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Abstract 

 

Circulating tumor cells (CTCs) are exceedingly rare cancer cells shed from tumors into the 

bloodstream, where they have the potential to invade other tissues to seed metastases. CTCs are 

difficult to isolate but their critical role in tumor metastasis, as well as their proven prognostic 

value has attracted tremendous interest in recent years. While many methods have been developed 

to isolate CTCs, a major bottleneck to their clinical application has been the precise identification 

and characterization of these cells, owing to their tremendous phenotypic heterogeneity. To 

address these formidable challenges, a number of microscopy techniques have been applied to 

gather large amounts of information about captured cells. However, these studies are currently 

limited by two major concerns: First, due to the phenotypic plasticity of tumor cells, there may be 

significant variability in the properties of CTCs as observed using microscopy. Second, if the 

CTCs are subjected to multi-parameter analysis, the high-content data may be too expansive to 

analyze with a reasonable amount of time and effort. In this thesis, I developed an efficient and 

customizable spectral image cytometry platform to collect multi-spectral data from 

immunofluorescence micrographs of cell samples enriched for CTCs in order to quickly and easily 

analyze this information to facilitate CTC identification and characterization. This work includes 

the development of software tools to convert microscopy data for processing, to segment the 

images into single cell images, to rank potential CTCs, and to provide a user interface for rapid 

augmented review. The performance of this software platform has been evaluated by analyzing 

multi-spectral fluorescence imaging data previously collected by our group from ten patients with 

castrate resistant prostate cancer, and then comparing the result to unassisted manual reviews 

performed by blinded reviewers. The final CTC identification counts closely matched manual 

analysis with a slight increase in verified CTC counts, which is likely a result of the comprehensive 

nature of the automated screening process. The average computation time is 4.5 minutes per 

sample, which is faster than the time required to acquire the imaging data, and thus allows 

operators to quickly review results between acquisitions. 
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Chapter 1: Introduction and Background 

1.1 Introductions 

Circulating tumor cells (CTCs) have attracted a tremendous amount of attention because of the 

potential value of these cells in cancer research and treatment. In clinically advanced cancer, tumor 

cells may be shed from a localized tissue into the bloodstream, where they have the potential 

metastasize to seed new tumors at secondary sites (Figure 1.1). These cancer cells in the 

bloodstream are collectively known as CTCs and they potentially represent cells derived from the 

primary tumor, metastatic tumor, or tumor cells that occupy the transitional state between primary 

and metastatic tumors [1]. Access to CTCs is important because metastasis is associated with 90% 

of cancer deaths [2] and the enumeration of CTCs has a well-established prognostic value. 

Specifically, the number of CTCs in peripheral blood has been found to correlate with reduced 

progression-free survival and reduced overall survival rate for patients with metastatic breast 

cancer [2], castration-resistant prostate cancer (CRPC) [3], as well as ovarian [4], lung, colon, and 

pancreatic cancers [5]. CTC isolation is particularly relevant in cancers where metastatic tissue is 

inaccessible. For example, prostate tumors typically metastasize to bone marrow [6] where tissue 

biopsy is difficult and painful. In contrast, CTCs enriched from a non-invasive blood sample can 

be used for patient diagnosis and stratification, to guide and monitor therapy, and can provide key 

insights into the genetic events that collectively contribute to tumor metastasis. 

 

 

Figure 1.1 Metastatic dissemination of tumor cells, exemplified by prostate cancer. Cells develop in the primary 

tumor, shown in blue, and acquire a motile phenotype to disseminate as CTCs in the bloodstream. These cells 

also develop invasive and stem-like characteristics that allow them to initiate a tumor at a secondary site. 

Bone        
Marrow 

Blood Stream 

Prostate Tumor 

CTC 
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Despite their recognized clinical value, the identification and characterization of CTCs is 

significantly challenged because of the extreme rarity of these cells. Efforts to perform image 

cytometry on unprocessed blood must discriminate individual CTCs from among 5 million 

nucleated cells and 5 billion red blood cells [7], [8], [9]. Immunological and biophysical 

enrichment methods have aimed to reduce the complexity of CTC identification. However, these 

methods still invariably generate an impure sample. The CellSearch™ system, developed by 

Janssen Diagnostics, is the gold standard for CTC enrichment using immunoaffinity capture, but 

this system has been shown to provide limited yield and purity [10]. While methods for tumor cell 

enrichment generate isolates at high purity, these methods are associated with unacceptable loss 

of these highly relevant cells [10]. The impurity of most CTC isolates, is further compounded by 

an inherent heterogeneity among CTCs, where these cells may initially exhibit an epithelial 

phenotype, but progressively acquire characteristics of motile mesenchymal cells [11]–[14], 

proliferative stem cells [15]–[17] and invasive metastatic cells [1]. As a consequence of both the 

rarity and complexity of CTCs, there is a critical need for defined and objective criteria to identify 

these cells. 

Current criteria for identifying CTCs relies on both cellular morphology and immunophenotyping. 

The traditional criteria for identifying CTCs included an intact nucleus, expression of epithelial 

cytokeratins (CKs), and absence of the CD45 leukocyte marker [18]. However, this definition has 

been challenged since CK expression may be reduced in tumor cells that undergo epithelial-to-

mesenchymal transition (EMT) [14], [19]. These antigenic biomarkers may therefore be 

supplemented or replaced by disease-specific markers, such as PSMA for prostate cancer [20], or 

by inclusion of EMT (e.g. vimentin, N-cadherin) [11], [15] or stem cell markers (e.g. ALDH, 

CD44) [13], [17]. Similarly, CTCs are likely to be larger than leukocytes because of their epithelial 

origin. However, smaller CTCs have recently been associated with progressive disease [8], [21]. 

CTCs also typically have an irregular morphology [18], [21] but evidence of nuclear fragmentation 

or cytoplasmic blebbing indicate cell apoptosis and can serve as an important indicator of 

therapeutic efficacy [22]. With the expanding list of criteria for defining and categorizing CTCs, 

there is a need for improved multiparameter of these cells. 

Currently, the CellSearch™ system is the only FDA-cleared system for the detection and 

enumeration of CTCs. This system first enrich for CTCs using EpCAM immunoaffinity, and then 
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identify them using immunofluorescence staining for EpCAM, CK, and CD45. While this method 

has undergone significant refinement, the inherent subjectivity of CTC detection has contributed 

to significant inter-lab variability [23], [24]. This thesis presents a system intended to standardize 

and simplify the detection of fluorescence-stained CTCs using multi-spectral analysis. This goal 

will be accomplished by presenting a workflow for the collection, processing, and presentation of 

multi-spectral image cytometry data.  

The specific goals of this thesis are to develop an efficient and flexible spectral image cytometry 

software platform for semi-automated image cytometry to identify CTCs from an enriched sample. 

The following steps will be taken to achieve this goal: 

1. Develop tools to acquire proprietary microscope multi-spectral imaging data into a format 

suitable for further analysis. 

2. Develop tools to segment the composite microscopy image into single cell images. 

3. Develop automated image processing software to rank individual cells based on their 

likelihood of being a CTC. 

4. Develop a user interface for rapid augmented review of potential CTCs. 

5. Evaluate the spectral image cytometry platform by comparing results from augmented user 

review against full manual review. 

The remaining sections of this chapter describes the background of this work. Specifically, Section 

1.2 describes immunofluorescence-based CTC labeling and morphological criteria for CTC 

identification. Section 1.3 describes existing cytometry methods for data acquisition. Finally, 

Section 1.4 reviews three existing CTC image cytometry workflows.  

 

1.2 CTC Identification Criteria 

1.2.1 Fluorescence Labeling 

Identifying CTCs using fluorescence labeling first involves distinguishing CTCs from 

contaminating erythrocytes based on the presence of a nucleus, which stains positively for DAPI 

(4', 6-diamidino-2-phenylindole). To discriminate CTCs from contaminating leukocytes, 

fluorophore-conjugated monoclonal antibodies have been widely employed in the defining CTCs 
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based on their antigenic profile. CTCs have been identified based on the presence of the epithelial 

cell adhesion molecule (EpCAM) [25] and cytokeratins (CKs) 8, 18 and 19 [26]. Since EpCAM 

has become the primary criterion for immunocapture of CTCs, CK immunostaining is typically 

used for positive selection of these cells. However, CK expression may be inherently variable or 

may change due to an epithelial-to-mesenchymal (EMT) [14]. Consequently, patient specimens 

are also stained for the pan-leukocyte marker CD45, which should be exclusively expressed by 

hematopoietic cells. While an ideal scenario would involve the simultaneous staining of all 

relevant antigens, there are significant limitations that arise when staining for multiple biomarkers. 

The primary limitation to simultaneous staining for multiple fluorescence biomarkers derives from 

overlap between fluorophore emission spectra. Identifying cells using immunofluorescence (IF) 

microscopy involves illuminating cells with an excitation light, which is typically broadband 

source, but could be restricted to a specific color. Specific antibodies bound to fluorophores will 

react with and emit a unique emission spectra which is typically a longer wavelength [27], [28]. In 

order to provide optimal response to experiments, users typically select the peak of the excitation 

and emissions. An example fluorescence emission spectra for DAPI, CK, EpCAM, and CD45 is 

illustrated in Figure 1.2 with DAPI being a nucleic acid stain and Alexa 488 (A488), Alexa 594 

(A594), Allophycocyanin (APC) being respectively used as secondary antibodies bound to their 

respective primary antibody markers. Idealized spectral graphs derived from industry standard data 

are used throughout this thesis to demonstrate theoretical differences without the added noise and 

complexity of experimentally determined spectra. A complication of immunofluorescence is the 

limited optical spectrum available to both excite and detect emission responses. Fluorophores can 

easily overlap if not carefully chosen with sufficient spectral separation.   
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Figure 1.2 Idealized emission spectra for marker based detection of CTC/WBC samples generated using Excel. 

C16H15N5 (DAPI) dye stains nuclear DNA directly, CK antibody bound to Alexa 488 (A488) dye stains 

cytokeratin common to CTCs, CD45 bound to Allophycocyanin (APC), and EpCam bound to Alexa 594 (A594) 

Another issue with immunofluorescence based profiling of CTCs is the variability in marker 

expression levels [12], [14], [29]. Additionally, WBCs have been observed to express CTC 

markers described previously due to WBCs consuming CTC fragments or attacking CTCs in 

circulation. By analyzing multiple CTC markers their highly variable expression can be more 

reliably detected. 

Many CTC enrichment technologies also utilize one or more antigenic markers to enrich samples 

prior to image cytometry which can result in a lost subset of the CTC population as well the loss 

of even semi-quantitative analysis of the critical CTC markers being used to enrich the sample. An 

alternative to this approach is to develop imaging methods capable of processing impure specimens 

[30], [31]. The advantage of this approach is the loss-less discrimination of CTC sub-populations 

based on a range of criteria, including multiple protein biomarkers and morphological criteria. 

However, this approach generates a tremendous volume of complex data and a significant advance 

in image analysis would be required to interpret these data. 
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1.2.2 Cell Morphology 

Cell morphology, including size, shape, and internal structure, can be further used to identify and 

analyze CTCs [32]. The intracellular space is the main volume within a cell which can contain 

structures such as the cytokeratin which form the cytoskeleton [33], [34]. Among the membrane 

bound organelles is the nucleus that contains DNA chromatin. The shape of the nucleus is typically 

spherical, owing to the rigid structural proteins of the nuclear lamina, but the nucleus can exhibit 

‘blebbing’ and other abnormal morphologies, as a consequence of apoptosis [35]. Both cellular 

and nuclear morphology are valuable for identification of CTCs because cellular morphology can 

aid to discriminate these cells from leukocytes and nuclear morphology can discriminate viable 

CTCs from non-viable apoptotic artefacts. 

CTCs have been discriminated from other circulating cells on the basis of cell size and nuclear 

morphology. In the study of CTCs from CRPC patients, some studies have shown significant 

heterogeneity in CTC size [7], [8] while other studies have shown more consistent CTC size [21]. 

In general, an average CTC size of 8 µm has generally been reported [36]–[38]. A significant 

limitation of size based discrimination is that hematological cells may exhibit significant overlap 

in size with CTCs. Additionally, cell shape in CTCs has been known to exhibit significant 

pleomorphism with shapes ranging from spherical to eccentric shapes [7], [8], [38], which may 

confound size-based sorting methods.  In contrast to cell morphology, nuclear morphology has 

been underutilized as a selection criterion for CTCs. The nucleus forms a regular and rigid sphere, 

whereas CTCs may display irregular nuclear shape due to apoptotic stress and have greater nuclear 

cytoplasmic ratio known as (N/C), which is the ratio of the visible nuclear area to the visible cell 

area. In CTCs studies high N/C ratios have been correlated to poor disease outcomes along with 

high intra-patient variability [21], [39]. Since differences in N/C is likely to result in differences 

in cell deformability, our group’s CTC separation efforts have focused on the development of 

technologies to enrich for CTCs based on cell deformability [40], [41]. 

Coupling the morphology of a cell with an immunofluorescence response allows for more detailed 

analysis of cell populations and can provide information about the state and condition of a cell 

being observed. The location and spatial distribution of features is the purpose of morphological 
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analysis, which can potentially help to identify specific phenotypes without additional 

fluorescence markers. 

 

1.3 Fluorescence Cytometry Methods 

This section reviews three existing approaches for fluorescence cytometry. These methods include: 

1) Standard fluorescence microscopy, which captures image data from specific fluorescence 

emission bands; 2) Flow cytometry, which captures fluorescence emission from single cells or 

from images of single cells in a calibrated flow stream; and 3) Spectral confocal microscopy, which 

captures fluorescence images from a scanned image using a scanned laser excitation.  

 

1.3.1 Fluorescence Microscopy 

Fluorescence Microscopy is a standard microscopy technique for cell phenotyping [42], [43]. Band 

pass optical filters are commonly used in wide field microscopes to image specific emission 

wavelengths allowing a standard grayscale camera to capture a wide variety of color channels 

sequentially. An idealized spectrum based on industry data [44] is shown in Figure 1.3 with 

markers used in CTC identification and arbitrarily narrow filter bands. In practice, filter selection 

is limited to industry standard filters and narrow band pass filters result in a loss of light capture 

efficiency. The limitations of standard fluorescence microscopy using filters is that they have 

limited spectral resolution.  
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Figure 1.3 Emission Spectra with idealized filters overlaid to capture peak signals. In practice filters are not 

ideal and overlap between signals is increased. 

To increase the spectral resolution many temporally multiplexed band pass filters can be used to 

capture an overall spectrum [43]. The sequential capture of images using filters multiples the 

capture time by the number of bands desired. Alternatively, there are spatially multiplexed systems 

that allow for multiple filter bands to be captured simultaneously using micro lenses and other 

advanced optical techniques which sacrifice sensor resolution for additional color bands. A 

downside of wide field spectral microscopy is that filters must be switched for each emission band 

which multiplies capture time or the spatial resolution of the sensor has to be dedicated to an 

emission band dividing the resolution of the final image [45]. 

 

1.3.2 Flow Cytometry 

Flow cytometry captures bright-field and fluorescence data from cells in fluid suspension as they 

are flowed individually in front of optical detectors [46]. Typical flow cytometers, shown in Figure 

1.4, only captures a single pixel of information for each individual cell, which does not allow for 

morphology based discrimination. Additionally, many flow cytometers can also sort cells using 

electrostatic cell sorting for downstream analysis.  
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Figure 1.4 High level Overview of a Flow Cytometer. Coherent laser sources illuminate a single cell which is 

acquired by single pixel sensors with filter plates to capture spectral slices. 

To address the lack of morphological image information of conventional flow cytometers, some 

image flow cytometers have been developed to incorporate the ability to imaging of the cells as 

they are measured by the detector [47]. As compelling as this approach may be, this system lacks 

the ability to localize or sort the selected cells after detection has occurred. The constraints of the 

microfluidic structure and processing used in existing state of the art imaging flow cytometers 

precludes this type of sorting [48], [49]. Furthermore, flow cytometers are an active instrument 

requiring single cell dispersions limited by the fact that there is always a dead volume of sample 

that the instrument cannot effectively process [50], [51] which can cause significant cell loss. 

These factors add to the general requirement for flow cytometers to process large quantities of 

cells in order to operate [52] with statistical confidence.  

 

1.3.3 Spectral Confocal Microscopy 

Confocal microscopes use a pinhole to control the exact focal plane received by a single pixel 

sensors in order to provide the ability to image samples in 3D. This pinhole enables the selection 

of the z-depth returned light allows for the suppression out of plane fluorescent emissions. On a 
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traditional microscope, out-of-plane emission creates unwanted background illumination. In order 

to build up an image of the cell, the point sensors receive light scanned rapidly by moving mirrors 

that raster scan excitation lasers across the field of view which responds with spectral emissions 

reflected back to form the spectral image stack. Because the system captures light as a single pixel 

at a time, capturing high spectral density images without increasing the capture time is easily 

possible by using a high channel count sensor [45] shown in Figure 1.5.  

 

Figure 1.5 Splitting light from a scanned confocal system into a continuous spectrum allows for a high spectral 

content image to be captured. PMT units on the ends can be configured to capture a fixed slice of the spectrum 

from either end. 

Diffraction gratings can be used to separate the emission light into a continuous spectrum that can 

be distributed over multiple sensors. This form of spectral decomposition is possible because only 

a single point of light is being received at a time. Another advantage of the multispectral confocal 

system is that it permits imaging through challenging conditions, such as the presence of auto-

fluorescence. Background removal can be performed using spectral profiling on the background 

signal which can then be removed by isolating channels of high background signal and by tuning 

excitation energies to avoid exciting the background material. Transmitted light through the 

sample can be captured by a transmitted light sensor to obtain a bright-field like image. Unlike 

other spectral capture systems, for spectral confocal microscopy no filter movement or sequential 
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imaging is required and this capability greatly reduces capture time by enabling simultaneous 

spectral capture [53]. 

The work described in this thesis uses a specific spectral confocal microscope, Zeiss LSM 780, 

with an image tiling process that produces a gigapixel spectral image cube in approximately 5-10 

minutes per image. This image cube shown in Figure 1.6 has sufficient spectral information to 

easily resolve 5 emission bands with an additional channel for brightfield imaging. The additional 

color information between the bands allows for the 5 emission bands to overlap without 

compromising the ability to correctly identify the desired spectral signature. 

 

Figure 1.6 Visual representation of the imaging setup with a 7680x7680x26 spectral image cube. Peak channels 

are listed as well as the quality control bright field channel which is obtained from the transmitted light through 

the sample while all color channels are fluorescent emissions from the sample. 

 

1.4 Image Cytometry Platforms for CTC Identification 

Image cytometry is the measurement and characterization of cells performed by optical 

microscopy. There are a number of image cytometry platforms for CTC identification. Three 

prominent platforms will be reviewed here. First, the Cellsearch™ system developed by Janssen 

Diagnostics, which is currently the only FDA-approved CTC identification platform. Second, the 
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Amnis ImageStream™ imaging cytometer for CTC identification with a defining feature for its 

ability to process massive quantities of cells per sample. Finally, Epic Sciences, has a proprietary 

in-house process that claims to process samples solely through image cytometry.  

 

1.4.1 CellSearch 

The CellSearch system uses standard immunofluorescence processing to identify CTCs based on 

CK vs. CD45 expression after physical EpCAM enrichment [54]. Analysis is performed semi-

automatically, with an automated image workflow capturing images from a tiled standard IF 

microscope scan. This scan presents sub-regions with automatic exposure to be reviewed by a 

human operator who judges if a region contains a CTC, as illustrated in Figure 1.7. The process 

has four channels for analysis with one channel open for other markers.  

 

Figure 1.7 Cell Search images displayed are a color composite of DAPI/CK with an image series of CK, DAPI, CD45, 

and a spare channel [55](© 2014 Ignatiadis et al. adapted under, CC BY 2.0). Noticeable oversaturation can be 

seen as well as automatic exposure control which can lead to variations in perceived intensities.  

While CellSearch offers a complete workflow for CTC enrichment and isolation, this platform has 

some important limitations associated with characterization of these cells. Firstly, CellSearch 

employs the positive selection of CTCs based on EpCAM immunomagnetic affinity capture, which 

represents a potential concern since it is possible that EpCAM low-expressing cells escape the 

capture process and a subpopulation of CTCs could be lost. This is a major criticism of this system, 

in light of evidence for a phenotypic shift in CTCs that corresponds with reduced EpCAM 

expression [34]. The loss of EpCAM expression is expected since the downregulation of EpCAM 

CellSearch 
Composite CK DAPI CD45 Spare 
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is required for tumor cells to escape the tissue and enter into circulation through epithelial-to-

mesenchymal transition (EMT) [56]. A second issue with the CellSearch process is that imaging 

is performed in a specialized micro pillar array. CTCs mechanically entrapped within this array 

cannot be easily extracted for downstream characterization and methods used to extract these cells 

typically sacrifice the positional information of the CTCs.   

 

1.4.2 Amnis ImageStream 

Amnis ImageStream, produced by MilliporeSigma, is an imaging flow cytometer that captures an 

image of each cell in flow in order to give users the ability to classify cells based on imaging 

criteria.  The system offers a form of spectral imaging which is comprised of a total of 12 imaging 

bands utilizing a spatially multiplexed method including non-spectral bright field and dark field 

images. However, sorting and recovery of the cells post-process becomes impossible due to the 

dynamic method of measurement.  

This approach has been used to identify CTCs using aspects of flow cytometry coupled with 

standard microscopy. A recent study demonstrated the ability for this imaging flow cytometer to 

identify a broader definition of CTCs, defined as any cell without CD45 [57]. Compared to 

CellSearch, however, the images obtained using this system has a lower quality with little to no 

intracellular detail visible within the cell, which thus makes morphological analysis difficult. 

Figure 1.8 shows an example image produced using the ImageStream with the variability in image 

quality.  

 

Figure 1.8  Example cell images using image stream flow cytometer with decreased cellular definition. Image 

retrieved from [58] (© 2016 Marques et al., adapted under CC BY 4.0). Analysis is performed semi 

automatically via an image panel or 2 parameter scatter plot. 
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Another issue with the ImageStream system is the loss of cells resulting from the need to flow 

each cell in front of an imager. A comparative study of CTC enumeration using the CellSearch 

and ImageStream systems showed the latter to be less efficient for rare cell detection due to low 

yield of cells [59]. This result is expected as flow cytometers typically require thousands of target 

cells for reliable detection. In fact, cell loss in other CTC studies are observed to be as high as 90% 

for standard flow cytometers with improved performance coming from the inclusion of imaging 

during flow cytometry [60]. Consequently, flow cytometry based CTC enumeration methods are 

typically limited to patients with high CTC counts or would require significant modification from 

the standard process. 

 

1.4.3 Epic Sciences 

Epic Sciences has a proprietary centralized lab operation that offers in-house CTC enumeration. 

The advantage of this system is that its use of large-scale immunofluorescence imaging to ensure 

the sample can be analyzed following only red blood cell (RBC) depletion, in the absence of CTC 

enrichment or WBC depletion step. This results greatly reduces the likelihood of target cell loss 

due to sample processing. The cells are spread on a custom blood smear plate, which has been 

validated through in house tests on numerous patient samples [31]. However, a drawback of Epic 

sciences system is the lack of technical detail on their software implementation, which is based off 

previous research for HD-CTCs [30]. Another major concern is that this method is only offered as 

an in-house service, requiring samples to be submitted to the dedicated laboratory for processing. 

Consequently, there is limited information available on this system, but available literature suggest 

that CTC identification is performed using three-channel standard fluorescence imaging 

(Figure 1.9) with an optional fourth channel. An additional feature of the Epic Science system is 

the ability to extract single cells using a process similar to micropipette aspiration. 
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Figure 1.9 Epic Sciences Full Channel Analysis image retrieved from [31] (© 2015 Werner et al., adapted under 

CC BY 3.0). Images are displayed in an image panel to users for review with a semi-automatic selection process.  
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Chapter 2: Design of Software for Spectral Image Cytometry for CTC 

Identification 

To address the need for rapid CTC identification using spectral imaging, we developed a flexible 

software platform for spectral image cytometry to augment the work of a human reviewer. This 

goal is accomplished by automatically eliminating many clearly negative cells and produce subset 

of potentially positive cells for downstream human review. This software platform also outputs 

physical coordinate information with guidance maps for individual cell identification and retrieval 

if desired in follow on physical processing for tests such as single cell genome sequencing.  

This chapter describe the overall software workflow from input file conversion to the user interface 

for final human review. Section 2.1 describes the high-level workflow in three major sections. 

Section 2.2 describes the input file conversion and metadata processing. Sections 2.3 describes the 

pixel-based image processing component with the spectral basic analysis producing selection 

masks for use in sub-region analysis. Section 2.4 describes sub-region analysis which utilizes the 

mask outputs from the previous section to group pixels together for analysis as cells. Section 2.5 

describes the spectral aware ranking process. Finally, Section 2.6 describes the user-interface 

software for augmented human review of the ranked candidates in order to positively identify 

CTCs.  

 

2.1 Image Processing Workflow 

The developed spectral image cytometry software has three major components which starts with 

ingest processing which is required for adapting multiple propriety data formats for image analysis. 

This process converts the propriety formats into raw image data and textual metadata associated 

with the file. Following this, image processing is required to convert the raw image data into usable 

information to produce result reports. This image processing utilizes pixel-based processing to 

generate masks used to enclose selection regions that may contain cells. The report generation uses 

the processed image data and sub-region lists to create ordered reports suitable for rapid human 

review. These three major steps represent a high-level overview of the software and is shown in 

figure 2.1. 
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Figure 2.1 Overall workflow process from input file to output report. 

 

2.2 Ingest Processing 

A significant challenge in multispectral analysis is that imaging platforms typically encode spectral 

data in proprietary formats that must be decoded before further processing. A further challenge is 

that metadata on the microscope imaging parameters encoded within these formats are often lost 

during the image conversion process performed by existing commercial tools. Computation tasks 

shown in Figure 2.2 are utilized to address these two issues. Specifically, the image ingest 

operation is performed using an open source bio-formats image conversion processor which 

provides support for a wide variety of proprietary formats and forms part of a larger open source 

processing package called OMERO [61]. Output from the open source library is then converted 

into a simple 3D matrix containing the spectral image cube.  

 

Figure 2.2 Ingest workflow to extra image data and image metadata. 

Microscopy images acquired by the Zeiss LSM 780 system are written in a proprietary Zeiss image 

container format, known as a Carl Zeiss Image (CZI), which can pack multi 

spectral/spatial/temporal image series. To allow the automated image cytometry method to be a 

more general purpose system, an open source image library is used to convert the CZI into a 

MATLAB native binary format which serves as a common file format for image data stored as a 
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raw bitmap. A potential complication of using a general purpose data format is that company 

specific metadata, such as microscope setup information, is lost during conversion. To address this 

issue, another tool was developed using Zeiss CZI API to extract from company specific 

Extensible Markup Language (XML) specific imaging parameters used to setup the experiment. 

Because multiple experiments relating to CTCs have been captured using this software tool a 

potential risk of file mishandling exists. Because only experiment data from prostate and bladder 

cancer patients compose of the test dataset used in this thesis a method to verify a file’s origin was 

required. As these specific prostate and bladder cancer images contain specific metadata 

parameters they can be detected by reviewing the microscope setup data contained within the CZI 

files. To enable the review of such experimental metadata to ensure its consistency to the particular 

setup and calibration, a tool was developed, seen in Figure 2.3, to extract the image metadata of 

the large quantity of image files produced in the course of research. 

 

Figure 2.3 Metadata extraction tool interface displaying current file thumbnail and a snippet of the raw 

metadata. Used to determine the actual experimental setup from recorded metadata within sample files. 

More specifically to identify a particular experiment type, the metadata is analyzed to compare the 

image size, the excitation laser beam settings, the laser splitters used, and the optical setup of the 

microscope. With the management and review of the collected meta-data information across 

hundreds of samples also enables the supervision of experimental conditions. This metadata 

signature tracking and review process can detect the use of improper configurations and suspect 
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sample images. Overall the careful management and monitoring of captured metadata is a critical 

aspect of an imaging workflow as during two years of research over 8 TB of image data has been 

produced. The embedded metadata also enables blinded manual processing by scrambling human 

readable identifiers, which enables the recovery of the original embedded metadata after blinding 

for human review. 

 

2.3 Image Analysis 

The raw spectral data represents more color information than a human can naturally process with 

26 bands being simultaneously captured and the false color composite generates a customizable 

three color image that is easily viewed by human reviewers. With over a gigapixel worth of image 

data a rapid and efficient data analysis method is required to reduce the big data set into a more 

manageable fixed set of selection masks. Spectral pixel analysis performs a simplified spectral 

selection process on a per pixel basis to generate selection masks used in sub-region generation. 

Sub region analysis is required to convert the selection masks into pixel groups for reporting and 

ranking processes. This sub region processing also performs minor filtering processes to remove 

undesired targets. An overview of these steps are shown in figure 2.4. 

 

Figure 2.4 Split tasks for generating human readable false color composite images as well as processing raw 

image data into a more usable set of selection masks for downstream sub-region analysis. 

 

2.3.1 False Color Composite 

The false color composite (FCC) tool allows the users to generate a customizable composite image 

shown in Figure 2.5 enabling rapid screening for potential CTCs by allowing the user to prioritize 

specific channel of interest using an easily identifiable colors. Another function of the FCC tool is 

to perform histogram compensation on each channel, which is used to account for the different 
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expected intensities of each dye. The Zeiss ZEN Black software provided with the LSM 780 

microscope can generate its own FCC. However, ZEN Black does not give the user control over 

the color mapping process. Consequently, channels for EpCAM and CD45 are colored almost 

identically, which makes it more difficult to distinguish non-CTCs from leukocytes. Furthermore, 

ZEN Black selects the color of each pixel base color based on the peak channel, which makes it 

possible for a bright channel to completely obscure the presence of a dimmer channel.  

 

 

Figure 2.5 Compressing hyperspectral stack into a single image for easier review and management. 

Our FCC tool allows for custom prioritization of spectral channels and customized color mappings. 

The difference between false color composites generated using ZEN Black and the improved color 

mapping method is shown in Figure 2.6. The false color composite image has been optimized for 

clear discrimination of relevant cell features that define CTCs. For example, while the CD45–

positive cells are represented the Zen Black image, a false color composite (FCC) image can 

incorporate color re-mapping to highlight this antigen profile in a high contrast color (e.g. white), 

which greatly simplifies the identification of non-target cells. Furthermore, while the weaker DAPI 

signal is typically obscured within the ZEN Black image, intensity customization allows the DAPI 

signal to be clearly visible through the FCC. This feature provides an important advantage for 

identifying CTCs because nuclear-to-cytoplasmic ratio is an important defining characteristic of 

CTCs and because nuclear blebbing and other morphological characteristics may discriminate 
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apoptotic CTCs from more aggressive subpopulations [21], [39]. Distinguishing between clearly 

negative and positive peak channels is made extremely obvious even if only a few pixels contain 

the peak channel. This priority system allows for a per channel customization of how pixel 

coloration is selected and graded in order to generate the false color composite. This prioritization 

system decreases the threshold so that even a non-peak priority signal will be used in priority to 

other channels. 

 

 

Figure 2.6 Comparison between microscopy software ZEN and custom false composite with negative pixel 

highlighting (white = negative pixel) and control pixel prioritization (blue nucleus enlarged). 

 

2.3.2 Spectral Pixel Analysis 

Pixel-based processing involves analyzing the entire gigapixel image on a per pixel basis which 

results in billions of computations requiring significant amounts of computation and memory. As 

a result, pixel-based processing requires extensive optimization and cannot use highly iterative or 

complex algorithms due to performance and memory limitations. A simplified selection algorithm 

that efficiently utilizes the additional spectral data to improve selection performance was needed. 
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The LSM 780 acquires intensity data from 26 wavelengths on each pixel. Our spectral image 

cytometry software first analyzes each pixel to generate the masks required to segment the image 

into separate single cell images. This analysis is performed on every pixel without determining 

whether the pixel is part of a cell. A key advantage of this approach that memory use is fixed to 

the number of independent test groups with a single result selection mask, regardless of the number 

of cells. Follow on analysis of these single cell images are described in the next section.  

 

Figure 2.7 Spectral pixel testing done across the entire gigapixel image, small subset shown with pixel types 

listed. (26x26 pixel close up of cell from ZEN lambda view) 

Figure 2.7 shows an example image of a potential CTC showing various types of pixels including 

background pixels (i) with a very low signal, EpCAM positive pixels (ii) with a red coloration, CK 

positive pixels (iii) with a green coloration, and DAPI positive pixels (iv) with a blue coloration. 

Cells are identified as CTCs when they stain positively for CK and EpCAM, and negatively for 

CD45. Background noise may vary depending on the wavelength due to the auto-fluorescent 

properties of the imaging media or sample holder which can be suppressed with per channel 

threshold limits to define a per channel noise floor.  

The linear un-mixing is process that is commonly used to unmixed spectral information and 

assumes that for every wavelength the signal intensity is a linear sum of its components. This 

process then relies on reference spectral data for each expected component and attempts to solve 

the percentage of each component for each wavelength on a per pixel basis. This function exists 

in ZEN Black, as well as other software packages, can be used to discriminate between channels. 

However, a significant practical limitation of this approach is that the fluorescence signal is quite 

often non-linear which confounds linear unmixing algorithms which depend on a linear 

(i) Background Pixels 

(ii) EpCam (+) / CD45 (-) 
Test Peak Pixels 

(iii) CK (+) Peak Pixels 

(iv) DAPI (c) Peak 
Pixels 



23 

 

decomposition of spectral signals. A critical issue with linear unmixing is that the reference must 

be exactly correct on a per sample basis requiring highly controlled samples. Several linear 

unmixing software tools, as well as more sophisticated algorithms, has been tested. None of these 

methods proved to be adequate. The results of our tests are shown in Appendix A. 

To alleviate the inability to handle non-linear samples and inability to re-calibrate on a per sample 

basis a simplified spectral pixel analysis method is used to identify potential pixels that may 

contain CTC markers. Initially customizable thresholding is used to eliminate background noise. 

Following this all pixels are passed through a customizable relative selection algorithm that 

compares spectral channels for defined relations. In this experiment cells are tested by the relative 

signal strength between the peak of the EpCAM-positive selection peak channel and the CD45-

negative selection peak channel. This approach was taken to ensure that the EpCAM signal is 

significantly stronger than the negative signal by an order of magnitude as shown in Figure 2.8. 

The process separates WBCs from potential CTCs on a per pixel basis.  

 

 

Figure 2.8 Idealized representation of the global per pixel pass/fail spectral thresholding process. In practice 

control points can be reduced to critical markers shown as blue dots at the precise known peak for the 

individual dyes. The noise floor is determined through calibration studies as well as the relative intensity 

specification of 60%. The upper exclusion area is dynamically scaled per pixel to test for CD45 contamination 

in comparison to the EpCAM peak channel. 
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After testing positive pixels retain their spectral information while negative pixels are zeroed by 

the whole image relative intensity test. The positive pixels are then merged into a single image 

with a blurred DAPI image as a filter to smooth noise while all critical positive channels are 

summed to improve sensitivity. The merged image is then thresholded using experimentally 

determined limits, shown above, and a binary dilation is performed to ensure the mask fully 

encloses the cell volume. This merged image becomes the CTC filter which represents the 

selection mask used by the following section for CTC identification. To detect all cells, the relative 

intensity test is skipped and all channels positive and negative are used to identify non-positive 

cells. 

Because this simplified algorithm is highly customizable create a proper calibration profile before 

use is critical for proper operation. To setup the system the acquisition of images from empirical 

control testing and startup calibration experiments is required to model the expected background 

noise and to define the thresholds for each channel. This calibration experiment process is 

described in Chapter 4. The results of this generalized calibration enables the formal experiment 

to perform well in most patient samples while allowing for the nonlinearities that may occur in 

real world patient samples. In real world samples oversaturation, can occur due to variability in 

patient cells resulting in abnormally high expression vs. most patient cells. However, the 

developed relative selection process degrades gracefully by becoming increasingly pessimistic 

rather than failing outright in such oversaturation. This graceful degradation is due to the ratio 

based test becoming more limiting the more oversaturation occurs with extremely oversaturation 

almost entirely excluded. This behavior is desirable in accommodating a wider diversity in patient 

samples while not preferring oversaturated results. Traditional linear un-mixing methods do not 

work with such non-linear samples, as the most common nonlinearity is oversaturation of the 

imaging sensor. In typical microscopy oversaturation is controlled by altering settings on a per 

sample basis but in real world patient samples performing a per sample calibration would be 

impossible as it is unknown if a sample contains target CTCs. 
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2.4 Segmentation and Sub-Region Analysis 

Segmentation is required to convert raw selection masks into sub-regions for reporting and 

statistical analysis. Individual cells are analyzed by first segmenting the composite spectral image 

into multiple regions of interest (ROIs) each containing a single cell, and in some cases, cell clumps 

and debris.  By individually processing selected ROIs, each ROI can be ranked on its likelihood 

of being a CTC. 

Segmentation of the composite image is performed by generating ROI containing individual cells. 

Our algorithm uses a combination of the cell morphology and spectral data as certain spectral 

channels such as the cell nucleus can be used to generate mask images to guide separation of cells 

using spectral data and to extract sub regions rapidly in a highly customizable and resilient manner. 

Specifically, this task is performed by detecting three classes of pixels that bin any number of 

spectral channels into a set of binary images for CTC negative pixels (CD45+), positive pixels 

(EpCAM+,CK+), and nucleus pixels (DAPI) illustrated in Figure 2.9. A nucleus pixel is a signal 

that is expected in both positive and negative cells and can be used to locate all cells of interest. 

The segmentation process is also designed to  also ignore debris and contaminated antibody clumps 

by identifying regions such as a cell nucleus stained with a nuclear dye. The positive channels (CK 

and EpCAM) are the desired target markers and negative channel (CD45) to be markers that are 

unwanted in positive selections.  

                                    

                              

    - - -     + + +     <-Positive/Negative Cell      

    - N -     + N +           

    - - -     + + +    + Positive Pixel        

                       - Negative Pixel        

    - - -     + + +    N Nucleus Pixel        

    - - -     + + +           

    - - -     + + +     <-Positive/Negative Debris      

                              

                                    
Figure 2.9 Any of the spectral channels can be classified on a per pixel basis as being a possible positive, negative 

or nucleus pixel. By creating a composite binary image based on nucleus pixels with negative/positive pixels 

nearby allows for the detection and sorting of cells while rejecting the background and debris 

(positive/negative). 
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Use of the nuclear DAPI marker as the nucleus channel, allows downstream segmentation to take 

advantage of a physically segmented signal, greatly enhances debris and background rejection. As 

a result of the physically segmented signal, even when cells are physically nearby their nucleuses 

they will be separated. Segmented regions that lack nucleus signals can be quickly rejected as 

debris. The use of internal markers such as nuclear stains, along with the low cell density, removes 

the need for watershed separation algorithms, which often over-segment irregular shaped cells. An 

additional problem with watershed separation methods is over segmentation with multi-tile images 

stitched internally on the microscope. The even slight misalignment of the edges of such tiles 

would always be split by a proper watershed operation. This over-segmentation is undesirable 

because of the minor random offsets that occur in the tiling process can be ignored if no watershed 

separation is performed. 

The described simplified segmentation method using spectral pixel analysis mask results has 

several key advantages over traditional analytical strategies. Firstly, the memory footprint required 

for spectral image clustering and downstream sub region processing is greatly reduced from 3.1GB 

to 120MB just by classifying pixels and collapsing the image to a fixed set of binary images. 

Typical un-mixing programs are general purpose and lack such optimizations for biological cell 

processing. Second, ratiometric data from different spectral channels are used to exclude false 

positive cells (cells that have undesirably high negative peak channel signals relative to positive 

signals) compensates for spectral overlap in a manner that remains memory efficient, by 

processing all pixels within an ROI as a single group. Finally, the process is tolerant of 

overexposed images which is highly desirable in samples with highly variable biological 

responses. Due to the high variability in patient samples, compared to cultured cancer cell lines, 

the property of exposure tolerance is required. The grouped ROI spectral testing is used to 

determine a cells rank described in section 3.5. 

To minimize selection errors due to abnormally shaped cells and debris, morphological filtering is 

performed in order to exclude extremely irregular non-cell type features (such as debris or fibers). 

Each segmented objective is analyzed for its circularity. If the tested object is extremely eccentric 

it is considered to be debris. This filter removes segmented sub-regions that exceed relaxed 

geometric standards for what would be considered a cell by analyzing the major and minor axis of 

an assumed ellipse shapes major axis enclosing the longest distance and the minor axis the shortest 
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distance. The major axis is limited by the experimentally determined norm to remove extremely 

large cells. The ratio between the major and minor axis is limited to exclude highly excentric 

ellipses. Other forms of sub region property filtering include minimum and maximum area 

definitions. This filter removes selections smaller or larger based upon the expected CTC size. 

 

2.5 Automatic Ranking Algorithm 

The automatic ranking of segmented cells based on their likelihood of being a CTC is 

accomplished through a series of distinct phases. In the first phase, outputs from the image 

processing algorithm are averaged in groups of pixels from the segmented ROIs to produce review 

graphics and images. Both negative and positive selection targets are averaged across all enclosed 

pixels within the segmented region, which produces an average spectral response curve. An 

oversaturation warning counter counts the number of pixels contained within the ROI that exceeds 

a customizable upper limit per channel. A second phase follows the calculation of average 

intensities, wherein ROIs are ranked based on their overall intensity within the possible positive 

and negative cell groups. This ranking process, shown in Figure 2.10, is highly customizable with 

a number of parameters defined through iterative control testing described in Section 4.1. 

 

Figure 2.10 Application specific scoring function used to sort results seen in Figure 2.11 

The two ordered lists of negative and positive cells are then joined into one result dataset. This 

arrangement allows for faster manual review and places all strong candidate cells at the start of the 

dataset. In the final phase, single-cell image outputs and multiple overview thumbnails are 

generated to ease a manual review of the automated output information. The average spectral 
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graphs for every cell are converted into two false color intensity graded plots. These plots represent 

a heat map of the channel intensity per cell as seen in Figure 2.11. This heat map uses the same 

false color composite algorithm as the color composite image using the averaged per cell spectral 

information to create an easier to view horizontally spread plot of the cell average intensity per 

channel and color. Thumbnails of the multiple whole sample layers are also produced for easier 

identification in sample reports. A pure intensity plot is also possible with no false coloration 

occurring and can be seen in Figure 2.12. Reviewers would review the sorted results and select 

cells that they view as truly positive dependent on the specific sample being tested. 

 

Figure 2.11 Summary graphic overview with false color composite mapped to cell regions with the entire sample 

represented in one simple graphic. Used as the navigation overview map for review. 

Images from the color composite, bright field, and potential CTC filters, images are extracted per 

cell and placed above a graph containing the spectral average values and pixel count of 

oversaturated cells. The outline of the selection volume is drawn on the bright field layer for 

verification of the automatic selection process. These images are then placed into a video file as a 

series of images in order to package the sequence in a viewable format. 

 

2.6 User Review Process 

Although the automated screening process provides an idea of the sample state, a human review 

of the automated results provides the same quality as a fully manual review process. However, the 

automated process also offers greatly increased throughput by excluding thousands of undesired 

cells automatically. The automated process brings the most likely positive cells to the front ranked 

sorted list greatly expediting the review process. Two modes of review are available for the 

automated results: a software agnostic video file and custom review software. Both modes of 

review use the same human readable file collection which can be contained inside a .zip folder.  

<<Most likely positive cells …         Least likely positive>> |  Negative Cells                          More Negative>>     

… ... 
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2.6.1 Simple User Review Process 

Table 3.1 lists the output files and common viewers that can be used to review the automated 

process outputs. By utilizing commonly available formats, the review process does not require any 

specialized software. Reviewers can use video player controls to sequentially view a file, or they 

can open image files in any common image viewer/editor to markup the images as required. The 

text based output file can be opened in any spreadsheet/text editor to access the numerical data 

from the automated output. The output can also be linked to other software processes in order to 

provide the physical coordinate information. These common formats allow the output report files 

to be easily shared and reviewed without the use of proprietary tools. Additional image information 

is included with a thumbnail of the sample as well as image preview charts that facilitate easier 

navigation.  

Table 2.1 List of output file types and their purpose. 

Reviewers open the video report file in any video player that supports the common motion JPEG 

format and then manually record the cell index for target in a frame by frame manner. Video files 

also contain header frames to ensure the sample information and report metadata are tightly 

coupled. Frame rates are set to be slow to ensure playback is consistent with one frame per second 

so each sample is easily viewed even if frame by frame playback is not used. After marking down 

the cell indexes, reviewers can edit the cell data text file to record their selections. They can also 

obtain the numerical position and perform statistics on their selections. In addition, common photo 

editing software can be used to markup the heatmap images and full resolution images in order to 

generate visual reporting documents. These processes can be streamlined using custom designed 

review software that is described in the following section. 

 

Name Type Review Purpose 

videorpt MJPEG Image Sequence of all positive and negative visual results 

celldata CSV Data file containing all text data on positive and negative results 

j/gelly JPEG summary heat map image mapped to intensity or FCC 

FR JPEG full resolution compressed markup images 
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2.6.2 Graphical User Interface for Human Review 

The results files can be easily refined using a simplified report viewer that takes the report 

container and displays all the relevant information in user friendly manner. This software takes all 

common file outputs and integrates the video/image/text results. Interactivity of the integrated 

results allows the reviewer to use a mouse or keyboard to rapidly navigate. Another important 

aspect, is that the review software is generalized allowing for the MATLAB image processing 

configuration to be changed without altering the review software. The overall interface is shown 

in Figure 2.12 with experiment specific markup overlaid. The index/position/area describes the 

cell index within the ranked sample result list as well as the XY pixel coordinate position in the 

actual image. The area is listed as the pixels enclosed within the sub region and is outlined in green 

over the bright field (BF) image. Images of each sub region are captured per result with the false 

color composite (FCC) used to quickly assess the cell and the bright field (BF) used to identify 

nearby debris or anomalies. The mask image is the output result of the spectral pixel processing 

algorithm with bright pixels representing more positive pixels. The spectral graph below the 

images of the sub region provides the average spectral response of the cell which can be used to 

positively identify the type of cell as well as see anomalous spectral responses. Starting from the 

left of the spectral graph the nuclear marker DAPI’s signal strength is listed followed by the two 

CK/EpCAM positive peaks. Finally, the CD45 peak is marked which is where the relative selection 

tests against any possible residual CD45 expression. The oversaturation of the image data is listed 

above the spectral graph and allows users to see if a cell has abnormal marker expression. The Gel 

View on the top right provides the primary user navigation as well as a rapid overview of the entire 

sample and selects cells based on the mouse position over the gel view. The coloration of this 

graph can be switched between an intensity only colorization or use the FCC composition method. 

This gel view has the DAPI channel at the top followed by the CK/EpCAM/Cd45 channel peaks 

marked by the arrows in Figure 2.12. This overview gel view provides all the spectral result curves 

for all samples in an easy to review method without the need for large image panels. When a cell 

is selected, it is marked with a magenta marker at the bottom and the currently selected cell is 

highlighted with a thin magenta line. Full resolution markup image provides positional information 

on selected cells which can be useful in single cell capture applications in that it provides a physical 

map relative to the sample holder. Users can also select and delete already marked cells from this 
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view. It can also be switched between the FCC/BF/Mask views for the entire sample well. The text 

summary on the side lists the textual results of the selected cells and is used to save an amended 

result table with manually screened results. At the bottom right is a visual feedback for numerical 

navigation where users can enter a number into the program by typing a number anywhere if the 

program is in focus to quickly jump to a cell index position. This can be useful if another reviewer 

asks another to look at a cell within a sample by its index number. These navigation methods are 

synchronized so that if a user navigates using any of the gel view/full resolution markup/text 

summary/numerical input all the graphical elements will update to match the selection. The user 

can also reduce the program window horizontally with the window snapping to exclude the text 

summary first then full resolution image and gel view and finally just the spectral graph. The 

expansion and contraction of the software allows users with larger monitors to use more of the Gel 

View at the same time or shrink the program to use alongside other software. 

 

Figure 2.12 Review software with experiment specific markup overlaid added to highlight marker positions as 

well as major areas of the software. 
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The review software displays a spectral graph for every cell and highlights its physical position on 

the thumbnail overview image of the sample. In addition, the intensity graph images provide a 

rapid navigation tool to enable scrubbing through the report with simple mouse over and keyboard 

navigation. Users can select cells and generate markings on the intensity plot and the overview 

image. The selection allows the user to view a reference of the cells already selected. This method 

is a significant improvement over ZEN (ZEN does not support selecting and rendering a significant 

number of potential cells on a single image with spectral information enabled). If a reviewer knows 

a particular cell index they can also type the index in to jump to a particular cell. 

After a user has selected the cells, a text summary list can be reviewed quickly before exporting 

an annotated text file. The annotated text file contains the list of cells that were positively identified 

during review. Compared to previous manual reviews with the original microscope software, time 

to select and identify positive cells is greatly improved. In addition, full resolution markup images 

are produced allowing for users to directly navigate to positively identified cells on the imaged 

sample plate. 
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Chapter 3: Experimental Process for CTC Identification 

This chapter describes the development of the experimental process for CTC identification using 

spectral image cytometry. Section 3.1 describes the imaging quality control and calibration 

process. Section 3.2 describes two manual review processes that serve as the baseline case for CTC 

identification. Section 3.3 describes the overall experimental workflow for spectral image 

cytometry software platform developed in this thesis. 

 

3.1 Quality Control and Calibration 

Blood samples from healthy donors are used as a negative control to calibrate the microscope 

system and identify the noise floor of the fluorescence markers for positive selection. Cancer cells 

from LNCaP and UC13 cell lines are used as positive controls to establish the staining and imaging 

conditions for CTCs. These healthy donors and cultured cancer cells are used to generate initial 

calibration data shown in figure 3.1. A potential challenge of using cultured cancer cells as positive 

control is that patient CTCs can vary wildly from lab cultured homogenous cancer cell lines. 

Furthermore, blood samples are sourced from terminal cancer patients undergoing experimental 

treatments that can dramatically alter the composition and status of their blood cells. As a result, 

some patient samples were excluded from the formal enumeration process because the imaging 

conditions for those samples were not consistent. Additional initial patient samples were processed 

in order to aid in an iterative calibration of microscope settings and tuning the preparation of the 

samples for imaging. These images were not used for counting until the process was optimized to 

produce stable manual identification results as shown in Figure 3.1 under the iterative process to 

determine final settings. The formal process used these final settings and processed patient samples 

with injected blinded negative control samples to verify the process during the experiment. 
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Figure 3.1 Calibration of microscope settings using control samples and initial trial run real world samples 

leading to a finalized configuration with main experiment verified by injecting blinded negative healthy samples 

randomly into the patient sample stream to verify workflow process. 

Quality control is a critical component of imaging studies with highly variable samples. A number 

of sample criteria were developed to identify substandard samples. Specifically, since the LSM 

780 confocal system captures a single focal plan, it is important to ensure a stable focus is 

maintained over the entire sample scan and that the cell sample is maintained in a single 

monolayer. It is further required that the cells do not form confluent layers where many cells are 

in contact with each other as this risks undesired absorption of emission light from the IF process 

by non-target cells occluding the optical return path. To ensure a stable focus is maintained we use 

a confocal sectioning to scan several distinct depth layers present in a sample. This is made 

possible with the confocal system’s pinhole which can create precise slices of a sample while 

excluding out of focus light and is as shown in Figure 3.2. An occasional problem is the presence 

of red blood cells, which are not stained by any of the fluorophores. However, an excessive number 

of RBCs can prevent the formation of a single monolayer of cells to corrupt the fluorescence 

imaging process which can be detected using the depth scan described.  
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Figure 3.2 Illustration of sample confluence with multiple layers of cells overlaid on each other. 

Additional criteria for quality control include that cells should also be free of fluorochrome 

contamination, which can be detected by extremely intense points of light. Samples are excluded 

for having microbial contamination which appears in brightfield imaging as smaller than cell 

organisms. When viewed under live microscopy, microbial contaminations move actively in the 

stained media where all cells should be dead. These contaminated samples are excluded as the 

activity of microbial contaminates can alter the expression of IF markers or even consume the 

target cells. Additionally, negative WBCs must be present in the sample for positive cells to be 

accurately identified. If all cells appear positive, then a staining failure or sample anomaly is likely 

and a sample is rejected. 

 

3.2 Workflow for Manual CTC Identification from Spectral Images 

3.2.1 Manual Review of Spectral Images 

Manual image processing of the multispectral images involves human reviewers selecting and 

reviewing thousands of cells individually. This task is performed by blinded reviewers using the 

ZEN Black microscope software using the trained user performing spectral signal processing and 

morphological evaluation. Due to software performance limitations if ZEN, only a few hundred 

individually selected cells could be stored at a time. The primary challenge for the completely 

manual process is its low throughput with the process typically requiring hours to complete.  
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Depending on sample density, some samples having tens of thousands of cells and it can be 

difficult for a manual reviewer to accurately screen an entire sample without missing some cells. 

Because some samples require processing multiple sample wells, due to cell density, manual 

counting times can increase dramatically; thus reducing the processing ability of lab staff. The 

review process involves an initial manual pre-screening process to determine which cells might be 

potential CTCs this involves identifying clearly negative cells as leukocytes by their distinctive 

shape and coloration. Because this pre-screening does not actually select cells to be evaluated by 

their spectral content review artifacts can occur between reviewers as initial pre-screening process 

is performed by the reviewers individual judgement.  The time required a single well in a 384 

imaging well plate can easily exceed 30 minutes with an average selection speed of approximately 

30 cells selected per minute with actual numbers depending on the particular reviewer. Potential 

cells are often times greater than 1000 cells per well. The following Figure 3.3 illustrates the 

manual selection process and how users must manually scan across the image selecting potential 

cells in a number of review tiles. Overall this means the manual review process has a time 

performance limitation as well as a potential to undercount CTCs. However, the manual process 

produces the highest quality data and can accurately consider all morphological and marker based 

criteria serving as a good baseline to compare against. 
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Figure 3.3 Manual review requires user to up-close manually click and drag on every potential cell. The number 

of tiles a user has to review is dependent on their screen resolution and monitor being used which adds 

additional variables in the review process. 

 

3.2.2 Manual Review of Standard IF Images 

Initial setup testing involved the use of standard IF imaging but using the same experimental setup 

this process was not successful. To verify that multi-spectral imaging improves performance over 

standard IF imaging a simulation using the same data was performed to verify the expected 

improvement in performance.  Because multispectral acquisition provides additional information 

compared to standard IF acquisition down sampling and emulation of Standard 

immunofluorescence (IF) data is possible by extracting emulated single channel images from a 

spectral stack. An advantage of standard IF images is that they can be reviewed rapidly. However 

due to the close placement of fluorescence markers, bleed over from nearby wavelengths may 

result in significant number of false positive. Standard IF images were generated by flattening 

spectral image cube into 4 channels based on common real world filters used in standard inverted 

microscopes. 

~1000 

~69 Tiles to Manually Review 
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Idealized graphs below (Figure 3.4 to 3.6) use reference spectra to illustrate the difference between 

standard IF filter and a smooth spectral output. The filter based intensity plots provide significantly 

less information about the actual sample response when compared with a spectral capture that can 

positively identify the presence of negative fluorophores. In actual experiments variations between 

and within samples causes additional variations for which spectral capture can detect and 

compensate. Instances have been observed in practice whereby unexpected spectral responses 

occur with no corresponding dye. A filter based system would create the false appearance of two 

or more dyes near the unexpected fluorescence emission. In the spectral system unexpected 

emissions are also excluded. 

In the positive case, shown in Figure 3.4, the spectral scan provides clear peaks within the expected 

locations. On the other hand, filter based analysis shows significant signals in all channels. Another 

benefit to the spectral scanning system is additional dyes can be added without causing significant 

disruption to the workflow. Typically, with filter based systems for every additional dye scanning 

time increases multiplicatively. Furthermore, imaging requires multiple exposures with various 

filter elements being switched in and out. Conversely, by spectral scanning with a single exposure, 

many wavelength bins can be captured with sufficient resolution to show the actual peak 

wavelengths as well as contaminants. In actual experiments, due to non-ideal conditions, additional 

selection criteria can be added. An example is testing for peak broadening which is a sign of 

extreme overexposure or physical contamination. In addition to increased discrimination, a 

spectral scanning system allows for the capture of all spectral channels simultaneously. A spectral 

scanning system also allows for increased sensitivity as all received light is captured while in 

standard IF filters reject light from portions of the spectrum.  
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Figure 3.4 Idealized spectral graph showing how clear positive cells exhibit clearly identifiable peaks while 

filter based processing shows intensities in all channels with the peak location unknown. 

In an abnormal false-positive case, spectral scanning also provides a clear indication of even 

slightly negative cells with positive signals mixed as shown in Figure 3.5. The emulated filter 

based system appears similar to the positive case with overall signals increased for both CD45 and 

EpCAM.  

 

Figure 3.5 Abnormal negative cell with all signals present and a weak CD45 signal. Spectral scanning shows 

this bump clearly while filter based processing is far more unclear with both the EpCAM and CD45 signal 

being mixed together. 
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Finally, in the negative case shown in Figure 3.6, both methods are fairly clear. However, the filter 

based method still shows some signal in positive channels whilst the spectral data would show the 

peaks clearly. In practice, filter based systems are not able to create perfectly clean filter bands 

because there is always some additional roll off compared to the idealized plot shown.  

 

Figure 3.6 Idealized graphs of the greatest difference between filter based imaging and full spectral imaging 

with the use of nearby dyes. Spectral imaging can support the addition of a fifth dye in the 550-600nm range 

(yellow) without issue while in the filter based system this would cause additional bleed over.  

Standard filter based imaging can be improved by using extremely tight emission and excitation 

filters in combination with illumination specific scanning. This requires multiple exposures and 

increased imaging time due to the loss of sensitivity from tight filter bands restricting photon 

capture. Standard non-spectral confocal systems can also capture arbitrarily tight wavelength 

bands but multiply the scan time and exposure requirements by the number of overlapping dye 

sets. By reducing the received light and requiring multiple exposures, the required light exposure 

increases dramatically. This can also negatively affect the sample quality and survival rate due to 

photo degradation of the dyes and cells being imaged. Another advantage of a spectral scanning 

system is its ability to emulate filter based capture by defining digital filter sets in post processes. 

 

3.3 Workflow for Semi-Automated CTC Identification from Spectral Images 

For validation of this analytical system, tumor cells were enriched using the microfluidic ratchet 

deformability-based sorting mechanism, developed in our laboratory [41]. Briefly, whole blood 
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obtained from patients was flowed through an array of microscale funnels, where the cells were 

vertically fractionated based on cell deformability. Cell fractions containing the more rigid 

leukocytes and tumor cells were obtained as a liquid suspension and were immunostained for 

CD45, CK and EpCAM and stained with the DAPI nucleic acid dye. Cells were stored in 

suspension at 4°C overnight, for processing on the next day under ideal conditions. Just prior to 

imaging, cells were seeded into optical glass bottomed 384 well plates with a diameter of 

approximately two millimeters and collected to the bottom of the plate by centrifugation. The wells 

were visually inspected and, if cell density was too high, the suspension was diluted and split to 

additional sample wells. 

With the sample carrier plate loaded onto the microscope, the well was centered and calibrated to 

the automated stage to image multiple wells as tiled image sets. Microscope profiles specific to 

the experiment are selected and a large image was automatically captured. Initial quality control 

measures on sample images were performed at this point and if significant errors have occurred 

the operator had the opportunity to re-plate or recapture the image after correcting for any errors 

in the setup. The overall workflow is depicted in Figure 3.7, with this thesis work focused on the 

scanning process, automated analysis, and assisted review. 

 

Figure 3.7 Experimental workflow from patient sample input to final data output. 

After the images for all samples were captured they are saved to the local drive and network 

backup. These images are then processed using the automated image cytometry algorithm. This 

produces a report for manual verification. An approximate automated count is provided as an 

interim number. Assisted review is then performed to obtain the final CTC count. 
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Chapter 4: Results and Evaluation 

This chapter describes the validation of the thesis and overall results. Section 4.1 describes the 

validation of selection parameters in a sensitivity vs. specificity test. Section 4.2 presents the 

results of a comparison between the gold standard manual analysis, emulated manual IF, and this 

thesis’s developed semi-automated process. Finally, section 4.3 presents the processing 

performance and system requirements. 

 

4.1 Sensitivity vs. Specificity 

The Receiver Operator curve (RoC) illustrates the performance of a selection algorithm versus a 

random selection process. In order to plot a RoC the ground truth, known as the true positives, is 

required which is obtained from manual review of the results. False positives are any automatically 

labeled positive cell which are not part of the true positive list. Finally, selection parameters must 

be varied to plot the sensitivity versus specificity. Sensitivity is the ability for the algorithm to 

detect true positive cells. This is calculated using true positives selected through manual review 

relative to the automated algorithm’s positive selections shown in Equation 1.1. Specificity is the 

ratio of false positives vs. automated algorithm selected negatives as shown in equation 1.2. The 

diagonal in a RoC curve indicates a perfectly random selection process with a perfect algorithm 

having a 100% true positive rate with a 0% false positive rate forming a corner shaped curve. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
 Σ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Σ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1.1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
 Σ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Σ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1.2) 

 

The RoC can also be used to demonstrate how the tuning of the selection parameters could improve 

selection performance. In addition the RoC demonstrates the typical tradeoff between capture all 

positive results with false positives included or having no false positive results but missing true 

positives. This results in an optimization process that can reduce the number of automatically 

selected potentially positive CTC cells without discarding any true positive cells. This is a critical 

focus as reducing true positive selection count would prevent any manual reviewer from detecting 
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cells pre-filtered by automated processes. This optimization target allows the automated method 

to augment the standard manual review process by removing many tedious cell selections and 

creating uniform selection criteria without removing true positive cells.  

4.1.1 EpCAM vs. CD45 Ratio RoC 

The proximity of the industry standard Alexa 594 dye bound to EpCAM and the APC dye bound 

to markers represents a major challenge to discriminating closely spaced markers. Because the 

study of multiple positive markers is desired only one channel can be used for negative selection. 

However properly detecting this negative result is critical. Both the EpCAM (Alexa 594) and 

CD45 (APC) markers have reference spectra described previously with peaks in specific 

wavelengths. The difference between the positive EpCAM peak and negative CD45 peak is one 

of the main ratio-based selection criteria and this ratio shows a strong correlation to selection 

efficiency and as seen in Figure 4.1. This ratio is defined as the absolute ADC units for EpCAM’s 

expected peak over the absolute ADC units for CD45 peak also described earlier in pixel 

processing sub-section. 

 

Figure 4.1 Cell ranking RoC plot illustrating reduction in false positive rate with increasingly stringent ranking 

cutoff. 

Physically the dye the EpCAM marker is bound to (Alexa 594) has a theoretical lower limit on the 

ratio between its peak and where a CD45 (APC) peak would be. Anything below this limit would 
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not be considered EpCAM positive. This can provide another verification of the ratio-based 

analysis. The reference spectra of Alexa has a residual ratio of 35 which is illustrated in the actual 

data. There are no positive results found below this ratio as the experimental true positive rate is 

0% below a ratio of 35. Because the idealized spectra does not account for background/noise or 

the presence of other dyes, the specific optical setup utilizing the ratio-based selections requires 

additional criteria to further improve performance.  

 

4.1.2 Cell Rank RoC 

The cell ranking selection system was intended to sort cells by their likelihood of being a true 

positive. The initial cutoff was selected to be extremely relaxed with only clearly negative cells 

being rejected. As seen in Figure 4.2 the RoC curve shows a significant improvement in false 

positive rates by increasing the score limit to 27. Because the negative population within samples 

is so large a reduction in the false positive rate greatly reduces the number of potentially positive 

cells displayed for final review. 

 

Figure 4.2 Cell ranking RoC plot illustrating reduction in false positive rate with increasingly stringent ranking 

cutoff. 
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This composite score, which is based off the spectral intensity cutoffs and relative selection 

algorithms, allows for greatly improved selection performance by eliminating weakly positive 

cells that reviewers do not consider as positive. Furthermore, using the composite score also allows 

for sorting of results more effectively based on multiple parameters.  

 

4.2 CTC Identification Results 

To compare the performance of the fully manual spectral analysis against the semi-automatic 

method the ten samples blindly selected from existing prostate and bladder cancer patient results. 

In all samples analyzed the semi-automatic method this thesis developed closely match or slightly 

exceeded the counts found in direct manual review as shown in Figure 4.3. Due to the semi-

automated nature of the process the slight increases are likely due to the improved consistency in 

the selection process. This is achieved by automated analysis of every cell and sorting them before 

review. Moreover, review can be done concurrently while sample imaging is being processed. 

 

Figure 4.3 Comparison between the three methods of analysis. H010 is the negative control injected into the 

review process with only the manual IF method failing to exclude the negative control sample. 

The semi-automated method passes the control sample without issue. Also this method provides 

important feedback on sample quality by showing side by side views of the fluorescence image. 

Visual quality control for imagery is taken from the bright field layer. Users can also verify that 

the selection of cells was correctly outlined by the automated method, by observing the actual cell 
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outline regardless of its fluorescence response. In contrast, the manual standard IF method does 

not successfully discriminate for the negative control sample H010. Furthermore, manual standard 

IF has high variability when compared to the semi-automated and manual review process. 

In sample number H032 the manual IF method had irregular results, with one reviewer’s result 

excluded as an outlier due to the count exceeding 500% relative to the other reviewer results. 

Sample VC049 has a zero count for the manual spectral review with a small count for both the 

semi-automatic and manual IF process. This is likely due to difficulty in testing every cell in 

manual spectral review which sometimes results in under selection of cells. 

Overall results from the semi-automatic spectral method are comparable to the manual spectral 

review. An additional benefit is that every reviewer will review the same cells in the same order, 

unlike the manual method which does not guarantee all cells of interest are being reviewed. 

 

4.3 Performance and Ease of Use 

The overall run time results are broken down by: image conversion and metadata handling; 

automatic image cytometry process; and report generation all shown in Figure 4.4. The images 

initial conversion typically takes one minute per image with no further conversions needed. 

Because this process is completely automatic, no user interaction is needed. This process can occur 

on a server in order to batch convert incoming files. Additionally, the automatic image processing 

method accepts meta-data separated files into specific recognition configurations and produces 

output report files dependent on the total number of cells within a sample. Typical samples 

containing less than ten thousand cells and take about five minutes to process per sample. Atypical 

samples containing more than ten thousand cells can exceed the target processing time of 5 minutes 

per sample. This is due to the image processing producing outputs for all cells regardless if they 

are negative or positive. The output is an ordered list of most likely positive then most negative 

cells. Average processing times are within the microscope imaging time tolerances allowing for 

most samples to be processed in between acquisition steps, thereby increasing the operator’s 

productivity. 
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Figure 4.4 processing performance of the automated algorithm split by image file conversion, image processing, 

and report generation. A majority of the processing time is spent encoding video output report files. In addition 

the report generation is sensitive to the number of cells being processed. 

Processing requirements are limited by the universal file import conversion provided by a pre-

existing medical imaging library. The library written in java requires a continuous block of 

memory for initial conversion processes. As a result the software only uses native MATLAB data 

files and requires an intermediate step to decouple the conversion software from the image 

processing. This allows for a separate computer or server to process incoming files for fast loading 

processing by any analysis programs. The processing algorithm operates with a 26 channel 

~60megapixel per layer image requiring approximately 8 gigabytes of system memory. 

Because image processing and review is rapid enough to operate in parallel with imaging tasks, 

operators are able to promptly receive feedback on their experiment quality. Furthermore, 

preliminary results are produced while they are still capturing microscope image data.  

By employing disk streaming, report viewing requires a fraction of the memory used for processing 

because no further processing is done on the output results within the review software. This is a 

more user-friendly approach when compared to the previous manual review process which 

requires users to open the full gigapixel spectral image within the proprietary ZEN microscope 

software. 
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Ease of use was one of the primary research objectives of the automated algorithm. This primary 

goal is achieved by creating easy to use software and simplifying review. Ease of use is validated 

by an open output format with simple user interface design. The final workflow improvement of 

the software is greatly reduced average analysis times. The streamlined workflow also reduces 

manual review to a selection of a few handful of pre-filtered images with no requirement to select 

or adjust the image algorithm prior to use. 

The configurability of the algorithm allows for multiple experiments to use the same software 

workflow as well as for in process adjustments, subsequently improving overall results. This is 

verified through process parameter optimization and validation of increasing selection 

performance described previously in the RoC curves.  
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Chapter 5: Conclusion 

5.1 Summary 

The spectral image cytometry software platform described in this thesis identifies rare CTCs from 

background cells through a highly efficient and semi-automated process. This process is comprised 

of the image acquisition, automated pre-screening, and assisted manual review process. Overall 

processing times are greatly improved in the semi-automated workflow. Because the process 

leverages human reviewers for the critical final selection process, the quality of results is improved 

over purely manual selection processes. Purely manual selection processes tend to overwork 

reviewers with tedious and repetitive tasks which are wholly eliminated by this algorithm’s 

automation. 

 

5.2 Statement of Impact 

CTC image cytometry is an important process that is challenged by biologically inherent 

variability and unknown properties. However, CTC image cytometry is enhanced by the use of 

semi-automatic pre-screening software processing.  

This thesis developed a spectral image cytometry software that processes input data from 

proprietary microscope formats into usable common files for a wide applicability. Automated 

image processing algorithms successfully segment and identify potential CTCs from gigapixel 

large spectral image cubes. This data was successfully used to produce an automatic ranking and 

human readable report for review.  

The overall process performed similarly to the previous gold standard fully manual review process 

while providing a possible improvement in selection performance. The software runtime speed 

required to generate human readable files was shorter on average than the instrument capture time 

which allows for an optimal workflow process whereby experiments can be processed and 

reviewed while acquisition is occurring. 
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5.3 Future Work 

Potential future improvements to the process include, the configuration of the systems requires 

editing the process configuration files directly. Currently, without any guided setup configuration 

software, users must be trained before this process can be used in other experiment setups. A 

guided graphical user interface to the automated algorithm configuration process would greatly 

improve the ability of the software to be adapted to other projects reducing training requirements.  

Currently, metadata from the proprietary microscope are not directly presented within the output 

report files. The metadata could be integrated to create a single report file for all review 

requirements. Existing manual review processes can result in experimental errors in file handling 

processes. Streamlining the manual review process can eliminate such errors. 

Fixed processing time targets can also be adopted to allow for the subsampling of negative 

population selections. Processing all negative cells composes the bulk of report building 

processing time. This issue can be further optimized by intelligent negative cell skipping and other 

performance optimizations. 
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Appendices 

 

Appendix A   Evaluation of Alternative Spectral Analysis Software Packages 

Most spectral analysis software are designed for spectral processing of satellite and aerial image 

data. A few specialized tools, for spectral analysis software, exist for biological unmixing 

applications. Another issue is that most spectral processing software demands control over the 

incoming sample. This is needed in order to produce useable results, which is a complication when 

working with samples with highly heterogeneous properties such as those from a terminal cancer 

patient. In this section six available tools for spectral processing are evaluated to test their 

suitability for the experimental process described previously. 

The image data used is a 1.5Gigapixel 7680x7680x26 (X, Y, Lambda (colors)) image cube. The 

test criteria is whether the tools produce clear visual separated images with sufficient detail for a 

reviewer to evaluate the automatic results. Another issue with highly variable samples is that 

precise spectral calibration information is not possible on a per sample basis. This is due to the 

time overhead and possibility of not sufficient spectrally pure quality references within a random 

sample. Typical acquisition times for sample images are about 5-10 minutes each with hundreds 

of samples processed in the course of research. As a result processing has been defined to target a 

similar timescale of 5-10 minutes for processing, with an upper limit of 30 minutes. If the method 

exceeds the upper limit it is considered to be unsuitably slow. Prompt processing times are required 

because the image operator needs feedback to evaluate if their sample is ideal for time sensitive 

follow on processing such as: single cell extraction; sequencing; DNA storage; and many other 

processing techniques that demand fast turnaround times.  

In addition to time constraints, running the software on local machines, which are ideally the 

workstations operating the microscope, is ideal for user workflow purposes. This is because 

operators can analyze capture data on the spot in order to decide what steps to take next. As a result 

the specifications for the target machine have been set to be a Quad Core Intel Haswell i7 with 

32GB of memory. For testing purposes a more powerful machine was used with 64GB of memory 

and a Hexa Core Intel Haswell i7 processor. A tested software package is deemed to fail to process 
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if: it crashed or exceeded the 32GB of memory limit; took longer than 30 minutes to process a 

single image; or produced erroneous output images. 

The following subsections describe various software packages tested against the actual image data 

captured by the microscope. These subsections also describe the software packages performance 

and if any failed to process the manner in which they failed. A review paper of medical imaging 

listed 16 common biological image analysis software packages with only one software package 

supporting unmixing via a plugin[62]. As a result the search scope was expanded as spectral 

unmixing appears to be far more commonly used in analysis of planetary surfaces in the geospatial 

studies field. Many packages are designed for these planetary surface applications without much 

support for biological imaging. Tests were carried out to validate software for use within the 

workflow. The general unsuitability of the tested software necessitated the development of custom 

algorithms. 

 

A.1 Hyperspectral Image Analysis Toolbox 

Hyperspectral Image Analysis Toolbox is a MATLAB based tool running its own custom user 

interface [63]. This software is designed to use a variety of methods including principle component 

analysis (PCA) to allow for detection of the predominant spectra even where exact calibration 

information is not available. The performance was not tested due to the ingest functionality of the 

package not working correctly. This software was also mainly designed and tested for reviewing 

ROIs from hyperspectral satellite imagery. Because the software could not open the gigapixel 

image cube no successful separation was completed. 

Complications arose in attempting to load the extremely large image data into the plugin, resulting 

in the software exceeding system memory when it attempted to import the test image stack. 

Processing was considered a failure due to its inability to open the entire image stack. Furthermore, 

processing the file in chunks would result in lost cell information due to the exact cell positions 

being generally random. 
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A.2 PoissonNMF 

PoissonNMF is an open-source spectral image processing plugin for ImageJ [64]. This software 

package uses automatic spectral detection to extract expected spectral components without the 

need for calibration data. However, high and low accuracy separation settings results in 

unacceptable runtime ranging from 20 minutes to over 60 minutes. Even with the lower accuracy 

automatic calibration, the separation performance was not satisfactory. There was poor unmixing 

in cells with mixed markers. However, the plugin was able to separate spectrally pure cells with 

only one marker per pixel. A common issue with samples is that most algorithms expect spectrally 

pure pixels to obtain the reference spectrum. However, biological samples markers such as CD45, 

EpCam, and CK can exist in the same pixel making obtaining a per sample reference spectrum 

automatically or manually challenging. 

Sample images loaded into PoissonNMF were successfully loaded. However, the interface became 

sluggish once processing started and memory exceeded 32GB. The program was forced closed 

after 60 minutes of processing using default settings. Parameters were then adjusted to attempt to 

reduce the runtime to approximately 20 minutes. This resulted in poor spectral separation with 

only unmixing pure pixels.   

 

A.3 Multispec 

Multispec is a custom software package written primarily to process geospatial images with the 

ability to apply spectral unmixing functions to images [65]. The software supports automatic 

unmixing in the absence of a pre-calibration dataset. Although the software could load and view 

the image with no apparent slowdown, processing failed to start due to a built in memory estimator 

asking for 256GB of memory to complete the processing of the sample image file. Since this 

amount of memory is impractical for a workstation computer the software package exceeded target 

system requirements.  

While pre-processing with Multispec used very little memory, Multispec does not appear to retain 

the image file in memory. Rather it appears to take a crudely subsampled thumbnail. Furthermore, 

processing times are extremely long with this program with frequent freezing. Initially setting it to 

lowest possible quality results in 30 minutes to complete the task. Furthermore there is no support 
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for 64bit operating systems or large address awareness, and as a result the program cannot 

effectively take advantage of systems with greater than 3GB of memory. All images were stored 

on PCIe SSD disks for maximum disk streaming speeds. Solid state disk speeds were in excess of 

800MB/s to minimize the disk streaming effect. No separation was successfully completed using 

this software package. 

 

A.4 Gerbil 

Gerbil is a relatively new spectral unmixing software designed to provide an easy to use 

environment for processing spectral image results [66]. This software uses a number of modern 

techniques including neural network type processing. One caveat, however, is that the memory 

requirements are significantly higher than most software packages. During testing the Gerbil 

software suite exceeded system memory limits, freezing the software and operating system due to 

memory exhaustion. Due to these factors tuning the software was difficult as processing would 

destabilize the computer, requiring full restarts when attempting alternative settings. While sub-

regions were successfully separated cleanly between positive and negative cells, no full region 

processing was successfully completed. 

Loading a file into Gerbil and preforming the separation was a simple task and the program worked 

properly after a short delay. However, a severe downside of Gerbil was that for the software to 

automatically crops images to a block of just 512x512 pixels requires 225 repetitions with an 

estimated sequential run time of 11.25 hours. To process the image in one shot the estimated 

memory required is 3490GB which is impractical for even most high performance servers. The 

result produced an image which appeared to separate possible cells for negative cells. Gerbil also 

provided additional feedback on each target. This was the only software tested that actually 

produced correct outputs for a number of samples tested.  

 

A.5 Scyven 

Scyven is a standalone spectral processing software package [67] that specializes in analysis of 

spectral images captured from real world scenes. The Scyven software suite has built in features 
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to compensate for spectral illumination content as well as reflection properties. Both of these 

functions appear to be integral to the program and cannot be disabled. Further still, these functions 

are not relevant to a flat confocal image with no background illuminant, as there is no reflection 

to compensate for in a fluorescence emission process. As with other software that exceeded system 

memory limits instabilities made tuning difficult. Scyven also supports manual, automatic, and 

assisted spectral identification. However, this feature was not successfully used on the gigapixel 

image cubes.  

Moreover, Scyven exceeded the target runtime of 30 minutes and subsequently exhausted all 

system memory. The software could not process the files successfully and while it could open the 

gigapixel image the interface was sluggish to use after importing the file. 

 

A.6 ZEN 

Zeiss provides specialized software with their spectral microscopy platforms. The software suite 

includes a tool that allows for spectral unmixing using automatic or pre-defined calibration curves. 

Initial testing attempted to build a spectral library, but changes in sample conditions necessitated 

constant updates to a per sample calibration requirements. The constant updates were considered 

unfeasible due to the additional overhead in finding quality pure calibration debris to calibrate the 

unmixing algorithm. The ZEN microscope control software also includes a proprietary automatic 

unmixing algorithm called automatic component extraction (ACE) which uses less than 32GB of 

memory and typically completes analysis under 15 minutes. However the resulting images from a 

series of test samples were often either blank or did not correctly identify the desired spectral 

components. This algorithm is likely very similar to other PCA type automatic identification 

methods. 

 

A.7 Summary of Software Tested 

Of the six software packages none successfully processed the sample images in a reasonable 

timeframe. Furthermore, packages that may have processed sample images had requirements 

beyond realm of feasibility for use in a biological lab equipped with the latest workstations. The 
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following table 3.2 summarizes the sample testing performed on the various software packages 

and includes the results of this thesis’s lightweight processing algorithm. The table demonstrates 

the comparative advantages of the lightweight processing algorithm which achieves a low memory 

footprint with fast processing times. Additional investigation into hardware accelerated unmixing 

systems such as dedicated DSP/FPGA/distributed GPU processing was considered to be outside 

the scope of this thesis. While these hardware accelerated unmixing systems offer significantly 

faster processing times, they suffer from a lack of available memory to store the input gigapixel 

image data.  

Other software packages developed specifically for gigapixel multispectral images were found to 

use guided linear unmixing within a MATLAB based process. However the code is not public and 

the test data was performed using idealized plastic calibration beads instead of actual patient 

samples that exhibit greatly increased variations in signal response [68]. As a result, this software 

could not be tested and is not included in the table below. Given that the software uses linear 

unmixing with assisted calibration, it is a reasonable inference that this software would fail to 

process more realistic samples with non-linear and challenging imaging conditions (where per 

sample calibration is impractical). 

  

Table A.1 Summary of the tested results. See the software comparison for additional details on why a software 

failed or did not run 

The test platform used a more powerful system to provide the best case scenario for the tested 

software. While actual use of the system was done under more reasonable specifications for 

practical purposes. The ability to run the software during image acquisition enables a number of 

highly desirable options such as: re-imaging suspect samples; reducing time delays between 
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processes; and eliminating post processing review (as analysis review could occur during sample 

acquisition for fast sample runs). 
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