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Abstract

Smartphones play an important role in our day to day activities. Some of them

include monitoring our health such as eating habits, sleep patterns and exercise

schedule. The Android mobile operating system developed by Google is currently

the most popular operating system for such smart devices. It is also the most vul-

nerable device due to its open nature of software installation, ability to dynami-

cally load code during runtime, and lack of updates to known vulnerabilities even

on popular versions of the system. Thus, securing such devices from malware that

targets user privacy and monetary resources is paramount.

In this thesis, we developed a context-aware multi-agent based framework tar-

geted towards protecting Android devices. A malware detection technique has

to be context-aware due to limited battery resources of mobile devices. In some

cases however, battery utilization might become secondary. This includes scenarios

where detection accuracy is given a higher priority over battery utilization. Thus,

a detection framework has to be intelligent and flexible. To reach this goal, our

framework relies on building multiple scalable context based models, and observ-

ing the behaviour patterns of Android devices by comparing to relevant pre-built

models. We make use of machine learning classifiers that are more scalable to
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help classify features that could be used to detect malware by behaviour analysis.

In this framework, the expensive analysis components utilizing machine learning

algorithms are pushed to server side, while agents on the Android client are used

mainly for context-aware feature gathering to transmit the information to server

side classifiers for analysis, and to receive classification results from the server

side agents.
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Chapter 1

Introduction

1.1 Thesis motivation

Internet connected smartphones play an important role in our day to day commu-

nication needs. They are not only used for traditional cost incurring activities such

as long distance phone calls and Short Message Service (SMS), but for a variety

of other tasks that contribute to the domain of Internet-Of-Things. Today, smart-

phones are used to browse personal and corporate accounts on social networks such

as Facebook and Twitter; conducting monetary activities such as paying for goods

and services via credit card information saved on mobile devices using Near Field

Communication (NFC) [33]; paying for parking using pay-by-phone applications

[61]; and are used by security conscious users as 2-factor authentication devices

for banking, email and cloud repositories such as Dropbox and Gmail. As such,

malware authors have begun focussing their interest on coding malicious applica-

tion for smartphones similar to what has been done for personal computing devices

over the last three decades.
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The most popular smartphone platform today is the Android platform devel-

oped by Google. Three out of four smartphone devices shipped today are based on

the Android operating system. Over a billion devices based on the Google Android

platform have been deployed since 2008. In Android, each application has an asso-

ciated .apk file which is synonymous to a .exe file on the Windows platform. Due

to the open software installation nature of Android, users are allowed to install any

executable file from any application store. This could be from the official Google

Play store [43], or a third party site. This ease of installing applications compared

to other smartphone platforms such as Apple’s iOS [15] platform makes Android

users vulnerable to malicious applications. Moreover, unlike the iOS platform, ini-

tially Google did not verify if applications in their official Play store have malicious

intent prior to making it publicly available. As such, malware had been found in

the official Google Play store applications by security vendors [75]. The platform

allows software downloads from third party sites; allows loading additional code at

runtime Poeplau et al. [62] using Java-reflection or Dynamic Code Loading (DCL);

and does not support patching vulnerabilities in older Android devices. As such,

malware authors have predominantly focused on the Android platform. Today, it

is the most vulnerable mobile platform with over ninety eight percent of malware

built for it [27].

A recent vulnerability with the Android system includes the Stagefright library

bug that leaves 950 million Android phones vulnerable to attack by a single Mul-

timedia Messaging Service (MMS) that is undetectable by a user of the phone 1.

Devices based on the Android platform can be infected to send SMS to premium

rate numbers to cause financial harm to users [76], used as part of botnets to cause

1http://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
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distributed denial of service attacks [79], and steal banking credentials when these

devices are used for 2-factor authentication [35]. Android devices can be pre-fitted

with rootkits to track sensitive activities such as keystrokes and SMS messages

[65]; and recently researchers have proposed the use of context-aware Android

malware [47] that makes use of sensors on the device to trigger malware. As can

be observed, many of the security threats identified with the PC industry have made

their way into the mobile operating system space. A broad characterization of An-

droid malware was presented by Zhou and Jiang [82] that provides the observed

trends of malware for Android. They presented over 1260 malware samples in 49

malware families with a best-case detection rate of 79.6 percent and a low detec-

tion rate of 20.2 percent by commercial antivirus companies. Many of the malware

samples diagnosed by them used drive-by-download attacks and update attacks

similar to infection vectors used for personal computing devices.

1.2 Research questions and contributions

Most of the security solutions that have been proposed in literature requires mod-

ification of the Android operating system framework. In this thesis we propose

the use of a multiagent system framework that attempts to detect Android malware

from user space, without modification to the Android Operating System. The only

addition is the optional addition of rooting of Android devices, which is an accept-

able method in the Android environment. The primary base for making decisions

however is using a machine learning approach. We make use of the Random Forest

machine learning algorithm [22] to make decisions.

In this thesis, we try to answer the following research questions:

• How could existing machine learning algorithms be applied on features col-
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lected for the detection framework for Android in novel ways?

• Would it be possible to detect Android malware without modifications to

the Android framework? i.e. Could features be monitored by an Android

application (at user level) to detect malware without modifying the Android

Operating System?

• Could context awareness of Android devices, or feature correlation between

Android devices be used to better detect Android malware? How could this

be enabled given the resource constraint nature of mobile devices and the

ever changing behaviour of mobile malware?

The following are our thesis research contributions:

• Contribution 1: We have identified that the machine learning classification

algorithm Random Forest is a good candidate for detecting Android malware

data features. This algorithm is a multi-class classifier that is robust to inter-

dependence between the features that have been collected while monitoring a

system, and the number of features that are observed to make a classification

decision. This algorithm requires observing log m features to yield results,

where m represents the total number of features observable in the system.

This allows the algorithm to compute a decision faster. We published 2 pa-

pers that modify the hyper parameters of the algorithm on feature vectors

of Android to classify Android malware. The results of our papers are dis-

cussed in Chapter 3. In the first paper [5] we provided initial experimental

results by performing just a 5-fold cross validation. In our second related

paper [3], we performed both 10-fold cross validation experiments and sep-

arate training - validation set comparisons by modifying the parameters of
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the Random Forest algorithm. Moreover, we performed 3 experiments with

random seeding for each setting of the algorithm and reported the median

values.

• Contribution 2: We identified that machine learning algorithms are highly

sensitive to parameter settings. There is a significant difference in the de-

tection accuracy of a machine learning algorithm, such as Random Forest if

it is used with the default parameters, as is done in most literary work, ver-

sus manipulating the parameters of the algorithm. In our experimentation,

we varied the number of trees in a Random Forest algorithm, the number of

random features compared at each decision point, and the depth of each tree.

We find significant difference in results. We also find a variation in the detec-

tion rate while performing a 10-fold cross validation and validation set test.

A 10-fold cross validation provided a 96.40 percent detection rate whereas a

validation set provided 81.64 percent detection rate. Thus, we observe that

the results obtained are very sensitive to the parameter settings.

• Contribution 3: We have used Java Agent Development Framework (JADE),

an agent based middleware, to design our detection framework, to gather rel-

evant features from Android devices. We have not come across any other re-

search work that uses multiagent systems for detecting malware on Android

devices. Our current system uses reasonable amount of Central Processing

Unit (CPU) and memory on Android devices to gather context aware fea-

tures. We emphasize the use of context-awareness as many mobile malware

today are launched based on the network the user is connected to, or region

that a user is located in physically, or the version of the operating system
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the user uses. Our architecture pushes the model generation and detection

component to server side as it is a more computationally intensive task. We

provide work-load statistics on the server such as CPU time, and memory

utilization in running the agent-platform.

1.3 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we provide related

background work to this thesis. In Chapter 3, we provide the design and experi-

mentation results of using a multi-agent environment for collecting Android-based

features. In Chapter 4, we propose the use of the Random Forest machine learning

algorithm on an Android dataset. We perform extensive experiments and provide

our results. Finally in Chapter 5, we summarize the thesis and include possible ex-

tensions to this research based on emerging research in the area of machine learning

approaches to malware detection on Android.
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Chapter 2

Background And Related Work

In this chapter, we review relevant background and related work that are founda-

tional to this research work. This thesis addresses the subject of Android security

using multi-agent systems as a detection framework. The multi-agent system uses

a machine learning algorithm for detection and analysis of Android malware. Thus,

we provide background information on the following three research domains:

1. Android security

2. Agent systems

3. Machine learning

2.1 Android security

Research and development for malware detection for Android mobile systems can

be divided into two primary types. Static malware detection, and dynamic mal-

ware detection. Work in static detection is done by reverse engineering Android
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executable files (.APK) using tools such as Androguard [32] to statically analyze

the .dex byte code of Android executable files, or by signature matching by listen-

ing to executable installations on Android by monitoring Android intent messages

for file downloads. Dynamic detection of malware uses monitoring of device be-

haviour either by monitoring the state of the system by inspecting the sensors on

Android devices such as screen being turned off while an SMS is being sent, or by

monitoring various system parameters. Given the extensive size of the data that is

to be processed, many solutions now use machine learning approaches to solving

the problem instead of manually working with available data.

Given that most malware threats have been targeted for Android systems, many

approaches have been proposed in literature for securing Android devices. Taint-

Droid [37] modified the Android Dalvik virtual machine code to taint and track

sensitive data stored on the device by causing a 32 percent overhead on CPU.

They tracked the flow of user private information. Kynoid [68] extended the so-

lution to provide real-time security policy enforcement for Android by using user-

defined security policies defining temporal, spatial and destination constraints on

data. Nauman et al. [60] provided an extended Android package installer allowing

users to have more control over runtime constraints on Android applications by al-

lowing fine grained access control policies on applications and adding constraints

on resources allowed to be used. Shabtai et al. [70] classified Android threats

into five categories and recommend incorporating Linux security solutions using

SELinux [69]. Their evaluation results show significant performance degradation

on CPU and memory usage. Limited resource issues were also faced by Schmidt et

al. [67] when they recompiled various Linux tools to enhance Android security. As

mentioned previously, most of these approaches require modifications to the base
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Android framework which makes the solutions difficult for easy deployment.

2.2 Agent systems

The term agent or software agent is usually deciphered well in the artificial intel-

ligence community, where it stands for a program that can behave autonomously

to perform a multitude of dynamic tasks based on the logistics that have been pro-

grammed into it by a user. Advantages of using multi-agent platforms include [21]:

asynchronous autonomous interactions between agents, easy software upgrades,

and ability to function in heterogeneous environments.

Asynchronous autonomous interaction: This advantage is vital in a network

where network connections are volatile, such as wireless networks. Even if the

connection breaks, the agent could continue processing data on the mobile device

and report back whenever the connection is reestablished. This adds to the agent’s

capability to work in a fault tolerant mode.

Software Upgrades: Usually in order to update software on multiple hosts, an

administrator has to first stop the server functionality, then uninstall the old version

of the software, and then reinstall the new version. The entire software system has

to be stopped for upgrades. The advantage of agents in general in this situation

is that if each component of the upgraded software is managed by an agent, then

it is as easy as disabling the old agent and deploying a new agent which has the

required functionality. In this way one could avoid bringing down the entire system

and instead stop just a single agent-based component.

Functionality in heterogeneous environments: Most agents today can work in

heterogeneous environments. This is due to the fact that these agents are usually

written in a language which is portable to multiple platforms, such as java or perl.
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Since agents sit on top of an agent framework, they can easily function regardless

of if the host runs a version of Linux or Windows operating system. The significant

reduction in costs of placing agent frameworks in hosts over the past few years have

added to the benefits of running agents.

A disadvantage is the need for an agent platform to be supported by the under-

lying operating system (such as Android) for agents to deploy and communicate

with each other. Communication between agents is achieved using The Founda-

tion for Intelligent Physical Agents (FIPA) 1 compliant Agent Communication Lan-

guage (ACL). This is the primary reason in choosing JADE agent platform as it is

continually supported on Android devices. Other platforms supported for Android

include JaCa-Android [66].

2.2.1 Security using multi-agent systems

The use of multi-agents for security had been done earlier for computers. We now

discuss some related work in the field.

The earliest work in this area was started by Purdue University’s CERIAS (The

Center for Education and Research in Information Assurance and Security) group

when they put forward a proposal for building an autonomous agent based security

model by using genetic programming [29]. This was followed up by their work

in implementing the earlier proposal [19]. This system was called AAFID (Au-

tonomous Agents for Intrusion Detection) written earlier in Perl, Tcl/Tk and C,

and later revised and written in the perl language to make it more portable. Helmer

et al. [48] used an anomaly detection technique by using the Ripper algorithm on

sendmail system calls. The architecture mimicked a portion of the Java Agents for

1www.fipa.org
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Meta-Learning (JAM) project [73]. A distributed hierarchical Intrusion Detection

System (IDS) was proposed by Mell and McLarnon [55] that tries to randomize

the location of agents and decentralizing directory services. The system also resur-

rects agents killed by an intruder as there always exists multiple copies that track

the original agent and vice versa. The Micael IDS was proposed by [31]. They pro-

posed an additional feature of periodically checking if all agents are active in the

system. Another prominent work that detects intrusions using mobile agents is the

IDA system [16]. This system tries to backtrack intrusion attempts by looking into

MLSI (Mark Left by Suspected Intruders) left at each host. They also emphasize

tracking the steps that an attacker takes.

The Sparta system by Kruegel et al. [50, 51] is the most extensive work done

till date on using mobile agents and intrusion detection. Sparta, which stands for

Security Policy Adaptation Reinforced Through Agents, is an architecture that is

capable of monitoring a network to detect intrusions and security policy violations

by providing a query like functionality to reconstruct patterns of events across

multiple hosts. This is a network-based IDS that correlates data from multiple

sensors located throughout the network. The authors have created an EQL (Event

Query Language) with syntax similar to SQL (Sequence Query Language) used in

databases.

Other mobile agent based IDS’s include a Peer To Peer (P2P) based IDS [63]

that works in a neighbourhood watch manner where each agent looks after other

agents in its vicinity by using a voting procedure to take action against a com-

promised agent; the MA-IDS system [52] which uses encrypted communication

between the mobile agents in the system, and use a threshold mechanism to de-

tect the probability for each intrusion depending on the quantity of each intrusion
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type obtained allowing it to learn in a one dimensional method. Some other agent

based IDS’s include the work by Foukia et al. [39, 40] which uses a social insect

metaphor and immune systems to model an intrusion detection system.

2.3 Machine learning

The domain of machine learning is used in solving problems where the problem

size is large enough such that it would be difficult for humans to adequately make

sense of data. Machine learning algorithms are used to extract features from the

data such that it could be used for solving predictive tasks such as classifying,

decision making and forecasting results [30]. Since this thesis uses predictive or

supervised learning approach, we provide basic meaning of such a method. In

supervised learning, given a labeled set of input-output pairs (the training set) with

N training examples, the goal is to predict a future y value given an input. The

input to such a system is xi which is a D-dimensional vector, also called a feature

vector. xi is a set of values used to determine yi. When yi is categorical (such as

malware, goodware, etc.), the problem is considered as classification [58].

Classification techniques such as Support Vector Machines, K-Nearest Neigh-

bours, Decision Trees, Logistic Regression and Naive Bayes have widely been used

in the area of intrusion detection research in the security community. They are pre-

dominantly used for behaviour based detection methods, also called anomaly de-

tection methods. We now present some related work in the use of machine learning

approaches used for Android malware classification.
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2.3.1 Machine learning for Android malware detection

Allix et al. [6] observed over 50000 applications including malware from the genome

project by Zhou and Jiang [82] which is a dataset of Android malware used for

research purposes. The authors created a set of features based upon textual repre-

sentation of basic blocks extracted from Control Flow Graph (CFG) of application

byte codes. They observed 2.5 million features. Since these features are com-

puted statically, they will however miss dynamically loaded features in Android,

made possible by using the Android dexClassLoader library. The authors com-

pared C4.5, ripper, Support Vector Machine (SVM) and Random Forest algorithm

with their default settings and conduct experiments by adjusting the good ware to

malware ratio and the number of features to use.

Yury et al. in [81] addressed the problem of dynamic code loading in Android

by using a client-server model where a client runs the dynamically loaded mod-

ules from an Android device emulator, and feeds it to a server that conducts static

analysis. They use the concept of method call graph to capture new method calls

generated by dynamic loading and pass it to the static component to add it to the

list of features observed.

Glodek and Harang [41] created 19137 features from 2 or 3 permission sets ob-

tained by setting a threshold value of 0.05 where the threshold defines the feature

being present in malicious vs benign sample. They used the random forest algo-

rithm with 25 trees and maximum depth and had results of 92 percent true positive

and 3 percent false positive.

Kim et al. [49] developed an automatic feature extraction tool implemented

in JavaScript for static detection. The input to their system is a .apk Android exe-
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cutable file. The authors use JavaScript code to extract the following as features:

Number of permissions requested by the application (gathered from the mani-

fest.xml file in Android .apk package file); API count of each method related to

phone management invoked from the code; API count of each method related to

phone control and privacy information called from the code. Based on these fea-

tures collected, the authors use J48 Decision Tree classifier from the Weka library

and perform 10 fold cross validation on 1003 Android applications. They received

a true positive rate of 82.7 percent and false negative rate of 17.3 percent.

Burguera et al. [24] used a rooted Android device. The Linux based tool strace

was used to capture system calls. The authors captured the number of each system

call invoked by a given Android application to form the feature vector. Each fea-

ture vector was composed of 250 linux 2.6.23 system calls. Based on experimental

results, the most relevant system calls for malware detection were read(), open(),

access(), chmod() and chown(). The authors used a simple 2-means clustering

algorithm to distinguish between benign applications and their corresponding mal-

ware version. The distance between clusters is just a Euclidean distance between

the feature vectors. Their solution would cluster similarly named applications into

two different clusters, one for the malware and the other for the benign sample.

The solution works under the assumption that a benign sample is re-fitted with

malicious code before being uploaded. Thus, a malware without a benign version

cannot be detected. One weakness of the system is that their tool cannot detect

malware that uses very few system calls, as was exhibited in Monkey Jump 2 mal-

ware.

Dini et al. in [34] used a rooted device to design a host based real time anomaly

detector based on 1-Nearest Neighbour classifier. They monitor 13 features. At
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user-level 2 features are monitored: if the phone is active/inactive; and if SMS is

being sent when the phone is inactive. At the kernel level, they created a kernel

module to monitor 11 system calls: open, ioctl, brk, read, write, exit, close, sendto,

sendmsg, recvfrom, recvmsg. Their model monitors system wide behavior using 2

models, one which captures the features every 1 second interval, and another which

captures every 1 minute interval. The system was tested on 10 genuine malware

samples. The authors claim a malware detection rate of 93 percent in general with

a false positive rate of 0.0001.

Shabtai et al. in [71] monitored 88 features on an unrooted device. They mon-

itor the features on 2 real devices used by 2 different users. They tested their

approach on 16 benign applications and 4 self generated malware. Their model

monitors features at 2 second intervals. The authors compared the use of the

following classifiers: k-Means, Logistic Regression, Histograms, Decision Tree,

Bayesian Networks and Naive Bayes. The authors use a filter approach for fea-

ture selection by comparing Chi-Square, Fisher Score and Information Gain. They

used top 10, 20, 50 features for computing the scores for each feature out of the

88 features available. Based on their evaluation, they have a detection rate of 80

percent. Their false positive rate is 0.12. They claim that Naive Bayes and Lo-

gistic Regression were superior for most configurations. Fisher score with top 10

features scored the best among their experimentation. The authors identified the

following features as being of importance in distinguishing malware and benign ap-

plications: Anonymous pages, Garbage Collections, Battery Temp, Total Entries,

Active Pages, and Running Processes.

Amos in [10] created an automated system to analyze malware samples. The

tool allows for the automated analysis of benign and malicious Android applica-
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tions by running adb scripts in Linux systems. Since we used data gathered by [10]

for our experiments, section 4.3.1 provides more details about the dataset. The au-

thor compared results from using the following classifiers: Bayes Net, J48 decision

tree, Logistic Regression, Multilayer Perceptron, Naive Bayes and Random Forest.

We would like to point out that Random Forest was only tested with the default

setting of 10 trees and 6 parameters.

Z. Aung and W. Zaw [17] performed a static analysis of 500 Android .apk files

by inspecting the permissions requested by a given application. They used 160

permissions as their feature vector. They compared Random Forest, J48 Decision

Tree, and Classification and Regression Tree (CART) algorithms. Unfortunately

they do not discuss the parameter setting used for Random Forest, nor the number

of benign and malicious applications used for experimentation.
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Chapter 3

Context-aware Multi-agent

Framework For Securing

Android

3.1 Introduction

Many commercial and research prototypes have been developed to deal with se-

curing Android. Independent testing of commercial solutions show that less than

half of them are efficient in detecting malware [54]. Many of the security solutions

proposed in literature require modification to the Android framework. Moreover,

the frequent release cycle of Android causes modifications to the underlying An-

droid API, making many of the proposed security solutions no longer viable. Lack

of available resources such as battery, memory and CPU on these devices further

lead to constraints that need to be satisfied before traditional Linux security tools
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can be directly applied.

Given the availability of multiple sensors on Android mobile devices that can

be accessed by Android applications using Android API; and the lack of available

on-device resources such as battery, memory and CPU; we propose the use of a

context-aware multi-agent based framework to monitor and dynamically launch

investigative agents on Android mobile devices. We provide a framework design,

implementation details and evaluation of our proposed framework to show that a

multi-agent based system is a viable option for securing such devices. We propose

the use of spatial context-information gathered using location information(GPS,

network) and device context (battery level, Android API level, rooted device) to

make context-aware decisions for the framework. We also show that we can use

context information to reduce frequency of network connections and CPU utiliza-

tion overhead caused by the Multi-Agent framework.

According to our knowledge, we have not come across any other research work

that uses multi-agent based systems on Android devices that make context-aware

decisions to detect malware threats. Our primary goal is to gather context aware

data from Android devices to choose which machine learning classifier model to

use [5]. The main contributions of this chapter can be summarized as follows:

• Provide the design and implementation of a context-aware agent-based frame-

work based on the Java Agent Development Framework (JADE) [74] multi-

agent platform.

• Use both spatial context information gathered using location information

(GPS, network); and device context (battery-level, Android API, rooted de-

vice detection) to make context-aware decisions by dynamically modifying
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detection behaviour of deployed agents.

• Provide evaluation of the agent system applied to the Android context to

evaluate system overhead incurred by the use of the detection framework.

• Provide experimental usage scenarios for detecting Android based malware

by collecting features.

The rest of the sections are organized as follows. Section 3.2 provides back-

ground information needed to understand the problem domain. Section 3.3 pro-

vides the proposed multi-agent based framework; Section 3.4 provides implemen-

tation details; Section 3.5 provides initial results of experimenting with the system;

Section 3.6 discusses concerns that might be raised with the proposed framework.

3.2 Related work

3.2.1 Context-aware mobile applications

Initial development based on JADE-LEAP was provided by Moreno et al. [57] for

development of a taxi-cab service application on Personal Digital Assitant (PDA)

using bluetooth communication. The closest related work to context-awareness in

the Android operating system space for security was proposed by Bai et al. [18].

The authors proposed a context-aware methodology for securing Android operat-

ing system based on Context-aware usage control (CONUCON) model. Their sys-

tem requires modification to the Android framework to hook the checkComponent-

Permission function to monitor objects and associated permissions. Similarly, the

MOSES system proposed in [80] also requires modifications to be made to the un-

derlying Android operating system. The purpose of MOSES is to use context to
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maintain security profiles and allow switching between profiles during runtime. In

our system, we do not require modifications to be made to the Android framework.

We optionally require devices to be rooted if privileged tools are to be used for

packet inspections. Rooting a device is a more acceptable solution based on the

popularity of rooted application in the Google Play store.

3.3 Agent-based framework

3.3.1 System architecture

The system that we have developed has a client-server model. A client-server

model is necessary because of the pre-condition set by the Java Agent Devel-

opment Framework (JADE) agent platform which requires the server to host two

JADE specific services: the Agent Management Service (AMS), and the Directory

Facilitator (DF). These services allow agents in the system to discover each other.

JADE platform services

AMS: Agents in the system have to register with the AMS. The AMS supervises

the entire platform of agents. It checks the validity of the unique Agent Identifi-

cation (AID) of an agent, and keeps track of the life-cycle of agents in the system.

There exists a single AMS for the entire system. The AMS resides in the main

container of the platform and communicates messages in the system using the

jade.domain.JADEAgentManagement.JADEManagementOntology ontology class.

Some of the management functionality performed by the AMS include:

1. create-agent: This action allows the AMS to create an agent of a given class

type with a chosen agent name in a specific container.
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2. kill-agent: This action allows the AMS to destroy the uniquely identified

agent.

3. kill-container: This action allows the AMS to destroy an agent container.

4. query-platform-locations: This action allows the retrieval of all containers

that are available in the platform.

5. query-agents-on-location: This action allows the retrieval of all agents in a

given container.

6. where-is-agent: This action allows locating the containerID where the agent

resides.

As can be seen, using a combination of queries, the location of all agents and

their associated containers can be queried from the AMS. The AMS also allows

any agent in the platform to subscribe to platform events using a FIPA-Subscribe

protocol. Though we do not use subscription in our framework, some of the tasks

that are allowed include: subscribing to agent state such as creation, suspension, re-

sumption, movement, cloning and destruction; container creation and destruction;

and platform shutdown requests.

DF: The DF is an optional yellow page service that allows agents in the system

to advertise their services in the system and also query to find agents that provide

a service. There exists zero or more DF services that can interact with each other

as a federation. Some of the services allowed by the DF include:

1. Registration: Agents that want to publicize their capabilities have to locate a

DF to register its agent description.
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2. Deregistration: Agents can also request to de-register from a DF when it no

longer wants to publicize its services.

3. Description modification: Agents can also modify their agent-description if

they want to modify their advertised services.

4. Search: Agents can query the DF to look-up agents providing an advertised

service through their registered agent descriptions.

Split container runtime execution mode

In JADE, every agent that runs in the system has to exist in a JADE runtime con-

tainer. For mobile devices however, JADE also allows a split execution mode us-

ing the Lightweight Extensible Agent Platform (LEAP) add-on. The split-container

model is recommended for resource constraint mobile devices. This approach runs

a thin front-end client on the mobile device, and runs the back-end on a server. The

front-end and back-end communicate using a dedicated connection that is robust

to connection failures [20].

The communication setup between the front-end and the back-end is made pos-

sible by the use of a dedicated server in JADE called the mediator. The mediator

runs at a well-known address that is network accessible by all mobile devices and

by the various containers in the platform. During startup, the front-end sends a

CREATE MEDIATOR request using Jade Inter Container Protocol (JICP). The me-

diator then creates a back-end and connects the front-end to it. The back-end then

tries to establish a connection with the main container hosting the AMS. Once the

newly created split-container is registered with the main-container, the mediator

notifies the front-end that the registration was successful. The mediator takes no
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Figure 3.1: JADE split-container runtime execution mode.

part once the connection has been established between the front-end and the back-

end. Fig. 3.1 shows the interaction between the various components just described.

Some of the advantages of the split-container mode include:

1. Connection loss transparent to applications: The front-end and back-end

uses a store and forward methodology to transmit messages i.e. if there is a

connection disruption between the front-end on the mobile device, and the

back-end on the server, then all messages are buffered in both ends. When

the connection resumes, the messages are exchanged.

2. IP address of mobile-devices can be dynamic: Since the agents on the mobile

device interact with other agents in the platform using the back-end, a change

in the IP address of the mobile device hosting the front-end causes no issues.

Agents on other containers need to know the IP address of the back-end

server only.
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3. Lightweight communication: The front-end hosted on the mobile device is

more lightweight than a full container as most of the communication with

other containers is taken care off by the back-end.

Though there are advantages to using the split-container on mobile devices

as mentioned, cloning of agents and mobility of agents are not supported in the

split-container method. If such functionality is required, the JADE platform allows

dynamic behaviours to be loaded into mobile devices running in a split-container

execution mode by using the jade.core.behaviours.LoaderBehavour class.

In our framework, the Android devices are considered as clients. Each Android

device hosts the front-end. Each Android device runs an Android application that

is wrapped using a Jade split-container runtime service as described. We also use

servers that host multiple framework specific service agents. The service agents

perform more computationally expensive operations, and as such have not been

placed on mobile devices to conserve resources. The agents launched on the server

are detailed in section 3.3.3.

3.3.2 Agent categorization

Our agent-based framework consists of two categories of agents. The first type

of agents can be categorized as the data or feature collector agents. These agents

reside on Android devices to perform data collection tasks at various intervals of

time. Some of these agents persistently reside on the device, whereas others are

launched based on contextual information of the device. Some of the contextual

information used includes: location of the mobile device; Android-API level of

the operating system; device root status; and applications available on the device.

The second type of agents are the service or analysis agents. These agents usually
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consume higher resources, and are preferably placed on the server side. These

agents are active for longer durations of time and are responsible for maintaining

long term profile information of Android devices.

3.3.3 Agent types

Based on the design principles of JADE [56] agent-oriented development method-

ology, all users of the framework; all devices that exist in the framework; and all re-

sources available in the framework are to be identified as agents. Each agent in turn,

can then be further partitioned based upon their role as providing support service to

other agents; help in agent and resource discovery; work as agent-framework man-

agement; or perform device or framework monitoring. As shown in Fig. 3.2, after

these refinements, we have the following agent types with associated functionality.

Following are the agents that reside on the client side (Android device):

• Profile agent: This agent is active for the entire life cycle of the agent plat-

form on the device. This is the primary agent on the client side. Some of the

tasks performed by this agent includes:

1. Responsible for communicating with the Profile Service provider on

the server to receive commands.

2. Maintains a local copy of the profile information of the Android device

it is installed on.

3. Register with the Profile Service provider on startup.

4. Launches Action agents after communicating with the Location and

Sensor agents on the Android device to collect context-aware data when

requested.
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5. Maintaining threshold levels to optimize use of device resources. Mon-

itoring battery is one of those resources.

6. Performs notification tasks to inform the Profile Service agent about

completed tasks. Providing computed feature vectors through pre-defined

Agent Communication Language (ACL) ontology is one of the tasks.

• Sensor agent: The primary task of this agent type is to monitor sensors

available on the Android device. The tasks performed by this agent includes:

1. Subscribes to sensor event that occur on the Android device by using

intent messages. This is required so that the agent is notified by the

Android operating system of any changes that occur with network or

sensor events on the device.

2. Monitor static information of the Android device. This includes check-

ing: if the device is rooted; and the Android version of the operating

system that has been installed on the device.

3. Monitor network information of the Android device. This includes

checking the network type the device is connected to i.e. if it is con-

nected to a wireless access point; the name of the wireless access point;

the IP address assigned to the Android device.

4. Reports any changes to the information gathered to the Profile agent on

the Android device so that the Profile agent always contains updated

information. This is required as the Profile agent will perform tasks

based on context information received from the Sensor agent.

• Location agent: The primary task of this agent is to handle all location
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related procedures. The tasks performed by this agent includes:

1. Subscribes to Global Positioning System (GPS) events using the an-

droid.location.LocationListener Android class. The LocationListener

class is used to receive notifications sent by the LocationManager dur-

ing reported location changes. The Android LocationManager reports

to the Location agent as it registered with it during startup.

2. Directly communicates the location information to the Location Ser-

vice agent on the server in terms of its latitude and longitude.

3. Directly communicates the location information to the Profile agent on

the Android device.

4. Can retrieve list of nearby Android devices from the Location Service

agent.

• Action agent: This agent type is the most important data collector agent in

the framework. The tasks performed by this agent includes:

1. Dynamically launched by the Profile agent. The dynamic launch be-

haviour is caused either because one of the rules maintained by the

Profile agent is triggered; or the Profile Service has asked the Profile

agent for data, that can only be collected by launching an Action agent.

2. Maintains context-aware data. This is required as not all Action agents

can perform its tasks without certain context information. Every Ac-

tion agent maintains the Android API-level required for functionality.

This is required as the functionality of the Agent might not be compat-

ible with certain Android API-levels. For example, Android 4.3 allows
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applications to access Android notifications by creating a notifications

listener. This feature was not available in earlier API levels.

3. Stores its resource utilization level in terms of memory, CPU, disk and

network utilization. A higher value denotes a higher resource utiliza-

tion. Currently we have set it manually, but we foresee agents being

able to automatically compute these values based on the specific device

resource such as the amount of memory in the device and the processor

used.

4. A particular Action agent runs on the Android device, if and only if the

resource constraints and API constraints pass. The decision is made

by interacting with the Profile agent on the device as it keeps track of

all running agents on the device. The Action agent reports its resource

utilization score to the Profile agent. The Profile agent verifies that

the summation of resource utilization of all Action agents is below the

threshold. If it is, then the Action agent is notified to perform its tasks.

5. Tasks performed by the Action agents include

– monitor application installations

– report memory and CPU usage

– report binder API statistical values

– IP addresses being communicated with and which services are

causing the network traffic

– detect if device is rooted

– use tcpdump for Advanced RISC Machine (ARM) to capture net-

work packets if the device is rooted and the tcpdump service exists
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on the mobile device

Now that we have described all the agents on the client side, we now provide

details of the tasks performed by the agents on the server side. The server-side

agents are also called service agents. It should be clarified that not all the server

side agents have to reside on the same physical machine. Given the existence of

AMS and DF agents in the platform, they can be queried to locate the relevant

server side agents. The agents communicate with each other using pre-specified

Agent Communication Language (ACL) messages.The server side agents in our

framework are:

• Subscription Service agent: The primary task of this agent is to maintain

historical information of connected Android devices and their state. The

tasks performed by this agent includes:

1. Register Android devices when they join the framework.

2. De-register Android devices when they want to exit the platform. Note

that since the Android devices in our system use a split-container exe-

cution mode as discussed prior, the Android device would have to quit

the Android application to disconnect the back-end from the frame-

work.

3. Maintains list of currently connected Android devices in the system.

4. Maintains historical information about each connected Android device

regardless of if it is currently connected or not.

• Location Service agent: The primary task of this agent is to maintain his-

torical information of the location history of each Android device that has
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ever connected to the system. The tasks performed by this agent includes:

1. Responsible for receiving location updates from Android devices through

the Location agent on the Android device.

2. Maintains a time-stamped list of all reported locations for each Android

device. This is useful for obtaining historical information of location

for each Android device.

3. Responsible for providing list of nearby devices when queried by any

agents in the system.

• Profile Service agent: The primary task of this agent is to maintain an event

feed for all active Android devices. The tasks performed by this agent in-

cludes:

1. Maintains the profile of every Android device. This includes both static

and dynamic information of the Android device such as the API level

of the Android device, if the device is rooted, the IP address assigned

to the Android device, e.t.c.

2. The Profile Service agent periodically receives updated profile infor-

mation from the Profile agent on the Android device.

3. This agent sends recommendations to Android device Profile agent to

start new (Action) agents.

4. This agent launches a Device Analysis agent for each Android device

in the system, if one does not exist.

5. This agent requests Profile agent on the Android device to modify mon-

itoring behaviour based on feedback from the Device Analysis agent
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associated with the Android device.

6. This agent relays the feature vectors sent by the Profile agent on the

Android device to the Device Analysis agent for analysis / classifica-

tion.

7. Maintains historical data regarding the number of malware feature vec-

tors observed. This value is used to modify observation behaviours on

the Android device by informing the Profile agent on the device.

• Device Analysis agent: The primary task of this agent is to verify if an An-

droid device exhibits malware behaviour. There exists one Device Analysis

agent for each Android device in the system. The tasks performed by this

agent includes:

1. This agent receives the feature vector to compare, and how it was com-

puted from the Profile Service agent. The Device Analysis agent needs

to know how the feature was computed, so that it can pick a subset of

pre-generated models to compare against.

2. This agent uses the machine learning classification models built using

Weka to compare the feature vectors [5].

3. Notifies the Profile Service agent if malware behaviour was observed

from the sent feature vector. Our current design compares the feature

vector against each relevant model stored in our system. If malware

behaviour is reported by more than a set threshold number of models,

only then is it reported to the Profile Service agent.

4. Maintains historical information of feature vectors observed to be mal-

ware, and models that marked it as malware. This information is useful
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to correlate devices that exhibit similar maliciousness by the Correla-

tion agent.

• Correlation agent: The primary task of this agent is to correlate Android

devices that exhibit similar malware behaviour. This agent is launched by a

system administrator. The tasks performed by this agent includes:

1. Locate all Device Analysis agents in the framework. This is required

as the Device Analysis agents contain data related to:

– If the associated Android device has exhibited malware behaviour.

– The feature vector that caused the malware behaviour.

– The machine learning models that caused the detection.

2. Query the Device Analysis agents if it detected malware on a particular

machine learning model. If yes, the Device Analysis agent sends the

unique name of the Android device and the feature vector that caused

failure on the model.

3. Query the Device Analysis agents if it detected malware on a certain

number of models. If yes, the Device Analysis agent sends the unique

name of the Android device and a key:value pair of the model and

feature vector that caused failure on the model.

4. Correlate all Android devices that have exhibited malware infection on

the same model.

Though the Correlation Agent performs basic operations now, greater logic

can be included. This includes correlating Android devices infected in a

similar location using information obtained from Location Service agent;
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Figure 3.2: Interaction between client and server Agents.

or correlating Android devices infected in a particular time frame by using

subscription information from the Subscription Service agent.

3.3.4 Agent communication language

Given that our data collection agents reside on Android devices with a split-container,

and the service agents are placed in a server on a Linux or Windows installation, the

mechanism for communication between the agents is via a FIPA-compliant Agent

Communication Language (ACL). We developed an application specific ontology

using the SL codec of JADE to compose ACL message concepts, predicates and

agent actions [28]. Concepts are entity classes that encapsulate the values that need

to be stored such as the resource threshold of the device, geo-coordinates of the de-

vice. Predicates are propositions which have to be verified such as registering and

de-registering an Android device. Agent actions indicate tasks performed by agents

in the system such as updating the location of android devices to the server, and

querying nearby devices.
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Table 3.1: Android Features Observed [5]

Category Feature

Battery IsCharging, Voltage, Temperature, BatteryLevel, BatteryLevelDiff

Binder

Transaction, Reply, Acquire, Release, ActiveNodes,

TotalNodes, ActiveRef,TotalRef, ActiveDeath, TotalDeath,

ActiveTransaction, TotalTransaction,ActiveTransactionComplete,

TotalTransactionComplete, TotalNodesDiff, TotalRefDiff,

TotalDeathDiff, TotalTransactionDiff, TotalTransactionCompleteDiff

CPU UserCPU, SystemCPU, IdleCPU, OtherCPU

Memory
memActive,memInactive, memMapped, memFreePages,

memAnonPages, memFilePages, memDirtyPages, memWritebackPages

Network
TotalTXPackets,TotalTXBytes, TotalRXPackets

TotalRXBytes, TXPacketsDiff, TXBytesDiff, RXPacketsDiff, RXBytesDiff

Permission Permissions

3.4 Implementation

In order to build and test our prototype system, we used JADE version 4.2. This

was the most current version of JADE at time of implementation. We built an

Android application that was set for Android API version 4.0.3. In the Android

application, we used the jade-android library available for JADE version 4.2. We

followed the procedures provided by authors of the JADE system in [25]. As men-

tioned previously, we used a JADE split-container execution mode in our frame-

work. This is done by using the jade.android.MicroRuntimeService service class

provided in the jade-android library provided. To use the MicroRuntimeService,

the Manifest.xml file in Android needs to be modified to read:

<application ...>
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<service android:name="jade.android.MicroRuntimeService" />

</application>

This allows the JADE split-container runtime to be wrapped by an Android service

through Android code.

The application specific ontology for Agent Communication Language (ACL)

communication between agents was developed using Protege [59] and Ontology-

BeanGenerator [1]. The OntologyBeanGenerator allows to create JADE ontology

using Protege to create the necessary classes. There exists only one instance of the

created ontology as a singleton pattern is used. The following code snippet shows

how our ontology JASOntology is declared in an agent:

private Codec slCodec = new SLCodec();

private Ontology jasOntology = JASOntology.getInstance();

protected void setup()

{

...

ContentManager contentManager = getContentManager();

contentManager.registerLanguage(slCodec);

contentManager.registerOntology(jasOntology);

contentManager.setValidationMode(false);

...

}
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More details regarding ontology generation and ACL message creation are pro-

vided in our related work [28].

In order to test our JADE-based framework, we used both a rooted Android Vir-

tual Device (AVD) emulator and a physical rooted Android device as clients. The

server side Service agents mentioned previously are located in a network reachable

machine on the network.

To test on a rooted Android Virtual Device (AVD) for testing the use of deep

packet inspection applications such as tcpDump for ARM [13], we installed supe-

ruser [12]. Superuser is a software package that allows Android applications to

have access to root shell. Without this program, agents on the Android emulator

cannot access the root shell.

We used Busybox [11] for using uname, netstat commands. The Busybox exe-

cutable contains commonly used Linux utilities that is not available in Android by

default. The tool has been optimized for use in embedded Linux environments.

In order to test if an Android device is rooted, we used the RootTools [38]

application.

To find context information such as the API level of a device, we use the value

from android.os.Build.VERSION.SDK INT. We retrieve GPS locations by receiv-

ing updates from Android LocationManager using the requestLocationUpdates

function. In order to access network related information, our application requests

coarse, fine, and internet network permissions in the Android manifest file. This is

done using the following code:

<uses-permission ..."...INTERNET" />

<uses-permission ..."...ACCESS_NETWORK_STATE" />
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<uses-permission ..."...ACCESS_FINE_LOCATION" />

<uses-permission ..."....ACCESS_COARSE_LOCATION" />

For retrieving values mentioned in Table 3.1 used by our Action agent we read

system files on Android. Following is a description of the features obtained:

The battery related feature information was collected by using an intent object

on the BatteryManager class. The battery-based features measured are:

• IsCharging: Use the BatteryManager class of Android to check if the device

is currently connected to a power source and in a charging state

• Voltage: Use the BatteryManager class of Android to check the current Volt-

age of the battery

• Temperature: Use the BatteryManager class of Android to check the current

temperature of the battery

• BatteryLevel: Use the BatteryManager class of Android to check the current

amount of battery power remaining (in range 0—100)

• BatteryLevelDiff : Change in battery level since the last time the feature

vector was computed

All processes in Android communicate with each other using Inter Process

Communication handled by Binder. The binder related feature information was

collected by reading /sys/kernel/debug/binder/stats or /proc/binder/stats depending

on the kernel version. The binder-based features measured are:

• Transaction: Number of Inter Process Communication (IPC) transactions

performed
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• Reply: Number of Reply Transaction messages processed

• Acquire: Number of Acquire Transaction messages processed

• Release: Number of Release Transaction messages processed

• ActiveNodes: Nodes (Processes) that are active

• TotalNodes: Total Nodes (Processes) maintained by Binder

• ActiveRef : Active references to binder objects

• TotalRef : Total References to binder objects

• ActiveDeath: Total Active processes killed and resources cleared

• TotalDeath: Total Processes killed and resources cleared

• ActiveTransaction: Number of Active IPC Transactions open

• TotalTransaction: Total number of Transactions performed since startup

• ActiveTransactionComplete: Number of Active Transactions that have been

completed

• TotalTransactionComplete: Total number of transactions that have been

completed

• TotalNodesDiff : Difference between current reading of TotalNodes and the

previous reading of TotalNodes

• TotalRefDiff : Difference between current reading of TotalRef and the pre-

vious reading of TotalRef
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• TotalDeathDiff : Difference between current reading of TotalDeath and the

previous reading of TotalDeath

• TotalTransactionDiff : Difference between current reading of TotalTransac-

tion and the previous reading of TotalTransaction

• TotalTransactionCompleteDiff : Difference between current reading of To-

talTransactionComplete and the previous reading of TotalTransactionCom-

plete

The CPU related feature information was collected by running the Linux top

command every 1 second. The CPU-based features measured are:

• UserCPU: CPU usage by User processes

• SystemCPU: CPU usage by System processes

• IdleCPU: Idle percentage of CPU usage

• OtherCPU: Other CPU usage

The memory related feature information was collected by observing the proc

directory in the underlying Linux system of Android. The files that were read are

/proc/meminfo and /proc/vmstat. The memory-based features measured are:

• memActive: The total amount of memory being used as per /proc/meminfo

• memInactive: The total amount of page cache memory that are available as

per /proc/meminfo

• memMapped: The total amount of memory used to map files, libraries or

devices as per /proc/meminfo
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• memFreePages: Virtual memory free pages as per /proc/vmstat

• memAnonPages: Virtual memory anonymous page count as per /proc/vmstat

• memFilePages: Virtual memory file system page count as per /proc/vmstat

• memDirtyPages: Virtual memory dirty page count as per /proc/vmstat

• memWritebackPages: Virtual memory write-back page count as per /proc/vm-

stat

The network related feature information was collected using the TrafficStats

Android package. The network-based features measured are:

• TotalTXPackets: Total number of transmitted packets obtained from an-

droid.net.TrafficStats

• TotalTXBytes: Total number of transmitted bytes obtained from android.net.TrafficStats

• TotalRXPackets: Total number of received packets obtained from android.net.TrafficStats

• TotalRXBytes: Total number of received bytes obtained from android.net.TrafficStats

• TXPacketsDiff : Difference in value between current TotalTXPackets, and

the previous reading

• TXBytesDiff : Difference in value between current TotalTXBytes, and the

previous reading

• RXPacketsDiff : Difference in value between current TotalRXPackets, and

the previous reading
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• RXBytesDiff : Difference in value between current TotalRXBytes, and the

previous reading

Android maintains the list of active applications in the system and the asso-

ciated permissions requested by the applications. The permission-based feature

measured is:

• Permissions: This feature is the summation of the total permissions re-

quested by all running applications on the mobile device

In order to test the location-based context awareness, we programmed a helper

Android application to generate time stamped mock GPS locations that is com-

patible with Dalvik Debug Monitor Server (DDMS) [45]. This application gener-

ates location events every 1 to 5 seconds using a time-stamped location dataset.

The location update information in generated at random intervals to mock that

users change their location at random. This allowed us to test launching of ac-

tion agents based on the locations reported by the Location agent on the Android

device. Dalvik Debug Monitor Server (DDMS) is a debugging tool which allows

to monitor the system resource utilization of Android applications. Some of the

relevant tasks that the tool allows includes:

• Screen capture of the device

• Radio state information of the device

• Location data spoofing

• Thread and heap information of the device

• Causing Garbage Collection
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Figure 3.3: CPU utilization comparison for battery levels. The x-axis dis-
plays the seconds that have passed since the application was started
from left to right. The y-axis displays the CPU utilization in percentage
of available CPU. [4, 28]

• Tracking memory allocation of objects on the device

• Profiling individual methods of the application

• Using network traffic tool to monitor network usage

3.5 Evaluation

In order to evaluate the proposed framework, we run multiple experiments to cap-

ture the behaviour of the system based upon various contexts. The context-based

tests that we describe next are based on:

1. Measuring the battery resource available (Battery context test)

2. Location of the mobile-device (GPS context test)

3. Network the device is connected to (Network context test)

4. Android API version of the operating system (Android API context test)

5. Device root status (Rooted device context test)
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Figure 3.4: Network bandwidth utilization comparison for two battery lev-
els. The x-axis displays the time that has passed since the application
was started from left to right. The y-axis displays bandwidth utilization
measured in KiloBytes per second. [4, 28]

Figure 3.5: Memory utilization comparison for two battery levels. The x-axis
displays the seconds that have passed since the application was started
from left to right. The y-axis displays memory utilization in Bytes. [28]
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It is to be noted that other context-based decisions could also be tested. Some

of them include:

1. Application Context: What applications are installed on the mobile device,

have they been marked as suspicious and are they in a running state;

2. IP based Context: What IP addresses are being communicated with and if

any of them have been marked as suspicious;

3.5.1 Battery context test

For the Battery Context Test, we used a generic Android tablet containing an All-

winner A10 processor, Android 4.0.4 operating system installed, 512 Mb of phys-

ical memory and 4 gigabytes of storage space.

In order to test the changing behaviour of the system based on battery context,

we conduct performance test runs to monitor the changes in CPU utilization, net-

work usage patterns and memory usage for two different battery level contexts i.e.

we use battery context to evaluate the system. We evaluate the system at a 95 per-

cent battery level, and at 40 percent. In this test our system modifies its behaviour

if battery is higher or lower than 50 percent.

The performance test run consists of the following steps:

1. Launch JADE agent platform on a network reachable server. This launches

the JADE platform specific Directory Facilitator (DF) Agent and Agent Man-

agement System (AMS) agent; and the framework specific service agents:

Profile Service, Subscription Service, Location Service in a main-container.

2. An Android agent application is next launched on the Android tablet men-

tioned previously. We provide the address of the network reachable server
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activated in the previous step to allow the Android device to register itself

with the Agent platform. Currently the mediator is hosted on the same ma-

chine where the main-container is placed. As previously mentioned, the

mediator hosts the back-end of the split-container execution mode, whereas

the front-end is hosted on the Android device.

3. We execute multiple scripts on the Android device using an Android Debug

Bridge (ADB) terminal connected to the Android device to record CPU and

Memory usage patterns on the Android device. The CPU utilization is mea-

sured using the Android Debug Bridge (ADB) command adb shell top -d 1 -n

1 to measure CPU patterns at 1 second intervals. Similarly we use the pro-

crank [36] tool to monitor a process’s memory using the command adb shell

procrank to monitor virtual memory set size (Vss), the resident memory set

size (Rss), the proportional memory set size (Pss) and unique memory set

size (Uss).

4. We monitor the network traffic by starting the network statistics tool in

Dalvik Debug Monitor Service (DDMS).

5. We then connect to the JADE service on the Android device and create the

relevant data collection agents: Profile Agent, Sensor Agent, Location Agent.

6. We collect the data results for analysis.

We run these steps twice. One when the battery was set at 95 percent level, and

then again at 40 percent level. In order to change the reported battery level of the

device, we used the dumpsys program through the Android Debug Bridge. It is to

be noted that though we have used an actual device for the battery context test, the
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same test could be run on an emulated Android device and modifying the reported

battery level.

Some of the relevant dumpsys commands used include:

1. The following command provides battery information of the connected de-

vice: adb shell dumpsys battery The information listed includes:

Current Battery Service state:

AC powered: false

USB powered: true

Wireless powered: false

status: 2

health: 2

present: true

level: 100

scale: 100

voltage: 4100

temperature: 2200

technology: Li-ion

Here, level lists the amount of battery available in the connected device.

2. The remaining battery level of a connected device can be set using the com-

mand: adb shell dumpsys battery set level 40 Using this command, the bat-

tery level of the connected device has been set to 40.

3. To reset the battery level of the device connect we use the following com-

mand: adb shell dumpsys battery reset This command is required since once
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a set command is run, the device no longer reports battery information from

the actual device.

Using Action agents are not accounted for in the values as the behaviour of

the system has wide variations in system performance based upon the tasks of the

Action agent. For example, an Action agent that computes feature vectors every

2 seconds from multiple system files will have higher memory and CPU usage

than one that computes its models once every minute. The values measured in this

experiment shows base resource utilization based on profile, location and sensor

agents on the Android device.

As shown in Fig. 3.3, the average CPU utilization is lower at low battery levels.

For the test, a 6.5 percent average CPU was observed at 95 percent battery level.

At 40 percent battery level, average CPU used was 5.53 percent. With our pro-

file settings, we also observe fewer network transmissions at a lower battery level

as shown in Fig. 3.4. Our memory measurements don’t show significant change

in behaviour as no action agents are launched for this test as seen in Fig. 3.5. In

this test, our current setting of the profile agent monitors the battery level of the

Android device, and adjusts the frequency of data collected by the sensor and lo-

cation agents. At lower battery levels, the profile and location update information

is combined into a single ACL message. Thus, reduced traffic patterns is observed

in Fig. 3.4.

3.5.2 GPS context test

This test was performed similar to the Battery Context Test. The primary obser-

vational difference however was that instead of measuring the CPU, memory or

network utilization, as was done in the Battery Context Test, we observe which
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Action agent is launched. Since Action agents are launched by the Profile agent,

and die immediately after it performs its task, we log its output.

In order to test GPS context, we set our Profile Agent on the device to activate

specific Action Agents only when we are within certain bounds of the Mock GPS.

We create two zones for GPS tests. If the location agent reports GPS information in

zone 1, the profile agent launches an Action agent named zone1GPSActionAgent

which computes the values in Table 3.1. Otherwise it launches an Action agent

called zone2GPSActionAgent that computes the same values. These computed val-

ues are sent to the Profile agent on the device using Agent Communication Lan-

guage (ACL), which are then sent to the Profile Service agent on the server for com-

putation. These feature values are passed to the relevant Device Analysis agents

when launched to apply machine learning classifiers [5] using Weka [46].

This test run consists of the following steps:

1. Launch JADE agent platform on a network reachable server. This launches

the JADE platform specific Directory Facilitator (DF) Agent and Agent Man-

agement System (AMS) agent; and the framework specific service agents:

Profile Service, Subscription Service, Location Service.

2. An Android agent application is next launched on an Android Virtual De-

vice. We provide the address of the network reachable server activated in the

previous step to allow the Android Virtual Device to register itself with the

Agent platform.

3. We then connect to the JADE service on the Android device and create the

relevant data collection agents: Profile Agent, Sensor Agent, Location Agent.

This launches a Device Analysis agent on the server.
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4. We generate Mock GPS location events using a helper Android application.

This causes the Location Agent to communicate with the Profile agent on

the device and the Location Service agent on the server. This application

generates location events every 1 to 5 seconds using a time-stamped location

dataset. This is achieved using the following code snippet:

private Runnable mockgpsRunnable = new Runnable() {

public void run() {

Random r = new Random();

if (counter % 2 == 0) {

Intent i = new Intent();

i.setAction(MAIN_INTENT_ACTION_LOCATION);

i.putExtra(AGENT_LOCATION_LATITUDE, mock_lat);

i.putExtra(AGENT_LOCATION_LONGITUDE, mock_long);

getApplicationContext().sendBroadcast(i);

}

counter++;

TextviewLog("Mock location event generated");

mockgpsHandler.postDelayed(this,

1000 + r.nextInt(5000 - 1000 + 1));

}

};

5. We check the log to verify that the agent was started.
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3.5.3 Network context test

This test was performed similar to the GPS Context Test. The primary obser-

vation was to check which Action agent is launched. Since Action agents are

launched by the Profile agent, and die immediately after it performs its task, we

log its output. In order to test Network context text, we set our Profile Agent on the

device to activate specific Action Agents only when we are connected to certain

wifi access points. We create two rules for Action agents. If the Sensor agent re-

ports connection to wifi access point 1, the profile agent launches an Action agent

named zone1WifiActionAgent which computes the values in Table 3.1. Otherwise

it launches an Action agent called zone2WifiActionAgent that computes the same

values. These computed values are sent to the Profile agent on the device using

Agent Communication Language (ACL), which are then sent to the Profile Service

agent on the server for computation as mentioned previously.

This test run consists of the following steps:

1. Launch JADE agent platform on a network reachable server. This launches

the JADE platform specific Directory Facilitator (DF) Agent and Agent Man-

agement System (AMS) agent; and the framework specific service agents:

Profile Service, Subscription Service, Location Service.

2. An Android agent application is next launched on an Android Virtual De-

vice. We provide the address of the network reachable server activated in the

previous step to allow the Android Virtual Device to register itself with the

Agent platform.

3. We then connect to the JADE service on the Android device and create the

relevant data collection agents: Profile Agent, Sensor Agent, Location Agent.
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This launches a Device Analysis agent on the server.

4. We connect to the first wifi access point. This triggers the launching of

Action agent zone1WifiActionAgent.

5. We check the log to verify that the agent was started.

6. We then connect to the second wifi access point. This triggers the launching

of Action agent zone2WifiActionAgent.

7. We check the log to verify that the agent was started.

3.5.4 Android API context test

This test was performed to verify if Action agents only perform their tasks if they

have the appropriate Android API level. As mentioned previously every Action

agent maintains the Android API-level required for functionality. This is required

as the functionality of the Agent might not be compatible with certain Android

API-levels. For example, Android 4.3 allows applications to access Android noti-

fications by creating a notifications listener. This feature was not available in earlier

API levels. For this test, we incorrectly set an Action agent to be launched by the

Profile agent on the Android device for an Android Virtual Device Version 4.0.3.

If a check is not performed by the Action agent before launching a command, then

it would fail with an exception NoSuchMethodError.

This test run consists of the following steps:

1. Launch JADE agent platform on a network reachable server. This launches

the JADE platform specific Directory Facilitator (DF) Agent and Agent Man-

agement System (AMS) agent; and the framework specific service agents:
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Profile Service, Subscription Service, Location Service.

2. An Android agent application is next launched on an Android Virtual Device

set to 4.0.3. We provide the address of the network reachable server activated

in the previous step to allow the Android Virtual Device to register itself with

the Agent platform.

3. We then connect to the JADE service on the Android device and create the

relevant data collection agents: Profile Agent, Sensor Agent, Location Agent.

This launches a Device Analysis agent on the server.

4. After a time interval, we launch an Action agent that could only work without

errors since version 4.3

5. We check the log to verify that the agent was started.

6. We check the log again to verify that the agent prints a message stating: API

version of the Android device is not in range of the Action agent. We observe

that no NoSuchMethodError exception was thrown.

3.5.5 Rooted device context test

This test was performed to verify if a rooted device can be successfully detected.

In order to test this behaviour, we tested on a nexus-S Android device running

in rooted mode. We also tested on a rooted Android Virtual Device, and a non-

rooted Android Virtual Device. To perform this test, during the launch of Profile

agent on the Android device, in its setup() method, we call a method in a helper

class to check if the device is rooted. The helper class uses the RootTools program
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mentioned previously. Following is a snippet of code that returns if the device is

rooted:

import com.stericson.RootTools.RootTools;

public class JASHelpers {

/**

* Check if root is available.

* @return

*/

public static Boolean isRooted() {

return RootTools.isRootAvailable();

}

}

This test run consists of the following steps:

1. Launch JADE agent platform on a network reachable server. This launches

the JADE platform specific Directory Facilitator (DF) Agent and Agent Man-

agement System (AMS) agent; and the framework specific service agents:

Profile Service, Subscription Service, Location Service.

2. We provide the address of the network reachable server activated in the pre-

vious step to allow the Android Virtual Device to register itself with the

Agent platform.

3. We then connect to the JADE service on the Android device and create the

relevant data collection agents: Profile Agent, Sensor Agent, Location Agent.
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This launches a Device Analysis agent on the server.

4. We check the log to verify that a message was printed by the Profile agent,

stating the device root state of the device.

In all three instances of our test, the Profile agent successfully detected the correct

root state of the device.

3.5.6 Malware detection test

This is a core functionality test of our agent-based malware detection framework.

The purpose of this test was to verify if a feature vector that is known to exhibit

malware is observed by our agent system, could it detect it.

In order to perform this test, we programmed an Action agent, that would report

mock feature vectors known to be malicious from a previous training sample. i.e.

We picked feature vectors from the training set that were marked as malicious, and

were used to train the machine learning models.

This test run consists of the following steps:

1. Launch JADE agent platform on a network reachable server. This launches

the JADE platform specific Directory Facilitator (DF) Agent and Agent Man-

agement System (AMS) agent; and the framework specific service agents:

Profile Service, Subscription Service, Location Service.

2. An Android agent application is next launched on an Android Virtual De-

vice. We provide the address of the network reachable server activated in the

previous step to allow the Android Virtual Device to register itself with the

Agent platform.
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3. We then connect to the JADE service on the Android device and create the

relevant data collection agents: Profile Agent, Sensor Agent, Location Agent.

This launches a Device Analysis agent on the server.

4. The Profile agent launches the Action agent that has been programmed to

return mock feature vectors.

5. The Profile agent receives the feature vector from the Action agent, and

passes it to the Profile Service agent on the server.

6. The Action agent is destroyed as its task is complete.

7. The Profile Service agent forwards the feature vector to the Device Analysis

agent.

8. The Device Analysis agent marks the feature vector as malware, and for-

wards the response to the Profile Service agent.

9. The Profile Service agent reports to the Profile agent on the device that it has

exhibited malware behaviour at a certain timestamped value.

10. The Profile agent reports to the User Interface (UI) of the Android application

that malware was detected.

11. The Profile agent writes to log the same information.

We observed the reported message in the UI of the Android device, and the log,

confirming that the report is correct.
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3.5.7 Verify Correlation agent can correlate 2 devices exhibiting
similar malware behaviour

The purpose of this test is to verify if a Correlation agent can be used to connect

multiple Android devices that exhibit malware on the same models. This test run

consists of the following steps:

1. The pre-requisite for this test is that all steps of the Malware Detection Test

described in the earlier section need to be done on 2 Android Virtual Devices.

2. We then launch another Android Virtual Device that does not exhibit mal-

ware behaviour.

3. We then launch a Correlation agent in a container.

4. The Correlation agent Queries the DF to find all Device Analysis agents in

the system.

5. The Correlation agent sends queries to each Device Analysis agent to return

it a list of models that have verified malicious behaviour and the set of feature

vectors that caused it.

6. The Correlation agent then Correlates the information using the model as a

key, a list of Android devices that failed the model, and the set of feature

vectors that were sent to it when the model failed.

7. This information is stored in a JavaScript Object Notation (JSON) output file.

We observed a JSON output file created with the information about the two An-

droid devices that did send mock malware feature vectors, and did not observe the

third device listed in the JSON file.
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3.5.8 Server workload measurement

In order to stress test the scalability of our solution on the server hosting the agent

platform, we perform multiple experiments to measure the memory and CPU usage

on the server.

Hardware

The server was run in a MacBook Pro 2012 with a 2.5 GHz Inter Core i5 processor

and memory of 8GB DDR3 at 1600 MHz with a 5400rpm disk.

Memory measurements

In order to test the memory utilization on the server, we make measurements at

each step of the server initiation. i.e. We make measurements every time a new

Agent is launched in the main-container.

1. When only the main-container is launched: This measurement provides us

the base resource utilization of a JADE system, without any framework spe-

cific agents launched. In this case by default a JADE Graphical User Inter-

face (GUI) is launched with the AMS, DF and Remote Monitoring Agent

(RMA) agents. The total memory reportedly used when the main-container

is launched with these agents only is 91 MB.

2. When main-container is launched with framework specific agents: This mea-

surement provides us the base resource utilization when the JADE system is

launched with framework specific service agents. In our case, the framework

specific service agents are: Location Service, Profile Service and Subscrip-

tion Service. The total memory reportedly used when the main-container is

57



launched with a GUI and framework specific agents is 105 MB. Thus, the

overhead for the three framework specific agents is 14 MB.

3. When Device Analysis agent is launched: This measurement provides us the

resource utilization of the server when an Android device joins the frame-

work, thus causing the Profile Service agent to launch a Device Analysis

agent on the server. At this measurement instance, the agents on the server

include: AMS, DF, RMA, Location Service, Profile Service, Subscription

Service and a Device Analysis agent. The total memory reportedly used in

this instance is 111 MB. When a second Device Analysis agent is launched,

the total memory usage is 118 MB. Thus, a Device Analysis agent has an

overhead of 7 MB. Note that at this instance, no machine learning models

have been loaded by the Device Analysis agent. The models are loaded only

when one or more feature vectors are received by the Device Analysis agent

from the Profile Service.

4. When Device Analysis agent is loaded with models: This measurement pro-

vides us the resource utilization of the server when a feature vector is re-

ceived by the Device Analysis agent, causing it to load pre-existing ma-

chine learning models to compare against. At this measurement instance,

the agents on the server include: AMS, DF, RMA, Location Service, Profile

Service, Subscription Service and a Device Analysis agent. Moreover the

Device Analysis agent loads 1350 preexisting models. Each model ranges in

size from 76 KB to 15.2 MB depending on the complexity of the model. The

total memory utilization reported is 559 MB. Thus, 448MB extra is used to

load preexisting models per Device Analysis agent in our case. This value
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shows that if there are many models to compare against, or the size of each

model is large, the number of Device Analysis agents launched in a server

have to be reduced.

CPU usage time measurements

Most of the agents on the server side have limited CPU utilization. The only agent

that consumes large amounts of CPU is the Device Analysis agent. This is because

the Device Analyis agent is the one that has to load machine learning models and

compare the feature vectors received with each of the models available. Based

on [22], as the number of trees in the model increase, the CPU time required will

increase linearly. Similarly, if the depth of trees in the model increases, the CPU

time required will increase. Here we compare the CPU utilization time in different

scenarios when the Device Analysis agent is run. We run each test 3 times to

reduce the variance in times between test runs. For all tests, the Device Analysis

agent compares feature vectors with 1350 stored machine learning models. Unless

stated otherwise, the number of feature vectors compared by the Device Analysis

agent against each model is 256.

1. When only 1 Device Analysis agent runs: In this case, there exists only 1

Device Analysis agent in the system. The CPU usage times reported for

three test runs were: 27.4 seconds, 27.6 seconds, 28.9 seconds. Thus, we see

an average CPU utilization of 28.0 seconds.

2. When 2 Device Analysis agents run simultaneously: In this case, there ex-

ists 2 Device Analysis agents, that have received 256 feature vectors each,

to compare against 1350 stored machine learning models. The CPU usage
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times reported by the first Device Analysis agent for three test runs were:

33.4 seconds, 32.4 seconds, 33.6 seconds. The CPU usage times reported

by the second Device Analysis agent for three test runs were: 32.6 seconds,

32.3 seconds, 33.6 seconds. Thus we see an average CPU utilization of 33.0

seconds. This shows that the CPU utilization time increased by 5.0 seconds

when another Device Analysis agent is introduced in the same server.

3. When only 1 Device Analysis agent runs with 1 feature vector comparison:

In this test, we measure the CPU utilization overhead when only 1 feature

vector needs to be compared by the Device Analysis agent. In previous

instances, the Device Analysis agent had to compare 256 feature vectors.

The CPU usage times reported by the Device Analysis agent for three test

runs in this case were: 25.2 seconds, 22.6 seconds, 25.0 seconds. Thus, we

see an average CPU utilization of 24.3 seconds. This is 3.7 seconds quicker

than comparing 256 feature vectors. This shows that though a single feature

vector can be processed faster, the time required per feature processing is

reduced if more feature vectors are compared at a time together.

3.6 Discussion

Based on our experimental results, we make the following observations:

• Server memory should be high If the number of machine learning mod-

els to be loaded is high, based on the amount of memory required by De-

vice Analysis agents either the Device Analysis agents need to be distributed

among multiple servers, or the memory used to run the agent framework

needs to be high. In our experimentation loading the models caused a 448
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MB memory overhead. Each server-side agent itself uses between 5 - 7 MB

of memory.

• Pre-loaded machine learning models can give quick results Based on

measuring the CPU time required to compute if a mobile device exhibits

malware, we can say that multiple models can be loaded quickly, and classi-

fication results obtained. We observed that it took 24.3 seconds to compare

one feature vector against 1350 stored machine learning models; and 28.0

seconds to batch-process 256 feature vectors against 1350 stored models.

• Context-based decisions In our experimentation, our framework made changes

to its monitoring behaviour based on battery availability context, network

context, GPS context, Android API context, and rooted device context. For

example, we reduced the CPU and network usage when the available battery

was below a certain threshold level. As mentioned previously, the context-

based decisions depend on having access to sensors and appropriate API to

read the state of the device. With the changing nature of the Android operat-

ing system, either more context-based behaviours could be modeled or fewer

obtainable if the system becomes more closed.

• Agent-based approach is viable In our experimentation, our framework

used agents on the Android device in a split-container execution mode, com-

munication with agents on the server side for analysis. The communication

between the client and server was done using Agent Communication Lan-

guage. Given that some of our agents are resource intensive, such as the

Device Analysis agents, the agent-based approach allowed us to launch only

the minimum data gathering agents on the client, while allowing the resource
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intensive server agents to handle storage and computations using machine

learning models.

• Device infections can be correlated based on model failure In our exper-

imentation, Correlation agents can be used to query Device Analysis agents

to detect devices that fail on the same models. This is done by first querying

the Directory Facilitator agent service to find all Device Analysis agents in

the system, and then querying each Agent to provide its saved results. This

result is saved in a JSON file for future reference.

Some of the concerns that could be considered as issues or weaknesses of the

proposed agent-based framework includes:

• Privacy The information collected by the agents in the system cover a wide

range of features such as GPS position information; network access points

connected to; application installations; memory and CPU usage monitoring;

IP addresses and possible packet inspection if a device is rooted. This could

raise privacy concerns if our current solution is to be widely acceptable. It

should be mentioned that the current Android API allows access to most of

this information to all installed applications on the device without having to

root the device. For example, the Network Connections applications by Anti

Spy Mobile [14] allows capturing the IP addresses and ports being commu-

nicated with; the application package causing the communication; amount

of data transferred and the Transmission Control Protocol (TCP) state of the

communication. All this information can be accessed without having to root

the device. Moreover, Android requires any access permissions required by
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our application to be accepted by the user before the application can be in-

stalled on the device. Thus, users are well-aware of what kind of information

can be accessed.

• Agent-based client-server communication As mentioned previously, the

current system architecture is a client-server model with most analysis ser-

vices residing at the server side. This would mean that no malware can be

classified while the device cannot connect to the server. Use of the current

JADE agent-based architecture allows asynchronous communication during

client-server disconnections. This is made possible by the split-container

execution mode in JADE supported by the LEAP add-on. In case of con-

nection loss, feedback is stored in the Android devices. Once a connection

is re-established, the relevant data gathered during the disconnection time is

passed to the agent on the server side with appropriate time stamped data.

As mentioned previously, one of the advantages of an agent-based system is

asynchronous communication. Moreover, as mentioned in section 3.3.3 use

of Agent Communication Language allows us to distribute the agents on the

server side on multiple physical machines for scalability.

3.7 Summary

To summarize, in this chapter we provided an agent-based framework based on the

JADE middleware to make context-aware decisions to detect Android malware.

The contexts that we used included battery context, network context, GPS context,

Android API level context and rooted-device context. We conducted multiple ex-

periments based on these contexts, and measured the client and server workload
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measurements in terms of CPU and memory utilization. We also performed corre-

lation experiments to detect if mobile devices that fail on the same models can be

correlated together.
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Chapter 4

Random Forest Classification For

Detecting Android Malware

4.1 Introduction

The purpose of this chapter was to demonstrate the feasibility of using the Ran-

dom Forest classification algorithm to detect if an Android device has been com-

promised by malware by inspecting application behaviour data. As mentioned in

the previous chapter, the Device Analysis agents in our framework use pre-built

machine learning classification models to classify devices as exhibiting malware

behaviour. The classification model generated is based on the Random Forest al-

gorithm, as described in this chapter.

There were 3 primary reasons for choosing the Random Forest classification

algorithm over other machine learning algorithms. They were:

1. No previous research work had verified the classification performance of

the algorithm on an Android dataset by modifying the parameters of the
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algorithm.

2. As shown in Table 4.5, our initial investigation showed that the algorithm al-

ready performed better than other machine learning classifiers on our dataset.

3. As will be described in Section 4.2.2, the algorithm is highly scalable as it

required a log scale comparison of available features to generate a classifica-

tion model. This allows models to be generated quickly from large datasets.

In this chapter we focus on training a classifier based on an offline analysis of

Android application behaviour. Once trained, this technique could then be used to

analyze new Android applications prior to deployment on a real Android device.

This could be done by testing computed feature vectors collected during run-time

of the application on an Android Virtual Device.

For experimentation, we used a modified dataset made available by Amos [9]

under the Creative Commons Attribution 3.0 Unported License downloaded in Feb

28, 2013. This dataset was obtained from emulating user action using adb-monkey

[44]. More information regarding the dataset is provided in Section 4.3.1. We

focus on the detection accuracy of Random Forest as the number of trees, depth of

each tree and number of random features selected are varied for the algorithm. We

perform a 10-fold cross validation on our dataset for the error estimate, and also

use a separate training and validation set test. We had also performed a 5-fold cross

validation experiment for which an optimal Out-Of-Bag (OOB) error rate [22] of

0.0002 for forests with 40 trees or more, and a root mean squared error of 0.0171

for 160 trees was obtained.

According to our knowledge, we have not come across any other related work

that has exclusively worked with the free parameters of Random Forest algorithm
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on an Android feature dataset for malware classification. The main contributions

of this chapter can be summarized as follows:

• Apply Random Forest classification algorithm for behavior detection on fea-

tures [9] obtainable from an unrooted Android devices by predominantly

monitoring features based on the Android Binder Application Programming

Interface (API), Memory and Central Processing Unit (CPU) measurements

to detect Android malware.

• Conduct detailed experimentation to measure the accuracy of Random Forest

classifier as the number of trees and the depth of each tree in the forest is

varied for different size of random features selected.

• We provide a 10-fold cross validation of results of application of the Ran-

dom Forest classifier on android applications to detect malware. For this we

conduct 3 test runs for each combination of the Random Forest parameters

by using 3 random seeds for each of our tests to provide adequate error mea-

surements. We test for the number of trees, number of features compared at

a tree node, and the depth of the tree. For the number of trees, we test with

10, 20, 40, 80 and 160 Trees. For features we compare 4, 6, 8, 16 and 32

features. For tree depth we compare 1 (decision stump), 2, 4, 8, 16, and 32

depth trees.

• We perform similar test to see how a Random Forest training model performs

if there is a separate training set and a separate validation set. We compare

the performance of the original dataset, and our modified data set to measure

performance trends in terms of using a validation set.
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• We also perform a comparison of 10-fold cross validation by the usage of

SMOTE [26] (Synthetic feature vector generation using the default settings

of Weka) as the publicly available set did not have enough samples of the

benign applications. There was a 2:1 ratio of malware to benign samples.

• We also measure the amount of space required in storing different Random

Forest models on disk. This is required as once models are precomputed,

they can be used to evaluate incoming feature vectors.

The rest of the sections are organized as follows. Section 4.2 provides rele-

vant background to understand the problem domain. In Section 4.3 we describe

our experimental approach. Section 4.4 discusses our results, the advantages and

disadvantages.

4.2 Background

In order to understand the application domain of this research work, we now dis-

cuss three related areas: feature collection for Android operating system, key fea-

tures of the Random Forest algorithm, and application of machine learning in the

domain of mobile security.

4.2.1 Android feature collection

In order to apply any machine learning classifier, it is important to first be able

to collect relevant features that can be observed from the system. These features

that are observed are stored as a feature vector. As mentioned in Section 2.3, in

supervised learning, given a labeled set of input-output pairs (the training set) with

N training examples, the goal is to predict a future y value given an input. The
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input to such a system is xi which is a D-dimensional vector, also called a feature

vector. xi is a set of values used to determine yi.

The features that the Android system allows access permissions to depends on

if the device has been rooted. Rooting is the process whereby one has privileged

access control to the system. As mentioned in Android Security Overview [42],

Android uses the Linux Kernel as the bottom layer. All layers on top of the kernel

layer run without root privilege. i.e. All applications and system libraries are inside

a virtual application sandbox. Thus, applications are prohibited from accessing

other application data (unless explicitly granted permission by other applications).

As described in [42], each Android application is assigned a unique User Identi-

fication (UID). Each of these Android applications run as that user in a separate

process with the UID. Thus, if a feature vector is created from features of Android

API in unrooted mode, then only system information made available by Android

can be used. On the other hand, having a rooted device allows one to install sys-

tem tools that could gather features from underlying host and network behaviour.

Example of features that can be obtained from rooted devices include: data being

sent by applications, IP addresses being communicated with in the network, num-

ber of active connections, the system calls being invoked, etc. The related work in

the area of machine learning approaches to Android data either deal with feature

collection from unrooted devices [9, 71], or rooted devices [24, 34, 49]. Hence, if

models are to be generated with root mode observable features, then root access

is required. If models are to be generated without root mode features, then root

access is not required.
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4.2.2 Random forest

For the experimentation in this chapter, we have used the Random Forest classi-

fication algorithm implemented in the standard Weka [46] package. Weka is the

only Java-based package available that provides implementation of all machine

learning algorithms, including the Random Forest classification algorithm. As our

agent-based system is based on the Java language, and as Android is a derivative

of Java, we have used the Weka package. Random Forest is an ensemble learn-

ing algorithm developed by Breiman [22]. An ensemble learner method generates

many individual learners (in this case a tree) and aggregates the results (a forest).

Each classifier (a tree in the forest) is built individually by working with a boot-

strap sample (random sampling with replacement) of the input data (features of the

tree). In a regular decision tree classifier, a decision at a decision point is made

based on all the feature attributes of a feature vector. But in Random Forest, the

best parameter at each node in a decision tree is chosen from a randomly selected

number of features. In our experimentation we choose 4, 6, 8, 16 and 32 features to

compare at a decision point. The feature that is chosen to classify the data is based

upon trying to minimize the entropy value. This random selection of features helps

Random Forest to scale well when there exists many features per feature vector

as the algorithm usually requires as few as log m features being compared at the

classification decision point of a tree, where m represents the total number of fea-

tures available in the feature vector. This feature selection helps it to reduce the

interdependence (correlation) between the feature attributes. The error rate of the

forest classification depends on the optimal value of random features selected.

As mentioned by the author [22], the number of random features m selected
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per decision node in a tree determines the error rate of the forest classification.

The error rate of the Random Forest classifier depends on the correlation between

any two trees, and the classification strength of each individual tree. Reducing the

random features selected m causes reduction in both the correlation between clas-

sification trees and the strength of classification of each individual tree. Increasing

m increases both the correlation between the trees and the strength of each tree.

Breiman explains that the Out-of-Bag (OOB) error rate is an indication of how

well a forest classifier performs on the dataset. The out-of-bag model leaves out

one-third of the input dataset for building the kth tree from the bootstrap sample

for each tree. This one-third sample is used to test the kth tree and the results of

misclassification averaged over all trees. The author claims that for most cases

OOB error estimate is a good estimate of the error and hence cross validation or

separate test set is usually unnecessary when using the Random Forest algorithm

[23].

4.2.3 Machine learning classifier for Android mobile systems

Application of machine learning methodologies for classification of Android mal-

ware is currently an emerging area of interest. Malware detection can be done

either via static detection or dynamic detection. Static detection techniques (also

called signature matching) have high detection rates and require less computational

resources. This is the traditional approach taken by anti-virus software. Dynamic

detection techniques (also called anomaly/behavior detection) on the other hand,

suffer from low detection rates and require more resources to reduce the amount

of false positives reported. They usually are prone to high false positives without

adequate training. The primary advantage of dynamic detection techniques over
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static detection techniques is however that it can detect new malware, and provides

better coverage. A description of machine learning classification used on Android

dataset was provided in Section 2.3.1.

4.3 Experiment

4.3.1 Dataset description

For our experimentation, we worked with a modified dataset provided by Amos et

al. in [10] available at 1 under the Creative Commons Attribution 3.0 Unported

License. The author developed a shell script to automatically analyze .apk An-

droid application files by running them in available Android emulators. For each

.apk file, the emulator simulates user interaction by randomly interacting with the

application interface. This is done using the Android adb-monkey tool [44]. Each

feature vector of the dataset is collected at 5 second intervals. The memory features

were collected by observing the“proc” directory in the underlying Linux system of

Android. The CPU information was collected by running the Linux “top” com-

mand. The Battery and Binder information was collected by using an “intent” ob-

ject. The “permissions” feature is the summation of the total permissions requested

by each running application (package) obtained from the PackageManager class in

Android.

As mentioned in [10], the test set or the validation set consists of 47 applica-

tions of which 24 are benign applications and 23 are malicious applications. The

training dataset consists of 6832 feature vectors computed. Eight applications are

duplicated across both the sets. The feature vectors in the training set were com-

1https://github.com/VT-Magnum-Research/antimalware
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puted from 1330 malicious applications and 408 benign applications. As can be

seen, there is an imbalance in the number of applications observed in the train-

ing set. A classifier becomes more biased towards the oversampled class if there

is a class imbalance. In order to balance the two classes, we used the Synthetic

Minority Oversampling Technique (SMOTE) package from Weka to create more

data points of the under-sampled class (benign class). We then applied the random

filter to randomize the distribution of the two classes in the data file used. Ran-

domization was required as SMOTE adds data entries to the end of the data file.

The synthetically generated data without randomization would be a problem during

cross validation because we would have points primarily from the under sampled

class in the last few folds.

For the SMOTE tests, we generated more samples of the under sampled benign

class to cause the total number of feature vectors to increase from 6832 to 10254

feature vectors. 5133 instances were of one class whereas 5121 were of the other

class. In our initial experiments reported in [5], we used a data set collected from

2 that had a total of 32342 data (feature vector) samples with 7535 benign samples

(classified as positive class) and 24807 malicious samples (classified as negative

class). A reduced version of the dataset was reported in [10] which has been used

by us now. For completeness, we report our results in [5] in section 4.3.7.

The feature vectors were computed every 5 seconds from 10,000 user inputs

generated by the Android Monkey program. The primary disadvantage of the

dataset however as mentioned by the authors is that when they worked with 1500

events that were sent with random delays, their classifier performed only as good

as random behaviour with around a 50 percent classification rate. The primary fo-

2https://github.com/VT-Magnum-Research/antimalware
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cus of [10] was to create an architecture for large amount of testing using the base

settings of machine learning classifiers. They tested the Random Forest algorithm

using just 10 trees, 6 features, with maximum tree depth. We tested their unbal-

anced dataset, and compared with our balanced SMOTE generated dataset for the

various parameter settings of the Random Forest algorithm. We test by modifying

the following parameters: The number of trees, number of features compared at

a classification decision, and the depth of the tree. For the number of trees, we

test with 10, 20, 40, 80 and 160 Trees. For features we compared with: choos-

ing the best among 4 features, choosing the best among 6 features, choosing the

best among 8 features, choosing the best among 16 features and choosing the best

among 32 features. For tree depth we compare trees of depth: 1 (decision stump),

2, 4, 8, 16, and 32. We also run each experiment three times and report the median

value for each combination of the tests. We run a total of (5 trees * 5 features *

6 depth * 3 random seed) = 450 tests for each of our test setups. We run 4 set of

tests. 1) 10-fold Cross Validation on original dataset, 2) 10-fold Cross Validation

on our Synthetic data test (SMOTE generated), 3) Separate Validation set test on

the original data, 4) Separate Validation test on our Synthetic data test (SMOTE

generated). Thus, we run a total of 1800 tests. The features that are measured in

the feature vector are listed in Table 4.1. This is the same set of features that were

described in Table 3.1. They are shown again here for easier reference.

This study has two additional limitations that we observed based on inspecting

the raw dataset. The most notable areas are in the battery data features and the

network features. Given that these data samples were collected by running in an

emulator, there were no observed change in battery data among any of the feature

vectors for both classes of data. Similarly, the Network data was fixed for all the
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Table 4.1: Android Features Observed [5]

Category Feature

Battery IsCharging, Voltage, Temperature, BatteryLevel, BatteryLevelDiff

Binder

Transaction, Reply, Acquire, Release, ActiveNodes,

TotalNodes, ActiveRef,TotalRef, ActiveDeath, TotalDeath,

ActiveTransaction, TotalTransaction,ActiveTransactionComplete,

TotalTransactionComplete, TotalNodesDiff, TotalRefDiff,

TotalDeathDiff, TotalTransactionDiff, TotalTransactionCompleteDiff

CPU CPU Usage

Memory
memActive,memInactive, memMapped, memFreePages,

memAnonPages, memFilePages, memDirtyPages, memWritebackPages

Network
TotalTXPackets,TotalTXBytes, TotalRXPackets

TXPacketsDiff, TXBytesDiff, RXPacketsDiff, RXBytesDiff

Permission Permission

data points. The authors reported in [10], that the network was switched off during

tests due to complaints by the information technology team. This would mean

that 13 of the observed 42 features do not contribute to classification as the 13

features will not contribute to information gain (reduction in entropy) score used

by Random Forest algorithm at each decision node. These limitations could only

be addressed if the network is allowed to remain open so that Android applications

can access network data, and actual mobile devices are used instead of Android

virtual devices. But running 1738 Android applications, as was done to gather

this dataset, would be time consuming on actual devices as it would require device

software reset after each installation of Android application.
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4.3.2 Classification experiment description

The following are a list of experiments performed:

• Experiment 1: Use initial dataset to train classifier on the training dataset

provided in [10]. Perform a 10-fold cross validation of results. We perform

3 runs with seed values, 1, 2 and 3 to measure the performance with multiple

settings of the Random Forest classifier as described above.

• Experiment 2: Next, again train the Random Forest classifier on Amos et

al. [10] training dataset, but now check the performance of each Random

Forest model on a separate validation set. As mentioned previously, the test

set or the validation set consists of 47 applications of which 24 are benign

applications and 23 are malicious applications.

• Data Generation: We then modified [10] training dataset using the SMOTE

package of Weka to generate synthetic feature vectors for the training set.

This was done as the number of feature vectors of goodware was signifi-

cantly low. This causes the learned classifiers to be over trained on the class

that is oversampled. We applied the randomize filter then since the SMOTE

package adds the synthetic features to the tail of the Weka .arff file. This

would create errors during the process of cross-validation.

• Experiment 3: We then performed a 10-fold cross validation on the balanced

dataset generated using SMOTE. We perform 3 runs with seed values, 1,

2 and 3 to measure the performance with the settings of the Random For-

est classifier we mentioned previously. This is similar to what was done in

experiment 1, and would help us compare the effect of a balanced dataset.
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• Experiment 4: Next, again train the Random Forest classifier on the balanced

dataset, but now check the performance of each Random Forest model on the

separate validation set, as was done in Experiment 2. This would allow us

to compare the performance of the two models: One generated from the

original dataset, to the one generated from synthetic oversampling.

4.3.3 Hardware

A Macbook Pro 2012 was used for testing with a 2.5 GHz Intel Core i5 processor

with 8 GB 1600 MHz DDR3 of available RAM.

4.3.4 Software

For generating synthetic data for solving the class imbalance issue, we used SMOTE

(Synthetic Minority Oversampling Technique) [26] package available as part of

Weka 3-6-12. For experimentation and model generation, we used the experimen-

tal release 3-7-12 of Weka as it allows parallel processing of classifier for Model

generation for the Random Forest algorithm. We set the number of threads avail-

able to be used by the Random Forest algorithm to four as that is the limitation of

our current hardware.

The Random Forest classifier implementation for Weka does not implement

feature importance computation. Availability of this feature would have helped

in observing the features that are weighted higher by Random Forest algorithm.

Hence, we have not computed feature importance.

4.3.5 Sample code

As mentioned previously, in order to be able to compute if a feature vector exhibits

maliciousness, we have to use pre-computed Random Forest models stored in the
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system. To do this, we write java code to store models once they have been gen-

erated. This is done using serialization support available in Weka. Below is our

sample on how this is performed.

rfa.buildClassifier(data);

// serialize model

weka.core.SerializationHelper.write(

inputFileName+"RandomForest"+

rfa.getNumTrees()+"Trees"+

rfa.getNumFeatures()+"Features"+

rfa.getMaxDepth()+"Depth"+

rfa.getSeed()+"Seed.model", rfa);

In order to load a classifier model already created and stored on disk, we use

the following java code to deserialize.

// retrive the model file to test with

Classifier cls = (Classifier) weka.core.

SerializationHelper.read(modelFile);

// Evaluate

eTest = new Evaluation(data);

eTest.evaluateModel(cls, data);

Once loaded, the new incoming feature vectors are compared using the data

variable. Weka provides the necessary infrastructure to either load multiple feature

vectors to test at a given time, or a single feature vector can be compared at a time.
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In our code, the incoming features stored in the data variable are collected on an

actual or emulated Android device. The classification is done on a server side.

If required, the model files can be stored on an Android device as Weka is sup-

ported on an ARM architecture as well, and the comparison can be done on the

Android device. It should be mentioned that building the classifier is a CPU inten-

sive task requiring tens of minutes even on a multicore desktop or laptop for the

current data set that we have. The evaluation however can be done on a handheld

device as they are memory intensive, but not CPU intensive tasks. As explained in

our previous chapter, it took 28 seconds to compare against 1350 models.

4.3.6 Results

As mentioned before, for experimentation, we run tests for each of the Number of

Trees , Depth of Tree and Attribute combination. We tested with 10, 20, 40, 80 and

160 trees for each Random Forest. For each setting of trees we tested with 4, 6, 8,

16 and 32 randomly selected attributes compared for each decision node. For each

Tree and attribute combination, we tested with 1, 2, 4, 8, 16 and 32 depth trees.

Fig. 4.1 shows the 10 fold cross validation performance of the original dataset.

As can be seen, as the depth of tree increases, the classification rate increases up

to a certain point. The range shown is from 80 percent to 96 percent on the y-axis.

The highest correct classification detection rate was a value of 94.96 percent for 16

features at 32 depth for a Random Forest of 10 trees.

As shown in Fig. 4.2, a similar trend follows if we use more trees compared to

Fig. 4.1. However, though it is not noticable, the detection rate increases slightly

by one to three percent for 10 trees vs 160 trees. For 160 trees, the highest cor-

rect classification detection rate was a value of 95.74 achieved with 32 features
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Figure 4.1: Classification rate of original dataset as the number of features
are changed for forest of 10 trees for y range 80 to 96 percent

compared at a depth of 32.

In Fig. 4.3 we compare the performance of the various Random Forest models

on the original dataset where we have a separate training set and a separate valida-

tion set. As can be seen, the performance of the test on a forest of 10 trees on a

validation set is much lower than in the 10-fold cross validation test for 10 Trees.

This shows that a 10-fold cross validation set does not always show the true nature

of a classification algorithm. The highest detection rate observed was 80.46 for 16

features compared at a time with tree depth of 4. Moreover, the results show that as

the depth of tree increases, the classification results are poorer due to over-fitting.

We performed a similar test with a 160 tree forest, and found similar results
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Figure 4.2: Classification rate of original dataset as the number of features
are changed for forest of 160 trees for y range 80 to 96 percent

to the 10-Tree validation set. The results are shown in Fig. 4.4. The highest de-

tection rate was a value of 81.25 observed with 4-feature comparison at a depth of

8. Moreover, with 160 trees, there were a total of 3 tests that passed 80 percent

detection. There was only one such case with 10 Trees.

As shown in Fig. 4.5, we performed a test where the model was generated on

a separate training set, and then tested on a separate test set as mentioned in our

dataset description. In this test we had synthetically generated feature vectors of

the under sampled class using the SMOTE algorithm in its default setting. The

highest correct classification rate achieved was 81.64 percent with a setting of 160

trees, depth of 2, with 16 random features at a time. The performance of SMOTE
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Figure 4.3: Classification rate of original dataset when tested on validation
set for forests of 10 trees. The results show that as the depth of tree
increases, the classification results are poorer due to over-fitting.

can be compared to the original dataset of Amos for 160 Trees on a validation set

as was done in Fig. 4.4. There were 6 tests where the correct classification passed

the 80 percent detection. They were all achieved at a depth of 2 for 4, 6, 8, 16, 32

features. However, the original dataset performed better when the tree depth was 4

or greater in general.

As shown in Fig. 4.6, we also performed a 10 fold cross validation test on

SMOTE generated instances. The detection rate was over 91 percent for tree depth

of 8 or more. The highest classification rate obtained was a value of 96.40 percent

for trees with 8 features compared at 32 depth.
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Figure 4.4: Classification rate of original dataset when tested on validation
set for forests of 160 trees

Table 4.2: Amount of space required to store Random Forest model files as
depth of trees is increased for a forest of 160 Trees

Trees Features Depth Model Size(MB)
160 32 32 7.9
160 32 16 7.5
160 32 8 3.4
160 32 4 1.9
160 32 2 1.7
160 32 1 1.7
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Figure 4.5: Classification rate on model generated by SMOTE with testing
on a validation set with forest of 160 trees. This graph shows the per-
formance of the Random Forest algorithm on a balanced dataset.

In order to examine if storage of Random Forest models are feasible on mobile

devices, we measured the amount of space occupied by such models. This is shown

in Table 4.2. As can be seen, the amount of space required increases as the depth of

the tree increases. Random Forest models with 160 Trees, 32 Features compared

at a time (with replacement), with tree depth of 16 would require 7.5 Megabytes of

storage.

As shown in Table 4.3, the amount of space required to store a Random Forest

model decreases as the number of features compared increases.

84



Figure 4.6: Classification rate on model generated by SMOTE with 10 Fold
cross validation testing with forest of 160 trees

Table 4.3: Amount of space required to store Random Forest model files as
number of features measured is increased for a forest of 160 Trees

Trees Features Depth Model Size(MB)
160 4 32 15.1
160 6 32 12.7
160 8 32 11.4
160 16 32 9.2
160 32 32 7.9
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4.3.7 Experiment results with a 5-fold cross validation

As mentioned previously, we had also performed a 5-fold cross validation experi-

ment in our previous work [5] based on a different dataset provided by the authors.

Using a lower number of folds (using 5 instead of using 10) means a higher bias

towards overestimating the true expected error. This however causes lower vari-

ance and lower running time. The following were the results during our 5-fold

experimentation. The results here are based on applying the SMOTE algorithm to

remove class imbalance on the original dataset.

Table 4.4 shows the results when each tree is allowed to grow to maximum

depth. We performed 5-fold cross validation for each experiment.

Following are the parameters that we measured as shown in Table 4.4:

• OOB Error

This is the Out-Of-Bag error explained in section 4.2.2.

• Root MSE

The square root of the mean squared error based on 5-fold cross validation.

• % True Class

This value shows the percentage of the samples that were classified correctly.

We evaluate this number to show the minor variations that happen as the

number of trees and random features selected change. This was not reported

in 10-fold cross validation as the variation is more obvious.

• # Incorrect

This number shows the total number of the 48,919 samples that were mis-

classified. We evaluate this number to show the minor variations that happen
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Table 4.4: Experimental Results for varying number of trees and number of
random features with Trees allowed to grow to maximum depth

Trees Features OOB Err Root MSE % True Class #Incorrect
10 4 0.0067 0.0291 99.9469 26
10 6 0.0064 0.0245 99.9407 29
10 8 0.0058 0.0221 99.9600 19
10 16 0.0056 0.0206 99.9600 19
10 32 0.0056 0.0200 99.9600 19
20 4 0.0008 0.0259 99.9670 16
20 6 0.0006 0.0223 99.9632 18
20 8 0.0005 0.0208 99.9693 15
20 16 0.0004 0.0191 99.9652 17
20 32 0.0006 0.0184 99.9693 15
40 4 0.0003 0.0242 99.9693 15
40 6 0.0004 0.0210 99.9734 13
40 8 0.0002 0.0197 99.9755 12
40 16 0.0003 0.0178 99.9612 19
40 32 0.0003 0.0178 99.9714 14
80 4 0.0004 0.0239 99.9734 13
80 6 0.0002 0.0203 99.9775 11
80 8 0.0002 0.0187 99.9836 8
80 16 0.0002 0.0175 99.9734 13
80 32 0.0003 0.0178 99.9673 16
160 4 0.0003 0.0233 99.9775 11
160 6 0.0002 0.0201 99.9755 12
160 8 0.0002 0.0183 99.9857 7
160 16 0.0002 0.0171 99.9734 13
160 32 0.0002 0.0175 99.9693 14

as the number of trees and random features selected change.

As shown in Table 4.4, the best Root Mean Squared Error value of 0.0171

is achieved with 160 trees and 16 features. The best setting based on the lowest

number of misclassifications (7 out of 48,919) was achieved with 160 trees and 8

features selected. These have been highlighted in Table 4.4.
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Figure 4.7: Misclassification comparison with 20 trees as depth of tree is var-
ied

Fig. 4.7 provides comparison of how the depth of tree impacts the number of

inaccurate classifications. In this figure we show results of a Random Forest with

20 trees. As can be seen, regardless of the number of features selected, the number

of incorrect classifications stabilizes at a tree depth of 16. Similar behavior is

observed for other size of forests, i.e. forests with 10, 40, 80 and 160 trees. We

omit them here for brevity.

Fig. 4.8 provides comparison of how the depth of the tree impacts the out-of-

bag error rate for Random Forest with 40 trees. As can be seen from the figure,

low error rates are achieved quickly if 16 and 32 features are selected at tree depth

of 8. If lower number of features are selected, then a tree depth of 16 is required
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Figure 4.8: Out Of Bag error rate comparison with 40 trees as depth of tree
is varied

before the error rate stabilizes. Similar behavior is observed for other forest sizes

for the given tree depth and number of random features combination.

Fig. 4.9 provides observed root mean squared error rates as the depth of the tree

is observed at 1, 2, 4, 8, 16 and 32 for a Random Forest with 80 trees. Stable value

of the error rate is observed at a tree depth of 8 when 32 features are observed. A

depth of 16 is required for all other observed feature counts. We observe similar

pattern for other tree sizes.

In order to compare the results obtained by applying the Random Forest al-

gorithm to other classification techniques, we perform preliminary classification

tests on our dataset with default settings for classifiers in Weka. The number of

89



Figure 4.9: Root Mean Squared error rate comparison with 80 trees as depth
of tree is varied

misclassified instances of the 48919 points are as shown in Table 4.5. It should be

pointed out that all the algorithms listed have associated free parameters which can

possibly be tuned to obtain better results. Similarly we have not computed values

for other existing classification algorithms such as Support Vector Machines. We

consider it outside the scope of this research work as our focus is on testing the

parameters of Random Forest for our dataset.

4.4 Discussion

Based on our experimental results on 10 fold cross validation and separate valida-

tion set test we make the following observations:
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Table 4.5: Misclassification Comparison of Different classifiers

Algorithm Misclassification

BayesNet 342

NaiveBayes 2361

MultilayerPerceptron 38

J48 47

Decision Stump 2532

Logistic Regression 323

Random Forest 7

• Random forest sensitive to parameter settings In our tests, we observe

that using the default settings of an algorithm does not yield the best results

as is done in all literary work. For 10 fold cross validation a default setting

of 10 tree and 6 features compared with maximum depth yields 93 percent

true classification. But a 95.74 percent true classification was obtained with

160 trees with 32 features at depth 32.

• Cross validation results higher than validation set test Whereas in cross-

validation tests, results show true classification at over 90 percent at tree

depth greater than 8 as shown in Fig. 4.6, in case of validation set tests,

they rarely are higher than 80 percent true classification in general as shown

in Fig. 4.5. This difference in result is primarily because there are feature

vectors of an application in the validation set, that was not observed in the

training set.

• Class imbalance Based on comparing classification results provided in Fig. 4.5

that shows performance on a class balanced dataset generated by SMOTE
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vs Fig. 4.4 that shows performance with a class imbalance of the original

dataset, we observe that the SMOTE generated classifier performed better

at tree depth of 4. Thus, using a class balanced dataset would yield results

faster. The balanced dataset performed worser than the imbalanced dataset

at higher tree depths due to over fitting the model to the training set.

In our experiments, based on a 5-fold cross validation, Random Forest provided an

exceptionally high accuracy of over 99.9 percent of the samples correctly classified

(see table 4.4). This is is comparison to the 10-fold cross validation tests shown in

Fig. 4.6 the highest accuracy obtained was 96.40 percent for trees with 8 features

compared at a decision point, at a tree depth of 32. The optimal square-root of

the mean-squared-error achieved was 0.0171. The optimal out-of-bag error rate

obtained was 0.0002 with a minimum forest size of 40 trees. Based on experimental

results on 5-fold cross validation on a previous larger dataset, we can make the

following observations for the Android features evaluated:

• High accuracy of random forest:

Random Forest provides an exceptionally high accuracy with over 99.9 per-

cent of the samples correctly classified when trees are allowed to grow to

maximum depth. The square-root of the mean-squared-error is 0.0291 or

less. The out-of-bag error estimate of Random Forest is acceptably low with

40 trees or higher. It varies between 0.0002 and 0.0004. The best setting

based on root MSE value was using 160 trees and 16 random features se-

lected with a Root MSE value of 0.0171. The best setting based on number

of incorrect classifications was 160 trees with 8 random features selected

with a score of 7 incorrect classifications.
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• More trees are better: The overall trend shows that the out-of-bag error

reduces on average as the number of trees increase. For our data sample,

we observe significant better out-of-bag error rates when we have at least 20

trees for the varying random features selected from 4 to 32.

• Depth of tree required: Based on experimentation, we observe that for our

dataset, we need to construct trees of depth 16. Lower depth than this causes

higher number of inaccurate classifications. Measuring trees of depth greater

than 16 does not cause a statistically significant change for a given number

of trees in the Random Forest algorithm for our dataset. Random Forest

provides an accuracy of over 91 percent with a tree depth of 1. With 4 fea-

tures selected, Random Forest provides greater than 99 percent classification

with a depth of 8. With 6 or more features selected, a 99 percent correct

classification can be achieved with a depth of 4 for each tree.

• Lower features per tree better: For a given forest size, after a certain point,

we see that as the number of features are increased for a given tree, the num-

ber of incorrect classifications increase. The author in [22] had mentioned

that ideally choosing log M features (where M is the size of the total at-

tributes) would yield a good result. In our case, choosing 6 or 8 attributes for

a forest gives ideal results for a particular forest size.

• Misclassified malicious samples:

Even though we do not show it in our results table, for all experiments, most

of the misclassified cases were due to the malicious class samples misclas-

sified as being of the benign class i.e. there were more false negatives than
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false positives. For example the experimental setting yielding the best result

with a forest with 160 trees, 8 random features, and depth of 16 for each

tree, we observed 5 false negatives and 2 false positives. This is based on

observing the generated confusion matrix for each experiment case.

4.5 Summary

The results of these experiments show that the Random Forest algorithm provides

true classification results at over 90 percent if we are to observe cross validation

results. We also observed that the algorithm is highly sensitive to the parameter

values that are chosen. The parameters that we experimented with included the

number of decision trees in the Random Forest, the number of random features

compared at a decision node for each decision tree, and the depth of each tree

in the forest. We observed that choosing the default values of the algorithm, as

is done in all research work that have tested with the Random Forest algorithm

provide results that are not optimal. We also observed that having good results

in cross-validation tests, does not necessarily translate to having good results with

a separate validation-set test. Moreover, training a Random Forest classifier on a

balanced dataset allows to find better results at lower tree depths. This is beneficial

as models of lower depth are smaller in size as shown in Table. 4.2 and take less

time to compute.
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Chapter 5

Conclusion And Future Work

5.1 Thesis summary

This thesis studies the use of a Java based multi agent system framework based on

the JADE platform on Android mobile devices for malware detection. The agent

based framework is context aware in order to facilitate better conservation of re-

sources on mobile devices. The framework defines multiple client based agents

that reside on the Android device for data gathering and reporting classification

reports to the user. Server side agents in the framework are responsible for analy-

sis of features by comparing to pre computed models that have been saved in the

system. This client-server approach was taken due to resource limitations on mo-

bile devices in terms of system memory, disk and battery constraints. Moreover,

the server side agents can be distributed among multiple servers in the cloud for

scalability as they communicate with each other using ACL.

In order to measure the scalability of the multi-agent platform, we have com-

puted the amount of CPU resources used by the agent platform on Android devices.

95



We also measured the memory requirements to maintain such an active agent sys-

tem on the Android devices using Android’s Dalvik Debug Monitoring Service.

Given that many mobile services have restrictions on the amount of data used,

we have measured the network resources that are utilized in order to transfer data

between the agents on the client and the agents on the server for analysis. All

of these measurements are required as there is no clear methodology to measure

the resource utilization pattern on mobile devices, since battery usage depends on

many external factors, such as external temperature, how long the battery has been

used, and the capacity of the battery.

We performed context aware testing by activating Action agents on the Android

mobile device based on context. For context based testing we mocked the GPS

information used to activate one, or another agent. Similarly we used the network

that the Android device was connected to in order to make context aware decisions

based on network connection. We launched different agents based on if devices

were rooted, and the kind of applications that were installed on the device. For this

purpose we installed tools such as RootTools.

In order to detect if Android devices have been infected with malware, the

agent framework relies on the use of machine learning classifiers that use pre-built

models to make decisions. The pre-built model used for comparison has to be

relevant in terms of the features observed. This is because, not all system resources

that can be observed on one Android mobile system can be detected on another.

This could be caused by the API level of the operating system used by the device,

and also the presence of third party analysis tools used to build features.

For this thesis we studied the performance of the Random Forest algorithm

on a balanced dataset with a 50-50 split between goodware and malware for the
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feature vectors. We started with making a 5-fold cross validation study on our

labeled dataset. The study revealed results of over 90 percent true classification

rates. Later we revised our experimentation to use 10-fold cross validation on

the labeled dataset and also performed a training-validation set study. For this

study we performed three runs with random seeding for each combination of the

free parameters of the Random Forest algorithm. We observed that whereas cross

validation causes results to be over 90 percent true detection, validation set tests

rarely cross 80 percent true classification rates. We observed that classification

rates vary widely as the free parameters of the algorithm are modified, and that the

default setting of algorithm do not yield optimal results.

In our experimentation, we also measured the amount of disk space that will

be required to store these pre-built models. We made use of pre-built models for

two purposes. One is because once the models are generated, the cost to compare

feature vectors is very quick. We measured the cost associated for one feature

vector comparison, vs multiple comparisons made from a single call to reach our

classification decision. In our experimentation, we could compare against 1350

stored machine learning models in 24.3 seconds for a single feature vector; vs

28.0 seconds for 256 feature vectors. The second reason was that this would allow

us to better understand the size of the models generated on Android devices if

created with portable versions of Weka, such as the one with Weka for Android

devices [53]. The size of our models were between 76 KB and 15.2 MB.

5.2 Future work

The future work related to this thesis can be broken down into two parts. The first is

related to the use of machine learning approaches and its potential weaknesses. The
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second, is related to the architecture of using multi-agent systems as a detection

framework. We now discuss each in the next two sections.

5.2.1 Application of machine learning

As malware in the Android mobile setting is constantly adapting to detection tech-

niques, many of the detection models described here and in the referenced literature

have to be tuned to observe new behavior patterns. As mentioned by Allix et al. in

[7], [8], and [6], the performance of machine learning classifiers on Android suffer

in performance when the test dataset does not exhibit features that the classifiers

have not been trained on previously. We now list some future directions that can

be taken to refine this work further.

Bayesian optimization for parameter selection

Bayesian optimization [72, 78] is a promising approach for automatically adjusting

free parameters in any given algorithm. This optimization methodology through

random embedding was developed parallel to when we were developing our ap-

proach, and could handle up to a billion dimensions. In the case of Random Forest,

the free parameters include: the number of trees in the forest, the number of random

features selected at each decision node of a tree, and the maximum depth of each

tree. We envision using an objective function that uses the out-of-bag error estimate

to guide the Bayesian Optimization algorithm into selecting the right combination

of parameters that provide us acceptable settings based on our required threshold.

Due to the reason mentioned above, and as the number of free parameters in the

Random Forest algorithm are not too many; we did not make use of this approach

as we had determined that our accuracies followed a particular pattern and using
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this method would not contribute to our results significantly.

Observing more features

The dataset we used primarily focused on the binder API of Android, CPU usage

pattern, and memory usage pattern on an Android device emulator. Many papers

listed in the related work section used system call tracking as features. Random

Forest is relatively immune to increase in the number of features of a feature vector

as it requires to observe only log m features of the available m features. Thus,

monitoring system call features and more fine grained network level behaviour

would allow us to create better detection models. For example, Allix et al. [7]

created a set of 2.5 million features constructed from static features gathered from

.dex byte code files of Android Executables. Our approach to testing with the

parameters of the Random Forest algorithm could be tested on this data. The reason

why we have not tested this dataset is because of its size and the limitations of

the weka library used for our analysis. The Java Weka library requires that the

entire dataset be first copied into memory before a model can be built. Given that

the dataset was approximately 250 gigabytes in size, the dataset would require

pre-processing to remove unnecessary static features to minimize its size to avoid

running out of memory.

Ensemble learning

Ensemble learning creates a learning model by integrating the results of multiple

models. Though the Random Forest algorithm is an ensemble learning method that

averages the results of multiple models (decision trees), we could create another

level of ensemble learners, some of which monitor device at the user level and
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others that monitor features at the kernel level. For example, we could create a

learning model for tcpdump data to monitor network traffic and another to monitor

system call data using strace. A foreseeable challenge in this case would be to

see how good a classification technique would be in the absence of observed data

during testing time. This would be the case if some of the features cannot be

observed if a device is unrooted; or a tool for capturing the behaviour is missing

in a rooted device. Similar issues will occur if Google decides to remove access to

API used for observing behaviour at user level.

Fine grained inspection

The features observed in our dataset are global in nature i.e. all concurrently run-

ning applications together impact the features observed. This would cause the data

features measured to be very noisy at best without being able to individually break

down the impact of each application on the measured features. Similar issues can

be identified with [71] as feature vectors were collected by running a single An-

droid application at a time on a real device. One approach we envision would be

to normalize the measured feature changes by fine grained inspection of currently

running applications. This information was allowed to be queried using the Ac-

tivityManager class using the getRunningTasks method in Android API but was

removed in API level 21 (Android Lollipop). This approach would however be

challenging as it would require first building the feature vector of each of the indi-

vidual applications available on the system before being of use.
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5.2.2 Use of multi-agent systems

Dynamic loading of agents

Currently, our system requires that all Action agents dynamically launched by the

Profile agent reside on the Android device. This requires us to develop a new

Android package file every time we create a new agent. The LoaderBehaviour class

of JADE currently does not support loading Dalvik Bytecode (DEX) bytecode used

in Android systems. If DEX bytecode loading is supported by the LoaderBehaviour

class, it would allow to load agents not stored on the device.

Using other types of communication framework

There are alternative solutions that can be used instead of agent-based systems.

Given that one of the primary reasons for using the agent-based system was to

communicate data between clients and servers, this could be handled by using

REpresentational State Transfer (REST) web services [64] by passing Extensible

Markup Language (XML) or JSON data describing the fields instead of using Agent

Communication Language (ACL). In that case, the Android devices would behave

as REST clients communicating with the servers for the information. However,

given that RESTful services require clients to maintain state instead of servers, the

Android clients would have to periodically query the server to see if a classifica-

tion result was available, causing more network communication and hence battery

usage.

101



Bibliography

[1] C. Aart. Ontology Bean Generator, 2015 (accessed 31 Jan, 2015). URL
http://protegewiki.stanford.edu/wiki/OntologyBeanGenerator. → pages 35

[2] M. Alam and S. T. Vuong. An intelligent multi-agent based detection
framework for classification of android malware. In Active Media
Technology, pages 226–237. Springer, 2014. → pages iv, v

[3] M. Alam and S. T. Vuong. Performance of malware classifier for android. In
6th IEEE Annual Information Technology, Electronics and Mobile
Communication Conference. IEEE, 2015. → pages iv, v, 4

[4] M. Alam, Z. Cheng, and S. Vuong. Context-aware multi-agent based
framework for securing android. In Multimedia Computing and Systems
(ICMCS), 2014 International Conference on, pages 961–966. IEEE, 2014.
→ pages iv, v, xii, 42, 43

[5] M. S. Alam and S. T. Vuong. Random forest classification for detecting
android malware. In Green Computing and Communications (GreenCom),
2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing, pages
663–669. IEEE, 2013. → pages iv, v, xi, 4, 18, 31, 34, 48, 73, 75, 86
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[68] D. Schreckling, J. Köstler, and M. Schaff. Kynoid: real-time enforcement of
fine-grained, user-defined, and data-centric security policies for android.
Information Security Technical Report, 17(3):71–80, 2013. → pages 8

[69] A. Shabtai, Y. Fledel, and Y. Elovici. Securing android-powered mobile
devices using selinux. IEEE Security & Privacy, 8(3):36–44, 2010. → pages
8

[70] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer.
Google android: A comprehensive security assessment. IEEE Security and
Privacy, 8(2):35–44, 2010. → pages 8

108

http://www.paybyphone.com/
http://www.internetsociety.org/doc/execute-analyzing-unsafe-and-malicious-dynamic-code-loading-android-applications
http://www.internetsociety.org/doc/execute-analyzing-unsafe-and-malicious-dynamic-code-loading-android-applications
http://vulnfactory.org/blog/2011/12/05/carrieriq-the-real-story/


[71] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. “andromaly”: a
behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems, 38(1):161–190, 2012. → pages 15, 69, 100

[72] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing
systems, pages 2951–2959, 2012. → pages 98

[73] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and P. K.
Chan. Jam: Java agents for meta-learning over distributed databases. In
KDD, volume 97, pages 74–81, 1997. → pages 11

[74] Telecom Italia Lab. Jave Agent Development Framework, 2013 (Last
Accessed May 15, 2013). URL http://jade.tilab.com. → pages 18

[75] Trend Micro. Android Malware Believe the hype, 2013 (Last Accessed May
15, 2013). URL
http://countermeasures.trendmicro.eu/android-malware-believe-the-hype.
→ pages 2

[76] TrustGo Security. New Virus SMSZombie.A Discovered by TrustGO Security
Labs, 2012 (Last Accessed: Sep 15, 2015). URL
http://blog.trustgo.com/SMSZombie/. → pages 2

[77] S. T. Vuong and M. S. Alam. Advanced methods for botnet intrusion
detection systems. In Intrusion Detection Systems. InTech, 2011.
doi:10.5772/15401. URL
http://www.intechopen.com/books/intrusion-detection-systems/
advanced-methods-for-botnet-intrusion-detection-systems. → pages iv, vi

[78] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas. Bayesian
optimization in high dimensions via random embeddings. In Proceedings of
the Twenty-Third international joint conference on Artificial Intelligence,
pages 1778–1784. AAAI Press, 2013. → pages 98

[79] C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, and Z. Tianning. Andbot: towards
advanced mobile botnets. In Proceedings of the 4th USENIX conference on
Large-scale exploits and emergent threats, pages 11–11. USENIX
Association, 2011. → pages 3

[80] Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo, and E. Fernandes.
Moses: supporting and enforcing security profiles on smartphones. IEEE
Transactions on Dependable and Secure Computing, 11(3):211–223, 2014.
→ pages 19

109

http://jade.tilab.com
http://countermeasures.trendmicro.eu/android-malware-believe-the-hype
http://blog.trustgo.com/SMSZombie/
http://dx.doi.org/10.5772/15401
http://www.intechopen.com/books/intrusion-detection-systems/advanced-methods-for-botnet-intrusion-detection-systems
http://www.intechopen.com/books/intrusion-detection-systems/advanced-methods-for-botnet-intrusion-detection-systems


[81] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Massacci.
StaDynA: Addressing the Problem of Dynamic Code Updates in the
Security Analysis of Android Applications. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY ’15,
2015. to appear. → pages 13

[82] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and
evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages
95–109. IEEE, 2012. → pages 3, 13

110


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	1 Introduction
	1.1 Thesis motivation
	1.2 Research questions and contributions
	1.3 Organization of the thesis

	2 Background And Related Work
	2.1 Android security
	2.2 Agent systems
	2.2.1 Security using multi-agent systems

	2.3 Machine learning
	2.3.1 Machine learning for Android malware detection


	3 Context-aware Multi-agent Framework For Securing Android
	3.1 Introduction
	3.2 Related work
	3.2.1 Context-aware mobile applications

	3.3 Agent-based framework
	3.3.1 System architecture
	3.3.2 Agent categorization
	3.3.3 Agent types
	3.3.4 Agent communication language

	3.4 Implementation
	3.5 Evaluation
	3.5.1 Battery context test
	3.5.2 GPS context test
	3.5.3 Network context test
	3.5.4 Android API context test
	3.5.5 Rooted device context test
	3.5.6 Malware detection test
	3.5.7 Verify Correlation agent can correlate 2 devices exhibiting similar malware behaviour
	3.5.8 Server workload measurement

	3.6 Discussion
	3.7 Summary

	4 Random Forest Classification For Detecting Android Malware
	4.1 Introduction
	4.2 Background
	4.2.1 Android feature collection
	4.2.2 Random forest
	4.2.3 Machine learning classifier for Android mobile systems

	4.3 Experiment
	4.3.1 Dataset description
	4.3.2 Classification experiment description
	4.3.3 Hardware
	4.3.4 Software
	4.3.5 Sample code
	4.3.6 Results
	4.3.7 Experiment results with a 5-fold cross validation

	4.4 Discussion
	4.5 Summary

	5 Conclusion And Future Work
	5.1 Thesis summary
	5.2 Future work
	5.2.1 Application of machine learning
	5.2.2 Use of multi-agent systems


	Bibliography

