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Abstract

Control of anesthesia is one of the many tasks performed by anesthesiologists dur-

ing surgery. It involves adjusting drug dosage by monitoring patient’s vital and

clinical signs. A control system can replace this tedious and routine task, and al-

low the anesthesiologists to concentrate on more life threatening procedures.

Because of large intra- and inter-variability in patients Pharmacokinetics and

Pharmacodynamics responses, an adaptive controller is desirable. This thesis thor-

oughly investigates the L1 Adaptive Control by applying it on 44 simulation cases

which cover a wide range of patient demographics. It is found that the controller

approaches an implantable non-adaptive LTI controller as the adaptation gain in-

creases, echoing the results found by other researches. This loss of adaptivity is

shown through examples and mathematical derivations. It is concluded that the

L1 Adaptive Control in its current form is not applicable to closed-loop control of

anesthesia.

As an alternative to adaptive controller, partial adaptivity in a PID controller is

investigated. iControl, a PID controller designed by us, can sometimes lead to os-

cillation in the control signal. It is desirable to automatically detect the oscillations

and tune the controller in order to remove them. A real-time oscillation detection

algorithm is discussed. It detects multiple oscillations in real-time and provides

their frequency, amplitude, severity and regularity. A PID auto-tuning algorithm

is developed that uses the dominant frequency metrics provided by the oscillation

detection algorithm to retune the controller robustly and to guarantee stability. This

technique is simulated and tested on 44 cases; the gain and the phase margin in all

44 cases are within < 7% of the optimal tuning parameters of the iControl.
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Chapter 1

Introduction

1.1 Motivation

The number of surgeries are increasing in the US and around the globe. According

to a 2010 report by the Centers for Disease Control and Presentation, 51.4 million

patients in the US alone went under surgery that year [17]. These surgeries range

anywhere from a life saving operation, to a plastic surgery, or to correcting and

restoring the physical appearance [17].

Anesthesiologists play a central role in the health and comfort of the patient

pre-, intra-, and post-operatively. During the procedure, they monitor and control

patient’s vital functions, including breathing, blood pressure, heart rate, body tem-

perature, and etc. They ensure the safety and comfort of the patient by controlling

the hypnotic (unconsciousness) and the analgesic (sense of pain) states as well as

assisting the surgeons by controlling the paralysis (relaxation and immobility of the

skeletal muscle) through administration of anesthetic drugs. General anesthesia is

the term given to this complex state induced patient.

To achieve general anesthesia, the anesthesiologist administers a variety of

drugs. The combination of hypnotic, opioid, and neuromuscular drugs achieves

the three functional states of anesthesia: hypnosis, analgesic, and paralysis.

Anesthesiologists assess adequate anesthesia and analgesia through monitoring

the patient’s vital and other clinical signs such as heart rate, blood pressure, eye

movement, pupil diameter, respiratory rate, facial grimacing, and lacrimation [18].
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Depth of Anesthesia (DOA) is a measure of the effect of the hypnotic and analgesic

drugs that cause the unconsciousness and alleviate pain [52].

The paralysis state does not contribute to the DOA [66]. The muscle relaxant

drugs that induce paralysis can however, effect some of the patient’s clinical signs,

for example the respiratory rate. Anesthesiologists may therefore need to monitor

other physiological signs as the paralysis state is induced.

There is currently no single variable that can accurately measure the DOA and

the search for this metric remains an active field of research. Monitors use the

Electroencephalography (EEG) - the electrical activity of the brain along the scalp,

to assess Depth of Hypnosis (DOH)1. Interpretation of the raw EEG signal is time

consuming and requires a trained neurologist. Therefore, different processed Elec-

troencephalography (PEEG) methods have been applied to create an index that

quantifies the state of hypnosis. The most commonly used index, the Bispectral

Index (BIS), uses the bispectral analysis of the EEG wavelengths [50]. Our research

team at the University of British Columbia (UBC) has worked extensively in this

field; their efforts have resulted in the introduction of the Wavelet-based Anesthetic

Value (WAV) index that compares well with the standard BIS, see [12], [69], and

[11].

Opioid (narcotic) analgesic drugs produce their effect through the interaction

with the Gamma-Aminobutyric Acid (GABA) receptors in the Central Nervous Sys-

tem (CNS), though they bind at different sites [37] than the hypnotic drugs. While

there are proposed indices such as the Analgesia Nociception Index [36], nocicep-

tion and antinociception measurements during anesthesia have not been clinically

proven, see [24] and [30].

Anesthesiologists continuously change the administration rate of the hypnotic,

analgesic and relaxant drugs to account for stimuli from surgical incision. In fact,

they assume the role of a feedback controller; to achieve a given clinical target, the

doctors monitor the clinical signs of the patient and adjust the drugs accordingly. In

many instances, a computer controlled automation system can assist the anesthesi-

ologist by taking over this tedious and routine task, and thus allowing the doctor to

only be involved with outliers events that are life-threatening. This is similar to the

1DOH is a measure of depth of hypnosis only, while DOA is the measure of depth of hypnosis

and depth of analgesia.
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role of the auto-pilot that takes over the cruising of the plane from the pilot. The

pilot intervenes during unforeseen and critical events only, but otherwise adjusts

minor details.

Our group has shown that a closed-loop Proportional-Integral-Derivative (PID)

controller (known as iControl) can effectively control the DOH, see [10], [52], [54]

and [68].

To account for the large inter- and intra-variability in the patient’s Pharma-

cokinetics (PK) and Pharmacodynamics (PD) response, any controller implemented

must be robust. To be clinically feasible, the controller must perform well despite

surgical stimuli and keep the patient’s DOH at the specified target.

A set of performance measures allow to assess the quality of the control of

an anesthetic machine. These measurements need to be of clinical significance to

provide the clinicians with details above the anesthetic state of the patient. If the

measurements could also provide insight of the control architecture to an engineer,

then these merits can be used as tuning objectives. Currently, a set of four mea-

surements merits, known as Varvel measures [65] have constituted the norm (see

Section 2.4.

1.2 Objectives and Scopes

This research started as an assessment of the novel L1 Adaptive Control (L1-AC)

[26] which yielded limited feasibility. The focus was then turned to detecting os-

cillation caused by a PID controller, and to develop an algorithm to remove the

oscillations. A set of metrics are also introduced to quantify the use cases of the

control algorithms.

The objectives of this thesis is then to 1) assess the application of novel L1-AC

[26] as applied to closed-loop control in anesthesia using WAV index as the control

signal; 2) design an oscillation detection algorithm that can detect multi-period

oscillations in real time; and 3) develop a tuning algorithm that can re-tune the PID

controller used in iControl to remove the detected oscillation.

Conventional control theory establishes a trade-off between robustness and

performance. For the safety of the patient, the current closed-loop controllers of

anesthesia value robustness over performance. According to its developers, L1-AC
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guarantees robustness and its fast adaptation implementation implies a near perfect

performance can be achieved. However, this thesis will show that this structure in

its current form does not live up to its promise and therefore cannot be used.

The most commonly closed-loop anesthetic controller is a PID system. In [2],

it was found that many of these controllers are incorrectly tuned and resulted in

inferior performance as well as observed oscillation. The implemented PID con-

troller at our facility is tuned to be robust with no oscillation. However in practice,

some oscillations have been seen due to patient variability. Partial adaptation that

can detect and remove oscillation in real-time is discussed. The retuning of the

controller must consider the following 4 design criteria:

1. It must detect the dominant oscillation in real-time.

2. It must re-tune the PID controller according to the dominant frequency and

ensure the new system follows the guidelines of a robust controller.

3. It must reject output disturbances and compensate for surgical stimuli.

4. It must remove the oscillation and provide adequate performance and set-

point response.

To sufficiently compare different control schemes, the standard means of mea-

suring the performance of closed-loop anesthesia are explored. The Varvel mea-

sures were introduced in 1992 for target-controlled-infusion systems but their ad-

equacy for closed-loop control is debated. A proposed set of measures introduced

by Soltesz et al. [53] is assessed on real clinical data.

1.3 Thesis Organization

This thesis is organized into 6 Chapters, with this Chapter contributing as one.

Chapter 6 provides the closing remarks, conclusions and future works. The sup-

porting materials for this thesis are organized into 4 Appendices. The Chapters and

Appendices are:

4



Chapter 2: Background

This Chapter gives a brief overview of current practices in closed-loop anesthesia.

It will introduce the currently used monitoring systems for depth of hypnosis, a

review of the pharmacokinetics and pharmacodynamics of the propofol drug, as

well as the metrics for performance measures in closed-loop anesthesia.

Chapter 3: L1 Adaptive Control

This Chapter uses an L1-AC to simulate the control of the propofol in patients. The

results are shown to be in-line with claims that L1-AC fails to provide an adaptive

algorithm and at best behaves as an implementable Linear Time Invariant (LTI)

controller. The loss of this adaptivity is mathematically proven.

Chapter 4: Real-Time Oscillation Detection

This Chapter provides an off-line oscillation detection algorithm that is capable of

detecting multiple oscillation frequencies, along with their fitness 2 and magnitude.

An extension to real-time is also introduced where a dominant frequency can be

measured.

Chapter 5: Re-Tuning of a PID Controller

This Chapter provides a tuning methodology to re-tune a PID controller when an

oscillation is detected. The data from the previous Chapter is used to tune the

controller. Simulation results show the robustness and performance of the re-tuned

system agree with the current implementation of the iControl system.

Appendix A: Propofol PKPD Modeling

This Appendix provides an overview of the propofol Pharmacokinetics/Pharmaco-

dynamics (PKPD) model introduced in Bibian [10]. The mathematical model and

parameters are also included. These models are used for simulation examples in

Chapter 3 and 5.

2A measure of energy of the oscillation as a percentage of the total energy of the signal
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Appendix B: Control Performance in Closed-Loop Anesthesia

This Appendix provides the mathematical description of Varvel and the proposed

alternative measures. The proposed measures are used as tuning objectives in

Chapter 5.

Appendix C: Limiting Behavior of L1 Adaptive Control

This Appendix provides the mathematical proof for the loss of adaptivity in the

L1-AC.

Appendix D: Robustness and Performance of iControl

This Appendix provides the complete robustness and performance comparison of

the iControl and the re-tuned controller from Chapter 5. 44 simulation examples

using the PKPD models are used in this study.
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Chapter 2

Background

The field of Biomedical Engineering is on demand. In 2013, this profession was

rated as the #2 with respect to overall satisfaction [16]. Interestingly enough, anes-

thesiologists were rated #1 with regard to income [51]. Many of the complex prob-

lems faced by clinicians can only be answered through the eyes of an biomedical

engineer. A few examples of engineering solutions for medical diagnostics are

given.

Control engineers traditionally have been focused on the aerospace and process

industries, but have recently applied their knowledge to medical devices. The use

of closed-loop control to administer drugs has been shown to improve the quality

and safety as well as reducing the total administrated dosage (see [20] and [2]).

More specifically, closed-loop control of drugs delivery has been an active area of

research in anesthesia (see [39] and [39] as well as our own research group [52]

and references within).

A closed-loop anesthesia system measures the DOH from a PEEG signal (such

as BIS or WAV) and controls the infusion rate of the hypnotic drug. The most

common hypnotic drug for closed-loop control is intravenous propofol due to its

short-acting mechanism. The controller can take advantage of the short-acting, fast

metabolic, and fast elimination of the drug and provide a much smoother infusion

titration than an anesthesiologist would be able to do manually. By transferring the

responsibility of these routine tasks to a computer, an anesthesiologist can concen-

trate on more vital tasks and the safety of the patient.
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In the next few Sections, a review of the required components of a closed-loop

control system for anesthesia is provided. First, the methods for measuring the

DOH is provided. Second, the modeling of the drug effect in a patient is described.

Third, prior attempts at the automatic control of anesthesia are reviewed. Fourth,

causes and concerns for oscillations in closed-control are discussed. Finally, a

review of the current performance and new proposed measures are provided before

closing this Chapter.

2.1 Monitoring Depth of Hypnosis

To fully control anesthesia, a measurement of DOA1 is required. To this date, no

such index has been developed. Recent studies have shown that the δ wave in

the EEG signal correlates well with depth of hypnosis. Bispectral, wavelet, time

domain, frequency domain, and evoke potential analysis are a few examples of

techniques applied to the raw EEG signal to extract a single index from it.

The most commonly used metric uses the bispectral analysis and is appropri-

ately called the Bispectral Index (BIS). A more recent approach uses the wavelet

analysis and is called Wavelet-based Anesthetic Value (WAV). In the next two Sub-

sections, a brief overview of each method is provided.

2.1.1 Bispectral Index

The BIS monitor was first introduced in 1994 by the Aspect Medical Systems, Inc

and was marketed as a ”novel measure” of level of consciousness from the EEG

signal [50]. The monitor provides a single index that measures the DOH in the

scale of 0 (iso-electric EEG) to 100 (fully awake). The BIS monitor was the first

FDA approved monitoring system [8].

BIS is statistically based and empirically derived. A large group of volunteers’

EEG were collected and using a proprietary statistical methodology, a model was

fitted to the data. Since the dynamics of the system are unknown, it is difficult to

design an optimal controller with this output signal. Moreover, the BIS Monitor has

a time delay between the changes in the patient’s anesthetic state and the changes in

1DOA is a measure of both the hypnotic and the analgesic states. DOH on the other hand which

is a measure of the depth of hypnosis only.
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the BIS value [8]. These two problems together are the motivation to have another

monitor whose dynamics are known, and whose response has no delay.

2.1.2 Wavelet-based Anesthetic Value

The Wavelet-based Anesthetic Value (WAV) is an alternative to BIS that is based

on the wavelet decomposition of the raw EEG signal. Proposed by Bibian et. al

[11], this hypnotic monitoring value correlates well with the BIS. The dynamics

of the system are described by a simple transfer function 1/(8s2 +1) and responds

much faster to the changes in anesthetic state than the BIS. There is minimal to no

delay in the signal response [69]. These two advantages of the WAV index make it

appealing to be used as a control signal. It has been shown to lead to an improved

performance in closed-loop control of anesthesia [10].

2.2 Drug Effect Modeling

The physiological effect of an administrated drug on a patient is typically described

with two models: the pharmacokinetic and the pharmacodynamic model. The phar-

macokinetic model (PK) relate the administrated drug dosage to the drug plasma

concentration. The pharmacodynamic model (PD) then relate the drug plasma

concentration to the physiological effect. These models describe the distribution,

metabolism, and the clearance of the drug in the body to the resulting physiological

effect.

In this literature review, an overview of the PK and the PD as described in [10]

is introduced and briefly reviewed. A more detailed discussion can be found in

[43] and [10].

2.2.1 Pharmacokinetics of Propofol

Pharmacokinetic model represents the drug uptake, distribution and elimination.

The mathematical model then relates the infusion rate to the drug plasma concen-

tration. The first significant investigation to study effect of sampling site (venous vs

arterial) and the method of drug administration (bolus vs infusion) was conducted

in 1998 by Schnider et al. [47]. A more recent study in 2000 was conducted by

Schüttler and Ihmsen [48] and is discussed in this Section.
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The Schüttler and Ihmsen study was a large collaboration between 5 institutes,

where 4,112 samples from 270 individuals (150 men, 120 women) of the ages 2-88

years, body weights of 12-100 Kg were studied. The objectives of this study was:

1. Estimate the pharmacokinetics of propofol with respect to the covariates age,

body weight, and gender.

2. Evaluate the inter- and intra-patient variability.

3. Study the effect of the mode of administration (bolus vs infusion).

4. Study the effect of the sampling site (venous vs arterial).

The result showed that the pharmacokinetics of propofol is best described by a 3-

compartment model, see Figure A.1 in the Appendix A. Weight was determined

to be the most prominent factor; age, gender and mode of administration were

also positively correlated. The sample site had a little influence. The intra-patient

variability in this study was found to be less than 20%.

The mathematics of the modeling can be found in Appendix A. The PK param-

eters can be found in Table A.3.

2.2.2 Pharmacodynamics of Propofol

Pharmacodynamic model is the observed effect of the drug as a function of the drug

plasma concentration. A single drug interacts with multiple organs in the body and

has multiple pharmacological effects. Here, the model for the depth of hypnosis

from the EEG is considered.

There have been a limited number of studies on quantifying the effect of propo-

fol on the EEG. A detailed discussion on these studies can be found in [10]. Many

of the studies show large inter-patient variability in the PD model [10]. Moreover,

most of these studies derive thePK model for the BIS.

In Bibian [10], the dynamics of propofol vs the WAV was modeled through

the analysis of 44 patients. Using least-squares identification, Bibian estimated

a PD model consisting of a Hill function followed by a first-order time delayed

transfer function. The Hill function models the drug-receptor binding interaction.

The first-order transfer function was proposed by Sheiner et al. [49] to model the
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temporal aspect of the pharmacodynamics. The time delay was added to represent

the arm-to-brain circulation time.

The details of the modeling can be found in Appendix A. The PD parameters

can be found in Table A.3.

2.3 Automatic Control of Anesthesia

During surgery, the anesthetic and opioid titration are constantly adjusted to pre-

vent under- and over-shoot of the drug plasma concentration and to keep the anes-

thetic state constant. An automated system that regulates the administration of

these drugs thus seems appealing to the anesthesiologists.

The idea of closed-loop control of anesthesia has been investigated for half a

century now. The performance and robustness of these controllers depend strongly

on the mathematical model (PKPD) of the patients, the monitoring devices (BIS

or WAV) as well as the tuning of the controller itself. The ideal controller should

measure the three functional states hypnosis, analgesic and paralysis and regu-

late the administration of hypnotic, opioid and neuromuscular drugs. This Multi-

Input/Multi-Output (MIMO) system is currently not available due to the limitation

of monitoring systems as well as the mathematical models that govern the drug

administration.

In recent years, the number of published studies on this field has increased

significantly. A literature review on the current attempts on closed-loop control of

hypnosis is provided next.

2.3.1 Closed-Loop Control: A Review

In the following reviews, adequate anesthesia is considered as the BIS or WAV in

the range of 40-60 [39].

In 1999, Frei et al. [21] used a Model-Predictive-Controller (MPC) to control

the Mean Arterial Pressure (MAP) using the inhaled drug, isoflurane. The study

was performed on over 100 subjects and proved a better performance than manual

control. The authors initially designed a PID-like Fuzzy controller. However, the

controller was unable to account for respiratory dynamics under low flow condi-

tions. The MPC model was implemented due to this inadequacy.
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In 2001 Struys et al. [56] compared the performance of an adaptive model-

based control guided by the patient’s BIS to manually control anesthesia using in-

travenous administration propofol. The study was conducted on 20 female subjects

aged 34-50 years undergoing gynecologic laparotomy. Subjects were randomized

with half under closed-loop control and the other half were manually controlled.

The study found that the manually controlled patient had a shorter induction time.

The closed-loop controlled patients had a better maintenance performance as val-

idated by Varvel measures, as well as a reduced recovery time. No details were

provided on the controller structure.

In 2002, Absalom et al. [2] used a PID controller guided by the patient’s BIS

using intravenous administration of propofol in 10 patients undergoing elective hip

or knee surgery. Performance was validated using Varvel measures. The authors

reported clinically adequate anesthesia in 9 out of the 10 patients. Three of the

patients’ BIS oscillated around the set-point, although none of these cases showed

a sign of inadequate anesthesia. The controller used was from another study by

Kenny et al. [31] where a PID controller was guided by the auditory evoked poten-

tial.

In a follow up study by Absalom et al. [1] in 2003, a revised PID controller was

used. In this study, 20 adult patients (12 female, 8 males) undergoing body surface

surgery were enrolled. The patients were initially controlled with an open-loop

target-controlled-infusion. Once the anesthesia was clinically adequate, the system

was switched to the revised PID. All 20 patients reported a clinically adequate

anesthesia. There was one patient with oscillation.

A more interesting study in 2004 by Locher et al. [42] used a cascade structure

with an outer Proportional-Integral (PI) and inner model-based state feedback con-

troller guided by the patient’s BIS using isoflurane. The study was performed on

23 patients undergoing decompressive spinal surgery who were randomized into

closed-loop or manual control. The study had two conclusions: 1) the closed-loop

control significantly outperformed the manual mode and, 2) the closed-loop control

administrated less total drug and faster wake-up time.

In 2006 study by Liu et al. [39], 164 patients undergoing elective minor or

major surgery were randomized into closed-loop and manual target control infusion

groups. The closed-loop system was an empirically tuned PID controller. The
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patient’s BIS was used as the control signal and propofol and remifentanil were

administrated intravenously. Propofol consumption was lower in the closed-loop

group, but the induction time was longer. Adequate anesthesia was significantly

better in the closed-loop group. Recovery time was also shorter for the closed-loop

group.

Finally, L1- output feedback adaptive control was used in 2011 by Ralph et al.

[46] in a simulation study using the BIS as the control signal and isoflurane as the

hypnotic drug . Seven PKPD models were reconstructed using clinical trial data.

A controller was designed based on one of the identified PKPD models. The same

controller was then applied to the other six models. The result showed adequate

reference tracking.

2.3.2 Closed-Loop Control: Oscillation

Oscillation in closed-loop control can occur as a combination of any of the follow-

ing: 1) marginally stable control loops (due to aggressive control tuning or changes

in process gain/phase/time delay); 2) external disturbances; 3) stiction in control

valve [9]. If the controller is improperly tuned, the oscillation can cause instability.

In Chapter 4, a detailed root cause analysis of oscillation is provided.

In [2], [1] and recently in our own work [57], oscillation in the patient’s BIS and

WAV was detected. Therefore, it is essential that oscillation be detected in real-time

to both warn the anesthesiologist and to remove it by retuning the controller.

One of the first attempts at oscillation detection was by Hägglund [25] in 1995.

His method computed the Integrated Absolute Error (IAE) between consecutive

zero-crossings of the error. When oscillation occurs, the absolute error and the

time between consecutive zero-crossings increase, leading to a higher IAE. By

counting the instances of IAE larger than a threshold in a given period of time,

oscillation can be detected. This method, however, can fail to detect oscillations

when multiple frequencies exist. Moreover, it cannot determine all the different

oscillation frequencies in a signal.

Wang et. al. [67] review a large set of different algorithms. Auto-correlation

function, Discrete Wavelet Transform (DWT) method, empirical mode decomposi-

tion, and Discrete Fourier Transform (DFT) are to just name a few methods applied
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since 1995. Many have limitations. DFT has the disadvantage that the default rect-

angular window only provides good energy compaction for frequencies that are

whole fractions of the sampling frequency Fs. DWT has the disadvantage that it

can be computationally expensive. Wang et al. provide a new method based on the

Discrete Cosine Transform (DCT) that overcomes all the shortcomings. It is fast,

independent of the sampling frequency, and can decompose oscillation into all of

its period components.

An improved representation of Wang’s DCT method is provided in Chapter 4.

The period, magnitude and fitness of the dominant oscillation is detected in real-

time. In Chapter 5, these information are used to re-tune the PID controller.

2.3.3 Closed-Loop Control: Adaptive vs PID

A closed-loop control system can be divided into two generic types: adaptive and

non-adaptive (classical). An adaptive controller is a system whose parameters can

adapt continuously to the plant it is trying to control [28]. This adaptation can

be in response to initial uncertainty in the plant or the change in the plant itself

(for instance, an aircraft loses weight due to fuel consumption). The non-adaptive

(classical) controller is a system in which the controller is not changed once it is

implemented. Adaptive controllers in theory can provide better performance and

robustness as they adapt to the particular plant. From the reviews in 2.3.1, adaptive

control is still not well understood for use in closed-loop anesthesia.

In this paper, the newly introduced L1 Adaptive Control (L1-AC) is reviewed

[26]. The Proportional-Integral-Derivative (PID) controller, which accounts for

about 90% of all the controllers used in the industry is also considered [5]. Our

research group currently uses a PID closed-loop control system for controlling the

DOH (see [10] and [52]). In Chapter 5, a tuning algorithm is introduced to auto-

matically re-tune the controller in the presence of an oscillation.

2.4 Performance of Closed-Loop Anesthesia

A set of four performance measures (MDAPE, MDPE, Divergence, and Wobble),

proposed by Varvel et al. [1], have constituted the standard means of assessing per-

formance in closed-loop anesthesia. Varvel measures were developed for Target-
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Controlled Infusion (TCI) anesthesia systems; they were not developed for EEG-

guided closed-loop controllers. These measures are not accepted within the control

community and cannot be used as control tuning parameters. Moreover, they only

account for the maintenance phase of anesthesia. Varvel measures are based on

the median of the relative error. There is no distinction between artifacts, noise,

and momentary large errors. There is also no penalty for outliers when adopted

for EEG-guided DOH control and the metrics are not normalized with respect to

duration of the case.

Soltesz et al. [53] proposed an alternate set of measures. The key features of

these measures are : 1) wide acceptance in control community; 2) consideration of

clinical feasibility; 3) separation of metrics for induction, maintenance and emer-

gence phases of anesthesia. For the induction phase, Induction Phase Duration (ID)

and Percent Overshoot (OS) are proposed. For the maintenance phase, Integrated

Error (IE), Integrated Absolute Error (IAE), Variability Index (VI) and percentage

of time outside the adequate range are proposed. For the emergence phase, Emer-

gence Phase Rise Time (ER) is proposed. The mathematical details of Varvel and

the proposed measures can be found in Appendix B.

We analyzed 63 clinical cases that were collected from a study on closed-loop

control DOH using the NeuroSense monitor [57]. The study was approved by UBC

Childrens and Womens Research Ethic Board (H10-01174), Vancouver, Canada

[61]. The population included 32 women, 31 men between the ages of 6-17 years

old, body weight of 14.5 - 70 Kg, and height of 106 - 182 cm. The propose mea-

sures provided more insight about the control performance, as discussed in Ap-

pendix B.

There are certain scenarios where Varvel measures can be misleading. DOH

values in the set-point ±10 range are considered adequate. Maintenance phases

like the one in Figure 2.1 should be more desirable than the one in Figure 2.2;

using the error metric on the median (Varvel) has the opposite effect.

The IE punishes outliers linearly while the median-based error metric Median

Performance Error (MDPE) filters out outliers. The DOH in Figure 2.3 is clearly

more negatively biased than in Figure 2.4. The MDPE metric concludes the oppo-

site, while IE reflects this bias. Furthermore, IE is used as minimization criterion

in existing controller synthesis strategies.
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Figure 2.1: MDAPE vs IAE for a systematic small error.

Varvel metrics do not provide any measures for the induction phase. Length

of ID affects the initial performance of the maintenance phase. The long ID results

in a large total initial drug dosage, and an excessive overshoot of the DOH. Short

ID results in low plasma concentration and signals the possibility of rapid rising in

DOH. This information is available in the proposed measure as seen in Figure 2.5

and 2.6.
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Figure 2.2: MDAPE vs IAE for a sporadic error.
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Figure 2.3: DOH is clearly negatively biased.
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Figure 2.4: DOH is less biased.
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Figure 2.5: Small ID of 3.1 min translates to a small overshoot of 12.8%.
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Figure 2.6: The large ID of 5.6 min translates to a larger overshoot of 48.9%

and a longer DOH settling time to set-point.
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Chapter 3

L1 Adaptive Control

There is a high inter-patient variability in the effect of the hypnotic drug on their

DOH. A closed-loop system that controls the drug administration needs to guaran-

tee robustness and performance. The rate at which an adaptive controller adapts to

the patient is called the adaptation gain, Γ. It is a well known fact that high-gain in

the feedback loop of a controller leads to amplified high frequency components in

the control signal, reduction in phase margin, and loss of robustness [28]. Numer-

ous authors have tried to introduce the concept of fast adaptivity with robustness

as core to the control design (see for instance [28] and [35]) as classical robustness

concepts are not applicable.

In an adaptive controller, Γ shows up in the adaptation law: a nonlinear dy-

namic system that identifies a known parameter related to the uncertainty of the

plant. As the adaptation gain increases, the rate at which the unknown parameter

is identified, also increases.

Classically, there has been a trade-off between robustness and performance:

as one increases, the other decreases. In adaptive control the same trade-off ex-

ists: increasing the adaptive gain will improve the performance (by increasing the

adaptivity) at the cost of reducing the robustness of the system.

This Chapter discusses L1 adaptive control as introduced in the book ”L1

Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation” [26]. The

authors suggest that through their unique control structure, the adaptivity is decou-

pled from the robustness, i.e. one can increase the adaptive gain to arbitrarily large
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values without effecting robustness. Robustness is then guaranteed through clas-

sical methodology. The L1-AC defines an unimplementable reference model and

guarantees the difference between this reference model’s output and the patient

model’s output decreases as the adaptation gain increases.

At the start of this research, there had been some doubts on the validity and

claims of the theory [29]. In [45] it is shown that high-gain leads to system in-

stability. In [13], the L1-AC shows inferior performance as compared to other

well established adaptive controllers. It has also been seen in simulation that the

adaptivity is lost as the gain increases [63]. Recently, the authors of L1-AC have

proposed four different adaptation formulations which all lead to the exact same

performance bounds [64]. One of these formulations is in fact LTI for all adapta-

tion gains. All of these research however, have not proved or disproved the L1-AC;

they have shown examples where the stability and the adpativity are lost.

The structure of this chapter is as follows: in Section 3.2, the L1 Adaptive

Control structure is introduced. The reference system and performance bounds are

discussed in Section 3.3. Simulation examples are provided in Section 3.4. Loss

of adaptivity is discussed in Section 3.5.

3.1 Contribution

This chapter will review the claims made about L1-AC. First, it is shown that in-

creasing the gain results in a loss of adaptivity. Second, it is shown that the limiting

behavior (the case with Γ going to infinity) of the L1-AC can be achieved through

an implementable, non-adaptive LTI controller. Finally, the loss of adaptivity is

mathematically shown to be the direct result of inversion of the estimation loop as

the gain increases. An example at the end of the chapter shows how a series of

adaptive, non-adaptive, dynamic, static, linear and nonlinear laws that all lead to

the exact same limiting controller as the adaptation gain increases.
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3.2 The L1 Adaptive Control

3.2.1 Problem Formulation

Consider the following state-feedback dynamic controller G(s) within the L1-AC

architecture (see Chapter 2.2 of [26]):

ẋ(t) = Amx(t)+b(ω(t)u(t)+θT (t)x(t)+σ(t)), x(0) = x0,

y(t) = cT x(t),
(3.1)

where x(t) ∈ R
n is the measured state of the system; u(t) ∈ R is the control input;

y(t) ∈ R is the output; b,c ∈ R
n are assumed known constant vectors; Am is a

n× n Hurwitz matrix corresponding to the desired closed-loop dynamics; ω ∈ R

is an unknown constant but with known sign; θT (t) ∈ R
n is a vector of unknown

parameters; and σ(t) ∈R models input disturbances. The dynamics of the desired

model M(s) are given by:

ẋm(t) = Amxm(t)− kgbr(t), xm(0) = x0,

ym(t) = cT xm(t),
(3.2)

where kg ,−1/(cT A−1
m b) and r(t) is the reference signal.

Assumption 1. Boundedness of the unknown parameters: Let the unknown

parameters θ(t) and σ(t) be bounded as:

θ(t) ∈ Θ, |σ(t)| ≤ Σ,

where Θ and Σ are both known bounds of θ(t) and σ(t) respectively. Furthermore,

let the lower and upper bound of ω(t) be known:

ωlb ≤ ω(t)≤ ωub, ∀t ≥ 0.

These bounds need to be chosen from prior knowledge of the inter-variability in

the patients’ models and the expected input disturbances.
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3.2.2 State Predictor

The state predictor in the L1-AC is given by:

˙̂x(t) = Amx̂(t)+b(ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂ (t)), x̂(0) = x0

ŷ(t) = cT x̂(t).
(3.3)

The predictor has the same structure as 3.1; the unknown parameters ω(t),θ(t),

and σ(t), are replaced by their estimates ω̂(t), θ̂ (t), and σ̂(t).

The adaptation laws for the three unknown parameters are given by the follow-

ing projection operator [34]:

˙̂θ(t) =−Γ ·Proj
(

θ̂ (t),−x̃T Pbx(t)
)

, θ̂ (t) = θ0,

˙̂σ(t) =−Γ ·Proj
(

σ̂(t),−x̃T Pb
)

, σ̂(t) = σ0,

˙̂ω(t) =−Γ ·Proj
(

ω̂(t),−x̃T Pbu(t)
)

, ω̂(t) = ω0,

(3.4)

where x̃(t) = x̂(t)− x(t), Γ ∈ R
+ is the adaptation gain, and P = PT > 0 is the

solution of the algebraic Lyapunov equation AT
mP+PAm = −Q for arbitrary Q =

QT > 0.

Finally, the L1-AC signal is defined as:

u(s) =−kD(s)(η̂(s)− kgr(s)), (3.5)

where r(s) and η̂(s) are the Laplace transforms of r(t) and η̂(t) respectively and

η̂(t), ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂(t). (3.6)

k > 0 is a feedback gain and D(s) is a strictly proper transfer function such that

they lead to a strictly proper stable filter C(s):

C(s) =
ωkD(s)

1+ωkD(s)
. (3.7)

The controller is shown in Figure 3.1.

25



kg kD(s)

η̂(t) = ω̂(t)u(t) + θ̂T (t)x(t) + σ̂(t)
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Figure 3.1: The original L1-AC block diagram as it appears in [26].

3.2.3 L1-norm Stability Condition

The L1-AC is subject to the following L1-norm condition:

‖L(s)‖L1
T < 1 (3.8)

where L(s) and T are computed as:

T , max
θ∈Θ

‖θ‖, H(s) = (sI−Am)
−1b, L(s) = H(s)(1−C(s)). (3.9)

If the condition 3.8 in presence of Assumption 1 is satisfied, then the L1-AC is

guaranteed to be stable. In calculating the L1-norm, C(s) depends on the unknown

parameter ω , which should be chosen as the worst expected case.

The claim for the L1-AC is as follows: compute a gain k and a filter D(s) such

that for the worst case ω , the L1-norm stability condition holds. This will guarantee

the robustness of the system. Then increase Γ as high as computationally possible

to increase the performance. The filter kD(s) will act as the decoupler of robustness

and performance trade-off.

3.3 Achievable Performance Bound

The controller cannot achieve the desired system dynamics M(s) as a direct result

of the introduction of the low-pass filter kD(s) in the control loop. Instead, a refer-

ence system Gre f (s) is introduced and the control performance of the system G(s)

is compared to the performance of the reference system Gre f (s). The reference
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system is defined as:

ẋre f (t) = Amxre f (t)+b(ω(t)ure f (t)+θT (t)xre f (t)+σ(t)),

yre f (t) = cT xre f (t),

ure f (s) =
C(s)

ω

(

kgr(s)−ηre f (s)
)

,

(3.10)

where ηre f (s) is the Laplace transform of ηre f (t), θT (t)xre f (t)+σ(t). This con-

troller is not implementable as it depends on the system unknowns ω(t), θ(t) and

σ(t).

3.3.1 Reference Controller

Assume an initial condition xre f (0) = x0 = 0. The reference system can be written

as:

xre f = H(s)(ωure f +ηre f ), (3.11)

where the Laplace operator s is intentionally excluded from the signals to simplify

the calculation. The above equation cannot be solved for ηre f (s) since H(s) is

not invertible. Multiplying the equation above by (Pb)T makes the (Pb)T H(s)

invertible and ηre f (s) can be solved for:

ηre f =
(Pb)T xre f

(Pb)T H(s)
−ωure f . (3.12)

Substituting ηre f from 3.12 into 3.10 leads to:

ure f =
C(s)

ω

(

kgr− (Pb)T xre f

(Pb)T H(s)
+ωure f

)

. (3.13)

Isolating for ure f results in:

ure f =
C(s)

ω(1−C(s))

(

kgr− (Pb)T xre f

(Pb)T H(s)

)

. (3.14)
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Taking into account the definition of C(s) from 3.7, the equation above can be

simplified to:

ure f (s) =
kD(s)

(Pb)T H(s)
(Pb)T

(

H(s)kgr(s)− xre f (s)
)

. (3.15)

Even though the reference system 3.10 is not implementable, this control signal

is implementable since it does not depend on the system’s unknown parameters

(θ(s), σ(s) and ω(s)). The control signal corresponds to an implementable LTI

controller whose dynamics only depends on the filter kD(s), the desired model

dynamics H(s) and the solution to the Lyapunov equation, P. Still, L1-AC claims

to achieve this non-adaptive behavior as the Γ → ∞ in an adaptive structure.

3.3.2 Control Performance

The L1-AC structure guarantees the following bounds:

Lemma 1 (From [26]). Let the system G(s) be controlled by the L1 adaptive con-

troller from Section 3.2. Assume the L1-norm stability condition of 3.8 is satisfied

and the bounds of Assumption 1 are met. Assume the reference system 3.10 is

stable, i.e. the system Gre f (s) is stabilized through the LTI reference controller

ηre f (s) from equation 3.15. Then, the system state x(t) and control input u(t) are

uniformly bounded:

‖xre f − x‖L∞ 6
γ1√

Γ
, ‖ure f −u‖L∞ 6

γ2√
Γ
, (3.16)

where γ1 and γ2 are constants. The full details of the calculation is provided in

Chapter 2.2, pages 40-41 of the book [26].

The details of the calculation of the Lemma is not important. Rather, the inverse

relationship of xre f − x and ure f − u to the adaptation gain Γ is significant. These

performance criteria motivate the use of high adaptation gain.
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Figure 3.2: The step response of patient #7 and the predictor model

3.4 Case Studies of the L1 Controller

In this Section, the PKPD models from Appendix A are used for two case studies.

Since the PK model depends on the demographic information of the patient only,

the predictor’s PK model is chosen as the patient’s PK. The PD is chosen as the

average of all 44 cases, with the delay set to zero. The predictor’s model PKPD

is also slightly modified to have a faster response than the patient’s. While this

predictor model is not ideal, it suffices for the purpose of showing the limitation of

the L1-AC. Figure 3.2 shows the step response of the predictor model and a patient

(case #7).

Let D(s) = 1
10s2+s

and k = 1 so that the filter C(s) is given as:

C(s) =
ω

10s2 + s+ω
. (3.17)

This satisfies the L1-norm condition of 3.8: the value of ‖L(s)‖L1
T is between

0.0168 and 0.0673 for all 44 models. The bounds of the unknown parameters are

Θ = 1, Σ = 1 and −5 ≤ ω ≤ 5 and are chosen as the maximum of the 44 PKPD

models.
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The system is simulated for 3 different adaptation gains 1, 5×103 and 1×105.

The results of the simulation are shown in Figure 3.3. The patient’s output for the

three different gains is shown in the upper plot, while the absolute error between

the patient’s output and the reference’s output is shown in the lower plot.

For an adaptive algorithm, it is expected that the error between the reference

and the patient decreases throughout the case. For the small gain of Γ = 1 the result

clearly shows a decrease in error as the case progresses. However, for the higher

gain, specially Γ = 1× 105, while the initial error is lower, it does not improve as

the case progresses, i.e. the adaptivity of the system is lost. An almost identical

behavior is shown for another case (patient model #2) as shown in Figure 3.4. In

this case, even for the intermediate gain Γ = 5×103 the adaptivity is almost lost as

the error does not decrease as time continues.

The claim of achieving the non-implementable reference model in an adaptive

architecture is invalid, since adaptivity is lost. The exact same performance can

be achieved using the implementable reference controller defined in 3.15. This

controller is LTI, does not depend on any unknown parameters, and provides the

same performance.
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Figure 3.3: Simulated system output for the patient #7 controlled by the

L1 controller. The upper plot shows the patient’s output for the three

adaptation gains. The reference output is shown in the thick green line.

The lower plot shows the absolute error of patient’s output to the refer-

ence’s output.
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Figure 3.4: Simulated system output for the patient #2 controlled by the

L1 controller. The upper plot shows the patient’s output for the three

adaptation gains. The reference output is shown in the thick green line.

The lower plot shows the absolute error of patient’s output to the refer-

ence’s output.
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Figure 3.5: Simple feedback for a nonlinear function f (·)

3.5 Loss of Adaptivity

The previous section provided two case study examples that showed the loss of

adaptivity of the L1-AC as the gain increased. This is in-line with the previ-

ous claims that this controller does not achieve a better performance than an im-

plantable LTI controller (see [13], [60] and [29]). The loss of this adaptivity is due

to the high adaptation gain, and will be discussed in this Section [63].

In a simple feedback gain system, shown in Figure 3.5, it is easy to show that

increasing the gain Γ leads to the inversion of the nonlinearity dynamic f (·) [23].

Straight forward calculation shows that u = Γ(v− f (·)u). Solving for u gives:

u =
Γ

1+ f (·)Γv. (3.18)

When the gain Γ increases to infinity, the system dynamic are inverted, i.e.

ulim = lim
Γ→∞

Γ

1+ f (·)Γv =
Γ

f (·)Γv =
1

f (·)v = f (v)−1. (3.19)

In the L1 controller Figure 3.1, there is a similar high-gain feedback over the

predictor’s nonlinearity and it is expected that increasing the gain will also invert

the predictor, albeit the loop over the signal η(s) makes this observation challeng-

ing. However, the L1 architecture is also inverted as the gain goes to infinity. The

details of this calculation is available in Appendix C for reference.

Figure 3.6 shows the linearized system around some equilibrium points θT
Q ,

ωT
Q , and σ T

Q . Here, G(s) and H(s) refer to the dynamics of the patient and the

predictor model. Fx, Fx̂ and Fu are some LTI functions related to the linearized

components of the adaptation laws as shown in C.14.

After linearizing the projection adaptive laws of 3.4, the transfer function be-
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Figure 3.6: Final form of the linearized adaptation laws for L1 adaptive con-

trol with generic adaptation laws.

tween u and x can then be written as:

u(s) =−
kD(s)

[

Γ
s
(xT

QxQ +u2
Q +1)(Pb)T + θ̂T

Q

]

1+ Γ
s
(xT

QxQ +u2
Q +1)(Pb)T H(s)+ kD(s)ωQ

x(s), (3.20)

where xQ and uQ are the equilibrium values of the signal x and u. Here, it is

assumed that at equilibrium the states x and x̂ are the same (i.e. x̃ = x̂−x = 0). The

phrase (xT
QxQ +u2

Q +1) is just a constant. The effect of increasing the gain is now

abundantly clear - the limiting controller is:

ulim(s) = lim
Γ→∞

−
kD(s)

[

Γ
s
(xT

QxQ +u2
Q +1)(Pb)T + θ̂T

Q

]

1+ Γ
s
(xT

QxQ +u2
Q +1)(Pb)T H(s)+ kD(s)ωQ

x(s)

=
−kD(s)(Pb)T

(Pb)T H(s)
x(s).

(3.21)

This limiting controller has the exact same control signal as the reference signal

3.15 that was derived from the reference system. Note that unlike the reference

signal, this result is not derived from the mathematical description of the plant

G(s) and holds true for any kind of plant G(s), given the stability condition is met.

This limiting controller derivation indicates that for high adaptation gains:

• The integral effect in the adaptation law is canceled.

• The predictor is inverted.

• The effect of nonlinearity of the controller is canceled.

• The choice of the equilibrium point xQ, x̂Q and uQ does not affect the con-

troller. Moreover, the exact formulation of the adaptive laws is irrelevant.
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In a follow up paper by the authors of the L1-AC, it was shown that four dif-

ferent adaptations laws resulted in similar performance bounds [64]. Above result

explains why this is so. In fact, the result above suggests that any law, adaptive

or non-adaptive, linear or nonlinear, dynamic or static, will result in the same per-

formance bounds, provided that the stability condition and bounds are satisfied.

An example will now follow: Six laws are shown to provide the exact same per-

formance bound as the gain increases. The example used is the one used by the

authors’ themselves in [15] and [14].

3.5.1 Simple Example of Loss of Adaptivity

Consider the system 3.1 with Am =





0 1

−1 −1.4



, b =





0.5

1



, c =
[

1 0

]

, ω = 1,

θ =





2

2



 and σ = 1. This corresponds to the system G(s) = 0.5s+1.7
s2−1.6s−1.4

and the

predictor (Pb)T H(s):

(Pb)T H(s) =
N(s)

D(s)

N(s) = 1.6s7 +8.2s6 +20.5s5 +31.4s4 +31.4s3

+20.5s2 +8.2s+1.6,

D(s) = s8 +5.6s7 +15.8s6 +27.8s5 +33.4s4

+27.8s3 +15.8s2 +5.6s+1,

(3.22)

where P solves the Lyapunov equation with Q = I2×2. With k = 60 and D(s) =
1

s(1+0.1s) , the filter C(s) is defined as:

C(s) =
60

0.1s2 + s+60
. (3.23)

The L1-norm condition with the choice of this filter is 0.0858. The following 6

adaptation laws are considered:
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A) The dynamic L1 projection adaptation law:

˙̂θ(t) =−Γ ·Proj
(

θ̂ (t),−x̃T Pbx(t)
)

˙̂σ(t) =−Γ ·Proj
(

σ̂(t),−x̃T Pb
)

˙̂ω(t) =−Γ ·Proj
(

ω̂(t),−x̃T Pbu(t)
)

η̂(t) = ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂ (t).

B) Another dynamic nonlinear adaptation law:

˙̂θ(t) =−Γ · x̃T Pb‖x(t)‖
˙̂σ(t) =−Γ · x̃T Pb

˙̂ω(t) =−Γ · x̃T Pb|u(t)|
η̂(t) = ω̂(t)|u(t)|+ θ̂T (t)x‖(t)‖+ σ̂ (t).

C) The static L1 projection adaptation law:

θ̂ (t) =−Γ ·Proj
(

θ̂ (t),−x̃T Pbx(t)
)

σ̂(t) =−Γ ·Proj
(

σ̂(t),−x̃T Pb
)

ω̂(t) =−Γ ·Proj
(

ω̂(t),−x̃T Pbu(t)
)

η̂(t) = ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂ (t).

D) A higher order nonlinear static adaptation law:

η̂(t) =−Γ · [x̂3(t)− x3(t)]T Pb.

E) A linear adaptation law as used in [64]:

η̂(t) =−Γ · x̃T Pb.
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F) A switching adaptation law as used in [33]:

θ̂ (t) =−∆θ · sgn
(

dzεθ

(

x̂(t)− x(t)
)T ·Pbx(t)

)

σ̂(t) =−∆σ · sgn
(

dzεσ

(

x̂(t)− x(t)
)T ·Pb

)

ω̂(t) =−∆ω · sgn
(

dzεω

(

x̂(t)− x(t)
)T ·Pbu(t)

)

η̂(t) = ω(t)u(t)+ θ̂T (t)x(t)+ σ̂(t),

where sgn(·) is the sign function; dz(·) is the dead-zone function; εθ ∈ R
+,

εσ ∈ R
+, and εω ∈ R

+ are the dead-zone intervals; ∆θ , ∆σ , and ∆ω are the

bounds of the unknown parameters from Assumption 1.

Laws A), E), and F) are 3 of the 4 laws which the authors of the L1-AC have

themselves introduced as alternatives and have shown that they achieve the same

performance bounds [64] (the forth law is only applicable for a different class of

L1 controllers). Also, only Laws A) and B) are dynamic and adaptive; the other

4 laws are static and non-adaptive. For the Laws A) to E), the gains used are

Γ = 1,1e3,1e4. For Law F), the dead-zone intervals used are dz = 1,0.1,0.01.

Figures 3.7 to 3.12 show the simulation results for the 6 laws.

For Laws A) and B), the error between the reference output and the plant output

decreases as the case progresses for low adaptation gain, as expected of an adaptive

controller. However, as the gain increases, while the initial error is lower, it does

not improve over time, suggesting that the system has lost its adaptivity.

In Law C) the integral action of the projection law is removed and the adapta-

tion law is static. None of the gains result in an adaptive controller, yet the limiting

case is identical to the original projection law. This law shows that a static, non-

adaptive ”adaptation law” provides the same plant output.

Law D) is an unnecessary and computationally heavy law that is not practical

for any application, and is only intended for demonstration purposes. For low

adaptation gain, the system has sustained oscillation. However, for higher gains,

again the system approximates the LTI reference model and has the same output as

the original adaptive projection law.

Law E) is a very simple error feedback, non-adaptive law that was suggested as

an alternative solution by the authors of the L1-AC [64]. For low adaptation gain,
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Figure 3.7: Simulated output for the plant G(s) controlled by the L1-AC

for Law A). The top figure is the output of the plant, with the thick

green line being the output of the reference. The lower plot is the abso-

lute difference of model output and reference output. The controller is

adaptive for low adaptation gain, however it becomes static for higher

gains.

the system has a steady-state error; since there is no integral action or adaptivity,

the error does not reduce as the case progresses. The steady-state error reduces as

the adaptation gain increases.

Law F) is another law suggested by the authors of L1-AC [33]. This law is

the most computationally exhaustive algorithm and has no improvements over the

other laws. It is again non-adaptive and the plant’s model approximates the refer-

ence model as the gain increases.
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Figure 3.8: Simulated output for the plant G(s) controlled by the L1-AC

for Law B). The top figure is the output of the plant, with the thick

green line being the output of the reference. The lower plot is the abso-

lute difference of model output and reference output. The controller is

adaptive for low adaptation gain, however it becomes static for higher

gains.
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Figure 3.9: Simulated output for the plant G(s) controlled by the L1-AC for

Law C). The top figure is the output of the plant, with the thick green

line being the output of the reference. The lower plot is the absolute

difference of model output and reference output. The controller is non-

adaptive for all gains.
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Figure 3.10: Simulated output for the plant G(s) controlled by the L1-AC

for Law D). The top figure is the output of the plant, with the thick

green line being the output of the reference. The lower plot is the

absolute difference of model output and reference output. The con-

troller is nonadaptive for all gains.
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Figure 3.11: Simulated output for the plant G(s) controlled by the L1-AC

for Law E). The top figure is the output of the plant, with the thick

green line being the output of the reference. The lower plot is the

absolute difference of model output and reference output. The con-

troller is nonadaptive for all gains.

42



Figure 3.12: Simulated output for the plant G(s) controlled by the L1-AC

for Law F). The top figure is the output of the plant, with the thick

green line being the output of the reference. The lower plot is the

absolute difference of model output and reference output. The con-

troller is nonadaptive for all dead-zone intervals.
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3.6 Conclusion

The L1-AC claims fast adaptation while maintaining the robustness. The fast

adaptation is achieved through the use of high-gain feedback while robustness is

achieved through the use of a low-pass filter that filters out any noise amplification

caused by the high-gain feedback.

In Section 3.4, it was shown that a PKPD model’s output approximates a refer-

ence system with an implementable LTI controller as the gain increases. It was also

shown that the system is adaptive for low gains, but non-adaptive for higher gains.

In Section 3.5 the loss of adaptivity was mathematically shown. The feedback gain

shows up in the loop transfer function, which when taken to infinity, causes the

inversion of the predictor model. This inversion of the predictor’s model is a well

known concept in classical control theory. This Chapter then showed a simple ex-

ample for 6 different adaptation laws, some of which were adaptive for low gains

and some of which were non-adaptive for all gains. The output of all cases ap-

proximates the implantable LTI controller of the reference system. This rules out

the use of those L1-AC schemes to address the problem of patient variability in

closed-loop control of anesthesia.

44



Chapter 4

Real-Time Oscillation Detection

Oscillation is a common problem in control-loop systems. There are three types of

oscillations: damped oscillation, undamped sustained oscillation, unstable oscilla-

tion. Unstable oscillation will lead to increased deviation from the set-point and

can compromise safety and stability. While damped oscillation and the sustained

oscillation will not cause instability, they will lead to a lower quality control signal.

Other than safety and stability concerns, oscillation will also result in a higher

control action [58]. This translates into a higher drug dose to the patient, which

can lead to post-surgical complications and unnecessary increase in cost.

There are several factors that can cause oscillation. A few are:

• Marginally stable control loops (due to aggressive control tuning or changes

in process gain/phase/time delay).

• External disturbances.

• Dead-band, also known as hysteresis, of the controller valve (hardware/e-

quipment issues).

• Stiction in the control valve.

• Hitting the upper and/or lower bound limit of the controller valve.

Studying and analyzing the oscillation can be performed in three stages:

45



1. Identifying sustained oscillations, and where possible, detecting the different

frequency components of the oscillation(s).

2. Detecting and quantifying the root-cause of the oscillation(s).

3. Correcting the root-cause of the oscillation(s).

It would be beneficiary for the detection to be performed in real-time. A flag

can be raised to alert the anesthesiologist. If the problem is due to poor-tuning,

an auto-tuning method (see Chapter 5) can re-tune the controller and remove the

oscillation. If the problem is due to a mechanical failure, the system can be taken

into manual mode to prevent the escalation of the problem.

There have been numerous techniques to address the problem of detecting os-

cillation in a signal that contains multiple oscillation frequencies. In more-or-less

chronological order, these methods include the integrated of absolute error [25], the

auto-correlation function methods [32], the spectral peaks-based method [32], the

wavelet-based method [44], the modified empirical mode decomposition method

[55], the DCT-based method [67] and many more. Among all, the detection method

based on the DCT proposed by Wang et. al. [67] is one of the most advanced meth-

ods. It can detect multiple oscillations in off-line and real-time and it can determine

the frequency, magnitude and fitness (percent energy of the oscillation) of these

components.

In this Chapter, an algorithm for detecting oscillations is discussed. In Section

4.2 an off-line method based on the DCT analysis is introduced. In Section 4.3, this

methodology is extended to real-time. In Section 4.4, examples are provided.

4.1 Contribution

This Chapter discusses a new method for determining the multiple oscillations in a

control signal, based on the method proposed by Wang et. al. [67]. First, the off-

line algorithm is developed. The extension to real-time is discussed subsequently.

The algorithm is able to also determine the dominant oscillation signal, character-

ized by its frequency, magnitude and fitness.

46



4.2 The DCT Off-line Oscillation Detection

Traditionally, the Fourier Transform and its discrete algorithm, DFT has been ap-

plied to frequency-related problems. Therefore, it may seem natural to pick the DFT

rather than the DCT, which is related to the complex portion of the DFT signal. The

main advantage of DCT is its strong ”energy compaction” property [4]: most of the

signal information is concentrated in a few coefficients of the low-frequency com-

ponents of the transformed signal and it approaches the Karhunen-Loéve transform

(which optimally decorrelates the frequency components, but is extremely slow to

compute).

More importantly, the default DFT rectangular windows only provides good en-

ergy compaction for frequencies that are whole fractions of the sampling frequency

Fs, i.e. a DFT analysis of a signal with sampling frequency of 240Hz can effectively

detect frequencies that are exact (or close to) multiples of 240/N (such as 120Hz,

80Hz, or 60Hz). Applying a non-rectangular DFT window (or a moving window),

will produce less broadband leakage, but will be lossy near the window’s edge.

DCT addresses all the issues above, and is therefore used as the basis for oscillation

detection.

Given a time series x(t), its associated frequencies will be distributed separately

in the signal’s DCT counterpart y(k). That is, the different frequency components

of the signal x(t) can be studied by observing different segments of y(k). In the

following Section, the oscillation detection algorithm is discussed. Noise is also

considered in this discussion.

4.2.1 The DCT Definition

Given a time series discrete sequence x(nT )
∣

∣

N

n=1
, with sampling period T , its DCT

counterpart is defined as:

y(k) = ω(k)
N

∑
n=1

x(n)cos
( π

2N
(2n−1)(k−1)

)

, k = 1,2,3, ...N, (4.1)
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where

ω(k) =















1√
N

k = 1,
√

2
N

2 ≤ k ≤ N.

(4.2)

Similarly, the Inverse Discrete Cosine Transform (IDCT) is defined as:

xi(n) =
N

∑
k=1

ω(k)y(k)cos
( π

2N
(2n−1)(k−1)

)

, n = 1,2,3, ...N. (4.3)

The DCT signal y(k) has a convenient inherent property: given a signal of x(t)=

sin(2πωt + φ), y(k) will always be of the form y(k) = ...,0, ...,#,0, ... where #

stands for some non-zero value. In other words, for each frequency component in

the signal x(t), the counterpart y(k) will start with a zero directly followed by a

non-zero value (call this 0− # pattern), then followed by some integer (could be

zero or non-zero), and finally finished by a #−0 pattern. This property of the signal

will be used in the next section to extract the segment of y(k) that corresponds to a

specific frequency of the signal x(t).

To visualize this DCT pattern, a signal with two frequency components is

shown in Figure 4.1. The signal is shown on the top with its DCT shown at the

bottom. The first 4 points follow the discussed pattern and contribute to one of the

frequency components. The next 5 points contribute to the second frequency com-

ponent. The reconstructed signals of these two frequency components are shown

in Figure 4.2. The reconstruction can only provide information on the frequency

of the signal, and not on the magnitude or the offset of it.

4.2.2 The DCT Algorithm

The segments in y(k) that are within each of the pattern 0−# and #−0 contribute

to the different frequencies in the signal x(t). A signal contaminated by noise how-

ever, may have all of the y(k)’s component non-zero. The case for white noise is

covered below and the case of colored noise is discussed in the subsequent Section.
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Figure 4.1: The signal blue has two components with frequencies 4 and 12

units respectively (labeled red and green signals). The DCT of the blue

signal is shown on the bottom graph. The first 4 points on the DCT

captures one of the frequency components, while the next 5 captures

the other.

Define σ̂y as the estimated standard deviation of the signal y(k):

σ̂y =

√

1

N −1

N

∑
k=1

(

y(k)− 1

N

N

∑
k=1

y(k)
)2

. (4.4)

The white noise can be filtered by suppressing the values of y(k) smaller than

3σ̂y and preserving the most significant components [67]:

yh(k) =











y(k) |y(k)| ≥ HY,

0 |y(k)|< HY,

(4.5)
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Figure 4.2: The reconstructed frequency components of Figure 4.1 is

shown. The reconstruction can only preserve the frequency, but does

not provide an accurate information on the magnitude and offset of the

signal.

where HY is the high cut-off level:

HY = 3σ̂y. (4.6)

Some noise may still be present in the signal yh even after the filtering. There-

fore, a segment is required to terminate with 4 consecutive zeros [67]. Define yi(k)

as the i-th DCT component of the y f (k) of the same length:

yi(k) =











y fi
(k) for ks,i ≤ k ≤ ke,i,

0 otherwise,

(4.7)

for i = 1,2,3, ..., I, where y f ,i is the i-th component of y f with the start and end

50



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
x(t)
xi(t)

Figure 4.3: x(t) and the frequency component xi(t)

points ks,i and ke,i satisfying the conditions described below:



























y f (ks,i) 6= 0 and y f (ks,i −1) = 0,

y f (ke,i) 6= 0 and y f (ke,i − r) = 0 for r = 1,2,3,4,

ks,i ≤ ke,i.

(4.8)

The IDCT of each yi(k) will provide the specific frequency for the corresponding

time-domain signal. Call this signal xi(t).

Example 4.2.1. Let x(t) = sin(2πωt) with a discrete time t = 0 : 0.01 : 5, be a

signal of size 501. The noise is due to discretization of the signal which causes the

Gibbs phenomenon. The standard deviation of y(k) is 0.7071 and the high cut-off

level HY is 2.1213. Suppressing the values smaller than HY will yield the high

component yh that only has 6 non-zero values positioned at the indices 4, 6, 8, 10,

12, and 14. This yields only one i-th component, which will be the yh itself. Figure

4.3 shows the plot of x(t) v.s. xi(t).
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4.2.2.1 Period and Regulatory Index

The zero-crossing Zi(l) of each xi for z = 1,2,3, ...,L, is evaluated to determine the

period sequence Ti(l):

Ti(b) = 2(Zi(l)−Zi(l−1)) for l = 2,3,4, ...,L. (4.9)

The sample mean and the standard deviation of the period is calculated using:

T̄i =
1

L−1

L

∑
l=2

Ti(l), (4.10)

sTi
=

√

1

L−2

L

∑
l=2

(Ti(l)− T̄i)2. (4.11)

Define the regulatory index as the ratio of the sample mean and standard deviation

of the signal Ti:

RT =
T̄i

sTi

(4.12)

The period signal Ti can be regular (oscillatory) or irregular (non-oscillatory, due

to random arrivals). To be regular, RT needs to be larger than 3 [59]:

RT > 3 (4.13)

To understand the rationale behind this inequality, consider the signal Zi to be due

to equally randomly distributed arrivals, i.e. a random exponential distribution:

fTi
= λe−λ µT . (4.14)

For an exponential distribution, the mean and the standard deviation are equal, i.e.

µTi
= σTi

. A null hypothesis H0 : RT = 1 and the alternative hypothesis H1 : RT > 3

is formed. If the condition 4.13 holds, the H0 is rejected and H1 is accepted; Ti is

then claimed to be regular and oscillatory.

The sample mean and standard deviation 4.10 and 4.11 cannot be reliably cal-

culated with less than 4 sample sets. It is suggested to use at least 10 sample sets

[59]. A modified regulatory index is now defined that also considers the number of
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sample sets.

Define the population coefficient of variance as the ratio of population standard

deviation and the mean:

Cv =
σTi

µTi

, (4.15)

and the sample coefficient of variance as:

Ĉv =
1

RT

=
sTi

T̄i

. (4.16)

Let α be a small positive integer such that (1−α)100% is the confidence interval

for Cv: √
L−1Ĉv

√

χ2
L−1,1−α/2

<Cv <

√
L−1Ĉv

√

χ2
L−1,α/2

(4.17)

where χ2
L−1,α/2

is the 100α/2-th percentile of the chi-squared distribution with

L−1 degree of freedom. The modified regulatory index is then given by the inverse

of Ĉv:

RTi,α =

√

χ2
L−1,α/2√
L−1

T̄i

sTi

, (4.18)

and the period regulatory test is defined as the RTi,α that is larger than 3:

RTi,α > 3. (4.19)

Equation 4.19 forms the first periodic test: if no Ti passes the period regulatory

test, then the signal x(t) is concluded to be non-oscillatory.

The case for colored noise will now be discussed. If colored noise is present,

the suppressed signal yh from 4.5 will have too many of its coefficient removed

and no longer resembles the noise. As a result, oscillation detection may give false

results. Instead, a low cut-off value LY is defined as:

LY = σ̂y, (4.20)

and the signal y(k) is suppressed similar to yh 4.5, but with LY , to give yl . yl is

then segmented into its j-th DCT component, y j, similar to 4.3. A pair of yi and y j
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that have the same maximum value are matched. The modified regulatory test is

performed on y j whose pair yi has passed the period regulatory test 4.19. If no y j

passes the test, the signal x(t) is concluded to be non-oscillatory.

The definition of yl preserves the colored noise. The modified regulatory test

on yl then filters out colored noise, while the test on yh filters out white noise. The

two cut-off values LY and HY are the two most important constants used in this

derivation. Li et al. performed a series of simulations with different colored and

white noises to determine their respective value of LY = σ̂y and HY = 3σ̂y [38].

4.2.2.2 Fitness Test

To measure the percentage energy of a component, or its fitness, the following

equation from [41] and [67] is used:

F(x,xk) = 100
(

1− ‖ xk − x ‖
‖ x ‖

)

, (4.21)

where ‖ x ‖ is the Euclidean norm. Of the (xi,x j) pair that have survived the modi-

fied regulatory test, the component that gives the largest fitness, contains the most

energy in the signal and is therefore the dominant frequency. Since x j contains

more coefficients than xi, it is used to determine the fitness of the dominant fre-

quency of the signal x:

Fd = max
j

F(x,x j). (4.22)

If this fitness is larger than a predefined threshold, F0, then the signal is concluded

to be oscillatory. This is known as the fitness test:

Fd > F0. (4.23)

The dominant period is determined by comparing the modified regulatory index

RT,α of the ximax-x jmax pair that correspond to Fd:

T̄d =











T̄imax RTimax,α ≥ RTjmax,α ,

T̄jmax otherwise.

(4.24)
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The signal x has a dominant period T̄d with a fitness of Fd and the corresponding

component ximax and x jmax.

4.2.2.3 Magnitude Test

The two tests modified regulatory test and the fitness test are considered adequate

for most scenarios. However, sometimes the time series can pass both tests, but

the magnitude of the oscillation may not be periodic; therefore a further test on the

magnitude of the oscillation must be performed.

This test may seem unintuitive. An unstable oscillation (a sinusoidal that in-

creases in magnitude) or a damped oscillation (a sinusoidal that decreases in mag-

nitude) are both considered oscillatory, but have ”irregular” magnitude. The ir-

regular pattern is a signal that has sudden drops and peaks (for instance, due to

miscommunication of the sensor) or one that has its magnitude follow an irregular

pattern of high and low in no particular order. The magnitude test described below

passes an unstable and damped oscillation and fails a true ”irregular pattern”. The

paper Wang et al. [67] has an excellent example that illustrates this case.

Define the magnitude series M(m) as:

A(m) = max
(

x(t)
∣

∣

1+lT̄d

1+(l−1)T̄d

)

−min
(

x(t)
∣

∣

1+lT̄d

1+(l−1)T̄d

)

,

M(m) = A(m)/2,
(4.25)

where T̄d is the dominant period as determined by 4.24, l = 1,2,3, ...L. In other

words, scan the time series x(t) in a window period of T̄d and subtract the maximum

from the minimum of the sequence.

Similar to 4.18, the magnitude index is defined as:

RM,α =

√

χ2
L−1,α/2√
L−1

M̄

sM

, (4.26)

where M̄ and sM are the sampled mean and standard deviation of the signal M

respectively. The magnitude regulatory test is:

RM,α > 2.73, (4.27)
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where the threshold is determined as follows: the signal M(m) is approximately

half the size of T (l). The ratio of

√

χ2
L−1,α/2√
L−1

to

√

χ2
L/2−1,α/2√
L/2−1

is approximately 1.1 for

different values of α and L. The value 2.73 is 3/1.1 [67].

4.2.3 Summary of the DCT Algorithm

There are 3 tests: modified regulatory test 4.19, fitness test 4.23, and magnitude

regulatory test 4.27. The tuning parameters are α and F0.

The algorithm is summarized in the following 13 steps (from here on called the

oscillation detection algorithm):

Step 1. Remove the mean from the signal x(t) and compute the DCT y(k) from the

definition 4.1.

Step 2. Suppress the elements of y(k) that are smaller than the high cut-off value

HY 4.6 to generate yh as per 4.5.

Step 3. Compute i-th DCT components of yh using 4.7 to get yi for i = 1,2,3, ..., I.

Step 4. Generate the inverse DCT xi(t) for each yi(t) using 4.3.

Step 5. Compute the period sequence Ti(n) for each xi(t) and perform the modified

regulatory test. If no signal passes the test, then x(t) is concluded to be non-

oscillatory.

Step 6. Suppress the elements of y(k) that are smaller than the low cut-off value

LY 4.20 to generate yl .

Step 7. Compute j-th DCT components of yl using 4.7 to get y j for j = 1,2,3, ...,J.

Step 8. Select the y j that have the same maximum value as the yi whose xi passed

the regulator test from step 5.

Step 9. Generate the inverse DCT x j(t) for each y j(t) that was selected form the

previous step.

Step 10. Perform the same modified regulatory test as step 5. If none pass the test,

then x(t) is concluded to not oscillatory.
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Step 11. Calculate Fd as the dominant of the fitness of x jmax and perform the fitness

test of 4.23. If the test fails, then x(t) is concluded to be non-oscillatory.

Step 12. Determine the dominant period T̄d using 4.24.

Step 13. Determine the magnitude sequence from T̄d and perform the magnitude

test of 4.27. If the test fails, then x(t) is concluded to be non-oscillatory.

The oscillating signal is characterized by a dominant period T̄d, magnitude of

M̄ and fitness of Fd. This test has two tunable parameters: α and F0. Suggested

values are α = 2.7% and F0 = 25%.

4.3 Extension to Real-Time

Oscillation can lead to instability and excessive actuator action. Detecting oscilla-

tion in real-time allows us to raise a flag and notify the anesthesiologist to quickly

modify the setting and to stabilize the patient’s DOH. In Chapter 5 an auto-tuning

method is proposed that will re-tune the controller to remove the oscillation.

The basis for extending the oscillation detection algorithm from Section 4.2.2

is as follows: select an adaptive window range and perform the oscillation detec-

tion algorithm. This window range is dependent on the predicted dominant period

and will change in real-time to adapt to the case.

In Thornhill et al (1997) [58], it was suggested to use a window range of 50

times of the presumed oscillation when applying the Hägglund method. This value

was then disputed by Wang et al (2013) [67] when applied to the DCT method since

their method specifically determines the oscillation period whereas the Thornhill

method only detects large IAE errors and therefore requires a larger window range.

The window range best be large enough to produce sufficient sample sets to

compute the sample mean and standard deviation of the period and magnitude se-

quences T (l) and M(m) accurately. A window range of 10 times the presumed pe-

riod will produce a period sequence of 20 sample sets, and a magnitude sequence

of 10 sample sets, allowing for an accurate measurement of the sample mean and

standard deviation of T̄ and M̄ [67]. The starting and ending positions of the time

57



window are:

ne = t,

ns = ne −10Tp,
(4.28)

where t is the current time.

The presumed period, Tp should be adaptive to allow the system to identify

oscillation of any period. If a dominant period Td is found after applying the os-

cillation detection algorithm, then it is set to be the presumed period Tp. If no

oscillation is detected, the component pair xi and x j with the maximum Fx j
is se-

lected. There are 3 scenarios:

Scenario 1. The pair xi and x j only contain one zero crossing. In this case, no

period can be determined, and so the previous presumed period is kept.

Scenario 2. The pair xi and x j contain exactly 2 zero crossing. In this case, the

modified regulatory index cannot be calculated and so the method of 4.24

cannot be applied. Since xi is contaminated less by noise, then T̄xi
is selected

as the presumed period.

Scenario 3. There are enough zero-crossing points to perform the modified regu-

latory test. In this case, the method of 4.24 is used.

In Wang et al (2013), it is suggested to allow the presumed period to change

freely. This can cause an issue: assume the system is initially oscillating with a

small period Ts. The oscillation then stops and at a later time an oscillation with

much higher period Th > 10Ts is formed. The presumed frequency of the algorithm

is now stuck at Ts and the system only scans a period of 10Ts and may never be

able to capture this new oscillation.

Instead, it is suggested to create multiple parallel instances of the algorithm

to run simultaneously. Each instance has a predefined minimum and maximum

allowed period, [Tlower,Tupper] and Tp is allowed to freely adapt in this period range.

The range of each instance and the number of these instances will be the tuning

parameter and is related to the problem at hand. This approach also allows us

to ignore certain periods that are expected to exists in the system, for instance a

known background noise that might be present in the signal.
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4.3.1 Summary of the Real-Time DCT Algorithm

The real-time algorithm can now be summarized in the following 5 steps. The

following steps should be executed for the number of instances that have been

selected to run.

Step 1. Specify an initial presumed oscillation to create the starting and ending

positions of the time window 4.28. Here Tp would be a priori knowledge

of the presumed oscillation. If this information is not available, then the

bandwidth of the system can be used.

Step 2. Wait until sufficient time has passed and there are sufficient data to perform

the oscillation detection algorithm.

Step 3. Perform the off-line oscillation detection algorithm on the segment of

x(ns) to x(ne).

Step 4. Update the Tp according to the 3 scenarios 4.3 and the [Tlower,Tupper] limits

of the instance.

Step 5. Repeat Step 2-4 for all the instances. You may need to wait for more data

if the new Tp is larger than the old one.

4.4 Oscillation Detection Examples

Two examples are provided to highlight the oscillation detection algorithm. The

first example will be a simplified simulation example. The second example will be

the Depth of Hypnosis from a surgical case performed by iControl system.

Example 4.4.1. Consider the following signal with an Signal to Noise Ratio (SNR)

value of 10−1 shown in Figure 4.4:

x(t) = sin
2π

1.3
t +2sin

2π

3.4
t

The off-line algorithm on the system determines two oscillation periods of 1.3 min

and 3.397 min. Based on the fitness of the two signals, the component with period

of 3.397 min is chosen as the dominant table. The magnitude of this signal is

determined to be 2.002. Table 4.1 summarizes the result.
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Figure 4.4: Signal from Example 4.4.1 contains two oscillations of peri-

ods 1.3 min and 3.4 min. Dominant oscillation period is detected at

3.397 min. The signal is shown in black and the dominant oscillation

is shown in red.

Table 4.1: High and Low components of Example 4.4.1

Example 4.4.2. The following case is taken from one of the 61 surgical cases con-

ducted at Royal Columbian Hospital in New Westminster using iControl system.

Written consent was taken before the surgery from the patient. This particular

patient (case 6 from the database) underwent a Laparoscopic hemicolectomy.

The oscillation starts at time 63min, and lasts until time 84min. The surgery

had started at time 37min; there was a stimulation at time 63min, as recorded

by the anesthesiologist. At time 80min, the patient moved. Immediately after,

Rocuronium was administrated and the oscillation was damped out. The dominant
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Figure 4.5: On-line oscillation detection shows a detected dominant signal

of Tp = 3.63 min, M̄ = 5.96 and F = 89.31%.

Table 4.2: Case example from Example 4.4.2. The magnitude regulatory

index is 3.785.

oscillation is Tp = 3.63 min, M̄ = 5.96 and F = 89.31%. The DOH is shown in

Figure 4.5.

4.5 Conclusion

Algorithms for detection of oscillation for both off-line (see Section 4.2.3) and

on-line/real-time (see Section 4.3.1) were discussed. Unlike existing methods, the

algorithm can detect multiple oscillations, ignore specific oscillation frequencies,
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and determine the dominant oscillation. The frequency, magnitude and fitness of all

measured oscillations is also provided. The fitness of the oscillation can be used to

reject small oscillations. The limitation of the algorithm discussed in this chapter,

however, is that it requires a signal length of 10 times the presumed oscillation

period. However, this is much less than Thornhill’s method that requires 50 times

the presumed oscillation period. In the next Chapter, the frequency of the dominant

will be used to auto-tune a PID controller.
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Chapter 5

Re-Tuning of a PID Controller

The closed loop feedback mechanism of PID controllers have found use in a variety

of systems, such as process control, motor, and vehicle control, to name a few

[6]. The controller contains only three tunable parameters (the proportional k, the

integral ki, and the derivative kd), yet in many situations it can provide a robust

solutions with good performance [6]. Furthermore, this feedback system is well

understood and there are numerous implementations and theories to guarantee the

robustness and performance.

Our research group has worked extensively on PID control, see [10], [61], [62],

[52], [54], [43] and [10]. PID controllers are not only of interest to our group, and

other researchers have also investigated them, see [19], [31], [2], and [40].

With the patient’s safety in mind, our robust controller is tuned to ensure a

reliable and safe drug administration, see all references above. However, there

have been cases where some oscillations have been observed in the clinical trials.

It is therefore beneficial to have a system that would be able to detect oscilla-

tion in real-time and automatically alert the anesthesiologist. Oscillation provides

valuable insight into the plant and the control loop [5]. It is possible to use this new

information to re-tune the controller in real-time and remove oscillation.

In this Section, a retuning mechanism that follows the guidelines for a robust

PID controller design is discussed. The retuning mechanism is simulated with the

44 PKPD models from Appendix A and compared with the original tuning of iCon-

trol. In addition to removing the oscillation, the tuned system has met the following
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objectives:

• The gain margin, phase margin, and peak sensitivity should be the same or

better than the original design. This translates to a gain margin of more than

2 and phase margin of 30◦−60◦.

• The system should have an overshoot of less than 10% for set point change

and disturbance rejection.

• A rise time of 5-10 minutes is considered appropriate. However, even with

the current implementation of the closed-loop control, rise time performance

criteria is a secondary objective. The rise time of the original parameters

should be comparable to the tuned parameters.

This Chapter presents a robust PID tuning method for the currently imple-

mented iControl. The feedback controller structure with all the components of

iControl is shown in Section 5.2. The robustness and performance design require-

ment is examined in Section 5.3. The tuning rules and optimization are discussed

in Section 5.4. Finally, simulation results and comparisons are presented in Section

5.7.

5.1 Contribution

A robust PID auto-tuning algorithm is presented in this Chapter. Using the fre-

quency of a measured oscillation in real-time, the patient is identified. Oscillation

is generally due to an aggreesive controller. The controller is then tuned to be less

aggressive and the sustained oscillation is removed. The tuning rule follows the

guidelines of a robust controller. IE optimization is used as a performance crite-

rion.

5.2 Overview of Controller Structure

Consider the 2-degree-of-freedom PID controller shown in Figure 5.1. r is the ref-

erence DOH and y is the output WAV . l and d are the input and output disturbances

respectively, and n is the measurement noise. The surgical stimulus is represented
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by d. The block diagram Gp is the patient, and Gc and G f f are the two LTI con-

troller transfer functions that together describe the PID controller of the form:

r
Gff Gp

−Gc

+ + +
u

l d

y

PID Controller
+

n

Figure 5.1: A 2-degree-of-freedom PID controller

u(t) = k(br(t)− y(t))+ ki

∫ t

0
(r(τ)− y(τ))dτ + kd

(

− dy(t)

dt

)

, (5.1)

where k, ki, and kd are the proportional, integral, and derivative control respectively.

b is a step response weighting parameter between 0 and 1. The derivative term does

not act on the set-point since that can cause spikes during step changes [6].

Comparing the PID definition 5.1 to the Figure 5.1, it is easy to realize that Gc

acts on the signal y and G f f acts on the signal r:

G f f (s) = bk+
ki

s
,

Gc(s) = k+
ki

s
+ kds.

(5.2)

The goal of a PID controller is to track the reference signal r while rejecting any

load disturbance, measurement noise and process uncertainty. The relationship

between the four signal r, l, d and n to y are:

y(s) =
G f f Gp

1+GcGp

r(s)+
Gp

1+GcGp

l(s)+
1

1+GcGp

d(s)− Gp

1+GcGp

n(s) (5.3)

The sensitivity function S(s) describes the transfer function from d(s) to y(s) and

the complimentary function T (s) describes the transfer function from r to y(s).
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They provide valuable insight: one can design Gc to provide a reasonable distur-

bance rejection and robustness to process uncertainty. G f f can then be used so the

controller meets the performance design criteria. The specification of the robust-

ness and performance will be discussed in Section 5.3.

5.2.1 iControl Design Structure

An overview of iControl is provided below. More information on iControl can be

found in [43] and [54]. The control structure is shown in Figure 5.2.

Fsp

Fm−Gc

Gp GNS++ + +

l d n

r rf u WAVcns

yf

Gff

iControl Structure

Ev

Figure 5.2: The iControl Structure

5.2.1.1 Measurement and Reference Filters

The DOH of the patient in the iControl structure, WAV, is measured by the Neu-

roSense monitor. To attenuate the high frequency noise, WAV is passed through a

second order low-pass measurement filter with time constant Tm = 15s:

Fm =
1

1+ sTm +(sTm)2/2
. (5.4)

The reference signal is passed through a first-order low-pass set-point filter with

time constant Tsp = 25s to smooth out any step-like changes:

Fsp =
1

1+ sTsp

. (5.5)

The filtered signals r f and y f are given by:

r f (s) = Gspr(s),

y f (s) = Gmy(s).
(5.6)
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5.2.1.2 Saturation and Integrator Anti-Windup

The infusion pump has a lower bound umin = 0ml/h and an upper bound umax =

600ml/h. The controller’s output v is limited to the saturation values umin and umax.

The saturation block diagram from Figure 5.2 is a non-linear dynamic. It can

however be modeled by an ideal describing function N as defined in [7]:

N =
1

2

(

f1

(au +δ

av

)

+ f1

(au −δ

av

)

)

, (5.7)

where the function f1 is given by

f1(ρ) =



























1 ρ > 1

2
π

(

arcsin ρ +ρ
√

1−ρ2
)

−1 ≤ ρ ≤ 1

−1 ρ <−1,

(5.8)

where the constants au, av, and δ are given by:

au = 0.5(umax −umin),

av = 0.5(vmax − vmin),

δ = u0 − v0,

u0 = 0.5(umax +umin),

v0 = 0.5(vmax + vmin),

(5.9)

where vmax and vmin denote the maximum/minimum of the controller’s action out-

put v during an oscillation. This dynamic is only active when the controller is

saturated.

To prevent the windup that will result from the saturation, a classical tracking

anti-windup scheme is implemented. The time constant Tt of the tracking anti-

windup is 60 second.

67



5.2.1.3 NeuroSense Monitor

The EEG signal E(t) can be translated to the DOH index WAV by the NeuroSense

monitor. The signal E(t) runs from 0 to 1 and the WAV spans from 0 to 100, with

0 corresponding to an iso-electric EEG, and 100 corresponding to the fully awake

state. The dynamics of this monitor are described in a very simple LTI transfer

function [54]:

GNS =
1

(8s+1)2
. (5.10)

5.2.1.4 Patient Model

The patient Gp can be replaced by the PKPD model from Appendix A. The block

diagram is shown again for reference in Figure A.2. The PK and PD models are

LTI functions. The Hill function however, is a non-linear sigmoid function. For

control design purposes, it needs to be linearized around the reference point. The

linearized PKPD model of the patient is described in Appendix A and is given by:

Gp(s) =
kd · γ

4 ·V1 ·EC50
· (s+ k12) · (s+ k31)

(s+ p1) · (s+ p2) · (s+ p3) · (s+ kd)
· e−Tds. (5.11)

5.2.1.5 Reference Weighting

In the first version of iControl, suppression of oscillations and rejection of distur-

bance were prioritized over the performance of the system. The reference weight-

ing b was set to zero. The reference signal only entered the control signal law

through the integrator action [54]. To improve performance and reduce induction

time, the system was redesigned with a unity reference weighting (i.e. b = 1)[61].

5.2.1.6 Current iControl Parameters

The iControl structure has 7 design parameters: k, ki, kd , b, Tt , Tsp and Tm. The

current implementation of iControl has constant values for the anti-windup and the
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filter constants:

Tt = 60,

Tsp = 25,

Tm = 15.

The reference weighting parameter b is set to 1. The PID parameters are based on

the age and weight of the patient. The Lean Body Mass (LBM) is defined in [27]

as:

LBM(w,h) =











0.3281 ·w+0.33929 ·h−29.5336, if Male,

0.29569 ·w+0.41813 ·h−43.2933, if Female,

(5.12)

where w is the weight in kilogram and h is the height in centimeter. The PID

parameters are defined as:

c f = LBM ∗0.03,

k = 0.081 · c f ,

ki = 0.0055 · c f ,

kd = 45 · c f .

(5.13)

5.3 Robustness and Performance Design

Following the iControl structure in Section 5.2, the loop transfer function is defined

as:

L(s) = Gc ·Gp ·GNS ·Fm ·N. (5.14)

The controller parameters are matched to the patient model Gp. The actual

patient model may be different to the modeled PKPD Gp. It is important that the

controller parameters not to be too sensitive to this process variability.

The Nyquist plot of a loop function is shown in Figure 5.3 in blue. From the

Figure, the amplitude (or gain) margin Am describes how much the gain of the loop

function L(s) can change before the system become unstable. The phase margin

φm describes how much the phase of the L(s) can change before instability is seen.
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Figure 5.3: The Nyquist Plot with region of stability

The only uncertain function of the loop L(s) is the patient. Therefore, Am and φm

quantify the upper bounds of how much the patient model can change before the

system becomes unstable.

The relationship from d to y is called the sensitivity function:

S(s) =
1

1+L(s)
. (5.15)

It describes the amplification of the disturbance as a function of frequency. The

maximum, or the peak, of the S(s),

Ms = max
0≤ω≤∞

| S(iω) |, (5.16)

quantifies the worst-case amplification of the disturbance. This quantity is related

to the gain margin Am and phase margin φm and is provided shortly.

The Nyquist stability criterion defines the point where the function L(s) crosses

the negative x-axis at −1 as the instability point. To account for the uncertainty of

the patient model, a circle of radius 1/Ms (the red circle) centered at -1 is intro-
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duced. If the loop function is kept outside of this red circle, then the closed-loop

system is guaranteed to have the specified gain margin Am and phase margin φm.

There is a relationship between the gain and phase margin and the peak sensi-

tivity:

Am >
Ms

Ms −1
,

φm > 2arcsin
1

2Ms

.

(5.17)

Typical values of Ms are between 1.3-2. The typical values of Am are then between

2-5, and the φm is between 30◦ and 60◦ [5].

5.4 PID Auto-Tuning Rules

Given an oscillation of frequency and magnitude ωu and Mu, where the subscript u

stands for unstable, following Nyquist’s Stability Theorem, the loop function L(s)

from Equation 5.14 is crossing the negative real-axis:

L(iωu) =−1 (5.18)

The idea for retuning is simple: the patient model is identified at this oscillation

frequency. Call this point Pu. The retuning of the PID controller is used to shape the

loop function to a stable point at the same frequency. Call this point Ps. In Figure

5.4, the dashed line represents the unstable loop function (prior to retuning). The

controller tuning then shapes the loop to the blue line, outside of the red circle

regime.

The tuning mechanism that follows is motivated by Åström et al. in [6]. In their

book, the authors assume the plant is known at a given point, and the controller is

tuned to shape the loop to the desired stable point. In the implementation here, the

plant is identified at a point from the oscillation.
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Figure 5.4: The model is identified at the unstable point Pu and the con-

troller is tuned to take the loop function to the stable point Ps.

5.4.1 Auto-Tuning for Robustness

Let the points Pu and Ps be given by their polar representations:

Pu = 1eiπ ,

Ps = rse
iφs .

(5.19)

The point Ps is outside of the red circle from Figure 5.3 of radius 1/Ms. The

magnitude and the phase of the stable point relate to the gain Am and phase φm

margins by the following relationships [22]:

Am =
1

rs

,

φm = φs

(5.20)

where the gain and phase margins are defined in Section 5.3 and are related to Ms

via Equation 5.17. The values used will be discussed in Section 5.5.

Let the transfer functions of the loop function be described by the polar repre-
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sentation of a complex system at the oscillation frequency ωu:

Gc(iωu) = rceiφc ,

Gp(iωu) = rpeiφp ,

GNS(iωu) = rNSeiφNS ,

Fm(iωu) = rmeiφm ,

N(v) = rv.

(5.21)

The ideal describing function N has zero phase [7]. It is assumed that the control

action v will also oscillate and is saturated (i.e. the describing function’s dynamic

needs to be considered).

The magnitudes and phases of Gc (from 5.2), GNS (from 5.10), Fm (from 5.4),

and N(v) (from 5.7) can be computed. The identified rp and φp is given by:

rp =
1

rc · rNS · rm · rv

,

φp =−
(

φc +φNS +φm

)

.

(5.22)

A new PID controller Gct
is determined such that it moves the loop function to the

point Ps at the same frequency ωu:

Ltuned(iωu) = Ps = rse
iφs = Gct

(iωu) ·Gp(iωu) ·GNS(iωu) ·Fm(iωu). (5.23)

There are two observations:

1. The tuned PID controller action will no longer oscillate. The non-linear sat-

uration dynamics N does not need to be considered.

2. Since the new loop is still computed at the frequency ωu, the functions

Gp(iωu), GNS(iωu), and Fm(iωu) have the same magnitude and phase as 5.21.

Substituting the values of Gp(iωu), GNS(iωu), and Fm(iωu) from 5.21 into Equation

5.23 allows us to solve for the new controller’s magnitude and phase:

rct
=

rs

rp · rNS · rm · rv

=
rs

rc · rv

,

φct
= φs −

(

φp +φc +φNS +φm

)

= φs −φc.

(5.24)
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The PID controller has three tuning parameters, k, ki and kd . The tuning rule

above provides two equations; to get a unique solution, a third equation is needed.

In Åström et al, it is suggested to define a ratio between ki and kd and set the value

of the ratio by trial and error [6]. In the next section, a condition on the performance

of the system is imposed on the tuning rule instead.

5.4.2 Auto-Tuning for Performance

In the preceding section, a set of robust rules were defined for auto-tuning the

controller. By defining an appropriate gain and phase margin, the tuned controller

will be robust and will have good output disturbance rejection.

A common performance criterion is the ability to reject the load disturbance.

The Integrated Error (IE) can be used as the metric to measure this performance.

A small value of IE indicates a fast load disturbance rejection and a small steady

state error. It has also been shown that a step-like reference applied at the process’s

input is directly related to the PID’s integrator gain, ki [6]:

IE =
∫ ∞

0

(

r(t)− y(t)
)

dt =
1

ki

. (5.25)

The third tuning rule is to maximize the integrator gain ki so as to minimize the IE

and obtain a good load disturbance rejection.

5.4.3 Bumpless Parameter Change

Upon system retuning, parameter change will naturally change the controller’s out-

put. This would cause a bump as the system’s states prior and after the parameters

change may not coincide. Care must be taken if a bumpless parameter change is

required.

To ensure a bumpless controller action, it is shown in [6] that is it sufficient to

ensure the controller output due to the proportional and the integral component (la-

beled P+ I) is invariant to the parameter change. This can be achieved by requiring

the state of the integrator to change as:

Inew = Iold + kold(r− y)− knew(r− y), (5.26)
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where kold and knew are the old and new proportional gain respectively [6].

5.5 Auto-Tuning Implementation

The auto-tuning problem is a minimization problem:

Minimize Equation 5.25 given the constraints 5.24 for the given gain

Am and phase φm margins and/or the peak sensitivity Ms.

To allow flexibility for this optimization problem, the gain and phase require-

ments are provided as a range: an Ms range of 1.3 to 2 is used to guarantee a gain

margin of 2.11 to 4.33 and a phase margin of 31◦ to 45◦.

The optimization also needs to be bounded. Otherwise, the tuned parameters

can become unbounded (ki is maximized to minimize IE). Root causes of oscil-

lation were discussed in Chapter 4. It is assumed that the PID is initially properly

tuned. Further, it is assumed there is no pump stagnation. The cause of oscillation

is assumed to be due to unmatched model uncertainty: the PID controller is simply

too aggressive for the patient.

Let k, ki and kd be the current PID parameters, as defined by 5.13. Let the k′, k′i
and k′d be the tuned parameters. The tuned parameters are expected to be smaller

than the original parameters. This is certainly true for the proportional gain k,

however the integral and the derivative gain may need to increase slightly to satisfy

the constraints 5.24. The upper and lower bounds of the new PID parameters are

given as:

(k′lower ,k
′
upper) = (0.75k,k),

(k′ilower
,k′iupper

) = (0.75ki,1.1ki),

(k′dlower
,k′dupper

) = (0.75kd ,1.1kd).

(5.27)

The lower bounds are set to prevent a slow response to stimulation and rise time.

The exact values for these parameters were determined via simulation for the 44

PKPD models of [10].

The optimization is solved using MATLAB’s fmincon interior-point algorithm

using MaxFunEvals = 1e10, MaxIter = 1e3,
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5.6 Summary of Auto-Tuning Algorithm

The steps below summarizes the auto-tuning algorithm discussed in this chapter.

Prior to running the algorithm, two stability points based on Ms of 1.3 and 2 are

defined. These will be the upper and lower acceptable stability points.

1. Run the real-time oscillation detection algorithm discussed in Section 4.3.1

to determine the dominant oscillation frequency.

2. The magnitude and phase of the controller, filters and dynamics of the Neu-

roSense monitor can now be computed using Equations 5.2, 5.10, 5.4 and

5.7.

3. Identify the patient model at the oscillation frequency using Equation 5.22.

4. Solve for the new PID parameters by minimizing the function 5.25 subject to

the conditions of 5.24. Set the upper and lower bounds of the PID parameters

as defined in 5.27.

5.7 Simulation Examples and Results

To assess the tuning robustness and performance, the system is simulated. A step

change to 50 WAV is applied at time zero. Measurement noise modeled by Soltesz

et al. from [52] is applied at time 75 minutes until time 85 minutes. Disturbance,

also modeled by Soltesz et al. is applied from time 95 minutes to time 135 minutes.

The disturbance models a surgical stimulus. The system initially starts with the

tuned parameters. After induction of anesthesia is complete, the system is tuned

to be unstable. The oscillation detection algorithm from Chapter 4 detects the

oscillation and the algorithm from this Section is used to re-tune the system.

Figures 5.5 to 5.8 shows a simulation examples of one patient model from each

of the four groups in the PKPD models of Bibian [10]. The black line shows the

output of the controller with the original PID tuning and the blue line shows the

output of the controller with auto-tuning. The blue line starts with the same PID

parameters as the black line. After induction is complete, the tuning is turned to be

unstable, causing instability in the output. The controller is auto-tuned and the blue
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Figure 5.5: Group 1, Case 10: The original tuning has Am = 8.72 and φm =
60.29. The re-tuned system has Am = 8.62 and φm = 53.81.

Figure 5.6: Group 2, Case 17: The original tuning has Am = 6.27 and φm =
61.20. The re-tuned system has Am = 6.13 and φm = 55.64.

77



Figure 5.7: Group 3, Case 33: The original tuning has Am = 7.57 and φm =
65.21. The re-tuned system has Am = 7.43 and φm = 58.96.

Figure 5.8: Group 4, Case 38: The original tuning has Am = 6.89 and φm =
61.14. The re-tuned system has Am = 6.86 and φm = 55.71.
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signal approaches the black signal. The behavior of all four examples is similar and

it highlights the effectiveness of the auto-tuning algorithm to effectively tune the

controller and achieve the same disturbance and noise cancellation as well as the

same performance as the original tuning.

Tables D.1 to D.3 in the Appendix show the robustness, output disturbance re-

jection, and step-change response for all 44 models. For robustness (Table D.1),

the amplitude and phase margins are compared. For output disturbance rejection

(Table D.2), the maximum overshoot assesses controller’s initial response to a 20%

WAV disturbance. The settling time Ts measures the time it takes for the WAV to

reach within 10% of the set-point following the overshoot. Finally, the IAE mea-

sures how well the system rejects the disturbance. For setpoint-change response

(Table D.3), rise time Tr measures the time it takes for the WAV to reach 80% of the

set-point change. Settling time Ts is similar to the output disturbance rejection.

The response of the auto-tuned cases is slightly slower than the original tuning,

but otherwise follows them very closely. The slower response is to counter the

aggressive tuning that was imposed on the original tuning. Table D.4 shows the

tuning parameters. The proportional gain k in all cases is lower than the original

tuning.

In the tuning algorithm used, no prior knowledge of the patient model was used.

The only assumption is that the initial PID parameters are properly tuned using the

prior knowledge of the patient. The measured oscillation is due to unmatched

patient uncertainty, though the unmatched parameter is unknown; there is no new

information about the patient model.

The median (min, max) of the amplitude margin of the original tuning is 8.55

(4.72, 17.36). The median (min, max) of the phase margin is 61.6◦ (50.3◦, 67.2◦).

The median (min, max) of the amplitude margin of the re-tuned system is 8.46

(4.75, 12.21). The phase margin is 56.4◦ (48.8◦, 62.1◦). The re-tuned system

is well within the minimum robustness requirement and agrees with the original

tuning [5].

The retuning does not come at a great cost to the output disturbance rejection.

The median (min, max) of the IAE of the original tuning is 202.7 (137.5, 304.9).

The median (min, max) of the re-tuned system is 209.7 (143, 293.0). The distur-

bance rejection has slightly increased.
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The median (min, max) of the overshoot of the original tuning is 5.26% (3.0%,

6.57%). For the re-tuned system, it is 5.99% (3.01%, 7.63%). All overshoots are

still under 10% and is in-line with the original design criteria.

5.8 Conclusion

In this Chapter, oscillation is measured in real time. The frequency of the dominant

component is used to automatically re-tune the controller to remove the oscillation.

The tuning rule is inspired by Åström et al. [6] is based on a robust design. The

plant is identified at the oscillating frequency. A new controller is tuned to shape

the loop function to a stable region with a gain margin of more than 2 and a phase

margin of 30◦ − 60◦. Disturbance rejection is guaranteed by minimizing the IE.

Percent Overshoot (OS) is kept under 10%. Using the PKPD models of Bibian, the

tuned controller is shown to be comparable to the original iControl.

The tuned system guarantees stability at the measured frequency only. The

system may still be unstable and oscillate at another frequency. The tuning algo-

rithm should therefore keep the record of all recorded oscillations. On each succes-

sive retuning, the optimization constraints should include the list of all previously

recorded oscillations.
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Chapter 6

Conclusions

6.1 Summary and Contributions

The objectives of this thesis were to 1) assess the applicability of the novel L1-AC

as applied to closed-loop control in anesthesia using the WAV index as the control

signal; 2) design an oscillation detection algorithm that can detect multi-period

oscillation in real time; and 3) develop a tuning algorithm that can re-tune the PID

controller used in iControl to remove the detected oscillation.

Following the requirements for a fast adaptive algorithm with guaranteed ro-

bustness, the L1 Adaptive Control (L1-AC) was reviewed. This controller claims

fast adaptation while maintaining robustness. The fast adaptation is achieved by

using a high gain feedback and robustness is achieved by filtering out the high-

frequency components of the feedback law using a low-pass filter. It was shown

that L1-AC loses its adaptivity as the gain of the adaptation law increases. Further,

the resulting limiting controller can be achieved using an implementable LTI system

whose dynamics depend only on the reference model, and not on the patient’s un-

known parameters. Furthermore, the loss of adaptivity was mathematically shown

to be a consequence of the well-known inversion of nonlinearity due to high-gain

feedback.

The majority of oscillation detection algorithms currently in practice cannot

guarantee the detection of oscillation if multiple oscillation frequency exists. More-

over, most of these algorithms are boolean and can only determine whether or not
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an oscillation exists. In a complex systems, multiple oscillations can develop si-

multaneously. The algorithm of Chapter 4 can 1) determine multiple oscillations;

and 2) determine the frequency, magnitude and fitness of each measured oscilla-

tion. The fitness of the oscillation can be used to reject insignificant oscillations.

The frequency and magnitude of the oscillations can identify the plant. The algo-

rithm requires signal for at least 10 times the presumed oscillation period, which

may limit its feasibility for short surgeries. For instance, a presumed oscillation

period of 3 minutes can only be accurately measured after 30 minutes. While this

is not clinically relevant, it is still better than what is required by other methods -

some require 50 times the length of the presumed oscillation period.

One of the biggest challenges of closed-loop control of anesthesia is the inter-

patient drug-response variability. The uncertainty in the PKPD model of patients

is a challenge for designing a controller than can be both robust and perform well

by rejecting surgical stimuli as well as following step-responses. This may lead

to an aggressive controller that can cause oscillations. The iControl system was

modified to automatically re-tune itself when oscillation was detected subject to

the following design objectives:

• The gain margin, phase margin, and peak sensitivity are the same or better

than the original design. This would be a gain margin of more than 2 and

phase margin of 30◦−60◦.

• The system must have an overshoot of less than 10% for set point change

and disturbance rejection.

• A rise time of 5-10 minutes is considered appropriate. However, even with

the current implementations of a closed-loop control, rise time performance

criteria is a secondary objective. The rise time of the original parameters

with the tuned parameters should be comparable.

The robustness and performance of the re-tuned PID controller was compared

with the original iControl tuning. The PID re-tuning was applied to 44 PKPD models

by Bibian. In all cases, the controller was initially properly tuned according to the

latest iControl version. After induction was completed, the system was re-tuned

to be unstable and cause oscillation. The dominant oscillation was automatically
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measured and the system was then re-tuned. In all 44 cases, it was shown that the

re-tuned controller had similar robustness and performance behavior as the original

iControl tuning.

The current standard of performance evaluation of closed-loop control is the

set of Varvel measures. These measures are not adequate for the current struc-

tures of closed-loop control since they cannot be used design criteria. A set of

proposed measures by Soltesz et al. were shown to correlate with the Varvel mea-

sures. Unlike Varvel, however, these proposed measures are accepted within the

control community and are used as performance criteria. The Integrated Error (IE),

Percent Overshoot (OS), and Induction Phase Duration (ID) were used as design

objectives for re-tuning the PID controller.

6.2 Future Work

The possible future directions based on the work of the thesis are outlined below.

The works are separated as ”Imminent” and ”Distant” directions.

6.2.1 Imminent Future Direction

A limitation of the oscillation detection is the required length data of 10 times

the presumed oscillation period. However, the system can moderately predict and

warn the anesthesiologist with less data. For example, the system could alert the

anesthesiologist by monitoring only 3 or 4 times the presumed oscillation period.

This could be displayed as a ”probable” oscillation. As more data is gathered, the

confidence on the measured oscillation can increase to ”certain”. Visually, the DOH

can be in green when no oscillation is present. It can turn to yellow when there is

a probable oscillation, and finally red when oscillation is detected.

The re-tuning algorithm for the PID controller can only guarantee robustness

for the measured oscillation frequency. Another oscillation may occur at a different

frequency at a later time. The tuning algorithm should therefore keep a record of all

measured oscillations and on every successive oscillation, include all the recorded

oscillations as constraints on the re-tuning optimization. Such a system can be

beneficial for use in the ICU, where a patient may be sedated for a few days.

The oscillation detection algorithm can form the basis of a measurement that

83



can give a score to how oscillatory a signal is. This can complete the proposed

Soltesz alternatives to Varvel metrics. The proposed measures currently does not

quantify oscillation and Varvel’s Wobble metric does not have a substitute.

The proposed alternative measures to the Varvel metrics requires more study

and verification. This is needed to create a set of measures that is acceptable by

both the clinicians and control engineers. Without these, no two closed-loop con-

trollers can be compared. These measures can also facilitate communication be-

tween the clinicians and the control engineers and can act as excellent diagnostic

metrics.

6.2.2 Distant Future Direction

The L1-AC in its current form cannot guarantee the fast adaptation it claims, nor

can it guarantee adaptivity at a high adaptation speed. However, adaptive con-

trollers may be the only feasible solution to a completely autonomous closed-loop

controller that is truly robust and performs well despite surgical stimuli. Model-

Predictive-Controller (MPC) is a promising adaptive controller that has been studied

by other researchers. Our own research team is also working on MPC.

Finally, the phrase ”closed-loop control of anesthesia” has been loosely used to

describe systems that only control the Depth of Hypnosis (DOH). A true control of

Depth of Anesthesia (DOA) requires monitoring several physiological signals in-

cluding the EEG, blood pressure, heart rate, respiratory rate, heart rate, etc. There

are also a variety of hypnotic, opioid, and neuromuscular drugs that are adminis-

trated to the patient to achieve a full state of anesthesia. From the controller’s point

of view, this corresponds to a MIMO system. The ideal controller should measure

DOA (both hypnotic and analgesic state) as well as level of paralysis, and automati-

cally control the infusion of all anesthetic drugs. This MIMO controller is currently

not available, but should be the holy grail of the closed-loop control of anesthesia.
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Appendix A

Propofol PKPD Modeling

The pharmacokinetic (PK) and pharmacodynamic (PD) models are described here.

PK models the distribution of the drug in the body and predicts the blood plasma

concentration (Cp) of the drug. The PD models the effect of the drug from the drug

plasma concentration. Propofol is the fastest anesthetic agent currently available

[10]. A closed-loop control system with a fast reacting agent is more ideal. The PK

and PD models discussed here are for this hypnotic agent.

In this Appendix, a quick summary and the mathematical models are provided.

More in depth discussion may be found in [43] and [10].

A.1 Pharmacokinetics

The drug uptake, distribution and elimination can be expressed mathematically

by a pharmacokinetic model. There are a few models available; the exponential

and mamillary compartment models are the most common [10]. The mamillary

compartment model is discussed below.

The body is divided into three compartments: 1) a central compartment con-

sisting of the blood, brain and liver; 2) a larger compartment consisting of mus-

cle and viscera; and 3) a third compartment consisting of bones and fat. The 3-

compartment model is shown in Figure A.1.

The drug is administrated into the central compartment intravenously. It is

eliminated from the body according to the rate k10 through hepatic and/or renal
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Figure A.1: The 3-compartment pharmacokinetic model. The rapidly equi-

librating compartment models the muscles and viscera. The central

compartment models the blood, brain and liver. The slowly equilibrat-

ing compartment models the bones and fat.

extraction. The concentration in the central compartment comes to an equilibrium

with the muscle-viscera compartment through the rate constant k21 (and the reverse

rate k12). The concentration in the central compartment also comes to an equilib-

rium with the bones-fat compartment through the rate constant k13 (and the reverse

rate k31). These rates are usually provided in the units of min−1. The concentration

of the central compartment (C1) increases following the bolus but rapidly decreases

as the concentration of the muscle-viscera (C2) and bones-fat (C3) increases to bal-

ance the equilibrium.

The blood plasma concentration of the drug is the concentration of the central

compartment; the mass-balance representation of this compartment in the state-
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space is given by [10]:
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(A.1)

where V1 is the volume of the central compartment; I(t) is the drug infusion rate;

and by definition Cp(t) =C1(t) is the concentration of the central compartment.

The clearance is the rate at which the drug is removed from a compartment and

is expressed in [ml ·min−1]. The total body clearance Cl1 is given by:

Cl1 =V1 · k10 (A.2)

Likewise, the inter-compartmental clearances Cl12,Cl21,Cl13, and Cl31 are given

by Cli j =Vi · ki j. It is easy to realize that Cl12 =Cl21 =Cl2 and Cl13 =Cl31 =Cl3.

The parameters ki j of the equation A.1 are computed according to the study

published by Schüttler et al. [48]. This population-based study relates the 3-

compartment clearances and the volumes to the patient’s body weight and age as

well as the administration type (bolus vs infusion) and the sampling site (venous

vs arterial). The values of the clearance and the volumes are shown in Table A.1.

The estimates of the intermediates parameters of the Table are given in the Table

A.2. The relationship of 3-compartment clearances and the volumes to the plasma

concentration parameters are given in Equation A.3.
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Table A.1: Propofol PK parameters from [48]. BW stands for body weight,

ven = 0 is for arterial sampling, ven = 1 is for venous sampling, bol = 0

is for infusion administration, and bol = 1 is for bolus administration.

Table A.2: Parameter estimates of the the PK model of Table A.1 from [48].

The state-space representation of the PK model of A.1 can be given as a Single-

Input/Single-Output (SISO) transfer function PK(s):

PK(s) =
Cp(s)

I(s)
=

1

V1
· (s+ k12) · (s+ k31)

(s+ p1) · (s+ p2) · (s+ p3)
(A.4)

where pi are the poles of the system.
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A.2 Pharmacodynamics

The pharmacological response of a drug as a function of the drug plasma con-

centration can be expressed mathematically by a pharmacodynamic model. Any

drug can target multiple organs in the body, resulting in multiple effects; there is

not a single unique pharmacological response for a given plasma concentration of

a drug. Here, the intake is the hypnotic drug propofol and the pharmacological

effect modeled is the depth of hypnosis.

The full pharmacological model can be represented by a LTI transfer function

PD(s) and a non-linear sigmoid-type function known as Hill-equation [10].

The LTI element models the effect site concentration Ce(s) from the dynamics

of the drug-receptor interaction. There will also be a delay for the drug to reach

the effect site from the plasma concentration. This LTI model is given by the first

order time-delayed transfer function PD(s):

PD =
Ce(s)

Cp(s)
=

1

2EC50
· kd

s+ kd

· e−Tds, (A.5)

where EC50 is the plasma concentration which yields 50% of the maximum ef-

fect; kd expresses the rate of the transfer of plasma concentration to the effect site

introduced in [49]; and Td is the arm-to-brain delay.

The non-linear Hill function models the dynamics of observed effect E(s) to the

effect-site concentration Ce(s). The observed effect E(s) runs from 0 (no hypnotic

effect) to 1 (fully awake). This model is given by:

H(s) =
E(s)

Ce(s)
= E0 +Emax ·

C
γ
e (s)

EC
γ
50 +C

γ
e

, (A.6)

where E0 and Emax are the minimum and maximum effects, and γ is a measure of

the steepness of the dose-response curve.
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Figure A.2: The full PKPD model introduced in [10].

PK(s) PD(s) H(s)I Cp Ce E

Pharmacokinetics Pharmacodynamics

A.3 The PKPD Model

The complete model dynamics relating the drug administration I(s) of propofol to

the observed effect E(s) is shown in Figure A.2 can now be introduced:

PKPD(s) =
E(s)

I(s)
= PK(s) ·PD(s) ·H(s) (A.7)

This structure represents a nonlinear SISO transfer function that relates the infusion

of Propofol I(s) to the observed effect E(s). This effect can then be converted to a

DOH index through a EEG monitor, such as the NeuroSense Monitor.

The nonlinearity H(s) can be linearized around the DOH of interest. In most

cases, a DOH of 50 is considered adequate [39]. This value represents an E(s) =

0.5 and is a logical operating point to linearize the Hill function around it. This

assumption is only valid for the maintenance phase of anesthesia. The linearized

Hill function around E = 0.5 is γ/2. The full detail of the linearizion can be found

in [43].

The linearized PKPD(s) of A.7 can now be expressed as:

PKPD(s) = Kpkpd ·
(s+ k12) · (s+ k31)

(s+ p1) · (s+ p2) · (s+ p3) · (s+ kd)
· e−Tds (A.8)

where the patient’s model gain Kpkpd is:

Kpkpd =
kd · γ

4 ·V1 ·EC50
(A.9)

Bibian [10] analyzed the induction of 44 patients with a single bolus adminis-

tration of propofol and measured the WAV. The PK and PD parameters of this study

are provided in Table A.3 and are used in Chapters 3, 4, and 5 as the model.
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Table A.3: PK and PD parameters from the Bibian study [10].
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Appendix B

Control Performance in

Closed-Loop Anesthesia

The definition of Varvel and the proposed measures are discussed. In Figure B.1,

an example of the DOH from a closed-loop control system is shown. The black line

represents the induction phase, the blue represents the maintenance phase, and the

magenta represents the emergence phase. Table B.1 displays the numerical value

of all the discussed measures for reference.

B.1 Varvel Measures

The Varvel performance measures is constituted of 4 metrics: MDPE, MDAPE, Di-

vergence, Wobble [65]. They are all based on the Percent Error (PE), defined as:

PE = 100
Cm −Cp

Cp

, (B.1)

where Cm is the measured plasma concentration and Cp is the corresponding esti-

mate of the Cm. Vectors could be in real-time (function of t) or in discrete (step

unit of h). The four Varvel metric measurements are now defined. In the context of

closed-room control, Cm is usually replaced with the measured DOH y and the Cp

is replaced by the set-point r.

1. Median Performance Error (MDPE) measures the bias and is calculated as

99



the median of all the PE:

MDPE = median(PE). (B.2)

2. Median Performance Absolute Error (MDAPE) measures the inaccuracy and

is calculated as the median of the absolute of PE:

MDPE = median(|PE|). (B.3)

3. Divergence measures whether the error is getting bigger or smaller as time

progresses and is calculated as the slope of the linear regression of the abso-

lute PE against time:

MDPE =
tT |PE|−nt̄|PE|

‖t‖2 −Nt̄2
, (B.4)

where N is the size of the signal; t̄ is the mean of the signal; tT is the trans-

pose of the vector; and ‖t‖2 is the square of the norm defined as tT t. A

positive Divergence signals an unstable control system.

4. Wobble measures the variability of the estimator and is calculated as the

median of the absolute difference between PE and MDPE:

MDPE = median(|PE −MDPE|). (B.5)

In [39] a fifth parameter was introduced in an attempt to provide a single scalar

score to the overall performance of an EEG-guided DOH control system. The Global

Score (GS) is then defined as:

GS =
MDPA+Wobble

fraction of time DOH ∈ (40,60)
. (B.6)

The interval (40,60) for the DOH is clinically recommended [3] for maintenance

phase of anesthesia.
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B.2 Proposed Control Performance Measures

The proposed performance measures by Soltesz et al. [53] provide different met-

rics for the three temporal phases of anesthesia: induction, maintenance, and emer-

gence.

A. Induction Phase Metrics

1. Induction Phase Duration (ID) is adopted from [39]. Traditionally, ID

is defined as the time it takes from the beginning of administration of

drug to the time the DOH falls and remains below 60 for a duration of

30 seconds. This definition only applies if the set-point (r) 50 is used.

Instead, 60 is replaced by requiring the DOH value to be between r±10

for 30 seconds.

2. Percent Overshoot (OS) is defined as:

OS = 100 ·min
r− y

E0 − y
, (B.7)

where r is the reference, y is the measured DOH and E0 is the awake

baseline DOH. Typical value of E0 are in the range of 90 < E0 < 100.

If E0 is not available, then the value 100 can be used.

The maximum overshoot usually occurs after the end of the induction

phase. The signals r and y are then taken as the signals from the start

of induction to 10 minutes after the end of induction phase.

B. Maintenance Phase Metrics

1. Integrated Error (IE) is introduced to replace MDPE (or the bias) of the

system. It is calculated using the trapezoid approximation rule:

IE =
N

∑
k=1

tk+1 − tk

tN − t1
· (rk+1 − yk+1)− (rk − yk)

2
, (B.8)

where the signals are for the duration of the maintenance phase only.

The quantity tN − t1 is the length of the maintenance phase; IE is nor-

malized to the length of the maintenance phase.
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2. Integrated Absolute Error (IAE) is introduced to replace MDAPE (or the

inaccuracy) of the system. It is calculated using the trapezoid approxi-

mation rule:

IE =
N

∑
k=1

tk+1 − tk

tN − t1
· |rk+1 − yk+1|− |rk − yk|

2
. (B.9)

3. Variability Index (VI) is introduced to replace Divergence of the system.

It is calculated as the relative difference between IAE and IE:

V I =
IAE − IE

IAE
. (B.10)

4. Percentage of Time Outside Adequate Range is calculated as the per-

centage of the time the signal y is outside of the adequate range. Ade-

quate range is defined as r±10 [39]. The sign of an error is of clinical

importance. It is justified to provide two percentages, E+ for the time

when r− y is more than +10, and E− when it is less than −10.

C. Emergence Phase Metrics

1. Emergence Phase Rise Time (ER) is the time it takes for the DOH to

exceed r1 +(1− e−1)(E0 + r1), where r1 is the set-point when the ad-

ministration of the hypnotic drug was terminated. If the awake baseline

E0 is not available, then E0 = 100 can be used as the default value.
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Figure B.1: Representative example from a closed-loop DOH control sys-

tem. The induction phase is shown in solid black, the maintenance

phase is shown in solid blue, the emergence phase is shown in solid

magenta, the reference is shown in thick green, and the r± 10 bounds

are shown in dashed black. The red dot represents the overshoot.

Table B.1: Varvel and proposed measures of the example from Figure B.1.

103



Appendix C

Limiting Behavior of L1 Adaptive

Control

In Chapter 3, it was claimed that the closed-loop response of the system G(s) ap-

proaches that of the reference system Gre f (s) as Γ → ∞. Moreover, it was claimed

that the limiting controller is an implantable, non-adaptive LTI system. This im-

plantable LTI system is independent of the system’s unknown parameters ω , θ , σ .

This Section will show the proof of these claims.

C.1 Problem Formulation and The L1 Adaptive

Controller

This section will provide a summary of the L1-AC. A more detailed description of

the control structure is available in Chapter 3.

Consider the following dynamics state-feedback controller G(s) (see Chapter

2.2 of [26]):

ẋ(t) = Amx(t)+b(ω(t)u(t)+θT (t)x(t)+σ(t)),

y(t) = cT x(t),
(C.1)

where x(t) ∈ R
n is the measured state of the system; u(t) ∈ R is the control input;

y(t) ∈ R is the output; b,c ∈ R
n are assumed known constant vectors; Am is a
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n× n Hurwitz matrix corresponding to the desired closed-loop dynamics; ω ∈ R

is an unknown constant but with known sign; θT (t) ∈ R
n is a vector of unknown

parameters; and σ(t) ∈R models input disturbances. The dynamics of the desired

system M(s) are given by:

ẋm(t) = Amxm(t)− kgbr(t), xm(0) = x0,

ym(t) = cT xm(t)
(C.2)

where kg ,−1/(cT A−1
m b) and r(t) is the reference.

The state predictor is given by:

˙̂x(t) = Amx̂(t)+b(ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂ (t)),

ŷ(t) = cT x̂(t).
(C.3)

The adaptation laws are given by:

˙̂θ(t) =−Γ ·Proj
(

θ̂ (t),−x̃T Pbx(t)
)

, θ̂ (t) = θ0,

˙̂σ(t) =−Γ ·Proj
(

σ̂(t),−x̃T Pb
)

, σ̂(t) = σ0,

˙̂ω(t) =−Γ ·Proj
(

ω̂(t),−x̃T Pbu(t)
)

, ω̂(t) = ω0,

(C.4)

where x̃(t) = x̂(t)− x(t), Γ ∈ R
+ is the adaptation gain, and P = PT > 0 is the

solution of the algebraic Lyapunov equation AT
mP+PAm = −Q for arbitrary Q =

QT > 0.

The L1 control signal is defined as:

u(s) =−kD(s)(η̂(s)− kgr(s)), (C.5)

where r(s) and η̂(s) are the Laplace transforms of r(t) and η̂(t) respectively and

η̂(t), ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂(t). (C.6)

k > 0 is a feedback gain and D(s) is a strictly proper transfer function such that
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kg kD(s)

η̂(t) = ω̂(t)u(t) + θ̂T (t)x(t) + σ̂(t)

ẋ(t) = Amx(t) + b(ωu(t) + θTx(t) + σ(t))
y(t) = cTx(t)

ẋ(t) = Amx̂(t) + b(ω̂u(t) + θ̂Tx(t) + σ̂(t))
ŷ(t) = cT x̂(t)

˙̂
θ(t) = −ΓProj(θ̂(t),−x̃TPbx(t))
˙̂σ(t) = −ΓProj(σ̂(t),−x̃TPb)
˙̂ω(t) = −ΓProj(ω̂(t),−x̃TPbu(t))

r +

−

+
−

Figure C.1: L1-AC as formulated in [26].

they lead to a strictly proper stable filter C(s):

C(s) =
ωkD(s)

1+ωkD(s)
. (C.7)

C.2 Removal of the Internal Feedback over η̂(t)

Figure C.1 shows the L1-AC architecture as shown in [26]. The internal feedback

over the signal η̂(t) is confusing and unnecessary. To analyze the limiting behavior

of the system, this loop needs to be taken out. The multiplication of the system’s

adaptive parameters ω̂ , θ̂ , and σ̂ with the state feedback x(t) and the controller’s

output u(t) is the nonlinearity that is present in the control architecture. Using the

formulation of η̂(t) from the Figure C.1, it follows that this signal be defined as

the output of the following dynamic system:

˙̂θ(t) =−ΓPro j(θ̂ (t),−x̃T Pbx(t)),

˙̂σ(t) =−ΓPro j(σ̂(t),−x̃T Pb),

˙̂ω(t) =−ΓPro j(ω̂(t),−x̃T Pbu(t)),

η̂(t) = ω̂(t)u(t)+ θ̂T (t)x(t)+ σ̂ (t).

(C.8)

The control architecture is a continuous system. The feedback signal u(t) over

η̂(t) from Figure C.1 is the same signal u(t) that feeds into the adaptation laws

block. The same is true for the signal x(t) that feeds into the predictor and the

adaptation laws block. It follows that η̂(t) is the only input signal to the predictor.
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kg kD(s)
ẋ(t) = Amx(t) + b(ωu(t) + θTx(t) + σ(t))
y(t) = cTx(t)

ẋ(t) = Amx̂(t) + bη̂(t)(t))
ŷ(t) = cT x̂(t)

˙̂
θ(t) = −ΓProj(θ̂(t),−x̃TPbx(t))
˙̂σ(t) = −ΓProj(σ̂(t),−x̃TPb)
˙̂ω(t) = −ΓProj(ω̂(t),−x̃TPbu(t))

η̂(t) = ω̂(t)u(t) + θ̂T (t)x(t) + σ̂

r +

−

+
−

Figure C.2: Equivalent architecture of the L1-AC with removed internal

feedback over η̂(t).

This leads to a more compact block diagram shown in Figure C.2. The state-space

representation of the predictor can now be replaced by its single input transfer func-

tion representation H(s) since η̂(t) is the only input, and H(s) = (sI−Am)
−1b. The

same is true for the plant whose only input is u(t), and the state-space representa-

tion of it can be replaced by its transfer function G(s). The block diagram is further

simplified to Figure C.3.

kg kD(s) G(s)

H(s)

˙̂
θ(t) = −ΓProj(θ̂(t),−x̃TPbx(t))
˙̂σ(t) = −ΓProj(σ̂(t),−x̃TPb)
˙̂ω(t) = −ΓProj(ω̂(t),−x̃TPbu(t))

η̂(t) = ω̂(t)u(t) + θ̂T (t)x(t) + σ̂

r +

−

+
−

Figure C.3: Simplified architecture of the L1-AC to a more coherent struc-

ture.
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C.3 Linearizing the L1 Controller with Generic

Adaptation Laws

The L1-AC control structure creates an internal feedback loop in the controller.

The forward loop consists of nonlinear functions with the adaptive gain Γ, and the

feedback loop consists of the LTI function H(s). High-gain feedback over a plant

results in the approximate inversion of LTI function (see [23], Chapter 2.6). This

inversion can be approximated with a linear model. The dynamic system in (C.8)

is rewritten for generic adaptation laws and is shown in Figure C.4:

˙̂θ(t) = Γ f1(x, x̂),

˙̂σ(t) = Γ f2(x, x̂),

˙̂ω(t) = Γ f3(x, x̂,u),

η̂(t) = g(θ̂ , σ̂ , ω̂ ,x, x̂,u).

(C.9)

Taking the gain Γ out of the function fi clarifies the effect of increasing it. Let

{xQ, x̂Q,uQ, θ̂Q, σ̂Q, ω̂Q, η̂Q; t ∈ R} correspond to any set of equilibrium points of

the closed-loop system, i.e. ˙̂θ(t) = f1(xQ, x̂Q) = 0. Define:

∆x(t) = x(t)− xQ,

∆x̂(t) = x̂(t)− x̂Q,

∆u(t) = u(t)−uQ,

∆θ̂ (t) = θ̂ (t)− θ̂Q,

∆σ̂(t) = σ̂(t)− σ̂Q,

∆ω̂(t) = ω̂(t)− ω̂Q,

∆η̂(t) = η̂(t)− η̂Q,

(C.10)

where η̂Q , g(θ̂Q, σ̂Q, ω̂Q,xQ, x̂Q,uQ).

The linearization of nonlinear adaptation laws in equation (C.9) in close vicin-
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kg kD(s) G(s)

H(s)

˙̂
θ(t) = Γf1(x, x̂)
˙̂σ(t) = Γf2(x, x̂)
˙̂ω(t) = Γf3(x, x̂, u)
η̂(t) = g(x, x̂, u)

r +

−

+
−

Figure C.4: Simplified architecture of the L1-AC with generic adaptive

laws.

kg kD(s) G(s)

H(s)

r +

−

+

Fx̂(s) Fx(s)Fu(s)

+

Figure C.5: Linearized L1-AC with generic adaptation laws.

ity of the equilibrium states are given by a first order Taylor series:

∆ ˙̂θ(t) = Γ
[∂ f1

∂x

∣

∣

∣

xQ

∆x(t)+
∂ f1

∂ x̂

∣

∣

∣

xQ

∆x̂(t)
]

,

∆ ˙̂σ(t) = Γ
[∂ f2

∂x

∣

∣

∣

xQ

∆x(t)+
∂ f2

∂ x̂

∣

∣

∣

xQ

∆x̂(t)
]

,

∆ ˙̂ω(t) = Γ
[∂ f3

∂x

∣

∣

∣xQ
uQ

∆x(t)+
∂ f3

∂ x̂

∣

∣

∣xQ
uQ

∆x̂(t)+
∂ f3

∂u

∣

∣

∣xQ
uQ

∆u(t)
]

,

∆η̂(t) =
∂g

∂ θ̂

∣

∣

∣

η̂Q

∆θ̂ (t)+
∂g

∂ σ̂

∣

∣

∣

η̂Q

∆σ̂(t)+
∂g

∂ω̂

∣

∣

∣

η̂Q

∆ω̂(t)

+
∂g

∂x

∣

∣

∣

η̂Q

∆x(t)+
∂g

∂u

∣

∣

∣

η̂Q

∆u(t).

(C.11)
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Let the notation Fix represent the Laplace transform of ∂ fix

∂x
. Then:

∆θ̂ (s) = ΓF1x∆x(s)+ΓF1x̂∆x̂(s),

∆σ̂(s) = ΓF2x∆x(s)+ΓF2x̂∆x̂(s),

∆ω̂(s) = ΓF3x∆x(s)+ΓF3x̂∆x̂(s)+ΓF3u∆u(s),

∆η̂(s) = Gθ̂ ∆θ̂(s)+Gσ̂ ∆σ̂(s)+Gω̂∆ω̂(s)

+Gx∆x(s)+Gu∆u(s),

(C.12)

where Gθ̂ , Gσ̂ , Gω̂ , Gx, and Gu are the Laplace transform of ∂g

∂ θ̂

∣

∣

∣

η̂Q

, ∂g
∂ σ̂

∣

∣

∣

η̂Q

, ∂g
∂ω̂

∣

∣

∣

η̂Q

, ∂g
∂x

∣

∣

∣

η̂Q

,

and ∂g
∂u

∣

∣

∣

η̂Q

respectively. Substituting the intermediate signals ∆θ̂ (s), ∆σ̂(s), and

∆ω̂(s), the LTI system ∆η̂(s) can now be written as:

∆η̂ = Fx(s)∆x(s)+Fx̂(s)∆x̂(s)+Fu(s)∆u(s), (C.13)

where Fx(s), Fx̂(s), and Fu(s) are the linearized transfer functions between ∆x, ∆x̂,

∆u around the equilibrium points xQ, x̂Q,uQ, θ̂Q, σ̂Q, ω̂Q, η̂Q and correspond to:

Fx(s) = Γ(Gθ̂ F1x +Gσ̂ F2x +Gω̂F3x),

Fx̂(s) = Γ(Gθ̂ F1x̂ +Gσ̂ F2x̂ +Gω̂F3x̂),

Fu(s) = ΓGω̂F3u +Gu.

(C.14)

kg kD(s) G(s)

H(s)

r +

−

+

Fx̂(s)

Fx(s)

Fu(s)

kgkD(s)

−kD(s)

+

+

u x

u

x̂

η̂

Figure C.6: Equivalent form of Figure C.5 of the linearized L1-AC with

generic adaptation laws.
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kg kD(s) G(s)
r +

−

Fx(s)
1−Fx̂(s)H(s)+kD(s)Fu(s)

u x

Figure C.7: Final form of the linearized adaptation laws for L1-AC with

generic adaptation laws.

The block diagram for this linearized controller is shown in Figure C.5. This

block diagram is equivalently shown in Figure C.6. This structure was realized by

taking out the signal u that feeds to Fu out of the internal loop. It now follows that

the feedback controller, i.e. the relation between ∆x and ∆u, is derived by realizing

that ∆x̂ = H(s)∆η̂ and ∆u =−kD(s)∆η̂ and substituting ∆η̂ from C.13:

∆u(s) = K∆x(s)∆x(s) =
−Fx(s)kD(s)

1−Fx̂(s)H(s)+Fu(s)kD(s)
∆x(s). (C.15)

This linearized LTI controller corresponds to a two-degree of freedom LTI con-

troller. The transfer function between ∆r(t) and ∆u(t) has been omitted for sim-

plicity, but it can also be derived easily. Figure C.7 shows the block diagram for

this LTI controller. The transfer functions Fx, Fx̂, Fu can be replaced by their defi-

nition C.14; the gain Γ can then be taken to infinity to yield the limiting behavior

for the L1 controller with generic adaptation laws.

In the next Section, the projection operator in the adaptation laws used in the

Hovakimyan’s implementation of the L1-AC is linearized and the limiting behavior

is computed

C.4 Linearization of the Projection Operator in the L1

Adaptive Control

The previous Section, the L1-AC with generic adaptation laws, was linearized. In

this Section, the case of projection operator for the adaptation laws is linearized.
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Following the linearization definition C.11, the adaptation laws C.4 are linearized:

∆ ˙̂θ(t) = Γ
[

− x̃Q(Pb)T ∆x(t)+ xQ(Pb)T ∆x(t)− xQ(Pb)T ∆x̂(t)
]

,

∆ ˙̂σ(t) = Γ
[

(Pb)T ∆x(t)− (Pb)T ∆x̂(t)
]

,

∆ ˙̂ω(t) = Γ
[

uQ(Pb)T ∆x(t)−uQ(Pb)T ∆x̂(t)− x̃Q(Pb)T ∆u(t)
]

,

∆η̂(t) = uQ∆ω̂(t)+ωQ∆u(t)+ θ̂T
Q ∆x(t)+ xT

Q∆θ̂ (t)+∆σ̂(t).

(C.16)

At the equilibrium points, it follows that f1(xQ, x̂Q) = 0, f2(xQ, x̂Q) = 0, and

f3(xQ, x̂Q,uQ) = 0. This leads to xQ = x̂Q and x̃Q = x̂Q−xQ = 0. The system above

simplifies to:

∆ ˙̂θ(t) = Γ
[

xQ(Pb)T ∆x(t)− xQ(Pb)T ∆x̂(t)
]

,

∆ ˙̂σ(t) = Γ
[

(Pb)T ∆x(t)− (Pb)T ∆x̂(t)
]

,

∆ ˙̂ω(t) = Γ
[

uQ(Pb)T ∆x(t)−uQ(Pb)T ∆x̂(t)
]

,

∆η̂(t) = uQ∆ω̂(t)+ωQ∆u(t)+ θ̂T
Q ∆x(t)+ xT

Q∆θ̂ (t)+∆σ̂(t).

(C.17)

Assume the initial conditions of these differentials are all zero, i.e. ∆θ̂0 = 0,

∆σ̂0 = 0, and ∆ω̂0 = 0. The system above can be written in the form of (C.13) as:

∆η̂(s) =
[Γ

s
(xT

QxQ +u2
Q +1)(Pb)T + θ̂T

Q

]

∆x(s)

−Γ

s
(xT

QxQ +u2
Q +1)(Pb)T ∆x̂(s)+wQ∆u(s).

(C.18)

The transfer function between ∆x and ∆u is then written as:

∆û(s) =−
kD(s)

[

Γ
s
(xT

QxQ +u2
Q +1)(Pb)T + θ̂T

Q

]

1+ Γ
s
(xT

QxQ +u2
Q +1)(Pb)T H(s)+ kD(s)ωQ

∆x(s). (C.19)

This controller is stable if and only if the L1-norm condition is satisfied and the

limit of the controller as Γ → ∞ exists. In this case, the limit of this controller
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yields:

ulim(s) = lim
Γ→∞

−
kD(s)

[

Γ
s
(xT

QxQ +u2
Q +1)(Pb)T + θ̂T

Q

]

1+ Γ
s
(xT

QxQ +u2
Q +1)(Pb)T H(s)+ kD(s)ωQ

x(s)

=
−kD(s)(Pb)T

(Pb)T H(s)
x(s).

(C.20)
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Appendix D

Robustness and Performance of

iControl

The following data are from the 44 simulation case studies of Chapter 5. The ro-

bustness, output disturbance rejection, and set-point response of the auto-tuned

PID controller in response to a detected oscillation is compared to the current im-

plementation of iControl. The PID parameters for both the auto-tuned controller

and the iControl are also provided.
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Table D.1: Robustness comparison of the iControl vs the auto-tuned algo-

rithm of Chapter 5 for the 44 PKPD models.
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Table D.2: Output disturbance rejection comparison of the iControl tuning

vs the auto-tuned algorithm of Chapter 5 for the 44 PKPD models.
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Table D.3: Set-point response comparison of the iControl tuning vs the

auto-tuned algorithm of Chapter 5 for the 44 PKPD models.

117



Table D.4: PID Parameters of the iControl tuning and the auto-tuned algo-

rithm of Chapter 5 for the 44 PKPD models.
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Appendix E

Oscillation Detection MATLAB

OscillationDetectionAlgorithm

1 % Input ’ s order of s i gna l s :

2 % 1. Output WAV

3 % 2. Time ( second ) . W i l l conver t to min ; o s c i l l a t i o n measured i n minutes

4 f u n c t i o n p m f = O s c i l l a t i o n D e t e c t i on A lg o r i t h m ( i npu t )

5

6 % We requ i re to save a l l the output y

7 % So we can go over i t and de tec t the o s c i l l a t i o n when enough data po in t s

8 % are found

9 p e r s i s t e n t s i g n a l ;

10 g loba l toRunParam ;

11

12 % Reset on t ime = 0;

13 i f i npu t ( 2 ) == 0

14 s i g n a l . Data = [ ] ;

15 s i g n a l . Time = [ ] ;

16 end

17

18 % Store the t ime and output y

19 y = inpu t ( 1 ) ;

20 s i g n a l . Data = [ s i g n a l . Data ; y ] ;

21 s i g n a l . Time = [ s i g n a l . Time ; i npu t ( 2 ) / 6 0 ] ;

22

23 % This w i l l run the p a t i e n t case i n ” r e a l t ime ” to determine a l l

24 % o s c i l l a t o r y components of the s i g n a l .

25 % Please set a l l parameters i n the next sec t i on .

26 % Time i s i n minutes !

27 %% Test Parameters %%

28 t e s t . per iod = 2 . 5 ; % Period Test
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29 t e s t . magnitude = t e s t . per iod / 1 . 1 ; % Magntinude Test

30 t e s t . f i t n e s s = 25; % Fi tness Test (%)

31 %% Define the Parameters

32 toRunParam . tes tParameters = t e s t ;

33 toRunParam . windowPeriod = [ 1 : 3 0 ] ; % Period l l / u l bound ( i n minute )

34 toRunParam . pe r i od Inc = 2; % The increment i n per iod from LL to UL

35 toRunParam . windowSize = 10; % Number of per iods to be analyzed

36

37 toRunParam . mergePeriod = 0 . 5 ; % The d i f f e r e n c e between two consecut ive

per iods to be considered same

38 toRunParam . mergeTime = 10; % The d i f f e r e n c e between two consecut ive t ime

to be considered same

39 %% Loop through a l l requested o s c i l l a t i o n bounds to de tec t o s c i l l a t i o n

40 % We need at l e a s t 2 data po in t s to c a l c u l a t e sampling t ime ( T 2 − T 1 )

41 p m f = [0 0 0 ] ;

42 i f ( l eng th ( s i g n a l . Time ) > 1)

43 f o r windowPeriod=toRunParam . windowPeriod( 1 ) : toRunParam . pe r i od Inc : toRunParam .

windowPeriod ( 2 )

44 r = segmen t Osc i l l a t i on ( windowPeriod , s i g n a l ) ;

45 i f sum( abs ( r ) ) ˜= 0

46 p m f = r ;

47 end

48 end

49 end

50

51 end

52

53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57

58 %% Segment O s c i l l a t i o n

59 f u n c t i o n p m f = segmen t Osc i l l a t i on ( windowPeriod , s i g n a l )

60 % This w i l l f i n d ALL o s c i l l a t i o n s upto cu r ren t t ime

61 % O s c i l l a t i o n s need to be merged a f t e r to remove r e p e t i t i o n

62 % NOTE: We w i l l on ly go up u n t i l cu r ren t t ime . I f an o s c i l l a t i o n i s missed ,

63 % i t w i l l no longer be detec ted .

64 % WindowPeriod i s lower bound of the o s c i l a t i o n t h a t we need to de tec t . The

65 % upper bound i s +toRunParam . pe r i od Inc

66

67 g loba l toRunParam sampleSet pat ientModel ;

68 p e r s i s t e n t l a s t S e t ;

69

70 i f isempty ( l a s t S e t )

71 l a s t S e t = −1;

72 end
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73

74 Ts = s i g n a l . Time ( 2 ) − s i g n a l . Time ( 1 ) ;

75 o s c i l l a t i o n S i g n a l s = [ ] ;

76 per iodIn IndexLL = round ( windowPeriod / Ts ) ;

77 periodInIndexUL = round ( ( windowPeriod+toRunParam . pe r i od Inc ) / Ts ) ;

78

79 iEnd = leng th ( s i g n a l . Time ) ;

80 i S t a r t = iEnd − per iodIn IndexLL ∗ toRunParam . windowSize ;

81

82 p m f = [0 0 0 ] ;

83

84 % Enough data po in t to analze

85 i f i S t a r t > 0

86

87 s P a r t i a l = [ ] ;

88 s P a r t i a l . Time = s i g n a l . Time ( i S t a r t : iEnd ) ;

89 s P a r t i a l . Data = s i g n a l . Data ( i S t a r t : iEnd ) ;

90

91 % This runs the ODA and f i n d s the o s c i l l a t o r y p a i r

92 O s c i l l a t i o n P a i r = ODA( s P a r t i a l , windowPeriod) ;

93

94 % An o s c i l l a t i o n was obsorved

95 i f ( ˜ isempty ( O s c i l l a t i o n P a i r ) )

96 t e s t = O s c i l l a t i o n P a i r . F i tness > toRunParam . tes tParameters . f i t n e s s ;

97 rangeLL = windowPeriod <= O s c i l l a t i o n P a i r . Period ;

98 rangeUL = O s c i l l a t i o n P a i r . Period < windowPeriod + toRunParam . pe r i od Inc ;

99

100 % The r e g u l a r t o r y t e s t s are passed

101 % The per iod i s w i t h i n the LL & UL range

102 i f ( t e s t && rangeLL && rangeUL )

103 % Save the s t a r t / end t ime ind i ces

104 % And save the data to the master s i g n a l

105 O s c i l l a t i o n P a i r . i S t a r t = i S t a r t ;

106 O s c i l l a t i o n P a i r . iEnd = iEnd ;

107

108 % Return the r e s u l t

109 p m f = [ O s c i l l a t i o n P a i r . Period O s c i l l a t i o n P a i r . Magnitude

O s c i l l a t i o n P a i r . F i tness ] ;

110

111 %disp ( [ O s c i l l a t i o n P a i r . Period O s c i l l a t i o n P a i r . Magnitude

O s c i l l a t i o n P a i r . F i tness ] ) ;

112 % New pa t i en t , need to create a blank s t r u c t

113 i f ( l a s t S e t ˜= sampleSet )

114 l a s t S e t = sampleSet ;

115

116

121



117 disp ( [ O s c i l l a t i o n P a i r . Period O s c i l l a t i o n P a i r . Magnitude

O s c i l l a t i o n P a i r . F i tness ] ) ;

118

119

120 % Save t h i s ins tance of the model f o r f u t u r e use

121 load ( ’ Osc i l l a to ryMode l s . mat ’ ) ;

122 wr i teVar = s t r c a t ( ’ Mod i f i edPa t i en t ’ , num2str ( pat ientModel ) ) ;

123 pa t i en tVa r = s t r c a t ( ’ PKPDPatient ’ , num2str ( pat ientModel ) ) ;

124 eva l ( [ ’ g l oba l ’ pa t i en tVa r ’ ; ’ ] ) ;

125 readVar = s t r c a t ( pat ientVar , ’ ( ’ , num2str ( sampleSet ) , ’ ) ’ ) ;

126

127

128

129 i f ˜ e x i s t ( wr i t eVar )

130 eva l ( [ w r i t eVar ’ = [ ] ; ’ ] ) ;

131 end

132 eva l ( [ w r i t eVar ’ ( end+1) . t f = ’ readVar ’ . t f ; ’ ] ) ;

133 eva l ( [ w r i t eVar ’ ( end ) .gamma = ’ readVar ’ .gamma; ’ ] ) ;

134 eva l ( [ w r i t eVar ’ ( end ) . E0 = ’ readVar ’ . E0 ; ’ ] ) ;

135 eva l ( [ w r i t eVar ’ ( end ) . bwt = ’ readVar ’ . bwt ; ’ ] ) ;

136 eva l ( [ w r i t eVar ’ ( end ) . age = ’ readVar ’ . age ; ’ ] ) ;

137 eva l ( [ w r i t eVar ’ ( end ) . bht = ’ readVar ’ . bht ; ’ ] ) ;

138 eva l ( [ w r i t eVar ’ ( end ) . gdr = ’ readVar ’ . gdr ; ’ ] ) ;

139 eva l ( [ w r i t eVar ’ ( end ) . study = ’ readVar ’ . s tudy ; ’ ] ) ;

140 eva l ( [ w r i t eVar ’ ( end ) . PKtype = ’ readVar ’ . PKtype ; ’ ] ) ;

141 eva l ( [ w r i t eVar ’ ( end ) . Td = ’ readVar ’ . Td ; ’ ] ) ;

142 eva l ( [ w r i t eVar ’ ( end ) . EC50 = ’ readVar ’ . EC50 ; ’ ] ) ;

143 eva l ( [ w r i t eVar ’ ( end ) . Kd = ’ readVar ’ . Kd ; ’ ] ) ;

144

145 save ( ’ Osc i l l a to ryMode l s . mat ’ , wr i teVar , ’−append ’ ) ;

146 end

147 end

148 end

149 end

150 end

151

152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

156

157 %% ODA %%

158 f u n c t i o n o s c i l l a t o r y P a i r = ODA( s i gna l , windowPeriod)

159 g loba l toRunParam ;

160 % Computes the o s c i l l a t o r y p a i r

161 % F i r s t i t detec ts a high / low p a i r

162 % Then i t w i l l perform the t e s t to determine i f i t i s o s c i l l a t o r y .
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163 % This w i l l r e t u r n the h ighes t f i t n e s s as the main o s c i l l a t i o n

164

165 Ts = s i g n a l . Time ( 2 ) − s i g n a l . Time ( 1 ) ;

166 N = leng th ( s i g n a l . Time ) ;

167

168 x = s i g n a l . Data − mean( s i g n a l . Data ) ;

169 y = dc t ( x ) ;

170

171 %% Get the SL Components

172 Sy = std ( y ) ;

173 yh = seaLevel (3∗Sy , y ) ;

174 y l = seaLevel ( Sy , y ) ;

175 Yi = ithDCT ( yh ) ;

176 Yj = ithDCT ( y l ) ;

177 Xi = i d c t ( Yi ) ;

178 Xj = i d c t ( Yj ) ;

179 [ dump, I ] = s i ze ( Yi ) ;

180 [ dump, J ] = s i ze ( Yj ) ;

181

182 %% Find the pa i rs of x i and x j t h a t match up

183 maxFitness = − I n f ;

184 maxPair = n u l l ( 1 ) ;

185 f o r i =1: I

186 x i = Xi ( : , i ) ;

187 y i = Yi ( : , i ) ;

188 mi = max( abs ( y i ) ) ;

189

190 high = n u l l ( 1 ) ;

191 low = n u l l ( 1 ) ;

192 f o r j =1:J

193 x j = Xj ( : , j ) ;

194 y j = Yj ( : , j ) ;

195 mj = max( abs ( y j ) ) ;

196

197 i f ( mi == mj )

198

199 high = generateSigna l ( s i g n a l . Time , x i , x ) ;

200 low = generateSigna l ( s i g n a l . Time , x j , x ) ;

201 break ;

202 end

203 end

204

205 % Now perform the t e s t s to see i f t h i s i s o s c i l l a t o r y

206 i f ˜ isempty ( low )

207

208 % Only t e s t f o r the o s c i l l a t i o n s t h a t are w i t h i n the l i m i t

209 rangeHighLL = windowPeriod <= high . per iod .mean ;
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210 rangeHighUL = high . per iod . mean < windowPeriod + toRunParam . pe r i od Inc ;

211 rangeLowLL = windowPeriod <= low . per iod . mean ;

212 rangeLowUL = low . per iod . mean < windowPeriod + toRunParam . pe r i od Inc ;

213

214 i f ( rangeHighLL && rangeHighUL && rangeLowLL && rangeLowUL )

215 hTest = high . per iod . t e s t >= toRunParam . tes tParameters . per iod ;

216 l Tes t = low . per iod . t e s t >= toRunParam . tes tParameters . per iod ;

217 i f ( hTest && lTes t )

218

219 % We only want the maximum f i t n e s s value .

220 % So only s e l e c t t h i s p a i r i f the f i t n e s s i s the h ighes t value .

221 i f ( low . f i t n e s s > maxFitness )

222 p a i r = [ ] ;

223 p a i r . high = high ;

224 p a i r . low = low ;

225

226 maxFitness = low . f i t n e s s ;

227 maxPair = p a i r ;

228 end

229 end

230 end

231 end

232 end

233

234 % I f a maximum p a i r was found , then perform the magnitude t e s t .

235 % We need to determine which component ( high or low ) to use f o r the

236 % per iod / magnitude .

237 % Whichever p a i r has the h igher p e r i o d i c r e g u l a t o r y value , w i l l then be

238 % selec ted as the candidate .

239 o s c i l l a t o r y P a i r = n u l l ( 1 ) ;

240 i f ( ˜ isempty ( maxPair ) )

241 high = maxPair . high ;

242 low = maxPair . low ;

243

244 % Use the low component

245 i f ( low . per iod . t e s t > high . per iod . t e s t )

246 prd = low . per iod ;

247 mag = low . magnitude ;

248 % Use the high component

249 else

250 prd = high . per iod ;

251 mag = high . magnitude ;

252 end

253

254 % Fina l t e s t : magnitude r e g u l a t o r t e s t must a lso be s a t i s f i e d .

255 mTest = mag. t e s t >= toRunParam . tes tParameters . magnitude ;

256 i f ( mTest )

124



257 o s c i l l a t o r y P a i r = maxPair ;

258 o s c i l l a t o r y P a i r . F i tness = low . f i t n e s s ;

259 o s c i l l a t o r y P a i r . Magnitude = mag. mean;

260 o s c i l l a t o r y P a i r . Period = prd . mean;

261 end

262 end

263 end

264

265

266

267

268

269

270

271

272

273

274

275

276

277 %% Sea Level %%

278 f u n c t i o n suppressed = seaLevel ( SL , func )

279 % This f u n c t i o n supresses the values below Sy and re tu rns a vec to r o f

280 % same diment ion as y , but w i th supressed values .

281 N = leng th ( func ) ;

282 tmp = zeros (1 ,N) ;

283 index = f i n d ( abs ( func ) >= SL) ;

284 tmp ( index ) = func ( index ) ;

285 suppressed = tmp ;

286 end

287

288 %% i t h D i sc re te Cosine Transform

289 f u n c t i o n output = ithDCT ( y f )

290 % Generates the i t h DCT component o f the vec to r sub jec t to the f o l l o w i n g

291 % c r i t e r i a :

292 % y i ( k ) = yf , i ( k ) f o r ks , i <= k <= ke , i ; o therwise 0

293 % where

294 % y f ( ks , i ) != 0 && y f ( ks , i−r ) = 0 f o r r = 1

295 % y f ( ke , i ) ˜= 0 && y f ( ke , i + r ) = 0 f o r r = 1 ,2 ,3 ,4

296 % ks , i <= ke , i

297 % I t re tu rns a mat r i x o f k by N where k i s the number of segments t h a t

298 % match the c r i t e r i a .

299 N = leng th ( y f ) ;

300 Yi = [ ] ;

301 s = 2;

302 whi le ( s ˜= N )

303 i f ( y f ( s ) ˜= 0 && y f ( s−1) == 0 )
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304 f o r e=s :N−4

305 % match found . Find iDCT f o r the i t h component

306 i f ( y f ( e ) ˜= 0 && leng th ( f i n d ( y f ( e+1:e+4) == 0) ) == 4 )

307 y i = zeros (N, 1 ) ;

308 y i ( s : e ) = y f ( s : e ) ;

309 Yi = [ Yi y i ] ;

310 s = e + 1;

311 break ;

312 end

313 end

314 else

315 s = s +1;

316 end

317 end

318 output = Yi ;

319 end

320

321 %% Period Sequence

322 f u n c t i o n T = periodSequence( time , func )

323 % Calcu la tes the per iod sequence from the o r i g i n a l s i g n a l

324 z = zeroCrossingSequence( time , func ) ;

325 L = leng th ( z ) ;

326 per iod = [ ] ;

327 f o r l =1:L−1

328 per iod ( l ) = 2∗( z ( l +1)−z ( l ) ) ;

329 end

330 T = per iod ;

331 end

332

333 %% Period Test

334 f u n c t i o n R = per iodTes t ( periodSequence)

335 % Calcu la tes the per iod of a p a r t i a l ( iDCT) .

336 % Based on the work Wang 2013

337 alpha = 0.0027;

338 N = leng th ( periodSequence) ;

339 N = 8;

340 CV = std ( periodSequence) / mean( periodSequence) ;

341 x = ch i2 i nv (1−alpha /2 ,N−1) ; % We have df = L−1, and L =

N+1

342 f = s q r t ( x / ( N−1) ) ;

343 R = f /CV;

344 end

345

346 %% Magnitude Sequence

347 f u n c t i o n magnitude = magnitudeSequence ( Ts , func , per iod )

348 % Calcu la tes the Fi tness of a p a r t i a l ( iDCT) .

349 % Based on the work Wang 2013
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350 N = leng th ( func ) ;

351 magnitude = [ ] ;

352 I n t e r v a l = round ( per iod / Ts ) ;

353 f o r l =1: I n t e r v a l :N−I n t e r v a l

354 m = max( func ( l : l + I n t e r v a l ) ) − min ( func ( l : l + I n t e r v a l ) ) ;

355 magnitude = [ magnitude m] ;

356 end

357 end

358

359 %% Magnitude Test

360 f u n c t i o n R = magnitudeTest ( magnitudeSequence )

361 % Calcu la tes the modi f ied r e g u l a t o r index .

362 % R value > 2.73 denotes an o s c i l l a t i o n .

363 alpha = 0.0027;

364 N = leng th ( magnitudeSequence ) ;

365 CV = std ( magnitudeSequence ) / mean( magnitudeSequence ) ;

366 x = ch i2 i nv (1−alpha /2 ,N−1) ; % We have df = L−1, and L =

N

367 R = s q r t ( x ) / ( s q r t (N−1)∗CV) ;

368 end

369

370 %% Zero Crossing Sequence

371 f u n c t i o n z = zeroCrossingSequence( time , func )

372 % Calcu la tes the zero−cross ing of a f u n c t i o n .

373 N = leng th ( func ) ;

374 z = t ime ( f i n d ( func ( 1 :N−1) .∗ func ( 2 :N) < 0 ) ) ;

375 end

376

377 %% Fi tness Test

378 f u n c t i o n F = f i t n e s s T e s t ( p a r t i a l , x )

379 % Calcu la tes the Fi tness of a p a r t i a l ( iDCT) .

380 % Based on the work Wang 2013

381 F = 100∗(1−norm ( p a r t i a l − x ) / norm ( x ) ) ;

382 end

383

384

385 %% Generates a s i g n a l w i th a l l the needed components

386 f u n c t i o n s i g n a l = generateSigna l ( t ime , p a r t i a l , x )

387 % Charac ter izes the s i g n a l by d e f i n i n g

388 % s i g n a l . x % time−domain s i g n a l

389 % s i g n a l . y % DCT s i g n a l

390 % s i g n a l . t ime

391 % s i g n a l . maxDct

392 % s i g n a l . magnitude % time−domain s i g n a l

393 % s i g n a l . magnitude . s i g n a l

394 % s i g n a l . magnitude . mean

395 % s i g n a l . magnitude . s td
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396 % s i g n a l . per iod % time−domain s i g n a l

397 % s i g n a l . per iod . s i g n a l % time−domain s i g n a l

398 % s i g n a l . per iod . mean % time−domain s i g n a l

399 % s i g n a l . per iod . s td % time−domain s i g n a l

400 % s i g n a l . zeroCrossing % time−domain s i g n a l

401 % s i g n a l . index

402 % s i g n a l . index . p

403 % s i g n a l . index .m

404 % s i g n a l . index . f

405

406

407 per iod = [ ] ;

408 per iod . s i g n a l = periodSequence( time , p a r t i a l ) ;

409 per iod . mean = mean( per iod . s i g n a l ) ;

410 per iod . s td = s td ( per iod . s i g n a l ) ;

411 per iod . t e s t = per iodTes t ( per iod . s i g n a l ) ;

412

413

414

415 magnitude = [ ] ;

416 magnitude . s i g n a l = [ ] ;

417 magnitude . mean = [ ] ;

418 magnitude . s td = [ ] ;

419 magnitude . t e s t = [ ] ;

420 i f ( ˜ isnan ( per iod . mean) )

421 magnitude . s i g n a l = magnitudeSequence ( ( t ime ( 2 )−t ime ( 1 ) ) , p a r t i a l , per iod .

mean) / 2 ;

422 magnitude .mean = mean( magnitude . s i g n a l ) ;

423 magnitude . s td = s td ( magnitude . s i g n a l ) ;

424 magnitude . t e s t = magnitudeTest ( magnitude . s i g n a l ) ;

425 end

426

427 s i g n a l . per iod = per iod ;

428 s i g n a l . magnitude = magnitude ;

429 s i g n a l . f i t n e s s = f i t n e s s T e s t ( p a r t i a l , x ) ;

430 end
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Appendix F

PID Tuning Algorithm

PID Controller

1 f u n c t i o n u r uP u I uD v = PIDforSwi tch ing ( s i gna l s )

2 % Two DOF PID − same implementat ion as i n i C o n t r o l

3 % Strange a n t i windup implementat ion . . .

4 % Outputs the i n f u s i o n ra te i n ml / hr

5

6

7 p e r s i s t e n t I y1 y2 r1 ysp1

8 p e r s i s t e n t K a dKick dKickmag ra1 rb1 rb2 K0 Ki0 Kd0 ;

9 p e r s i s t e n t unstableParams switchedToUnstable ;

10

11 per iod = s igna l s ( 1 ) ;

12 magnitude = s igna l s ( 2 ) ;

13 f i t n e s s = s igna l s ( 3 ) ;

14

15 ysp = s igna l s ( 4 ) ;

16 y = s igna l s ( 5 ) ;

17 ub = s igna l s ( 6 ) ;

18 l b = s i gna l s ( 7 ) ;

19

20 induct ionComplete2min = s igna l s ( 8 ) ;

21

22 r = ysp ;

23 h = 5;

24

25 % I n i t i a l i z a t i o n

26 i f isempty (K)

27 load PIDparams . mat K a dKick ra1 rb1 rb2 uns tab le

28
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29 % Keep the ins tance of the o r i g i n a l s tab l e values f o r l a t e r comparison

30 K0 = K;

31 Ki0 = a ( 3 ) ;

32 Kd0 = a ( 4 ) ;

33

34 I = 0;

35 y1 = y ;

36 y2 = 0;

37 r1 = y ;

38 ysp1 = y ;

39 r = y ;

40 ysp = y ;

41

42 % Unstable parameter swi tch

43 swi tchedToUnstable = f a l s e ;

44 unstableParams = uns tab le ;

45 end

46 i f dKick > 1

47 dKickmag = dKick ;

48 dKick = 0 . 5 ;

49 end

50 i f dKick == 0 . 5 ;

51 i f abs ( ysp − r1 ) > 0.01

52 dKick = 0;

53 y2 = dKickmag ;

54 end

55 end

56

57 % reference f i l t e r

58 r = −ra1∗r1+rb1∗ysp+rb2∗ysp1 ;

59 r1 = r ;

60 ysp1 = ysp ;

61

62 % Measurement f i l t e r

63 y2 = a ( 1 )∗y2 + a ( 2 ) ∗( y−y1 ) ;

64 y1 = y1 + y2 ;

65

66 % Wait u n t i l i n d u c t i o n i s complete f o r 2min ,

67 % Then swi tch to uns tab le

68 i f ( induct ionComplete2min && ˜ swi tchedToUnstable )

69 swi tchedToUnstable = t rue ;

70 K = unstableParams ( 1 ) ;

71 a ( 3 ) = unstableParams ( 2 ) ;

72 a ( 4 ) = unstableParams ( 3 ) ;

73 end

74

75 % CLP Dec 2 2009: Increased Cp l i m i t from 7 to 8
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76 % i f Cp>8, I =0;end % Ju l y 25 th 2012 , Klaske : This needs to be taken out ! ! !

77 uP = K∗( r−y1 ) ;

78 uI = I ;

79 uD = −a ( 4 )∗y2 ;

80

81 % Ju ly 25 th 2012 , Klaske : Use u n f i l t e r e d y f o r p r o p o r t i o n a l e r r o r ?

82 v = uP + uI + uD ;

83 u = v ;

84

85 % Upper / lower l i m i t

86 i f v < l b

87 u = l b ;

88 d i sp l ay ( ’ Lower Bound ’ ) ;

89

90

91 end

92 i f v > ub

93 u = ub ;

94 d i sp l ay ( ’ Upper Bound ’ ) ;

95

96 end

97

98 I = I + a ( 3 ) ∗( r−y1 ) + a ( 5 ) ∗(u−v ) ;

99

100 % O s c i l l a t i o n Detected

101 % Retune c o n t r o l l e r

102 i f per iod > 0

103 w = 2∗ p i / ( per iod ∗ 60) ;

104

105 % Descr ib ing Func t ion magnitude

106 de l ta = ( ub − l b ) / 2 ;

107 vv = v − de l ta ;

108 i f abs ( vv ) <= de l ta

109 N = 1;

110 else

111 alpha = as in ( de l ta / abs ( vv ) ) ;

112 N = 1/ p i ∗(2∗ alpha + s in (2∗ alpha ) ) ;

113 end

114

115 % New Stab le po in t

116 Ms = 1 . 3 ;

117 r s = (Ms−1) /Ms;

118 ph i s = 2∗as in (1 / (2∗Ms) ) ;

119

120 % Current PID params

121 P0 = −K;

122 I0 = −a ( 3 ) / h ;
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123 D0 = −a ( 4 )∗h ;

124 i n i t s t a t e = [ P0 I0 D0 ] ;

125

126 % This c a l c u l a t e s what the PID i s at t h i s s ta te !

127 [ dump, out ] = PIDTuningNLConstraints ( i n i t s t a t e , w, 5 , [0 0 ] ) ;

128 r p = 1 / ( out ( 1 )∗N) ;

129 ph i p = − out ( 2 ) ;

130

131 r c = r s / r p ;

132 ph i c = ( ph i s − ph i p ) ;

133

134 opt ions = opt imset ( ’ MaxFunEvals ’ , 1e10 , ’ Max I ter ’ , 1e3 , ’ A lgor i thm ’ , ’

i n t e r i o r −po in t ’ ) ;

135 NLC = @ ( arg ) PIDTuningNLConstraints ( arg , w, 5 , [ r c ph i c ] ) ;

136 r e s u l t = fmincon ( @PIDTuningObjective , i n i t s t a t e , [ ] , [ ] , [ ] , [ ] , [ 0 . 5 0.01 h

] , [ 1 0 0.05 200] , NLC, opt ions )

137

138 disp ( r e s u l t ) ;

139 pause

140 end

141

142 disp ( ’−−−−−− ’ ) ;

143

144 % assemble output vec to r

145 u r uP u I uD v = [ u r uP I uD v y1 y2 ] ;

146

147 end

PIDTuningNLConstraints

1 f u n c t i o n [ c , ceq ] = PIDTuningNLConstraints ( arg , w, N, c o n d i t i o n )

2 %f u n c t i o n [ c , ceq ] = PIDTuningNLConstraints ( arg )

3 %w = 2∗ p i / ( 3 8 ) ;

4 %N = 5;

5 %c o n d i t i o n = [2 .8982 4 .0464 ] ;

6 % This w i l l r e t u r n the i n e q u a l i t y ( c ) and e q u a l i t y ( ceq ) c o n s t r a i n t s

7 %

8 % The inpu t args are Kp , Ki , Kd parameters

9 % We w i l l rede f i ne K, Ti , Td to work w i th

10 % The PID so l v i ng i s of the form :

11 % U( s ) = K(1 + 1 / ( T i ∗ s ) + H( s ) ∗ Td ∗ s )

12 % where

13 % H( s ) = 1 / (1 + Kd / ( Kp ∗ N) ∗ s ) = Kp ∗ N/ ( Kp ∗ N + Kd ∗ s )

14

15 Kp = arg ( 1 ) ;

16 Ki = arg ( 2 ) ;

17 Kd = arg ( 3 ) ;
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18

19 K = Kp;

20 Ti = Kp / Ki ;

21 Td = Kd / Kp ;

22

23 alpha = N∗wˆ2∗Tdˆ2 / (Nˆ2+wˆ2∗Td ˆ 2 ) ;

24 beta = w∗Td∗Nˆ2 / (Nˆ2+wˆ2∗Td ˆ 2 ) ;

25

26 rPa r t = 1+alpha ;

27 i P a r t = beta − 1 / (w∗Ti ) ;

28

29 cmp = rPar t + i P a r t∗ s q r t (−1) ;

30

31 gain = K∗abs (cmp) ;

32 phase = angle (cmp) ;

33

34 c = [ ] ;

35 ceq ( 1 ) = gain − c o n d i t i o n ( 1 ) ;

36 ceq ( 2 ) = phase − c o n d i t i o n ( 2 ) ;

37 end
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