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Abstract

For tackling the well known cold-start user problem in collaborative filter-
ing recommender systems, one approach is to recommend a few items to a
cold-start user and use the feedback to learn her preferences. This can then
be used to make good recommendations to the cold user. In the absence
of a good initial estimate of the preferences, the recommendations are like
random probes. If the items are not chosen judiciously, both bad recom-
mendations and too many recommendations may turn off a user. We study
the cold-start user problem for the two main types of collaborative filter-
ing methods – neighbourhood-based and matrix factorization. We formalize
the problem by asking what are the b (typically a small number) items we
should recommend to a cold-start user, in order to learn her preferences
best, and define what it means to do that under each framework. We cast
the problem as a discrete optimization problem, called the optimal interview
design (OID) problem, and study two variants – OID-NB and OID-MF –
for the two frameworks. We present multiple non-trivial results, including
NP-hardness as well as hardness of approximation for both. We further
study supermodularity/submodularity and monotonicity properties for the
objective functions of the two variants. Finally, we propose efficient al-
gorithms and comprehensively evaluate them. For OID-NB, we propose a
greedy algorithm, and experimentally evaluate it on 2 real datasets, where
it outperforms all the baselines. For OID-MF, we discuss several scalable
heuristic approaches for identifying the b best items to recommend to the
user and experimentally evaluate their performance on 4 real datasets. Our
experiments show that our proposed accelerated algorithms significantly out-
perform the prior art, while obtaining similar or lower error in the learned
user profile as well as in the rating predictions made, on all the datasets
tested.
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Chapter 1

Introduction

Recommender systems have emerged as a popular solution to the informa-
tion overload problem and have been successfully deployed in many appli-
cation domains such as recommendation of products (books, music, movies,
etc.), services (e.g., restaurants), and content (e.g., search queries, hashtags,
and other online content). Owing to their wide appeal, various approaches
have been developed for generating good recommendations that are likely
to appeal to their users.

Broadly, there are two main methods for producing recommendations

• Collaborative filtering (CF) systems [13], which exploit the intuition
that users may like items preferred by users with tastes or interests
that are similar to theirs, or that users may enjoy items similar to
those that they have enjoyed in the past, or a combination of these
ideas

• Content-based systems, which exploits the idea that users would like
items that have similar properties (eg. movies of the same genre,
books by the same author) to items that they have enjoyed previously
or that users with similar properties (eg. same geographic location,
similar demographics) would have similar tastes

Methods based on collaborative filtering can be further divided into [2]

• Memory-based methods [10], which recommend items based on heuris-
tics aggregated over similar users or items

• Model-based methods, which build statistical models for the rating
data and use those to make predictions

A common memory-based approach is to construct neighbourhoods of
similar items or users, and recommend items that have been enjoyed by
one user but not yet consumed by another user with similar tastes. Among
model-based approaches, an approach that has been particularly successful
is the so-called matrix factorization (MF) approach, which assumes a latent
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Chapter 1. Introduction

factor model of low dimensionality for users and items, which are learned by
factoring the matrix of observed ratings [26]. Compared to content-based
filtering, collaborative filtering has been found to result in higher quality
recommendations and is more scalable. Hence, CF is the focus of this thesis.

An important challenge faced by any recommender system is the so-
called cold-start user and cold-start item problem [3, 42]. The former occurs
when a new user joins the system and the latter when a new item becomes
available or is added to the system’s inventory. Without past user-item in-
teractions, collaborative filtering cannot determine similarity of users/items,
while content-based filtering requires additional metadata for every new user
and item. In this thesis, we study the cold-start problem for users under
both neighbourhood-based and matrix factorization settings.

A simple approach to mitigate this problem for CF techniques, is to
present a certain minimum number of items to the cold-start user and ob-
tain the user’s feedback on them. A key question is how to select items
to recommend to a cold-start user. Approaches that have been explored in
the literature for tackling this problem have mainly tended to be ad hoc
and heuristic in nature. E.g., [16, 23, 50] explore an offline strategy for
selecting the items while [12, 30, 49] develop an online strategy for recom-
mending items to cold-start users. In the online approach, the item recom-
mended to a cold-start user takes into account her feedback on the previous
recommendation, whereby the user profile is updated and used for mak-
ing further recommendations. While these works report empirical results
based experiments conducted on some datasets, unfortunately, these works
do not formulate the item selection problem in a rigorous manner and do
not analyze its computational properties. Furthermore, no comprehensive
scalability experiments have been reported on their proposed strategies for
item selection.

In this thesis, we focus on the cold-start user problem and formulate the
item selection problem for cold-start users as a discrete optimization prob-
lem. We study this both for a latent factor model based on probabilistic
matrix factorization [39], and for a neighbourhood-based system for our un-
derlying recommender system. Since user attention and patience is limited,
we assume that there is a budget b on the number of items which we can
request feedback from a cold-start user. The main question we then study
is, how to select the b best items to recommend to such a user that will allow
the system to learn the user’s preferences as well as possible. We formalize
what it means to learn the user’s preferences best under the two settings.
For the neighbourhood-based system, we define that as being able to predict
future ratings with low error, for the most number of items. The rationale
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Chapter 1. Introduction

is that it is not very useful to know what the user likes or dislikes (given by
rating prediction accuracy) if it is only on a handful of items; we want to
maximize the number of items for which we can make accurate predictions,
also known as prediction coverage [20]. For the matrix factorization system,
we define that as learning the user’s latent factor vector (the user’s profile)
with low error. The motivation is that if the user profile is learned well, it
will pay off in allowing the system to make high quality recommendations
to the user in the future. We formulate the item selection problem as a dis-
crete optimization problem, called optimal interview design (OID), where
the items selected can be regarded as questions selected for interviewing
the cold-start user for her feedback on those items. For the two settings,
we study two variants of the problem, which we call OID-NB and OID-MF
for the neighbourhood-based system and the matrix factorization system
respectively.

A challenge with OID-MF is defining the true user profile against which
to measure the error of a learned profile. This is necessary for defining the
objective function we need to optimize with our choice of b items. The
difficulty is that there is no prior information on a cold-start user. We
address this by showing that under reasonable assumptions, which will be
made precise in Section 2.1, we can directly express the difference between
the learned user profile and the true user profile in terms of the latent
factors of the b items chosen. This allows us to reason about the quality of
different choices of b items and paves the way for our optimization framework
(Section 4.2).

We establish that both OID-NB and OID-MF problems are NP-hard.
We show that the OID-NB problem is monotone and submodular, so the
proposed greedy algorithm provides a (1− 1/e)-approximation to the opti-
mum. We subsequently also show that the OID-MF problem is NP-hard to
approximate to within a factor α

θ , where α and θ depend on the problem
instance (Section 4.3.2). Further, we show that its objective function, i.e.,
least squared error between the true and learned user profile, is neither sub-
modular nor supermodular, suggesting efficient approximation algorithms
may be unlikely to exist (Section 4.3.4).

Finally, we propose efficient algorithms and comprehensively evaluate
them. For OID-NB, we propose a greedy algorithm (Section 3.3), and exper-
imentally evaluate it on 2 real datasets (Section 3.4), where it outperforms
all the baselines. For OID-MF, we discuss several scalable heuristic ap-
proaches for identifying the b best items to recommend to the user (Section
4.4) and experimentally evaluate their performance on 4 real datasets. Our
experiments show that our proposed accelerated algorithms significantly out-
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Chapter 1. Introduction

perform the prior art, while obtaining similar or lower error in the learned
user profile as well as in the rating predictions made, on all the datasets
tested (Section 4.5).
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Chapter 2

Background and Related
Work

2.1 Background

In this section, we summarize the relevant notions on collaborative filter-
ing (CF) that are used in our problem formulation and further technical
development.

2.1.1 Recommender Systems

Most recommender systems use a rating/interaction matrix, R, of size n×m,
of users, U = {u1, u2, ..., um}, and items, I = {v1, v2, ..., vn}. Typically the
matrix is sparse, and has only very few known ratings. Let each entry Rij
in the matrix be drawn from a rating scale and represent whether a user
ui likes a particular item vj or not. This preference information can be
gained through explicit or implicit feedback. For implicit feedback, it is
typically binary, but for explicit feedback, the rating scale can be anything,
for example, ranging from 1 to 5. We focus on learning the profile of a single
cold-start user. This would be represented as an entire row of unknown
ratings in R.

2.1.2 Neighbourhood-based Collaborative Filtering

Neighbourhood-based methods construct similarity neighbourhoods of users
or items and aggregate statistics across them to predict future ratings. Let
R̂ij indicate the predicted rating for user ui and item vj . User based methods
use ui’s similarity to other users who have rated vj , to predict R̂ij , while
item based methods use ui’s ratings on items similar to vj to predict R̂ij .

For the former, we first construct ui’s neighbourhood by computing its
similarity score, w(ui, uk), with every other user uk ∈ U \ ui. Let Iui be the
set of items rated by ui. For user-user similarity, Pearson correlation is used
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2.1. Background

[40] as follows,

w(ui, uk) =

∑
vj∈Iui,uk

(Rij − R̄i)(Rkj − R̄k)√∑
vj∈Iui,uk

(Rij − R̄i)2 ·
√∑

vj∈Iui,uk
(Rkj − R̄k)2

(2.1)

Here, Iui,uk denotes the set of items rated by both ui and uk, i.e.,
Iui,uk = Iui ∩ Iuk , and R̄i denotes the average rating given by ui. Note
that w(ui, uk) = w(uk, ui). Let Nj(ui) be the set of neighbours of ui that
have rated vj . Neighbours can be selected in two ways: either we select users
such that their similarity score is above some absolute threshold [43] which
we call θneighbourhood in this thesis, or we select the top n most similar users
[40]. With either technique, being able to select good quality neighbours is
critical to achieving high prediction accuracy. Then we use weighted average
to compute R̂ij as follows,

R̂ij =

∑
uk∈Nj(ui)

w(uk, ui) ·Rkj∑
uk∈Nj(ui)

abs(w(uk, ui))
(2.2)

For item-item similarity on the other hand, adjusted cosine similarity
score has been shown to perform better than other similarity measures such
as cosine similarity and correlation-based scores [40]. Let Uvj be the set of
users who have rated vj , and Uvj ,vk = Uvj∩Uvk . Then the similarity between
two items vj and vk are given by,

w(vj , vk) =

∑
ui∈Uvj,vk

(Rij − R̄i)(Rik − R̄i)√∑
uj∈Uvj,vk

(Rij − R̄i)2 ·
√∑

uj∈Uvj,vk
(Rik − R̄i)2

(2.3)

Note that w(vj , vk) = w(vk, vj). Let Ni(vj) be the set of neighbours of
vj that have been rated by ui. As with user-based collaborative filtering,
neighbours can be selected using the following two methods: either select
those with similarity scores above some absolute threshold θneighbourhood,

or by selecting the top n similar items. We can estimate R̂ij by using a
weighted average across this set.

R̂ij =

∑
vk∈Ni(vj)w(vj , vk) ·Rik∑
vk∈Ni(vj) abs(w(vj , vk))

(2.4)

2.1.3 Matrix Factorization

To make predictions using neighbourhood-based collaborative filtering, the
entire rating matrix R needs to be stored in memory, along with the simi-
larity computations. In contrast, matrix factorization represents users and
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2.2. Related Work

items in terms of lower dimensional vectors of features inferred from the
ratings, called latent features or latent factors [26]. Instead of storing the
entire rating matrix in memory, it stores two lower dimensional factor ma-
trices – the user latent factor matrix U ∈ Rm×d and the item latent factor
matrix V ∈ Rn×d, where d is the dimension of the latent feature-space. A
certain user ui’s preference for an item vj is represented by an inner product
between their corresponding latent vectors, V T

j Ui, which approximates Rij .
The goal in matrix factorization is to determine U, V that produce the low-
est error between the observed ratings in R, and the estimated ratings R̂.
Typically gradient descent or alternating least squares is used to minimize
regularized root mean square error (RMSE) over the set of known ratings
in R [26].

2.1.4 Monotonicity and Submodularity/Supermodularity

Monotonicity and submodularity or supermodularity are important proper-
ties of constrained optimization objective functions. We study these proper-
ties for our problem in Sections 3.2.2, 3.2.3, 4.3.3, and 4.3.4. Here we review
the definitions.

Definition 2.1.1. For subsets A ⊂ B ⊂ U of some ground set U , a func-
tion f : 2U → R is monotone decreasing if f(A) ≥ f(B) and monotone
increasing if f(A) ≤ f(B).

Definition 2.1.2. For subsets A ⊂ B ⊂ U of some ground set U , and
x ∈ U \B, a set function f : 2U → R≥0 is submodular if f(B∪{x})−f(B) ≤
f(A∪{x})−f(A). The function f(.) is supermodular iff −f(.) is submodular,
or equivalently iff f(B ∪ {x})− f(B) ≥ f(A ∪ {x})− f(A).

2.2 Related Work

We classify research related to the problem studied in this thesis under the
following categories.

2.2.1 Cold Start Problem in Collaborative Filtering

The cold start problem in collaborative filtering recommender systems has
been addressed using many different methods. A common approach com-
bines CF with user content (metadata) and/or item content information
to start off the recommendation process for cold users [25, 27, 28, 42, 47].

7



2.2. Related Work

Other approaches leverage information from an underlying social network to
recommend items to cold users [29, 31, 32]. Some researchers have proposed
similarity measures tuned to cold-start users [3, 8], and use of feature-based
regression [35]. In addition, online CF techniques, that incrementally update
the latent vectors as new items or users arrive, have been proposed as a way
to incorporate new data without retraining the entire model [1, 22, 41].
None of these works rigorously study the problem of selecting a limited
number of items for a cold-start user as an optimization problem.

One exception is [4], which studies the cold-start item problem and for-
malizes it as an optimization problem of selecting users, to rate a given
cold-start item. We borrow motivation from this paper and study the cold-
start user problem by formalizing an optimization function in a probabilistic
manner. Unlike them, our recommender model is based on probabilistic MF.
Furthermore, they do not study the complexity or approximability of the
user selection problem in their framework. They also do not run any scala-
bility tests, and their experiments are quite limited. As part of our technical
results, we show that our objective function is not supermodular. By dual-
ity between the technical problems of cold-start users and cold-start items,
it follows that the objective used in their framework is not supermodular
either, thus correcting a misclaim in their paper. A practical observation
about the cold-start user problem is that it is easy and natural to motivate a
cold-start user by asking her to rate several items in return for better quality
recommendations using the learned profile. However, it is less natural and
therefore harder to motivate users to help the system learn the profile of an
item, so that it can be recommended to other users in the future.

2.2.2 Interactive Recommendation

Items may be recommended to a cold-start user in batch mode or interac-
tive mode. In batch mode, the items are selected in one shot and then used
for obtaining feedback from the cold-start user. E.g., this is the approach
adopted in [4] (for user selection). The drawback of recommending a static
set of items to every cold user, is that it assumes that the actual ratings given
by the user do not affect the informativeness of the questions. That is, we
cannot make use of the rating on one item, to choose the next few items.
In interactive mode, feedback obtained on an item can be incorporated in
selecting the next item. This can be further handled in two ways – online or
offline. In the online setting, multi-armed bandit frameworks that interleave
exploration with exploitation have been studied [11, 12, 30, 44, 49]. How-
ever, these approaches require re-training of the model after each item is

8



2.2. Related Work

recommended. In contrast, offline approach considers all possible outcomes
for feedback and prepares an “interview plan” in the form of a decision
tree [16, 23, 50]. It is well known that constructing the optimal decision tree
is NP-complete. Furthermore, the search space of possible decision trees
for forming interview plans is exponential. While heuristic solutions are
proposed in [16, 23, 50], large scale scalability experiments are not reported.

2.2.3 Complexity of Recommendation

The complexity of recommendation systems has been studied before under
various assumptions. Non-negative matrix factorization (used in some CF
approaches) has been shown to be NP-hard [45]. In [18], the authors find
products that, between them, have been bought by as many people as pos-
sible, and recommend them as well as products similar to them to other
users. They show that finding products that cover as many users as possible
is NP-hard. Both papers above are not concerned with item selection for
learning the profile of a cold-start user.

In [17], the authors study the problem of finding a limited number of
users such that upon recommending a given item to them, if they rate it
favorably, it will then be recommended to the maximum number of other
users by the system. They show this problem is NP-hard and inapprox-
imable. Finally, [5] shows that the problem of forming groups of users such
that the group recommendations they receive maximize user satisfaction is
NP-hard. These problems are orthogonal to the problem studied in this
paper and do not directly address the item selection problem for cold-start
users.

9



Chapter 3

Neighbourhood-based
Methods

3.1 Preliminaries

3.1.1 Dominating Set

In graph theory, a dominating set for a graph G = (V,E) is D ⊂ V such
that ∀v 6∈ D, there is an edge e = (u, v) and u ∈ D. The domination number
γ(G) is the number of vertices in the smallest dominating set for G.

Given a graph G, and a number k, the Dominating Set problem asks to
find D such that it dominates the maximum number of vertices and |D| = k.

3.1.2 Problem Statement

We focus on the item-item similarity model for the underlying recommender
system. Let u` be a cold-start user whose preferences need to be learned by
recommending a small number of items to u`. Each item recommended to
u` can be viewed as a probe or “interview question” to gauge u`’s interest.
Since there is a natural limit on how many probe items we can push to a user
before saturation or apathy sets in, we assume a budget b on the number of
probe items. Our objective is to select b items that maximize our learning
of the cold user’s preferences, determined by achieving a high prediction
accuracy on the maximum number of items.

We assume that ratings are described perfectly by the cold user’s pref-
erence for similar items, modulo some noise. Then for some item vj , R`j =

R̂`j + ε`j , where ε`j is the noise term associated with the user-item pair
(u`, vj), and the predicted rating would be given by,

R̂`j =

∑
vk∈N`(vj)w(vk, vj) ·R`k∑
vk∈N`(vj) abs(w(vk, vj))

(3.1)

Note that initially the number of vj ’s neighbours rated by u`, |N`(vj)| =
0, but after the interview, |N`(vj)| ≤ b, as we obtain u`’s feedback on b
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3.2. Technical Results

items, and at most all b items can be neighbours of vj . In this thesis we use
absolute thresholding to select neighbours as a sufficiently large threshold
ensures higher quality neighbours, and thus better prediction accuracy [20].
We denote the threshold used in absolute thresholding as θneighbourhood. Two
items with a similarity score w(., .) ≥ θneighbourhood are considered to be
in each other’s neighbourhoods. Note that due to the sparsity in ratings
in recommender systems, using a lower value of θneighbourhood increases the
number of items for which rating predictions can be made, as it increases the
number of items with at least one neighbour, but it introduces more noise
and can result in poorer prediction accuracy. Thus the value of θneighbourhood
indirectly controls prediction accuracy. Given a judiciously chosen threshold
θneighbourhood, we would like to maximize the number of items for which we
are able to predict the user’s preference rating. This has clear motivation,
as it provides a larger universe from which to recommend items to that user.
This is known as prediction coverage [20]. For a set of items A ⊆ I, the
prediction coverage of A, PC(A) is defined as follows,

PC(A) =

∣∣∣∣ ⋃
vk∈A

N`(vk)

∣∣∣∣.
Given a fixed threshold θneighbourhood, our objective is to select b items that
achieve maximum prediction coverage. We now formally state the problem
we study.

Problem 1 (Optimal Interview Design - Neighbourhood Based (OID-NB)).
Given an item-item similarity matrix, θneighbourhood absolute threshold for
neighbourhood selection, cold start user u`, and a budget b, find a set of b
items B, to recommend to u` that maximizes prediction coverage PC(B).

3.2 Technical Results

3.2.1 Hardness

Theorem 3.2.1. The optimal interview design problem for an item-based
collaborative filtering recommender system (OID-NB, Problem 1) is NP-
hard.

Proof. We prove the hardness of OID-NB through a reduction from the
dominating set problem (Section 3.1.1).

Reduction: From an instance X of dominating set, create an instance
Y of OID-NB. For every node w ∈ V , create a corresponding item vw in

11



3.2. Technical Results

I, and for every ei = (u,w) ∈ E, create a corresponding user ui. Create
a dummy item vd and the cold-start user u`. Therefore, |I| = |V | + 1 and
|U | = |E|+ 1.

Now, construct the rating matrix R. We consider only binary rating
values here, but the proof can be easily extended to any interval rating
scale. For every user ui corresponding to ei = (u,w) ∈ E in X , assign a
rating Riu = Riw ∈ 0, 1. Also assign rating Rid 6= Riu. Therefore, every
user rates exactly 3 items, out of which two receive the same rating, and
the dummy item receives the opposite. Alternate this for each user. For
example, if the first user rates the 2 items 1, and rates the dummy item
0, then the next user will rate the 2 items 0, and dummy item 1. For
all other user-item pairs, the rating is considered null, or unknown. Let
θneighbourhood = 1. By construction, w(vd, vk) < θneighbourhood = 1, for any
vk ∈ I. To see that this is true, w.l.o.g. consider a user ui who has rated
both vd and some item vk. R̄i is either 1

3 or 2
3 (by construction). Hence

(Rik − R̄i)(Rdi − R̄i) = (r − 1
3)(1 − r − 2

3) < 0, where r = {0, 1}. Adding
this up over all users who have rated both, we obtain w(vd, vk) < 0 < 1.

For θneighbourhood = 1, we claim that we are able to produce predictions
on an item if and only if the node in X corresponding to its neighbour,
is in the dominating set D. Therefore, ratings received on the b items
recommended to u`, allow us to make predictions on their neighbours. Then
the b nodes that dominate the most number of nodes in X , produces the
highest prediction coverage in Y.

To see that nodes are adjacent in X , if and only if the corresponding
items in Y are neighbours, we compute the adjusted cosine similarity of two
items vj , vk in X such that there is an edge ei = (j, k) in Y. By construction,
Uvj ,vk = Uvj ∩ Uvk = ui.

w(vj , vk) =
(Rij − R̄i)(Rik − R̄i)√

(Rij − R̄i)2.
√

(Rik − R̄i)2

=
(r − R̄i)(r − R̄i)√

(r − R̄i)2.
√

(r − R̄i)2

=
(r − R̄i)(r − R̄i)
(r − R̄i).(r − R̄i)

= 1 (3.2)

If the edge did not exist in X but the nodes did, there would be no
ui in Y, and w(vj , vk) would be 0. On the other hand, w(vd, vk) < 1 as
the node corresponding to vd does not exist in X . It also follows that, to

12
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produce recommendations on an item vj in Y, the node corresponding to it
must be dominated by at least one other node in X . Otherwise, N`(vj) =
φ. Therefore, the b items that dominate the largest number of nodes in
X produce the largest prediction coverage in J . This is what we had to
show.

3.2.2 Monotonicity

We define monotonicity as given in Definition 2.1.1.
Consider the cold-start user u`. Let f(A) = PC(A) = |

⋃
vk∈AN`(vk)|

for some subset A of item set I. First we show that f(A) is normalized,
that is, f(φ) = 0. This is trivially true, as |N`(φ)| = |φ| = 0. To show
monotonicity, we consider B = A ∪ vj where vj ∈ I \A.

f(B)− f(A) =

∣∣∣∣ ⋃
vk∈B

N`(vk)

∣∣∣∣− ∣∣∣∣ ⋃
vk∈A

N`(vk)

∣∣∣∣
=

∣∣∣∣ ⋃
vk∈A∪vj

N`(vk)

∣∣∣∣− ∣∣∣∣ ⋃
vk∈A

N`(vk)

∣∣∣∣
=

∣∣∣∣ ⋃
vk∈A

N`(vk) ∪N`(vj)

∣∣∣∣− ∣∣∣∣ ⋃
vk∈A

N`(vk)

∣∣∣∣ ≥ 0

The last equation is true as |N`(vj)| ≥ 0. Hence f(.) is a monotone
increasing function.

3.2.3 Submodularity

We define submodularity as given in Definition 2.1.2.
Consider A,B, f(.) as defined in Section 3.2.2. Under this definition, the

objective function simplifies into the budgeted maximum covering problem,
which has been shown to be submodular in previous work [21, 24].

3.2.4 Approximation

Theorem 3.2.2. Consider an item-item similarity collaborative filtering
system, with item set I, cold user u`, and θneighbourhood = 1. Let the
set of b items producing optimal prediction coverage be OPTOID−NB =
argmaxA⊂I,|A|=b|

⋃
vk∈AN`(vk)|, and let A be the solution produced by se-

lecting the items one by one, each time selecting the one that covers the most

13
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number of as yet uncovered elements, and |A| = b. Then∣∣∣∣ ⋃
vk∈A

N`(vk)

∣∣∣∣ ≥ (1− 1/e)

∣∣∣∣ ⋃
vk∈OPTOID−NB

N`(vk)

∣∣∣∣.
Proof. In Sections 3.2.2 and 3.2.3, we show that the objective function is nor-
malized, monotone increasing and submodular. Now we apply the general
result on submodular function maximization with a cardinality constraint
by Nemhauser et. al. which states that an algorithm that greedily selects
sets (here items) can do no better than (1− 1/e) times the optimal solution
[34]. In fact, it states that a better approximation factor does not exist.

3.3 Algorithms

In this section, we present our algorithm for selecting items with which to
interview a cold user so as to learn her preferences as well as possible. In
view of the hardness and hardness of approximation results (Theorems 3.2.1
and 3.2.2), we present the following greedy selection algorithm: select items
one at a time, each time selecting the item that increases the prediction
coverage most. Let the solution produced by this algorithm be A, and Ai
be the set of items selected at iteration i. We can formally express this as,
Ai+1 = Ai ∪ {arg maxvj δ(vj |Ai)}, where δ(vj |Ai) denotes the increase in
prediction coverage when vj is added to Ai.

The pseudocode is given in Algorithm 1. In Line 6, we compute the in-
crease in prediction coverage, which utilizes the item-item similarity matrix
and θneighbourhood. In case no item increases the prediction coverage, the
algorithm adds the last item by default (Line 4).

3.4 Experimental Evaluation

In this section, we describe the experimental evaluation for our algorithm,
and compare them with prior art.

The development and experimentation environment uses a Linux Server
with 2.93 GHz Intel Xeon X5570 machine with 98 GB of memory with
OpenSUSE Leap OS.

14
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Algorithm 1 Greedy Selection (GS)

Input: item set I; budget b; rating matrix R; item-item similarity matrix;
θneighbourhood

Output: items subset B, |B| = b.

1: B ← φ
2: do
3: max ← 0
4: maxitem ← I[−1]
5: for vi ← 1 to |I| do
6: δ(vi|B) ← PC(B ∪ vi)− PC(B)
7: if δ(vi|B) ≥ max then
8: max ← δ(vi|B)
9: maxitem ← vi

10: I ← I \ vi
11: end if
12: B ← B ∪maxitem
13: end for
14: while |B| ≤ b

3.4.1 Dataset and Model

For our experiments, we use two datasets – Movielens (ML) 100K and Movie-
lens 1M 1, which are used for movie recommendations. We describe their
characteristics in Table 3.1.

Table 3.1: Dataset Sizes

Dataset # Ratings # Users # Items Sparsity

ML 100K 100,000 943 1682 6.3%

ML 1M 1,000,209 6,040 3,900 4.25%

3.4.2 Model Parameters & Experimental Setup

For each dataset, we compute item-item similarity using adjusted cosine
similarity for all items using only the ratings given by 70% of the users.
We refer to them as the warm users, U . We use an absolute threshold,

1Available at http://grouplens.org/datasets/movielens/. Source: [19]
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θneighbourhood, to compute neighbours, and study the effect of varying its
value.

Experimental Setup: We simulate the cold user interview process as
follows:

1. Set up the system

(a) Randomly select 70% of the users in a given dataset to train the
model (U)

(b) R := Matrix of ratings given by U only

(c) For every pair of items (vj , vk), compute adjusted cosine similarity

w(vj , vk) =

∑
ui∈Uvj,vk

(Rij−R̄i)(Rik−R̄i)√∑
uj∈Uvj,vk

(Rij−R̄i)2·
√∑

uj∈Uvj,vk
(Rik−R̄i)2

.

(d) If w(vj , vk) > θneighbourhood, add each item to the other’s neigh-
bourhood list

2. For each cold user u` 6∈ U ,

(a) Randomly split items they have rated, into candidate pool CP
and test set Test equally

(b) Run item selection algorithm on CP with corresponding neigh-
bours list and budget = b

(c) B := items returned by algorithm to interview u`

(d) Reveal R` := u`’s ratings on B

(e) Evaluation: RMSE on Test :=
√

1
|Test|

∑
vj∈Test(R`j − R̂`j)

2, pre-

diction coverage PC(B) := |
⋃
vk∈B N`(vk)|

3. Average prediction error and prediction coverage over all cold users

In Step 2e, we compute RMSE and prediction coverage on Test. Note
that some items in Test may not have any neighbours among B. In that
case, we predict a default rating, such as the mean rating of the dataset.

3.4.3 Algorithms Compared

We study three versions of the Greedy Selection algorithm (GS) as described
in Section 3.3, corresponding to three different θneighbourhood = {0.4, 0.5, 0.6}.
We call them (GS4), (GS5) and (GS6). We compare them against baselines
Random Selection (RS), where the items are randomly sampled from the
candidate pool, Popular (Pop), where the b most rated items are selected,
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with the rationale being that obscure items may not be informative about
users’ likes and dislikes, while also being difficult for them to rate [16, 36],
Entropy0 (Ent0) [36] (Equation 3.3) and EntPop (EP). The last two are mod-
ifications of entropy, which is a measure of informativeness. Items which are
more controversial, and have a wider spread in their rating distribution,
tend to be more informative about a user’s preferences, while knowing that
the user likes an item that everyone likes, does not tell us much. However,
items with high entropy are often less popular. To balance informativeness
with popularity, we use the measures Entropy0 (Ent0) as described in Equa-
tion 3.3, and EntPop (EP), where the b items with highest values of entropy
× log(popularity) are selected. Both have been shown to perform better
than pure entropy [36].

Entropy0(vj) = − 1∑
iwi

5∑
i=0

piwilog(pi) (3.3)

Here, pi is the fraction of users who have rated vj equal to i, starting from
i = 0, referring to the class of users who have not rated vj , to i = 5, the
maximum possible rating in our datasets. wi refers to the weights given to
the 6 classes. We use w = [0.5, 1, 1, 1, 1, 1], which was shown to work the
best in [36].

This gives us a total of 7 algorithms to compare.

3.4.4 Results

The first thing we observe is that GS4 performs better than all other al-
gorithms after b = 15 (Fig. 3.1(a)). Up to that point, Ent0, EP and Pop

perform the best. However, they consistently perform poorly on prediction
coverage (Fig. 3.1(b)). We hypothesize that their “good performance” for
lower values of b is not because they are able to accurately predict what the
user would like or dislike, but due to the default predicted rating. The low
prediction coverage implies that many items in Test would not have any
neighbours in the B selected by these algorithms, and so would be assigned
the mean rating by default. Hence the “good performance” would only be
due to the other algorithms making predictions that are worse than pre-
dicting the mean, as they have likely not yet learned the user’s preferences.
This hypothesis can also explain why GS performs worse as we increase
θneighbourhood from 0.4 to 0.6. As the threshold is raised, fewer items are
covered, and so more items are assigned a mean rating.

To test this hypothesis, we observe what happens when we change the
default rating from the mean rating to an arbitrarily bad rating, such as 1.
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Figure 3.1: ML 100K dataset with default mean rating

After doing that, our proposed algorithm GS4 performs the best in terms of
predicton accuracy as well as prediction coverage (Fig. 3.2). Interestingly,
prediction error does not decrease monotonically as we increase the similarity
threshold, as after θneighbourhood ≥ 0.5, the reduction in coverage reduces the
number of neighbours, and increases the number of items for which we are
unable to make any prediction. Thus we observe that raising θneighbourhood in
fact leads to worse prediction error performance. We observe a similar trend
with the ML 1M dataset as well (Fig 3.3) when we set the default rating
to 1. The prediction accuracy for GS5 and GS6 worsens as the prediction
coverage worsens.

3.4.5 Discussion

Compared to real world recommender systems, the datasets we use in the
experiments are quite small. Even then, and even with our efficient greedy
selection algorithm and scalable baselines, the experiments took an ex-
tremely long time. The major roadblock was computing item-item sim-
ilarity scores for all item pairs, which is a necessary pre-processing step.
For large datasets, it becomes impractical to compute this information, and
also to update it as new users and items enter the system. Some scalable
methods have been explored using clustering [46], deriving similarity scores
for multiple users/items at a time [6], and through parallel computing [15].
However, these approaches do not address the cold-start user problem, and
further research needs to be done to adapt them for this purpose.
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Figure 3.2: ML 100K dataset with default rating = 1
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Figure 3.3: ML 1M dataset with default rating = 1
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Chapter 4

Matrix Factorization
Methods

4.1 Preliminaries

4.1.1 Probabilistic Matrix Factorization

MF treats the (latent) features of users and items as deterministic quantities.
Probabilistic MF (PMF), on the other hand, assumes that these features
are drawn from distributions. More precisely, PMF [39] expresses the rating
matrix R as a product of two random low dimension latent factor matrices
with the following zero-mean Gaussian priors:

Pr[U |ΣU ] =
m∏
i=1

N (Ui|0, σ2
uiI),Pr[V |ΣV ] =

n∏
j=1

N (Vj |0, σ2
vjI), (4.1)

where N (x|µ, σ2) is the probability density function of a Gaussian distribu-
tion with mean µ and variance σ2. It then estimates the observed ratings
as R = R̂ + ε = UTV + ε, where ε is a matrix of noise terms in the model.
More precisely, εij = σ2

ij represents zero-mean noise in the model.
The conditional distribution over the observed ratings is given by

Pr[R|U, V,Σ] =

m∏
i=1

n∏
j=1

[N (Rij |UTi Vj , σ2
ij)]

δij (4.2)

where Σ is a d × d covariance matrix, and δij is an indicator function with
value 1 if user ui rated item vj , and 0 otherwise.

20



4.2. Solution Framework

Taking the log over the posterior gives us (see [39]):

ln Pr[U, V |R,Σ,ΣV ,ΣU ] = −1

2

m∑
i=1

n∑
j=1

δij
σ2
ij

(Rij − UTi Vj)2

−1

2

m∑
i=1

UTi Ui
σ2
ui

− 1

2

n∑
j=1

V T
j Vj

σ2
vj

−1

2

(
m∑
i=1

n∑
j=1

δij lnσ2
ij + d

m∑
i=1

lnσ2
ui + d

n∑
j=1

lnσ2
vj

)
+ C (4.3)

Algorithms like gradient descent or alternating least squares can be used
to optimize the resulting non-convex optimization problem.

4.1.2 Problem Statement

Consider a PMF model (U, V ) trained on an observed ratings matrix R, by
minimizing a loss function such as squared error between R and the predicted
ratings R̂ = UTV (with some regularization). Let u` be a cold-start user
whose profile needs to be learned by recommending a small number of items
to u`. As in Section 3.1.2, to avoid saturation or apathy, we limit the number
of probe items to a small number b. We denote the true profile of u` by U`
and the learned profile (using her feedback on the b items) as Û`. Our
objective is to select b items that minimizes the error in the learned profile
Û` compared to the true profile U`. We next formally state the problem
studied in this paper.

Problem 2 (Optimal Interview Design - Matrix Factorization). Given user
latent vectors U , item latent vectors V , cold start user u`, and a budget
b, find the b best items to recommend to u` such that E[||Û` − U`||2F ] is
minimized.

4.2 Solution Framework

A first significant challenge in solving Problem 2 is that in order to measure
how good our current estimate the user profile is, we need to know the actual
profile of the cold user, on which we have no information! In this section,
we devise an approach for measuring the error in the estimated user profile,
which intelligently circumvents this problem (see Lemma 4.2.1).
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Note that using the PMF framework in Section 4.1.1, we obtain low di-
mensional latent factor matrices U, V . In the absence of any further informa-
tion, we assume that the latent vector of the cold user “truly” describes her
profile.2 Notice that the budget b on the number of allowed interview/probe
items is typically a small number. Following prior work [4, 37, 41], we as-
sume that the responses of the cold user u` to this small number of items
does not significantly change the latent factor matrix V associated with
items. Under this assumption, we can perform local updates to U` as the
ratings from u` on the b probe items are available. A second challenge
is that we consider a batch setting for our problem. This means that we
should select the b items without obtaining explicit feedback from the cold
user. We overcome this challenge by estimating the feedback rating the user
u` would provide according to the current model. Specifically, we estimate
cold user u`’s rating on an item vj as R`j = R̂`j + ε`j = V T

j U` + ε`j , where
ε`j is a noise term associated with the user-item pair (u`, vj).

Let R` denote the vector containing the ratings of the cold user u` on
the b items presented to her, and let VB be the d × b latent factor matrix
corresponding to these b items. We assume that the noise in estimating the
ratings R̂ depends on the item under consideration, i.e., E[ε2

ij ] = σ2
vj , for all

users ui. This gives us the following posterior distribution,

Pr[U`|R`, VB, CB] ∝ N (R`|V T
B U`, CB)N (U`|0, σ2

u`
I)

where CB is a b × b diagonal matrix with σ2
1, σ

2
2, ..., σ

2
b at positions corre-

sponding to the items in B. Using Bayes rule for Gaussians, we obtain
Pr[U`|R`, VB, CB] ∝ N (U`|Û`,ΣB), where Û` = ΣBVBC

−1
B R` and ΣB =

(σ−2
u`
I + VBC

−1
B V T

B )−1. Setting γ = σ−2
u`

, the estimate Û` of the cold user’s
true latent factor vector U` can be obtained using a ridge estimate. More
precisely,

Û` = (γI + VBC
−1
B V T

B )−1VBC
−1
B R` (4.4)

Here, γ is mainly used to ensure that the expression is invertible.
Under this assumption, we next show that solving Problem 2 reduces to

minimizing tr((VBC
−1
B V T

B )−1). More precisely, we have:

Lemma 4.2.1. Given user latent vectors U , item latent vectors V , cold
start user u`, and budget b, a set of b items B minimizes E[||Û`−U`||2F ] iff it
minimizes tr((VBC

−1
B V T

B )−1), where VB is the submatrix of V corresponding
to the b selected items.

2There may be a high variance associated with U`.
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Proof. Our goal is to select b items such that using her feedback on those
items, we can find the estimate of the latent vector Û` of the cold user u`,
that is as close as possible to the true latent vector vector U`.

Equation 4.4 gives us an estimate for Û`. For simplicity, we will assume
that γ = 0, and that VBC

−1
B V T

B is invertible.
R` can be expressed as V T

B U` + εB, where εB is a vector of the b zero-
mean noise terms corresponding to the b items. Replacing this in Equation
4.4, we get

Û` = U` + (VBC
−1
B V T

B )−1VBC
−1
B εB

⇒ Û` − U` = (VBC
−1
B V T

B )−1VBC
−1
B εB (4.5)

From Equation 4.5, it is clear that the choice of the b interview items
determines how well we are able to estimate Û`. The expected error in the
estimated user profile is

E[||Û` − U`||2F ] = E[tr((Û` − U`)(Û` − U`)T )] (4.6)

Replacing Equation 4.5 in Equation 4.6 and simplifying, we get

E[tr((Û` − U`)(Û` − U`)T )] =

E[tr((VBC
−1
B V T

B )−1VBC
−1
B εBε

T
B(C−1

B )TV T
B (VBC

−1
B V T

B )−1)]

= tr((VBC
−1
B V T

B )−1) (4.7)

The second equality above follows from from replacing E[εBε
T
B] = CB

and simplifying the algebra. The lemma follows.

In view of the lemma above, we can instantiate Problem 2 and restate
it as follows.

Problem 3 (Optimal Interview Design - Matrix Factorization (OID-MF)).
Given user latent vectors U , item latent vectors V , cold start user u`, and a
budget b, find the b best items to recommend to u` such that E[||Û`−U`||2F ] =
tr((VBC

−1
B V T

B )−1) is minimized.

Since the lemma shows that Problem 2 is essentially equivalent to Prob-
lem 3, we focus on the latter problem in the rest of the thesis.

4.3 Technical Results

In this section, we study the hardness and approximation of the OID-MF
problem we proposed.
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4.3.1 Hardness

Our main result in this section is:

Theorem 4.3.1. The optimal interview design problem under the matrix
factorization setting (OID-MF, Problem 3) is NP-hard.

The proof of this theorem is non-trivial. We establish this result by
proving a number of results along the way. For our proof, we consider the
special case where σ2

1 = σ2
2 = ... = σ2

b = σ2 and λ = σ2

σ2
u`

. Then CB = σ2I,

and plugging it in to Equation 4.7 yields
E[||Û`−U`||2F ] = σ2 ·tr((VBV T

B )−1). We prove hardness for this restricted
case. The hardness of the general case follows.

The proof of hardness is performed by reduction from the well-known
NP-complete problem Exact Cover by 3-Sets (X3C) [14].
Reduction: Given a collection S of 3-element subsets of a set X, where
|X| = 3q, X3C asks to find a subset S∗ of S such that each element of
X is in exactly one set of S∗. Let (X,S) be an instance of X3C, with
X = {x1, ..., x3q} and S = {S1, ..., Sn}. Create an instance of OID-MF as
follows. Let the set of items be I = {a1, ..., an, d1, ..., dk}, where k = 3q, item
aj corresponds to set Sj , j ∈ [n], and dj are dummy items, j ∈ [k]. Convert
each set Sj in S into a binary vector uj of length k, such that aj[i] = 1
whenever xi ∈ Sj and aj[i] = 0 otherwise. Since the size of each subset
is exactly 3, we will have exactly three 1’s in each vector. These vectors
correspond to the item latent vectors of the n items a1, a2, ..., an. We call
them set vectors to distinguish them from the vectors corresponding to the
dummy items, defined next: for a dummy item dj , the corresponding vector
dj is such that dj[j] = η and dj[i] = 0, i 6= j. LetW be the set of all vectors
constructed. We will set the value of η later. Thus, W is the transformed
instance obtained from (X,S). Assuming an arbitrary but fixed ordering on
the items in I, we can treatW as a k×(n+k) matrix, without ambiguity. Let
A = {a1, ...,an} and D = {d1, ...,dk} resp., denote the sets of set vectors
and dummy vectors constructed above. We set the budget to b := q + k.
For a set of items B ⊂ I, with |B| = b, we let B denote the k × (q + k)
submatrix of W associated with the items in B. Formally, our problem is
to find b items B ⊂ I that minimize tr((BBT )−1).

For a matrix M, define f(M) = tr((MMT )−1). Define

θ :=
q

3 + η2
+
k − q
η2

. (4.8)

We will show the following claim.
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Claim 1. Let B ⊂ I, such that |B| = k + q. Then f(B) = θ if (B \ D)
encodes an exact 3-cover of X and f(B) > θ, otherwise.

We first establish a number of results which will help us prove this claim.
Notice that Theorem 4.3.1 follows from Claim 1: if there is a polynomial

time algorithm for solving OID-MF, then we can run it on the reduced
instance of OID-MF above and find the b items B that minimize f(B).
Then by checking if f(B) = θ, we can verify if the given instance of X3C is
a YES or a NO instance.

In what follows, for simplicity, we will abuse notation and use A,B,W
both to denote sets of vectors and the matrices formed by them, relative
to the fixed ordering of items in I assumed above. We will freely switch
between set and matrix notations.

Recall the transformed instance W of OID-MF obtained from the given
X3C instance. The next claim characterizes the trace of BBT for matrices
B ⊂ W that include all k dummy vectors of W.

Claim 2. Consider any B ⊂ W such that |B| = k+ q and B includes all the
k dummy vectors. Then tr(BBT ) = k + k · η2.

Proof. Let B′ = B−D. We have tr(BBT ) = tr(B′B′T +DDT ) = tr(B′B′T )+
tr(η2I) =

∑k
i=1

∑q
j=1 b

2
ij + kη2. As B′ is a binary matrix,

∑k
i=1

∑q
j=1 b

2
ij =∑k

i=1 ||b∗i||0, where b∗i is the ith row, and || · ||0 is the l0−norm. This is
nothing but the total number of 1’s in B′, which is 3q = k. Thus, tr(BBT ) =
k + kη2.

The next claim shows that among such subsets B ⊂ W, the ones that
include all dummy vectors have the least f(.)-value, i.e., have the minimum
value of tr((BBT )−1). Recall that D = {d1, ...,dk} is the set of dummy
vectors constructed from the given instance of X3C.

Claim 3. For any subset A ⊂ W, with |A| = k+ q, such that D 6⊂ A, there
exists A′, with |A′| = k + q and D ⊂ A′, such that f(A′) < f(A).

Proof. By Claim 2, tr(A′A′T ) = k + kη2. By assumption, A has at least
1 fewer dummy vectors than A′ and correspondingly more set vectors than
A′. Since each set vector has exactly 3 ones, we have tr(AAT ) ≤ k +
kη2 + 3 − η2 for η2 > 3. Let us consider the way the trace is distributed
among the eigenvalues. The distribution giving the least f(.) is the uniform
distribution. For AAT , this is λ1 = λ2 = ... = λk = tr(AAT )/k. The
distribution yielding the maximum f(.) is the one that is most skewed. For
A′A′T , this happens when there are two distinct eigenvalues, namely η2
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with multiplicity (k − 1) and k + η2 with multiplicity 1. This is because,
the smallest possible eigenvalue is η2 and the trace must be accounted for.3

We next show that the largest possible value of f(A′) is strictly smaller than
the smallest possible value of f(A), from which the claim will follow.

Under the skewed distribution of eigenvalues of A′A′T assumed above,
f(A′) ≤ k−1

η2
+ 1

k+η2
. Similarly, for the uniform distribution for the eigen-

values of AAT assumed above, f(A) ≥ k × k/tr(AAT ) ≥ k2

k+kη2+3−η2 . Set

η to be any value ≥
√

(k + 3). Then we have

f(A′) ≤ (k − 1)

(k + 3)
+

1

(2k + 3)

=
2k(k + 1)

(k + 3)(2k + 3)

f(A) ≥ k2

(k + k(k + 3) + 3− k − 3)

=
k

(k + 3)
.

(4.9)

Now, 2(k+1) < (2k+3). Multiplying both sides by k(k+3) and rearranging,

we get the desired inequality f(A′) ≤ 2k(k+1)
(k+3)(2k+3) <

k
(k+3) ≤ f(A), showing

the claim. We can obtain a tighter bound on η by solving k−1
η2

+ 1
k+η2

≤
k2

k+kη2+3−η2 , which gives us η2 ≥ 1
2 [
√

5k2 + 4− k + 4].

In view of this, in order to find B ⊂ W with |B| = k + q that minimizes
f(B), we can restrict attention to those sets of vectors B which include all
the k dummy vectors.

Consider B ⊂ W, with |B| = k + q that includes all k dummy vectors.
We will show in the next two claims that the trace tr(BBT ) = k+kη2 will be
evenly split among its eigenvalues iff B − D encodes an exact 3-cover of X.
We will finally show that it is the even split that leads to minimum f(B).

Claim 4. Consider a set B, with |B| = k+ q, such that B includes all the k
dummy vectors. Suppose the rank q matrix B′ = B −D does not correspond
to an exact 3-cover of X. Then B′B′T has q non-zero eigenvalues, at least
two of which are distinct.

3Such extreme skew will not arise in reality since this corresponds to all q set vectors
of A being identical (!), but this serves to prove our result.
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Proof. The q column vectors in B′ are linearly independent, so rank(B′) =
rank(B′B′T ) = q. Since B′B′T is square, it has q non-zero eigenvalues. It is
sufficient to show that at least two of those eigenvalues, say λ1 and λ2, are
unequal. As B′ does not correspond to an exact 3-cover, at least one row
has more than one 1, and so at least one row is all 0’s. The corresponding
row and column in B′B′T will also be all 0’s.

Define the weighted graph induced by B′B′T as G = (V,E,w) such that
|V | = k, w(i, j) = (B′B′T )ij , ∀i, j ∈ [k]. The all-zero rows correspond to
isolated nodes. We know that the eigenvalues of the the matrix B′B′T are
identical to those of the induced graph G, which in turn are the same as
those of the connected components of G. Consider a non-isolated node i.
Since each row of B′ is non-orthogonal to at least two other rows, it follows
that (B′B′T )ij ≥ 1 for at least 2 values of j 6= i. Thus, each non-isolated node
is part of a connected component of size ≥ 3 and since there are isolated
nodes, the number of (non-isolated) components is < q. Thus, the q non-
zero eigenvalues of G are divided among the < q components of G. By the
pigeonhole principle, there is at least one connected component with ≥ 2
eigenvalues, call them λ1, λ2, say λ1 ≥ λ2. We know that a component’s
largest eigenvalue has multiplicity 1, from which it follows that λ1 6= λ2, as
was to be shown.

We next establish two helper lemmas, where M denotes a k × k sym-
metric matrix.

Lemma 4.3.2. Let M be a positive semidefinite matrix of rank q. Sup-
pose that it can be expressed as a sum of rank one matrices, i.e., M =∑q

i=1 ai · ai
T , where ai is a column vector, and ∀i, j ∈ [k], i 6= j,ai · aj

T =
0, and ai · ai

T = s . Then the q eigenvalues of M are identical and equal
to s.

Proof. The spectral decomposition of a rank q matrix M is given as

M =

q∑
i=1

λiuiui
T (4.10)

where λi are eigenvalues and ui are orthonormal vectors. From the
hypothesis of the lemma, we have 1

s · ai · ai
T = 1.

M =

q∑
i=1

aiai
T =

q∑
i=1

s× ai√
s

ai√
s

T
(4.11)

where ai√
s

are orthonormal. Comparing this with Eq. 4.10, the eigenvalues

of M are λ1 = λ2 = ... = λq = s.
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Lemma 4.3.3. Let M be a symmetric rank k matrix and suppose that it
can be decomposed into

∑q
i=1 aiai

T +κ · I, for some constant κ. Then it has
(k − q) eigenvalues equal to κ.

Proof. Let the eigenvalues of M be λ1, λ2, ..., λk. Let λ any eigenvalue of
M, and v the corresponding eigenvector. Then we have (M + κI)v =
(
∑q

i=1 aia
T
i +κI)v = (λ+κ)v. Since

∑q
i=1 aiai

T results in a rank q symmetric
matrix, it has q non-zero eigenvalues. Adding κ to all of them, we get,
λq+1 = ... = λk = κ.

Proof of Claim 1: Consider any set of vectors B ⊂ W: |B| = k + q.
By Claim 3, we may assume w.l.o.g. that B includes all k dummy vectors.
Suppose B′ := B − D encodes an exact 3-cover of X. Then BBT can be
decomposed into the sum of q rank one matrices and a diagonal matrix:
BBT =

∑q
j=1 bj · bT

j + η2I. Here bi refers to the ith column of B, which is

a set vector. Since B′ is an exact 3-cover, we further have that bi · bT
i = 3,

i ∈ [q], and bi · bT
j = 0, i 6= j. By Lemma 4.3.2, since B′B′T is also a positive

semidefinite matrix of rank q, we have λB
′

1 = · · ·λB′q = 3, where λB
′

i are the

eigevalues of B′B′T . The corresponding q eigenvalues of BBT are all η2 + 3.
Furthermore, by Lemma 4.3.3, the remaining k−q eigenvalues of BBT are all
equal to η2. That is, the eigenvalues of BBT are λB1 = · · · = λBq = η2 + 3 and

λBq+1 = · · · = λBk = η2. For this B, f(B) = tr((BBT )−1) = q
η2+3

+ k−q
η2

= θ

(see Eq. 4.8).
Now, consider a set of vectors A ⊂ W, with |A| = k + q, such that

that A includes all k dummy vectors. Suppose A′ := A − D does not cor-
respond to an exact 3-cover of X. Notice that A is a symmetric rank k
matrix which can be decomposed into A =

∑q
j=1 ai · aT

i + η2I, so λAq+1 =

· · · = λAk = η2, where λAi , i ∈ [q + 1, k], are k − q of the eigenvalues of
AAT . Since both B and A include all k dummy vectors and q of the set
vectors, by Claim 2, tr(BBT ) = tr(AAT ) = k+ kη2. We have

∑q
j=q+1 λ

B
j =

(k − q)η2 =
∑k

j=q+1 λ
A
j and so

∑q
j=1 λ

A
j =

∑q
j=1 λ

B
j = q(η2 + 3). Now,

f(B) =
∑k

j=1
1
λBj

= q
η2+3

+ k−q
η2

, whereas f(A) =
∑k

j=1
1
λBj

=
∑q

j=1
1
λAj

+ k−q
η2

.

Thus, to show that f(B) < f(A), it suffices to show that q
η2+3

<
∑q

j=1
1
λAj

.

LHS = q× 1
AM(λB1 ,...,λ

B
q )

= q× 1
AM(λA1 ,...,λ

A
q )

, where AM(.) denotes the arith-

metic mean. RHS = q × 1
HM(λA1 ,...,λ

A
q )

, where HM(.) denotes the harmonic

mean. It is well known that AM(.) ≥ HM(.) for a given collection of posi-
tive real numbers and the equality holds iff all numbers in the collection are
identical. On the other hand, we know that since A′ does not correspond to
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an exact 3-cover of X, by Claim 4, not all eigenvalues of A′ are equal, from
which it follows that LHS < RHS, completing the proof of Claim 1 as also
Theorem 4.3.1.

After this, we show our inapproximability result for OID-MF.

4.3.2 Hardness of Approximation

Theorem 4.3.4. It is NP-hard to approximate the optimal interview design
problem in polynomial time within a factor less than α

θ , where α = θ +
2

(2+η2)(4+η2)(3+η2)
, η2 ≥ 1

2 [
√

5k2 + 4 − k + 4], θ = q
3+η2

+ k−q
η2
, k = 3q is the

dimension of the latent vector-space.

First we define a variant of the X3C problem which we refer to as Max
q-Cover by 3-Sets (M3C), which will be convenient in our proof.

Definition 4.3.1. Given a number q and a collection of sets S = S1, S2, ..., Sn,
each of size 3, is there a subset S∗ of S such that the cover C = |

⋃
s∈S∗ s| =

3q and |S∗| ≤ q?

Since each set has 3 elements, with |S∗| ≤ q, we get C = 3q if and only
if |S∗| is an exact cover. Thus X3C can be reduced to M3C, making M3C
NP-hard.

We convert an instance x of M3C to an instance of OID-MF, h(x), in
the same way as described in the NP-Hardness proof: let the set of items
be I = {a1, ..., an, d1, ..., dk}, where k = 3q, item aj corresponds to set Sj ,
j ∈ [n], and dj are dummy items, j ∈ [k]. Let the dummy vectors be defined
as above, and b := q + k. As shown previously in Claim 3, we need to only
consider those sets of vectors B that have all k dummy vectors. Similarly,
we can transform a solution y of OID-MF, back to a solution of M3C, g(y),
in the following manner: discard the chosen dummy vectors, and take the
sets corresponding to the q set vectors.

As an YES instances of M3C correspond to YES instances of X3C, an
instance x with C = 3q corresponds to f(B) = θ.

For the NO instances of M3C, C ≤ 3q − 1 (by the definition). Unfor-
tunately, a similar one-to-one mapping does not exist in such cases: with
the same C, there could be multiple instances of M3C that corresponds to
different instances of OID-MF and correspondingly f(B). From Theorem
4.3.1, we know that it is NP-hard to determine whether f(B) ≤ θ for a
given instance of OID-MF h(x).
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To find the lowest f(B) of a NO instance of OID-MF, we first prove an
intermediate result that shows that among the set of different f(B) giving the
same cover value C, the lowest possible f(.) value increases as C decreases.

Claim 5. As the cover value increases, the best (i.e., lowest) f(.) value
among all the solutions with the same cover value decreases.

Proof. Let B′ = B \ D.
By interpreting B′B′T as a (k × k) adjacency matrix, the dimensions

correspond to the k nodes in the graph. Dimensions that are uncovered
are isolated nodes, and dimensions that are covered are part of a connected
component. Sum of degrees of the entire graph = 3k (sum of all entries in
the adjacency matrix B′B′T ) which is a constant given k.

From this, given that the sum of the degrees over the graph is 3k (which is
a constant), we argue that with more uncovered dimensions/nodes, average
degree (davg) (ignoring the isolated nodes) and maximum degree (dmax)
increase. From this, it follows that each non-isolated node has degree at
least 3, hence the average degree for such nodes is greater than 3 for any
B′B′T . If there are multiple components in a given graph, considering the
one with the highest average degree, λ1 ≥ max(dmaxavg ,

√
dmax), where dmaxavg

is the highest average degree among all components.
For a NO instance, the highest average degree among all connected com-

ponents is greater than 3, since the vectors must overlap at least over 1 di-
mension. For a given cover C, the lowest value of λ1 is thus lower bounded
by davg > 3, which increases as the overlap increases. In turn, a higher value
of λ1 makes the distribution of eigenvalues more skewed, leading to a higher
f(.). To have a lower f(.), we must have λ1 as close to 3 as possible, by
decreasing davg and dmax, thereby, increasing coverage.

Following this claim, among the NO instances of OID-MF, it is sufficient
to show that the lowest f(.) corresponds to the highest C, where C = 3q−1.
Next we calculate its corresponding f(.).

Given a NO instance with C = 3q−1, we next show that such an instance
gives rise to a unique OID-MF solution. For this scenario, it could be shown
that there are exactly q−2 disjoint sets, and 2 sets cover exactly one element
twice. This can only be obtained from a solution y of OID-MF, if in the
given solution, q− 2 set vectors are disjoint, and 2 have exactly one 1 in the
same position. The following example illustrates this.

Example 1. For an instance with q = 3, a solution with exactly two vectors
overlapping on one dimension could look like
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B′T =

1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1 1


Then

B′B′T =



1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 2 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1


Next, we show what f(B) of such a solution would be. As before, let

B′ := B \ D. Interpreting B′B′T as the adjacency matrix of a graph G, we
know that the eigenvalues of B′B′T are the same as those of G, given by
the multi-set union of its components, which are: q − 2 corresponding to
the disjoint set vectors, and 1 corresponding to the two over-lapping vectors.
The first q−2 components each form a 3-regular graph which contributes an
eigenvalue of 3 each. It could be shown that the last one, which corresponds
to the overlap, contributes to (0, 0, 0, 0, 2, 4). Therefore, f(B) = α = 2q

η2
+

q−2
3+η2

+ 1
2+η2

+ 1
4+η2

= θ + 2
(2+η2)(4+η2)(3+η2)

.

It follows from our arguments, that f(B) ≥ α if and only if C ≤ 3q − 1.
Let A be an approximation algorithm that approximates OID-MF to

within c < α
θ , returns a value v such that OPTOID−MF (h(x)) ≤ v ≤ c ×

OPTOID−MF (h(x)).

Claim 6. x is a YES instance of M3C if and only if θ ≤ v < α.

Proof. If h(x) is a YES instance of OID-MF, OPTOID−MF (h(x)) = θ, so
θ ≤ v ≤ c× θ. Since c < α

θ , θ ≤ v < α. If h(x) is a NO instance of OID-MF,
α ≤ OPTOID−MF (h(x)), so α ≤ v. Since the intervals are disjoint, the
claim follows.

Thus if such an approximation algorithm A existed, we would be able to
distinguish between the YES and NO instances of M3C in polynomial time.
However as that is NP-hard, unless P = NP, A cannot exist.
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4.3.3 Monotonicity

We define monotonicity as in Definition 2.1.1.
In [4], for a similar objective function for the user selection problem for

a cold-start item, the authors prove it is monotone decreasing.

4.3.4 Supermodularity and Submodularity

We define submodularity/supermodularity as in Definition 2.1.2
In [4], for a similar objective function for the user selection problem

for a cold-start item, the authors claimed that their objective function is
supermodular. The following lemma shows that the objective function f(.)
for our OID-MF problem is not supermodular.

Lemma 4.3.5. The objective function f(B) = tr((VBV
T
B )−1) of the OID-

MF problem is not supermodular.

Proof. We prove the result by showing that the function tr(MMT )−1) is in
general not supermodular. Consider the following matrices:

M1 =


1 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 1 1 1
0 0 1 0 1



M2 =


0 0 1 0 1 1
1 0 0 0 0 1
0 1 0 0 1 1
1 1 0 1 0 0
1 0 0 1 0 1

 ,
and vector

xT =
[
0 1 0 0 0

]
Notice that M1, viewed as a set of column vectors, is a subset of M2,

viewed as a subset of column vectors. Now, f(M1) = tr(M1MT
1 ) =

12, f(M1 ∪ {x}) = 10.333, f(M2) = 6.6250, f(M2 ∪ {x}) = 4.4783.
Clearly, f(M1 ∪ {x}) − f(M1) = 10.333 − 12 = −1.6667 and f(M2 ∪

{x})− f(M2) = 4.4783− 6.6250 = −2.1467, which violates f(M1 ∪ {x})−
f(M1) ≤ f(M2 ∪ {x})− f(M2), showing f(.) is not supermodular.
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We remark that the lack of supermodularity of f(.) is not exclusive to
binary matrices; supermodularity does not hold for real-valued matricesM
as well. As a consequence, by the duality between the technical problems of
cold-start users and cold-start items, the lemma above disproves the claim
in [4] about the supermodularity of their objective function.

Lemma 4.3.6. The objective function of f(B) = tr((VBV
T
B )−1) the OID-

MF problem is not sub-modular.

Proof. Consider the same matrix M2 and x as above and the following
matrix M1.

M1 =


0 0 0 1 1
1 0 0 0 1
0 1 0 1 1
1 1 1 0 0
1 0 1 0 1


As before, regarded as sets of column vectors,M1 ⊂M2. However, f(M1) =
20, f(M1 ∪ {x}) = 16.333, f(M2) = 6.6250, f(M2 ∪ {x}) = 4.4783. Hence
f(M1∪{x})−f(M1) = 16.333−20 = −3.6667 and f(M2∪{x})−f(M2) =
4.4783 − 6.6250 = −2.1467. Clearly, submodularity fails to hold, since
f(M1 ∪ {x})− f(M1) ≥ f(M2 ∪ {x})− f(M2) is violated.

4.4 Algorithms

In this section, we present algorithms for selecting items with which to
interview a cold user so as to learn her preferences as well as possible. In
view of the hardness and hardness of approximation results (Theorems 4.3.1
and 4.3.4), and the fact that the objective function is neither submodular
nor supermodular (see Section 4.3.4), efficient approximation algorithms are
unlikely to exist. We present scalable heuristic algorithms for item selection.

4.4.1 Accelerated Backward Greedy

As discussed earlier, in [4], the authors study the problem of user selection for
the cold-start item problem. They propose two backward greedy algorithms,
called Backward Greeedy (BG) and Backward Greedy2 (BG2).

Recall that for a set of items S ⊆ {v1, ..., vn}, we denote by VS the
submatrix of the item latent factor matrix corresponding to the items in
S and f(VS) := tr((VSV

T
S )−1) is the profile learning error that we seek to
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minimize by selecting the best items. It can be shown, following a similar
result in [4] (Proposition 3) that f(.) is monotone decreasing, i.e., for item
sets S ⊆ T , f(VT ) ≤ f(VS).
Overview. Backward greedy algorithms essentially remove the worst items
from the set of all items and use the remaining ones as interview items.
The core idea is to start with the set of all items and successively remove
an item with the smallest increase in the error, until no more than b items
are left, where b is the budget. It was claimed in [4] that the backward
greedy algorithms are approximation algorithms. This is incorrect since
their claim relies on the error function being supermodular. Unfortunately,
their proof of supermodularity is incorrect as shown by our counterexample
in Section 4.3.4. Thus, backward greedy is a heuristic for their problem as
well as our OID problem.
Acceleration. In this section, we propose accelerated versions of BG and
BG2, by incorporating two optimizations: (i) we speed up the matrix in-
version step, necessary for evaluating the error function f(.), by using the
Sherman-Morrison formula with a rank-one update; (ii) we borrow ideas
from the classic lazy evaluation approach, originally proposed in [33] to save
on function evaluations. We briefly describe these optimizations next.
Sherman-Morrison. Suppose the current set of items is S. Let v ∈ S be
an item that is removed from S to give S′ = S \ {v}. Suppose (VSV

T
S )−1 is

already computed. Then (VS′V
T
S′)
−1 can be computed as

(VS′V
T
S′)
−1 = (VSV

T
S − vvT )−1

= (VSV
T
S )−1 +

(VSV
T
S )−1vvT (VSV

T
S )−1

1− vT (VSV T
S )−1v

.

Lazy evaluation. Lazy evaluation, originally proposed as a way to speed up
the greedy algorithm for submodular function maximization, can be easily
adapted to a supermodular function minimization as follows. Suppose g(S)
is a supermodular set function that is monotone decreasing and we want
to find a set S of size ≤ b that minimizes g(S), using the backward greedy
framework. Let Si be the set of items in iteration i of a backward greedy al-
gorithm. Then for j > i, clearly Sj ⊂ Si. Define g̃(u|S) := g(S \{u})−g(S),
i.e., increase in error from dropping item u from set S. If g is supermodular,
it follows that g̃(u|Si) ≤ g̃(u|Sj), whenever u ∈ Sj , i < j. This follows
upon noting that the function g̃(u|S), denoting increase in error on drop-
ping u from S is actually the negative of the marginal gain of adding u to
S \ {u}, i.e., g̃(u|S) = −g(u|S). Suppose there are items u ∈ Si and v ∈ Sj ,
with i < j, such that g̃(u|Si) ≥ g̃(v|Sj). Then there is no need to evaluate

34



4.4. Algorithms

g̃(u|Sj), since g̃(u|Sj) ≥ g̃(u|Si) ≥ g̃(v|Sj). This saving on evaluations can
be implemented by keeping track of when each error increment (or marginal
gain) was last updated and making use of a priority queue for picking the
element with the least error increment.

Recall that our error function f(.) is actually not supermodular. Our
main goal in applying lazy evaluation to it is not only to accelerate item
selection, but also explore the impact of lazy evaluation on the error perfor-
mance.

We give the pseudocode for the accelerated version of BG2 in Algo-
rithm 2. The algorithm corresponding to accelerated BG can be easily
obtained from this, as we explain below.

We start with B initialized to all items. We use a priority queue for
efficient implementation of lazy evaluation. The “freshness” check in Line
10 in Algorithm 2 checks that the error increment in αj was computed
in the latest iteration to make sure vj is indeed the item with the least
error increment. Notice that we use the notation f̃(vj |VB, CB) where VB
is the latent factor matrix corresponding to the items in B and CB is the
covariance matrix. CB is initialized to the diagonal matrix of noise terms
C, where Cjj = σ2

j , vj ∈ B.
The use of Sherman-Morrison optimization allows us to save on repeated

invocation of matrix inverse, and instead allows it to be computed incremen-
tally and hence efficiently using rank one update. The use of lazy evaluation
saves on evaluations of error increments that are deemed redundant, assum-
ing (pretending, to be more precise) that f(.) is supermodular. We will
evaluate both the prediction and profile error performance as well as the
running time performance of these optimizations in Section 4.5.

The algorithm for the accelerated version of basic Background Greedy
(BG) differs from Algorithm 2 by simply assuming that the noise terms are
identical, i.e., σ2

1 = · · · = σ2
n = σ2, i.e., we set C to σ2 · I, where I is the

identity matrix. This saves some work compared to Algorithm 2. We refer
to this modified algorithm as ABG1 and omit its pseudocode for brevity.

4.4.2 Accelerated Forward Greedy

In a real recommender system, the number n of items may be in the millions
and b may be << n. One key shortcoming of the backward greedy family of
algorithms (BG and BG2 and their accelerated versions) is that they need
to sift through a large number of items and eliminate them one by one till
the budget b is reached. One approach for remedying this is to consider a
forward greedy approach.
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Algorithm 2 Accelerated Backward Greedy 2 (ABGD2)

Input: item set I and corresponding matrix V ; budget b; diagonal matrix
of noise terms C.

Output: items subset B, |B| = b.

1: VB ← V
2: B ← I
3: CB ← C
4: for j ← 1 to |I| do
5: insert (vj , f̃(vj |VB, CB)) into priority queue Q
6: end for
7: do
8: pop (vj , αj) from Q
9: if αj not “fresh” then

10: recompute αj = f̃(vj |VB, CB)
11: end if
12: if αj < MIN(Q) then
13: VB ← VB \ vj
14: B ← I \ {vj}
15: CB ← CB \ σ2

j

16: else
17: insert (vj , αj) into Q
18: end if
19: while |VB| > b
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Overview. Recall that the function f(.) is monotone decreasing, so −f(.) is
monotone increasing. We start with B initialized to the empty set of items,
which has the highest error and hence −f(∅) has the smallest value. At each
iteration, we add to B an item that has the maximum marginal gain w.r.t.
−f(.). That is, we successively add

v∗ = arg maxv∈I\B[−f(VB∪{v}|CB∪{v})− (−f(VB)|CB)]

= arg maxv∈I\B[f(VB|CB)− f(VB∪{v}|CB∪{v})]

to B until the budget b is reached. In the algorithm, we use −f̃(vj |VB, CB)
to denote [f(VB|CB)− f(VB∪{v}|CB ∪ {v})].

As with accelerated backward greedy, Sherman-Morrison formula and
lazy evaluation are used to optimize forward greedy. The resulting algo-
rithm, referred to as Accelerated Forward Greedy 2, is depicted in Algo-
rithm 3. It can be also be adapted to get Accelerated Forward Greedy 1
(AFG1), by setting C = σ2 · I, as we did for ABG1.

In the next section, we conduct an empirical evaluation of the forward
and backward greedy algorithms as well as their accelerated versions pro-
posed here and compare them against baselines.

4.5 Experimental Evaluation

In this section, we describe the experimental evaluation for our algorithms,
and compare them with prior art. We evaluate our solutions both qualita-
tively and scalability-wise: quality evaluation is done by measuring predic-
tion error and user profile estimation error (see Section 4.5.2), whereas, the
scalability study is conducted by measuring the running time.

The development and experimentation environment uses a Linux Server
with 2.93 GHz Intel Xeon X5570 machine with 98 GB of memory with
OpenSUSE Leap OS.

4.5.1 Dataset and Model

For our experiments, we use datasets from the movie recommendation do-
main – Netflix 4 and Movielens (ML) 5.Moreover, we use three different
available ML datasets that gives us a total of four different datasets. We
describe their characteristics in Table 4.1.

4The original dataset was released as part of The Netflix Prize [7] but has since been
removed from the public domain due to privacy concerns.

5Available at http://grouplens.org/datasets/movielens/. Source: [19]
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Algorithm 3 Accelerated Forward Greedy 2 (AFG2)

Input: item set I and corresponding matrix V ; budget b; diagonal matrix
of noise terms C.

Output: items subset B, |B| = b

1: VB ← φ
2: B ← φ
3: for j ← 1 to |I| do
4: insert (vj ,−f̃(vj |VB, CB)) into priority queue Q
5: end for
6: do
7: pop (j, αj) from Q
8: if αj not ”fresh” then
9: recompute αj = −f̃(vj |VB, CB)

10: end if
11: if αj > MAX(Q) then
12: VB ← VB ∪ {vj}
13: B ← I ∪ {vj}
14: else
15: insert (vj , αj) into Q
16: end if
17: while |VB| < b
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Table 4.1: Dataset Sizes

Dataset # Ratings # Users # Items Sparsity

ML 100K 100,000 943 1682 6.3%

ML 1M 1,000,209 6,040 3,900 4.25%

ML 20M 20,000,263 138,493 27,278 0.53%

Netflix 100,480,507 480,189 17,770 1.18%

4.5.2 Model Parameters & Experimental Setup

For each dataset, we train a probabilistic matrix factorization model [39]
on only the ratings given by 70% of the users. We refer to them as the warm
users, U . We use gradient descent algorithm [48] to train the model, with
latent dimension = 20, momentum = 0, regularization = 0.1 and linearly
decreasing step size for faster convergence. This allows us to use large steps
while initially moving towards the minima, decreasing as we approach it to
avoid overshooting. We report the number of warm users, number of items
rated by them, and RMSE obtained, for the different datasets in Table 4.2.
Note that # Items in Table 4.1 is different from |I| in Table 4.2. This is
because some items were not rated by the warm users. We had to discard
such items from consideration, as we could not build item profiles for them.

Table 4.2: Experiment Sizes

Dataset # Warm Users |U| |I| RMSE

ML 100K 702 1647 0.9721

ML 1M 4,473 3,666 0.8718

ML 20M 102,628 25,529 0.7888

Netflix 355,757 17,770 0.8531

Experimental Setup: We simulate the cold user interview process as
follows:

1. Set up the system

(a) Randomly select 70% of the users in a given dataset to train the
model (U)

(b) R := Matrix of ratings given by U only
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(c) Train a PMF model on R, to obtain U, V

2. Construct item covariance matrix C given by,
σ2
j := 1

|R∗j |
∑

i∈R∗j (Rij − R̂ij)
2, where R∗j refers to the column(set) of

ratings received by item j

3. For each cold user u` 6∈ U ,

(a) Construct U` using gradient descent method [37], and using the
item latent factor matrix V

(b) Randomly split items they have rated, into candidate pool CP
and test set Test

(c) Run item selection algorithm on CP with corresponding V and
budget = b

(d) B := items returned by algorithm to interview u`

(e) Reveal R` := u`’s ratings on B

(f) Construct Û` := (γI + VBC
−1
B V T

B )−1VBC
−1
B R`

(g) Evaluation: RMSE on Test :=
√

1
|Test|

∑
vj∈Test(R`j − V

T
j Û`)

2 ,

profile error := ||Û` − U`||2F

4. Average prediction and profile error over all cold users

In Step 2, we estimate the noise terms using the method outlined in [4].
For the case where the covariance matrix C = σ2I, we estimate σ2 that best
fit a validation set (a randomly chosen subset of the cold user ratings).

In Step 3a we compute true latent vectors of the cold users. We cannot
compute that using the PMF model in Step 1c, as these ratings are hidden
at that stage. Moreover, since each cold user is independent, we cannot
train a model on their combined pool of ratings. Instead, we adopt the
gradient descent based method given in [37], to generate the latent vector
for a new user keeping everything else constant. This method produces
results comparable to retraining the entire model globally (with 1% error in
the worst case), in a few milliseconds [37]. The user profiles thus generated
are used as true profiles.

In Step 3g, the estimated rating is computed by taking an inner product
between the item and the cold user vector Û`. For the real rating R`j , we
study two different settings: in one we use ratings that were provided by u`
on Test, but were kept hidden from the system until the evalution stage,
and in the other R`j = V T

j U`. We call the first one the real setting, as
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we use the real ratings provided by the cold user, and we call the second
one the ideal setting, as it corresponds to an ideal, zero error MF model.
Studying our algorithms under the ideal setting has two advantages: first,
it allows us to decouple our problem from the problem of tuning a matrix
factorization model. This way, the model error from using a possibly less
than perfect PMF model does not percolate to our problem. Second, we do
not have to be limited to only selecting the items for which we have ratings
in our dataset, as we can generate ratings for all items. This is especially
crucial for sparse datasets, like ours.

4.5.3 Algorithms Compared

We compare the following algorithms against their accelerated versions,
as described in Section 4.4: Backward Greedy Selection 1 (BG), Backward
Greedy Selection 2 (BG2), Forward Greedy Selection (FG) and Forward Greedy
Selection 2 (FG2). Further, we use the following two heuristics as baselines:
Random Selection (RS), where the items are randomly sampled from the
candidate pool, and High Variance (HV), where b items with the highest
variance in rating prediction among warm users are selected. This gives us
a total of 10 algorithms to compare.

4.5.4 Quality Experiments

Results: We run quality experiments to measure prediction error and pro-
file error for all five datasets. For the datasets ML 100K and ML 1M, we
compare all 10 algorithms under the ideal setting, where we note that BG

performs almost exactly the same as FG (see Fig. 4.1), while BG2 and FG2

perform better for both profile and prediction error. For the larger datasets
Netflix and ML 20M, we compare algorithms under the real setting. For
both, we observe that FG2 outperforms BG2 for both prediction and profile
error, and FG outperforms BG for smaller values of b.

We also observe that algorithms that produce low profile error also pro-
duce low prediction error. The only exception is RS and HV in Figures 4.2,
4.3.

Despite the lack of supermodularity or submodularity, the accelerated
variants of all the algorithms perform akin to their non-accelerated variants
on both prediction and profile error, for all four datasets (Fig. 4.1, 4.2,
4.3). This suggests that the objective function may be close to satisfying
supermodularity. This requires further investigation.
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(a) Prediction Error – ML 100K
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(b) Profile Error – ML 100K
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(c) Prediction Error – ML 1M
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(d) Profile Error – ML 1M

Figure 4.1: Movielens 100K and 1M Datasets
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(b) Profile Error

Figure 4.2: Netflix Dataset
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(b) Profile Error

Figure 4.3: Movielens 20M Dataset
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4.5.5 Scalability Experiments

To test scalability of our proposed solutions we run all 10 algorithms on 2
of the datasets, ML 100K and ML 1M under ideal setting and on Netflix
and ML 20M under real setting, and measure running times with varying
budget. Note that due to the datasets’ sparsity, the average number of items
per cold user that the algorithms sift through in the real setting ranges from
271 to 282, while in the ideal setting, it is significantly more (1647 and 3666
for ML 100K and ML 1M respectively).

Results: In all cases, the accelerated algorithms produce error similar
to their un-accelerated counterparts (Fig. 4.1, 4.2, 4.3), but running time
performance is far superior (Fig. 4.4, 4.5). Among all algorithms, FG2 (both
accelerated and unaccelerated) has the best qualitative performance, with
prediction and profile error comparable to BG2 (Fig. 4.1) or better (Fig.
4.2, 4.3), and is significantly faster than BG2 in terms of running time. In
fact, even for ML 100K, our smallest dataset, under the ideal setting, the
time taken by unaccelerated FG2 for b = 100 is approximately a sixth of
the time taken by ABG2 for b = 4. Moreover, running times of all backward
greedy algorithms increase significantly as we decrease b (see Fig. 4.4, 4.5),
which makes them unsuitable for use in a real world system, where b would
typically be very small.
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Figure 4.4: We measure the running time by varying b from 4 to 100 for ML 100K
and ML 1M, averaged across 200 and 1000 cold users respectively. The plots show
the performance of all 10 greedy algorithms on a candidate pool of 1682 and 3952
items respectively.
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Figure 4.5: We measure the running time by varying b from 4 to 100 for Netflix
and ML 20M, averaged across 5000 cold users.
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Chapter 5

Conclusion

In this thesis, we studied theoretical properties of the cold-start user prob-
lem in collaborative filtering recommender systems. We studied this prob-
lem under the two most prevalent frameworks for collaborative filtering –
neighbourhood-based methods and matrix factorization. More specifically,
we studied which items to interview a cold-start user with, so as to best learn
their preferences. We call this the optimal interview design (OID) problem,
and we formalized what it means to learn the user’s preferences best under
the two different frameworks – OID-NB for neighbourhood-based methods
and OID-MF for matrix factorization.

We proved that both OID-NB and OID-MF are NP-hard, and proved
bounds on their approximability. We also studied their monotonicity and
submodularity/supermodularity properties, proposed various efficient algo-
rithms and evaluated their performance comprehensively on two and four
real world datasets, for the neighbourhood based framework and the matrix
factorization framework respectively. For the first, we considered only item-
item similarity collaborative filtering and absolute thresholding for neigh-
bour selection, but it would be interesting to study the same problem with
user-user similarity and top-n neighbour selection methods. In our exper-
iments, we found that the item-item similarity matrix computation was a
serious bottleneck. Although some scalable alternatives have been proposed
[6, 15, 46], further research is needed to adapt them for the cold-start prob-
lem.

For the second part, we demonstrated the importance of learning the
cold-start user’s profile, and how that translates to improved rating predic-
tion performance. Our proposed algorithm not only outperformed the state
of the art in terms of learning the user’s preferences, but was also many
times faster. We also observed that our proposed accelerated algorithms
performed akin to the unaccelerated variants, suggesting that the objective
function is close to supermodular. One future research direction would be
to see whether it satisfies weak supermodularity [9].

This work can be also extended to the cold-start item problem, which
is analogous to what we studied and the cold-start system problem as well.
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Chapter 5. Conclusion

Another direction to explore would be to study multiple cold-start users
at the same time. In this work, we assumed that each cold-start user was
independent. Different noise, ratings and covariance models can also be
explored.

Lastly, the OID problem can be studied in an interactive setting, where
the response from the user on one item is used to determine the next. It
could be combined with an implicit rating model, where the user does not
need to explicitly rate the items served to her, but indicates her preference
through actions such as clicking on the item, making it a favorite, or buying
it.
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