0.08. Testing was conducted 

several times for 0.06 and 0.07, however same results were obtained.  

Table 5-5: Correlation output for variables computed with 0.07 p-value 

Binomial Coefficient p-value Std. Error 

Al II@281.62*Cd II@274.85 -5.47 0.00041 1.394 

Ba II@455.4*Ca II@317.93 -14.5 0.00074 3.907 

C III@229.69*Ga I@294.36 -9.61 9.86485E-06 1.844 

Cu I@324.75*Cu I@324.75 -8.1 0.01381 3.138 

                   Estimate      SE       tStat       pValue   
                   ________    ______    _______    __________ 
 
    (Intercept) 231     2351.2     9.852    9.2415e-11 
    x2             -6.03     2.091     -2.87       0.0074 
    x4              6.10      2.03       3.007       0.0054 
    x5             -6.31     1.62      -3.899      0.00053 
    x7             -6.81     2.03      -3.345       0.0022 
    x22            -6.95     2.21     -3.145      0.0037 
    x29            -4.55     1.29      -3.501      0.0014 
    x52            -7.45     2.85      -2.61        0.0141 
    x64            -3.81     1.67    -2.281       0.0297 
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5.4 First procedure run analysis for the regression of Sulphide samples 

The problem with increasing the p-value is that the procedure will accept more values with 

a higher error than for 2 standard deviations. In other words, the correlation will not be as good as 

expected. The correlation was computed using a 0.08 p-value for the interaction effect variables.  

Table 5-6:   Results of the first run using Stepwise Fit regression in MATLAB for Sulphide samples 

Binomial Coefficient p-value Std. Error 

Ag II@232.02*Ag II@241.32 1.290 0 0 

Al II@281.62*Ba II@455.4 -11.784 0 0 

Al II@281.62*Cd II@274.85 -3.314 0 0 

Al II@281.62*Cr I@427.48 -1.084 0 0 

Ba II@455.4*Be II@272.89 -7.853 0 0 

Ba II@455.4*Ca II@317.93 -3.278 0 0 

Ba II@455.4*Si II@413.09 9.481 0 0 

C III@229.69*Ga I@294.36 -6.833 0 0 

Ca I@422.67*Zr III@262.06 -1.206 0 0 

Ca II@317.93*W II@248.92 0.655 0 0 

Cd II@274.85*Mn I@279.83 12.620 0 0 

Cd II@274.85*Si I@288.16 -0.001 0 0 

Cu I@324.75*Cu I@324.75 -16.317 0 0 

Cu I@327.4*Si I@288.16 50.920 0 0 

Fe I@374.95*O III@393.48 0.560 0 0 

Fe II@234.35*O III@393.48 3.223 0 0 

Fe II@238.2*Pb I@283.31 -7.528 0 0 

In II@294.1*Zr III@262.06 6.014 0 0 

Ir I@269.42*P I@253.56 -11.868 0 0 

Mg I@285.21*Mn I@279.83 -6.416 0 0 

Mg III@239.51*O III@393.48 -1.503 0 0 

Mn I@279.83*N IV@347.87 -2.375 0 0 

Na II@298.42*Zr III@262.06 -12.288 0 0 

O III@393.48*Tl I@351.92 -0.486 0 0 

P I@253.56*Pb I@283.31 8.475 0 0 

P I@253.56*V II@292.4 0.006 0 0 

P I@253.56*Zr III@262.06 -0.873 0 0 

P IV@334.77*Sn II@335.2 5.993 0 0 

Pb I@283.31*Zr III@262.06 1.547 0 0 

Sn II@335.2*Tl I@276.79 -1.402 0 0 

 

As mentioned before, a p-value of 0 and standard error of 0 reflects a computer error 

because of the large amount of data processed into matrices.  
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5.5 Second procedure run analysis for the regression of Sulphide samples 

The second run for the regression analysis was conducted using a p-value of 0.08. By using 

a different p-value, the coefficients, standard errors and p-values will change as a result of the 

mathematical procedure. P-values of less than 0.05 have been added in red. 

Table 5-7: Results of the second run using Stepwise Fit regression in MATLAB for Sulphide samples 

Binomial Coefficient p-value Std. Error 

Ag II@232.02*Ag II@241.32 0.417 0.936 5.201 

Al II@281.62*Cd II@274.85 -5.201 0.000 1.157 

Al II@281.62*Cr I@427.48 -0.536 0.796 2.058 

Ba II@455.4*Be II@272.89 -3.630 0.233 2.983 

Ba II@455.4*Ca II@317.93 -8.198 0.031 3.623 

Ba II@455.4*Si II@413.09 1.841 0.509 2.756 

C III@229.69*Ga I@294.36 -10.010 4.62E-07 1.550 

Ca I@422.67*Zr III@262.06 -0.638 0.79 2.438 

Ca II@317.93*W II@248.92 1.863 0.495 2.7006 

Cd II@274.85*Mn I@279.83 -2.162 0.252 1.852 

Cd II@274.85*Si I@288.16 0.486 0.75 1.544 

Cu I@324.75*Cu I@324.75 -21.010 0.000 4.690 

Cu I@327.4*Si I@288.16 34.875 0.002 10.71 

Fe I@374.95*O III@393.48 -0.661 0.660 1.49 

Fe II@234.35*O III@393.48 -0.789 0.593 1.462 

Fe II@238.2*Pb I@283.31 -3.009 0.03 1.350 

In II@294.1*Zr III@262.06 2.705 0.23 2.232 

Ir I@269.42*P I@253.56 -5.502 0.014 2.119 

Mg I@285.21*Mn I@279.83 -2.025 0.362 2.189 

Mg III@239.51*O III@393.48 -0.157 0.913 1.440 

Mn I@279.83*N IV@347.87 -1.316 0.651 2.88 

Na II@298.42*Zr III@262.06 3.232 0.321 3.202 

O III@393.48*Tl I@351.92 0.314 0.835 1.499 

P I@253.56*Pb I@283.31 3.447 0.13 2.230 

P I@253.56*V II@292.4 0.118 0.962 2.495 

P I@253.56*Zr III@262.06 -2.158 0.4391 2.749 

P IV@334.77*Sn II@335.2 3.392 0.218 2.696 

Pb I@283.31*Zr III@262.06 0.150 0.964 3.380 

Sn II@335.2*Tl I@276.79 -0.176 0.956 3.186 

 

MATLAB calculates the matrices for correlation based on a p-value of 0.08. However, 

binomials with a value of less than 0.05 are selected. This is done to isolate the binomials with 

higher significance.  
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5.6 Proposed correlation of Sulphide samples 

Selected binomials from Table 5-7 were joined with the ions selected from Table 5-2. Due 

to the reduced amount of independent variables favourable for correlation, geological background 

information was not included for this correlation. However, elements such as Cu, Si and Ca are 

related to the Copper Sulfide ores. MATLAB computed the variables for the third time, as seen in 

Table 5-8. 

Table 5-8:  Binomial correlation for Sulphide samples with maximum 0.08 p-value 

1st I. E. 2nd I. E. Variables Coefficient p-value Std. Error 
Good Poor Al II@281.62*Cd II@274.85 -5.170 0.000 1.219 
Good Poor Ba II@455.4*Ca II@317.93 -9.736 0.014 3.736 
Unknown Unknown C III@229.69*Ga I@294.36 -9.529 0.000 1.616 
Very Good Very Good Cu I@324.75*Cu I@324.75 -21.521 0.000 4.935 
Very Good Very Good Cu I@327.4*Si I@288.16 32.521 0.007 11.226 
Very Good Good Fe II@238.2*Pb I@283.31 -2.801 0.058 1.419 
Unknown Good Ir I@269.42*P I@253.56 -4.530 0.046 2.178 
Unknown  C III@229.69 2.680 0.578 4.763 
Good  Ag II@241.32 0.281 0.886 1.945 
Good  Al II@281.62 -2.302 0.307 2.214 
Good  Ba II@455.4 -0.398 0.854 2.144 
Unknown  Ga I@294.36 -1.647 0.398 1.921 
Good  Mg III@239.51 0.518 0.719 1.425 
Unknown  Ta I@362.66 -2.665 0.347 2.789 
Good  Zr III@262.06 -2.867 0.100 1.687 

  Intercept 16154.47   

 

This time, variables with p-values of less than 0.08 were coloured in red, and this set of 

variables represents the variables proposed for a final correlation of the Sulphide ores at Escondida 

Mine. Negative coefficients express the mathematical shaping of the predictive equation. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑢(𝑝𝑝𝑚) = 16154.4 + 𝐴𝑙 𝐼𝐼@281.62 ∗ 𝐶𝑑 𝐼𝐼@274.85 ∗ −5.170 + 𝐵𝑎 𝐼𝐼@455.4 ∗

𝐶𝑎 𝐼𝐼@317.93 ∗ −9.736 + 𝐶 𝐼𝐼𝐼@229.69 ∗ 𝐺𝑎 𝐼@294.36 ∗ −9.529 + 𝐶𝑢 𝐼@324.75 ∗

𝐶𝑢 𝐼@324.75 ∗ −21.521 + 𝐶𝑢 𝐼@327.4 ∗ 𝑆𝑖 𝐼@288.16 ∗ 32.521 + 𝐹𝑒 𝐼𝐼@238.2 ∗

𝑃𝑏 𝐼@283.31 ∗ −2.801 + 𝐼𝑟 𝐼@269.42 ∗ 𝑃 𝐼@253.56 ∗ −4.530 

Equation 5 - Predicted Copper for Sulphide samples 
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Table 5-9: ICP Cu vs Predicted Cu values for Sulphide samples in ppm 

Accuracy ICP Cu Predicted Cu 

52%            6,560              3,157  

11%            8,470              7,569  

10%          11,400            10,249  

55%            7,420            11,526  

8%          12,200            13,232  

33%            5,150              3,448  

3%          15,000            14,483  

120%            1,330               (266) 

2%            9,620              9,398  

86%            1,500              2,792  

4%            2,510              2,408  

8%          15,000            16,207  

65%            6,160            10,139  

368%            1,370              6,418  

34%          25,700            17,017  

302%            1,180            (2,381) 

2%            5,490              5,576  

91%            4,430              8,472  

28%          13,700            17,519  

11%            5,540              6,137  

8%            1,060                 973  

38%          19,100            11,822  

30%            6,950              9,046  

89%            4,190              7,900  

25%            3,340              2,519  

51%            4,610              6,941  

144%            5,420            13,243  

39%            2,300              3,187  

10%            9,210              8,287  

30%            6,130              7,950  

418%               393              2,037  

48%          20,100            10,438  

8%               849                 784  

0%          14,100            14,121  

2%          10,400            10,192  

8%          18,300            16,817  

13%          19,200            16,793  

16%            4,690              3,924  

60%   
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Figure 5-4: Final correlation for Sulphide samples 

 

Figure 5-4 shows the final correlation for the Sulphide ores. The Pearson Correlation 

Coefficient is 0.84, which is close to the 0.82 coefficient value for the correlation of elements 

only. It is interesting to note the similarities between the correlations in Table 5-2 and Table 5-4, 

0

5,000

10,000

15,000

20,000

25,000

 -  5,000  10,000  15,000  20,000  25,000

P
re

d
ic

te
d

 C
u

 (
p

p
m

)

ICP Copper (ppm)

Predicted Cu

1:1

Pearson Correlation = 0.84

2 Std. Dev. +

2 Std. Dev. -



88 

 

which look very similar in terms of the variables used. The Linear Stepwise or “Stepwiselm” did 

not suggest any binomial, as it had for the Oxide samples. This means that the best fits obtained 

in Figure 5-4 are not necessarily the best possible fits. We can confirm this information by 

analyzing the Pearson Correlation Coefficients that are lower than 0.9. 

The lines corresponding to the 2 standard deviations calculated from the correlation have 

been added to the chart. As mentioned previously, a p-value of 0.05 suggests that only 1 out of 

20 samples will be out of the two standard deviations. In this case, a p-value of 0.08 was used to 

calculate this correlation. This means that 2 out of 25 values will be out of the range. As such, a 

projection of the number of samples that will be out of the range for 38 samples is 3.04, and in 

the graph, we see that 3 samples are outside of the lines for the two standard deviation.  

If material is sorted on a daily basis, 8% of the material will result in blind sorting. Blind sorting 

could be defined as the material that sensors cannot read properly. 

A good way to control for and measure blind sorting is through the use of histograms of 

standard deviations, as shown in Figure 5-5. This histogram shows the trend of the prediction as 

being mostly slightly above the real value. The optimum situation would see the histogram 

inclined to the negative standard deviation so that the sensor could take the response as a low 

value instead of as processing waste. 



89 

 

 

Figure 5-5: Histogram for the final correlation for Sulphide samples 

 

 

 

Figure 5-6: Standard Deviation for the final correlation for Sulphide samples 
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Chapter 6: Sulphide versus Oxide discrimination 

The determination of an ore as an Oxide or a Sulphide is crucial for mine-mill 

reconciliation. The main purpose of the determination of Oxide or Sulphide ores during the mining 

process is to select the recovery method to be used for that ore. Sulphides are usually processed in 

the concentrator, while Oxides are usually leached. Although a discussion of the efficiency of each 

method is not the subject of this research, the economic impact of dilution in mining is an issue 

that has an effect on the efficiency of the recovery method, and can be solved through LIBS sorting.  

 

6.1 Spectroscopy ambiguity regarding S III and O III for our LIBS machine 

The wavelengths taken for the ions were obtained from the NIST database. The use of S 

III and O III are based solely on the probabilities of transition shown in the NIST database, and 

represent the only options available for the bandwidth used by FiberLIBS. A detailed discussion 

of the selection of the wavelengths can be found in Chapter 3:. However, there is ambiguity in 

defining the most appropriate wavelengths for Oxygen and Sulphur. Wavelengths were identified 

according to following pattern:  

1. Transition strength (Aki) 

2. Accuracy (Acc.) 

3. Relative Intensity  

The rocks analyzed for this research belong either to Oxide or Sulphide ores. There is a 

characteristic triplet of spin around the wavelengths at 393.42, 394.45 and 396.15 nm. According 

to the theory of Nuclear Magnetic Resonance Spectroscopy, spins happen because ions have 

slightly different chemical shifts, represent slightly different spin flip energies, or have nucleii with 

slightly different magnetic environments.  
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The wavelength characteristics for these 3 wavelengths were verified using the NIST database as: 

 393.42 nm for O III 

 394.45 for O III 

 396.15 for S III and O III in overlap situation, favourable for S III 

 

6.2 Spectroscopy and observation of multiple strong lines 

The main reason that it is necessary to analyze this ambiguity is because the LIBS machine 

used for this research has limitations with respect to bandwidth. The bandwidth of the machine 

can detect a range from 229 nm to 500 nm, creating smaller wavelength pixels possible to analyze 

in comparison to broader LIBS bandwidths. Stronger lines for Oxygen and Sulphur can be found 

beyond 500 nm with a higher definition, however this limitation does not limit LIBS’ capacity to 

recognize an Oxide or Sulphide sample.  

In order to define the parameters to allow LIBS to recognize an Oxide or Sulphide, it is 

necessary to understand the wavelength characteristics for Oxygen and Sulphur. Table 6-1 shows 

the spectroscopies taken from the NIST database (National Institute of Standards and Technology 

NIST), providing a mining search criteria of C+ for accuracy.  
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Table 6-1: Spectroscopies for ambiguity between O III and S III 

Spectrum Observed Ritz Rel. Aki Acc. Ei Ek Ei Ek 

 Wavelength Wavelength Int. s^-1  (cm-1) (cm-1) eV eV 

 Air (nm) Air (nm) (?)       

Nd II 393.482 393.4815+ 610 1.37E+07 B+ 2585.46 27992.425 0.32 3.46 

O III  393.4823  9.93E+07 C+ 366802.62 392209.53 45.284274 48.42093 

C IV  393.489  3.30E+07 A 445368.5 470775 54.98 58.12 

W II 393.54325 393.54325 39 3.09E+06 B 13173.337 38576.313 1.63 4.76 

Fe I 393.58122 393.58124 9300 1.14E+07 C+ 22838.323 48238.847 2.82 5.96 

          

Fe I 394.33404 394.33404 3630 6.46E+05 C+ 17726.988 43079.023 2.19 5.32 

Al I 394.40058 394.4006 24g 4.99E+07 B+ 0 25347.756 0.00 3.13 

Ar II 394.42712 394.42712 49 4.10E+06 B 132327.36 157673.41 16.34 19.47 

O III  394.4854  1.17E+08 C+ 366488.45 391830.76 45.25 48.37 

Fe I 394.4889 394.4889 2820 1.40E+06 B 24118.819 49460.902 2.98 6.11 

          

Fe I 396.02789 396.02786 1000 4.10E+06 C+ 29356.744 54600.35 3.62 6.74 

F V  396.08  1.52E+06 B 784099 809339.5 96.80 99.92 

W II 396.08582 396.08601 5 4.24E+05 B 19637.309 44877.209 2.42 5.54 

S III 396.1516 396.1526 12 9.45E+06 B 147551.6 172787.26 18.22 21.33 

Al I 396.152 396.15201 26g 9.85E+07 B+ 112.061 25347.756 0.01 3.13 

          

O III 396.159 396.1573 200 1.25E+08 B 306586.08 331821.44 37.85 40.97 

Nd II 396.221 396.2205+ 510 7.10E+06 B+ 2585.46 27816.795 0.32 3.43 

Ti I 396.28508 396.28507 2500 4.71E+06 A 0 25227.222 0.00 3.11 

Nd II 396.3114 396.3105+ 1400 3.98E+07 B+ 3801.93 29027.535 0.47 3.58 

Nd II 396.39 396.3905+ 270 1.14E+07 B+ 5085.64 30306.15 0.63 3.74 

 

An extraction from this chart, along with the surrounding ions that could be used to define 

and understand this ambiguity, can be found in Table 6-1. For 393.48 nm, the biggest transition 

strength is given to O III, with a total Aki of 9.93E+07. Similar conditions are set for the O III at 

394.48, with an Aki of 1.17E+08. The biggest problem regarding the triplet definition is with 

respect to wavelength 396.15. The only surrounding ion with a higher Aki value is Al I, but it has 

a “g” comment which stands for “Transition involving a level of the ground term.” The best fits 

for its Aki and Accuracy are S III or O III. We conclude that this is a case of overlap, as discussed 
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in Chapter 5 of the “Handbook of Laser Induced Breakdown Spectroscopy” (Cremers and 

Radziemski). In order to define this ambiguity, it is possible to analyze the ionization energies with 

respect to the expected energy provided by the laser. As shown in Table 6-2, higher ionization 

levels require the provision of higher energy. For LIBS, the energy is limited, and it is likely to 

have greater certainty over smaller ionization energies than higher ones. The O III has a 54.93 eV 

in contrast to the S III 34.79 eV. This means that S III has a higher probability of being seen. 

However, the Relative Intensity of O III is 200 in comparison to S III with only 12 (Relative 

Intensity does not have units).  

Table 6-2: Extraction of Ionization Energies (eV) 

Element   I II III IV V 

Hydrogen H 1 13.5984     

Helium He 2 24.5874 54.41776    

Lithium Li 3 5.3917 75.64 122.45429   

Beryllium Be 4 9.3227 18.21114 153.89661 217.71865  

Boron B 5 8.298 25.1548 37.93064 259.37521 340.2258 

Carbon C 6 11.2603 24.3833 47.8878 64.4939 392.087 

Nitrogen N 7 14.5341 29.6013 47.44924 77.4735 97.8902 

Oxygen O 8 13.6181 35.1211 54.9355 77.41353 113.899 

Fluorine F 9 17.4228 34.9708 62.7084 87.1398 114.2428 

Neon Ne 10 21.5646 40.96296 63.45 97.12 126.21 

Sodium Na 11 5.1391 47.2864 71.62 98.91 138.4 

Magnesium Mg 12 7.6462 15.03527 80.1437 109.2655 141.27 

Aluminum Al 13 5.9858 18.82855 28.44765 119.992 153.825 

Silicon Si 14 8.1517 16.34584 33.49302 45.14181 166.767 

Phosphorus P 15 10.4867 19.7695 30.2027 51.4439 65.0251 

Sulfur S 16 10.36 23.33788 34.79 47.222 72.5945 

 

In conclusion, we can say that both ions might be seen at 396.16 for this set of rock samples.  
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6.3 Definition of the spectrum for Oxides and Sulphides 

In contrast to the belief that Oxygen will be found present in any reading because it exists 

in the air or because is abundant in rock samples, LIBS has shown the ability to recognize an Oxide 

or a Sulphide. This recognition is based on the plasma formation created by LIBS during the 

reading. Once excited, the ion of Oxygen or Sulphur will create a wavelength that cannot be 

contaminated by the air, at least for the particular wavelength we are examining in this section.  

 

 

Figure 6-1: Spectrum for Sulphide 1 

This set of figures showing the spectrums of the Sulphide and Oxide samples, provides a 

typical characterization of the spectrum. Three wavelengths together define that we can be seeing 

either an Oxide or a Sulphide sample.  



95 

 

 

Figure 6-2: Spectrum for Oxide 12 

Although Oxide samples will show as 3 wavelengths with peaks, the critical key for their 

identification will be a wavelength at 393.48 nm. For example, if we analyze another sample that 

is known to contain ions of Oxygen, then we should be able to see at least 2 of these mentioned 

wavelengths.  

 

Figure 6-3: Spectrum for Sulphide 1 
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This turns out to be false as Figure 6-5 shows the spectrum for steel, which contains oxygen 

ions and it does not have the same 3 peak configuration as do the ore samples. Figure 6-6 shows 

another sample of a steel plate, and in this case, the spectrum reads the presence of an oxygen ion, 

possibly because of oxidation. The next peak for this spectrum is 396.8 nm, which does not 

correspond to the wavelengths mentioned. This particular ionization configuration and arrange of 

peaks can be seen in Oxide and Sulphide ores with this particular ore deposit. 

 

Figure 6-4: Spectrum for Oxide 17 with characteristic wavelengths for Oxide/Sulphide definition 

 

 

Figure 6-5: Steel pointed at 393.42 nm 
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Figure 6-6: Steel spectrum with 393.42 nm wavelength peak 

 

6.4 Proposed solution for Oxide/Sulphide recognition using LIBS 

It is recommended that an automated script be developed with the following parameters. 

1. Recognize the wavelength 396.15 as a peak 

2. Recognize the wavelength 394.48 as a peak 

3. Recognize the wavelength 393.42 as a peak 

4. Normalize the spectrum from 0 to 1 

a. Calculate the mode based on the noise, as shown in Table J-5 

b. Subtract the mode from the whole spectrum and divide the rest by the maximum 

value of the current spectrum 

5. Set a threshold of 0.15 and above for Oxides and 0.15 and below for Sulphides 

Table 6-3: Final results table for Oxide versus Sulphide recognition 

 Oxides Sulphides  

 O III@393.48 O III@394.46 S III@396.15 O III@393.48 O III@394.46 S III@396.15  

OXIDE 0.261 0.255 0.369 0.084 0.224 0.330 SULPHIDE 

OXIDE 0.203 0.215 0.310 0.115 0.278 0.411 SULPHIDE 

OXIDE 0.204 0.219 0.317 0.054 0.129 0.198 SULPHIDE 
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 Oxides Sulphides  

 O III@393.48 O III@394.46 S III@396.15 O III@393.48 O III@394.46 S III@396.15  

OXIDE 0.184 0.174 0.252 0.092 0.226 0.337 SULPHIDE 

OXIDE 0.691 0.203 0.301 0.096 0.238 0.353 SULPHIDE 

SULPHIDE 0.117 0.279 0.398  0.238 0.351 SULPHIDE 

OXIDE 0.317 0.217 0.303 0.082 0.172 0.257 SULPHIDE 

OXIDE 0.211 0.240 0.347 0.164 0.154 0.223 OXIDE 

OXIDE 0.486 0.253 0.309 0.215 0.214 0.324 OXIDE 

SULPHIDE 0.128 0.222 0.323  0.318 0.461 SULPHIDE 

OXIDE 0.434 0.199 0.245 0.095 0.169 0.254 SULPHIDE 

OXIDE 0.187 0.135 0.248 0.073 0.280 0.411 SULPHIDE 

OXIDE 0.221 0.194 0.280 0.119 0.249 0.337 SULPHIDE 

SULPHIDE 0.101 0.183 0.271 0.068 0.243 0.361 SULPHIDE 

OXIDE 0.184 0.176 0.262 0.054 0.257 0.382 SULPHIDE 

OXIDE 0.292 0.218 0.321 0.070 0.229 0.333 SULPHIDE 

SULPHIDE 0.131 0.160 0.241 0.152 0.243 0.358 OXIDE 

OXIDE 0.495 0.360 0.544 0.067 0.279 0.407 SULPHIDE 

OXIDE 0.237 0.203 0.301 0.103 0.287 0.424 SULPHIDE 

OXIDE 0.574 0.258 0.225 0.087 0.251 0.373 SULPHIDE 

OXIDE 0.297 0.194 0.280 0.115 0.196 0.291 SULPHIDE 

SULPHIDE 0.111 0.207 0.306 0.107 0.195 0.288 SULPHIDE 

SULPHIDE 0.096 0.237 0.353 0.125 0.209 0.314 SULPHIDE 

OXIDE 0.156 0.302 0.438 0.088 0.290 0.420 SULPHIDE 

OXIDE 0.254 0.255 0.370  0.247 0.373 SULPHIDE 

OXIDE 0.188 0.257 0.373 0.093 0.225 0.340 SULPHIDE 

OXIDE 0.283 0.174 0.205 0.068 0.187 0.284 SULPHIDE 

OXIDE 0.278 0.200 0.288 0.104 0.275 0.418 SULPHIDE 

OXIDE 0.203 0.184 0.267 0.067 0.314 0.457 SULPHIDE 

OXIDE 0.407 0.196 0.266 0.113 0.247 0.361 SULPHIDE 

OXIDE 0.157 0.246 0.349 0.053 0.335 0.498 SULPHIDE 

OXIDE 0.179 0.175 0.261 0.109 0.211 0.324 SULPHIDE 

OXIDE 0.301 0.324 0.474  0.292 0.430 SULPHIDE 

OXIDE 0.420 0.247 0.361 0.137 0.246 0.363 SULPHIDE 

OXIDE 0.282 0.145 0.198 0.097 0.215 0.330 SULPHIDE 

OXIDE 0.285 0.181 0.258 0.065 0.266 0.389 SULPHIDE 

SULPHIDE 0.103 0.183 0.267 0.051 0.274 0.394 SULPHIDE 

OXIDE 0.167 0.191 0.279 0.105 0.154 0.235 SULPHIDE 

SULPHIDE 0.117 0.228 0.335     

OXIDE 0.529 0.243 0.311     

OXIDE 0.196 0.174 0.255     
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Table 6-3 shows the 41 Oxide rock samples and the 38 Sulphide samples in order of 

magnitude. Based on the criteria provided, the algorithm recognizes whether the rock is an Oxide 

or a Sulphide rock. It is interesting to mention that the algorithm can be used to classify the degree 

of oxide or sulphide. Some of the rocks can be seen to display either less or more Oxide, thus 

providing even more value to sorting. 

 

Figure 6-7: Final results table for Oxide versus Sulphide recognition 
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Chapter 7: Discussion and recommendations 

The main purpose of this research has been to develop a greater understanding of the 

capabilities of LIBS for ore sorting, and to provide the sensor system with a response. The 

responses of the sensors should be based on good quality readings, statistics, and machine learning 

processes through which it is possible to train the machine to achieve better predictions. Currently, 

ore sensors base their responses on the statistical correlations and geological information available 

for tuning the correlation parameters. LIBS cannot rely solely on the correlations made from field 

readings, and while a prototype for its sensor is developed, it must have a constant machine 

learning process available to it through which to gather data and tune itself. One of the purposes 

of this research was to train the machine to achieve good values for decision making. The main 

reason that this is not possible is because of the limited amount of data available to build an 

artificial neural network (ANN). 

Also, the architecture of the LIBS sensor would need to be examined for every single mine, 

depending on the characteristics of the mine, and the needs of the spectrometer. Finally, it would 

be necessary to define the needs of the LIBS features and capabilities (such as bandwidth, intensity 

of the laser, resolution, and frequency) to achieve total control over the LIBS sorting sensor. In 

this chapter, suggestions are offered with respect to useful information that was gathered 

throughout the progress of the research, and recommendations are made with regarding its 

potential impact on the performance of the LIBS sensor.  

 

7.1 Data quality and confidence 

The data presented in this research is unreliable due to the limited number of rock samples 

analyzed through ICP. The results are considered unreliable to less 2 standard deviations of 
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confidence, or at a greater than 5% of error rate. Indeed, this was expected as of the beginning of 

the project, and does not signify a problem for the next stage of research and development. 

Empirical data simulated through Montecarlo Simulation suggests that for an expected R2 =0.05, 

the estimated error is 9% (approximately) for the 41 Oxide samples, or 10% used for the 38 

samples (Austin and Steyerberg).  

The minimum recommended number of Subjects Per Variable (SPV) is 100. In order to 

improve the quality of the data using this methodology, it is necessary to use between 100 to 400 

samples, as is statistically recommended when using the Montecarlo Simulation. This concept, as 

well as the technology, is statistically scalable to the universe of samples subject to prediction 

while using a sorter in a mine.  

The final Pearson Correlation factor for Oxide is 0.94, and for Sulphide it is 0.84. As such, 

it is possible that the data obtained could be improved upon if expecting correlations close to 3 

standard deviations. Also, it is important to note that, within this research, calculations and 

predictions are not as important as the methodology described because the intention of this 

research is to provide solid foundations for prediction and correlation, and not final values.  

 

7.1.1 Identification of elements and concentration recommendations 

It is recommended that the characteristic wavelength or ID Wavelength, as defined in this 

research, be acquired from the manufacturer in order to confront the ionization transition 

probabilities assumed. The reason is that the manufacturer has invested in a great deal of research 

to find the most probable transitions using its LIBS machine, and as such, spending time and effort 

towards developing potential ionization transition wavelengths for different LIBS machines is not 

recommended.  
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Also, it is necessary to recognize that in contrast to XRF, LIBS is capable of reading the 

concentration of a sample in nanoseconds. For this reason, at the Research and Development level, 

it would save time to acquire the software of the manufacturer for element recognition and 

concentration in order to make it possible to correlate percentages rather than peaks with varying 

magnitudes.  

 

7.2 LIBS data acquisition and architecture 

The data acquisition of LIBS is based on the Nd:YAG, 3 mJ laser pulse at 100 Hz. For LIBS 

sensors, the data acquisition method is linked to the architecture of the LIBS machine. The main 

problem with respect to this topic is the reading of white surfaces, mostly for Sulphide rock 

material. The primary challenge held by the LIBS sorting sensors involves how to acquire reliable 

data for all types of rock material. As shown in Figure 3-5 and Figure 3-6, several LIBS readings 

show evidence of high amounts of invalid data obtained during this research. The main reasons of 

acquiring large numbers of invalid readings are: 

a. the low amount of energy absorbed by the surface  

b. the capacity of the surface to reflect the energy 

Details regarding the white colouring problem were provided in section 2.6. However, the 

problem was avoided rather than solved. The use of such a strategy will not address the problem 

once the sensor is placed in operation in a mine.   

Robert Noll, in his book “Laser-Induced Breakdown Spectroscopy, Fundamentals and 

Applications” (Noll), proposes the following chart shown in Figure 7-1.  
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Figure 7-1: Technical specifications for LIBS machine performance (Noll) 

This chart provides a location of LIBS applications given the frequency, or repetition rate 

(Hz) versus the laser pulse energy (mJ).  The red circle indicates the current location of the LIBS 

machine used for this research. This red location suggests that this machine works well for 

scanning microanalysis. However, LIBS sensors need high speed application capabilities with high 

pulse energy, and this is currently still limited with respect to commercial availability. (Noll). 

An increase in the laser pulse energy will increase the probability of achieving reliable 

instant readings over mining material. The capacity of energy absorption by the surface of the rock 

is increased if the laser energy is increased, and the temperature of the crater created by the laser 

is made larger within a short period of time.  

As made evident in Figure 7-1, the use of a LIBS machine with a laser pulse energy in the 

range of 100 to 500 mJ is recommended.  
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7.3 LIBS statistics and repeatability analysis 

In terms of the repetition rate, the LIBS machine uses electro-optical Q-switching with 

rates of between 10 to 100 Hz or 0.1 to 0.01 seconds per reading. The ideal velocity of bulk material 

processed on a belt conveyor is 3 m/s. If a rock with an average size of 3 cm crosses the laser 

sensor, then the time frame for the LIBS sensors is 0.01 s.  

Table 7-1 shows the values for the minimum number of readings needed to gather information 

from the two ions that conform the interaction effects. These ions were taken in the order in which 

LIBS acquired the data. The information provided is based purely on the geo-spatial 

characterizations that the LIBS sensor is sorting.  

Table 7-1: Minimum number of readings using LIBS to calculate each of the interaction effects used for the 

prediction of Oxides 

Binomials #readings needed 

Be II@272.89*Ti I@399.86 2 

Ti I@399.86*Zr III@266.43 2 

Be II@272.89*Cu I@324.75 3 

P I@253.56*F II@350.56 2 

Al II@281.62*Ba II@455.4 15 

Be II@272.89*Cu I@327.4 3 

Mg III@239.51*Si I@288.16 1 

Ca II@317.93*Cr I@427.48 9 

Ca II@317.93*Cl II@481.01 2 

Ba II@455.4*Fe I@374.95 60 

O III@393.48*P I@253.56 71 

N II@399.5*P I@253.56 38 

Fe I@374.95*Fe I@374.95 1 

Ti II@376.13*Tl I@276.79 2 

Be II@272.89*Na II@298.42 1 

Fe II@234.35*P I@253.56 7 

Be III@448.73*Cr I@427.48 3 

Pb I@280.2*Tl I@276.79 13 

Ga I@294.36*Ni I@349.3 10 

Ba II@455.4*Ca II@317.93 9 

Average 12.7 

 

For example, a rock might have a reading of Barium in one small spot of the analyzed rock 

sample, and LIBS will not provide a value to the interaction effects of Ba II@455.4*Fe I@374.95 
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until the laser takes a good reading over this small spot. This data was calculated in similar way as 

was done in Table 4-13. For example, in order to calculate the binomial Be II@272.89*Cu 

I@327.4, we need at least 3 good readings. The values highlighted belong to the group of binomials 

that are part of the final prediction equation for Copper Oxides. The binomial O III@393.48*P 

I@253.56 is a special case because it has a fairly large number of occurrences (refer to Table 4-15). 

However, LIBS needed to take up to 71 good readings in order to obtain 1 value for this binomial.  

In addition, this calculation was based on the assumption that 100% of the readings are valid. This 

is not the case, as shown in Figure 3-5 and Figure 3-6.  

If it is necessary to take 71 readings to complete the prediction equation, then addressing 

the introductory problem in this section about the frequency of the LIBS machine under a belt 

moving at 3 m/s, we can conclude that the needed frequency is 104 hertz.  

𝑋 (
𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑟𝑒𝑎𝑑𝑖𝑛𝑔
) ∗ 71 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠) = 0.01 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)  

𝑥 = 1.4𝐸 − 4 (
𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑟𝑒𝑎𝑑𝑖𝑛𝑔
) ≈ 104𝐻𝑧  

 

There are no current commercial LIBS machines available at this frequency. The use of the highest 

frequency possible with a tentative range of 103 hertz is recommended.  

 

7.4 LIBS future developments 

This section discusses an optional method that have been attempted by the author, but not 

developed further due to lack of time and resources regarding the amount of ICP assays. One of 

the most important methods applicable to the LIBS ore sorting method is Artificial Neural 

Networks (ANN). Previous research on ANN (Alexander Koujelev) suggests that the Mean 
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Deviation is in the range of 5% to 20% for direct measurement concentration instead of through 

the use of correlation. An argument regarding the preference of ANN over that of LIBS is that 

most previous experiments have been based on homogenously prepared material. This research 

attempts to break the heterogeneity problem with respect to LIBS sorting and the reading of 

moving material.  

The ANN algorithm attempts to acquire the target output by summing all of the input and 

adding the bias to obtain a transfer function, and finally, the output. 

 

Figure 7-2: Neural Network Scheme for the Oxide samples using 10 neurons 

 

Figure 7-3: Neural Network Fitting for Oxide rocks 

It is not the intention of this thesis to present an analysis regarding Artificial Neural 

Network, but rather to comment on the potential applicability of ANN to the Oxide and Sulphide 
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ore analysis conducted in this research. One particular aspect of ANN application is the final 

correlation coefficient obtained out of the 59 ions gotten from LIBS for the Oxide samples. It is 

possible to differentiate the only high grade sample at the x-axis value of 29000 ppm of Copper. 

For this set of samples, a better correlation coefficient was obtained in section 4.9.2. However, for 

the Sulphide rocks, ANN provides an unexpected correlation coefficient of 0.95. This correlation 

works better than the prediction equation proposed in section 5.6  

 

 

Figure 7-4: Neural Network Diagram for Sulphide samples 

 

Figure 7-5: Neural Network Fitting for Sulphide rocks 

It is important to note that there were problems in reading the Sulphide samples with the 

LIBS machine, and that most of the readings did not show any type of direct correlation between 

ICP Cu% and LIBS Cu concentration. In conclusion, it is suggested that further investigation be 
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conducted into the use of ANN for LIBS sorting systems when looking for a positive outcome for 

difficult readings such as those with white surfaces.  
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Chapter 8: Conclusion 

 

Although some conclusions can be drawn based on the findings of this study, there remain 

questions that would require more research on the LIBS sorting system in order to develop a better 

understanding regarding its potential uses and applicability.  

 

1. The first conceptual question regards LIBS’ capabilities for ore sorting. LIBS can sort rock 

samples very efficiently if proper statistical and mineralogical information is provided to 

the computer in charge of processing the spectrums.  

2. LIBS can perform to a proven Pearson Correlation Coefficient of 0.94 for Oxides and 0.84 

for Sulphides. 

3. LIBS achieves a lower performance when sorting Sulphide ore. 

4. LIBS has demonstrated proven capacities to act as an ore sorting sensor, and it is 

recommended that LIBS be brought to a level of Research and Development.  

5. Approaches were used to identify elements associated with wavelengths, but in some cases, 

ICP results showed that the identified element was not probable. Despite this and for 

simplicity, the element symbol was used to represent the wavelength response.  

6. It is necessary to work with specific LIBS machines for different mine projects, depending 

on the needs of the bandwidth spectrum with respect to acquiring data that is easy to 

correlate. 

7. The Experimental Approach Design used here was correct, but inefficient in terms of 

theoretical workload. It is necessary to divide the development of LIBS into specialized 

groups to develop the Computational, Chemometrics and Mining parts separately.  
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8. The current LIBS laser should be upgraded to a higher pulse laser in order to acquire better 

readings and obtain better repeatability and data reliability.  

9. Developments with respect to the Python Script’s ability to recognize peaks and 

wavelengths should be reviewed and tuned to the maximize LIBS capacity for data 

acquisition, and its ability to work with moving samples.  

10. The purpose of this research was to develop correlation without measuring grades. 

However, it is a good proactive process for the Python Script to determine the limits of 

detection and the grades of the rock samples by using a calibrated homogenous scale for 

all of the available ions. 

11. LIBS provides good and reliable readings for Oxide ores, but not for Sulphide ores.  

12. Some of the wavelengths overlap for different elements. It is necessary to increase the 

bandwidth capabilities of the LIBS machine in order to more clearly distinguish between 

elements with overlapping wavelengths. 

13. The Sulphide ores showed better correlation performance using Artificial Neural Networks 

than through using Stepwise correlations. 
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Appendix A   Compiled LIBS responses for Oxide rock samples from Escondida Mine 

 

 

 

 

  Ag II Ag II Al II Ba II Be II Be III Bi I Ca I Ca II Cd II Cl II Co I Cr I 
Sample 232.02 241.32 281.62 455.40 272.89 448.73 306.77 422.67 317.93 274.85 481.01 347.40 427.48 

1     912   937     904   1007       

2         952     880   1038       

3               877 891 947       

4               888   1017       

5     940         995 943 981 779     

6     870         872   952       

7     971         923   929       

8     1092   1312   1167 887   1248       

9   908 850   1411     984 1029 1165 848     

10         1028   1044 866   1176       

11     942 797 1383     999 1348 1134     830 

12   874     1298   1108 886 941 1861     931 

13       932 1109     893   1021       

14   863 1006         842   1006       

15   865           800   904       

16     928 820       903   958 824     

17       842 1130 870   857 977 1045     952 

18     932   1064   1002 979 1031 1639       

19         1088   943 886 954 1168       

20     919   994   970 982 1015 1009       

21       827 964     885 871 1085 816   822 

22     945   1282   1220 871   1463       

23   858 880   1379   1039 893   1116       

24     945   1145   977 910 1068 1283   891   

25         962     897 936 1018       

26         1245   1059 894 856 1203       

27               897 967 991       

28       829 1136     930 981 1265     916 

29               886   955       

30       773 962     906 1003 1214       

31         1063     882   1146       

32 1374 1803           854   1091       

33   985 975 1015       978   997     1135 

34     881 803       945 916 1025 892     

35         1098     918 953 1157       

36               879 920 974       

37         1096     869 871 1070       

38         1249   1124 874 880 1533       

39         1020     878   1316       

40               989 1009 938       

41         1270     927   1119 854     
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  Cu I Cu I Cu II F II Fe I Fe II Fe II Ga I Hf I In II Ir I Mg I 
Sample 324.75 327.40 271.35 350.56 374.95 234.35 238.20 294.36 368.22 294.10 269.42 285.21 

1 998 944   970 860 865 955         1165 

2 1205 1051     945 905 974         1150 

3 1118 1004   1013   869 916     1035   1192 

4 1207 1058     986 903 965         1177 

5 1269 1124     934 979 934       948 1057 

6 985 910     913 879 928         1122 

7 1083 980   1018   829 892     929   1132 

8 1160 1061 1268 926 1098 1142 1133     959 1077 1166 

9 1428 1230 1129 985 1043 1219 1086         1129 

10 1070 966 1024 953 971 961 1095         1207 

11 1446 1272   1090 1120 1046 1054         1119 

12 1244 1090 1157   1052 1329 1596   897   1061 1145 

13 1165 1051   1018 1115 897 969         1166 

14 1059 953   1103 957 883 945 1002   978   1128 

15 907 866   1122   799 876 965       1083 

16 1271 1121       861 926         1137 

17 1775 1532     914 966 988     988   1119 

18 1166 1014 1041 1011 1019 1127 1441     981 931 1094 

19 1052 971 1165 1078 978 1035 1082 1129     1000 1167 

20 1186 1038     921 922 952         1067 

21 1387 1224     889 923 1030         1098 

22 1065 978 1026   1127 1156 1276         1185 

23 1121 1018   1055 1185 1155 1000 1005     1089 1135 

24 1257 1114 1127 979 1003 1011 1186         1159 

25 1048 961 954   953 930 976         1130 

26 1084 1002 925   981 1043 1121       1081 1173 

27 1023 951     862 873 947         1209 

28 1571 1404 1033 1125 1047 1148 1130 1031     1057 1105 

29 1016 942   986 847 839 917         1195 

30 1250 1084 1016 947 935 966 1124         1128 

31 1022 958   1104 949 956 1069 1017       1124 

32 1153 1029     890 900 1030         1161 

33 1186 1106   1450     960 1347   1047   1104 

34 1604 1372     906 900 985         1101 

35 1013 928   902 948 969 1067         1201 

36 1061 970   860   900 934         1142 

37 982 945   1119 1022 1004 1002 1034       1159 

38 1187 1059 1030   977 1123 1354       1097 1243 

39 1106 1018 999   953 997 1205         1136 

40 974 933     942   893         1099 

41 1071 991 1245   1065 1139 1039         1175 
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  Mg II Mg III Mn I Mn II N II N IV Na II Na II Ni I O III O V P I 
Sample 279.55 239.51 279.83 261.02 399.50 347.87 298.42 307.83 349.30 393.48 278.10 253.56 

1 2195 901   928     871 1437 838 1135 969 1028 

2 2182 921   956     866 1165   1048 972 1026 

3 2311 883   915     836 1388   1091 962   

4 2353 928   937     886     1071 958   

5 1846 927   925     985     1832 975   

6 2226 900   909     881   833 1000 924   

7 2177 859   879     846 1285 822 1248 957   

8 2177 1092   901   841 1156     1087 953   

9 2154 1022   959     1090   927 1520 976 1084 

10 2412 1018   1036   847 947 1376   1005 985 1135 

11 1990 1035   984     1006 1481 1014 1396 989 1126 

12 1842 1430   1343     1155 1158   1072 1023   

13 2209 923   922     966 1001   1114 960 968 

14 2229 896   930     905 1547 908 930 919 1061 

15 2031 838   859   846 914 1503 930 981 900   

16 2283 886   917     888     1209 949   

17 1748 948 2207 975     1009 1031   978 985 1212 

18 1987 1260   1130     1028 1496 863 1520 964 1166 

19 2179 1015   988     996 1337   1127 961 1032 

20 1956 926   932     906     1564 940   

21 2128 979   979     886     1227 916 1084 

22 2146 1184   1097     1103 1374   954 983 1295 

23 2133 1040   900   892 1141 1488 827 940 946   

24 2190 1081   1041     999 1457 933 1042 957 1244 

25 2308 921   907     943     1164 929   

26 2322 1028   982     1014     1091 963   

27 2443 894   926     881     1202 1027 1031 

28 1944 1078   967     1046 1571 925 1207 1001 1237 

29 2353 874   897     901 1368 846 1061 984   

30 2115 1042   1024   788 902 1300 836 1345 952 1123 

31 2215 990   973     948 1536 891 1033 961   

32 2233 966   986     877     1057 977 1080 

33 2000 918   943   946 1082 1827 1084 1289 922 1443 

34 2161 940   953     901     1409 929   

35 2427 1019   1031     937 1081   1250 1024 1182 

36 2262 894   914     858 1122   1194 960 1118 

37 2206 949   960   904 978 1376   945 961   

38 2381 1244   1095 882   1011 1206 943 1048 1028 1399 

39 2178 1100   1113     954     970 973 1344 

40 1982 889   883           1615 912   

41 2285 990   908 938   1057     1087 989 990 
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  P IV Pb I Pb I S VI S VI Sc III Si I Si II Sn II Ti I Ti II 
Sample 334.77 280.20 283.31 419.89 420.08 269.91 288.16 413.09 335.20 399.86 376.13 

1             1360     892 1082 

2 861           1207     852 927 

3   1739         1291     852 953 

4         818   1276     871 915 

5 935 1234         1156     947 890 

6 929           1281     887 903 

7 925 1315         1196     855 1072 

8 916 1568 1195   926   1250     917 909 

9 916 1377 1084   1003   1391     938 881 

10     967       1285     872 1141 

11 892 1332 1215 875 884   1339     969 1003 

12   1369 1062 903 879   1196 912     984 

13   1727         1269     1020 898 

14 925           1232     895 1357 

15 915 1167         1101     863 1080 

16 904 1147         1319       891 

17   1340         1175       897 

18   1611 958 869 861   1524 866   892   

19   1639 1039 825 874   1315 959   900 1163 

20 889 1168         1333   846   893 

21   1311         1335 837     896 

22   1731 1182 943 975   1264 906   923 957 

23 996 1298 1110 918 915   1161 906   915 1105 

24   1658 1189   1000   1399 918 964 928 1250 

25   1685         1475     869   

26 900 1825         1429 934   845 885 

27 859           1227     827 870 

28   1396 1083 959 914   1293 893   958 1406 

29   1717 940       1201 916   926 1251 

30 983 1303         1238     881 1074 

31 921 1497     905   1471 954 886 897 1357 

32 890 1060         1198     859 858 

33 1006 1388       977 1454     1105 1807 

34   1390         1359       842 

35 896 1642         1133       968 

36 869           1238       931 

37 895 1563   907 871   1210 910   912 1154 

38 917 1603 1112 874 890   1400 890   894   

39       913 889   1368 945       

40   1219         1228         

41 899 1651 1052   929   1247       866 
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  Ti III Tl I Tl I V II W I W II Y II Zn I Zn II Zr III 
Sample 251.61 276.79 351.92 292.40 400.88 248.92 371.03 334.50 491.16 266.43 

1 1314 864       922   960   888 

2 1177 927       849 848     901 

3 1258 912                 

4 1254 928       1009 837 931   892 

5 1148 1017         845 978   953 

6 1237 883                 

7 1154           814       

8 1321 1334   1096     920     1216 

9 1398 1171   942     960 1000   1237 

10 1292 977       860 858     1002 

11 1301 1037       885 892     1053 

12 1314 1308       900 903     1192 

13 1228 1037       901       1060 

14 1213 898 915     894         

15 1067   890     880         

16 1297 941       843   949     

17 1186 986       917       992 

18 1557 1067         882     1002 

19 1294 1071       940 878     1006 

20 1273 916       890   982   922 

21 1315 896         829 980   886 

22 1288 1271   1089   908 1009     1210 

23 1193 1246         966 892   1252 

24 1428 1032       958 932     1036 

25 1428 991         881     941 

26 1422 1079       926 940 944   1068 

27 1199 947       876         

28 1291 1100 911       916     1064 

29 1177 817       914         

30 1291 933       1067 866     918 

31 1425 981       943 928     1027 

32 1212 903   850           856 

33 1451   1146   1132 960 922   966   

34 1372 894       920   1198   887 

35 1166 998   946     898     962 

36 1201 863       930       838 

37 1216 1044   873           1048 

38 1441 1115         922     1079 

39 1422 989         900 932   938 

40 1171                   

41 1248 1145   985   880 898 916   1095 
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Appendix B  ICP certified assay results for the 41 Oxide Escondida samples 

ANALYTE WtKg Ag Al As Ba Be Bi Ca Cd 

METHOD G_WGH79 GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B 

DETECTION 0.01 2 0.01 3 5 0.5 5 0.01 1 

UNITS kg ppm % ppm ppm ppm ppm % ppm 

EscOx1B2 0.05 <2 1.91 <3 75 <0.5 <5 0.05 <1 

EscOx2B2 0.114 <2 2.66 4 40 <0.5 <5 0.04 <1 

EscOx3B2 0.068 <2 1.33 4 80 0.9 <5 0.22 <1 

EscOx4B2 0.048 <2 4.94 4 49 0.6 <5 0.12 <1 

EscOx5B2 0.035 <2 1.3 4 86 0.7 <5 0.26 <1 

EscOx6B2 0.04 <2 1.73 9 47 <0.5 <5 0.22 <1 

EscOx7B2 0.035 <2 1.66 4 116 0.9 <5 0.16 <1 

EscOx8B2 0.219 <2 3.73 8 96 <0.5 <5 0.04 <1 

EscOx9B2 0.125 <2 1.03 <3 68 <0.5 <5 0.37 <1 

EscOx10B2 0.119 31 3.81 3 51 <0.5 <5 0.05 <1 

EscOx11B2 0.044 <2 1.11 <3 61 <0.5 <5 0.3 <1 

EscOx12B2 0.033 <2 2.63 19 91 0.5 <5 0.06 <1 

EscOx13B2 0.227 <2 1.23 <3 41 <0.5 <5 0.13 <1 

EscOx14B2 0.081 3 1.1 15 81 0.5 <5 0.05 <1 

EscOx15B2 0.051 6 3.91 6 59 0.6 <5 0.04 <1 

EscOx16B2 0.097 <2 1.28 4 128 <0.5 <5 0.14 <1 

EscOx17B2 0.3 2 0.8 10 105 <0.5 <5 0.08 <1 

EscOx18B2 0.035 <2 1.25 <3 26 <0.5 <5 0.75 <1 

EscOx19B2 0.03 <2 1.51 3 50 <0.5 <5 0.04 <1 

EscOx20B2 0.074 <2 2.08 4 64 <0.5 <5 0.14 <1 

EscOx21B2 0.037 <2 1.08 3 66 0.8 <5 0.28 <1 

EscOx22B2 0.056 12 3.07 7 62 <0.5 <5 0.05 <1 

EscOx23B2 0.032 <2 2.43 14 73 0.5 <5 0.04 <1 

EscOx24B2 0.044 <2 1.9 11 52 3.3 <5 0.05 <1 

EscOx25B2 0.06 <2 1.16 3 44 0.8 <5 0.03 <1 

EscOx26B2 0.083 <2 0.79 3 71 <0.5 <5 0.04 <1 

EscOx27B2 0.091 <2 2 4 58 <0.5 <5 0.07 2 

EscOx28B2 0.049 <2 0.93 <3 62 <0.5 <5 0.18 <1 

EscOx29B2 0.052 <2 2.29 4 95 <0.5 <5 0.03 <1 

EscOx30B2 0.05 <2 1.05 <3 45 0.8 <5 0.35 <1 

EscOx31B2 0.269 <2 0.77 <3 90 0.6 <5 0.16 <1 

EscOx32B2 0.167 <2 3.61 6 45 <0.5 <5 0.28 <1 

EscOx33B2 0.205 <2 1.39 3 86 <0.5 <5 0.05 <1 

EscOx34B2 0.177 2 1.09 3 86 <0.5 <5 0.53 <1 

EscOx35B2 0.082 <2 2.91 4 64 <0.5 <5 0.53 1 

EscOx36B2 0.159 <2 1.06 4 63 <0.5 <5 0.22 <1 

EscOx37B2 0.084 <2 1.14 7 83 <0.5 <5 0.04 <1 

EscOx38B2 0.087 <2 0.98 5 64 <0.5 <5 0.04 <1 

EscOx39B2 0.119 <2 0.84 12 55 0.5 <5 0.14 <1 

EscOx40B2 0.104 <2 0.94 3 59 <0.5 <5 0.11 <1 

EscOx41B2 0.117 <2 1.06 4 72 0.6 <5 0.18 <1 
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Co Cr Cu Fe Hg K La Li Mg Mn 

GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B 

1 1 0.5 0.01 1 0.01 0.5 1 0.01 2 

ppm ppm ppm % ppm % ppm ppm % ppm 

10 8 1540 2.57 <1 0.45 11.7 6 0.68 293 

16 12 >10000 4.11 <1 0.35 14.4 14 1.43 237 

3 6 7240 1.16 <1 0.39 24.7 5 0.35 160 

24 17 >10000 5.19 <1 0.31 19 28 2.48 180 

4 4 >10000 1.21 <1 0.42 14.6 4 0.28 114 

5 3 3080 1.69 <1 0.58 20.9 7 0.58 355 

4 5 4750 1.36 <1 0.49 24.3 7 0.48 188 

12 25 3130 3.42 <1 0.39 16 18 1.87 572 

4 8 9320 1.7 <1 0.22 17.9 4 0.37 138 

19 25 2890 5.27 <1 0.38 14 15 1.24 344 

4 8 5600 1.68 <1 0.22 14.1 5 0.41 127 

9 15 7170 6.03 <1 0.46 13.3 21 1.33 1010 

6 5 3600 2.05 <1 0.14 16.7 6 0.5 152 

3 3 2350 1.38 <1 0.46 20.5 4 0.41 221 

27 27 8440 5.14 <1 0.37 10.3 25 2.52 527 

7 7 9720 1.28 <1 0.3 16.7 6 0.5 141 

2 6 >10000 1.37 <1 0.38 18.5 2 0.21 95 

1 4 774 1.79 <1 0.77 2.3 <1 0.07 74 

4 5 1680 2.16 <1 0.2 11 6 0.51 234 

14 20 >10000 4.39 <1 0.36 10.8 15 1.12 341 

5 7 >10000 1.9 <1 0.19 19.8 6 0.49 125 

16 20 2990 4.41 <1 0.38 18.9 14 1.23 1000 

5 11 3410 3.09 <1 0.52 15.6 10 0.93 183 

2 4 5680 2.02 <1 0.48 25.5 4 0.19 87 

4 7 2100 1.6 <1 0.26 13 4 0.44 145 

2 5 1110 0.99 <1 0.31 16.2 2 0.21 101 

11 6 9150 2.67 <1 0.23 15.1 15 1.19 286 

4 6 5230 1.58 <1 0.19 12.2 4 0.39 145 

9 5 7480 2.27 <1 0.25 26.5 11 1.07 245 

4 6 7310 1.78 <1 0.14 16.4 7 0.47 133 

3 4 1930 1.42 <1 0.34 12.5 2 0.16 107 

15 22 >10000 4.95 <1 0.27 11.3 16 1.42 398 

<1 3 370 0.68 <1 0.42 22.5 2 0.15 35 

3 3 1940 1.23 <1 0.36 14.2 4 0.35 122 

18 21 8790 5.65 <1 0.39 8 17 1.51 478 

6 5 4710 1.75 <1 0.21 17.7 8 0.48 129 

5 5 1530 1.49 <1 0.31 30.9 5 0.42 139 

4 5 1410 1.52 <1 0.26 23.7 4 0.41 132 

7 2 7360 1.58 <1 0.25 9.1 3 0.27 242 

4 7 3450 1.6 <1 0.09 16.2 7 0.47 116 

5 6 7820 1.91 <1 0.2 14.4 7 0.52 144 
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Mo Na Ni P Pb S Sb Sc Sn Sr 

GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B 

1 0.01 1 0.01 2 0.01 5 0.5 10 5 

ppm % ppm % ppm % ppm ppm ppm ppm 

15 0.16 10 0.03 22 <0.01 <5 5.2 <10 41 

14 0.11 14 0.12 11 0.01 <5 10.7 <10 41 

22 0.13 5 0.23 30 0.27 <5 1.4 <10 76 

7 0.12 20 0.06 15 0.02 <5 13.7 <10 50 

30 0.14 5 0.16 11 0.36 <5 1.7 <10 73 

7 0.09 6 0.03 6 0.24 <5 1.2 <10 17 

16 0.11 6 0.11 17 0.17 <5 1.8 <10 73 

109 0.1 22 0.04 31 0.02 <5 14.8 <10 147 

13 0.13 12 0.09 14 0.41 <5 2 <10 62 

11 0.11 23 0.02 31 0.02 <5 12.7 <10 71 

11 0.14 6 0.04 8 0.31 <5 2 <10 46 

412 0.09 12 0.13 552 0.04 <5 8.4 <10 20 

10 0.11 5 0.08 6 0.12 <5 1.7 <10 83 

135 0.04 4 0.13 136 0.04 <5 2.1 <10 20 

43 0.11 25 0.03 9 0.01 <5 10.3 <10 29 

67 0.12 9 0.08 18 0.25 <5 1.6 <10 54 

17 0.09 4 0.06 7 0.9 6 1.5 <10 33 

16 0.05 3 <0.01 22 0.66 <5 <0.5 <10 13 

6 0.16 5 0.07 13 0.02 <5 1.4 <10 42 

34 0.11 16 0.14 5 0.02 <5 15 <10 38 

10 0.14 7 0.05 8 0.48 <5 2.2 <10 80 

22 0.11 20 0.05 98 0.02 <5 9.5 <10 120 

96 0.05 9 0.2 83 0.05 <5 10.9 <10 65 

37 0.08 4 0.87 159 0.04 <5 1.2 <10 18 

33 0.11 5 0.2 19 0.02 <5 1.3 <10 32 

46 0.07 4 0.03 25 0.02 <5 0.6 <10 14 

77 0.1 12 0.08 7 <0.01 <5 8.2 <10 28 

44 0.12 7 0.06 6 0.22 <5 1.3 <10 29 

38 0.1 7 0.07 5 0.02 <5 4.3 <10 135 

87 0.12 6 0.11 9 0.38 <5 3.1 <10 76 

152 0.08 4 0.04 29 0.22 <5 <0.5 <10 36 

21 0.1 18 0.13 4 0.02 <5 13.8 <10 38 

11 0.14 2 0.02 48 0.23 <5 0.7 <10 74 

32 0.1 5 0.08 17 0.48 <5 0.8 <10 32 

15 0.17 18 0.1 3 <0.01 <5 15.8 <10 36 

19 0.13 6 0.05 6 0.23 <5 3 <10 72 

22 0.09 7 0.05 17 0.03 <5 0.7 <10 114 

19 0.09 5 0.04 10 0.02 <5 0.8 <10 97 

12 0.08 8 0.09 82 0.24 <5 0.8 <10 16 

5 0.1 6 0.06 7 0.11 <5 3.2 <10 97 

23 0.09 7 0.08 9 0.31 <5 2.1 <10 45 
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Ti V W Y Zn Zr Au Al2O3 Ba CaO 

GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_FAA313 GO_ICP95A GO_ICP95A GO_ICP95A 

0.01 1 10 0.5 1 0.5 5 0.01 0.001 0.01 

% ppm ppm ppm Ppm ppm ppb % % % 

0.02 85 <10 4.2 465 0.7 54 18.1 0.079 0.66 

0.09 149 <10 9.8 102 1.1 21 18.9 0.025 0.85 

<0.01 22 <10 49.6 132 <0.5 18 17.2 0.056 0.67 

0.11 164 <10 10.5 347 1.1 7 18.8 0.032 0.93 

<0.01 20 <10 5.2 165 <0.5 28 17.2 0.068 0.85 

<0.01 22 <10 4.4 281 <0.5 5 19.2 0.036 0.34 

<0.01 22 <10 12.1 256 <0.5 21 17.6 0.05 0.76 

0.05 167 <10 3.1 375 0.9 7 21.4 0.024 0.39 

0.02 32 <10 8.2 169 0.5 53 16.2 0.078 1.32 

0.04 203 <10 124 734 1.2 <5 19.7 0.018 0.47 

0.03 31 <10 5 138 0.7 28 16.2 0.075 1.34 

<0.01 114 <10 2.1 1030 1.2 8 18.4 0.041 0.1 

0.03 34 <10 2.8 114 0.6 22 17.8 0.056 1.67 

<0.01 23 <10 4.1 121 <0.5 30 19.1 0.065 0.09 

<0.01 129 <10 9.4 282 1.3 9 19.2 0.026 0.54 

<0.01 19 <10 1.1 164 <0.5 82 16.2 0.077 0.7 

<0.01 20 <10 0.7 63 <0.5 135 13.7 0.057 0.21 

<0.01 7 <10 0.6 23 0.5 17 18.6 0.007 1.09 

0.01 34 <10 0.8 103 0.7 9 18.4 0.027 1.14 

0.17 203 <10 14 909 1.3 107 17.8 0.028 2.71 

0.04 34 <10 16.8 143 0.7 65 16.4 0.085 1.57 

0.03 156 <10 27.7 714 1.2 <5 19.5 0.028 0.37 

<0.01 101 <10 3.6 250 1 9 18.3 0.036 0.06 

<0.01 13 <10 1.9 182 0.5 7 17.7 0.037 0.08 

<0.01 23 <10 0.8 159 <0.5 5 16.6 0.081 0.35 

<0.01 12 <10 3.3 223 <0.5 29 14.9 0.057 0.11 

0.07 91 <10 9.2 814 1.1 128 18.9 0.041 1.38 

<0.01 24 <10 1.3 160 0.6 25 15.5 0.063 0.99 

0.01 64 <10 10.8 160 0.8 7 19.4 0.042 0.75 

0.04 34 <10 5.7 166 0.7 40 16 0.065 1.63 

<0.01 13 <10 2.8 116 <0.5 43 15.6 0.056 0.31 

0.16 170 <10 13.9 307 1.7 <5 18.1 0.025 1.53 

<0.01 16 <10 0.7 16 <0.5 93 18.8 0.047 0.14 

<0.01 14 <10 0.7 125 <0.5 194 17.3 0.052 0.9 

0.24 206 <10 12.3 558 1.8 17 17.8 0.021 3.56 

0.08 37 <10 21.5 243 0.7 71 17.2 0.048 2.05 

<0.01 16 <10 1.7 189 <0.5 5 15.7 0.077 0.26 

<0.01 16 <10 1.1 121 <0.5 13 16.1 0.073 0.36 

<0.01 16 <10 2.5 188 0.5 54 16.9 0.048 0.3 

0.04 34 <10 118 118 0.6 53 16.8 0.073 1.85 

0.02 27 <10 3 239 0.6 42 16 0.078 0.95 
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Cr2O3 Fe2O3 K2O MgO MnO Na2O Nb P2O5 SiO2 Sr 

GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A 

0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.01 0.001 

% % % % % % % % % % 

<0.01 4.39 3.05 1.42 0.04 4.28 0.002 0.08 65.1 0.039 

<0.01 6.82 1.91 2.7 0.03 4.01 0.002 0.28 55.3 0.039 

<0.01 2.05 2.52 0.86 0.02 5.1 0.001 0.45 66.6 0.045 

<0.01 7.85 1.4 4.16 0.02 2.29 0.002 0.14 53.3 0.026 

<0.01 2.18 3.24 0.75 0.02 4.38 0.001 0.36 68.3 0.054 

<0.01 3.07 4.59 1.61 0.05 0.18 0.001 0.07 63.6 0.004 

<0.01 2.45 3.08 1.16 0.03 3.11 0.001 0.21 65.1 0.038 

<0.01 5.61 1.89 3.44 0.08 2.16 0.003 0.06 54.7 0.031 

<0.01 2.69 2.64 0.72 0.02 5.06 0.001 0.22 65.3 0.055 

<0.01 8.14 1.78 2.28 0.05 1.38 0.003 0.04 54.3 0.022 

<0.01 2.63 2.71 0.79 0.02 5.01 0.001 0.11 66 0.063 

<0.01 9.09 4.07 2.63 0.13 0.23 0.003 0.25 55.4 <0.001 

<0.01 3.22 1.79 0.94 0.02 5.53 0.001 0.17 64.9 0.078 

<0.01 2.77 5.63 1.66 0.05 0.12 0.002 0.24 61.2 0.004 

<0.01 7.71 2.09 4.36 0.07 2.69 0.002 0.09 54.1 0.026 

<0.01 2.17 2.76 1.03 0.02 4.61 0.001 0.26 67.4 0.047 

<0.01 2.18 2.85 0.68 0.01 3.4 <0.001 0.18 65.1 0.02 

<0.01 2.6 4.84 0.49 0.02 0.12 0.002 <0.01 65.3 0.004 

<0.01 3.43 1.26 0.97 0.03 5.67 0.001 0.12 67.7 0.071 

<0.01 6.56 1.23 1.89 0.05 4.34 0.003 0.3 54.4 0.059 

<0.01 2.92 2.77 0.9 0.02 5.15 0.001 0.15 64.4 0.066 

<0.01 7.21 2.74 2.43 0.14 1.5 0.003 0.11 55.2 0.027 

<0.01 5.03 3.94 2.16 0.04 0.13 0.003 0.41 59.8 0.005 

<0.01 3.41 4.05 1.02 0.03 0.14 0.001 1.81 62.1 0.003 

<0.01 2.63 3.42 0.96 0.02 4.57 0.001 0.49 67.2 0.037 

<0.01 2 3.47 0.85 0.02 1.51 0.001 0.08 68.8 0.005 

<0.01 4.27 1.94 2.2 0.04 5.21 0.002 0.2 59.7 0.044 

<0.01 2.61 1.92 0.77 0.02 5.25 0.001 0.13 68.1 0.054 

<0.01 3.85 1.81 2.05 0.03 4.52 0.002 0.13 61.4 0.051 

<0.01 2.79 2.23 0.9 0.02 5.45 0.001 0.29 63.8 0.067 

<0.01 2.56 2.92 0.64 0.02 3.28 0.001 0.1 67.6 0.019 

<0.01 7.64 1.66 2.53 0.06 2.99 0.002 0.27 55.3 0.035 

<0.01 1.74 2.83 0.78 <0.01 2.53 0.002 0.06 65.2 0.022 

<0.01 2.29 2.87 1.01 0.02 4.08 0.002 0.17 66.4 0.026 

<0.01 8.04 1.29 2.51 0.07 3.41 0.002 0.22 54.2 0.049 

<0.01 2.68 1.66 0.84 0.02 5.89 0.002 0.18 64.4 0.076 

<0.01 2.52 3.31 0.99 0.02 3.57 0.001 0.14 66.3 0.039 

<0.01 2.7 2.96 0.92 0.02 4.63 0.001 0.12 68.8 0.049 

<0.01 2.7 2.43 0.8 0.04 4.62 0.001 0.18 65.9 0.021 

<0.01 2.54 2.05 0.84 0.02 5.33 0.001 0.12 66.6 0.075 

<0.01 3.07 2.98 1.03 0.02 4.42 0.001 0.2 65.7 0.052 
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TiO2 Y Zn Zr LOI Cu 

GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A G_PHY01K GO_ICP13B 

0.01 0.001 5 0.001 0.01 0.01 

% % ppm % % % 

0.77 0.001 487 0.015 3.22 N.A. 

0.96 0.001 121 0.012 4.77 1.59 

0.43 0.005 170 0.015 3.35 N.A. 

0.91 0.001 375 0.012 7.1 1.21 

0.45 <0.001 233 0.015 3.65 1.37 

0.53 <0.001 449 0.017 6.07 N.A. 

0.43 0.001 381 0.015 4.06 N.A. 

1.26 0.001 378 0.013 7.28 N.A. 

0.39 <0.001 211 0.014 3.36 N.A. 

1.07 0.014 708 0.011 7.7 N.A. 

0.38 <0.001 157 0.014 2.76 N.A. 

1.05 0.001 1010 0.011 6.31 N.A. 

0.46 <0.001 128 0.015 2.54 N.A. 

0.68 0.001 151 0.016 4.08 N.A. 

1.08 0.002 285 0.011 6.17 N.A. 

0.38 <0.001 200 0.014 3.02 N.A. 

0.33 <0.001 89 0.012 4.95 2.9 

0.51 <0.001 26 0.017 5.94 N.A. 

0.49 <0.001 119 0.016 3.09 N.A. 

1 0.002 908 0.01 3.44 1.38 

0.42 0.002 177 0.014 2.71 1.29 

1.06 0.003 737 0.012 6.94 N.A. 

0.89 0.001 250 0.01 5.66 N.A. 

0.41 <0.001 341 0.015 6.5 N.A. 

0.42 <0.001 190 0.015 2.58 N.A. 

0.37 <0.001 365 0.012 3.27 N.A. 

0.78 0.001 770 0.015 3.84 N.A. 

0.36 <0.001 221 0.013 2.54 N.A. 

0.64 0.002 176 0.016 4.36 N.A. 

0.41 <0.001 207 0.015 3.53 N.A. 

0.34 <0.001 216 0.014 3.07 N.A. 

1.01 0.002 336 0.011 5.9 1.53 

0.44 <0.001 22 0.015 6.76 N.A. 

0.46 <0.001 194 0.014 4.39 N.A. 

1 0.002 574 0.011 3.77 N.A. 

0.49 0.002 297 0.015 2.53 N.A. 

0.37 <0.001 222 0.014 3 N.A. 

0.38 <0.001 154 0.015 2.27 N.A. 

0.46 <0.001 263 0.014 3.61 N.A. 

0.38 0.013 155 0.015 2.08 N.A. 

0.4 <0.001 347 0.014 3.21 N.A. 
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Appendix C  Python Script for the processing of LIBS responses 

from __future__ import division 
from __future__ import division 
 
import matplotlib.pylab as plt 
import pandas as pd 
import numpy as np 
from scipy.optimize import leastsq 
import os  
import matplotlib.ticker as plticker 
 
import mtl.processing.convolution2 as conv 
from mtl.misc import gaussianDerivKernel, gaussianKernel 
from mtl.sensors.xray import lorentz 
from scipy.ndimage.filters import convolve 
from scipy.optimize import leastsq # Levenberg-Marquadt Algorithm 
 
saveplot=False 
readingsFilename = 'Oxido_Escondida_unified.csv' 
SIGMA = 2. 
outDir = readingsFilename+'_plots' 
if saveplot: 
 os.makedirs(outDir)   #****************** 
''' 
columns = df.columns[1:] 
table = [] 
for name in columns: 
 table.append(name.split(',')) 
''' 
 
### Load database of wavelengths and elements, and clean it up 
badChar = u'\xa0' 
 
def fixValue(x): 
 if (isinstance(x, unicode)): 
  return x.strip().replace(badChar,'') 
 else: 
  return x 
 
def clean(col): 
 return col.apply(fixValue) 
 
 
 
### Load ID wavelengths 
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idWavelengths = pd.read_csv('ID wavelength.csv') 
 
 
### Load spectra 
TOL = 0.132 
 
spectra = pd.read_csv(readingsFilename) 
wavelengths = spectra['wavelength'] 
for col in spectra.columns: 
 print col 
readingtoplot = raw_input('Enter the reading to plot from the list:') 
 
matches = [] 
for whichReading in spectra.columns: 
 if whichReading != 'wavelength': 
  spectrum = spectra[whichReading] 
 
  ######################################### 
  PEAK_THRESHOLD = 890 
 
  
  ####################################### 
  ### NUMERICAL DERIVATIVE WRT X 
  kernel = gaussianDerivKernel.get(sigma=SIGMA, threshold=0.005) 
  deriv = -1 * convolve(spectrum, kernel) 
 
  ### FIND PEAKS 
  ### by looking for when derivative crosses 0 from positive to negative 
  min2ndDeriv = 1.0 
  peakIndices = [] 
  prevSlope = False 
  for idx, slope in enumerate(deriv): 
   if (prevSlope > 0 and slope <= 0 and abs(slope-prevSlope) > min2ndDeriv): 
    #print abs(slope-prevSlope) 
    peakIndices.append(idx) 
 
   prevSlope = slope 
 
  peakIndices = np.array(peakIndices) 
 
  ############ 2nd deriv example 
  kernel2 = np.array([-1,0,1]) 
  deriv2 = -1 * convolve(deriv, kernel2) 
  if saveplot or whichReading == readingtoplot:  
   # if whichReading==readingtoplot: 
   # plot example 
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   fig, ax = plt.subplots(1,1, figsize=(30,20)) 
   loc = plticker.MultipleLocator(base=10) # this locator puts ticks at regular 
intervals 
   yaxis_loc = plticker.MultipleLocator(base=0.1) 
   ax.xaxis.set_major_locator(loc) 
   ax.yaxis.set_major_locator(yaxis_loc) 
   ax.plot(wavelengths, spectrum, c='b') 
   ax.plot(wavelengths, deriv, c='r') 
   ax.plot(wavelengths, deriv2, c='g') 
   ax.set_xlim((wavelengths.min(), wavelengths.max())) 
 
  # for peakIdx in peakIndices: 
  #  ax.axvline(wavelengths[peakIdx], ls='--', c='#555555') 
 
  peakTable = [] 
 
  BELOW = False 
  x0 = None 
  x1 = None 
  maxval = 10 
  for idx, value in enumerate(deriv2): 
   if (BELOW): 
    maxval = max(abs(value), maxval) 
 
   if (value < 0 and not BELOW): 
    BELOW = True 
    x0 = idx 
 
   if (value >= 0 and BELOW): 
    BELOW = F23alse 
    x1 = idx 
 
    if (maxval >= 10): 
     # accept as peak 
     peakIdx = spectrum[x0:x1+1].argmax() 
     peakTable.append([peakIdx, wavelengths[peakIdx], 
spectrum[peakIdx]]) 
      
     if saveplot or whichReading == readingtoplot:  
      ax.fill_between([wavelengths[x0],wavelengths[x1]], -
0.2, 1, alpha=0.3, colour='y') 
 
    maxval = 0 
  maxval = 0 
   
  if len(peakTable)==0: 
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   print ("No peaks found") 
  if saveplot: 
   plt.savefig(os.path.join(outDir, 'Plot'+whichReading+'.jpg'))  #******** 
  if whichReading==readingtoplot: 
   plt.show() 
  if saveplot or whichReading == readingtoplot:  
   plt.close() 
 
  peakTable_df = pd.DataFrame(peakTable, columns=['pixel', 'wavelength', 
'peakIntensity']) 
 
  ####################################### 
  ### FIND MATCHING ELEMENTS 
 
  
  TOL = 0.132 
   
  for pIdx, row in idWavelengths.iterrows(): 
   w = row['Observed Wavelength Air (nm)'] 
 
   # print '>>> w = ', w 
   idx = (peakTable_df['wavelength'] - float(w)).abs().argmin() 
   matchedRow = peakTable_df.iloc[idx] 
 
   if (abs(matchedRow['wavelength'] - w) < TOL): 
    # Found a match 
    concentration = (matchedRow['peakIntensity'] ) 
    matches.append([whichReading, matchedRow['wavelength'], row['Ion'], 
concentration, row['Acc.'],w]) 
             
  
 
matches_df = pd.DataFrame(matches, columns=['Sample Rock','Peak Wavelength', 'Element', 
'Intensity','Acc.','Observed Wavelength Air']) 
matches_df.to_excel('Matches_'+readingsFilename+'.xlsx') 
####################################### 
### FIT LORENTZIAN 
if (False): 
 OFFSET = 800.0 
 lorKernel = lorentz.makeLorentzKernel_FWHM(4) 
 
 def residual(peakAmounts, peakLocations, observedSpectrum): 
  peakArray = np.zeros(len(observedSpectrum)) 
  peakArray[peakLocations] = peakAmounts 
 
  # to generate spectrum: convole peak array with lorentzian kernel 
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  reconstructedSpectrum = convolve(peakArray, lorKernel) + OFFSET 
 
  return np.abs(observedSpectrum - reconstructedSpectrum) 
 
 initAmounts = np.array([1000.0]*len(peakIndices)) 
 results = leastsq(residual, initAmounts, args=(peakIndices, spectrum), full_output=1) 
 
 # get results 
 solnAmounts, cov_x, infodict, mesg, ier = results 
 
 peakArray = np.zeros(len(spectrum)) 
 peakArray[peakIndices] = solnAmounts 
 reconstructedSpectrum = convolve(peakArray, lorKernel) + OFFSET 
 
 # plot example 
 fig, ax = plt.subplots(1,1) 
 ax.plot(wavelengths, spectrum, c='b', label='LIBS spectrum') 
 ax.plot(wavelengths, deriv, c='r', label='Derivative of spectrum') 
 ax.plot(wavelengths, reconstructedSpectrum, c='g', lw=2, alpha=0.7, label='Reconstruction') 
 ax.set_xlim((wavelengths.min(), wavelengths.max())) 
 ax.legend() 
 
 for peakIdx in peakIndices: 
  ax.axvline(wavelengths[peakIdx], ls='--', c='#555555') 
 
 plt.show() 
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Appendix D   Python Script for the multiplication of the LIBS responses 

from __future__ import division 
from __future__ import division 
 
import matplotlib.pylab as plt 
import pandas as pd 
from pandas import DataFrame 
import numpy as np 
from scipy.optimize import leastsq 
import os  
import matplotlib.ticker as plticker 
import xlrd 
 
 
def fixValue(x): 
 if (isinstance(x, unicode)): 
  return x.strip().replace(badChar,'') 
 else: 
  return x 
 
def clean(col): 
 return col.apply(fixValue) 
 
 
 
readingFilename='pythonbinomial2.csv' 
spectra=pd.read_csv(readingFilename) 
##rocks=spectra['Rocks'] 
 
result_data = {} 
 
for col1 in spectra: 
    for col2 in spectra: 
        result_data[col1+'*'+col2] = spectra[col1]*spectra[col2] 
pd.DataFrame(result_data).to_csv('result2.csv')     
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Appendix E  Number of responses per sample for each ion for the Oxide samples 

 Ag II Ag II Al II Ba II Be II Be III Bi I Ca I Ca II Cd II Cl II Co I Cr I 
Row 232.02 241.32 281.62 455.40 272.89 448.73 306.77 422.67 317.93 274.85 481.01 347.40 427.48 

1   1  1   26  39    

2     2   21  35    

3        28 1 38    

4        27  37    

5   2     38 2 25 1   

6   1     15  33    

7   2     23  35    

8   8  7  4 29  39    

9  1 1  3   36 5 37 2   

10     3  1 19  40    

11   1 3 2   24 3 37   1 

12  1   20  3 22 5 39   1 

13    1 1   28  40    

14  7 1     18  33    

15  2      25  35    

16   1 1    29  38 1   

17    1 1 1  14 1 31   1 

18   6  21  7 35 5 39    

19     3  3 26 2 38    

20   4  1  1 33 5 31    

21    1 1   38 3 40 1  2 

22   1  9  4 14  38    

23  1 1  2  2 8  33    

24   1  6  1 27 1 39  1  

25     1   34 1 39    

26     4  3 30 1 40    

27        24 2 38    

28    3 8   28 2 35   3 

29        18  40    

30    1 5   37 4 37    

31     1   24  37    

32 1 1      29  36    

33  7 2 2    28  30   1 

34   1 1    37 2 36 2   

35     3   25 5 40    

36        33 1 40    

37     3   18 1 39    

38     10  1 25 1 40    

39     8   15  40    

40        36 1 20    

41     3   14  39 1   
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 Cu I Cu I Cu II F II Fe I Fe II Fe II Ga I Hf I In II Ir I Mg I 
Row 324.75 327.40 271.35 350.56 374.95 234.35 238.20 294.36 368.22 294.10 269.42 285.21 

1 26 24  5 4 10 40     40 

2 38 37   1 8 39     40 

3 39 36  1  3 39   1  40 

4 39 39   1 8 38     40 

5 40 40   1 2 27    1 33 

6 33 25   1 6 36     40 

7 31 29  1  1 35   1  39 

8 30 24 3 1 8 15 39   1 1 40 

9 40 40 1 1 8 7 38     39 

10 37 26 2 5 5 22 40     40 

11 36 33  2 4 13 38     39 

12 39 38 4  27 30 40  1  3 39 

13 39 34  1 1 9 40     40 

14 34 35  6 1 7 38 2  2  40 

15 30 22  3  1 37 3    39 

16 40 39    4 40     40 

17 38 37   2 8 35   1  24 

18 40 39 3 4 27 33 39   1 3 40 

19 30 25 1 2 7 14 38 1   1 40 

20 40 40   2 7 33     40 

21 40 39   13 18 40     40 

22 28 17 2  17 25 40     40 

23 26 22  6 4 8 37 2   1 40 

24 40 39 2 2 17 26 39     40 

25 40 39 2  5 8 40     40 

26 40 37 1  11 17 40    1 40 

27 40 35   1 11 39     40 

28 32 29 1 7 11 13 38 1   1 40 

29 28 26  2 1 2 39     40 

30 39 39 1 3 9 23 36     38 

31 38 37  2 7 16 39 2    40 

32 40 37   2 20 36     38 

33 24 23  11   30 6  3  38 

34 40 40   2 10 39     40 

35 40 35  1 8 21 40     40 

36 39 32  1  2 40     40 

37 36 26  2 3 8 40 1    40 

38 39 39 1  29 31 40    3 40 

39 39 35 2  19 33 40     40 

40 15 11   1  26     27 

41 39 35 2  4 7 40     40 
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 Mg II Mg III Mn I Mn II N II N IV Na II Na II Ni I O III O V P I 
Row 279.55 239.51 279.83 261.02 399.50 347.87 298.42 307.83 349.30 393.48 278.10 253.56 

1 40 34  32   9 3 3 38 24 1 

2 40 34  21   11 7  37 26 2 

3 40 24  17   1 1  30 25  

4 40 29  20   3   37 27  

5 39 15  10   1   37 11  

6 40 18  16   4  1 19 25  

7 40 26  24   2 3 2 31 20  

8 40 31  17  1 9   39 21  

9 40 33  14   8  1 40 14 1 

10 40 37  24  1 16 2  31 28 2 

11 40 27  21   11 4 2 32 14 1 

12 40 40  11   28 1  31 10  

13 40 31  27   3 3  34 21 1 

14 40 33  22   12 4 3 37 22 1 

15 40 23  19  1 3 3 1 33 25  

16 40 28  16   2   39 17  

17 35 28 1 19   2 1  26 10 1 

18 40 39  9   33 6 3 38 5 1 

19 40 35  23   13 3  33 28 1 

20 40 24  21   8   38 14  

21 40 32  23   14   38 15 2 

22 40 38  21   21 1  31 16 5 

23 40 21  14  2 7 8 1 18 17  

24 40 39  22   19 2 1 37 19 3 

25 40 33  25   6   40 19  

26 40 40  25   11   36 15  

27 40 31  22   3   37 27 1 

28 40 32  20   16 6 5 36 12 1 

29 40 28  24   1 2 1 26 32  

30 39 33  18  1 25 3 2 39 20 1 

31 40 38  23   9 2 1 35 14  

32 40 34  16   12   38 25 6 

33 40 21  15  4 9 8 7 32 13 1 

34 40 29  24   7   40 10  

35 40 33  25   17 2  37 28 3 

36 40 31  17   2 3  37 23 1 

37 40 33  22  1 5 2  33 26  

38 40 38  18 1  30 2 1 39 25 1 

39 40 40  18   23   29 18 1 

40 31 10  12      38 19  

41 40 33  16 1  6   35 26 1 
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  P IV Pb I Pb I S VI S VI Sc III Si I Si II Sn II Ta I Ti I Ti II 
Row 334.77 280.20 283.31 419.89 420.08 269.91 288.16 413.09 335.20 362.66 399.86 376.13 

1             35     8 7 40 

2 1           26     3 4 40 

3   3         36     3 7 40 

4         1   24     1 4 39 

5 2 13         34     1 1 36 

6 3           34     3 7 40 

7 1 4         33     2 4 40 

8 1 3 2   4   26     3 8 39 

9 1 10 3   2   32     3 3 39 

10     1       26     5 6 40 

11 1 13 2 1 2   28     3 3 39 

12   21 9 2 9   26 3     3 19 

13   2         24     1 9 40 

14 1           28     10 10 40 

15 3 3         30     2 8 40 

16 3 1         30       1 40 

17   2         29       2 33 

18   30 3 5 9   39 5   10   40 

19   5 2 1 2   30 1   5 7 37 

20 2 13         36   1   6 40 

21   9         38 1     3 40 

22   2 5 3 8   27 2   10 2 32 

23 1 3 2 1 3   26 1   9 18 39 

24   5 1   2   28 3 2 6 3 39 

25   2         35     2   40 

26 2 4         31 1   1 1 40 

27 1           32     1 9 40 

28   18 3 1 3   36 2   8 4 39 

29   1 1       33 1   3 3 40 

30 1 5         33     3 8 36 

31 2 5     1   32 1 1 3 2 40 

32 2 2         28     2 5 40 

33 1 7       1 24     12 16 40 

34   5         35       1 40 

35 1 1         31       4 39 

36 1           26       9 40 

37 1 3   1 2   29 1   4 7 39 

38 2 4 3 3 7   28 1   4   37 

39       1 2   25 1       39 

40   3         37         40 

41 1 3 1   1   27       2 40 
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  Ti III Tl I Tl I V II W I W II Y II Zn I Zn II Zr III 
Row 251.61 276.79 351.92 292.40 400.88 248.92 371.03 334.50 491.16 266.43 

1 4       2   1   1 1 

2 7       1 1     3 3 

3 2                   

4 3       2 1 2   2 2 

5 1         1 8   1 1 

6 1                   

7           1         

8 8   2     4     8 8 

9 7   1     4 5   4 4 

10 13       1 3     4 4 

11 11       1 7     5 5 

12 26       1 19     25 25 

13 2       2       1 1 

14 3 2     1           

15   1     1           

16 1       1   7       

17 5       2       2 2 

18 30         18     29 29 

19 8       3 5     8 8 

20 6       2   3   2 2 

21 13         3 1   3 3 

22 16   7   1 9     13 13 

23 6         4 1   4 4 

24 18       1 6     10 10 

25 3         1     3 3 

26 11       3 2 2   8 8 

27 4       2           

28 14 1       7     10 10 

29 1       1           

30 19       1 2     11 11 

31 7       1 2     3 3 

32 11   1           2 2 

33   6   2 2 2   1   1 

34 6       1   17   1 1 

35 14   1     2     8 8 

36 3       3       1 1 

37 5   1           3 3 

38 26         7     18 18 

39 27         2 1   22 22 

40                     

41 6   1   1 3 1   5 5 
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Appendix F  Compiled LIBS responses for Sulphide rock samples from Escondida Mine 

 

  C I C III Ag II Ag II Al II Au I Ba II Be II Bi I Ca I Ca II Cd II Cl II Cr I 

Row 247.86 229.69 232.02 241.32 281.62 242.80 455.40 272.89 306.77 422.67 317.93 274.85 481.01 427.48 

1   727   798     881     922   1007   908 

2   743 730 835 861         876         

4             830             878 

8         878   904     905       881 

9               1295 1102 864   1455   927 

10   715   900 916         875   957   858 

11           984       855   1102   875 

12         972     1132 974 875 913 1505 801 865 

13 1065     928 935         992   1196   875 

14   777           1174       1815     

15         1048   806   983 856   1315   1006 

16                   873       836 

18         928         849   898   843 

20       811 935   846     876   1255   1039 

22       893               941   919 

25   742   831 913         831   916   873 

27   800         821 1319 1090 920 978 2149     

30       847 885             893   869 

31       851 935         835       1065 

32       808 882         943   1076   827 

33             843 1107   849 938 1213   849 

35             826     840   961   834 

37   884           1522 1245 951 1059 2596   828 

39   718   846 883                   

42   774   846 924       1340         941 

44   771   828     835 1103   854   1181   906 

45       890           846   1167   920 

46   778   885 1030     1257 1020 848 928 1146   894 

48   783   869 1390             921     

49         849     1178 1079 944   2030   858 

50   751   861 906   888 1012   847   1321   793 

51       846 914         891   1165   971 

54   752     906     1118 1122     1450     

55               1179 1098     1580   862 

57       827 957             969   952 

58         890                 874 

59   824   819       1568 1224 927 1052 1787   847 

62   885   825       1640 1220 984 1086 2907 988   
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  Cu I Cu I Cu II F II Fe I Fe II Fe II Ga I Hf I Hg II In II Ir I Mg I 

Row 324.75 327.40 271.35 350.56 374.95 234.35 238.20 294.36 368.22 284.77 294.10 269.42 285.21 

1 2619 2175   1049 969 908 1043 928     986   856 

2 2146 1596   1106       964     957   881 

4 2520 2151   1017             920   884 

8 2713 2261                     862 

9 2368 1979 1269 1026 1048 1121 1300 928     925 1054 930 

10 2350 1996   1165     897 1024     1028     

11 2290 1986     891 955 1060           876 

12 2360 1960 1059   1065 1043 1302 948       944 1044 

13 2357 1853 1022 1203 956 1041 1021 1131     1110   1064 

14 2136 1841 1135 1029 1079 1227 1435 942     988 994 934 

15 3036 2562     1021 1049 1192     995     964 

16 2290 1909   1027       958     927   899 

18 2439 1993   1004     884 896         900 

20 2530 1903   1024 958 1012 1064 916     931   881 

22 2408 2015   1060     896 905     1005   897 

25 2631 2037   1047     865 963     990   906 

27 1760 1510 1114   1199 1324 1789   894     1018 1062 

30 2176 1677   1036     844 972     948   955 

31 2161 1746   1071       939     1029   862 

32 2359 1952   1052 932 891 999 920     957   898 

33 2369 1983 1047 998 948 993 1106 892         818 

35 2258 1913     931 904 924           904 

37 2160 1795 1170   1307 1556 2110         1042 1054 

39 2068 1687   1051     822 965     978   872 

42 2385 1637   1113       1009     1017   871 

44 2373 1954   1033 940 974 1122 960     905   901 

45 2532 2118   1129 929 973 1088 949     1018   936 

46 2019 1635   1150 1355 1185 1000 1059 895   1015   941 

48 1863 1440 1022 1137     866 946   1779 1067   968 

49 2325 1939   976 1204 1244 1252 905     909   843 

50 2141 1819 990 1041 1073 995 1164 990     935   913 

51 2319 1882   1063 1072 961 1104 966     940   926 

54 1741 1106 1125 1046 1123 1104 1258 922     990   949 

55 2184 1822 1093 1134 1084 1212 1355           836 

57 2249 1696   1111     918 959     1018   953 

58 2245 1980   1008       904     911   813 

59 2028 1713 1363 1143 1219 1306 1578   984   983   956 

62 2391 1935 1208 938 1404 1659 2336 1024 1050     1077 1175 
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  Mg II Mg III Mn I Mn II Mo VI Mo VI N IV Na II Na II Ni I Ni I O III O V P I 

Row 279.55 239.51 279.83 261.02 329.33 338.70 347.87 298.42 307.83 341.48 349.30 393.48 278.10 253.56 

1 962 1012 879       867 908 1468   878 971     

2 974     818     877 938 1585   869 964     

4 953   794       844   1448     859     

8 955         976           1005     

9 1044 1208   1273     863 1021 1470   889 924     

10 913 843   930     878 974 1582   914       

11 1005 1041 912 1112       921       894   1163 

12 1339 1183   1229       1022 1105   828 1008 962 1449 

13 1040 1010   956     855 1026 1804   958 1156   1207 

14 1038 1434   1388     871 1076 1507   892     1869 

15 1142 1177   1259       1001   984   919     

16 964             840 1462   830 882     

18 1048           812 884 1421   846 1078     

20 988 1092   1082     860 938 1501   819 936     

22 976           913 988 1606   948       

25 1006 880   857     831 897 1521   841 888     

27 1197 1587   1509       1219 958     1035   1461 

30 962           879 924 1539   863 881     

31 1026     825     966 1091 1565   884 936     

32 947 949   1033     815 888 1476   849 922     

33 896 1064   1020     809 901 1398   825 956   995 

35 950 926   944       863       908     

37 1307 1867   2091       1354 1119   903 1018     

39 922     830     880 934 1520   877       

42 967     879     891 949 1621   901       

44 1017 1062   1145     867 938 1526   853 948     

45 981 1024 982 1134     856 963 1491   916 910   1035 

46 1059 1151   968     909 1000 1696   881 942     

48 1073     904 1436   876 983 1644   892 919     

49 996 1488 852         1153 1566   816 921     

50 1008 1084   1123     877 999 1538   872 929   1084 

51 1104 1034   1084     892 950 1551   883 999   1283 

54 1071 1176   1115     859 1026 1550   893     1048 

55 952 1331   1360     860 1102 1671   869 964     

57 1014 884   946     893 918 1580   876       

58 915     807     829 852 1447   830 820     

59 1087 1536   1206       1181 1684   931     1079 

62 1295 2027   2030       1416 1570     1025     
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  P IV Pb I Pb I Pd I S VI S VI Sb I Si I Si II Sn II Ta I Ti I Ti II 

Row 334.77 280.20 283.31 340.46 419.89 420.08 231.15 288.16 413.09 335.20 362.66 399.86 376.13 

1   1004     841 841   1138       912 1319 

2   970 990         1234   913   907 1452 

4 1014 923           1026   882   888 1089 

8 947 988           1209         869 

9 906 1037 1118   852 885   1263 985     915 1167 

10 999             1225       937 1534 

11 847 1035     815 815   1079       907   

12   1169 1036   871 869   1167 837     879 1000 

13   1141           1247       955 1529 

14   1042 958   915 906   1296 912     916 1347 

15 1064 1138     903 897   1227 893     890   

16 844 966           1206       883 1348 

18   1043           1243       908 1329 

20   968           1258       886 1284 

22 879 1018           1303   911   941 1415 

25   1034           1201   825   896 1387 

27 922 1085 1041   948 972 905 1289 931     882   

30   995 921         1204   868 795 917 1337 

31   1002           1240       933 1334 

32 845 993 889   863 863   1136       910 1409 

33   899       834   942 821     875 1071 

35 856 1052       826   968 827         

37 1104 1239 1181   998 1003   1419 962     948 867 

39   1046 962         1221     883 916 1406 

42   984 974         1228   837 864 925 1498 

44 973 1029       922   1212       894 1387 

45 949 1088           1187       913 1353 

46   1033 971   1026 1017 805 1305       958 1559 

48   1015   1049       1407       939 1472 

49 851 1003           1153       885 1094 

50   1017 935   870 892 750 1236 885     931 1494 

51   1076 906     930   1376       903 1461 

54   1047 1021   870 887   1308 891     913 1468 

55 857 930 922   876 902   1201 914 883   902 1284 

57 995 1051           1253       925 1370 

58   934           1146       868 1285 

59 993 1080 1157   1016 1041   1275 987     929 1252 

62   1234 1246   1006 1043   1376 945   829 962 1753 
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  Ti III Tl I Tl I V I V II W I W II Y II Zn I Zr III Zr III 

Row 251.61 276.79 351.92 411.18 292.40 400.88 248.92 371.03 334.50 262.06 266.43 

1 1094 968 920 973     840 849   986 843 

2 1176   936                 

4 1072 913         826     848   

8 1156 924   961     903     1008   

9 1332 1044         1139 916     1057 

10 1186   993       866     859   

11 1144 908         815 797     877 

12 1278 1012         1195 885 944   981 

13 1245 897 1017     869 862 874   858 1001 

14 1336 1164     939     916     1088 

15 1291 1022     1002   930 908   1076 993 

16 1171           849     856   

18 1178 846         872     845   

20 1229 1064         1031       1016 

22 1244           906         

25 1145   861       875     839   

27 1603 1268     925   1888 973     1183 

30 1187   923       858     845   

31 1197   962       908     843   

32 1115 856 858       804     821 830 

33 947 858         829 855   856 1012 

35 992 845         909 819     873 

37 1580 1459     1240   905 1051   910 1335 

39 1164   1014                 

42 1189   918       839 880       

44 1232 961 868       946 934     969 

45 1200 968 963       890 811   896 874 

46 1258 1223 951   948     1009     1133 

48 1319   984   1799             

49 1085 1193 851       816 953     1076 

50 1249 962 928       984 887     957 

51 1342 955 886       991 857     926 

54 1299 1090 948   937     916     1047 

55 1191 1060 910       960 905     1093 

57 1213 875 921                 

58 1083 802 807       825     821   

59 1263 1235 906   1127   885 1007     1288 

62 1772 1556   969 1182     1080     1407 
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Appendix G  Number of responses per sample for each ion for the Sulphide samples 

 

 

  C I C III Ag II Ag II Al II Au I Ba II Be II Bi I Ca I Ca II Cd II Cl II Cr I 

Row 247.86 229.69 232.02 241.32 281.62 242.80 455.40 272.89 306.77 422.67 317.93 274.85 481.01 427.48 

1   2   1     9     6   5   4 

2   1 1 4 1         3         

4             1             5 

8         1   6     11       9 

9               4 5 10   34   4 

10   1   6 1         2   2   2 

11           1       10   28   7 

12         1     9 11 32 3 39 2 1 

13 1     4 1         2   6   2 

14   4           13       18     

15         3   2   1 16   25   10 

16                   5       4 

18         2         1   2   10 

20       1 2   1     6   5   3 

22       2               1   2 

25   2   5 4         2   8   5 

27   1         2 22 24 18 8 40     

30       4 3             1   1 

31       2 5         2       1 

32       3 2         3   4   6 

33             4 1   7 1 5   7 

35             3     9   20   4 

37   5           27 18 19 6 37   1 

39   1   3 5                   

42   1   8 4       1         1 

44   1   3     2 3   7   30   4 

45       1           1   13   4 

46   1   8 3     3 3 11 1 21   3 

48   1   8 4             6     

49         1     1 1 1   1   6 

50   2   3 4   1 8   4   37   1 

51       4 2         11   19   3 

54   1     4     10 3     29     

55               9 2     22   3 

57       7 3             9   1 

58         1                 2 

59   2   1       8 7 3 3 26   1 

62   3   1       27 28 22 13 39 1   

 

 

 



142 

 

 

 

 

  Cu I Cu I Cu II F II Fe I Fe II Fe II Ga I Hf I Hg II In II Ir I Mg I 

Row 324.75 327.40 271.35 350.56 374.95 234.35 238.20 294.36 368.22 284.77 294.10 269.42 285.21 

1 28 28   9 2 2 3 6     3   6 

2 5 7   17       11     12   4 

4 38 38   2             1   2 

8 40 40                     6 

9 36 36 2 2 22 21 33 1     1 1 13 

10 20 21   19     3 7     10     

11 38 39     14 11 27           8 

12 40 40 3   33 35 40 1       1 32 

13 25 30 1 16 1 2 8 6     1   7 

14 4 4 9 8 13 16 21 2     3 5 7 

15 40 40     20 16 27     1     12 

16 33 32   11       2     8   7 

18 34 36   5     3 2         15 

20 25 31   10 3 4 8 2     7   9 

22 34 34   6     2 2     6   7 

25 15 18   15     9 12     5   12 

27 40 39 2   38 40 40   3     4 10 

30 17 18   22     1 9     9   3 

31 32 33   13       4     5   13 

32 29 31   6 2 2 5 5     3   4 

33 38 39 1 1 6 3 5 1         1 

35 40 40     9 3 19           2 

37 40 40 2   36 36 37         1 18 

39 7 7   25     1 12     7   1 

42 11 19   23       16     8   4 

44 38 36   10 11 19 29 3     4   10 

45 36 36   6 5 5 15 3     4   4 

46 13 13   22 3 4 26 7 1   9   18 

48 11 13 1 17     5 3   1 7   7 

49 36 36   5 1 1 2 3     1   16 

50 1 1 2 24 14 29 37 2     3   3 

51 33 31   18 3 12 16 7     3   19 

54 4 8 5 25 12 20 29 5     3   10 

55 40 40 8 2 13 14 23           5 

57 20 25   18     9 6     10   6 

58 23 20   15       3     5   5 

59 38 38 1 2 18 19 23   4   2   11 

62 39 39 5 1 38 39 39 1 3     2 8 
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  Mg II Mg III Mn I Mn II Mo VI Mo VI N IV Na II Na II Ni I Ni I O III O V P I 

Row 279.55 239.51 279.83 261.02 329.33 338.70 347.87 298.42 307.83 341.48 349.30 393.48 278.10 253.56 

1 31 2 1       7 6 11   2 14     

2 33     1     8 8 31   16 4     

4 20   1       1   2     3     

8 32         1           9     

9 39 28   11     1 25 4   1 18     

10 8 2   3     5 11 13   6       

11 25 19 1 16       14       18   3 

12 39 39   13       38 2   2 26 6 3 

13 36 5   8     5 9 13   8 2   1 

14 26 16   9     4 19 14   4     2 

15 20 19   13       18   1   15     

16 35             3 3   7 9     

18 30           1 1 3   2 2     

20 40 5   5     5 5 14   4 7     

22 35           2 1 10   3       

25 30 2   10     11 12 21   11 3     

27 26 40   10       37 1     11   2 

30 21           7 5 27   10 1     

31 37     1     3 1 12   5 7     

32 36 4   2     2 5 6   5 4     

33 13 4   1     1 5 1   1 10   1 

35 17 10   9       7       20     

37 38 37   10       36 3   2 15     

39 19     2     12 5 30   7       

42 31     1     10 11 25   12       

44 35 24   14     7 17 8   1 14     

45 24 6 1 4     2 6 8   3 1   1 

46 36 8   16     11 20 26   11 11     

48 26     6 1   5 10 19   10 1     

49 30 1 1         1 2   1 3     

50 36 33   21     4 34 26   10 2   3 

51 40 14   15     3 17 19   6 14   3 

54 35 25   20     6 25 28   9     1 

55 25 17   7     2 14 2   1 1     

57 34 3   3     2 11 16   8       

58 26     1     6 1 16   5 3     

59 32 19   9       20 2   3     1 

62 25 39   5       40 3     11     
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  P IV Pb I Pb I Pd I S VI S VI Sb I Si I Si II Sn II Ta I Ti I Ti II 

Row 334.77 280.20 283.31 340.46 419.89 420.08 231.15 288.16 413.09 335.20 362.66 399.86 376.13 

1   10     1 1   30       17 17 

2   11 1         22   1   36 33 

4 1 2           30   1   3 5 

8 2 7           36         8 

9 2 12 3   6 12   35 3     12 3 

10 1             28       22 22 

11 1 8     1 1   34       1   

12   20 2   5 20   40 5     6 1 

13   12           31       20 22 

14   3 6   1 9   20 2     19 13 

15 1 9     2 5   38 1     5   

16 2 10           36       16 16 

18   15           37       7 7 

20   12           25       15 15 

22 2 3           30   1   11 12 

25   14           29   1   24 21 

27 1 10 14   10 23 1 37 7     13   

30   3 1         23   1 1 31 31 

31   14           30       19 22 

32 1 8 1   1 1   35       11 14 

33   2       3   34 1     3 6 

35 3 3       2   32 3         

37 1 25 17   13 30   37 9     25 1 

39   2 1         29     1 33 32 

42   8 1         22   1 1 32 31 

44 1 10       1   30       13 12 

45 2 3           35       11 10 

46   20 4   2 3 1 18       31 24 

48   13   2       16       26 21 

49 2 12           38       7 14 

50   16 5   4 8 1 31 2     37 25 

51   23 1     1   38       26 20 

54   22 6   1 7   31 4     40 21 

55 4 4 1   5 10   37 1 2   9 4 

57 1 10           32       24 27 

58   4           35       17 25 

59 2 10 8   2 11   37 5     13 6 

62   14 23   13 34   33 10   1 24 2 
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  Ti III Tl I Tl I V I V II W I W II Y II Zn I Zr III Zr III 

Row 251.61 276.79 351.92 411.18 292.40 400.88 248.92 371.03 334.50 262.06 266.43 

1 40 3 1 1     2 2   3 2 

2 40   3                 

4 33 1         1     6   

8 40 3   1     5     5   

9 37 25         2 11     12 

10 40   5       2     1   

11 24 18         1 2     8 

12 23 36         3 28 11   29 

13 38 3 6     1 1 1   1 1 

14 24 16     2     12     16 

15 27 19     1   2 7   1 9 

16 40           2     1   

18 40 2         5     2   

20 40 3         2       2 

22 40           3         

25 37   3       4     1   

27 20 39     2   1 30     36 

30 40   2       2     1   

31 40   2       3     2   

32 39 3 2       1     2 1 

33 24 6         6 3   8 1 

35 22 11         4 3     1 

37 22 37     3   1 30   1 34 

39 40   1                 

42 40   6       1 1       

44 38 17 1       2 1     7 

45 39 9 2       4 1   1 1 

46 37 3 3   1     3     3 

48 30   3   1             

49 40 1 1       5 1     1 

50 37 26 3       1 16     17 

51 40 8 4       1 3     4 

54 37 16 1   1     11     13 

55 34 19 1       3 12     12 

57 40 1 4                 

58 40 2 1       4     1   

59 32 20 1   1   2 13     13 

62 9 39   1 2     33     37 
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Appendix H  ICP certified assay results for the 41 Sulphide Escondida samples 

 

ANALYTE WtKg Ag Al As Ba Be Bi Ca Cd 

METHOD G_WGH79 GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B 

DETECTION 0.01 2 0.01 3 5 0.5 5 0.01 1 

UNITS kg ppm % ppm ppm ppm ppm % ppm 

Sulfuro-1 0.428 <2 0.85 4 61 <0.5 <5 0.01 <1 

Sulfuro-2 0.157 <2 1.69 7 13 <0.5 <5 <0.01 <1 

Sulfuro-3 0.181 <2 0.59 11 26 <0.5 <5 0.03 <1 

Sulfuro-4 0.07 <2 0.92 11 43 <0.5 <5 0.02 <1 

Sulfuro-8 0.101 <2 0.72 3 47 <0.5 <5 0.01 <1 

Sulfuro-9 0.346 <2 0.42 5 11 <0.5 <5 0.03 <1 

Sulfuro-10 0.402 <2 1.21 4 13 <0.5 <5 <0.01 <1 

Sulfuro-11 0.267 <2 0.41 3 16 <0.5 <5 0.01 <1 

Sulfuro-12 0.198 <2 0.61 3 31 <0.5 <5 0.13 <1 

Sulfuro-13 0.141 <2 0.6 9 17 <0.5 <5 0.02 <1 

Sulfuro-14 0.159 <2 0.9 7 7 <0.5 <5 <0.01 <1 

Sulfuro-15 0.17 <2 0.43 <3 39 <0.5 <5 0.02 <1 

Sulfuro-16 0.065 <2 0.88 6 10 <0.5 <5 0.04 <1 

Sulfuro-18 0.06 <2 1.4 7 21 <0.5 <5 <0.01 <1 

Sulfuro-20 0.045 <2 1.09 <3 <5 <0.5 <5 0.02 <1 

Sulfuro-22 0.028 <2 1.16 4 30 <0.5 <5 0.02 <1 

Sulfuro-25 0.026 <2 0.75 6 42 <0.5 <5 0.05 <1 

Sulfuro-27 0.038 <2 0.55 5 31 <0.5 <5 0.02 <1 

Sulfuro-30 0.014 <2 1.94 10 26 <0.5 <5 0.01 <1 

Sulfuro-31 0.026 <2 1.51 5 48 <0.5 <5 0.02 <1 

Sulfuro-32 0.018 <2 1.34 3 50 <0.5 <5 0.03 <1 

Sulfuro-33 0.025 <2 0.86 <3 62 <0.5 <5 0.02 <1 

Sulfuro-35 0.022 <2 0.68 5 50 <0.5 <5 0.03 <1 

Sulfuro-37 0.028 <2 0.59 4 23 <0.5 <5 0.03 <1 

Sulfuro-39 0.035 <2 1.33 8 12 <0.5 <5 <0.01 <1 

Sulfuro-42 0.046 <2 1.01 4 12 <0.5 <5 0.01 <1 

Sulfuro-44 0.018 <2 0.74 3 64 <0.5 <5 0.01 <1 

Sulfuro-45 0.018 <2 0.82 3 24 <0.5 <5 0.02 <1 

Sulfuro-46 0.018 <2 0.87 18 11 <0.5 <5 0.04 <1 

Sulfuro-48 0.018 <2 1.1 6 18 <0.5 <5 0.02 <1 

Sulfuro-49 0.019 <2 1.66 5 48 <0.5 <5 0.02 <1 

Sulfuro-50 0.017 <2 1.32 5 22 <0.5 <5 0.01 <1 

Sulfuro-51 0.022 <2 0.69 <3 15 <0.5 <5 0.03 <1 

Sulfuro-54 0.03 <2 1.72 10 26 <0.5 <5 0.01 <1 

Sulfuro-55 0.029 <2 1.31 7 14 <0.5 <5 0.02 <1 

Sulfuro-57 0.019 <2 0.82 9 30 <0.5 <5 0.03 <1 

Sulfuro-58 0.018 <2 1.23 5 16 <0.5 <5 0.02 <1 

Sulfuro-59 0.015 <2 0.95 <3 40 <0.5 <5 0.02 <1 

Sulfuro-62 0.016 <2 0.52 4 39 <0.5 <5 0.03 1 
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Co Cr Cu Fe Hg K La Li Mg Mn 

GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B 

1 1 0.5 0.01 1 0.01 0.5 1 0.01 2 

ppm ppm ppm % ppm % ppm ppm % ppm 

<1 <1 6560 0.12 <1 0.2 7.2 <1 0.03 11 

<1 <1 8470 0.07 <1 0.07 4.4 3 0.01 12 

5 1 6390 0.28 1 0.11 3.1 <1 0.02 17 

<1 1 >10000 0.22 <1 0.2 7.6 1 0.03 30 

<1 <1 7420 0.12 <1 0.19 6.6 <1 0.03 9 

11 <1 >10000 3.26 <1 0.1 <0.5 <1 0.01 8 

<1 <1 5150 0.15 <1 0.05 6.9 2 <0.01 7 

10 2 >10000 0.71 <1 0.14 0.6 <1 0.01 18 

5 3 1330 1.33 <1 0.1 18.7 4 0.51 296 

1 1 9620 0.14 <1 0.12 5.1 <1 0.02 15 

<1 <1 1500 0.74 <1 0.06 3.5 <1 0.01 19 

6 2 2510 0.37 <1 0.16 1.2 <1 0.02 15 

<1 <1 >10000 0.13 <1 0.13 0.8 <1 0.02 12 

<1 <1 6160 0.28 <1 0.12 7.4 2 0.02 18 

<1 <1 1370 0.09 <1 0.12 5.3 2 0.01 9 

<1 <1 >10000 0.12 <1 0.11 4.5 <1 0.02 10 

<1 1 1180 0.15 <1 0.09 1.2 <1 0.02 11 

47 <1 5490 6.91 <1 0.11 <0.5 <1 0.01 14 

<1 1 4430 0.18 <1 0.1 7.2 2 0.02 29 

<1 <1 >10000 0.11 <1 0.15 6.5 1 0.02 10 

1 1 5540 0.21 <1 0.25 4.3 1 0.03 15 

4 3 1060 0.48 <1 0.33 1.2 <1 0.03 37 

9 2 >10000 3.33 <1 0.32 0.8 <1 0.03 22 

43 <1 6950 1.94 <1 0.14 1.4 <1 0.02 11 

<1 <1 4190 0.11 <1 0.09 5.8 2 0.01 10 

<1 <1 3340 0.09 <1 0.07 6.6 1 0.01 9 

15 1 4610 0.65 <1 0.21 4.3 <1 0.03 12 

7 1 5420 0.5 <1 0.1 4.7 <1 0.01 15 

<1 <1 2300 0.18 <1 0.14 1 <1 0.02 10 

4 1 9210 0.38 <1 0.12 6.4 1 0.02 19 

<1 1 6130 0.19 <1 0.24 6.5 2 0.03 15 

<1 2 393 1.54 <1 0.08 6 2 0.01 45 

6 1 >10000 0.56 <1 0.22 <0.5 <1 0.02 19 

<1 1 849 0.62 <1 0.13 8 2 0.02 35 

1 <1 >10000 0.83 <1 0.07 2.3 2 0.01 6 

3 1 >10000 0.25 <1 0.21 1.8 <1 0.03 16 

<1 <1 >10000 0.13 <1 0.07 4.1 1 0.01 8 

3 1 >10000 0.38 <1 0.29 1.4 <1 0.03 18 

32 <1 4690 8.31 <1 0.12 <0.5 <1 <0.01 20 
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Mo Na Ni P Pb S Sb Sc Sn Sr 

GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B 

1 0.01 1 0.01 2 0.01 5 0.5 10 5 

ppm % ppm % ppm % ppm ppm ppm ppm 

75 0.03 1 <0.01 3 0.21 <5 <0.5 <10 6 

80 0.04 1 <0.01 3 0.3 <5 0.6 <10 10 

66 0.03 2 <0.01 <2 0.33 <5 <0.5 <10 8 

80 0.05 1 <0.01 5 0.32 <5 0.7 <10 5 

77 0.03 <1 <0.01 <2 0.21 <5 <0.5 <10 6 

20 0.05 4 <0.01 7 4.31 <5 <0.5 <10 8 

15 0.03 <1 <0.01 <2 0.26 <5 <0.5 <10 <5 

141 0.03 3 <0.01 7 1.16 <5 0.5 <10 16 

7 0.05 5 0.05 154 0.73 <5 0.6 <10 7 

106 0.05 1 <0.01 3 0.31 <5 <0.5 <10 7 

18 0.03 1 <0.01 <2 0.14 <5 0.6 <10 <5 

19 0.03 2 <0.01 <2 0.36 <5 <0.5 <10 14 

107 0.1 2 <0.01 6 0.58 <5 1 <10 13 

77 0.03 <1 <0.01 2 0.21 <5 0.5 <10 <5 

30 0.08 1 <0.01 <2 0.17 <5 0.5 <10 <5 

121 0.04 1 <0.01 10 0.69 <5 0.5 <10 15 

15 0.07 2 <0.01 <2 0.14 <5 0.6 <10 38 

52 0.06 10 <0.01 7 >5 <5 <0.5 <10 16 

25 0.04 1 <0.01 <2 0.2 <5 0.8 <10 12 

20 0.05 1 <0.01 4 0.43 <5 0.7 <10 21 

13 0.08 2 <0.01 <2 0.23 <5 0.9 <10 16 

10 0.06 2 <0.01 <2 0.2 <5 0.6 <10 20 

1830 0.06 4 <0.01 10 4.48 <5 0.8 <10 18 

25 0.05 4 <0.01 4 2.55 <5 <0.5 <10 7 

51 0.04 <1 <0.01 <2 0.17 <5 <0.5 <10 <5 

31 0.03 1 <0.01 <2 0.16 <5 <0.5 <10 7 

13 0.04 3 <0.01 <2 0.8 <5 <0.5 <10 8 

19 0.05 3 <0.01 <2 0.61 <5 0.5 <10 6 

80 0.11 1 <0.01 <2 0.2 <5 1.1 <10 28 

88 0.04 1 <0.01 2 0.55 <5 0.6 <10 6 

45 0.04 1 <0.01 <2 0.22 <5 0.9 <10 5 

20 0.04 <1 <0.01 <2 0.08 <5 1 <10 8 

26 0.05 2 <0.01 6 1.07 <5 0.8 <10 8 

31 0.04 <1 <0.01 <2 0.09 <5 0.8 <10 <5 

40 0.03 1 <0.01 6 1.38 <5 0.6 <10 11 

41 0.06 1 <0.01 <2 0.34 <5 0.6 <10 20 

29 0.03 1 <0.01 6 0.55 <5 <0.5 <10 6 

280 0.07 2 <0.01 8 0.9 <5 1 <10 27 

156 0.06 6 <0.01 6 >5 <5 <0.5 <10 21 
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Ti V W Y Zn Zr Al2O3 Ba CaO Cr2O3 

GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GE_ICP14B GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A 

0.01 1 10 0.5 1 0.5 0.01 0.001 0.01 0.01 

% ppm ppm ppm ppm ppm % % % % 

<0.01 5 <10 0.6 9 <0.5 25.1 0.091 0.04 <0.01 

<0.01 5 <10 0.6 5 0.6 28.7 0.029 0.04 <0.01 

0.02 4 <10 <0.5 5 <0.5 20.5 0.045 0.08 <0.01 

0.02 6 <10 0.6 5 <0.5 20.9 0.045 0.04 <0.01 

<0.01 3 <10 <0.5 3 <0.5 21.4 0.079 0.04 <0.01 

<0.01 5 <10 <0.5 2 0.6 19.1 0.03 0.24 <0.01 

<0.01 3 <10 <0.5 2 <0.5 25.8 0.027 0.03 <0.01 

<0.01 4 <10 <0.5 4 0.6 16.3 0.036 0.08 <0.01 

<0.01 13 <10 4.3 207 <0.5 15.7 0.037 0.76 <0.01 

0.01 3 <10 <0.5 4 <0.5 18.8 0.028 0.07 <0.01 

0.03 20 <10 <0.5 4 <0.5 26.1 0.03 0.05 <0.01 

<0.01 4 <10 <0.5 4 <0.5 18.4 0.061 0.1 <0.01 

<0.01 7 <10 0.6 5 <0.5 19.1 0.016 0.14 <0.01 

<0.01 8 <10 0.5 4 <0.5 27.7 0.039 0.03 <0.01 

<0.01 5 <10 0.6 5 <0.5 22.9 0.016 0.08 <0.01 

<0.01 5 <10 0.6 7 <0.5 24.9 0.04 0.05 <0.01 

<0.01 4 <10 0.6 5 <0.5 21.4 0.037 0.15 <0.01 

<0.01 5 <10 <0.5 <1 1.2 16.9 0.04 0.2 <0.01 

<0.01 6 <10 0.7 8 <0.5 27.4 0.028 0.04 <0.01 

<0.01 6 <10 0.6 3 <0.5 26.8 0.059 0.05 <0.01 

<0.01 9 <10 0.7 4 <0.5 21.1 0.045 0.07 <0.01 

<0.01 9 <10 0.6 6 <0.5 16.6 0.047 0.08 <0.01 

<0.01 5 <10 <0.5 1 0.8 16.5 0.055 0.21 <0.01 

<0.01 6 <10 <0.5 2 0.7 20.2 0.038 0.15 <0.01 

<0.01 4 <10 <0.5 2 <0.5 30.2 0.026 0.04 <0.01 

<0.01 3 <10 0.6 5 <0.5 26.4 0.023 0.04 <0.01 

<0.01 4 <10 <0.5 3 <0.5 19.7 0.082 0.05 <0.01 

<0.01 5 <10 0.6 4 <0.5 22.6 0.032 0.07 <0.01 

0.03 6 <10 0.5 4 <0.5 24.5 0.02 0.17 <0.01 

<0.01 5 <10 0.6 2 <0.5 25.1 0.03 0.06 <0.01 

<0.01 7 <10 0.6 6 <0.5 23.3 0.04 0.04 <0.01 

0.07 38 <10 0.6 2 0.5 26.5 0.032 0.05 <0.01 

<0.01 9 <10 <0.5 2 <0.5 18.1 0.02 0.13 <0.01 

0.03 18 <10 0.7 3 <0.5 28.3 0.028 0.03 <0.01 

<0.01 5 <10 0.5 3 <0.5 26.1 0.021 0.06 <0.01 

0.01 4 <10 <0.5 2 <0.5 20.3 0.036 0.09 <0.01 

<0.01 4 <10 0.6 4 <0.5 26.5 0.026 0.05 <0.01 

<0.01 10 <10 0.6 3 <0.5 20.4 0.05 0.09 <0.01 

<0.01 5 <10 <0.5 <1 1.5 19.4 0.055 0.24 <0.01 
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Fe2O3 K2O MgO MnO Na2O Nb P2O5 SiO2 Sr 

GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A 

0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.01 0.001 

% % % % % % % % % 

1.41 4.15 0.56 <0.01 0.49 0.002 0.04 56.5 0.014 

0.43 1.23 0.14 <0.01 0.59 0.002 0.11 52.1 0.023 

1.21 2.61 0.3 <0.01 0.69 0.001 0.08 64.5 0.027 

1.14 2.71 0.36 <0.01 0.69 0.002 0.04 64.7 0.012 

1.18 3.46 0.43 <0.01 0.48 0.002 0.04 63.9 0.01 

5.13 2.38 0.17 <0.01 1.3 0.002 0.36 57.2 0.053 

0.53 1.04 0.11 <0.01 0.49 0.002 0.03 57.7 0.011 

1.77 3.32 0.29 <0.01 0.56 0.002 0.25 58.8 0.057 

2.15 1.4 1.02 0.04 5.44 0.001 0.12 70.1 0.052 

0.92 2.44 0.28 <0.01 0.89 0.001 0.08 61.3 0.026 

2.27 1.75 0.15 <0.01 0.69 0.002 0.15 52.8 0.03 

1.75 3.89 0.44 <0.01 0.61 0.002 0.18 66.7 0.044 

0.58 1.75 0.14 <0.01 1.33 0.002 0.2 64.8 0.02 

1.03 2.05 0.22 <0.01 0.47 0.002 0.06 55.1 0.012 

0.51 1.65 0.16 <0.01 1.19 0.002 0.09 59.2 0.015 

0.65 1.83 0.21 <0.01 0.59 0.002 0.06 57.3 0.023 

0.62 1.46 0.17 <0.01 1.29 0.002 0.24 64.8 0.068 

10.2 1.65 0.1 <0.01 1.11 0.002 0.36 56.9 0.074 

0.62 1.33 0.16 <0.01 0.45 0.002 0.06 60.6 0.014 

0.71 2.08 0.26 <0.01 0.63 0.002 0.08 56.5 0.026 

0.98 2.71 0.3 <0.01 0.83 0.002 0.06 65.8 0.015 

1.69 3.61 0.38 <0.01 0.56 0.002 0.15 65.4 0.031 

5.1 3.69 0.32 <0.01 0.63 0.003 0.28 58.2 0.038 

3.59 2.66 0.27 <0.01 0.99 0.002 0.18 58.5 0.028 

0.61 1.63 0.17 <0.01 0.59 0.002 0.04 53.4 0.009 

0.5 1.3 0.16 <0.01 0.57 0.002 0.06 58.7 0.015 

2.02 3.49 0.36 <0.01 0.7 0.002 0.06 63.8 0.017 

1.25 1.93 0.19 <0.01 0.99 0.002 0.04 65.4 0.015 

0.81 2.22 0.19 <0.01 1.76 0.002 0.26 60.2 0.03 

1.1 2.19 0.22 <0.01 0.69 0.002 0.07 55.4 0.019 

0.97 2.51 0.34 <0.01 0.42 0.002 0.03 61 0.006 

3.7 1.49 0.14 <0.01 0.63 0.002 0.09 54.3 0.02 

1.65 3.17 0.38 <0.01 0.81 0.002 0.17 64 0.024 

1.66 1.66 0.22 <0.01 0.51 0.002 0.04 58.1 0.008 

1.65 1.06 0.14 <0.01 0.39 0.002 0.1 54.4 0.028 

1.2 2.84 0.35 <0.01 0.97 0.001 0.12 62.2 0.026 

0.55 1.34 0.13 <0.01 0.47 0.002 0.06 58.2 0.023 

1.41 3.67 0.29 <0.01 0.97 0.002 0.22 60.8 0.055 

14.1 2.4 0.12 <0.01 1.33 0.003 0.45 45.9 0.074 
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TiO2 Y Zn Zr LOI Cu 

GO_ICP95A GO_ICP95A GO_ICP95A GO_ICP95A G_PHY01K GO_ICP13B 

0.01 0.001 5 0.001 -10 0.01 

% % ppm % % % 

0.66 <0.001 9 0.017 6.79 N.A. 

0.92 0.001 9 0.021 12.5 N.A. 

0.58 <0.001 5 0.015 5.8 N.A. 

0.6 0.001 7 0.015 6.08 1.14 

0.54 <0.001 16 0.014 5.79 N.A. 

0.66 0.001 <5 0.015 8.86 1.22 

0.64 <0.001 7 0.017 9.83 N.A. 

0.49 <0.001 7 0.011 6.81 1.5 

0.3 <0.001 210 0.013 1.88 N.A. 

0.6 0.001 9 0.014 5.49 N.A. 

0.76 0.001 8 0.017 12.6 N.A. 

0.55 <0.001 5 0.013 4.71 N.A. 

0.65 <0.001 11 0.014 8.79 1.5 

0.83 0.001 8 0.019 10.6 N.A. 

0.86 0.002 6 0.02 11.3 N.A. 

0.7 0.001 6 0.016 8.92 2.57 

0.63 0.001 10 0.016 6.94 N.A. 

0.54 <0.001 <5 0.012 10 N.A. 

0.85 0.001 9 0.018 10.2 N.A. 

0.76 0.001 5 0.017 9.47 1.37 

0.62 0.001 5 0.016 6.52 N.A. 

0.43 <0.001 7 0.013 4.35 N.A. 

0.61 <0.001 5 0.014 6.1 1.91 

0.72 0.001 <5 0.016 9.09 N.A. 

0.83 0.001 7 0.02 10.8 N.A. 

0.79 0.001 6 0.018 9.98 N.A. 

0.51 <0.001 11 0.015 5.57 N.A. 

0.67 0.001 7 0.016 6.74 N.A. 

0.86 <0.001 8 0.019 9.33 N.A. 

0.78 0.001 5 0.017 9.1 N.A. 

0.73 0.001 7 0.016 8.4 N.A. 

0.79 0.001 <5 0.017 10.4 N.A. 

0.59 <0.001 6 0.013 6.97 2.01 

0.82 0.001 <5 0.018 10.1 N.A. 

0.81 0.002 5 0.017 11.4 1.41 

0.6 <0.001 7 0.014 5.78 1.04 

0.78 0.001 <5 0.016 9.58 1.83 

0.55 0.001 8 0.013 9.27 1.92 

0.66 0.001 <5 0.014 12.8 N.A. 
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Appendix I  Details regarding the Python Script 

GAUSSIAN SMOOTH TECHNIQUE 

In order to develop a curve with a valid derivative, it was necessary to use the Gaussian Blur or 

Gaussian Smoothing Technique. 

 

𝑮(𝒙) =  
𝟏

𝝈√𝟐𝝅
𝒆

−𝒙𝟐

𝟐𝝈𝟐  

Equation 6 Gaussian function used in the construction of the Python Script 

 

𝑮′(𝒙) =  
𝟏

𝝈√𝟐𝝅
𝒆

−𝒙𝟐

𝟐𝝈𝟐 (−
𝒙

𝝈𝟐
) 

Equation 7 First derivative of the Gaussian Function 

 

𝑮′′(𝒙) =  −
𝟏

𝟐𝝅𝝈𝟒
𝒆

−𝒙𝟐

𝟐𝝈𝟐 (𝟐 −
𝒙𝟐

𝟐𝝈𝟐
) 

Equation 8 Second derivative of the Gaussian Function 

This equation allows for the calculation of the derivative because it smoothens the peaks, 

converting them into a concave local maximum.  The value of sigma is calculated by the Fast 

Fourier Transform (FFT), which provides the best approach to measuring that which can be 

considered a noise and that which can be considered a peak. With respect to the examination of 

the FFT, it was suggested that a sigma value of 2.0 be used. The convolution also plays an 

important role in converting the peaks into a spectrum that is able to derivate.  

The principal algorithm for recognizing a peak is the use of the first derivative of the smoothened 

spectrum, which has to be previously positive and currently 0 to be considered a local maximum 
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and, the second derivative has to show a negative value to confirm that this wavelength belongs to 

a peak.  

POSSIBLE NUMBERS TO TUNE FROM THE PYTHON SCRIPT 

In this section, some detail that can be modified by the user, is provided for the use of the Python 

Script. The proposed Python Script provides the option to plot the whole spectrum with the variable 

“saveplot”. “SIGMA=2” can be changed depending on the reliability of the data obtained during 

the sorting process. It is important to notice that this sigma value smoothens the data and the 

increase of this value will filter more data that has low peaks, but also will remove potential noise 

from complicated surfaces such as samples of white rock. “idWavelengths” allows for the choice 

of which file can be used as the ID Wavelength. “maxval” can be changed to the minimum peak 

that is required in order be similar to a minimum spectrum threshold.  
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Appendix J  Details of methodology and data treatment or the Oxide samples 

Case Arsenic – Oxygen distortion ambiguity 

There is an ambiguity with regard to the readings for the quadruple ionization stage of Oxygen (or 

O V) and the neutral ion of Arsenic (As I). Both readings have a wavelength of around 278.1 nm. 

Arsenic can be heavily associated with Sulphurs, creating a positive expectancy regarding the 

presence of Copper, and an optimum material for froth flotation. Paxite can be found in 

hydrothermal calcite veins, and its composition is CuAs2. The overlapping responses act 

favourably toward the ion that has the biggest Aki, in this case for O V, which was not expected 

because ionization stages larger than III are less likely to happen since they are more stable and 

require higher energy for the transition. 

 

Table J-1: O V vs. As I key indicators for element selection 

Ion 
Observed 

Wavelength 
Air (nm) 

Ritz 
Wavelength 

Air (nm) 
Acc. 

Rel. Int. 
number 

Aki 

O V 278.101 278.101 B 1000 
  

140,000,000  

As I 278.022     170 
 

78,000,000  
 

the distance in terms of Wavelength for As I (272.02 nm) and O V (278.10 nm) creates a confusion 

that can be easily resolved using LIBS machine. Further information about this feature is explained 

in Chapter 3:, the distance between each pixel varies between 0.135 nm to 0.15 nm. Distances 

between wavelengths lesser than 0.15 nm have been avoided for the selection of the ID 

wavelength.  
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Table J-2: Arsenic ICP certified results for the 41 rock samples from Escondida Mine 

SAMPLE  
As 

(ppm)  SAMPLE  
As 

(ppm)  SAMPLE  
As 

(ppm) 

1    15 6  29 4 

2 4  16 4  30   

3 4  17 10  31   

4 4  18    32 6 

5 4  19 3  33 3 

6 9  20 4  34 3 

7 4  21 3  35 4 

8 8  22 7  36 4 

9    23 14  37 7 

10 3  24 11  38 5 

11    25 3  39 12 

12 19  26 3  40 3 

13    27 4  41 4 

14 15  28      

 

To gain a better understanding of how the LIBS machine works, the LIBS responses and the ICP 

Certified Analysis have been contrasted.   

 

Rhenium response found in Laser Induced Breakdown Spectroscopy 

It is unlikely to find Rhenium. Rhenium is the 70th most abundant element in the earth’s crust 

(Yaroshevsky) with 7x10-8 % (7x10-4 ppm). This is in contrast with Oxygen with 47%, Si with 

29.5% or Al with 8.05%. Chile has the largest reserves of Rhenium in the world (Anderson). 

However, even in Chile, obtaining a trace of Rhenium from a sensor is difficult as the area sensed 

is relatively small (100 um for LIBS), and the occurrence Rhenium is limited.  

Tests conducted on Oxide rocks only showed 1 reading out of 1640 readings that successfully 

detected Rhenium. LIBS was sensitive enough to provide a reading for such a small amount that 

was not even traceable using ICP.  
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Table J-3: Trace of Rhenium in Oxide sample in Escondida Mine 

Sample 
Rock 

Peak 
Wavelength 

Element Intensity Acc. Observed Wavelength Air 

33B1,S3,1 346.09 Re I 1046  346.046 

 

 

The reason that this trace can be accepted as a valid reading is because it has a valid Intensity that 

is statistically outside of the 3 standard deviations of the total noise.  

 

Figure J-1: Zoomed spectrum of sample 33B1,S3,1 

 

In Figure J-1 the spectrum has been zoomed between the wavelengths 340 nm to 350 nm. The full 

spectrum of the same rock sample is shown in Figure J-2. The chart shows the peak of interest of 

Re I at 346.09 nm. Table J-4 indicates the calculation of the standard deviation of the noise as 

0

500

1000

1500

2000

340 342 344 346 348 350

Oxide Sample 33B1, S3, 1

Table J-4: Statistical analysis of the spectrum for sample 33B1, S3, 1 

u 884.4361  

Stan Dev 50.39881  

2*S D 985.2337 783.6384 

3*S D 1035.632 733.2396 
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represented with red and green lines in Figure J-2. An algorithm was built to calculate this standard 

deviation of the noise.  

The logic behind this algorithm is to find  

𝐼𝑓 ‖𝑋𝑖 − 𝑎𝑣𝑔(𝑋𝑖)‖ <  2 ∗ 𝑆𝑇𝐷 (𝑋𝑖) 𝑡ℎ𝑒𝑛 𝑋𝑖 

𝑒𝑙𝑠𝑒 ∅ 

Where: 

 𝑋𝑖 = 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑖𝑥𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 

This pseudocode finds the 2 and 3 standard deviations of the whole noise in the spectrum by 

removing all the peaks, and leaving only that which the algorithm can recognize as noise. It is 

necessary to repeat the algorithm until the final output achieves the same value.  
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Figure J-2: Spectrum for sample 33B1, S3,1 
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Table J-5: Statistical analysis of noise to recognize LIBS responses 

    Avg 982.14 933.02 909.9 898.66 893.39 890.74 888.5 887.36 886.38 885.4 884.84 

Wavel
ength 

33B1,
S3,1 

Std. 
Dev 254.74 124.67 81.5 66.31 59.58 56.35 54.25 53.33 52.35 51.35 50.81 

229.21 788  788 788 788 788 788 788 788 788 788 788 788 

229.36 788  788 788 788 788 788 788 788 788 788 788 788 

229.5 774  774 774 774 774               

229.65 691  691 691                   

229.79 752  752 752 752                 

229.94 776  776 776 776 776 776             

230.08 754  754 754 754                 

230.22 785  785 785 785 785 785 785 785 785 785 785 785 

230.37 793  793 793 793 793 793 793 793 793 793 793 793 

230.51 758  758 758 758                 

230.66 774  774 774 774 774               

230.8 741  741 741                   

230.95 762  762 762 762                 

231.09 824  824 824 824 824 824 824 824 824 824 824 824 

231.24 773  773 773 773 773               

231.38 755  755 755 755                 

231.53 756  756 756 756                 

231.67 799  799 799 799 799 799 799 799 799 799 799 799 

231.82 804  804 804 804 804 804 804 804 804 804 804 804 

231.96 792  792 792 792 792 792 792 792 792 792 792 792 

232.11 781  781 781 781 781 781 781 781 781       

232.25 782  782 782 782 782 782 782 782 782 782     

232.4 771  771 771 771 771               

232.54 800  800 800 800 800 800 800 800 800 800 800 800 

232.68 796  796 796 796 796 796 796 796 796 796 796 796 

232.83 788  788 788 788 788 788 788 788 788 788 788 788 

This back-calculated formula creates blank cells that represent the peaks of the spectrum, leaving 

just the values that do not correspond to a LIBS response. In the first row, Table J-5 shows the 

average value of the previous sample group. E.g. 928.14 is the average of all of the values in the 

second column, which are the LIBS responses for the sample 33B1,S3,1. Likewise, the standard 

deviation of 254.74 is calculated using all of the LIBS responses. In the next column, 933.02 is 

calculated from the values previously processed, removing the responses that do not fit with the 

logic, and 124.67 is the standard deviation for the value in the 4th column previously processed.  

Once it has been tested that 2 contiguous columns do not change, the variation in the statistical 

analysis becomes insignificant, and then, it can be concluded that the standard deviation calculated 
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is the correct response for all of the noise responses. In this case it is 50.39, which is calculated 

from all of the values for the last column. 

The occurrence of Rhenium in geological deposits can be found as part of the Platinum Group 

Metals PGM (Pt, Re, Os, Ir) or Tarkianite (Cu0.85 Fe2+0.1Re2.8Mo1.2S8), which can be found 

in mineral grain sulfide concentrates.  

 We can conclude that the response for Rhenium is correct, providing evidence for the geological 

occurrence of the mineral, the statistical analysis of the response, and the 3 filters described in 

section 3.7 and used by the Python Script to analyze a correct signal.  

The value of the Rhenium case analysis does not have to do with the need for getting the Re signal. 

Indeed, Re is not significant, and is very unlikely to be observed. However, the importance of this 

exercise is to provide an idea of the real capabilities of LIBS, which can read an element that in 

the earth’s crust is less than 7x10-8 %. This provides LIBS with a qualitative capability rate and a 

quantitative capability, leaving behind certified methods such as ICP.  

The main reason that this same response has not been repeatable, despite the 40 readings in the 

rock, is because the laser beam is small (100 um), with a chance of 0.008% of shooting back in the 

same position. Rhenium, as mentioned, is a very scarce element in the environment. For practical 

purposes, Rhenium has been taken away from the ID wavelength input for the Python Script and 

for the analysis of the rock samples.  

 


