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Abstract

In this thesis, we consider the problem of exploiting the gene-environment inde-
pendence assumption in a case-control study inferring the joint effect of genotype
and environmental exposure on disease risk.

We first take a detour and develop the constrained maximum likelihood esti-
mation theory for parameters arising from a partially identified model, where some
parameters of the model may only be identified through constraints imposed by
additional assumptions. We show that, under certain conditions, the constrained
maximum likelihood estimator exists and locally maximizes the likelihood func-
tion subject to constraints. Moreover, we study the asymptotic distribution of the
estimator and propose a numerical algorithm for estimating parameters.

Next, we use the frequentist approach to analyze case-control data under the
gene-environment independence assumption. By transforming the problem into
a constrained maximum likelihood estimation problem, we are able to derive the
asymptotic distribution of the estimator in a closed form. We then show that ex-
ploiting the gene-environment independence assumption indeed improves estima-
tion efficiency. Also, we propose an easy-to-implement numerical algorithm for
finding estimates in practice.

Furthermore, we approach the problem in a Bayesian framework. By introduc-
ing a different parameterization of the underlying model for case-control data, we
are able to define a prior structure reflecting the gene-environment independence
assumption and develop an efficient numerical algorithm for the computation of
the posterior distribution. The proposed Bayesian method is further generalized
to address the concern about the validity of the gene-environment independence

assumption.
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Finally, we consider a special variant of the standard case-control design, the
case-only design, and study the analysis of case-only data under the gene-environment
independence assumption and the rare disease assumption. We show that the
Bayesian method for analyzing case-control data is readily applicable for the analy-
sis of case-only data, allowing the flexibility of incorporating different prior beliefs

on disease prevalence.
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Chapter 1

Introduction

Genetic and environmental factors may jointly influence the risk of many com-
plex diseases. Individuals with different genotypes may be affected differently
by exposure to the same environmental factors, and have different disease pheno-
types as the result of gene-environment interactions. For example, heavy smokers
tend to have higher risk of bladder cancer if they also carry NAT2 slow acetylators
genotypes [10]. Thus, epidemiologists are interested in inferring gene-environment
interaction. The study of gene-environment interactions will lead to better under-
standing of the biological mechanisms and pathological processes that contribute
to the development of complex diseases. Such an understanding can guide the de-
velopment of more efficient measures for preventing or even curing disease. If an
individual carries a genotype that confers susceptibility to a certain disorder in a
particular environment, then the disease may be prevented by reducing exposure to

the environment.

1.1 Analysis of case-control data

The case-control study design is popular in studies of gene-environment interac-
tion because it allows a better allocation of resources, where data can be collected
for more cases. The traditional method for analyzing case-control data is fitting
prospective logistic regression models regardless of the nature that data are col-

lected retrospectively. Prentice and Pyke [24] showed that this method will lead to a



consistent estimator of the gene-environment interaction. The traditional estimator
does not rely on any a priori assumptions about the joint distribution of genotype
and environmental exposure. In many settings, however, it is biologically plau-
sible to assert that genotype and environmental exposure are independent of one
another in the source population (hereafter the gene-environment independence as-
sumption, or GEI for short), since genotype arises from the random assortment of
chromosomes carrying genes in meiosis [26]. Therefore, more efficient estimators
of the gene-environment interaction from case-control data may be available by
exploiting this assumption.

Many authors have investigated the possible benefits of analyzing case-control
data under the GEI assumption or its variants ([23], [28], [3], [21], [22], [4]). For
instance, Umbach and Weinberg [28] proposed the application of log-linear mod-
els to case-control cell counts, using a form of the GEI assumption that asserts
gene-environment independence within the population of controls. These authors
acknowledged that this form of the assumption is not natural, particularly as ac-
quisition of genotype and environmental exposure are temporally antecedent to the
disease. They justified such an assumption by pointing out that if the disease is rare
then GEI in the source population will imply near GEI in the control population.
Moreover, they showed that the estimator of the gene-environment interaction de-
rived under this form of the GEI assumption differs from the traditional estimator,
with a smaller asymptotic variance.

More recently, Chatterjee and Carroll [3] studied the problem of maximum-
likelihood estimation for case-control data, assuming GEI in the source population.
They argued that, contrary to intuition, the intercept in the prospective relationship
can in fact be identified under the GEI assumption. Further, they proposed a pro-
file likelihood technique to obtain the maximum likelihood estimator based on the
retrospective likelihood, and presented simulation results to show that their GEI
estimator has considerably lower variance than the traditional estimator. However,
looking specifically at the situation where both genotype and environmental expo-
sure are binary, Chen and Chen [4] found no efficiency gain for the GEI estimator
over the traditional estimator. They claimed that estimating the intercept term in
the prospective relationship uses up the additional information inherent in the GEI

assumption.



With different frameworks inducing different claims about efficiency gains as-
sociated with the GEI assumption, epidemiologists are uncertain about the suit-
ability of analytical strategies relying upon the assumption. This thesis brings clar-
ity to this issue. In Chapter 2, we first take a detour to develop the constrained
maximum likelihood estimation theory for estimating parameters arising from a
partially identified model with some equality constraints introduced by additional
assumptions. This theory is then applied in Chapter 3 for analyzing case-control
data under the GEI assumption through a frequentist approach.

Another big hindrance for the use of GEI-based methods is their non-robustness
to the violation of the GEI assumption. Albert et al. [2] discussed different sce-
narios where an environmental factor is associated with a genetic marker. For
example, they may be correlated if both are associated with other (uncontrolled
confounding) factors. Different methods have been proposed that relaxes the GEI
assumption. Mukherjee and Chatterjee [21] developed an empirical Bayes-type
shrinkage estimator to trade off between bias and efficiency. Mukherjee et al. [22]
proposed a full Bayesian analysis and design strategy to incorporate prior belief on
the assumption of gene-environment independence. However, these methods all
focused on the assumption that genotype and environmental exposure are indepen-
dent in the population of controls. In Chapter 4, we develop a Bayesian framework
for analyzing case-control data under the GEI assumption (in the source popula-

tion), and then generalize it to allow uncertainty about the assumption.

1.2 Analysis of case-only data

Piegorsch and Weinberg [23] noticed that, when genotype and environmental expo-
sure are independent of each other in the control population, the gene-environment
interaction odds ratio can be estimated using their association odds ratio in cases
alone. Thus, the case-only design, which only collects data on diseased subjects,
serves as an alternative to the standard case-control design for studying the gene-
environment interaction effect, assuming GEI among controls. In a recent system-
atic review, Dennis et al. [6] showed no substantial difference between the case-
only and case-control interaction estimates when the assumption indeed holds.

Comparing to the standard case-control design, the case-only design has several



advantages. It not only avoids the difficulty of selecting appropriate controls, but
also achieves better precision for estimating interaction effects. More importantly,
it greatly saves study resources.

Despite its potential value, there are considerable concerns about the validity
of the traditional case-only method because of its susceptibility to bias. Albert
et al. [2] pointed out that inference made with the traditional case-only method
can be highly sensitive to the assumption of GEI among controls. Even for small
amounts of gene-environment association among controls, the type I error for test-
ing the interaction effects can be seriously inflated and/or the case-only estimator
of the interaction effect can be greatly biased. Thus, conclusions drawn from the
traditional case-only method regarding the existence and/or the magnitude of the
gene-environment interaction effect can sometimes be misleading.

The assumption of GEI among controls approximately holds under the GEI as-
sumption and the rare disease assumption. Even though the GEI assumption can
be supported in theory by the principle of the random assortment of alleles at the
time of gamete formation (Mendel’s second law [26]), and in practice by empiri-
cal evidence for some genetic variants and environmental factors, the rare disease
assumption is not rigorously defined. It is not clear at what disease prevalence the
assumption of GEI among controls will approximately hold when the GEI assump-
tion actually holds in the source population. Indeed, Gatto et al. [8] reported that,
under the GEI assumption, the gene-environment association in the control popula-
tion may still not be negligible when the disease is only modestly rare. Therefore,
the traditional case-only method may still produce substantial bias for the estima-
tion of the gene-environment interaction effect, when the GEI assumption holds
and the disease is rare but not extremely rare. In Chapter 5, we investigate the
relationship between the disease prevalence and the performance of the traditional
case-only method. We also apply the Bayesian framework developed in Chapter 4
for analyzing case-only data, where the rare disease assumption is clearly quanti-

fied through an appropriate prior distribution on disease prevalence.



Chapter 2

The Constrained Maximum
Likelihood Estimation with
Partially Identified Models

2.1 Introduction

In some scientific studies, due to constraints of logistics and/or resources, data are
not collected in the ideal way. Consequently, the available data may only partially
identify the statistical model under consideration, i.e., parameters of the statistical
model are identified up to a set of possible values instead of just one single value.
The set of parameter values that correspond to the same distribution of observables
is usually termed the identification region. Manski [19] gives an overview of partial
identification and covers many scenarios where partial identification may arise.
Of course, point-identification is preferred as it is fundamental for consistent
point estimation and ensures many nice properties of model-based parameter es-
timators. With a partially identified model, when possible one may impose some
reasonable assumptions to achieve point-identification. Under such assumptions,
the parameter vector is restricted to a subset of the original parameter space. If
this constrained parameter space has only a single point of intersection with the

identification region, then the parameter vector is uniquely identified.



In this chapter, we study the maximum-likelihood estimation of parameters
arising from a partially identified model with some equality constraints introduced
by additional assumptions. In particular, we consider the scenario where there
exists a special re-parameterization of all parameters of the model, which is termed
a transparent re-parameterization by Gustafson et al. [14], such that the distribution
of observables is completely determined by a proper subset of parameters after
transformation.

In the situation of adding parameter constraints to a model which is identified
even without the constraints, Aitchison and Silvey [1] studied the large-sample
behavior of maximum-likelihood estimators via a Lagrange multiplier approach.
However, the assumption that the unconstrained version of the model is identified
is embedded in their approach. Therefore, our work extends their theory to the
situation that identification is only obtained via imposition of the constraints.

The rest of this chapter is organized as follows. We first introduce some gen-
eral notation and give a mathematical formulation of the problem. We then prove
the existence of the constrained maximum likelihood estimate and show that the
estimator is asymptotically normally distributed. A numerical algorithm for com-
puting the constrained maximum likelihood estimate is also developed. We then
consider an example problem and use a simulation study to compare the perfor-
mance of the proposed method and the general method, which does not depend on
constraints, to investigate the effect of imposing additional assumptions with a par-
tially identified model. Moreover, we comment on a special situation where there

is no benefit in terms of estimation efficiency.

2.2 Statistical problem

Suppose our data consist of n i.i.d. observations X = (xi,...,x,). The statistical
model underlying the data is assumed to be initially parameterized in scientific
terms via a vector of s parameters. Let ® = (@y, ..., ®;) be a re-parameterization
of the original parameters such that the log-likelihood function ¢ for the observed
data can be completely determined by its first r elements, say ¢ = (y,...,®,),

through
K(X7¢) = Zlogf(xia¢)a
i=1

6



where f(x, ) denotes the probability density function for an individual observation
x. The remaining s — r parameters of @ are represented by another vector ¥ =
(W41, ...,05), which cannot be learned from the observed data. Thus, @ = (¢, y)
is partially identified with the identified part ¢ and the unidentified part y.
Further, we consider additional assumption that impose ¢ equality constraints

on ®:

hi(@)

h(w) = : =0.
hi (o)

These equality constraints can be used to identify y. Since the dimension of y is
s —r, we assume that there are at least s — r equations so that y can be fully identi-
fied. Also, it is reasonable to assume that the number of constraints does not exceed
the number of identified parameters, which is necessary for the development of our
method. Thus, we assume that s —r <t < r. Note that the true, though unknown,
parameter value @* = (@], ..., ®;) is presumed to satisfy these constraints itself,
ie., h(0*)=0.

Our objective is to find the constrained maximum likelihood estimate @ that
maximizes the log-likelihood function ¢(x,¢) subject to the condition h(®w) = 0,
and study the properties of the estimator. Moreover, we will propose a numerical

algorithm for computing the constrained maximum likelihood estimate in practice.

2.3 The constrained maximum likelihood estimation

Let é(”) denote the unconstrained maximum likelihood estimate under general con-

(u), y) = 0 with respect

ditional without additional assumptions. If the equation h((}A)
to v has a solution, say ¥, then @ = ((f)(u), ¥19) is the constrained maximum
likelihood estimate of the problem. This approach may fail, however, since the
equation h(¢, y) = 0 with respect to ¥ may not necessarily have a solution for
some values of ¢. Alternatively, we propose to estimate @ by finding the stationary

point of (1/n)¢(x,9) + A h(w), where A = (A;,...,A,) is a Lagrange multiplier.



Thus, we consider the following s+t equations:

%S(X,Q))—FJml :07 (21)
Kol =0, (2.2)
h(e) =0, (2.3)

where s(x, @) is the score vector of length r whose i-th component is d¢(x,¢)/d @,
fori=1,...,r, Jp is the r x t matrix (dh;(w)/dw;), fori=1,...,r, j=1,...,t,
and K is the (s —r) x t matrix (dhj(®)/d @), fori=1,....s—r, j=1,...,t.

In this section, we will show that, under some general conditions, if x belongs
to a set whose probability measure tends to 1 as n approaches infinity, then the
equations (2.1) - (2.3) have a solution ((I),?AL) such that @ is within a small neigh-
borhood of the true value @*. This solution is then proved to be the constrained
maximum likelihood estimate that maximizes ¢(x,¢) subject to h(w) = 0. We
then extend the definition of (@, i) for all x € R”, and show the asymptotic distri-
bution of the random variable thus defined. Finally, we propose an algorithm for
numerically computing ((I),i) The development of this section is based on the
work by Aitchison and Silvey [1]. However, due to the presence of the unidentified
component Y, our work is more than a simple generalization of their results.

We first impose some conditions on f(x,¢) and h(®) within some neighbor-
hood of ®*, say Uy = {o: ||0 — ®*|| < a}. We assume that f(x, @) satisfies the
conditions (# 1) - (#4) as defined in [1]. These conditions are quite general and
will be satisfied in most practical estimation problems. Here, we just write one
important result implied by these conditions for later reference. If the conditions
on f(x,¢) are satisfied, for any given positive numbers 0 < « and € < 1 and for

sufficiently large n > n(9, €), there exists a set X,, with the properties
(Z°1) Pr{X,} >1—¢.
(Z2) ||s(x,0%)/n|| < 8%, if x € X,

(2°3) (M 4+ /n) can be expressed in the form —By- + 8my 4+, where My 4+ is the
matrix (92((x,¢*)/0wdw;), i,j =1,...,r, By is a certain positive defi-

nite matrix, and my 4+ is an r X r matrix, the moduli of whose elements are

8



bounded by 1, if x € X,.

(Z'4) There exists a constant, say ki, such that for every w € Uy, and i, j, k =
1,2,...,r,
1 9%(x,¢)

S22 2ok,
n&a)i&a)jr?a)k !

ifx € X,,.

On the other hand, some conditions are assumed for the constraint function h(w)

as follows.

(1) Forevery @ € Uy, the first order partial derivatives dhy(w)/dw;, i=1,...,s,
k=1,...,t, exist and they are continuous function of .

(£°2) For every @ € Ug, the second order partial derivatives 92/ (®)/0®;0w;,
i,j=1,...,s, k=1,...,t, exist, and they are uniformly bounded by a con-

stant, say k», on Uy,.

(73) The r x t matrix J,+ and the (s —r) x r matrix K+ are both of full rank, i.e.,
rank(Jo+) =t and rank(Ky+) =s—r.

2.3.1 The constrained maximum likelihood estimate

We begin by establishing a necessary and sufficient condition for the existence of
a solution to the equations (2.1) - (2.3) under some general conditions. It should
be noted that the following lemma cannot be directly generalized from Lemma 1
in [1] by simply viewing the log-likelihood function as a function of @ and letting
B+ be the s X s matrix that naturally extends By+, due to the singularity of B+

thus defined. Therefore, some modifications are required.

Lemma 1. Suppose conditions on f and h are satisfied, and X, is a set with the
properties (Z°1) - (2 3) for some given positive numbers & < & and € < 1. When
x € X, and o is sufficiently small, then (®, i) is a solution of the equations (2.1) -
(2.3) and @ € Us, if and only if @ satisfies a certain equation. This equation takes

the form —Bg (0 — ©*) + 8?v(x,®) = 0, where



and v(X,®) is a continuous function of @ on Ug and ||v(X, ®)|| is bounded on Ug

by a positive number k', which does not depend on 8.

Proof. We first prove the necessity of the condition. By expanding the components
of s(x,9) at ¢* in the equation (2.1), and the components of h(®) at ®* in the
equation (2.3), we find that the solution of the equations (2.1) - (2.3) should also
satisfy:

S50 4 Mg (009 v (x0) } HIak =0, 24

n
o (0= 907 +KG (v —v") +vP (0) = 0, (2.5)
where
@) V(l)(X, ¢) is a vector of dimension r whose m-th component is
1 s\ T *
S(6=9")Ln(0—9"),
where L,, is the matrix (83€(x,¢(m’1))/8a)m8a),-8wj), i,j=1,...,r, with
¢! being a point such that ||¢ 1) — ¢*|| < ||¢ — ¢*||, and
(ii) v (w) is a vector of dimension s whose m-th component is

1 * *
5((0— o*) H, (0 — o*),

where H,, is the matrix (92h,,(®"?))/dwdw;), i,j = 1,...,s, with @™
being a point such that ||0"™?) — @*|| < || — ©*||.

Further, given property (2°3) , we can re-write the equations (2.4) and (2.5) in the

following form:

By (¢ — 9") + Tk + v (x,9) =0, (2.6)
I (90— 0" +KL.(w—y") +8VW () =0, 2.7)
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where

1 1 1
V(B) (X7 ) = WS(Xa ¢*) + ng,(i)* (¢ - ¢*) + Wv(l)()g ¢)7 (28)

v (0) = v (). (2.9)

82
Moreover, by properties (2Z2) - (Z'4), we obtain a bound for v (x,0) as

1 1 1
VI (x,9)|| < TSZHS(X,W)IHg\lmx,¢*(¢—¢*)\|+7(32|\V(1)(X7¢)||

<147 +7rxK, (2.10)

and, by condition (.7#2), we have a bound for v() (@) as

1 *
V@) < (g llo-olF)
< s°Ko. (2.11)

Next, since By« is positive definite, we can pre-multiply the equation (2.6)
by Jg,*Bd}l to get an expression for J..(¢ — ¢*), which is then plugged into the

equation (2.7) to obtain the following equation
3B, JoA + Kb (y —y) + 82 (Jz,*B;Jv@) (x,0)+ v<4>(w)> 0. (2.12)

Now the condition (##°3) implies that J Z,*B(;}J o+ 18 also positive definite. Besides,
according to the condition (#1), the elements of J, are all continuous functions
of . It then follows that J(TO*B(;}J(D is also non-singular within Uy so long as o
is sufficiently small. Thus, we can solve the equation (2.12) with respect to A and

express it in terms of @
A= Ao {KL.(y—y")+8 (1B, 0) v (@)}, @13

where we define the notation A, = (J Z,*B;*l Jo) L.
So far, we are basically replicating the steps of the proof given by [1]. Now,

we need to take some extra steps to find the expression for (y — y*). By applying

11



the equation (2.13) to substitute for A, the equation (2.2) becomes:
KoAoKL. (W — ") + 8 KoAg (Jg,*Bd}lv(S)(x, 9) +v<4>(a>)) —0. (214

Following the same argument for J E*Bq}l.] o> the condition (77°4) ensures that the
matrix KyA,KZ. is not singular within U, provided that ¢ is sufficiently small.

Thus, we can solve the equation (2.14) with respect to y and get
v—vyt =-6vO(x, 0), (2.15)
where
VO (x,0) = (KpAwKD) ' (KpAy) (J({,*B(}}v@ (x,9) +v<4>(w)) . (2.16)

We then plug the equation (2.15) into the equation (2.13) and derive an updated
expression for A:
A =—6%(x, 0), (2.17)

where
v (x, 0) = A {—Kfo*v(s) (x,0)+ (JCTO*B(;*IVG)(X, 0)+ v (w)) } . @18

By combining the equations (2.6) and (2.15), with A substituted using the equa-
tion (2.17), we find that the solution of the equations (2.1) - (2.3) should also satisfy

— By (0— ")+ 8%v(x,0) =0, (2.19)
where
B By 0
B, =| ¢ ,
0 I,
and

VO (x,9) — Jov© (x, )

v(X,m) = O xa)

Finally, we have shown in the inequalities (2.10) and (2.11) that |[v®)(x,¢)]|

12



and ||[v*)(@)]| are uniformly bounded within Uy,. Also, given that A, and KA K7,
are positive definite within the closed set Uy, their determinants are both positive
within Uy. Therefore, the continuity of the elements of these two matrices en-
sures that their determinants are uniformly bounded within Uy. Then it follows
that v(x, ) is a continuous function on Ug and ||v(x, ®@)|| is bounded on Ug by a
positive number, say k', which does not depend on §.

Now, we prove the sufficiency of the condition. Suppose the equation (2.19)

has a solution @. That is, @ satisfies

B.- 0 O — oF C)(x,0)—Jov© (x,®
’ A N R A TR,

0 I, -y —v0O) (x, @)
By pre-multiplying the equation (2.20) by the 7 X s matrix (J T*B(;*l , KL.), we have
35.(0— 09) + Kb (9 — y) + 8 (@) = 0. 2.21)

We first write v(!)(x, ¢) and v(?) (@) as the remainders after expanding s(x, ¢) and
h(®), respectively,

v (x,9) =s(x,0) —s(x,0") — My 4+ (¢ — "), (2.22)
v () =h(0) - J5. (¢ — ") — Kb (w — y*). (2.23)

Applying the equations (2.22) and (2.23) to substitute for v(!) (x, ¢) and v(?) (@) in
the equations (2.8) and (2.9), respectively, we get

1 (1
Wix0) = o {ns<x,¢>+B¢*<¢—¢*)}, (2.24)
1 * k
V(o) = 5 {h(@) — 05 (0 —0") — Ko (y -y} (229)
Finally, we substitute for v(¥) (@) in the equation (2.21) using the equation (2.25).
It immediately follows that h(®) = 0.

Next, we apply the equations (2.24) and (2.25) to substitute for v(*)(x, ¢) and
v () in the equations (2.16) and (2.18), and end with the following expressions

13



for v (x, ) and v(® (x, ®):

n

VO (x,0) = —(y— ¥*) + (KpAwKL ) " KoY <1s(x, ¢)) : (2.26)
vO(x,0) = Y, (is(x,q))) —KL. (Ka,Aa,KZ)*)_l KyYo (is(x,(p)) , (2.27)

where Y, is defined as Y, = Ang)*Bd}l. Now, by using the equations (2.24),
(2.26) and (2.27) to substitue for v®) (x, ), v (x, @) and v(®) (x, @) in the equation

(2.20), respectively, we can see that @ satisfies

ls(x>(}]\)) _J&)Yd) <:ls(x>(}]\))> = 07

n
1 A
—K@Y(D (nS<X,¢)> =0.

As we have shown earlier that h(®) = 0, it is easy to see that @, jointly with
A= =Y as(x, (Ab)/n, solves the equations (2.1) - (2.3). O

We now give the following theorem to show the existence of a solution of the
equations (2.1) - (2.3).

Theorem 1. Subject to conditions on f and h, if x € X,, for a sufficiently small
given positive number 8 and another given positive number € < 1, then the equa-
tions (2.1) - (2.3) have a solution (é),i) such that @ € Us.

Proof. The proof of Theorem 1 in [1] works here, provided the modified version
of Lemma 1 given above is used. Also, it is important to notice that the matrix B,
defined in Lemma 1 is positive definite provided that By- is positive definite, and
its minimum latent root is min{ o, 1}, where yy is the latent minimum root of B-.

Details are omitted. O

In the remainder of this section, we are going to show that the solution of the
equations (2.1) - (2.3) as stated in Theorem 1 locally maximizes the log-likelihood
subject to the constraints. This result was proved in [1] for the identified model.

However, we are not able to prove this result for the partially identified model with
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a direct extension of their proof. Alternatively, we take another route and use the
result given by Spring [27].

To match with the set-up in [27], we change the order of variables and let
N = (A, ). Let HT denote the second order partial derivatives of the Lagrangian
function £(x, ¢)/n+ A" h(w) evaluated at the critical point f) = (1, ®)

0 i K!
(n) — o IM. . T
HTW = | Jo M +X;, Y], |
Ka Yi,a) Zi,(b
where
Phe . *hi
010w 0 ;0 W
X: . YT t
)L,(J) l,(l) _ Z i . . .
- k . . . )
Y: o Zj; . k=1
l’w 17(1) azhk azhk
00,00, = dwsoaws

with X; . being the upper-left r x r block matrix, Y; . being the bottom-left r x
(s —r) block matrix, and Z; , being the bottom-right (s —r) x (s —r) block matrix.
Let A,E") denote the principal upper left k-th order minor of the Hessian Matrix

HT™. According to Theorem 1 of [27], @ locally maximizes the log-likelihood

(n)

function subject to the constraints, so long as (—1)"*7A;, o P

=1,...,5s—t, are
all positive.

Note that A was defined as A = —Yj, (s(x,$)/n). For any small number §, by
the equation (2.24) and the inequality (2.10), if n is sufficiently large, we have

1 A N A
1%, @)l = 1| =By (§ = 97) + v (x,4) |
<38+ (1477 +rK)82%,

where k3 is a positive number that depends only on the elements of By-. Also, the

elements of Y, are bounded by a number independent of § for @ € Ugs. Therefore,
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we have

A 1 ~
141 = L ¥astx.d)1
< K46+ K5527

where k4 and ks are positive numbers independent of 6. That is, A converges to
0 as n goes to infinity (0 — 0). By condition (#°2), the second partial derivatives
*h(w)/dwidwj, i,j=1,...,s, k=1,...,k, are all bounded by a constant 2k;.
Thus, it follows that X3 o — 0y, Yi,(b =0, (-, and Zj o — 0y (s—p)- Also,
it is easy to see from Theorem 1 that, for ® € Ug with sufﬁciently small value of
J, @ converges to @* as n goes to infinity. By condition (1), the elements of
Jo and K, are all continuous functions of . Thus, as n goes to infinity, J4, K,
and Mq; /n approach Jo+, Ko+ and M+ /n, respectively. Furthermore, by property
(Z'2), we have M- /n approaches —B- as n goes to infinity. Finally, we have

HT" converges to HT™) as n goes to infinity, where

o JI. KI.
HT® = | J, —By 0

Then, for sufficiently large n, the signs of the leading principal minors of HT"
are the same as those of their corresponding minors of HT). Therefore, we can
instead study the signs of the leading principal minors of HT®),

For brevity, we suppress the subscripts @* and ¢*. First, given that B is positive
definite, by Sylvester’s criterion the upper left d x d corner matrix of B, denoted
by By, is also positive definite, ford = 1,...,r. Next, since rank(J) = t, with some
re-ordering of the rows if necessary, the first d rows of J, denoted by J;,is ad x ¢t
matrix of full column rank #, and thus the matrix JgB;le is positive definite, for
d=1t+1,...,r. Similarly, as rank(K) = s — r, the first d rows of K, denoted by
Ky, is a d x t matrix of full row rank d, and thus the matrix K, (J B-1J ) - Kg is

again positive definite, ford = 1,...,5s —r. Now we are ready to study the sign of
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(_1)t+pA(°°)

Dt p forp=1,...,s—t. Onone hand, for p=1,...,r—t, we have

() U

= (—1)""7 x det

(_1)t+pA2t+p -

Jt+p _Bt+p
= (—1)""? x det (—B,p) x det (—J,T+p (_BHP)*l Jt+p>
= (=1)"27 x det (B,1,,) x det (J7, B, Jisp)

> 0.

On the other hand, for p=r—1+1,...,5s—¢, we have

0 JT KtT+p7r
(—D)PAST) = (—1)1P x det J B 0

Kepr 00

0o J7
= (—1)""P x det X
J -B
K/ 0o J’
det| = " (K,+,,_r 0)
0 J -B

= (—1)"*? x det(—B) x det (J’'B~'J) x
det <_Kt+p—r (JTB*IJ) - KtT+pfr>
= (—1)**2" x det(B) x det (J'B~'J) x

det (Kip- (7B7'3) 'K, )

> 0.
Therefore, we have shown that (—l)t”Agﬁp, p=1,...,5s—1,is always positive,
and so is (—1)’“’Ag’ip for sufficiently large n. Thus, it follows that @ is the

constrained maximum likelihood estimate of the problem.
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2.3.2 Asymptotic distributions

In this section, we define sequences {((?)n,i,,)} that extends (&,1), as stated in

the Theorem 1, for all x € R", and develop the asymptotic distribution for (®,,A,).
Note that this section differs from the Section 5 of [1] in that the covariance matrix

here becomes a partitioned matrix of 3 x 3 blocks.
Lemma 2. The following partitioned matrix is non-singular.

_Jg* _Kg* 0

Proof. For brevity, we omit the suffix ¢* and @*. Then we wish to find a matrix

P P Pi3
Py Py Py
P31 Py Ps;
such that
B 0 -J Py P Py L 0 0
0 0 -K Py Py Py = 0 L, O
-J —K' o P;; Py, Py 0 0 I,

18



Since B is positive definite, and J and K are of full rank, it can be solved that

Py =B"'-B ' JJ'B ') JB '+
B~ J('B ) 'K {KJTBJ) 'K} ' KQTB' ) I B !,
P, =B JO"BJ) 'K {KJTB'J) 'K}
P = _B—IJ(JTB—IJ)—1+
B71J(JTB71J)71KT {K(JTBflJ)flKT}—l K(JTBAJ)A’
Py, = {KJ'B~'J)"'K"}
Py = — {KU'B'3) 'K’} ' KQTB ),
Py =—(J'B 1))+
(JTBflJ)flKT {K(JTBflJ)flKT}—lK(JTB71J>717
and Py, P3;, and P3, are the transposes of P15, P13, and Py3, respectively, as it is

easy to see that the matrix is symmetric. 0

A

Suppose x € X,,, 6 is small enough for Theorem 1 to apply, and (®,A) is a
solution of equations (2.1) - (2.3) such that @ € Us. We now write the equations
(2.1) - (2.3) in a different form:

B, +b(x) 0 ~Jo —J(x) o9 28(x,9%)
0 0 —Ky —k(x) -y | = 0
—JT. —J(x) —KL.—K(x) 0 A 0
(2.28)

A
0

where b(x), j(x), j'(x), k(x), and k’(x) are matrices whose elements tend to 0 as &

goes to 0. Thus, by Lemma 2, if § is sufficiently small, then the matrix

B, +b(x) 0 ~Jo —J(x)
0 0 —Kp —k(x)
~JL ¥ (x) —KL, —K(x) 0
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is also non-singular and we write its inverse as

that

o— o Pii(x) Pi(x) Pi(x) 1s(x,0%)
l?/ - ¢* - f’z] (X) Pzz (X) ?23 (X) 0 . (2.29)
i f’31 (X) P32 (X) f)33 (X) 0

Since the asymptotic distribution of s(x,¢*)/n is known, we can use the above
relationship to induce the asymptotic distribution of (d),i) However, this may
only be valid for x € X,,, and we need to extend it to also account for x ¢ X,,.

Let (0), (€x) be two decreasing sequences of positive real numbers, such that
01 < U1 /x3, € < 1, and 9, and &, both tend to 0 as m goes to infinity. Define
an increasing sequence (n,,) of integers such that, if n > n,,, there exists a set
X,, with properties (Z'1) - (Z'4) for e = ¢, and § = 6,,. Form=1,2,...,, if
Ny < n < ny.q, we choose a set X, with properties (Z°1) - (Z°4) for € = ¢, and
0 = . When x € X,,, the equations (2.1) - (2.3) have a solution (@, in) such that
||@, — ©*|| < &, with @, being the constrained maximum likelihood estimate for

. Thus, @, and p) » satisfy the equation (2.29). When x ¢ X, we define

0, — 0" Py P Pp3 1s(x,0%)
U,—vy* | = Pa Pn P 0 ,
Aon P;; Py P33 0

where P;;, i, j = 1,2,3, are defined in the proof of Lemma 2. Note that the prob-
ability of x ¢ X,, goes to zero as n goes to infinity. Thus, we have defined two

sequences of random variables, (®,) and (A,), n = ny, Ay, ..., which have the
property that @, converges in probability to ®* as n goes to infinity. Moreover, ®,,
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and 4, jointly satisfy the equations (2.1) - (2.3).

Theorem 2.
én —¢* 0 P]] P12 0
V| w—v | S A 0], | Pu P 0
A 0 0 0 —Py

Proof. If x ¢ X,,, we define P; i(x) =Pyj, i,j =1,2,3. Then, for sufficiently large

n, we have
0, — 0" Pi(x) Pp(x) Pi3(x) 1s(x,0%)
Vil U=y [ = Pux) Ppn(x) Pu(x) vn 0
A 0

7Ln IA)31 (X) f’32 (X) f)33 (X)

Since b(x), j(x), *(x), k(x), and k*(x) all tend to 0 as § — 0, it follows that the

elements of A A A
Pii(x) Pp(x) Pi3(x)
1321 (X) 1322 (X) 1323 (X)
P3i(x) Pyn(x) Pai(x)

converge in probability to the elements of

Py P Pi3
Py Py Py
P31 P Ps;

Moreover, it is known that the asymptotic distribution of (s(x,¢*)/n) is normal

with mean zero and asymptotic variance By+. Thus, we have

Ls(x,9") 0 By 0 0
vn 0 a4 Lol o oo
0 0 0 00
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It then follows that the asymptotic distribution of \/n ((]A)n — 0", —y*, in) is

0 Py P P By~ 0 0 Py P P
st 0 |,| Pu Pn Py 0 00 Py Pn Py
0 P;; Py P3s 0 00 P31 Py P3s

Finally, using the expressions for P;;, i, j = 1,2, 3, that were derived in the proof of

Lemma 2, it can be verified that the asymptotic variance simplifies to

Py P 0O
Py Pn 0
0 0 —Pxs
The result then follows. O

2.3.3 Numerical algorithm

The solution of the equations (2.1) - (2.3), say @ = (q?), ), usually does not have
a closed form, and thus must be computed numerically. We may immediately
consider the Newton-Raphson method to solve the problem. However, that method
requires the form of the Hessian matrix of h(®), which is an s X s matrix and may
be very complicated, especially when s is large. Thus, we follow the approach
proposed by [1] and develop an algorithm that is easier to implement.

Suppose ©©) = (¢(©, y()) is an initial guess for @ such that ||®® — @|| is

small. Then we consider a first order of approximation to s(x, #) and h(®):

s(x,0) ~s(x,07) + M, ;0,(9 —9*),

h(®)

%

h(0©) +J00 (9 — o)+ K o) (0 — yO).

Also, we assume that A is close to 0 when 7 is large. Then to a first order of
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approximation, we have

H
>—»
s

Jo0h,

>>>

~ Ky

Since @ and 4 jointly satisfy the equations (2.1) - (2.3), they should also approxi-
mately satisfy

—aM, 0 0 —J 0 $—9¢© Ls(x,¢®)
0 0 Ko -y |~ 0

When n is large, —M_ 6© /n should be close to B NOR Thus, we use B 4(0) tO approx-
imate —M 60 /n. Finally, we have the formula for updating ®©), and in general

for updating =Y in the r-th iteration,

¢(r) ¢(V—1)
o ) 0 e T
-1
Bq)(r—l) _Hq)(r—l) %S(X,¢)<r71))
“H{,, 0 h(9 1)

If the sequence {(a)(’ ),l(r))} converges, then it converges to a solution of the
equation (2.1) - (2.3). The convergence of these sequences may depend on the
initial value used. For our problem, we can use the unconstrained maximum like-
lihood estimate of ¢ plus a reasonable guess on the value of y as the initial value
for w, which we believe provides a good starting point. Thus, we expect these
sequences to converge in most practical situations. Finally, it should be noted that
A0 s actually missing from the right hand side of the above equation. Thus, the
updating procedure only needs to store the current value of @ = (¢, ) for the next

iteration.
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2.4 Example problem and simulation study

In this section, we use the proposed method to solve a missing data problem, where
parameters associated with the missing mechanism may only be identified with
additional assumptions. This sort of problem might otherwise be tackled with an
expectation-maximization algorithm. More specifically, consider a binary response
variable Y and two binary explanatory variables X; and X,. The probability of

having Y = 1 given (X;,X>) is assumed to be determined through a logistic model:
lOgitPr(Y = 1|X1 ,Xz) = [30 + ,81X1 +ﬁ2X2 +ﬁ3X1X2,

where logit(p) = log(p) — log(1 — p). Suppose we can observe X; and X, for
everyone sampled, but the status of Y is missing for some people. Let R indicate
missingness. The data structure is displayed in Table 1, where n;j; is the number
of subjects with complete data of (Y =i,X; = j,Xo =k,R = 1), and mj is the
number of subjects with incomplete data of (X; = j,Xo = k,R=0), i,j,k=0,1.
The corresponding cell probabilities, as enclosed in parentheses in the Table 2.1,

are

Sit=Pr(X1 = j, X2 =k,R=0),
fori, j,k=0,1. Based on Table 2.1, the log-likelihood of data is:

{= Z nijklogr;jk—i—ijklogsjk.
iv.jvk ./,k

In order to understand the relationship between Y and (X;,X;), we need to infer the

proportions of subjects with ¥ = 1 among the groups of incomplete data
tixg=Pr(Y =1|X, = j, X, =k,R=0),

for j,k =0,1. However, these quantities are not identifiable from data without
additional assumptions.

Now, we make two assumptions. First, we assume that the status of ¥ is miss-
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Y=0R=1 Y=1,R=1 Y=2R=0

X1=0,X=0, 1000 (r000) n100 (r100) moo (S00)
Xi=1,X=0, no10 (r010) niio (r110) mio (510)
X1=0,X%=1, noo1 (roo1) nio1 (rio1) mo1 (So1)
Xi=1,X=1, nor1 (ro11) ni (rin) mi1 (s11)

Table 2.1: Data structure for the example problem considered in Section 2.4.

ing at random, i.e., R and Y are conditionally independent given (X;,X;). This

assumption imposes four constraints on parameters, and implies
logtj —log(1 —tjx) = logr jx —logroji,

for j,k =0,1. Secondly, we assume that the effects of X; and X, on Y are ad-
ditive on the logit scale, which means that the interaction effect 85 is zero. This
assumption introduces one more constraint on parameters as

(7100 + S00t00) (F111 + S11t11) (ro00 + s00(1 —t00)) (ro11 +s11(1 —111))

lo =lo .
& (r101 +so1f01) (r110 + S10t10) (roo1 +s01(1 —t01)) (ro10 +s10(1 — t10))

Under these two assumptions, we can apply the proposed method to obtained the
maximum likelihood estimates 7;jx, §x, and fjk, i, j, k= 0,1, subject to the above
five constraints. Next, the constrained maximum likelihood estimates for the main
effects of X; and X, can be deduced through

B = log 7110+ S10f10 Fo10 +810(1 —f10)
1= ~ Ao - A A ~ 9
7100 + Soofoo 7000 + Soo(1 —Zo0)

A 7101 + So1fo1 Foor +So1 (1 —fo1)
B2 =log —— —log - - —,
7100 + Soofoo Fooo + Soo (1 —o0)

and the corresponding estimated variances can be obtained by the delta method.
Finally, based on the above problem, we conduct a simulation study to illustrate

the performance of the proposed method. In particular, we randomly generate

10000 datasets of size 1000 under the parameter setting By = logit 0.1, B; = log2,
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B> =1log3, B3 =0, and

Pr(X; =0,X, = 0) = Pr(R=0X; = 0,X, = 0) =
Pr(X; =1,X,=0) = Pr(R=0X; =1,X,=0) =
PrXi =0,X=1) = Pr(R=0[X; =0,X = 1) = 0.05,
PriXi=1,X=1) = Pr(R=0[X; = 1,X, = 1) = 0.05.

For each dataset, we apply the proposed method to obtain the constrained maxi-
mum likelihood estimates for ﬁl and ﬁz, and the associated 95% confidence inter-
vals. Our simulation results show that the empirical biases for the estimators of 3
and B, are 0.0033 and 0.0029, respectively. Correspondingly, the coverage prob-
abilities of the 95% confidence intervals are 95.1% and 95.2%, which match well

with the nominal level. We can see that the proposed method performs very well.

2.5 Just- and over-identified situations

In the previous section, we have considered a partially identified model with four
non-identifiable parameters and made additional assumptions that impose five con-
straints on parameters. Consequently, the constrained maximum likelihood estima-
tors for the identifiable parameters, r;;’s and sj’s, i, j,k = 0, 1, differ from their
unconstrained estimators. More importantly, compared to the unconstrained esti-
mators, the constrained estimators are associated with smaller variances. For ex-
ample, under the parameter setting considered in the previous section, the variance

of the asymptotic distribution of the the unconstrained estimator for (oo, - - -,7111)
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is

0.205 —-0.06 —-0.04 —-0.02 —-0.01 —-0.01 —0.01 -0.01
-0.06 0.172 -0.03 -0.01 -0.01 —-0.01 -0.01 -0.01
-0.04 —-0.03 0.122 -0.01 —-0.01 —0.01 -0.01 —-0.01
-0.02 -0.01 —-0.01 0.054 —-0.00 —0.00 —-0.00 —-0.00
-0.01 -0.01 —-0.01 —-0.00 0.031 —-0.00 —0.00 —-0.00
-0.01 -0.01 —-0.01 —-0.00 —-0.00 0.047 —0.00 —0.00
-0.01 -0.01 —-0.01 —-0.00 —-0.00 —0.00 0.045 —-0.00
-0.01 -0.01 -0.01 —-0.00 —-0.00 —0.00 —0.00 0.037

and the asymptotic variance of the corresponding constrained estimator is

0197 —-0.06 —-0.03 —-0.02 -0.00 —-0.02 -0.02 -0.00
—-0.06 0.165 —-0.04 -0.01 —-0.02 —-0.00 —0.00 —0.02
-0.03 -0.04 0.115 -0.00 —-0.01 0.00 0.00 —-0.01
-0.02 -0.01 —-0.00 0.046 0.01 —-0.01 —-0.01 0.01
-0.00 -0.02 -0.01 0.01 0023 0.01 0.01 -0.01
-0.02 -0.00 000 -0.01 0.01 0.039 —-0.01 0.01
-0.02 -0.00 0.00 -0.01 0.01 —-0.01 0.038 0.01
-0.00 -0.02 -0.01 0.01 -0.01 0.01 0.01 0.029

By comparing the elements along the diagonal of these two matrices, it is clear that
the constrained estimator is more efficient than the unconstrained estimator for the
problem considered in the previous section.

However, if we only make the missing at random assumption and allow the
model for Y|X;,X, to be saturated, then we have only four constraints for four
non-identifiable parameters. In this case, we find that the constrained and uncon-
strained maximum likelihood estimators for the identifiable parameters always co-
incide and have the same asymptotic distribution. Thus, making the missing at

random assumption alone leads to no efficiency gain.

27



Generally, we say that the parameters are over-identified when the number of
constraints is greater than the number of unidentified parameters. In this case, the
constrained maximum likelihood estimator differs from the unconstrained estima-
tor and achieves better efficiency. On the other hand, we say that the parameters
are just-identified when the number of constraints is equal to the number of uniden-
tified parameters. If that is the case, then the constrained estimator will coincide
with the unconstrained estimator, at least asymptotically. Moreover, identifying
the unidentified parameters uses up the information provided by the additional
constraints and thus a more efficient estimator is not available. This phenomena
was also observed by Chen and Chen [4] in the context of a gene-environment

independence problem.

2.6 Conclusion

Parameters arising from a partially identified model can be estimated when we have
enough equality constraints enforced by additional assumptions. Moreover, the
constrained maximum likelihood estimator for the identified part may or may not
coincide with its unconstrained counterpart, and achieves higher efficiency when
they do not coincide.

Another possibility for estimating parameters of a partially identified model
subject to constraints is to exploit a reduced-form parameterization that is free of
constraints. However, the capability of such approach is limited, as a closed form
for a reduced-form parameterization is often very complicated or even sometimes
not available. In contrast, the method presented in this paper is applicable in more
general settings. Moreover, since the log-likelihood function is usually expressed
in its simplest form with a transparent re-parameterization, taking the second par-
tial derivatives of the log-likelihood function becomes much more straightforward.

Thus, the proposed method is also advantageous in terms of calculation.
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Chapter 3

The Benefit of Exploiting the GEI
Assumption for Analyzing
Case-Control Data

3.1 Introduction

In this chapter, we apply the constrained maximum likelihood estimation theory
developed in Chapter 2 to study the benefit of exploiting the GEI assumption for
analyzing case-control data concerning a binary genotype and an environmental
exposure that has two or more categories. This chapter is organized as follows. We
first describe the underlying model for case-control data and formulate the problem
under consideration in more detail. We then develop a reparameterization of the
model and transform the problem into a constrained maximum likelihood estima-
tion problem. Next, we propose methods for analyzing case-control data exploiting
the GEI assumption in different scenarios. We then investigate the efficiency gain
of exploiting the GEI assumption, and conduct simulation studies to compare the
performance of the proposed GEI-based methods with the traditional method. We
also consider a real dataset for the application of the proposed method. Finally,

some concluding thoughts are given at the end of this chapter.
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3.2 Formulation of the problem

Let D be the binary disease status, with D = 1 for presence and D = 0 for absence.
Suppose the risk of having the disease is affected by a subject’s binary genetic
factor G, coded as {0, 1}, and a categorical environmental exposure E with K + 1
levels, coded as {0, 1,...,K}. In a case-control study, genotype and environmental
exposure status are collected for n = ny + n; subjects, including ng controls and n;
cases, where the case-to-control ratio, n; /no, is pre-specified. Let n; ik denote the
number of subjects in the D = i study arm with genotype G = j and environmental
exposure E = k. Thus, we can summarize case-control data in a2 x 2 x (K+1)
table.

Let t = (100,- .-, Wk, 10,---,lix) denote the vector of probability masses for
the joint distribution of genotype and exposure, with 1 = Pr(G = j,E = k) for
j=0,1and k=0,...,K. It has 2K + 1 degrees of freedom since the sum of all
elements is equal to one. We assume that the disease risk, given a subject’s status
of genotype and environmental exposure, is parameterized by a saturated logistic

regression model:

Pr(D = 1|E, G) = expit {Bo +BoG+ Y, (B 14y (E) + Bier i (E)G) } ,
k=1

where expit(x) = 1/ {1 +exp(—x)} is the inverse of the logit function. For brevity,
let B = ( él),..., ﬁ]gK)) represent the vector of all main environmental effects,
and B = ( ﬁz(zlc)v e ﬁgé)) represent the vector of all gene-environment interaction
effects. Then, the model can be parameterized by ¢ = (1, Bo, Bc, B, Brg), which
has 4K + 3 degrees of freedom.

Under the GEI assumption, the joint distribution of genotype and environmen-
tal exposure can be determined by their marginal distributions. Let ¥ = (kp, k)
and 6 = (&, ...,0k) denote two vectors of probability masses for the marginal
distributions of genotype and environmental exposure, respectively. The numbers
of free parameters in these two vectors are 1 and K, respectively, as the sum of
all elements in each vector is equal to one. Then the joint probability takes the
product form 1 = k;6 for j = 0,1 and k =0,...,K. Therefore, we get a reduced
form parameterization ¢, = (k, 8, o, Bc, Br.Brg), Which has 3K + 3 degrees of
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freedom. We can then estimate ¢, by maximizing the retrospective log-likelihood

for case-control data

K;0pijk(Bo, B, BeBrc)
U¢r) = ) mijplo P ’
(9r) I;Cn i* ng/,k/ Kj S piji (Bos Be: Bes Beg)

where p;ix(Bo,Bc,Bg:Brg) =Pr(D =i|G = j,E =k),i,j=0,1, k=0,...,K.
However, due to the complicated form with the denominator including summation
over all control or case cell probabilities, direct maximization of the log-likelihood
with respect to ¢, can be numerically challenging or even infeasible, especially
when K is large.

Alternatively, Chatterjee and Carroll [3] proposed to obtain the estimate using
a profile-likelihood technique. The likelihood is first maximized with respect to &
for fixed values of (k, B) to derive the profile likelihood of the data, where 3 gener-
ically represents (Bo, Bc, B, Brg)- The profile likelihood is then maximized with
respect to (K, 8) to obtain the maximum likelihood estimator of (i, B). If §(x, B)
denotes the value of § that maximizes the likelihood for fixed (x,f), the profile
likelihood is then £(k, B,8(k,B)). Chatterjee and Carroll [3] have shown that the
profile likelihood ¢(k,B,8(k,B)) can be computed without having to maximize
the log-likelihood numerically with respect to the potentially high-dimensional pa-
rameter 6. Instead, it can be obtained in a closed form up to only one additional
parameter. More specifically, let 6 denote the disease prevalence Pr(D = 1), and
S denote the indicator of whether or not a subject has been selected in the case-
control sample. We consider the joint probability distribution for D and G given E

in the case-control sample and let

e {87 (1= 6)} kipiji(Bo, Bo, Bes Bec)
Prib=iG=jlE=k5=1)= Yo yni {01 (1—0)"} xypiji(Bo, Bo: Bes Beg)

which only concerns parameters k, 3, and 0. Let n, ., be the marginal fre-
quency of the kth category of E for k = 0,...,K. Then the profile likelihood
((x,B,8(x,B)) can be computed as £*(k, B, 6(x, B)), where

0*(x,B,0(x,B)) = Z nixlogPr(D=i,G=jlE=kS=1),
i,j,k
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and 6(x, B) is defined by the solution of the equation:

=YY nuPr(D=1,G=j[E=kS=1).
k j

Thus, the semiparametric maximum likelihood estimate of (k,3) can be obtained
by solving score equations d¢*(k,[3,0)/d(x,,0) = 0 jointly with respect to K,
B, and 6. However, given the complex form of Pr(D,G|E,S = 1), numerically
solving these estimating equations using standard methods, such as the Newton-
Raphson method, is still challenging. Moreover, although it has been shown in
[3] that, under suitable regularity conditions, the semiparametric maximum likeli-
hood estimator is consistent and asymptotically follows a normal distribution, the
asymptotic variance of the estimator was given in the form that includes a dou-
ble expectation, first with respect to Pr(D,G|E,S = 1) and then with respect to
Pr(G,E|D). Thus, it is not trivial to obtain the standard error of the estimate.
Therefore, we are seeking a simpler solution for analyzing case-control data under

the GEI assumption.

3.3 A reparameterization of the model

We now consider a different parameterization of the model such that the form of
the log-likelihood function can be greatly simplified. First, as already defined in
the previous section, we use 6 to denote the disease prevalence Pr(D = 1). Also,
we define ¥ = (o1, --, Y01k, Y101, -- - Yiik ), Where ¥;jx = Pr(G = j,E = k|D = i),
fori,j=0,1and k=0,...,K, are sampling probabilities actually underlying case-
control data. Note that oo and 7Yj00 are excluded from 7y as their values can be
uniquely determined through the constraints }.; ;% = 1 for i = 0,1. Now con-
sider the parameterization & = (7,0). It can be easily verified that the mapping
between & and ¢ is invertible. Particularly, by comparing subjects with environ-
mental exposure E = k to those with baseline level E = 0, we are able to express

ﬁgkc) by & through
(k) Y11£Y100 Y00k Y010
=log——"———, 3.1
Pralv) Y0k Y110 Y014 Y000 G-D

fork=1,... K.
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Suppose 5 = (¥, ) is an estimator of & and its asymptotic distribution is

y— 0 Ly Lyo
AN , |

6—6° 0 e Zo

S

where £* = (y*,0*) is the true value of £. We can then easily deduce an estimator
of ¢ and apply the delta method to derive the corresponding asymptotic distribu-
tion. In particular, the estimator of the interaction effect ﬁékG) can be derived from

the equation (3.1) as BEG = ﬁEG( %), and its asymptotic distribution is
f(BEG ﬁEG ) (0, Vi Vi), (3.2)

where V} is the gradient of the function Blgkc);(}/) evaluated at y*. Moreover, in

practice, the asymptotic standard error of ﬁgg is
SE (3(")> L Rss, (3.3)
EG \/ﬁ Tk

where V, is the gradient of the function ﬁgg(y) evaluated at §. Therefore, it is
sufficient to analyze case-control data based on the parameterization &.
With the new parameterization &, we first re-write the retrospective log-likelihood

function in a much simpler form
((y) =Y nijxlog Yije,
i7j7k

which shows even more clearly that, without any additional assumption, the model
can only be partially identified, leaving the parameter 0 not identified. Let ?(U)
denote the unconstrained maximum likelihood estimator of 7. We can easily solve
the equation d¢(7y)/dy = 0 with respect to 7, yielding }A/l(jli) =n;jx/n; fori, j=0,1

and k=0,...,K. The asymptotic distribution of ?(U) is
A d _
v (y(U) . y*) ENy% (0, By*l) , 3.4)

where By is the unconstrained Fisher information, i.e., the negative of the expec-
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tation of the second derivative of the log-likelihood function ¢(y), which is given
in Appendix A.

Next, we look for the mathematical representation of the GEI assumption with
the new parameterization of the model. Under the GEI assumption, we have
loolix = Kook 0 = Liolok, for k = 1,...,K. Note that 1j; can be expressed by
& through 1j%(&) = (1 — 0) Yk + 07 jx. Thus, the GEI assumption can be enforced

onto & through the following constraints

g(8) = (81(8).---.8x(8))" =0,

where, fork=1,...,K,

gk(&) = 100(&) k(&) — 10(&) 10k (§).

These equality constraints define a GEI subspace of &, within which & can be
mapped to ¢, and the mapping is invertible.
Finally, since each component of £ is a probability, the following inequality

constraints apply naturally on &:

0<7%i<1, (3.5)
fori,j=0,1,k=0,...,K, and

0<o6<1. (3.6)

Therefore, the problem is now transformed to finding the estimate of & that max-
imizes £(7y) subject to the equality constraints g(&) = 0 and the inequality con-
straints (3.5) and (3.6).

3.4 Estimation with known disease prevalence

We begin with the special case where the disease prevalence is known, say from an
external source. Suppose the true value of 6 is known to be 6*. First, we can plug
0* into g(&) and thus the constraints induced by the GEI assumption now become

g(v,0%) = 0, which are equations concerning y only. Secondly, the inequality
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constraint (3.6) is no longer in effect. Thus, the problem now becomes finding the
estimate of y that maximizes ¢(y) subject to the equality constraint g(y,0*) =0

and the inequality constraints (3.5).

3.4.1 Theoretical properties of the estimator

We first study the asymptotic distribution of the constrained maximum likelihood
estimator of y. Given that the true value of 0 is known, within a sufficiently small
neighborhood of the true value of 7, the inequality constraints are automatically
satisfied. Thus, in order to study the asymptotic properties of the estimator of 7,
we can ignore the inequality constraints (3.5) and treat the problem as estimating
parameters subject to equality constraints only, which has been studied by Aitchi-
son and Silvey [1].

Consider an auxiliary function T(y,A) = (1/n)¢(y) +ATg(y;0*%), where A is
a Lagrange multiplier vector of length K. The maximum point of 7(y,A) can be
found by solving dT(y,A)/d(y,A) = 0 jointly with respect to ¥ and A, which leads
to the following 5K + 2 equations:

1
ZS(Y) +Jped = 0, 3.7

g(r:0") = 0, (3.8)

where s(7) is the gradient of the log-likelihood function, and J¢ is the Jacobian of
g(&) with respect to ¥, both of which are given in Appendix A.

A

Suppose (¥,4) is the solution to the equations (3.7) and (3.8). Applying the

theory in [1], as sample size n goes to infinity with the case-to-control ratio n; /ng

A

fixed, the asymptotic distribution of (§,4) is

¥—v 0 Py O
\/}; . i)JV ) ’ (39)
A 0 0 Py
where »
P Ppo _ By  —Jype
Py Py Yo 0
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We have shown earlier that By« represents the unconstrained Fisher information.
Analogously, we refer to the matrix on the right hand side of the above equation as
the ‘constrained Fisher information’ that accounts for the GEI assumption.
Finally, it is easy to see from the equation (3.9) that the variance of the asymp-
totic distribution of ¥ is Xy = Py1. We can then apply the (3.2) to derive the asymp-
totic distributions of the constrained maximum likelihood estimators of the inter-
action effects, Blgg fork=1,...,K, under the GEI assumption with known disease

prevalence.

3.4.2 Numerical algorithm

In practice, we need to compute the maximum likelihood estimate ¥ numerically,
since there is no closed form solution. In general, there are various numerical
algorithms, such as the augmented Lagrangian algorithm [5] and the sequential
quadratic programming algorithm [9], for solving the constrained optimization
problem. For this particular problem, however, naively implementing these al-
gorithms using the existing tools like the NLopt library [16] encounters numerical
errors mainly because the target function has no definition when the inequality
constraints (3.5) are violated. More care needs to be taken for successful imple-
mentations of these advanced algorithms, which can be tricky. Alternatively, we
find that a simple variant of the Newton’s method as proposed in [1] is easy to
implement and works well in practice.

We first find the constrained maximum likelihood estimate of 7y subject to the
equality constraints g(y,0*) = 0, ignoring the inequality constraints (3.5) for the
moment. Specifically, we begin by setting the initial value of y to be Y'¥), as it is
expected that the constrained and the unconstrained maximum likelihood estimate

of 7y should be close, if not equal, to each other. We then iteratively update the

value of vy by
B, o\ [ s
J— * 7S
A 0 —Jy0- 0 g(v,0%)

where ¢ € (0, 1] is a tuning parameter that controls the step size of each update and

prevent the values of y from leaving their plausible range. We find ¢ = 0.5 works
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very well in practice. Also, although we update the value of A in each iteration,
we don’t need to keep track of it because it won’t be used in the next iteration.
This process is repeated until convergence or termination, as summarized below
in Algorithm 1. The termination criteria include reaching the preset maximum
number of iterations and running into numerical errors, both of which occur very

rarely.

Algorithm 1  Find ¥ under the GEI assumption with known 6.

Set the initial value y()
Form=1,2,.... M
Compute Y™ given Y1) using the equation (3.10)
If any error occurs:
Set m = M and break
If ||y =y Dl <&
Break
Iftm<M
Output 7 = y™)

We now discuss the effect of the inequality constraints (3.5). If Algorithm
1 converges and successfully finds a constrained maximum likelihood estimate 7,
then the inequality constraints (3.5) should be naturally satisfied, otherwise the log-
likelihood does not even exist. However, it is possible, though very rarely occurred
in our simulation studies, that Algorithm 1 may terminate due to the violation of
these inequality constraints before it finds the final estimate. In that case, we need
to use a smaller step size by decreasing the value of ¢ to prevent our algorithm
moving too fast.

Finally, having the constrained maximum likelihood estimate ¥, we can plug it
into the equations (3.1) and (3.3), with £, = Py, to get the constrained maximum

likelihood estimates for the interaction effects and their associated standard errors.

3.5 Estimation with unknown disease prevalence

We now come back to our original problem in the more common settings where

the disease prevalence is unknown. It needs to be learned indirectly through the
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constraints imposed by the GEI assumption.

3.5.1 Parameter identification

Before we study estimation, we first discuss the identifiability of the parameters.
In general settings where no assumption is made about the joint distribution of
genotype and environmental exposure, it is well known that neither the joint dis-
tribution of genotype and environmental exposure, 1, nor the intercept parameter
of the logistic model, By, is identifiable from case-control data. Under the GEI
assumption, Chatterjee and Carroll [3] claimed that these parameters are theoreti-
cally identifiable from the retrospective likelihood of case-control data, except for
some boundary situations where the logistic model for Pr(D|G,E) depends only
on G or only on E, but not both. In other words, either (B¢, Be, Bec) = (0, BE,0) or
(Bs, Be, Bec) = (Bs,0,0), corresponding to either only the main effect of G or only
the main effect of E, respectively. However, this conclusion is incomplete since we
find that there are situations where the originally non-identifiable parameters may
still not be fully identified under the GEI assumption, even though the disease risk
is affected by both genotype and environmental exposure.

To learn the identifiability of the parameters under the GEI assumption, it is
sufficient to study the identifiability of 6, which is the only parameter in the pa-
rameterization & that is not identifiable in general. We first consider the simplest
setting where G and E are both binary. In this case, the constraints imposed by the

GEI assumption reduce to just one single equation as follows

0 = (71000 + Y000(1 — 0)) (71110 + Y11 (1 — 0)) —
(71010 + Y01 (1 = 6)) (71100 + Y010(1 — 0)).

It is easy to see that this equation is quadratic in 8. Therefore, it may produce a
‘twin’ solution comprised of the true disease prevalence as well as an erroneous
value that also lies between 0 and 1. That is, there could exist two different val-
ues of & within the GEI subspace such that they only differ in the value of 6.
Correspondingly, it is possible that two different values of ¢ both satisfy the GEI
assumption and result in the same case-control sampling probabilities. For exam-

ple, it can be easily verified that the following two values of ¢, lead to the same
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case-control sampling probabilities:

0" : Bs = Br = Brc =log2, Bo=1logl.5, k= (0.5,0.5), § =(0.8,0.2),

13 15 52 15

¢$2) : Bo = B = Pec =log2, fo =1og5.5, k = <28’28> , 6= <67’67> .
Next, in more general settings where the environmental exposure takes more than
two categories, the GEI-induced constraint can be viewed as multiple quadratic
equations in 8, which can have at most two solutions. If there exist two values of 6
both satisfying all of these equations, then these equations differ from one another
only up to some constants, which is an extremely rare but theoretically possible
situation.

Therefore, even under the GEI assumption, we may still not be able to fully
identify all parameters from case-control data, even for some settings that are
not included in the boundary situations defined in [3]. In theory, the originally
non-identifiable parameters become ‘almost’ identified under the GEI assumption,

though a ‘twin’ of the true value may be present as well.

3.5.2 Theoretical properties of the estimator

We now study the asymptotic distribution of the constrained maximum likelihood
estimator of £&. Within a sufficiently small neighborhood of the true value of &,
the inequality constraints (3.5) and (3.6) are automatically satisfied. Thus, in order
to study the asymptotic properties of the estimator, we can ignore those inequality
constraints and treat the problem as estimating parameters arising from a partially
identified model subject to only equality constraints, which has been studied in
Chapter 2.

We still use the Lagrange multiplier method, and consider an auxiliary function
T(E,A) = (1/n)f(y)+ATg(&). Since O is now also an unknown parameter, we
need to solve dT(y,0,1)/d(y,0,A) = 0 jointly with respect to ¥, 6 and A to find
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the maximum point of 7'(&, A ). Thus, we get the following 5K + 3 equations

1

s+ = 0, (3.11)
KA = 0, (3.12)
g&) = 0, (3.13)

where s() is again the gradient of the log-likelihood function, and J¢ and K¢ are
the Jacobians of g(&) with respect to y and 6, respectively, which are all given in
Appendix A.

Suppose (¥, 6, 1) is the solution of the equations (3.11) - (3.13). Then applying
the theory developed in Chapter 2, as the sample size n goes to infinity with the

case-to-control ratio n; /ng fixed, the asymptotic distribution of (%, 0, 1) is

T-r 0 Qi Q2 0
vl 6= | S| lo|,] Qu Qu 0 . (14)
A 0 0 0 —Qsx
where »
Qi Qi Q3 By 0 —Jg
Qa1 Q»n Q2 = 0 0 K
Qi Qn Qs —Jg* —Kg* 0

Similarly as before, we refer to the matrix on the right hand side of the above equa-
tion as the ‘constrained Fisher information’ that accounts for the GEI assumption
in the case that the disease prevalence is unknown.

We find from the equation (3.14) that the variance of the asymptotic distribution
of ¥is Xy = Qq. Again, we apply the (3.2) to derive the asymptotic distributions
of the constrained maximum likelihood estimators of the interaction effects, 352

for k=1,...,K, under the GEI assumption with unknown disease prevalence.
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3.5.3 Numerical algorithm

In practice, the maximum likelihood estimate & has no closed form expression and
still needs to be computed numerically. For this particular problem, we use the
numerical algorithm proposed in Chapter 2, supplemented with a one-dimensional
grid search if necessary, which is easy to implement and works well in practice.
First, we search globally for the constrained maximum likelihood estimate of
& subject to the equality constraints, ignoring the inequality constraints for the
moment. We call this a global search because each component of & is allowed to
take any value. We set the initial value of y to be Y\U) for the same reason as before.
Without any additional information on disease prevalence, the initial value of 0 is
set to be 0.5, the midpoint of its plausible range. Therefore, the algorithm begins
with an initial value 5(0) = (71Y),0.5). We then iteratively update the value of & by

-1

«~1 0 |tc 0 0 —Ke 0 . (3.15)
) 0 -3l K[ 0 g(&)

Still, there is no need to record the value of A for the next iteration. This process is
repeated until convergence or termination. The termination criteria again include
reaching the preset maximum number of iterations and running into numerical er-
rors, both of which occur occasionally.

Next, we consider the inequality constraints. As discussed earlier in Section
3.4.2, we can tune the value of ¢ to prevent values of y from leaving their plausi-
ble range, and the inequality constraints (3.5) are naturally satisfied. In practice,
however, the inequality constraint (3.6) may sometimes be violated. That is, the
above algorithm may sometimes result in an estimate with 8 ¢ [0, 1], especially
when the sample size is not very large. In that case, we perform a one dimensional
grid search to approximate the optimal value of 6 over the fixed interval [0, 1] that
maximizes the log-likelihood ¢(y(0)). For any fixed value of 6, we can apply Al-
gorithm 1 to find the constrained maximum likelihood estimate of  and obtain the
maximum log-likelihood corresponding to that given value of 8. Moreover, this

one-dimensional grid search is also performed in the rare situation when the global
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search step fails to converge.

In summary, we use Algorithm 2, which combines the primary step of global
search and the supplementary step of one-dimensional grid search, to obtain the
maximum likelihood estimate é We then plug it into the equations (3.1) and (3.3),
with £, = Qq, to get the constrained estimates for the interaction effects and their

associated standard errors.

Algorithm 2 Find ¥ under the GEI assumption with unknown 6.

Set the initial value &(©) = (79),0.5)
Form=1,2,....M
Compute & given &(~1)) using equation (3.15)
If any error occurs:
Set m = M and break
IF[|E — &Vl <&
Break
If m < M and ™) € [0,1]
Output & = &(m)
Else
Set w = —oo
For 6 =0,0.01,...,0.99,1
Apply Algorithm 1 to find the estimate 7(6).
If 4(§(6)) >w
Setw = £(§(0))
Set & = (7(0),6)
Output é

3.6 Extension: a reduced logistic model

In some cases, it may make practical sense to treat the categorical environmen-
tal exposure as ordinal rather than nominal. When the environmental exposure is

ordinal, a reduced logistic regression model can be useful:

logitPr(D = 1|E,G) = o+ BcG + BeE + PecEG.
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It should be noted that this reduced model is just a special case of the saturated
model, where ﬁg‘) = kB,gl) and ﬁékG) = kﬁé—g, for k =2,...,K. Thus, assuming a

reduced model introduces additional 2K — 2 constraints on 7,

h(y) = (ho2(¥)-- - ok (V) h12(Y),-... k(1) =0,
where, for j =0,1 and k =2,...,K,

hjx(y) = logM + (k— l)logM —klogm.
Yojik Y00 Yoj
Combining these equality constraints with those imposed by the GEI assumption,
we now have in total 3K — 2 constraint equations. The asymptotic theories and the
numerical algorithms developed in Sections 3.4 and 3.5 are still applicable with
some minor modifications. Suppose Ay, is the Lagrange multiplier associated with
h(y), and A4 is the Lagrange multiplier associated with g(&). Let H, denote the
Jacobian of h(y) with respect to 7, the form of which is given in Appendix A. We

discuss the extensions in three scenarios.

No GEI assumption

When we only assume a reduced logistic regression model in a general set-
ting without the GEI assumption, the problem becomes finding the estimate
of y that maximizes ¢(y) subject to the equality constraint h(y) = 0 and the
inequality constraints (3.5). This also fits into the framework developed in

Section 3.4. Thus, the asymptotic distribution of (¥, ih) is

¥—v 0 Riy 0
vl . 4 : , (3.16)
An 0 0 Rx
where .
Rii Rp [ By —Hy
Ry Rp -H,. 0

The right hand side of the above equation is the ‘constrained Fisher infor-

mation’ that accounts for only assuming a reduced model. It should then be
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used to modify the equation (3.10) in Algorithm 1 for updating the value of
. This new algorithm can be used to numerically compute the estimate ¥.

GEI assumption with known 6

When we assume a reduced model under the GEI assumption with known
disease prevalence, the problem is to find the estimate of y that maximizes
() subject to the equality constraints (h(7y), g(y,0*)) = 0 and the inequal-
ity constraints (3.5). Following the work in Section 3.4, the asymptotic dis-
tribution of (?,ih,ig) is

-7 0 P, 0 0
Vil A | S lo ] ] o —p, —p, ||, G17
g 0 0 -P,, —P,,
where
Py, P, Py o By —Hy —Jyio
Py Py Py - _H; 0 0
Py Py, Py _J;C*;e* 0 0

The right hand side of the above equation is the ‘constrained Fisher informa-
tion’ that accounts for assuming a reduced model and the GEI assumption
with known disease prevalence. Again, it is used to modify the equation
(3.10) in Algorithm 1 for updating the value of . This new algorithm is then

used to numerically compute the estimate ¥ in practice for this problem.

GEI assumption with unknown 6

When we assume a reduced model under the GEI assumption with unknown
disease prevalence, the problem becomes finding the estimate of £ that max-
imizes £(7y) subject to the equality constraints (h(y), g(&)) = 0 and the in-
equality constraints (3.5) and (3.6). Following the work in Section 3.5, the
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asymptotic distribution of (, 6, ih,lg) is

y=r 0 T 1 0 0
-6 d 0 Q/21 lez 0 0
v A el e 0 e Q! ’
h 33 34
Ag 0 0 0 Q5 —Qy
(3.18)
where
/ / / / -1 B 0 H
11 12 13 14 ¥ —Hy  —Je
Q) Q) Qy Qy _ 0 0 0 K
le Q’32 /33 /34 _HJT/* 0 0 0
Qu Qp Qs Q L KL 0 0

Then the right hand side of the above equation is the ‘constrained Fisher
information’ that accounts for assuming a reduced model and the GEI as-
sumption with unknown disease prevalence. We then use it to modify the
equation (3.15) in Algorithm 2 for updating the value of &. This new algo-

rithm is used to numerically compute the estimate é in this situation.

3.7 Efficiency gain

In this section, we investigate the benefit of exploiting the GEI assumption in terms
of estimation efficiency. Whereas related work [3] has relied on simulation studies
to assess this benefit at only a limited number of parameter settings, using the
theories in previous sections allow us to directly evaluate the efficiency gain at a

very large number of values for the underlying parameters.

3.7.1 The special binary case

First, we consider the special case where both genotype and environmental ex-
posure are binary. In this case, we can show that there is no efficiency gain by

exploiting the GEI assumption if the disease prevalence is unknown. When the
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GEI assumption is assumed and the disease prevalence is unknown, the variance
of the asymptotic distribution of the estimator of ¥ is Q; as given in the equation
(3.14). Following the results given in the proof of Lemma 2 in Chapter 2, we are
able to express Qg1 by the block matrices of the corresponding constrained Fisher
information:

Qu=B"'-BJUB ) IB ' +W

where subscripts are omitted for brevity and
W = B—lJ(JTB—lJ)—lKT [K(JTB—lJ)—lKT} -1 K(JTB—IJ)—IJTB—I .

Note that K reduces to a scalar in this special case. Thus, it can be easily verified
that
W — B—IJ(JTB—IJ)—IJTB—I .

It then follows that Q;; = B~!, where B™! is the variance of the asymptotic dis-
tribution of the unconstrained estimator of y. This result suggests that the un-
constrained and the constrained estimators of 7y asymptotically follow the same
distribution. Correspondingly, the unconstrained and the constrained estimators of
ﬁgg, k=1,...,K, are asymptotically equivalent, as these parameters are connected
with & only through . Thus, there is no efficiency gain by exploiting the GEI as-
sumption when the disease prevalence is unknown in the special binary case. This
matches the finding by Chen and Chen [4] that estimating the intercept term in
the prospective relationship uses up the additional information inherent in the GEI

assumption in the special binary case.

3.7.2 The saturated model

Next, we consider a saturated logistic model in the scenario where the environmen-
tal exposure has four levels. Some exploratory experiments show that the magni-
tude of efficiency gain is likely to be affected by the magnitude of the baseline
risk By. Thus, we examine two different values of By (logit0.003 vs. logit0.3) sep-
arately. For each value of 3y, we randomly generate 10000 sets of values for the
remaining parameters. First, the marginal distributions of genotype and environ-

mental exposure, k and 0, are generated using flat Dirichlet distributions that are
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uniform over the simplex, respectively. Secondly, all components of the main ef-
fects, B and B, and the interaction effects, B, are generated separately using a
standard normal distribution.

For each parameter setting, we first compute the variances of the asymptotic
distributions of the estimators of y resulting from the traditional method (TRAD),
the method exploiting the GEI assumption with unknown disease prevalence (GEI-
U), and the method exploiting the GEI assumption with known disease prevalence
(GEI-K), which are B! defined in the equation (3.4), Qq; defined in the equation
(3.9), and Py defined in the equation (3.14), respectively. We then use the equation
(3.2) to deduce the asymptotic variances of the corresponding estimators of the
interaction effects ng, for k=1,...,K. We finally summarize results by boxplots
in Figure 3.1, where the asymptotic variance ratios of the GEI-U estimators to the
TRAD estimators are shown in left panels, and the asymptotic variance ratios of
the GEI-K estimators to the GEI-U estimators are shown in right panels.

From Figure 3.1, we can see that exploiting the GEI assumption does lead to
efficiency gain for the estimation of the interaction effects. This benefit is more
likely to be substantial when the baseline risk is small. Moreover, knowing the
disease prevalence can further lead to more efficiency gain, which also tends to be

greater when the baseline risk is small.

3.7.3 The reduced model

Finally, we consider a reduced logistic model in three different scenarios, where
the environmental exposure has three, four, and five levels, respectively. Again,
we look at two different values of By (logit0.003 vs. logit0.3) separately. For each
value of By, we still randomly generate 10000 sets of values for the remaining
parameters. Parameter values are generated in the same manner as before, except
that B¢ and Bgg are now two scalars.

For each parameter setting, we compute the asymptotic variances of the TRAD
estimator, the GEI-U estimator and the GEI-K estimator of 7y, which are R;; de-
fined in the equation (3.16), Q) defined in the equation (3.18) and P/, defined in
the equation (3.17), respectively. The asymptotic variances of the corresponding

three estimators of the interaction effects B are then deduced. Figure 3.2 sum-
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Figure 3.1: Comparison of the TRAD method, the GEI-U method, and the
GEI-K method in terms of efficiency, with a saturated logistic model.
The comparison is based on 10000 randomly generated parameter set-
tings under the scenario where the environmental exposure has four lev-
els. The asymptotic variance ratios of the GEI-U estimator to the TRAD
estimator, Ry.r, are shown in left panels, and the asymptotic variance
ratios of the GEI-K estimator to the GEI-U estimator, Rg.;;, are shown
in right panels.

marizes results, where the asymptotic variance ratios of the GEI-U estimator to the

TRAD estimator are shown in left panels, and the asymptotic variance ratios of the
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GEI-K estimator to the GEI-U estimator to the GEI-U estimator are shown in right

panels.
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Figure 3.2: A similar figure to Figure 3.1, but shown with a reduced logistic
model in scenarios where the environmental exposure has three (K = 2),
four (K = 3), and five (K = 4) levels, respectively.

From Figure 3.2, we can see that exploiting the GEI assumption still leads to ef-
ficiency gain with a reduced logistic model, although the effect is less pronounced
compared to the case with a saturated logistic model. Also, we find the trend that
the benefit of exploiting the GEI assumption becomes greater when the environ-

mental exposure has more levels. Interestingly, a reversed trend is observed in the
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right bottom panel of Figure 3.2, which suggests that the benefit of knowing the
disease prevalence seems to decrease as the levels of the environmental exposure

increases.

3.8 Simulation studies

In this section, we conduct simulation studies to compare the performance of the
traditional prospective logistic method (TRAD), the method exploiting the GEI
assumption with unknown disease prevalence (GEI-U), and the method exploit-
ing the GEI assumption with known disease (GEI-K) under different scenarios.
We set the tuning parameters in Algorithm 1 and Algorithm 2 to be ¢ = 0.5,
€ =exp(—10log 10), and M = 1000.

3.8.1 The special binary case

We first consider the special case where both genotype and environmental exposure
are binary. We use the parameter setting: k = (0.95,0.05), 6 = (0.6,0.4), Bp =
logit0.005, B =log 1.5, Bg =1log1.2, and Brc = log3, so that the GEI assumption
indeed holds. We consider three different sample sizes n € {500, 1000,2000}, with
equal numbers of controls and cases. For each sample size, we apply the TRAD
method, the GEI-U method, and the GEI-K method on 10000 randomly generated
samples to obtain estimates and the corresponding 95% confidence intervals for
the interaction effect Bgg.

We first present some summaries of the 10000 generated datasets. The GEI-K
method successfully converges for all generated datasets. When the sample size is
500,/1000/2000, there are 80/0/0 datasets containing at least one zero cell count,
which are not used for comparison. The GEI-K method converges for all of the
remaining 9920,/10000/10000 datasets. On the other hand, the GEI-U method
directly finds the constrained maximum likelihood estimates of y without the need
of the one-dimensional grid search for 5137/5168/5323 of those datasets. For
the other 4783 /4832 /4677 datasets, the one-dimensional grid search is performed
to find estimates. Among these datasets, on-boundary estimates (6 € {0,1}) are
found for 4779/4832 /4677 datasets.

We then summarize simulation results by three key indices in Table 3.1: the
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bias and the mean squared error of the estimators, plus the coverage probabilities
of the 95% confidence intervals. First, we can see that the GEI-U estimator is a
little bit biased in practice because some estimates are computed differently by
the one-dimensional grid search in order to ensure that estimates of the disease
prevalence actually make practical sense. However, this empirical bias reduces as
sample size increases. Secondly, the coverage probability of the GEI-U 95% con-
fidence interval is even slightly greater than the nominal level. Thirdly, compared
to the TRAD method, the GEI-U method yields slightly better mean squared er-
rors. Finally, we find that the GEI-K method performs the best among the three
methods. It leads to an unbiased estimator with substantially lower mean squared
errors. It is interesting to see that knowing the disease prevalence has no effect
on the efficiency of the estimators of the interaction effect without any additional

assumption, but greatly improves the efficiency when the GEI assumption is made.

Table 3.1: Comparison between the TRAD method, the GEI-U method, and
the GEI-K method in terms of the bias and the mean squared error (MSE)
of the estimators of Bg¢, and the coverage probability of the 95% confi-
dence intervals in the special binary case.

n Bias MSE Coverage

TRAD GEI-U GEI-K TRAD GEI-U GEI-K TRAD GEI-U GEI-K
500 0.061 0.257 0.034 0.651 0.584 0.201 0.959 0.959 0.957
1000 0.028 0.184 0.015 0.294 0.221 0.091 0953 0.973 0.956
2000 0.019 0.127 0.010 0.137 0.097 0.045 0954 0976 0.949

We also compare the length of the 95% confidence intervals, as shown in Figure
3.3 and 3.4. When the sample size is small, the GEI-U 95% confidence intervals
may sometimes be shorter than their TRAD counterparts. When the sample size
gets larger, the 95% confidence intervals of these two estimators have about the
same length. This observation matches our earlier result that these two estimators
are asymptotically equivalent in the special binary case. Again, the GEI-K method
outperforms the other two methods, as it results in much shorter 95% confidence

intervals. More importantly, as we can see from Table 3.1, the coverage probability
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of the GEI-K 95% confidence intervals is still maintained at the nominal level.
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Figure 3.3: Comparison of the TRAD method and the GEI-U method in
terms of the length of the 95% confidence interval in the special bi-
nary case. For better visualization, we only present results for a random
sample of 1000 datasets from all 10000 simulated datasets. The grey
line is the identity line.
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Figure 3.4: Comparison of GEI-U method and the GEI-K method in terms of
the length of the 95% confidence interval in the special binary case. We
still present results for a random sample of 1000 datasets from all 10000
simulated datasets for better visualization. The grey line is the identity
line.
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3.8.2 The saturated model

We now consider a saturated disease risk model concerning a binary genotype and
an environmental exposure having four categories (K = 3) under the parameter
setting: k¥ = (0.9,0.1), 6 = (0.4,0.3,0.2,0.1), By = logit 0.005, Bs =0, Br =
(log1.1,log1.3,10g1.5), and Bgc = (log1.2,log 1.6,10g2). We still consider three
different sample sizes n € {500, 1000,2000}, with equal numbers of controls and
cases. For each sample size, we apply the TRAD method, the GEI-U method, and
the GEI-K method on 10000 randomly generated samples to obtain the estimates
and the corresponding 95% confidence intervals for the interaction effects, ﬁélG),
B and Beg.

We present some summaries about the 10000 generated datasets. When the
sample size is 500/1000/2000, there are 921/74/1 datasets containing at least one
zero cell count, which are not used for comparison. The GEI-K method converges
for all of the remaining 9079/9926/9999 datasets. On the other hand, the GEI-U
method directly finds the constrained maximum likelihood estimates of y without
the need of the one dimensional grid search for 4541/5056/5107 of those datasets.
For the other 4528/4870/4892 datasets, the one dimensional grid search is per-
formed to find estimates. Among these datasets, non-boundary estimates are found
for only 2/4/1 datasets.

The three summary indices, the bias and the mean squared error of the esti-
mators as well as the coverage probabilities of the 95% confidence intervals, are
reported in Table 3.2. The comparisons between the GEI-U method and the TRAD
method, and between the GEI-K method and the GEI-U method, in terms of the
length of the 95% confidence intervals, are shown in Figure 3.5 and 3.6, respec-
tively. First, we can see that the GEI-K method still performs the best among the
three methods with respect to all these aspects. Secondly, the coverage probability
of the GEI-U 95% confidence interval is slightly smaller than the nominal level.
Thirdly, compared to the TRAD method, the GEI-U method yields comparable
mean squared error even when the sample size is small, and better mean squared
error as sample size increases. Finally, the GEI-U 95% confidence intervals are
nearly always shorter than their TRAD method counterparts. For the parameter

setting used in this simulation study, the asymptotic variance ratios for ﬁ,glc);, Béz(;
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are 0.53, 0.65 and 0.88 between the GEI-U and the TRAD estimators, and 0.97,
0.69 and 0.43 between the GEI-U and the GEI-K estimators. Correspondingly,
when the sample size is sufficiently large, the GEI-U 95% confidence intervals
are 27%, 19%, and 6% shorter than their TRAD counterparts, and the GEI-K 95%
confidence intervals 2%, 17%, and 35% shorter than their GEI-U counterparts, for
ﬁélg, B)%, and ﬁSG), respectively. These theoretical results approximately match

the empirical results shown in Figure 3.5 and 3.6.

Table 3.2: Comparison of the TRAD method, the GEI-U method, and the
GEI-K method in terms of the bias and the mean squared error (MSE)
of the estimators, and the coverage probability of the 95% confidence
intervals in the scenarios with a saturated disease risk model.

n Bias MSE Coverage
TRAD GEI-U GEI-K TRAD GEI-U GEI-K TRAD GEI-U GEI-K

ﬁgc) 500 0.020 0.016 0.007 0.642 0.610 0321 0.950 0.938 0.958
1000 0.000 0.002 -0.005 0.284 0.250 0.147 0.952 0.941 0.955
2000 0.002 0.013 -0.001 0.138 0.106 0.069 0.949 0.943 0.952

ﬁézG) 500 0.057 0.059 0.010 0.744 0.749 0317 0.959 0.929 0.960
1000 0.024 0.043 0.005 0335 0331 0.144 0953 0915 0.956
2000 0.013 0.048 0.000 0.156 0.136 0.068 0.954 0.931 0.957

[323(2 500 0.007 0.022 0.000 0904 0990 0405 0971 0.927 0.963
1000 0.056 0.091 -0.007 0.520 0.547 0.184 0961 0.910 0.953
2000 0.037 0.104 -0.001 0.248 0.241 0.085 0.953 0.928 0.951

3.8.3 The reduced model

Next, we consider a reduced disease risk model for a binary genotype and a four-
category environmental exposure under the parameter setting: x = (0.9,0.1), 6 =
(0.4,0.3,0.2,0.1), By = logit0.005, B = 0, Br = log 1.3, and Brc = log3. Again,
we consider three different sample sizes n € {500, 1000,2000} and set the num-
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Figure 3.5: Comparison between the TRAD method and the GEI-U method
in terms of the length of the 95% confidence interval for the scenario
with a saturated disease risk model. Results are only presented for a
random sample of 1000 datasets from all 10000 simulated datasets. The
grey line is the identity line.

bers of controls and cases to be equal. We compare the performance of the TRAD
method, the GEI-U method, and the GEI-K method still based on 10000 random
samples. It should be noted that, with a reduced model, we can estimate the in-
teraction effect B even when the dataset contains zero cell counts. We find that

the GEI-K method fails to converge for 1/0/0 dataset using the current setting of
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Figure 3.6: Comparison between the GEI-U method and the GEI-K method
in terms of the length of the 95% confidence interval for the scenario
with a saturated disease risk model. Results are only presented for a
random sample of 1000 datasets from all 10000 simulated datasets. The
grey line is the identity line.

tuning parameters. Among the remaining 9999/10000/10000 generated datasets,
the GEI-U method can directly find the constrained maximum likelihood estimates
of y without the need of the one dimensional grid search for 6941/7588/8366
datasets. For the other 3058/2412/1634 datasets, the one dimensional grid search

is performed, and non-boundary estimates are found for only 1/0/0 datasets.
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The three summary indices, the bias and the mean squared error of the esti-
mators as well as the coverage probabilities of the 95% confidence intervals, are
reported in Table 3.3. The comparisons between the GEI-U method and the TRAD
method, and between the GEI-K method and the GEI-U method, in terms of the
length of the 95% confidence intervals, are shown in Figure 3.7 and Figure 3.8,
respectively. First of all, as expected, the GEI-K method still performs the best
among the three methods. Moreover, the GEI-U estimators are only slightly bi-
ased. The GEI-U method outperforms the TRAD method by achieving substan-
tially lower mean squared errors even when the sample size is small. Also, the
GEI-U 95% confidence intervals have coverage probabilities slightly above the
nominal level, and are generally shorter than their TRAD counterparts. For this pa-
rameter setting, the asymptotic variance ratios for Bg¢ are 0.80 between the GEI-U
and the TRAD estimators, and 0.36 between the GEI-K and the GEI-U estimators,
corresponding to 10% and 40% reductions in the length of 95% confidence inter-
vals, respectively. These theoretical results are observed empirically in Figure 3.7
and 3.8.

Table 3.3: Comparison of the TRAD method, the GEI-U method, and the
GEI-K method in terms of the bias and the mean squared error (MSE)
of the estimators, and the coverage probability of the 95% confidence
intervals in the scenarios with a reduced disease risk model.

n Bias MSE Coverage

TRAD GEI-U GEI-K TRAD GEI-U GEI-K TRAD GEI-U GEI-K
500 0.041 0.074 0.018 0.106 0.063 0.027 0957 0.977 0.952
1000 0.026 0.041 0.010 0.049 0.031 0.013 0.947 0.970 0.953
2000 0.016 0.021 0.006 0.023 0.015 0.006 0.953 0.968 0.951

3.8.4 The violation of the GEI assumption

Finally, we test the performance of the proposed GEI-based methods when the

GEI assumption does not hold. We consider a reduced disease risk model as an
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Figure 3.7: Comparison between the TRAD method and the GEI-U method
in terms of the length of the 95% confidence interval for the scenario
with a reduced disease risk model. Results are only presented for a
random sample of 1000 datasets from all 10000 simulated datasets. The
grey line is the identity line.
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Figure 3.8: Comparison between the GEI-U method and the GEI-K method
in terms of the length of the 95% confidence interval for the scenario
with a saturated disease risk model. Results are only presented for a
random sample of 1000 datasets from all 10000 simulated datasets. The
grey line is the identity line.

example. The parameter setting for  is the same as the previous section, i.e.,
(Bo, Be, Be, Bec) = (logit0.005,0,1og 1.3,10g 3). For the joint distribution of geno-
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type and environmental exposure, we consider two scenarios:

(a): 1=1(0.364,0.269,0.178,0.089,0.036,0.031,0.022,0.011),
(b): 1=(0.38,0.27,0.17,0.08,0.02,0.03,0.03,0.02),

where scenario (a) corresponds to a slight violation of the GEI assumption as the
odds ratio between genotype and any pair of environmental exposure levels ranges
from 0.8 to 1.3, and scenario (b) corresponds to a serious violation of the GEI
assumption as the odds ratio between genotype and any pair of environmental ex-
posure levels ranges from 0.2 to 4.8. For each scenario, we generate 10000 ran-
dom samples of 500 controls and 500 cases. The GEI-K method converges for
all datasets generated under both scenarios. Under the scenario (a), GEI-U esti-
mates can be directly obtained by the global search step of Algorithm 2 for 7520
out of 10000 generated datasets, and on-boundary estimates are found by one-
dimensional grid search for all the other 2480 datasets. Under the scenario (b),
GEI-U estimates can be directly obtained by the global search step of Algorithm
2 for only 2646 out of 10000 generated datasets, and on-boundary estimates are
found by one-dimensional search for all the other 7354 datasets. We see that data
seem to be less likely to ‘support’ the GEI assumption when the assumption is
seriously violated.

Table 3.4 summaries the simulation results for scenarios (a) and (b) with the
bias and the mean squared error of the estimators as well as the coverage proba-
bilities of the 95% confidence intervals. When the GEI assumption is slightly vi-
olated, the GEI-U method still performs pretty well, although slightly worse com-
pared to the results shown in Table 3.3. It again leads to smaller mean squared
errors compared to the TRAD method, and the coverage probability of the 95%
confidence interval is also maintained at the nominal level. When the GEI assump-
tion is seriously violated, however, the GEI-U estimator is greatly biased. Con-
sequently, the proposed method produces much larger mean squared errors than
the TRAD method. Moreover, the coverage probability of the 95% confidence in-
terval is much lower than the nominal level. Finally, we can see that the GEI-K
method is very sensitive to the violation of the GEI assumption and performs very

poorly when the assumption is seriously violated, even much worse than the GEI-U
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method.

Table 3.4: Comparison of the TRAD method, the GEI-U method, and the
GEI-K method when the GEI assumption is violated, assuming a reduced
disease risk model. Scenarios (a) and (b) correspond to the situations
where the GEI assumption is slightly and seriously violated, respectively.
Simulation results of 10000 random samples are summarized in terms of
the bias and the mean squared error (MSE) of the estimators, and the
coverage probability of the 95% confidence intervals.

Bias MSE Coverage
TRAD GEI-U GEI-K TRAD GEI-U GEI-K TRAD GEI-U GEI-K
Scenario (a) 0.023 0.092 0.080 0.046 0.036 0.020 0.954 0.958 0.916
Scenario (b) 0.023 0.366 0.569 0.050 0.152 0.344 0.950 0.629 0.007

3.9 Data analysis

We now consider a real dataset for the application of the proposed GEI-U method.
The dataset is taken from Garca-Closas et al. [7], who investigate the associations
of polymorphisms in NAT and GST genes with bladder cancer risk and their inter-
actions with cigarette smoking among subjects participating in the Spanish Blad-
der Cancer Study. We focus on the joint effect of genetic variation in NAT2 and
smoking habit on bladder cancer risk, and restrict the analysis to subjects who had
complete information on NAT2 genotype (rapid/intermediate vs. slow acetylator)
and smoking habit (never, occasional, former, and current), resulting in a total of
1134 cases and 1130 controls. The observed cell frequencies are presented in Table
3.5.

We now apply the proposed GEI-U method to this dataset. The estimated in-
teraction effects, accompanied by their 95% confidence intervals, are 0.529 with
(—0.305,1.362) for the interaction between NAT2 slow acetylator and occasional
smokers, 0.628 with (0.158,1.098) for the interaction between NAT2 slow acety-
lator and former smokers, and 0.403 with (—0.092,0.898) for the interaction be-

tween NAT2 slow acetylator and current smokers. For comparison, the correspond-
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Table 3.5: Data from a case-control study concerning the interaction of NAT2
genotype and smoking habit on bladder cancer. NAT2 genotype is coded
as O for rapid/intermediate acetylator and 1 for slow acetylator. Smoking
status is coded as O for never smoker, 1 for occasional smoker, 2 for
former smoker, and 3 for current smoker.

G=0 G=1
E=0 E=1 E=2 E=3 E=0 E=1 E=2 E=3
D=0 131 37 212 113 199 48 240 150
D=1 66 16 161 163 91 32 310 295

ing estimates and 95% confidence intervals from the TRAD method are 0.530 with
(—0.303,1.362), 0.628 with (0.160,1.096), and 0.407 with (—0.088,0.902), re-
spectively. Thus, we can see that making the GEI assumption is not very helpful
for this particular dataset. Moreover, the estimated disease prevalence from the
GEI-U method is 0.51, which is not very convincing since bladder cancer is a rel-
atively rare disease. This might suggest that the GEI assumption is not satisfied
for this problem. However, it should also be reminded that, even when the GEI as-
sumption actually holds, exploiting the assumption may lead to no efficiency gain

for some parameter settings, as can be seen from Figure 3.1.

3.10 Conclusion

In this chapter, we have studied the problem of estimating parameters arising from
a logistic regression model for case-control data. This problem was previously
studied by Chatterjee and Carroll [3] using the profile likelihood technique. We
approach the problem in a different way by treating it as a constrained maximum
likelihood estimation problem. It should be noted that both methods are based on
the same retrospective likelihood for the case-control data, and thus should yield
identical estimates. However, the present contribution is useful because, compared
to the profile likelihood method in [3], our method is easier to implement. More-
over, as our method gives the explicit form for the asymptotic variance of the esti-

mator, it can help with the planning of a case-control study.
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By switching the position of genotype and environmental exposure, our method
is readily applicable to the problem where the environmental exposure is binary
but the genotype has three levels (recessive, co-dominant/incomplete-dominant,
dominant). In general, with modern genotyping methods, we often do not know
what trait is associated with a specific genetic marker/SNP within a gene, but have
many of these markers within a gene (looks like categories but with no meaning
to order). Then the challenge becomes trying to find a suitable model to assess
joint impact of these markers with environmental exposure (typically forced to be
represented as dichotomous) on disease. Our method may be naturally applied to
approach this kind of problems.

Many aspects of exploiting the gene-environmental independence assumption
in a case-control study have been well discussed by Chatterjee and Carroll [3].
Particularly, they briefly described the possibility of generalizing their method to
address population stratification. When the genotype and environmental exposure
are independent conditional on some stratum variables, the environmental exposure
and the stratum variables can be combined as the new ‘environmental variable’.
This new variable is independent of the genetic factor, and thus the GEI-based
method can still be applied. Our method can be generalized in a similar way to

address population stratification as well.
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Chapter 4

Bayesian Inference in
Case-Control Studies

4.1 Introduction

In this chapter, we study methods for analyzing case-control data that exploit the
GEI assumption in a Bayesian framework. This chapter is organized as follows.
We first present another parameterization of the underlying model for case-control
data, which has a reduced form directly incorporating the GEI assumption and also
connects to the data structure closely. We then develop a Bayesian framework
for analyzing case-control data under the GEI assumption, and conduct simulation
studies to illustrate the performance of the proposed Bayesian method in situa-
tions where the GEI assumption indeed holds. Next, we generalize the proposed
Bayesian method to allow uncertainty around the GEI assumption. We conduct
more simulation studies to investigate the performance of the generalized Bayesian
method in situations where the GEI assumption may or may not hold. Finally, we
consider two real datasets for the application of the proposed methods, and give

some concluding thoughts at the end of this chapter.
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4.2 Another reparameterization

In Chapter 3, we presented a reparameterization of the underlying model that is
closely connected to the case-control data structure. It was used to facilitate the
analysis of case-control data from the frequentist perspective. With that parame-
terization, however, it is difficult to set an appropriate prior structure reflecting the
GEI assumption, since the assumption is defined through some constraint equa-
tions. Thus, that parameterization is not suitable for Bayesian analysis. On the
other hand, the original parameterization has a reduced form that directly incor-
porates the GEI assumption. Nonetheless, it may still not be ideal for Bayesian
analysis in terms of computational efficiency, as it is not very closely connected to
the actual data structure. Therefore, we need a new parameterization of the model
that has a reduced form directly incorporating the GEI assumption and connects to

the data structure as closely as possible.

Let 0 still denote the disease prevalence. We use ¥, = (%00, Y001, - - - Y1K)
and ¥, = (%100,---,7%11k) to represent the vectors of sampling probabilities un-
derlying controls and cases, respectively. Further, we define p = (py,...,px)

as the vector of gene-environment associations in the source population, where
Pr = (Lixloo) / (tiolox) is the ratio of the odds of having genotype G = 1 in the
E = k subpopulation to the odds of having genotype G = 1 in the E = 0 subpop-
ulation, for k = 1,...,K. Finally, let ¥,o = (Y00,---, %0k, Y01+) denote another
vector of probabilities in the control population, where Y1+ = 1 — Y Yook is the
combined probability of having genotype G = 1.

Next, we are going to show that the new parameterization ¥ = (6,p,%,7;)
is a reparameterization of the original parameterization ¢ = (1, o, B, Bg,Brc)-
Since we have already shown in Chapter 3 that & = (0, ¥,,7,) is a reparameteriza-
tion of ¢, it is sufficient to show the connection between & and y. On one hand, as

Lk = (1 —0)Yjx + 07 jx, we can write py in terms of & through

{(1—=0)y000+ 07100} {(1 —0)Yo1x +OYi1x}
{(1—0) 10+ 0710t} {(1 — 0) Y010+ 07110}

pe(§) =

for k =1,...,K. The values of the remaining components of y, (6, 7%y,7;), are

readily available from &. Thus, the value of ¥ can be uniquely determined given
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a value of &. On the other hand, in order to determine the value of & given a
value of y, we only need to find the value of (10, --.,%1x) as the values of the
other components of & can be directly found in y. We first rearrange the above

expression for p; to get an equation with respect to Y19 and Y1x:

2]
—PrlokYo10 + oo Yo1xk = 1o (—100Y11x + PrlokYi10) ,

for k = 1,...,K, where the value of (1go,...,%k) is known given y. Combining
these equations with the constraint that - ; ; %o = 1, we end up with in total K + 1
equations for K + 1 unknown parameters (010, - - -, Jo1x ). Furthermore, these K + 1

equations can be rewritten in matrix form as

1 1 -1 Y10 1 — (%00 + -+ + Yook)
—pitor o O -+ O Y11 25 (—w0%i11 +P1l017i10)
—palz 0 100 -+ O iz | =| 15 (—t0%i2+p2t02ito)
—pklok 0 0 - 10 Yoik 25 (—w0¥i1k + Pxlok Yi10)

Then it is clear that this linear equation system always has a unique solution for
(%10, - - - Y1k ), due to the non-singularity of the matrix of coefficients. Thus, the
value of & can be uniquely determined given a value of y. Therefore, ¥ can be
considered as a reparameterization of &, and in turn a reparameterization of ¢.

If we let P denote the standard m-simplex, then the parameter space for y
is & = P?K+1 x R?X+2 With the reparameterization from ¢ to , the original
parameter space P is mapped to a new parameter space ¥, which is only a proper
subset of the space P! x RK x PKF1 x P2K+1 pecause some values of y in the larger
space don’t have correspondents in ®. Moreover, for any given value of y in the
larger space, it is easy to test for its membership in ¥. Now, the retrospective

likelihood for case-control data in terms of the new parameterization Y is

L(y) = {I—]!Yf}ﬁ} X {U%’gzk} X {H(Yom(ll/))"o‘k}.
Js

k
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Finally, the GEI assumption can be easily represented by setting every component

of p to be one.

4.3 Bayesian framework

We now develop a Bayesian framework for analyzing case-control data under the
GEI assumption, based on the parameterization of .

We begin by specifying a prior distribution for y over its parameter space V.
First, making the GEI assumption is equivalent to stating that v € ¥;, where ¥,
denotes the subset of W corresponding to p = 1. Thus, the prior distribution has
zero-density when y ¢ ;. Next, we use a flat Dirichlet distribution of order 2K +2
that is uniform over the simplex, Dir(1,...,1), as the prior distribution for ;.
Also, the same flat Dirichlet distribution would be used as the prior distribution for
7, if we were going to specify a prior distribution for &. That inspires a Dirichlet
distribution of order K +2, Dir(1,...,1,K+1), as the prior distribution for 7,y,.
Finally, we set an appropriate prior distribution for 8 to reflect any knowledge
we have on the disease prevalence, which may come from an external source. In
this chapter, we simply use a standard uniform distribution as the non-informative
prior distribution for 6, assuming no extra information is available. In summary,

the prior density for y, denoted by 7(y), is

o(¥) = Ce- () - 1{w e ¥}

where C; is a normalizing constant not depending on Y. Finally, the posterior
density of y, denoted by p(y), is proportional to the product of the prior density
7(y) and the likelihood function L(y), and thus can be expressed as:

K : 11 jk
p(v) =Cp-(1o1)" [Tt TTroe(w))™™ - TIni - Hw € ¥},
k k Jk
where C, is another normalizing constant also not depending on .

To compute the posterior distribution for Bayesian inference, we use the tech-
nique of importance sampling. The importance sampling method is often used as
a variance reduction technique for approximating integrals. However, it does more

than just that. It also provides an alternative way to simulate from complex distri-
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butions (Robert and Casella [25]). Briefly, the method simulates a random sample
from a proposal distribution along with corresponding importance weights to form
a weighted sample numerically representing the original distribution. We choose
the importance sampling technique over other Monte Carlo methods such as the
rejection sampling method and the Metropolis-Hastings method for two reasons.
First, it is computationally more efficient for our problem since a good proposal
distribution can be established. Secondly, comparing to some other Markov Chain
Monte Carlo methods like the Metropolis-Hastings method, the importance sam-
pling technique comes with a relatively objective measure to evaluate the quality
of the simulated Monte Carlo sample. We will illustrate these two points in the
remainder of this section.

To ensure the performance of importance sampling, we need a good proposal
distribution for y. First, we fix p = 1 to make sure that y € ¥;. With the set-up of a
conjugate Dirichlet prior distribution for the multinomial distribution, the posterior
distribution for the case cell probabilities Y, can be easily obtained as a Dirichlet
distribution with updated parameters, Dir ((njo0 + 1,...,n11x + 1)), which in turn
serves as a good proposal distribution for ;. Similarly, a reasonable proposal dis-
tribution for ¥, would be another Dirichlet distribution with updated parameters,
Dir ((nooo + 1, - - . ,noox + 1,101+ + K + 1)). Finally, we propose 6 from a distribu-
tion whose density function is u(0). Therefore, the density function of the proposal

distribution of y is
a(y) = Cq- (1) (0) TT A5 - TTo
Jk k

where C, is the product of the normalizing constants of the two Dirichlet distribu-
tions, which does not depend on y. Note that g(y) is positive over its support,
which is a superset of W;. Thus, this proposal distribution of y is valid for the
importance sampling.

We now discuss two candidate proposal distributions for 6. The first option is
to use the prior distribution of 6, which is a standard uniform distribution in most
cases without external information on the disease prevalence. This proposal distri-
bution may not be very efficient because we know the posterior distribution of 6

is more concentrated, especially when the sample size is very large. Nevertheless,
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this simple proposal distribution works well for reasonable sample sizes in practice.
The second option is to use the result of the frequentist approach as developed in
Chapter 3. More specifically, we propose 6 from a truncated normal distribution on
the interval [0, 1], with mean being the constrained maximum likelihood estimate
of 6 and standard deviation being the corresponding standard error. This is a more
aggressive proposal distribution that works more efficiently for most datasets, es-
pecially when the sample size is large. However, when the constrained maximum
likelihood estimate of 6 deviates far from the true value for some datasets due to
random variation, this proposal distribution can be very inefficient. In practice, we
can try both proposal distributions and it is very unlikely that both of them perform
poorly.

For each value of y generated by the proposal distribution, the corresponding
importance weight is p(y)/ (mq(y)), where m is the total number of points gener-
ated. However, this exact weight can not be directly obtained since the normalizing

constant in p(y), C,, is intractable. In practice, we compute the relative weight

Tk [Yore (w)] ™

oot EED,

w=
and renormalize all weights to have them sum to one. Having obtained a weighted
sample numerically representing the posterior distribution of y, by transformation
we can induce another weighted sample numerically representing the posterior dis-
tribution of ¢. Either directly based on this weighted sample or based on an un-
weighted sample by further resampling, we can obtain the posterior mean and the
corresponding equal-tailed 95% credible intervals for Bayesian inference.

Finally, we introduce the effective sample size (ESS) as a measure for assessing

the quality of a weighted sample. It is defined in [25] as
ESS =

Briefly, it gives the sample size of a simple random sample that would convey the
same amount of information about the target posterior distribution as the weighted
sample. Thus, we are going to keep track of the effective sample size of the

weighted sample in our importance sampling algorithm and keep iterating until
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it is greater than some threshold.

4.4 A simulation study

We now conduct a simulation study to investigate the performance of the proposed
Bayesian method that exploits the GEI assumption (BGEI), and also compare it
with the traditional prospective logistic method (TRAD).

We focus on the situation where both genotype and environmental exposure
are binary, and consider parameter settings from a factorial experiment, where we
fix the value of 8, B and Bg, and consider all combinations of assignments of
two different values each for «, fy, and Bgg. In particular, we first set parameters
0 =(0.6,0.4), Bc =log1.5, and Bg =1log1.2. We then consider k¥ = (0.95,0.05)
for a rare genotype and k¥ = (0.7,0.3) for a common genotype, By = logit 0.005
for a rare disease and By = logit 0.2 for a common disease, and Bgc = log1.1
for a weak gene-environment interaction effect and g = log3 for a strong gene-
environment interaction effect. Thus, we end up with eight parameter settings used

in the simulation study, as shown in Table 4.1.

Table 4.1: Parameter settings used in the simulation study in Section 3.8.

K 6 Bo B Be Bec
¢, (0.95,0.05) (0.6,0.4) logit0.005 logl.5 logl.2 logl.1
¢, (0.95,0.05) (0.6,0.4) logit0.005 logl.5 logl.2  log3
05  (0.950.05) (0.6,04) logit0.2  logl.s logl2 logl.l
o, (0.95,0.05) (0.6,0.4) logit 0.2 logl.5 logl.2  log3
ds (0.7,0.3) (0.6,0.4) 1ogit 0.005 logl.5 logl.2 logl.1
d6 (0.7,0.3) (0.6,0.4) 1logit 0.005 logl.5 logl.2  log3
0. (0.7,03)  (0.6,04) logit0.2  logl.s logl2 logl.l
dg (0.7,0.3) (0.6,0.4) logit 0.2 logl.5 logl.2  log3

For each parameter setting, we consider three different choices for sample size,
n € {1000,3000,9000}, and set the numbers of cases and controls to be equal.
For each sample size, we apply the TRAD method and the BGEI method on 2000
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randomly generated samples to obtain point estimates and the corresponding 95%
confidence/credible intervals for the interaction effects Bgg. For the BGEI method,
the proposal distribution for 6 is chosen to be the truncated normal distribution, as
described in Section 4.3, and the threshold for the effective sample size is set to be
5000.

We first examine the computational efficiency of the importance sampling algo-
rithm. Table 4.2 shows the 10-, 25-, 50-, 75-, and 90-percentiles of the importance
sampling sample sizes actually used in our simulation study. In order to achieve
effective sample size of at least 5000, the importance sampling algorithm requires
sample size less than 20000 for 75% of the generated datasets in all settings consid-
ered. Moreover, except for one setting, the required importance sampling sample
size is not greater than 30000 for 90% of the generated datasets. Therefore, we can
see the importance sampling algorithm computes the posterior distribution very
efficiently for most datasets.

Next, we summarize our simulation results with three key indices in Table 4.3:
the bias and the mean square errors of the estimator, and the coverage probability of
the 95% confidence/credible interval. First, we can see that, when the sample size
is small, the BGEI estimator is biased for the parameter settings ¢, and ¢, both
corresponding to the situation when the disease is rare and the gene-environment
interaction effect is strong. For the remaining parameter settings, the BGEI es-
timator is nearly unbiased. Secondly, the BGEI method achieves smaller mean
squared error than the TRAD method in practice, especially when the sample size
is relatively small. Yet this advantage diminishes as sample size increases, which
matches our conclusion in Chapter 3 that exploiting the GEI assumption does not
improve asymptotic estimation efficiency in the special binary case. Lastly, the
coverage probability of the BGEI equal-tailed 95% credible interval is maintained
at the nominal level for a majority of parameter settings considered, but is slightly
lower than the nominal level for a few parameter settings.

We also compare the BGEI method with the TRAD method in terms of the
length of the 95% credible/confidence intervals, as shown in Figure 4.1. The first
impression is that the length of the BGEI 95% credible interval is far more variable
than that of the TRAD 95% confidence interval. The BGEI 95% credible intervals

are shorter than their TRAD counterparts for most datasets, especially when the
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sample size is small. But, when the gene-environment interaction effect is weak,
there are a few datasets for which the BGEI 95% credible intervals are substantially
longer than the TRAD 95% confidence intervals. However, as the sample size gets
larger, the BGEI 95% credible interval and the TRAD 95% confidence interval tend
to have similar length. This pattern can be seen more clearly from the last column
in Figure 4.1.

Finally, we connect current results with earlier results in Section 3.8, where the
parameter setting ¢, and the sample size n = 1000 were also used in that simulation
study, to compare the Bayesian GEI-based method (BGEI) and the frequentist GEI-
based method (GEI-U as described in Chapter 3). Both estimators are biased and
have similar mean squared errors. However, the two methods result in different
interval estimates. By sacrificing a little bit in coverage probability, the BGEI 95%
credible intervals are shorter than the GEI-U 95% confidence intervals.
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Table 4.2: The computational efficiency of the proposed importance sam-
pling algorithm summarized by percentiles of the importance sampling
sample sizes for achieving effective sample size of at least 5000.

n Importance sampling sample sizes

10-%tile 25-%tile 50-%tile 75-%tile 90-%tile

(0 1000 8000 8000 9000 11000 16000
3000 8000 8000 9000 11000 16000

9000 8000 8000 9000 12000 20000

9, 1000 7000 7000 8000 10000 13000
3000 6000 6000 7000 7000 9000
9000 6000 6000 6000 7000 8000

05 1000 8000 8000 9000 10000 14000
3000 8000 8000 9000 11000 14000
9000 8000 8000 9000 10000 15000

Oy 1000 8000 9000 11000 14000 22000
3000 7000 8000 9000 12000 19000
9000 7000 7000 8000 9000 11000

?s 1000 9000 9000 10000 14000 24000
3000 9000 9000 10000 15000 30000
9000 9000 9000 12000 19000 58100

D¢ 1000 7000 8000 8000 10000 15000
3000 7000 7000 8000 9000 14000
9000 7000 7000 7000 8000 12000

[ 1000 9000 9000 10000 13000 21000
3000 8000 9000 10000 13000 20000
9000 8000 9000 10000 13000 22000

0y 1000 8000 9000 11000 14000 20000
3000 9000 10000 11000 12000 15000
95000 9000 10000 10000 11000 12000
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Table 4.3: Comparison of the performance between the TRAD method and
the proposed BGEI method for the estimation of the interaction effects,
in terms of the bias and the mean squared error (MSE) of the estimators,
and the coverage probability of the 95% credible/confidence intervals.

0,

P

03

P4

s

P

¢7

g

1000
3000
9000

1000
3000
9000

1000
3000
9000

1000
3000
9000

1000
3000
9000

1000
3000
9000

1000
3000
9000

1000
3000
9000

Bias
TRAD BGEI
0.014 0.024
-0.005 0.015
-0.001 0.019
0.028 0.268
0.012 0.179
0.002 0.106
-0.013  -0.022
0.000 -0.008
-0.001 -0.004
0.062 -0.032
0.029 -0.023
0.008 -0.026
0.012 0.026
0.005 0.023
0.004 0.024
0.011 0.142
0.001 0.085
0.000 0.047
0.004 0.001
0.000 -0.001
0.001 -0.001
0.009 -0.044
0.007 -0.019
0.000 -0.009

MSE
TRAD BGEI
0.330  0.252
0.097  0.080
0.033  0.028
0.275  0.204
0.093  0.074
0.032  0.026
0.360 0.271
0.114  0.092
0.035  0.028
0.457  0.294
0.136  0.105
0.043  0.042
0.075  0.064
0.025  0.021
0.007  0.007
0.076  0.063
0.025  0.021
0.009  0.007
0.076  0.064
0.024  0.020
0.008  0.007
0.085  0.077
0.029  0.029
0.009  0.009

Coverage
TRAD BGEI
0.950  0.951
0.952  0.946
0.943 0942
0.965 0.926
0.949  0.908
0.942  0.909
0.957  0.955
0.945 0954
0.959  0.957
0.959  0.959
0.951  0.953
0.952  0.946
0.950  0.952
0.948 0939
0956  0.927
0.950  0.925
0.950  0.930
0.950  0.930
0.954  0.956
0.961 0.960
0.951 0.953
0.950  0.947
0.948  0.946
0.952 0952
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Figure 4.1: Comparison of traditional method (TRAD) and the proposed Bayesian GEI-based method (BGEI) in terms
of the length of the 95% confidence/credible interval. The grey lines are the identity line.



4.5 Relaxation of the GEI assumption

Researchers sometimes have concerns about the validity of the GEI assumption.
Thus, we discuss a variant of the proposed Bayesian method that relaxes the GEI

assumption.

4.5.1 Two established methods

We first briefly review two established methods for relaxing the GEI assumption.

e The empirical Bayes method

Mukherjee and Chatterjee [21] proposed a simple stochastic framework to
trade off between bias and efficiency in a data-adaptive way. They showed
that the magnitude of the uncertainty parameter can be estimated from the
data itself. This estimate of the uncertainty parameter can then be used in
an empirical Bayes fashion to obtain a shrinkage estimator that “shrinks” the
maximum likelihood estimators of gene-environment interaction parameters
under a general model to those obtained under the model that assumes the

independence assumption.

Particularly, in the simple set-up of a case-control study with a binary genetic
factor and a binary environmental exposure, Mukherjee and Chatterjee [21]
considered two commonly used estimators of the interaction effect Bgg, the

one obtained from using all case-control data

4 (CC) -1 no017101071007111
gc =10 ’
n1017111010007011

and the other obtained from using data of cases alone

4 (CO) niponi11
G — log——.
nioini10

The empirical Bayes estimator of Bg; was then proposed as the following

weighted estimator

A2 A2

R(EB) _ T 3(CO) | Occ  plco)

EG T 22 A2 EG %) A2 EG >
T +GCC T +GCC
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where 5
") 10007011
= |log———
10017010
is an estimate for the conceptual prior variability of the gene-environment

association in the population of controls, which measures the uncertainty

about the independence (among controls) assumption, and

1 1 1 1

6c=1 Y X

i=0 j=0k=0 "ijk

is the estimated variance of the case-control estimator Bé%c). When the data
provide evidence in favor of GEI assumption in the control population (£2 —
0), we have ﬁéEGB) — Aé%C). When the uncertainty regarding the assumption

becomes stronger (£ — o), we have ﬁgzm — ﬁé%o).

The full Bayesian method

Mukherjee et al. [22] proposed a proper full Bayesian approach for analyz-
ing studies of gene-environment interaction, which provides a natural way
to incorporate uncertainty around the assumption of GEI in the population
of controls. In particular, they demonstrated their method in the simple
set-up with a binary genotype and a binary environmental exposure. Let
Yo = (Y000, Y001, Y010, Yo11) and ¥, = (Y100, Y101, Y110, ¥111) denote the under-
lying sampling probabilities for controls and cases, respectively. The prior
distributions on y; are assumed to be independent Dirichlet distributions,
namely, y; ~ Dir(o;) with o; = (g0, Qio1, Qi10, 0%i11), i = 0,1. Through a
multinomial-Dirichlet conjugate analysis, the posterior distribution on 7; can
then be easily derived in closed form as a Dirichlet distribution with updated
parameters, namely, ¥;|n; ~ Dir(n; + @;), where n; = (nioo, nio1,i10,1i11),
i =0, 1. Therefore, the posterior distribution of Bgg can be obtained using

extremely inexpensive computation.

Next, Mukherjee et al. [22] proposed to reflect prior belief on the assump-
tion of GEI in the control population only through prior specification. More
specifically, they defined the strength of the Dirichlet prior on the control
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and case probability vector as s; = Z}:o Z/izo o;jx for i = 0,1. Different
choices of sy and s induce different variances on the logarithm of the gene-
environment associations in controls and cases, respectively. Also, to make
the corresponding prior distribution on Bgg roughly centered around zero,
it was implicitly assumed in [22] that the two independent Dirichlet prior
distributions are symmetric. For reflecting different degrees of belief on the
assumption, the two parameter vectors, ¥, and y,, are treated asymmetrically
in the prior specification. The prior distribution on ¥, is chosen to be fairly
non-informative, say a; = (5,5,5,5). On the other hand, the Dirichlet prior
on ¥, can have varying strength s¢ to induce different prior variance around

the assumption of independence (among controls).

However, the above two methods both focus on the other form of the GEI as-
sumption that asserts GEI in the population of controls. This form of the assump-
tion is not very natural, particularly as acquisition of genotype and environmental
exposure are temporally antecedent to the disease. Therefore, we study the method
for relaxing the more natural assumption of GEI within the source population in

the next section.

4.5.2 A generalized Bayesian framework

In this section, we present a generalized Bayesian method that extends the Bayesian
framework developed in Section 4.3 to further incorporate uncertainty around the
GEI assumption.
Now, instead of asserting that p = 1, we model p a priori by a multivariate
log-normal distribution
p ~ InNorm(0, Ggl)’

where the common standard deviation 0, can be specified to reflect different levels
of uncertainty about the GEI assumption. Assuming the priors for other parameters

are the same as before, the density of the prior distribution of ¥ now becomes
y K d(log(px)/o,
T(y) =Cz- ()" - T 4(log(pi)/o5)

AH{w eV},
11 o {ve¥}
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where d(-) is the density function of the standard normal distribution. Note that
the parameter space for y is now enlarged from ¥; to the entire W. The posterior
density of ¥ now becomes
_ K d(log(px)/o
py) =Cs- (o)™ -] —p)

=~
—_

[Tk LT Oonw)™ TTjc - 1w &3
k k ik

Computationally, we need to extend the importance sampling algorithm to also

have p proposed from its prior distribution. Moreover, since the GEI assumption

may not hold, it would be better to use a standard uniform distribution as the pro-

posal distribution for 8. Thus, we end up with a proposal distribution for y with

the following density function

K d(lo o n .
Q(W):CQ'(YOH)HOH%'H—( &(p)/00) 'H?’ulijck [T
ik !

k=1 Pk
We can then compute the relative importance weight

I [Yore (W)™
[Yo1+]""*

W= 1(yeV¥)

for each value of y generated from the proposal distribution and renormalize all
weights to have them sum up to one. As before, we want the effective sample size
of the weighted sample greater than some threshold to ensure a good approximation

to the posterior distribution.

4.6 Another simulation study

In this section, we conduct another simulation study to compare the performance of
the three methods discussed in Section 4.5 in situations where the GEI assumption
may or may not hold.

We still focus on the set-up with a binary genotype and a binary environmental
exposure. We assume that the marginal distributions for genotype and environmen-
tal exposure are kK = (0.95,0.05) and 6 = (0.6,0.4), respectively. The coefficients
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in the logistic regression model are: By = logit 0.2, B =1log1.5, Bg =1log1.2, and
Bec =log3. We now consider three different scenarios: (a) p =1, (b) p = 1.1, and
(c) p = 3, corresponding to no violation, a slight violation, and a serious violation
of the GEI assumption, respectively. For each scenario, we generate 2000 datasets
of 500 cases and 500 controls.

We analyze each generated case-control dataset using the empirical Bayes (EB)
method, the full Bayesian (FB) method with three different choices of sy, the
Bayesian GEI (BGEI) method , and the generalized Bayesian (gBGEI) method
with two different choices of o,. For three FB methods, we fix the case Dirichlet
parameter & as (5,5,5,5) with s; = 20, and set the control Dirichlet parameter
oy at (5,5,5,5), (20,20,20,20), and (80,80,80,80), corresponding to values of
so at 20 (FB-20), 80 (FB-80), and 320 (FB-320), respectively. This setting was
also used in [22]. For two gBGEI methods, the standard deviation o), is set at 0.1
(gBGEI-0.1) and 1.0 (gBGEI-1.0) for small and great uncertainty around the GEI
assumption, respectively. Table 4.4 summarizes our simulation results in three in-
dices: the bias and the mean squared error of the estimators as well as the coverage
probabilities of the 95% credible/confidence intervals.

When the GEI assumption holds or is only slightly violated, our proposed
Bayesian methods all result in unbiased or nearly unbiased estimators. The cov-
erage probabilities of the 95% credible intervals are all maintained at the nominal
level. Moreover, the BGEI method produces the smallest mean squared error, al-
though the mean squared error of the gBGEI-0.1 estimator is very close. On the
other hand, the EB estimator is slightly biased and the three FB estimators are all
greatly biased. The coverage probabilities of the 95% credible/confidence intervals
resulting from the EB method and the three FB methods are all lower than the nom-
inal level. Lastly, the performance of the FB method gets worse (more bias, greater
mean squared error, and lower coverage probability) with stronger prior belief on
the assumption of GEI in the control population.

When the GEI assumption is seriously violated, both the BGEI method and
the gBGEI-0.1 method perform poorly as they strongly rely on the validity of the
GEI assumption. The gBGEI-1.0 method performs much better as it allows more
uncertainty around the GEI assumption. On the other hand, the performance of

the EB method is relatively invariant to the violation of the GEI assumption, as it
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Table 4.4: Comparison between different methods in terms of the bias and
the mean squared error (MSE) of the estimators of Bg, and the coverage
probability of the 95% credible/confidence intervals in situations where
there is no violation (p = 1), a slight violation (p = 1.1), and a serious
violation (p = 3) of the GEI assumption

Bias MSE Coverage
p=1 EB -0.116 0.318 0.910
FB-20 -0.357 0.299 0.935
FB-80 -0.665 0.542 0.658
FB-320 -0.785 0.695 0.340
BGEI -0.001 0.275 0.968
gBGEI-0.1 -0.004 0.278 0.966
¢BGEI-1.0 -0.016 0.343 0.964
p=1.1 EB -0.072 0.276 0.932
FB-20 -0.326 0.290 0.933
FB-80 -0.575 0.435 0.750
FB-320 -0.658 0.516 0.518
BGEI 0.089 0.263 0.959
gBGEI-0.1 0.080 0.267 0.960
gBGEI-1.0 0.019 0.353 0.952
p=3 EB 0.249 0.397 0.898
FB-20 -0.203 0.226 0.966
FB-80 -0.141 0.125 0.980
FB-320 -0.034 0.086 0.983
BGEI 0.796 0.791 0.489
gBGEI-0.1 0.760 0.741 0.557
gBGEI-1.0 0.074 0.360 0.961

automatically adjusts itself to rely less on the assumption. Finally, it is interesting
to see that the FB methods work surprisingly well for this setting. The performance

of the FB method gets better with stronger prior belief on the assumption of GEI
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in the control population. However, the true gene-environment odds ratio in the
control population is about 1.8, which does not justify the good performance of the
FB method. Therefore, we feel that the performance of the FB method can be hard
to predict.

4.7 Data analysis

We now examine two datasets to illustrate our methods. One dataset, taken from
Hwang et al. [15], reveals an interaction effect of maternal smoking during preg-
nancy and a Taql polymorphism at the transforming growth factor alpha (TGFa)
locus on oral clefts. In this study, 113 infants with cleft palate were identified
as cases (D = 1) and 281 infants without cleft palate were selected as controls
(D = 0). All subjects were tested to ascertain whether they are carriers (G = 1) or
non-carriers (G = 0) of any rare Tagl alleles. Smoking status during pregnancy,
with £ =1 for smokers and £ = 0 for non-smokers, was obtained by interview.

The other dataset considered concerns the joint effect of NAT2 genotype and
cigarette smoking on bladder cancer, which was first published in Gu et al. [10] and
was later reanalyzed by Gustafson and Burstyn [13]. The dataset consists of 502
cases (D = 1) and 512 controls (D = 0). The two categories of genotype are rapid
(G =0) and slow (G = 1) acetylator. The smoking status in this study is categorized
as either heavy (£ = 1) or never/light (E = 0). Both datasets are summarized in
Table 4.5.

For each dataset, we apply ten estimators to quantify the gene-environment
interaction, including the traditional case-control estimator (TRAD), the seven es-
timators considered in Section 4.6 (EB, BGEI, gBGEI-0.1, gBGEI-1.0, FB-20, FB-
80, FB-320), and another generalized Bayesian estimator with 6, = 3.0 (gBGEI-
3.0). The results are summarized in Table 4.6. We again emphasize that the pro-
posed Bayesian methods address the GEI assumption in the source population, but
the empirical Bayes method and the full Bayesian method concern the GEI assump-
tion in the control population. Given that the oral cleft is a rare disease, however,
the two assumptions are approximately equivalent.

For both datasets, we see some similar patterns. First, the BGEI estimate is

quite different from the TRAD estimate. Also, the gBGEI estimate is closer to
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Table 4.5: Two datasets considered in Section 4.7. One was reported in [15]
concerning the effect of TGF o genotype and maternal smoking during
pregnancy on oral cleft. Genotype is coded as 0 = common Taql allele,
1 = rare Taql allele. Smoking status is coded as 0 = non-smoker, 1 =
smoker. The other was used by [10] to investigate the effect of NAT2
genotype and smoking during pregnancy on oral cleft. Genotype is coded
as 0 = rapid acetylator , 1 = slow acetylator. Smoking status is coded as
0 = never/light, 1 = heavy.

Data from [15] Data from [10]
G=0 G=1 G=0 G=1
E=0 E=1 E=0 E=1 E=0 E=1 E=0 E=1
D=0 167 69 34 11 172 58 230 52
D=1 60 32 12 9 106 83 156 157

the BGEI estimate when the uncertainty around the GEI assumption is weak, and
closer to the TRAD estimate when the uncertainty around the GEI assumption
is strong. Secondly, comparing to the BGEI estimate, the EB estimate is even
more different from the TRAD estimate. Finally, the FB method tends to give the
estimate that is most far away from the TRAD estimate when a very strong prior
strength is assumed.

The two datasets might differ in term of the validity of the GEI assumption. For
the first dataset, the T GF o genotype is probably independent of maternal smoking
during pregnancy, as the EB estimate is very different from the TRAD estimate.
Thus, comparing to the TRAD method, all methods that strongly rely on the as-
sumption yield different point estimates and shorter interval estimates. For the
second dataset, the NAT?2 genotype might not be independent of maternal smoking
during pregnancy, since the estimate resulting from the empirical Bayes method
is less different from the TRAD estimate. Therefore, unlike the first dataset, all

methods produce more similar results.
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Table 4.6: The point and interval estimates of the gene-environment interac-
tion B, for the two datasets considered in Section 4.7, obtained by ten

different methods.
Dataset of [15] Dataset of [10]
Estimate 95% CI Estimate 95% CI

TRAD 0.586 (—0.628, 1.799) 0.651 (0.093, 1.208)
EB 0.374 (—0.628, 1.376) 0.516 (—0.077, 1.110)
BGEI 0.474 (—0.637, 1.598) 0.555 (0.032, 1.114)
gBGEI-0.1 0.484 (—0.607, 1.610) 0.577 (0.044, 1.115)
¢BGEI-1.0 0.552 (—0.663, 1.730) 0.650 (0.095, 1.210)
gBGEI-3.0 0.585 (—0.612, 1.790) 0.650 (0.109, 1.198)
FB-20 0.435 (—0.640, 1.446) 0.626 (0.092, 1.172)
FB-80 0.185 (—0.820, 1.130) 0.580 (0.052, 1.079)
FB-320 0.088 (—0.805, 0.971) 0.496 (0.030, 0.970)

4.8 Conclusion

In this chapter, we have developed a Bayesian framework for analyzing case-
control data under the GEI assumption, and also generalized it to relax the GEI
assumption. We have shown through two real dataset applications that the general-
ized Bayesian method does indeed serve as a compromise between the traditional
case-control method and the proposed Bayesian method exploiting the exact GEI
assumption.

We have seen in Chapter 3 that knowing the disease prevalence in addition to
the GEI assumption can further improve estimation efficiency. This is also true
for the proposed Bayesian methods. Moreover, the proposed Bayesian methods
allow more flexibility to incorporate prior knowledge on the disease prevalence
through an appropriate prior distribution. Therefore, rather than knowing the exact
disease prevalence, any knowledge about the disease prevalence, like the rare dis-
ease assumption, may help improve estimation efficiency. The more concentrated

prior distribution assumed on the disease prevalence, the better efficiency can be
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achieved.

Finally, we have also briefly reviewed the empirical Bayes method and the full
Bayesian method for relaxing the GEI assumption. However, these two methods
both depend on the other form of the GEI assumption that asserts gene-environment
independence in the population of controls. That version of GEI assumption is not
as natural as the GEI assumption considered throughout this thesis. The assump-
tion of GEI in the control population is often justified under the GEI assumption if
the disease is rare. In that case, however, we feel that it would be more appropriate
to directly incorporate the GEI assumption and the rare disease assumption into the
analysis, which can be easily achieved by the proposed Bayesian methods. We ex-
pect that methods exploiting different versions of the GEI assumption would result
in similar estimates if the prior distribution asserts the disease to be very rare. But
some discrepancy could be observed if the prior distribution allows possibility of

the disease prevalence being less extreme.
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Chapter 5

Bayesian Inference in Case-Only
Studies

5.1 Introduction

In this chapter, we study the analysis of case-only data under the GEI assumption
and the rare disease assumption. The case-only design is a special variant of the
standard case-control design, where only data on cases are collected. It exploits the
GEI assumption for studying the gene-environment interaction, assuming that the
disease is rare. This chapter is organized as follows. We first show how to adapt
the Bayesian methods proposed in Chapter 4 for analyzing case-only data. We then
investigate the prior distribution of the systematic bias of the traditional case-only
method under different levels of disease prevalence, while the other assumption
still holds true. Simulation studies are conducted to compare the performance of
the proposed Bayesian methods with the traditional case-only method. Finally, we

apply the proposed Bayesian methods on two real datasets.

5.2 Bayesian case-only methods

We first describe the application of the Bayesian methods developed in Chapter
4 on case-only data, since the case-only study can be viewed as a special type of

case-control study where all control cell frequencies are zeros.
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1 jk

First, the likelihood in terms of y for case-only data is simply L(y) =11, ¥, ik
Next, we still fix p =1 to reflect the GEI assumption, and set the prior distributions
for y, and y; as Dir(1,...,1,K+1) and Dir(1,..., 1), respectively. Moreover, to
reflect the rare disease assumption, we acknowledge that a smooth prior on 8, such
as a Beta distribution putting most of its mass very close to zero, might make more
practical sense. However, for the sake of illustration, we initially assume that 8
is uniformly distributed over (0, V), where v is a threshold slightly greater than
zero that controls the prior belief concerning the rare disease assumption. We will
use both specifications for our data analysis in Section 5.5. In summary, the prior
density () is proportional to (Y94 )% when w € ¥; and 0 < 6 < v, and zero
otherwise. Finally, the posterior density p(y) is:

P =Cy- ()" TIrit - Hyew} 1{0< 6 <v},
Jk

where Cy is a normalizing constant that does not depend on . The interaction
effects are estimated by their posterior means.

Computationally, we still use the technique of importance sampling to nu-
merically represent the posterior distribution. The proposal distribution for y; is
Dir(njp0+1,...,n11x+1). The proposal distribution for ¥, is the same as its
prior distribution, Dir (1,...,1,K+ 1), since ngo; = - -- = ng1x = 0. Lastly, the pro-
posal distribution for 6 is also its prior distribution U(0, V). With these proposal
distribution, it can be easily verified that the density function of the proposal dis-
tribution for y is some constant. Therefore, all proposed values of v, such that
v €W¥rand 0 < 6 < v, are equally weighted.

Next, we discuss the limiting case when we have an infinite amount of case-
only data. In this case, the posterior distribution of case cell probabilities converges
to a point mass at its true value, say ;. Correspondingly, the region of plausible
values of y, where y € ¥/, 0 < 8 < v, and y; = 7}, may be greatly shrunk, leading
to more concentrated distributions of B;. Thus, we can investigate the limiting
posterior distributions (LPDs) of B;’s to gain some insight about how much at
most can be learned from a non-identified model [11]. To obtain the LPDs, we
modify the importance sampling algorithm by having 7y, fixed at its true ¥} in the

importance sampling algorithm.
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Finally, the generalized Bayesian method developed in Section 4.5 is also ap-
plicable for the analysis of case-only data when GEI assumption may be relaxed.
We still model p a priori by a multivariate log-normal distribution with a tuning
parameter O, controlling the degree of uncertainty around the GEI assumption. For
case-only data, the generalized Bayesian method also assigns equal weights to all

proposed values of y such that y € W.

5.3 Bias of the traditional case-only method

In this section, we investigate the relationship between the disease prevalence and
the performance of the traditional case-only method. Particularly, in the case of

binary genetic and environmental factors, we have

Bec = &1 — o, (5.1)

where §; and {j are the logarithm of gene-environment odds ratios in the popula-
tions of cases and controls, respectively. Since () is the target parameter estimated
by the traditional case-only method and fBgg is the parameter of real interest, their
difference {y = {; — Bec measures the systematic bias of the traditional case-only
method.

We examine the prior distributions of {y conditional on different values of 6.
Given a value of 6, we randomly generate 100000 values of y by sampling ¥,
and ¥, from their prior distributions, respectively. We only keep points such that
v € ¥;and 0 < 0 < v, which are more than 95% for all values of 6 considered. We
then calculate the corresponding value of {, and obtain a numerical representation
for its distribution conditional on the given value of 8. Figure 5.1 shows the mean,
accompanied with the 2.5- and 97.5-percentiles, of the prior distribution of |6
for different values of 8. We can see from this figure that some substantial bias can

emerge when the disease is more prevalent than 0.5%.

5.4 A simulation study

We now conduct a simulation study to compare the proposed Bayesian case-only

method with the traditional case-only method. Still, we focus on the case of
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Figure 5.1: The mean and the 2.5- and 97.5-percentiles of the prior distribu-
tions of |0 for different values of disease prevalence 6. Note that a
logarithmic scale is used for the x-axis.

a binary genotype and a binary environmental exposure. We assume that the
marginal distributions for genotype and environmental exposure are k¥ = (0.9,0.1)
and 6 = (0.7,0.3), respectively. We then set the main genetic and environmen-
tal effects to be B = 0 and Bg = log2. Finally, we consider combinations of
two values for By with two values for Bgs. We consider By = logit 0.001 and
Bo = logit 0.01, corresponding to a very rare and a modestly rare disease, respec-
tively. We also consider Bgg = log2 and Bgc = log6, corresponding to a modest
and a strong gene-environment interaction effect, respectively. Thus, we end up
with four parameter settings used in the simulation study, as shown in Table 5.1.
The true disease prevalences corresponding to these parameter settings are 0.14%,
0.16%, 1.4%, and 1.6%, respectively.

We first examine the LPDs of Bgg under these four parameter settings. The
four LPDs are obtained using v = 0.01. Table 5.2 presents the mean, the median,
and the 95% equal tailed credible intervals of the prior distribution and the four

LPDs of Bgg. We can see that the LPDs are indeed much more concentrated than
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Table 5.1: Parameter settings used in the simulation study in Section 5.4.

K 6 Bo Be  Be Bec
¢, (09,0.1) (0.7,0.3) 1logit0.001 0 log2 log2
¢, (09,01) (0.7,0.3) logit0.00l 0 log2 log6
¢ (09,01) (0.7,03) logit0.0l 0 log2 log2
0, (09,01) (0.7,03) logit0.01 0 log2 log6

the prior distribution. More importantly, each 95% LPD credible interval covers

the corresponding true value of Bgg.

Table 5.2: Summary statistics about the prior distribution of Bgg and the
LPDs for case-only data under four parameter settings.

Mean Median 2.5- and 97.5-%iles

Prior -0.016 0.017 (-5.242, 5.053)
LPD under ¢, 0.700 0.693 (0.552, 0.898)
LPD under ¢, 1.805 1.788 (1.702, 1.979)
LPD under ¢ 0.682 0.676 (0.540, 0.858)
LPD under ¢, 1.718 1.703 (1.611, 1.935)

Next, we compare the performance of the Bayesian and the traditional case-
only method in estimating g with respect to the mean squared error (MSE) of
the estimators, the coverage probability and the average length of the 95% confi-
dence/credible intervals, based on 10000 datasets of 1000 cases. For the Bayesian
method, we consider four different values, v € {0.001,0.003,0.01,0.03}, for the
upper bound of the prior distribution on 6. Our simulation results are summarized
in Table 5.3. On one hand, when we are very confident that the disease is really
rare (1« = 0.001,0.003), the Bayesian interval estimates are very similar to the tra-
ditional interval estimates. On the other hand, when we are less certain that the
disease is very rare, the Bayesian interval becomes wider to increase the cover-

age probability of the 95% credible interval. Moreover, we find that the Bayesian
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method tends to be over-conservative. Thus, as we can see from the results for ¢,,
even when the prior belief on the disease prevalence slightly deviates from the truth
(v =10.01 for 8 =0.016), the coverage probability of the 95% credible intervals is
still above the nominal level, and the average length of the intervals is comparable
to that of the traditional method (0.809 versus 0.711).

Table 5.3: Comparison of the performance between the Bayesian and the tra-
ditional case-only method with respect to the mean squared error (MSE)
of the estimators, the coverage probability and the average length of the
95% confidence/credible intervals, based on 10000 dataset of 1000 cases.

v MSE Coverage Length

0, Traditional 0f 0.034 0.951 0.717
Bayesian 0.001 0.034 0.953 0.726

0.003 0.034 0.958 0.747

0.01 0.034 0.973 0.824

0.03 0.036 0.994 1.090

0, Traditional 0f 0.033 0.950 0.715
Bayesian 0.001 0.033 0.953 0.721

0.003 0.033 0.958 0.741

0.01 0.033 0.972 0.811

0.03 0.036 0.990 1.052

05 Traditional of 0.035 0.943 0.719
Bayesian 0.001 0.035 0.945 0.727

0.003 0.035 0.953 0.749

0.01 0.035 0.974 0.826

0.03 0.035 0.995 1.094

@y Traditional 0f 0.040 0.917 0.711
Bayesian 0.001 0.041 0.922 0.718

0.003 0.040 0.932 0.738

0.01 0.039 0.961 0.809

0.03 0.036 0.994 1.053

T The traditional method can be conceptually viewed as assuming v = 0.
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Finally, we investigate the effect of sample size by considering four different
choices, n; € {500,1000,2000,5000}, under the parameter setting ¢,. For the
Bayesian method, we set v = 0.03. The coverage probabilities of the 95% confi-
dence/credible intervals, based on 10000 datasets, are reported in Table 5.4. We
observe that the two methods behave differently as the sample size increases. For
the Bayesian method, the coverage probability is increasing and approaching 1 as
the sample size gets larger. On the other hand, the traditional case-only performs
worse as the sample size increases. Technically, as sample size goes to infinity, the
95% confidence interval of the traditional case-only method converges to a point
mass at the true log odds ratio among cases, and thus its coverage probability con-
verges to zero unless there is no systematic bias. In contrast, Gustafson [12] has
shown that, in the partially identified context, the large-sample limit of frequentist
coverage for Bayesian (1 — @) credible intervals is one over a large subset of the
parameter space, and zero over its complement, where large means having prior
probability 1 — a.

Table 5.4: The coverage probabilities of the Traditional and the Bayesian

95% confidence/credible intervals for different case-only sample sizes
ny, based on 10000 datasets.

n; =500 n; = 1000 n; = 2000 nyp = 5000
Traditional 93.1% 91.2% 87.9% 77.5%
Bayesian 98.6% 99.6% 99.9% 100.0%

5.5 Data analysis

We consider two real datasets for the application of the proposed Bayesian meth-
ods. One example concerns a binary environmental exposure and the other con-

cerns a four-category environmental exposure.

5.5.1 Analysis of colorectal cancer data

The first dataset is from a case-control study concerning the molecular epidemiol-

ogy of colorectal cancer (MECC), which was previously used by Mukherjee et al.
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[22]. We used the part of data concerning the interaction effect of NAT 2 phenotype
(slow vs. fast) and smoking status (never vs. ever). The observed cell counts are
provided in Table 5.5.

Table 5.5: Case-control data concerning the interaction of NAT2 genotype
(slow vs. fast) and smoking status (never vs. ever) on colorectal cancer.

Colorectal Cancer (No) Colorectal Cancer (Yes)
NAT2 (slow)  NAT?2 (fast) NAT2 (slow)  NAT2 (fast)
Smoke (never) 665 437 623 410
Smoke (ever) 584 285 475 277

The traditional case-only method gives an estimated interaction effect of —0.121
with a 95% confidence interval of (—0.315,0.073), and the traditional case-control
method results in an estimated interaction effect of 0.177 with a 95% confidence
interval of (—0.092,0.445). We can see that the traditional case-only method may
be misleading in this data example, since its 95% confidence interval has little
overlap with the case-control 95% confidence interval.

We now apply the proposed Bayesian case-only method to this dataset. We
assume that the prevalence of colorectal cancer is less than 1%, i.e., the prior dis-
tribution on 6 is 6 ~ Unif(0,0.01). The posterior mean of Bg¢ from the proposed
Bayesian method is —0.118, with the 95% credible interval being (—0.357,0.124).
We also consider a more realistic prior distribution for the prevalence of colorectal
cancer, which is 6 ~ Beta(5,995). The result is very similar, with the estimated
posterior mean being —0.121 and the 95% credible interval being (—0.358,0.117).
Whatever prior is used for 6, we see that the proposed Bayesian method leads
to more conservative credible intervals that are slightly more overlapped with the
case-control confidence interval.

Finally, we apply the generalized Bayesian case-only method to this dataset.
We again use Beta(5,995) as the prior distribution for disease prevalence. We first
consider the setting 0, = 0.05 to mimic the scenario that the GEI assumption might
only be slightly violated. The estimated posterior mean is —0.124 and the 95%
credible interval is (—0.382,0.132). Also, we consider the scenario where the GEI

92



assumption might be moderately violated with 6, = 0.5. In this case, the estimated
posterior mean is —0.123 and the 95% credible interval is (—1.157,0.900). As
expected, the length of the 95% credible interval increases if we allow for the

possibility of a stronger violation of the GEI assumption.

5.5.2 Analysis of ovarian cancer data

The second dataset is from a population-based case-control study of ovarian cancer
reported by Modan et al. [20]. This study assessed whether the use of oral contra-
ceptives and multiparity lower the risk of ovarian cancer in carriers of a BRCA1/2
mutation, as they do in non-carriers. Modan et al. [20] assumed that the the status
of BRCA1/2 mutations and the reproductive risk factors are independent in con-
trols, and did not provide a detailed breakdown. Thus, only data from the 832
cases were used. Our analysis focused on the interaction between the parity and
the status of BRCA1/2 mutations, with data summarized in Table 5.6.

Table 5.6: Case-only data concerning the number of births and the status of
BRCA1/2 mutations for 832 women with ovarian cancer.

Number of Births
0 1-2 3-4 >5
BRCA 1/2 NonCarriers 68 248 199 77
BRCA 1/2 Carriers 20 119 90 11

It was reported by Chatterjee and Carroll [3] that the estimate of the prevalence
of ovarian cancer in the underlying population is about 0.00087. Thus, we set the
threshold of the disease prevalence 6 in the Bayesian method to be 0.2%. Making
the O-birth group the reference group, the estimated log odds ratios of the Bayesian
method (and the associated 95% credible intervals) are 0.470 (—0.062,1.023) for
the group of 1-2 births, 0.413 (—0.141,0.980) for the group of 3-4 births, and
—0.702 (—1.521,0.079) for the group of more than 4 births. Similar to the first data
analysis example, we also consider a smooth prior 6 ~ Beta(1,999). This yields
estimated log odds ratios of 0.476 (—0.068,1.042) for the group of 1-2 births,
0.419 (—0.143,1.002) for the group of 3-4 births, and —0.698 (—1.507,0.093) for
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the group of more than 4 births. Finally, we present the corresponding estimates
and the associated 95% confidence intervals resulting from the traditional case-only
method for comparison, which are 0.490 (—0.055,1.034), 0.430 (—0.127,0.988),
and —0.722 (—1.527,0.083), respectively. We see that with a strong prior belief
asserting that the disease is very rare, the proposed Bayesian method gives very
similar results to those from the traditional case-only method. Thus, the proposed
Bayesian method can be viewed in some sense as an extension of the traditional
case-only method with more flexibility.

Again, we also apply the generalized Bayesian case-only method to this dataset.
We use Beta(1,999) as the prior distribution for disease prevalence. When the GEI
assumption might only be slightly violated with 6, = 0.05, the estimated log odds
ratios (and the associated 95% credible intervals) are 0.472 (—0.078,1.051) for
the group of 1-2 births, 0.413 (—0.152,0.992) for the group of 3-4 births, and
—0.703 (—1.507,0.094) for the group of more than 4 births. When we assume
0p = 0.5 to allow a moderate violation of the GEI assumption, the estimated log
odds ratios (and the associated 95% credible intervals) are 0.466 (—0.647,1.579)
for the group of 1-2 births, 0.415 (—0.729,1.562) for the group of 3-4 births, and
—0.698 (—1.975,0.528) for the group of more than 4 births. Again, permitting
a moderate violation of the GEI assumption leads to substantially wider interval

estimates.

5.6 Conclusion

We have investigated the performance of the traditional case-only method with
different levels of disease prevalence, assuming that the genetic factor and the en-
vironmental exposure are independent in the target population. We have found
some empirical evidence that, for most realistic parameter settings, the traditional
case-only method works quite well for diseases less prevalent than 0.1%. When the
disease prevalence is greater than 0.5%, however, we begin to see some substantial
bias, and thus the traditional case-only method should be used with caution.

We have shown that the Bayesian framework for analyzing case-control data
developed in Chapter 4 is readily applicable for analyzing case-only data. Partic-

ularly, the Bayesian case-only method allows the flexibility of incorporating dif-
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ferent prior beliefs on disease prevalence. Compared to the traditional case-only
method, the Bayesian case-only method leads to interval estimates that are much
less likely to miss the true value if a correct, or even slightly incorrect, prior belief
on disease prevalence is assumed. Moreover, we have seen from our simulation
studies and data examples that, if we are confident that the disease is indeed very
rare, the Bayesian case-only method gives almost identical results to the traditional
case-only method. Thus, the proposed method can be viewed as a generalization
of the traditional case-only method, which improves the quality of inference by
taking expert opinion or previous knowledge into consideration.

Finally, we have the generalized Bayesian method which relaxes the GEI as-
sumption and thus can be used to address situations when the GEI assumption
might be violated. We have seen that allowing for the possibility of a moderate
violation of the GEI assumption leads to a substantial increase in the length of
the 95% credible interval. This reflects the fact that the case-only method is very
sensitive to the violation of the GEI assumption.
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Chapter 6

Future Work

In this thesis, we have studied the methods for analyzing case-control data that
exploit the GEI assumption from both the frequentist and Bayesian perspective.
Though presented in the context of gene-environment interaction studies, our meth-
ods can be applied to other case-control studies concerning two explanatory vari-
ables that are independent of each other. We have also developed the constrained
maximum likelihood estimation for partially identified models, which may even
have a broader application to solve other problems. In this chapter, we briefly

describe a few possible directions for future research.

1. Partially identified models with no transparent reparameterization

In Chapter 2, we assume that the partially identified model can be under-
stood through a transparent re-parameterization that separates the identifi-
able parameters from non-identifiable parameters. Unfortunately, such a
re-parameterization does not always exist. Gustafson et al. [14] gives two
examples that do not admit a transparent re-parameterization. We suspect
that the established theoretical results are still valid even when a transparent

re-parameterization is not available. However, a rigorous proof is needed.

2. Numerical algorithm directly incorporating inequality constraints

In Chapter 3, we use a two-step numerical algorithm for finding the GEI-
constrained maximum likelihood estimate with unknown disease prevalence,

where the second step of one-dimensional grid search is performed when the
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estimate found by the first step breaks inequality constraints. That algorithm
works reasonably well and suffices for our research problem, as our focus
is not developing the best numerical algorithm. However, more elegant and
efficient numerical algorithms that directly incorporate inequality constraints

in each iteration may be desired.

. Reduced disease risk model for the Bayesian framework

In Chapter 4, we only propose the Bayesian method for a saturated disease
risk model. One may also want to extend that for a reduced disease risk
model. With a reduced model and the GEI assumption, it can be shown that
(6,P, %00, %10, Y011, Y100, Y101, Y110, Y111) Serves as another parameterization
of the model. A similar Bayesian framework can be developed for a reduced

model based on this new parameterization.

. Continuous environmental exposure

In most gene-environment interaction studies, the environmental factors of
interest are usually categorical variables with a few categories. Yet, there
are situations where a continuous environmental exposure is of interest. In
that case, we may convert a continuous variable to a categorical variable by
grouping values, based on empirical quantiles for example. Hopefully, the
loss in efficiency due to categorization can be minimized by having many,
say ten, categories, and will be well compensated by the efficiency gain of
exploiting the GEI assumption. More research can be conducted to look into

this matter.
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Appendix A

The Forms of Some Vectors and
Matrices

We first define notations for two kinds of auxiliary matrices. Let I; denote the
identity matrix of size s, E,; denote the s x ¢ all-ones matrix, and O, denote the
§ X t zero matrix.

(a) The score function of the log-likelihood:
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where, fori =0, 1,

1
L0 - 0
Bg,) _ 1 Y02 + EK,K
n 0 Yioo
1
0 0 Yik
(c) The Jacobian of g(&) with respect to ¥:
(1-6)-Jf
Je =
6-J7
where
—1o-Ig
I =1 —(o1,...,wk) | —Eaks11 x (11, k).
oo - Ix

(d) The Jacobian of g(&) with respect to 0:

dg dgk
Ké* (89,789 ,
where, fork=1,...,K,

d
iek = (Y100 — Y000) Lk + (Y1 1k — Yo1x) 0o — (Yiok — Yook) 110 — (Y110 — Y010) Lok-

(e) The Jacobian of h(), the constraints imposed by assuming a reduced model,
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with respect to ¥:
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where, fori =0, 1,

2 3
Yio1 Yio1
1
Yio2
_(_1\i _ 1
Xl - ( 1) 0 Yi03
0
and
_1r _2
Yit0 Yi0
2 3
Yi Yit1
1
; Y2 0
Y = (_1)
0 _ 1
Y3
0

104

Ok i1k-1
Ok 151
Xo
Oxi1x-1
X
Ok i1k-1
K
Yiot
0
0
1
0 Yiok
K-l
Yit0
K
Yit1
0
0
1
0 Yik

Ok k-1
Yo
Ok k-1
Y,



	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Analysis of case-control data
	1.2 Analysis of case-only data

	2 The Constrained Maximum Likelihood Estimation with Partially Identified Models
	2.1 Introduction
	2.2 Statistical problem
	2.3 The constrained maximum likelihood estimation
	2.3.1 The constrained maximum likelihood estimate
	2.3.2 Asymptotic distributions
	2.3.3 Numerical algorithm

	2.4 Example problem and simulation study
	2.5 Just- and over-identified situations
	2.6 Conclusion

	3 The Benefit of Exploiting the GEI Assumption for Analyzing Case-Control Data
	3.1 Introduction
	3.2 Formulation of the problem
	3.3 A reparameterization of the model
	3.4 Estimation with known disease prevalence
	3.4.1 Theoretical properties of the estimator
	3.4.2 Numerical algorithm

	3.5 Estimation with unknown disease prevalence
	3.5.1 Parameter identification
	3.5.2 Theoretical properties of the estimator
	3.5.3 Numerical algorithm

	3.6 Extension: a reduced logistic model
	3.7 Efficiency gain
	3.7.1 The special binary case
	3.7.2 The saturated model
	3.7.3 The reduced model

	3.8 Simulation studies
	3.8.1 The special binary case
	3.8.2 The saturated model
	3.8.3 The reduced model
	3.8.4 The violation of the GEI assumption

	3.9 Data analysis
	3.10 Conclusion

	4 Bayesian Inference in Case-Control Studies
	4.1 Introduction
	4.2 Another reparameterization
	4.3 Bayesian framework
	4.4 A simulation study
	4.5 Relaxation of the GEI assumption
	4.5.1 Two established methods
	4.5.2 A generalized Bayesian framework

	4.6 Another simulation study
	4.7 Data analysis
	4.8 Conclusion

	5 Bayesian Inference in Case-Only Studies
	5.1 Introduction
	5.2 Bayesian case-only methods
	5.3 Bias of the traditional case-only method
	5.4 A simulation study
	5.5 Data analysis
	5.5.1 Analysis of colorectal cancer data
	5.5.2 Analysis of ovarian cancer data

	5.6 Conclusion

	6 Future Work
	Bibliography
	A The Forms of Some Vectors and Matrices

