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Abstract

One of the primary, long-term goals in high-energy astrophysics is the mea-

surement of macroscopic parameters that constrain the equation of state

for compact stellar objects. For neutron stars, known to be composed of

the densest matter in the Universe, measurements of their masses and sizes

are of considerable importance due to the poorly understood processes that

govern their interiors. Measurements of relativistic “post-Keplerian” effects

in binary systems can be used to significantly constrain viable equations of

state, test modern theories of gravitation, verify binary-evolution models that

predict correlations between certain binary parameters, and determine the

Galactic neutron-star mass distribution that is expected to reflect different

supernovae mechanisms and evolutionary paths.

In this thesis, we use established pulsar-timing techniques to analyze sig-

nals from radio pulsars in 25 binary systems, as well as from one pulsar in

a hierarchical triple system, in order to detect perturbations from Keplerian

motion of the bodies. We characterize observed relativistic Shapiro timing

delays to derive estimates of the component masses and inclination angles in

14 pulsar-binary systems, and measure a large number of secular variations

due to kinematic, relativistic and/or third-body effects in the majority of

binary systems studied here. We find a wide range of pulsar masses (mp),

with values as low as mp = 1.18+0.10
−0.09 M� for PSR J1918−0642 and as high

as mp = 1.928+0.017
−0.017 M� for PSR J1614−2230 (both 68.3% credibility), and

make new detections of the Shapiro-delay signal in four binary systems for
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the first time. In the relativistic PSR B1534+12 binary system, we derive

an accurate and precise rate of geodetic precession of the pulsar-spin axis –

due to secular variations of electromagnetic pulse structure – that is consis-

tent with the prediction from general relativity. In the PSR B1620−26 triple

system, we discuss ongoing efforts to simultaneously model both “inner”

and “outer” orbits and tentatively measure secular variations of all “inner-

orbital” elements; we show that these variations are likely due to third-body

interactions between the smaller orbit and outer companion, which can even-

tually be used to constrain orientation angles and possibly the pulsar mass

in the near future.
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Preface

All text, figures, and results presented in this dissertation are original prod-

ucts of the author, E. Fonseca, under the supervision of I. H. Stairs. Nonethe-

less, much of the pulsar data presented in this thesis were obtained in col-

laboration with many observational astronomers:

• In Chapter 2, the successful proposal for the ongoing NANOGrav “P2945”

observing program at the Arecibo Observatory was written by E. Fon-

seca, using simulated results provided by J. A. Ellis, X. Siemens, J.

Cordes, and D. R. Madison. The P2945 data presented in Figure 2.2

were collected by over 15 pulsar astronomers, including E. Fonseca. A

list of the observers for the Arecibo and GBT timing data is given in

the “Author Contributions” section of the study published by Arzou-

manian et al. (2015b).

• In Chapter 3, all text, results and figures were generated by E. Fonseca

– the principal investigator of the project – and accepted for publica-

tion in the Astrophysical Journal in September 2016 (see Fonseca et al.,

2016). The interpretation of observed secular variations and analysis

of Shapiro timing delays were performed by E. Fonseca, with guidance

and insight provided by I. H. Stairs, D. J. Nice, T. T. Pennucci, J. A.

Ellis, S. M. Ransom, and P. B. Demorest. The PAL2 Bayesian soft-

ware discussed and used in this chapter was developed by J. A. Ellis.

A portion of the data set was obtained for a targeted observing pro-

gram devised and described by Pennucci (2015). The data presented
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in this chapter were collected by over 15 pulsar astronomers, including

E. Fonseca, as described in the “Author Contributions” section of the

submitted study conducted by Fonseca et al. (2016). We are grateful

for useful comments on the manuscript sent by C. Bassa, and for useful

discussion with C. Ng and P. C. C. Freire.

• In Chapter 4, all GUPPI data collected after the start of the 2012

year were obtained through successful proposals led by E. Fonseca,

and collected by E. Fonseca, I. H. Stairs and Z. Arzoumanian. Earlier

observations with the Arecibo and NRAO facilities were performed by

S. E. Thorsett and F. Camilo. Observations collected with the Effels-

berg and Lovell telescopes were conducted by a large number of people

over many years: the observations from the Effelsberg telescope were

maintained, processed and provided by N. Caballero and M. Kramer;

and data collected at Jodrell Bank were maintained, processed and

provided by A. Lyne and B. Stappers.

• In Chapter 5, the majority of results and text in Sections 5.2 and

5.3 were first presented by Fonseca et al. (2014), which was based on a

M. Sc. thesis written by E. Fonseca. However, the PUPPI observations

presented in Section 5.4 – successfully proposed for by E. Fonseca, I .H.

Stairs and S. E. Thorsett – are processed and analyzed for the first time

in this dissertation.
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Chapter 1

Introduction

This dissertation is set to be completed nearly fifty years after the discov-

ery of radio pulsars made by Jocelyn Bell-Burnell (and first summarized by

Hewish et al., 1968). The discovery itself was a decisive moment in the

history of physics and astronomy as it confirmed the existence of neutron

stars – tiny, compact stars comprised mostly of neutrons that are supported

against gravitational collapse by quantum-mechanical degeneracy pressure

and nuclear interactions – and demonstrated that rotating neutron stars with

beamed radiation along their magnetic poles could be observed at radio fre-

quencies as pulsars. Over 2,500 pulsars are currently known to reside in the

Galaxy, according to the catalog maintained by the Australia Telescope Na-

tional Facility (ATNF; Manchester et al., 2005)1; the number continues to

grow as large-scale surveys search for them with increasing sensitivity (e.g.

Manchester et al., 2001; Coenen et al., 2014). In the five decades since their

discovery, pulsars have repeatedly been used to directly address open prob-

lems in physics and astronomy; they continue to yield game-changing results

with exquisitely high precision. Indeed, two Nobel Prizes in physics have so

far been awarded for results obtained by studying pulsars: one Prize2 for the

1http://www.atnf.csiro.au/people/pulsar/psrcat/
2http://www.nobelprize.org/nobel_prizes/physics/laureates/1974/
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discovery of pulsars; and a second Prize3 for the confirmation that gravita-

tional waves exist in Nature using pulsars in relativistic binary systems.

As shown in all subsequent chapters of this thesis, radio pulsars in gravit-

ationally-bound orbital systems serve as probes of gravitation and binary-

formation mechanisms. Many aspects regarding the evolution of their pro-

genitor orbits can be inferred from precise measurements of the five basic

Keplerian orbital parameters and the observed spin properties (see Lorimer,

2008, for a review). Pulsars within relativistic binary systems further ex-

hibit a variety of “post-Keplerian” (PK) effects that can be used to measure

additional parameters of each system, such as the binary-component masses

and system orientation (Damour & Deruelle, 1985, 1986). PK measurements

offer uniquely powerful constraints on the internal structure of ultra-compact

objects (e.g. Lattimer & Prakash, 2004) and the inferred mass distribution

of the neutron-star population (Thorsett & Chakrabarty, 1999; Özel et al.,

2012; Kiziltan et al., 2013). Binary radio pulsars provide a desirable environ-

ment to test gravitational theory and understand late-stage stellar evolution

with high precision.

The purpose of this doctoral thesis is to present results obtained from

detailed analyses of radio pulsars in binary systems. In this introductory

chapter, we present an overview of the current physical paradigm of pul-

sars, the phenomena that affect radio-frequency observations of pulsars, and

general analysis techniques that are employed in all projects discussed in

subsequent chapters. This context is necessary for the interpretation of re-

sults presented throughout the dissertation. In Section 1.1, we provide a

brief summary of the current understanding of pulsars as neutron stars, gen-

eral pulsar properties, and a brief overview of the evolution of pulsars in

binary systems. In Section 1.3, we outline the procedure for modeling pul-

sar data that is used for all radio pulsars studied below. In Section 1.4, we

explicitly discuss the models used to describe binary motion for eccentric

3http://www.nobelprize.org/nobel_prizes/physics/laureates/1993/
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and nearly-circular pulsar-binary systems. In Section 1.2, we briefly discuss

the observing systems used over the years to collect the pulsar data we use

in the subsequent chapters of this dissertation. In Section 1.5, we discuss

the relativistic and geometric phenomena that can be measured using binary

pulsars and the information that can be learned from modeling these effects.

In Section 1.6, we summarize the information presented in this chapter and

briefly outline the content of the following chapters presented in this thesis.

1.1 The Physics and Phenomenology of Pul-

sars

All known pulsars in our Galaxy collectively span a wide range of pulse

periods, with the smallest spin periods on the order of 1 ms. Observations of

individual radio pulsars yield unique parameters that describe each neutron

star’s spin properties, the tenuous interstellar medium along the observer’s

line of sight to the pulsar, and any kinematic terms associated with secular

or orbital motion. However, an evolving census of these parameters for the

Galactic pulsar population has allowed for a qualitative picture of a pulsar

to be formed with wide acceptance in the astrophysical community. In this

section, we describe the general picture of a pulsar, expected spin properties

of radio pulsars that will be exploited throughout this thesis, and an overview

of pulsars in binary systems. We reserve discussion of the quantitative models

that describe the various physical effects observable using pulsars for Section

1.3.

1.1.1 Pulsars are Neutron Stars

The theoretical discovery of neutron stars was first made by Baade & Zwicky

(1934) shortly after the discovery of the neutron in 1932 by James Chadwick.

Walter Baade and Fritz Zwitcky argued that supernova explosions generally

3



represent the transition from a fusion-powered star to a degenerate object

that is mostly composed of neutrons. Pulsars therefore represent the rem-

nants of old, massive stars that have aged through the branches of stellar

evolution and ultimately suffered extensive (but not complete) gravitational

collapse. The association of pulsars with neutron stars was first made in

the discovery study undertaken by Hewish et al. (1968), though radially-

pulsating white dwarfs could have also explained their observations at the

time. Shortly after this discovery, the neutron-star picture was solidified with

subsequent discoveries of radio pulsars at the heart of the Crab and Vela neb-

ulae (Staelin & Reifenstein, 1968; Large et al., 1968), which both have pulse

periods far smaller than the physically allowed pulsation rates for compact

objects. The mechanisms proposed by Pacini (1967) and Gold (1968), which

accounted for observed high-energy radiation at the center of supernova rem-

nants as well as the range and regularity of pulse periods known at the time,

quickly established pulsars are rotating neutron stars.

Initial calculations of the internal structure for neutron stars were first

performed by Oppenheimer & Volkoff (1939), who considered a cold Fermi-

Dirac gas while neglecting thermal and nuclear sources of pressure; they

predicted that such objects must have masses around 0.7 M� and be very

small in size, with radii R ∼ 10 km. Modern calculations that use numerical

supercomputing and account for repulsive nuclear forces predict that neutron

stars can have a maximum mass somewhat less than 3 M�, depending on

the non-nucleonic composition under consideration, before undergoing com-

plete gravitational collapse into a black hole (e.g. Kiziltan et al., 2013). The

maximum mass for neutron stars therefore depends on the equation of state

(EOS) that governs their internal structure (e.g. Lattimer & Prakash, 2015).

Indeed, one of the driving motivations for studying pulsars in binary systems

is to determine the masses of the observed neutron stars, which can be used

to place constraints on viable EOSs (e.g. Özel & Freire, 2016).
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1.1.2 A “Lighthouse” in the (Cosmic) Darkness

The conventional model of a pulsar illustrates a highly-magnetized neutron

star that emits cone-shaped beams of radiation at radio wavelengths along

its magnetic poles. A small region centered on each polar cap is threaded

by open magnetic-field lines which accelerates charged plasma away from

the surface of the pulsar; the charged plasma produces photons during this

acceleration into a conic area. The extreme electromagnetic fields around

the vicinity of a neutron star produce a nebulous sphere of charged par-

ticles that co-rotates with the compact object, generally referred to as a

“magnetosphere” (Goldreich & Julian, 1969; Sieber & Wielebinski, 1973).

Despite nearly five decades of pulsar research, there is still no theoretical

framework that fully describes the broad-band, frequency-dependent, lumi-

nous radio emission, though the strong external magnetic fields are expected

to play an integral role in their production (e.g. Rankin, 2015, and references

therein). Modern research in magnetosphere structure seeks to obtain solu-

tions for non-idealized electromagnetic fields and radiation mechanisms (e.g.

Kalapotharakos et al., 2012), while accounting for the implied changes of

magnetospheric properties observed in “intermittent” pulsars (e.g. Kramer

et al., 2006a; Lorimer et al., 2012).

Radio pulsars are observed to be highly-polarized sources, with large de-

grees of linearly-polarized intensity (L) and comparatively weaker circularly-

polarized emission (V ). Along with the Stokes Q and U polarization param-

eters of the observed radio emission, pulsar signals can be generally repre-

sented by the Stokes vector ~S = (I,Q, U, V ), where I ≥
√
Q2 + U2 + V 2

is the total intensity of the pulsar signal and L =
√
Q2 + U2. If the entire

polarization state is well measured, the polarization position angle (Ψ) can

be computed to be

Ψ =
1

2
arctan

(
U

Q

)
. (1.1)
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and is a function of the phase of pulsar rotation (φ). Radhakrishnan & Cooke

(1969) developed a model that explains smooth, swing-like variations in Ψ as

a swing of the plane of linear polarization that is tied to the magnetic field

lines, assuming that the magnetic field is dipolar. This model of polarization

orientation is generally referred to as a rotating vector model (RVM), and the

assumption of dipolar geometry relates Ψ to intrinsic geometric parameters

that describe the relative orientation of the spin and magnetic axes of the

pulsar:

tan(Ψ−Ψ0) =
sinα sin(φ− φ0)

sin(α + β) cosα− cos(α + β) sinα cos(φ− φ0)
, (1.2)

where α is the misalignment angle between the spin and magnetic axes, β

is the minimum angle between the magnetic axis and the line of sight, and

(φ0,Ψ0) are fiducial values of φ and Ψ, respectively. In principle, polarization

data can be used to constrain the geometry of pulsars; in practice, however,

few radio pulsars exhibit values of Ψ as a function of φ that are well-modeled

by Equation 1.2.

It is important to note that Equations 1.1 and 1.2 are derived under the

assumption that Ψ is measured in the clockwise direction on the plane of

the sky. This is inconsistent with the general convention, maintained by

the International Astronomical Union (IAU), that position angles defined

within the plane of the sky are measured in the counter-clockwise direction

from celestial North (Everett & Weisberg, 2001). We nonetheless use these

equations in this dissertation, while noting that any results obtained by using

Equations 1.1 and 1.2 can be converted to the convention-standard values by

applying the appropriate change in angular basis:
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αIAU = π − α (1.3)

βIAU = −β (1.4)

In summary, the “cosmic lighthouse” model describes the observed po-

larized radiation from pulsars as a periodic “slice” of the radio-emission cone

that occurs once per rotation. Naturally, a distant observer will see a radio

pulse so long as the emission cone contains the observer’s line of sight. The

lighthouse model makes no assumptions about conic structure of the radio

beam and, indeed, many different pulsars have complex (i.e. non-Gaussian,

multiple-component) pulse profiles. In order to classify a spinning neutron

star as a pulsar, the model does assume that the vector of spin angular mo-

mentum is misaligned with the axis of magnetic poles, i.e. α > 0, which is

necessary in order for the beamed radiation to appear as pulses to the distant

observer. However, values of α can be quite small (e.g. Stairs et al., 1999).

1.1.3 Observed Characteristics

There are several important observational properties of radio pulsars that

are considered to be general among the population and are well understood,

despite the underlying uncertainty in neutron-star structure and the nature

of the radio emission mechanism. For instance, the rotation of pulsars is

observed to be remarkably stable; the regularity in pulsar rotation is main-

tained by the neutron star’s large moment of inertia Irot ∼ 1045 g cm2. Such

rotational stability is a defining characteristic of radio pulsars and was im-

mediately seen in PSR B1919+214, the first pulsar that was discovered by

4Radio pulsars, designated with “PSR” that stands for pulsating source of radio emis-
sion, are formally given names based on their equatorial coordinates as measured at some
reference epoch. Thus, PSR B1534+12 has a right ascension of 15h34s and a declination
of 12 degrees North of the celestial equator, relative to the B1950 reference epoch. The
J2000 name for the same pulsar is PSR J1537+1155.

7



Jocelyn Bell-Burnell, as a steady period of elapsed time between radio pulses

(Ps) that corresponds to the period of pulsar rotation. Current instrumenta-

tion at radio telescopes allows for precise measurements of each pulse’s time

of arrival (TOA), such that TOA uncertainties for comparatively bright pul-

sars are at the microsecond level. A classic example of such precision can

be seen in PSR J0437−4715, the closest and brightest radio pulsar known,

where a recent analysis by Reardon et al. (2016) used 5065 TOAs collected

of 15 years and determined the spin frequency νs = 1/Ps to be

νs = 173.6879458121843± 0.0000000000005 s−1.

The precision in current measurements of pulsar rotation is comparable to

the atomic-transition clocks used for maintaining terrestrial timescales (e.g.

Matsakis et al., 1997). In fact, there has been recent work undertaken to

exploit the rotational stability of the most stable pulsars to develop and

maintain an independent timescale based on pulsar-TOA measurements (e.g.

Hobbs et al., 2012).

Radio pulsars are also observed to spin with intrinsically increasing spin

periods over time. This physically corresponds to a loss of rotational ki-

netic energy (Erot) in pulsar rotation; if the pulsar has an angular rotation

frequency Ωs = 2π/Ps, then

Ėrot =
dErot

dt
=

d

dt

(
1

2
IrotΩ

2
s

)
= IrotΩsΩ̇s = 4π2Irot

Ṗs

P 3
s

. (1.5)

The loss of rotational energy in spinning neutron stars, generally referred

to as “spin-down” in the literature, supplies power to their immediate en-

vironments and produces high-energy radiation. This was first proposed by

Pacini (1967) as a mechanism for the observed high-energy radiation in the

Crab nebula, within a year before the observational discovery of neutron stars

made by Jocelyn Bell-Burnell. If one assumes that the spin-down is purely

due to magnetic dipole radiation, then the strength of the magnetic field at
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the neutron-star surface can be determined up to a factor of sinα. For a

radio pulsar with radius R = 10 km and α = π/2, the surface field strength

is

B(r = R) =

√
3c3

8π2

Irot

R6 sin2 α
PsṖs (1.6)

= 3.29× 1019

√
PsṖs Gauss. (1.7)

Figure 1.1 shows a plot of all known pulsars with observed Ps and Ṗs

values in the ATNF catalog. This figure is comparable to the Hertzsprung-

Russell diagram for cluster stars, in that observed groupings of pulsars reflect

underlying physical processes that contributed to their current states. “Nor-

mal” pulsars typically have rotation periods Ps ∼ 1 s and spin-down rates

Ṗs ∼ 10−15, and are referred to as “normal” because they are generally ob-

served to be isolated objects with no binary companions. A small number of

exceptions exist, such as PSR J1740-3052 (e.g. Madsen et al., 2012), where

slow-spinning pulsars are observed to orbit companions whose stellar evolu-

tion has had little or no impact on the spin evolution of the pulsar. As such,

the rotation of normal pulsars is understood to have only been affected by

spin-down through magnetic dipole radiation after the formative supernova

event. Recent studies have shown that the magnetic field of normal pulsars

can decay with timescales as short as 105 years (Igoshev & Popov, 2015),

though this remains a controversial subject of study.

1.1.4 Binary Millisecond Pulsars

In stark contrast to the normal pulsars, millisecond pulsars (MSPs) – with

exceptionally stable rotation periods Ps < 20 ms and spin-down rates Ṗs <

10−17 – are understood to be the end products of prolonged, stable mass

transfer onto a neutron star from an evolving (sub)giant progenitor com-

9



Figure 1.1: Ṗs versus Ps for all known radio pulsars with available spin and
spin-down measurements. The blue lines correspond to values of both pa-
rameters that yield the denoted surface magnetic field (B) for a neutron star
with Irot = 1045 g cm2. Red points denote 24 binary pulsars that are studied
in Chapter 3 of this thesis, while the cyan and green points represent PSRs
B1620−26 and B1534+12 that are studied in Chapters 4 and 5, respectively.
As we discuss in Section 4.4, there are several different physical mechanisms
(other than pure spin-down) that bias the observed value of Ṗs for B1620−26.

panion. This long-term “recycling” process due to Roche-lobe overflow of

the companion’s outermost layer increases the neutron star’s spin frequency

while circularizing its orbit and reducing the magnetic-field strength over

the course of accretion (e.g. Alpar et al., 1982). The post-accretion spin

parameters are therefore changed from what they were when the neutron

star was born; in Figure 1.1, this is generally seen as a migration from the

larger population of normal pulsars to the smaller MSP population. The

resultant companion object will likely be a low-mass white dwarf (WD), but,

in principle, it is possible for the companion to be fully evaporated by the
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high-energy radiation from the spun-up neutron star (Ruderman et al., 1989).

Furthermore, recent discoveries have implied that current eccentric MSP bi-

naries may have once been a part of progenitor triple systems that have since

undergone disruption to form their current states (e.g. Freire et al., 2011).

Even with their binary origin, there are a number of pulsars within the MSP

population that are observed to be isolated and believed to have undergone

gravitational disruption of their progenitor orbits (Lorimer, 2008).

If there are no external perturbations from nearby stars, the dissipative

tidal interactions due to stable mass transfer between components will gov-

ern the dynamical evolution of the orbit up to the termination of transfer

(e.g. Phinney, 1992; Tauris & Savonije, 1999). Therefore, the post-accretion

orbital elements will likely depend on several accretion-related factors. A

notable prediction is a correlation between the resultant mass of the WD

companion (mc) and post-accretion orbital period (Pb) for “wide” binary

systems (with Pb > 1 day; e.g. Tauris & Savonije, 1999), where numerical

simulations of mass transfer showed that

mc =

(
Pb

b

)1/a

+ c (1.8)

where the values of (a, b, c) weakly depend on the metallicity of the pro-

genitor companion. One can therefore compute an expected value of mc if

the companion is known or expected to currently be a low-mass WD. Evo-

lutionary models can therefore be used in conjunction with pulsar-timing

measurements to constrain additional parameters of interest, such as the

pulsar mass (mp) and the inclination of the orbit relative to the plane of the

sky (i).
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1.2 Data Acquisition and Instrumentation

In its raw form, radio-frequency radiation from pulsars is collected with a

directional antenna and processed through a series of filters, amplifiers and

mixers to produce a usable signal stream (e.g. Chapter 5 of Lorimer &

Kramer, 2005). Hewish et al. (1968) used an array of dipole antennas and

a pen-chart recorder to make the first (low-frequency, narrow-band) obser-

vations of PSR B1919+21. Modern observations of radio pulsars use large

single-dish telescopes (or an array of small single-dish telescopes), receivers

with large bandwidths and sophisticated computer hardware to make mea-

surements with comparatively greater sensitivity and localization of the radio

sources. The most common radio-pulsar observations use receivers centered

on frequencies that collectively span the range 0.1-10 GHz.

Upon reception and initial processing of the radiation into voltage, the

proceeding steps in real-time signal processing depend on the desired type of

observation. For blind-search observations, where parts of the sky with no

known pulsars are searched to potentially discover new sources, the mixed

and amplified stream is processed through spectrometers and decomposed

into “channelized” data contained within finite, contiguous frequency chan-

nels. The sub-banded signal is detected and recorded for offline search of pul-

sations using software such as the PRESTO suite.5 Pulsar-searching obser-

vations typically occur at low frequencies since pulsars are typically brighter

and telescope beams are wider at low receiver frequencies. For observations

of known pulsars, it is standard practice to further process the data stream

in real time to remove the dispersive effect of the interstellar medium from

the broadband signal and average successive, low-S/N pulses together, given

a sufficiently accurate measure of the pulsar’s apparent spin period at the

time of observation. The resultant data are higher-S/N pulses within each

frequency channel across the receiver band; each of these folded profiles,

5http://www.cv.nrao.edu/~sransom/presto/
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comprised of a large number of individual radio pulses detected within each

channel and within some chosen sub-integration timescale, is then recorded

for subsequent offline analysis. In what follows below, we refer to the pro-

cess of dispersion removal prior to the recording and integration of data as

de-dispersion.

Any given TOA analyzed in this dissertation was obtained through one

of two broadband de-dispersion techniques, depending on the type of pulsar

signal processor (or backend) used at the time of observation. For recent

generations of pulsar backends, the determination the full Stokes polarization

vector is done in software using two input channels with orthogonal sense of

polarization, regardless of the de-dispersion technique.6 In this section, we

briefly describe the two de-dispersion methods used throughout this work.

1.2.1 Dispersion from the Interstellar Medium

The Galaxy is filled with a cold, generally tenuous collection of dust, ions,

neutral gas and free electrons that make up the interstellar medium (ISM)

between stars, with a higher concentration of material within the Galactic

disk. A broadband electromagnetic signal that propagates through such a

medium with free-electron number density ne will experience a dispersion in

the wave packet that culminates in a nonzero lag between signal components

at different frequencies (e.g. Jackson, 1962).

Radio telescopes typically use a variety of receivers with different band-

widths that are tuned to different central frequencies; therefore, TOAs for

the same pulse observed at different channel frequencies will typically have a

lag between them due to the ISM along the line of sight between the observer

and the pulsar. The time delay for ISM dispersion between signals recorded

at two different receiver-channel frequencies f1 and f2 is given as ∆DM =

6The earliest generations of pulsar backends required the use of additional hardware,
such as adding and multiplying polarimeters (e.g. von Hoensbroech & Xilouris, 1996),
in order to preserve signal-phase information and derive the components of the Stokes
polarization vector.
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C(f−2
1 −f−2

2 )×DM, where C = (4.148808±0.000003)×103 MHz2 pc−1 cm3

s is a collection of physical constants7 and DM =
∫ d

0
ne(l)dl is the pulsar’s

dispersion measure, an electron column-density parameter. In practice, DM

is usually measured relative to an infinite frequency, f2 =∞, so that the DM

of a TOA measured at frequency f = f2 can be rewritten to yield

∆DM =
(C ×DM)

f 2
. (1.9)

If left uncorrected, pulse profiles from a pulsar with nonzero DM that are

obtained at different observing frequencies will produce a smeared profile

when they are averaged together. The DM is therefore another defining

characteristic of radio pulsars that directly affects the precision to which

TOAs can be measured.

1.2.2 Incoherent De-Dispersion

The oldest data that are presented in this dissertation, most of which were

collected in the 1990s, were obtained using pulsar backends that employed the

incoherent de-dispersion technique for correcting ISM-related delays between

receiver channels (e.g. Lorimer & Kramer, 2005). This “brute-force” method

of de-dispersion was typically employed using analogue filter bank spectrom-

eters which first decomposed the mixed voltage signal into a number of spec-

tral channels across the observed bandwidth. The incoherent de-dispersion

technique uses the general form of Equation 1.9, ∆t = C×DM×(f−2
ref −f

−2
chan),

where fref is taken to be the central frequency of the observed receiver band

and fchan is the frequency of the channel under consideration, to compute

and directly apply the predicted timing delay. While this technique is effec-

tive and simple to implement, one of the major disadvantages of incoherent

de-dispersion is the imperfect removal of DM timing delays within each indi-

7The uncertainty in C reflects the experimental uncertainties in the electron’s charge
and mass that are used in the computation of the dispersion constant.
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vidual channel of finite width; a residual smearing of the pulse will occur in

each channel and will therefore limit TOA precision depending on the chan-

nel width. The Mark III pulsar backend (Stinebring et al., 1992) is a classic

example of a signal processor that used the incoherent de-dispersion method

for DM-delay removal with channels widths of 10 MHz.

1.2.3 Coherent De-Dispersion

Modern pulsar instrumentation uses improved floating-point precision and

bit-sampling technology to fully de-disperse the incoming radio signal in soft-

ware, and in real time. This technique is generally referred to as coherent de-

dispersion. Hankins & Rickett (1975) showed that, in the frequency domain,

the raw complex voltage detected by the radio telescope (Vf ) is proportional

to the intrinsic complex voltage produced at the point of emission from the

pulsar (Vf,int); they are related to one another through the transfer function

(H), which acts as a type of filter and fully characterizes the ISM-dispersion

effect on the received broadband signal:

Vf (f + fcen) = H(f + fcen)Vf,int(f + fcen), (1.10)

where

H(f + fcen) = exp

[
i

2πCf 2

(f + fcen)f 2
cen

DM

]
. (1.11)

The inverse transfer function, H−1, can therefore be computed and applied

to Vf given some nominal value of DM to recover the original form of the

pulsar signal prior to dispersion. Software filter banks are then applied to

decompose the signal into spectral channels with the smearing of each pulse

due to ISM dispersion completely removed.

The majority of data for all pulsars studied in this dissertation was col-

lected using pulsar backends that employed (and still currently employ) the

coherent de-dispersion method. The specific coherent-de-dispersion signal
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processors used are discussed in the following chapters.

1.3 Pulsar Timing, in a Nutshell

Radio pulsars are observed as faint, periodic flashes of electromagnetic ra-

diation at radio frequencies. So long as the radio beam sweeps across their

line of sight, an observer will see pulses from the rotating neutron star. Af-

ter many subsequent observations of this (isolated) pulsar are made over a

several-month timescale, the observer will eventually note that the pulsar’s

spin frequency (νs) is decreasing over time due to spin-down. Since spin-

down rates are typically very small, such an observer can construct a general

“timing model” that describes the spin frequency of the isolated pulsar as a

Taylor-expanded function of time (e.g. Lorimer & Kramer, 2005),

νs(t) = νs(t0) + ν̇s,0(t− t0) +
1

2
ν̈s,0(t− t0)2 + ... (1.12)

where the time derivatives are evaluated at the reference epoch t0. In this

idealized case of an isolated neutron star, the observer can gradually ex-

tend their data set and make refined measurements on the spin parameters,

including higher-order time derivatives in their model when needed.

In practice, however, this process of modeling the observed spin behavior

is nontrivial and ultimately more rewarding. For instance, single-dish radio

telescopes on Earth do not reside in an inertial reference frame with respect

to a given pulsar; the Earth is in orbit about the Solar System Barycentre

(SSB) and also spins about its own precessing rotation axis at the decreasing

sidereal rate. Also, a given pulsar is likely to have non-zero secular mo-

tion relative to the SSB due to asymmetries in the supernova explosion that

formed the neutron star. Furthermore, pulsars in binary/triple systems will

undergo orbital motion that induces regular Doppler shifts in the observed

spin frequency. Finally, observations of pulsars made at different telescope-

receiver frequencies will not record identical TOAs for the same pulses, but
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rather a lag that changes with the receiver frequency due to ISM dispersion.

The robust construction of a timing model8 for a radio pulsar therefore

requires an explicit account of all relevant physical processes that affect the

pulsar’s observed spin behavior. This procedure, referred to as pulsar timing

throughout pulsar literature and in this thesis, is the foundational method for

studying radio pulsars. As discussed in this section and Section 1.4, pulsar

timing yields direct measurements of parameters that describe spin prop-

erties, astrometry (i.e., position, proper motion, and parallax), frequency-

dependent effects associated with the tenuous interstellar medium (ISM), and

orbital motion. An accurate pulsar-timing model can also be used to fold (i.e.

shift to a common phase and average) observed pulses obtained over many

days or years to form an integrated, high signal-to-noise pulse profile, which

is useful for obtaining high-precision TOAs and resolving polarization prop-

erties. In this section, we briefly discuss the procedure for measuring TOAs

as well as the theoretical models that describe many of the effects observ-

able with pulsar timing. We reserve a full and separate discussion of binary

timing models for Section 1.4, since the analysis of binary/triple motion of

pulsars is the central theme of this dissertation.

1.3.1 TOA Estimation

Radio telescopes use hydrogen-maser atomic clocks at each site location in

order to assign a time stamp at the beginning of each recorded data stream.

For pulsars with pre-existing timing solutions, obtained from iterative anal-

yses of the first TOAs measured after their discovery, a series of consecutive

pulses are folded together modulo the computed pulse period in order to

form a high-S/N pulse; its time stamp is the average of all time stamps of

the middle of each individual sub-integration that formed the folded profile.

TOAs are then determined from a cross correlation between the observed

8Timing models are also referred to as “timing solutions” and “pulsar ephemerides”,
and we use these terms interchangeably throughout the text.
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pulse profile (P ) and a template profile (SP). A template profile can be

determined from the folding of many previously-recorded pulses, or can be

created as a multi-component model made with an appropriate number of

Gaussian distributions (e.g. Kramer, 1994). In general, P and SP are linearly

related to each other,

P (t) = a+ bSP(t− τ) + n(t) (1.13)

where 0 < t < Ps, a is a baseline offset, b is a scale factor, τ is the phase

shift between P and SP, in units of the local value of Ps, and n(t) is a

random, time-dependent term that quantifies observed noise in the recorded

data stream. The n(t) term is typically negligible for high S/N profiles, and so

the cross correlation can be done in a straightforward manner to determine

τ . The TOA is then defined to be the sum of the mid-point time of the

observation with τ multiplied by the local value of Ps. In practice, the cross

correlation is performed in the frequency domain using Fourier transforms

for high-precision determination of TOAs (Taylor, 1992).

1.3.2 The Timing Model for Isolated Pulsars

TOAs are locally measured quantities, collectively referred to as topocentric

TOAs (ttop), that can be recorded with several telescopes located across

the Earth. In order for Equation 1.12 to be applied successfully, the ttop

measurements must be transformed to the equivalent times measured relative

to the SSB. For isolated pulsars, this amounts to: applying appropriate clock

corrections; accounting for orbital motion within the Solar System; modeling

for transverse motion of the pulsar; and correcting delays between TOAs

collected at different receiver frequencies. We discuss each of these time

delays and their respective models in this subsection.

The following principles, corrections, physical mechanisms and fitting pro-

cedures described above are embodied in two standard pulsar-timing software
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packages: TEMPO9 and TEMPO210 (Hobbs et al., 2006). We use both tools

as indicated throughout this dissertation.

Local Clock Transformations

Since hydrogen-maser clocks at different telescopes maintain local observa-

tory time, biases in parameter estimate will occur should TOAs collected

from different observatories be combined without the appropriate clock cor-

rections. TOAs are first corrected to the Coordinated Universal Time (UTC)

maintained by the Global Positioning System (GPS), and then corrected fur-

ther to Terrestrial Time, or TT(BIPM)11, that is based on a number of main-

tained atomic clocks across the globe. Clock corrections (generally referred

to as ∆C below) also account for the non-uniform rotation of the Earth and

include leap seconds when needed.

Dynamical Effects in the Solar System

Time delays associated with orbital motion within the Solar System can be

separated into three distinct components. The most prominent of these or-

bital effects is the Römer timing delay (∆R�), which describes the classical

(i.e. non-relativistic) propagation delay experienced by an observer at differ-

ent points in space over the course of the orbit. The Shapiro timing delay

in the Solar System (∆S�), one of the four classic tests of GR first proposed

by Shapiro (1964), accounts for general-relativistic propagation delays from

varying spacetime curvature due to the presence of Solar System bodies near

the observer’s line of sight. The Einstein timing delay (∆E�) is a cumulative

effect of general-relativistic gravitational redshift of the pulsar signal due to

the Solar System bodies, as well as the special-relativistic time dilation due

to Earth’s motion. The functional form for these effects are given as (e.g.

9http://tempo.sourceforge.net/
10http://sourceforge.net/projects/tempo2/
11http://www.bipm.org/en/bipm-services/timescales/
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Lorimer & Kramer, 2005),

∆R� = −1

c
(~rSSB + ~robs) · ŝ (1.14)

∆S� = −2
∑
i

Gmi

c3
ln

[
ŝ · ~ri,⊕ + ri,

⊕
ŝ · ~ri,PSR + ri,PSR

]
(1.15)

∆E� =
1

c2

∑
i

∫ (
Gmi

ri,
⊕ +

1

2
v2⊕)dt (1.16)

and the various terms are summarized as follows. The ŝ unit points from

the SSB in the direction of the pulsar. The ~rSSB vector points from the SSB

to the center of mass of Earth, while the ~robs vector points from the Earth’s

center of mass to the location of the observatory where TOAs were recorded.

The ~ri terms denote relative vectors between the observatory on Earth and

the i-th Solar System body (~ri,⊕), or between the i-th body and the pulsar

(~ri,PSR). The mi terms are the gravitational masses for the i-th body, ~v⊕ is

the orbital velocity of the Earth, G is Newton’s gravitational constant and c

is the speed of light.

The body-specific terms in Equations 1.14-1.16 are independently com-

puted using a Solar-system planetary ephemeris, maintained by the NASA

Jet Propulsion Laboratory12, that specifies the masses and past/future three-

dimensional locations for the Sun, Moon, and all eight planets. We used the

DE421 or DE430 ephemerides as specified in each chapter. The masses and

components of the various ~r vectors are held fixed during the construction of

a timing model, so that the only quantities left to determine are the compo-

nents of the ŝ vector, which yield to the two-dimensional coordinates of the

pulsar on the sky. Any significant transverse motion of the pulsar relative to

the SSB will lead to a secular change in ŝ, and so the proper-motion terms

can be directly measured should ŝ change over time.

12ssd.jpl.nasa.gov/eph_info.html
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For sufficiently nearby pulsars, with distances d < 1 kpc, a radio-timing

signature of the astrometric parallax ($ = d−1) can be measured in TOA

data. The periodic timing delay introduced by such a signature has the

following functional form (Backer & Hellings, 1986),

∆$ = −$
2c

[(~rSSB + ~robs)× ŝ]2 (1.17)

where the components of ~rSSB and ~robs are determined from the same So-

lar System ephemeris described above, and ŝ is gradually resolved from an

application of ∆R� (Equation 1.14).

Evolution in the ISM

The ISM is a naturally dynamic and turbulent environment. This evolution

was first seen as measurable variations in DM for the Crab and Vela pulsars

(Rankin & Roberts, 1971; Isaacman & Rankin, 1977), and is readily seen

in TOAs collected for isolated and binary pulsars with modern broadband-

oriented instrumentation (e.g. Keith et al., 2013; Lam et al., 2015). In the

presence of such variations, a single value of DM will not sufficiently char-

acterize the frequency dependence of TOA data and will introduce biases in

other timing-model parameters. The TEMPO software package contains a

built-in feature, called “DMX”, for measuring DM at some prescribed time

interval, which can be as low as one day for a per-epoch determination of

DM. While this type of modeling introduces more degrees of freedom within

the timing model, it nonetheless allows for more robust determination of the

time dependence in DM over the span of the data set.

Intrinsic Evolution of the Pulse Profile

For many pulsars with different DMs and timing-model parameters, the in-

tegrated, high-S/N pulse profile has been shown to yield slightly different

shapes when observing with different receivers, or when using a single receiver
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with a large bandwidth. This frequency-dependent evolution is believed to

be an intrinsic property of the poorly-understood mechanism for radio emis-

sion, and can be interpreted as the emission at different frequencies occurring

at different heights from the polar cap (Komesaroff, 1970).

As with the general radio-emission mechanism, there is no sufficient frame-

work that can fully account for the observed variations in profile shape as a

function of frequency for all pulsars. Moreover, recent work has shown that

the degree of profile evolution can vary substantially between radio pulsars,

with several pulsars shown no significant shape variations over a wide range

of receiver frequencies (e.g. Arzoumanian et al., 2015b). For pulsars with

significant profile evolution, the cross-correlation of broadband data with a

single profile template with produce TOA lags as a function of frequency

that generally differs from the f−2 dependence of timing delays due to DM.

When needed, we use the heuristic model developed by Arzoumanian

et al. (2015b) that modeled the frequency-dependent (FD) evolution of the

profile shape in the following manner:

∆tFD =
n∑
i=1

ci log

(
f

1 GHz

)i
(1.18)

where f is the channel frequency of the observed TOA, n is the user-defined

number of log-polynomial terms to be used, and ci is the i-th coefficient,

such that i = 1, 2, . . . n. The ci terms are the allowed free parameters in

TEMPO and TEMPO2. In practice, pulsars that show no significant change

in pulse structure across observing frequency do not require an application

of ∆tFD, whereas pulsars with comparatively large changes require up to five

log-polynomial terms when applying Equation 1.18.

Determination of the Model and Noise Processes

A timing solution of an isolated pulsar can be obtained so long as it explicitly

models the aforementioned physical effects and applies the appropriate clock

22



corrections. This amounts to transforming the observed topocentric TOAs

to an inertial reference frame, taken to be the SSB13,

t = ttop + ∆C + ∆R� + ∆S� + ∆E� + ∆$ + ∆DM + ∆FD

and using these corrected/transformed TOAs to model the spin behavior

through Equation 1.12. The timing model therefore consists of free param-

eters that describe the spin frequency and its derivatives, astrometry, the

pulsar’s DM, and any significant variations in DM. The parameters that

best describe the observed TOAs are determined using a least-squares fit-

ting procedure, where the best-fit parameters minimize the χ2 goodness-of-fit

statistic,

χ2 =

NTOA∑
i

(
(νs,mod(t)− νs)

2

σ2
i

)
. (1.19)

In Equation 1.19, NTOA is the number of TOAs being modeled and σi is the

uncertainty in the i-th TOA.

The use of Equation 1.19 and the corresponding covariance matrix of

timing-model parameters assumes that the timing residuals – the difference

between measured TOAs and those predicted from a given timing model

– are uncorrelated between data subsets collected with different receivers

and backends. In other words, the best-fit residuals are assumed to form a

normal distribution with a mean of zero that reflects a white-noise random

process. However, older-generation TOA data have been shown to harbor

systematic errors associated with limits in instrumentation from incoherent

de-dispersion and low-bit resolution, despite the appearance of “flat” best-fit

residuals that indicate a good fit of the timing model.

13The acceleration due to gravity from a solar-mass star at a distance d = 1 pc is
Gm/d2 ∼ 10−13 m s−2, while the acceleration due to gravity from the Galactic center
at the SSB is ∼ 10−11 m s−2. Both accelerations are considerably smaller in order of
magnitude when compared to the acceleration due to gravity of the Sun at Earth, which is
∼ 10−8 m s−2. Therefore, the SSB is a comparatively more “inertial” frame of reference.
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A historic, ad hoc solution to this problem is the slight alteration of TOA

measurement uncertainties for data subsets to values that ultimately produce

the desired best-fit statistic, which is usually taken to be χ2
red = χ2/NDOF ≈ 1,

where NDOF is the number of degrees of freedom. Additional uncertainty can

be added in quadrature (by an amount σq) and/or as a multiplicative factor

(σf), such that

σ = σf

√
σ2

o + σ2
q (1.20)

and σo is the original TOA uncertainty. For TOAs collected with modern,

coherent-de-dispersion backends, σf ≈ 1 and σq ∼ 1 µs. The corresponding

values of σf and σq for historic processors can be larger than the modern-

backend values by an order of magnitude.

Several bright, nearby pulsars show “red” noise (e.g. for PSR B1937+21;

Kaspi et al., 1994; Verbiest et al., 2009) that appear as non-random structure

in TOA residuals and can produce biases in timing-model parameters when

left unaccounted, even after modeling all seemingly relevant physical effects.

Red noise – also referred to as timing noise in the literature – is believed to

reflect real instabilities in pulsar rotation due to torque fluctuations associ-

ated with the superfluid interior and/or the co-rotating magnetosphere (e.g.

Shannon & Cordes, 2010). Historically, a practical solution towards model-

ing red-noise signatures in timing residuals is the use of higher-order time

derivatives in νs (e.g. Arzoumanian et al., 1994).

A more sophisticated method for addressing red noise in TOA resid-

uals was recently proposed by Coles et al. (2011), where a “generalized”

least-squares (GLS) method accounts for correlated noise in TOA residuals

through a linear transformation of the covariance matrix that whitens TOA

residuals; the transformed data can then be used with Equation 1.19 to yield

accurate, unbiased timing parameters.
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1.4 Timing Delays from Binary Motion

In principle, the timing delays for radial displacement from binary motion

of a pulsar have a similar, additive form to those that describe the Earth’s

motion in the solar system (Equations 1.14-1.16). The general timing formula

for TOA correction and transformation is finally given as (e.g. Lorimer &

Kramer, 2005)

t = ttop + ∆C + ∆R� + ∆S� + ∆E� + ∆$ + ∆DM + ∆R + ∆S + ∆E (1.21)

where ∆R, ∆S, and ∆E are the Römer, Shapiro and Einstein timing delays of

the pulsar-binary system. However, the parameters that describe a pulsar-

binary system are not known beforehand. Indeed, a pulsar must be re-

observed several times upon discovery in order to measure significant changes

in the observed spin period due to radial motion in an inclined orbit; the

observed shifts can be used to constrain and make initial estimates of the

binary parameters, though an explicit timing model is eventually required

to precisely determine the orbital elements. Once a binary timing model

is successfully applied to TOA data, future observations can be made to

refine ∆R,S,E and the binary parameters that describe them. If relevant to

the system, future TOAs can eventually yield estimates of variations in the

orbital elements over time due to one or more effects described below and in

subsequent chapters.

The binary systems studied in this thesis already had long-term timing

solutions that explicitly modeled their respective orbits prior to their study

for this work; we update these timing solutions in an effort to measure or

improve prior estimates of masses and geometry, and derive tests of grav-

itational theory whenever possible. In this section, we present two binary

timing models that describe pulsar-binary systems and long-term changes in

the orbital elements. These two general binary models exist due to compli-
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Figure 1.2: A schematic of an eccentric binary orbit – shown as a solid-black
ellipse, with the center of mass at the origin of the drawn coordinate system
– and the various angles of pulsar/binary orientation defined in Section 1.4.
The portion of the orbit shown in gray lies on the opposite side of the tan-
gential plane of the sky. The pulsar is shown as a black dot and its direction
of motion along the orbit is given by the black arrow.

cations in applying an elliptical-orbit model to a highly circular orbit, where

certain timing parameters become ill-defined and numerically unstable as

free parameters in a least-squares model fit. Both binary timing models are

used extensively in this dissertation.

Throughout this dissertation, we adopt the IAU convention for character-

izing the three-dimensional orientation of orbital planes for nearly all pulsar-

binary systems.14 An example of an eccentric orbit and the angles that define

14The only exception to the angle convention in this dissertation is PSR B1534+12 (the
subject of Chapter 5), which uses the convention defined by Damour & Taylor (1992): i is
measured such that i = 0◦ corresponds to the orbital-angular-momentum vector pointing
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its orientation is shown in Figure 1.2. In this figure, points labeled “A”, “B”

and “C”, as well as the gray lines that connect them to the origin of the coor-

dinate system, are drawn to help indicate how several angles are measured.

The relevant angles are defined as follows: the longitude of the ascending

node (Ω) is measured from the direction of celestial North to the line con-

necting the origin and A (which contains the point along the orbit where

the pulsar pierces the tangential plane of the sky in the direction away from

observers on Earth) in the plane of the sky and in the direction of celestial

East, such that 0◦ < Ω < 360◦; the argument of periastron (ω) is measured

between the ascending node and the line between the origin and B, in the

plane of the orbit, such that 0◦ < ω < 360◦; and the true anomaly (u) is

measured between periastron and the line connecting the origin and C, in

the plane of the orbit, such that 0◦ < u < 360◦. The system inclination (i) is

measured between the planes of the orbit and the sky, such that 0◦ < i < 180◦

and i = 0◦ corresponds to the vector of orbital angular momentum pointing

in the direction towards Earth.

1.4.1 Orbits with Significant Eccentricity

A general binary orbit will have an elliptical shape that is characterized by

its eccentricity (e), where a circular orbit corresponds to e = 0 and 0 < e < 1

for gravitationally bound systems. An orbit with a statistically significant

eccentricity has a well-defined ω (see Figure 1.2) that corresponds to the point

of closest relative approach and maximum orbital speed. The Römer timing

delay for a pulsar (∆R) in an eccentric binary system with orbital period Pb

and semi-major axis ap is dependent on the parameters that directly affect

the radial motion of the pulsar along the line of sight (Blandford & Teukolsky,

1976):

away from the Earth; and Ω is measured with the opposite sense than the one used in the
IAU convention, from celestial North in the direction of celestial West.
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∆R = x

[
(cosE − e) sinω + sinE

√
1− e2 cosω

]
(1.22)

where x = ap sin i/c is the semi-major axis projected along the line of sight

due to an inclination (i) of the orbital plane, and where c is the speed of light.

The “eccentric anomaly” (E) is computed using a set of “Kepler’s equations”

that are modified to include first-order perturbations in the orbital period

and periastron argument (Damour & Deruelle, 1986):

E − e sinE = nb

[
(t− T0) +

1

2

Ṗb

Pb

(t− T0)2

]
(1.23)

u(E) = 2 arctan

[√
1 + e

1− e
tan

(
E

2

)]
(1.24)

ω = ω0 +
ω̇

nb

u(E) (1.25)

where u(E) is the true anomaly of the pulsar (shown in Figure 1.2) at some

time t in an inertial reference frame relative to the binary system (e.g. a co-

ordinate system centered at the SSB), T0 is the epoch of periastron passage,

ω0 is the value of ω measured at a time T0, and nb = 2π/Pb is the angu-

lar orbital frequency. The Keplerian timing parameters are five parameters

that describe the basic properties of every eccentric binary system: {x, Pb,

e, ω, T0}. With a measurement of ∆R alone, ap and sin i cannot be sepa-

rately measured. Furthermore, the time derivatives in Pb and ω, as well as

variations in x, are only measured in certain cases where there are intrinsic

and/or kinematic effects that produce apparent changes in these three pa-

rameters over time. The physical effects that produce observable variations

are discussed in Section 1.5 below.

In theory, the Römer timing delay can be written in a more general form

to account for radial and tangential corrections of the eccentricity that are

unique to the general-relativistic formulation of the eccentric two-body prob-
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lem (Damour & Deruelle, 1985):

∆R = x

[
(cosE − er) sinω + sinE

√
1− e2

θ cosω

]
(1.26)

where er = e(1+δr), eθ = e(1+δθ), and {δr, δθ} are the radial and tangential

deformation parameters of the orbit’s eccentricity, respectively. However,

Damour & Deruelle (1986) showed that δr cannot be separately measured

from parameters related to pulsar rotation, and that δθ can be measured so

long as ω has changed significantly over time through relativistic precessions

and a large data span (on the order of decades) has been obtained. We

therefore ignored these terms in all analyses presented in this dissertation

(i.e. we hold their values fixed at δr = δθ = 0) and use the Römer delay

shown in Equation 1.22 to model the timing delay of eccentric orbits. We

consider the likelihood of measuring δθ in the relativistic PSR B1534+12

system (Chapter 5) within the coming years in Section 6.1.

The Shapiro timing delay experienced by a pulsar (∆S) is also an impor-

tant effect that can be present in a pulsar-binary system (Damour & Deru-

elle, 1985, 1986). As with the analogous Solar-System effect, the relativistic

Shapiro timing delay is a measure of the change in spacetime curvature that

is traced by the pulsar signal as it propagates from different points of the

orbit towards an observer on Earth. The Shapiro delay is most prominent

for pulsar-binary systems that appear “edge-on”, i.e. when i → π/2, where

the signal will propagate closest to the companion star at superior conjunc-

tion. For an eccentric orbit, the Shapiro timing delay is given as (Damour &

Deruelle, 1986)

∆S = −2r ln

[
1−e cosE−s

((
cosE−e) sinω+sinE

√
1− e2 cosω

)]
(1.27)

where r and s are the “range” and “shape” parameters of the Shapiro tim-

ing delay, respectively. In most theories of gravitation, s = sin i, whereas
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Einstein’s theory of general relativity (GR) requires that r = T�mc, where

T� = GM�/c
3 = 4.925490947 µs. A significant measurement of ∆S is there-

fore useful as it yields estimates of both mc and sin i simultaneously.

The Einstein timing delay (∆E) is typically only measurable for highly

relativistic binary systems with e ∼ 0.1 or greater, where periastron advance

is significant and both components are degenerate, compact objects with

orbital periods on the order of hours, or even a few days for the most ec-

centric systems (Damour & Deruelle, 1985, 1986). ∆E is a measure of both

relativistic time dilation and gravitational redshift, and is given as

∆E = γ sinE (1.28)

where γ is the amplitude of the effect with unit of time. The full pulsar-binary

timing model, defined as the sum of the three delays given in Equations 1.22,

1.27 and 1.28, are referred to as the “DD” binary model in TEMPO and

TEMPO2.

The forms of ∆R,S,E shown in Equations 1.22-1.28, do not depend on a

particular theory of strong-field gravitation. In other words, the {Ṗb, ω̇,

r, s, γ, δθ} parameters can be measured in a theory-independent manner,

without the need to assume general relativity or any other valid gravitational

theory. The DD model therefore allows for unambiguous tests of gravitation

by comparing the measured PK parameters with their values as predicted by

the theory in question, and we discuss this type of analysis in Section 1.5.

1.4.2 Orbits with No Significant Eccentricity

In practice, TOAs collected over several years and many orbits are needed

in order to measure the eccentricity of a low-e pulsar-binary system. Until

a sufficient time span is reached, ω and T0 lose their meaning in describing

the near-circular orbit and are numerically unstable parameters in the least-

squares fit of the timing model. A second binary timing model, first presented
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by Lange et al. (2001), was developed in order to re-parametrize the Römer

and Shapiro timing delay for circular orbits in terms of a first-order expansion

in e. This near-circular binary timing model, referred to in TEMPO and

TEMPO2 as “ELL1”, introduces a different set of orbital parameters:

∆R = x

(
sin Φ +

κ

2
sin 2Φ− η

2
cos 2Φ

)
(1.29)

∆S = −2r ln
(
1− s sin Φ

)
(1.30)

where Φ = nb(t − Tasc) is the celestial argument of the pulsar at the pulse

emission time t, Tasc is the mean epoch of ascending-node passage15, and

both κ and η are collectively referred to as the Laplace-Lagrange eccentricity

parameters. The low-e form of the Römer timing delay (Equation 1.29) does

not include a constant additive term of −3xe/2 since pulsar timing only

separately measures binary terms that vary periodically with time.

The ELL1 eccentricity parameters (κ, η, and Tasc) are related to the DD

eccentricity parameters (e, ω, and T0) using the following relations (Lange

et al., 2001):

η = e sinω (1.31)

κ = e cosω (1.32)

Tasc = T0 − ω/nb. (1.33)

The full ELL1 timing-model fit produces estimates of η, κ and Tasc with

little numerical correlation, even if the {η, κ} parameters are not statistically

significant. Secular variations in the orbital elements are measured as Taylor

expansions in those parameters about Tasc.

15As noted by Lange et al. (2001), the true time of ascending-node passage is Tasc +
2η/nb.
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The low-e expansion used for the development of the ELL1 model pro-

duces a slight degeneracy when attempting to measure the Shapiro timing

delay for low-inclination, low-e systems. This degeneracy is best seen by

computing the Fourier expansion of Equation 1.30 in terms of the orbital

period of the binary system (Lange et al., 2001):

∆S = 2r(a0 + b1 sin Φ− a2 cos 2Φ + . . .) (1.34)

where the a and b are the even and odd harmonic amplitudes of the Fourier

basis, respectively, that depend on the inclination of the system. In the case

of low inclination, only the first one or two harmonic terms in Equation 1.34

will be significant, and higher order terms will be negligible; the sum ∆R+∆S

therefore yields an expression that is identical in form to Equation 1.29 with

the exception that two of the ELL1 timing parameters are modified by the

harmonic amplitudes:

xobs = x+ 2rb1 (1.35)

ηobs = η +
4ra2

x
(1.36)

For low-inclination systems, one must therefore compute the “intrinsic” ELL1

parameters (x, η) using the observed parameters in order to determine the

true values of the Keplerian elements using Equations 1.31-1.33 (see Lange

et al., 2001; Freire & Wex, 2010).

Furthermore, one can use the presence of orbital harmonic structure in

TOA residuals as a confirmation of the Shapiro timing delay. Figure 1.3

shows best-fit TOA residuals for PSR J1918−0642, a low-e binary system

that is studied in Chapter 2 and uses the ELL1 timing model, as a function

of the orbital phase. We see in the middle panel of Figure 1.3 that the Shapiro

timing delay is not fully absorbed when only fitting for ∆R, which is a visual

indication that the system is highly inclined; this is because the higher-order
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Figure 1.3: The Shapiro timing delay observed in PSR J1918−0642 (a highly-
inclined binary MSP that is studied in Chapter 3) when using the ELL1
binary timing model. The blue and green points denote TOAs collected at
430 and 1400 MHz, respectively. The top panel shows the “full”, intrinsic
effect that ∆S (Equation 1.27) has on TOA residuals, assuming that the
intrinsic binary parameters are known and holding ∆R fixed at these values
(while not fitting for ∆S). The middle panel shows the remaining harmonic
structure of ∆S after absorption of its first two Fourier harmonic coefficients
when fitting only for ∆R. The bottom panels shows the best timing-model
fit, obtained when fitting for both ∆R and ∆S simultaneously.

harmonic terms in Equation 1.34, jointly represented as the “...” term, are

statistically significant and essentially represent the separately-measurable

part of ∆S.

1.5 Variations in the Orbital Elements

In the absence of observed secular variations or relativistic phenomena, the

mass function (fm) of the pulsar-binary system can be used as a measure of
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the mass and inclination of the Keplerian system; it is computed using the

observed Keplerian elements that describe the pulsar’s orbit:

fm =
n2

bx
3

T�
M� =

(mc sin i)3

(mp +mc)2
. (1.37)

For strictly Keplerian motion, and without any independent knowledge of

the binary companion (e.g. through optical spectroscopy and radial-velocity

measurements), the intrinsic parameters of the binary system (mp, mc, i,

Ω) cannot be uniquely determined. However, estimates of the companion

mass can be made using Equation 1.37 since the pulsar mass is restricted

by theory to be no larger than 3 M�. A nominal value of mp = 1.35 M�

(Thorsett & Chakrabarty, 1999) can be assumed to yield estimates of mc for

a given value of sin i; and a minimum companion mass can be computed for

the case where sin i = 1. Conversely, one can assume the mc − Pb relation

for a MSP-binary system suspected to undergone significant mass transfer to

compute a value of mc using Equation 1.8, and then derive values of mp for

different inclination angles.

Many pulsar-binary systems examined in this dissertation exhibit one or

more variations in their orbital elements and PK corrections of the observed

orbital motion. The PK effects are particularly interesting since any con-

tending gravitational theory must yield correct predictions of the observed

PK motion as functions of fundamental quantities that uniquely describe the

theory. However, several other effects can give rise to secular variations that,

if left unaccounted for, will bias the secular PK variations and their interpre-

tation. In this section, we outline several of the most dominant mechanisms

that give rise to observed variations in the orbital elements.

1.5.1 Strong-Field Gravitation

Pulsar-binary systems in tight orbits with WDs or other neutron stars typ-

ically exhibit PK effects that are observed as secular changes in the orbital
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elements. We assumed GR to be valid throughout this dissertation in or-

der to explicitly interpret these effects; we refer to the secular PK variations

in this chapter as (Ṗb)GR, (ω̇)GR, (ẋ)GR and (ė)GR, where the dots indicate

derivatives in time. According to GR, each of the PK quantities (including

the Shapiro r and s parameters) are functions of at least one of the two

component masses (Damour & Taylor, 1992). The Shapiro-delay parameters

and first-order PK variations are given as

(Ṗb)GR = −192π

5
(nbT�)5/3

(
1 +

73

24
e2 +

37

96
e4

)
× (1− e2)−7/2

[
mpmc

(mp +mc)1/3

]
(1.38)

(ω̇)GR = 3(n5
bT2
�)1/3(1− e2)−1(mp +mc)

2/3 (1.39)

γ =

(
T2
�

nb

)1/3[
mc(mp + 2mc)

(mp +mc)4/3

]
e (1.40)

s =

(
T�
n2

b

)1/3[
(mp +mc)

2/3

mc

]
x = sin i (1.41)

r = T�mc (1.42)

where the values of mp and mc are assumed to be in units of M� in each

of the above expressions. Throughout this thesis, we ignore the (ẋ)GR =

(ȧp)GR sin i/c and (ė)GR terms since these particular rates of change are im-

measurable on the timescales spanned by the data sets analyzed below.16

Measurements of r (Equation 1.42) and s (Equation 1.41) from an ob-

served ∆S alone therefore yields estimates of mp and mc, as well as a measure

of i since s = sin i. Even without an observed Shapiro timing delay, estimates

16Kepler’s third law requires that (ẋ)GR/x = 2(Ṗb)GR/(3Pb). In the case of relativistic
pulsar-binary systems, Pb ∼ hours and Ṗb due to GR is measurable after nearly a decade
of observation. However, typical values of x ∼ seconds and so the value of ẋ due to GR
is comparatively much smaller than the rate of change in period, as required by Kepler’s
law.
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of mp and mc can be obtained so long as two of the other corrections due to

GR are measured. A classic example of such a scenario is the Hulse-Taylor

pulsar, PSR B1913+16, for which the Ṗb− ω̇−γ combination were measured

and used to derive high-precision estimates of both masses (Weisberg et al.,

2010; Weisberg & Huang, 2016). Three or more observed PK effects lead

to an overdetermined system of equations that can be solved to obtained

a high-precision estimate of the component masses, as well as one or more

“tests” of GR when using different combinations of three PK parameters to

check for self-consistency with measurement uncertainties.

1.5.2 Kinematic Bias from Proper Motion

Besides the intrinsic changes within orbits from PK effects, apparent secular

variations in the orbital elements will also be induced from significant rela-

tive motion between the pulsar-binary and SSB reference frames (Kopeikin,

1996). The secular variations in x and ω from proper motion (µ) – to which

we refer in this study as (ẋ)µ and (ω̇)µ – arise from a long-term change in

certain elements of orientation as the binary system moves across the sky.

The kinematic terms for ẋ and ω̇ are described as trigonometric functions of

i and Ω:

(ẋ)µ = xµ cot i sin(Θµ − Ω), (1.43)

(ω̇)µ = µ csc i cos(Θµ − Ω). (1.44)

where Θµ is the position angle of proper motion, computed internally within

TEMPO2.
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1.5.3 Kinematic Bias from Acceleration

A separate kinematic bias that produces observed secular variations in or-

bital elements can arise from several forms of relative acceleration between

the pulsar-binary and SSB systems (e.g. Damour & Taylor, 1992; Nice &

Taylor, 1995), the most prominent of which are: differential rotation in the

Galactic disk; acceleration in the Galactic gravitational potential vertical to

the disk (e.g. Kuijken & Gilmore, 1989); and apparent acceleration due to

significant proper motion (Shklovskii, 1970). The kinematic bias from rela-

tive acceleration produces a rate of change in the Doppler shift (D) in, for

example, Pb, such that

(
Ṗb

Pb

)
D

=
Ḋ

D
=
az
c
− cos b

(
Θ2

0

cR0

)(
cos l +

β

sin2 l + β2

)
+
µ2d

c
(1.45)

where the terms in Equation 1.45 are summarized as follows: (l, b) are the

Galactocentric coordinates of the MSP; R0 is the distance between the Sun

and the Galactic center; Θ0 is the circular Galactic-rotation speed of the

Sun; µ is the proper motion of the pulsar-binary system; d is the distance

to the binary system; az is the component of acceleration in the Galactic

potential that is vertical to the Galactic disk; and β = (d/R0) cos b − cos l.

Throughout this dissertation, we use the az model developed by Kuijken &

Gilmore (1989), who used photometric and spectroscopic data of K-dwarf

stars with known distances to measure az out to d = 3 kpc and found that

az
c

= 1.08× 10−19

[
1.25z

(z2 + 0.0324)1/2
+ 0.58z

]
s−1, (1.46)

where z = d sin b is distance from the Galactic plane. The changing Doppler

shifts ultimately produce an apparent variation in x and Pb, though the effect

is negligibly small for the former parameter. We refer to the component of

the secular variation due to the acceleration bias as (Ṗb)D = Pb(Ḋ/D).
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Several other pulsar-timing parameters (such as x and Ps) are similarly af-

fected by the change in Doppler factors due to relative acceleration. In other

words, (ẋ)D = x(Ḋ/D) and (Ṗs)D = Ps(Ḋ/D). However, the Doppler com-

ponent of ẋ is generally considered to be negligibly small since x ∼ seconds,

and the smallest known values of Pb ∼ hours. The Doppler component of Ṗs

is inseparable from the spin-down term if an accurate measure of distance is

not known.

1.5.4 Periodic Variations and Annual Orbital Parallax

For sufficiently nearby pulsar-binary systems, the observed system orienta-

tion will change periodically as the Earth and the MSP orbit their respective

barycenters and at their respective orbital periods. The “mixed” periodic

variations in x and ω, collectively referred to as the “annual orbital paral-

lax” (Kopeikin, 1995), depend on i, Ω, and the observed parallax ($) of the

pulsar-binary system:

xobs = x

[
1−$ cot i

(
∆~Io

sin Ω−∆ ~J0
cos Ω

)]
(1.47)

ωobs = ω −$ csc i

[
∆~Io

cos Ω + ∆ ~J0
sin Ω)

]
(1.48)

where $ is the annual astrometric parallax, and ∆~Io
= ~rSSB · ~I0 and ∆ ~J0

=

~rSSB · ~J0 are the time-varying projections of the SSB position vector of the

Earth, defined in Equation 1.14, onto two of the orthogonal basis vectors

(~I0, ~J0) centered on the pulsar-binary system that define the celestial east

and north directions, respectively. Annual orbital parallax has been detected

for PSRs J0437-4715 (e.g. Verbiest et al., 2008) and J1713+0747 (e.g. Zhu

et al., 2015) as significant improvements in timing-model fits when explicitly

modeling the effect. In practice, annual orbital parallax does not signifi-

cantly improve the estimates of timing-model parameters due to its small
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signature on TOA residuals. However, annual orbital parallax can be used

in conjunction with measurements of the Shapiro timing delay, annual as-

trometric parallax and ẋ due to kinematic bias (Equation 1.43) to uniquely

solve for the three-dimensional geometry of the pulsar-binary system where

all of these effects are measured.

1.6 This Thesis

The major goal of this dissertation is to measure and/or constrain the mass

and geometric parameters of binary pulsars through the analysis of pulsar-

timing data and interpretation of observed variations in the orbital elements.

The following chapters can be described and summarized as follows:

• in Chapter 2, we discuss the contributions that author made as a mem-

ber of the North American Nanohertz Observatory for Gravitational

Waves (NANOGrav) during his graduate career;

• in Chapter 3, we present detailed analyses of 24 binary pulsars that are

currently being observed as part of the NANOGrav program;

• in Chapter 4, we present a long-term and ongoing analysis of PSR

B1620-26, a 11-ms pulsar within a gravitationally-bound triple system

that resides within the Messier 4 globular cluster;

• in Chapter 5, we present updates of the long-term analysis of PSR

B1534+12, a 37.9-ms pulsar in a 10-hr, relativistic orbit with another

neutron star;

• in Chapter 6, we summarize the results obtained for this thesis, per-

form simulations to determine when other secular variations could be

observable in PSR B1534+12, and describe possible avenues for further

work.
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Chapter 2

The North American

Nanohertz Observatory for

Gravitational Waves

The recent, direct detection of gravitational waves (GWs) at kHz frequencies

using the Laser Interferometer Gravitational-Wave Observatory has officially

heralded the era of observational GW astronomy (Abbott et al., 2016). Along

with LIGO, several major, international efforts are currently underway in

order to directly detect and characterize GWs across different parts of the

GW spectrum. Several expected sources of GWs are merging black holes,

merging neutron stars (e.g. Hulse & Taylor, 1975; Kramer et al., 2006b;

Fonseca et al., 2014), primordial relics from the inflation era of the early

Universe (e.g. Grishchuk, 2005), and cosmic strings (Vilenkin & Shellard,

1994).

NANOGrav1 is one of three “pulsar timing array” (PTA) collaborations,

comprised of faculty, researchers and students, that regularly monitor an in-

creasing number of MSPs with the primary goal of directly detecting GWs

at nanohertz frequencies. The NANOGrav collaboration members are affili-

1http://nanograv.org/
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ated with universities and research institutes within Canada and the United

States. The other two PTAs are comprised of institutions and universi-

ties across Europe, which are collectively referred to as the European Pul-

sar Timing Array (EPTA), and groups across Australian universities that

are collectively referred to in literature as the Parkes Pulsar Timing Array

(PPTA). The union of NANOGrav, the EPTA and PPTA is referred as the

International PTA (IPTA; Manchester & IPTA, 2013). A PTA essentially

serves as a Galactic-scale detector for perturbations of the spacetime metric

generated by, most prominently, the expected merger of binary supermas-

sive black holes (SMBHs) scattered across the Universe (Sazhin, 1978; De-

tweiler, 1979); the superposition of GW signals from SMBH binaries forms a

stochastic background of nanohertz-frequency GWs. Recent work has shown

that PTAs can eventually also become sensitive to individual, localizable

sources of nanohertz-frequency GWs generated from nearby galaxy clusters

(e.g. Sesana et al., 2009), as well as permanent post-merger deformations of

spacetime referred to as GW “memory” (e.g. Madison et al., 2014).

PTA collaborations make high-precision timing observations of an array

of the brightest and most stable MSPs on a regular basis using the same

techniques and analysis methods discussed in Chapter 1. For NANOGrav,

these measurements are made with the 305-m Arecibo Observatory in Puerto

Rico and the 100-m Robert C. Byrd Green Bank Telescope (GBT) in Green

Bank, West Virginia (USA). The collective goal of NANOGrav, along with

the EPTA and PPTA, is the detection and characterization of nanohertz-

frequency GWs within the next decade. The foundational method for de-

tection of the stochastic background with PTAs was outlined by Hellings

& Downs (1983), who proposed the cross-correlation of TOA residuals for

all PTA MSPs at different sky locations to search for correlated structure

due to passing GWs. The effectiveness of the cross-correlation method nat-

urally depends on our ability to accurately measure and model the observed

TOA variations with precision on the order of 10 ns, where GW structure is
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expected to be observable (e.g. Jenet et al., 2006; Sesana et al., 2008).

The author formally joined NANOGrav as a (graduate) student member

in October 2012, shortly after the start of his Ph. D. program, though began

assisting with timing observations around June 2012. After several years of

undertaking data acquisition and constructing timing solutions for various

NANOGrav MSPs, he became a full member of the collaboration in Novem-

ber 2014. During his Ph. D. career, he has attended weekly online meetings

for the timing and observing groups within NANOGrav, and has presented

various projects at in-person NANOGrav meetings across North American

as well as two IPTA meetings in Krabi, Thailand and Banff, Canada. In this

chapter, we briefly summarize the contributions made by E. Fonseca for the

benefit of the NANOGrav collaboration.

2.1 Data Acquisition and Analysis

The nominal NANOGrav observing program, which formally began in 2004,

observes all PTA MSPs every ∼3 weeks using the Arecibo Telescope and/or

the GBT.2 In order to eventually produce high-quality pulsar data and timing

solutions, observations are typically carried out using two widely-separated

telescope receivers and span 20-30 minutes per receiver, per source. There

are currently ∼50 MSPs undergoing observations for the NANOGrav PTA,

and the PTA increase in size by ∼3 MSPs per year, and so observations can

collectively take up ∼50 hours per month of the observing year. Capable and

experienced observers are therefore essential for the acquisition and model-

construction of NANOGrav MSPs.

The author has regularly collected NANOGrav TOA data using both

the Arecibo telescope and GBT during his Ph. D. career. Between Novem-

ber 2013 and January 2016, the author collected 180 hours’ worth of pulsar

2Two NANOGrav MSPs – PSRs J1713+0747 and B1937+21 – are observed using both
observatories. All other MSPs are observed using only one of the two radio telescopes.
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TOAs (Nice, 2016). This total amount of observing includes supplementary

NANOGrav observations conducted for a proposal led by the author during

the 2015 observing year, which is discussed in Section 2.2.

During his graduate career, the author also contributed to the clean-

ing and initial analysis of TOA data for five NANOGrav MSPs: PSRs

J1643−1224; J1853+1303; J1910+1256; J1949+3106; and B1953+29, using

the procedures discussed in Sections 1.3 and 1.4 for the inclusion of relevant

timing parameters. The data acquisition and timing analyses conducted by

the author, along with all full and active members of NANOGrav, culmi-

nated in the publication of the NANOGrav nine-year data set (Arzoumanian

et al., 2015b).

2.2 Proposals for Observations: P2945

The success of the IPTA experiment depends on many observational and

analytical factors that are currently being addressed by PTA collaborations.

Standard “pulsar timing” techniques, discussed in Sections 1.3 and 1.4 above,

provide the crucial means for understanding the environment and spin be-

havior of each MSP. However, recent studies have demonstrated a need to

compensate for intrinsic “timing noise” of varying strength and properties

within several NANOGrav MSPs (e.g. Shannon & Cordes, 2012; Perrodin

et al., 2013; Arzoumanian et al., 2015b). Additional complications arise

due to temporal variations in dispersive properties and the frequency de-

pendence of pulse structure. However, the dedicated work of NANOGrav

faculty, post-doctoral and student members has so far yielded analysis tech-

niques and pipelines that address these issues and allow for current upper

limits of the GW-signal strength. While the NANOGrav PTA is consistently

becoming a more powerful tool for the detection and study of the stochastic

GW background (e.g. Siemens et al., 2013), more work is needed to improve

its sensitivity to individual, localizable sources of GWs.
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Source Ps (ms) DM (pc cm−3) LST (rise-set) RMS residual (µs)
J0030+0451 4.87 4.33 23:31-01:29 0.265
J1640+2224 3.16 18.43 15:18-18:03 0.189
J1713+0747 4.57 15.99 16:05-18:22 0.065
J2043+1711 2.38 20.70 19:21-22:06 0.136
J2317+1439 3.45 21.90 21:56-00:38 0.337

Table 2.1: Observing parameters for the five MSPs observed that are part
of the P2945 program at the Arecibo Observatory. Note that the “rise” and
set” times constitute times when the source enters in and exits out of the
Arecibo field of view, respectively.

Arzoumanian et al. (2014) provided upper limits on the signal strength

of individual-source GWs using the NANOGrav five-year data set (Demor-

est et al., 2013) and found that the detectability of individual-source GWs

strongly depends on two factors. One factor is the angular separation of sev-

eral MSPs relative to these bright GW sources, which are likely to be nearby

galaxy clusters such as the Virgo and Fornax clusters (e.g. Simon et al., 2014).

Localized GW signals will require nearby “detectors”, so suitable MSPs with

small angular separations to these individual GW sources will be necessary

in order to make such detections with confidence. As mentioned above, this

point is continually addressed by including several newly discovered, bright

MSPs each year that are ideally distributed randomly across the sky. The sec-

ond, more limiting factor involves the timing precision of MSPs close to these

potential GW sources of interest. Arzoumanian et al. (2014) found that the

best-timed NANOGrav pulsar – PSR J1713+0747 (e.g. Splaver et al., 2005)

– vastly dominates in S/N contribution to individual-source GW detection

when compared to the other 16 MSPs in their study. In principle, then, the

optimal observing program would be high cadence observations of the single

best-timed pulsar. However, this would not be a robust experiment, since

an apparent GW signal in the timing of that single pulsar could potentially

also be explained by pulsar rotation irregularities or ISM effects. In order to

make a reliable detection, the GW signal needs to be seen in timing data of
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more than one pulsar. Thus the optimal experimental design involves high-

cadence observations, on timescales shorter than the nominal NANOGrav

observing program, of a small number of precisely timed pulsars.

In August 2014, the author served as principal investigator and wrote

a telescope proposal for an additional NANOGrav observing program that

is supplementary to the nominal program discussed in Section 2.1. The

telescope proposal, submitted to the Arecibo Observatory for the September

2014 deadline, requested weekly observations of five NANOGrav MSPs whose

timing data are shown in Table 2.1. The scientific justification in the first

proposal, given the designation “P2945” by the Arecibo Observatory3, was

written by the author using results based on simulated data generated by sev-

eral NANOGrav collaborators. The proposal was accepted in December 2014

with the full amount of requested observing time granted to NANOGrav, for

a total of 260 hours collected for all five MSPs. Observations for P2945

formally began on 1 January 2015.

In August 2015, the author and several NANOGrav members re-submitted

a telescope proposal for the continuation of the P2945 observing program.

The scientific justification for the second submission was similar in form to

the original version submitted in the first P2945 proposal, but included an

initial timing analysis of P2945 data collected during January through Au-

gust of the 2015 observing year that was performed by the author. These

data are shown in Figure 2.2. The second P2945 proposal was successfully

accepted and will continue throughout the 2016 observing year. These data

will be published and be made publicly available in a forthcoming exten-

sion of the NANOGrav data set (Arzoumanian et al., 2016), and will likely

be a part of several studies characterizing noise and DM variations using

high-cadence data.

3http://www.naic.edu/vscience/schedule/2015Spring/FonsecatagP2945.pdf
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Figure 2.1: TOA residuals for the five NANOGrav MSPs observed under
P2945. Red and blue points represent 430 MHz and 1400 MHz data col-
lected using the PUPPI pulsar processor currently used at Arecibo; green
and magenta points represent 430 and 1400 MHz data collected with the
predecessor (ASP) machine. All other points were collected with the Green
Bank Telescope in West Virginia, USA. (Note: there are NANOGrav data
that have been collected during the apparent gap in data around 2014-2015
as part of the nominal observing program, but they are excluded in this figure
to highlight the amount of data collected under P2945.)

2.3 Contributions to NANOGrav Projects

At its core, NANOGrav is a collaborative effort that requires dedicated time

and productivity from observers, data analysts and theorists alike. The re-

cent publication of the NANOGrav nine-year data set has so far spurred a

multitude of studies that probe a wide variety of scientific questions regard-

ing:

• limits on the strength of the stochastic, nanohertz-frequency GW signal
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(Arzoumanian et al., 2016),

• analysis of astrometric parameters observed in NANOGrav MSPs (Matthews

et al., 2016),

• impact of interstellar scintillation in TOA precision for NANOGrav

MSPs (Levin et al., 2016),

• assessment of PTA times to detection of the stochastic GW background

(Taylor et al., 2016),

• assessment of noise budget in NANOGrav TOA data (Lam et al., 2016),

and

• analysis of secular and PK variations in orbital parameters of NANOGrav

binary MSPs.

The last of the studies listed above is the subject of Chapter 3.

The author contributed text and analysis to the publication of the NANO-

Grav nine-year data set (see “Author Contributions” section of Arzoumanian

et al., 2015b), and the astrometry study performed by Matthews et al. (2016).

For the latter study, Matthews et al. (2016) used secular variations in Pb

observed in two NANOGrav binary-MSP systems – PSRs J1614−2230 and

J1909−3744 – to place formidable constraints on the distance to both bi-

naries, using the methodology discussed in Section 1.5. These two systems

and their orbital variations are discussed in Sections 3.4.4 and 3.4.10 below,

respectively.
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Chapter 3

The NANOGrav Nine-Year

Data Set: Mass and Geometric

Measurements of Binary

Millisecond Pulsars1

The NANOGrav nine-year data set (Arzoumanian et al., 2015b) contains

TOAs collected for 37 MSPs, 25 of which reside in binary systems of different

shapes, sizes an orbital periods. The data span for each binary MSP varies

between ∼ 2 to 9 years, depending on when the MSP was discovered and/or

included into the NANOGrav PTA. The regular, monthly cadence and dual-

receiver strategy of the NANOGrav observing program collectively yield an

ideal data set for tracking long-term changes in orientation and/or relativistic

phenomena over time. Moreover, long data sets with a large number of TOAs

collected at different times (and different phases of each orbit) are ideal for

resolving the Shapiro timing delay. The theory introduced in Sections 1.4

and 1.5 show that measurements of geometric and/or relativistic phenomena

1This study was recently accepted by the Astrophysical Journal for publication, and is
available online in the arXiv repository (Fonseca et al., 2016).
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can be related to intrinsic properties of the components and orientation of

the binary system, which are otherwise not uniquely accessible through strict

Keplerian timing. In this chapter, we investigate the various effects observed

in NANOGrav MSP-binary systems to determine the relevant mechanisms

within each system, as well as extract mass and/or geometric information

whenever possible.

In Section 3.1, we provide details regarding the general NANOGrav ob-

serving program as well as targeted observations that were obtained specifi-

cally for the detection of possible Shapiro timing delays in several NANOGrav

MSP-binary systems. In Section 3.2, we describe the timing models and an-

alytical methods used to derive the orbital elements, as well as theoretical

constraints that can be placed on the component masses and system orien-

tation from observed variations in the orbital elements. In Section 3.3, we

discuss the methods used to characterize the physical parameters of interest,

and in particular the component masses and system geometries. In Section

3.4, we discuss results obtained for select individual MSP-binary systems.

Finally, in Section 3.5, we summarize the main findings of our study and

provide a broader context for the implications these measurements have on

understanding stellar-binary evolution and the overall mass distribution of

binary MSPs.

3.1 Observations & Reduction

The full details regarding data collection, calibration, pulse arrival-time de-

termination and noise modeling for the NANOGrav nine-year data set are

provided in Arzoumanian et al. (2015b). Here we provide a brief summary

of this information. The data are publicly available for download online.2

All 37 NANOGrav MSPs were observed on a monthly basis using either

the 300-m William E. Gordon Arecibo Telescope in Puerto Rico or the 100-

2http://data.nanograv.org
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m Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, USA,

as early as 2004 until late 2013. In the cases of PSRs J1713+0747 and

B1937+21, both telescopes were used to monitor these MSPs. In addition

to the monthly-cadence program, concentrated observing campaigns of 12

MSPs were made at specific orbital phases and were designed to maximize

sensitivity to the Shapiro timing delay (Pennucci, 2015).

For the monthly observations at both telescopes, as well as the targeted

Shapiro-delay campaigns at Arecibo, each MSP was observed using two ra-

dio receivers at widely separated frequencies in order to accurately measure

the pulsar’s line-of-sight dispersion properties on monthly timescales, and

to account for any evolution in these frequency-dependent properties over

time. The dual-receiver observations at Arecibo were performed contigu-

ously during each observing session. The same measurements at the GBT

were typically performed within several days of one another due to a need

for retraction and extension of the prime-focus boom when switching be-

tween receivers. For the targeted Shapiro-delay observations at the GBT,

only one receiver was used due to time constraints. The receivers used for

the NANOGrav observations reported here were centered near: 327 MHz (at

Arecibo only); 430 MHz (at Arecibo only); 820 MHz (at GBT only); 1400

MHz; and 2030 MHz (at Arecibo only).

In order to calibrate each MSP signal, pulsed broadband signals from a

noise diode were recorded for several continuum radio sources of known flux

density that were observed once every month during each observing year.

The quasar J1413+1509 was used as the continuum source at Arecibo, while

the quasar B1442+101 was similarly used at the GBT. For each receiver,

two calibration scans of the same continuum source were obtained: one was

centered on the continuum source, and another was obtained typically 1

degree offset from the central position. The difference in “on” and “off”

calibration signals yields the conversion factor from units of machine counts

to flux density. A similar noise-diode signal was obtained for each pulsar at
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its position during every observing session in order to convert raw voltages to

flux densities using the conversion factors determined from the continuum-

calibration observations.

Two generations of pulsar backend processors were used at each tele-

scope for real-time coherent de-dispersion and folding of the signal using

pre-determined ephemerides of each MSP based on early timing solutions.

The identical ASP and GASP pulsar machines (Demorest, 2007; Ferdman,

2008) were used from the start of the NANOGrav observing program in 2004

until their decommissioning in 2011-2012. These backends decomposed the

incoming signal into contiguous 4-MHz channels that spanned 20-64 MHz

in usable bandwidth, depending on the receiver used and radio-frequency-

interference environment. The PUPPI and GUPPI machines (DuPlain et al.,

2008; Ford et al., 2010), currently in use at both telescopes, can process up

to 800 MHz in bandwidth using smaller, 1.5625-MHz channels. Both sets of

machines generated folded pulse profiles resolved into 2048 bins across the

pulsar’s spin period.

Arzoumanian et al. (2015b) used the standard cross-correlation method

for the determination of each folded profile’s time of arrival (TOA), where a

single, de-noised profile template is matched in the Fourier domain with all

profiles obtained at some observing frequency and bandwidth (Taylor, 1992).

Prior to correlation, we averaged data both over time (20-30 min or 2% of a

MSP-binary orbit per TOA, whichever was shorter) and over a small fraction

of the available bandwidth.
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PSR x (lt-s) Pb (days) e ω (deg) T0 (MJD) η κ Tasc (MJD)
J0023+0923 0.03484105(11) 0.13879914244(4) 0.000025(5) 82.0(12.0) 56179.082(5) 0.000024(5) 0.000003(5) 56179.08248997(8)
J0613−0200 1.0914422(5) 1.198512556680(13) 0.00000443(17) 35.0(3.0) 54890.089(10) 0.0000026(2) 0.00000362(8) 54889.991808565(12)
J1012+5307 0.5818176(6) 0.60467271380(6) 0.0000013(17) 75.0(75.0) 54901.95(13) 0.0000012(16) 0.0000003(16) 54901.95231605(11)
J1455−3330 32.3622120(3) 76.174567474(14) 0.00016965(2) 223.458(6) 55531.1454(14) . . . . . . . . .
J1600−3053 8.8016526(10) 14.348468(3) 0.000173741(11) 181.854(16) 55419.1115(6) . . . . . . . . .
J1614−2230 11.29119744(7) 8.68661942171(9) 0.000001333(8) 175.9(4) 55662.053(10) 0.000000096(9) −0.000001330(7) 55658.145347857(6)
J1640+2224 55.329717(4) 175.460597(13) 0.00079725(2) 50.7313(15) 54784.4707(7) . . . . . . . . .
J1643−1224 25.0725904(3) 147.01739554(4) 0.000505752(18) 321.849(2) 54870.5948(8) . . . . . . . . .
J1713+0747 32.34242188(14) 67.82513826930(19) 0.0000749402(6) 176.1963(16) 53761.0327(3) . . . . . . . . .
J1738+0333 0.3434297(2) 0.35479073425(6) 0.0000004(10) 252.0(140.0) 55598.94(14) −0.0000004(10) −0.0000001(9) 55598.93613993(12)
J1741+1351 11.0033168(4) 16.3353478266(6) 0.00000998(2) 204.00(17) 55812.321(8) −0.00000406(3) −0.00000912(2) 55819.25468493(3)
J1853+1303 40.76952255(13) 115.653786432(6) 0.000023700(6) 346.656(11) 56128.563(3) . . . . . . . . .
B1855+09 9.2307805(2) 12.32717119133(19) 0.00002163(2) 276.54(5) 54975.5129(19) . . . . . . . . .
J1903+0327 105.593463(3) 95.17411738(8) 0.43667843(2) 141.6536021(15) 55776.9743424(3) . . . . . . . . .
J1909−3744 1.89799095(4) 1.533449451246(8) 0.000000092(13) 179.0(13.0) 54514.49(6) 0.00000000(2) −0.000000092(12) 54513.989936084(3)
J1910+1256 21.1291025(2) 58.466742058(5) 0.00023020(2) 106.013(6) 54956.3186(11) . . . . . . . . .
J1918−0642 8.3504665(2) 10.9131775801(2) 0.000020340(18) 219.38(6) 54893.7305(17) −0.00001291(2) −0.000015721(13) 54897.63652454(2)
J1949+3106 7.288647(7) 1.9495344177(8) 0.0000429(3) 208.0(6) 56365.552(3) −0.0000201(5) −0.0000379(2) 56365.97423581(3)
B1953+29 31.4126915(2) 117.349097292(19) 0.000330230(15) 29.483(2) 55265.7096(7) . . . . . . . . .
J2017+0603 2.1929208(9) 2.1984811364(4) 0.00000685(15) 177.0(3.0) 56201.626(15) 0.0000004(3) −0.00000684(15) 56200.64259488(3)
J2043+1711 1.6239584(2) 1.48229078649(14) 0.00000489(13) 240.4(1.2) 56173.974(5) −0.00000425(13) −0.00000242(9) 56174.306240718(10)
J2145−0750 10.16410849(17) 6.83890250963(11) 0.000019295(19) 200.91(5) 54902.6174(9) . . . . . . . . .
J2214+3000 0.0590817(3) 0.4166329463(9) 0.000009(11) 345.0(72.0) 56221.96(8) −0.000002(10) 0.000008(11) 56221.9632381(4)
J2302+4442 51.4299676(5) 125.93529697(13) 0.000503021(17) 207.8925(18) 56302.6599(6) . . . . . . . . .
J2317+1439 2.313943(4) 2.45933146519(2) 0.0000007(5) 101.0(42.0) 54976.1(3) −0.0000007(5) 0.00000015(6) 54976.609358785(14)

Table 3.1: Values in parentheses denote the 1σ uncertainty in the preceding digit(s), as determined from
TEMPO2. For MSPs with both DD and ELL1 parameters listed in this table, we used the ELL1 model
to describe the Keplerian orbit in the TEMPO2 fit, and then derived the corresponding DD values; the 1σ
uncertainties for the derived DD parameters were computed by propagating 1σ uncertainties in the fitted
ELL1 parameters. The values for PSR J1713+0747 were taken from Zhu et al. (2015).
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3.2 Binary Timing Models

We used the TEMPO2 pulsar-timing software package for the analysis of

topocentric TOAs collected for all NANOGrav binary MSPs, based on so-

lutions made publicly available by Arzoumanian et al. (2015b) that were

obtained using GLS fitting. Each timing model includes parameters that de-

scribe the given pulsar’s spin and spin-down rates, astrometry (i.e. ecliptic-

coordinate position, proper motion and annual timing parallax), DM evalu-

ated at monthly intervals, binary motion, and evolution in pulse-profile struc-

ture as a function of observing frequency. As discussed in Chapter 2, several

NANOGrav collaborators have led studies that focus on different subsets of

timing parameters among the NANOGrav MSPs in order to maximize the

amount of astrophysical information derivable from them. For this project,

we only directly examine the measurements relevant to binary motion and

any observed variations in the orbital elements.

For each binary system, five Keplerian parameters were included in the

timing model. We also included timing parameters that describe secular

variations in the orbital elements, and/or the Shapiro timing delay, if the

least-squares fit in TEMPO2 was significantly improved, such that the F-

test significance value was at least 0.0027 (i.e. each parameter is at least 3σ

significant). Finally, we chose to fit for secular variations in the projected

semi-major axis (x) for PSRs J1600−3053 and J1909−3744, and a secular

variation in Pb of PSR J1614−2230, despite their lack of 3σ significance; the

reasons for these additions are discussed in Section 3.4 below.

3.2.1 Parametrizations of the Shapiro Delay

The timing solutions developed by Arzoumanian et al. (2015b) used the “tra-

ditional” parametrization of the Shapiro timing delay discussed in Chapter

1, where ∆S is a function of r and s (Equation 1.27 or 1.30 for DD or ELL1

models, respectively). For this detailed study of MSP-binary systems, we
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also created timing solutions that used the “orthometric” parametrization of

the Shapiro timing delay (Freire & Wex, 2010). The orthometric framework

expresses the observed ∆S as a Fourier expansion across each system’s or-

bital period and uses two different PK parameters that are derived from the

harmonics of the Shapiro-delay signal to describe the relativistic effect. It

is a generalized framework based on the Fourier expansion of ∆S introduced

in Section 1.4 for the entire range of system inclination. In the orthomet-

ric framework, the PK parameters are either the third and fourth harmonic

amplitudes of ∆S (referred to as h3 and h4, respectively), or h3 and the ortho-

metric ratio ς = h4/h3. In practice, the choice of (h3, h4) as PK parameters

is most appropriate for low-e systems with i < 60◦, while (h3, ς) is used for

eccentric systems and low-e systems with i > 60◦.

While no new physical information is made available by its PK parame-

ters, the orthometric parametrization reduces statistical correlation between

the Shapiro-delay parameters. The orthometric model therefore provides a

more numerically stable solution to the timing of binary pulsars with signif-

icant Shapiro-delay signals, particularly in low-e systems where ∆S is more

difficult to measure. The available orthometric PK parameters are related to

the traditional PK parameters as nonlinear functions:

ς =

√
1− cos i

1 + cos i
(3.1)

h3 = rς3 (3.2)

h4 = h3ς. (3.3)

As shown by Freire & Wex (2010), the statistical significance of h3 reflects the

degree to which ∆S is measurable and can therefore be used as a straightfor-

ward indicator for the detection of the Shapiro timing delay in a pulsar-binary

system. In this study, we considered the Shapiro delay to be measurable if

the estimate of h3 was statistically significant to at least 3σ. For all systems
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with significant ∆S, as well as systems with statistically significant eccentric-

ities that did not pass the h3 significance test, we used the (h3, ς) parameters

to describe the Shapiro timing delay. For low-e systems with no significant

∆S, we instead parameterized ∆S using the (h3, h4) combination.

Given the relations between the (mc, sin i) and (h3, ς) parameters in

Equations 3.1 and 3.2, physical arguments require that h3 > 0 and 0 < ς < 1.

Equation 3.3 subsequently requires that h4 be positive, as well. However,

TEMPO2 does not impose any theoretically-motivated constraints on the

Shapiro-delay parameters (traditional or orthometric) during a timing-model

fit; it is therefore mathematically allowed for the Shapiro-delay terms to

possess values that exceed their physical limits. Such limit discrepancies are

not expected to be an issue for significant ∆S signals, but may occur for non-

detections of the Shapiro delay due to large statistical correlation between

parameters when the ∆S signal is weak.

3.3 Analyses of Mass & Geometric Parame-

ters

We measured the Shapiro timing delay in fifteen NANOGrav binary-MSP

systems, as well as many secular and PK variations in several orbital ele-

ments, based on the F-test significance criterion used by Arzoumanian et al.

(2015b). In this work, we analyzed only fourteen of the fifteen MSPs with sig-

nificant ∆S since PSR J1713+0747 was recently studied by Zhu et al. (2015)

using NANOGrav and archival data sets. The other fourteen NANOGrav

binary MSPs with significant ∆S also passed the 3σ-significance test of h3,

as described in Section 3.2.1. The secular/PK measurements are shown in

Table 3.2.
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PSR ω̇ (deg yr−1) ẋ (10−12) Ṗb (10−12) h3 (µs) h4 (µs) ς Detection of ∆S? Span (yr)
J0023+0923 . . . . . . . . . 0.06(5) −0.00(6) . . . N 2.3
J0613−0200 . . . . . . . . . 0.28(3) . . . 0.74(8) Y 8.6
J1012+5307 . . . . . . . . . −0.00(9) 0.05(10) . . . N 9.2
J1455−3330 . . . −0.021(5) . . . 0.3(2) . . . 0.7(4) N 9.2
J1600−3053 0.007(2) −0.0017(9) . . . 0.39(3) . . . 0.62(6) Y 6.0
J1614−2230 . . . . . . 1.3(7) 2.329(11) . . . 0.9859(2) Y 5.1
J1640+2224 −0.00028(5) 0.0145(10) . . . 0.57(6) . . . 0.61(8) Y 8.9
J1643−1224 . . . −0.047(3) . . . −0.09(13) . . . 1.2(8) N 9.0
J1713+0747 . . . 0.00645(11) . . . 0.54(3) . . . 0.73(1) Y 8.8
J1738+0333 . . . . . . . . . 0.02(12) 0.06(13) . . . N 4.0
J1741+1351 . . . −0.0094(18) . . . 0.46(6) . . . 0.85(10) Y 4.2
J1853+1303 . . . 0.0147(19) . . . 0.11(11) . . . 0.5(1.2) N 5.6
B1855+09 . . . . . . . . . 1.04(4) . . . 0.969(5) Y 8.9
J1903+0327 0.0002410(13) . . . . . . 2.0(3) . . . 0.70(8) Y 4.0
J1909−3744 . . . −0.00044(16) 0.509(9) 0.868(7) . . . 0.9381(16) Y 9.1
J1910+1256 . . . −0.017(2) . . . 0.3(2) . . . 0.7(7) N 8.8
J1918−0642 . . . . . . . . . 0.83(3) . . . 0.918(8) Y 9.0
J1949+3106 . . . . . . . . . 2.5(5) . . . 0.77(10) Y 1.2
B1953+29 . . . 0.011(3) . . . −0.1(6) . . . 0.8(5) N 7.2
J2017+0603 . . . . . . . . . 0.31(7) . . . 0.72(8) Y 1.7
J2043+1711 . . . . . . . . . 0.60(3) . . . 0.890(13) Y 2.3
J2145−0750 . . . 0.0098(19) . . . 0.10(5) . . . 0.94(17) N 9.1
J2214+3000 . . . . . . . . . −0.3(2) −0.1(3) . . . N 2.1
J2302+4442 . . . . . . . . . 1.5(3) . . . 0.55(15) Y 1.7
J2317+1439 . . . . . . . . . 0.33(6) . . . 0.49(14) Y 8.9

Table 3.2: Values in parentheses denote the 1σ uncertainty in the preceding digit(s), as determined from
TEMPO2.

56



3.3.1 Bayesian Analyses of Shapiro-Delay Signals

We used the procedure outlined in Appendix A to perform a statistically rig-

orous analysis of the fourteen MSPs in the nine-year data set with significant

Shapiro-delay measurements and obtain robust estimates of mp, mc, and i.

For each of the fourteen MSPs, we first created a uniform, two-dimensional

n × n grid of χ2 values for different combinations of mc = r/T� (Equation

1.42) and cos i, where n = 200 or greater in order to minimize artifacts from

interpolation. With the exception of the noise parameters, all other timing-

model parameters were allowed to vary freely when estimating the χ2 at each

grid coordinate; the noise terms were held fixed at their maximum-likelihood

values as determined by Arzoumanian et al. (2015b). We used cos i instead

of sin i as a grid coordinate since a collection of randomly-oriented binary

systems possesses a uniform distribution in cos i; this assertion is proven in

Section A.2 below.

Each χ2 map was then converted to a two-dimensional probability distri-

bution function (PDF) by using a Bayesian likelihood density of the following

form,

p(data|mc, cos i) ∝ e−(χ2−χ2
0)/2 (3.4)

where χ2
0 is the minimum value of the χ2 distribution defined on the two-

dimensional grid. Bayes’ theorem subsequently yields the two-dimensional

posterior PDF, p(mc, cos i|data), when using the joint-uniform prior distri-

bution of the two Shapiro-delay parameters. We then marginalized (i.e. in-

tegrated) the two-dimensional PDF over cos i to obtain the one-dimensional

PDF in mc, and marginalized over mc to obtain the one-dimensional PDF in

cos i. In order to obtain a PDF in mp, we transformed the two-dimensional

(mc, cos i) probability grid to one in the (mp, cos i) space by applying the

transformation rule for PDFs of random variables,
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p(mp, cos i|data) = p(mc, cos i|data)
∂mc

∂mp

,

where the partial derivative is evaluated by using the mass function (Equation

1.37, for a fixed value of cos i). The expressions for map translation are

provided in Section A.3.

For the two-dimensional grids, we computed χ2 values over 0 < cos i < 1

and, unless otherwise noted, 0 < mc < 1.4 M�. The latter upper limit

approximately corresponds to the Chandrasekhar limit for a non-rotating

white dwarf. (Three exceptions to this cut-off limit are PSRs J1903+0327,

J1949+3106, and J2302+4442, which are discussed individually in Section

3.4 below.) The arbitrary upper limit on the companion mass does not

affect the most significant ∆S measurements, where all non-zero probability

is typically enclosed in a small, elliptical region of the (mc, cos i) space. The

cut-off value only biases estimates made for statistically weak Shapiro-delay

measurements, where non-zero probability can extend to large values of mc

and low values of i; this bias is discussed in Section 3.3.2 below.

We applied the same set of χ2-grid and marginalization procedures de-

scribed above for the fourteen timing models with significant ∆S that used

the (h3, ς) orthometric parametrization. However, we first created a χ2 grid

in uniform steps of the (h3, ς) parameters, and afterwards converted the resul-

tant likelihood density to the (mc, cos i) probability map by using Equations

3.1 and 3.2 when applying the PDF-transformation rule.

The choice in parametrization of ∆S amounts to a difference in prior prob-

abilities on the physical parameters (mc, sin i) when performing the MCMC

or χ2-grid analysis described above, due to the nonlinear relation between the

physical and orthometric parameters (Equations 3.1-3.3). Our first choice of

prior, in (mc, cos i), is motivated by the expected distribution of randomly

oriented binary systems – uniform in cos i – though the choice of uniform mc

is arbitrary. On the other hand, Freire & Wex (2010) argue that a statistical

analysis of the orthometric parameters is preferable since h3 and ς are re-
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lated to the Fourier harmonics of ∆S and make no immediate assumption on

the probability distributions of physical parameters. Simulations by Freire &

Wex show that the one-dimensional posterior PDFs of the physical parame-

ters will be affected in cases of low inclination, where ∆S is typically weaker

and the posterior density is heavily influenced by the choice of prior infor-

mation. For cases in which there is a highly-significant measurement of ∆S,

such that the posterior density spans a small range of parameter space, the

two choices of priors give essentially the same results. We present the results

obtained from both sets of priors to demonstrate the effects such choices have

on our mass measurements.

MCMC Analysis of Shapiro-delay Parameters

As a check on the χ2-grid procedure described above, we evaluated the pa-

rameters of each binary system using a Bayesian Markov Chain Monte Carlo

(MCMC; e.g. Gregory, 2005a) analysis of all timing-model parameters. In

the MCMC analysis, where we used the PAL2 Bayesian inference suite3, the

joint likelihood density includes all spin, astrometric, binary and noise terms

as parameters to be sampled. The Bayesian analysis uses the traditional

(mc, cos i) parameterization for the Shapiro delay, along with uniform priors

on these and all other timing model parameters. We analytically marginal-

ized the joint posterior over the DM, profile-evolution, and backend-offset

parameters in order to reduce computational needs.

In principle, the MCMC analysis therefore provides a more robust explo-

ration of the parameter space and timing-model behavior than the χ2-grid

analysis, since the MCMC method samples the noise parameters, while the

χ2-grid holds the noise parameters fixed. Moreover, for the MCMC analysis,

the computation of mp accounts for the small uncertainty in the mass func-

tion, as it uses the posterior distributions for the Shapiro-delay and Keplerian

parameters.

3https://github.com/jellis18/PAL2
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Figure 3.1: Normalized posterior PDFs of mp, mc and cos i for PSR
J2043+1711. The red-solid curves were obtained from a χ2-grid analysis,
and the blue-dashed curves were generated from an MCMC analysis of all
timing-model parameters (including terms that characterize red- and white-
noise processes) when drawing 106 samples and using a thinning factor of
10 to reduce autocorrelation. The χ2-grid and MCMC methods yield nearly
identical estimates of the posterior PDFs.
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Figure 3.1 shows the normalized posterior PDFs of the Shapiro-delay

parameters for PSR J2043+1711 (see Section 3.4.14) estimated from both

the χ2-grid and MCMC analyses. It is clear that the χ2-grid and MCMC

analyses yield nearly identical estimates of the posterior distributions of the

component masses and cos i. This consistency between methods is seen for all

14 MSPs with significant ∆S. Thus the χ2-grid method is a reliable method

for estimating posterior PDFs when using an adequate (fixed) noise model.

All estimates reported below were obtained from the χ2-grid method and

verified using PAL2.

Constraints from (ω̇)GR on Shapiro-delay Parameters

Both PSRs J1600−3053 and J1903+0327 exhibit statistically significant mea-

surements of ω̇ and ∆S. As discussed in Sections 3.4.3 and 3.4.9 below, the

ω̇ measurements in these two systems are likely due to GR. We therefore

generated additional χ2 grids of the two Shapiro-delay parameters for PSRs

J1600−3053 and J1903+0327 that used the statistical significance of ω̇ to

improve our estimates of the Shapiro-delay parameters in the following man-

ner:

• for each (mc, cos i) coordinate on the χ2 grid, we computed a value of

mp using the mass function for the given system; for the orthometric

grids, we first used Equations 3.1 and 3.2 to compute mc and cos i

at each (h3, ς) grid coordinate, and then used the mass function to

compute mp;

• we then used the values of mp and mc, along with the Keplerian ele-

ments of the given system, to compute (ω̇)GR using Equation 1.39 at

the (mc, cos i) or (h3, ς) grid points;

• we then held the ω̇ parameter fixed in the timing solution at the value

given by (ω̇)GR, along with the Shapiro-delay parameters, and used

TEMPO2 to obtain a constrained χ2 value.
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We then used Equation 3.4 and the marginalization procedures discussed

above to obtain constrained PDFs of mp, mc and i from both parametriza-

tions of ∆S.

Constraints from geometric variations on Shapiro-delay Parame-

ters

PSRs J1640+2224 and J1741+1351 have significant measurements of ∆S

and secular variations in x that are likely due to proper motion, a biasing

effect discussed in Section 1.5.2. However, PSR J1640+2224 also exhibits

a significant ω̇ that is currently not well understood in terms of the various

mechanisms outlined in Section 1.5 above (see Section 3.4.5 for a discussion).

We therefore only analyze the observed geometric variation in x for PSR

J1741+1351.

In the case of PSR J1741+1351, we generated χ2 grids that explicitly

modeled the observed ẋ in terms of system geometry at each grid point using

Equation 1.43. The observed Shapiro delay yields a measure of sin i, and so

an estimate of Ω can be made using the observed ẋ.4 We used the T2 binary

timing model in TEMPO2, a general binary framework that uses the DD or

ELL1 models when appropriate but also allows for i and Ω to be used as

fit parameters; the T2 timing model computes both the secular and periodic

variations in x (Equations 1.43 and 1.47) and ω (Equations 1.44 and 1.48)

given the two geometric parameters.

The explicit modeling of orbital variations due to changes in geometry

introduces Ω as an a priori unknown parameter; we therefore generated three-

dimensional χ2 grids in the uniform (mc, cos i, Ω) and (h3, ς, Ω) phase spaces

for PSR J1741+1351, using Equation 3.4 as the likelihood density at each grid

point in the three-dimensional phase space. We then appropriately translated

4The sign ambiguity of cos i as well as the functional form of (ẋ)µ results in four possible
combinations of (i, Ω). We discuss the possibility of breaking the degeneracy in the last
paragraph of Section 3.3.1.
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PSR iSD (deg) iẋ (deg)
J0023+0923 < 56 . . .
J1012+5307 < 66 . . .
J1455−3330 < 85 < 77
J1643−1224 < 73 < 37
J1738+0333 < 70 . . .
J1853+1303 < 74 < 63
J1910+1256 < 63 < 63
B1953+29 < 80 < 77
J2145−0750 < 80 < 73
J2214+3000 < 75 . . .

Table 3.3: Upper limits of the system inclination for MSPs that do not
have significant measurements of ∆S; if available, we use the measured ẋ
to compute a second, independent constraint. All upper limits are at 95%
confidence.

and marginalized the three-dimensional probability maps in order to obtain

one-dimensional posterior PDFs of mp, mc, i and Ω.

If the Shapiro timing delay and only ẋ are measured, then the (mc, cos i,

Ω) and (h3, ς, Ω) grid analyses will introduce a sign ambiguity in Ω due

to the fact that the variation depends both cot i and sin(Θµ − ω). In this

case, the ambiguity in both cos i and Ω results in a four-fold degeneracy in

the system orientation (i, Ω) of the orbit. However, if two or more secular

and/or periodic variations are measured, then the four-fold degeneracy can

be broken to determine a unique orientation of the MSP-binary orbit. We

consider the relevance of annual orbital parallax for PSRs J1640+2224 and

J1741+1351 below.

3.3.2 Limits on Inclination from ẋ and the Absence of

Shapiro Delay

A constraint on the system inclination angle can still be placed using the ẋ

measurements listed in Table 3.2 (e.g. Nice et al., 2001) for cases where the
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Shapiro timing delay is not detected. This is possible since the trigonometric

term for Ω in Equation 1.43 cannot exceed unity, i.e. sin(Θµ−Ω) ≤ 1, where

the equality corresponds to an alignment between the proper-motion vector

and the projection of the orbital angular moment vector on the plane of the

sky. The “magnitude” of the effect can therefore be written as |ẋ|µ,max =

µx| cot i|, and an upper limit on the system inclination can be calculated as

i < arctan

[
xµ

|ẋ|obs

]
. (3.5)

We computed a 95.4%-credibility upper limit on the system inclination using

Equation 3.5 and the 2σ lower limit of the ẋ measurements reported in Table

3.3 for systems with no detected Shapiro delay.

Another constraint on i can be placed by using a non-detection of the

Shapiro timing delay. The Shapiro-delay χ2 grids of pulsar-binary systems

with no measurable ∆S contain zero probability in regions of the (mc, cos i)

space that correspond to large companion masses and high inclinations.

These regions can be excluded based on statistically poor timing-model fits

to the NANOGrav nine-year data sets.

A complication arises from the cut-off value in mc when generating the

χ2 grids as discussed in Section 3.3.1: the cut-off value disregards regions

of the (mc, cos i) phase space with non-zero probability density. We believe

that the cut-off value in mc is nonetheless justified since the only MSP with a

suspected main-sequence-star companion is PSR J1903+0327.5 The inclusion

of more probability density in non-detection χ2 grids would shift the upper

limit on i to lower values, so the upper limits on i we report in this study are

considered to be conservative. Figures 3.2-3.10 show the χ2-grid and upper-

limit results for all binary MSPs with no significant detection of ∆S, and the

estimates of upper limits on i for these systems are provided in Table 3.3.

5While we extended the upper limit on mc for PSRs J1949+3106 and J2302+4442 to
5 M�, we believe that the detections of ∆S in their TOA residuals warrant more stringent
analysis of the probability density.

64



Figure 3.2: Top A (mc, cos i) probability map for PSR J0023+0923. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown in the
top panel. The shaded blue region under the PDF contains 95% of the total
probability.
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Figure 3.3: Top. A (mc, cos i) probability map for PSR J1012+5307. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.4: Top. A (mc, cos i) probability map for PSR J1455−3330. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.5: Top. A (mc, cos i) probability map for PSR J1643−1224. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.6: Top. A (mc, cos i) probability map for PSR J1738+0333. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.7: Top. A (mc, cos i) probability map for PSR J1853+1303. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.8: Top. A (mc, cos i) probability map for PSR J1910+1256. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.9: Top. A (mc, cos i) probability map for PSR J2145−0750. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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Figure 3.10: Top. A (mc, cos i) probability map for PSR J2214+3000. The
significance of h3 in this system is less than 3σ, so we only compute upper
limits on i. The inner, middle and outer red contours encapsulate 68.3%,
95.4% and 99.7% of the total probability. Bottom. Posterior PDF of the
derived inclination angle, obtained from the (mc, cos i) grid shown on the top.
The shaded blue region under the PDF contains 95% of the total probability.
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PSR Pulsar Mass (M�) Companion Mass (M�) System Inclination (deg)

Trad Ortho Trad Ortho Trad Ortho

J0613−0200 2.3+2.7
−1.1 2.1+2.1

−1.0 0.21+0.23
−0.10 0.19+0.15

−0.07 66+8
−12 68+7

−10

J1600−3053 2.4+1.5
−0.9 2.4+1.3

−0.8 0.33+0.14
−0.10 0.33+0.13

−0.08 63+5
−5 64+4

−5

J1614−2230 1.928+0.017
−0.017 1.928+0.017

−0.017 0.493+0.003
−0.003 0.493+0.003

−0.003 89.189+0.014
−0.014 89.188+0.014

−0.014

J1640+2224 4.4+2.9
−2.0 5.2+2.6

−2.0 0.6+0.4
−0.2 0.7+0.3

−0.2 60+6
−6 58+6

−6

J1713+0747 1.31+0.11
−0.11 1.31+0.11

−0.11 0.286+0.012
−0.012 0.286+0.012

−0.012 71.9+0.7
−0.7 71.9+0.7

−0.7

J1741+1351 1.87+1.26
−0.69 1.781.08−0.63 0.32+0.15

−0.09 0.31+0.13
−0.08 66+5

−6 66+5
−6

B1855+09 1.30+0.11
−0.10 1.31+0.12

−0.10 0.236+0.013
−0.011 0.238+0.013

−0.012 88.0+0.3
−0.4 88.0+0.3

−0.4

J1903+0327 1.65+0.02
−0.02 1.65+0.02

−0.03 1.06+0.02
−0.02 1.06+0.02

−0.02 72+2
−3 72+2

−3

J1909−3744 1.55+0.03
−0.03 1.55+0.03

−0.03 0.214+0.003
−0.003 0.214+0.003

−0.003 86.33+0.09
−0.10 86.33+0.09

−0.10

J1918−0642 1.18+0.10
−0.09 1.19+0.10

−0.09 0.219+0.012
−0.011 0.219+0.012

−0.011 85.0+0.5
−0.5 85.0+0.5

−0.5

J1949+3106 4.0+3.6
−2.5 4.0+3.4

−2.3 2.1+1.6
−1.0 1.9+1.5

−0.9 67+9
−8 68+8

−8

J2017+0603 2.4+3.4
−1.4 2.0+2.8

−1.1 0.32+0.44
−0.16 0.27+0.30

−0.12 62+9
−12 65+7

−11

J2043+1711 1.41+0.20
−0.18 1.43+0.21

−0.18 0.175+0.016
−0.015 0.177+0.017

−0.015 83.2+0.8
−0.9 83.1+0.8

−0.9

J2302+4442 5.3+3.2
−3.6 5.5+3.0

−3.2 2.3+1.7
−1.3 1.8+1.6

−1.0 54+12
−7 57+11

−9

J2317+1439 4.7+3.4
−2.8 4.1+3.5

−2.4 0.7+0.5
−0.4 0.5+0.5

−0.3 47+10
−7 51+10

10

Table 3.4: Estimate of mp, mc and i for NANOGrav Binary MSPs with significasnt Shapiro-delay signals.
All uncertainties reflect 68.3% confidence intervals. “Trad” refers to estimates made with the traditional
(mc, sin i) Shapiro-delay model, while “Ortho” refers to those made with the orthometric (h3, ς) model.
Difference in median values and confidence intervals reflect the consequence in choosing uniform Bayesian
priors on the (mc, sin i) or (h3, ς) parameters for weak measurements of ∆S. Observed secular variations
used as constraints for PSRs J1600−3053, J1741+1351, and J1903+0327. The values for PSR J1713+0747
were taken from Zhu et al. (2015).
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3.4 Results & Discussion

The traditional and orthometric parameterizations of the Shapiro timing de-

lay yield consistent measurements of the component masses, i, and Ω (when

the latter angle is measurable) in the fourteen NANOGrav MSP-binary sys-

tems with significant ∆S that we analyze here. We report estimates that

were made using both Shapiro-delay models for each of these 14 MSPs in

Table 3.4. Any differences in the estimates and confidence intervals derived

from the traditional (mc, sin i) or orthometric (h3, ς) probability grids reflect

different Bayesian priors on those PK parameters; the most highly-inclined

systems produced essentially identical estimates. These features are consis-

tent with the expectations discussed in Section 3.3.1.

Unless otherwise specified, all numerical values with uncertainties pre-

sented below reflect 68.3% equal-tailed credible intervals; that is, we compute

the credible interval by numerically integrating each (normalized) posterior

PDF to values of the parameter that contain 15.9% (lower bound), 50% (me-

dian), and 84.1% (upper bound) of all probability (see Appendix A.4 for

details).

3.4.1 PSR J0613−0200

PSR J0613−0200 is a 3.1-ms pulsar in a 1.2-day orbit that was discovered

in a survey of the Galactic disk using the Parkes radio telescope (Lorimer

et al., 1995). A previous long-term timing study of this MSP by Hotan

et al. (2006) used the lack of a Shapiro-delay detection to place constraints

on the companion mass and system inclination, such that 0.13 < mc/M� <

0.15 and 59◦ < i < 68◦ if mp = 1.3 M�. Two recent, independent TOA

analyses of PSR J0613-0200 were performed by Reardon et al. (2016) and

Desvignes et al. (2016). Reardon et al. used an 11-yr data set collected

for the Parkes Pulsar Timing Array (PPTA) and did not report any secular

variations or PK effects. Desvignes et al. used a 16-yr data set collected
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for the European Pulsar Timing Array (EPTA) to be measure a significant

Ṗb = 4.8(1.1)×10−14. Neither study reports a detection of the Shapiro timing

delay. A recent optical-spectroscopy study did not detect the companion to

PSR J0613−0200, and placed a 5σ-detection lower limit on the photometric

R-band magnitude to be R > 23.8 (Bassa et al., 2015).

For the first time, we report the detection of the Shapiro timing delay

in the PSR J0613−0200 system using the NANOGrav nine-year data set.

It is likely that the Shapiro-delay signal in PSR J0613−0200 went unde-

tected by Reardon et al. (2016) and Desvignes et al. (2016) because of the

better sensitivity achieved with the GBT and GUPPI backend, as reflected

by the factor of 2-3 improvement in TOA root-mean-square (RMS) residu-

als between the NANOGrav and PPTA/EPTA data sets. The χ2 grids and

marginalized PDFs for PSR J0613−0200 are shown in Figure 3.11. Our cur-

rent estimates of mc = 0.18+0.15
−0.07 M� and i = 68+7

−10 degrees are consistent

with the predictions made by Hotan et al. (2006), though our derived es-

timate of mp = 2.3+2.7
−1.1 M� is not yet precise enough to yield a meaningful

constraint on the pulsar mass.

3.4.2 PSR J1455−3330

PSR J1455−3330 is a 7.9-ms pulsar in a 76-day orbit and was discovered

in a survey of the Galactic disk using the Parkes radio telescope (Lorimer

et al., 1995). The long spin period of this MSP, along with its large orbit

and anomalously large characteristic age, indicates potential disk instability

during the transfer phase that ultimately dontated little mass to the neutron

star (Li et al., 1998). A recent radio-timing analysis by Desvignes et al.

(2016) reported a significant ẋ = −1.7(4)× 10−14.

We measured a significant ẋ = −2.1(5) × 10−14 in the PSR J1455−3330

system using the NANOGrav nine-year data set. Our estimate of ẋ is con-

sistent with the one made by Desvignes et al. (2016) using an independent

data set. We did not detect a Shapiro timing delay, as indicated by the
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insignificance of h3 and unconstrained estimate of ς listed in Table 3.2.

3.4.3 PSR J1600−3053

PSR J1600−3053 is a 3.6-ms pulsar in a 14.3-day orbit that was discovered in

a survey of high Galactic latitudes using the Parkes radio telescope (Jacoby

et al., 2007). A recent analysis of the PSR J1600−3053 system by Reardon

et al. (2016) used PPTA data to make significant measurements of ẋ and the

Shapiro timing delay: mp = 2.4(1.7) M�, mc = 0.34(15) M�, sin i = 0.87(6),

and ẋ = −4.2(7) × 10−15. Another recent and independent study by Desvi-

gnes et al. (2016) used EPTA data to measure the orthometric parameters

h3 = 0.33(2) µs and ς = 0.68(5), consistent with the component masses and

inclination measured by Reardon et al., as well as ẋ = −2.8(5)× 10−15.

We measured a significant ω̇ for the first time, as well as a Shapiro timing

delay in the PSR J1600-3053 system. We do not yet measure a 3σ significant

ẋ, likely because the NANOGrav data span for PSR J1600−3053 is ∼6 yr,

several years shorter than the EPTA and PPTA data sets. Nevertheless, we

do make a tentative, ∼2σ detection of ẋ = −1.7(9)× 10−15 and have elected

to include it as a free parameter in our timing solution. Our estimates of ẋ

and the orthometric parameters, h3 = 0.39(3) and ς = 0.62(6), are consistent

with those made by Desvignes et al. (2016).

Our measurement of ω̇ = 7(2) × 10−3 deg yr−1 in the PSR J1600−3053

system could, in principle, be due to a combination of physical effects dis-

cussed in Section 1.5. The maximum amplitude of (ω̇)µ for PSR J1600−3053,

computed from Equation 1.44, is (ω̇)µ,max = µ| csc i| ∼ 10−6 deg yr−1, which

is two orders of magnitude smaller than the uncertainty level for the observed

ω̇ in this MSP-binary listed in Table 3.2. Therefore, the observed ω̇ in the

PSR J1600−3053 system cannot be due to secular variations from proper

motion at the current level of precision.

The predicted GR component of ω̇ of PSR J1600−3053 is on the order of

10−3 deg yr−1 given the Keplerian parameters of the system shown in Table
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3.1, the same order of magnitude as our measured value. We therefore used

the method described in Section 3.3.1 to include both ω̇ and the Shapiro-

delay parameters when generating the two-dimensional χ2 grid. The χ2 grids

and marginalized PDFs for PSR J1600−3053 are shown in Figure 3.12; the

constrained estimates of the component masses and inclination are: mp =

2.4+1.5
−0.9 M�; mc = 0.33+0.14

−0.10 M�; and i = 63(5) degrees. Our constrained

estimates of the Shapiro delay parameters are consistent with the estimates

made by Reardon et al. (2016) and Desvignes et al. (2016).

3.4.4 PSR J1614−2230

PSR J1614−2230 is a 3.2-ms pulsar in a 8.7-day orbit with a massive WD

companion; this MSP was discovered in a mid-latitude radio search of uniden-

tified EGRET gamma-ray sources using the Parkes radio telescope (Hessels

et al., 2005; Crawford et al., 2006). The PSR J1614−2230 system contains

one of the most massive neutron stars known, mp = 1.97(4) M�, as de-

termined by a strategic set of observations that were made and used by

Demorest et al. (2010) to measure the Shapiro timing delay in this highly-

inclined binary system. Demorest et al. were able to rule out nearly all

models for plausible neutron-star equations of state that invoke significant

amounts of exotic matter. Moreover, the PSR J1614−2230 system provided

early evidence for relatively high “birth masses” of neutron stars after their

formation, and before the onset of mass transfer (Tauris et al., 2011).

We made an improved measurement of the Shapiro timing delay in PSR

J1614−2230 when using the NANOGrav nine-year data set, which includes

a subset of the GUPPI data used by Demorest et al. (2010). The χ2 grids

and marginalized PDFs for PSR J0613−0200 are shown in Figure 3.13. The

uncertainties in both mc = 0.493(3) M� and i = 89.189(14) degrees have

decreased such that the uncertainty in mp = 1.928(17) M� is a factor of ∼3

less than that made by Demorest et al. (2010).

Although there was not a formally significant measurement of orbital de-
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cay, we nevertheless explored fitting for it. We measured (Ṗb)obs = 1.3(7)×
10−12. This is much larger than the component expected from general-

relativistic orbital decay (Equation 1.38), (Ṗb)GR = −0.00042 × 10−12. In-

stead, it is attributable to the change in the Doppler shift due to the pulsar

motion, as discussed in Section 1.5; Equation 1.45 predicts that (Ṗb)D =

Pb(Ḋ/D) = 1.36× 10−12 when using the pulsar distance and proper motion

measured in the NANOGrav nine-year timing model, and which is consistent

with the direct measurement we make here. Matthews et al. (2016) used the

agreement between (Ṗb)D and the observed value as a confirmation of the

parallax distance to the pulsar. The precision of (Ṗb)obs can be improved

by extending the observing span backwards using pre-GUPPI archival data

published by Demorest et al. (2010) and forwards (through future observa-

tions); this will eventually provide the most precise means for measuring the

distance to this pulsar.

3.4.5 PSR J1640+2224

PSR J1640+2224 is a 3.1-ms pulsar in a 175-day orbit that was discovered

in a Arecibo survey of high Galactic latitudes (Foster et al., 1995a,b). The

companion star in this system was observed using the Palomar 5.1-m optical

telescope to have an effective temperature that is consistent with an old He

WD (Lundgren et al., 1995). The first dedicated radio-timing study of the

PSR J1640+2224 system reported a tentative detection of the Shapiro timing

delay, with mc = 0.15+0.08
−0.05 M� and cos i = 0.11+0.09

−0.07 (Löhmer et al., 2005).

However, Löhmer et al. did not derive a statistically significant constraint

on mp. A subsequent TOA analysis of the NANOGrav five-year data set

(Demorest et al., 2013) used Markov chain fitting methods and noted issues

with the numerical stability of the observed Shapiro timing delay (Vigeland

& Vallisneri, 2014). The most recent radio-timing study by Desvignes et al.

(2016) used EPTA data to measure a significant ẋ = 1.07(16) × 10−14, but

did not measure a significant Shapiro delay.
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We measured the Shapiro timing delay, ẋ = 1.45(10) × 10−14 and ω̇ =

−2.8(5) × 10−4 deg yr−1 using the NANOGrav nine-year data set for PSR

J1640+2224. The χ2 grids and marginalized PDFs of the Shapiro-delay pa-

rameters measured for this MSP are shown in Figure 3.14. Based on the

Shapiro timing delay alone, we estimated that mc = 0.6+0.4
−0.2 M� and i = 60(6)

degrees with the corresponding mp = 4.4+2.9
−2.0 M�. The highly-significant ẋ,

consistent with the estimate made by Desvignes et al. (2016) at the 2σ un-

certainty level, is most likely due to a secular change in the inclination of

the wide binary system induced by proper motion; the current data set is

not sensitive to annual orbital parallax since the annual astrometric paral-

lax was not found to be significant for PSR J1640+2224 (Matthews et al.,

2016). However, we could not reconcile the 6σ-significant value of ω̇ with

the physical mechanisms outlined in Section 1.5. In what follows below in

this subsection, we explicitly discuss and reject the possibilities that were

considered to explain the ω̇ measurement.

The general-relativistic component of ω̇ (Equation 1.39) cannot be the

dominant term since our observed value is negative. We also rule out a

significant detection of (ω̇)GR since, given the fitted Keplerian elements listed

in Table 3.1, its predicted value for large assumed component masses is on

the order of 10−6 deg yr−1. Furthermore, we reject the possibility of this

measurement arising from secular orbital variations due to proper motion,

since the predicted magnitude of (ω̇)µ (Equation 1.44) is also on the order of

10−6 deg yr−1.

In principle, a nonzero value of ω̇ can arise from a spin-induced quadrupole

term in the companion’s gravitational potential due to classical spin-orbit

coupling (Wex, 1998); this effect has been observed in pulsar-binary sys-

tems with main-sequence companions (e.g. Wex et al., 1998), and can also

be observed in pulsar-WD systems in the case where a quadrupole term

is induced from rapid rotation of the WD companion. This scenario was

first considered in early studies of the relativistic PSR J1141-6545 system
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by Kaspi et al. (2000), where they noted that classical spin-orbital coupling

would cause a time derivative in the system inclination angle, di/dt, that is

comparable in order of magnitude to the component of ω̇ due to spin-orbit

coupling. We used the ẋ measured in the PSR J1640+2224 system, the fact

that ẋ = d(ap sin i)/dt ≈ (ap cos i) di/dt, and the Shapiro-delay estimate of

sin i to compute the time rate of change in the system inclination, and found

that di/dt ∼ 10−6 deg yr−1. This estimate of di/dt is two orders of magni-

tude smaller than the observed ω̇, and we therefore reject the significance of

classical spin-orbit coupling in our measurement of ω̇ in the PSR J1640+2224

system.

While third-body effects can give rise to measurable perturbations of the

pulsar-binary’s Keplerian elements (e.g. Rasio, 1994), such interactions with

another massive component would first be observed as large variations in

νs (see Chapter 4 of this thesis for an analysis of PSR B1620−26, one of

two pulsar-triple systems). The NANOGrav 9-year timing solution for PSR

J1640+2224 does not show such variations in spin frequency, and so there

is no evidence that J1640+2224 is a triple system. Future observations of

J1640+2224, along with historical data used by Löhmer et al. (2005) and

the EPTA data set, will permit for even more stringent estimates of binary-

parameter variations evaluated over a larger number of orbits, and ultimately

yield a more robust timing solution.

3.4.6 PSR J1738+0333

PSR J1738+0333 is a 5.8-ms pulsar in a 8.5-hr orbit with a low-mass WD

companion that was discovered in the Swinburne Intermediate Latitude Pul-

sar Survey (Jacoby, 2004). Optical spectroscopy of the WD companion

yielded a significant mass ration q = mp/mc = 8.1(2) andmc = 0.182+0.007
−0.005 M�,

as well as consistent measures of the companion radius from both spec-

troscopy and photometry (Antoniadis et al., 2012). A radio-timing study

reported the measurement of orbital decay that, after applying the correc-
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tion for kinematic bias discussed in Section 1.5, is consistent with the com-

ponent due to GR, yielding one of the most stringent tests on tensor-scalar

theories of gravitation (Freire et al., 2012). The combination of these radio

and optical analyses produced a derived estimate of mp = 1.47+0.07
−0.06 M�, as

well as an estimate of i = 32.6(1.0) that was computed using fm. Recent

photometric observations identified optical variability of the WD companion

that is consistent with pulsations of low-mass WDs (Kilic et al., 2015).

We do not measure any significant Shapiro delay or secular variations in

the orbital elements. The (mc, cos i) χ2 grid and upper limit on i are shown

in Figure 3.6, which is consistent with the derived estimate of i made by

Antoniadis et al. (2012) and Freire et al. (2012).

3.4.7 PSR J1741+1351

PSR J1741+1351 is a 3.7-ms pulsar in a 16.3-day orbit that was discovered in

a survey of high Galactic latitudes using the Parkes radio telescope (Jacoby

et al., 2007). The Shapiro delay was initially detected in this system by Freire

et al. (2006).

We detected the Shapiro timing delay in the NANOGrav nine-year data

set for PSR J1741+1351, as well as a highly significant measurement of ẋ

that we report for the first time. The annual orbital parallax is not signifi-

cant for this MSP since the annual astrometric parallax was not significantly

measured (Matthews et al., 2016). As discussed in Section 3.3.1 above, we

nonetheless generated a three-dimensional χ2 grid for different values of the

two Shapiro-delay parameters and Ω, in order to constrain the system geom-

etry using both measurements. Figure 3.15 shows the χ2-grid results for PSR

J1741+1351 when first generating a three-dimensional, uniform grid in the

(mc, cos i, Ω) parameters. The two-dimensional (cos i, Ω) probability grid,

obtained by marginalizing over mc, illustrates a highly non-elliptical covari-

ance between the two parameters. The constrained estimates of the Shapiro-

delay parameters are mp = 1.87+1.26
−0.69 M�, mc = 0.32+0.15

−0.09 M�, i = 66+5
−6
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degrees, and Ω = 317(35) degrees.

For comparison, we over-plotted the posterior PDFs obtained from a stan-

dard two-dimensional χ2 grid over the traditional (mc, cos i) parameters,

while allowing ẋ and all other parameters to vary freely in each timing-model

fit, as the grey lines in Figure 3.15. There are clear and significant differences

between the posterior PDFs, which strongly suggest correlation between ẋ

and one or both of the Shapiro delay parameters. The three-dimensional χ2-

grid results indicate that explicit modeling of the highly-significant kinematic

term reduces correlation between the Shapiro-delay parameters and ẋ, and

produces more sensible posterior PDFs of the component masses and system

inclination that are consistent with initial results presented by Freire et al.

(2006).

3.4.8 PSR B1855+09

PSR B1855+09 is a 5.4-ms pulsar in a 12.3-day orbit with a WD compan-

ion, and is also one of the earliest MSP discoveries made using the Arecibo

Observatory (Segelstein et al., 1986). This MSP-binary system was the

first to yield a significant measurement of the Shapiro timing delay from

pulsar-timing measurements (Ryba & Taylor, 1991). The most recent long-

term radio timing study determined the pulsar mass to lie within the range

1.4 < mp < 1.8 M� (95% confidence; Nice et al., 2004). Optical follow-up

observations of the companion yielded a WD-cooling timescale of ∼10 Gyr,

which is twice as long as the characteristic age of the MSP (van Kerkwijk

et al., 2000).

We made a highly significant measurement of the Shapiro timing delay

when using the NANOGrav nine-year data set for PSR B1855+09. The

χ2 grids and marginalized PDFs for PSR B1855+09 are shown in Figure

3.16. Our estimates of the component masses and inclination angle – mp =

1.30+0.11
−0.10 M�, mc = 0.236+0.013

−0.011 M�, and i = 88.0+0.3
−0.4 degrees – are consistent

with, and more precise than, those previously made by Kaspi et al. (1994),
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Nice et al. (2004) and Reardon et al. (2016).

3.4.9 PSR J1903+0327

PSR J1903+0327 is a 2.1-ms pulsar in an eccentric, 95-day orbit with a

main-sequence companion (Champion et al., 2008). This binary system, lo-

cated within the Galactic disk, posed a significant challenge to the standard

view of MSP formation since tidal interactions are expected to produce low-

eccentricity orbits with WD companions, as is observed for all other disk

MSP-binary systems. Freire et al. (2011) performed the most recent pulsar-

timing analysis of PSR J1903+0327 and argued that both binary components

were once members of a progenitor triple system where the main-sequence

companion was in an outer orbit about an inner MSP-WD binary; this sys-

tem was subsequently disrupted and produced the binary currently observed,

either by a chaotic third-body interaction or full dissipation of the inner

WD companion. They combined their Shapiro-delay measurement for this

system with a significant measurement of ω̇, which they argue is due to

GR, to determine the component masses and inclination with high preci-

sion: mp = 1.667(21) M�; mc = 1.029(8) M�; and 77.47(15) degrees (all

99.7% confidence). Freire et al. also measured an ẋ = 0.020(3) × 10−12

that they attributed to proper-motion bias. A recent optical analysis of

radial-velocity measurements estimated the mass ratio of this system to be

q = mp/mc = 1.56(15) (68.3% confidence; Khargharia et al., 2012), consis-

tent with the radio-timing estimate of q = 1.62(3) made by Freire et al.

We also independently measure a significant ω̇ = 2.410(13)×10−4 deg yr−1

in the PSR J1903+0327 system, as well as the Shapiro timing delay indicated

by the significance of h3 listed in Table 3.2. We do not measure a significant ẋ.

The observed ω̇ from our data set is consistent with the measurement made

by Freire et al. (2011), and so we used the methodology discussed in Section

3.3.1 to constrain the Shapiro-delay parameters assuming that GR describes

the observed periastron shift. The constrained χ2 grids for PSR J1903+0327
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are shown in Figure 3.17. From these grids, we estimated the component

masses and inclination to be: mp = 1.65(2) M�; mc = 1.06(2) M�; and

i = 72+2
−3 deg yr−1. The estimate of mp agrees with the Freire et al. measure-

ment at the 68.3% credibility level, while mc and i are consistent at about

the 95.4% credibility level. We do not adjust the uncertainty in our measure-

ment of ω̇ for the maximum uncertainty in (ω̇)µ, which Freire et al. do when

deriving their estimates. Our derived estimate of q = 1.56(3) also agrees

with the optical measurement and Freire et al. estimate mentioned above.

3.4.10 PSR J1909−3744

PSR J1909-3744 is a 2.9-ms pulsar in a 1.5-day orbit with a WD companion

(Jacoby et al., 2005). The Shapiro timing delay has previously been ob-

served in this system with high precision, leading to the first precise mass

measurement for an MSP (Jacoby et al., 2005; Hotan et al., 2006; Verbiest,

2009). Two recent, independent TOA analyses of this pulsar were per-

formed by Reardon et al. (2016) and Desvignes et al. (2016). Reardon et

al. used the PPTA data set and reported significant Shapiro-delay param-

eters, apparent orbital decay, and geometric variations the PSR J1909-3744

system with the following measured and derived results: mp = 1.47(3) M�;

mc = 0.2067(19) M�; i = 93.52(9)◦; and Ṗb = 0.503(6) × 10−12. Desvi-

gnes et al. analyzed the EPTA data set and also reported estimates of

the Shapiro-delay parameters, apparent orbital decay, and geometric vari-

ations: mp = 1.54(3) M�; mc = 0.213(2) M�; sin i = 0.99771(13); and

Ṗb = 0.503(5)× 10−12.

We independently measure both Shapiro-delay parameters and Ṗb with

high significance when using the NANOGrav nine-year data set. We also

make a marginal detection of ẋ = −4.4(1.6) × 10−16 when incorporating it

as a free parameter, but it does not pass the F-test criterion.

The component masses that we derived from the probability maps for

J1909−3744 shown in Figure 3.18, mp = 1.55(3) M� and mc = 0.214(3) M�,

85



agree with the estimates made by Reardon et al. (2016) and Desvignes et al.

(2016). Our estimate of i = 86.33(10) degrees possesses a sign ambiguity

in cos i, so i = 93.67(10) is an allowed solution for our analysis; the latter

estimate agrees with the Reardon et al. and Desvignes et al. measurement.

Given our measurements of the Keplerian and Shapiro-delay parameters,

the expected orbital decay in this system from quadrupole gravitational-wave

emission is (Ṗb)GR = −0.00294 × 10−12, which is significantly less than our

measurement of Ṗb. This low estimate of (Ṗb)GR implies that Ṗb = 0.509(9)×
10−12 ≈ (Ṗb)D, which agrees with the measurement and assessment made by

Reardon et al. (2016) and Desvignes et al. (2016). We therefore attribute the

apparent orbital decay in PSR J1909−3744 system to biases from significant

acceleration between the MSP-binary and SSB reference frames. Matthews

et al. (2016) used our Ṗb measurement to find the distance to PSR J1909-

3744 to be 1.11(2) kpc, in agreement with their timing-parallax distance of

1.07+0.04
−0.03 kpc.

3.4.11 PSR J1918−0642

PSR J1918−0642 is a 7.6-ms pulsar in a 10.9-day orbit with a likely WD

companion that was discovered by Edwards & Bailes (2001) in a multi-beam

survey of intermediate Galactic latitudes using the Parkes Radio Telescope.

An optical search for the companion of PSR J1918−0642 was unsuccessful

(van Kerkwijk et al., 2005), requiring that the apparent R-band magnitude of

the WD be R > 24. A long-term timing study of this MSP was carried out by

Janssen et al. (2010) using the Westerbork, Nançay and Jodrell Bank radio

observatories at 1400 MHz for a combined timespan of 7.4 years. While only

Keplerian parameters were measured, Janssen et al. (2010) combined their

distance estimate to PSR J1918−0642 – based on their dispersion-measure

estimate for this pulsar and the Cordes & Lazio (2001) electron-density model

for the Galaxy – with the R > 24 limit, and the assumption that the white-

dwarf cooling and pulsar spin-down are coeval, to further constrain the com-
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panion to be a He or CO white dwarf with a thin hydrogen atmosphere. They

used the mass function of the system, as well as an assumedmp = 1.35 M�, to

compute a minimum companion mass of mc,min = 0.24 M�. A recent radio-

timing analysis by Desvignes et al. (2016) used the EPTA data to measure

the Shapiro delay in this system, with mp = 1.3+0.6
−0.4 M�, mc = 0.23(7) M�,

and cos i = 0.09+0.05
−0.04.

We measured a highly-significant Shapiro timing delay in the PSR J1918−0642

binary system using the NANOGrav nine-year data set. The probability

maps computed from χ2 grids for PSR J1918−0642 are shown in Figure

3.19. The significance of h3 in the PSR J1918−0642 system exceeds 27σ, a

factor of ∼ 4 better than the h3 estimate made by Desvignes et al. (2016)

when using their EPTA data set. Our precise measurements of the WD

mass and inclination from the Shapiro timing delay are mc = 0.219+0.012
−0.011 M�

and i = 85.0(5) degrees regardless of choice in the parameterization of ∆S.

The derived estimate of the pulsar mass is the first precise estimate for this

system, and is suggestive of a low-mass neutron star: mp = 1.18+0.10
−0.09 M�.

3.4.12 PSR J1949+3106

PSR J1949+3106 is a 13.1-ms pulsar in a 1.9-day orbit with a massive com-

panion that was discovered by the ongoing PALFA survey of the Galac-

tic plane using the Arecibo telescope (Deneva et al., 2012). The initial

radio-timing study by Deneva et al. used TOAs collected with the Arecibo,

Green Bank, Nançay and Jodrell Bank telescopes over a four-year period

to make a significant detection of the Shapiro timing delay in this sys-

tem. They reported significant measurements of the orthometric parameters,

h3 = 2.4(1) µs and ς = 0.84(2), as well as derived estimates of component

masses and system inclination: mp = 1.47+0.43
−0.31 M�; mc = 0.85+0.14

−0.11 M�; and

i = 79.9+1.6
−1.9 degrees.

We independently measured a Shapiro timing delay in the PSR J1949+3106

using the NANOGrav nine-year data set. The probability maps computed
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from χ2 grids for PSR J1949+3106 are shown in Figure 3.20; we set mc,max =

5 M� when computing the χ2 grids since the peak-probability value is nearly

equal to our usual upper limit of mc,max = 1.4 M�. Our measurements of the

orthometric parameters, h3 = 2.5(5) µs and ς = 0.77(10), are consistent with

those made by (Deneva et al., 2012) at the 68.3% credibility level. The uncer-

tainties in our measurements are comparatively larger due to the shorter time

span of our data set and, therefore, less TOA coverage across the orbit. Our

derived estimates of the component masses and inclination are subsequently

much less stringent than those made by Deneva et al.: mp = 4.0+3.6
−2.5 M�;

mc = 2.1+1.6
−1.0 M�; and i = 67+9

−8 degrees.

3.4.13 PSR J2017+0603

PSR J2017+0603 is a 2.9-ms pulsar in a 2.2-day orbit that was initially found

using the Fermi Large Area Telescope (LAT) as a gamma-ray source with

no known associations; radio pulsations were discovered and subsequently

timed from this source using the Nancay Radio Telescope and Jodrell Bank

Observatory for nearly two years by Cognard et al. (2011). They used the

mass function of the PSR J2017+0603 system, along with an assumed mp =

1.35 M�, to compute a minimum companion mass of mc,min = 0.18 M�.

For the first time, we detect a Shapiro timing delay in the PSR J2017+0603

system using the NANOGrav nine-year data set, with mc = 0.32+0.44
−0.16 M� and

i = 62+9
−12 degrees. The probability maps computed from χ2 grids for PSR

J2017+0603 are shown in Figure 3.21. The observed Shapiro delay in this

system is currently weak since the marginalized, one-dimensional PDF of

mp = 2.4+3.4
−1.4 M� extends to large values of the neutron-star mass. However,

we were able to make a significant detection using a comparatively small,

1.7-yr data set that includes targeted observations at select orbital phases

discussed in Section 3.1; our measurement will improve with the inclusion of

future TOAs collected at different points in the orbit.
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3.4.14 PSR J2043+1711

PSR J2043+1711 is a 2.4-ms pulsar in a 1.5-day orbit that was initially

found using the Fermi LAT as a gamma-ray source with no previously known

associations. The radio counterpart was discovered using the Nancay and

Green Bank Telescopes; the Shapiro delay was detected in this MSP-binary

system using a timing model derived from TOAs collected with the Nancay,

Westerbork and Arecibo observatories over a three-year period (Guillemot

et al., 2012). At the time of the initial study performed by Guillemot et

al., the Shapiro timing delay was not significant enough to yield statistically

meaningful estimates of the component masses and inclination angle. They

placed limits on the companion mass by assuming the validity of the mc-Pb

relation, and derived a preferred range of 0.20 < mc < 0.22 M�; with this

constraint, Guillemot et al. found the pulsar mass and inclination to be

1.7 < mp < 2.0 M� and i = 81.3(1.0) degrees, respectively.

The NANOGrav nine-year data set on PSR J2043+1711, which includes

the targeted Shapiro-delay observations discussed in Section 3.1, yields a

significantly improved measurement of the component masses and system

inclination as shown in Table 3.4; the impact of the targeted observations

on the significance of ∆S in the PSR J2043+1711 system was discussed

by Pennucci (2015). The probability maps computed from χ2 grids for

PSR J2043+1711 are shown in Figure 3.22. Our improved measurements

of mc = 0.175+0.016
−0.015 M� and i = 83.2+0.8

−0.9 degrees are consistent with the ini-

tial estimates made by Guillemot et al. (2012), though mc is moderately

lower than the range determined from the mc-Pb relation. Our derived

mp = 1.41+0.21
−0.18 M� is therefore slightly below the mp range determined by

Guillemot et al. when assuming the validity of the mc − Pb relation.
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3.4.15 PSR J2145−0750

PSR J2145−0750 is a 16-ms pulsar in a 6.8-day orbit with a white-dwarf

companion and was discovered in a Parkes Telescope survey (Bailes et al.,

1994). Both Phinney & Kulkarni (1994) and van den Heuvel (1994) argued

that the J2145−0750 system likely experienced unstable mass transfer from

“common-envelope” evolution, where the pulsar gradually expelled the outer

layers of the donor, in order to explain its unusually long pulsar-spin pe-

riod and massive companion compared to other binary-MSP systems. Early

optical observations of the WD companion noted the difficulty in obtaining

accurate photometry due to the use of a dispersion-based distance estimate

and the presence of a coincident field star (Lundgren et al., 1995). However,

a recent study performed by Deller et al. (2016) combined improved opti-

cal imaging with a precise VLBI distance of d = 613+16
−14 pc to estimate a

companion mass of mc ≈ 0.85 M�. Deller et al. also detected the orbital

reflex motion of J2145−0750 through their VLBI measurements, and inferred

estimates of i = 21+7
−4 degrees and Ω = 230(12) degrees.6

We measured ẋ = 0.0098(19) × 10−12, consistent with estimates made

by Reardon et al. (2016). Our estimate of h3 = 0.10(5) µs does not pass

the h3-significance test, and so we do not formally measure a significant

Shapiro timing delay from the radio-timing data alone. However, we used

the estimate of mc = 0.83+0.06
−0.06 M� made by Deller et al. (2016) as a prior

distribution when computing the posterior maps for PSR J2145−0750. The

resulting constraints on cos i and mp are shown in Figure 3.23, which yield

mp = 1.3+0.4
−0.5 M� and i = 34+5

−7 degrees; these estimates are consistent with

those made by Deller et al., and with the upper limits on i we derive in

Section 3.3.2, shown in Table 3.3.

6Deller et al. (2016) report their estimate of Ω using a convention that measures Ω from
celestial East through North. This convention is inconsistent with the North-through-East
convention we use in this work. We report their estimate of Ω relative to our convention.
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3.4.16 PSR J2302+4442

PSR J2302+4442 is a 5.2-ms pulsar in a 126-day orbit that, along with PSR

J2017+0603 (Section 3.4.13) was initially found using the Fermi LAT as a

gamma-ray source with no known associations and observed in the radio

using the Nançay Radio Telescope and Jodrell Bank Observatory for nearly

two years by Cognard et al. (2011). They used the mass function of the PSR

J2302+4442 system, along with an assumed mp = 1.35 M�, to compute a

minimum companion mass of mc,min = 0.3 M�.

For the first time, we tentatively detect a Shapiro timing delay in the PSR

J2302+4442 system using the NANOGrav nine-year data set. The probabil-

ity maps computed from χ2 grids for PSR J2302+4442 are shown in Figure

3.24. Due to the weak detection of ∆S and large correlation between r and

s, the timing solution published by Arzoumanian et al. (2015b) used a fixed

value of mc = 0.355 M� that was computed from the mc-Pb relation when

fitting for all other timing parameters, including the Shapiro s parameter.

In this study, we developed timing solutions using both the traditional and

orthometric parameterizations of ∆S that allowed both PK parameters to be

fitted for. The value of h3 in the PSR J2302+4442 system exceeds 5σ and

therefore passes the h3 significance test for detection of ∆S.

Our estimates of the companion mass and inclination aremc = 2.3+1.7
−1.3 M�

and i = 54+12
−7 degrees, and the corresponding pulsar mass ismp = 5.3+3.2

−3.6 M�.

We computed χ2 grids with mc,max = 5 M� since the peak-probability value

of mc exceeds the usual upper limit of mc,max = 1.4 M�. While the posterior

PDFs of the component masses span a large range of mass values, the sig-

nificant estimates of s and ς indicate a measurable constraint on the system

inclination. The measurement of ∆S will improve in significance over time

since the current data set for PSR J2302+4442 only spans about 1.7 years –

or ∼5 orbits, given the long Pb of this MSP-binary system – and so a very

small fraction of the Shapiro-delay signal has been sampled. Furthermore,

given the large orbit and modest inclination, we expect to see a measurable
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secular variation in x within the next few years.

3.4.17 PSR J2317+1439

PSR J2317+1439 is a 3.4-ms pulsar in a 2.5-day orbit that was discovered in a

survey of high Galactic latitudes using the Arecibo Obsveratory and possesses

one of the smallest eccentricities known (Camilo et al., 1993, 1996; Hobbs

et al., 2004). The most recent radio-timing analysis of PSR J2317+1439

performed by Desvignes et al. (2016) did not yield any secular variations

in orbital parameters or a significant measurement of the Shapiro timing

delay when using their 17.3-yr EPTA data set. However, a Bayesian-timing

analysis performed by Vigeland & Vallisneri (2014) used the NANOGrav five-

year data set (Demorest et al., 2013) to measure several secular variations

in the binary parameters: Ṗb = 6.4(9) × 10−12; η̇ = −2(4) × 10−15; and

κ̇ = 2.0(7)×10−14. Vigeland and Vallisneri noted that many of the posterior

distributions for binary parameters of J2317+1439 changed slightly when

using different priors for the astrometric timing parallax.

The original NANOGrav nine-year timing model for PSR J2317+1439

contains parameters that describe secular variations in x and the Laplace-

Lagrange eccentricity parameters, with η̇ = 5.0(9) × 10−15 s−1, all of which

pass the F-test criterion. We found that Ṗb did not pass the F-test, so it was

not fitted in the original NANOGrav nine-year timing solution. Moreover,

both the F-test and the h3-significance test indicated that the Shapiro delay

was not significant, and so we also did not initially incorporate the Shapiro-

delay parameters.

Despite the statistical significance of η̇, we do not believe that the PSR

J2317+1439 system is experiencing physical processes that produce a chang-

ing eccentricity. For instance, if mass transfer between components were

currently taking place, we would expect to observe a spin-up phase; instead,

we observe seemingly “normal” spin-down properties and stable rotation that

is typical of MSPs. The presence of a third massive body in a bound, hierar-

92



chical orbit about the pulsar-companion binary system would induce higher-

order derivatives in spin frequency as well as additional third-body effects

on the shape, size and period of the inner binary (e.g. Joshi & Rasio, 1997),

most of which we do not see in the NANOGrav nine-year data set. Finally,

the timescale for the observed change in η is estimated to be η/η̇ ≈ 0.7 years,

which is implausibly short.

Because the observed η̇ is physically implausible, and because covariances

between it and several other parameters distort the timing solution, we chose

to hold both η̇ and κ̇ fixed to a value of zero (i.e. no change in the eccentricity

parameters of the system) while re-fitting the nine-year timing model. In this

case, we found that the significance of h3 exceeded 3σ and therefore included

the Shapiro-delay parameters. We found that ẋ did not pass the F-test, and

so did not fit for it in our modified solution. The new timing model for

PSR J2317+1439 fits the data well (reduced χ2 = 1.0053 for 2531 degrees of

freedom), though the original model published by Arzoumanian et al. (2015b)

that fits for η̇ and κ̇ better fits the TOA data (reduced χ2 = 0.9966 for 2531

degrees of freedom).

We generated two-dimensional χ2 grids for the traditional and orthome-

tric Shapiro-delay parameters. The probability maps and the marginalized

PDFs of the component masses and system inclination are shown in Figure

3.25. Given the new binary timing model of PSR J2317+1439, we have made

a weak detection of the Shapiro timing delay in this system since the two-

dimensional probability density extends to large mc for low inclinations, and

so the system inclination angle is not as well constrained as for the other

stronger detections. Our current estimates of the component masses and

inclinations are mp = 4.7+3.4
−2.8 M�, mc = 0.7+0.5

−0.4 M�, and i = 47+10
−7 degrees.
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Figure 3.11: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J0613−0200. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.12: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J0613−0200. The maps and PDFs for J1600−3053 were constrained assuming that the observed ω̇
is due to GR (see Section 3.4.3). The inner, middle and outer red contours encapsulate 68.3%, 95.4% and
99.7% of the total probability defined on each two-dimensional map, respectively. In all slimmer panels,
the blue solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional
map, the vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the
median value.
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Figure 3.13: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1614−2230. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.14: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1640+2224. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.15: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1741+1351, including the PDF for Ω determined from a three-dimensional χ2 grid. The inner,
middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of the total probability defined on each
two-dimensional map, respectively. In all slimmer panels, the blue solid lines represent posterior PDFs
obtained from marginalizing the appropriate two-dimensional map, the vertical red-dashed lines are bounds
of the 68.3% confidence interval, and the red-solid line is the median value. Shown for comparison, the
grey curves in the slimmer panels of PSR J1741+1351 are marginalized PDFs obtained from computing a
separate, two-dimensional χ2 grid over the (mc, cos i) parameters while letting ẋ be a free parameter in each
TEMPO2 fit. See Section 3.4.7 for a discussion on the visible differences in PDFs.
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Figure 3.16: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured for
PSR B1855+09. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of the total
probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue solid lines
represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the vertical
red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median value.
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Figure 3.17: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1903+0327, using statistical significance of ω̇ and the assumption of GR to constrain the proba-
bility density. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of the total
probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue solid lines
represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the vertical
red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median value.

100



Figure 3.18: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1909−3744. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.19: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1918−0642. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.20: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J1949+3106. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.21: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J2017+0603. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.22: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J2043+1711. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.23: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J2145−0750. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.24: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J2302+4442. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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Figure 3.25: Probability maps and posterior PDFs of the traditional Shapiro-delay parameters measured
for PSR J2317+1439. The inner, middle and outer red contours encapsulate 68.3%, 95.4% and 99.7% of
the total probability defined on each two-dimensional map, respectively. In all slimmer panels, the blue
solid lines represent posterior PDFs obtained from marginalizing the appropriate two-dimensional map, the
vertical red-dashed lines are bounds of the 68.3% confidence interval, and the red-solid line is the median
value.
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3.5 Conclusions & Summary

We have derived estimates of binary component masses and inclination angles

for fourteen NANOGrav MSP-binary systems with significant measurements

of the Shapiro timing delay. Four of these fifteen Shapiro-delay signals –

in PSRs J0613−0200, J2017+0603, J2302+4442, and J2317+1439 – have

been measured for the first time. From the Shapiro timing delay alone, we

were able to measure high-precision neutron star masses as low as mp =

1.18+0.10
−0.09 M� for PSR J1918−0642 and as high as mp = 1.928+0.017

−0.017 M� for

PSR J1614−2230. Measurements of previously observed ∆S signals in the

J1918−0642 and J2043+1711 systems have been significantly improved upon

in this work, with the pulsar mass for PSR J2043+1711 mp = 1.41+0.21
−0.18 M�

being measured significantly for the first time. For the fourteen MSPs with

significant ∆S, we performed a rigorous analysis of the χ2 space for the two

Shapiro-delay parameters, using priors uniform in the traditional (mc, sin i)

and orthometric (h3, ς) parametrizations of the Shapiro timing delay, in order

to determine robust credible intervals of the physical parameters.

Most of the NANOGrav binary MSPs exhibit significant changes in one

or more of their orbital elements over time. Whenever possible, we used the

statistical significance of the observed orbital variations to further constrain

the parameters of the observed Shapiro timing delay when performing the

χ2-grid analysis. Assuming the validity of GR, we further constrained the

component masses in the PSR J1600−3053 and PSR J1903+0327 systems,

which both experience significant periastron advance due to strong-field grav-

itation; the precision of our ω̇ measurement for PSR J1903+0327 contributed

to a highly constrained estimate of mp = 1.65+0.02
−0.02 M� that is consistent with

previous timing studies of this MSP using an independent data set. We also

used the highly-significant ẋ measurement in the PSR J1741+1351 system

in combination with the Shapiro timing delay observed in this system, which

allowed for an estimation of Ω, albeit with a large uncertainty.
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System Name mc (M�) Pb (days) References (Mass Measurement, Identification)
PSR J0348+0432 0.172(3) 0.102 Antoniadis et al. (2013)
PSR J0751−1807 0.16(1) 0.263 Bassa et al. (2006b), Desvignes et al. (2016)
PSR J1738+0333 0.181+0.007

−0.005 0.354 Antoniadis et al. (2012)
PSR J1012+5307 0.16(2) 0.604 van Kerkwijk et al. (1996), van Kerkwijk et al. (2005)
J0247−25B 0.186(2) 0.667 Maxted et al. (2013)
PSR J1910−5959A 0.180(18) 0.837 Bassa et al. (2006a), Corongiu et al. (2012)
PSR J0337+1715i 0.19751(15) 1.629 Ransom et al. (2014), Kaplan et al. (2014)
KOI 1224 0.22(2) 2.698 Breton et al. (2012)
KOI 74 0.22(3) 5.189 van Kerkwijk et al. (2010)
PSR J0437−4715 0.224(7) 5.741 Durant et al. (2012), Reardon et al. (2016)
RRLYR 02792 0.260(15) 15.243 Pietrzyński et al. (2012)
PSR J0337+1715o 0.4101(3) 327.257 Ransom et al. (2014)

Table 3.5: Uncertainties in Pb are suppressed due to the high precision to which they are measured. Values
in parentheses denote the 1σ uncertainty in the preceding digit(s).
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The relativistic Shapiro timing delay provides a direct measurement of

the companion mass that is independent of the given system’s evolutionary

history, and that therefore can be used to test the plausibility of available

binary-evolution paradigms. Figure 3.26 illustrates the Pb-vs-mc estimates

for the NANOGrav MSP-binary systems that are known or suspected to

have He-WD companions, as well as a blue-shaded region that corresponds

to the theoretical mc-Pb correlation (Equation 1.8) as predicted by Tauris &

Savonije (1999). PSR J1903+0327 is excluded since its companion is likely a

main sequence star, while PSR J1614−2230 is excluded since its companion

is a carbon-oxygen WD and is believed to have evolved through a different

formation channel (Tauris et al., 2011). Figure 3.26 is recreated from the one

presented by Tauris & van den Heuvel (2014). Black points denote precise

measurements of mWD in WD-binary systems examined in previous works;

values and references for these data are provided in Table 3.5. The width

of the shaded region represents possible correlated values of Pb and mWD

for progenitor donor stars with different chemical compositions, particularly

with metallicities (Z) in the range 0.001 < Z < 0.02. While our mc estimates

generally agree with the predicted correlation, additional measurements at

higher companion masses are needed in order to perform a robust exploration

of the correlation parameters and their credible intervals.

At its current level of precision, the low mass of PSR J1918−0642 is

interesting since this MSP possesses spin parameters that are indicative of

an old neutron star that experienced significant mass transfer and a sub-

stantial spin-up phase. The implication of a low “birth mass” for neu-

tron stars is consistent with early estimates of the initial-mass function

(e.g. Timmes et al., 1996), though suggests that the neutron-star progeni-

tor to J1918−0642 may have undergone an electron-capture supernova event

(e.g. Schwab et al., 2010) which produces comparatively less-massive neutron

stars. Similar conclusions have been drawn for the lighter neutron stars in

the J0737−3039A/B (Ferdman et al., 2013) and J1756−2251 (Ferdman et al.,
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Figure 3.26: Pb versus mc for binary systems with He-WD companions. Red
points are our new measurements (see Figure 9). Black points are WD-mass
measurements made for systems listed in Table 3.5. The shaded blue region is
the expected correlation between mc and Pb, computed by Tauris & Savonije
(1999), for post-transfer He-WD binary systems with progenitor companions
that have metallicities within the range 0.001 < Z < 0.02.
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2014) double-neutron-star binary systems, though the evolutionary history

of these systems (with lesser degrees of mass transfer) are understood to be

different than that expected for PSR J1918−0642.

Extending the data sets of these MSPs will refine observed secular varia-

tions due to PK and/or kinematic-bias effects within the next few years. Fur-

thermore, extending TOA coverage in orbital phase for PSRs J0613−0200,

J1949+3106, J2017+0603, J2302+4442, and J2317+1439 will improve the

significance of the Shapiro timing delay that we report in this study. In par-

ticular, additional TOAs collected for PSRs J1640+2224 and J2317+1439

will help in the assessment of their complex orbital behavior as seen in

the NANOGrav nine-year data set for these systems. The combination of

NANOGrav high-precision TOAs with archival data published in previous

studies will provide more accurate timing models and a complete picture of

the physical processes that affect the NANOGrav MSP orbits.
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Chapter 4

Long-Term Timing of the PSR

B1620−26 Triple System in

Messier 4

The proto-stellar environments that eventually form binary systems can also

form dynamically complex systems with three or more massive components.

Hydrodynamic simulations of gravitationally-driven collapse in proto-stellar

gas clouds have shown that such “multi-core” systems can be readily formed

through substantial fragmentation (e.g. Boss, 1991). For the purposes of

long-term study, the most stable multi-core systems are those in a hierar-

chical formation, where an “inner” system is orbited by an “outer” object

with a large distance between their respective centers of mass; for these hi-

erarchical systems, the mutual tidal perturbations are expected to influence

the dynamical evolution at a rate that keeps the total system gravitationally

bound on long timescales.1 Recent observational studies have suggested that

hierarchical triple systems, with three components, are indeed common in

1For hierarchical triple systems, we refer to the orbital parameters of the inner and
outer companions with subscripts “i” and “o”, respectively. The details regarding the
outer-orbital parameters are summarized in Section 4.2 and discussed in greater detail in
Appendix B.
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nature and constitute ∼ 20% of all small-period binaries within the Galaxy

(e.g. Rappaport et al., 2013).

At this point in time, only two radio pulsars are known to reside in hi-

erarchical triple systems. The first of these pulsars to be discovered, PSR

B1620−26, was found in a search for radio pulsations in the Messier 4 (M4)

globular cluster (Lyne, 1988) and was immediately noted to belong in a bi-

nary system with a WD companion with (mc)i ≈ 0.3 M� (McKenna & Lyne,

1988). However, subsequent timing of PSR B1620−26 showed an unusually

large eccentricity of the 191-day pulsar-WD orbit, ei ≈ 0.025, that contra-

dicts the standard formation model discussed in Section 1.1.4, as well as a

large time derivatives in νs that is unlike those seen in other stable binary

pulsars (Thorsett, 1991).

It was Backer et al. (1993) who first proposed the existence of a second

companion of substellar mass in the PSR B1620−26 system to explain these

discrepancies, since gravitational acceleration from binary (or triple) motion

can produce large variations in νs from orbit-induced Doppler shifts. Using a

data set that spanned nearly a decade in time, Thorsett et al. (1999) provided

the first timing solution for a hierarchical pulsar-triple system that described

the observed spin-frequency derivatives in terms of Doppler shifts due to

two non-interacting Keplerian orbits. However, their analysis indicated that

the outer-orbital companion mass (mc)o ∼ 0.01 M� and outer-orbital pe-

riod (Pb)o ∼ 100 years; the orbital elements that comprise the outer-orbital

Römer delay, (∆R)o, were found to be covariant as fit parameters and not well

constrained, and so Thorsett et al. provided estimates of the outer-orbital

elements for different fixed values of the outer-orbital eccentricity (eo).

The study of orbital variations due to hierarchical three-body interactions

is expected to yield intrinsic properties of the complex dynamical system and

system components, such as the component masses and mutual inclination of

the inner and outer orbits (e.g. Ford et al., 2000b; Kopeikin & Vlasov, 2004).

These variations can also be used as constraints to infer the evolution of
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three-body systems to their current states. A notable example is the recent

discovery and analysis of the PSR J0337+1715 system – the other hierarchical

pulsar-triple system – with two low-mass white dwarfs in short-period orbits,

which used a newly developed three-body integration technique that allows

for direct measurement of “interaction” parameters that quantify three-body

dynamical terms tied to mutual geometry and ratios of component masses

(Ransom et al., 2014). Ransom et al. also showed that a double-Keplerian

timing model of the whole system that models inner-orbit perturbations as

Taylor expansions does not adequately describe the complex timing behavior

for three-body systems, which illustrates the need for explicit, simultaneous

modeling of both orbits and their mutual interactions.

In the unique case of PSR B1620−26, the sub-stellar nature of the outer

companion yields interesting implications for planet formation in the early,

metal-poor Universe. Thorsett et al. (1999) determined that (mc)o < 0.036 M�

(95% confidence), significantly smaller than the minimum mass needed for

hydrogen fusion (∼ 0.08 M�), and argued that the outer companion is likely

a Jupiter-mass planet. The presence of planets in globular clusters was

first considered by Sigurdsson (1992), shortly after the discovery of the PSR

B1257+12 planetary system (Wolszczan & Frail, 1992) and prior to the triple-

system association for PSR B1620−26 by Backer et al. (1993); Sigurdsson

noted that the timescale for planet formation in globular clusters, which are

among the oldest collections of stars and metal-poor environments, may not

be sufficient for their creation due to the need for significant dust coagula-

tion (Weidenschilling, 1980). However, Sigurdsson et al. (2003) used optical

photometric data obtained with the Hubble Space Telescope to determine an

inner-binary white dwarf age of 480(140)×106 years through isochrone fitting

of their observed color-magnitude diagram of the system. The white-dwarf

age is considerably smaller than the cluster age of 12.7(4)×109 years (Hansen

et al., 2002), and supports the evolutionary scenario that the triple system

formed through a recent exchange interaction between an old NS-WD sys-
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tem and a main-sequence/planet system in the cluster core, where the orig-

inal WD companion was ejected and the newly formed neutron-star/main-

sequence/planet triple was jettisoned out of the core. Subsequent accre-

tion the inner neutron-star/main-sequence binary would eventually produce

a low-mass (∼0.3 M�) white dwarf, which is consistent with the measurement

of (mc)i = 0.34(4) M� made by Sigurdsson et al. (2003).

The presence of the planet in M4 therefore suggest that coagulation can

indeed take place on timescales shorter than the average age of globular

clusters, and that dynamical disruption from nearby stars cannot entirely

prevent a planet population to form within such dense stellar environments.

Recent photometric measurements of globular clusters indicate that multiple

stellar populations are actually common and suggest that a non-negligible

amount of heavy elements is available in these astrophysical relics (Nardiello

et al., 2015; Piotto et al., 2015).

In this chapter, we present current results obtained from an ongoing anal-

ysis of the hierarchical PSR B1620−26 triple system. We analyze nearly 30

years of TOA data collected with several premier radio facilities, estimate the

elements of the outer orbit, and resolve secular variations of several inner-

orbital parameters that are likely to be (in part) due to tidal interactions

from third-body effects.

4.1 Observations & Reduction

We used the TOA data set constructed by Thorsett et al. (1999) as well as

TOAs collected for an additional 16+ years after their publication. In this

section, we briefly summarize the observatories and pulsar backends used to

collect the TOAs we analyze in the subsection section of this chapter.

The observations undertaken by Thorsett et al. (1999) were performed

three different radio facilities. A portion of the Thorsett et al. data set was

collected using the Very Large Array (VLA) near Socorro, New Mexico, USA,
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over the course of one or two days per most of the months between Decem-

ber 1990 to October 1998. A Princeton Mark III machine (Stinebring et al.,

1992) was used to incoherently de-disperse data collected across a 50-MHz

bandpass centered at 1660 MHz into a single, folded profile with a 5-minute

integration time, which ultimately produced 486 TOAs. Another portion of

the Thorsett et al. data set was collected with the 76-m Lovell Telescope at

Jodrell Bank, England, using a 64-MHz bandpass for low observing frequen-

cies (400, 600 MHz) and a 32-MHz bandpass for higher frequencies (1400,

1600 MHz) using analogue filter banks to incoherently de-disperse the data

stream in hardware. For this dissertation, we use additional Jodrell-Bank

TOAs that were collected after the Thorsett et al. study was published up

to late-March 2003; in total, 608 TOAs were collected with the Lovell Tele-

scope at Jodrell Bank. The third portion of TOAs was collected using the

43-m radio telescope at the NRAO in Green Bank, West Virginia (USA).

For each observing epoch, the Spectral Processor – a fast-Fourier-transform

spectrometer – was used to digitally sample 512 frequency channels across

a 40-MHz bandpass centered on two observing frequencies (430 MHz and

1400 MHz) using a 5-minute integration time; before February 1991, only

256 channels across a 20-MHz bandpass were recorded. Each observation

session at Green Bank consisted of recording pulsar signals using two out of

four available frequency receivers; these multi-frequency observations were

performed contiguously.

We extended the Thorsett et al. (1999) data set to incorporate high-

precision TOAs with four different pulsar backends using the GBT, and ex-

clusively using the 1400-MHz receiver. We used the same Spectral Proces-

sor discussed above for initial GBT observations that began in November

2001 and ended in August 2004, which yielded 137 TOAs. A portion of our

extended data set was collected with the Berkeley-Caltech Pulsar Machine

(BCPM; Backer et al., 1997). The BCPM was used between July 2004 and

May 2009, and employed a digital filter bank to incoherently de-disperse an
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incoming signal across 100 MHz in bandwidth with 4-bit sampling and a

user-specified number of frequency channels. A total of 307 TOAs were col-

lected with the BCPM backend. We used the GASP coherent-dedispersion

backend (first discussed in Section 3.1) between August 2005 and October

2011 to collect a total of 717 TOAs. We began using the wide-band GUPPI

coherent-dedispersion backend since February 2011 and continue to use it

for ongoing observations, having so far collected 440 TOAs across the full

800-MHz bandwidth. For all four GBT backends, we generally integrated

successive pulsars over a 3-minute timescale and across all available band-

width to form high-S/N, averaged TOAs.

It is important to note that the early and late portions of the GASP data

overlap with segments of the BCPM and GUPPI data, respectively. Since

these data are collected with the same telescope, and with the same receiver,

the overlapping data essentially lead to a redundancy in a small fraction of the

TOA measurements and a slight overweighting of pulsar-timing analyses to

these data. However, the overlap in data is needed for accurately determining

instrumental offsets between the various backends. We therefore currently

retain all available TOAs for the analyses presented below.

For the first time, we also incorporated TOAs collected with the 100-

m Effelsberg Telescope in Bad Münstereifel, North Rhine-Westphalia, Ger-

many. The Effelsberg data were processed using the coherent-dedispersion

Effelsberg-Berkeley Pulsar Processor (EBPP; Backer et al., 1997). A single

TOA was obtained per observing epoch using the 1410-MHz receiver, after

averaging 30-minutes of successive radio pulsars across the entire ∼ 64-MHz

bandwidth. In total, 47 TOAs were collected with the Effelsberg Telescope

using the EBPP backend between July 1997 and March 2009.
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4.2 Methods for Timing Analysis

A grand total of 3,515 TOAs collected for PSR B1620−26 are analyzed in this

study. We first determined instrumental offsets between data collected with

different backends and/or telescopes by using TEMPO and a fixed timing

solution to fit for arbitrary time offsets between short overlapping segments

of data. These offsets were then held fixed when performing the various

timing analyses discussed in Section 4.3 below.

We used the TEMPO pulsar-timing package for modeling TOAs collected

for PSR B1620−26. In all analyses presented in Section 4.3 below, we directly

modeled the following physical effects described in Sections 1.3 and 1.4:

• the J2000 positions and proper motion terms;

• the timing parallax, fixed at a value of $ = 0.59” determined from

optical color and magnitude measurements made by Peterson et al.

(1995);

• the five Keplerian elements that describe the Römer timing delay due

to the inner orbit, (∆R)i, along with first-order derivatives in one or

more elements;

• the DM and a first-order rate of change in DM, which we hold fixed

in our timing model using values first determined by Thorsett et al.

(1999);

• and the spin frequency, along with one or more spin-frequency time

derivatives.

It is important to note that, due to the complex nature of the triple sys-

tem and its timing model, we do not yet perform a full analysis of TOA

uncertainties and their slight adjustment to produce a best-fit χ2
red ≈ 1.0.

While this does not affect the robustness of the timing model in fitting our
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data set, it will likely affect the interpretation of measurements that pos-

sess marginal statistical significance. As discussed in Section 4.3, the lack

of TOA-uncertainty analysis primarily affects the measurements of several

inner-orbital secular variations. However, we show in Section 4.4 that the

orders of magnitude of the observed inner-orbital secular variations are con-

sistent with those expected by theory and likely indicate real changes in

several elements.

In principle, the effects of the hierarchical outer orbit on pulsar TOAs can

be modeled with an additional Römer timing delay and its outer-orbital Ke-

plerian elements.2 In this case, which we refer to as the “two-orbit” solution,

the total Römer timing delay of the pulsar ephemeris is ∆R = (∆R)i + (∆R)o

and two separate sets of Keplerian elements can be obtained using the ap-

propriate eccentric or nearly-circular forms presented in Section 1.4. The

simultaneous fit of both orbits, along with the other effects mentioned in the

above list, allows for an unambiguous determination of the spin frequency

and its first derivative due to spin-down and other kinematic effects discussed

in Section 1.5.

However, if the time spanned by a given TOA data set is significantly

less than the given binary’s orbital period, then a fit for ∆R and its orbital

parameters will not be well constrained and likely fail. These issues were first

noted by Thorsett et al. (1999) when applying a two-orbit solution to their

data set for PSR B1620−26, where the outer-orbital elements could not be

uniquely obtained with sufficient numerical stability in the timing-model fit.

Thorsett et al. instead fitted for (∆R)o for different fixed values of eo and

found a large variation in outer-orbital elements as a function of eo.

As pointed out by Joshi & Rasio (1997), significant spin-frequency deriva-

tives arise from the periodic Doppler shift due to unmodeled orbital motion.

For long-period orbits, one can use the observed spin-frequency derivatives

2Due to the wide, hierarchical orbital period of the outer companion, third-body pertur-
bations of the inner-orbital elements can approximately be modeled as Taylor expansions
of those parameters over time.
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to derive the orbital elements. We used the framework first developed by

Joshi & Rasio (1997) that we derived, discussed and extended in Appendix

B of this dissertation, in order to relate the spin-frequency derivatives to the

outer-orbital parameters measured relative to the inner binary’s center of

mass. The use of the Joshi & Rasio (1997) method, as well as the assump-

tion that mp + (mc)i + (mc)o ≈ mp + mWD ≈ 1.65 M�, allows one to derive

an estimate of the “full” semi-major axis of the outer orbit (ao), as well as

the true anomaly (u) and its time derivative (u̇). It is important to note that

the Joshi & Rasio (1997) method yields direct estimates of the outer-orbital

orientation angles measured in the plane of the orbit (i.e. uo and ωo), though

does not yield any information of orbital nodes; one can compute the corre-

sponding orientation angles of the inner binary by noting that ωi = ωo + π,

and ui = uo = u.

This indirect method for fitting the outer orbit requires at least five spin-

frequency derivatives in order to uniquely solve for the five outer-orbital Ke-

plerian parameters. In the analyses presented below, we measure five or more

time-derivatives with using all or subsets of our long TOA data set. However,

a complication of Joshi & Rasio (1997) method arises when interpreting the

sign and value of ν̇s, since it will contain a time-varying component due to the

orbital Doppler shift along with the nominal components that are approxi-

mately constant across typical data spans. We elaborate on this complication

in more detail in Appendix B.3 and also discuss potential components of ν̇s

and ν̈s due to globular-cluster dynamics in Section 4.4.

4.3 Timing Update for PSR B1620−26

During the construction of an updated timing model for PSR B1620−26,

it became clear that a global, two-orbit solution that accurately models all

available TOAs – where ∆R = (∆R)i + (∆R)o – could not be obtained at this

time. An example of the complex behavior is shown in Figure 4.1, where TOA
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Figure 4.1: TOA residuals for all data collected from PSR B1620-26, using
a two-orbit solution derived from data collected between 1987 and 2010 (see
Section 4.3.1 for a discussion of this model). TOAs are collected at 1400 MHz
(unless otherwise noted) and are colored in the following manner: 140-ft radio
telescope at Green Bank (red circles - 430 MHz, blue circles - 1400 MHz);
Lovell Telescope at Jodrell Bank (green circles); VLA (magenta circles); GBT
using the Spectral Processor (cyan circles), BCPM (yellow circles), GASP
(black circles), and GUPPI (red crosses); and Effelsberg Telescope (blue
crosses). The two-orbit solution dramatically fails to model TOAs collected
after 2010.

residuals were computed using a two-orbit model with (Pb)o ≈ 38 years that

we derive from all data taken between late 1987 and mid-2009. (We discuss

this model in more detail in Section 4.3.1 below.) It is clear from Figure 4.1

that the two-orbit solution, while adequately predicting TOAs between 1987

and 2009, drastically fails to model TOA data taken after a ∼ 2-year gap in

2009-2010.

We nevertheless found that all data taken before the 2-year gap could

be reasonably fit with a two-orbit solution, with small non-random structure
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that may likely indicate significant three-body interactions. Moreover, using

the Joshi & Rasio (1997) method, we successfully modeled the outer orbit

with a large number of spin-frequency derivatives when examining smaller

portions of the whole data set, and several measures of the outer-orbital

parameters derived from these spin-frequency measurements were consistent

between these subsets.

In this section, we present separate timing analyses of three TOA subsets:

one subset consists of TOAs collected before the late-2009 gap in GASP data;

the second subset consists of GASP TOAs collected after the 2009 gap, as

well as all GUPPI TOAs; and the third analysis is performed on the entire

TOA data set for PSR B1620−26. We demonstrate that both “pre-gap”

and “post-gap” subsets yield a large number of spin-frequency derivatives

that are consistent with an unmodeled outer orbit with a period of ∼ 40

years when using the Joshi & Rasio (1997) method, described in Appendix

B, for estimating orbital elements. For the data subset collected prior to

the 2009 gap, we are also able to successfully fit a two-orbit model with an

outer-orbital period of ≈ 38 years, which is consistent with the value derived

from the spin-frequency-derivative model of the outer orbit for the same

data subset. We also present our current analysis of the global data set using

a single timing solution with a large number of spin-frequency derivatives

as well as significant first-order changes in the inner-orbital elements, and

present results obtained from the Joshi & Rasio (1997) method.

4.3.1 Analysis of “Pre-Gap” Data

We first considered the first portion of the whole data set, where this subset

consists of TOAs collected between November 1987 and May 2009. This sub-

set includes all data first published and analyzed by Thorsett et al. (1999),

as well as a large portion of data collected with the Effelsberg, Green Bank

and Jodrell Bank telescopes discussed in Section 4.1 above. While all avail-

able BCPM and Effelsberg data are included in this subset, only half of the
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GASP data (prior to the 2009 gap) are included here. In total, this subset

consists of 2,876 TOAs that span nearly 22 years of observation.

We first developed a timing solution that models the outer orbit using 8

spin-frequency derivatives, while directly fitting for the inner orbit and vari-

ations in x across the data set. The best-fit residuals for this timing model

are shown in the top panel of Figure 4.2 and the best-fit parameters are pre-

sented in Table 4.1. The timing model we derive from this pre-gap subset

is in good agreement with the model first derived by Thorsett et al. (1999),

with the largest differences in parameter values occurring in the higher-order

spin-frequency derivatives. This slight discrepancy is likely due to the large

degree of covariance between the higher-order derivative terms as model pa-

rameters. However, the higher-order spin-frequency derivatives we measure

from the 22-yr, pre-gap subset possess the same order of magnitude and sign

as those published by Thorsett et al.

When we use the first five spin-frequency derivatives and the procedure

outlined in Appendix B, we estimate that the five outer-orbital Keplerian

elements are

ao ≈ 14 AU

(Pb)o ≈ 41 years

eo ≈ 0.178

ωo ≈ 175 degrees

(T0)o ≈ MJD 44420, or July 1980

(4.1)

The full list of outer-orbital parameters that can be derived from the Joshi &

Rasio (1997) method are presented in Table 4.2. Using the above estimates

and Equation B.23, we computed the outer-orbital companion mass to be

(mc sin i)o ∼ 1×10−3 M�. The outer-orbital period and planetary-companion
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Parameter Pre-Gap Post-Gap
Start date (MJD) 47104 55008
Finish date (MJD) 54953 57231
Reference Epoch (MJD) 51029 56290

Astrometry
Right Ascension, αJ2000 16h23m38.21610(6)s 16h23m38.20230(2)s

Declination, δJ2000 −26◦31′53.880(4)” −26◦31′54.1841(15)”

µα (arcsec yr
−1

) -13.03(9) -12.2(2)

µδ (arcsec yr
−1

) -21.7(5) −17(1)
$ (arcsec) 0.59 0.59

Spin
νs (s−1) 90.287331294248(2) 90.2873323075030(18)
ν̇s (10−15 s−2) -1.74145(6) 6.02434(18)
ν̈s (10−23 s−3) 1.76871(10) 1.5478(7)

ν
(3)
s (10−33 s−4) -7.40(3) 4.3(8)

ν
(4)
s (10−41 s−5) 1.217(5) 2.91(17)

ν
(5)
s (10−49 s−6) 7.04(17) -20(20)

ν
(6)
s (10−56 s−7) -2.42(3) . . .

ν
(7)
s (10−65 s−8) -5.7(5) . . .

ν
(8)
s (10−72 s−9) 1.83(12) . . .

Dispersion
DM (pc cm−3) 62.862983 62.862983

˙DM (pc cm−3 yr−1) -0.0006997 -0.0006997

Inner Binary
xi (lt-sec) 64.8093323(9) 64.8091202(6)
ẋi -0.580(5) −0.52(2)
ẍi (10−22 s−1) 1.6(3) 0(3)
ei 0.025315412(9) 0.025315442(8)
(T0)i (MJD) 51025.575809(10) 55428.760606(13)
(nb)i (10−8 s−1) 6.0457079725(8) 6.0457080391(15)
ωi (deg) 117.128143(19) 117.12786(2)

Fit Statistics
χ2
red 1.268 1.135

Number of TOAs 2,876 639
Weighted RMS residual (µs) 9.982 4.987

Table 4.1: Best-fit parameters from TEMPO analysis of TOAs collected for
PSR B1620−26 when separately analyzing two subsets collected before and
after a gap in data around the year 2009. Values in parentheses denote the 1σ
uncertainty in the preceding digit(s) as determined from TEMPO. Quantities
with no reported uncertainties were held fixed at the listed values; see Section
4.1 for a discussion.
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Figure 4.2: TOA residuals of PSR B1620-26 using data collected up to mid
2009. The top panel consists of residuals computed from a timing model
where the inner orbit is directly fitted for, and the outer orbit is approx-
imately fitted for with 8 time-derivatives in νs. The bottom panel shows
residuals computed from a model where both Keplerian orbits are directly
fitted for, along with one time-derivative in νs. The residual colors denote
the same data sets presented in Figure 4.1.

mass we derive from the spin-frequency derivatives are consistent with the

initial estimates made by Thorsett et al. (1999).

The results shown in Equation 4.1 above and Table 4.2 are significantly

different from those that were derived by Ford et al. (2000a), who also used

the method developed by Joshi & Rasio (1997) to derive the outer-orbital

elements from spin-frequency derivatives. Ford et al. used the timing solution

constructed Thorsett et al. (1999) and derived a larger eccentricity (≈ 0.45)

and orbital period (∼ 300 years) than we derive from the pre-gap subset.

However, the Thorsett et al. solution only measured four significant spin-

frequency derivatives, along with a fifth derivative that was consistent with
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Parameter FJRZ Pre-Gap Post-Gap All Data
Joshi & Rasio (1997) Parameters

eo 0.448 0.178 0.306 0.131
ωo (deg) 135 175 227 178
u (deg) 18.9 165 185.3 175
u̇ (rad yr−1) 0.055 0.111 0.094 0.210

Derived Orbital Elements
(m2 sin i)o (10−3 M�) 6.48 0.80 1.27 0.18
ao (AU) 56.5 14.0 13.2 9.62
(Pb)o (years) 330 40.9 37.8 23.2
(T0)o (MJD) . . . 44420 49088 48062

Table 4.2: Unique solutions of the Joshi & Rasio (1997) method and several
derived elements for the outer orbit. In keeping with notation used in Chapter
1, u is the true anomaly and u̇ is its time derivative. The parameters directly
measured from the Joshi & Rasio (1997) method are then used to derive
the outer-orbital elements. The label “FRJZ” refers to the study conducted
by Ford et al. (2000a) that used the Thorsett et al. (1999) solution and its

constraint on ν
(5)
s .

zero at the 68.3% confidence level. We therefore consider this difference to

not be problematic, as our estimate of ν
(5)
s is statistically significant and more

robust as a timing-model parameter.

In conjunction with the TEMPO results discussed above, we used an

iterative Markov Chain Monte Carlo (MCMC) procedure in order to explore

the phase space spanned by the fit parameters and sample the region of best

fit to obtain their posterior probability distributions for all model parameters.

The MCMC method consists of a random walk in the parameter space that

is generally biased towards regions of more probable parameter values where,

after each step in the walk, a likelihood probability is evaluated and compared

to a random number drawn from a uniform distribution between 0 and 1; the

proposed step in the phase space is accepted if the likelihood is less than than

the randomly drawn number, and is rejected otherwise. This process leads to

the construction of a Markov chain, where the acceptance or rejection of each
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element in the chain only depends on the immediately preceding element.3

While the algorithm generally forces the walk to probe the best-fit region of

the parameter phase space, the probabilistic nature of the MCMC method

allows for the random walk to reach regions of the parameter space that

do not fit the data well. This method of model determination is therefore

advantageous for exploring complex local features in the χ2 phase space, as

well as for determining more robust confidence intervals in the case of nonzero

and/or nonlinear correlation.

We implemented a MCMC method using a Metropolis-Hastings algorithm

that uses TEMPO to compute the χ2 for a set of fixed parameters at each step

in the Markov chain. The ratio of likelihood probability between adjacent

elements in the chain is evaluated by computing the quantity exp(−0.5∆χ2),

where ∆χ2 is the change in χ2 between the current and proposed coordinate

in the parameter phase space. We used the covariance matrix (Σ) of the

best-fit timing solution discussed above, computed by TEMPO, in order to

account for covariance between model parameters when sampling the joint-

prior normal probability distribution of model parameters,

f(x) =
1√

(2π)kdetΣ
exp

(
− 1

2
(x− µ)TΣ(x− µ)

)
(4.2)

where x is the vector of model parameters, µ is the vector of the mean pa-

rameter values, “T” refers to the transpose of the vector (x − µ), and k is

the number of parameters (i.e. the dimension of the phase space). We per-

formed 100,000 iterations of the MCMC method, and the step-acceptance

rate for our simulation was ∼ 25%. The median values and 68.3% credible

intervals for all posterior distributions were consistent with the best-fit values

and 1−σ uncertainties determined by TEMPO. Figure 4.3 displays the pos-

terior distributions and two-dimensional phase spaces of the spin-frequency

derivatives used to model the pre-gap TOA data set. The MCMC method

3An “element” of a Markov chain consists of a set of all model parameters.
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Figure 4.3: MCMC results for spin-frequency derivatives when analyzing data
collected prior to the 2009 gap in GASP data. The scatter plots illustrate
correlation between posterior distributions, while the histograms are poste-
rior distributions for the parameter denoted at the bottom of their respective
columns.

confirms the high degree of linear correlation between the higher-order fre-

quency derivatives used as timing-model parameters.

One of the advantages of using an MCMC method is that, in principle,

the posterior distributions obtained for the spin-frequency derivatives can be

converted to distributions of the outer-orbital elements through the use of

the Joshi & Rasio (1997) method. We computed the posterior distributions

of outer-orbital elements by applying the Joshi & Rasio (1997) method using

the first five spin-frequency derivatives within each element of the Markov

chain. The results of this translation are shown in Figure 4.4. All 100,000

sets of spin-frequency derivatives were successfully converted to estimates of

the outer-orbital elements. The distributions are consistent with the best-fit
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Figure 4.4: Posterior distributions of the outer-orbital Keplerian elements,
computed from the MCMC posterior distributions of the first five spin-
frequency derivatives measured from the pre-gap data set, using the Joshi &
Rasio (1997) method discussed in Appendix B.

estimates shown in Equation 4.1 above.

We also derived a timing solution that explicitly models for the outer

orbit, based on an extension of an earlier timing solution by Thorsett et al.

(1999) that was developed over the past decade as more data was being

collected. We display the best-fit residuals in the bottom panel of Figure

4.2 and present the best-fit parameters in Table 4.3. The astrometric and

inner-orbital parameters agree with those that were derived from the timing

solution that fitted the outer orbit with multiple spin-frequency derivatives.

In the two-orbit model, the estimate of ν̇s is significantly different from the

estimate obtained from the spin-frequency solution due to the fact that the

outer-orbital Römer delay essentially accounts for the component of ν̇ due

to orbital motion. The outer-orbital Keplerian parameters are generally con-
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Parameter Value (Uncertainty)
Start date (MJD) 47104
Finish date (MJD) 57231
Reference Epoch (MJD) 52167

Astrometry
Right Ascension, αJ2000 16h23m38.21595(6)s

Declination, δJ2000 −26◦31′53.880(4)”

µα (arcsec yr−1) -12.96(9)

µδ (arcsec yr−1) -21.7(5)
$ (arcsec) 0.59

Spin
νs (s−1) 90.2873322732(10)
ν̇s (10−15 s−2) -1.4415(14)

Dispersion
DM (pc cm−3) 62.862983

˙DM (pc cm−3 yr−1) -0.0006997

Inner Binary
xi (lt-sec) 64.8093261(8)
ẋi (10−12) -0.600(5)
ẍi (10−22 s−1) 4.7(3)
ei 0.025315326(8)
(T0)i (MJD) 51025.57574(10)
(nb)i (10−8 s−1) 6.0457080216(8)
ωi (deg) 117.128020(19)

Outer Binary
xo (lt-sec) 2.422(4)
eo 0.14836(2)
(T0)o (MJD) 44441(4)
(Pb)o (years) 38.215(19)
ωo (deg) 183.737(3)

Fit Statistics
χ2

red 1.710
Number of TOAs 2,829
Weighted RMS residual (µs) 11.479

Table 4.3: Best-fit parameters from TEMPO analysis of TOAs collected prior
to the 2009 gap for PSR B1620−26, using a two-Keplerian-orbit model.
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sistent between the two-orbit and frequency-derivative solutions. However,

several outer-orbital timing parameters possess considerably larger uncer-

tainties than those which are normally attainable with pulsar timing. This

lack of precision reflects the degeneracy obtained when directly fitting for the

outer-orbital Römer timing delay using data that does not yet span a full

(outer) orbit.

4.3.2 Analysis of “Post-Gap” GASP and GUPPI Data

We also separately analyzed all data collected after the gap in GASP TOAs

that occurred around the year 2009. This data subset consists of post-gap

GASP data and all TOAs collected with the GUPPI processor. In total,

this subset consists of 639 TOAs that collectively spans over five years of

observation with the Green Bank Telescope.

From the post-gap GASP and GUPPI TOAs, we derived a timing solu-

tion that used five spin-frequency derivatives to model the outer orbit; the

TOA residuals for this timing solution are shown in Figure 4.5. The best-fit

parameters of the post-gap timing solution are shown in Table 4.1, alongside

the pre-gap solution discussed in Section 4.3.1, and indicate that only four of

the five spin-frequency derivatives are significant. The frequency-derivative

values are different from those quoted in the pre-gap solution because the

reference epoch is different between the pre-gap and post-gap subsets. More-

over, the best-fit estimate of ν̇s is positive, which indicates that the compo-

nent of ν̇s due to outer-orbital motion is positive and larger than the sum

of the other components due to intrinsic spin-down and acceleration in the

Galactic potential.

As discussed in Appendix B, we used the first four spin-frequency deriva-

tives to find a family of solutions to the Joshi & Rasio (1997) method for

different values of eo. The family of solutions for the directly-measurable

parameters of the Joshi & Rasio (1997) method are shown in Figure 4.6.

While only four significant spin-frequency derivatives are measured from the
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post-gap TOA subset, we can use the (insignificant) best-fit estimate of ν
(5)
s

to obtain a unique solution of the outer orbit using the Joshi & Rasio (1997)

method. We find that the five spin-frequency derivatives yield the following

outer-orbital elements:

ao ≈ 13 AU

(Pb)o ≈ 37 years

eo ≈ 0.306

ωo ≈ 227 degrees

(T0)o ≈ MJD 49088, or April 1993.

(4.3)

which are also presented in Table 4.2 for comparison with other portions

of the TOA data set for PSR B1620−26. The post-gap estimates of the

outer-orbital Keplerian elements generally differ from those determined from

the pre-gap data analyzed in Section 4.3.1, though the derived estimate of

ao and (Pb)o are similar between the pre-gap and post-gap subsets. The

discrepancies in eo, ωo (T0)o between data subsets are likely due to the fact

that ν
(5)
s is not measured with statistical significance; its constraint on the

outer-orbit parameters is considerably weak and will change as its significance

improves over time with the collection of additional GUPPI TOAs.

We used the same MCMC algorithm described in Section 4.3.1 above

to obtain posterior distributions of all fit parameters; we then converted

the spin-derivative distributions into ones for the outer-orbital Keplerian ele-

ments using the Joshi & Rasio (1997) method, which are also shown in Figure

4.7. In this case, only ∼ 72% of all Markov-chain elements produced solu-

tions of the Joshi & Rasio (1997) method. The small fraction of non-solutions

to the Joshi & Rasio (1997) method is likely related to the fact that ν
(5)
s is

consistent with zero at the 68.3% confidence level, and so a small fraction of
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Figure 4.5: TOA residuals of PSR B1620-26 using data collected after the
2009 gap in GASP data, using a frequency-derivative model to account for
the outer orbit. Points in red are GASP data, while points in green are
GUPPI TOA residuals.

posterior samples for ν
(5)
s will have orders of magnitudes and signs that are

inconsistent with the component of ν
(5)
s due to orbital motion. The resultant

distributions of the outer-orbital Keplerian elements are wider than those

derived from the pre-gap analysis in Section 4.3.1 above, which also indicate

a weak constraint from the observed ν
(5)
s . Moreover, the distributions for

(T0)o do not overlap, and likely indicates an inability of the Joshi & Rasio

(1997) to accurately determine all outer-orbital elements based on only ∼4

years of TOA data.

135



Figure 4.6: Numerically stable solutions of the Joshi & Rasio (1997) method
using time-derivatives in νs measured for PSR B1620−26 for the post-gap
data set. The red-solid lines are solutions found for a fixed value of eo,
while the vertical blue-dashed lines are unique solutions obtained from a full
Newton-Raphson method that allows eo to be determined.

4.3.3 Changes of Inner-Orbital Parameters over Time

Given the greatly-improved TOA precision and the uncertainties in parame-

ter measurements4, the inner-orbital Keplerian elements presented in Table

4.1 are significantly different when measured relative to the pre-gap and post-

gap epochs of periastron, where the difference is ∆(T0)i = 4,403 days ≈ 12

years in time. For example, the minimum difference in the ei measurements

between the pre-gap and post-gap estimates of (T0)i is nearly 4σ when using

the larger of the two uncertainties in ei. The ∆ei measured between the two

data subsets implies a rate of change ėi ≈ ∆ei/∆(T0)i ≈ 10−9 yr−1. Similarly,

4The reduced χ2 for the pre-gap and post-gap fits are slightly greater than 1.0, indi-
cating that uncertainties for the TOAs and best-fit model parameters are underestimated.
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the best-fit values of ωi change between the two data subsets such that the

minimum difference is 12σ; this difference implies a significant rate of change

ω̇i ≈ ∆(ω)i/∆(T0)i ≈ −2× 10−5 deg yr−1. The largest change occurs in the

measured (nb)i, where the minimum difference in inner-orbital frequency is

nearly 46σ and the inferred (ṅb)i ≈ ∆(nb)i/∆(T0)i ≈ 5× 10−17 s−1 yr−1.

We consider these apparent changes in the inner-orbital elements to re-

flect real variations due to one or more physical mechanisms affecting the

inner binary system. As we discuss in Section 4.4.3, the variation in (Pb)o is

dominated by the component due to mean-field acceleration in the globular-

cluster potential; this measurement allows for an evaluation of the component

of ν̇s do to the same mechanism, which we show to be a significant bias in

the observed first-order change in spin frequency. In Section 4.4.5, we show

that the estimates of ėi and ω̇i computed above possess orders of magni-

tude consistent with those expected from prolonged interaction with a third

companion in a wide orbit about the inner binary.

4.3.4 Global Analysis of All TOA Data

The current, complete TOA data set for PSR B1620−26 triple system spans

27+ years and is well fit by a timing solution that models the outer orbit using

15 spin-frequency derivatives. The best-fit timing solution, which directly fits

for the inner orbit and first-order variations in all inner-orbital elements, is

summarized by the parameters listed in Table 4.4 and shown in Figure 4.8.

As with the separate pre-gap and post-gap analyses presented above, we

currently do not fit for variations in DM over the time span since nearly all

data collected was observed using a single receiver centered at 1400 MHz.

Instead, we used the DM parameters determined by Thorsett et al. (1999)

and held them fixed in our current solution. Since our primary goal is to

robustly fit for (∆R)o, we do not consider unaccounted variations in DM to

be a significant source of systematic error that prevents or heavily impacts a

direct measurement of the time delay due to the outer orbit.
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Parameter Value (Uncertainty)
Start date (MJD) 47104
Finish date (MJD) 57231
Reference Epoch (MJD) 52167

Astrometry

Right Ascension, αJ2000 16h23m38.21276(3)s

Declination, δJ2000 −26◦31′53.964(2)”

µα (arcsec yr−1) -12.39(5)

µδ (arcsec yr−1) -19.2(3)
$ (arcsec) 0.59

Spin
νs (s−1) 90.287331207875(4)
ν̇s (10−17 s−2) 1.435(6)
ν̈s (10−23 s−3) 1.7505(3)

ν
(3)
s (10−33 s−4) 1.43(7)

ν
(4)
s (10−40 s−5) 1.46(3)

ν
(5)
s (10−48 s−6) 1.58(8)

ν
(6)
s (10−55 s−7) -1.03(4)

ν
(7)
s (10−63 s−8) -3.75(9)

ν
(8)
s (10−71 s−9) 7.4(4)

ν
(9)
s (10−78 s−10) 3.99(10)

ν
(10)
s (10−86 s−11) -4.6(3)

ν
(11)
s (10−93 s−12) -3.15(9)

ν
(12)
s (10−101 s−13) 2.07(18)

ν
(13)
s (10−108 s−14) 1.76(6)

ν
(14)
s (10−117 s−15) -5.0(6)

ν
(15)
s (10−124 s−16) -5.3(2)

Dispersion
DM (pc cm−3) 62.862983

˙DM (pc cm−3 yr−1) -0.0006997

Inner Binary
xi (lt-sec) 64.8092852(5)
ẋi -0.564(3)
ẍi (10−22 s−1) 1.14(14)
ei 0.025315465(13)
ėi (10−8 yr−1) -1.01(15)
(T0)i (MJD) 51982.790123(18)
(nb)i (10−8 s−1) 6.04570849(4)
(ṅb)i (10−24 s−2) 1.60(4)
ωi (deg) 117.12850(3)
ω̇i (10−5 deg yr−1) -6.0(4)

Fit Statistics
χ2
red 1.801

Number of TOAs 3,515
Weighted RMS residual (µs) 10.287

Table 4.4: Best-fit parameters from TEMPO analysis of TOAs collected for
PSR B1620−26 when using all data and modeling the outer orbit using spin-
frequency derivatives. Values in parentheses denote the 1σ uncertainty in the
preceding digit(s) as determined from TEMPO. Quantities with no reported
uncertainties were held fixed at the listed values, and taken from Thorsett
et al. (1999).
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Figure 4.7: Posterior distributions of the outer-orbital Keplerian elements,
computed from the MCMC posterior distributions of the first five spin-
frequency derivatives measured from the post-gap data set, using the Joshi
& Rasio (1997) method discussed in Appendix B.

The observed behavior in the pulsar’s spin period across the 27-year data

span can be directly computed using the measured time-derivatives in spin

frequency and Equation 1.12, and is shown in Figure 4.9. The inclusion of

higher-order terms in the Taylor expansion, which are due to the outer-orbital

motion of the planetary companion about the inner-binary’s center of mass,

produces a wave-like variation in Ps over time. It is clear from Figure 4.9

that the outer orbit possesses a large orbital period, as the variation has not

been fully covered and observed to repeat. This feature is consistent with

initial estimate made by Thorsett et al. (1999) that (Pb)o is much longer

than their initial data set, and that the outer-orbital period is ∼ 100 years.

Moreover, Figure 4.9 indicates that the current value of Ps is approaching

the value observed in 1987, when PSR B1620−26 was discovered by (Lyne,
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Figure 4.8: TOA residuals of PSR B1620-26 using the complete data set. The
timing solution used to compute these TOAs directly fits the inner orbit and
using 15 spin-frequency derivatives to model the outer orbit. The residual
colors denote the same data sets presented in Figure 4.1.

1988). Assuming that the observed variations are purely due a third body in

a bound orbit, this feature then most likely indicates that the outer orbit will

soon reach its point of inflection within the next few years. The observation

of another inflection of Ps may make a numerically-stable fit for eo, and

therefore (∆R)o, more robust and allow for a unique determination of both

sets of orbital elements from direct modeling of the orbit.

We attempted to implement the Joshi & Rasio (1997) method using the

first five spin-frequency derivatives measured in the global timing model, but

no convergent solution of the method could be obtained. The fitted value of

(ν̇s)obs = −1.722(4)× 10−17 s−2 is two orders of magnitude smaller than the

value published by Thorsett et al. (1999), which corresponds to the time in

Figure 4.9 where the orbit-induced curve is turning over and the first deriva-
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tive is approximately zero. Therefore, the assumption that (ν̇s)obs ≈ (ν̇s)orb

does not hold at the quoted reference epoch of the timing solution. More-

over, as discussed in Appendix B.3 below, the various mechanisms that can

contribute to an observable first-derivative in νs complicates a robust deter-

mination of outer-orbital elements. However, the large number of required

spin-frequency derivatives are likely dominated by the outer-orbital motion,

and so an analysis based of higher-order derivatives could lead to more “un-

biased” estimates of the Keplerian parameters.

As described in Appendix B.3, we extended the Joshi & Rasio (1997)

method by re-writing the expected derivatives due to orbital motion in terms

of ν̈s, instead of ν̇s, and thus avoiding the contributions from pulsar spin-down

and various terms from kinematic, non-orbital acceleration. This extension

of the Joshi & Rasio (1997) method requires a measurement of ν
(6)
s in order to

uniquely solve for the approximate orbital elements, which we readily made

using our full, 27-yr data set. We applied the same Newton-Raphson proce-

dure for determining the “best-fit” values of the outer-orbital elements, and

derived the following orbital elements based on the higher-order derivatives

up to ν
(6)
s :

ao ≈ 10 AU

(Pb)o ≈ 23 years

eo ≈ 0.131

ωo ≈ 178 degree

(T0)o ≈ MJD 48062, or June 1990.

(4.4)

The outer-orbital eccentricity and semi-major axis are relatively consistent

with the estimates made when analyzing the pre-gap TOA subset discussed

in Section 4.3.1 above. However, the 23-year outer-orbital period inferred
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Figure 4.9: Ps versus time for the complete TOA data set for PSR B1620−26,
derived from the timing model shown in Figure 4.8.

from the higher-order frequency derivatives is more than a decade smaller

than the 40-year period inferred from both the pre-gap and post-gap anal-

yses described above. More strikingly, the outer-orbital period determined

from the entire data set is slightly smaller than the time span of the set itself,

meaning that a robust fit for (∆R)o can theoretically be made. However, as

discussed at the beginning of Section 4.3, a two-orbit solution based on the

entire TOA data set is not currently attainable. Furthermore, our global

estimate of (Pb)o from the extended Joshi & Rasio (1997) method is con-

siderably smaller than the period suggested from the long-term behavior of

the spin period illustrated in Figure 4.9. We discuss a variety of plausible

mechanisms that could affect our estimation of the outer-orbital elements

using the Joshi & Rasio (1997) method in Section 4.4 below.

For the first time, we measure first-order variations in all inner-orbital

elements, as well as a significant second derivative in xi, when deriving our

timing model on the full TOA data set for PSR B1620−26. The measurement
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of ẋi was first made by Arzoumanian et al. (1996), and our estimate of ẋi in

Table 4.4 is consistent with the last measurement made by Thorsett et al.

(1999) when computing the value at their timing-solution reference epoch.

The signs and orders of magnitude of the best-fit variations are consistent

with the values derived from computing changes in the elements over time

between the pre-gap and post-gap estimates as discussed at the end of Section

4.3.2. As we discuss in Section 4.4.5 below, the variations in ei and ωi are

likely due to third-body perturbations from the planetary companion.

4.4 Discussion

We demonstrated in Section 4.3 that PSR B1620−26 exhibits complex timing

behavior due to a long-period outer orbit. While the analysis of data subsets

yields consistent estimates of the outer-orbital elements, and a two-orbit

model can be applied to the majority of our complete data set, a global

analysis of the entire TOA set does not yet yield a two-orbit solution. In this

section, we discuss additional sources of complication in our analyses and

perform calculations to determine the likelihood of additional biases from

globular-cluster dynamics, as well as to check the veracity of the observed

inner-orbital secular variations.

4.4.1 Is PSR B1620−26 a Triple System?

In principle, our use of higher-order derivatives other than ν̇s when imple-

menting the Joshi & Rasio (1997) method generally allows for an “unbiased”

estimate of the outer-orbital parameters, since it avoids any consideration of

the various non-binary processes that contribute to the observed first deriva-

tive in spin frequency. However, when using the extended Joshi & Rasio

(1997) method on the complete TOA data, the derived outer-orbital ele-

ments illustrate an eccentric orbit with a period of ∼ 23 years. While the

inferred eccentricity is generally in agreement with estimates made by analyz-
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ing subsets of all available TOAs, the derived outer-orbital period is shorter

than the time span of the whole data set and implies that a direct fit of (∆R)o

can be obtained. However, this is inconsistent with the observed behavior

of the pulsar’s spin period shown in Figure 4.9, where the measurement of

higher-order frequency derivatives suggest an outer-orbital period of ∼ 100

years. Moreover, we are currently not able to obtain a two-orbit solution for

the entire TOA data set collected for PSR B1620−26.

At this time, it is not clear why the extended Joshi & Rasio (1997) method

gives conflicting answers when applied to the entire TOA data set for PSR

B1620−26. It is also unclear why the two-orbit solution discussed in Section

4.3.1, where ∆R = (∆R)i + (∆R)o, currently fails to reasonably model data

collected after the late-2009 TOA gap.

Given its globular-cluster association and the complications discussed

above, we are confronted with the possibility that PSR B1620−26 is not

actually a bound hierarchical triple system. The observed variations in TOA

residuals and inner-orbital elements nonetheless indicate that a sustained

gravitational interaction is occurring between the pulsar-WD binary and at

least one other massive object. One possible scenario involves a hyperbolic

encounter of the pulsar-WD binary with a nearby, low-mass star, likely an-

other globular-cluster white dwarf. As with bound orbits, the hyperbolic fly-

by will induce a number of time-derivatives in spin frequency in the same way

that we observe a large number of time-derivatives when extending the TOA

data set for PSR B1620−26. Moreover, the spin-frequency analysis of the

post-gap data subset for PSR B1620−26 (Section 4.3.2) yields outer-orbital

elements that are consistent with the results obtained from the pre-gap sub-

set, which could be caused by both bound and hyperbolic orbits.

While such hyperbolic encounters are possible in globular clusters, the

fact that PSR B1620−26 is outside of the central regions of the cluster core

(where the stellar-number density is comparatively smaller than at the cen-

ter) makes this scenario unlikely. However, high-resolution, multi-wavelength
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optical imaging and spectroscopy may be able to constrain the likelihood of

an interacting white dwarf nearby the PSR B1620−26 system.

For the remainder of the discussion presented below, we assume that the

triple-system status of PSR B1620−26 remains valid.

4.4.2 Complications from Moons and Pulsar Glitches

Assuming that the PSR B1620−26 system is indeed a hierarchical triple

system, one possibility that is not considered in the above analyses is that

the outer planetary object possess a moon. Lewis et al. (2008) considered

the idealized scenario where a moon is in a circular orbit about a planet

that is in a wider orbit with PSR B1620−26, and found that the moon

could be detected through TOA perturbations if its mass is > 5% of the

planet’s mass and its distance from the planet’s center of mass is ∼ 2%

of the planet-pulsar separation. Thorsett et al. (1999) estimated that the

distance between the planet and the inner-binary’s center of mass is ∼ 35

AU, meaning that the hypothetical moon could be ∼ 1 AU away from the

planet. However, the TOA perturbations predicted by Lewis et al. are

expected to be comparatively smaller (∼1 µs) than those seen in Figure 4.1,

and so it is unlikely that a moon could be the dominant cause of the observed

TOA variations.

Another possible source of complication arises if PSR B1620−26 exhibits

a “glitch” – a sudden, abrupt change in its rotational period that is sometimes

followed by a period of relaxation towards the pre-glitch period – sometime

during or immediately after the 2009 gap. While still an active area of re-

search, a glitch is believed to indicate a sudden transfer of angular momentum

due to either a truncation of an oblate crust towards a more spherical shape

(Baym et al., 1969), or the disconnection of vortices between the neutron-

star superfluid interior and the remaining solid component of the star (e.g.

Glampedakis & Andersson, 2009). The Crab and Vela pulsars are known to

exhibit a large number of glitches during the past few decades of observation
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(e.g. Espinoza et al., 2011; Lyne et al., 2015). While not commonly observed

in MSPs, glitches have been seen in PSR B1821−24 (Cognard & Backer,

2004) and more recently in PSR J0613−02005 (McKee et al., 2016). It is

currently difficult to assess whether an intrinsic glitch event has occurred

around the time of the 2009 gap, since a glitch can be approximately mod-

eled using a large number of spin-frequency derivatives and therefore serves

as another biasing effect in our modeling of the outer orbit.

4.4.3 Bias in ν̇s from Cluster Acceleration

Phinney (1992) pointed out that globular-cluster dynamics due to the col-

lective “mean-field” potential can also contribute to a significant first-order

rate of change in Doppler shifts, which affect both spin and orbital periods

(as discussed in Section 1.5 above). The globular-cluster association of PSR

B1620−26 therefore introduces a possible third component of ν̇s, along with

the components from spin-down and kinematic acceleration. For a spherical

star cluster, the component of acceleration due to mean-field cluster dynam-

ics corresponds to a change in Doppler shift, such that(
Ṗs

Ps

)
GC

=

(
Ṗb

Pb

)
GC

= −1

c

GM(< r)

r2

h

r
(4.5)

where r is the radial distance of the source to the cluster center, h is a pro-

jected distance of the source to the plane of the sky that intersects the cluster

center, and M(< r) is the total mass contained within a sphere or radius r

centered on the cluster core. The value of h can be positive or negative,

corresponding to the pulsar being in the front half or back half of the cluster

relative to a distant observer. For the first-derivative in spin frequency, we

cannot uniquely separate the cluster-dynamics term from the other promi-

nent components due to spin-down, kinematic bias and outer-orbital motion.

5We analyze TOAs collected from PSR J0613−0200 as part of the NANOGrav program
in Section 3.4.1 of this dissertation.
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However, we can place limits on the significance of the cluster-dynamics com-

ponent (Equation 4.5) by analyzing the likely mechanism that produced the

observed change in (Pb)i.

We used the best-fit astrometric parameters for the global timing solution

and a distance d = 1.72 kpc (Peterson et al., 1995) in order to compute the

components of (Ṗb)i due to Galactic acceleration, differential rotation and

significant proper motion, using Equation 1.45,

(
Ṗb

Pb

)
D

=
Ḋ

D
=
az
c
− cos b

(
Θ2

0

cR0

)(
cos l +

β

sin2 l + β2

)
+
µ2d

c
.

Using the acceleration model developed by Kuijken & Gilmore (1989) for az,

we find that these three non-globular terms produce an expected value of

(Ṗb)i,D = 3.78× 10−11 s−1. This estimate of the kinematic, non-globular bias

is positive and an order or magnitude smaller than the observed negative

value, (Ṗb)i,obs = −4.36(2)×10−10 s−1. If the residual amount of Ṗb is due to

mean-field cluster acceleration, (Ṗb)i,GC = (Ṗb)i,obs − (Ṗb)i,D ≈ −5 × 10−10,

then it is clear from Equation 4.5 that h > 0, and that the PSR B1620−26

triple system is being accelerated away from observers on Earth.

Furthermore, assuming that (Ṗb)i,GC ≈ −5×1010 and using the left-hand

side of Equation 4.5, we find that the spin-frequency derivative due to mean-

field cluster acceleration is (ν̇s)GC ≈ 2× 10−15 Hz−2, which is comparable in

order of magnitude to the value of ν̇s published by Thorsett et al. (1999) and

could therefore likely be a significant component in our measurement of the

first derivative in spin frequency. While (ν̇s)GC > 0, the corrected value of our

first-derivative measurement for the two-orbit model presented in Table 4.3

is (ν̇s)corr = (ν̇s)obs−(ν̇s)GC < 0, and is compatible with the expected changes

in rotation from pulsar spin-down. Given the computation of (Ṗb)i,D above,

the component of ν̇s due to non-cluster kinematic acceleration is smaller in

order of magnitude than the spin-down component.
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4.4.4 Bias in ν̈s from Cluster Jerks

The discrepancy in the Joshi & Rasio (1997) estimate of (Pb)o shown in

Table 4.2 could possibly be due to further bias in several spin-frequency

derivatives associated with accelerations and jerks from nearby stars in the

M4 globular cluster. Blandford et al. (1987) first pointed out that globular-

cluster pulsars would experience observable time-varying perturbations from

gravitational fields of nearby cluster members, especially those that reside

in the denser environments of cluster cores. The net change in gravitational

accelerations over time will produce an observable second derivative in spin

frequency, (ν̈s)GC, that results from a time-averaged jerk. The second-order

change in spin period varies with an order of magnitude of(
P̈s

Ps

)
GC

∼ 10−29

(
σ

10 km s−1

)3(
rc

1 pc

)−2

s−2 (4.6)

where σ is the mean velocity dispersion of the globular cluster and rc is char-

acteristic radius normally taken to be the core or tidal radius. For Messier

4, σ = 3.5(3) km s−1 and rc ∼ 40′ ∼ 10 pc assuming a distance of 1.72 kpc

to the cluster (Peterson et al., 1995), which suggests that (P̈s)GC ∼ 10−33

s−1. This is significantly smaller than the observed second-derivative in spin

period, where |(P̈s)obs| ∼ 10−27 s−1. We therefore do not believe that biases

in ν̈s due to jerks from nearby cluster star are present in our timing model.

4.4.5 Variations of the Inner-Orbital Elements

The observed variations of xi, ei and ωi are likely due to three-body inter-

actions between the inner components and the outer planet. Arzoumanian

et al. (1996) argued that the highly significant ẋi is mostly dominated by

the three-body component (Equation 4.7), since the maximum component

due to kinematic bias from proper motion (Equation 1.43) only constitutes

∼ 10% of the observed value. To first order, the secular perturbations of

hierarchical inner orbits due to outer companions are expected to exhibit the
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following rates of change in several elements (Rasio, 1994):

ẋi =
3π(ap cos i)iw

2c(Pb)i

sin 2θo cos(ωi + φo) (4.7)

ω̇i =
3πw

(Pb)i

[
sin2 θo(5 cos2 φo − 1)− 1

]
(4.8)

ėi = −15πeiw

2(Pb)i

sin2 θo sin 2φo (4.9)

where the various terms are summarized as follos: w = (m2/m1)[ai/ro]3;

m2 = (mc)o; m1 = mp + (mc)i; (ap cos i)i is the product of the inner-binary

cos i times the semi-major axis of the pulsar relative to the inner-binary center

of mass; ai is the total semi-major axis of the inner binary; and (ro, θo, φo)

are the spherical coordinates of the outer planet in a fixed coordinate system

centered on the inner-binary center of mass, with φo measured from the

inner-orbital periastron argument in the inner-orbital plane and θo measured

relative to the inner-orbital angular momentum vector (with θo = 0 pointing

in the same direction as the angular momentum vector).

As discussed in Section 4.1 above, we have not yet fully characterized and

adjusted the uncertainties in our TOA measurements for the global analysis

discussed in Section 4.3.4. Moreover, Figure 4.10 shows non-random struc-

ture in TOA residuals at ∼ 10− µs level that is likely due to an indirect fit

of the outer orbit by using spin-frequency derivatives. We therefore do not

yet utilize our measurements of ẋi, ėi and ω̇i to constrain the geometry of the

outer orbit. We can nevertheless perform an order-of-magnitude comparison

of the observed perturbations to their expected values, given a set of assump-

tions motivated by our study of PSR B1620−26. For instance, we determined

that m2 ∼ 10−3 M� in the above analyses of spin-frequency data from our

TOA set, and Sigurdsson et al. (2003) determined that (mc)i = 0.34(5) M�

from a WD cooling-sequence analysis of optical colors and magnitudes, which

likely means that m1 ∼ 2 M�. For the purposes of calculation, we assume an
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Figure 4.10: A zoomed-in view of the TOA residuals shown in Figure 4.8.
The residual colors denote the same data sets presented in Figure 4.1.

inclination of the inner binary i = 45◦, so that ap = xi/ sin i ≈ 0.2 AU and

so ai ∼ 1 AU. If we assume that ro = 30 AU and neglect the (θo, φo) trigono-

metric terms in Equations 4.7-4.9, we find that ẋi ∼ 10−13, ω̇i ∼ 10−5 yr−1

and ėi ∼ 10−9 yr−1. These order-of-magnitude estimates of the inner-orbital

secular variations are consistent with the observed changes between pre-gap

and post-gap analysis presented in Section 4.3.3, as well as the variations

measured from the global solution derived from all data discussed in Section

4.3.4.

4.5 Further Work

As discussed above, we could not successfully apply a two-orbit model to the

full, 27-year TOA data set we have collected for PSR B1620−26 at this time.

We nonetheless derived comparable estimates of the outer-orbital parameters
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when examining subsets of the whole TOA data set. However, we derived

estimates of the outer-orbital period using the Joshi & Rasio (1997) method

that are shorter than suggested from the model of the spin period as a func-

tion of time shown in Figure 4.9. We considered the possibility of significant

components in ν̇s and ν̈s due to globular-cluster dynamics, and found that

there is a likely bias in the first time-derivative. Future work will assess the

possibility that a pulsar glitch occurred sometime during or after the late-

2009 gap, which could add further, significant bias into the spin-frequency

model of the outer orbit for the global analysis if left unaccounted.

An explicit two-orbit model will likely make the measurements of inner-

orbital variations more robust, since the use of many spin-frequency deriva-

tives to model the outer orbit is an incomplete parametrization of the orbit

and introduces large degrees of statistical correlation between derivatives.

Once a two-orbit model is obtained, we will implement an analysis of the

inner-orbit perturbations similar to the method used by Joshi & Rasio (1997)

and Thorsett et al. (1999) to uniquely constrain the geometry of the outer

binary. The increasing significance of ẍi over time will yield an additional

constraint on the analysis of inner-orbital perturbations and will allow for

direct constraints on the inner-binary mass components, which have so far

not been possible.

Finally, we will eventually use the three-body integrator developed by

A. Archibald for the analysis of the PSR J0337+1715 stellar triple sys-

tem performed by Ransom et al. (2014), which has been shown yield ad-

ditional interaction parameters and allow for unique determination of the

three hierarchical-component masses.
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Chapter 5

Long-Term Observations of the

Relativistic PSR B1534+12

Binary System

The population of “double-neutron-star” (DNS) systems – binary orbits that

consist of two neutron stars – is expected to be comparatively small due to

the need for both components to undergo a supernova event; if the binary

system ultimately survives and both components remain bound, then the

post-formation system eccentricity is expected be e ∼ 0.1 or greater due to

the injected energy from both supernovae. Indeed, DNS systems are obser-

vationally rare as only 11 such systems are currently known of among the

∼ 2, 500 pulsars observed in the Galaxy (see Table 1 in Martinez et al., 2015).

The identification of a binary system as a DNS type is less straightforward

than for a pulsar-WD system, where WD companions in relatively nearby sys-

tems can be observed with sufficiently sensitive optical telescopes. However,

DNS systems typically have comparable eccentricities and spin parameters,

with Ps ∼ 50 ms, that reflect a common evolution; their evolutionary history

is generally thought to consist of minimal mass transfer between components

since their massive progenitor stars are expected to have evolved on short

152



and comparable timescales (e.g. Stairs, 2003).

Despite their rarity, DNS systems currently offer the most precise means

for testing the predictions of Einstein’s relativity theory in the “strong-field”

regime. The most relativistic pulsar-binary systems can exhibit a large num-

ber of PK secular variations of orbital elements that are measurable on

decadal timescales. This is especially true for DNS systems with orbital peri-

ods on the order of hours, where relativistic secular variations are expected to

be comparatively large in magnitude. A classic example of a relativistic DNS

system is PSR B1913+16, famously known as the “Hulse-Taylor” system and

the first pulsar-binary system to be discovered, for which the first PK mea-

surements in a pulsar-binary system were made. The eventual measurement

of orbital decay in the PSR B1913+16, consistent with the prediction from

GR, provided the first evidence for the existence of gravitational radiation

(Taylor & Weisberg, 1989). Long-term timing of PSR B1913+16 produced

a set of pulse profiles that were observed to be secularly changing in time,

consistent with the notion of geodetic precession of the pulsar’s spin axis

about the orbital angular momentum vector occurring in the relativistic sys-

tem and ultimately leading to an evolving view of the two-dimensional radio

beam (Weisberg et al., 1989). As with the PK timing parameters discussed

in Section 1.5, the rate of geodetic precession (Ωspin
1 ) can be computed under

the assumption of a gravitational theory. In GR, this rate is given as (e.g.

Barker & O’Connell, 1975)

Ωspin
1 =

1

2
T

2/3
� n

−5/3
b

mc(4mp + 3mc)

(1− e2)(mp +mc)4/3
. (5.1)

However, the measurement of geodetic precession in PSR B1913+16 requires

a model of the two-dimensional beam shape (Kramer, 1998), which is not

immediately known. This DNS system nevertheless remains a valuable high-

precision laboratory that for many years yielded only one test of GR using

the ω̇-Ṗb-γ combination, as the Shapiro timing delay was not significant for

many decades due to low inclination (Weisberg et al., 2010). However, with
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the aid of substantial periastron advance over the years, the Shapiro delay

has recently become significantly measurable for the first time (Weisberg &

Huang, 2016).

PSR B1534+12 is a 37.9-ms radio pulsar in a 10.1-hour orbit with another

neutron star that currently exhibits up to six PK deviations in the system’s

orbital parameters and orientation due to strong-field gravity. In their first

long-term analysis of PSR B1534+12, Stairs et al. (1998) provided the first-

ever measurements of at least five PK timing parameters from one pulsar-

binary system; this also corresponded to the first time that multiple tests of

GR could be performed using a single gravitationally-bound system immersed

in the strong-field regime.

In 2014, we published a study that built on work done by Stairs et al.

(1998, 2002) and analyzed TOAs from PSR B1534+12 that collectively span

22 years; this data was obtained exclusively with the 300-m Arecibo tele-

scope using three generations of signal processors (Fonseca et al., 2014). We

improved the quality of the best test obtained from this system using the

γ − s − ω̇ combination and showed that GR is correct to within 0.17% of

its predictions, nearly a factor of 8 smaller than the previous timing study

performed by Stairs et al. (2002). Stairs et al. (2004) made the first quanti-

tative (but low-precision) beam-model-independent measurement of the rel-

ativistic spin-precession rate by comparing aberration effects and precession-

induced changes in the total-intensity profile of PSR B1534+12. In our 2014

study, we confirmed this detection and achieved a precision measurement of

Ωspin
1 = 0.59+0.12

−0.08 degrees per year, which is in excellent agreement of the GR

prediction of 0.51 degrees per year. We also used evolving polarization prop-

erties to uniquely determine the full orientation of the system, confirm the

relativistic precession of the system, and constrain the misalignment angle

between spin and orbital angular momenta to be 27± 3 degrees.

The majority of the timing analysis presented by Fonseca et al. (2014), as

well as an initial investigation of the total-intensity pulse profiles, constituted
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the bulk of the M .Sc. thesis written by E. Fonseca. However, work was done

after the formal granting of the M. Sc. degree that was incorporated into the

Fonseca et al. (2014) publication, including the determination of the precise

relativistic spin precession rate. In this chapter, we summarize the work done

for the analysis of TOAs and pulse profiles from PSR B1534+12 during the

Ph. D. program. In Section 5.1, we briefly discuss the logistics of data used

by Fonseca et al. (2014) since most of the results presented in this chapter

are derived from these data. In Section 5.2, we present an analysis of DM

measurements and ISM turbulence made using the 22-yr data set. In Section

5.3, we present the tools and analyses used to quantify relativistic precession

in pulse-structure data. In Section 5.4, we present initial results obtained

from ongoing observations of PSR B1534+12 using the PUPPI coherent de-

dispersion backend. In Section 5.5, we summarize the results presented by

Fonseca et al. (2014) and discussed in this chapter, as well as discuss future

prospects in PUPPI observations of PSR B1534+12.

5.1 Observations & Reduction

Data were obtained exclusively with the 305-m Arecibo Observatory in Puerto

Rico, using two observing frequencies and three generations of pulsar signal

processors. Basic information regarding the data and backends used in this

analysis are presented in Table 1 of Fonseca et al. (2014) while a more detailed

account of observing information can be found in Fonseca (2012).

Part of this set of pulse profiles and times-of-arrival (TOAs) were recorded

with the Mark III (Stinebring et al., 1992) and Mark IV (Stairs et al., 2000)

pulsar backends. The Mark III system employed a brute-force pulse de-

dispersion algorithm by separating each receiver’s bandpass into distinct

spectral channels with a filterbank, detecting the signal within each channel,

and shifting the pulse profile by the predicted amount of dispersive delay for

alignment and coherent averaging. A small amount of Mark III data was ob-

155



tained using the coherent-dedispersion “reticon” subsystem; these data were

used only in the polarization analysis. The Mark IV machine was an in-

strumental upgrade which employed the now-standard coherent de-dispersion

technique (Hankins & Rickett, 1975) that samples and filters the data stream

prior to pulse detection. A series of digital filters applied in the frequency

domain completely remove the predicted dispersion signatures while retain-

ing even greater precision than the Mark III counterpart. See Stairs et al.

(1998, 2002) for more details on these observing systems and reduction of

PSR B1534+12 data obtained with these two backends.

Recent data were collected with the Arecibo Signal Processor (ASP; De-

morest, 2007), a further upgrade from the Mark III/IV systems that retains

the coherent de-dispersion technique, but first decomposes the signals across

a bandwidth of 64 MHz into a number of 4-MHz spectral channels that de-

pends on the observing frequency. We used data collected with the four inner-

most spectral channels centered on 430 MHz, and typically sixteen channels

centered on 1400 MHz with some variability, due to limits in computer pro-

cessing and available receiver bandpass. While the Mark IV machine used

4-bit data sampling in 5-MHz-bandpass observing mode and 2-bit sampling

in 10-MHz-bandpass observing mode, ASP always used 8-bit sampling. The

coherent de-dispersion filter is applied to the raw, channelized data, which

are then folded modulo the topocentric pulse period within each channel and

recorded to disk, preserving polarimetric information.

Observations were generally conducted at semi-regular intervals, with typ-

ical scan lengths of an hour for each frequency. Several extensive “campaign”

observations were also conducted at 430 MHz, which consisted of several-hour

observing sessions performed over 12 consecutive days, in order to obtain

high-precision snapshots of the pulse profile at different times. Campaign

sessions occurred during the summers of 1998, 1999, 2000, 2001, 2003, 2005,

and 2008. We used all available data for the timing analysis, and only used

most of the campaign profiles and several strong bi-monthly scans for the pro-
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file analysis. We excluded the 2008 ASP data from the profile-shape analysis

due to weak, heavily scintillated signals recorded during this epoch, but used

several stronger observations during this campaign for the RVM analysis (see

Section 5.3 below).

We used the template cross-correlation algorithm developed by Taylor

(1992) for determining pulse phases, their TOAs and uncertainties using a

standard-template profile. A standard template was derived for the Mark

III and Mark IV backends at each frequency by averaging several hours of

consecutive pulse profiles; ASP TOAs were derived using the Mark IV tem-

plates. We added small amounts of error in quadrature or as factors to the

original TOA uncertainties, in order to compensate for apparent systematic

errors in TOAs. We also ignored TOAs with uncertainties greater than 10 µs;

only 10% of all available TOAs – including points affected by radio frequency

interference – were excised when using this cut.

It is important to note that there is a overlap in pulse TOAs collected

with the Mark IV and ASP data sets between MJD 53358 and 53601. We

incorporated TOAs acquired from both machines during this era, despite the

overlap, due to the substantially larger ASP bandwidth; we believe that this

difference in bandwidth does not produce many redundant data points. The

improvement in bit sampling between backends has a measurable effect on

the pulse profile shape, as discussed in Section 5.3 below.

5.2 DM Variations in PSR B1534+12

The DM of any pulsar traces the amount of free electrons in the ISM along

the observer’s line of site. Three-dimensional motion of the pulsar will change

the instantaneous line of sight and ultimately lead to a changing number of

electrons in between the observatory and pulsar, which alters the amount of

dispersion experienced by a broadband electromagnetic signal. This effect

manifests itself as an inherently unpredictable change in DM over time as
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the Galactic electron distribution is not known.1 If left unaccounted, the

stochastic signal from DM variations will bias other timing parameters due

to a suboptimal model fit. Moreover, if one seeks to test the predictions

of GR or any other viable theory of gravitation, then all physical processes

(whether deterministic or inherently random) must be modeled in order to

obtain unbiased estimates of PK variations and the Shapiro timing delay.

In the case of PSR B1534+12, DM variations are easily observed and have

dramatic, piecewise structure over the course of the 22-yr data set analyzed

by Fonseca et al. (2014). These variations are shown in Figure 5.2. As first

noted in the M. Sc. thesis for E. Fonseca, we chose to probe DM evolution

across our data set in two different ways. For one method, shown as the

black data points in Figure 5.2, we fit for ∆DM in 80-day bins using the

Mark IV and ASP TOAs, where dual-receiver TOAs are available. For the

second method, shown as solid, sloped lines in Figure 5.2, we instead fit

for four distinct DM bins that account for any temporal evolution as time

derivatives of DM. Both methods adequately model the DM variations in

PSR B1534+12, though we ultimately chose the few-bins/gradients method

as it reduced the number of free parameters in our timing model.

These long-term DM measurements are useful for a statistical analysis

of turbulence within the interstellar medium (e.g. Kaspi, Taylor, & Ryba,

1994), which usually assumes that the power spectrum of spatial variations

in electron density is a power law within a range of length scales (Rickett,

1990),

P (q) ∝ q−β, qo < q < qi (5.2)

where q = 2π/l is a spatial frequency and l is a scattering length. The

frequency range in Equation 5.2 corresponds to a range between an “inner”

1In fact, the combination of distance and DM measurements from pulsar TOA analyses
have allowed for rough models of the Galactic ne distribution to be inferred (e.g. Cordes
& Lazio, 2001).
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Figure 5.1: DM variations from TOAs collected from PSR B1534+12.
Horizontal-dashed lines represent the timespan where the denoted pulsar
backend was used. Points with uncertainties represent fits of DM to seg-
ments of data contained within 80-days bins. Black-solid lines represent fits
of DM and rate of change in DM across larger segments of time. This figure
was first published by Fonseca et al. (2014).

(li) and “outer” (lo) length scale where the power-law form is valid. The

observed spatial fluctuations due to a relative transverse velocity v are related

to a time lag τ by l = vτ . The power spectrum P (q) can therefore be

estimated by computing a pulse-phase structure function Dφ(τ) = 〈[φ(t +

τ) − φ(t)]2〉, where the angle brackets represent an ensemble average over

observing epoch t. The pulse’s electromagnetic phase φ is linearly related to

DM, which therefore relates Dφ(τ) to a DM structure function DDM(τ) =

〈[DM(t+ τ)−DM(t)]2〉,

Dφ(τ) =

(
2πC

f

)2

DDM(τ) (5.3)
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where C = 4.148 × 103 MHz2 pc−1 cm3 s, and f is the observing frequency

in MHz. Moreover, Dφ(τ) is a power law in τ within the inner length scales

defined in Equation 5.2, which finally requires that

Dφ(τ) =

(
τ

τ0

)β−2

(5.4)

where τ0 is a normalization constant with units of time. Scintillation theory

requires that τ0 = τd, where τd is the timescale of diffractive scintillation of

the signal (e.g. Cordes et al., 1985), if the inner length-scale li ≤ vτd.

We computed values of Dφ(τ) at f = 430 MHz using the Mark IV and

ASP small-bin measurements of DM shown in Figure 5.2. The Mark III DM

point was measured using all Mark III TOAs collected over several years,

which were generated with a different standard profile than the one used for

the Mark IV and ASP data; we therefore chose to ignore this measurement in

order to avoid incorporating bias in the structure function. Uncertainties in

Dφ(τ) were determined by propagating errors from our DM(t) measurements.

Our estimate of Dφ(τ) is shown in Figure 5.2, and illustrates a power-law

evolution between time lags of roughly 70 and 900 days. We fitted Equation

5.4 to this segment of data, and found that

β = 3.70± 0.04

τ0 = 3.0± 0.8 minutes (5.5)

which is shown as a solid black in in Figure 5.2.

The measured spectral index β is consistent with the value for a “Kol-

mogorov” medium, βKol = 11/3. Furthermore, β and τ0 in Equation 5.5

are consistent with the structure-function estimates reported by Scheiner &

Wolszczan (2012). Our estimate of τ0 is also consistent with the value of τd

measured from the autocorrelation function of a dynamic spectrum of PSR

B1534+12 (Bogdanov et al., 2002).
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Figure 5.2: Phase structure function Dφ as a function of time lag τ . The
solid line is a best-fit model of Equation 5.4 for data with lags between 70
and 900 days. This figure was first published by Fonseca et al. (2014).

At large timescales, the structure function departs from the fitted model

at a lag τo ≈ 900 days, which suggests that

lo ≈ 52

(
v

100 km/s

)
AU (5.6)

Bogdanov et al. (2002) derived an interstellar scintillation (ISS) velocity of

192 km/s. They noted in their study that ISS velocities of pulsars are typ-

ically dominated by the systemic transverse component, which means that

v ≈ 192 km/s for PSR B1534+12, and lo ∼ 100 AU ∼ 1015 cm from Equa-

tion 5.6. This estimate is consistent with the upper limit of lo observed for

several pulsars by Phillips & Wolszczan (1991). By contrast, there is no ev-

idence for a significant inner scale from our data set, since bins with mean
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values less than 70 days contain only one or two pairs of DM(t) and were

therefore ignored in the analysis. We did not apply any correction for the

solar-wind contribution of our DM(t) measurements, due to a covariance be-

tween the TEMPO solar-wind DM model and a fitted timing parameter that

is discussed in Fonseca et al. (2014).

5.3 Geodetic Precession and Secular Evolu-

tion in Pulse Structure

An observed pulse produces a set of Stokes-vector pulse profiles, from which

a TOA can be derived when cross-correlating the total-intensity profile I

with a standard template as described in Chapter 1. As with pulsar tim-

ing, gravitational strong-field effects can give rise to observable changes in

parameters that describe the electromagnetic structure of pulses, such as the

total-intensity shape and polarization properties, over a variety of timescales.

Such variations will occur if there is a misalignment between the spin axis

of the pulsar and the orbital angular momentum vector of the binary system

(de Sitter, 1916). This spin-orbit coupling, generally referred to as geodetic

precession2, ultimately leads to an evolving view of the radio beam emitted

from the pulsar and different slices of the radio cone over time. The effects

of relativistic spin precession on pulse structure have also been observed in

PSR B1913+16 (Weisberg et al., 1989), the double-pulsar system (Breton

et al., 2008), and most dramatically in PSR J1141-6545 (Manchester et al.,

2010).

In order to detect such changes in PSR B1534+12, we shifted our 430-

MHz profiles to a common phase using the derived DD-binary timing model

described by Fonseca et al. (2014). Each set of “campaign” data, where PSR

B1534+12 was observed for the entirety of its observable track in the sky for

2Pulsar literature also refers to geodetic precession as relativistic spin precession, as we
do at the beginning of this chapter.
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14 consecutive days, was then binned into twelve orbital-phase cumulative

profiles. Several particularly strong, non-campaign scans that were taken

during the observing year were integrated into single profiles recorded at their

respective epochs and included in this analysis. We subsequently performed

two distinct types of analyses on these total-intensity and polarization data

in order to extract gravitational information from independent techniques,

as described below.

5.3.1 Methodologies

For the first analysis, we employed the general model developed by Stairs

et al. (2004) that establishes pulse-structure data as functions of time and

location within the relativistic orbit. Estimates of the total-intensity profile

shape (F ) at a given epoch were derived by first applying a principal com-

ponent analysis (PCA) on a set of total-intensity profiles collected over time.

The first and second principal components correspond to an average (P0)

and “difference” (P1) profile, respectively, and an observed profile within the

timespan of the PCA input can be approximately represented by a linear

combination of the two PCA components: P = c0P0 + c1P1. The coeffi-

cients c0, c1 were estimated using a cross-correlation algorithm between the

observed profiles and principal components in the Fourier domain, and the

shape F of each profile was then estimated by calculating the ratio F = c1/c0

in order to negate epoch-dependent scintillation effects.

The shape F of a profile recorded at time t and eccentric anomaly E can

also be determined using the relation

Fmod =
dF

dt
t+ δAF (E) + F0 (5.7)

where F0 is an intercept parameter and dF/dt and δAF are the terms that

describe secular and aberrational changes in the pulse shape, respectively.

These two important terms are functions of the pulsar’s precession rate Ωspin
1
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Figure 5.3: Difference between cumulative 2005 campaign profiles for the
Mark IV and ASP backends. This figure was first published by Fonseca
et al. (2014).

and the angle ε between the line of nodes and the projection of the spin axis

on the plane of the sky:

dF

dt
= F ′Ωspin

1 cos ε sin i (5.8)

δAF = F ′
β1

sin i
[− cos εS(E) + cos i sin εC(E)] (5.9)

The parameter F ′ = dF/dζ characterizes the unknown beam structure as

a function of the auxilary “viewing” angle ζ, β1 = 2πx/(Pb
√

1− e2) is the

mean orbital velocity of the pulsar, and
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C(E) = cos[ω + u(E)] + e cosω

S(E) = sin[ω + u(E)] + e sinω

are time-dependent orbital terms that depend on the true anomaly u(E).

The Keplerian binary parameters in Equations 5.8 and 5.9 were determined

through pulsar-timing techniques described in Chapter 1, and are presented

by Fonseca et al. (2014).

We fitted Equation 5.7 to our 430-MHz data using an MCMC implemen-

tation with a Metropolis algorithm in order to obtain posterior distributions

of Ωspin
1 , ε, F ′, and F0 from uniform priors. We assumed that the joint like-

lihoo probability density of the model, J(Ωspin
1 , ε, F ′, F0|F, t, E), is a normal

distribution in the χ2 goodness-of-fit statistic for the profile-shape model,

J ∝ exp

[
− 1

2

∑
i

(
Fi − Fmod(ti, Ei)

σi

)2]
(5.10)

where σi is the uncertainty in Fi determined from the cross correlation be-

tween the ith profile and the two principal components. The results of this

fitting procedure are summarized in Table 5.1 and discussed in Section 5.3.2

below.

As a second analysis, we used Equation 1.2 to fit an RVM to available

polarization position-angle data on each full-sum campaign profile. As dis-

cussed in Section 1.1, an RVM fit to significant measurements of Ψ as a

function of the pulse-rotation phase φ yields α and β simultaneously.3 While

no evolution is expected in α, geodetic precession will cause β to evolve with

time such that dβ/dt = Ωspin
1 cos ε sin i (Damour & Taylor, 1992). While the

3As first noted in Chapter 1, we use the angle-measurement convention adopted by
Damour & Taylor (1992) when measuring and reporting values of α and β; this convention
is not consistent with the IAU standard. However, we are ultimately interested in the rates
of change in the RVM orientation angles and their association with geodetic precession.
The analysis of their time derivatives does not depend on choice of convention.
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Figure 5.4: Full-sum profile data for PSR B1534+12 collected during the
June 2003 campaign. (Top.) Ψ as a function of φ, are shown as blue points.
The thick red line is the best-fit RVM for this profile. (Bottom.) Stokes I, L
and V as a function of φ. (For clarity, uncertainties in Ψ are not shown in
this figures, but were used in all RVM fits.)
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sign convention used in Equation 1.2 is inconsistent with the IAU standard,

we are only concerned with secular variation of β over time and its connec-

tion to Ωspin
1 ; the choice in sign convention will ultimately make no difference

in the measured estimate of the precession rate, and we therefore choose

the convention employed by Damour & Taylor (1992). The combination of

MCMC and RVM analyses therefore yields a test on observed profile evolu-

tion due to relativistic spin precession from two independent measurements,

since the profile-shape analysis yields an estimate of ε.

The differences in data quality between Mark IV and ASP profiles can be

seen as slight differences in the profile shape across pulse phase, as shown in

Figure 5.3. This introduced slight discrepancies in the results obtained from

the PCA analysis described above when performed using all available data,

which subsequently affected the derived profile shapes and MCMC results.

Two separate studies between backends were not possible as the ASP era con-

sisted of fewer profiles and a smaller timespan, with campaign data collected

during the 2008 observing year being excluded from the MCMC analysis due

to having many low signal-to-noise profiles. We therefore decided to perform

a PCA on all Mark IV profiles only, and then use the derived principal com-

ponents to estimate the shapes for all high signal-to-noise Mark IV and ASP

profiles. This approach does not account for observed scintillation or pro-

file evolution across observing frequency in the ASP data. We therefore only

used ASP data collected with the two innermost frequency channels centered

on 430 MHz for both analyses in order to minimize such effects.

5.3.2 Results

Results from the MCMC fit on several data sets can be found in Table 5.1,

and the posterior distribution for Ωspin
1 derived from our Mark IV and ASP

data sets is shown in Figure 5.5. We generated 3 × 105 samples for each

application of the algorithm, after burning the first 5000 samples in order to

remove non-convergent iterations. We provided the original results obtained
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Parameter STA04 STA04-MCMC Mark IV All

Ωspin
1 (◦/yr) 0.44+0.48

−0.16 0.51+0.10
−0.08 0.48+0.09

−0.07 0.59+0.12
−0.08

ε (◦) . . . . . . ±103+10
−10 ±99+2

−2 ±118+10
−15 ±139+16

−25

F ′ . . . . . . . . . n/a −5.9+0.9
−1.0 −2.2+0.6

−0.7 −1.3+0.3
−0.5

F0 (10−3) . −1.5+0.3
−0.3 −1.90+0.08

−0.09 −1.21+0.08
−0.08 6.67+0.07

−0.07

Table 5.1: MCMC results for measurement of Ωspin
1 and the orientation angle

ε for different data subsets. Uncertainties reflect 68.3% confidence intervals
of posterior distributions. “STA04” denotes the results obtained by Stairs
et al. (2004), whereas “STA04-MCMC” denotes the results obtained when
implementing our MCMC analysis on the same data set used by Stairs et al.

by STA04, as well as a reproduced set of results from the STA04 data set

using the MCMC algorithm, for comparison with our extended Mark IV and

ASP profiles. We assumed that values of F ′ must be negative while using

the MCMC algorithm, since the simultaneous-linear-fit technique used and

described by STA04, which avoids any consideration of F ′, estimates that

cos ε < 0. These results agree well with predictions from general relativity,

where Ωspin
1 = 0.51◦/yr using the derived masses from PK timing parameters,

and previous measurements made by STA04. General improvements in pre-

cision come from the new fitting procedure, which permitted direct sampling

of the precession rate and other free parameters, as well as the addition of

the ASP 2005 campaign and several strong bi-monthly observations.

The RVM analysis yielded values of α and β at different times using the

Mark III (reticon), Mark IV and ASP campaign profiles. The values of β

measured for each campaign are shown in Figure 5.6. Measurements of α,

with average values of α = 103.5(3)◦, are consistent with no evolution in

time, while the values of β are found to change significantly, where dβ/dt =

-0.23 ± 0.02 ◦/yr. This is consistent with the STA04 result of -0.21 ± 0.03
◦/yr. The assumption that general relativity is correct requires that dβ/dt =

Ωspin
1 sin i cos ε, and therefore yields ε = ±117 ± 3◦ (68% confidence), which

agrees with the value determined from the MCMC analysis described above.
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Figure 5.5: Top: MCMC posterior distribution of Ωspin
1 obtained from the

profile-shape analysis of Mark IV and ASP data discussed in Section 5.3.2.
Bottom: Markov chain for Ωspin

1 determined from the MCMC algorithm. This
figure was first published by Fonseca et al. (2014).

With these values, the misalignment angle δ between the spin and orbital

angular momentum axes can be derived through spherical trigonometry by

cos δ = − sin i sinλ sin ε+cosλ cos i. The sign ambiguity in ε and i, as well as

the requirement that cos i tan ε > 0 pointed out by STA04, gives an expected

value of δ = 27.0 ± 3.0◦ or δ = 153.0 ± 3.0◦. Physical arguments based

on alignment of angular momenta prior to the second supernova suggest

that the smaller angle is correct (Bailes, 1988), and therefore requires that

ε = −117± 3◦ and i = 77.7± 0.9◦.

The consistency between the MCMC and RVM analyses serves as an

improved, independent check of precession within this relativistic binary sys-

tem. These results also confirm the geometric picture of this pulsar-binary

system derived in STA04.
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Figure 5.6: Impact angle β between the magnetic axis and line of sight as a
function of time. The black line is a best-fit slope of -0.23 ± 0.02 ◦/yr. This
figure was first published by Fonseca et al. (2014).

5.4 Timing Observations with PUPPI

The PUPPI instrument began formal operation during the early months of

the 2012 observing year at the Arecibo Observatory. We submitted telescope

proposals every year since 2012 in order to collect TOAs using the PUPPI

backend, which can process and record data collected with the 1400-MHz re-

ceiver that samples the full 800 MHz in bandwidth using 512 thin frequency

channels. The technical specifications of PUPPI are a dramatic improvement

over the ASP processors for the case of PSR B1534+12, since the ASP ma-

chine could only process up to 64 MHz in bandwidth due to limitations in

hardware functionality (see Fonseca, 2012, for details). All submitted propos-
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Parameters 430 MHz 1400 MHz
Full frequency range (MHz) 421−445 1147−1765
Effective Bandwidth (MHz) 20 600
Number of Channels 4 4
Integration Time (s) 180 180
Number of TOAs 984 668
RMS residual (µs) 8.47 6.32
χ2

red 1.013 1.004

Table 5.2: Parameters of TOAs from PSR B1534+12 obtained with PUPPI.
Note that “effective bandwidth” means the total width of broadband data
that is usable after excision of narrow-band radio frequency interference.

als for continued timing of PSR B1534+12 were accepted4 and all requested

time was granted; this includes two additional dense campaigns occurring

during the month of August in 2013 and 2015.

Our initial analysis of the PUPPI data for PSR B1534+12 is shown graph-

ically in Figure 5.7, and statistics of the current set of PUPPI TOAs are pre-

sented in 5.4. We employed the same general methods for excision of radio

frequency interference (RFI) used by Fonseca et al. (2014) when generating

PUPPI TOAs and pulse profiles, in order to compare the data quality be-

tween PUPPI TOAs and those published by Fonseca et al. (2014). Moreover,

we averaged sections of data collected across the bandwidth of each receiver

in order to obtain 4 channelized profiles per 3-minute integration for each re-

ceiver. We used the PSRCHIVE5 software suite in order to reduce raw TOA

data into calibrated pulse profiles, using the same methodology described in

3.1 of Chapter 3.

From the logistics shown in Table 5.4, it is immediately clear that the

processing capabilities of PUPPI are superior for data collected with the

1400 MHz receiver at Arecibo; this improvement is entirely due to the greater

4These projects were given the following designations: P2719; P2820; P2906; and
P2990.

5http://psrchive.sourceforge.net/index.shtml

171



Figure 5.7: Current state of the timing data on PSR B1534+12. Black points
are data published by Fonseca et al. (2014). Red points are TOAs measured
at 430 MHz collected with PUPPI, and blue points are TOAs measured at
1400 MHz collected with PUPPI.

access of the 1400-MHz receiver bandwidth. The ASP machine was able to

process up to 128 MHz in real time, though only the innermost 64 MHz

was generally usable. In stark contrast, PUPPI can process and record data

across the full bandwidth at 1400 MHz, though in practice only ∼600 MHz

of bandwidth was usable after removing channels that were affected by RFI.

An example of a PUPPI observation at 1400 MHz is shown in Figure 5.8.

Furthermore, the expanded bandwidth and additional pulsar signal allows us

to average TOA data into a smaller number of channels across the 800-MHz

bandwidth, which can help mitigate the effects of complex profile evolution

across the band while folding profiles for improving S/N. For our current

data set shown in Figure 5.7, we were able to derive 668 usable TOAs with

the 1400-MHz receiver using PUPPI over the course of two years, which is
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Figure 5.8: Heat map of TOA data for PSR B1534+12 collected with the
1400-MHz receiver, using PUPPI, on MJD 56326. Several frequency channels
were excluded due to the presence of narrow-band RFI.

nearly three times as many TOAs recorded at 1400 MHz during the entire

ASP era using the same receiver.

The improved consistency in dual-receiver measurements with PUPPI

also allows for estimates of DM using widely separated observing frequencies

on a nearly per-epoch basis. Figure 5.9 shows measurements of DM versus

time for our current PUPPI data set, using 430-MHz and 1400-MHz TOA

data on nearly all observing epochs, illustrating a gradual change over time

similar to the pre-PUPPI DM measurements shown in Figure 5.2. The two

DM points in Figure 5.9 with comparatively large uncertainties, derived from
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Figure 5.9: DM versus time for PSR B1534+12, using the PUPPI backend.

PUPPI data collected at the beginning of the 2014 and 2015 observing years,

were derived from the channelized 1400-MHz data set for these two epochs;

no 430-MHz TOAs collected during these two observations were found to

be usable after excision of RFI. It is clear that, when using the broadband

PUPPI processor, the DM offset is measurable from channelized 1400-MHz

receiver data alone, which was not previously possible due to a lack of signal

across the bandwidth recorded by ASP. However, the lack of precision in these

two PUPPI points is mostly due to the intrinsically weaker pulsar signal at

1400 MHz when compared to the profile observed at 430 MHz.

5.5 Conclusions

The timing and pulse-profile results presented by Fonseca et al. (2014) cover

a wide range of astrophysical scope and application, including improved tests
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of GR from extended timing observations of PSR B1534+12. In Sections 5.2

and 5.3 of this chapter, we discussed additional results obtained by further

analysis of TOA and profile data that was ultimately presented by Fonseca

et al. (2014). We found that the DM variations seen in PSR B1534+12

were consistent with local ISM fluctuations due to a turbulent, Kolmogorov

medium. We also carried out an extensive analysis of the pulse structure

and observed secular variations over time, modeling the long-term changes in

total-intensity pulse shape and polarization properties to determine a precise

estimate of the Ωspin
1 .

Future long-term timing observations of PSR B1534+12 are crucial for

the improvement of its formidable constraints on relativity theory using high-

quality Arecibo data. We have demonstrated that full use of Arecibo data,

both in the timing of pulse profiles and in the electromagnetic properties

of the profiles themselves, contain a wealth of information that has so far

been used to obtain unique and precise measures of relativistic phenomena.

We continue to use the PUPPI signal processor in an effort to improve the

signal-to-noise ratio and profile quality at both proposed observing frequen-

cies (particularly at 1400 MHz, where the source is intrinsically weaker). The

factor of ∼ 5 increase in bandwidth at 1400 MHz has so far provided a large

boost in S/N, as shown in Figure 5.8, such that we have so far collected more

useable PUPPI 1400-MHz TOAs than we have during the entire ASP era.

Moreover, we have reduced and included PUPPI data collected up to March

2016 (and as early as March 2012) into our current data set and will continue

to process ASP/PUPPI data collected before/after then.

The full, current timing model for PSR B1534+12 uses TOAs collected

with four signal processors (including PUPPI) that collectively span 25 years

of observation. We use the same timing methodology for our current model,

which fits for variations in DM during the PUPPI era with a single gradient.

A full evaluation of the current measurements of relativistic parameters in

the PSR B1534+12 system, using the updated PK timing parameters, are
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Figure 5.10: PK parameters measured in the PSR B1534+12 system, shown
as colored bands in the (mp, mc) plane with black labels that denote the par-
ticular effect. The width of each colored band represents the 68.3% credible
interval measured for the denoted parameter. The values and uncertain-
ties of the PK timing parameters were determined from an updated timing
model that used the data analyzed by Fonseca et al. (2014) and the PUPPI
observations presented in Section 5.4 of this dissertation.

shown in Figure 5.10. The five PK timing parameters remain consistent

with those estimated by Fonseca et al. (2014) and in the previous studies

undertaken by Stairs et al. (2002, 1998); the TEMPO uncertainties in the

secular PK variations (Ṗb and ω̇) have decreased by nearly a factor of 2 since

the publication of the Fonseca et al. (2014) study, which is expected since

we’ve extended our timespan by nearly three years.

As first noted in Stairs et al. (1998), the use of the DM-based estimate

of d = 0.7(2) kpc (Cordes & Lazio, 2001) in the Doppler correction for
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(Ṗb)obs produces an estimate of (Ṗb)int = (Ṗb)obs− (Ṗb)D that does not agree

with the predictions from the other PK parameters at the 68.3% uncertainty

level. Moreover, the uncertainty in (Ṗb)int is dominated by the uncertainty

in the DM-based estimate of d. This slight bias in the Ṗb correction is shown

in Figure 5.10 as the blue-shaded region that narrowly misses the common

region of intersection for all of the other PK parameters. Fonseca et al. (2014)

used this discrepancy in the observed orbital decay to derive a distance to

the system when assuming the validity of GR, dGR = 1.051(5) kpc, that

produces the corresponding (Ṗb)D. PSR B1534+12 was recently included into

the MSPSRπ radio-interferometry program6, which will eventually produce

an independent measure of d – and, ideally, a robust correction of (Ṗb)obs–

within the next two or three years.

6https://safe.nrao.edu/vlba/psrpi/home.html
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Chapter 6

Concluding Remarks

As we have shown throughout this dissertation, an analysis of secular vari-

ations in orbital elements can yield constraints or significant measurements

of the component masses and angles of orientation, which are otherwise not

accessible when analyzing purely Keplerian motion. In a practical sense, the

measurement of these variations is also important for robust determination

of the full, accurate pulsar-timing model applied to TOAs from a given bi-

nary radio pulsar. Accurate timing solutions are essential for subsequent

interpretation of the model parameters, and are especially important for the

NANOGrav, EPTA and PPTA efforts that search for correlated structure

in TOA residuals due to nanohertz-frequency gravitational waves among a

large ensemble of MSPs.

In Chapter 3, we measured the relativistic Shapiro timing delay in four-

teen of twenty five NANOGrav binary radio pulsars, which yielded direct

measurements of mc and sin i for each system with varying degrees of preci-

sion. Using the mass function computed from Keplerian elements, we derived

values of mp for each of these fifteen systems. The most significant measure-

ments of mp that we made, which typically possess relative uncertainties

equal to or less than 20%, are shown in Figure 6.1. Four of the fourteen

measured signals – in PSRs J0613−0200, J2017+0603, J2302+4442, and
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J2317+1439 – have been characterized by our analysis for the first time.

It is important to note that no detections of ∆S were made for J2317+1439

using the EPTA data set (Desvignes et al., 2016), or for J0613−0200 us-

ing either the EPTA or PPTA data sets (Desvignes et al., 2016; Reardon

et al., 2016). We attribute these differences to the superior timing preci-

sion obtained with the Arecibo Observatory and GBT using the PUPPI and

GUPPI processors, respectively, as well as the targeted Shapiro-delay cam-

paign devised by Pennucci (2015). Moreover, we improved the measurements

of two previously known signals in the J1918−0642 and J2043+1711 systems

(Sections 3.4.11 and 3.4.14, respectively) such that mp has been measured

with relative uncertainties of ∼20% or less for the first time.

The most significant measurements of ∆S generally corresponded to sys-

tems with comparatively large orbital inclinations, where the Shapiro-delay

parameters can be measured with low statistical correlation and with little

absorption of the relativistic signal between other Keplerian timing param-

eters. From the Shapiro delay alone, we made high-precision estimates of

pulsar masses as low as mp = 1.18+0.10
−0.09 M� for PSR J1918−0642 and as high

as mp = 1.928+0.017
−0.017 M� for PSR J1614−2230 (Section 3.4.4). We used prob-

ability density maps computed from grids of χ2 values obtained for different

combinations of the Shapiro delay parameters to find accurate uncertainties

of the component masses and inclination angles that reflect the statistical

correlation present in our measurements.

For five pulsars studied here, we used the statistical significance of ∆S and

one or more observed Keplerian variations to constrain our estimates of mp,

mc and i. For example, we confirmed that the observed ω̇ in the eccentric

PSR J1903+0327 system (Section 3.4.9) is due to relativistic precession at

its current level of precision. We assumed the validity of GR in order to use

the statistical significance of ω̇ to further constrain the region of preferred

solutions based on the χ2 grid over the two Shapiro-delay parameters. We

found that the constrained mass of PSR J1903+0327 is mp = 1.65+0.02
−0.02 M�,
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Figure 6.1: Estimates of pulsar masses measured in this dissertation. Labels
in red indicate that one or more secular variations were used to constrain
the masses and/or geometry of the binary systems. Labels with black stars
indicate the first significant measurements of the pulsar mass in the denoted
binary systems.

which is consistent with the initial assessment and calculations made by

Freire et al. (2011) using an independent data set obtained for the same MSP.

In the case of PSR J1741+1351 (Section 3.4.7), we measured a significant ∆S

as well as a significant change in x over time that we determined to be due to

an evolving orientation of a system with significant proper motion on the sky.

We similarly used the statistical significance of the observed ẋ to constrain the

value of Ω and the Shapiro-delay parameters while acknowledging ambiguities

in the sign of i and Ω.

The impact that these orbital variations can have in determining other in-

trinsic quantities is most dramatically seen in our analysis of PSR B1534+12

(Chapter 5), a DNS system with a compact, 10.1-hour orbit. We continue
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to resolve five significant PK timing parameters with improved precision, as

well as a significant kinematic bias in our observed Ṗb, when incorporating

nearly four years of data collected with the PUPPI backend after the study

conducted by Fonseca et al. (2014). We assumed the validity of GR and

determined the component masses to be

mp = 1.33302(17) M� (6.1)

mc = 1.34553(17) M� (6.2)

where the uncertainties reflect 68.3% confidence intervals as determined by

TEMPO. At this time, the component masses for the PSR B1534+12 DNS

system are the most precise neutron-star masses currently known. As a

secondary study of relativistic gravity, we also conducted detailed analyses

of electromagnetic pulse structure in PSR B1534+12 and quantified the ef-

fect of geodetic precession by modeling secular changes in the profile shape

and polarization position angles at 430 MHz along with special-relativistic

aberration of the signal due to orbital motion. We derived an estimate of

Ωspin
1 = 0.59+0.12

−0.08 deg yr−1 that is consistent with the value predicted by GR,

yielding a sixth PK parameter in this system for the first time. At this

point in time, only PSRs B1534+12, J0737−3039A/B (Breton et al., 2008)

and B1913+16 (Weisberg & Huang, 2016) yield at least six quantifiable PK

parameters within one relativistic binary system.

We also conducted a preliminary analysis of 27+ years of TOA data col-

lected for PSR B1620−26 (Chapter 4), a radio pulsar that has long been

interpreted as being embedded in a hierarchical triple system with a He WD

and Jupiter-mass planet in the Messier 4 globular cluster. We measured

fifteen time-derivatives in νs that are due to the long-period motion of the

outer planet with the inner pulsar-WD binary system, though we demon-

strated that ν̇s contains significant components associated with globular-
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cluster dynamics and intrinsic pulsar spin-down. We used the method pro-

posed by Joshi & Rasio (1997) to relate the time-derivatives in νs to the

outer-Keplerian elements. For the first time, we used only time-derivatives

of higher order than ν̇s to compute the outer-orbital quantities when analyz-

ing the entire TOA data set, which allowed for a unique determination of

the orbital component in ν̇s. We derived an outer-orbital period of several

decades, though analyses of data subsets or the entire TOA collection yield

conflicting estimates (see Section 4.3 and 4.4). The improving measurements

of inner-orbital secular variations and ẍi, which we believe are due to pro-

longed three-body perturbations from the outer object, will eventually yield

a direct measurement of the pulsar mass. Ongoing work will eventually lead

to a simultaneous fit for both orbits, either using the two-orbit model with

TEMPO or the novel three-body integrator first described by Ransom et al.

(2014).

6.1 Projections of Future PK Measurements

The primary means for future work with binary pulsars is the prolonged

acquisition of high-precision TOAs over time, as it allows for the eventual

resolution of secular variations and other relativistic terms that contain high-

impact information. For new discoveries of binary pulsars, the presence of

a significant Shapiro delay can be quickly assessed using strategic observa-

tions of specific orbital phases where the signal is expected to have maximum

harmonic structure. We used data collected from targeted campaigns, first

described by Pennucci (2015), to make the first measurement of ∆S in the

PSR J2302+4442 system (Section 3.4.16) and the first significant measure-

ment of mp in the J2043+1711 system. In both aforementioned systems, we

made a measurement of ∆S that passed the orthometric h3-significance test

(Freire & Wex, 2010) using data sets that spanned less than two years of

observation.
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Continued timing of known radio pulsars will likely yield interesting rela-

tivistic effects in the coming years. For example, the PSR J1600−3053 binary

system (Section 3.4.3) currently exhibits a statistically marginal change in ω

over time that is consistent with the predictions of GR. The precision in the

ω̇ measurement will improve over time such that the fractional uncertainty

in its measurement decreases as t−3/2 (Damour & Taylor, 1992). With this

scaling law, a ∼10% fractional uncertainty ω̇ will be achieved for J1600−3053

by the year 2020. Similarly, the observed Ṗb in the J1909−3744 system (Sec-

tion 3.4.10) is dominated by the kinematic-acceleration component, though

its uncertainty possesses the same order of magnitude as the expected com-

ponent of intrinsic orbital decay due to GR. Since the relative uncertainty

in Ṗb scales as t−5/2, the relative uncertainty in (Ṗb)GR will reach ∼20% by

the year 2029. However, the measurability of (Ṗb)GR depends on the correc-

tion for the kinematic bias, and forthcoming studies will need to address the

uncertainty associated with the distance-dependent correction.

A recent study of the Hulse-Taylor DNS system has yielded the first

measurement of the measurable shape correction for eccentric orbits (δθ in

Equation 1.26) in any binary system, as well as a marginal estimate of ẋ

that is likely due to classical spin-orbit coupling (Weisberg & Huang, 2016).

While the δθ parameter may yield another unique test of gravitation, a mea-

surement of ẋ due to classical spin-orbit coupling can be directly related to

the moment of inertia (Irot) for one or both neutron stars that can yield un-

precedented constraints on neutron-star EOS models (e.g. Lattimer & Schutz,

2005). However, the δθ measurement contains a bias due to aberration of the

signal from pulsar rotation (e.g. Damour & Taylor, 1992). Moreover, the

correction for the intrinsic component of δθ due to GR, as well as the deter-

mination of Irot from the spin-orbit-coupling component of ẋ, both require

a measurement of several pulsar-orientation angles that have not yet been

measured in the Hulse-Taylor system. It is therefore currently not possible

to make a direct measurement of Irot in the PSR B1913+16 DNS system.

183



However, the required angles for correction of δθ and ẋ – namely ε and λ =

π−α−β – have been estimated for PSR B1534+12, first by Stairs et al. (2004)

and in Chapter 5 of this dissertation, by modeling the secular changes in

pulse-profile shape and polarization position-angle data to ultimately derive

a measure of Ωspin
1 . In principle, then, our geometric measurements allow

for a full determination of the various components of δθ and ẋ, as well as a

unique determination of Irot. With ongoing observations of PSR B1534+12

using the PUPPI backend at the Arecibo Observatory, we may likely be able

to eventually measure and correct for the component of δθ due to GR for the

first time in the near future, as well as determine Irot from measurements of

spin-orbit coupling component of ẋ. However, we do not currently measure δθ

or ẋ with statistical significance. Simulations of TOA data sets are therefore

required in order to determine when in the future such measurements can be

made with sufficient precision.

In order to perform robust simulations for “times of detection”, we first

computed the various components of δθ and ẋ that are possible for the PSR

B1534+12 system. For δθ, we expect that only the GR and rotational-

aberration components are significant:

(δθ)GR = (T�nb)2/3

( 7
2
m2

p +mpmc + 2m2
c

(mp +mc)4/3

)
≈ 5× 10−6 (6.3)

(δθ)A =
Ps

Pb

csc i

(1− e2)1/2

sin η

sinλ
≈ 1× 10−6 (6.4)

so that (δθ)obs = (δθ)GR +(δθ)A ≈ 6×10−6 when using the values determined

by Fonseca et al. (2014) to compute the components of δθ. For the compo-

nents of ẋ, there are five possible terms that arise with varying degrees of

significance:
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(ẋ)GR = −64

5
sin i(T�nb)2 (1 + (73/24)e2 + (37/96)e4)

(1− e2)7/2

mpm
2
c

mp +mc

≈ −1.32× 10−17 (6.5)

(ẋ)D = x

(
Ḋ

D

)
≈ 5.72× 10−18 (6.6)

(ẋ)A = −xPs

Pb

Ωspin
1

(1− e2)1/2

(cotλ sin 2η + cot i cos η)

sinλ
≈ −2.58× 10−17 (6.7)

(ẋ)SO ≈
x cot i

c2

(
2 +

3mc

2mp

)
Irot(2π/Ps)(2π/Pb)2

(mp +mc)(1− e2)3/2
sinλ cos ε

= −1.49× 10−15 (6.8)

(ẋ)µ = (−0.943 or − 1.25)× 10−15 (6.9)

where the above equations are taken from Damour & Taylor (1992) and

the values in Equations 6.5-6.8 were computed using values estimated by

Fonseca et al. (2014). The possible values for (ẋ)µ listed in Equation 6.9

were first computed by Bogdanov et al. (2002) after determining that Ω =

(70 or 290)± 20 degrees from orbital-dependent scintillation measurements.

For the spin-orbit-coupling component – which we refer to in Equation 6.8

as (ẋ)SO – we used the assumption made by Weisberg & Huang (2016) that

the contribution from the neutron-star companion (whose rotation rate is

unknown) is negligible. With these expected components determined, it is

clear that (ẋ)obs ≈ (ẋ)µ + (ẋ)SO ≈ −3× 10−15. The component due to spin-

orbit coupling is therefore expected to be among the most dominant effects

that produce a non-zero ẋ.

We can also simulate the times of detection for several other possible

components of ω̇, due to proper-motion bias (Equation 1.44) and spin-orbit

coupling. As first discussed for PSR J1640+2224 (Section 3.4.5), the spin-

orbit component of ω̇ will generally be approximately equal to di/dt ≈
(ẋ/x)SO tan i. We therefore expect the non-GR components of ω̇ to be:
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(ω̇)µ = µ csc i cos(Θµ − Ω) = (−6.61 or + 6.91)× 10−6 deg yr−1 (6.10)

(ω̇)SO = (ẋ/x)SO tan i ≈ −6.67× 10−6 deg yr−1 (6.11)

where we used the estimates of Ω made by Bogdanov et al. (2002) to com-

pute the expected changes from proper-motion bias. While both non-GR

components are comparable in order of magnitude, the allowed values for

(ω̇)µ possess opposite signs and produce composite values of (ω̇)non−GR =

(ω̇)µ + (ω̇)SO ≈ (−1.33 or 0.024) × 10−5 deg yr−1. For the purposes of sim-

ulation, we chose an intermediate value of (ω̇)non−GR = −5 × 10−6 deg yr−1

to estimate an approximate time of detection.

We determined times of detection for δθ = 6× 10−6, ẋ = −3× 10−15 and

(ω̇)non−GR = −5 × 10−6 deg yr−1 for PSR B1534+12 by using the current

best-fit timing solution with the DD binary model presented at the end of

Chapter 5, holding all parameters fixed, and producing fake TOAs that are

modeled by said timing solution. We assumed that observations began on

MJD 48718 (i.e. the same start date of the real B1534+12 data set) and were

conducted once every 60 days, and that each observing epoch lasted 90 min-

utes to produce 30 TOAs with an uncertainty of 8 µs for each TOA. We also

neglected DM variations, computed barycenter-corrected TOAs, and injected

random-normal noise with a standard deviation of 1 µs. The results from our

simulations are shown in Figure 6.2, where each point with an uncertainty

corresponds to a best-fit estimate of the denoted parameter determined by

TEMPO when simultaneously fitting for all model parameters, including the

δθ, ẋ and (ω̇)non−GR.

Our simulations suggest that significant, accurate estimates of ẋ and

(ω̇)non−GR will roughly be made starting after the year 2040. Figure 6.2

also suggests that δθ and ẋ are highly correlated when weakly constrained,

as the best-fit estimates of both parameters track each other prior to the
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Figure 6.2: Simulated times of detection for δθ, ẋ and (ω̇)non−GR in the
PSR B1534+12 DNS system. For ease of comparison, all values are scaled to
possess an order of magnitude of unity. The solid lines indicate the expected,
simulated parameter values. The dots and error bars represent the best-fit
values and uncertainties determined by TEMPO when simultaneously fitting
for all parameters, including δθ, ẋ and (ω̇)non−GR.

year 2040. Once the ẋ measurement becomes robust, the δθ estimates gradu-

ally becomes more accurate. However, our simulations show that δθ will not

be measured on reasonable timescales. Nonetheless, the eventual measure-

ment of ẋ will allow for a direction computation of Irot using the angle and

precession-rate measurements presented in Chapter 5.
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6.2 The Era of Neutron-Star Mass Measure-

ments

The first measurement of mp with the Shapiro timing delay in a pulsar-

binary was made by Ryba & Taylor (1991) in their analysis of TOAs from

PSR B1855+09. Since then, a large and increasing number of pulsar-mass

measurements have been made such that meaningful analyses of the neutron-

star mass distribution have recently begun. The distribution of neutron-star

masses can be directly inferred from available measurements of the Shapiro

timing delay and its physical parameters, along with mass estimates that

were derived from two or more PK variations. Recent work has shown that

an increasing number of these measurements can help delineate the roles of

different supernovae processes in the formation of double-neutron-star binary

systems (e.g. Schwab et al., 2010) and assess the possible range of component

masses for such systems (e.g. Martinez et al., 2015), as well as derive the

statistics for pulsar-binary populations that have evolved along different post-

supernova evolutionary paths (Özel et al., 2012; Kiziltan et al., 2013).

In this thesis, the significant estimates of mp span a range of 1.2−1.95 M�

in neutron star mass. PSRs J1614−2230 and J1918−0642 are at the high and

low ends of our overall mass distribution, respectively. The low mass of PSR

J1918−0642 is particularly interesting since this MSP possesses spin param-

eters that are typical of an old neutron star that experienced significant mass

transfer and a substantial spin-up phase. Nonetheless, our measurement of

mp = 1.18+0.10
−0.09 M� is comparatively low. The implication of a low “birth

mass” for J1918−0642, believed to be an old neutron star, is inherently dif-

ferent from recent studies of the binary evolution of PSRs J0737−3039A/B

(Ferdman et al., 2013) and J1756−2251 (Ferdman et al., 2014), which are

both young pulsars believed to have been formed through electron-capture

supernovae that reduce the electron-degeneracy pressure within the progen-

itor core and induces gravitational collapse at lower Chandrasekhar masses.
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Furthermore, Antoniadis et al. (2016) recently used available measurements

of pulsar masses to argue that the MSP mass distribution is in fact bimodal.

Given the wide range of spin and orbital periods in the MSP population

and a lack of clear correlation between the period/mass parameters, the two

components of the bimodal distribution derived by Antoniadis et al. likely re-

flect inherently different MSP birth masses, as opposed to complex processes

related to the mass-transfer period.

As discussed in Section 3.5, significant measurements of ∆S allow for

independent tests of the theoretical correlation between Pb and mc from

tidal interactions during the phase of long-term mass transfer (e.g. Tauris

& Savonije, 1999). Additional measurements of ∆S for long-period binary

systems will help constrain the Pb − mc relation over a wider range of Pb

than is currently seen in Figure 3.26.

One of the frontier goals in high-energy astrophysics is the understand-

ing of neutron-star structure and the microscopic processes that govern the

interiors of stellar-mass objects with mass densities that exceed nuclear sat-

uration (ρsat ≈ 2.8 × 1014 g cm−3). Within the interiors of neutron stars,

the relativistic pressure-density relation becomes theoretically uncertain and

currently allows for a large number of proposed equations of state (EOSs)

that differ in fractional composition of hadronic and pure-quark matter (e.g.

Lattimer & Prakash, 2001; Lattimer & Prakash, 2004). Figure 6.3 illustrates

a large number of proposed neutron-star EOSs1 , as well as the experimental

constraints posed by radio-timing measurements of mp. In the case of PSR

J0348+0432 (see Antoniadis et al., 2013), optical radial-velocity estimates

of the companion mass and mass ratio were combined with the radio-timing

measurement of orbital decay to yield a high-precision estimate of the pulsar

mass.

As shown in Figure 6.3, the low-mp measurement made for PSR J1918−0642

1The EOS data shown in Figure 6.3 can be downloaded at http://xtreme.as.

arizona.edu/NeutronStars/.
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Figure 6.3: Mass-radius relations for EOSs of neutron stars, shown as solid
curves, that reflect different underlying assumptions of internal composition.
The EOS data used in this figure was compiled by Özel & Freire (2016)
and first shown in Figure 7 of their study. Red bands represent mass mea-
surements made in this dissertation, while the blue band represents the mass
estimate for PSR J0348+0432 made by Antoniadis et al. (2013). The lighter,
gray lines represent EOSs that do not predict neutron-star masses larger than
or equal to the estimate made for PSR J1614−2230 in Chapter 3 of this dis-
sertation.

does not provide a meaningful constrain on the neutron-star EOSs since all

curves predict similar mass values for a range of radii. However, the high-

mass estimate for PSR J1614−2230 exceeds the maximum-mass values for

several EOSs, which are shown as gray lines in Figure 6.3. In principle, the

PSR J1614−2230 mass measurement (first made by Demorest et al. (2010))

invalidates the gray EOSs as physically plausible models of the neutron-star

interior. Estimates of larger pulsar masses in the future will therefore pro-

vide even more stringent constraints on allowed compositions and EOSs of
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neutron stars.

It is clear that high-precision estimates of pulsar masses offer uniquely

far-reaching impact on the areas of stellar-binary evolution, supernovae and

neutron-star birth masses, tests of strong-field gravitation, and the ongoing

efforts to constrain the equation of state for neutron stars. Ongoing studies

and future discoveries with premier radio facilities will surely aid in these

efforts. The forthcoming Square Kilometre Array (SKA) is projected to

detect Shapiro-delay signals from ∼80% of all pulsar-binary systems with

mc > 0.1 M� and RMS TOA residuals of ∼50 µs, yielding unprecedented

access into the Galactic distribution of neutron-star masses and pulsar-binary

system inclinations (Watts et al., 2015). Furthermore, the SKA is expected

to be sensitive to even more general-relativistic timing effects, such as the

secular variation in ω due to Lense-Thirring precession (Kehl et al., 2016).

We are confident that future measurements will bring forth new and exciting

information to bear on these areas in the coming years.
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Appendix A

Probabilistic Analysis of

Shapiro-Delay Parameters

Using an initial set of parameter values, the TEMPO pulsar-timing package

creates a timing solution that best fits the supplied TOA data. The un-

certainties reported along with the best-fit values are determined from the

diagonal elements of the resultant covariance matrix, which is approximated

by the least-squares method for model determination as based on χ2 statis-

tics. However, nonzero correlation between parameters can produce slightly

larger degrees of uncertainty, as well as nonlinear correlation between model

parameters that yield asymmetric uncertainties, that are not reflected in the

reported TEMPO uncertainties.

In Chapter 3, we employed a statistically rigorous approach to deter-

mine more accurate uncertainties for the parameters of the Shapiro delay

in fourteen NANOGrav binary pulsars. This approach, based on a method

discussed by Splaver et al. (2002), analyzes the accuracy and behavior of

the timing model for different, fixed values of mc and sin i by generating a

grid of χ2 values. The resulting distribution of χ2 values is then converted

to a two-dimensional probability density in the (mc, cos i) phase space using

Equation 3.4,
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p(data|mc, cos i) ∝ e−(χ2−χ2
0)/2 (A.1)

and a series of mathematical operations are used to convert this density to

a posterior probability distribution in the (mp, cos i) phase space.

In this Appendix, we outline the theory and procedure in more detail.

We also provide the equations used to obtain the two-dimensional probabil-

ity distributions and one-dimensional probability density functions (PDFs)

shown in Chapter 3.

A.1 Bayesian Interpretation of χ2-grid Anal-

ysis

In the context of a Bayesian analysis of probabilities, the use of prior informa-

tion for certain outcomes takes on an important role when determining the

final, “posterior” evaluation of said outcomes. This interpretation of prob-

ability allows for a powerful set of analysis techniques, such as the Markov

Chain Monte Carlo (MCMC; Wall & Jenkins, 2003; Gregory, 2005b) method

used in Chapters 3, 4 and 5 to probe the parameter space, evaluate regions

of larger or lower likelihood for best fits based on relative changes in χ2 val-

ues, and bias the random walk towards regions of maximum likelihood. The

fundamental concepts of Bayesian statistics are embodied in Bayes’ theorem,

which states the following: the posterior probability that a set of parameters

describe the supplied data – p(model|data) – is given as

p(model|data) =
p(data|model)p(model)

p(data)
(A.2)

where p(data|model) is the likelihood function, p(model) is the prior proba-

bility of the model parameters, and p(data) is the “Bayesian evidence.” The

prior probability is interpreted as one’s prior knowledge in the distribution

of probable values for each parameter that forms the model of the data in
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hand. In the case where it is unknown which value a given parameter is more

likely to have, a uniformly random distribution is chosen for that parameter:

in the absence of prior knowledge, all values between a chosen interval are

equally likely to be the parameter value.

The Splaver et al. (2002) method for determining accurate confidence

intervals of the Shapiro-delay parameters from a χ2 grid uses Equation A.2

in order to relate the likelihood density (Equation 3.4) to the joint-posterior

probability density of mc and cos i. In their formulation, they compute a

grid of values of mc and cos i, and assume prior probability distributions

for both parameters. From this assumed form of p(mc, cos i), the posterior

distribution can be readily computed since, from Equation A.2,

p(mc, cos i|data) ∝ p(data|mc, cos i) (A.3)

and the Bayesian evidence is a constant, normalizing factor. The uniform

prior-probability distribution in mc reflects our ignorance of the binary com-

panion and its stellar type. For example, in the absence of prior information,

a main-sequence companion star can have any mass, whereas a white-dwarf

companion has an upper limit on physically allowed masses that corresponds

to the Chandrasekhar limit. In such cases, prior information could be ob-

tained from optical photometry and/or radial-velocity measurements from

spectroscopy, which yield a measurement of the component-mass ratio. As

discussed in Chapter 1, the upper limit for neutron-star companion masses

is less certain but is expected from recent numerical studies to be ∼ 3 M�.

The uniform prior distribution in cos i is chosen to reflect random orientation

of the orbit, which is discussed in more detail in Section A.2 below.
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A.2 Derivation of Uniform Distribution for

Randomly Oriented Orbits

Let us first consider an orbit with inclination i and longitude of ascending

node Ω, such as the example orbit shown in Figure 1.2. Since the orbital

angular moment vector (~Sb) is perpendicular to the orbital plane, the orien-

tation angles (i, Ω) also quantify the direction of ~Sb.

Let us now consider a collection of orbits with different Keplerian param-

eters, as well as different values of i and Ω. The set of ~Sb in this sample is

said to be randomly distributed if it is isotropic. It is clear that the Keplerian

elements do not affect orientation, and so the magnitude of ~Sb does not con-

tribute to random orientation. We can therefore consider the probability of
~Sb pointing in some direction and require isotropy when determining which

functions of i and Ω should have uniformly random distributions.

The probability that ~Sb points in a certain direction can be evaluated by

first considering an infinitesimal solid angle (dφ) that contains the direction

of ~Sb. If the solid angle spans a range of i and i+ di, as well as a range of Ω

and Ω +dΩ, then the probability that the direction of ~Sb is contained within

dφ is

p =
dφ

total solid angle
=

1

4π
sin ididΩ (A.4)

We can integrate Equation A.5 to consider the probability that ~Sb is con-

tained within a finite patch of the sky, subtended by orientation angles (i0,

Ω0) and (i, Ω):

P (i,Ω) =
1

4π

∫ i

i0

sin i′di′
∫ Ω

Ω0

dΩ′

=
1

4π
(cos i0 − cos i)(Ω− Ω0). (A.5)
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In order to determine the probability distribution functions (PDFs) whose

uniformity correspond to random orbital orientations, we must make use of

two properties of probability theory:

1. the probability of the occurrence of two independent events A and B

(e.g. a specific outcome from two rolls of dice) is given as P (A and B) =

P (A)P (B), and

2. a random variable x is said to be uniformly distributed if its cumulative

distribution function (CDF) is proportional to the variable.

Using property 1, we can view Equation A.5 as a joint probability distribution

that is made up of the product of two one-dimensional probability distribu-

tions, i.e. P (i,Ω) = Q(i)R(Ω). We also see that Q = (cos i0 − cos i)/2 and

R = (Ω−Ω0)/2π are each normalized cumulative distribution functions of i

and Ω, respectively, since each integral in Equation A.5 yields the probability

that their values lie between the bounds of integration. Using property 2,

we can finally impose isotropy of ~Sb by requiring that the uniformly-random

variables be cos i and Ω, since Q ∝ cos i and R ∝ Ω.

A.3 Translations of Probability Densities

As discussed in Chapter 3 and Section A.1, the computation of p(data|mc, cos i)

and use of a joint-uniform prior – p(mc, cos i) ∝ constant – allow for a

straightforward determination of the posterior probability density p(mc, cos i|data)

for both Shapiro-delay parameters from a map of χ2 values. We eventually

want to obtain the marginalized, one-dimensional posterior PDFs from the

computed maps:
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p(mc|data) =

∫ 1

0

p(mc, cos i|data)d(cos i) (A.6)

p(cos i|data) =

∫ mc,max

0

p(mc, cos i|data)d(mc) (A.7)

where mc,max is the maximum value of the companion mass defined on the

χ2 grid. It is important to note that, while −1 < cos i < 1, the Shapiro

s = sin i is always defined to be positive since 0 < i < π. We cannot

uniquely determine the true value of i by analyzing only the Shapiro delay,

but can instead compute two values of i that correspond to positive and

negative values of cos i. We therefore restrict the χ2-grid values for cos i to

range from 0 to 1 when only analyzing the Shapiro-delay parameters, since

no new information is obtained when compute a χ2 grid over the complete

range of cos i.

The binary mass function (Equation 1.37) can be solved for the value

of mp as a function of both mc and sin i. In order to properly obtain the

posterior PDF for mp, we must project the computed p(mc, cos i|data) into a

different phase space that is spanned by mp along one of the two dimensions.

We arbitrarily choose the (mp, cos i) space since, in practice, the probability

density in the (mp, mc) space is heavily truncated to a small slice and difficult

to resolve using finite bin sizes. The probability density in the (mp, cos i) can

be determined by requiring that the marginalized posterior PDF of cos i

computed in both phase spaces be equal. In other words,

p(cos i|data) =

∫ ∞
0

p(mp, cos i|data)d(mp)

=

∫ ∞
0

p(mc, cos i|data)

∣∣∣∣∂(mc)

∂(mp)

∣∣∣∣d(mp) (A.8)

where the second line of Equation A.8 was obtained by writing Equation A.7
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as an integral over mp. The absolute value of the derivative ensures that the

probability density (and marginalized PDFs) remain positive. The top and

bottom forms of Equation A.8 are equal if the integrands are equal, so that

p(mp, cos i|data) = p(mc, cos i|data)

∣∣∣∣∂(mc)

∂(mp)

∣∣∣∣ (A.9)

where the notation for partial derivatives is used to emphasize that cos i is

fixed in Equations A.8. The derivative must be evaluated using the binary

mass function (Equation 1.37),

fm =
n2

bx
3

T�
=

(mc sin i)3

(mp +mc)2
,

which is a constant quantity1 that relates mp, mc, and sin i. The derivative

can be computed through implicit differentiation of Equation 1.37 to yield

∂(mc)

∂(mp)
=

2fm(mp +mc)

3m2
c sin3 i− 2fm(mp +mc)

(A.10)

Equation A.9 implies that the probability distributions are continuous.

In practice, however, the χ2 grids and derived probability densities consist

of finite grid bins, and so the integrals in Equation A.7 turn into discrete

sums. Moreover, several grid bins in one phase space can be encompassed

by a singe bin in another phase space. However, p(mc, cos i|data) can be

approximately translated to the (mp, cos i) space by averaging together the

probability in finite bins across mc that fall within a corresponding bin in

mp. The approximation becomes more accurate when smaller grid bins are

used.

1For the most relativistic binary systems (e.g. PSR B1534+12), Pb intrinsically changes
over time due to the emission of gravitational radiation from the system. However, the
rates of change in Pb are typically very small, and the secular change ultimately does not
significantly change the value of fm over the time span of the data set.
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A.3.1 Probability in Orthometric Space

The orthometric model for the Shapiro timing delay (Freire & Wex, 2010)

parametrizes the effect to using two different PK parameters. The choice of

specific parameters depends on the degree of inclination and orbital eccentric-

ity, as the orthometric method was developed by Freire & Wex to carefully

reduce correlation between the PK parameters:

• if the binary model is ELL1 and i < 50 degrees, the third and fourth

Fourier harmonics of ∆S (h3 and h4, respectively) best characterize the

Shapiro delay;

• if the binary model is ELLI and i > 50 degrees, or if the binary model is

DD, then h3 and the orthometric ratio ς = h4/h3 are the ideal Shapiro-

delay parameters.

As with the traditional (mc, cos i) parameters, a χ2-grid analysis can be per-

formed using the orthometric parameters in order to evaluate correlation and

compute more robust confidence intervals. The nonlinear relation between

the traditional and orthometric Shapiro-delay parameters (Equations 3.1-

3.3) require additional, careful translation of the posterior density derived

from the χ2 grid over the orthometric parameters to the physical parameters

of interest. Furthermore, the nonlinear relation amounts to a difference in

choice of prior probability densities between the traditional and orthometric

parameters.

For instance, let us consider a two-dimensional posterior probability den-

sity in the (h3, ς) phase space. This map can be converted to one in the

(mc, cos i) space by using the translation rule for multivariate probability

distributions,

p(mc, cos i|data) = p(h3, ς|data)

∣∣∣∣ ∂(h3, ς)

∂(mc, cos i)

∣∣∣∣ (A.11)
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where ∂(h3, ς)/∂(mc, cos i) is the determinant of the Jacobian matrix that

maps volume elements between phase spaces:

∂(h3, ς)

∂(mc, cos i)
= det

[
∂(h3)
∂(mc)

∂(h3)
∂(cos i)

∂ς
∂(mc)

∂ς
∂(cos i)

]
=
∂(h3)

∂(mc)

∂ς

∂(cos i)
,

since ς is only a function of cos i. The posterior density in the orthomet-

ric space can therefore be directly translated to the (mc, cos i) space using

Equation A.11. The same procedures can then be applied to obtain the

marginalized PDFs for mp, mc and cos i.

A.4 Confidence Intervals

The primary goal of the above computations is to determine robust mea-

sures of the best-fit parameter and its degree of uncertainty. With the one-

dimensional posterior PDFs at hand, we take the “best-fit value” of, say, the

pulsar mass as the median value of its posterior PDF. The median value of

mp (and, similarly, mc and cos i) corresponds to the point on the PDF where

50% of the probability lies above and below it. In other words, we integrate

the PDF up to a value of mp,med such that∫ mp,med

0

p(mp|data) = 0.5. (A.12)

The median values of mc and cos i are computed in a similar manner using

their appropriate posterior PDFs.

There are several ways to compute confidence limits from the one-dimensional

posterior PDFs of the Shapiro-delay parameters. For example, Splaver (2004)

define the 68% confidence interval as the range that both encompasses 68%

of the total probability and spans the shortest range of the parameter val-

ues. Splaver et al. (2002) used this definition of confidence limits in their

analysis of the PSR J0621+1002 binary system and its Shapiro-delay param-

eters. While the “shortest interval” method is a common one for uncertainty
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determination, we instead choose an “equal tail” method to compute con-

fidence limits. For the 68.3% confidence interval, we find the lower bound

of the range (mp,lo) by integrating the posterior PDF up to a value that

encapsulates 15.85% of all probability,∫ mp,lo

0

p(mp|data) = 0.1585 (A.13)

and find the upper bound of the same range (mp,up) by integrating up to a

value that encapsulates 84.15% of all probability,∫ mp,up

0

p(mp|data) = 0.8415. (A.14)

We refer to this set of confidence intervals as “equal tail” since mp,lo and

mp,up serve as lower and upper bounds of the posterior tails that have equal

probability.
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Appendix B

Spin-Derivative Model of

Long-Period Orbits

The last radio-timing study of PSR B1620−26 performed by Thorsett et al.

(1999) showed that a direct fit of the binary Römer timing delay for the outer

orbit could fully explain the observed spin derivatives, but could not uniquely

determine all outer-orbital elements. Thorsett et al. instead fitted (∆R)o to

their 11-year data set for different values of the outer-orbital eccentricity

eo, and found that all orbital elements indeed varied with increasing eo.

In particular, the smallest outer-orbital period obtained using this method,

corresponding to eo = 0 (a circular outer orbit), was found to be (Pb)o ≈
62 years, much longer than the 11 years spanned by their data set. The

degeneracy of timing parameters for (∆R)o is therefore due to significant

lack of coverage across a full outer orbit.

Joshi & Rasio (1997, JR97) noted that, in the case where a significant

fraction of a full pulsar-binary orbit has not been spanned by the data set,

the measured Doppler-induced time derivatives of νs could be used to infer

the orbital elements of the system. To first order in its derivation, the JR97

framework can be applied to TOAs from PSR B1620−26 since Thorsett et al.

(1999) showed that both orbits could be jointly represented as the sum of
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two non-interacting Keplerian orbits: ∆R = (∆R)i + (∆R)o. In this sense, a

hierarchical triple system can be viewed as a “binary” system where one of the

“binary” components has a mass equal to the sum of the inner-component

masses, and a center of mass that is approximately equal to the center of

mass of the inner-binary system.

In this section, we describe the model developed by JR97 to estimate

the elements using the frequency-derivative method, and derive additional

equations for higher-order time derivatives in order to analyze an updated

timing solution for our current TOA data set for PSR B1620−26 that we

discuss in Chapter 4.

B.1 Derivation of Orbit-Induced Spin Deriva-

tives

We first consider a binary orbit, with eccentricity e, of two bound components

with masses m1 and m2. In the context of PSR B1620−26, m1 = mp + (mc)i

is the “primary” mass and m2 = (mc)o is the “companion” mass. The cor-

responding semi-major axes of each component are a1 and a2, respectively.

Due to the symmetry of the (non-relativistic) two-body problem, the eccen-

tricities and true anomalies of both orbits about the center of mass are equal,

though the periastron arguments are shifted such that ω1 = ω2 + π.

For radio pulsars, the Doppler shift in νs due to binary motion is generally

given as νs = −νs,0(v · n̂)/c, where v is the orbital velocity of the observed

component, n̂ is a unit vector pointing along the line of sight to the system,

and νs,0 is the spin frequency in a reference frame that is co-moving with

the pulsar in its binary motion.1 In our current timing solution, as well as

the model published by Thorsett et al. (1999), the inner orbit is explicitly

1In practice, the absolute radial motion of pulsars and pulsar-binary systems through
space induces a constant Doppler shift in the true, intrinsic values of certain timing param-
eters (e.g. spin/binary periods, projected semi-major axis, etc.), and so the “observed”
values are different than the true values.
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modeled by determining the inner Römer delay; therefore, all time-derivatives

in spin frequency are due to intrinsic spin-down, biases from secular motion

of the system, or orbital motion of the outer binary. We discuss the effects

of the non-binary components on our analysis in Section B.3 below.

Binary motion induces a number of higher-order time derivative in νs due

to periodic Doppler shifts:

ν(l)
s =

dl

dtl
νs ≈ −νs,0

(a(l−1) · n̂)

c
(B.1)

where a = v̇ is the acceleration of the observed component. In the ap-

proximation of Equation B.1 we ignored terms that were nonlinear in time

derivatives of νs, which are typically small for pulsar-binary systems. For

large orbits with widely-separated components, the general-relativistic cor-

rections of the orbital motion can be ignored for the purposes of first-order

calculations; the acceleration of the pulsar is therefore given by Newtonian

inverse-square law, a = |a| = kr−2
1 , where

k = G
m3

2

(m1 +m2)2
(B.2)

h = a1(1− e2) (B.3)

r−1
1 = h−1(1 + e cosu) ≡ h−1A (B.4)

(B.5)

and where A = 1+e cosu is a function of the true anomaly u. By computing

the dot product in Equation B.1 and taking derivatives, we find that the

component of the first derivative in νs due to orbital motion is

ν̇s = −νs,0KA
2 sin(u+ ω1), (B.6)

where K = k sin i/(h2c). While the constant K is not immediately known,

the higher-order derivatives will also be proportional to K, and so we can
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use Equation B.6 to write the higher-order derivatives in terms of ν̇s, which

is usually measured for radio pulsars:

ν(2)
s =

ν̇s

A2 sin(u+ ω1)
Bu̇ (B.7)

ν(3)
s =

ν̇s

A2 sin(u+ ω1)
Cu̇2 (B.8)

ν(4)
s =

ν̇s

A2 sin(u+ ω1)
Du̇3 (B.9)

ν(5)
s =

ν̇s

A2 sin(u+ ω1)
Eu̇4 (B.10)

ν(6)
s =

ν̇s

A2 sin(u+ ω1)
Fu̇5 (B.11)

and where the coefficients have the following form:

B = 2AA′ sin(u+ ω) + A2 cos(u+ ω1) (B.12)

C = B′ + 2
BA′

A
(B.13)

D = C ′ + 4
CA′

A
(B.14)

E = D′ + 6
DA′

A
(B.15)

F = F ′ + 8
EA′

A
(B.16)

where the apostrophe denotes a derivative with respect to u. Equations

B.7-B.11, along with the definition A = 1 + e cosu, therefore show that

four quantities are directly measurable using the JR97 technique: {e, ω1, u,

u̇}. At a minimum, five measured time derivatives are needed in order to

uniquely solve for the four orbital parameters, since four of the orbit-induced

derivatives (Equations B.7-B.10) are written in terms of ν̇s.

225



B.2 Determination of Parameters

We used a multi-dimensional Newton-Raphson method (Press et al., 1986)

in order to solve a system of nonlinear equations fk(x) = 0, where x is a

“state” vector with the unknown orbital parameters as components, and fk is

a vector of functions with components (fk)i = ν
(i+k)
s −(ν

(i+k)
s )obs. The i index

denotes the i-th component of fk, which has the same number of elements

as x, while the k index denotes the set of spin-frequency derivatives to be

used for computation of the orbital elements. For example, if x = {ωo, u, u̇},
then i runs from 1, 2, and 3, and the components of fk=1 are the three

time-derivatives given by Equations B.7-B.9, minus their observed values.

If instead x = {eo, ωo, u, u̇}, the “full” state vector of orbital parameters

that are directly measurable, then the components of fk=1 are the four time-

derivatives given by Equations B.7-B.10 minus their observed values. We use

this notation in order to simplify the discussion below when using different

sets of time-derivatives to derive the components of x, which is presented in

the following section of this Appendix.

Using the iterative Newton-Raphson method for finding roots of a system

of equations, the best approximations of x can be determined by computing

xn+1 = xn − J−1fk(xn), (B.17)

where J is the Jacobian matrix of partial derivatives, with components J ij =

∂(fk)i/∂xj. With an initial guess of x, Equation B.17 is computed repeatedly

using the iteratively-updated state vector until a chosen criterion for the best

approximation of x is satisfied.

For a one-dimensional Newton-Raphson problem, one typically chooses

the “best fit” criterion that the function under consideration be approxi-

mately equally to a small value close to zero, say f < 10−12. For the multi-

dimensional case we consider here, a complication occurs from the fact that

the components of fk each have different physical units and orders of mag-
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nitude. Since all components of fk are theoretically equal to zero, we scale

each component of fk by factors that yield values with orders of magnitude

∼ 100. After this arbitrary scaling, we assumed the best-fit criterion to be

that the length of fk is less than 10−12.

If only four time-derivatives are significantly measured, then x = {ωo, u, u̇}
and a value of eo must be chosen and held fixed in order to use Equation

B.17 to obtain a solution of x. In this way, one can obtain a “family” of

solutions using the JR97 method, where a set of x is determined for a range

of values of eo. JR97 used initial estimates of their significantly-measured

frequency derivatives, from ν̇s up to ν
(4)
s , to find a family of solutions for

different, fixed values of ωo = ω1 − π, while Thorsett et al. (1999) used their

updated values of the spin-frequency derivatives to find a set of solutions in

terms of eo. For the purposes of comparison, we used the definitions adopted

by Thorsett et al. (1999), where x = {ωo, u, u̇} and k = 1, so that Equations

B.7-B.9 made up the components of fk=1. We then used Equation B.17 to

find the best approximations of x for different, fixed values of eo.

If at least five time-derivatives are significant measured, then the full

state vector x = {eo, ωo, u, u̇} can be uniquely approximated to find a sin-

gle solution for fk=1(x) = 0. Ford et al. (2000a) provided the first unique

solution for x using the time-derivatives reported by Thorsett et al. (1999),

and determined the outer orbit to be highly eccentric, with eo ≈ 0.45 and

(Pb)o ≈ 308 years. However, the value of ν
(5)
s was not measured with statis-

tical significance.

B.3 Complications from Spin-down

One of the major complications of the JR97 method is that the observed

ν̇s is not purely due to Doppler shifts from binary motion. As discussed in

Section 1.1, radio pulsars generally exhibit an intrinsic spin-down in the form

of a first derivative in νs due to magnetic dipole radiation. Moreover, the
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significant kinematic effects from proper motion, differential Galactic rotation

and gravitational acceleration in the Galactic potential discussed in Section

1.5 will produce a change in Doppler shifts of Ps in the same manner observed

for the orbital periods of PSRs B1534+12 (Chapter 5), J1614−2230 (Section

3.4.4) and J1909−3744 (Section 3.4.10). The observed first-derivative in spin

frequency is therefore a sum of three components:

(ν̇s)obs = (ν̇s)int + (ν̇s)o + (ν̇s)D (B.18)

where the “D” subscript denotes the component secular accelerations that

produce changes in the Doppler shift that is discussed in Section 1.5. In

general, the intrinsic and secular-acceleration terms in the first-derivative

are not separately measurable unless (Ṗb)D is significant. While (ν̇s)int < 0

from physical arguments, the sign of (ν̇s)o can be positive or negative and

will vary over time.

JR97 and Thorsett et al. (1999) pointed out that assuming (ν̇s)o = (ν̇s)obs

did not produce a significantly large difference in their results when compared

to those obtained under the assumption that (ν̇s)o = 0.01(ν̇s)obs. This bias in

(and the ad hoc adjustment of) the first derivative nonetheless complicates

the unique determination of the outer-orbital elements.

A solution to this problem can be obtained by noting that, in the absence

of timing noise and encounters with nearby stars, the second and higher-

order time-derivatives in νs should be entirely due to binary motion. We can

therefore use Equation B.7 to put Equations B.8-B.11 in terms of ν
(2)
s ,
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ν(3)
s =

ν
(2)
s

B
Cu̇ (B.19)

ν(4)
s =

ν
(2)
s

B
Du̇2 (B.20)

ν(5)
s =

ν
(2)
s

B
Eu̇3 (B.21)

ν(6)
s =

ν
(2)
s

B
Fu̇4 (B.22)

and entirely avoid the use of ν̇s in the computations of Equation B.17 to ap-

proximate x. The use of these “unbiased” derivatives requires a sufficiently

long data span in order to measure them and derive the elements. However,

in the case of our ongoing analysis of PSR B1620−26 (see Chapter 4), we

measure a large number of spin-frequency derivatives with statistical signif-

icance. We refer to the sets of derivatives listed in Equation B.19 as fk=2

in subsequent discussion, and use this approach in Section 4.3.4 in order

to compare the “biased” and “unbiased” results obtained using the JR97

method.

In Section 4.4, we discuss another potential component of ν̇s and ν̈s due

to accelerations and jerks, respectively, from stars in the Messier 4 globular

cluster in which PSR B1620−26 resides. Such components are unique to

globular-cluster pulsars and can be used to constrain information on local

mass densities in the cluster (Phinney, 1992; Blandford et al., 1987). How-

ever, such analyses are not currently possible with PSR B1620−26 due to

the frequency-derivative model of the outer orbit, and we instead consider

their impacts on measurements we present and discuss in Chapter 4.
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B.4 Derived Quantities of the Orbit

The directly-measurable quantities of the JR97 method, which collectively

form the components of x, can be used to derive other orbital parameters

of interest. JR97 derived the relations for a2 = m1a1/m2 and m2 sin i, using

Equations B.2 and B.3, in terms of the first time-derivative in spin frequency:

m2 sin i ≈ − ν̇sc

νs sin(u+ ω)

(
m2

1A
2

Gu̇4

)1/3

(B.23)

a2 =
m1ν̇scA

2

νs(m2 sin i) sin(u+ ω)u̇2(1− e2)
(B.24)

where the approximation in B.23 uses the assumption that m2 << m1. In

the case of PSR B1620−26, m1 = mp + (mc)i and m2 = (mc)o. We assume

that m1 ≈ 1.65 M�, and Thorsett et al. determined m2 ∼ 10−3 M�. This

corresponds to m2/m1 << 1, which satisfies the approximation made in

Equation B.23. The outer-orbital period can therefore be computed using

Kepler’s third law and carrying through the lowest-order approximation of

low companion mass:

Pb ≈ 2π

√
a3

2

Gm1

(B.25)
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