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Abstract

Non-contact 6-DOF planar motors are playing more and more important roles in high precision
machine tools, such as photolithography machines in semiconductor industry. Among existing
planar motor designs, magnetically levitated planar motors with moving magnet have the
potential to greatly improve the performance of motion stages by eliminating the force
disturbance from umbilical cables and hoses that supply electricity and cooling water to motion
stages, and can be easily extended to multiple-stage application. However, moving magnet
planar motors suffer from intrinsic high-order force ripples that are generated by the interaction
between stator coils and magnetic field harmonic components from magnet arrays. This thesis
presents the design, analysis and experimental results of a novel magnet array for planar motor
application, termed as M-Magnet array.

An M-Magnet array consists of four identical magnet pieces per spatial period. Each
magnet piece has a magnetization axis in 45 degree direction relative to its side surfaces, instead
of 0 or 90 degree magnetization pieces used in conventional Halbach arrays. To minimize force
disturbance generated in orthogonal coils, symmetric magnet arrays are preferred. Previous
symmetric magnet array contains 5 magnet pieces at each spatial period with the two edge pieces
having half width of inner magnet pieces. The new M-magnet array design allows a symmetric
magnet array made of 4 identical pieces. In addition, M-Magnet array design has the scalability
to be extended to various sizes of mover with only one type of magnets, which makes the
manufacturing of movers more cost effective. This thesis develops 3D analytical models to

investigate the actuating force and torque generation of magnet arrays, and its sensitivity to



manufacturing tolerances. The results indicate that the motor performance is relatively
insensitive to manufacturing tolerance.

For high precision positioning applications, force and torque characteristics of the planar
motor are desired to be highly linear and less intrinsic force disturbance in order to minimize
control effort. A novel hybrid array design based on M-Magnet array is presented which can
attenuate 6" force ripple by a factor of 100 without sacrifice of force constant of the planar motor
compared to existing array splitting solution. The new M-Magnet array and hybrid array designs
are analyzed via 2D and 3D models.

An M-Magnet array is fabricated and experimentally tested at two distances from the
magnet array bottom plane. The experimental results match the calculation results from 3D

analytical models within 3% deviation, which confirms the validity of the 3D models.



Preface

The work in this thesis has been carried out at the Precision Mechatronics Laboratory (PML),
Department of Mechanical Engineering, under the supervision of Dr. Xiaodong Lu. The
conceptual ideal of M-Magnet array originally came from Dr. Xiaodong Lu.

Chapter 1 is the introduction and a brief literature review of existing magnet array pattern
for planar motor applications. Figures 1-1, 1-2, 1-5a, 1-5b, 1-6a, 1-6b, 1-7 and 1-8 are cited from
literature, as noted by each figure. Figures 1-5¢ and 1-6c¢ are the author’s calculation results for
existing designs in published patents as noted under the figure.

Chapter 2 is the calculation theories for analyzing M-Magnet arrays. All these theories
are developed based on previous work from published papers.

Chapter 3 is the design and calculation of M-Magnet array. All calculation methods and
coding of M-Magnet arrays are performed by the author.

Chapter 4 is the experiment results of an M-Magnet array. The magnet array was

assembled by the author and the experiments were also carried out by the author.
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Chapter 1: Introduction

Driven by Moore’s law, minimum feature size of integrated circuit (IC) is decreasing from
several micrometers in 1970’s to slightly over 10 nanometers nowadays. Lithography tool, one
of the most important machines in Semiconductor industry, plays a leading role to support
Moore’s law. A key component of lithography tool is wafer stage, which positions a wafer under
a lens-system. To satisfy severe performance demands in terms of speed and accuracy, wafer
stage keeps evolving from conventional mechanical contact stage to non-contact air bearing
stage [1][2][3], latterly to the state of the art magnetically non-contact stage with moving coils
[4]1[5][6]. Now more and more researches focus on magnetically levitated stage with moving
magnet [7][8][9][10][11][12], which could be a new solution to further improve the performance
of wafer stage. Generally, speed and accuracy are in conflict with each other on the design of
motion control device such as wafer stage. One of the major trouble makers is high-order force
ripples from actuator of the stage, which are position dependent and will degrade the
performance as speed going up. This thesis presents a new type of magnet array for magnetically
non-contact stage to simplify mover design and effectively attenuate force ripples.

1.1 Thesis Overview

This thesis is divided into five main parts:

Chapter 1: Introduction

This chapter introduces the motivation of the thesis and presents the background of planar motor
in high precision machine. Previous magnet array designs for planar motor are reviewed.

Chapter 2: Theory of Electromagnetic Field Analysis



This chapter presents two approaches for magnet field modeling, 2D Fourier series model and
3D magnetic surface charge model. Forces and torques generated by conventional Halbach array
interacting with stator coils are calculated based on analytical models.
Chapter 3: Novel M-Magnet Array Design for Planar Motor
This chapter shows the new magnet array design in terms of magnetizing pattern and array
layout for 2D and 6D actuations, and investigates the relationship between manufacturing error
and planar motor performance to demonstrate its manufacturing feasibility that performance is
relatively insensitive to manufacturing tolerance.
Chapter 4: Experiment
This chapter describes the experiment set-up for testing the magnetic field of an M-Magnet array
at different distances from bottom surface of magnet array. The experimental results are
presented and analyzed.
Chapter 5: Conclusion
This chapter summarizes the contribution of this thesis and discusses future work.
1.2 Thesis Contribution
The main contributions of this work are:
e Design and manufacture of a novel M-Magnet array for magnetically levitated planar
motor application.
e Design a novel hybrid array based on M-Magnet array to eliminate 6" force ripple
generated by magnetic field harmonics interacting with orthogonal coils.
e Modeling and analyzing the 3D field and harmonics of M-Magnet array and hybrid array.
e Investigate the relationship between manufacturing tolerances and actuation performance

of M-Magnet array to demonstrate its manufacturing feasibility.



e Assemble M-Magnet arrays and build experimental set-up to test magnetic field for
validation of M-Magnet array design

1.3 Stage Architectures for High Precision Machine
For several decades, there has been much research into nano-scale high-precision systems for
wafer stage in semiconductor industry. Six degrees of freedom (DOF) are typically required for
this kind of machine. X-Y planar motion is for transporting wafer from one work station to
another, whereas other four short axes are used to align wafer with other devices of lithography
tool. Conventional two-dimensional motion control devices using a mechanical transformer, such
as a gear or ball screw, are faced with the difficulty of very precise position control.
Furthermore, dust particle and heat caused from wear of contacts and friction are unacceptable in
clean room environment. Therefore, they are obsolete and replaced by non-contact actuating
systems. Generally, there are two classes of non-contact actuating solutions for high precision
applications: i) direct drive linear motor combined with high pressure air bearing to guide planar
motion [1-3]; ii) planar motor [5-12] inherently has the ability to levitate using magnetic force
coming from electromagnets or permanent magnets. For maglev planar motor, it can be also

categorized as moving coil planar motor and moving magnet planar motor.



1.3.1 Linear Drive Stage with Air Bearing
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Figure 1-1 H-drive style single stage, figure taken from [1]

Figure 1-1 shows a widely adopted H-drive style single stage [1] in semiconductor
manufacturing, including lithography, wire bonding, wafer metrology, packaging and so on. At
least three layers of motion elements are clumsily stacked. Y axis stands on granite as bottom
carrier with X axis sitting on it. Both X and Y axes constitute the coarse stage. With 4DOF fine
stage stacking on top of the coarse stage, 6DOF motion stage is obtained. Aerodynamic bearing
exerting on Y axis can achieve easy, stiff and stable levitation and position control, but it cannot
be used in a vacuum environment which is common in semiconductor industry. In addition,
scalability is another problem for this stage. It’s very difficult to extend from single stage to
multiple stages due to the constraint of the guide providing air bearing. Multiple stage
configurations are also becoming more and more popular in lithography tools, which can

dramatically improve the throughput of the tool.



1.3.2 Maglev Stage with Moving Coil Planar Motor

Figure 1-2 Maglev dual stage with moving coil planar motor, figure taken from [6]

Figure 1-2 shows the state-of-the-art maglev multiple stages, which are integrated in the latest
front-end lithography apparatus [6]. 6DOF coarse stage is levitated and driven by a moving coil
planar motor inside, which can easily generate around 3g [13] acceleration if the moving coil can
be forced cooling appropriately. Guide free architecture provides it with ability to freely move in
plane and scalability to multiple stages. However, there are still some disadvantages for this
design. Firstly, two layers of motion elements, 6DOF fine stage sitting on 6DOF coarse stage
[14] to enhance performance on the end effector, will lead to higher load and constrain
accelerating ability. Secondly, umbilical motor cables and cooling hoses of planar motor, which
are attached to the mover, will impede free motion of coil assembly; consequently not only
moving path of the stage is limited but significant unpredicted disturbance forces are caused. All
above problems can be solved by cable-free planar motor with moving permanent magnet (PM).
1.3.3 Maglev Stage with Moving Magnet Planar Motor

Although there is no cable issue for maglev stage with moving magnet, some other questions
arise: 1) how to design a stator coil to make force generation easier, smoother and more efficient;

2) how to design magnet array to eliminate force ripples. If these two questions cannot be
5



answered properly, high precision 6DOF fine stage stacking on the maglev planar motor is
inevitable to ensure final performance of the whole system, which means cables issue is only

alleviated instead of being eliminated totally to set free of the stage.

Desire force

Desire force

Distu rbance
force

(a) Racetrack caoil (b) Elongated straight coil

Figure 1-3 Comparison of Racetrack coil and Elongation straight coil

The first problem can be solved by elongated coil pattern in [7][12], which is illustrated
in figure 1-3. Most of maglev stages use conventional racetrack coil as building blocks of stator
[5]1[8][9][10][11]. One major issue of racetrack coil is edge effect at two current return ends,
which will generate undesired disturbance forces, shown in figure 1-3a. Whereas, a novel stator
with elongated straight coil pattern using general printed circuit board (PCB) manufacturing
procedure was invented by Xiaodong Lu in 2012, which can effectively eliminate edge effect
from current return. The ideal of this new coil pattern is moving current return ends of each coil
far away from the magnet field of the mover, depicted in figure 1-3b, thus no disturbance forces

will be generated at the current return ends. On the other hand, elongated straight coil pattern has



another benefit that it can get rid of edge effect from magnets as well [15]. This will be discussed
in following section.

1.4 Previous Magnet Array for Planar Motor

In general, we can classify planar motor in terms of magnet array pattern: 2D array pattern and
1D array pattern. For each pattern, it also has two classes of magnet array unit, NS array and
Halbach array.

1.4.1 Halbach Array vs NS Array

Before going through the discussion of different array pattern, this section will conceptually

introduce two types of magnet array units: Halbach array and NS array.

[
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==
=
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(a) NS array ' (b) Halbach array

Figure 1-4 Comparison of NS array and Halbach array

NS array in figure 1-4a consists of two magnet components: north component and south
component magnetized in +Z and —Z direction respectively, whereas Halbach array in figure 1-
4b includes four magnet components instead of two. Another two components are east
component magnetized in +X direction and west component magnetized in —X direction other
than north and south components. Intuitively, from the finite element simulation, there are two
major differences between Halbach array and NS array: 1) Halbach array has field self-shielding

effect on topside of array without any back iron, whereas NS array has same field strength on

7



both sides; 2) On underside of Halbach array, it inherently has much stronger airgap flux density
than NS array. From [18], Halbach array is about v/2 times stronger than NS array. This
characteristic is very useful in planar motor design, which can increase force density on strong
side to enhance levitation force. More theories about Halbach array will be discussed in chapter
2.

142 2D Magnet Array

i
X distance

i
X distance

(©

Figure 1-5 Binnard et all. Magnetically levitated 6DOF planar motor (a) Planar motor overview, figure taken
from [9]; (b) 2D NS array pattern, figure taken from [9]; (c) Magnet field of Bz and Bx at cross section A-A

Figure 1-5a shows a magnetically levitated 6DOF planar motor presented in 2002 by Binnard et

all [9]. For this design, the underside of the mover has a chessboard style 2D NS magnet array,



as shown in figure 1-5b. The racetrack stator coils are stacked layer by layer under the mover to
enhance the force constant of the planar motor. However, this will increase the complexity of
amplifier due to large number of coils. On the other hand, if we look at the magnet field of the
cross section of A-A in figure 1-5b, it’s noticed that magnet field in Z direction (Bz) generating
thrust force, and magnet field in X direction (Bx) generating levitation force, are non-sinusoidal
shape, as shown in figure 1-5c (3D magnetic field simulation is attached in Appendix A.1). This

will result in very big position dependent force ripples.
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Figure 1-6 Compter et all. 6DOF planar motor (a) Planar motor overview, figure adapted from [11]; (b) 2D

Halbach array unit, figure adapted from [11]; (c) Magnet field of Bz and Bx at cross section A-A

Similar design in figure 1-6a was presented by Compter et all. [11] in 2011, which also
consists of racetrack stator coils and 2D chessboard style magnet array. However, there is one
major difference between these two planar motors about the mover design. For Compter’s planar

motor, 2D Halbach array is used as building block of the mover, shown in figure 1-6b, instead of



NS array in Binnard’s design. This is why magnet array has 45° angular offset relative to stator
coil in figure 1-6a. As discussed in section 1.4.1, Halbach array has two advantages compared to
NS array. Firstly, field self-shielding effect on topside of the planar motor could be very useful
when it’s applied to the stage carrying magnet field sensitive workpiece. On the other hand,
strengthened field on the underside of planar motor is a big benefit for motor design, which can
enhance the force density of the planar motor. But the disadvantages of Halbach array are also
obvious. First of all, if we look at the magnet field at the cross section A-A in figure 1-6a,
similarly as the analysis for Binnard’s design in figure 1-5b, it’s clear that Halbach array has
more and much bigger magnetic field harmonics compared to NS array, which is depicted in
figure 1-6¢ (3D magnetic field simulation is attached in Appendix A.2), where Bz and Bx distort
even worse with respective to sinusoidal shape field. Furthermore, intrinsic field coupling
between X and Y is also stronger than Binnard’s design. Finally, more magnet components are
required for array assembly compared to NS array.

In sum, all of these designs suffer from force ripples generated by 2D magnet array and
position dependent forces as the coils are discrete underneath the magnetic field. The coils also
have end turns that are always exposed under the magnetic field, resulting in unwanted force
coupling between axes. Although non-sinusoidal current waveforms [16] and mapping
decoupling matrix [10] can be applied to attenuate force ripples, this will lead to new problems:
i) too much computation effort for real time controller; ii) stage performance will be very
sensitive to manufacturing and structure stability.

1.4.3 1D Magnet Array
Instead of using 2D magnet array in moving magnet planar motor, 1D magnet array has two

significant advantages: 1) high performance can be easily achieved with less control effort since
10



no intrinsic coupling between magnet arrays in X and Y directions, and force ripples are much
smaller; 2) magnet array assembly is easier compared to 2D array because less magnet pieces are
needed. Furthermore, elongated coil pattern can be applied to 1D array, which can easily avoid
edge effect at end turns of each coil compared to racetrack coil because they are far away from
magnet field. Practically, over half of spatial period of magnet array between end turns and the
edge of magnet array is good enough to ensure stage performance since the field decays very fast

beyond this distance [17].
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Figure 1-7 Kim’s 6D magnetic levitation stage, figure taken from [18]

Kim and Trumper [18] invented a 6DOF “high precision magnetic levitation stage for
photolithography” in 1998. There are four single dimension magnetic Halbach arrays mounted
on the bottom side of the mover. The stator is made by wire coils separated into four parts, each
one under a magnet array respectively. Each coil and magnet array pairs can generate levitation
and translation forces, shown in figure 1-7. This is the first stage proving that maglev planar
motor with 1D Halbach array can achieve very high performance, 5-nm RMS positioning noise
in X and y, 10nm RMS positioning noise in z. However, Kim’s stage has a big problem for

practical applications: its travelling stroke is coupled with the size of armature, which leads to a
11



much large footprint if large stroke is required. To solve this problem, Lu and Usman developed
a new type of planar motor, as shown in figure 1-8. By using elongated coil pattern manufactured
by PCB process, not only high performance of the stage is guaranteed, but more advantages can
be achieved compared to Kim’s design and racetrack coil pattern designs: 1) very compact and
accurate coil layout; 2) high filling factor of stator; 3) very easy to be scaled to large moving

range and extended to multiple stages.

o
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(b) Cross-section of Y2 magnet array and its corresponding active Y-coils
(in dark blue), inactive Y-coils (in grey) and X -coils (in pink).

Figure 1-8 Lu’s planar motor overview, figure taken from [12]
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1.5 Proposed Magnet Array

(@) (b)

Figure 1-9 Conventional Halbach array

Typically, 1D Halbach array uses four blocks per period, and each block is uniformly
magnetized in Y axis. If magnetization axis of each block is either Z or X and rotates by 90° in
each subsequent block, then this specific pattern in figure 1-9a is conventional Halbach array.
From finite element solution of conventional Halbach array in figure 1-9b, it’s noticed that the
field distribution is asymmetric about its vertical middle axis, which will cause disturbance
torques if there is current along X direction going through the field. Therefore, in practice,
symmetric Halbach array is adopted, as shown in figure 1-8b [12]. This magnet array is also used
in the mover design of [18]. There are some drawbacks about symmetric Halbach array: 1)
Different size of magnet blocks are needed, five blocks per period instead of four, which will
increase the manufacturing cost; 2) Long and thin magnet block makes array assembly very
difficult since it’s easy to be broken during assembly; 3) 5™ harmonic of 1D Halbach array [19]
is the source of 6" force ripple when applied to planar motor. Usman uses array splitting method

to attenuate 6™ force ripple in [20], but this will lead to new problems: a) Splitting gap makes

13



array assembly even harder; b) Force constant will be reduced by 5% compared to non-splitting
array.

AR N

z NN
hm% N=/IN=/

(@) (b)

Figure 1-10 M-Magnet array

This thesis will present a novel M shape magnet array consisting of four blocks per
period. All blocks are identical with a magnetization axis along 45 direction relative to its side
surface. To start from the left block, rotating by 90° along clockwise direction in each
subsequent block, an M-Magnet array is formed as shown in figure 1-10a. From the finite
element solution of an M-Magnet array in figure 1-10b, it’s obvious that magnetic field of this
new array is mirror-symmetric about vertical middle axis. Hence, only one type of magnet block
needs to be fabricated and assembled. Further, if we look at the magnetic flux density of left two
blocks in figure 1-10b, attraction force can easily bind these two magnets together, similarly as
right two blocks. So we can manipulate one pair of magnets as one group during array assembly.
The only assembly effort is how to put two pairs together since repelling force will push against
each other. Therefore, assembly process of M-Magnet array can be dramatically simplified
compared to symmetric Halbach array, in which repelling forces produced between each magnet

piece will make array assembly even harder.
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On the other hand, to diminish 6™ force ripple due to 5™ harmonic of M-Magnet array
without sacrifice of force constant, hybrid magnet array layout is presented in this thesis based

on M-Magnet array pattern. More details will be discussed in chapter 3.
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Chapter 2: Theory of Electromagnetic Field Analysis

Planar motor is a kind of electromagnetic actuator using synchronous commutation law.
Typically, the use of 3D finite element (FEM) analysis for evaluation of topologies, design and
optimization of the planar motor is inconvenient due to the simulation time. On the other hand,
3D model is too complex for harmonic components analysis of magnet array, which is the key to
investigate the force ripples of planar motor. In this chapter, theories that govern electromagnetic
actuator design are introduced. Subsequently, two magnet design tools are developed based on
these theories. One is magnetic surface charge model for 3D magnetic field modeling replacing
3D finite element model; another is Fourier series analytical model in 2D dimensions, which
focus on harmonics of magnet array. Force and torque model of single magnet array based on
Lorenz force law is introduced in section 2.4, which is used to evaluate M-Magnet array design
in chapter 3.

2.1 Maxwell Equations [21]

Maxwell equations are the principles behind planar motion design. There are a set of four
equations, with the status of physical laws, stating the relationship between the electric and
magnetic fields and their sources being charge density and current density. Maxwell equations
can be written either in the integral or differential form. The integral form is easier for explaining
the meaning of electromagnetic field, whereas the differential form is better suited for
mathematical modelling.

e (QGauss’s law for electric field:
cﬁsgoE-da:jvpdv (2.1)
\Z SOE =p (2.2)
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This is the first law to state that the surface-integral of the displacement flux density (EOE)
over any closed three dimensional surface S, for instance a sphere, equals to the charge enclosed
within the closed surface. Where €, = 8.854 x 10~12F /m is the permittivity in free space, and
p is the charge density. With electromagnetism this law is not used, because in electromagnetic
actuators all electrical charges are bound, which means that they are not free and always in
equilibrium with the positive charge of protons of the wires that are used to carry the current.

e Gauss’s law for magnetic field (Magnetic Flux Continuity):

jsyoﬁ-dé:o (2.3)

V-u,H=0 (24)

The second law of Gauss states that the surface-integral of the magnetic field over a closed
surface S is always zero. Where u, = 4w X 10~7H /m is the permeability of free space, and His
magnetic field strength. With any closed surface, the magnetic flux entering the volume within
the closed surface is equal to the magnetic flux that exits that volume. Gauss’s law on magnetic
fields is based on the observation that magnets always act as dipoles, north and south poles
where the flux flows internally from south pole to north pole and externally back from north pole
to south pole.

e Faraday’s law:

—~ - d .

<j'>CE-o|s=—a i,H-da (25)
= oH

VXE =—p, 2.6

x Ho— (26)

The third Maxwell equation gives the relation between a change in the magnetic field and the

resulting induced electrical potential difference in a wire that surrounds that field. This law states
17



that the line-integral of the electrical field over a contour C equals to the change of the flux
through the open surface S bounded by the contour C. The minus sign indicates that the direction
of the electric field is opposite to the vector ds, which explains several properties of
electromagnetic actuators, for instance damping effect when manually dragging magnets over
stator coils.

e Ampere’s law:

— = - - d — -
<j'>cH-o|s=LJ-o|a+a _&E-da (2.7)
— - OE
VxH=J+e,— 2.8
x oy (28)

The fourth Maxwell equation gives the principle of the creation of a magnetic field by an

electric current, where J is the current density. This law states that the line-integral of the
magnetic field over a contour C is equal to the sum of two terms. The first term represents the
current that flows through the opening of the contour and the second term represents the change
of the electric field over the surface that is enclosed by the contour. The second term is in reality
not relevant for electromagnetic actuators, again due to the bound character of the charges as
mentioned with Gauss’s law on electric field.

2.2 3D Magnetic Surface Charge Model (3DMM)

Although the first Maxwell equations in (2.1) and (2.2) are not used in electromagnetism because
all electrical charges are bound in electromagnetic actuator, these equations can be used to build
magnetic field model as analogous analysis. The source of an electroquasistatic (EQS) field is a

scalar [21], the charge density p of (2

18



.2). In free space, the source of a magnetoquasistatic (MQS) field is a vector, the current density

=3

> . . . . OE .
J in (2.8) without displacement current density &g e Scalar sources are simpler than vector

sources and this is the motivation that using Gauss’s law on electric field to do equivalent
analysis of magnetic field.
2.2.1 Surface Charge Potential in Electric Field [21]
According to Faraday’s law (2.6) in electroquasistatic field, electric field intensity can be written
by

E=-VO (2.9)
where @ is the potential of electric field. Further, the electric field potential can be derived by

solving Poisson’s equation based on Gauss’s law of (2.2).

O(r) = AL (2.10)
V'47tgo‘r—r"

where 7 is the vector of observer at which the potential is evaluated, 77 is the vector of source. If
the charge density is confined to regions that can be described by surfaces having a very small
thickness compared to the distance between observation point and the surface where charge is
distributed, then electric field potential of volume in (2.10) can be expressed as surface charge
potential:

o,(r')da’

— (2.11)
47zgo‘r—r"

o(r)=|

where o, is the surface charge density.
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2.2.2  Analogous Analysis of Magnetic Field [21]
When the observation point is far away from a small current loop, this loop can be viewed as if it
were a “magnetic” dipole, considering of two equal and opposite magnetic charges +g,,, spaced

a distance d apart. The magnetic charges (monopoles) are source of divergence of the magnetic

flux density uoﬁ , analogous to electric charges as source of divergence of the displacement flux

—

density £,E. Thus, it’s convenient to introduce magnetic charge so that the field produced by a
small current loop can be pictured as the field of a magnetic dipole. Then, equations of (2.9),

(2.10) and (2.11) in above section can be applied to magnetic charge in analogous equations:

H=-v¥ (2.12)

P(r) = Ljd‘ﬁ (2.13)
V'47zyo‘r—r"

w(r)=| L)d‘i (2.14)
S 47w0‘r—r‘

where W is magnetic field potential, p,,is magnetic charge density, and o,,is magnetic surface
charge density. However, magnetic field approximation by small current loop is different from

the field by magnetic charge dipole in (2.4). Inside the source region, approximation field has

V- .Uoﬁ # 0, and real magnet has solenoidal H field. But the magnetic field of interest in planar
motor is not inside the source region, typically, at least Imm away. Hence, we can tolerate this

difference.
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2.2.3 3D Analytical Model of Magnet

6t=poMo
+4++++++++++

Figure 2-1 Single rectangular single permanent magnet (a) Definition of the variables of magnet (b) Magnetic

surface charge model; (c) Single layer surface charge model

There is a single rectangular prism permanent magnet with coordinate system (X, y, z) centered
inside the body. The lengths of the magnet in X, y and z-directions are 2a, 2b and 2c respectively,

as shown in figure 2-1a. The magnet is magnetized in +z direction and uniformly distributed in x

and y-axis. The magnetization of magnet can be expressed as M= MOE, where M, = BT/MO, and

B, is the magnet remanence. With the assumption that the relative permeability is equal to 1 in
and outside the permanent magnet, which is reasonable because relative permeability of
permanent magnet is around 1.01-1.05, the magnetic surface charge, a,,, is equal to the B, at top
surface and —B, at bottom surface respectively [22], which is depicted in figure 2-1b. According
to Gauss’s law on electric field in (2.1), in analogy, its magnet form is
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V-u,M=p, (2.15)
thus, the magnetic charge inside the magnet is zero because divergence of uniform magnetization
inside the magnet is zero.

Substituting (2.14) into (2.12) and take the gradient of magnetic potential relative to
observation coordinates 7, the relation between magnetic field strength and magnetic charge is
formulated as

o (r)(r-rda’

o= L Arp, ‘F - FF

(2.16)

with B = uyH, magnetic flux density is obtained. If we look at a single layer of magnetic surface
charge with coordinates in the rectangular center and lengths 2a and 2b in x and y-axis
respectively, as shown in figure 2-1c, any observation point p(x,y,z) is undergoing a three-

dimensional magnetic field(B,, By, B,) [23]:

Z_;;ZO( ~1)"* In(R-T) (217)
Z_;ZZ(-D‘” In(R-S) (218)

[—

B, = (D) atan 2(—) (2.19)

§
M-
MH

Il
o
Il
o

i
where S =x—(-1a, T=y—(-1)'b, R =VS2+T2+2z2. The derivation of above
equations is attached in Appendix B.

By superposition principle, magnetic field flux density at any given point p(x,y,z) in

figure 2-1a is given by,
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B =B +BP (2.20)
where n represents X, Y, or z, t represents top surface of magnet, and b represents bottom surface
of magnet. By plugging top surface charge density, o}, = noM,, and bottom surface charge

density, o2 = —uy,M,, into equation (2.17), (2.18), (2.19) and (2.20), 3D surface charge model

of single rectangular prism magnet is obtained, which is described by following equations [24]:

B, Ziiii(_l)”“k IN(R=T) (2.21)
7T =0 j=0 k=0
B, =5 3 S S (i InR ) (222)
7 i=0 j=0 k=0
_E ShUhY _1\iti+k ST
B, = nzo,z(;;( 1) atan2(—RU) (2.23)

where U = z — (=1)*c, R = VS2 + T2 + U2, Sand T are same as (2.19).

In sum, although surface charge model of magnet is approximation of magnet dipole in
(2.2), it’s good enough to simulate magnet field outside of magnet, which is the field of interest
in planar motor design. Further, the computation of this model is much fast compared to finite
element model simulation.
2.3 2D Fourier series Analytical Model (2DFM)
From magnetic field harmonic point of view, 3D magnetic surface charge model is still too
complex to apply to planar motor analysis because too many details about the magnetic field, for
instance fringing effect of magnet can be simulated by 3D analytical model. If we only take 3D
analytical model of a single Halbach array, four magnet blocks per period, into account, then

harmonics of magnetic field will be coupled with frequencies from magnet edge. At this point,
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2D analytical model based on Fourier series is much better than 3D analytical model because it
focus on real harmonic components of Halbach array.
2.3.1 Vector Potential of Magnetic Field

According to Gauss’s law (2.4) and Ampere’s law (2.8), magnetic field can be simplified as:

VxH=1J
. (2.24)
V-u,H=0
in MQS systems [21]. Here magnetic field has a vector source, current density J, instead of scalar

source in (2.12). Then a vector potential A instead of scalar potential ¥ is used to describe

magnetic field.

i H =V x A (2.25)
Again, in MQS systems, it’s convenient to select a solenoidal vector potential or set the Coulomb
gauge.

V-A=0 (2.26)
Substituting (2.25) into (2.24), and using vector identity V x (V x 4) = V(V - 4) — V24, we
have vector Poisson’s equation of magnetic field.

V2A=—1,] (2.27)
Generally, when a magnet body is immersed in an applied magnetic field, the H-field, during
magnetization, the magnetic flux density at any point is given by

Etotal = Eapplied + ginduced (2.28)

where Bappiiea = HoHy is magnetic flux density in free space, and Bingucea = KoM is induced

magnetic flux density by the applied field. After magnetization, there is no free space H-field,
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thus only induced field remains for permanent magnet. Plugging Einduced = HOM = .uoﬁinduced
into (2.24), equivalent current density can be achieved by

VxM=J (2.29)
Combining (2.27) and (2.29), we have the relationship between vector potential A and
magnetization M.

VZA=—1,(VxM) (2.30)
2.3.2 Magnet Model Based on Fourier series

7 A

top

Magnet
hm

(0,0 bottom :<

Figure 2-2 Ideal magnet with finite height in z and infinite length in x
For 2D analysis of magnet field in figure 2-2, magnetization M in Cartesian coordinates is

written by

M=M.i+M.k (2.31)

Correspondingly, the vector potential A has only a y-directed component A= A,Jj. Thus the
vector Poisson equation (2.30) reduces to a scalar equation

¢ 0
_— — —
(azx azz)p\/ IUO(

aMX+8M2) (2.32)
0z OX
The magnetization distribution M, and M, can be written as a sum of Fourier series [25][26] as

described by
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MX:;MXH’MZ :;MZH

1

o= — "M e ’“"dx
2490

Mzn:

where A is fundamental spatial period

irM eJde
2,90 ¢

of magnet array, and 1,, = %

(2.33)

(2.34)

(2.35)

,n=123..00 is spatial

period of specific harmonic. Substituting (2.34) and (2.35) into (2.32), and solving Poisson

equation by superposition of particular and homogeneous solutions [26] with boundary

conditions that potentials are continued at the boundary and go to zero at infinity, potentials in

Fourier series at top surface and bottom surface of figure 2-2 are achieved. Then applying

potential to (2.25) with B = #017, magnetic flux density in Fourier series on top surface and

bottom surface of magnet are written as

B>t<n = (_

B, = (]

B:n = (_
B, = (-

P

Hy - My "
OM +j22M, )-(1-e
M+ M) e %)

P

Bom, +2M, ) -1-e ™)

2 2

hy

Ho :uo Ty
=M M,,)-(1-e
2 Xn 2 ) ( )

L}

j oM, +‘;°|v| )-(L—e *)

(2.36)

(2.37)
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2.3.3 Halbach Array
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Figure 2-3 (a) Conventional Halbach array with mirror-symmetric field; (b) Magnetization components in x
and z-axis

If we look at the conventional Halbach array in figure 1-9 with five blocks per period to make a
mirror-symmetric field about middle vertical axis shown in figure 2-3a, magnetization
components in x and z-axis are plotted in figure 2-3b. Plugging magnetization components M,

and M, into (2.34) and (2.35) respectively, it follows that

ﬁMo,n:8m+1,or,n:8m+3
zn
o= M, (sin”—n+sin3”n)= —ﬁMO,n=8m+5,or,n:8m+7,m=0,1,2...oo (2.38)
27N 4 4 zn
0,n=even
M, =] M, (cosﬂ—n—cos&z—n)z i"'™M,, (2.39)
27N 4 4
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Substituting (2.38) and (2.39) into (2.37), magnitude of magnetic flux density of each

harmonic on bottom surface of magnet is achieved as

\/_'uo °(1 ei")n 8m+1
B® =1 ] */_”0 N2pMy () e‘n)n 8m+5 ,m=0,1,2..0 (2.40)
O,n_other
\Fﬂo 0(1 ei“)n 8m+1
B = I“O N2pMo e*ﬂ)n 8m+5,m=0,1,2..00 (2.41)
O,n:other

After taking Fourier inverse transform, magnetic flux density on bottom surface of

conventional Halbach array is written as

. X . X h
e -n - Ji 2 -n - 7J7 -
ZBbe e ”°[Z(J + M e =D (j"+ )M, e “"]l-e ) (2.42)
n=1 n=1

X X P

ZBbe et [Z(1+ M+ A P Me Pld-e 7)) (243)
n=1 n=1

From [26] the magnetic field decays exponentially in z from the source of magnet in free

space for the Cartesian geometry, therefore, at any point on the strong side of magnet, the

magnetic flux density is given by

X 0 X hm H

B! =Lo[3 (1" + DM X (1" + DM e “Tae “)e * (244)

n=1
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X [

B =[S @+ )M, e m + Y A M e P ld-e “)e © (2.45)

;= 2 ~ ~

2.4 Force and Torque Models

Planar motor is a kind of actuator based on Lorenz force law, which inherently has low
mechanical stiffness between stator coils and moving magnets, and also linear relationship
between current and force. To be comparable with previous work in [12], force and torque model
of magnet array is analyzed by using elongated coil pattern with width w, and thickness t., as
shown in figure 2-4, in which a single magnet array, with width A, height h,, and length L,,
respectively, flying over the stator coils. Coordinate system (X, y, z) is centered on the bottom
surface of the magnet array, and the center of gravity (CG) is coincident with the center of
magnetic array. To simplify analysis, only single layer of coils is taken into account.

Lorenz force of magnetic field system in continuum representation [27] is given by
F=J,xB (2.46)

where F is force density, and ]7 is current density of stator coils. Thus for specific coil with

volume V, Lorenz force can also be written as [28]:

F= mvfxﬁdv (2.47)
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Figure 2-4 Force and torqgue model of single magnet array

If we look at a small region of one single coil with current I,, going through, dx and dy in
width and length respectively, Lorenz force exerting on this small region due to magnetic field of
the single magnet array can be written by

dF. =~ B (x,y, 2)(dxdyt,) === B (x, y, 2)(dxdy) (248)
Wt W,

dF, =— ly B, (X, y, z)(dxdyt,) = L B, (X, y, z)(dxdy) (2.49)
wt, W,

where minus sign means counter acting force on stator coils, coordinate (X, vy, z) is the position of
the small coil region, and I, is uniformly distributed inside each coil. Accordingly, torques

exerting on magnet array CG by this small coil region can be derived as

dT = —dF.y =Jv_n YB_ (X, v, 2)(dxdly) (2.50)

c

h

dT, =dF,x—dF,(z —?m

)= (6B, (x Y. 2)+ (2~ RIB (X Y. )(Gdy)  (251)

c

dT, =dF, - y:—\:v—” yB, (X, y, z)(dxdy) (2.52)

C
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By superposition principle, the net forces and torques exerting on CG of single magnet

array are given by

N ool ow, |

F=> jo jo —ExB, (x, y, 2)dxdy (2.53)
n=1 C
N ool ew, |

F, :ZL J’O Wﬂx B, (X, y, z)dxdy (2.54)
n=1 C
N |

T,=> jo jo W”yBx(x, y, z)dxdy (2.55)
n=1 C

T ol i LI Mg dixd 2.56

=2 L B0y 2+ (2B, (. oy (2.56)
N oew, |

T, :Z_[O IO —W” yB, (, y, z)dxdy (2.57)
n=1 C

where L is the length of elongated current coil, w,. is the width of a single coil, which is equal to

% , and N is the number of coils underneath magnet array.
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Chapter 3: Novel M-Magnet Array Design for Planar Motor

In this chapter, a novel M-Magnet array is presented in several aspects: magnetic field and
geometry design, array layout for 2D actuation and 6D actuation, manufacturing tolerance
analysis and array assembly design. Magnetic field analysis tools based on 3D magnetic surface
charge model and 2D Fourier series model from chapter 2 are developed to analyze the magnetic
field of M-Magnet array. By using 2D analytical model, high-order harmonics of M-Magnet
array are achieved. Based on harmonic characteristic of M-Magnet array, a novel hybrid array is
presented. Theoretically it can perfectly cancel out 5™ harmonic, which leads to the dominant 6™
force ripple in planar motor. By using 3D analytical model of M-Magnet array along with force
and torque models from section 2.4, dragging and levitation forces and torques around three
Cartesian axes of single array are achieved. Correspondingly 6" force and torque ripples of M-
Magnet array are also obtained. Furthermore, manufacturing tolerances in magnetization angle
and geometric dimension of length, height and width are investigated based on 3D analytical
model and numerical integration of Lorentz force. Finally, array assembly tool and procedure are

discussed in section 3.4.
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3.1 M-Magnet Array

yX

Figure 3-1 M shape magnet array

Figure 3-1 shows the M shape magnet array, which consists of four magnet pieces. Each piece is
identical with a magnetization axis along 45 degree direction, and magnetization is uniformly
distributed in y-axis. By rotating 90 degree along clockwise direction from left to right in each
subsequent block, magnetization axes of four blocks generate an “M” shape pattern.

An M-Magnet array has only four identical magnets per spatial period to create mirror-
symmetric magnetic field about middle axis (z). This is different from other Halbach arrays
being designed in [17][25][29][30][31]. For these conventional Halbach array designs, there are
either 5 pieces or 9 pieces to generate mirror-symmetric magnetic field. This section will go
through all of characteristics of M-Magnet.

3.1.1 Array Geometric and Material Parameters
Based on previous work in [12] and [17], the optimization cost function for magnet array design
is to maximize acceleration that mover can achieve when current density is given.

e M-Magnet Array Geometry
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According to the 2D analytical model in (2.44) and (2.45), and force model in (2.53) and

(2.54), if we only look at the fundamental component of Halbach array, force is proportional to

hm
(1 —e 7). For an M-Magnet array in figure 3-1, mass is given by PmagnethmLmA, thus based

hm

on Newton’s law, acceleration is proportional to hi(l —e 1), Combining them together to

maximize both, we have the cost function given by

()= (i-e *)’ (31)

m

where 4; = % coming from fundamental component of magnetic field. From (3.1), optimal
height of magnet array is obtained, which is at h,, = % On the other hand, An M-Magnet array

has four pieces per period, the width of each magnet is %. If we choose rectangular cross-section

instead of square, we have to use four different types of magnet pieces, which will lead to high

manufacturing costs and assembly complexity. For this reason, we use square cross-section
L A .
magnet with , Square side.

From [17], A = 30mm is chosen for the balance of cost, manufacturability and actuator
performance.

e Permanent Magnet Material

In this project, VACODYM 837TP magnet material (45 MGOe) with 2-deg magnetization
orientation tolerance is chosen because its operating temperature can go to 150°C, which is very
useful in planar motor design since fully operating magnetically levitation force of planar motor

will result in high thermal radiation from stator coils for applications without forced cooling
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system. Furthermore, this material has much high remanence, B, = 1.36[T] with 2% tolerance,
which leads to high force density.

3.1.2 3D Field of M-Magnet Array

A 7
Br Brx Brz 1 2 3 4
[} [} A
/ =| > | + f --?-» —r> | €3-- | <s--
' v v ' X
& >
B A
(@) (b)

Figure 3-2 (a) Magnetic field decomposition; (b) equivalent M-Magnet array

In the Cartesian coordinate system, magnetic field magnetized in 45 degree direction can be

decomposed into x and z components, keeping magnetization uniformly distribution in y-axis, as

shown in figure 3-2a. Magnetic flux density of x or z component is equal to %. Correspondingly,

the M-Magnet array can be replaced by equivalent superposition array in figure 3-2b, where each
magnet piece is superposed by its x and z components. Magnetic field of M-Magnet array can be

achieved by superposition of all fields from magnetization components of each magnet block

B, = 3"(B! +B7)
i=1

4

B,=> (B +B}) (32)

i=1

B, :24:(5;‘ +B%)
i=1

where B} is magnetic flux density in x-axis generated by x component of magnet block i, i is
magnet index shown in figure 3-2b, and BZ* is magnetic flux density in x-axis generated by z

component of magnet block i, similar as magnetic flux density in y and z-axis.
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For z component of 45 degree magnetization, 3D analytical model of (2.21), (2.22) and
(2.23) built in section 2.2 can be applied to (3.2) directly, whereas for x component, coordinate
needs to be rotated by 90 degree around y-axis before applying these equations. Furthermore,
coordinate translation also needs to be taken into account for each magnet with x and z offsets
between magnet center and origin of Cartesian coordinate system.

Figure 3-3 and figure 3-5 shows the magnetic field of single M-Magnet array by 3D
magnetic surface charge model (3DMM), and modeling error between 3DMM and FEM from

COMSOL is also calculated in figure 3-4 and figure 3-6. Roughly speaking, maximum error is

less than 1.5mT, which is about 0.5% of the peak of magnetic flux density at the air gap of % As

. A, 2 : : : .
air gap decreases from - to -, maximum modeling error increases to 10mT, which is about 1%

of maximum flux density.
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Figure 3-3 Magnetic flux density of M-Magnet array by 3D analytical model at z = —g
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Figure 3-4 Field comparison between 3DMM and FEM (COMSOL) at z = —g (Error = B3pym — Brem)
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3.1.3 2D Model of M-Magnet Array
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Figure 3-7 (a) M-Magnet array with mirror-symmetric field; (b) Magnetization components in x and z-axis

Similarly as figure 3-2a, we can also decompose magnetization vector of each magnet piece in
M-Magnet array (figure 3-7a) into x and z components respectively, then magnetization
functions in x and z-axis are obtained, as shown in figure 3-7b. Plugging these magnetization

components M, and M, into (2.34) and (2.35), it follows that

\/EMO,n:4m+1
zn
Mzn:ﬁMosinﬂ_n: _ﬁMO,n:4m+3,m:0,1,2...oo (3.3)
zn 2 zn
0,n=even
.M .
M, =Jj-—==]j"M, (34)
27n
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Substituting (3.3) into (2.44) and (2.45) respectively, 2D analytical model of M-Magnet array

based on Fourier series is achieved.
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Figure 3-8 Magnetic flux density of M-Magnet array by 2D analytical model (a) magnetic flux density in x-

direction (Bx) (b) magnetic flux density in z-direction (Bz)

From (2.40) and (2.41), it’s noticed that on the surface of Halbach array there are only

magnetic field harmonics at 5™ ,9™ ;13" 17" ..., other odd and even harmonics are zero. When

planar motor gap increases to % only 5™ and 9" harmonics left shown in figure 3-8. At this gap,

the magnitude of 5™ harmonic is about 10% of fundamental component and 9" harmonic is about

3%. When the gap increases to % high order harmonics decay to zero. However, the magnitude

of fundamental component also reduces to 35% of that at % as shown in figure 3-8, which could

lead to higher power consumption of planar motor if working at this distance. As a compromise,

planar motor has to fly at lower gap with 5" and 9™ harmonics.
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3.14 Force Ripple of M-Magnet array
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Figure 3-9 Magnetic field of M-Magnet array interacts with three phase currents

From [12][17][32], modulated current I, can be used to generate 2D forces, F, and F,, for single

M-Magnet array, which is given by
= X — X
I, =—1.e *cos(—)—1,e *sin(—) (35)
4 A

where A, = 2 is the fundamental component of magnetic field, I, and I, are the force
2

commands to generate F, and FE, exerting on magnet array respectively. I,, and 1. have g and 2?"

phase delay relative to I, and I,’, I,’ and I." are inverse of I, I, and I. respectively. By
applying Lorenz force law (2.47), we can derive that 5™ and 9" harmonics will result in 6™ and
10" force ripples, and 6" force ripples are dominant. More discussions about 6" force and torque
ripples will be presented in section 3.2.

To attenuate high order force ripples due to conventional Halbach array, Usman [20] uses

array splitting method to attenuate 6" force ripples. But this will lead to 5% force constant
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reduction and increase array assembly complexity. A novel M-Magnet array layout is presented
in this thesis to diminish high order force ripples without above trade-offs.
3.2 Array Layout

3.2.1 Single M-Magnet Array Layout for 2D Actuation
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Figure 3-10 Comparison between conventional Halbach array and M-Magnet array (a) magnetic flux density
in x-direction (Bx) (b) magnetic flux density in z-direction (Bz)

If we compare the 2D analytical field of conventional Halbach array (figure 2-3) with M-Magnet
array (figure 3-7), it’s noticed that 5™ harmonics of magnetic field in these two arrays have
opposite sign for magnetic flux density in both x and z directions, as shown in figure 3-10 (a)
and (b) respectively. Therefore, combining them together can perfectly cancel out 5™ harmonic;

consequently 6™ force ripples can be removed.
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Figure 3-11 Single array layout (a) Split Array, adapted from [20]; (b) Hybrid array; (c) M-Magnet array
In figure 3-11, there are three types of magnet array: 1) conventional Halbach array with

% shift along x direction between two halves of array cut in elongation direction (figure 3-11a);

2) one piece of M-Magnet array with A width and 24 length (figure 3-11c); 3) Hybrid magnet
array consists of one M-Magnet array with A width and A length in the middle, two segments of
conventional Halbach array with A width and half A length placed on two ends of the M-Magnet
array respectively along y direction (figure 3-11b). To compare the performance of different
array layouts, we can substitute (3.2) and (3.5) into (2.53)-(2.57), then 2D forces and 3D torques

can be achieved for different array configurations.

45



_____ Split Array ----- Split Array
— Hykrid Array ; — Hybrid Array ||
---------- M-Magnet Array i i G

Fx (N)

11.2 1&_e,‘:‘!s—c?:?'},-—,’:,—Eu-(,‘:‘%’E__CT,-:--L‘,‘,T?,‘;._ef:?-—nf,-,?')-_—,‘,‘,T,\-(,‘:?E__‘,T,-:--,{‘,:

1 1 1 1 1 1 1
M0 5 10 15 20 25 30 10 15 20 25 30
X displacement (mm) X displacement (mm)
: : 0.02 ¥ T T :
Pt Split Array P | ni Ew"- [ e Split Array
¢/ | — Hybrid Array A FiaiA Ry T i | ——Hybrid Array
0.01 T RV LA |

M-Magnet Array A

g g
S 1 O S S SR * 001
11,2 freertn e e e e T T R e T ] 0 0 7 S I
i i i i i . i i i i \
1 10 5 10 15 20 25 30 0'030 5 10 15 20 25 30
X displacement (mm) X displacement (mm)
(a) (b)
. . . iy A
Figure 3-12 2D force comparison between different array layouts under same conditions (z = — 30’ I, =

104,1,, = 104, 8 turns of stator coils) (a) mean force of Fx and Fz at array CG; (b) force ripple remnant

comparison between Split array and Hybrid array after removing the mean force

Figure 3-12 shows that new hybrid array can achieve the best performance among three
different layouts. First of all, no force constant reduction compared to split array, which has 5%
force losses in both in-plane dragging force and out-plane levitation force as a compromise to
attenuate 6™ force ripples [20], shown in left plots of figure 3-12. Furthermore, 6™ force ripples
are totally cancelled out compared to pure M-Magnet array, whose 6™ force ripples are about
1.3% of the mean force. Although split array can reduce the force ripple by a factor of 10, 0.1%
higher-order force ripples (12") still remain. Whereas hybrid array can achieve even smaller
force ripples than split array, another factor of 10 force ripple reduction makes the remnants of

force ripple only 0.01%.
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Figure 3-13 Torque comparison between different array layouts under same conditions (z = — 3’1—0, I, =

104,1,,. = 104, 8 turns of stator coils) (a) Net torque around X, y and z-axis; (b) torque ripples after

removing the mean force

On the other hand, if we look at the net torques around CG of different arrays in figure 3-
13, it can be seen that split array has torque offsets and torque ripples around X, y, and z-axis due
to asymmetric layout about x and y-axis, whereas M-Magnet array and hybrid array have zeros
toques around x and z-axis. All of three arrays have torque offsets around y axis due to the offset
translation force (Fx) relative to CG of magnet array. Although multiple arrays grouping in [17]
can be used to mitigate the net torque of split array, this will lead to very complex mover
assembly. Further, all of three arrays have 6™ torque ripple around y axis.
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In sum, from torque ripple point of view, pure M-Magnet array and hybrid array are
better than split array since there are no torque ripples around x and z-axis. Although these two
arrays still have 6" torque ripple around vy, it’s decoupled with x and z-axis. Therefore, it can be
easily compensated by control algorithm. Single split array cannot cancel out any of 6™ torque
ripples around x, y and z-axis. Hence specific array combination is required to deal with torque
ripples [17] for planar motor design with split array. The 6" force and torque ripples of three
different array patterns are summarized in Table 3.1 along with the mean levitation and

translation forces.

Table 3-1 Force and torque comparison between different array patterns

mean force (N) 6th force ripple(p-p,N) mean torque(Nm) | 6th torque ripple (Nm)
array layout
Fx Fz Fye % Fye % Tx Ty Tz | Txe Tye Ty6
Split array 11.2 | 11.2 | 0.023 0.21 0.023 0.21 | -0.055 | -0.042 [-0.055| 0.0052 | 0.0012 | 0.0052
MM array 11.787| 11.79 | 0.345 2.93 0.369 3.13 8E-05 | -0.057 | -2E-05 0 0.0022 0
Hybrid array [ 11.788( 11.789| 0.0041 | 0.03 | 0.0045 0.04 8E-05 | -0.047 |-2E-05| 0 |0.0023| O
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3.2.2 M-Magnet Array Layout for 6D Actuation
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Figure 3-14 M-Magnet array layout for six degree of freedom actuation (a) Pure M-Magnet mover; (b)

Hybrid M-Magnet mover

Based on previous work in [12], four identical M-Magnet arrays are grouped to generate six
degree of freedom actuation, as shown in figure 3-14a. Array | and Ill are elongated in X
direction, each array generates translation force in y-axis and levitation force in z-axis
respectively; Array Il and IV are elongated in y direction, each array generates translation force
in x-axis and levitation force in z-axis respectively. Totally, 8 individual forces are combined to
drive the mover with 6DOF motion. According to the analysis in section 3.2.1, we can have at
least two mover configurations: 1) Pure M-Magnet mover consists of four M-Magnet arrays,
each one has one A in width and two A in length respectively. This is the simplest layout with
only one type of magnet. Thus it’s very cost effective and easy to be built. However, 6" force

ripples in x, y and z-axis and torque ripples around x and y-axis will degrade the performance of

49



the planar motor when it’s applied to high precision machines, for instance lithography tools; 2)
Another mover layout is using four hybrid arrays to generate 6D actuation shown in figure 3-
14b. This configuration can achieve much better performance for high accuracy application since
all of 6™ force ripples in x, y and z-axis and torque ripples around z-axis are eliminated. Only 6"
torque ripples around x and y axes remain, but they are decoupled. Hence, it’s easy to be
compensated by control algorithm.

Figure 3-14 shows a very compact mover configuration with high filling factor, 89% of
area is magnet. Because four arrays tightly connect with each other to create a perfect square
without any gap between neighbors, this layout can be easily generalized as pattern in figure 3-
15. In which, n x n M-Magnet arrays or Hybrid arrays placed in same elongation direction to
form a group, each array group has nA in width and 2nA in length respectively, total square side
length of the mover is 3n4, where n = 1,2,3, ..., N. By properly choosing integer number of n,
various size of mover can be achieved with same acceleration capability, which has only one
type of magnet for low performance application, and four types of magnet for high performance

application.
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Figure 3-15 General M-Magnet array layout for various mover size

3.3 Manufacturing Tolerances of M-Magnet Array
From manufacturing point of view, 45 degree magnetization of M shape magnet could result in
big angle error compared to 90 degree magnetization of conventional NS magnets. Even if the
error can be controlled within a small range, this could lead to much higher fabrication cost. This
section will investigate how sensitive of magnetization angle error is relative to the actuation
performance of M-Magnet array. In addition, geometric tolerances of magnet are also
investigated for the same purpose.
3.3.1 Magnetization Angle Tolerance
Calculation inputs:

e Magnetization angle error from +1° to +£10° will be used to investigate the relationship

between angle tolerance and actuation performance of M-Magnet array.

o1



e For each angle error E, 20 times of 2D-force and ripple calculation of single array are
performed.

e For each force and ripple calculation, angle error will be randomly selected within the
range of +F.

e Mean forces and 6™ force ripples of M-Magnet array from table 3-1 are used as reference
of comparison.

Calculation outputs:

e Maximum deviation from reference among 20 times calculations of each angle tolerance

is recorded, including mean forces F, and F, and 6™ force ripples F,4 and F,¢, as shown

in table 3-2.

Table 3-2 Mean force and 6™ force ripple deviation for various angle tolerances *

angle tolerance | _mean force(N) 6th force ripple (N) | 100x |F, — F,| 100X |E, — F,,| [100 X |F,s — Fygl[ 100 X | F g — Fppl
(degree) Fx E, Fx6 Ez6 Fer Eyr Fue Fure
0 11.787 11.791 0.3446 0.3686 0.0 0.0 0.0 0.0
1 11.877 11.699 0.3438 0.3676 0.8 0.8 0.2 0.3
2 11.532 12.04 0.346 0.3665 2.9 2.9 0.6 0.3
3 11.48 11.481 0.342 0.3659 2.6 2.6 0.8 0.7
4 11.385 12.163 0.348 0.3651 3.4 3.2 1.0 0.9
5 11.078 11.113 0.3478 0.3647 6.0 5.8 0.9 1.1
6 12.431 11.097 0.342 0.373 5.5 5.9 0.8 1.2
7 12.497 11.003 0.342 0.3738 6.0 6.7 0.8 1.4
8 10.672 12.799 0.349 0.374 9.5 8.5 1.3 1.5
9 10.877 10.827 0.349 0.362 7.7 8.2 1.3 1.8
10 10.235 13.126 0.351 0.375 13.2 11.3 1.9 1.7
! Calculation conditions are the same as section 3.2: z = — % L, = 104, 1,. = 104, 8 turns of stator coils
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Figure 3-16 (a) Mean force deviation against angle tolerance; (b) 6" force ripple deviation against angle
tolerance

Conclusions:

e Figure 3-16 shows that thrusting and levitation forces and corresponding 6™ force ripples
of M-Magnet array are proportional to magnetization angle tolerance.

e Mean force deviation is much bigger than force ripple when angle tolerance increases, it
goes to 13% at +10° angle error shown in figure 3-16a. Whereas, the deviation is less
than 2% for 6™ force ripples with the same angle error shown in figure 3-16b.

3.3.2 Magnet Geometric Tolerances
Magnet Length tolerance
According to Lorenz force law (2.47), actuation forces of magnet array are proportional to the

length of magnet. If we take 21 (60mm) length as example, 200um tolerance only result in 0.3%
force deviation for both mean force and 6™ force ripple.

Magnet Height tolerance
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hm
From (2.44) and (2.45), it’s noticed that magnetic flux density is proportional to (1 —e #n).

Similarly, if taking h,, = % (7.5mm) as example, 200um tolerance leads to only 1% deviation of

mean force and 0.01% of 6™ force ripple respectively.

Magnet Width tolerance

Magnet width tolerance is more complex than other two dimensions, which is related to the
shape of magnetic field. Similarly as magnetization angle tolerance analysis, 4 different width
tolerances, 50um, 100um, 150um and 200um, are used as the inputs of 2D force and ripple
calculation of single array. 20 times of calculation are performed for each width tolerance, and
maximum deviation relative to the width tolerance is recorded to compare with reference mean

forces and force ripples. Calculation results are listed in table 3-3.

Table 3-3 Mean force and 6™ force ripple deviation for various width tolerances?

width tolerance| mean force(N) 6th force ripple (N) | 100x |F, — F,,| [100 X |E, — E,,] [100 X |Fyg — Fyel| 100 X | F,g — F, el

(um) Fx Fz Fxé Fz6 il for Fars Fore

0 11.787 11.791 0.3446 0.3686 0.00 0.00 0.00 0.00

50 11.858 11.872 0.3377 0.3607 0.60 0.69 2.00 2.14

100 11.608 11.638 0.325 0.347 2.11 1.97 3.76 3.80

150 11.5927 | 11.5927 0.368 0.346 1.65 1.68 6.79 6.13

200 11.524 11.529 0.313 0.335 2.23 2.22 9.17 9.12

Conclusions

Deviations of different geometric tolerances in length, height and width respectively are

summarized in table 3-4.

2 Calculation conditions are the same as section 3.2: z = — % L, = 104, 1,, = 104, 8 turns of stator coils
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Table 3-4 Mean force and 6™ force ripple deviation for different geometric tolerances

Deviation tolerance (um)
Geometry
(%) 50 | 100 | 150 | 200
mean force | 0.08 | 0.17 | 0.25 0.3
length

force ripple | 0.08 0.17 | 0.25 0.3
mean force 0.3 0.6 0.8 1.1
force ripple [ 0.002 | 0.004 | 0.007 | 0.009
mean force | 0.69 211 | 2.28 | 3.22
forceripple| 2.14 3.8 6.79 9.17

height

width

e From table 3-4, it can be seen that length tolerance has very small contribution to mean
force and force ripple deviation compared to other two geometric tolerances.

e Mean force deviation due to height tolerance is much bigger than force ripple, which is
proportional to the tolerance. When magnet manufacturing has 200um height error,
mean force deviation is around 1%, whereas force ripple deviation is negligible.

e Both force and ripple deviations are proportional to width tolerance. As width tolerance
affects the shape of magnetic field, deviation of force ripple is about 3 times bigger than
mean force, which reaches 9% at 200um tolerance. Whereas, it’s only 3% for mean force
deviation with same tolerance.

In sum, from actuation point of view, to balance the fabrication cost and performance of M-

Magnet array in overall, following tolerances are chosen: 1) +2° magnetization angle tolerance;
2) £150um tolerance for both height and width of magnet cross section; 3) +150um or more

tolerance for the length of magnet.
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3.4 Array Assembly

45 degree
magnet
M-Magnet
array for 2D
ctuation

Figure 3-17 M-Magnet array assembly for 2D actuations

Figure 3-17 shows the M-Magnet array assembly for 2D actuations. To compare with
conventional Halbach array in [17], M-Magnet array assembly is much easier because every
single magnet is identical. We don’t need to worry about misplacing of magnets during array
assembly. Furthermore, we can easily manipulate two pieces of magnets at each half of M-
Magnet array due to attraction force between them. The only effort is to push two halves of M-
Magnet array against each other by much simpler assembly jig compare to conventional Halbach
array assembly in [17]. Consequently, array assembly of M-Magnet array is more efficient than

conventional Halbach array.
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Chapter 4: Experiment

In this chapter, magnetic field of a fabricated M-Magnet array with 2 = 30mm length is tested at
two different heights on the strong side of the array. To be comparable with the calculation

results from 3D magnetic surface charge model in section 3.1.2, one distance from the surface of

strong side of M-Magnet array is at z = —% = —1mm, which is close to the magnet array;

another distance is at z = —% = —6mm, which is far away from the magnet array. But for actual

experimental set-up, these values are adapted to z = —1.3mm and z = —6.5mm respectively.
On the other hand, geometric tolerance of the width due to magnet manufacturing needs to be
taken into account to correct the 3D analytical model of M-Magnet array. Otherwise, the
experiment error between distorted actual magnetic field and undistorted magnetic field model is
more than 10%. After field correction, this error can be reduced to 3%.

4.1 Experiment Set Up

Figure 4-1a shows the overview of experiment set-up for magnetic flux density test of M-Magnet
array. Here Gaussmeter of Model 7010 with different ranges (300mT/3T) and 1mT resolution is
used to measure magnetic field at the strong side of M-Magnet array. In this experiment, only
magnetic flux density in z-axis (Bz) is measured since it’s easier to be detected compared to
magnetic flux density in x-axis (Bx). On the other hand, to be comparable with the calculation

results in chapter 3, magnetic fields at different distances from the surface of strong side of M-

Magnet array, z = —% and z = —%, are tested, which have different experiment set-ups as

shown in figure 4-1b and figure 4-1c. For long distance (z = —%) test, magnet array is attached

to a transparent plastic spacer with 5.1mm thickness. On top of the spacer, a transparent plastic

grid shown in figure 4-2a is applied to align Gaussmeter probe and magnet array. For short
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distance (z = —%) test, magnet array is bound to the plastic grid directly. After that the whole

piece is bound to a supporting base to enhance the set-up.

(b)

Figure 4-1 (a) Overview of magnetic flux density measurement of M-Magnet array; (b) Set-up for field

measurement at z = —g ; (c) Set-up for field measurement at z = — 3’1—0
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Figure 4-2 (a) Plastic grid (b) Overview of experiment set-up in z direction

According to the feature of Bz in figure 3-3, various resolutions are used to measure the
field, which are Imm in x-axis and 5mm in y-axis respectively, to reduce the test points, as
shown in figure 4-2a. Further, the test range is also different for lateral direction (x) and
elongation direction of magnet array, which is +30mm in x-axis and +20mm in y-axis
respectively. To obtain various test distances on the strong side of M-Magnet array, a plastic
spacer is applied along with other additional parts that contribute to the actual measurement
height. All of these parts separating magnet array and probe are listed in table 4-1 for different

test heights.
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Table 4-1 Actual height of magnetic field test

actual height of | actual height of
high level test low level test
(mm) (mm)
Probe 0.508 0.508
Shim 0.55 0.55
Grid 0.1 0.1
Glue 0.1 -
Spacer 5.1 -
Tap 0.1 0.1
Coating 0.02 0.02
Total 6.478 1.278

From table 4-1, it can be seen that the actual heights for high level and low level test are

A

around 6.5mm and 1.3mm respectively instead of |z| === 6mm and |z| =%=1mm.

5

Therefore, the field comparison between 3D analytical model and experiment results are based

on actual heights.
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4.2 Experimental Results of M-Magnet Array

0.2
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Figure 4-3 Experimental 3D magnetic field of M-Magnet array under the conditions: 4 = 30mm, h,, =
7.5mm, L, = A, B, = 1.36T and z = —6.5mm (a) Measured magnetic field of Bz (b) Field Error in Bz

(Error = Bgyx, — B3pum)
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Figure 4-3a shows the measured magnetic field of single M-Magnet array with 30mm length at
the distance of z = —6.5mm. To compare with the analytical results from 3D magnetic surface
charge mode (3DMM) at the same distance, field error is calculated in figure 4-3b. Maximum
error is about 8%, which comes from the middle region around x = 0. If we look at the shape of
the error field, this is related to the actual magnetic field itself instead of experiment error path in
table 4-1.

As discussed in section 3.3, from magnetic field point of view, geometric tolerances of
magnet dominate the field error, especially the width tolerance which directly affects the shape
of magnetic field. The contributions to the field error from length and height tolerances are less
than 1%, hence they are negligible. After correcting the 3D analytical field by the real width of
magnet, which is 7.44 — 0.15mm, new field error is plotted in figure 4-4. To generalize the
width affection, simulated width of four magnet pieces are reduced by 0.15mm to correct the

analytical magnetic field of Bz.
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Figure 4-4 Field error after 0.15mm width correction to 3DMM at z = —6.5mm

After field correction, field error between experiment results and corrected 3D analytical
model is less than 3% at most of the test region. But at a small region of the third quadrant, the
error is still greater than 5%, which is related to the unexpected gap due to air bubble inside the
tap. If we only look at the 2D magnetic field at y=0, analytical results by 3D magnetic surface

charge model is matched with experimental results, maximum error is less than 3%, as shown in

figure 4.5.
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Figure 4-5 Comparison of experimental field, 3DMM field with field correction and FEM field without field

correctionaty = 0 and z = —6.5mm

According to the 3D analytical magnetic field analysis in section 3.1.2, the error of
analytical model with respect to FEM is less than 1%. Therefore, we can use FEM result as
reference to compare the difference before width correction and after width correction. In figure
4-5, 2D magnetic fields of Bz by experiment, 3D analytical model with width correction
(3DMM,) and FEM model without width correction (FEMy.) are plotted. Apparently, 3D
analytical model can match experimental results very well after correcting the width error of

magnet. Maximum field error is reduced from 8.3% to 2.6%.
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Figure 4-6 Comparison of experimental field, 3DMM field with field correction and FEM field without field

correctionaty = 0and z = —1.3mm

Similarly for low level test at z = —1.3mm, field error between experimental results and
3D analytical model decreases from 13.7% without width correction to 2.5% with width
correction, as shown in figure 4-6. Again, 3D analytical model matches experimental results very

well at near distance to the magnet.
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Chapter 5: Conclusion

5.1 Novel M-Magnet Array

This thesis presented a novel M-Magnet array. Analytical models were developed to calculate
the magnetic field of M-Magnet array and the force generated by the magnetic field interacting
with stator coils. Experimental measurements confirmed the developed analytical models.

Two magnetic field calculation tools are developed. One is 3D magnetic field modeling
based on magnetic surface charge model, which is convenient for the analysis of rectangular
prim magnets. Furthermore, 3D magnetic field modeling of magnet is much faster than finite
element (FEM) simulation in COMSOL, and the simulation error between 3D analytical model
and FEM is less than 1%. Another tool is 2D magnetic field modeling based on Fourier series,
which mainly focuses on the harmonics of magnet array. Whereas these harmonics are the
sources of high order force ripples when combing with three-phase commutation law. Force and
torque models are also developed based on numerical integration of Lorenz force, which are very
convenient for the magnet array layout design and manufacturing tolerance analysis of M-
Magnet array.

M-Magnet array has several benefits compare to conventional Halbach array: 1) less
magnet pieces for one spatial period to generate mirror-symmetric magnetic field about middle
vertical axis, generally 5 pieces in [12][17] or 9 pieces in [31] are mostly used, whereas only 4
pieces for an M-Magnet array; 2) only one type of identical magnet piece makes array assembly
much easier and faster, whereas for conventional Halbach array, thin and long side magnet piece
always creates trouble for the array assembly. Furthermore, from manufacturing point of view,
M-Magnet array is more cost effective due to uniform magnet configuration. On the other hand,

hybrid array layout for 2D actuation based on M-Magnet array can perfectly cancel out 5"
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harmonic of pure M-Magnet array, which is the trouble maker of 6" force ripple in planar motor
design. Although existing solution in [20] based on conventional Halbach array can also
attenuate 6™ force ripple by a factor of 10, there are some compromises coming along: 1) 5%
force constant reduction; 2) increasing complexity of array assembly due to array splitting.
However, there is one drawback for the new hybrid array, which cannot fully cancel out 6"
torque ripple around y-axis. But the 6™ torque ripple is decoupled between axes; therefore it can
be easily compensated by control algorithm. Further, with uniform layout of single M-Magnet
array, it’s easy to build various sizes of mover with 6D actuation by only one type of magnet.

In addition, to balance the fabrication cost and actuation performance of M-Magnet array,
magnetization angle tolerance and geometric tolerances are analyzed. Angle tolerance mainly
affects the phase of magnetic field, which will cause 10% force constant reduction at 10°
tolerance. But this could be compensated by current commutation. Geometric tolerances affect
the overall field strength, among these tolerances width tolerance is dominant, which results in
3% force constant reduction and around 9% 6" force ripple deviation at 200um width
manufacturing error.

To verify simulation results of M-Magnet array, magnetic field at two different heights
around z = —% and z = —% are tested. After correcting the 3D analytical magnetic field by
150um width error due to magnet manufacturing, calculation results can match experimental
results with less than 3% error.

5.2 Future Work

Forces and torques generated by M-Magnet array are suggested to be tested by building an

experimental platform combining with stator coils. Meanwhile, 6™ force and torque ripples could
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also be tested at this platform. Furthermore, hybrid arrays can be built and tested to verify the
actuation performance of hybrid array predicted by the analytical models.

By applying six degree of freedom position sensors such as [33] or [34], control
performance of planar motor based on M-Magnet array could also be tested in terms of
acceleration capability. To verify the performance improvement due to 6™ force ripple
attenuation by hybrid array, more accurate 6D position sensors such as [35] have to be used to
position the stage since tracking error due to 3% force ripple could be immersed into sensor
noise in [33] or [34].

To verify the scalability of M-Magnet array, much bigger size of planar motor can be
built, which will have the same acceleration capability and 6™ force ripple attenuation as small

size mover in this thesis.
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Appendices

Appendix A

A.l1 3D Magnetic Field Simulation for 2D Pattern |

To address the problem of 2D magnet pattern in Binnard’s design [9] when applying to
magnetically levitated planar motor, 3D magnetic field is calculated by 3D analytical model

developed in this thesis, which is shown in figure A.1.
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Figure A.1 3D analytical model of Binnard’s design [9]
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A.2 3D Magnetic Field Simulation for 2D Pattern 11

Similar as section A.1, 3D magnetic field of Computer’s design in [11] is calculated as shown in

figure A.2.
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Figure A.2 3D analytical model of Compter’s design [11]



Appendix B

B.1  Single Layer Surface Charge Model

° p(X,y,Z)

Figure B.1 Single layer surface charge model
Substituting (2.16) into B = uyH, it follows that

o (r)(r—ri)da’

- _.I3
47z‘r—r‘

mh=L (0.1)

Since magnetic charge, o, = uoM,, at top surface is uniform, it can be taken out of surface-
integral, then (0.1) is simplified as

B(F) =y [ (1000 (02)
* 47[‘!’—!’"

In Cartesian coordinates, 7 — r' and |F - r’| are written by

r—r'=(x=xi+(y-y)j+(z-2z)k (0.3)

‘F—F“z\/(x—x')zﬂy—y')z+(z—z')2 (0.4)

Plugging (0.3) and (0.4) into (0.2) and setting z' = 0, yields
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J~ [(x=x")i+(y—Yy")]+zk]da BXT+By]+BZE (05)
s (Jox P+ (y -y + 2 |
For x component of B, it follows that
Idl
B, J f XX o dy (06)

CWJOX=X)2 (Y -y )P +22)

By introducing two variables, u = x — x"and A = (y — y")? + z? into (0.6), B, is written by

—udu y'
B, J I " +A)2 (0.7)

After taking inside integration, it follows that

t dy’ o dy’
B -t _ 5 0.8
* 4ﬂj-bJ(x—a)2+(y—y'>2+z2 4ﬂj-"J(x+a)2+(y—y')2+z2 oo

Again, by introducing another three variables, v=y—vy', M =(x—a)?+z? and P =

(x + a)? + z?% into (0.8), yields

A ) —ﬁfb d(-v) (0.9)
oA (w2 eM o AT f(v)? 4P '
After taking final integration of B,, it follows that
B, ziln(\/(x—a)2 +(y—b)2+72? —(y—b))—ﬂln(\/(x—a)2 +(y+b)2+2% —(y+h))
(0.10)

In(\/(x+a) +(y=b)2+2° —(y- b))+ In(\/(x+a) +(y+b)2+2% —(y+h))

Denotes S = x — (—1)'a, T = y — (—1)’b and R = VS2 + T2 + z2, then B, can be written by

ii( " In(R-T) (0.11)

i=0 j=0

& \9
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Similarly, for y component of B, it can be written by

o L o
B,=-1> > (-)"'In(R-S) (0.12)
7T =0 j=0
For z component of §,
o, (b (a zdx'dy'
=] 3 (0.13)

(=X (y -y )+ 202

by plugging u, v and A into (0.13), B, can be simplified as

o, (b _ra d(-u
B, = [.2] (—)?,d (-v) (0.14)
(U* + A?)2

After taking inside integration, it follows that

o, J»b z(x—a)dv Oy (b z(x+a)dv

B =2
AT 0 (VP 4+ 22V + 2%+ (x—a)? AT (V4 2P+ 2% + (x + a)’

(0.15)

By introducing four new variables, Ry = \/v2 + z% + (x —a)? , Ry = {/v2 + z2 + (x + a)?

(x—a)v (x a)v

to = and tl

, into (0.15), then B, can be further simplified as

ZRO

_o b dy _ﬂj’b dt,
LA ielat Axmdoel+t]

(0.16)

After taking integration on the right side of above equation, and rearrange final expression, it

follows that

Jo 1)*itg- ST
B,=—> > (-1 ’tglﬁ (0.17)

7T =0 j=0
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