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Abstract 

Objectives: Cleft lip/palate is a common birth defect. It occurs in about one in 700 live births 

worldwide. In non-syndromic cleft lip/palate, a linkage to TGF-ɓ3 has been shown. Signaling of 

TGF-ɓ3 is mediated in the cell through the Smad2 protein. During secondary palate fusion TGF-

ɓ3 signaling leads to the disappearance of the epithelial midline seam and the confluence of the 

palatal mesenchyme. TGF-ɓ3 null mice are born with a cleft in the secondary palate, a phenotype 

that has been rescued by targeted overexpression of Smad2 in the MEE. The goal of this research 

was to understand the mechanism of palatal fusion in the rescue mice. 

Methods: The heads of embryos of four different mice models (wild-type, rescue, K14-Smad2 

overexpression and TGF-ɓ3 null) were collected at gestational age E14.5 genotyped, fixed and 

embedded in paraffin. Serial sections were studied for detection of apoptosis and epithelial 

mesenchymal transition using immunofluorescence. Images were captured with confocal laser 

microscopy. 

Results: TGF-ɓ3 null mice developed a cleft in the secondary palate while mice that had both the 

TGF-ɓ3 null and overexpression K14-Smad2 genotypes had fusion of the secondary palate. The 

medial edge epithelium of the rescue mice had a much higher ratio of cells with cleaved caspase 

(31.7% anterior, 33% middle and 35.6% posterior), than in the wild-type mice (0.0% anterior, 

5.31% middle and 0.0% posterior). The K14-Smad2 overexpression genotype mice had an 

increased number of apoptosis positive MEE when compared to the wild-type mice (13.7% 

anterior, 10.1% middle and 17.6% posterior). The increase in apoptosis was correlated with 

increased p-Smad2 in the MEE.  
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Conclusions: Smad2 overexpression may have rescued the cleft in the secondary palate by 

increasing apoptosis in the medial edge epithelium. Thus, the mechanism of rescue is not identical 

to the events that occur normally during palatal fusion. 
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Chapter 1:  Introduction:  

1.1 Overview of the research plan 

This thesis is focused on the fate of the medial edge epithelium cells (MEE) and the 

mechanism of disintegration of the midline epithelial seam (MES) during palatal fusion. This was 

analyzed in the TGF-ɓ3 null mutant mouse model that has cleft palate as part of the phenotype. 

TGF-ɓ3(-/-) mice with K14-SMAD2 overexpression rescue the cleft palate phenotype. The 

disappearance of the MEE during palatal fusion in the rescue mice was compared to the results 

with wild type mice, TGF-ɓ3(-/-) mice and K14-SMAD2 overexpression mice. 

The fetal development of the secondary palate is a tightly regulated process in mammals 

(Ferguson, 1988). This process requires precise interaction between several cells and tissues 

(Shuler, Guo, Majumder & Luo, 1991). Temporal and spatial specialization of extracellular matrix 

(Brinkley & Morris-Wiman, 1984), mesenchymal cells (Ferguson, 1988), and epithelial cells 

(Ferguson, 1988) are necessary in order to achieve palatal fusion prior to birth. Failure of this 

process results in cleft palate.   

In a mouse model, palatal development (see section 1.4.2) begins with palatal shelves 

growing from the inner aspect of each maxillary process at embryonic day (E11.5). Initially at day 

(E13.5), the shelves protrude vertically along either side of the tongue. As the tongue begins to 

grow and form, the shelves reorient horizontally above the tongue at day (E14.0). The shelves 

make contact in the midline at E14.5, initiating fusion and forming the temporary midline epithelial 

seam (MES) (Bush JO, Jiang R. 2012). Histologically, the palatal shelves are composed of 

mesenchyme which is derived from the neural crest (Ferguson, 1988; Shuler, 1995). The 

mesenchyme is surrounded by a layer of oral epithelial cells, derived from the ectoderm. The MES 
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must eventually degrade in order to permit mesenchymal confluence of the palatal shelves to 

complete fusion (Figure 1). 

 

 

 

Although recent studies have managed to identify the possible molecular and cellular 

mechanisms involved in the critical process of MES disappearance, some aspects remain 

controversial (Gritli -Linde, 2007). Three different theories (see section 2.1) of processes regulating 

the fate of MES have been proposed; 1) apoptosis (DeAngelis and Nalbandian, 1968; Farbman, 

1969; Hayward, 1969; Shapiro and Sweney, 1969; Cuervo and Covarrubias, 2004; Vaziri Sani et 

al., 2005; Dudas et al., 2006, Dudas, Li, Kim, Yang, & Kaartinen, 2007; Xu et al., 2006); 2) 

epithelial mesenchymal transdifferentiation (EMT) (Fitchett & Hay 1989; Griffith & Hay 1992; 

Shuler et al.,1991, 1992; Kaartinen et al., 1997; Nawshad, & Hay, 2003; Takigawa and Shiota, 

2004; Kang, & Svoboda, 2005; Jin and Ding, 2006); 3) cell migration (Carette & Ferguson (1992). 

Recent studies have shown that both apoptosis and EMT may be involved in the disappearance of 

the MES (Nawshad, 2008; Martinez-Alvarez et al., 2000; Ahmed, Liu & Nawshad, 2007). 

 

Figure 1 Palatal fusion in TGF-ɓ3 (-/-) /K14-Smad2 mice 

Palatal cleft in TGF-ɓ3 -/-  mice and Palatal fusion with Smad2 over expression. 
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Transforming growth factor beta 3 (TGF-ɓ3) is a cytokine involved in many cellular 

functions including cell cycle control, cell development, differentiation, hematopoiesis and 

apoptosis (Schuster & Krieglstein, 2002) (see section 1.7). TGF-ɓ3 is involved in the repression 

of growth of epithelial cells and is expressed in the MES (Schuster & Krieglstein, 2002; 

Fitzpatrick, Denhez, Kondaiah & Akhurst, 1990). TGF-ɓ3 null mutant mice have a phenotype that 

includes a cleft secondary palate due to the MES remaining intact during development (Kaartinen 

et al., 1995; Proetzel et al., 1995). TGF-ɓ3 utilizes SMAD proteins (SMAD2/SMAD3) to transmit 

regulatory signals inside target cells (Schuster & Krieglstein, 2002). SMAD2 and SMAD3 are 

extremely homologous sharing nearly 95% of their amino acid sequence but they differ in function 

(Liu et al., 2016; Shiomi et al., 2006). The concept that SMAD3 null mutant mice develop normally 

while SMAD2 null mutant mice embryos are non-viable indicate the important role that SMAD2 

plays during embryonic development (Brown et. al, 2007). SMAD2 and SMAD3 are both 

expressed in the MEE but during the process of palatal fusion but only SMAD2 is phosphorylated 

(Cui et al., 2003). The inhibition and inactivation of SMAD signaling and specifically SMAD2 

during palatal fusion by all-trans retinoic acid (atRA) resulted in maintenance of MEE and failure 

of palatal fusion (Wang et al., 2011). The inhibition of SMAD2 in MEE cells by SMAD2 siRNA 

maintained the proliferation of MEE and prevented the fusion of the palatal shelves (Shiomi et al., 

2006). Furthermore, the addition of exogenous TGF-ɓ3 to the siRNA treated MEE cells failed to 

rescue the palatal fusion indicating the critical role of SMAD2 signaling pathway during palatal 

fusion (Shiomi et al., 2006). Interestingly, SMAD2 overexpression in TGF-ɓ3 null mutant mice 

has been found to rescue palatal fusion (Cui et al., 2005). SMAD2 overexpression has also been 

found to increase the apoptosis rate in junctional epithelium and downregulates Bcl-2 (Fujita et 

al., 2012), in prostate epithelial cells (Yang, Wahdan-Alaswad, & Danielpour, 2009), human 
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gingival epithelial cells (Yoshimoto et al., 2015), and human ocular lens epithelial cells (Lee et al., 

2002).   The following list, which summarizes the literature that has been reviewed, provides an 

overview of the rationale for examining the mechanism of MEE disappearance as a result of K14-

SMAD2 overexpression in the TGF-ɓ3 null mutant mice: 

 

1. TGF-ɓ3 is specifically expressed in the medial edge epithelium and is spatiotemporally 

correlated to fusion of the palatal shelves during fetal development.  

2. TGF-ɓ3 has been shown to be involved in regulating multiple cellular processes which 

occur surrounding medial edge epithelium during palatal fusion, including cell 

proliferation, extracellular matrix homeostasis, programmed cell death and epithelial-

mesenchymal transformation. 

3. Inhibition of TGF-ɓ3 signaling in vivo by gene knockout mice results in a failure of palatal 

fusion that has been shown to inhibit the disintegration of the MES, resulting in cleft palate   

4. TGF-ɓ3 null mutant mice secondary palate clefting can be rescued by overexpression of 

SMAD2 by the cytokeratin-14 promoter.  

5. SMAD2 activation in the medial edge epithelium by phosphorylation is a crucial 

intracellular signaling event subsequent to TGF-ɓ3 binding to the receptor in order to 

initiate the palatal fusion cascade of events.   

6. SMAD2 overexpression in other epithelial cells has been found to induce apoptosis. 

7. The mechanism of MES disintegration induced by SMAD2 overexpression during palatal 

fusion in the rescue mice model has not been investigated. 
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Those finding have led to the following hypothesis for our proposal: SMAD2 

overexpression rescues the TGF-ɓ3 null mutant mice by increased apoptosis of MEE. The aim 

of this study was to investigate the TGF-ɓ3 and SMAD2-regulated mechanism of MES 

disappearance in a rescue mouse model [K14-SMAD2/TGF-ɓ3(-/-)] compared to wild type mice, 

null mutant [TGF-ɓ3(-/-)] and SMAD2 overexpression [K14-SMAD2/TGF-ɓ3(+/-)]. 
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1.2 Prevalence of orofacial clefts 

Birth defects are anatomical errors that occur during the development of a fetus. They are 

a leading cause of death in infants, attributing to one in every 5 deaths (Centers for Disease Control 

and Prevention [CDC], 2014). In the United States alone, one out of every 33 babies born is 

diagnosed with a birth defect which amounts to approximately 120,000 babies each year. Infants 

who survive often face lifelong medical and developmental challenges (Centers for Disease 

Control and Prevention [CDC], 2014). 

Orofacial clefts are classified as a group of congenital birth defects (Canfield et al., 2006). 

These defects include cleft lip (CL), cleft palate (CP) and cleft lip with palate (CL/P) (Genisca et 

al., 2009). CL is the congenital failure of fusion between the maxillary and median nasal processes, 

forming a groove or fissure in the upper lip (Centers for Disease Control and Prevention [CDC], 

2014). CP is defined as the congenital failure of the palatal shelves to fuse properly, forming a 

grooved depression or fissure in the roof of the mouth (Centers for Disease Control and Prevention 

[CDC], 2014).  Clefts of the lip and palate can occur individually, together, or in conjunction with 

other defects (syndromic). 

Orofacial clefts are among the most common congenital birth defects. Seventy percent of 

all orofacial clefts are non-syndromic (Tolarova & Cervenka, 1998). The global birth prevalence 

of non-syndromic orofacial clefts (NSOFC) is 12.5 per 10,000 live births, CL, with or without CP, 

is less prevalent at 9.4 per 10,000 live births, while CP alone only occurs in 3.1 of every 10,000 

live births (Mastroiacovo et al., 2011; Tolarova & Cervenka, 1998). However, the prevalence of 

orofacial clefts varies across geographic areas and ethnic groups (Mossey PA, Modell B., 2012). 

High rates of non-syndromic CL, with or without CP, are seen among those who are Chinese 

(14.23 per 10,000; Dai et al., 2010) and Japanese (11.8 per 10,000 live births; Cooper, Ratay, & 
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Marazita, 2006) while lower rate are seen among babies of Korean decent (5.1 per 10,000 live 

births; Lee, Hwang, Lee, Kim & Seo, 2015). Interestingly, Canada has one of the highest orofacial 

clefts birth rates in the world at 12.7 per 10,000 live births, 42% of which are CL with CP, 41% 

CP only, and 17% CL only (Pavri S, Forrest CR., 2013). These prevalence rates are signifiantly 

higher among First Nations in Canada at 27 per 10,000 live births (Vrouwe S. et al., 2013). 

 In Saudi Arabia, prevalence of NSOFC in general is 8 per 10,000 live births, where cleft 

lip with or without cleft palate: 6.8 per 10,000 live births and cleft palate only: 1.3 per 10,000 live 

births all are lower than the global birth prevalence (Alamoudi NM et al, 2015, Sabbagh HJ et al., 

2015a, AlSalloum A. et al., 2015).  

Current research indicates that the etiology of CP involves several genetic and 

environmental factors, and suggests that there is a correlation between orofacial birth defects and 

race, ethnicity, country, economical status, chromosome aberration, genetic disorders and 

teratogenic factors (smoking and alcohol consumption) (Coubourne, 2004; Lidral et al., 2008; 

Little et al., 2004; Meng et al., 2009; Scapoli et al., 2008; Vieira, 2008; Zhu et al., 2009).  

 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pavri%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21905911
http://www.ncbi.nlm.nih.gov/pubmed/?term=Forrest%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=21905911
http://www-ncbi-nlm-nih-gov.ezproxy.library.ubc.ca/pubmed/?term=Sabbagh%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=26318465
http://www-ncbi-nlm-nih-gov.ezproxy.library.ubc.ca/pubmed/?term=AlSalloum%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26336015
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1.3 The origin of cells in the palate 

The cells forming the palatal structures are formed of cranial neural crest derived 

ectomesenchymal cells, pharyngeal ectoderm derived epithelial cells, and mesoderm derived cells 

(Ito et al., 2003; Shuler et al., 1992; Ferguson, 1984). The palatal shelves are covered by epithelial 

cells divided into oral epithelia, nasal epithelia and medial edge epithelia. Furthermore, the nasal 

epithelial cells differentiate into pseudostratified ciliated columnar epithelial cells and the oral 

epithelial cells differentiate into stratified squamous keratinized epithelium, whereas the (MEE) 

cells are eliminated from the midline seam by either Cell Migration, Epithelial-Mesenchymal 

Transdifferentiation (EMT) or Apoptosis (Programed cell death) (Fitchett and Hay, 1989; 

Martinez-Alvarez et al., 2000; Shuler, 1995; Shuler et al. 1992).  

The use of transgenic animal models has helped to understand the cell fate during 

palatogenesis. The development of the Wnt1-Cre; R26R mouse model showed that more than 90% 

of the mesenchymal cells are derived from cranial neural crest cells (CNCC) (Chai et al., 2000; Ito 

et al., 2003; Iwata et al., 2010). Neural crest cells (NCC) are intermediate cells that originate at the 

dorsal-most region of the neural tube the embryonic ectoderm cell layer and only found in 

vertebrates. The (NCC) migrate extensively to generate a number of differentiated cell types 

including smooth muscle cells, neurons and glial cells, epinephrine-producing cells, melanocytes, 

and many of the skeletal and connective tissue of the head (Chai et al., 2000; Jiang et al., 2000; 

Kirby and Waldo, 1995; Nichols, 1981; Sela-Donenfeld and Klacheim, 1999; Snider et al., 2007; 

Gilbert, 2000). The neural crest can be divided into four main domains: The cranial (cephalic) 

neural crest, trunk neural crest, vagal and sacral neural crest and cardiac neural crest (Gilbert, 

2000). 
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The cranial (cephalic) neural crest cells migrate dorsolaterally, which happens before the 

closure of the neural tube, to create the craniofacial mesenchyme. These CNCC differentiate into 

cranial neurons, glia, cartilage, bone, and connective tissues of the face. They also give rise to 

odontoblasts, thymic cells, and bones of the middle ear. Only the cells of the cranial neural crest 

are able to produce cartilage and bone (Gilbert, 2000). The face is the product of cranial (cephalic) 

neural crest cells. 

 

1.4 The process of palatogenesis 

The mammalian palate, a structure that separates the oral cavity from the nasal cavity, 

facilitates breathing and swallowing functions. It is bordered anteriorly and laterally by the 

maxillary teeth and superiorly covered by the respiratory epithelium of the nasal cavity and 

inferiorly by the masticatory epithelium of the oral cavity.  It is divided into two divisions; The 

primary palate derived from the frontonasal process and the secondary palate originating from the 

maxillary process of the first branchial arch (Ferguson, 1988). The development of the full palate 

as one fused structure requires the interaction of complex and dynamic morphogenic events and 

cellular differentiation (Ferguson, 1988). 

 

1.4.1 Human palatal development  

The facial prominences surrounding the primitive mouth give rise to the development of 

the face (Bush & Jiang, 2011). In humans, these prominences appear during the fourth week of 

human embryogenesis as ectodermal thickenings or nasal placodes on either side of the inferior 

aspect of the frontonasal process (Schoenwolf & Larsen, 2009). As the lateral and medial rims 

expand to form a pit, the mesenchyme starts to condense and proliferate at the borders of the 
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thickened ectoderm (Kernahan, & Rosenstein, 1990). By the end of the fourth week of 

embryogenesis, the frontonasal process and lateral and medial nasal process start to bulge, the 

nasal cavities start to form by deepening of the nasal pits, and the neural crest cells start to migrate 

from the first branchial arch (Kernahan, & Rosenstein, 1990). The frontonasal process and the 

medial nasal processes on both sides form the nose, anterior maxilla, primary palate and the upper 

lip. At the bottom of the nasal pit, the medial surface of the maxillary process meets with the lateral 

surface of the medial nasal process forming the primary palate (Kernahan, & Rosenstein, 1990).  

The formation of the secondary palate, which gives separation between oral and nasal 

cavities, begins between the seventh and eighth week of human embryogenesis. The nasal septum 

begins growing downwards from the frontonasal process along the midline. The two palatine 

shelves, extending from the maxillary process, begin to reorient towards the midline (Kernahan, 

& Rosenstein, 1990). At the beginning, the two palatine shelves are positioned vertically on each 

side of the developing tongue. In the seventh week the palatal shelves start to reorient to a 

horizontal position as the mandible grows and the tongue lowers (Ferguson, 1988). By the eighth 

week, the opposing palatal shelves start to approximate and begin to fuse anteriorly. As they 

approximate, the epithelial layers covering the two shelves adhere creating the medial epithelial 

seam (MES). The MES, which consists of two layers of basal epithelial cells, must then disappear 

in order to allow for the subsequent mesenchymal confluence and fusion which then occurs 

between the opposing palatal shelves (Bush & Jiang, 2011). As the palatal shelves fuse to each 

other they also fuse to the nasal septum. Fusion of the palatal shelves with the globular process 

results in the premaxillary area: the primary palate, the maxillary incisors area and the philtrum of 

the upper lip (Bush & Jiang, 2011). The fusion of the palate is completed by the 17th week (Bush 

& Jiang, 2011). 
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Disturbances that occur during the process of palatal development include failure of palatal 

shelf formation, failure of palatal shelf elevation, failure of palatal shelf growth and failure of 

palatal shelf adhesion. All of these abnormal patterns of development result in clefting of the palate 

(Figure 2, Figure 3) (Ferguson, 1988). 
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Figure 2 Human palatal Development 

A. Frontal section through the head of a 7th-week-old embryo. The palatine shelves are in the vertical 

position on each side of the tongue. The ventral view of the palatine shelves after removal of the lower 

jaw and the tongue shows the palatine shelves are still vertical. B. Frontal section through the head of 

an 8th-week embryo. The tongue has moved downward, and the palatine shelves have reached a 

horizontal position. The Ventral view of the palatine shelves after removal of the lower jaw and 

tongue. The shelves are horizontal. Note the nasal septum. C. Frontal section through the head of a 

10th-week embryo. The two palatine shelves have fused with each other and with the nasal septum. 

In the ventral view of the palate. The incisive foramen forms the midline between the primary and 

secondary palate.  Reprinted from Sadler, T., & Langman (Sadler, T., & Langman, J., 2010). 
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1.4.2 Mouse palatal development  

The development of the mouse secondary palate has a similar course to the human palate. 

At embryonic day E11.5 the secondary palate starts to form. The medial aspects of the palatal 

shelf, which emerge from the inner aspect of the maxillary process and extend antero-posteriorly 

along the lateral side of the oropharynx, elevate and become parallel to one another (Gritli -Linde, 

2007). The anteromedial borders of the palatal shelves then start to fuse with the primary palate. 

At the same time, the superior aspects of the palatal shelves begin to fuse with the inferior border 

of the nasal septum in the midline (Kaufman, 1992).  

The vertical growth of the palatal shelves continues until day 13 of embryonic development 

(E13) (Chai and Maxson, 2006). During active growth embryonic days E12 to E14, the vertical 

palatal shelves become engulfed between the cheeks and the lateral sides of the tongue (Krauss, 

2008). Depending on the mouse strain, from embryonic day E14.5 to E15, the palatal shelves begin 

to reorient horizontally above the dorsum of the tongue (Krauss, 2008). Subsequently, the 

opposing palatal shelves continue to grow horizontally allowing them to approximate in the 

midline and adhere between the opposing medial edge epithelia (MEE). This ultimately creates 

the MES (Gritli -Linde, 2007). Progressive disintegration of the MES allows for a successful 

mesenchymal confluence between the opposing palatal shelves along the midline, anteriorly with 

the primary palate and dorsally with the nasal septum, ultimately dividing the cavity into oral and 

nasal cavities (Gritli -Linde, 2007; Krauss, 2008). Similar to human development, any failure in 

the process of palatal development, formation, reorientation, or adhesion will result in a cleft in 

the palate (Figure 3, 4) (Ferguson, 1988). 
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  Figure 3 Failure in the process of palatal development. 

 Chai Y and Maxon RE Jr. (2006) Recent advances in craniofacial morphogenesis. Dev Dyn, 235:2353ï75. 
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Figure 4  Palatal development in the mouse. 

 

   

(A) Time course of palate development in mice. (B-F) Scanning electron micrographs showing oral 

views of the secondary palate at representative developmental stages (Kaufman, 1992). Orange lines 

mark sites of fusion between the medial nasal processes and maxillary processes, white arrowheads 

point to initial outgrowths of the primary palate, white arrows point to the initial outgrowth of the 

secondary palatal shelves, red arrowheads mark the initial site of palatal adhesion and fusion, and 

the yellow arrowhead points to the gap between the primary and secondary palates that will disappear 

following fusion between these tissues. (G-U) Representative histological frontal sections from 

anterior (G-K), middle (L-P), and posterior (Q-U) regions of the developing palate at each indicated 

stage. Reprinted from Kaufman (Kaufman, 1992). 
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1.4.3 Disparities between mouse and human anatomical development 

Some anatomical differences in lip and palate development exist between mice and humans 

(Katebi, Kolpakova-Hart, Lin & Olsen, 2012). In humans, the airway begins in the oronasal cavity 

which extends posteriorly and then curves as it connects to the trachea inferiorly at a 90-degree 

angle. The result is a horizontal hard palate, angled soft palate and an inferiorly extended uvula. 

On the other hand, the mouse hard palate, soft palate and other airway structures remain horizontal 

due to the fact that mice are quadrupedal (Kaufman, 1992).  

Proportionally, the mouse palate is very large when compared to the full body size. On the 

other hand, the human palate is much smaller in comparison to the total body (Jeong, 2009). The 

rugae in the mouse spans the entire palate while in the human body rugae are only located in the 

anterior region. The human hard palate is composed of intact bone from the anterior teeth up to 

the horizontal plate of the palatine bone, while in mice, a cavity spans from the anterior teeth to 

the first molar (Jeong, 2009). This cavity is also found in rats and is anatomically called anterior 

palatine foramen (Greene, 1963). Moreover, in mice a large cavity is found between the nasal 

cavity and conchae and the hard palate, the function of which is still unknown (Kaufman, 1992), 

while in humans the only cavities are the nasal cavity and the maxillary sinuses. In humans, 

orofacial clefts can occur as cleft of the lip, cleft of the alveolus, cleft of the palate or combination 

of any of these types. They can occur bilaterally either in the lip or palate. While in mice, the 

clefting can occur bilaterally in the lip but only in the midline in the palate (Jeong, 2009). Despite 

these differences, the mouse resembles human palate development and is an accessible mammalian 

model for research on CL/P. 
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1.5 Syndromic cleft lip, with or without cleft palate 

The classification of syndromic CL, with or without a CP, requires the presence of 

additional physical or cognitive abnormalities. More than 275 syndromes have CL with or without 

a CP as a defining feature. The cause of more than 75% of these syndromes has been identified 

genetically (Leslie and Marazita, 2013).  

Specifically, several syndromes have been linked to certain genetic mutations associated 

with CL. Van der Woude syndrome, the most common syndrome with clefting has a prevalence 

of 1 per 34,000, and is caused by a mutation in the IRF6 gene (Kondo et al., 2002). Loeys-Dietz 

syndrome is associated with mutation in TGF-ɓR1 or TGF-ɓR2 (Loeys et al., 2005). A mutation 

of the gene PHF8 has been linked to Siderius X-linked mental retardation (Laumonnier et al., 

2005), while other syndromes with clefting features include Smith-Lemli-Opitz syndrome (Porter, 

2000), Desmosterolosis (Waterham et al., 2001), and X-linked dominanta chondiodysplasia 

punctata (Dempsey, Tan and Herman, 2011).   

The transforming growth factor beta (TGF-ɓ) signaling pathway, an important regulator of 

many cellular processes including cell growth, cell differentiation, apoptosis, and cellular 

homeostasis during embryonic development, is another example of a mutation that causes 

syndromes associated with CP (Hosokawa et al., 2010; Ito et al., 2003; Iwata et al., 2010; Oka et 

al., 2007; Sasaki et al., 2006).  Mutations in TGF-ɓR1 or TGF-ɓR2 have been linked with Loeys-

Dietz syndrome, a syndrome that can show craniofacial malformations including cleft palate and 

craniosynostosis (Loeys and De PaePe, 2008; Loeys et al., 2005; Mizuguchi et al., 2004). 

Overexpression of TGF-ɓ signaling associated with Fibrillin -1 (FBN-1) gene mutation can cause 

Marfan syndrome that has the same clinical phenotype as Loeys-Dietz syndrome (Brooke et al., 

2008; Habashi et al., 2006; Kalluri and Han, 2008). Another syndrome that exhibit the same 
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phenotype as TGF-ɓR2 mutation is 22q11.2 deletion syndrome or DiGeorge syndrome, the most 

common microdeletion syndrome with a prevalence estimated at 1:4000, which results from a 

small deletion on chromosome 22 which causes altered TGF-ɓ signaling (Lindsay, 2000; Lindsay 

et al., 1999; Lindsay et al., 2001; Portmoi, 2009; Vietlli and Baldini 2003; Wurdak et al., 2005; 

Oskarsdottir, 2004).  

 

 

 

 

  



 

 

 

19 

1.6 Non-syndromic cleft lip, with or without cleft palate 

The etiology of non-syndromic cleft lip with or without palate (NSCL/P) is multifactorial 

and can be related to any change in numerous genes secondary to epigenetic factors such as 

smoking during pregnancy, alcohol consumption during pregnancy, or any exposure to drugs such 

as anticonvulsant drugs that might alter the normal palatal development (Yu, Serrano, Miguel, 

Ruest, & Svoboda, 2009; Hanson, Myrianthopoulos, Harvey, & Smith, 1976). Several studies have 

associated mutations in TGF-ß3, IRF6, CYP, MSX1 and TBX10 with NSCL/P (Yu, Serrano, 

Miguel, Ruest, & Svoboda, 2009; Carinci, Scapoli, Palmieri, Zollino, & Pezzetti, 2007; Vieira et 

al., 2007). 

 

1.6.1 Epidemiology of non-syndromic cleft lip, with or without cleft palate 

 Approximately 70% of all cleft lip with or without cleft palate cases (CL/P) and 50% of 

cleft palate only cases (CPO); are classified as non-syndromic (NSCL/P) (Jugessur, Farlie, & 

Kilpatrick, 2009). In non-syndromic orofacial clefts, the frequency of CL/P is doubled in males, 

while (CPO) is doubled in females (Mossey et al., 2009).  According to Gundalsch and Maus 

(2006) around 75% of clefts that involves the lip are unilateral and among them, clefts affecting 

the left side are twice as common as the right side. 

 Data have shown that the incidence of non-syndromic NSCL/P also tends to vary by 

geographic and ethnic origin (Leslie and Marazita, 2013). Asians or Amerindians are most 

commonly affected by NSCL/P while people of African origin are less affected (Dixon, Marazita, 

Beaty, & Murray, 2011). Several environmental factors might explain the difference in prevalence 

such as general nutrition, level of available medical care, lack of vitamins, and maternal smoking 

prevalence (Leslie, & Marazita, 2013).  
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1.6.2 Genetic etiology 

 The genetic complexity of NSCL/P comes from the interaction of multiple genes and 

environmental risk factors. Linking NSCL/P to genetic factors only began in 1942 after recording 

an increased incidence of orofacial clefts among relatives of a patient with a cleft were observed 

and noted (Fogh-Anderson, 1942). Furthermore, the segregation analysis done by Marazita, 

Spence & Melnick (1984) and later the twin studies done by Mitchel (2002) both confirmed the 

genetic deteminants of NSCL/P. It is estimated that CL/P and CPO have more than 90% heritability 

(Grosen et al., 2010). Families with CL/P and CPO-affected first-degree relatives have 30-40 times 

higher risk of recurrence compared to the general population (Sivertsen et al., 2008; Grosen et al., 

2010).  

  

1.6.3 Environmental risk f actors 

The role of environmental factors in the development of NSCL/P is supported by 

epidemiological data. Several risk factors including twin births, maternal antibiotic use, antiemetic 

medication, severe morning sickness, common cold/flu, maternal smoking and passive smoking 

(Sabbagh et al., 2015a), pesticide exposure (Xu et al., 2015) history of maternal abortion, and 

parental age at time of childbirth (Lin et al., 2014) have been associated with incidence of NSCL/P. 

Alcohol consumption during pregnancy for instance, has been linked to a significantly 

increased risk of clefting. This link arose from the association between orofacial clefts and a 

variation in the alcohol dehydrogenase 1C gene, ADH1C (Jugessur et al., 2009b). The combination 

of heavy alcohol consumption during pregnancy with reduced enzymatic activity of the ADH1C 

variant appears to increase the risk of orofacial clefts (Boyles et al., 2010).  
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Nutrition during pregnancy also plays a big role based on studies assessing the use of folic 

acid supplements as a preventive measure (Wehby and Murray, 2010).  However, the benefit of 

folate use during pregnancy remains controversial (Wehby and Murray, 2010; Wilcox et.al., 2007). 

Reduced risk of NSCL/P has also been observed in correlation with the use of calcium 

supplementation and adequate hydration during pregnancy (Sabbagh et al., 2015a). 

Several studies have shown that gene-environment interaction may contribute to orofacial 

clefts (Wyszynski, 2002). Romitti et al. (1999) in a case-control study from Iowa, examined 

environmental factors smoking and alcohol consumption and candidate gene TGF-ɓ3 to 

understand their combined effect on the severity of orofacial clefts. The study showed an increased 

risk if the mother was smoking more than 10 cigarettes/day. Furthermore, the risk of CP among 

infants was even higher if there was an allelic variant at TGF-ɓ3 (Romitti et al., 1999).  In another 

study Maserti et al. (1997) utilized case-parent trios to test gene-environment interaction. Their 

results showed an evidence of increased transmission of TGF-ɓ3 allele 6 among smoking mothers 

(Maestri et al., 1997).  

In summary, itôs evident that genetic factors and environmental factors play a great role in 

the etiology of NSCL/P either independently or jointly. Several genes are involved in the etiology 

of NSCL/P, however TGF-ɓ3 has been associated with NSCL/P, both independently or in the 

presence of other environmental factors (Romitti et al., 1999; Lidral et al. 1998; Maestri et al., 

1997).  
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1.6.4 NSCL/P and genetic studies 

A variety of tests and approaches have been employed to identify the genes that contribute 

to the development of NSCL/P, including linkage analysis, genomic rearrangement, candidate 

genes, and genome wide association studies (Leslie and Marazita, 2013). 

Linkage analysis studies which are based on the segregation of genetic loci can be 

performed on pairs of affected relatives or large families. For NSCL/P, only 13 genome-wide 

linkage scans have been conducted and none had a genomic-wide significant LOD score; a 

statistical estimate of whether a gene and a disease gene have the tendency to be located close to 

each other on a chromosome and are likely to be inherited (Marazita et al., 2004). One of the 

largest linkage studies was done on 388 extended families, and meta-analysis of all published 

linkage scans revealed that there were likely genetic determinants of NSCL/P on chromosome 

sections 1q32, 2p13, 3q27-28, 9q21, 14q21-24 and 16q24 (Marazita et al., 2004). Further results 

showed that the chromosomal region 14q24 containing TGF-ɓ3 was a causative gene for NSCL/P 

(Marazita et al., 2009). 

Genomic rearrangement is a major genomic mutation caused by gross alterations of 

chromosomes or large chromosomal regions taking the form of deletion, duplication, inversion, 

insertion or translocation of base pairs. Recent analyses in patients with genetic rearrangement 

implicated the following genes in NSCL/P: cleft lip and palate transmembrane protein 1 

(CLPTM1) (Yoshiura et al., 1998), special AT-rich sequence-binding protein 2 (SATB2) 

(FitzPatrick et al., 2003), small ubiquitin-related modifier 1 (SUMO1) (Alkuraya et al., 2006), and 

fibroblast growth factor receptor 1 (FGFR1) (Kim et al., 2005). 

Mouse models with induced clefting by either mutagenesis or by gene knockout methods 

have been used in research for gene discovery in this area. Alternatively, many Mendelian 

http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/mutation/
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syndromes that include clefting as part of their phenotype are often caused by severely damaging 

mutations in a gene, while less deleterious variants of the gene can cause similar but less severe 

isolated clefts (Stanier and Moore, 2004). 

In summary, genome scan meta-analysis studies have identified a significant link between 

the TGF-ɓ3 locus and the incidence of NSCL/P in infants (Marazita et al., 2004). Observational 

studies support the link between genomic mutations in TGF-ɓ3 and NSCL/P in humans (Lidral et 

al., 1998). Mouse model studies involving TGF-ɓ3 knockout or inactivation mice show that these 

animals experience significant clefting of the secondary palate (Kaartinen et al., 1995). Given the 

current findings, TGF-ɓ3 appears to play a critical role in the development of the secondary palate 

and is likely involved in the pathogenesis of palatal clefting in mammals, including humans. 

 

1.7 TGF-ɓ signaling 

The transforming growth factor beta (TGF-ɓ) superfamily consist of nearly 30 growth and 

differentiation factors including activins, bone morphogenic proteins (BMBs), inhibins and TGF-

ɓ (Kitisin et al., 2007). TGF-ɓ pathway stimulates multiple signaling networks that control cell 

fate, growth and differentiation (Massague & Wotton, 2000). The TGF-ɓ signaling is carried out 

through the TGF-ɓ type I (TɓRI) and TGF-ɓ type II receptors (TɓRII); a transmembrane serine-

threonine kinase receptor subunit, to a specific mediator known as the SMAD proteins initiating 

the SMAD-dependent signaling pathway (Kitisin et al., 2007). Also, TGF-ɓ is capable of utilizing 

another non SMAD signaling pathway through Mitogen-activated protein kinases (MAPK) (Iwata, 

Parada & Chai, 2011). 
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1.7.1 SMAD-dependent TGF-ɓ signaling pathway 

TGF-ɓ signaling begins by assembling a specific receptor complex that activates SMAD 

transcription factors (Feng & Derynck, 2005). The receptor is composed of two regions, an 

extracellular region which is a small and tightly folded globular domain and a cytoplasmic region 

formed by a juxtamembrane segment and a protein kinase domain (Derynck, Zhang & Feng, 1998).  

The isoforms of TGF-ɓ; TGF-ɓ1, TGF-ɓ2 and TGF-ɓ3, bind to the TGF-ɓ type II receptor (TɓRII) 

which then phosphorylates and activate the receptor. Both TGF-ɓ1 and TGF-ɓ3 have a higher 

affinity to bind to the TɓRII receptor, while the TGF-ɓ2 requires an additional receptor, TɓRIII 

(Iwata, Parada & Chai, 2011). Subsequently, TGF-ɓ type I receptor (TɓRI) is included in the 

complex and activated by TɓRII through a TɓRII-mediated glycine-serine phosphorylation (Iwata, 

Parada & Chai, 2011; Kitisin et al., 2007).  Specific receptor associated SMADs (R-SMADs), 

Mothers against decapentaplegic homolog 2 (SMAD2) and SMAD3 are phosphorylated by TɓRI 

(Iwata, Parada & Chai, 2011; Attisano & Wrana, 2002). The phosphorylated R-SMADs are then 

dissociated from this complex and associated with the co-mediator SMAD (co-SMAD) SMAD4 

resulting in nuclear translocation and either gene activation or repression (Iwata, Parada & Chai, 

2011; Massague & Chen, 2000). Meanwhile, the induction of inhibitory SMAD proteins either 

SMAD6 or SMAD7 creates an autoregulatory feedback loop that prohibits the activation of 

receptor activated SMADs (Schuster & Krieglstein, 2002; Massague, 2000). 

 

1.7.2 SMAD-independent TGF-ɓ signaling pathway 

TGF-ɓ is capable of activating non-SMAD signaling pathways, specifically GTPases, 

phosphatidylinositol 3-kinase and MAPK pathways, which include P38, Jun N-terminal kinase 

(JNK), and extracellular signalïregulated kinases (ERK) (Mu, Gudey & Landstrom, 2012; Kang, 
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Liu & Derynck, 2009; Zhang, 2009). The process of SMAD-independent TGF-ɓ signaling 

pathway is still ambiguous and how it functions is still unknown. The balance between both 

signaling pathways is crucial in defining cellular specific response to TGF-ɓ signal (Iwata, Parada 

& Chai, 2011). 

 

1.8 Mouse craniofacial phenotypes and deletion of TGF-ɓ signaling genes 

 

1.8.1 TGF-ɓ1 null (TGF-ɓ1ī/ī) mice 

The expression of TGF-ɓ1 during palatal fusion is strongly elevated in the MEE prior to 

the adhesion of opposing palatal shelves (Fitzpatrick, Denhez, Kondaiah & Akhurst, 1990). After 

adhesion, TGF-ɓ1 epithelial expression ceases and is expressed in mesenchymal cells only (Iwata, 

Parada & Chai, 2011; Li, Yang, Luo, Dedhar & Liu, 2007). Around 60% TGF-ɓ1 null mutant mice 

die in utero while 40% survive to term, they develop normally in the first two weeks of life and 

die by the fourth week due to rapid wasting syndrome, all the mice develop a multifocal 

inflammatory disease in most of the tissues (Kulkarni et al., 1995). Heterozygous TGF-ɓ1 null 

mice are normal developmentally.  

 

1.8.2 TGF-ɓ2 null (TGF-ɓ2ī/ī) mice 

The expression of TGF-ɓ2 is mainly localized to palatal mesenchyme during palatal 

adhesion (Iwata, Parada & Chai, 2011). TGF-ɓ2 null mutant mice die prenatally and develop 

multiple developmental defects (Sanford et al., 1997). Heterozygous TGF-ɓ2 null mice are normal 

developmentally. 
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1.8.3 TGF-ɓ3 null (TGF-ɓ3ī/ī) mice 

The expression of transforming growth factor beta 3 (TGF-ɓ3) is strongly expressed in 

MEE cells prior to adhesion of the palatal shelves and continues throughout the palatal fusion 

process (Yang & Kaartinen, 2007; Martinez-Sanz et al., 2008). TGF-ɓ3 is an essential player in 

both cell degradation and palatal adhesion (Kaartinen et al., 1995). TGF-ɓ3 knockout mice are 

born with a cleft in the secondary palate caused by a defect in the degeneration of the medial edge 

epithelial cells and the process of palatal fusion (Taya, O'Kane & Ferguson, 1999; Kaartinen et al., 

1995). Lack of TGF-ɓ3 function in null mutant mice leads to loss of surface filopodia (Taya, 

O'Kane & Ferguson, 1999). The loss of TGF-ɓ3 signal was rescued by an overexpression of 

SMAD2 (Cui et al., 2005). Heterozygous TGF-ɓ3 null mice are normal developmentally. 

 

1.8.4 TɓRI, TɓRII and TɓRII null mice. 

TɓRI null mutant mice die early during embryonic development due to a defect in vascular 

development of the yolk sac and also the placenta, and absence of red blood cells (Larsson et al., 

2001). Heterozygous TɓRI null mice are normal developmentally. 

TɓRII null mutant mice have a lethal defect in both vasculogenesis and yolk sac 

hematopoiesis leading to early embryonic death (Oshima, Oshima & Taketo, 1996). Heterozygous 

TɓRII null mice are normal developmentally. 

Mutagenic TɓRIII null mice die at an early embryonic stage before birth due to a 

proliferative defect in heart and also an increased cell death in the liver (Stenvers et al., 2003). 

Heterozygous TɓRIII null mice are normal developmentally. 
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1.8.5 SMAD 2 null mice 

Research has revealed an important biological role of SMAD2 in regulating 

embryogenesis, SMAD2 null mutant mouse embryos failed to form an organized egg cylinder and 

also lacked mesoderm (Nomura & Li, 1998; Waldrip, Bikoff, Hoodless, Wrana & Robertson, 

1998; Weinstein et al., 1998). Almost one fifth (20%) of Heterozygous SMAD2 knockout mice 

develop gastrulation defects and also lack mandible or eyes (Nomura & Li, 1998). 

 

1.8.6 SMAD 3 and SMAD4 null mice 

SMAD3 null mutant mice die afterbirth at age one month to eight months due to a primary 

defect in immune functions (Yang et al., 1999). Heterozygous SMAD3 null mice are normal 

developmentally. 

SMAD4 null mutant mice die early during embryonic development between embryonic 

day E6.5 and E8.5 and they are all developmentally delayed at E6. They show little or no 

elongation in the extraembryonic portion of late egg cylinder stage embryos (Yang, Li, Xu & 

Deng, 1998). Heterozygous SMAD4 null mice are normal developmentally. 
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1.9 Experimental mammalian models: mice in the study of cleft lip and palate 

Numerous animal species have been used to study human development. Several mammals 

mimic the same developmental process as humans. Mice models in particular have been used 

extensively in deciphering those biological processes. The benefit of studying mice in particular 

to understand CL and CP comes from anatomical and molecular similarities in palatal development 

and the fact that mice are susceptible to similar genetic modifications and manipulations. In fact, 

mice and humans share almost 99% of their genes (Gritli-Linde, 2008). Dif ferent studies have used 

mice to study normal and abnormal palatal development which have revealed key molecules and 

complex regulatory pathways regulating each step of the lip and palate development.  

 

Development of the secondary palate in mice happens in concurrence with the growth and 

development of other craniofacial structures (Gritli-Linde, 2007; 2008). Mouse models can be used 

to determine if clefting is secondary to altered growth of the lip, failure of reorientation of the 

palatal shelves or abnormal fusion leading to persistent midline epithelium seam. Human genetic 

studies have succeeded to some extent to identify key genes involved in syndromic orofacial clefts, 

however the understanding of non-syndromic orofacial clefts remains unclear due to the complex 

etiology (Gritli-Linde, 2008). 
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1.9.1 Experimental mammalian models: K14-SMAD2 mouse phenotype 

Cytokeratin 14 (K14) is expressed in mammalian epithelial cells. K14 promoter- driven 

SMAD2 overexpression in transgenic mice has been shown to result in several phenotypic 

characteristics in mice: half the size of their litter mates until adulthood, short tail, failure of 

development of the rudiment of external ear, the paws skin was thick, flaky with a tight surface, 

hair development disturbances, and hyper-keratinized ventral skin surface (Ito et al., 2001).  

The K14-SMAD2 overexpression was found to rescue clefting of the secondary palate in 

the TGF-ɓ3 knockout mice (Cui et al., 2005). The mechanism of palatal fusion in the K14-SMAD2 

overexpressed TGF-ɓ3 knockout mice and the fate of the MEE was not fully investigated. The 

K14-SMAD2 overexpression played a significant role in the fate of MEE and restoring the 

SMAD2 signal pathway was enough to restore the fusion of the secondary palate (Cui et al., 2005).  

 

1.9.2 TGF-ɓ3(-/-) and K14-SMAD2/TGF-ɓ3(-/-) mice phenotype 

TGF-ɓ3(+/-) heterozygous mice were bred to generate TGF-ɓ3(-/-) homozygous knockout 

newborns. All homozygous newborn mice TGF-ɓ3(-/-) showed grossly abnormal development of 

the airways and terminal air spaces, resulting in a primitive lung with decreased alveolarization at 

birth and cleft palate (Kaartinen et al., 1995).  

Research did not reveal any skeletal abnormalities in the newborn except those pertaining 

to the palatal bones. All homozygous newborn mice TGF-ɓ3(-/-) suffered from clefting of the 

secondary palate (Kaartinen et al., 1995; Proetzel et al., 1995). The severity of the clefting varied 

among mice genetic background (Kaartinen et al., 1995; Proetzel et al., 1995; Koo, Cunningham, 

Arabshahi, Gruss & Grant, 2001). The phenotype was most severe in the C57BL/6 mouse line 

background (Cui et al., 2005). In 50% of the homozygotes, the palatal cleft extended into the most 
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anterior palate, while in the remaining homozygotes the anterior segment was fused (Kaartinen et 

al., 1995). Serial coronal sections of the palate during the course of palatal fusion showed that 

vertical growth and elevation of the palatal shelves was normal (Kaartinen et al., 1995). TGF-ɓ3(-

/-) newborns die within the first day as they cannot suckle (Kaartinen et al., 1995; Proetzel et al., 

1995). 

TGF-ɓ3(+/-) heterozygous mice were mated with K14-SMAD2 mice in order to generate 

K14-SMAD2/TGF-ɓ3(+/-) line, and then cross mated to produce K14-SMAD2/TGF-ɓ3(-/-) 

newborns (Cui et al., 2005). All K14-SMAD2/TGF-ɓ3(-/-) newborn showed fusion of the secondary 

palate with mesenchymal confluence with no persistent MES (Cui et al., 2005). Fusion extended 

through the secondary palate and anterior portion of the soft palate in 50% of the K14-

SMAD2/TGF-ɓ3(-/-) (Cui et al., 2005). Clefting was still present between the primary and 

secondary palate (Cui et al., 2005). The palatal fusion score was correlated with levels of 

phosphorylated-SMAD2 (P-SMAD2), the higher the fusion score the higher the P-SMAD2 levels 

which indicate that the rescue of the palatal fusion is attributed to the increase in P-SMAD2 levels 

(Cui et al., 2005). To conclude, all these results suggests that TGF-ɓ3 is necessary for initiating 

and continuing the phosphorylation of SMAD2 in the palatal MEE that was required to induce 

gene expression mandatory to complete the fusion. The activation and amount of SMAD2 in the 

absence of TGF-ɓ3 proves to be a key player in determining the fate of MEE cells. 
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Chapter 2: Medial edge epithelium 

 

 

 

 

 

 

 

2.1 Fate of medial edge epithelium 

Throughout the course of palatal development, medial edge epithelium (MEE) 

disappearance is one of the crucial steps in the process of palatal fusion (Figure 5). However, the 

fate of these cells is still debated and controversies still remain on this issue. The cellular 

mechanism behind the disintegration of the midline epithelial seam have been under great focus 

for decades. No conclusive evidence provides a firm conclusion on the fate of the MEE cells (Iseki, 

2011). Different results from research done on both in vitro and in vivo on the fate of MEE suggests 

that MEE cells select their fate based on the environmental condition (Gurley, Wamsley & Sandell, 

2004). Researchers have proposed three different theories regulating the fate of medial edge 

epithelium 1) apoptosis, 2) epithelial-mesenchymal transdifferentiation (EMT) and 3) migration 

(Table 1).  

 

 

  

Figure 5 Coronal section of mouse fetus 

Process of MEE disappearance in palatal shelves to reach mesenchymal confluence (B-E). 
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2.1.1 Apoptosis (programed cell death)   

Apoptosis was one of the first theories to describe the mechanism regulating MEE cells 

disappearance. It was based on ultrastructural observation that includes, presence of lysosomes, 

autophagic vacuoles, macrophages and dense bodies (Farbman, 1968; DeAngelis & Nalbandian, 

1968; Hayward, 1969; Shapiro & Sweney, 1969; (Shah, Schuing, Benkhaial, Young, & Burdett, 

1991). Later, Martinez-Alvarez et al., (2000), showed in their study the presence of macrophages 

and phagocytosis of dead cells near the MES and concluded that MEE cells during palatal fusion 

undergo programmed cell death. 

Cuervo & Covarrubias (2004), used a technique to label MEE cells genetically with an 

adenovirus that carried a LacZ gene, indicated that apoptosis is the main process for MES 

disintegration. They also noted that only the periderm cells migrate orally or nasally forming the 

triangles and this process is crucial for the upcoming MEE cell apoptosis (Cuervo & Covarrubias, 

2004). Furthermore, Cuervo & Covarrubias (2004) used another labeling technique with 

carboxydichlorofluorescein diacetate succinimidyl ester (CCFSE), similar to (Griffith & Hay, 

1992) and also concluded that apoptosis is the fate of MEE during palatal fusion. Cuervo & 

Covarrubias (2004) argued that there was lack of follow up in previous studies to confirm whether 

the transforming cells containing the dye were dying cells or were phagocytes containing the dying 

cells (Cuervo & Covarrubias, 2004).  

Vaziri Sani et al., (2005) utilized conditional knockout mice k14-cre/R26R in order to trace 

the MEE cells in vivo, and found no labeled cells in the palate mesenchyme. Also, Xu et al., (2006) 

utilized the same technique and did not find any labeled cells in the palate mesenchyme. Both 

studies concluded that MEE cells undergo programmed cell death with no evidence of EMT 

(Vaziri Sani et al., 2005; Xu et al., 2006). Dudas & others (2006), also emphasized the important 
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role of apoptosis during palatal fusion when they added TGF-ɓ3 beads to the TGF-ɓ3(-/-) MES and 

demonstrated the occurrence of apoptosis rather than EMT (Dudas et al., 2006).    

   

 

2.1.2 Epithelial -mesenchymal transdifferentiation  

Epithelial-mesenchymal transdifferentiation (EMT) is a process allowing an epithelial cell 

attached to basement membrane to undergo multiple changes enabling it to assume a mesenchymal 

cell phenotype. Those phenotypes include, enhanced migratory capacity, invasiveness, resistance 

to apoptosis, and increased production of extracellular matrix (ECM) components. The climax of 

an EMT process is signaled by the degradation of underlying basement membrane and the 

formation of a mesenchymal cell that can migrate away from its originating epithelial layer (Kalluri 

& Neilson, 2003). The process of EMT plays a fundamental role in wound healing, development 

and in stem cells (Lamouille, Xu & Derynck, 2014). 

 Epithelial and mesenchymal cells differ in functional and phenotypic characteristics. The 

epithelial layer is composed of cells that are tightly adjoined together by specialized intercellular 

junctions including tight junctions, adherens junctions, gap junctions and desmosomes (Alberts, 

Wilson & Hunt, 2008). Epithelial cells have an apico-basolateral polarization that can be displayed 

through the distribution of adhesion molecules; cadherins and integrins, the polarized organization 

of the actin cytoskeleton, the presence of cell-cell junction in lateral belt form and the presence of 

basal lamina at the basal surface (Thiery & Sleeman, 2006). On the contrary, forming an organized 

cell layer is not a characteristic of mesenchymal cells. They donôt have the same apicalïbasolateral 

organization as epithelial cells, they are not associated with a basal lamina and they contact 

adjacent mesenchymal cells focally (Thiery & Sleeman, 2006). 
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Definitive evidence of transformation of the MES cells into mesenchymal cells has been 

found during examination of palatal fusion in rat embryos utilizing ultra-structural studies and 

transmission electron microscope (TEM) (Fitchett & Hay, 1989). The MES before transformation 

activates vimentin, an intermediate filament expressed by mesenchymal cells (Hay, 1990) and 

decreases Syndecan, an epithelial determinant, (Fitchett & Hay, 1989).  

Cell linage studies tracing MES cells incorporating dyes was utilized to trace the fate of 

the MES cells (Shuler, Halpern, Guo & Sank, 1992; Shuler, Guo, Majumder & Luo, 1991). By 

using Dil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate), a florescent dye 

 

Figure 6 Cellular changes associated with EMT 

Epithelial cells demonstrate apical-basal polarity, show strong cell-cell adhesion through adherens 

junctions and tight junctions, and have a basal matrix consisting primarily of type IV collagen and 

laminin. Upon induction of EMT, the cells lose their adhesion and change morphology and acquire 

front end-to-back end polarity (Gonzalez & Medici, 2014). 
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to trace the cell linage, Shuler showed that EMT occurs during MES disappearance and confirmed 

the ultrastructural findings (Shuler, Halpern, Guo & Sank, 1992; Shuler, Guo, Majumder & Luo, 

1991). This approach utilizing Dil  dye was first used by Serbedzija and colleagues to trace neural 

crest cells undergoing EMT (Serbedzija, Bronner-Fraser & Fraser, 1992; Serbedzija, Burgan, 

Fraser & Bronner-Fraser, 1991; Serbedzija, Bronner-Fraser & Fraser, 1989) and was adopted in 

both the in vitro and in vivo models to determine the fate of the MEE cells during palatal fusion 

(Shuler, Halpern, Guo & Sank, 1992; Shuler, Guo, Majumder & Luo, 1991). Griffith & Hay, 1992, 

used another dye to trace MEE transformation during palatal fusion, (CCFSE) which is localized 

only in the epithelial cells and does not transport into the connective tissue (Griffith & Hay, 1992). 

Their findings (Griffith & Hay, 1992) concur with the findings of Shuler and colleagues (1991, 

1992). The concept of EMT during palatal fusion was also supported by the findings of (Kaartinen, 

Cui, Heisterkamp, Groffen & Shuler, 1997; Kaartinen et al., 1995) emphasizing the role of TGF-

ɓ3 during MES EMT.  

Contrary to Vaziri Sani et al., (2005) and Xu et al., (2006) results, another study was done 

utilizing the same technique and found labeled epithelial cells present in the palatal mesenchyme 

(Jin & Ding, 2006). Although all the studies have used different k14-cre transgenic mice lines, the 

discrepancy in the result could be due to differences in the time of k14 promoter transgene 

activation or due to different insertion sites of each k14 promoter transgene (Iseki, 2011).  Also 

Jin & Ding, (2006) in their study examined the programed cell death fate of MEE cells in the 

apoptotic protease activating factor 1 (Apaf-1) deficient mice where they lack Caspase 9 and 3 

(caspase effectors), and showed that although Caspase 9 and 3 where not activated palatal fusion 

was normal. 
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Opposed to Martinez-Alvarez et al., (2000) findings, Fitchett & Hay, (1989), observed 

those phagocytic cells previously discovered and concluded that they were restricted to the 

midpalatal raphe and posterior palate and are involved in the removal of the peridermal cells caught 

in the MES. Griffith & Hay (1992), stained the palate with Gomori stain for acid phosphatase, an 

enzyme marker for lysosomes, and found that the isolation bodies were not lysosomes. 

 

 

2.1.3 Cell migration  

The concept of cell migration was first observed by Carette and Ferguson in 1992, they 

proposed that medial edge epithelial might migrate to the oral or nasal epithelia during the process 

of palatal fusion (Carette & Ferguson, 1992). They used a Dil labeling technique to label the MEE 

cells and trace them during the process of palatal fusion in organ culture. Their finding revealed 

that MEE cells migrate nasally or orally forming the nasal and oral triangles on both sides of the 

palate, and eventually become part of the oral and nasal epithelia. Cell culture studies have 

demonstrated that MES cells migrate by suppressing E-cadherin, which facilitates cell to cell 

adhesion and expressing vimentin, fibronectin and Ŭ-smooth muscle actin in response to TGF-ɓ3 

(Ahmed et al., 2007).  

Jin & Ding, 2006, utilized a different organ culture method where a Rosa26-originated 

ñblueò palatal shelf was paired with a C57BL/6-derived ñwhiteò palatal shelf.  In their study they 

observed the migration of MEE cells to the nasal side only. they also observed an anteroposterior 

migration of MEE cells, which could have a role in posterior palate fusion. Several studies have 

shown that peridermal cells that cover the MEE migrate to the edges of the palatal midline prior 
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to contact of the palatal shelves and their presence initially is necessary for the first contact between 

the two shelves (Dudas, Li, Kim, Yang & Kaartinen, 2007). 

To conclude, most studies have emphasized on the fate of the periderm cells indicating that 

they either die early prior to fusion or migrate toward the nasal or the oral epithelia. Furthermore, 

current research indicated that migration is one of the fates of MEE during palatal fusion but not 

the only one.  

 

 

2.2 The role of twist1 and collagen IV during palatal development 

The process of EMT is controlled by multiple signaling molecules including growth factor, 

transcription factors and extracellular matrix activator (Thiery & Sleeman, 2006). One of the 

hallmarks of EMT in both development and tumorigenesis is the suppression of epithelial cadherin 

(E-Cadherin) (Yu, Kamara, & Svoboda, 2008). The suppression of E-cadherin is associated with 

loss of intercellular epithelial junctional complexes (Yu, Kamara, & Svoboda, 2008). E-cadherin 

is supressed by several EMT transcription factors including Twist1, Snail1 and Snail2 (Slug) 

(Batlle et al., 2000; Yu, Kamara, & Svoboda, 2008).  

Twist1 protein, a basic-helix-loop-helix (bHLH) transcription factor, is expressed in the 

palatal shelves in both the MEE cells prior to fusion and mesenchymal cells (Yu, Kamara, & 

Svoboda, 2008; Kitase, Yamashiro, Fu, Richman, & Shuler, 2011). This was also confirmed in 

organ culture, the expression of Twist1 was upregulated in chicken palatal shelves treated with 

TGF-ɓ3 and decreased in mouse palatal shelves treated with TGF-ɓ3 neutralizing antibodies (Yu, 

Kamara, & Svoboda, 2008). The addition of Twist1 siRNA to cultured palatal shelves 

downregulated Twist1 expression and prevented fusion (Yu, Kamara, & Svoboda, 2008). 
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Twist1 plays a pivotal role in the process of EMT in embryonic development and tumor 

progression. Twist1 is essential for the development of mice mesenchyme (Zhu, Ma, Wang, Song, 

& Lv, 2016). Twist1 plays a key role in migratin and localizatin during the morphogenisis of 

cranial neural tube (Soo et al., 2002). Twist1 was also linked to tumor progression and metastasis 

(Yang et al., 2004). In mammary cell carcinoma, Twist1 levels were correlated with tumor 

metastasis and invasion (Yang et al., 2004). The Twist1 null mutant mice Twist1(-/-) die early 

during embryonic development at day E11.5 with failure of neural tube closure (Bourgeois et al., 

1998). Heterozygous mice Twist1(+/-) are born with a craniofacial abnormality similar to Saethreï

Chotzen syndrome in the human (Bourgeois et al., 1998). 

The basement membrane (BM) is composed of a network of proteins that include 

collagens, fibronectins and laminin (McClay & Ettensohn, 1987). In the palatal shelves, the BM 

separate the MEE from the surrounding mesenchyme. In epithelial tissues, the basement 

membrane is mainly composed of Laminin, type IV collagen, and fibronectin (Iamaroon & 

Diewert, 1996). Type IV collagen is a member of the collagen superfamily and consist of six 

distinct Ŭ-chains (Khoshnoodi, Pedchenko, & Hudson, 2008). Degradation of the basement 

membrane is one of the hallmarks of EMT. Epithelial cells cultured on fibrillary collagen type I 

and type III undergo EMT, acquire motile capability and become invasive (Menke et al., 2001). 

When the same cells are cultured on collagen type IV (ColIV) and laminin they maintain their 

epithelial phenotype (Menke et al., 2001). TGF-ɓ3(-/-) mice with cleft of the secondary palate 

retained their MEE cells basement membrane and when TGF-ɓ3 was added to the culture medium 

it resulted in the loss of the basement membrane and coincided with fusion of the palatal shelves 

(Kaartinen, Cui, Heisterkamp, Groffen, & Shuler, 1997). Previous studies have suggested a 

correlation between loss of ColIV in the MES basement membrane and the ability of MEE cells 
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to undergo EMT through the expression of twist1 (Kitase, Yamashiro, Fu, Richman, & Shuler, 

2011). 

To sum up, the loss of BM is considered an important step toward EMT. The selective loss 

of ColIV in the BM and the presence of the mesenchymal marker twist1 in the MEE cells provides 

evidence for EMT. 
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Table 1: Fate of medial edge epithelium (MEE) in literature  

References Study type Fate Methods 

DeAngelis & Nalbandian (1968),  

Farbman (1968),Hayward (1969), 

Shapiro & Sweney (1969) 

In vivo Cell death 
Histology 

 Electron microscopy 

Fitchett & Hay (1989) 
In vivo 

In vitro 

EMT, cell death in the 

periderm 

Electron microscopy 

Immunohistochemistry 

Griffith & Hay (1992) 
In vivo 

In vitro 

EMT 
Fluorescent labelling (CCFSE) 

Shuler et al. (1991, 1992) 
In vivo 

In vitro 

EMT 
Fluorescent labelling (DiI) 

Carette & Ferguson (1992) In vitro Migration Fluorescent labelling (DiI) 

Kaartinen et al. (1997) In vitro EMT Fluorescent labelling (DiI) 

Martínez-Álvarez et al. (2000) 

In vitro Cell death, EMT, 

migration was not 

excluded 

TUNEL staining Retroviral vector 

labelling 

Cuervo & Covarrubias (2004) 

In vitro Cell death, a few EMT, 

migration of periderm 

cells 

Fluorescent labelling (CCFSE) 

Adenoviral vector infection 

Cytochalasin D TUNEL staining 

Takigawa & Shiota (2004) 

In vitro Cell death, EMT, 

migration, migration and 

cell death (periderm) 

Electron microscopy TUNEL 

Immunohistochemistry 

Gurley et al. 2004 
In vitro Cell death, EMT, no 

migration 

Fluorescent labelling (CCFSE) 

TUNEL staining 

Jin & Ding (2006) 
In vivo 

In vitro 

Cell death, EMT, 

migration 
K14-cre; R26R mouse 

Vaziri Sani et al. (2005) Xu et al. 

(2006) 

In vivo Cell death 
K14-cre; R26R mouse 

http://onlinelibrary.wiley.com.ezproxy.library.ubc.ca/doi/10.1111/j.1440-169X.2010.01245.x/full#b26
http://onlinelibrary.wiley.com.ezproxy.library.ubc.ca/doi/10.1111/j.1440-169X.2010.01245.x/full#b9
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2.3 How cells die: apoptosis, autophagy and necrosis 

2.3.1 Cell death 

During the course of development, cell death plays a role in shaping organs or separating 

fingers and toes. It also serves a role in eliminating structures that had a function and are no longer 

needed. The total elimination of the tadpole tail during amphibian metamorphosis is an example. 

By the end of metamorphosis, all the tissues in the tail are removed by apoptosis (Ishizuya-Oka, 

Hasebe & Shi, 2009). Apoptosis is an evolutionarily conserved phenomenon essential for both 

development and tissue homeostasis in all multi-cellular organisms (Elmore, 2007). 

Research has shown that cells can die by several mechanisms (Schulze-Osthoff, 2008). 

Current research has enumerated in mammals, as many as eleven different pathways of cell death 

(Kroemer et al., 2005, Melino, Knight & Nicotera, 2005). According to morphological criteria, 

cell death can be distinguished in mammals into three distinct types; apoptosis (Type I cell death), 

autophagic cell death (Type II cell death) and necrosis (Type III cell death), Figure 7 (Alvarez et 

al., 2010).  
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2.3.2 Differences between mechanism of cell death. 

Many morphological and biochemical differences have been observed between apoptosis, 

autophagy and necrosis (Vermes & Haanan, 1994). Cell necrosis occurs due to exposure to 

extreme physiological conditions; hypothermia and hypoxia; leading to damage in the plasma 

membrane. Necrosis is a nonspecific cell death that happens when the cell loses its ability to 

maintain homeostasis, causing rapid influx of extracellular ions Na+ and Ca+ and water (Barros et 

al., 2001; Barros, Hermosilla, & Castro, 2001). This process causes the entire cell to swell 

including the intracellular organelles that then rupture, releasing the cytoplasmic content with the 

 

Figure 7 Forms of cell death: necrosis vs apoptosis. 

(J Monteiro, G Silva, & C Villar, 2015) 
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lysosomal enzymes into the extracellular fluid (Barros, Hermosilla, & Castro, 2001). Necrotic cell 

death is associated with tissue damage and inflammatory response (Kroemer et al., 2005).  

Apoptosis is a type of cell death that occurs in normal physiologic conditions with the cell 

participating in its own death (Schulze-Osthoff, 2008).  Apoptosis occurs during tissue 

homeostasis, development of the nervous system and embryogenesis (Sgonc & Gruber, 1998). It 

is characterized by special changes in the nuclear morphology, chromatin condensation and 

fragmentation, cell shrinkage, blebbing of the plasma membrane and formation of apoptotic bodies 

(Bowen, 1993; Carson & Ribeiro, 1993; Cohen, 1993). 

Phagocytosis is a process that was first detected  100 years ago by Metchnikoff (Flannagan, 

Jaumouille, & Grinstein, 2012). It is defined as the process of large particle (>0.5-ɛm) ingestion 

by cells (Flannagan, Jaumouille, & Grinstein, 2012). This process is a crucial part of the immune 

system providing innate immunity and it is also crucial for tissue homeostasis and remodeling 

(Aderem, 2003). phagocytosis utilizes receptors on the cell surface to recognize foreign bodies and 

bind to them (Flannagan, Jaumouille, & Grinstein, 2012). 

 

2.4 TGF-ɓ and apoptosis. 

The TGF-ɓ through its activated intracellular SMAD proteins has been linked to 

programmed cell death (apoptosis) in epithelial cells (Schuster & Krieglstein, 2002). TGF-ɓ 

utilizes SMAD2 inside the cell by means of phosphorylation in order to carry the signal to the 

nucleus. This activation increases caspase activation specifically; the activation of caspase3, which 

cleaves proteins in many cell compartments leading to morphological changes of apoptosis 

(Wyllie, 2010). 
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Among other functions of TGF-ɓ is its ability to induce programmed cell death in a variety 

of cells. TGF-ɓ was found to induce apoptosis in human and mouse lymphocytes (Chaouchi et al., 

1995). Brown and colleagues, (1998) found that a mouse lymphoma cell line responds to TGF-ɓ 

in a dose dependent manner. When TGF-ɓ is administrated cell growth is inhibited and with higher 

dosages of TGF-ɓ a large number of cells die by apoptosis (Brown et al., 1998). Further 

experiments done on the same lymphoma cell line found that interference with SMAD pathways, 

either overexpression of SMAD7 which inhibits SMAD signaling mediated by TGF-ɓ or mutation 

of SMAD2 and SMAD3, inhibited TGF-ɓ mediated apoptosis (Patil et al., 2000).  TGF-ɓ also was 

found to induce apoptosis in liver epithelial cells. Liver epithelial cells in rats undergo programmed 

cell death when treated with TGF-ɓ (Teramoto et al., 1998). TGF-ɓ was found to induce growth 

arrest in fetal hepatocytes (Sanchez et al., 1995) and induce apoptosis (Sanchez et al., 1997). Also 

TGF-ɓ was shown to induce apoptosis in both non-tumorigenic rat prostate epithelial cells (Hsing 

et al., 1996) and prostatic carcinoma cells (LandstrÖm et al., 1996). Another study has revealed 

the involvement of SMAD proteins in this process and found an increased expression and 

activation of SMAD2 (Brodin et al., 1999). TGF-ɓ was found to be essential in regulating 

apoptosis in the central retina, the application of TGF-ɓ neutralizing antibodies decreased the 

number of apoptosis positive cells in the central retina (Dünker et al., 2001). Lee et al. (2002) 

studied the effect of TGF-ɓ on human lens epithelial cells in vitro and found that TGF-ɓ induced 

apoptosis through downregulation of B-cell lymphoma 2 (BCl2) (Lee et al., 2002). Moreover, 

TGF-ɓ was found to induce apoptosis in human gastric carcinoma cells and the process was found 

to be inhibited by SMAD3 knockdown (Kim et al., 2004). A recent study found that TGF-ɓ 

induced apoptosis in human gingival epithelium through a SMAD2 and caspase 9/3 cascade 

(Yoshimoto et al., 2015).  
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Studies have reported a critical role of SMAD2 in TGF-ɓ induced apoptosis in a variety of 

cells and in tumors.  In murine gingival junctional epithelium, SMAD2 overexpression in K14-

SMAD2 mice was found to induce apoptosis and the levels of apoptotic cells were correlated to 

levels of phosphorylated-SMAD2 (Fujita et al., 2012). TGF-ɓ through SMAD2 signaling was 

found to be involved in human brain glioma and current research showed that SMAD2 induced 

apoptosis by upregulating caspase3 and downregulating BCL-2 (Zhao et al., 2015). Additionally, 

decreased levels of phosphorylated-SMAD2 was correlated to cancer invasion and poor prognosis 

in gastric cancer (Wu et al., 2012). In summary, evidence from in vitro and in vivo studies support 

the role of TGF-ɓ as a death inducing factor in epithelial cells. TGF-ɓ was found to induce 

apoptosis through its SMAD signaling pathway. Most significantly, current studies have found a 

correlation between levels of phosphorylated-SMAD2 and programmed cell death in epithelial 

cells. 

  

2.5 Mechanism of apoptosis 

The mechanism of apoptosis is a cascade of multiple events (Cohen, 1997). There are two 

main pathways of apoptosis, extrinsic (death receptor pathway) and intrinsic (mitochondrial 

pathway) (Elmore, 2007). Caspases, major players in the event of programmed cell death, are 

categorized into initiators (caspase 2, 8, 9, and 10), executioners (caspase 3, 6, and 7) and 

inflammatory caspases (caspase 1, 4, and 5) (Hancock, 2010; Marks, Klingmu↓ller & Mu↓ller-

Decker, 2009).  

The extrinsic signaling pathway involves a receptor mediated interaction, the receptors are 

members of the tumor necrosis factor (TNF) superfamily (Elmore, 2007). The common ligand and 

corresponding death receptor include Fas ligand / Fas receptor (FasL/FasR) and TNFŬ/TNFR1 



 

 

 

46 

(Elmore, 2007). Upon binding to the receptor, cytoplasmic adaptor proteins are recruited. Fas 

ligand bind to Fas receptor and causes adaptor protein FADD to bind, TNF ligand binds to TNF 

receptor and causes adaptor proteins TRADD, FADD and Rip to bind together (Hancock, 2010; 

Marks, Klingmu↓ller & Mu↓ller-Decker, 2009). Then, FADD associates with procaspase-8 and an 

auto-catalytic activation of procaspase-8 occurs. Once caspase 8 is activated the executioner 

caspases have been activated (Elmore, 2007).  

The intrinsic pathway involves no receptor mediated stimuli, mitochondrial initiated events 

occur (Elmore, 2007).  Stimuli include, absence of growth factors or cytokines or the presence of 

radiation, toxins, hypoxia or viral infections (Hancock, 2010; Marks, Klingmu↓ller & Mu↓ller-

Decker, 2009). These stimuli alter the inner mitochondrial membrane and result in an opening of 

the transition pores (Saelens et al., 2004). This releases pro-apoptotic proteins, mainly cytochrome 

c, Smac/DIABLO and serine protease HtrA2/Omi from the intermembrane space into the cytosol 

(Hancock, 2010; Marks, Klingmu↓ller & Mu↓ller-Decker, 2009). These proteins are involved in the 

activation of the mitochondrial pathway, cytochrome c binds to Apaf-1 and procaspase-9. This 

leads to the activation of caspase 9 (Elmore, 2007).  Caspase-9 then binds to and activates 

procaspase-3, procaspase-6 and procaspase-7 as well (Budihardjo, Oliver, Lutter, Luo, & Wang, 

1999). After that caspase-3, an executioner caspase, causes activation of the endonuclease caspase-

activated DNase (CAD), which is responsible for the apoptotic DNA fragmentation, and chromatin 

degradation (Sakahira, Enari, & Nagata, 1998). 

In conclusion, both the intrinsic and extrinsic pathways will lead eventually to the 

activation of the executioner caspases. The presence of activated caspase-3 in a cell will indicate 

that it is undergoing programmed cell death.  
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2.6 Apoptosis detection methods 

Apoptosis is a major player in multiple cellular events (Sgonc & Gruber, 1998). Cell death 

that occurs during embryonic development, metamorphosis and endocrine tissue atrophy (Nagata, 

1997).  Apoptosis can occur in pathological conditions including cardiovascular and 

neurodegenerative diseases (Wang, 1997). Apoptosis targets individual cells instead of all the cells 

in a specific tissue (Carson & Ribeiro, 1993). In contrast, necrosis is a massive synchronized loss 

of cells from tissues (Wang, 1997). Once apoptosis is initiated the cascade proceeds quickly and 

cell death happens within hours (Nagata, 1997; Carson & Ribeiro, 1993). 

 Programmed cell death, apoptosis, is a process that involves a sequence of events from cell 

shrinkage, increased density of the cytoplasm, chromatin condensation, DNA fragmentation, 

degradation of nuclear proteins, formation of apoptotic bodies and finally phagocytosis by 

neighboring cells and macrophages (Bowen, 1993; Carson & Ribeiro, 1993; Cohen, 1993). The 

analysis of apoptosis depends on those characteristics and is very important in various clinical and 

basic investigations (Sgonc & Gruber, 1998). Several methods have been utilized in order to 

differentiate between necrotic, apoptotic and viable cells (Elmore, 2007; Sgonc & Gruber, 1998).  

 

2.6.1 TUNEL t echnique 

A common method to detect apoptosis is based on DNA fragmentation. Terminal 

deoxynucleotidyl transferase (Tdt) mediated dUTP nick-end labeling (TUNEL) detects DNA 

fragments by labeling the ends.  The method was developed by Gavrieli to study apoptosis on 

different types of cells (Gavrieli, Sherman, & Ben-Sasson, 1992). This method uses terminal 

transferase to add a labeled UTP to the 3ô-hydroxyl ends of DNA fragments. The labeled dUTP 
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can be detected by fluorescence microscopy (Sgonc & Gruber, 1998). The advantages of this 

technique is the ability to detect initial DNA fragmentation in cells undergoing apoptosis, the high 

sensitivity, and the ability to detect a single cell using fluorescence microscopy. This method 

requires careful controls because it is prone to false positive either are possible from necrotic cells 

or cells undergoing DNA repair (Elmore, 2007). 

 

2.6.2 Immunohistochemistry detection of apoptosis related caspase-3 

Immunohistochemical detection of apoptotic cells using antibodies against a variety of 

apoptotic markers, specifically caspase-3 is a productive approach (Archana, Yogesh, & 

Kumaraswamy, 2013). Caspase-3 is a cysteine protease that cleaves target proteins at aspartic acid 

residues. Caspase-3 is an executioner enzyme and it is responsible for the proteolytic cleavage of 

many important proteins (Sakahira, Enari, & Nagata, 1998). Caspase-3 is considered the main 

player in the cascade of apoptosis. Cleavage of caspase-3 at the P1 position activates caspase-3 

and is involved in the activation of other caspases (Elmore, 2007). This enzymatic activation of 

caspase-3 generates neo-epitopes which are used as antigens to generate antibodies specific to 

immunodetect activated caspase-3. The detection of cleaved caspase-3 (Ccaspase-3) is a direct and 

very sensitive method to detect apoptosis (Archana, Yogesh, & Kumaraswamy, 2013). 
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2.7 Hypothesis 

Smad2 overexpression rescues cleft palate in the TGF-ɓ3 null mutant mice by increased 

apoptosis of MEE. 

 

2.8 Aims and objectives 

Aim:  To identify the mechanism of MEE disappearance as a result of K14-SMAD2 

overexpression in the TGF-ɓ3 null mutant mice. 

 

Objective 1  To investigate in vivo the effect of Smad2 overexpression in MEE cells on the 

mechanism of fusion of palatal shelves for K14-Smad2 mice and K14-Smad2/TGF-

ɓ3 null mice by detecting basement membrane loss and Twist1 positive cells. 

 

Objective 2  To detect and quantify the medial edge epithelial cell apoptosis rate that results 

from Smad2 overexpression by detecting Cleaved caspase3 positive cells and 

TUNEL positive cells in K14-Smad2 mice and K14-Smad2/TGF-ɓ3 null mice and 

compare them with WT and TGF-ɓ3 null mutant mice. 
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Chapter 3: Materials and methods 

 

3.1 Animal breeding 

We thank Dr. Yang Chai for providing the K14-SMAD2 mice (Ito et al., 2001). Methods 

within this study followed the guidelines of the Animal Care Committee of the University of 

British Columbia. To identify the K14-Smad2 transgene a polymerase chain reaction (PCR) primer 

set was used to detect the cytokeratin 14 promoter region. To detect the TGF-ɓ3 knockout gene 

another PCR primer set was used to detect the mutated allele (discussed in detail in section 3.2). 

Mice heterozygous with respect to the TGF-ɓ3(+/ī) gene were mated to produce TGF-ɓ3(ī/ī) null 

embryos, as well as TGF-ɓ3(+/ī) heterozygous and TGF-ɓ3(+/+) homozygous embryos. TGF-ɓ3(+/ī) 

heterozygous mice were then mated with K14-SMAD2 mice to generate a TGF-ɓ3(+/ī) / K14-

SMAD2 line, which was then cross mated to produce TGF-ɓ3 (ī/ī) / K14-SMAD2 newborns (rescue 

mouse line). 

 

3.2 Animal genotyping 

The day of finding a vaginal plug was designated day 0.5. Pregnant mice were killed on 

embryonic day (E14.5) and the fetuses were recovered. Fetuses were individually labelled and 

decapitated for further study and the bodies used for genotyping by polymerase chain reaction 

(PCR). DNA was isolated from the mouse embryo using REDExtract-N-AmpÊ Tissue PCR Kit 

(Sigma-Aldrich, St. Louis, MO, USA). Each mouse tissue sample was added to 56.25µl tissue 

extract solution (45µl extraction solution mixed with 11.25µl tissue prep solution) in a 1.5ml 

microtube. The sample was mixed thoroughly by vortexing and incubated for 10 minutes at room 

temperature. Next, the sample was incubated for 3 minutes at 95°C. After that, 45µl neutralization 
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solution B was added to the sample and mixed by vortixing. The sample tissue extract was stored 

at 4°C. A 13µl master PCR mix was made by mixing: 4.36µl H2O, 8ul REDExtract-N-Amp PCR 

reaction mix, 0.32µl (1:100) forward primer and 0.32µl (1:100) reverse primer in a 1.5 ml 

microtube. Then, 2µl of the sample tissue extract was added to 13µl master PCR mix. 

  PCR analysis was carried out using two sets of primers, one for TGF-ɓ3 and one for K14-

SMAD2 (Table 2). First primer set for TGF-ɓ3 was forward sequence: 5ǋ TGGGA GTCAT 

GGCTG TAACT 3ǋ and reverse sequences: 5ǋ CACTC ACACT GGCAA GTAGT 3ǋ. PCR 

products were a 400 bp fragment for the wildtype TGF-ɓ3 allele and a 1,300 bp fragment for the 

mutated allele. PCR conditions were 31 cycles of 95°C for 20 seconds, 56oC for 25 seconds, 72°C 

for 1 minute, followed by a final cycle of 72°C for 10 minutes. Second Primer set was forward 

sequence: 5' ACACC TCCAA AGCAG GACCA AGTGG 3' and reverse sequences: 5'ATTTA 

CGCCT CTGTG ACCCA GGGCT TC 3'. PCR product size was 487 bp fragment for the K14-

SMAD2 allele. PCR conditions were 35 cycles of 94°C for 1 min, 62°C for 1 min, 72°C for 1 min.  

PCR products were analyzed by gel electrophoresis using a SYBR® Green (Thermo Fisher 

Scientific, Waltham, USA) stained 2% agarose gel (UltraPureÊ Agarose, Fisher Scientific, 

Waltham, Massachusetts, USA). After the PCR cycles had finished, 15µl from each PCR mix were 

loaded to individual lanes on the agarose gel. The results were analyzed by visualizing the gel with 

UV light and a digital photograph is taken of the stained DNA separation pattern. Careful labelling 

of all samples enabled the genotype to be assigned to individual embryonic heads in various 

experimental conditions. 

The total sample size was 40 mice divided in 4 groups, with 10 mice in each of the groups 

analyzed. G*power software (Heinrich-Heine-University, Düsseldorf, Germany) was used to 

calculate the sample size as it gave a power of 0.9 for all groups in each methodology. 
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Table 2 : Primers used for mouse genotyping 

Bold characters indicate forward sequence. Reverse sequences are placed underneath. 

Primer Sequence (5'-3') Product (bp) Reference  

TGF-ɓ3 
5ǋTGGGAGTCATGGCTGTAACT 3ǋ 

5ǋ CACTCACACTGGCAAGTAGT 3ǋ 

WT 400 bp 

Mutated 1300 bp 

Taya et. al, 1999  

K14-SMAD2 
5'ACACCTCCAAAGCAGGACCAAGTGG 3'  

5'ATTTACGCCTCTGTGACCCAGGGCTTC 3' 

487 bp Ito et. al, 2001  

 

3.3 Histology and immunohistochemistry 

Immunohistochemistry was used to identify the location and distribution of target antigens 

in MEE cells by staining with specific antibodies. ColIV (1:100, ab19808, Abcam), degradation 

of type IV collagen is a fundamental event in EMT. Twist1 (1:50, ab50887, Abcam) plays an 

important role in the EMT, Ccaspase3 (1:100, #96645, Cell Signaling Technology, USA) a critical 

activator of apoptosis, Psmad2 (1:20, #31012, Cell Signaling Technology, USA) a critical 

mediator of TGF-ɓ signaling were examined in palatal tissue. Ecadherin (1:100, 3165622, 

Transduction Laboratories) an epithelial cell marker, loss of E-cadherin is considered to be an 

important step in EMT. Histology and immunohistochemistry were conducted as follows: 

 

3.3.1 Fixation and paraffin embedding of the samples 

C57BL/6 mice heads were dissected on the indicated gestational day (E14.5). Samples 

were fixed in 4% Paraformaldehyde (PFA)/Phosphate-buffered saline (PBS) with pH 7.4 at 4°C 

on a shaker overnight (12 hours). Samples were then washed in PBS for 30 minutes twice at 4°C 
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on a shaker. Samples were then dehydrated through a series of graded ethanol (EtOH) (Fisher 

Scientific, Waltham, Massachusetts, USA) at room temperature with shaking in the following 

sequence: washed in 50% EtOH for 15 minutes twice, then 70% EtOH for 30 minutes twice, then 

85% EtOH for 60 minutes once, then 95% EtOH for 60 minutes once, then 100% EtOH for 30 

minutes three times. Following ethanol dehydration, the samples were washed in xylene (Fisher 

Scientific, Waltham, Massachusetts, USA) for 45 minutes twice with shaking at room temperature. 

Samples were then immersed in a xylene: paraffin mixture at 1:1 ratio in the oven at 58°C for 45 

minutes. Then, samples were immersed in paraffin for 20 minutes and placed in a vacuum chamber 

and repeated three times. Finally, fixed mouse heads were embedded in an embedding block with 

paraffin wax. 

 Serial frontal sections 7µm thick were prepared using a microtome (820 microtome, 

American optical spencer, Buffalo, NY) along the anterior-posterior axis perpendicular to the 

secondary palate midline for immunofluorescence and confocal microscopic analysis. 

 

3.3.2 Hematoxylin and eosin 

Prior to immunofluorescence, slides were appropriately stained for microscopic evaluation 

using Harrisôs hematoxylin solution. Samples were first deparaffinized in the oven at 58°C for 10 

min. after that, the samples were then rehydrated through xylene (Fisher Scientific, Waltham, 

Massachusetts, USA) and a graded ethanol series (EtOH) (Fisher Scientific, Waltham, 

Massachusetts, USA)  at room temperature in the following sequence: immerse the slides in xylene 

for 10 minutes twice, then 100% EtOH for 3 minutes twice, then 95% EtOH for 1 minute once, 

then 70% EtOH for 1 minutes once, then 50% EtOH for 1 minute, and finally in PBS for 1 minute 

twice. Next, slides were immersed in hematoxylin stain (Modified Harris Hematoxylin, Sigma-
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Aldrich, St. Louis, MO, USA) for 1 minute. Then, the slides were immersed in a water container, 

stained water was discarded, and the container was refilled again with water. After that, the slides 

were placed under running water for 10 minutes. Next, the slides were stained with eosin (Eosin-

Y Saturated, Richard-Allan Scientific, Kalamazoo, MI, USA) for 40 seconds. Slides were 

dehydrated through graded ethanol (EtOH) series and xylene at room temperature in a fume hood 

in the following sequence: 70% EtOH for 1 minute, then 95% EtOH for 1 minute, then 100% 

EtOH for 10 minutes, then Xylene for 10 minutes and then in a new xylene for 30 minutes. after 

that, 230ul of mounting medium were placed on each slide, and a coverslip were mounted. The 

slides were viewed by light microscopy 

 

3.3.3 Deparaffinization of tissue sections and rehydration 

Prior to staining the tissue sections with specific antibodies, samples were first 

deparaffinized in the oven at 58° C for 10 min. after that, the samples were then rehydrated through 

xylene (Fisher Scientific, Waltham, Massachusetts, USA) and a graded series of ethanol (EtOH) 

(Fisher Scientific, Waltham, Massachusetts, USA) at room temperature in the following sequence: 

immerse the slides in xylene for 10 minutes twice, then 100% EtOH for 3 minutes twice, then 95% 

EtOH for 1 minute once, then 70% EtOH for 1 minutes once, then 50% EtOH for 1 minute, and 

finally in PBS for 1 minute twice. 

 

3.3.4 Antigen retrieval and background stain blocking 

Slides were then placed in a pressure cooker (containing 2-liter water and 4 ml EDTA) for 

antigen retrieval for 2.5 minutes. Then the pressure valve was relieved and the pressure cooker 

was placed under running water for 10 minutes to cool down. Then, samples were rinsed in PBS 
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once and washed in PBS in a Coplin jar on a shaker for 5 minutes twice. Slides were then placed 

in a humidif ied chamber and 100µl blocking solution (3% bovine serum albumin (BSA)/ 0.1% 

Triton X-100 / PBS) per slide were applied to cover the entire sample for 30 minutes to reduce 

background staining.The blocking solution was drained from the slides (but not dry). 

 

3.3.5 Analysis of MEE apoptosis rate TUNEL technique 

Apoptotic cells were detected in paraffin sections by the TUNEL technique using an In 

Situ Cell Death Detection Kit (Roche Applied Science, Basel, Switzerland). Slides were first 

deparaffinized and then rehydrated (see section 3.3.3). Slides were then placed in a humidified 

chamber and 100µl blocking solution (3% bovine serum albumin(BSA)/ 0.1% Triton X-100 / PBS) 

per slide were applied to cover the entire sample for 30 minutes to reduce background staining. 

After that, the blocking solution was drained from the slides (but not dry) and 100µl of the TUNEL 

mix (10µl of the enzyme solutions were mixed with 90µl of the label solution) were applied on 

each slide. Slides were placed in an incubator at 37°C for 60 minutes. Samples were rinsed in PBS 

once and washed in PBS in a Coplin jar on a shaker for 5 minutes three times (slides were covered 

during washing to protect them from light). Next, slides were placed in the humidified chamber, 

coverslips were mounted with mounting medium including 4ǋ,6-diamidino-2-phenylindole (DAPI; 

Vector Labs) for labeling nuclear DNA. To confirm the specificity of antibodies, additional slides 

were incubated with the labeling solution only. No fluorescence staining was found in these 

negative control sections. FFPE mouse spleen sections were stained for TUNEL and used as a 

positive control. 

Total (DAPI) and apoptotic (TUNEL positive) cells were counted in MEE. The percentage 

of apoptotic MEE cells was calculated as follows: apoptotic MEE cells (%) = number of TUNEL 
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positive staining cells/number of total DAPI positive cells × 100. Nine sections obtained from each 

sample for each secondary palate location (Anterior, Middle and Posterior) were analyzed, and 

average values were calculated for ten samples in each group. These mean values and the standard 

deviations were used for one-way ANOVA that compared TUNEL positive cells in the wild type, 

K14- SMAD2/ TGF-ɓ3(+/-) and K14- SMAD2/TGF-ɓ3(-/-) mice groups. 

 

3.3.6 Analysis of MEE apoptosis rate ccaspase3 technique 

Apoptotic cells were detected in paraffin sections by using cleaved caspase3 (Ccaspase3) 

antibody (1:100, Cell Signaling Technology, USA). Slides were first deparaffinized and then 

rehydrated (see section 3.3.3). After that, Antigen retrieval was done in a pressure cocker and a 

blocking solution was applied (see section 3.3.4). Then, primary antibodies were diluted with 

blocking solution, Ccaspase3 (1:100, Cell Signaling Technology, USA) and Ecadherin (1:100, 

Transduction Laboratories) and 100µl applied on each slide. Slides were incubated with the 

primary antibodies overnight in a humidified chamber at 4°C. Next, samples were rinsed in PBS 

once and washed in PBS in a Coplin jar on a shaker for 5 minutes three times. Fluorescein labeled 

secondary antibodies Donkey anti-Mouse IgG, Alexa Fluor® 488 (1:100, Invitrogen, CA, USA) 

and Goat anti-Rabbit IgG, Alexa Fluor® 568 (1:100, Invitrogen, CA, USA), were diluted with 

blocking solution and 100µl were applied on each slide. Slides were placed in a humidified 

chamber for 60 minutes at room temperature. Samples were rinsed in PBS once and washed in 

PBS in a Coplin jar on a shaker for 5 minutes three times. Next, slides were placed in the 

humidifi ed chamber, coverslips were mounted with mounting medium including 4ǋ,6-diamidino-

2-phenylindole (DAPI; Vector Labs). To confirm the specificity of antibodies, additional slides 
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were incubated without the primary antibodies. No fluorescence staining was found in these 

sections. Mouse spleen sections were stained for Ccaspase3 and used as a positive control. 

Total (DAPI) and apoptotic (Ccaspase3 positive) cell counts were counted in MEE. The 

percentage of apoptotic MEE cells was calculated as follows: apoptotic MEE cells (%) = number 

of Ccaspase3 positive staining cells/number of total DAPI positive cells × 100. Nine sections 

obtained from each sample for each secondary palate location (Anterior, Middle and Posterior) 

were analyzed, and average values were calculated for ten samples in each group. These mean 

values and the standard deviations were used for one-way ANOVA that compared Ccaspase3 

positive cells in the wild type, K14- SMAD2/ TGF-ɓ3(+/-) and K14- SMAD2/TGF-ɓ3(-/-) mice 

groups. 

 

3.3.7 Analysis of MEE phosphorylated-SMAD2 rate 

Cells containing phosphorylated-SMAD2 were detected in paraffin sections by using 

Psmad2 antibody (1:20, Cell Signaling Technology, USA) (Fujita et al., 2012). Slides were first 

deparaffinized and then rehydrated (see section 3.3.3). Antigen retrieval was done in a pressure 

cocker and a blocking solution was applied (see section 3.3.4). Then primary antibodies were 

diluted with blocking solution, Psmad2 (1:20, Cell Signaling Technology, USA) and Ecadherin 

(1:100 Transduction Laboratories) and 100µl were applied on each slide. Slides were incubated 

with the primary antibodies overnight in a humidified chamber at 4°C. Next, samples were rinsed 

in PBS once and washed in PBS in a Coplin jar on a shaker for 5 minutes three times. Fluorescein 

labeled secondary antibodies Donkey anti-Mouse IgG, Alexa Fluor® 488 (1:100, Invitrogen, CA, 

USA) and Goat anti-Rabbit IgG, Alexa Fluor® 568 (1:100, Invitrogen, CA, USA), were diluted 

with blocking solution and 100µl were applied on each slide. Slides were placed in a humidified 
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chamber for 60 minutes at room temperature. Samples were rinsed in PBS once and washed in 

PBS in a Coplin jar on a shaker for 5 minutes three times. Next, slides were placed in the 

humidified chamber, coverslips were mounted with mounting medium including 4ǋ,6-diamidino-

2-phenylindole (DAPI; Vector Labs). To confirm the specificity of antibodies, additional slides 

were incubated without the primary antibodies. No fluorescence staining was found in these 

sections. Mouse colon tissue sections were stained for Psmad2 and used as a positive control. 

Total (DAPI) and Psmad2 positive cells were counted in MEE. The percentage of 

Phosphorylated-SMAD2 MEE cells was calculated as follows: Phosphorylated-SMAD2 MEE 

cells (%) = number of Psmad2 positive staining cells/number of total DAPI positive cells × 100. 

Nine sections obtained from each sample for each secondary palate location (Anterior, Middle and 

Posterior) were analyzed, and average values were calculated for ten samples in each group. These 

mean values and the standard deviations were used for one-way ANOVA that compared Psmad2 

positive cells in the wild type, K14- SMAD2/ TGF-ɓ3(+/-) and K14- SMAD2/TGF-ɓ3(-/-) mice 

groups. 

 

3.3.8 Analysis of MEE twist1 and collagen IV expression 

During EMT, the climax of this process is signaled by the loss of the basement membrane 

and the creation of a mesenchymal cell capable of migrating away from the original epithelial 

layer. Type IV collagen is a component of basement membrane. In order to detect loss of basement 

membrane during palatal fusion in MEE, ColIV (1:100, Abcam) antibody was used. Also, MEE 

cells expressing twist1 protein, a marker of a cell undergoing EMT, were detected using Twist1 

(1:50, Abcam) antibody. 
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Slides were first deparaffinized and then rehydrated (see section 0). After that, antigen 

retrieval was done in a pressure cocker and a blocking solution was applied (see section 3.3.4). 

Then primary antibodies were diluted with blocking solution, Twist1 (1:50, Abcam) and ColIV 

(1:100, Abcam) and 100µl were applied on each slide. Slides were incubated with the primary 

antibodies overnight in a humidified chamber at 4°C. Next, samples were rinsed in PBS once and 

washed in PBS in a Coplin jar on a shaker for 5 minutes three times. Fluorescein labeled secondary 

antibodies Donkey anti-Mouse IgG, Alexa Fluor® 488 (1:100, Invitrogen, CA, USA) and Goat 

anti-Rabbit IgG, Alexa Fluor® 568 (1:100, Invitrogen, CA, USA), were diluted with blocking 

solution and 100µl were applied on each slide. Slides were placed in a humidified chamber for 60 

minutes at room temperature. Samples were rinsed in PBS once and washed in PBS in a Coplin 

jar on a shaker for 5 minutes three times. Next, slides were placed in the humidified chamber, 

coverslips were mounted with mounting medium including 4ǋ,6-diamidino-2-phenylindole (DAPI; 

Vector Labs). To confirm the specificity of antibodies, additional slides were incubated without 

the primary antibodies. No fluorescence staining was found in these sections. Basement membrane 

in blood vessels served as an internal positive control for ColIV.  

 

3.4 Confocal laser microscopy 

Sections were examined with a Nikon D-Eclipse C1 Laser Scanning Confocal Microscope 

(Nikon Instruments Inc., Melville, NY, USA) equipped with 3 laser diode modules (405/488/543 

nm). Each section was scanned with a Plan Fluor 40X (aperture 0.75) lens and a Plan Apo VC 60X 

(aperture 1.4) oil lens. Fluorescent images were captured with a Qimaging Retiga-2000R digital 

camera installed on the Nikon D-Eclipse C1 Laser Scanning Confocal Microscope (image 
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resolution: 1600x1200 pixels). Z stack of images were analyzed using ImageJ (U. S. National 

Institutes of Health, Bethesda, Maryland, USA). 

 

3.5 Statistical analysis 

All data were interpreted using IBM SPSS Statistics for Windows, Version 20.0. Armonk, 

NY: IBM Corp. Shapiro-Wilk test was used to test data normal distribution. Values are expressed 

as the mean ± SEM. Differences between groups were determined using a one-way ANOVA. 

Differences were considered statistically significant at P < 0.05. 
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Chapter 4: Results and conclusion 

4.1 Increased MEE cell apoptotic rate. 

TUNEL assay was conducted to examine whether overexpression of Smad2 can induce 

apoptosis in MEE cells. Spleen sections were used as positive control of apoptosis. No TUNEL 

positive nuclei were observed in negative control sections. DNA defragmentation was detected 

and localized in the palatal MEE cells in the anterior, middle and posterior regions of the secondary 

palate at day E14.5 (figure 10). K14-SMAD2/TGF-ɓ3(+/-) mice exhibited an increase in TUNEL 

positive MEE cells (19.8% anterior, 12.12% middle and 10.77% posterior) compared to the wild 

type (0% anterior, 0% middle and 0% posterior) (Figure 11). Also, K14-SMAD2/TGF-ɓ3(-/-) 

rescue mice exhibited an increase in TUNEL positive MEE cells (12.3% anterior, 30.5% middle 

and 29.4% posterior) compared to the wild type (Figure 11). There was a significant difference of 

amount of apoptotic cell ratio at the p<.05 level for the three groups [F (2, 6) = 10.30, p = 0.011]. 

Post hoc comparisons using the Tukey HSD test indicated that the mean score for the K14-

SMAD2/TGF-ɓ3(-/-) rescue mice apoptotic cell ratio (M = 24.07, SD=10.20) was significantly 

different than the wild type mice.  

Cleaved caspase3 (Ccaspase3) antibody, an apoptosis marker, was also used to detect 

apoptotic cells associated with Smad2 overexpression in the palatal MEE cells. Ccaspase-3 protein 

was localized in the palatal MEE cells, in the anterior, middle and posterior regions of the 

secondary palate at day E14.5 (figure 8). Our results showed that Ccaspase-3 positive cells were 

detected in the nasal and oral MES triangles. The K14-SMAD2/TGF-ɓ3(+/-) mice also had a much 

higher ratio of Ccaspase3 apoptosis positive MEE (13.7% anterior, 10.1% middle and 17.6% 

posterior) when compared to the wild-type mice (0.0% anterior, 5.31% middle and 0.0% posterior) 

(Figure 9). K14-SMAD2/TGF-ɓ3(-/-) rescue mice had higher ratio of Ccaspase3 positive MEE cells 
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(31.7% anterior, 33% middle and 35.6% posterior) when compared to the wild-type mice and K14-

SMAD2/TGF-ɓ3(+/-) (Figure 9). There was a significant difference of Ccaspase3 positive cell ratio 

at the p<.05 level for the three groups [F (2, 6) = 83.87, p = 0.000041]. Post hoc comparisons using 

the Tukey HSD test indicated that the mean score for the K14-SMAD2/TGF-ɓ3(-/-) rescue mice 

Ccaspase3 positive cell ratio (M=33.43, SD=1.98) was significantly different than the wild type 

mice. Also, the mean score for the K14-SMAD2/TGF-ɓ3(+/-) mice Ccaspase3 positive cell ratio 

(M=13.8, SD=3.75) was significantly different than the wild type mice. 
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Figure 8 Ccaspase3 expression in coronal E14.5 palatal sections  

Fluorescent images of Ccaspase3 during palate development at E14.5. A) Wild-Type mice shows 

fewer apoptotic cells in the MEE. B)  K-14Smad2 overexpression mice have a higher ratio of 

apoptotic activity in the MEE, C) TGF-ɓ3 -/- K-14Smad2 Rescue shows higher ratio of apoptosis 

in the MEE, indicating that Smad2 overexpression may have rescued the cleft palate by increased 

MEE apoptosis. Arrowheads indicate Ccaspase3 positive cells in MEE. 
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Figure 9  Apoptosis ratio in MEE of wild type mice, K14-Smad2 mice and TGF-ß3 (-/-) /K14Smad2  

Quantification of Ccaspase3 positive cells expressed as percent of total nuclei in the MEE. In the 

anterior middle and posterior there were statistical significance between the groups [F (2, 6) = 

83.87, p = 0.000041, n = 10] (* P<.01). 
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Figure 10 Apoptosis detection in coronal E14.5 palatal sections by TUNEL assay.  

Fluorescent images during palate development at E14.5 of Terminal deoxynucleotidyl transferase 

(TdT) dUTP Nick-End Labeling (TUNEL) technique which detects apoptotic cells that undergo 

extensive DNA degradation during the late stages of apoptosis. A) Wild-Type mice coronal 

sections shows no TUNEL positive cells. B)  K14-Smad2 over-expression mice have a higher ratio 

of apoptotic activity in the MEE. C) TGF-ɓ3 -/- /K-14Smad2 rescue mice shows higher ratio of 

apoptosis in the MEE. Arrowheads indicate TUNEL positive cells in MEE. 

 

 

 

Spleen TUNEL +ve control 10X 

Spleen TUNEL +ve control 60X 
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Figure 11 Apoptosis ratio in MEE of wild type mice, K14-Smad2 mice and TGF-ß3 (-/-) /K14Smad2  

Quantification of TUNEL positive cells expressed as percent of total nuclei in the MEE *P<0.5. 

In the anterior middle and posterior there were statistical significance between the WT and TGF-

ß3 (-/-) /K14Smad2 groups [F (2, 6) = 10.30, p = 0.011, n = 10] (*P< .01).  
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4.2 Increased levels of activated ñphosphorylatedò SMAD2 in the MEE 

We performed immunofluorescence to determine the level of Phospho-SMAD2 protein 

in wild type, K14-Smad2 and K14-Smad2/ TGF-ɓ3(-/-) transgenic mice. High magnification images 

showed that Phospho-SMAD2 protein was present in the MEE cells during the process of palatal 

fusion at day E14.5 in wild type, K14-Smad2/ TGF-ɓ3 (+/-) and K14-Smad2/ TGF-ɓ3(-/-) mice 

(figure 12). Strong Phospho-SMAD2 protein signal was detect across the secondary palate in the 

anterior, middle and posterior regions.  

High levels of phospho-SMAD2 were observed in MEE cells in K14-Smad2/ TGF-ɓ3 (-/-

) mice (43.12% anterior, 61.6% middle and 56.1% posterior) and K14-Smad2/ TGF-ɓ3(+/-) which 

had strong phospho-SMAD2 protein signal (26.9% anterior, 41.05% middle and 38.7% posterior). 

Wild type mice had lower levels of phospho-SMAD2 when compared to both K14-Smad2/ TGF-

ɓ3(+/-) and K14-Smad2/ TGF-ɓ3(-/-).  A significant difference in the amount of phospho-Smad2 at 

the p<.05 level for the three groups was also identified [F (2, 6) = 26.97, p = 0.001002]. 

Immunofluorescence double staining revealed TUNEL positive MEE cells were 

immunoreactive for phospho-SMAD2 (figure 12E) indicating a correlation between cell death and 

phosphorylation of SMAD2. A Pearson product-moment correlation coefficient was computed to 

assess the relationship between the ratio of apoptotic MEE and levels of phospho-Smad2. There 

was a positive correlation between the two variables in both K14-Smad2/TGF-ɓ3(-/-) mice, r = 

0.9901, n = 9, p = 0.00001, and K14-Smad2/ TGF-ɓ3(+/-) mice, r = 0.8767, n = 9, p = 0.001954. 

Overall, there was a strong, positive correlation between levels of phospho-Smad2 and cell death. 

Increases in SMAD2 phosphorylation were correlated with increases in the ratio of cell death in 

the MEE during palatal fusion. 
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Figure 12 Phospho-Smad2 expression in coronal palatal sections  

Fluorescent images of Phospho-Smad2 (Red) at E14.5 and its localization in the MEE from Wild-

type, TGF-ɓ3 +/- K14Smad2 and TGF-ɓ3 -/- K14Smad2 (A-D). Coronal section of TGF-ɓ3 +/- 

K14Smad2 and TGF-ɓ3 -/- K14Smad2 mice palates showed higher expression of Phospho-Smad2 

in the MEE. Arrowheads indicate Phospho-Smad2 positive cells in MEE. Immunofluorescence 

double staining revealed TUNEL positive MEE cells showing immunoreactivity to phospho-

SMAD2 (E).  
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4.3 Loss of basement membrane in the MEE cell and twist1 positive cells. 

To investigate whether MEE associated with SMAD2 overexpression were undergoing 

EMT during palatal fusion we performed confocal microscopic analysis using an EMT marker 

Twist1 and a basement membrane marker collagen IV. Twist1 is a protein that induces EMT by 

downregulating epithelial gene expression and activating mesenchymal gene expression 

(Lamouille, Xu & Derynck, 2014). Twist1 also, causes loss of cell-cell adhesion mediated by E-

cadherin. To distinguish MEE cells undergoing EMT from mesenchymal cells, Collagen type IV 

was used as a marker of basement membrane. The loss of basement membrane is considered one 

of the hallmarks of EMT. 

At earlier stages of palatal fusion, microscopic analysis showed that the basement 

membrane was retained in the palatal MES, this finding coincides with presence of higher levels 

of apoptosis. As the degradation of MES occurred on day E14.5, fewer numbers of Twist positive 

cells were detected in the MEE of wild type, K14-Smad2/TGF-ɓ3(+/-) and K14-Smad2/TGF-ɓ3(-/-) 

mice (figure 13). Those cells indicated by arrowheads (figure 13) were associated with loss of 

basement membrane. Thinning and degradation of basement membrane was also detected in the 

K14-Smad2/TGF-ɓ3(+/-) and K14-Smad2/TGF-ɓ3(-/-) mice at day E14.5. These results further 

indicate that the process of EMT occurs at a later stage than programmed cell death. 

To trace epithelial cells undergoing EMT originating from MEE we used 

immunofluorescence double staining using twist1 and phospho-Smad2 antibodies. Confocal 

microscopic analysis revealed cells positive to twist1 and phospho-Smad2 in the palatal 

mesenchyme adjacent to the MES in the K14-Smad2/TGF-ɓ3(+/-) and K14-Smad2/TGF-ɓ3(-/-) mice 

(figure 14). This finding coincided, with high levels of phospho-Smad2 detected at the protein 

level with immunofluorescence in both experimental groups.  
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Figure 13 Twist1 expression in coronal palatal sections 

Fluorescent images of TWIST1 (green) an EMT Marker, Collagen IV (red) basement membrane 

marker and DAPI at E14.5 in the MEE from Wild-type, TGF-ɓ3(+/-) K14Smad2, TGF-ɓ3(-/-) 

K14Smad2 and TGF-ɓ3(-/-). Arrowheads indicate Twist positive cells in MEE. No Twist positive 

cells were observed in the TGF-ɓ3 null mice MES. 

 

 


