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Abstract

Spatially periodic structures exhibit intriguing dynamic characteristics, contribut-

ing to their growing applications as phononic crystals, acoustic metamaterials and

lightweight lattice materials. A striking feature, employed in many engineering

applications, is their filtering effect, whereby waves can propagate only in spe-

cific frequency intervals known as pass bands. Other frequency components (stop

bands) are spatially attenuated as they propagate through the structure.

This thesis studies nonlinear wave transmission in periodic structures of finite

extent in the presence of dissipative forces and externally induced nonlinear forces.

Perfectly periodic structures with identical units are considered, as well as nearly

periodic structures with small deviations from periodicity extended throughout the

structure.

At high amplitudes of motion, nonlinear forces gain significance, generating

qualitatively new dynamic phenomena such as supratransmission. Supratransmis-

sion is an instability-driven transmission mechanism that occurs when a periodic

structure is driven harmonically at one end with a frequency within its stop band.

The ensuing enhanced transmission contrasts the vibration isolation characteristic

of the same structure operating in the linear regime.

In the context of engineering applications, three factors play a significant role:

dissipative forces, symmetry-breaking imperfections induced by manufacturing

constraints (disorder) and the finite size of the structure. This thesis systemati-

cally investigates the influence of these parameters on supratransmission in a one-

dimensional periodic structure, studying the competition between the effects of

dispersion, dissipation, nonlinearity and disorder-borne wave localization (Ander-

son localization).

ii



We identify the mechanism underlying supratransmission using direct numer-

ical simulations and numerical continuation. Based on this insight, we obtain an-

alytical expressions for the onset of supratransmission for weakly coupled struc-

tures using asymptotic analysis. Particularly, we highlight the non-trivial effects of

damping on supratransmission in finite structures. We demonstrate that, regardless

of the type of nonlinearity, dissipative forces can delay the onset of supratransmis-

sion, and high levels of damping can eliminate it.

Given that the spectral contents of transmitted energies fall within the pass

band, we expect a competition between supratransmission and Anderson localiza-

tion. Using direct numerical simulations and continuation techniques, we demon-

strate that disorder reduces the transmitted wave energy in the ensemble-average

sense. However, the average force threshold required to trigger supratransmission

remains unchanged.
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Chapter 1

Introduction

1.1 Periodic Structures in Engineering
Any structure with some form of spatial periodicity, either in its constituent ma-

terial properties, internal micro-architecture or boundary conditions is a periodic

structure. In engineering applications, spatially periodic micro-architecture has

been utilized in the design of cellular solids to develop lattice materials for multi-

functional applications, where a mechanical function such as stiffness or strength

is combined with some other property such as thermal insulation [33, 130]. Exam-

ples include lightweight structural applications with superior thermal insulation or

superior impact and blast resistance [120], as well as ultralight materials (density

below 10 mg/cm3) with superior specific stiffness and strength [118].

Spatially periodic structures exhibit intriguing wave transmission characteris-

tics. Of particular interest in many engineering applications are the wave-filtering

features of periodic structures in the frequency (temporal) domain and the wavenum-

ber (spatial) domain. In the frequency domain [8], a periodic structure allows selec-

tive transmission of waves over certain frequency intervals known as pass bands.

All other frequency components (belonging to stop bands) are spatially attenuated

as waves propagate through the periodic structure. This filtering is attributed to

Bragg scattering, the destructive interference of waves that are periodically scat-

tered as they propagate through the structure. A consequence of this filtering is

that vibration energy is localized to the source of excitation in stop bands. In the
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wavenumber domain [72], periodic structures exhibit directional wave propagation

characteristics. The band-pass filtering property of periodic structures has led to

development of mechanical filters in electronics [58] and microelectromechanical

systems for radio frequency applications [27]. The directional dependency of wave

propagation enables steering and focusing of waves, with applications in energy

harvesting [11] among others.

The wave-filtering characteristics and other unique properties of periodic struc-

tures, such as negative group velocity, have spurred an array of applications for

these structures as phononic crystals and acoustic or elastic metamaterials – see [19,

24, 76] for recent monographs and reviews on this subject. Phononic crystals

are composites with periodically distributed inclusions of high impedance contrast

with the matrix (host) material. This periodic configuration allows for manipula-

tion of wave propagation characteristics of the elastic medium, with applications

in wave-filtering, wave-guiding and energy harvesting – see [55, 104] for recent

reviews on this topic.

Bragg scattering is effective when the wavelength of the incident wave is on

the same order as the characteristic spatial periodicity length scale of the struc-

ture. Thus, exploiting passive vibration isolation induced by Bragg scattering is

challenging at low frequencies. By low we denote frequencies below the funda-

mental resonant frequency of the unit cell under free boundary conditions. This

limitation can be overcome by coupling a periodic structure to local resonators and

inertial amplifiers [34, 131] to gain additional control over the wave propagation

characteristics. The interaction between the host dispersive medium and the dy-

namic properties of the local resonators allows the possibility to realize sub-Bragg

stop bands. Periodic structures featuring the local-resonance mechanism are called

acoustic or elastic metamaterials. Examples of such ‘meta’ characteristics include

surpassing the mass-law limit of sound transmission [75], albeit in a narrow fre-

quency band, and cloaking of acoustic waves [101]. See [20, 42, 79] for recent

reviews of some other applications.

There are many other examples of periodic structures in engineering applica-

tions. In the context of aerospace structures, a wide body of literature already

exists on the dynamic response of periodic structures such as rib-stiffened pan-

els, plates used in the aircraft fuselage and tail, and sandwich panels with periodic
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cores [77, 90]. Another example is bladed disk assemblies in turbomachinery,

which are periodic structures with cyclic symmetry. Certain features of their vi-

bration characteristics, such as fatigue failure due to mistuning, can be explained

based on the dynamics of periodic structures [30, 102].

To conclude this section, we point to the fundamental contributions to waves in

periodic structures by condensed matter and solid state physicists, particularly in

the context of phonon and electron transport in solids [4, 8], inspired by pioneering

works of Rayleigh [111] in the context of vibration response of a string (Melde’s

experiment) subjected to parametric excitation via variable tension.

1.2 Factors Influencing the Dynamic Response of
Periodic Structures

Although periodic structures have been studied extensively in solid-state physics,

transfer of that body of knowledge to problems relevant in engineering applications

is not a trivial task. As cases in point, the governing equations and boundary con-

ditions in engineering can be different from those in other fields (nonlinear forces,

in particular); damping often has a significant contribution in engineering while

it is normally absent in solid-state physics; and the typical assumption of infinite

systems in solid-state physics is often unrealistic in engineering applications. Ac-

counting for these differences are therefore crucial in making the results directly

applicable to engineering structures.

While the ultimate interest in solid-state physics is in three-dimensional sys-

tems, engineering problems often provide the luxury of structures in which peri-

odicity is in one or two dimensions only [49]; e.g. bladed disk assemblies in tur-

bomachinery and sandwich structures with periodic cores. Apart from this factor,

there are common features among periodic structures relevant in engineering appli-

cations that set them apart from their classical counterparts in solid-state physics.

These features can be divided into four main categories: (i) energy dissipation, (ii)

finite length of the structure (iii) deviations from exact periodicity, and (iv) non-

linearity. Qualitatively new phenomena may emerge when one or more of these

conditions are present. These deviations often result in localization or confine-

ment of macroscopic deformations or high sensitivity of the structure to changes in

3



parameters.

(i) Damping: Energy dissipation, however small, is intrinsic to engineering

structures and may have significant influence on the dynamic response of a peri-

odic structure. Addition of dissipative forces to a periodic structure results in a

new spatial attenuation mechanism for the traveling waves. For a linear viscous

dissipative force, the corresponding decay rate is exponential and uniform, and

could influence all frequencies. In addition, dissipative forces (if they are strong

enough) can result in appearance of spatial stop bands, corresponding to prohibited

wavenumbers. For more details on this aspect see [54, 105].

(ii) Finite length: In many applications of periodic structures, the number of

repeating unit cells is not large enough to warrant an infinite-length approximation.

Finite length of a structure prudces reflection of waves from its boundaries, leading

to formation of standing waves with restricted wavenumbers [119]. The precise

dispersive characteristics of finite periodic structures also depend on the type of

the boundary conditions (e.g. fixed, guided or free) and can be analysed using

phase closure principle [89, 119].

(iii) Disorder: Engineered periodic materials and structures possess inher-

ent imperfections imposed by manufacturing constraints. Such small symmetry-

breaking imperfections can lead to significant qualitative changes in the global

dynamic response of the structure under certain conditions. These deviations from

exact periodicity could be a result of either defect or disorder. A defect is nor-

mally a large deviation from periodicity that is concentrated at a certain location

(or locations) within the structure, such as a crack. In a defective structure, the re-

sponse localizes to the vicinity of the defect [92], typically enticing further damage

to the structure. Disorder usually refers to small deviations from exact periodicity

spread throughout the structure, such as the mistuning in a bladed disk assembly.

Disorder results in spatial confinement of the dynamic response near the source of

excitation, a phenomenon known as Anderson localization. This phenomenon is

reviewed in more detail in Section 4.1.

(iv) Nonlinearity: Nonlinearities arising from large deformations (geometric

nonlinearity), constitutive laws of the materials (material nonlinearity), boundary

conditions or external forces are important considerations in many engineering ap-

plications. In the presence of nonlinearity, mechanical systems often exhibit dra-
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matic changes in their response caused by a small change of some parameter or

small-amplitude disturbances. Such sudden changes are often accompanied by a

large amplitude discontinuity in the dynamic response of the structure, often lead-

ing to a rich bifurcation structure. In aerospace engineering, for example, there

has been a trend to design slender and lightweight structures to decrease power

consumption and increase performance. Accordingly, and from a practical view-

point, there is an increasing demand for understanding the nonlinear behaviour

of these structures and mitigating the corresponding vibration problems [129]. A

similar situation exists in steel bridges and large marine structures [95]. In MEMS

applications, it is also likely to trigger nonlinear phenomena due to coexistence of

more than one source of nonlinearity [113]; for example, many microstructures un-

dergo large deformations due to their high mechanical compliance; parallel-plate

electrostatic forces that are very commonly used for actuation and detection are

inherently nonlinear; and squeeze-film damping, the most common and dominant

damping mechanism, is inherently nonlinear. Accordingly, there has been a re-

cent surge of interest in studying nonlinear (periodic) arrays of micromechanical

oscillators [116].

1.3 Energy Transmission in Nonlinear Periodic
Structures

This thesis is on energy transmission through nonlinear periodic structures with

disorder. When the amplitudes of motion are small enough that nonlinear forces

are negligible, wave transmission in periodic structures is dominated by three fac-

tors: dispersion, dissipation and disorder. Dispersion is responsible for the the

band-pass filtering feature of periodic structures, leading to the formation of pass

bands and stop bands. If we add damping to a periodic structure, there will be a

new attenuation mechanism acting on traveling waves via dissipation of energy.

Disorder may lead to confinement of energy to a small spatial region within the

structure (Anderson localization). If there is an external force acting in a spatially

localized region of the structure, then energy is confined to that region. In contrast

to this point excitation case, predicting the region of localization is not as straight-

forward in the distributed excitation case, as in base excitation of a structure or
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convected boundary layer excitation of an aircraft panel.

Nonlinearities are typically avoided in the design and control of engineering

systems. Nevertheless, exploiting the nonlinear response of structures can reveal

hidden design opportunities and accommodate bolder design goals. The reason

is that qualitatively new phenomena emerge when the requirement of linearity is

relaxed. In this section, we review some of the literature pertaining to nonlinear

periodic structures with and without disorder.

Throughout the thesis, we distinguish between periodic structures with exact

periodicity and those with disorder by referring to them as ordered and disordered

structures, respectively.

1.3.1 Nonlinear Structures with Exact Periodicity

It has been known for a long time, that localized wave packets (called solitons)

exist in continuous nonlinear systems [22, 112]. Solitons maintain their shape

when traveling at a constant speed, due to the balance between the nonlinear and

dispersive properties of the continuum. In addition, when two solitons pass through

each other, they retain their shapes and only a phase change occurs between them.

Continuous systems possess translational invariance in all directions, whereas

discrete periodic structures are translationally invariant in certain directions only.

Solitons cannot propagate in a discrete system due to this lack of an arbitrary trans-

lational invariance [31]. On the other hand, discreteness allows the existence of

other types of localized waves that do not exist in a continuous system. These

localized waves can propagate in a discrete system in the same manner a soliton

propagates in a continuum. In contrast to solitons, however, collisions between

such excitations result in energy transfer between them, with the more localized

excitations gaining energy from the less localized ones [116]. These spatially lo-

calized, time-periodic and stable excitations in perfectly periodic, nonlinear, dis-

crete systems are known as discrete breathers or intrinsic localized modes. Unlike

solitons, discrete breathers could be either stationary (“pinned” to a specific spatial

location) or mobile (traveling through the structure).

Two requirements are indispensable for discrete breathers to exist in a peri-

odic structure [10]: discreteness and nonlinearity. Discreteness ensures that the
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pass bands of the structure are bounded and do not extend to infinity like that of

a continuum. Nonlinearity, on the other hand, allows propagating modes to have

a fundamental frequency outside the pass bands. Therefore, the frequency of os-

cillations of discrete breathers lies inside the stop bands of the periodic structure.

We emphasize that, strictly speaking, this discussion pertains primarily to the free

response of an undamped nonlinear periodic structure.

Discrete breathers have been experimentally observed in many physical sys-

tems – see [32] for a detailed review of some applications. When damping forces

are present (which is the case in engineering problems), an external harmonic

force is required to sustain the discrete breathers in experiments. This is normally

achieved through excitation of the base of the structure. As a case in point [25,

116], stationary and moving discrete breathers have been observed in microme-

chanical cantilever arrays. Such results are very important in paving the way for

sensor applications in MEMS devices. Other mechanical experiments with har-

monic base excitation include [29, 56, 63, 123, 124].

Discrete breathers provide a route to energy localization in nonlinear periodic

structures. They are primarily investigated as either (i) the periodic orbits of an

undamped (Hamiltonian) periodic structure or (ii) the limit cycles of a damped

periodic structure subject to external harmonic base (uniform) excitation. Apart

from these, there are two other classes of problems that are important in nonlinear

periodic structures: (iii) pulse propagation and (iv) response to localized harmonic

excitation. Although these four problems are intimately related to each other, a

direct connection does not exist between them. This is because the principle of

superposition does not generally hold in nonlinear systems.

The problem of pulse propagation in nonlinear periodic structures has been a

topic of research for a long time. The majority of this literature, originating within

the physics community, focuses on conservative and infinitely long systems. In

that context, the main goal is to understand the spreading process of initially lo-

calized wave packets (an initial value problem); e.g. see [45] for a review of this

topic. Within the nonlinear mechanics literature, many of the contributions on this

topic are in the context of one-dimensional granular crystals [110]. Nonlinearity

in these structures arises from the coupling contact forces between adjacent units

(inter-site nonlinearity). Furthermore, there have been detailed theoretical studies
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on the spectral and temporal characteristics of wave packet propagation through

these structures [37, 38, 43]. Refer to [55, Section 4.2] for a review of other the-

oretical studies on nonlinear periodic structures pertaining to phononic structures

and materials.

In this thesis, we focus on the problem of nonlinear wave transmission due to

external point harmonic excitation applied to a single unit of the periodic structure.

The starting point in this context is understanding the influence of nonlinearity on

the dispersive characteristics of the periodic structure. While the dispersion prop-

erties (locations of the pass bands and stop bands) of a periodic structure are fixed

in the linear operating regime, they become dependent on the amplitude of motion

in the nonlinear regime. This is because nonlinearity makes the resonant frequen-

cies of vibrations dependent on the total energy of the vibrating system, which is

often characterized by the amplitudes of motion. As a result, the location and/or

width of a pass band may vary based on the amplitudes of motion. This charac-

teristic also depends on the nature of the nonlinear forces. For early works on this

topic in the engineering literature refer to [14, 128]. Nonlinearity, therefore, can

offer tunable filtering properties and opportunities to enhance the performance of

linear periodic structures. See [97] for an example of such a tunable filter and [96]

for an extension of this work to a two-dimensional problem. The same concept of

amplitude-tunable filtering properties also applies to pass bands produced by local

resonators within the unit cell of a periodic structure [74, 83]. This concept can be

used in design of acoustic metamaterials with tunable properties.

In the situation where an external harmonic excitation is applied to one unit of

a nonlinear periodic structure, nonlinearity offers a route to achieve enhanced en-

ergy transmission. This may happen due to instability of periodic solutions through

either nonlinear resonances [78] or a saddle-node bifurcation [82, 122]. Nonlin-

ear resonances occur due to internal or combination resonances with the external

harmonic excitation [98] and may occur for frequencies inside or outside a pass

band. The former mechanism, called supratransmission, occurs when the driving

frequency lies within a stop band. For small values of the driving force, the am-

plitudes of motion are small and decay exponentially away from the driven end of

the structure; i.e. energy transmission is not possible at low amplitudes of the driv-

ing force. When the driving force exceeds a certain threshold, energy transmission
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becomes possible even though the forcing frequency remains within the stop band

of the periodic structure. Supratransmission was first studied in discrete periodic

structures by Geniet and Léon [39, 40].

The nonlinear supratransmission phenomenon emanates from the physics com-

munity. Accordingly, the majority of the existing studies on supratransmission

consider non-dissipative and infinitely long systems [39, 62, 80, 82, 122]. In com-

parison, supratransmission in finite dissipative periodic structures have received

little attention [16, 51, 61, 66]. Most notably, the hysteresis loops associated with

the saddle-node bifurcation at the the onset of supratransmission have been ex-

plored [51], and devices have been designed based on the sensitivity of the struc-

ture near the point of instability [16]. Also, supratransmission has been utilized

in a defective granular chain to develop an acoustic switch [7]. Supratransmission

has been observed in experiments on macro-scale mechanical systems [40, 51].

Nevertheless, there are no systematic studies on the influence of different system

parameters (damping, strength of coupling, type of nonlinearity, etc.) on this phe-

nomenon in finite structures. In particular, there is limited information about the

influence of damping and strength of coupling on supratransmission [80, 82]. We

note that these studies are purely numerical.

1.3.2 Nonlinear Structures with Disorder

Nonlinearities can be introduced in an otherwise linear system to achieve quali-

tatively new dynamic phenomena. In this approach, nonlinearity can be regarded

as a local disorder (similar to a defect). As a case in point, Cho et al. [18] have

intentionally introduced strong stiffness nonlinearity in a microcantilever system

by a nanotube coupling. Further, by changing the placement of the nanotube, they

have been able to realize coupling forces with either softening or hardening types

of nonlinearity. This led to a new tunable broadband resonator design [17].

A very interesting result of adding a single nonlinear attachment to a linear

mechanical structure is that the vibration energy of the linear structure can be ir-

reversibly and passively transferred to the nonlinear attachment [115, 127]. Such

nonlinear attachments act as local energy sinks and can be used in the design of

broadband vibration absorbers. Locating the local nonlinear component in a linear
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periodic structure can also have practical significance in structural fault diagno-

sis [103]; in this context, the appearance of nonlinearity indicates a defect in the

periodic structure.

In the examples given above, a single nonlinear elements in an otherwise linear

periodic structure breaks the periodicity of the entire structure. An opposite con-

figuration is a nonlinear periodic structure with one or more defects [85]. Using

the terminology introduced in Section 1.2, either of these configurations results in

a defective periodic structure. In contrast, our interest in this work is in the case

of a nonlinear periodic structure with disorder: deviations from periodicity spread

throughout the structure. Within this framework, we are particularly interested in

studying the scenarios in which there is a competition between supratransmission

and Anderson localization.

Anderson localization manifests its significance within the pass band of the

structure. At these frequencies, the (average) response of a disordered periodic

structure decays exponentially away from the source of excitation. This is in con-

trast to the behavior of the same structure in the absence of disorder. This localiza-

tion can have important consequences for the energies transmitted via the supra-

transmission mechanism. The reason is that the frequency components of these

nonlinearly transmitted waves lie within the linear pass band of the structure [82].

It is therefore natural to expect a competition between nonlinearity and disorder

(supratransmission and Anderson localization) with regards to the transmitted en-

ergies above the supratransmission threshold.

There is a myriad of papers on the interplay between nonlinearity and disor-

der in periodic structures. The majority of this literature, similar to the literature

on ordered nonlinear periodic structures, originates from the physics community

and focuses on pulse propagation through conservative and infinitely long systems.

Recent reviews of this literature can be found in [73, 94].

Within the nonlinear mechanics literature, some of the earlier works on non-

linear disordered structures include [28, 64, 117]. These studies deal with the free

response of conservative systems; thus, their results are not applicable to the case of

supratransmission. Many of the remaining studies are concerned with the evolution

of pulses as they propagate through nonlinear disordered structures [2, 52, 84, 109],

particularly for granular chains [2, 84, 109]. The specific decay characteristics of
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pulses (exponential or algebraic) is found to depend on the relative strengths of

nonlinearity and disorder, as well as the specific form of nonlinear forces. Unfor-

tunately, these results are not directly applicable to the case of continuous wave

excitation in supratransmission because superposition does not generally hold in

nonlinear systems.

Wave propagation due to continuous harmonic excitation has been studied in

strings loaded with masses, both experimentally and numerically. It is reported in

the experimental work [44, 53] that for forcing frequencies within the pass band,

increasing the driving amplitude leads to a decrease in the transmitted energy. The

reported results, though, are obtained for only one realization of disorder. Be-

sides, the response regime is confined to driving amplitudes below the onset of

anharmonic motion, which would be below the onset of supratransmission1. In

the numerical work [114], transmitted energies were found to generally increase

with the amplitudes of incident waves. Although anharmonic regimes were ob-

served at high intensities, the corresponding increases in transmitted energies are

surprisingly small in these regions (especially for an undamped structure). This

is uncharacteristic of supratransmission in which case an energy increase of a few

orders of magnitude is expected (see Section 2.3).

We are aware of two main studies that directly address the phenomenon of en-

hanced energy transmission in nonlinear disordered structures due to continuous

harmonic excitation [57, 125]. These studies report the existence of transmission

thresholds for undamped structures of long [57] and (relatively) short [125] lengths.

In both studies, the excitation frequencies are limited to the pass bands of the corre-

sponding ordered structures (this is the frequency range in which disorder prohibits

energy transmission from a linear perspective). In [125], the statistical influence

of disorder on the average response is studied for different structure lengths. It is

further shown that the average threshold amplitude decreases with the number of

units according to a power law. In the limit of an infinitely long structure, though,

the average transmission threshold is expected to remain finite [57].

Despite the detailed studies in [57, 125], the case of supratransmission (exci-

tation within a stop band) remains unexplored in disordered periodic structures.

1The nature of the post-threshold response is non-periodic in supratransmission. This is explained
in Section 2.3.
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So is the influence of system parameters (damping, in specific) on the mechanism

leading to supratransmission. In the two studies [57, 125] mentioned above, en-

ergy dissipation occurs at the boundaries of the periodic structures, but there is no

internal energy loss within the periodic structures themselves. Hence, the influence

of damping forces remains to be investigated. Damping and finite-size effects are

necessary to make the results applicable to engineering structures.

1.4 Research Objectives and Methodology
The goal of this thesis is to study the supratransmission phenomenon in a setting

that is applicable to engineering problems. From the perspective of engineering

applications, it is essential to incorporate three features in this study: (i) dissipative

forces; (ii) small deviations from exact periodicity distributed throughout the struc-

ture (disorder); (iii) the finite size of the structure. This thesis systematically inves-

tigates the influence of these parameters on the supratransmission phenomenon in

a one-dimensional periodic structure. Within this setting, we address the competi-

tion that takes place among the effects of dispersion, dissipation, nonlinearity and

disorder-borne localization (Anderson localization).

Dispersion effects are inherently present in periodic structures and are respon-

sible for the formation of stop bands. Dissipation effects are unavoidable in engi-

neering structures and normally influence all frequencies. Finite-size effects lead

to formation of standing waves and restrict the allowable wavenumbers for propa-

gating waves. Nonlinearity counters these effects, most importantly those of dis-

persion, to give rise to supratransmission, which is an instability-induced transmis-

sion mechanism within a stop band. Finally, disorder effects become significant

because the spectral contents of the waves transmitted above the supratransmis-

sion threshold fall within the pass band. This is the same frequency range where

Anderson localization dominates dispersion effects, thus leading to vibration lo-

calization near the source of excitation. In this case, our goal is to investigate

the statistical influence of linear disorder on (i) the supratransmission thresholds

within a stop band, (ii) transmitted energies above the supratransmission threshold,

and (iii) the spectrum of the nonlinearly transmitted waves. While some portions

of this problem may only be tackled numerically, such as (ii) and (iii), we aim to

12



develop analytical estimates to be used in (i) in order to complement the numerical

approach .

To this end, we study energy transmission through a discrete nonlinear periodic

structure, subjected to continuous harmonic point excitation at one end. We pro-

pose a macro-mechanical periodic structure in this study that consists of coupled

suspended cantilever beams. Within each unit cell, the linear restoring force of

each beam is combined with a strong nonlinear magnetic force to produce on-site

nonlinearity. The magnetic force can be tuned, thereby providing control over the

strength of nonlinearity, as well as its type (softening or hardening). The idea of

combining a strong magnetic force with the linear restoring force of a cantilever

has been previously used in the literature, most notably by Den Hartog [23, Sec.

8.10], Moon and Holmes [93] and Kimura and Hikihara [63], among others. The

proposed setup can be used to realize both ordered and disordered periodic struc-

tures.

Using the proposed mechanical structure, we review the mechanism responsi-

ble for the onset of nonlinear energy transmission. We use the appropriate compu-

tational methodology for calculation of the supratransmission thresholds and de-

velop analytical estimates for predicting the onset of supratransmission. We study

the influence of various system parameters on the supratransmission mechanism:

type and strength of nonlinearity, number of units, damping, strength of coupling,

forcing amplitude and frequency, and disorder. In disordered structures, we inves-

tigate the statistical behavior of the structure in an ensemble-average sense.

It is noted that the analytical approximations are developed using asymptotic

analysis, which assumes that the nonlinear forces are comparable to linear forces.

As we will explain in detail, this assumption may only be valid up to the onset of

supratransmission for certain range of system parameters. The analytical approx-

imations are not valid above the onset of supratransmission (where the response

is no longer periodic) and accordingly cannot describe the response of the struc-

ture in that regime. Only direct numerical simulations can be used above the onset

of supratransmission. Further details on the analyses are provided in Sections 2.5

and 4.4.

This thesis does not contain an experimental component. As outlined in Sec-

tion 5.3, the long-term perspective of this research project (beyond the present
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thesis) is to build the mechanical setup proposed here in order to validate the theo-

retical findings in this thesis.

1.5 Thesis Outline
The rest of this work is organized in four main chapters.

We start in Chapter 2 by presenting the proposed mechanical setup. We de-

rive the governing equations of motion and explain the controls provided by the

magnetic forces: (i) strength of nonlinearity, (ii) type of nonlinearity, (iii) disor-

der. In this chapter, we focus on an ordered periodic structure (no defect or dis-

order). The periodic structure is very short (6 unit cells), has light damping and

weak coupling forces between adjacent units. We explain the supratransmission

phenomenon and identify its underlying mechanism using direct numerical sim-

ulations and numerical continuation techniques. The onset of supratransmission

is computed numerically by constructing the nonlinear response manifold of the

system. The mechanism for nonlinear energy propagation is explained and its rel-

evance to the resonances of the driving force with the shifted pass band of the

structure is discussed. We then derive analytical expressions for predicting the

onset of transmission based on the local nonlinear dynamics of the driven unit.

In Chapter 3, we investigate the influence of various system parameters on

supratransmission in ordered structures. The following parameters are considered:

type and strength of nonlinearity, number of units, damping and strength of cou-

pling. We highlight the importance of forcing frequency by contrasting supratrans-

mission with the case of harmonic excitation within a pass band. We also briefly

address the hysteresis phenomenon accompanying supratransmission, as well as

broadband energy propagation at very high driving amplitudes.

In Chapter 4, we study the influence of disorder on supratransmission. We

start by an overview of the key features of the linear response of disordered struc-

tures (Anderson localization). We consider a periodic structure with 10 units in

this chapter. The choice of other system parameters, such as strength of disorder,

are motivated in this context. We highlight the non-trivial effects of damping and

disorder on the transmission mechanism. We then discuss the statistical effects of

linear disorder on supratransmission. The changes in threshold curves, transmitted
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energies and transmitted wave spectra are discussed in an ensemble-average sense.

Finally, we present an analytical formula for predicting the onset of supratransmis-

sion in ordered and disordered structures, and investigate its range of validity. In

doing so, we investigate the influence of nonlinearity and strength of coupling on

the average transmission threshold curves.

We conclude in Chapter 5 by summarizing the contributions and limitations of

this work and proving suggestions for future research on this topic.
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Chapter 2

Supratransmission

In this chapter, we review the supratransmission phenomenon in a short, damped

periodic structure. We identify the instability mechanism underlying supratrans-

mission and clarify its relation to resonances of the driving force with the shifted

pass bands of the structure. Approximate analytical expressions are derived for

predicting the onset of supratransmission using asymptotic analysis, and validated

against results from numerical computations.

2.1 A Periodic Structure with Tunable Nonlinearity
Figure 2.1 shows the proposed periodic structure consisting of N repeating units.

Each unit is made of a thin, suspended cantilever beam of length ` with a tip mass

(a permanent magnet). Two electromagnets (hatched rectangles in Figure 2.1) are

fixed to the ground at a vertical distance h below the tip mass, and interact with

the permanent magnet (black rectangles). The electromagnets are symmetrically

placed from the beam axis at a horizontal distance d. This symmetric arrangement

ensures that the vertical position of the cantilever is the equilibrium configuration.

Direct current (DC) is passed through each electromagnet such that they have the

same polarity facing the beam. The magnetic forces between the permanent mag-

net at the tip and the two electromagnets provide tunable nonlinear restoring force

for each beam. The first beam is excited with a harmonic force f̃ (t̃ ) = F̃ cos(ω f t̃ ),

where F̃ is the magnitude of the applied force, ω f is the driving frequency and t̃
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Figure 2.1: A schematic of the periodic structure made of N unit cells. The
repeating unit is indicated by the dashed box. The external harmonic
force, f̃ (t̃ ) = F̃ cos(ω f t̃ ), is applied to the first unit only. Two electro-
magnets, operated by direct currents, are fixed to the ground under the
beam in each unit. The currents are chosen such that the electromagnets
have the same polarity facing the beam. We fix h = d/10 throughout
this work.

is time. A coupling rod of length L couples the displacements of adjacent beams.

The spacing between adjacent beams (L) is large compared to the separation be-

tween the magnets (2d) in order to avoid magnetic interference effects between the

magnetic fields in adjacent units.

The proposed mechanical setup has features that make it a good candidate for

our study on nonlinear periodic structures. It can be easily manufactured com-

pared to its counterparts, such as arrays of micromechanical resonators [116]. The

instrumentation required for performing the tests are often available to researchers

in mechanical vibrations (electrodynamic shaker and accelerometer). Furthermore,

the tunable magnetic force makes it possible to control the form of nonlinearity, a

feature that can be used to replicate different types of nonlinear forces and thereby

different types of nonlinear periodic structures. This cannot be achieved with sim-

pler setups such as arrays of coupled pendulums [40]. The limitation here is the

form of the nonlinear force (described in Section 2.1.1). As cases in point, the re-

sults obtained in this thesis may not be readily extended to systems with nonlinear

friction forces or saturable nonlinear forces without further investigation. As will
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be demonstrated in this chapter, the nonlinear force provided via the electromag-

netic interaction is appropriate for generating the supratransmission phenomenon.

The strength of the coupling force between adjacent units may also be adjusted by

placing the coupling rod at different heights along the cantilevers. The setup may

also be used to realize disordered periodic structures. This can be done by adjust-

ing the currents going through the electromagnets, as described in the following

section.

2.1.1 Governing Equations for the Periodic Structure

The chain of coupled cantilever beams in Figure 2.1 is a continuous system with

infinite degrees of freedom, with each individual cantilever beam having infinite

number of vibration modes. Therefore, there will be infinitely many pass bands,

extending to infinite frequency. In the first pass band, all cantilever beams vibrate

in their fundamental mode with different phases. In the second pass band, the

beams vibrate in their second deformation mode shape with different phases, and

so on. We focus on energy transmission in frequency ranges within the first pass

band of the structure so that a dynamical representation with N degrees of freedom

is appropriate. Thus the governing system of partial differential equations reduces

to a set of coupled ordinary differential equations. The equation governing the

vibrations of a unit cell (before coupling to adjacent units) can be expressed as

follows:
¨̃un +2ζ̃ ˙̃un +ω

2
0 ũn + F̃M,n = 0 (2.1)

where overdot denotes time derivative, ũn (t̃ ) is the lateral deflection of the tip of

beam n, ζ̃ is the coefficient of viscous damping, ω0 is the first natural frequency

of the beam when the electromagnets are removed and F̃M,n is the horizontal com-

ponent of the magnetic force acting on the tip of the beam resulting from the in-

teraction of the permanent magnet and two electromagnets. The axial component

of the force is ignored because the coupling between axial and lateral vibrations

of the beams are negligible. If the displacements of the tip of the beam are small

compared to its length, equal currents pass through the two electromagnets within

the unit cell, and the magnets are modeled as magnetic poles, then the magnetic
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force F̃M,n can be written acording to Coulomb’s law:

F̃M,n = µ̃n
(d + ũn)

((d + ũn)2 +h2)3/2 − µ̃n
(d− ũn)

((d− ũn)2 +h2)3/2 (2.2)

This is the horizontal component of the magnetic force acting on the nth beam.

The constants µ̃n depend on the strengths of the magnetic poles and contain the

non-geometric dependencies of the magnetic force. The magnetic force can be

tuned, thus providing control over the strength of nonlinearity, as well as its type

(softening or hardening). This will be explained in detail in Section 2.1.2.

To normalize the governing equations, we use ω0 for time and d for displace-

ments. We consider a linear coupling force between adjacent units due to the cou-

pling rod. Including this force and dividing all terms by ω2
0 d, we arrive at the

non-dimensional form of the governing equations (2.1) for N units

ün +2ζ u̇n +un + kc ∆
2(un)+FM,n = fn cos(Ωt), 1≤ n≤ N (2.3)

Here, un ≡ ũn/d is the normalized displacement of each unit, kc represents the

normalized coupling force between adjacent units and ∆2(un) = 2un−un+1−un−1

everywhere except at the boundaries, where ∆2(u1) = u1−u2 and ∆2(uN) = uN −
uN−1 (free boundary conditions). The normalized external force is given by fn = F

for n = 1 and zero elsewhere, with F ≡ F̃/d ω2
0 as the normalized forcing ampli-

tude, Ω ≡ ω f /ω0 as the normalized forcing frequency and t ≡ ω0 t̃ as normalized

time. FM,n represents the only nonlinear force in the model and is given by

FM,n = µn

(
(1+un)

((1+un)2 + r2)3/2 −
(1−un)

((1−un)2 + r2)3/2

)
(2.4)

where r ≡ h/d is a fixed parameter and µn ≡ µ̃n/d3ω2
0 is a control parameter that

can be changed. In the case of an ordered periodic structure, we have µn = µ0

for all n. For a disordered periodic structure, µn = µ0 + δ µn where |δ µn| < |µ0|.
Hereafter, all parameters used in the thesis, including time, are non-dimensional.

Expanding (2.4) about its trivial equilibrium point, un = 0, we obtain

FM,n ≈−µn(a1un +a3u3
n + · · ·)≡ k1un + k3u3

n + · · · (2.5)
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where a1 and a3 only depend on the (fixed) parameter r as follows:

a1 =
2(2− r2)

(1+ r2)5/2 (2.6a)

a3 =
8−24r2 +3r4

(1+ r2)9/2 (2.6b)

The constants k j in (2.5) are defined as k j ≡−µna j for j = 1,3,5, . . . .

We set r = 0.1 throughout the work. Unless otherwise specified, we use kc =

0.05(1 + k1) as the default value for the strength of coupling between adjacent

units – the need for weak coupling will be motivated in Section 4.1. Furthermore,

we consider lightly damped structures. The values of µn change throughout the

work to realize different nonlinear forces, and are reported in each case. The im-

portance of the type of nonlinearity (determined by the sign of µn) is addressed

in Section 3.1. The remaining two parameters are F and Ω, which are typically

free parameters. Throughout this chapter, we consider a periodic structure with six

units, N = 6.

2.1.2 Tunability of the Nonlinear Forces

The source of nonlinearity in the proposed periodic structure is FM,n, which acts

as an on-site nonlinear force for each unit. The type and strength of nonlinearity

can be tuned by changing the control parameter µn. In particular, the strength

of nonlinear terms increases when we increase the magnitude of µn, as evident

from (2.4). Moreover, the sign of µn determines whether nonlinearity is of the

hardening or softening type. If µn < 0, then k3 > 0 in (2.5) and we have a hardening

nonlinearity. Likewise, a softening nonlinearity can be realized by setting µn > 0,

thus obtaining k3 < 0 according to (2.5).

In order to show the tunability of nonlinear forces, we consider the normalized

restoring force acting on a beam in a single unit. Denoted by Pn, the normalized

restoring force is the sum of a normalized elastic force (un) and a normalized mag-

netic force (FM,n),

Pn = un +FM,n (2.7)

The linear natural frequency of a unit is the first derivative of the restoring force at
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the origin,

ω
2
1 ≡

(
∂Pn

∂un

)
un=0

= 1+ k1 (2.8)

Note that the linear part of the magnetic force (i.e. k1un) has an influence on the

natural frequencies of the system. The sign of k1 depends on µn according to (2.5),

such that the first natural frequency of the periodic structure (ω1) is below 1 when

µn > 0 (softening nonlinearity) and above 1 when µn < 0 (hardening nonlinearity).

The nonlinear force FM,n can be adjusted within each unit by changing the cur-

rents passing through the electromagnets, In, thereby varying µn in (2.4). The sign

of In depends on the direction of the current passing through the electromagnets

within that unit. Note that FM,n also depends on the geometrical configuration of

the setup through parameter r, though we fix r = 0.1 in this work and only change

µn.

Following Kimura and Hikihara [63], we have assumed µn = ξ0 + ξ1In for all

n, where ξ0 corresponds to the normalized magnetic strength of the ferromagnetic

core of the electromagnets, and ξ0 = 0.0151 and ξ1 = 0.0029. Due to the pres-

ence of ferromagnetic cores (ξ0 6= 0), the magnetic coefficients µn do not depend

symmetrically on the currents; i.e. µn(In) 6= µn(−In). If the electromagnets had

non-ferromagnetic cores, then we would have ξ0 = 0.

Figure 2.2 shows the variation of Pn as a function of un for a single unit. We

can see that when both electromagnets are removed (µn = 0), the restoring force is

linear as expected. By placing the electromagnets with the polarity shown in Fig-

ure 2.1 and setting In = 15 mA, we get a nonlinear restoring force of the softening

type. A hardening nonlinear force is realized when the direction of the currents

passing through both electromagnets is reversed (In = −15 mA). Notice that the

restoring forces for the hardening and softening systems are not symmetric with

respect to the restoring force of the linear system. This is due to the presence of

ferromagnetic cores in the electromagnets, as explained in the previous paragraph.

Because of the same reason, the case of In = 0 does not correspond to µ0 = 0 and

is therefore different from the linear case (Pn is not shown for In = 0 here).
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Figure 2.2: The dependence of the normalized restoring force, Pn = un+FM,n,
on the currents passing through the two electromagnets, In. Notice that
the restoring forces for the hardening (blue dashed curve) and softening
(red dash-dotted curve) systems are not symmetric with respect to the
restoring force of the linear system (black solid line). This is due to the
presence of ferromagnetic cores in the electromagnets.

2.2 Band Structure of Periodic Systems

2.2.1 Forced Response of Linear Structures

For small-amplitude vibrations, we can linearize (2.3) to get

ün +2ζ u̇n +ω
2
1 un + kc ∆

2(un) = fn cos(Ωt) , fn = 0 for 2≤ n≤ N (2.9)

where ω1 is defined in (2.8). The solutions to the linear system (2.9) can be written

as follows

un(t) = u1(t)e−iκ(n−1)e−γ0(n−1) (2.10)

where i =
√
−1, κ is normalized wavenumber, u1(t) denotes the response of the

first unit as a function of time, and γ0 ≥ 0 is a real-valued decay exponent. u1(t) =

U1 exp(iΩt), in which U1 is the complex-valued amplitude of motion. When γ0 > 0,

amplitudes of vibration attenuate exponentially through the periodic strcture and

energy propagation is not possible over long distances. We get complete transmis-

sion when γ0 = 0. Substituting solution (2.10) into the governing equations (2.9),
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we arrive at the following

cosh(γ0)cos(κ) = 1+(ω2
1 −Ω

2)/(2kc) (2.11a)

sinh(γ0)sin(κ) = (2ζ Ω)/(2kc) (2.11b)

In the absence of damping (ζ = 0), we have γ0 = 0 (complete transmission) for

ω2
1 ≤Ω≤ω2

1 +4kc, which is the pass band of the structure. Outside this frequency

range, γ0 > 0 and waves will attenuate exponentially away from the source (n = 1).

This can be seen in Figure 2.3 where γ0 is plotted as a function of Ω, for different

values of damping. The area with a white background indicates frequencies for

which γ0 = 0 in the undamped system. We can see that the presence of damping

results in spatial decay of response at all frequencies, even within the pass band.

In particular, the influence of damping on the decay exponent is mostly significant

within the pass band. We note that the analysis in this section is exact for an

infinitely long exactly periodic linear structure.

To conclude this section, we point out that viscous damping, if it is high

enough, can result in emergence of stop bands in the wavenumber domain; i.e.

spatial stop bands corresponding to imaginary wavenumbers. See [54] for more

details on the influence of high levels of damping on the band structure of (or-

dered) linear periodic structures.

2.2.2 Free Wave Propagation in Linear and Nonlinear Structures

For small displacements around the vertical equilibrium position, we can write

the following equations for free vibrations of the unforced, undamped periodic

structure

ün +ω
2
1 un + kc(2un−un−1−un+1) = 0 (2.12)

where ω1 is defined in (2.8). In an infinitely long periodic structure, the linear

equations (2.12) admit plane wave solutions

un(t) =U cos(ωt−qn) (2.13)
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Figure 2.3: Decay exponent γ0 for an infinitely long exactly periodic linear
structure. The white and grey backgrounds indicate the pass and stop
bands, respectively. When ζ > 0, the decay exponent is always positive,
even within the pass band. Anderson localization is relevant for frequen-
cies within the pass band, whereas supratransmission occurs within the
stop band – we will discuss these phenomena in subsequent chapters.

where U is the wave amplitude and q is the normalized wave number, with 0≤ q≤
π . Using this solution, the linear dispersion relation is found to be:

ω
2 = ω

2
1 +4kc sin2(q/2). (2.14)

The above dispersion relation describes the first pass band of the system, which

starts at a finite frequency, ω1. The upper frequency of the pass band edge (denoted

by ωu) is associated with the wave number q = π . Therefore, from (2.14), we have

ω
2
u = ω

2
1 +4kc (2.15)

Notice that the width of the pass band (ω2
u −ω2

1 ) is directly proportional to the

strength of coupling, kc. We can also conclude from (2.14) and (2.8) that the loca-

tion of the pass band (but not its width) depends on µn, and thereby on the currents

passing through the electromagnets. This can be verified from Figure 2.4, where

the dispersion curve (2.14) is plotted for the softening (I = 15 mA) and hardening

(I = −15 mA) realizations of the magnetic force. If the electromagnets were re-

moved (µn = 0), then the pass band would start from the first natural frequency of
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Figure 2.4: The dependence of the linear dispersion curve, (2.14), on the cur-
rents passing through the electromagnets. The red dashed curve cor-
responds to the hardening structure (I = −15 mA) and the blue dash-
dotted curve to the softening structure (I = 15 mA). The six dots along
each curve correspond to the natural frequencies of the finite structure
with free boundary conditions. The horizontal dotted line depicts the
first natural frequency of the structure when the electromagnets are re-
moved. See (2.8) and its foregoing explanation regarding the depen-
dence of linear dispersion curves on the type of nonlinearity.

the beams (ω1 = 1).

The finite periodic structure shown in Figure 2.1 is symmetric, has symmetric

unit cells and has open (free-free) boundary conditions. Therefore, the first natural

frequency of the finite structure coincides with the the lower edge of the pass band

of the infinite system [87]. The remaining natural frequencies of the finite structure

distribute within the pass band of the infinite system with a uniform wave number

spacing of π/N, where N is the number of the units [119]. As a result, the highest

natural frequency of the finite system increases with the number of units and, in the

limit of infinite units, it reaches ωu. Again, we emphasize that these conclusions

pertain to our model of the infinite degrees of freedom system reduced to frequen-

cies within the first pass band region. The six computed natural frequencies of the

finite periodic structure studied in this work are shown as dots in Figure 2.4. As

expected, all of them lie within the first pass band of the infinite system, with the

lowest one coinciding with the lower edge of the pass band.
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For finite amplitudes of motion, the dispersion relation naturally becomes de-

pendent on the amplitude of motion. To obtain the dispersion relation for a weakly

nonlinear system (small but finite amplitudes of motion), we need to account for

the dependence of the natural frequencies on the amplitudes of motion; i.e. ω =

ω(U) in (2.13). A standard asymptotic analysis, such as the Lindstedt-Poincaré or

multiple-scale method, can be performed for this purpose – e.g. see [97, 128] for

similar analyses. To the leading order (i.e. for weak nonlinearity), the amplitude-

dependent correction to the linear dispersion relation results in the following dis-

persion relation

ω
2 = ω

2
1 +4kc sin2(q/2)+3/4k3U2 (2.16)

where U represents the amplitude of motion. According to the amplitude-dependent

dispersion relation (2.16), nonlinearity can shift the pass band, but cannot change

its width. This is not surprising because the width of the pass band depends on

the coupling force between the units, which is linear in this case. We note that

this approximation is valid for finite but small amplitudes of motion. Higher-order

corrections would be needed to improve the approximation.

For the infinite system, we can readily study the edges of the pass band in more

detail. At the lower edge, adjacent units move in phase with each other (q = 0) and

we have un±1 = un. At the upper edge, adjacent units move out of phase (q = π)

and un±1 = −un, as a result. We can therefore decouple the equations at the two

edges of the pass band as follows:

ün +un +FM,n = 0 (2.17a)

ün +(1+4kc)un +FM,n = 0 (2.17b)

where the natural frequencies of (2.17a) and (2.17b) correspond to the lower and

upper edges of the pass band, respectively.

2.3 Energy Transmission via Harmonic Excitation within
a Stop Band

Consider the hardening system with I =−15 mA, which has its upper linear natu-

ral frequency at ω6 ≈ 1.139. We choose ζ = 0.004. The forcing frequency is fixed
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above the linear pass band of the infinite system; i.e. Ω > ωu ≈ 1.145 – we will see

in Section 3.1 that supratransmission occurs above the pass band in a structure with

hardening nonlinearity. We choose a small driving amplitude F and numerically

integrate the governing equations (2.3) for a large number of periods, T = 2π/Ω,

starting from zero initial displacements and velocities. We then repeat this proce-

dure for increasing values of F . For a given F , we increase the forcing amplitude

smoothly from zero to F to avoid formation of shocks in the numerical solution.

This is done by replacing F with F (1− exp(−t/τ1)), and is particularly important

for undamped systems. After the initial transient part of the solution is passed, we

calculate the energy in each unit, denoted by En (normalized), as follows:

En =
1

(m2−m1)T

∫ m2T

m1T

(
un(t)

F

)2

dt (2.18)

We have used τ1 = 50, m1 = 500 and m2 = 3500 in this chapter. Notice that energy

is normalized to compensate for the linear increase in response amplitudes, un(t),

due to increase in F .

Figure 2.5(a) shows the time-averaged energy in the last unit, E6, as a function

of F , for a fixed forcing frequency of Ω = 1.25 above the linear pass band (hard-

ening nonlinearity). We can see a threshold around F = 0.116 above which there

is a sudden large increase in the energy that reaches the end of the structure. The

frequency components of the response at the first and last units are also shown for

two cases: (1) F = 0.114, below the transmission threshold in Figure 2.5(b), (2)

F = 0.116, above the threshold in Figure 2.5(c). The frequency spectrum for each

oscillator is obtained by taking the Fast Fourier transform (FFT) of the correspond-

ing time series after the initial transient has passed; no additional windowing or

scaling is used. We can see in Figure 2.5(b) that the driving frequency (Ω = 1.25)

is the predominant frequency component throughout the structure below the thresh-

old. Therefore, the response of the system remains harmonic below the threhsold.

Above the threshold, see Figure 2.5(c), the driven unit moves with a high amplitude

and its response is broadband and highly nonlinear. Figure 2.5(c) shows that the

frequencies of the transmitted waves are predominantly within the linear pass band

of the structure. The amplitude of waves with frequencies within the stop band

attenuate due to dispersion effects. Notice that the amplitudes of waves within the
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pass band also decrease due to dissipation.

We observe the same phenomenon in the case of a softening system (I =

15 mA). In this case, the lower linear natural frequency of the structure is at

ω1 ≈ 0.88. We fix the forcing frequency below this value, at Ω = 0.85 < ω1, and

follow the same procedure as before to observe supratransmission. Figure 2.6(a)

shows E6 as a function of F . We observe the onset of supratransmission occurring

between F = 0.019 and F = 0.021. We show the frequency components of the

response at F = 0.019 in Figure 2.6(b). As expected, the response is harmonic

with the same frequency as the driving force (Ω = 0.85). Because this frequency

is within the stop band, we observe a large decrease in the amplitudes of motion

as we go from n = 1 to n = 6. At F = 0.021 (above the transmission threshold),

we see in Figure 2.6(c) that the response at the first unit is highly nonlinear. As we

go through the periodic structure to its other end, the frequency components within

the linear stop band are highly attenuated by dispersion. Accordingly, the spectrum

of the transmitted waves lies mainly within the pass band of the linear structure.

Thus supratransmission is a band-limited transmission phenomenon.

It is worth mentioning that the nature of the post-threshold response in supra-

transmission can vary based on system parameters (driving frequency, type of

nonlinearity, etc). There does not seem to be a reliable methodology that can

predict the nature of the post-threshold response a-priori. We will see in Sec-

tion 2.4.1 that supratransmission occurs as long as the post-threshold response is

non-periodic. Accordingly, classification (from a dynamical-systems viewpoint) of

the post-threshold non-periodic attractors is not of primary interest in this context.

To indicate this point, we consider the post-threshold responses of structures

with hardening and softening nonlinearities in Figures 2.5(c) and 2.6(c), respec-

tively. The response of the hardening system appears to be chaotic, while that of

the softening systems appears to be quasi-periodic – a quasi-periodic motion con-

sists of two or more incommensurate frequencies. To confirm this observation,

we construct the Poincaré map of the two responses above the supratransmission

threshold. Because of the external harmonic force applied to the structure, the

Poincaré map can be constructed by (stroboscopically) recording the displacement

and velocity of the response at a fixed phase of the driving force – see [70, Ch. 1]

for more details. Figure 2.7 shows the projection of this Poincaré map (obtained
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at zero phase) onto the phase space of the last unit, (uN ,vN). The Poincaré map of

the response for the hardening system, Figure 2.7(a), consists of a cloud of scat-

tered points. This implies that the response is chaotic – note that a rigorous proof

of chaos (and its classification) is immaterial in the current discussion. We see

in Figure 2.7(b) that the Poincaré map of the response for the softening system

is a closed curve. This confirms that the post-threshold response of the softening

system is quasi-periodic.

Figure 2.8 shows the normalized amplitude profiles of the structures, below

and above the supratransmission threshold. For each unit, the amplitude Un is

computed as half the difference between the maximum and minimum values, Un =

(max{un(t)}−min{un(t)})/2, after the initial transient part of the response is

passed. This is equal to the amplitude of the motion in the phase space. For the

hardening system, we see in Figure 2.8(a) that the amplitude profile shows expo-

nential decay below the threshold. This is a characteristic of the linear behavior of

periodic structures when the forcing frequency is within the stop band. Above the

threshold, on the other hand, the decay in amplitude is no longer exponential. This

suggests that above the threshold, the energy injected in the stop band transmits to

distant units with less attenuation. Qualitatively, we make the same observation in

Figure 2.8(b) for the softening system. It is important to note that attenuation over

large distances is always present in a damped structure. In this sense, damping

prevails over nonlinearity.
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Figure 2.5: The supratransmission mechanism for the hardening system (I =
−15 mA). (a) Energy transmitted to the end of the chain, E6, as a func-
tion of the driving amplitude, F , at Ω = 1.25. The blue arrow indicates
the onset of transmission. (b) Frequency components of the first unit
(U1) and last unit (U6) for F = 0.114, below the transmission threshold
at Ω = 1.25. (c) Frequency components of the first unit (U1) and last
unit (U6) for F = 0.116, above the transmission threshold at Ω = 1.25.
The six vertical lines in (a) and (b) indicate the linear natural frequencies
of the structure.

30



0 0.5 1 1.5 2
10

−8

10
−6

10
−4

10
−2

10
0

U
1

0 0.5 1 1.5 2
10

−8

10
−6

10
−4

10
−2

10
0

U
6

Frequency

0 0.5 1 1.5 2
10

−8

10
−6

10
−4

10
−2

10
0

U
1

0 0.5 1 1.5 2
10

−8

10
−6

10
−4

10
−2

10
0

U
6

Frequency

0.005 0.01 0.015 0.02 0.025 0.03
10

−3

10
−2

10
−1

10
0

10
1

10
2

Forcing amplitude, F

T
ra

n
sm

it
te

d
 e

n
er

g
y
, 
 E

6

onset of 

transmission

(a)

(b) (c)

Figure 2.6: The supratransmission mechanism for the softening system (I =
15 mA). (a) Energy transmitted to the end of the chain, E6, as a function
of the driving amplitude, F , at Ω = 0.85. The blue arrow indicates the
onset of transmission. (b) Frequency components of the first unit (U1)
and last unit (U6) for F = 0.020, below the transmission threshold at
Ω = 0.85. (c) Frequency components of the first unit (U1) and last unit
(U6) for F = 0.021, above the transmission threshold at Ω = 0.85. The
six vertical lines in (a) and (b) indicate the linear natural frequencies of
the structure.
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Figure 2.8: Normalized amplitude profiles (Un/U1) for (a) the hardening sys-
tem and (b) the softening system. In each case, the amplitude profiles
below and above the transmission threshold are shown respectively with
blue squares and black circles. The amplitude profiles show exponential
decay below the threshold, which is a characteristic of linear behavior.
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2.4 Computing the Supratransmission Threshold

2.4.1 Nonlinear Response Manifold (NLRM)

In contrast to the existing literature on supratransmission, we are concerned with

periodic structure with damping and finite length. For undamped and infinitely long

periodic structures, Maniadis et al. [82] have observed that as the forcing ampli-

tude is increased, transmission starts when the periodic solutions lose their stability.

They show that the onset of transmission coincides with the first turning point of

the nonlinear response manifold (NLRM). This is defined as the manifold of initial

conditions with zero initial velocities that give a time-reversible periodic solution

at a given driving amplitude [67, 82]. At the first turning point of the NLRM for

a non-dissipative system, the stable periodic solution that continues from the lin-

ear regime (passing through the trivial equilibrium) collides with another unstable

periodic solution that continues from a discrete breather (a non-zero solution cor-

responding to zero driving amplitude)1. The NLRM possesses a turning point at a

given forcing frequency provided that the free system supports breather solutions

at that frequency [82]. The collision between the continuations of the trivial equi-

librium and the discrete breather corresponds to a saddle-node bifurcation, where

one of the Floquet multipliers of the dynamical system exits the unit circle on the

positive real axis. Further technical details about bifurcations of periodic orbits can

be found in [70, Ch. 5].

We compute the NLRM using numerical continuation techniques as imple-

mented in AUTO [26]. This numerical approach allows us to follow the evolution

of the steady-state periodic response of the structure as a function of the forcing

amplitude, without the need to directly integrate the governing equations at each

step. In order to perform this computation, the governing equations are first recast

as a boundary value problem and then continuation methods are used to follow

the branches of periodic solutions and their subsequent bifurcations; refer to Ap-

pendix A for an explanation of this process. Note that there is no need to impose

a phase condition to the NLRM in a damped system (as opposed to Hamiltonian

1Discrete breathers are spatially localized, time-periodic solutions in discrete nonlinear periodic
systems; see [5, 10] for more details.
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Figure 2.9: The projection of the NLRM of the softening system onto the
U1 − F plane for Ω = 0.85 . The NLRM is shown using the black
curve. The solid section of this curve represents stable solutions and
the dashed section represents unstable solutions. The grey dash-dotted
line shows the linear response of the structure. The results of direct
numerical integration (DNI) are shown using the circle markers. Pe-
riodic responses are shown by empty markers and aperiodic responses
are shown by filled markers. The blue diamond indicates an unstable
periodic solution at the same F as the first turning point.

systems) because the response frequency and phase are fixed by the external force

– we have limit cycles. In fact, the NLRM can be redefined in this case as the

manifold of initial conditions on a limit cycle at a given driving amplitude. This

definition is trivial, but to keep the connection with the undamped case, we will

refer to the response of the forced and damped system as the NLRM as well.

Figure 2.9 shows the NLRM for the softening system at Ω = 0.85, along with

results from direct numerical integration of the governing equations (2.3). The re-

sponse is harmonic below the transmission threshold (empty markers) and follows

the linear response for small values of driving amplitude. At the first turning point

of the NLRM, this harmonic response becomes unstable (through a saddle-node

bifurcation) and the response inevitably jumps to another basin of attraction for

another attractor, which is aperiodic (filled markers). This jump is accompanied by
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Figure 2.10: Evolution of the response (represented by U1) as a function of
the driving amplitude for the hardening system. Solid black curve:
NLRM at Ω = 1.25; dashed blue curve: NLRM at Ω = 1.40. The
dash-dotted red curve shows the locus of the first turning points of
the NLRM as Ω varies. The results of direct numerical integration
(DNI) at each driving frequency are shown using the markers: triangles
for Ω = 1.25 and circles for Ω = 1.40. Periodic responses are shown
by empty markers and aperiodic responses by filled markers. We see
that the first turning point in each NLRM coincides with the onset of
supratransmission. At the threshold, the response jumps to a different
(non-periodic) branch.

a large increase in the energy transmitted to the end of the structure. Note that there

is another periodic solution branch right above the first turning point, indicated in

Figure 2.9 by the blue diamond. This solution is unstable. If the upper branch were

stable, the solution would have jumped to that branch instead, accompanied by a

modest increase in energy transmitted, but not an increase of an order of magni-

tude. It is important to note that the instability of this upper solution branch is a

necessary requirement for supratransmission. We are not aware of any other work

that highlights this requirement.

Figure 2.10 shows the NLRM for the hardening system at two different forcing

frequencies above the linear pass band. Similar to the case of the softening system,

the response is harmonic below the transmission threshold (empty markers) and

jumps to an aperiodic branch (filled markers) at the first turning point of the NLRM.
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Figure 2.10 also shows the transmission threshold curve of the hardening system

(red dashed curve). The threshold curve shows the locus of the first turning points

of different NLRMs as the driving frequency Ω varies. It is worth noting that the

threshold curve is a codimension-two manifold, meaning that it is parameterized

by two free variables (F and Ω in this case). We see its projection onto the U1−F

plane in Figure 2.10. Also, notice that the threshold curve terminates (in a cusp) at

a finite value of F . This is due to the presence of damping, and will be discussed

in detail in Section 3.3.

2.4.2 Resonances with the Shifted Pass Band

Repeating the numerical analysis for different values of Ω reveals that as the driv-

ing frequency is varied within the linear stop band (away from the edge of the pass

band), the transmission threshold increases. Moreover, supratransmission occurs

above the pass band in the hardening case and below the pass band in the softening

case – see Section 3.1 for more details. Also, it is known [14, 128] that nonlinearity

can alter the dispersion relation of periodic structures and may shift the location of

the pass band depending on the total energy level of the system2. Putting all this

together, one might be inclined to explain the nonlinear supratransmission phe-

nomenon occurring due to the resonance of the driving force with the shifted pass

band of the structure: due to increased amplitudes of motion, the pass band shifts

to lower frequencies in the case of softening nonlinearity and the driving force res-

onates with the shifted pass band. The same argument can be made for frequencies

above the pass band in the case of a hardening nonlinearity.

We show here that the true mechanism is indeed the saddle-node bifurcation de-

scribed in Section 2.4, and the resonance of the driving force with the shifted pass

band merely provides a qualitative explanation of the phenomenon. Figure 2.11

compares the edge of the pass band with the transmission threshold for the soft-

ening system (I = 15 mA). The lower edge of the pass band is computed as the

nonlinear normal mode of (2.17a). The transmission threshold is computed for an

undamped system (ζ = 0) as described in Section 2.4.1, and corresponds to the

2This shift is towards lower frequencies in a structure with softening nonlinearity and towards
higher frequencies in the case of a hardening nonlinearity. We can also see this in the amplitude-
dependent dispersion relation in (2.16).
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Figure 2.11: Comparison of the transmission threshold and the edge of the
pass band for the structure with softening nonlinearity. The vertical
line shows the lower edge of the pass band for the linear system (ω1).
The dash-dotted blue curve shows the lower edge of the pass band for
the nonlinear system, which is computed as the nonlinear normal mode
of (2.17a). The dashed red curve shows the amplitude of the first unit,
U1, at the onset of transmission as a function of the driving frequency.
The empty diamond markers show U1 at the driving amplitude just be-
low the onset of transmission. They are obtained from direct numerical
integration (DNI) of the equations of motion (2.3).

point where the periodic solutions lose stability through a saddle-node bifurcation.

The onset of transmission is also obtained from direct numerical integration (DNI)

of (2.3) at separate driving frequencies. The amplitudes of the first unit, U1, at the

driving amplitudes just below the threshold are shown for each driving frequency

with empty markers. We can see in Figure 2.11 that the results from DNI agree

well with the threshold curve. Notice that the threshold curve and the edge of the

pass band show a similar trend: they both increase as we move farther into the

linear stop band. More importantly, however, we see that the two curves do not

match. This is not a surprising feature after all: the threshold curve traces the

locus of saddle-node bifurcations while the pass band edge is a nonlinear normal

mode (backbone curve) of the structure. These two curves are not expected to co-

incide. The distinction between these two loci in single forced oscillators is indeed

among the early topics discussed in typical textbooks on nonlinear vibrations such

as [99, 121].

In conclusion, Figure 2.11 and the accompanying explanation indicate that the
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resonance of the driving force with the shifted pass band is not a correct predictor

of the onset of transmission from either a quantitative or phenomenological per-

spective. Similar observations are made for damped structures or in the case of

hardening nonlinearity, but the results are not shown here. We will further see in

Chapter 3 that the onset of supratransmission is a function of damping, strength of

coupling and other system parameters.

2.5 Analytical Prediction of the Onset of
Supratransmission

2.5.1 Analysis Based on Local Nonlinear Dynamics

To find the force threshold for the onset of supratransmission, we look for the onset

of instability for the harmonic solutions of the dynamical system. To this end,

we first derive the equations governing the evolution of the envelope of harmonic

waves using multiple-scale analysis; see [99, Ch. 6] for details of the methodology.

We seek solutions to (2.3) of the following form:

un(t1, t2) = εψn(t2)e−iΩt1 + c.c. (2.19)

where c.c. denotes the complex conjugate terms and ε is a small parameter. There

are two time scales, t1 ∝ 1 and t2 ∝ ε2. The strength of coupling and damping

coefficient are small, kc ∝ ε2 and γ ∝ ε2. Because we are looking for the small-

amplitude wave envelope, we take the driving amplitude to be small, F ∝ ε2. The

balance of equations at O(ε) is trivial. The same applies to the next order due to

the odd nature of the nonlinear force; i.e. only odd orders appear in (2.5). From

the balance of equations at O(ε3), we obtain the following equation for ψn:

−2iΩψ
′
n− iβψn +σ1ψn−3αψ

2
n ψ
∗
n + kc∆

2(ψn) = fn/2 (2.20)

where an uppercase asterisk denotes complex conjugate, prime denotes differenti-

ation with respect to the slow time scale, t2, and ∆2(.) is the same as in (2.3). The

38



following new parameters have been introduced in (2.20) for ease of reference

β ≡ 2ζ Ω (2.21a)

σ1 ≡ ω
2
1 −Ω

2 (2.21b)

α ≡ µna3 (2.21c)

Also, β =O(ε2), σ1 =O(ε2) and α =O(1). Note that because the periodic system

is very short (a few number of units) and the coupling between adjacent units is

small, a spatial homogenization scheme, as often used in the literature [62, 66,

126], is not appropriate here.

We know that the amplitudes of motion decay rapidly along the structure away

from the driven unit. As a first approximation, therefore, we decouple the first

unit from the rest of the periodic structure, and look in the reduced system for

points where the stability of motion changes (through a saddle-node bifurcation).

It is expected that these points can be used to estimate the onset of instability and,

therefore, the supratransmission force threshold for the entire structure. We note

that this approximation may only be valid in the limit of very weak coupling, also

known as the anti-continuum limit. See [82] for a similar approach.

The dynamic reduction of the periodic structure to a single unit depends on the

location of the driving frequency relative to the linear pass band. In a system with

softening type of nonlinearity, supratransmission occurs below the lower edge of

the pass band. In hardening systems, on the other hand, supratransmission occurs

above the upper edge of the pass band. Adjacent units move in phase with each

other at the lower edge and out of phase at the upper edge. Therefore, before trun-

cating (2.20) at n = 1, we take ∆2(ψn) = 0 in the softening case and ∆2(ψn) = 4ψn

in the hardening case. We note that this argument is valid for an infinite periodic

structure. In a finite structue, as discussed in Section 2.2.2, only one of the edges

of the pass band coincides with those of the infinite structure. As a result, taking

∆2(ψn) = 4ψn above the pass band is an approximation in our periodic structure

because of the free-free boundary conditions.

With these considerations in mind, the wave envelope equation (2.20) reduces
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to the following:

−2iΩψ
′
1− iβψ1 +σψ1−3αψ

2
1 ψ
∗
1 = F/2 (2.22)

where σ represents the distance of the driving frequency from the closest edge of

the pass band, defined differently based on the type of nonlinearity:

σ ≡

{
ω

2
1 −Ω

2 = σ1, softening

ω
2
1 +4kc−Ω

2 = σ1 +4kc, hardening
(2.23)

We take the solution of (2.22) to be ψ1 = A1 exp(iθ1). Using this solution and

looking for the steady-state response, we arrive at the following equations for A1

and θ1:

βA1 = (F/2)sinθ1 (2.24a)

3αA3
1 +σA1 = (F/2)cosθ1 (2.24b)

We eliminate θ1 from (2.24) to get the response curve for ψ1:

(βA1)
2 +(3αA3

1 +σA1)
2− (F/2)2 = 0 (2.25)

which can be used to plot the approximate NLRM at a given Ω. Notice that (2.25)

depends on Ω through the parameter σ , defined in (2.23).

Equation (2.25) can be rearranged as a cubic equation in A2
1. For the NLRM to

have turning points, it is required that this cubic equation have three real roots. The

onset of supratransmission, where there is a turning point (saddle-node bifurcation)

in the NLRM, corresponds to points where the cubic equation has three real roots

with two of them being equal [50]. To satisfy this condition, a certain relation

should hold between the coefficients of the cubic equation [1, Ch. 3]. This results

in the following relation for the value of driving amplitude that corresponds to loss

of stability:

F2
th,1 =

−8
81α

(
σ(σ2 +9β

2)± (σ2−3β
2)3/2

)
(2.26)

The subscript 1 has been used to emphasize that one unit is used in the approx-
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imation. Supratransmission is possible (i.e. the NLRM possesses a saddle-node

bifurcation) provided that the right-hand side of (2.26) is real and positive; other-

wise, the NLRM does not have a turning point.

It is worth emphasizing that (2.26) traces (within the approximation limits) the

locus of the first saddle-node bifurcation of the NLRM. Any other bifurcation of

the NLRM will go unnoticed by this formulation.

2.5.2 Comparison with Numerical Computations

To validate the analytical estimate of the supratransmission force threshold, we

compare the threshold curves predicted by (2.26) with numerical results obtained

using continuation methods. Given that the analysis is performed assuming very

weak coupling between adjacent units, our immediate goal is to show that the re-

sults are valid in the parameter range where they were derived. Accordingly, we

use a value of kc = 0.001 for coupling in this section. We will further explore (and

update) the validity of the locally nonlinear analysis throughout Chapter 3 and in

Section 4.4.

Figure 2.12 shows the supratransmission threshold curves as a function of σ ,

the distance from the pass band edge. The red solid curves are obtained numeri-

cally from the governing equations (2.9), and threshold curves predicted by (2.26)

are shown using the black dashed curves. Using σ allows us to compare the soften-

ing and hardening systems on the same plot. We see for the structure with softening

nonlinearity that the analytical estimate predicts the threshold curve accurately, es-

pecially close to the pass band edge (σ = 0) where the force threshold is lower.

A similar observation is made for the structure with hardening nonlinearity. Com-

pared to the softening system, the onset of transmission for the hardening system is

predicted less accurately. This discrepancy between analytical and computational

results occurs due to the finite size of the structure, as anticipated during the deriva-

tion3. Figure 2.12 also shows that as the forcing frequency moves farther into the

stop band (as |σ | increases) the accuracy of the analysis decreases. This is because

the force threshold increases with |σ |, making contributions from higher nonlinear

3Recall that the analysis in Section 2.5.1 is based on an infinite periodic structure. Because we
are dealing with a finite structure, one of the lower or upper edges of the pass band is inevitably
predicted inaccurately.
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terms more significant.
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Figure 2.12: The supratransmission threshold curves for a weakly coupled
structure as a function of σ , the distance form the pass band edge.
σ < 0 for the structure with softening nonlinearity (I = 15 mA) and
σ > 0 for the structure with hardening nonlinearity (I = −15 mA).
The solid curves are obtained using numerical continuation and dotted
curves are obtained from (2.26) based on the local nonlinear dynamics
of the driven unit. The vertical line denotes the pass band edge, where
σ = 0 for both the hardening and softening structures.

In summary, prediction of the onset of supratransmission based on the local

nonlinear dynamics of the driven unit can be used to explain the supratransmission

phenomenon for very weak values of coupling. The results from this analysis are

more reliable from a qualitative perspective as opposed to a quantitative point of

view.

2.6 Concluding Remarks
In this chapter, we studied the supratransmission phenomenon in a discrete non-

linear periodic structure with damping and finite length. This essentially nonlinear

phenomenon occurs when the periodic structure is harmonically forced at one end

with a forcing frequency lying within its linear stop band. Beyond a certain thresh-

old of forcing amplitude, supratransmission occurs due to loss of stability of the

periodic solutions that are initially localized to the driven unit. At the onset of

supratransmission, the response of the system moves from the basin of attraction

of a limit cycle to that of a non-periodic attractor – this non-periodic attractor may
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be either quasi-periodic or chaotic. Supratransmission is accompanied by a very

large increase (orders of magnitude) in the energy transmitted through the periodic

structure. The frequency spectra of the nonlinearly transmitted waves lie inside the

linear pass band of the periodic structure.

We reviewed the instability mechanism leading to supratransmission using di-

rect numerical simulations and numerical continuation techniques. We showed

that the onset of supratransmission coincides with the first turning point (saddle-

node bifurcation) of the nonlinear response manifold (NLRM) of the damped, finite

structure. This is the same mechanism that leads to supratransmission in infinite-

dimensional Hamiltonian systems. We also highlighted that the onset of supra-

transmission does not necessarily coincide with the resonance of the driving force

with the shifted pass band at higher amplitudes of motion.

Furthermore, based on the local nonlinear dynamics of the driven unit, we ob-

tained closed-form analytical expressions for predicting the onset of supratrans-

mission in weakly coupled periodic structures. This approximate formulation is

based on finding the saddle-node bifurcations of the NLRM. For both hardening

and softening types of nonlinearity, we verified the validity of the analytical esti-

mates by comparing them with results obtained from numerical continuation for a

weakly coupled periodic structure.
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Chapter 3

Parametric Study

Supratransmission is a generic instability-driven transmission phenomenon in dis-

crete nonlinear periodic structures. In this chapter, we explore how supratransmis-

sion depends on various system parameters. The following parameters are consid-

ered: type and strength of nonlinearity, number of units, damping and strength of

coupling. We highlight the importance of forcing frequency by contrasting supra-

transmission with the case of harmonic excitation within a pass band. We also

briefly address the hysteresis phenomenon accompanying supratransmission, as

well as broadband energy propagation at very high driving amplitudes. The influ-

ence of structural irregularities (disorder) is addressed separately in Chapter 4.

3.1 Type and Strength of Nonlinearity
The most significant role of the type of nonlinearity (softening or hardening) is to

determine on which side of the pass band supratransmission may occur. Supra-

transmission may be observed below the pass band for a structure with softening

nonlinearity, and above it for a structure with hardening nonlinearity. The reason

is that the NLRM possesses a turning point (saddle-node bifurcation) only on one

side of the pass band1.

We can use the formula (2.26) to determine the dependence of supratransmis-

sion on the type of nonlinearity. To exclude the influence of damping, we consider

1 We cannot rule out the possibility that the NLRM may lose stability through other bifurcations
on the other side of the pass band. We are not aware of any work addressing this aspect.
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the undamped structure (β = 0). For the undamped case, (2.26) reduced to the

following:

Fth,1 =
4
9

√
σ3

−α
(3.1)

In order to get a positive real value on the right-hand side of (3.1), σ and α should

have opposite signs. In the case of softening nonlinearity, we have α < 0 and

supratransmission occurs when σ > 0; i.e. for Ω < ω1, below the linear pass band.

Likewise, we have α > 0 for a hardening nonlinear force and supratransmission

may occur when σ < 0, which is above the pass band. A similar observation has

been made based on the symmetries of the the wave envelope equations in [122].

Regarding the strength of nonlinearity, we see from (3.1) that increasing |α|
reduces the force threshold at the onset of supratransmission for both softening and

hardening types of nonlinearity. The same observation can be made using (2.26)

for the onset of supratransmission in damped structures.

3.2 Number of Units
The question we are addressing in this section is whether the number of units (N)

has a qualitative effect on the supratransmission phenomenon. To this end, we

focus on the undamped structure (ζ = 0)2. For an undamped structure, we already

know from the literature [39, 82, 122] that supratransmission exists for infinitely

long periodic structures. We showed in Chapter 2 that supratransmission also exists

in a very short periodic structure with N = 6. Here, we explore the influence of N

on the threshold curves for small and moderate N, with N ∈ {5,10,15,20}. We

consider both softening and hardening types of nonlinearity, with the nonlinear

force in (2.5) adjusted such that the coefficient of its cubic term is k3 =±0.2. The

default value of kc = 0.05 is used for the strength of coupling.

Figure 3.1 shows the threshold curves as a function of σ for different values of

N. These threshold curves are obtained using numerical continuation, as explained

in Section 2.4. We see that for both types of nonlinearity, the influence of N is

2In the presence of damping, energy dissipation will prevail nonlinearity (as well as disorder) for
large N. No information thus reaches the end of the chain; i.e. EN from (2.18) is exponentially small.
From that perspective, it would not matter whether supratransmission occurs for large N or not.
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Figure 3.1: Threshold curves as a function of σ for different values of N.
The periodic structure has free-free boundary conditions. σ < 0 for
the structure with softening nonlinearity (k3 =−0.2) and σ > 0 for the
structure with hardening nonlinearity (k3 = +0.2). For both structures,
the transmission threshold Fth increases with N, but only at driving fre-
quencies very close to a pass band edge. The hardening system is more
sensitive to N than the softening system.

significant only in the close vicinity of the edge of the pass band (near σ = 0). As

expected, this difference decreases by increasing the number of units.

Furthermore, we see in Figure 3.1 that the structure with hardening nonlinear-

ity is more sensitive to N than the softening structure; in fact, the structure with

softening nonlinearity is almost insensitive to N. We explain this based on the

boundary conditions of the entire periodic structure. Recall from Section 2.1 that

the periodic structure studied in this work is subject to free boundary conditions at

both ends (Figure 2.1). For the finite structure, this means that the lower edge of

the pass band does not change with N. Thus, varying N has a minimal effect on

the dynamics of the softening periodic structure below the pass band. To support

our claim, we repeat the computations of Figure 3.1 for the same periodic struc-

ture, but with fixed boundary conditions at both ends. We show the results of these

computations in Figure 3.2. We see that the dependence of threshold curves on N

is now similar for both types of nonlinearity. For both boundary conditions, the

influence of N on threshold curves is significant only for very small values of |σ |.
In summary, increasing the number of units can increase the force threshold at

the onset of supratransmission at driving frequencies very close to the edge of a

pass band.
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Figure 3.2: Threshold curves as a function of σ for different values of N. The
periodic structure has fixed-fixed boundary conditions; c.f. Figure 3.1.
The number of units plays a significant role only in the close vicinity of
the edge of the pass band (near σ = 0).

Note that Figure 3.2 is the only instance where we consider a fixed-fixed bound-

ary condition throughout the thesis. In all other analyses, based on the mechanical

structure of Figure 2.1, we use free-free boundary conditions. In the remainder of

this chapter, in accordance with Chapter 2, we use a structure with six units.

3.3 Damping
As we have already seen in Figure 2.10, the first turning point of the NLRM occurs

at a higher driving amplitude as the forcing frequency moves farther from the linear

pass band. For an undamped structure, the force threshold goes to zero when the

forcing frequency reaches the pass band. In other words, the threshold curve has a

vertical asymptote in the (F −Ω) plane, coinciding the the edge of the pass band

(at σ = 0). Therefore the NLRM for an undamped structure has a turning point for

all forcing frequencies in the stop band – this only happens on one side of the pass

band as already explained in Section 3.1.

The topology of the NLRM depends on the amount of damping in the structure.

Figure 3.3 shows the NLRM at Ω= 1.25 for I =−15 mA (hardening) and different

values of damping. We can see that the structure of the undamped NLRM is quali-

tatively different from that of a damped NLRM. In the undamped case, the NLRM

crosses the zero-force axis (F = 0) after the first turning point. These crossing

points correspond to discrete breathers, which are non-zero harmonic solutions in
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the unforced undamped periodic structure that are spatially localized to the driven

unit3. The amplitude profiles of the two discrete breathers are shown in Figure 3.3

in the insets. The damped NLRMs do not cross the zero-force axis because the

damped structure cannot sustain steady-state motion with non-zero amplitude. The

damped NLRM will have a second turning point for non-zero values of damping

below a certain threshold – see also [81]. The existence of subsequent turning

points or other bifurcations of the NLRM depends strongly on the nature of the

nonlinear force among other parameters.
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Figure 3.3: The NLRM of the hardening system at Ω = 1.25 and different
values of damping are shown by the curves without markers. The results
of direct numerical integration at each damping value are shown using
the markers: red squares, ζ = 0; black circles, ζ = 0.01; blue diamonds,
ζ = 0.1; magenta triangles, ζ = 0.2. Periodic responses are shown by
empty markers and non-periodic responses are shown by filled markers.
Increasing the damping ratio eventually eliminates the turning point of
the NLRM. We also observe an intermediate stage (ζ = 0.1) where the
onset of supratransmission is delayed until the third turning point of the
NLRM. The intersections of the undamped NLRM with the zero-force
axis, shown by red stars, correspond to discrete breathers. The insets
show the amplitude profiles of these discrete breathers.

3The NLRM of the undamped structure may cross the zero-force axis many times. We show
only two of these crossings in Figure 3.3. See [82] for more details about the zero-crossings and the
associated discrete breathers.
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Comparing the NLRMs at non-zero damping values, we see in Figure 3.3 that

as damping increases the first turning point occurs at a higher driving amplitude.

Moreover, the second turning point moves to the right (higher driving amplitudes)

at a higher rate than the first turning point and the distance between the two turning

points decreases. Eventually, there exists a threshold for the damping coefficient

(ζ = 0.160 in this case) above which the two turning points merge and disappear.

The NLRM above this threshold does not have a turning point.

There is an intermediate stage during this transition, ζ = 0.1 in Figure 3.3,

where the low-amplitude periodic solution jumps to a secondary (stable) periodic

branch before supratransmission occurs. In this case, in contrast to the behavior

of undamped structures, supratransmission does not occur at the first turning point

of the NLRM. Instead, it is delayed until subsequent turning points4. We conclude

that damping changes the topology of the NLRM and may effectively delay or

completely eliminate the onset of supratransmission.

We can use (2.26) to study the influence of damping on the transmission thresh-

old in more detail. In an undamped system (β = 0), the transmission threshold goes

to zero at the edge of the linear pass band; i.e. Fth = 0 if σ = 0. In order to obtain

a real value for F1 in the damped case (β 6= 0), it is required that σ2− 3β 2 > 0

in (2.26). There is therefore a frequency range in the immediate vicinity of the

pass band in which the NLRM does not have a turning point and supratransmission

cannot occur. The critical value σcr at which transmission starts can be obtained by

setting σ2−3β 2 = 0. Recalling the definition of σ from (2.22), this can be written

in terms of the critical forcing frequency, denoted by Ωcr, as follows:

Ωcr =


√

ω2
u +3ζ 2 +

√
3ζ ≈ ωu +

√
3ζ , α > 0√

ω2
1 +3ζ 2−

√
3ζ ≈ ω1−

√
3ζ , α < 0

(3.2)

where the approximations are made for small damping (ζ� 1). We see in (3.2) that

as damping increases, the onset of supratransmission occurs at a forcing frequency

farther from the pass band. Accordingly, the value of forcing amplitude required at

4 In Section 4.2, we further elaborate on this non-trivial effect of damping, where we also high-
light the additional role played by disorder in this context.
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Numerical: ζ = 0

Numerical: ζ = 0.004

Numerical: ζ = 0.010

Analytical: ζ = 0

Analytical: ζ = 0.004

Analytical: ζ = 0.010

Eq. (3.3)

Figure 3.4: The transmission threshold curves for the structure with harden-
ing nonlinearity at different values of damping. Solid curves are ob-
tained using numerical continuation and dashed curves are from the an-
alytical solution (2.26). Red: ζ = 0; black: ζ = 0.004; blue: ζ = 0.010.
The magenta dash-dotted curve, obtained from (3.3), shows the locus
of the critical values of F and Ω at the onset of supratransmission. The
vertical grey line shows the upper edge of the pass band (ω6 ≈ 1.139).

Ωcr for the onset of supratransmission, denoted by Fcr, can be obtained from (2.26):

Fcr =



√
32

81 |α|
(Ω2

cr−ω2
u )

3 , α > 0√
32

81 |α|
(ω2

1 −Ω2
cr)

3 , α < 0

(3.3)

This is the minimum force required in a damped periodic structure to trigger the

supratransmission phenomenon. This behavior is in contrast to that of undamped

structures where the minimum force amplitude required approaches zero as the

forcing frequency approaches the pass band (notice that Fcr = 0 for ζ = 0).

Figure 3.4 shows the threshold curves of the structure with hardening nonlin-

earity for different values of damping. The solid curves are obtained using nu-

merical continuation, and threshold curves predicted by (2.26) are shown by the
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Figure 3.5: The dependence of supratransmission on damping ratio for hard-
ening and softening types of nonlinearity. The solid curves, obtained
from (3.2), depict the boundaries between regions where supratrans-
mission may exist and where supratransmission does not exist. The
grey area corresponds to the linear pass band of the structure.

dashed curves. We see that the threshold force goes to zero at the edge of the linear

pass band in the undamped structure (the red solid curve). We also observe a dis-

crepancy between numerical computations and analytical predictions (for example,

compare the two red curves). This is because the analysis is based on an infinite

periodic structure, in which the upper edge of the pass band is at ωu. The upper

edge of the pass band in the finite system is slightly lower than ωu, as explained in

Section 2.2.2. For nonzero values of damping, the minimum forcing amplitude re-

quired for supratransmission to occur is nonzero and occurs at a forcing frequency

away from the linear pass band. The locus of the critical forcing frequency and

amplitude at the onset of transmission is given by (3.3), which is shown by the

dash-dotted curve in Figure 3.4. This locus is the upper envelope of the thresh-

old curves. All transmission threshold curves lie between the undamped threshold

curve and the locus of the critical value; i.e. (3.1) and (3.3), respectively.

Figure 3.5 shows the critical frequency at the onset of supratransmission, Ωcr,

as a function of damping ratio, ζ , for both types of nonlinearity. The two solid

curves split the (Ω− ζ ) plane into areas where supratransmission may occur, di-

vided by an area where supratransmission does not exist. The boundaries are ob-

tained from (3.2). For very low values of damping, the prohibited region is mostly
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comprised of the linear pass band. As damping increases, the critical forcing fre-

quencies moves away from the edges of the pass bands. It is crucial to note that

derivation of (3.2) is based on the locus of the first turning point (saddle-node bi-

furcation) of the nonlinear response manifold – recall the analysis in Section 2.5.1.

We cannot definitively rule out the possibility that once the first turning point is

eliminated by damping, the NLRM will remain stable for all values of forcing am-

plitude. Nevertheless, we have not observed this in our numerical investigations,

nor has such behavior been reported in the literature.

In summary, damping (i) introduces a threshold on the minimum forcing am-

plitude required for supratransmission to occur (ii) may delay the onset of supra-

transmission until the third turning point of the NLRM, (iii) may eliminate a range

of frequencies from the stop band in which supratransmission occurs. Although

the predicted critical values of forcing amplitude and frequency are only fairly ac-

curate, we can still use (2.26) and (3.3) to qualitatively explain the influence of

damping on the supratransmission phenomenon.

3.4 Strength of Coupling
The strength of coupling, kc, is directly related to the width of the pass band, as

shown in (2.15). Increasing the strength of coupling widens the linear pass band

of the structure, in particular by moving the upper edge of the pass band to higher

frequencies. Therefore, if the driving frequency is fixed above the pass band and

kc is increased, the linear pass band eventually reaches the driving frequency and

energy transmission occurs through resonance with the linear modes of the struc-

ture. This essentially linear phenomenon may occur in a nonlinear system as well,

and is not further discussed here. Instead, we study the influence of the strength of

coupling on the (nonlinear) supratransmission phenomenon.

The analysis in Section 2.5.1 is based on reducing the dynamics of the periodic

structure to that of a single unit (the driven unit). That analysis is therefore unable

to account for the strength of coupling. We begin this section by updating our

prediction of the onset of instability to account for the strength of coupling. To

improve our reduced model, we truncate the periodic structure at the second unit

instead of the first one. In this new reduced model, the first unit is taken to be
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the same as that of the original periodic structure and the second unit is assumed

to be linear. This approximation is appropriate for small but non-zero values of

coupling; note that (2.26) is only valid for kc = 0.

For the reduced system with two degrees of freedom, we can proceed in the

same way as in Section 2.5.1 for the one-unit approximation to obtain the response

curve. The equation describing the loci of turning points (saddle-node bifurca-

tion) of the NLRM of the reduced system can then be obtained in the same way

that (2.26) was derived from (2.25). Thus, the value of force threshold that corre-

sponds to loss of stability of periodic solutions is found to be:

F2
th,2 =

−8
81α

(
S(S2 +9T 2)± (S2−3T 2)3/2

)
(3.4)

where the subscript 2 is used to emphasize that two units are used in the approxi-

mation, and S and T are defined as below:

S≡ (σ + kc)(1−R) (3.5a)

T ≡ β (1+R) (3.5b)

R denotes the ratio of the amplitudes of the two units:

R≡
(

A2

A1

)2

=
k2

c

β 2 +(σ + kc)2 (3.6)

where A1 and A2 are the amplitudes of the driven unit (n = 1) and the linear unit

(n = 2), respectively. As expected, we obtain Fth,2 = Fth,1 for kc = 0.

Figure 3.6 shows the supratransmission threshold curves at three different strengths

of coupling as a function of σ , the distance from the pass band edge. Using σ

allows us to compare the softening system (I = 15 mA) and hardening system

(I = −15 mA) on the same plot. The solid curves are obtained using numerical

continuation, as described in Section 2.4. For both the structures with softening

and hardening nonlinearities, we see that increasing the strength of coupling does

not have a significant influence on the critical frequency at which supratransmission

starts. The minimum forcing amplitude for the onset of supratransmission, how-

ever, increases with the strength of coupling. In fact, the supratransmission thresh-
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Figure 3.6: The transmission threshold curves at different strengths of cou-
pling as a function of σ . σ < 0 for the softening system and σ > 0 for
the hardening system. Three coupling coefficients are used in each case;
red: kc = 0.001, black: kc = 0.050, green: kc = 0.100. Solid curves are
obtained using numerical continuation and dashed curves are from the
analytical solution (3.4). The vertical line denotes the pass band edge.

old is increased at all forcing frequencies if the coupling becomes stronger. This is

true even in an undamped structure for which the threshold curve approaches zero

at the edge of the pass band [82].

The dashed curves in Figure 3.6 show predictions of the threshold curves based

on (3.4). We see that the reduced model can capture the behavior of the threshold

curves only at very weak coupling, κ = 0.001. For higher strengths of coupling,

the reduced model can still capture the qualitative behavior of the softening sys-

tem, but not that of the hardening system. Specifically, it fails in predicting the

critical forcing frequency and amplitude at the onset of supratransmission in the

structure with hardening nonlinearity. Two reasons contribute to this: (a) reducing

the periodic structure to two units only works in the limit of weak coupling; (b) the

upper linear natural frequency of the reduced model (two degrees of freedom) is

lower than that of the full model (six degrees of freedom). While the former is an

intrinsic limitation of the reduced model, the latter can be improved by offsetting

the threshold curves with respect to their corresponding edge of the pass band (not

shown here).
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In summary, increasing the strength of coupling (i) increases the minimum

force amplitude required for the onset of supratransmission; (ii) does not change

the frequency location of the onset of supratransmission significantly with respect

to the nearest edge of the pass band.

3.5 Forcing Amplitude: Hysteresis
Associated with a saddle-node bifurcation, one normally expects to observe the

hysteresis phenomenon. This results from the co-existence of two (or more) stable

solutions near the bifurcation point. As expected, hysteresis can also be observed

near the supratransmission threshold.

In order to observe the hysteresis effect, a different numerical approach is re-

quired than the one used in Section 2.3. The approach we use here is based on

sweeping the driving amplitude back and forth near the supratransmission thresh-

old; this method can also be used in experiments. We start from a small forcing

amplitude below the threshold, F = 0.09 in Figure 3.7. Once the steady state is

reached, the forcing amplitude is smoothly increased in small increments, and a

new steady state is obtained at each step (black circle markers). Once we pass

the supratransmission threshold, we reverse this procedure and decrease the forc-

ing amplitude stepwise (blue square markers). Figure 3.7 shows the results of

this computation for the structure with hardening nonlinearity (I = −15 mA) at

Ω = 1.25. We can clearly observe the hysteresis phenomenon.

The hysteresis associated with supratransmission has been previously studied

both theoretically and experimentally; e.g. see [51, 62, 66]. Further discussion of

the hysteresis effect, such as the influence of sweeping parameters on the observed

width of the hysteresis gap, is not within the scope of the present work.
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Figure 3.7: The hysteresis effect at Ω = 1.25 for the structure with harden-
ing nonlinearity. Black circle markers correspond to up-sweep of F and
blue square markers correspond to sweeping F down. Empty mark-
ers denote periodic solutions and filled markers denote non-periodic re-
sponse.

3.6 Forcing Frequency
The driving frequency plays a crucial role in determining the energy transmission

characteristics of a nonlinear periodic structure. To highlight this, we compare

supratransmission (driving within a stop band) to the case in which a periodic

structure is driven within its pass band. When the driving frequency lies within

the pass band, energy transmission occurs in a linear fashion at low driving am-

plitudes, with a small decay occurring due to dissipative forces – see Figure 2.3.

These linear solutions eventually lose their stability if the driving amplitude is in-

creased. This loss of stability is not usually accompanied by a large increase in the

transmitted energy, in strong contrast with what happens for stop band excitation.

We show this for a periodic structure with the following parameters: kc = 0.05,

ζ = 0.005, k3 =+0.2 (hardening) and N = 10. Figure 3.8 shows the energy trans-

mitted through this strcture as a function of F at different forcing frequencies near

the upper edge of the pass band (ωN ≈ 1.149).

In all forcing frequencies shown in Figure 3.8, loss of stability is accompanied

with an increase in the transmitted energy. At Ω = 1.16, excitation is within the

stop band and we see an increase in the transmitted energy over a few orders of

magnitude (supratransmission). In comparison, the increase in transmitted energies
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is not as significant for the driving frequencies within the pass band, namely at

Ω = 1.13 and Ω = 1.14. At Ω = 1.15, which is on the edge of the pass band, loss

of stability leads to enhanced transmission, but not as significant as what happens at

higher forcing frequencies within the stop band. Within the pass band, the location

of Ω with respect to the linear natural frequencies changes the onset of transmission

(Fth), yet the qualitative behavior explained here remains the same; i.e. eventual

loss of stability and an increase in EN . If the structure were undamped, then the

onset of transmission would have approached zero at the linear natural frequencies

of the structure.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Forcing amplitude, F

T
ra

n
sm

it
te

d
 e

n
er

g
y
, 
E

N

 

 

Ω = 1.13

Ω = 1.14

Ω = 1.15

Ω = 1.16

Figure 3.8: The influence of forcing frequency (Ω) on enhanced nonlinear
energy transmission in a damped periodic structure. Energy at the end
of the structure (EN) is plotted as a function of driving amplitude (F)
for different forcing frequencies. The upper edge of the pass band is
at ωN ≈ 1.149. Ω = 1.13 and Ω = 1.14 are inside the pass band, Ω =
1.15 is at the edge of the pass band, and Ω = 1.16 is above the pass
band. Filled markers indicate periodic responses and empty markers
indicate non-periodic responses. In all four cases, loss of stability leads
to an increase in EN . This increase is most significant when excitation
is within the stop band (supratransmission).

Although loss of stability leads to enhanced transmission within both pass and

stop bands, the increase in transmitted energies is much smaller within the pass

band. One explanation is that the response is already extended throughout the

structure within the pass band, thus waves can reach the end of the structure with-

out much attenuation – compare the transmitted energies in Figure 3.8 at low forc-

ing amplitudes. Another factor could be the instability mechanism. Linear solu-
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tions lose their stability through saddle-node bifurcation at Ω = 1.16 (and driving

frequencies above it), whereas loss of stability occurs through a Neimark-Sacker

bifurcation [70, Ch. 5] at Ω = 1.15. The latter is also the typical instability mech-

anism inside the pass band. We have found damping to play a major role in de-

termining the behavior of the Floquet multipliers and consequently the mechanism

leading to loss of stability within and in the vicinity of a pass band. A detailed anal-

ysis of the influence of damping on the bifurcation structure of the NLRM within

a pass band is very interesting from a nonlinear-dynamics perspective but lies out-

side the framework of this thesis. This is also not a pressing study from a practical

point of view because supratransmission is most significant when the driving fre-

quency is away from the pass band. The additional role played by disorder in this

context will be discussed in Section 4.2.

3.7 Strong Propagation Regime
The nonlinear transmission phenomenon discussed in the preceding sections of this

work occurs above a certain driving amplitude threshold. If the driving amplitude

is increased further, a second threshold may exist in the case of undamped struc-

tures (possibly for driving frequencies on both sides of the pass band) above which

there is another large increase in the transmitted energy through the chain [82]. In

this context, the operating range between the first and second thresholds is referred

to as the weak propagation regime, and the range above the second threshold is

known as the strong propagation regime. The strong energy propagation is due to

large-amplitude chaotic motions of the structure, and the transmitted wave is char-

acterized by a broad frequency spectrum extending beyond the linear pass band.

Also, the increase in the transmitted energy at the second threshold is much larger

than the increase at the first threshold.

To the best of our knowledge, the strong propagation regime has only been re-

ported in a semi-infinite Hamiltonian system with an on-site Morse potential [82].

Further investigation of the strong propagation regime and the possible influence

of damping on the existence of the second threshold is beyond the scope of the

present work.
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3.8 Concluding Remarks
We studied the influence of various system parameters on the supratransmission

phenomenon for a perfectly periodic structure. Our main findings are summarized

here:

1. The type of nonlinearity determines on which side of the pass band supra-

transmission can occur. This is above the pass band for a hardening system

and below it for a softening system. Increasing the strength of the nonlinear

force lowers the force threshold for the onset of supratransmission.

2. Increasing the number of units can shift the threshold curves towards higher

forcing thresholds at driving frequencies very close to the edge of a pass

band.

3. In general, damping increases the force required for the onset of supratrans-

mission at all forcing frequencies (away from the pass band). More signif-

icantly, damping may eliminate supratransmission within a frequency range

in the immediate vicinity of the linear pass band, introducing a non-zero

threshold on the minimum force amplitude required for transmission to oc-

cur. Increasing damping widens this frequency range and increases the mini-

mum force. Furthermore, damping may delay the onset of supratransmission

by stabilizing the periodic solutions. Supratransmission may occur in this

case at higher forcing amplitudes.

4. Increasing the strength of coupling increases the minimum force required for

the onset of supratransmission for all driving frequencies, but does not alter

the location of the onset of transmission with respect to the nearest edge of

the pass band.

Using the analytical estimates of the supratransmission threshold from Sec-

tion 2.5.1, we explained the effects of nonlinearity and damping from a phenomeno-

logical viewpoint. Moreover, we updated the existing analysis in order to include

the influence of the strength of coupling on the onset of supratransmission. The

improved analysis is based on the local nonlinear dynamics of the driven unit, with

the second unit included in the analysis but assumed to be linear (the rest of the
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structure is truncated after the second unit). The updated approximate formulation

can account for the strength of coupling, though it is still limited to weak coupling

strengths.

We also briefly discussed the hysteresis phenomenon associated with supra-

transmission, and explained one methodology for observing it numerically. Fur-

thermore, we briefly considered the instability-driven increase in energy transmis-

sion when the driving frequency is within the pass band (not supratransmission).

We showed that the increase in transmitted energies in this situation is not signifi-

cant when compared to the energy increase via supratransmission.
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Chapter 4

Disorder Effects

We explore the influence of linear disorder on supratransmission in this chapter. We

start by an overview of the key features of the linear response of disordered struc-

tures (Anderson localization), and highlight the combined influence of damping

and disorder on supratransmission near a pass band. We then discuss the statistical

effects of disorder on the transmission mechanism. In particular, we investigate

the statistical influence of linear disorder on (i) the supratransmission thresholds

within a stop band, (ii) transmitted energies above the supratransmission threshold,

and (iii) the spectrum of the nonlinearly transmitted waves. We then present an

approximate analytical formulation for predicting the onset of supratransmission

in disordered structures and investigate its range of validity.

4.1 Disorder-Borne Energy Localization in Linear
Structures

Wave propagation within a linear periodic structure may be significantly influenced

by the presence of small disorder. In a disordered structure, waves scatter dif-

ferently at the boundaries between adjacent units because the units are no longer

identical. This can result in spatial decay of the response amplitude at frequencies

within (and particularly near the edges of) the pass band of the underlying ordered

structure. If we average the response over many different realizations of a pre-

scribed disorder, then the response becomes localized to the source of excitation

61



and decays exponentially away from it. This statistical phenomenon is known as

Anderson localization, after the seminal work of Philip W. Anderson in solid-state

physics [3] – see also [47, 71, 86].

Disorder in engineering structures usually means small variations in spatially

distributed (extended) structural parameters such as stiffness, mass, damping, or

support conditions. These small irregularities can lead to significant qualitative

changes in the global dynamic response. This spatial confinement of energy, or

localization, is called strong localization [108], and occurs when the strength of

coupling between adjacent units is weak in comparison to the strength of disorder.

In weak localization, the coupling force is strong and damping effects dominate

over disorder [12, 108]. Even in undamped structures, weak localization effects

are only significant over very long distances (at least a few hundred units [108]).

Given that engineering structures always have damping and do not typically consist

of such large number of units, only strong localization is relevant in the majority of

engineering applications. Accordingly, we study a damped finite periodic structure

with weak coupling – we define the strength of coupling in (4.2). We consider a

lightly damped structure and use a linear viscous damping model with a mass-

proportional damping matrix. Refer to [106, 107] for a comprehensive review

of general non-proportional and non-viscous damping models. An overview of

simultaneous effects of damping and disorder in linear periodic structures can be

found in [12]. See [13] for an extension of this work to structures with finite length.

It is important to note that disorder-borne confinement of energy only occurs in

an ensemble-average sense and that individual realizations of disorder may behave

differently. In particular, it is possible that the normal modes of a disordered struc-

ture are localized away from the driving point for a particular realization. These

anomalous realizations can have a significant influence on the average response of

the ensemble, to the extent that using a linear average may not necessarily give

the typical value (statistical mode) of the ensemble [12, 48]. This is important in

the case of weak localization [13], where localization length scales are large. For

a damped structure, the contributions from anomalous realizations are much less

significant because of the uniform decay caused by damping [12, 48].

Anderson localization can occur as a result of disorder that is present in either

the grounding springs (on-site potential), coupling springs (inter-site potential) or
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masses within the periodic structure [65]. It is argued [108] that random masses

and grounding springs influence the degree of localization in a similar manner,

while random coupling springs have a weaker influence in comparison. Here, we

only consider disorder that is applied to the linear grounding springs of the system.

This type of disorder is sufficient to capture strong localization in our system. In

presence of such disorder, the linear governing equations of (2.9) are replaced with

ün+2ζ u̇n+ω
2
1 (1+δkn)un+kc ∆

2(un) = fn cos(Ωt) , fn = 0 for 2≤ n≤N (4.1)

where δkn are random numbers with a uniform probability density function. We

assume that δkn are distributed independently around a zero mean, < δkn >= 0,

such that |δkn| ≤D. We refer to D as the strength of disorder. We further introduce

a parameter C that denotes the strength of coupling between units

C ≡ kc/ω
2
1 (4.2)

Our earlier assumption of weak coupling can be expressed as C < 1. The value

of C represents the ratio of coupling to grounding spring stiffness, and does not

depend on the mass (coefficient of ün). With the exception of Section 4.4.3, we use

C = 0.05 in this chapter, which is the same strength of coupling used in Chapters 2

and 3. We use a periodic structure with N = 10 units in this chapter.

4.1.1 Localization Occurring within a Pass Band

A crucial parameter that determines the degree of localization is D/C, the ratio of

the strengths of disorder to coupling [47]. As this ratio increases, the degree of

localization within the pass band increases as well. This is shown in Figure 4.1

where we plot the normalized amplitude profile (Un/U1) for different strengths

of disorder. The results for the disordered structures are obtained after averaging

over an ensemble of 105 realizations to ensure convergence of the average values

at all forcing frequencies considered. We see in Figure 4.1 that the response of

the ordered structure (D/C = 0) is extended through the system, and the small

overall attenuation in response amplitudes is due to damping. The oscillations in

the response of the ordered structure near the end of the structure are caused by the
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Figure 4.1: The influence of disorder on response localization at Ω = 1.12,
near the middle of the pass band. The average response becomes lo-
calized to the driven unit (n = 1) as the value of D/C increases. The
strength of coupling is kept constant, C = 0.05. An ensemble of 105

realizations are used for each non-zero value of D (namely D = 0.05
and D = 0.10). Other system parameters are N = 10, ζ = 0.005 and
ω2

1 = 1.05.

waves reflected at the free boundary at the end of the structure (n = 10). Adding

disorder results in smaller response amplitude in comparison with the ordered case.

As the strength of disorder increases, the response becomes localized to n = 1,

where the external force is applied. In addition, disorder effects eventually subdue

wave reflections at the boundaries, which is why the boundary effects at n = 10

become insignificant for high values of D/C.

4.1.2 Quantifying the Degree of Localization

When there is exponential spatial decay of the response due to disorder, we expect

|Un| ∝ exp(−γnn) (4.3)

in an average sense. γn is the localization factor or decay exponent and describes

the average rate of exponential amplitude decay per unit. As the length of the

periodic structure extends to infinity (equivalently, when averaged over many re-

alizations), expression (4.3) yields the correct decay rate [49]. Calculation of the

decay exponent merely based on (4.3) involves solving for all response amplitudes
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Figure 4.2: Comparison of the three decay exponents in describing amplitude
profiles; (a) an extended response, (b) a localized response. The red
circles denote the actual response at each unit, red dash-dotted lines are
obtained based on γn (curve fit), black dashed lines are based on γN and
blue solid lines are based on γ .

and fitting an exponential curve to the data.

There exist different approaches for studying the decay exponent analytically,

such as using transfer-matrix [108] or receptance-matrix [91] formulations. In the

former case, one could make use of the properties for products of random matri-

ces [36] and obtain asymptotic estimates for decay exponents [12]. Alternatively,

one could replace (4.3) with

|UN | ≡ F exp(−γNN) (4.4)

and use the properties of tridiaognal matrices to obtain expressions for γN [46, 49].

It is important to note that (4.4) is true for any finite linear system and does not

mean that the response is exponentially decaying. Nevertheless, if the response is

exponentially decaying (as anticipated in Anderson localization), then the value of

γN obtained from averaging (4.4) represents the average decay rate in the limit of a

very long structure (as N→ ∞).

Based on the value of γN alone one cannot draw any conclusions about the

response of the periodic structure. In addition, because we are dealing with rela-
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tively short periodic structures in this work (N = 10), the boundary effects will have

an influence on γN . These make the interpretation of the decay factor, as defined

in (4.4), somewhat ambiguous. An alternative is to redefine the decay exponent by

replacing |UN | in (4.4) with |UN/U1|; i.e. normalizing the response at the end of

the chain with that of the driven unit. Then (4.4) is replaced by∣∣∣∣UN

U1

∣∣∣∣≡ e−γ(N−1) (4.5)

Notice that the multiplier for the decay exponent is now (N− 1) because a wave

goes through N−1 units from n = 1 to n = N. Based on definition (4.5), we obtain

γ > 0 whenever the response has decayed through the structure; i.e. |UN |< |U1|. A

negative value of the decay exponents is obtained whenever |UN | > |U1|; we have

observed this only at resonance frequencies for structures with few number of units

and very light damping. We emphasize that definition (4.5) does not imply that the

spatial decay envelop is exponential.

We use two different amplitude profiles to compare the performance of the

three decay exponents γn, γN and γ in describing amplitude profiles of finite struc-

tures. These two amplitude profiles are the (ensemble-) average response of the

linear structure considered in Section 4.1.1 at Ω = 1.12 for D/C = 0 (extended re-

sponse) and D/C = 2 (localized response). We reproduce these amplitude profiles

in Figure 4.2, along with the estimates obtained based on γn, γN and γ . We see that

the proposed definition of the decay exponent (γ) describes the actual amplitude

profile better than the classical definition (γN). The advantage of using γ over a

decay exponent based on curve fitting (i.e. γn) is that the former can be used for

obtaining analytical estimates of the response. Since we do not make use of these

analytical expressions in this work, we do not further elaborate on them.

Figure 4.3 shows the influence of the number of units on the decay exponent γ

in an ordered structure. We see that as N increases, the results for a finite system

approach those for the infinite system based on γ0 defined in (2.11). It is possible

to show analytically for an ordered structure that in fact γ → γ0 as N→ ∞. Based

on the foregoing discussions in this section, we use the decay exponent defined

in (4.5) in this work.

Another important characteristic of disorder-borne localization is that the mode
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Figure 4.3: The dependence of the decay exponent on the number of units,
N, for a linear ordered structure. As the size of the structure increases,
the decay exponent of the finite structure approaches that of the infinite
structure; i.e. γ → γ0 as N→ ∞. The grey area corresponds to the stop
band.

shapes of a disordered structure become spatially localized [47, 68]. This can be

quantified using the inverse participation ratio (IPR), defined by

IPR =
∑

N
n=1(U

2
n )

2(
∑

N
n=1U2

n
)2 (4.6)

where Un are the steady-state amplitudes of the n-th mode shape of the system;

e.g. see [68] for more details. The IPR is a scalar with a value between 1/N and

1. If all the units are moving with the same amplitude (uniform response), then

IPR = 1/N. If only one unit is moving (absolute localization), then IPR = 1.

For the same ensemble used for Figure 4.1, we have computed the average IPR

for the first and last mode shapes. We show this in Figure 4.4, along with a typical

mode shape of the ensemble at three values of D/C. We can see that the mode

shapes become spatially localized as disorder becomes stronger. One can also use

a modal expansion to express the response of the forced structure in terms of its

mode shapes; in this light, the response localization we observed in Figure 4.1 can

be explained based on spatial localization of the mode shapes [49].
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Figure 4.4: The influence of disorder on spatial localization of the mode
shapes of the structure. IPR, defined in (4.6), is plotted as a function of
D/C for the first and last mode shapes. The insets show the mode shape
of a typical realization of disorder within the ensemble at D/C = 0,1,2.
The result for n = 1 are shown in black and those for n = N are shown
in grey.

4.1.3 Influence of Disorder on the Band Structure

The frequency of excitation plays a major role in determining the influence of

disorder on the dynamic response of periodic structures. On average, less energy

is transmitted to the end of a disordered structure at frequencies lying within the

pass band – recall Figure 4.1. Figure 4.5(a) shows the average decay exponent γ

as a function of driving frequency Ω for different values of disorder. We can see

that disorder results in increased values of decay exponent within the pass band

of the ordered structure. Within the stop band, however, the decay exponent has

a larger value for the ordered structure. Similar observations have been made in

infinite undamped structures [35]. In addition, Figure 4.5(a) shows that disorder
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Figure 4.5: The influence of disorder on the linear response of the structure.
(a) The average decay exponent γ , defined in (4.5), is plotted for differ-
ent values of disorder. The grey area corresponds to the stop band. (b)
The average natural frequencies of the first (ω1) and last (ωN) modes
are plotted as a function of D/C. The black circles correspond to ω1
and grey squares to ωN . The empty markers correspond to the mini-
mum and maximum values of each natural frequency within the ensem-
ble. The horizontal lines indicate the natural frequencies of the ordered
structure.

has the overall effect of slightly widening the pass band of a periodic structure.

As a result, the transmitted energy is much smaller in a disordered structure but

covers a wider frequency range in comparison to an ordered structure. The same

conclusion can be made based on Figure 4.5(b), where we show the first and last

natural frequencies of the structure as a function of the strength of disorder. We

can see that as D/C increases, ω1 decreases and ωN increases on average.

4.2 Combined Effects of Damping and Disorder Near a
Pass Band

We explained in Section 3.3 that, in general, the force threshold at the onset of

supratransmission (Fth) increases if the value of damping is increased. Close to

the edge of a pass band, however, damping can play a more significant role. To

illustrate this, we compare the transmitted energies in a damped (ζ = 0.005) and an

undamped (ζ = 0) ordered structure with N = 10. Figure 4.6 shows the threshold

curve for the damped structure studied in this chapter in the absence of disorder.
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Given the low value of damping, we expect Fth to be very similar for the damped

and undamped structures considered here. Thus, Figure 4.6 gives a good estimate

for values of Fth in the undamped structure.
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Figure 4.6: The threshold curve for the ordered structure (D = 0), showing
the dependence of the driving amplitude at the onset of transmission,
Fth, as a function of the driving frequency, Ω. Other system parameters
include N = 10, ζ = 0.005, C = 0.05 and k3 = 0.2. The upper edge
of the pass band is at ωN ≈ 1.149. As explained in Section 3.3, the
threshold curve terminates near the pass band in a cusp.

Figure 4.7 shows EN as a function of F at different values of Ω close to the

pass band – recall that the upper edge of the pass band is located at ωN ≈ 1.149. In

Figure 4.7, we see that at Ω= 1.16 the onset of supratransmission occurs near Fth≈
0.05 for both the damped and undamped structures. The transmitted energies above

the threshold are lower for the damped structure, which can be easily attributed to

energy loss through damping. At Ω = 1.18, we see that supratransmission occurs

at the expected value of Fth ≈ 0.08 for the undamped structure. In contrast, the

damped structure has a relatively insignificant increase in EN between F = 0.075

and F = 0.100 (indicated as weak jump in Figure 4.7). The response of the damped

structure is periodic below and above F = 0.08, though with different amplitudes.

Above F = 0.350, supratransmission occurs in the damped structure as well. A

similar difference between the damped and undamped structures is observed at Ω=

1.22. At Ω = 1.26 (and driving frequencies above it), supratransmission occurs

around the same forcing thresholds for the damped and undamped structures, as

initially expected.

To understand the unexpected behavior of the damped structure when 1.18 .
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Figure 4.7: The influence of damping on supratransmission in the vicinity of
a pass band for an ordered structure. Transmitted energy (EN) is plot-
ted as a function of driving amplitude (F) for different driving frequen-
cies (Ω). The upper edge of the pass band is at ωN ≈ 1.149. Filled
markers indicate periodic response and empty markers indicate non-
periodic response. Because damping is small, the threshold force (Fth)
of the undamped structure is expected to be very close to that of the
damped structure. At Ω = 1.16 and Ω = 1.26, supratransmission occurs
at the expected force threshold based on Figure 4.6. At Ω = 1.18 and
Ω = 1.22, the response of the damped structure jumps to another stable
periodic branch at the expected value of F (indicated as ‘weak jump’).
In contrast, supratransmission occurs for the undamped structure at the
expected value of F .

Ω . 1.26, we consider the evolution of the periodic solutions of the damped and

undamped structures at different values of Ω as a function of F . This information

can be obtained from the nonlinear response manifold (NLRM), as discussed in

Section 2.4. Figure 4.8 shows the projection of the NLRMs on the UN −F plane

for the same four values of Ω that are used in Figure 4.7.

At Ω = 1.16, shown in Figure 4.8(a), we see that the two NLRMs start from

the origin and follow the linear solution (i.e. UN ∝ F) for small values of F . At

the first turning point (TP1), the periodic solutions lose their stability through a

saddle-node bifurcation. Because neighboring periodic solutions either do not ex-
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Figure 4.8: The influence of damping on the NLRM of the structure at dif-
ferent forcing frequencies: (a) Ω = 1.16, (b) Ω = 1.18, (c) Ω = 1.22,
(d) Ω = 1.26. In each plot, the projection of the NLRM is plotted in the
UN −F plane for ζ = 0.005 (black curve) and ζ = 0 (grey curve). For
each NLRM, the thick solid sections represent stable solutions and thin
dash-dotted portions represent unstable solutions.

ist or are unstable at this point, the solution jumps to a non-periodic branch. This

is accompanied by the large increase in transmitted energies shown in Figure 4.7.

After TP1, the undamped response normally crosses the zero-force axis (F = 0)

multiple times. These zero-crossings correspond to non-zero time-periodic solu-

tions in the undamped system that are spatially localized to the driven unit – these

solutions are called discrete breathers (DB). See [82] for more details about the

zero-crossings and the associated DBs. For a damped structure, it is important to

note that the NLRM does not cross the zero-force axis because the structure can no

longer sustain steady-state motion with non-zero amplitude.

At Ω = 1.18, shown in Figure 4.8(b), we see that another stable periodic so-
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lution exists at TP1 for the damped structure. As a result, the solution jumps to

that solution branch when F is increased beyond its value at TP1. The response at

this upper periodic branch is dominantly harmonic (with frequency Ω) and has a

higher value of EN than the linear solution – see Figure 4.7. Nevertheless, supra-

transmission does not occur until the third turning point (TP3) of the NLRM around

F ≈ 0.375. For the undamped structure, other solutions at TP1 are unstable and

the solution jumps to a non-periodic branch.

At Ω = 1.22, shown in Figure 4.8(c), the situation is similar to what happens at

Ω = 1.18. The main difference is the range over which the upper periodic branch

is stable: compared to Ω = 1.18, TP3 occurs at a lower value of F . Although the

undamped NLRM has stable portions, we have not observed any situation in which

the stable branch extends to TP1 – the same observation is made in [82]. Thus,

supratransmission occurs at TP1 for the undamped structure. By Ω = 1.26, shown

in Figure 4.8(d), the damped NLRM has changed such that TP3 occurs again at a

lower value of F than TP1. Accordingly, supratransmission occurs at TP1 for both

the damped and undamped structures.

Figure 4.8 clearly shows that the stability of the upper branch of NLRM at

the TP1 depends on the existence of damping. We have found that disorder can

also play a role here. We show this in Figure 4.9 for two different realizations

of disorder at Ω = 1.22. We see in Figure 4.9(a) that increasing the strength of

disorder has a stabilizing effect on the upper branch of periodic solutions. We

observe the opposite effect for the other realization in Figure 4.9(b).

Investigating the necessary/sufficient conditions for the stability of the upper

solution branch at the first turning point of the NLRM sets forth a very interesting

problem. Knowing the location of TP3 or subsequent turning points would not

suffice for this purpose because the upper branch can change stability between

turning points (via Neimark-Sacker bifurcation), as seen in Figures 4.8(b-d). A

systematic investigation of the influence of damping and disorder on the stability

of the upper branch at TP1 can be done using numerical continuation. This study,

however, falls outside the scope of our present work – it is also of less relevance in

applications based on supratransmission because supratransmission is significant at

frequencies away from a pass band. Consequently, we will only consider driving

frequencies for which supratransmission occurs via jump to an anharmonic branch

73



0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Forcing amplitude, F

R
es

p
o

n
se

 a
m

p
li

tu
d

e,
 U

1

 

 

D / C = 0

D / C = 1

D / C = 2

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Forcing amplitude, F

R
es

p
o

n
se

 a
m

p
li

tu
d

e,
 U

1

 

 
(a) (b)

D / C = 0

D / C = 1

D / C = 2

Figure 4.9: The influence of disorder on the NLRM of the damped structure
at Ω = 1.22. Two different realizations of disorder are considered in
panels (a) and (b), with increasing the strengths of disorder (D/C). The
results for D/C = 0 are reproduced from Figure 4.8(c). Notice that
increasing D/C has opposing effects on the stability of the upper branch
of periodic solutions in (a) and (b).

at the first turning point of the nonlinear response manifold [57, 82]. In this light,

we will consider Ω≥ 1.25 in Section 4.3.

4.3 Supratransmission in Disordered Nonlinear Periodic
Structures

We investigate the influence of disorder on supratransmission in this section. With

the exception of Section 4.3.1, the results presented here are pertinent in an ensemble-

average sense, meaning that they describe the behavior of a typical disordered

structure; i.e. the statistical mode of the ensemble.

Similar to Section 4.1.1, we consider disorder as random linear spring con-

stants taken from a uniform distribution, with −D ≤ δkn ≤ D. We consider a dis-

order range of 0≤ D/C ≤ 2. This range of deviation from periodicity captures the

expected physical effects of disorder, as explained in Section 4.1. This provides

sufficient justification for stopping at D/C = 2. Keeping C = 0.05 constant, we
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vary the strength of disorder by changing D. Thus, we are studying a disordered

periodic structure with weak coupling and weak disorder (0≤ D≤ 10%). Strictly

speaking, a disorder value of 50% (for example) would not violate any physical

law, but at that point we would be getting closer to a random structure as opposed

to a disordered periodic structure.

Throughout this section, the nonlinear force in (2.5) is adjusted such that the

coefficient of its cubic term is k3 = +0.2 (hardening nonlinearity). Accordingly,

we only consider forcing frequencies above the pass band because supratransmis-

sion occurs above the pass band in a structure with hardening nonlinearity (recall

Section 3.1). The upper edge of the pass band is located at ωN ≈ 1.149 in this

case. As explained in Section 4.2, we only consider Ω ≥ 1.25 to focus on supra-

transmission occurring at the first turning point of the nonlinear response manifold.

Qualitatively similar results are expected if a softening nonlinearity is chosen and

forcing frequencies are below the pass band. We will consider both hardening and

softening types of nonlinearity in Section 4.4.2.

4.3.1 Loss of Stability Leads to Enhanced Transmission

For a given forcing frequency, the onset of transmission in a disordered structure

may occur at a different value of the driving amplitude when compared with the

corresponding ordered structure. The change in threshold force amplitude, and

whether it occurs or not, depends on the particular realization that is being consid-

ered. We have shown this in Figure 4.10 for two different realizations of disorder

with D/C = 2.

Figure 4.10(a) shows the evolution of the periodic solutions as a function of

the driving amplitude, F . For low driving amplitudes (near the origin), the re-

sponse amplitude increases linearly with F , as expected from linear theory. As F

increases, there is a turning point in the response (saddle-node bifurcation). The

solution then jumps to a non-periodic branch. Depending on the realization being

considered, the onset of transmission may be lower or higher than the onset for the

ordered structure. Results from direct numerical integration of (2.3) are shown in

Figure 4.10(b). We can see that there is a significant decrease in the decay exponent

that occurs at a value of F consistent with the turning points in Figure 4.10(a).

75



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

1

2

3

4

5

6
x 10

−9

R
es

p
o

n
se

 a
m

p
li

tu
d

e,
 U

N

 

 

(a)

D/C = 0

D/C = 2

D/C = 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.75

1.5

2.25

Forcing amplitude, F

D
ec

ay
 e

x
p

o
n

en
t,

 γ

(b)

Figure 4.10: The influence of disorder on the onset of supratransmission at
Ω = 1.30. (a) the locus of periodic solutions in the UN − F plane,
the first turning point corresponding to loss of stability; (b) decay ex-
ponent as a function of F obtained from direct numerical integration
(DNI) of the governing equations. Solid red curve corresponds to the
periodic structure (D = 0), black dashed curve and blue dash-dotted
curve correspond to two different realizations of the disordered struc-
ture, both with D/C = 2. For both realizations, ∑δkn ≈ 0. Apart from
the presence of disorder, all other system parameters are the same as in
Section 4.2. The two plots (a) and (b) have the same horizontal axis.

4.3.2 Onset of Transmission Remains Unchanged on Average

Knowing that the onset of transmission occurs at different forcing amplitudes de-

pending on the specific realization of a given disorder, we want to know the average

value of the onset of transmission in an ensemble-average sense. To find the an-

swer, we have computed the exact numerical value of the threshold force Fth(Ω)

using numerical continuation. Figure 4.11(a) shows the values of Fth at Ω = 1.30

for an ensemble of 1500 realizations with D/C = 2. Comparing the cumulative

average with the total average indicates that the results have converged. The rel-
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Figure 4.11: The influence of disorder on the supratransmission force thresh-
old Fth at Ω= 1.30 for an ensemble of 1500 realizations with D/C = 2.
The value of Fth for each realization is obtained by numerical contin-
uation. (a) Individual values of Fth for each realization are shown by
dots, the cumulative average is shown by the black solid curve and the
total average is shown by the red dashed line. (b) The relative fre-
quency of occurrence of Fth is shown by solid back lines. The value of
Fth for the ordered system is shown using the vertical dash-dotted line.
The horizontal dashed line indicates relative frequency of 10%. The
results suggest that on average the onset of transmission is the same
for ordered and disordered system.

ative frequency of occurrence of Fth within the same ensemble is shown in Fig-

ure 4.11(b). The average value of Fth for the disordered system was found to be the

same as that of the ordered system. Moreover, we can see in Figure 4.11(b) that

individual values of Fth for the disordered system are spread uniformly around the

onset of transmission for the ordered system. We have made similar observations

at other values of Ω as well (not shown here).

Figure 4.12 shows the average values of Fth and their standard deviations for

D/C = 2 at different values of Ω away from the linear pass band. The average

values show that, in an ensemble-average sense, the onset of supratransmission is
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Figure 4.12: The influence of disorder on the average threshold force for the
structure with hardening nonlinearity. The red solid curve shows the
threshold curve for an ordered structure (cf. Figure 4.6). At each forc-
ing frequency, the filled circles show the average value of Fth and the
empty circles show the corresponding value of standard deviation. We
see that the average threshold curve for a disordered system is the same
as the threshold curve for an ordered system. The standard deviation
of Fth decreases as we move away from the pass band.

the same in ordered and disordered systems. For a fixed strength of disorder, we

observe that the standard deviation of Fth decreases as Ω moves away from the

pass band. This implies that as Ω moves farther into the stop band, dispersion

(due to Bragg scattering) is more dominant than disorder effects. This is in fact

similar to how disorder affects the linear response of the system. As we showed

in Section 4.1.3, the most significant influence of disorder occurs at frequencies

within and near the pass band of the system. We found similar results for D/C = 1.

4.3.3 Energy Profiles of Transmitted Waves

We explore how disorder changes the average response above the transmission

threshold for two strengths of disorder, D/C = 1 and D/C = 2. For each disorder

strength, we consider an ensemble of 1500 disordered structures; this ensemble is

large enough that energies converge to their average values. For every realization

within an ensemble, we compute the energy for each unit (En) at a forcing ampli-

tude 5% above the onset of transmission – En is defined in (2.18). Average energies

at each strength of disorder are then obtained by averaging energies over the entire

ensemble. The results presented here are for Ω = 1.30.
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Figure 4.13: Average energy profiles at Ω = 1.30 for (a) the nonlinear struc-
ture above the onset of supratransmission, (b) the linear structure. No-
tice the difference between the vertical axes in (a) and (b). Above the
threshold, disorder results in localization of energy to the driven unit.

Figure 4.13(a) shows the average energy profiles for the nonlinear system above

the onset of transmission. We see that energies decay exponentially through the

structure, particularly between n = 2 and n = N− 1 (away from the boundaries).

Moreover, energy becomes more localized to the driven unit as the strength of dis-

order is increased. These energy profiles are drastically different from the energy

profiles below the threshold, where the response is very similar to the linear re-

sponse shown in Figure 4.13(b) – given that the response below the threshold is

very similar to the linear response, we have used the linear energy profiles in Fig-

ure 4.13(b). We notice in Figure 4.13 that disorder effects are more significant

above the transmission threshold (Figure 4.13(a)) than below it (Figure 4.13(b)).

We explain this in more detail in the following section.

4.3.4 Average Frequency Spectra Above the Threshold

For the system parameters used in this work, we have found that the post-threshold

branch within the stop band is chaotic, with a frequency spectrum similar to Fig-

ure 2.5(c). To understand the average influence of disorder on the transmitted
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Figure 4.14: Average frequency spectra of the driven unit for the ordered and
disordered structures. The common peak at 1.30 corresponds to the
forcing frequency (Ω = 1.30). The grey area denotes the linear stop
band.

Figure 4.15: Average transmitted spectra (at n = N) for the ordered and dis-
ordered structures; (a) average spectra based on complex-valued am-
plitudes, (b) average squared spectra in the vicinity of linear pass band.
The average transmitted spectra lie within the linear pass band. Less
energy is transmitted above the supratransmission threshold as we in-
crease the strength of disorder. The grey area denotes the linear stop
band.

waves above the threshold, we compare average frequency spectra of the first and

last units in the structure. These results are obtained for the same ensembles as in

Section 4.3.3. For disordered systems, the frequency spectrum of each individual

realization is obtained as explained in Section 2.3. Before averaging the frequency

spectra within each ensemble, the individual complex-valued spectra for each re-
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alization is normalized with its forcing amplitude. This is because the threshold

force is different for each individual realization (recall Figure 4.10).

Figure 4.14 shows the average frequency spectra of the driven unit (n = 1)

for the ordered and disordered structures. The three spectra have a common pro-

nounced peak at 1.30, which corresponds to the forcing frequency (Ω= 1.30). This

is the only dominant frequency component for the two disordered structures. At

other frequencies, it is not easy to distinguish between the two disordered spectra,

though they both have much lower amplitudes than those of the ordered structure.

Based on the dominant peak in the average spectra of the disordered structures, it is

tempting to infer that the response of the driven unit is harmonic on average. This

is not correct, however; the frequency component for a given realization is similar

to that of the ordered structure in terms of overall magnitude. When averaging over

an entire ensemble, the phases are incoherent for any given frequency component

(other than 1.30). As a result, the average spectrum of an ensemble will have a

much lower amplitude than its individual realizations.

Figure 4.15(a) shows the average frequency spectra at the end of the structure

(n = N) for the ordered and disordered structures. The most notable feature of

the transmitted spectra is that frequency components within the linear stop band

(the area with grey background) have significantly decreased compared to n = 1;

cf. Figure 4.14. The three spectra are therefore similar in the sense that they

contain frequencies predominantly within the linear pass band. As the strength of

disorder is increased, the amplitudes at different frequency components decrease,

most significantly within the stop band. Overall, there is less energy transmitted to

the end of the structure as disorder strength increases. This is consistent with the

decrease in EN from Figure 4.13.

Once we realize that frequency components of the transmitted waves lie within

and near the pass band, we can explain, albeit qualitatively, certain aspects of dis-

order effects from a linear perspective as well. Firstly, we expect from linear theory

that within the stop band disorder localizes energy near the source of excitation and

that less energy is transmitted through the structure as the strength of disorder in-

creases. This is consistent with the average energy profiles in Figure 4.13(a). It

also explains why within the stop band disorder has a more significant influence on

the response of the structure above the transmission threshold than below it. Below
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the threshold, the structure behaves linearly and is therefore barely influenced by

disorder. Above the threshold, on the other hand, the transmitted waves lie within

the pass band, where disorder affects the results most significantly.

Secondly, we showed for a linear system that the transmitted energy covers a

relatively wider frequency range as disorder increases (see Figure 4.5). The data

in Figure 4.15(a) is not conclusive in this regard though. To investigate this point

further, we have computed the average squared spectra for each ensemble: for

each realization within an ensemble, the absolute value of the frequency spectrum

is squared, then the arithmetic mean over all realizations is used as the average

squared spectrum of the ensemble – notice that energy is related to squared ampli-

tudes. We have shown the squared spectra in Figure 4.15(b) for frequency compo-

nents close to the pass band. We see that as disorder increases, there is less energy

in the transmitted waves. Also, energy transmission occurs over a slightly wider

frequency range for stronger disorder strengths. This widening of the transmis-

sion band is similar to linear systems, but less pronounced. Notice, however, that

this widening occurs at very low amplitudes and can therefore pose challenges to

experiments.

4.3.5 Prediction of Transmitted Energies Based on Linear Theory

As we discussed in Sections 4.3.3 and 4.3.4, the average behavior of the trans-

mitted waves above the threshold is reminiscent of the average linear behavior of

disordered structures. In this light, we ask whether the average transmitted ener-

gies above the threshold can be predicted based on linear theory. We introduce the

transmitted energy ratio as

e = e(D/C)≡ < EN (D/C)>

< E1 (D/C)>
(4.7)

At a given strength of disorder, e describes the ratio of average transmitted

energy to energy in the driven unit. We show the normalized transmitted energy

ratios e/e(0) for both the linear and nonlinear structures in Figure 4.16. For each

system, the transmitted energy ratio is normalized to its value for an ordered struc-

ture, e(0). For the linear system, we considered the frequency range between 0 and

2 for energy calculation; widening this frequency range did not change the results.
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Figure 4.16: Normalized transmitted energy ratios, e/e(0), for different val-
ues of disorder. The numerical value of each bar is shown above it.
These results indicate that linear theory cannot be used for making
quantitative predictions of disorder effects above the threshold.

Although linear theory can be used to make qualitative predictions of the average

behavior of the response above the supratransmission threshold, the results in Fig-

ure 4.16 suggest that they are not appropriate for making quantitative predictions.

4.4 Prediction of the Onset of Supratransmission in
Disordered Structures

4.4.1 Analytical Estimate of the Force Threshold

We make two assumptions to develop a theoretical framework for predicting the

onset of transmission. Results from direct numerical simulations suggest that, to

some extent, the periodic structure (i) behaves linearly below the threshold; i.e.

for F < Fth, (ii) behaves nonlinearly predominantly at the first unit. These effects

are observed because of the weak coupling between units. Based on these sim-

plifications, we linearize the system for n ≥ 2; i.e. treat the nonlinearity locally.

Moreover, we only keep the cubic term of FM at n = 1; this is done to keep the

analysis tractable by pencil and paper. We call this model the semi-linear system.

A similar approach, in terms of treating the nonlinearity locally, is used in [9] in

the time domain for modeling the response of drill strings. The analysis presented

here is performed in the frequency domain and consequently applies only to the
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steady-state response of the system.

In the linear part of the semi-linear model (2 ≤ n ≤ N), we use a transfer-

matrix formulation to find the response of the system. We then use a harmonic

approximation of the nonlinear response and find an expression for the onset of

instability. We only present the final results from this analysis here. Refer to

Appendices B.1 and B.2 for derivations.

Figure 4.17: The schematics of two adjacent units in a mono-coupled system.

Figure 4.17 shows a schematic representation of two adjacent units in the as-

sembled periodic structure. On either side of each unit (left and right), there is a

displacement and force. We want to relate the force and displacement on the left

side of the second unit (n = 2) to the force and displacement on the right side of

the last unit (n = N). Between adjacent units, we can write{
uR

fR

}(n+1)

= [T (n+1) ]

{
uR

fR

}(n)

(4.8)

where [T (n+1) ] depends on the properties of the (n+ 1)-th unit. The (complex-

valued) amplitudes of the displacement and force on the left side of each unit are

denoted by uL and fL, where a time dependence of exp(iΩt) is assumed. For each

linear unit, we have

[T (n) ] =

[
1+σn/kc 1/kc

σn 1

]
(4.9)

where

σn ≡ ω
2
n +2iζ Ω−Ω

2 (4.10)

Moving along the finite chain from the last unit all the way back to the first unit we
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can write {
uR

fR

}(N)

= Ttotal

{
uR

fR

}(1)

=

[
T11 T12

T21 T22

]{
uR

fR

}(1)

(4.11)

where Ttotal = [T ]N−1 for the ordered system and Ttotal = [T (N) ]× ...× [T (2) ] in

the disordered case. Moving from the right to left side of the nonlinear unit, as

explained in Appendix B.2, the forcing amplitude at the onset of transmission, Fth,

can be written as

F2
th = 18α

2
(

p±
√

q3
)

(4.12)

where p and q depend on the components of Ttotal and [T (1) ]. Supratransmission

occurs when the right-hand side of (4.12) is real and positive. In particular, we need

q > 0; this gives the critical frequency at which the enhanced nonlinear transmis-

sion starts. Threshold curves predicted by (4.12) are exact for a periodic structure

(ordered or disordered) that has a cubic nonlinearity at n = 1 and is otherwise lin-

ear. We have verified this by comparing analytical predictions to exact numerical

computation of the threshold curves. The two results match very well. We have

not included this comparison for brevity.

Although our derivation was based on a periodic structure with on-site nonlin-

earity, we expect it to be valid for structures with inter-site nonlinearity as well, pro-

vided that ‘strain variables’ (relative displacements of adjacent units) are used. The

analysis here is very similar to the analyses performed in Sections 2.5.1 and 3.4.

The main difference between the present derivation and the analyses in previous

chapters is that the former can include any number of linear units. Indeed, one can

retrive the results from (2.26) and (3.4) by, respectively, setting N = 1 and N = 2

in the formulation presented above.

Finally, it is worth mentioning that (4.12) traces (within the approximation

limits) the locus of the first saddle-node bifurcation of the NLRM. Any other bifur-

cation of the NLRM will go unnoticed by this formulation. It is possible (though

painstaking) to extend the analytical results such that the third saddle-node bifurca-

tion of the NLRM can be traced as well. Nevertheless, this might not be worthwhile

because of the complications explained in Section 4.2.
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4.4.2 Dependence of Threshold Curves on Nonlinearity

The main limitations of the current analysis are in (i) confining the nonlinearity to

the first (driven) unit and (ii) ignoring the higher-order nonlinear terms in FM. The

assumption of local nonlinearity is expected to hold for weak coupling (i.e. small

C) and away from the linear pass band, in particular. Keeping the cubic term is

expected to work for weak nonlinearity (i.e. small |u(1)L |2). In this section, we keep

the strength of coupling unchanged (C = 0.05) and explore how the two aspects of

nonlinearity mentioned above change the threshold curves in an ordered structure.

The influence of coupling strength will be explored in Section 4.4.3. The same

conclusions that we draw for an ordered structure apply to individual realizations

of disordered structures as well. In an ensemble-average sense, we showed in

Section 4.3.2 that transmission thresholds do not change away from the pass band.

Thus, we expect the results in this section to carry over to average properties of

disordered systems as well.

We compare the threshold curves in the following four nonlinear systems:

1. Full nonlinearity, global: the system defined in (2.3).

2. Cubic nonlinearity, global: the system defined in (2.3), FM,n truncated at

cubic term.

3. Full nonlinearity, local: the system defined in (2.3), nonlinear terms of FM,n

ignored for 2≤ n≤ N.

4. Cubic nonlinearity, local: the system defined in (2.3), FM,n truncated at cubic

term, nonlinear terms of FM,n ignored for 2≤ n≤ N.

We consider both softening and hardening systems. We choose system parameters

such that the nonlinear terms in the softening and hardening systems have the same

magnitude but opposite signs. The results presented in this section are obtained

using numerical continuation.

Figure 4.18 shows the threshold curves for the four nonlinear systems for a soft-

ening system with cubic coefficient k3 = −0.2. Comparing systems with global

nonlinearity to those with local nonlinearity, we see that treating the nonlinear-

ity locally results in a slight overestimation of the threshold force. Nevertheless,
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Figure 4.18: Threshold curves for different nonlinear forces in a softening
structures with k3 = −0.2. Solid curves correspond to systems in
which all units are nonlinear (global nonlinearity), dashed curves to
systems in which only the first unit is nonlinear (local nonlinearity).
Red curves are used when the nonlinear term FM is used as defined in
(2.4). Cyan curves are used when FM is truncated at its cubic term.
The edge of the pass band is denoted by the horizontal arrows. The
inset shows frequencies close to the pass band edge.

this difference is only noticeable at frequencies where the threshold curve starts,

which is very close to the pass band (this point is a cusp in the F −Ω plane – see

Figure 4.6). The reason for the good agreement between locally- and globally-

nonlinear systems is that the coupling between units is very weak (C � 1). As

Ω moves farther into the stop band, we see that a larger force Fth is required to

trigger instability. As a result of this, the amplitude of vibrations in the driven unit

(i.e. |u(1)L |) becomes larger at the onset of instability. This makes the contribution

from higher-order nonlinear terms more significant; therefore, the approximation in

truncating FM,n at its cubic term becomes less accurate. This is why the difference

between threshold curves with full nonlinearity and cubic nonlinearity increases as

we move away from the pass band. The same reasoning explains why the system

with cubic nonlinearity overestimates the threshold force.

Truncating the nonlinearity at its cubic term or restricting it to n = 1 has the
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Figure 4.19: Threshold curves for different nonlinear forces in a hardening
structures with k3 = +0.2. Solid curves correspond to systems in
which all units are nonlinear (global nonlinearity), dashed curves to
systems in which only the first unit is nonlinear (local nonlinearity).
Red curves are used when the nonlinear term FM is used as defined in
(2.4). Cyan curves are used when FM is truncated at its cubic term.
The edge of the pass band is denoted by the horizontal arrows. The
inset shows frequencies close to the pass band edge.

same qualitative effect on threshold curves in hardening systems as it does in soft-

ening systems. We can see this in Figure 4.19, which shows the four threshold

curves for a hardening system with cubic coefficient k3 = 0.2. Apart from these

similarities, we see two main differences between threshold curves in hardening

and softening systems. Firstly, restricting nonlinearity to the first unit extends the

threshold curve to the pass band for a hardening system (compare solid curves

to dashed curves in Figure 4.19). To explain this, we recall from Section 4.3.1

that threshold curves trace the locus of saddle-node bifurcations, and from Section

3.6 that the solutions within the pass band usually lose stability through a Neimark-

Sacker bifurcation. When the threshold curve of a locally-nonlinear system contin-

ues inside the pass band, it means that the corresponding linear solutions lose their

stability via saddle-node bifurcation. Thus, treating the nonlinearity locally can

predict an incorrect instability mechanism for a globally-nonlinear system close to
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(and within) the pass band. Further discussion of the exact bifurcation structure in

the vicinity of the pass band, and its dependence on damping, is beyond the scope

of this work. This is also the frequency range where supratransmission is of less

interest, as discussed in Section 4.2.

Secondly, approximating the nonlinear term as cubic gives a more accurate es-

timation of the threshold curves in the softening system than the hardening system.

We can see this by comparing threshold curves in Figures 4.18 and 4.19. For a

given distance from pass band, notice that the values of threshold force Fth are

higher in the hardening system than the corresponding ones in the softening sys-

tem. Thus, just before the onset of instability, the amplitudes of motion are higher

in the hardening system. As a result, the higher-order nonlinear terms are more

important in determining the onset of transmission in the hardening structure than

in the softening one. We have confirmed this by computing the threshold curves for

systems in which FM,n is truncated at its quintic term (not shown). The threshold

curves for the systems with quintic nonlinearity were much closer to the threshold

curves of the fully nonlinear system.

4.4.3 Dependence of Locally-Nonlinear Behavior on Coupling

As already stated, the basis for treating the nonlinearity locally is weak strength

of coupling between units. This approximation is expected to lose accuracy as the

strength of coupling increases. To investigate this, we compute the threshold curves

at different values of C for two hardening structures with full nonlinearity; i.e.

having the complete nonlinear form of FM,n from (2.4). In one of them nonlinearity

is treated locally, while in the other one all units are nonlinear (globally nonlinear).

We compare these threshold curves in Figure 4.20 as a function of the distance

from pass band, ∆Ω. This is because increasing C moves the pass band edge to

higher frequencies. Thus, we define

∆Ω≡Ω−ωN (4.13)

where ωN = ωN(C) is the largest linear natural frequency of the structure.

We see in Figure 4.20 that the threshold curves extend to the pass band for the

locally nonlinear structures (see the discussion in Section 4.4.2). There is therefore
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Figure 4.20: The influence of coupling strength on threshold curves for the
system with full nonlinearity. Solid curves correspond to the globally
nonlinear case and dashed curves to the locally nonlinear case. The
horizontal axis shows the distance from pass band edge, where ∆Ω

is defined in (4.13). The arrow indicates the direction of increasing
coupling strength. As the strength of coupling increases, restricting the
nonlinear forces to n = 1 is inaccurate over a larger frequency range.
The red curves (C = 0.05) are reproduced from Figure 4.19.

a frequency range in the vicinity of the pass band where using a locally-nonlinear

model predicts an incorrect instability mechanism; this frequency range increases

with the strength of coupling. Furthermore, the assumption of local nonlinearity

becomes more inaccurate as C increases, and overestimates the threshold curves

over a larger frequency range. For frequencies far from the pass band, restricting

nonlinearity to the driven unit gives an accurate prediction of the onset of supra-

transmission. The reason is that, in this frequency range, the linear response is

highly localized to the driven unit and dispersion (Bragg scattering) dominates over

nonlinear forces. As C increases, the assumption of local nonlinearity is accurate

over a smaller frequency range.
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4.5 Concluding Remarks
We studied the interaction among the effects of dispersion, dissipation, disorder

and nonlinearity in the context of supratransmission. We considered a damped

nonlinear periodic structure of finite length with weakly coupled units. Disorder

was introduced as small variations in the on-site stiffness parameters of the struc-

ture, drawn from a uniform statistical distribution.

We showed that although individual realizations of a disordered structure have

different onsets of supratransmission, the threshold curve is robust to disorder when

averaged over an entire ensemble. For harmonic excitation away from the pass

band edge, increasing the strength of disorder has negligible influence on transmit-

ted energies below the onset of supratransmission. In contrast, we found average

transmitted energies to decrease with disorder above the transmission threshold.

This happens because the average frequency spectra of the nonlinearly transmitted

waves lie within the linear pass band of the structure. This is the frequency range

where where disorder is known to localize the response to the driven unit (An-

derson localization). Overall, as the forcing frequency moves away from the pass

band, dispersion effects become dominant and the influence of disorder decreases.

We provided approximate analytical expressions for predicting the onset of

supratransmission in weakly coupled structures. This formulation is exact for a

disordered periodic structure that has cubic nonlinearity in its driven unit and is

linear otherwise. We further studied the range of validity of the analysis by study-

ing the dependence of threshold curves on nonlinearity and strength of coupling.

For forcing frequencies away from the edge of a pass band, where the linear so-

lution is highly localized, we found that the nonlinear forces are confined to the

driven unit. In this frequency range, truncating the nonlinear forces at their cubic

terms results in overestimation of the onset of supratransmission. However, using

the complete form of the nonlinear forces gives a very accurate prediction of the

threshold curves. Closer to the pass band edge, the linear response is no longer

highly localized and the nonlinearity spreads to other units. Strong coupling in-

validates our analysis, but is of less interest in the context of disordered periodic

structures (Anderson localization).

We highlighted a non-trivial influence of damping and disorder on the onset
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of supratransmission. Damping may bring about other stable periodic solutions at

the first turning point of the NLRM. In this scenario, supratransmission does not

occur at the first turning point of the NLRM, as normally expected. We showed that

disorder may either facilitate or inhibit this feature, depending on the realization

and strength of disorder. We further observed that supratransmission could still

take place at a subsequent (the third) turning point of the NLRM.
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Chapter 5

Conclusion

When a nonlinear periodic structure is harmonically forced at one end with a forc-

ing frequency within its stop band, wave transmission can still occur if the forcing

amplitude is beyond a certain threshold. This is a generic instability-driven trans-

mission phenomenon in discrete nonlinear periodic structures, known as supra-

transmission.

This thesis has addressed the nonlinear phenomenon of supratransmission in

a discrete periodic structure using computational and analytical techniques. We

reported several novel findings in this context, specifically targeted to periodic

structures that are relevant in engineering applications: periodic structures with

damping, finite length and disorder (small deviations from exact periodicity spread

throughout the structure). The knowledge generated in this thesis contributes to

the understanding of high-amplitude energy transmission characteristics of peri-

odic structures, and to design of new devices and materials with almost-periodic

micro-architecture to operate in the nonlinear regime.

We summarize our findings in Section 5.1 and provide a synopsis of our anal-

yses. In Section 5.2, we discuss the limitations of the methodologies used in this

thesis. We provide suggestions for future research in this area in Section 5.3.
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5.1 Summary of Contributions
We proposed a macro-mechanical periodic structure that consists of coupled sus-

pended cantilever beams (Figure 2.1). Within each unit cell, the linear restoring

force of the beam is combined locally with a strong nonlinear magnetic force to

produce on-site nonlinearity. The magnetic force can be tuned, thus providing con-

trol over the strength of nonlinearity, as well as its type (softening or hardening).

We carried out our entire investigations based on a mathematical model of this

setup that was developed in Section 2.1.

Using this platform, we performed a systematic study of the supratransmission

phenomenon. The nonlinear periodic structures considered throughout the thesis

have finite length, light damping and weak coupling forces between adjacent units.

We summarize our contributions under three main categories:

I. Underlying mechanism

We studied supratransmission using direct numerical simulations and numerical

continuation techniques (Sections 2.3 and 2.4). We identified the instability mech-

anism underlying supratransmission as a saddle-node bifurcation in the nonlin-

ear response manifold (NLRM) of the damped, finite structure. This is the same

mechanism responsible for supratransmission in infinite-dimensional Hamiltonian

systems. Using continuation methods, the NLRM is constructed numerically and

threshold curves are computed as the loci of the first saddle-node bifurcation points

as a function of the forcing frequency.

The supratransmission phenomenon may be explained, in a qualitative fash-

ion, as the resonance of the driving force with the shifted pass bands of the periodic

structure. The behavior of the threshold curve also supports this explanation: as the

forcing frequency moves farther from the pass band, a higher force amplitude is re-

quired for the onset of supratransmission. We showed in Section 2.4.2 that the true

mechanism underlying supratransmission is indeed the instability of periodic solu-

tions via a saddle-node bifurcation. We concluded that the resonance of the driving

force with the shifted pass band is not an accurate predictor of supratransmission

from either a phenomenological or quantitative perspective.

For forcing amplitudes below the supratransmission threshold, the response of
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the structure lies within the basin of attraction of a limit cycle (a periodic attractor).

This solution branch continues to the trivial (static) equilibrium of the structure. At

the onset of supratransmission, the response of the system jumps from this basin

of attraction to that of a non-periodic (either a quasi-periodic or chaotic) attractor.

This change in the basin of attraction is accompanied by a large increase (orders

of magnitude) in the transmitted energy; i.e. supratransmission. If another peri-

odic attractor (limit cycle) existed at the saddle-node bifurcation point, then the

response would have jumped to that solution branch instead, though the increase

in the transmitted energy would be significantly smaller in comparison.

The occurrence of supratransmission has two main manifestations in the post-

threshold response of the structure: (1) the response of the first unit has a broadband

frequency spectrum, (2) the response of the last unit has a band-limited frequency

spectrum, concentrated at the pass bands of the linear structure. From this per-

spective, supratransmission can be described as a band-limited transmission mech-

anism.

II. Influence of system parameters (ordered structures)

We studied the influence of several system parameters on the supratransmission

phenomenon in ordered structures (Chapter 3). A synopsis of these parametric

studies is provided here:

• Forcing frequency
The forcing frequency plays a significant role in supratransmission. As the

forcing frequency moves away from the pass band, dispersion effects become more

dominant and a higher force amplitude is required for the onset of supratransmis-

sion.

The increase in transmitted energies is higher for forcing frequencies that are

farther from the edge of a pass band.

• Type and strength of nonlinearity
The type of nonlinearity determines on which side of a pass band supratrans-

mission may occur. This is below the pass band in the case of softening nonlinearity
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and above it when the nonlinear force is hardening.

Increasing the strength of nonlinear forces decreases the force required for the

onset of supratransmission.

• Number of units
For weakly coupled structures, increasing the number of units increases the

force threshold at the onset of supratransmission.

For both types of nonlinearity, the influence of the number of units on supra-

transmission is significant only for driving frequencies very close to the pass band

edge.

• Damping
Generally speaking, damping increases the force required for the onset of supra-

transmission. Apart from this, we have identified two other effects that are brought

about by damping.

(i) Damping may eliminate supratransmission within a frequency range in the

vicinity of the linear pass band. This occurs because damping can modify the

topology of an NLRM such that it no longer possesses a saddle-node bifurcation.

Damping also introduces a threshold on the minimum force amplitude required

for supratransmission to occur. This threshold is zero in undamped structures and

increases with damping. Also, increasing the damping ratio widens the frequency

range over which supratransmission is prohibited by damping.

(ii) Damping may delay the onset of supratransmission compared to the ex-

pected force threshold of a damped structure (coinciding with the first turning point

of the NLRM, TP1). This could happen provided that damping stabilizes other

branches of periodic solutions above TP1. In this case, supratransmission cannot

take place at TP1 because the response gets trapped to another limit cycle instead

of moving to the basin of attraction of a non-periodic attractor. Supratransmission

may still take place in this scenario, but at a subsequent bifurcation of the NLRM

(e.g. the third turning point).
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• Strength of coupling
Increasing the strength of coupling increases the minimum force required for the

onset of supratransmission at all driving frequencies.

For damped structures with weak coupling, the strength of coupling does not

alter the location of the critical frequency at the onset of supratransmission (with

respect to the edge of a pass band).

III. Analytical prediction of the onset of supratransmission

Using numerical simulations, we observed that nonlinear forces are confined to the

driven unit for weakly coupled systems. Relying on this observation, and truncat-

ing the nonlinear forces at the cubic terms, we were able to provide three approxi-

mate closed-form analytical estimates for predicting the onset of supratransmission

for weakly coupled periodic structures. These expressions vary in their degree of

complexity and range of applicability. Nevertheless, they all rely on estimating the

locus of the first saddle-node bifurcation of the NLRM of the system. The first

two analyses are developed based on the equations governing the evolution of the

envelope of harmonic waves through the structure. The third analysis is developed

based on a nonlinear analysis of the first unit coupled with a transfer-matrix for-

mulation to account for the (linear) dynamics of the rest of the periodic structure.

The first analysis (Section 2.5) is based on the local nonlinear dynamics of the

driven unit, decoupled from the rest of the periodic structure. Accordingly, this

formulation cannot capture the dependence of supratransmission on the strength

of coupling. The results of this analysis are valid for very weak values of cou-

pling, near the anti-continuum limit. Nevertheless, this formulation can be used to

provide qualitative explanations of certain features of supratransmission; examples

include the influence of nonlinearity and damping (Sections 3.1 and 3.3).

The second analysis (Section 3.4) is an improvement of the first one, incor-

porating the strength of coupling into the predictions. This analysis is based on

the local nonlinear dynamics of the driven unit coupled to another linearized unit

(the rest of the structure is truncated after the second unit). The expression ob-

tained from the second analysis can estimate the influence of coupling on thresh-

old curves, but cannot be used in a disordered structure. The second formulation
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is valid over a wider range of coupling strengths than the first formulation, but it is

still limited to weak strengths of coupling.

The third analysis (Section 4.4) is performed for a periodic structure of arbi-

trary length, with the nonlinear forces confined to the driven unit and truncated at

the cubic term. Thus, it can be used for estimating the onset of supratransmission

in ordered and disordered periodic structures. We explored the range of validity of

this formulation by studying the dependence of threshold curves on nonlinearity

and strength of coupling. We find that our analytical predictions overestimate the

onset of supratransmission, particularly at frequencies close to the pass band.

All three analytical approaches rely on weak strength of coupling to ensure

that the nonlinear forces can be confined to the driven unit. Strong coupling inval-

idates this assumption, but is of less interest in the context of disordered periodic

structures.

Although our analyses were based on a periodic structure with on-site nonlin-

earity, we expect them to be generally valid for structures with inter-site nonlin-

earity as well, provided that ‘strain variables’ (relative displacements of adjacent

units) are used.

IV. Interaction between supratransmission and Anderson localization

We studied the interaction between supratransmission and Anderson localization

in a weakly coupled disordered periodic structure with damping and finite length.

Disorder was introduced as small random perturbations in the stiffness parameters

of the structure, drawn from a uniform statistical distribution.

We showed that supratransmission persists in the presence of disorder, with

individual realizations of a disordered structure having different force thresholds.

The influence of disorder decreases in general as the forcing frequency moves away

from the pass band edge, reminiscent of dispersion effects subsuming Anderson

localization in linear periodic structures.

Averaging over an entire ensemble of disordered structures, we found that the

threshold curve is robust to disorder. In other words, the average force threshold

required to trigger supratransmission remains unchanged. In contrast, the aver-

age transmitted energy above the supratransmission threshold decreases with the
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strength of disorder. This happens because the average frequency spectra of the

nonlinearly transmitted waves lie within the linear pass band of the structure.

5.2 Limitations
Naturally, the methodology adopted in a study includes certain limitations. We

highlight the following factors as the main limitations of this work.

Mathematical modeling

The mathematical modeling of the periodic structure in Figure 2.1 was based on

the assumption that the motion of each beam is described by its fundamental mode

shape. This is a reasonable assumption as long as (a) the forcing frequencies are

close to the first pass band of the structure (b) the second pass band is far from

this frequency range. In the presence of nonlinear forces, however, it is possible

to excite higher frequencies through internal and combination resonances [98]. In

this situation, the mathematical model developed in Section 2.1.1 would need to be

updated. Ultimately, experimental results can determine whether these effects are

significant.

Another important assumption made in developing the equations of motion

was the modeling of the magnetic forces, FM,n in (2.2). Within each unit cell,

we treated the permanent magnet and electromagnets as magnetic poles and used

Coulomb’s law to model the magnetic interaction forces between them. In practice,

this force would need to be modeled based on experimental system identification;

refer to [59, 100] for comprehensive reviews of relevant experimental methodolo-

gies.

Throughout this work, dissipative effects were modeled using mass-proportional

linear viscous damping forces. This is a very common assumption in physical mod-

eling of periodic structures (even in granular crystals [110]). However, it is con-

ceivable that damping in the structure can be non-proportional, for example due to

electrodynamic damping introduced through connecting a shaker to the structure.

Again, this aspect would need to be explored experimentally [107].
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Weak coupling

For periodic structures with damping and finite length, Anderson localization be-

comes relevant at weak strengths of coupling – recall the discussion in Section 4.1.

Accordingly, we restricted the scope of this thesis to weakly coupled periodic struc-

tures. In the absence of disorder, however, this requirement may be relaxed.

Although supratransmission relies on the existence of a stop band, it is not

restricted to weakly coupled structures. In fact, the initial studies on supratrans-

mission [39, 40, 60, 62] were performed closer to the continuum limit. Weakly

coupled structures were eventually considered, possibly due to the existence of

discrete breathers and specifically the connection between supratransmission and

mobile breathers in some parameter ranges [82]. Although supratransmission has

been studied for moderate and strong strengths of coupling, these studies mostly

pertain to undamped periodic structures of infinite extent. The effects of damp-

ing and finite length on supratransmission in (ordered) periodic structures remain

unexplored in this range of coupling strengths.

Analytical approach

The analytical predictions of the onset of supratransmission were developed based

on estimating the loci of the first turning points (saddle-node bifurcations) of the

NLRM. Consequently, any other bifurcation of an NLRM will go unnoticed by

these formulations. For undamped structures, there exists no precedence of supra-

transmission occurring through a different mechanism. In damped structures, how-

ever, we showed that damping may stabilize another periodic branch at the first

turning point of the NLRM, thereby delaying the onset of supratransmission until

subsequent bifurcations of the NLRM.

It is possible to extend the existing analytical approach to locate the third turn-

ing point of the NLRM as well. This becomes possible by truncating the nonlinear

force at the quintic term instead of the cubic term. Note, however, that it might

be possible for the periodic solutions to lose their stability between the first and

third turning points through a Neimark-Sacker bifurcation. We are not aware of a

methodology that can be used to tackle this scenario analytically.

In our analyses, we restricted the nonlinear forces to the driven unit. Relaxing
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this assumption makes the analytical approach intractable.

Disorder effects

Throughout Chapter 4, we used a uniform statistical distribution for realization

of disordered structures. Furthermore, we mostly focused on the average proper-

ties of an ensemble. A comprehensive statistical analysis of the threshold curves

and transmitted energies remains to be performed. This analysis could determine,

among other things, the relations between the probability density functions and

standard deviations of the disorder parameter and threshold curves. This infor-

mation is important from a practical point of view because the statistical mode of

an ensemble may be significantly different from its mean value depending on the

corresponding probability distribution function – this was not the situation encoun-

tered for the case studied in this thesis.

In this work, we introduced disorder to the on-site stiffness parameter. From

a phenomenological point of view, disorder-borne localization still occurs if disor-

der is introduced through other parameters of the system [65, 108]. Nevertheless,

it will be useful to obtain a quantitative comparison of disorder effects based on

different disorder parameters. Possible additional disorder parameters include cou-

pling stiffness, on-site and inter-site damping and on-site modal mass parameters.

5.3 Future Directions
In addition to the limitations outlined in Section 5.2, a number of other avenues

can be explored for future research on this topic.

Experimental realization of supratransmission

An impactful continuation of this thesis is experimental realization of supratrans-

mission in the periodic structure proposed in Section 2.1. This experimental setup

can be readily used to investigate the influence of the type and strength of non-

linearity on supratransmission, as well as to investigate the associated hysteresis

phenomenon. It may also be used to realize disordered periodic structures by vary-

ing the currents passing through the electromagnets in different units.
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Band-limited excitation

In supratransmission, external excitation is provided through a harmonic force.

This is equivalent to a very sharp frequency spectrum (a Dirac delta function,

strictly speaking). In engineering practice, it is not uncommon to encounter a sit-

uation where the frequency spectrum of an excitation comprises a narrow band of

frequencies. For a given wave form with its bandwidth entirely within the stop

band, it would be expected that a phenomenon similar to supratransmission would

occur beyond a certain forcing amplitude; i.e. a sudden increase in the transmit-

ted energies with the frequency spectra of transmitted waves lying within the pass

band.

Multi-coupled structures

The periodic structure we studied in this thesis is a mono-coupled structure, mean-

ing that the coupling between adjacent units occurs through one coordinate (de-

gree of freedom) of the system. Wave propagation in multi-coupled periodic struc-

tures is more complicated. Multi-coupled structures carry different types of trav-

eling waves, which can convert to each other as they propagate through the struc-

ture [15, 88]. Although the consequences of such wave conversions have been ad-

dressed in the linear operating range, their nonlinear counterpart has not received

much attention.

Strong propagation regime

The strong propagation regime that was briefly introduced in Section 3.7 has re-

ceived very little attention in the literature. Further numerical investigation of this

phenomenon could be of interest. The pressing practical question here is to deter-

mine whether the strong propagation regime exists in the presence of damping.

Some of the above studies are ongoing and others will need to be pursued in the

future.
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Appendix A

Numerical Continuation

Numerical continuation is a computational technique that makes it possible to fol-

low the evolution of the solutions of systems of ordinary differential equations as

a function of a system parameter. This approach was used throughout the thesis

for studying the evolution of the steady state solutions of the structures as a func-

tions of forcing amplitude or forcing frequency. In this chapter, we present a very

brief overview of the basic formulation for numerical continuation of periodic or-

bits. For comprehensive explanations of numerical continuation techniques, refer

to [6, 69].

Our first task is to set up the governing equations that are second-order in time

as a set of first-order autonomous dynamical system. The first-order formulation

may be obtained by writing the equations of motion in the state space, with dis-

placements and velocities as the states. The conversion from a non-autonomous

system to an autonomous one (i.e. removing the explicit dependence on time on

the right-hand side of the state-space equations) is commonly done by either of

two methods: (i) introducing time as an additional state, (ii) replacing the time-

dependent (harmonic) forcing term with an autonomous system that has a stable

limit cycle and coupling this to the original system. The first method adds one

extra degree of freedom to the dynamical system, while the second approach adds

two extra degrees of freedom.
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Following this procedure, the governing equations take the following form:

ẋ(t) = f (x(t),α) (A.1)

where the vector x(t) contains all the states. The scalar parameter α represents the

continuation parameter, which could be the forcing amplitude, for example.

We are seeking solutions of (A.1) that are periodic in time with period T . Be-

cause T is not a known parameter a priori (and would normally vary with α), we

rescale time as t → t/T so that the interval of periodicity is fixed to unity. With

this, the governing equations transform to the following:

ẋ(t) = T f (x(t),α) (A.2)

in the rescaled time variable.

To continue the (steady-state) periodic solutions, we will transform the initial-

value problem in (A.2) to a boundary-value problem. The boundary conditions for

this problem is the periodicity condition in the time domain, which can be written

as follows:

x(0) = x(1) (A.3)

Recall that we have rescaled time such that the interval of periodicity in (A.2) is

unity.

Given that we are looking for periodic solutions of an autonomous system, we

also need to impose a phase condition on x to ensure uniqueness of the solutions.

Without ensuring the uniqueness of solution, any arbitrary shift in a periodic so-

lution would give the same periodic solution. There are various phase conditions

that can be used. For example, we can specify zero velocity for one of the units.

The advantage of this phase condition is that it is realistic from a physical point of

view and realizable in experiments.

Thus, numerical continuation of the periodic orbits of the equations of mo-

tion transforms to solving the boundary-value problem defined in (A.2) and (A.3),

subject to a phase condition to ensure uniqueness of solutions.

When using numerical continuation, we need to start with a known solution of

the system. At each continuation step k, we are seeking the solution (xk,Tk,αk)
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based on the known solution at the previous step, (xk−1,Tk−1,αk−1). Also, the

solutions along a periodic branch need to be suitably discretized. This aspect of

continuation can be readily dealt with through available software packages such as

AUTO [26], Matcont [41] and COCO [21]. We have used AUTO for numerical

continuation computations in this thesis, which uses the orthogonal collocation

method.
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Appendix B

Derivations

B.1 Derivation of the Transfer Matrix Formulation
Figure B.1 shows a schematic of a unit cell. The unit cell consists of a unit mass, a

coupling spring (kc), a grounding spring (ks), and a damper (2ζ ). Force equilibrium

at the left and right ends of the n-th unit, respectively, give the following relations

σnu(n)L + kc(u
(n)
L −u(n)R ) = f (n)L (B.1a)

kc(u
(n)
R −u(n)L ) = f (n)R (B.1b)

where σn is defined in (4.10). From compatibility and force equilibrium between

Figure B.1: The schematic of a unit cell. We have ks = ω2
n for linear units,

while ks = ω2
n +3/4k3|u(n)L |2 for nonlinear units.
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adjacent units we have

u(n+1)
L = u(n)R (B.2a)

f (n+1)
L =− f (n)R (B.2b)

We can rearrange (B.1) to have the ‘left’ variables in terms of the ‘right’ variables.

Then, using (B.2), we have

u(n)R = (1+σn/kc)u
(n−1)
R + f (n−1)

R /kc (B.3a)

f (n)R = σnu(n−1)
R + f (n−1)

R (B.3b)

which gives the transfer matrix in (4.9).

B.2 Derivation of the Onset of Supratransmission
Applying Newton’s second law to the right and left nodes of the nonlinear unit at

n = 1, respectively, results in the following equations

f (1)R = kc(u
(1)
R −u(1)L ) (B.4a)

f (1)L = (σ1 +β )u(1)L + kc(u
(1)
L −u(1)R ) (B.4b)

where we have defined

β = β (uL)≡ 3/4k3|uL|2 (B.5)

We rearrange the terms to get

u(1)R = (1+(σ1 +β )/kc)u
(1)
L − f (1)L /kc (B.6a)

f (1)R = (σ1 +β )u(1)L − f (1)L (B.6b)

using (B.6) in combination with (4.11), we can relate the response on the right

of n = N to the response on the left of n = 1. The external force applied to the

structure corresponds to f (1)L = F and, without loss of generality, we take F to

be real-valued. To enforce the free boundary on the right end of the structure we

require f (N)
R = 0. This, after substituting u(1)R and f (1)R from (B.6) into (4.11), results
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in the following

(T21(1+(σ +β )/kc)+T22(σ +β ))u(1)L = (T21/kc +T22) f (1)L (B.7)

which can be used to find the onset of transmission for the semi-linear system.

Setting

ρ ≡ |u(1)L |
2 (B.8)

we can obtain the following cubic equation for ρ

a3ρ
3 +a2ρ

2 +a1ρ +a0 = 0 (B.9)

where

a3 = (9/16)k2
3 |T21/kc +T22|2 > 0 (B.10a)

a2 = (3/2)k3 Re
{
(T21/kc +T22)

†(σ(T21/kc +T22)+T21)
}

(B.10b)

a1 = |(1+σ/kc)T21 +T22|2 (B.10c)

a0 =−F2 |T21/kc +T22|2 < 0 (B.10d)

Here, the superscript † denotes complex conjugate.

Equation (B.9) is a cubic polynomial with real coefficients and, depending on

the relation between its coefficients, may have three real roots or only one. The

onset of transmission is where there are three real roots with two of them being

equal (i.e. multiple real roots). Such points correspond to saddle-node bifurcations

of the Duffing equation [50]. We first re-write (B.9) as follows

ρ
3 + c2ρ

2 + c1ρ + c0 = 0 (B.11)

Now we restrict the coefficients of (B.11) such that it has at least two equal real

roots by setting [1]

c0 =−2
(

p±
√

q3
)

(B.12)
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where

p = c3
2/27− c1c2/6 (B.13a)

q = c2
2/9− c1/3 (B.13b)

Using c0 = −(4F/3k3)
2, the critical forcing amplitude at the onset of threshold,

Fth, can be written as shown in (4.12).

In the above analysis, we assumed the structure to have free boundaries at both

ends. A very similar formulation applies if the boundary on either end of structure

is fixed. In this case, the formula in (4.12) remains valid but the coefficients an in

(B.10) need to be updated. For a fixed boundary on the driven end of the structure

(left side), we have f (1)L = F − kcu(1)L . To model a fixed boundary on the right

end of the structure, the free boundary condition f (N)
R = 0 should be replaced with

u(N)
R = 0.
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