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Abstract

The objective of this dissertation is the experimental study and control of
laser-kicked molecular rotors. Nonresonant rotational Raman excitation of
linear molecules by periodic sequences of ultra-short laser pulses allows for
the realization of a paradigm system - the periodically kicked rotor. This
apparently simple physical system has drawn much interest within the last
decades, especially due to its role in the field of quantum chaos.

This thesis presents an experimental apparatus capable of producing
long sequences of high-energy femtosecond pulses. Rotation of diatomic
molecules, the most basic version of quantum rotors, is investigated under
multi-pulse excitation. In the case of periodic kicking, the wave function of
the quantum rotor dynamically localizes in the angular momentum space,
similarly to Anderson localization of the electronic wave function in disor-
dered solids. We present the first direct observation of dynamical localization
in a system of true rotors. The suppressed growth of rotational energy is
demonstrated, as well as the noise-induced recovery of diffusion, indicative
of classical dynamics. We examine other distinct features of the quantum
kicked rotor and report on quantum resonances, the phenomena of rotational
Bloch oscillations and Rabi oscillations. In addition, multi-pulse excitation
is investigated in the context of creating broad rotational wave packets.

Another goal of the reported study is the coherent control of quantum
chaos. We demonstrate that the relative phases in a superposition of rota-
tional states can be used to control the process of dynamical localization.
We specify the sensitivity to external parameters and illustrate the loss of
control in the classical limit of laser-molecule interaction.

Our work advances the general understanding of the dynamics of laser
kicked molecules and complements previous studies of the quantum kicked
rotor in a system of cold atoms. The results encourage further studies, e.g.
of quantum phenomena which are unique to true rotors. The possibility of
control in classically chaotic systems has far reaching implications for the
ultimate prospect of using coherence to control chemical reactions.
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Preface

All the work presented in this thesis was conducted in “The Laboratory for
Advanced Spectroscopy and Imaging Research” (LASIR) at the University
of British Columbia, Vancouver, Canada. I designed and constructed the
apparatus with help of Kamil Krawczyk, Andrej Machnev and Jonathan
Morrison. All the data taking and analysis of the results was done by me. For
the theoretical analysis of the δ-kicked rotor I used a Matlab program. The
core of the code, the interaction of a single kick with a diatomic molecule,
was written by Johannes Floß. I adapted the program for multiple kicks.
All the simulations in this thesis were done by me.

The methods to create long sequences of high-energy femtosecond pulses
are described in chapter 3. The main ideas are published in Applied Op-
tics [M. Bitter,V. Milner, “Generating long sequences of high-intensity fem-
tosecond pulses”, Appl. Opt. 55, 830 (2016)] [23]. A version of Sec. 5.4
including all the figures has been published in Physical Review A [M. Bit-
ter, V. Milner, “Rotational excitation of molecules with long sequences of
intense femtosecond pulses”, Phys. Rev. A 93, 013420 (2016)] [24]. The key
results of chapter 6, described in Sec. 6.4, have been published in Physical
Review Letters [M. Bitter, V. Milner, “Experimental Observation of Dynam-
ical Localization in Laser-Kicked Molecular Rotors”, Phys. Rev. Lett. 117,
144104 (2016)] [22]. Further investigations on the same topic, discussed
in Sec. 6.4.4, are presented in a follow-up manuscript [M. Bitter, V. Mil-
ner, “Control of quantum localization and classical diffusion in laser-kicked
molecular rotors”] [20], which has been submitted for publication. Chap-
ter 7 is heavily based on a manuscript [M. Bitter, V. Milner, “Experimental
demonstration of coherent control in quantum chaotic systems”] [21], which
has been submitted for publication.

The work on Bloch oscillations in Sec. 5.3 and 6.5, and the results on
Rabi oscillations in Sec. 5.2 are currently being prepared for two separate
manuscripts, to be submitted shortly.
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Chapter 1

Introduction

Control of molecular rotation with ultra-short laser pulses is an active re-
search area of experimental and theoretical molecular science. Interests
are ranging from studying molecular dynamics to chemical reactivity of
molecules [164, 126, 56] and from implementing model systems like the
kicked rotor to exploring quantum chaotic systems [28, 59, 63, 70, 71].

The rotation of molecules in the gas phase can be excited coherently by
intense non-resonant laser fields. The manipulation with ultra-short laser
pulses in particular allows for time-dependent control and field-free studies
[152]. If the duration of the laser pulse is short with respect to the period
of molecular rotation, the excited molecules will exhibit complex dynam-
ics. The evolution of the rotational wave packet is characterized by “quan-
tum revivals”, a consequence of the discreteness of the angular momentum
spectrum[151].

Many techniques to control molecular rotation exist that use two time-
delayed ultra-short pulses, and several techniques are based on pulse se-
quences with more than two pulses, e.g. to enhance molecular alignment [41],
to control the alignment of asymmetric molecules [139] or to initiate uni-
directional rotation [193]. The reasons behind implementing multi-pulse
schemes are often to improve the selectivity of excitation or to increase the
efficiency. Both are achieved by tailoring the timing between the pulses in
accordance with the rotational dynamics. A few schemes of using long se-
quences of pulses, so-called “pulse trains”, have been proposed theoretically
[12, 103, 104, 166, 187], and implemented experimentally with sequences of
up to eight laser pulses [41, 192, 64, 88].

The impulsive excitation of linear molecules with a sequence of peri-
odic high-intensity ultra-short pulses presents the realization of a paradigm
system known as the “kicked rotor” [59]. In this theoretically well-studied
model a rotor is subject to an external driving field of periodic δ-kicks. Clas-
sically, the system is described by a set of two simple equations of motion for
the angle and angular momentum of the rotor, which despite being strictly
deterministic, turn chaotic beyond a certain strength of the kicks [31].

1



Chapter 1. Introduction

In his ground-breaking paper from 1969, Boris Chirikov introduced the
famous “standard map” to describe a large number of classically chaotic
systems [35]. Among them is the periodically delta-kicked rotor. Ten years
later, Chirikov and collaborators discovered a totally new and unexpected
effect: the stochastic behavior of the classical rotor becomes non-stochastic
for the quantum kicked rotor (QKR) [31]. Two fundamentally different
regimes emerge depending on the period of the external driving field. If
the external frequency matches the natural frequency of the quantum rotor,
the rotational excitation becomes highly efficient [84]. In this case of an
excitation on “quantum resonance” the angular momentum grows linearly
with time, rather than diffusively (∝

√
time) like in the case of a classi-

cal rotor. However, if the external frequency is incommensurable with the
natural frequency of the quantum rotor, the surprising result is a complete
suppression of angular momentum growth. Despite a continued kicking, the
rotor does not accept any rotational energy. This effect has later been called
the “dynamical localization”.

In 1982 Shmuel Fishman and collaborators [52] pointed out that the
mechanism of dynamical localization is related to the phenomenon of “An-
derson localization” [6] known from solid state physics. Philip Anderson, in
1958, had shown that the propagation of an electron in a one-dimensional
disordered lattice is completely suppressed 1. Fishman et.al. formulated a
theory that proved the deep underlying connection between the two types of
localization. They considered the rotational quantum number of a quantum
rotor as an effective site number in a rotational lattice. The disorder could
be linked to the periodic kicking with a nonlinear potential. In both cases,
the effect of localization stems from the destructive interference of quantum
pathways: in the real space of the lattice [6] and in the angular momentum
space of the rotor [31, 84].

Research on the effect of Anderson localization in a variety of different
systems is very active and constantly growing [98]. As it relies on the de-
structive interference of waves, it has been observed with classical waves, i.e.
photons [68, 42, 183, 33, 165, 150, 99] and sound [178, 80], as well as with
matter waves [39, 50, 18, 143]. Dynamical localization of the QKR presents
an alternative model to study the fundamental aspects of Anderson localiza-
tion. In 1992, Graham et.al. suggested the realization of a QKR in a related
system by observing periodically kicked ultracold atoms in the momentum
space [74]. The “atom-optics kicked rotor” (AOKR), first demonstrated in
1995 [121], has since evolved to a standard approach for studying many in-

1For this and related work, Anderson was awarded the Nobel Prize in Physics in 1977.
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Chapter 1. Introduction

teresting effects, from dynamical localization and quantum resonances, to
the effects of noise and dissipation, etc. [135]. Yet until now, more than 30
years after Chirikovs and Fishmans papers, the fundamental effect of dy-
namical localization has never been observed in a system of true quantum
rotors, i.e. quantum objects that actually rotate in space.

Besides being an ideal testing ground for effects related to Anderson lo-
calization, the QKR plays another important role in the field of quantum
chaos [71], a synonym for quantum systems whose classical counterparts are
chaotic. One question of interest is whether the evolution of a chaotic sys-
tem can be steered one way or another by adjusting its initial state. The
very definition of classical chaos, i.e. the exponential sensitivity to initial
conditions, seems to leave no room for such controllability. Yet quantum
mechanics teaches us that quantum trajectories, leading to the same final
state, will interfere with one another no matter how stochastic they are.
Adjusting the relative phase of these trajectories to make their interference
either constructive or destructive should then provide full control [157], con-
trary to the classical expectations. The question is not new and has been
discussed in many theoretical works for more than 20 years (for reviews, see
Ref. [142, 71]). Gong and Brumer considered the QKR to study the con-
trollability of classically chaotic dynamics in the quantum limit [69, 70, 71].
They showed theoretically that the energy of the localized state can indeed
be controlled by modifying the initial quantum state of the rotor. However,
the experimental study of the predicted controllability has been lacking.
Control in the regime of quantum chaos is of immediate relevance for the
general goal of controlling molecular dynamics with external fields, since
many complex molecules often display chaotic behaviour.

Several theoretical works suggested diatomic molecules repeatedly kicked
by a pulsed external field (microwave, optical or THz) as a realization of the
QKR [28, 70, 59, 114]. In their proposal, Averbukh and coworkers used
ultra-short laser pulses to periodically excite linear molecules [59]. They
investigated several QKR phenomena [59, 63, 60, 61] and effects related to
the quantum resonance have been experimentally verified since [41, 192, 64].
An onset of dynamical localization in laser-induced molecular alignment was
reported [88], but the direct evidence of the exponentially localized states
and the suppressed growth of the rotational energy have not been shown.

Laser-kicked molecules as QKR provide some advantages over the cold-
atom analogue. The angular momentum of true rotors is inherently quan-
tized, in contrast to the continuous spectrum of the translational momentum
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in the case of the AOKR [135]. To reach sufficiently narrow momentum dis-
tributions the atoms need to be cooled down to ultra-cold temperatures,
which requires a complicated experimental setup. On the other hand, su-
personic molecular jets are easier to construct, and they provide low enough
temperatures for the molecular QKR experiments.

Furthermore, the suggested system enables the study of quantum phe-
nomena which are unique to true rotors. The effect of centrifugal distortion
of spinning molecules leads to oscillations in the angular momentum distri-
bution, similar to Bloch oscillations in solids [25]. This has been predicted
by Floss and Averbukh [60, 62] and recently demonstrated [64]. Molecules
experience an “edge” in the semi-infinite lattice of rotational states, since
only positive rotational quantum numbers are allowed. Floss and Averbukh
theoretically showed the existence of localized edge states [61], which has
not been observed yet.

1.1 Main research objectives

The goal of our research is the study of the quantum kicked rotor with
laser-kicked linear molecules. In the last decade some of the many predicted
phenomena, i.e. the quantum resonance [41, 192], the existence of Bloch
oscillations [64] and some first indirect signs for the presence of localiza-
tion [88] have been explored experimentally. In order to investigate other
fundamental effects, in particular the demonstration of a localized angular
momentum distribution, all of the above experiments lacked a few key re-
quirements, the most important one being a sufficiently long pulse sequence
of high energy ultra-short pulses.

We designed and built a new tool to create pulse sequences of twenty
or more pulses; up until now the sequences were limited to eight pulses.
The technique is based on the principles of femtosecond pulse shaping and
interferometric multiplexing. While other techniques often suffer from insuf-
ficient pulse intensities, we use multi-pass amplification to compensate for
the severe energy losses. This approach excels in almost full controllability
over the profile of the generated pulse train: The amplitudes as well as the
temporal spacing of all sub-pulses can be adjusted individually.

In our experiments we use long pulse sequences to excite linear molecules,
i.e. nitrogen or oxygen, at rotational temperatures around 25 K. Prior exper-
iments have exclusively been done at room temperature, which prohibits the
observation of many effects due to broad angular momentum distributions.
In contrast to previously implemented detection techniques, we employed
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a frequency-resolved method allowing for the resolution of individual rota-
tional states.

Complimenting previous work with AOKR, we directly observed the ef-
fect of dynamical localization, demonstrating the characteristic exponential
distribution of the localized wave function and the suppression of the ro-
tational energy growth. We introduced noise in a sequence of rotational
kicks to show the expected destruction of localization and the recovery of
classically diffusive behaviour.

In addition, we continued the research of molecular excitation on quan-
tum resonances. We improved the existing studies on Bloch oscillations
in molecular rotation [64] and documented a new phenomenon of Rabi os-
cillations between two rotational states. The prospects of creating broad
rotational wave packets by means of molecular interaction with long pulse
sequences were explored. The timing of the pulses could be optimized to
partially mitigate the limitations stemming from the centrifugal distortion.

Another objective was to explore the possibility of coherent control in
a system that is classically chaotic. We established the first experimental
demonstration of “quantum chaos under control”. In the verification of the
Gong-Brumer control scheme [69, 70], our unique ability to fine-tune the
initial rotational state was used to control the rotation of a molecule at
later times. By varying the relative phases of the initial states we effectively
changed the localization process of the QKR. We proved the quantum na-
ture of the demonstrated controllability by showing its disappearance in the
classical regime of laser-molecule interaction.

Many of the demonstrated phenomena, e.g. dynamical localization and
Bloch oscillations, establish an intimate connection between the two fun-
damental aspects of modern physics: the motion of a quantum particle in
a disordered solid and the motion of a quantum pendulum under periodic
kicking [52]. Our work opens new opportunities for investigating quantum
phenomena which are unique to true rotors, e.g. edge localization [61] or
the effects of centrifugal distortion and rotational decoherence on QKR dy-
namics [60]. We believe that our results are important to the general fields
of laser technology, quantum control of light-matter interaction, nonlinear
dynamics and quantum chaos.
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1.2 Outline of the thesis

The goal of this thesis is to give a complete overview on the subject of
“Quantum coherent control of laser-kicked molecular rotors”.

Chapter 2 describes the kicked rotor model, classically (Sec. 2.1) as well
as its quantum mechanical counterpart (Sec. 2.2). Important concepts to
characterize different interaction regimes, the stochasticity of the system and
the transition from a quantum-to-classical rotor are discussed. We become
more rigorous when we discuss the QKR model of interest - the laser-kicked
molecular rotor (Sec. 2.3). We introduce the physics behind laser-molecule
interaction and the relevant Hamiltonian. We give details how we model
the system numerically to analyse our results. The kicked rotor model can
be mapped onto a one-dimensional tight-binding problem (Sec. 2.4). We
introduce the concepts to describe quantum particles in crystalline solids,
before we derive the correspondence between a periodically-kicked quantum
rotor and a quantum particle in a disordered lattice.

In chapter 3 we give a detailed description of the technique that we de-
veloped to create long sequences of high-intensity ultra-short laser pulses
and demonstrate its unique abilities. A second technical chapter 4 intro-
duces other techniques that proved to be crucial for the implementation of
many experiments. Rotational Raman spectroscopy (Sec. 4.1) enabled a
quantum-state selective detection with a dynamic range over several orders
of magnitude. This Raman technique was implemented to work with rota-
tionally cold molecules produced in a supersonic jet expansion (Sec. 4.2).
We analyse the performance and characterize the experimental conditions.

Chapter 5 is dedicated to molecular excitation via quantum resonances.
At first, an intuitive “resonance map” is recorded and used to explain the
existence of various (fractional) quantum resonances (Sec. 5.1). An immedi-
ate implication of the periodic excitation on fractional quantum resonances
are rotational Rabi oscillations in an effective two-level system of two ro-
tational states (Sec. 5.2). The excitation on full quantum resonances leads
to the phenomenon of Bloch oscillations in the angular momentum space
(Sec. 5.3). The effect is studied and compared to the solid state analogue.
Finally, the quantum resonances are explored with the objective of excit-
ing broad rotational wave packets (Sec. 5.4), which is desirable for creating
strongly aligned molecular samples.

Dynamical localization in a system of true rotors is the subject of chap-
ter 6. Starting with a theoretical picture of dynamical localization (Sec. 6.2)
and the intricacies of the experimental realization (Sec. 6.3), we present di-
rect evidence of localized molecular rotation and test its dependency on
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multiple experimental parameters and the transition to classical behaviour
under the influence of noise (Sec. 6.4). In addition, we establish a connection
between the phenomenon of dynamical localization and Bloch oscillations
by studying the regime around the quantum resonance (Sec. 6.5).

The final experimental chapter 7 discusses the topic of controlling quan-
tum chaos. We describe the idea of coherent control and the unique op-
portunity to tune the QKR dynamics from quantum mechanical to classical
(Sec. 7.1). We detail the scheme that we use to control the dynamical local-
ization process (Sec. 7.2) and show the observed controllability (Sec. 7.3).
We demonstrate that the control relies on quantum coherences by driving
the system closer to the classical limit. At last, we outline the future direc-
tions of this work in chapter 8.
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Chapter 2

The kicked rotor

The one-dimensional kicked rotor (KR) is a well-studied paradigm system,
classically as well as in quantum mechanics [31, 138, 77]. Although it is
a strictly deterministic Hamiltonian system, it exhibits chaotic motion in
certain regimes. It’s simplicity and the fact that the transition to chaos can
be controlled by the external driving field make it a popular model system
[138].

The interaction of a diatomic molecule subject to N periodic kicks via
non-resonant linearly polarized laser pulses, provides an experimental real-
ization of the “quantum kicked rotor” (QKR). It is described by the following
Hamiltonian:

Ĥ =
Ĵ2

2I
− ~P cos2(θ)

N−1∑
n=0

δ(t− nT ) . (2.1)

The first term, the kinetic energy of the rotor, depends on the angular
momentum operator Ĵ and the moment of inertia I. The second term is
dictated by a nonlinear potential with the angle θ between the molecular
axis and the laser polarization axis. The period of the driving field is T , the
strength of the kicks is P and ~ is the reduced Planck constant.

In section 2.1 we look at the classical version of this rotor. We explain the
fundamental concepts of the kicked rotor model and introduce the “standard
map”. Section 2.2 discusses the similarities and the unique differences of the
quantum version of the KR. In Sec. 2.3 we return to the system that we will
study experimentally, the “laser-kicked molecular rotor”. More details about
the light-molecule interaction, the Hamiltonian and the rotational dynamics
will be provided.

A second important significance of the KR has been shown by Fishman
and coworkers [52, 76]: the QKR can be mapped onto a tight-binding model
known from solid state physics. Section 2.4 is dedicated to the correspon-
dence between a crystalline solid and the QKR, which will be used in our
analysis of several observed effects.
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2.1. Classical kicked rotor

2.1 Classical kicked rotor

The classical equations of motion of the Hamiltonian in Eq. 2.1 are

θN = θN−1 + J̃N

J̃N = J̃N−1 −K sin(2θN−1) .
(2.2)

In appendix B we show how the equations of motion can be derived from the
Hamiltonian of the kicked rotor 2. The two coupled equations describe the
motion of the KR at discrete steps after each kick N via the two canonical
variables, the angle θ and the dimensionless angular momentum J̃ ,

J̃ = J
T

I
. (2.3)

The dynamics of the KR is determined by the parameter K - the “stochas-
ticity parameter” - which is a measure of the amplitude of the kicks. In the
case of a diatomic molecule exposed to non-resonant linearly polarized laser
pulses, the parameter can be calculated as

K =
T ·∆α

4I

∫
E2(t)dt , (2.4)

where ∆α is the polarizability anisotropy of the molecule and E(t) is the
electric field envelope. The integral is evaluated over one full period T of
the pulse sequence. Details about the light-molecule interaction for a laser-
kicked rotor will be discussed in Sec. 2.3.

The KR dynamics can be distinguished into several regimes depending
on the magnitude ofK. For weak kicks the classical equations (2.2) represent
periodic motion. Here, the angle and the angular momentum only change
in small quantities from one kick to the next, resulting in a deterministic
motion. However, if the amplitude of the kicks becomes large enough, the
motion turns chaotic. The behaviour of the KR is no longer regular but
rather stochastic, hence the name of the stochasticity paramter. We can
understand the chaos as a consequence of the nonlinear angle-dependent
potential [135]. At high K values each kick is effectively quasi-random in its
direction and its amplitude.

2 The traditional equations of motion for the planar kicked rotor have a slightly modified
form θN = θN−1 + J̃N and J̃N = J̃N−1 + K sin(θN−1) [70]. However, the physical
interpretation remains the same.
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Figure 2.1: Sections of the standard map of the kicked rotor for different
values of the stochasticity parameter (a) K = 0.25, (b) K = 0.5, (c) K = 1
and (d) K = 3.

2.1.1 The standard map

The recursion equations (2.2) are called the “standard map” [31]. Strobo-
scopically one can follow the motion of the rotor on classical trajectories in
the phase space. The map depends solely on the stochasticity parameter K.

In Fig. 2.1 we show four different maps obtained from Eq. 2.2 correspond-
ing to different K parameters. All maps are constructed starting from the
same initial conditions: seven points in phase space at J̃0 = 0 and θ0 = πp/16
with p = 1, 2, ..., 7 (plotted in different colours). Then the system is evolved
in time up to N = 10000, which yields either stable trajectories, visible as
closed ellipsoids, or chaotic trajectories. Due to the periodicity of sin(2θ)
the complete dynamics can be portrayed on a cylinder, modulo π.

The KR behaviour is analysed in different regimes, controlled by the
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2.2. Quantum kicked rotor

stochasticity parameter. Small values of K � 1 lead to periodic motion,
seen in Fig. 2.1(a). Once chaos emerges, for small K, it is first isolated in
chaotic regions, Fig. 2.1(b). The area of the chaotic regions grows with K,
while the regions itself are separated by Komolgorov-Arnold-Moser (KAM)
trajectories [75]. Beyond a critical value Kcr the last KAM trajectory dis-
appears and the motion is no longer bounded, as in Fig. 2.1(c). Note the
different y-scale, shown is only a section of the occupied phase space. The
critical value for the planar kicked rotor is cited as Kc = 0.97164... [75]. The
laser-kicked rotor described in Eq. 2.2, however, turns chaotic twice faster
as a function of K 3. Eventually all stable islands disappear in the chaotic
sea, shown in Fig. 2.1(d). Although no critical value exists in the literature,
it is commonly assumed that the phase space of the planar kicked rotor is
globally chaotic for K & 5 [83]. For the equations of motion (2.2) of the
laser-kicked rotor, no periodic trajectories should be expected for K & 2.5.

2.1.2 Classical diffusion

In the regime of global chaos, the classical rotor performs a random walk
in angular momentum space, despite being perfectly deterministic. The
mean-square value of the angular momentum grows as 〈J̃2〉 ∝ DN with a
characterisitic diffusion rate D ≈ K2/2 in the globally chaotic regime [36].
The mean energy of the rotor 〈E〉 ∝ 〈J̃2〉 therefore increases linearly with
the kick number.

The diffusive growth is unbounded for the idealistic δ-kicks. As long as
the rotor does not rotate much during the duration of the kick, the δ-KR is
still a good approximation [28, 63]. If the rotational period is on the same
time scale as the kicking period, the momentum transfer averages out to
zero. As a consequence, the achievable angular momentum is bounded.

2.2 Quantum kicked rotor

The main interest in the quantum kicked rotor (QKR) is stimulated by the
study of the effects of quantization on classically stochastic behaviour - a
field of physics known as “quantum chaos” [31, 138, 77]. Unless otherwise
noted, in this work we will be concerned with the globally chaotic regime.

For a finite amount of time, the quantum motion resembles the chaotic
classical motion. However, after a critical number of kicks Nb - the “quan-

3 This is a consequence of the symmetry of linear molecules and an angle dependence
of 2θ in (2.2).
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2.2. Quantum kicked rotor

tum break time” - the quantization of angular momenta becomes noticeable
and leads to quasi-periodic dynamics. Interferences in the quantum system
prohibit stochasticity [31, 84]. Unlike in the classical case, one has to distin-
guish two regimes: one where the period of the kicks is commensurable with
the periodicity of the quantum rotor, and one where it is incommensurable.
The respective excitations result in two different phenomena: quantum res-
onance and dynamical localization.

2.2.1 Quantum resonance

We introduce a dimensionless time which relates the period of the kicks T
to the revival period of the rotor Trev = 2πI/~,

τ = ~
T

I
= 2π

T

Trev
. (2.5)

The time τ acts as the effective Planck constant of the system. The discrete-
ness of the rotational spectrum of the QKR results in quantum resonances
whenever τ = 2πp/q, where p and q are integers [84, 184, 59]. Equiva-
lently, this condition can be expressed as T/Trev = p/q. Tuning the period
to match a quantum resonance enables an efficient excitation of multiple
rotational states. Owing to constructive interference, the rotational energy
grows quadratically from kick to kick. This “ballistic” growth exceeds the
classical diffusive growth.

2.2.2 Dynamical localization

On the other hand, away from quantum resonances, the quantum interfer-
ences are destructive and suppress the increase in rotational energy after the
quantum break time. The growth is completely halted due to a mechanism
called dynamical localization. It has been shown that this phenomenon is
related to the absence of diffusion in a one-dimensional disordered lattice
due to Anderson localization [52]. According to the commonly accepted
terminology, Anderson localization always refers to a quantum particle in a
real lattice, and dynamical localization to the QKR 4.

The angular momentum of the QKR localizes around the initial momen-
tum. The resulting distribution of the angular momentum states falls off
exponentially with a characteristic length called the “localization length”.
(The characteristic length scale of the classical KR was given as the diffusion
constant D.)

4In the literature it is also common to find the QKR localization under the synonym
of Anderson localization.
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2.2.3 Stochasticity

Looking back at the classical definition of the stochasticity in Eq. 2.4, we
observe that the motion of the QKR is governed by two separate parame-
ters, the effective Planck constant τ and a dimensionless kick strength P .
The rigorous definition of P will be given in Sec. 2.3.2. The stochasticity
parameter is thus derived by their product

K = τP . (2.6)

We can reduce the quantum effects by decreasing τ while keeping K con-
stant. The underlying classical dynamics stays unchanged, but we approach
the classical limit, i.e. the standard map. For quantum effects to become
noticeable the period has to be on the order of the revival time T → Trev,
see Eq. 2.5. For T � Trev, on the other hand, the discretness of the energy
spectrum is not yet noticeable in the system’s dynamics.

The quantum-classical correspondence can also be achieved by introduc-
ing noise or dissipation into the system. Since all quantum effects crucially
rely on the interference of coherent pathways, such processes of decoherence
will lead to the destruction of dynamical localization and the recovery of
classical diffusion.

2.2.4 Atom-optics kicked rotor

In 1992 Graham et.al. proposed to study the QKR by kicking ultracold
atoms with a standing wave of far-detuned light. [74]. The momentum of
ultracold atoms interacting with a pulsed standing wave will spread diffu-
sively in a classical description. However, they demonstrated theoretically
that the momentum transfer is quantum mechanically limited by dynamical
localization. The first experimental demonstration of dynamical localization
in this system was reported in 1995 [121] and has in fact been the first obser-
vation of one-dimensional Anderson localization with atomic matter waves.
Since then this system, which we will refer to as the atom-optics kicked rotor
(AOKR), has become the standard setup for studying the QKR. Much re-
search has been done to investigate different aspects of the QKR, dynamical
localization and quantum chaos. More information can be found in multiple
reviews [135, 136].
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Figure 2.2: Diatomic molecule interacting with linearly polarized electric
field.

2.3 Laser-kicked molecular rotor

We implement the QKR by exposing linear molecules to ultra-short laser
pulses. The goal of this section is to understand the underlying physics
of the system: We describe the light-molecule interaction and the idea of
“kicking” molecules. We introduce the Hamiltonian of a kicked rotor, its
wave function and the resulting dynamics. A vital part of our work is the
comparison of the experimental results with the respective simulations, we
describe the numerical methods to simulate the kicked rotor in Sec. 2.3.6.
To finish, we discuss the particular diatomic molecules that were used as
quantum rotors. We give relevant molecular constants and useful derived
parameters in Sec. 2.3.9.

2.3.1 Light-molecule interaction

At first, we need to understand the interaction between linear molecules
and a non-resonant laser field, see Fig. 2.2. We start with a classical de-
scription. The interaction potential of a molecule with a permanent dipole
moment µ has the nonlinear form

V (θ, t) = −µE(t) cos θ , (2.7)

with the angle θ between the molecular axis and the polarization axis of
the electric field E(t). Since we look exclusively at molecules without a
permanent dipole moment, µ(t) = α(t)E(t) is the induced dipole moment in
the presence of the laser field. The resulting dipole will interact with the
electric field itself. After averaging over the fast oscillations, the interaction
potential becomes [12]

V (θ, t) = −1

4
E2(t)

[
(α‖ − α⊥) cos2 θ + α⊥

]
. (2.8)
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2.3. Laser-kicked molecular rotor

The full derivation can be found in the “Nonlinear Optics” book by Boyd
[29]. The second term of V (θ, t) does not dependent on the angle θ. Hence,
it will not affect the rotational dynamics induced by a laser pulse and can be
disregarded [63]. The polarizability anisotropy ∆α = α‖−α⊥ is determined
by the parallel α‖ and the perpendicular α⊥ components of the polarizability
with respect to the molecular axis.

Most molecules have ∆α > 0 and the potential energy of the system is
minimized when the angle is θ = 0. This implies, that a thermal ensemble
of randomly oriented molecules will, in the presence of a long laser pulse,
feel a torque that will align all molecules. For more details about “adiabatic
alignment” see Refs. [66, 164]. Here, we work with ultra-short pulses. In
this impulsive regime, the molecules merely feel a “kick” towards the field
polarization direction [12], shown in Fig. 2.3. For a classical rotor, the gain
in the angular velocity is proportional to sin(2θ) [104] - which also appears
in the classical equation of motions in Eq. 2.2. Molecules with initial angles
θ � 1 acquire a velocity that is proportional to the angle. Thus, these
molecules arrive at θ = 0 at the same time [12] resulting in a “field-free
alignment”. Different speeds of molecules in the ensemble result in rich
dynamics, including further molecular alignments. For more details on the
topic of impulsive alignment we refer to Refs. [151, 126, 56].

𝑡0 time

(a) (b) (c) (d) (e)

Figure 2.3: Field-free alignment of an ensemble of molecules after the exci-
tation with an ultra-short laser pulse.

In the quantum mechanical description we need to include the quan-
tization of the angular momentum. In the simplest approximation linear
molecules are viewed as rigid rotors with a moment of inertia I = ~(4πcB)−1
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Figure 2.4: (a) Non-resonant two-photon Raman transitions in a rotational
system. The quantum number changes by ∆J = 0,±2. (b) Rotational
ladder climbing via consecutive Raman processes.

[63], where B is the rotational constant and c is the speed of light. The ro-
tational energy spectrum is expressed as

EJ = hcBJ(J + 1) . (2.9)

However, once real molecules occupy higher rotational quantum numbers
J , they no longer behave like rigid rotors. Owing to the fast rotation, the
molecular bond stretches, which is reflected by a centrifugal distortion term
with the centrifugal constant D,

EJ = hc[BJ(J + 1)−DJ2(J + 1)2] . (2.10)

An ultra-short, non-resonant laser pulse induces two-photon Raman tran-
sitions via an intermediate virtual level. In each transition, the rotational
quantum number J changes by either ∆J = +2 (Stokes Raman scattering),
∆J = −2 (anti-Stokes Raman scattering) or ∆J = 0 (Rayleigh scattering),
as drawn in Fig. 2.4(a). If the pulse is strong, it is possible to climb up
the “rotational ladder” with many consecutive Raman transitions, provided
that the bandwidth of the pulse is wide enough to support all the required
frequencies, see Fig. 2.4(b).

Finally, we connect the classical and the quantum picture. If a molecule,
whose polarizabilities α‖ and α⊥ are different, is rotating, then the effective
polarizability of the medium α(t), experienced by a linearly polarized light,
changes periodically [112]. The refractive index n(t) of a collection of co-
herently rotating molecules will be modulated in time n(t) =

√
1 +Nα(t),
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where N is the number density of molecules [29]. This temporal modula-
tion of n results in the frequency modulation of the carrier wave, and the
corresponding Raman sidebands.

2.3.2 Kick strength

Our ultra-short laser pulses are of a Gaussian shape. The electric field
envelope of a single pulse is described by E(t) = E0 exp(−t2/2σ2), with the
peak value of E0 at the center of the pulse at time t = 0 and a width σ.
When a short pulse interacts with a molecule it creates a rotational wave
packet. This interaction can be described as an instantaneous “kick”, if the
duration of the pulse is substantially shorter than the time scales of the
dynamics in the rotational wave packet.

The width of the prepared wave packet is a measure of the strength of
the pulse. One can define a dimensionless kick strength [57]

P =
∆α

4~

∫
E2(t)dt . (2.11)

The kick strength reflects the typical amount of angular momentum (in
units of ~, the reduced Planck’s constant) transferred from the laser pulse
to the molecule [57]. Solving the integral for a Gaussian pulse, simplifies the
expression to P = ∆α/4~ · E2

0

√
πσ. On the other hand, if we numerically

simulate the effect of δ-kicks, Eq. 2.11 can be reformulated with Dirac’s delta
function ∆α

4~ E
2(t) = Pδ(t).

2.3.3 Hamiltonian

The Hamiltonian for a three-dimensional rigid rotor is H = Ĵ2

2I +V (θ, t) . It

has a kinetic term, with the angular momentum operator Ĵ , and a potential
term V (θ, t) taken from Eq. 2.8 (without the θ-independent term), such that

H =
Ĵ2

2I
− ∆α

4
cos2(θ) E2(t) . (2.12)

The Hamiltonian for a periodically kicked rotor simply follows by introduc-
ing a summation over N pulses with the period T

H =
Ĵ2

2I
− ∆α

4
cos2(θ)

N−1∑
n=0

E2(t− nT ) . (2.13)
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The Hamiltonian can be written in terms of the kick strength (Eq. 2.11),
for a pulse sequence of Gaussian pulses

H =
Ĵ2

2I
− P~√

πσ
cos2(θ)

N−1∑
n=0

exp

(
−(t− nT )2

σ2

)
, (2.14)

or similarly in the case of δ-pulses

Ĥ =
Ĵ2

2I
− ~P cos2(θ)

N−1∑
n=0

δ(t− nT ) . (2.15)

2.3.4 Wave function

The natural choice to describe the rotational wave function of a linear
molecule interacting with a light pulse are the eigenfunctions of a three-
dimensional rotor: the spherical harmonics | J,M 〉 = YM

J (θ). The quantum
numbers J and M are the molecular angular momentum and its projec-
tion on the quantization axis, respectively. The wave function of a rotor is
expanded in spherical harmonics

|ψM (t) 〉 =
∞∑
J=0

cMJ e−iEJ t/~ | J,M 〉 , (2.16)

with the complex amplitudes cMJ . In the case of a linearly polarized driv-
ing field, the quantum number M remains unchanged. The selection rules
∆M = 0 and ∆J = 0,±2 follow from the derivation in appendix C.2. Here,
we merely use the fact that the wave functions are independent for each M
(we do not need to sum over M). The amplitudes cMJ can be calculated by
solving the Schrödinger equation

i~
∂ψ

∂t
= Hψ , (2.17)

with the Hamiltonian of a kicked rotor given in Eq. 2.14. The mathematical
procedure is described in appendix C.1.

2.3.5 Density matrix

Two important quantities that we will often refer to are the rotational “pop-
ulation” and the rotational “coherence”. Both are conveniently defined in
the density matrix formalism, presented here.
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Let the operator A represent an observable of the quantum mechanical
system, described by a wave function |ψ(t) 〉 =

∑
J cJ(t) | J 〉. In comparison

to Eq. 2.16, we omitted the magnetic quantum number M and included the
phase term in cJ(t). The ensemble average 〈A〉 is given by

〈A〉 = 〈ψ |A|ψ 〉 =
∑
J,J ′

c∗JcJ ′〈 J |A| J ′ 〉 =
∑
J,J ′

c∗JcJ ′ AJJ ′ . (2.18)

The coefficients cJ contribute to the expectation value of A as quadratic
terms c∗JcJ ′ which are the matrix elements of the operator ρ = |ψ 〉〈ψ |

c∗JcJ ′ = 〈 J ′ |ψ〉〈ψ| J 〉 = ρJ ′J . (2.19)

The operator ρ is known as the ‘density matrix’.

Population: The diagonal elements ρJJ = |cJ |2 are the populations. They
specify the probability of finding the system in a quantum state | J 〉. The
total probability is conserved

∑
J |cJ |2 = 1.

Coherence: The off-diagonal elements ρJ ′J = c∗JcJ ′ for all J 6= J ′ are
the coherences. These crossterms are responsible for the interference effects
and appear whenever the wave function is in a superposition of the states
| J 〉 and | J ′ 〉. Coherences satisfy two important properties [147]: First,
ρ∗JJ ′ = ρJ ′J a consequence of the Hermitian nature of the density matrix.
Second, ρJJ ρJ ′J ′ > |ρJ ′J |2, i.e. coherences only exist, if the population of
the corresponding levels is non-zero.

Statistical mixture: The density operator of a statistical mixture is
ρ =

∑
k pkρk where ρk are the density matrices for the pure states |ψk 〉 and

pk their statistical weights. The same properties as mentioned above still

apply. It can be shown [147] that the population is now ρJJ =
∑

k pk |c
(k)
J |2

and similarly that the coherence is ρJ ′J =
∑

k pk c
(k)∗
J c

(k)
J ′ .

The observable in our experiment is proportional to the modulus squared
of the coherences |c∗JcJ+2|2. More details will be given in Sec. 2.3.6. We
will talk about the detection technique of rotational Raman spectroscopy in
Sec. 4.1.
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2.3. Laser-kicked molecular rotor

2.3.6 Numerical analysis

It has been essential to simulate the dynamics of the QKR, not only to
show the correspondence between experiment and theory but also to test
hypotheses or to make predictions. The simulations are done in the pro-
gramming language Matlab for a δ-kicked rotor. In this section we describe
the numerical procedure.

The δ-kicked rotor

We solve the Schrödinger equation (Eq. 2.17) with the Hamiltonian for a
single pulse (Eq. 2.12). Owing to the impulsive approximation, meaning that
the duration of the pulse is much shorter than the relevant rotational time
scale, we approximate the laser pulse by a δ-function. The wave function
immediately before the kick is labelled as |ψ− 〉, whereas the one after the
δ-kick is labelled |ψ+ 〉. During the δ-pulse, the potential is so strong, that
the kinetic energy term in the Hamiltonian can be neglected. Thus, the
Schrödinger equation simplifies to

i~
∂|ψ+ 〉
∂t

= −1

4
E2(t) ∆α cos2 θ |ψ+ 〉 . (2.20)

In appendix C.2.1 we prove that an analytic solution of Eq. 2.20 is

|ψ+ 〉 = exp(iP cos2 θ) |ψ− 〉 . (2.21)

Next, we want to rewrite |ψ+ 〉 in the basis of spherical harmonics,

|ψ+ 〉 =
∑
J,M

cMJ e−iEJ t/~ | J,M 〉 (2.22)

to find its complex amplitudes cMJ . This decomposistion into the eigenstates
of the kicked rotor is a non-trivial exercise. The approach used in our code,
taken from Ref. [57] is outlined in appendix C.2.2. Alternative methods
are presented in Ref. [12, 104]. We introduce an artificial time τ , defined
such that before the kick (τ = 0) and immediately after the kick (τ = 1).
Eventually, we obtain a set of coupled ordinary differential equations (ODE)

∂

∂t
cM
′

J ′ (τ) = iP
∑
J,M

cMJ 〈 J ′,M ′ | cos2 θ| J,M 〉 , (2.23)

that are solved numerically by means of the ‘ode45 solver’ in matlab. The
eigenstates before the kick are | J,M 〉 and after the kick | J ′,M ′ 〉. The
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2.3. Laser-kicked molecular rotor

resulting amplitude coefficients cM
′

J ′ (τ) are evaluated at (τ = 1) to get the
wave function of the created rotational wave packet immediately after the
kick.

Selection rules: In appendix C.2.3 we further investigate the expres-
sion 〈 J ′,M ′ | cos2 θ| J,M 〉, which contains all transition matrix elements for
the relevant two-photon transitions, the Clebsch-Gordan coefficients (CGC).
The selection rules follow directly from the CGC

∆J = 0,±2 and ∆M = 0 . (2.24)

Statistical averaging: In the experiment, we work with a thermal en-
semble of molecules. We calculate the final wave function individually
for each initially populated state | J0,M0 〉. The results are then added
with the proper statistical weights ω = ωBωN . The weight of the ther-
mal Boltzmann distribution ωB = Z−1 exp (−hcEJ/kBT0) depends on the
initial temperature T0. Here, kB is the Boltzmann constant and Z =∑

J(2J + 1) exp (−hcEJ/kBT0) is the partition function. The weight of
the appropriate nuclear spin statistic ωN is given in Sec. 2.3.9.

Sequence of δ-kicks: So far, we mentioned only the wave function of the
rotor after a single δ-kick. In order to get the wave function for a sequence
of kicks, we implement the following procedure: (1) Calculate the wave
function after a single kick individually for each initially populated state
| J0,M0 〉. (2) Evolve each wave function for the field-free time period T
to the next δ-kick. A free evolution corresponds to the J-dependent phase
term e−iEJT/~. (3) Apply the next kick to the new wave functions. Again
calculate it individually for all of the wave functions which originated from
the different | J0,M0 〉. (4) Repeat step (2-3) iteratively for each pulse in
the sequence. (5) Sum over all wave functions with the proper statistical
weights.

Experimental observable

Our experimental observable, the coherent Raman signal, depends on the
coherences cM∗J cMJ+2 excited in an ensemble of molecules. More about the
detection technique of Raman spectroscopy will be discussed in section 4.1.
Here, we only point out that the J-dependent observable is referred to as
“Raman spectrum”.
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2.3. Laser-kicked molecular rotor

Consider a coherent superposition of two rotational states,

|ψMJ (t) 〉 = cMJ e−iEJ t/~ | J,M 〉+ cMJ+2 e
−iEJ+2t/~ | J + 2,M 〉 , (2.25)

created by a laser pulse. The coherent dynamics of such a wave packet is J-
dependent. Owing to the selection rules for a two-photon excitation process
(Eq. 2.24) the superposition |ψMJ (t) 〉 can originate from any initially pop-
ulated thermal state | J0 = J ± 2k,M0 = M 〉, where k is an integer. The
intensity of the observed Raman spectrum will be proportional to the mod-
ulus squared of the induced coherence,

IJ ∝
∑
M

〈|cM∗J cMJ+2|2〉J0,M0
, (2.26)

summed over all M -sublevels and averaged over the initial thermal mixture.
It is important to realize that the Raman signal IJ as a function of the
quantum number J , does in fact depend on both rotational states J and
J + 2.

M-degeneracy

Each rotational state J is (2J + 1)-fold degenerate in the field-free case.
The degenerate states are described by the magnetic quantum number M =
−J,−J + 1, ..., J − 1, J . The axes of the polar coordinates are determined
by the polarization direction of the electric field, which is taken along the
z-direction. The quantum number M refers to the projection of the angular
momentum J on the z-axis.

One important point about the M -substates is that they interact dif-
ferently with the laser pulses - the kick strength P will effectively vary
for different M -substates. For multiply-degenerate states the kicks are felt
weaker if |M | approaches its maximal value J . In this case the corresponding
angular momentum vector is oriented closer to the z-axis, and the rotating
molecules are thus confined closer to the xy-plane. One can see from Eq. 2.8
that for such polar angles θ the interaction potential decreases.

Another difference between M -sublevels has its origins in the “dynamic
Stark effect”, i.e. the AC Stark effect, which leads to a shift in the energy
levels due to the non-resonant laser field. During the interaction of the
laser pulse, the M -degeneracy is lifted, because the energy shift will vary
for different M -substates.

It is obvious now, that in the experiments it is important to lower the
initial rotational temperature to have fewer M -sublevels populated. This
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2.3. Laser-kicked molecular rotor

will result in a more accurate extraction of the molecular wave function (de-
tails in Sec. 6.3.2) because of a reduced averaging over states with different
dynamics.

2.3.7 Revival time

The discreteness of the rotational energy spectrum leads to periodic dynam-
ics of any wave packet and the so called quantum revivals [13], which have
been observed in many different contexts, e.g. Refs [144, 108, 45, 141] to
give just a few examples.

The revival time is inversely proportional to the second derivative of the
rotational energy E(J) with respect to the angular momentum J [105, 151].
In the case of a rigid rotor we obtain

Trev =
1

2cB
, (2.27)

an expression that is independent of the rotational quantum number J .
Fast molecular rotation leads to a non-negligible centrifugal distortion and
therefore a J-dependent revival time, which will become important for high
quantum numbers.

2.3.8 Resonance map

An ultra-short laser ‘kick’ creates a rotational wave packet. We are looking
at its dynamics and want to develop an understanding, how the wave packet
will change once it is exposed to a series of periodic kicks and how it depends
on the periodicity. The following arguments are based on the perturbative
regime of light-molecule interaction.

The first laser pulse in a sequence of pulses induces a coherent rota-
tional wave packet |ψ(t) 〉 =

∑
J cJ e

−iEJ t/~ |J〉. Consider a wave packet of
only two states, |J〉 and |J + 2〉. It can be assigned a classical rotation pe-
riod τJ = 2h (EJ+2 − EJ)−1 with Planck’s constant h. Given a symmetric
molecule (e.g N2 or O2), the wave function of such a coherent superposi-
tion repeats itself every integer multiple of a half-rotation, i.e. at times
TJ = NJτJ/2 with NJ ∈ N. Figure 2.5 indicates all these time moments TJ
for all the (|J〉, |J + 2〉) wave packets. Black and red markers represent the
two independent rotational progressions of even and odd quantum numbers
J , respectively. Note that due to the nuclear spin statistics some spin iso-
mers may not be allowed, e.g. in oxygen 16O2 even values of J are prohibited

23



2.3. Laser-kicked molecular rotor

0 0.2 0.4 0.6 0.8 1 1.2

Time  ( T/Trev)

0

2

4

6

8

10

R
o
ta

ti
o
n
a
l 
q
u
a
n
tu

m
 n

u
m

b
e
r

J

Figure 2.5: Resonance map: Markers indicate all time moments at which
a coherent rotational wave packet consisting of two states, |J〉 and |J + 2〉,
completes half a classical rotation τJ . Time is expressed in units of the
molecular revival time Trev. The dotted, dashed and solid lines indicate the
third, half and full quantum resonance, respectively.

(Sec. 2.3.9). We refer to all the individual times TJ as “fractional quantum
resonances” and we address the plot itself as the “resonance map”.

For a rigid rotor, EJ = hcBJ(J + 1) and the rotational period becomes
τJ = Trev(J + 3/2)−1, with the J-independent revival time Trev = (2cB)−1.
The map is universal since it is plotted as a function of the dimensionless
time T/Trev. For a non-rigid rotor, however, the map will depend on the
choice of the molecule and its centrifugal terms. In Fig. 2.5 for the low
quantum numbers J 6 10 the effect of centrifugal distortion is not yet
visible.

Every laser pulse in a periodic sequence will interfere with the rotational
wave packet created by the previous pulses. Again, we start by looking at
the excited (|J〉, |J + 2〉) wave packet between two neighbouring states. If
the time T between two consecutive laser kicks coincides with a fractional
resonance TJ , then this wave packet has evolved by NJ = T/Trev× (2J + 3)
half rotations during its free evolution. This means that the next laser pulse
‘kicks’ the molecule in the same direction as the previous pulse, enhancing
the rotational excitation of the corresponding wave packet. At all other times
T 6= TJ the period of the pulse train is out of phase with the (|J〉, |J + 2〉)
wave packet and the rotational excitation is suppressed.
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2.3. Laser-kicked molecular rotor

Quantum resonance

At the timing known as the quantum resonance, when T = Trev, all wave
packets perform an integer number of half-rotations with NJ = 2J + 3. In
Fig. 2.5, these times TJ = (2J + 3)× τJ/2 lie on a vertical trajectory (solid
line). Thus, a resonant pulse train with a period T = Trev is equally efficient
in exciting all molecules in the ensemble, regardless of their angular momen-
tum [192]. However, this is only true for rigid rotors. For non-rigid rotors,
the quantum resonance Trev becomes J-dependent and, therefore, impossi-
ble to satisfy for all quantum states simultaneously. In our map, the dots
will no longer line up along a vertical line above T/Trev = 1. Consequences
of the centrifugal distortion are investigated in Sec. 5.3 and 5.4.

Fractional quantum resonance

Back to Fig. 2.5, we point out that all the (|J〉, |J+2〉) wave packets complete
an integer number of half-rotations at different time moments. However,
there are times when several wave packets corresponding to different values
of J are in phase simultaneously. Those are called “fractional resonances”,
because a fraction of the total wave function revives to its initial state. An
example of a lower-order fractional resonance, T/Trev = 1/3, is plotted as the
dotted line. Here, the quantum states J = 0, 3, 6, ... are resonantly excited,
as they complete NJ = 1, 3, 5, ... half rotations, respectively. All other states
are out of phase. At higher-order fractions with TJ/Trev = NJ/(2J + 3),
fewer states are simultaneously resonant.

The resonance map, although quite simple, proves to be very helpful in
the explanation of many observations. In section 5.1, we present Raman
spectra after the excitation with different periodic pulse trains. By tuning
the train period and having a detection accuracy of individual rotational
states, we experimentally verify the resonance map of Fig. 2.5. The study
of the kicked rotor crucially depends on the choice of the pulse train period,
in particular whether it coincides with a fractional resonance or not. We
will return to the resonance map in several instances, e.g. in Sec. 5.2 to
study periodic excitations on fractional quantum resonances, in Sec. 5.3 to
investigate periodic excitation around the full quantum resonance, and in
chapters 6 & 7 to examine the phenomenon of dynamical localization via
off-resonant periodic excitation.

25



2.4. Correspondence to crystalline solids

Be αe B D Trev ∆α

[cm−1] [cm−1] [cm−1] [cm−1] [ps] [Å
3
]

14N2 1.9982 0.0173 1.9896 5.76E-6 8.383 0.69
16O2 1.4376 0.0159 1.4297 4.84E-6 11.666 1.08

Table 2.1: Molecular constants and parameters for N2 and O2.

2.3.9 Choice of molecule

All experiments are conducted with either oxygen or nitrogen molecules
for several reasons: (1) Our Raman detection technique (see Sec. 4.1) is
capable of resolving individual rotational states, whose spacing is given by
the energy separation of neighbouring rotational states and is bigger for
lighter molecules. (2) The revival times Trev are on the order of 10 ps, which
allows the generation of multiple pulses in a periodic sequence via our pulse
shaping techniques (see Sec. 3.3). (3) Both molecules are non-toxic gases
that are easy and safe to handle in the laboratory.

Necessary molecular constants are taken from the NIST Chemistry Web-
book [81] and shown in the table with other derived parameters. The rota-
tional constant B = Be−αe(v+1/2) is calculated for the vibrational ground
state v = 0. Higher order terms, beyond the centrifugal constant D, are not
necessary. And to calculate the kick strength of our laser pulses we require
the polarizability anisotropy ∆α, whose values are taken from Ref. [8].

Molecules can often exist in different states, called nuclear spin isomers.
These are found by evaluating the symmetry of the total wave function with
respect to the exchange of two identical nuclei. Oxygen 16O has a zero
nuclear spin (I = 0). Oxygen molecules (16O2) can therefore only exist in
odd rotational states. The nuclear spin of 14N is I = 1 which yields a 2:1
statistical ratio of even to odd rotational states in molecular nitrogen (14N2)
[79].

2.4 Correspondence to crystalline solids

In this section we outline the similarities of our kicked rotor system to that of
a seemingly unrelated crystalline solid, which was first analysed by Fishman
and coworkers in 1982 [52].

We start with the solid state system of an electron in a periodic crystal,
Sec. 2.4.1, to introduce the important concepts of reciprocal lattice, Brillouin
zone and Bragg reflection. Note, that in this work we will always refer to a
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one-dimensional lattice, where vectors like ~k, ~r, ... reduce to scalars k, r, ....
Bloch’s theorem (Sec. 2.4.2) and Floquet’s theorem (2.4.3) are essential tools
to solve Schrödinger equations for periodic problems. The first one is applied
to periodic potentials like the electron in a lattice, while the latter one
simplifies periodic time-dependent problems like the QKR.

The physical framework in all of our efforts is the tight-binding model.
In Sec. 2.4.4 we go over the simplest case for a one-dimensional periodic
lattice with only nearest neighbour interactions. Introducing disorder into
the system yields the Anderson model, subject of Sec. 2.4.5. We explain
the emerging phenomenon of Anderson localization in its original context of
electron conduction in metals. Finally, we are ready to make the connection
back to the QKR in Sec. 2.4.6. We derive how a quantum rotor in a lattice
of angular momentum states can be mapped onto a quantum particle in
a one-dimensional lattice. In other words, we show how the QKR can be
expressed in the formalism of the Anderson model. Section 2.4.7 describes
some specific details for our system of laser-kicked molecular rotors.

2.4.1 The one-dimensional lattice

Free electrons are described by plane waves eikr with energies E(k) =
~2k2/2m, where k is the wave vector. Once an electron is inside a periodic
lattice of atoms, its dynamics becomes ‘more interesting’. The equilibrium
distance between identical atoms is given by the lattice constant a, which
establishes a periodicity r → r + a. The relationship between the energy of
an electron (or frequency ω = E/~) and its wave vector k is described by a
dispersion relation, which is also periodic, but in k → k + 2π/a. We stress
the importance: Any system that is periodic in real space with period a, will
also be periodic in reciprocal space with periodicity 2π/a [161, 9, 91]. We
define a lattice vector R = na and a reciprocal lattice vector G = m2π/a
with integers n,m.

The unit cell in the reciprocal lattice is called a Brillouin zone. The
excitation spectrum of waves in periodic media is given as the dispersion
relation E(k). The entire spectrum can be described in the first Brillouin
zone, which spans from −π/a 6 k 6 π/a [161]. A quantity that will be of
importance later is the group velocity vG = dω/dk: it is the speed at which
a wave packet moves. The group velocity vanishes (vG = 0) at the Brillouin
zone boundary ±π/a [161, 9, 91]. Here, the electrons, i.e. plane waves, are
scattered back due to a mechanism called Bragg reflection [161, 9, 91]. This
feature of wave propagation in periodic lattices leads to band gaps, i.e. there
are energies in the spectrum that do not support any wave-like solutions of
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Figure 2.6: Dispersion relation of the one-dimensional tight-binding model.

the Schrödinger equation. In solid state physics, the band structure is used
to phenomenologically describe the existence of metals, semi-conductors and
insulators. We will be able to connect some of these ideas to the angular
momentum lattice of a kicked rotor.

An exemplary dispersion relation, illustrating the concepts of reciprocal
space and Brillouin zone, can be seen in Fig. 2.6. Shown is the solution
to the one-dimensional tight-binding model with only nearest neighbour
interactions, which will be discussed later in the corresponding Sec. 2.4.4.

2.4.2 Bloch’s theorem

A Bloch wave ψk is the solution of the Schrödinger equation for a periodic
potential, i.e. an electron in a periodic lattice. Bloch’s theorem states that
all Bloch functions can be expressed as a plane wave multiplied by a periodic
function uαk (r) with the period a of the lattice [162, 161, 91, 9].

ψαk (r) = eikr uαk (r)

uαk (r) = uαk (r + a) .
(2.28)

The subscript k is referred to as “quasi-momentum”; it can always be chosen
within the first Brillouin zone. Note that ~k is not the momentum of an
electron but rather a crystal momentum. It can be seen as a quantum
number describing the electron’s state within a band α [162, 9]. Each k
can present different states α that belong to different bands. An important
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relation follows as

ψαk (r +R) = eik(r+R) uαk (r +R) = eikReikruαk (r) = eikR ψαk (r) , (2.29)

where we used the invariance of uαk towards lattice translations.

Although the atomic potentials that each electron sees are strong, the
electron itself still moves like a plane wave through the crystal, modulated
by a periodic function. An important difference however, is that the electron
momentum has been replaced by a quasi-momentum of the lattice [161].

2.4.3 Floquet’s theorem

For time-periodic problems, the Floquet formalism [58] can be utilized to

simplify the time-dependent Schrödinger equation H(t)ψ(t) = i~∂ψ(t)
∂t . It

will become obvious that it is closely related to the Bloch formalism used
with periodic lattices. Since the QKR presents a periodic problem, we will
make use of Floquet’s theorem.

If the Hamiltonian H(t) = H(t+T ) is invariant under a time translation
t → t + T , then according to Floquet’s theorem [78], a solution exists such
that

ψα(t) = e−iωαt uα(t)

uα(t) = uα(t+ T ) .
(2.30)

The eigenstates ψα(t) are known as Floquet states with periodic Floquet
modes uα(t) and the period T . In direct analogy to the quasi-momentum
k of Bloch states, the Floquet states are characterized by a quasi-energy
Eα = ~ωα [189]. Looking at Eq. 2.30, we know that the eigenfunctions can
be uniquely defined in a time window of width ω = 2π/T interval. We
define the first Brillouin zone of the reciprocal lattice as −π/T 6 ωα 6 π/T .
For different Floquet modes uα′(t) = uα(t) exp(−inωt) with integers n we
merely get shifted energies Eα′ = Eα + n~ω, that can be mapped into the
first Brillouin zone. Therefore, the subscript α corresponds to a whole class
of solutions with all α′ for n = 0,±1,±2, ... .

In other words, if the Hamiltonian is periodic, we can find solutions of
the Schrödinger equation that are periodic in time up to a phase factor [189]

ψα(t+ T ) = e−iωαT ψα(t) . (2.31)

All linearly independent states with different quasi-energies (Eα′ 6= Eα+n~ω)
form a complete basis set [189]. Therefore, the total wave function is a
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linear combination of all quasi-energy states |Ψ(t) 〉 =
∑

α cα|ψα(t) 〉 =∑
α cα e−iωαt |uα(t) 〉. The time-independent amplitude coefficients are

known at time zero cα = 〈uα(0) |Ψ(0)〉.
Owing to the periodicity of the problem, it is often advantageous to use

a stroboscopic description. A one-cycle propagator U is defined such that

U(t+ T, t) ψα(t) = ψα(t+ T ) . (2.32)

Substituting the right-hand side by Eq. 2.31 reveals that the Floquet states
are eigenstates of the one-cycle propagator

U(t+ T, t) ψα(t) = e−iωαT ψα(t) . (2.33)

This means that the Floquet states remain unchanged after each period
apart from a phase factor. In practice, we numerically calculate the propa-
gator U(t+ T, t) and diagonalize it to find the quasi-energies.

2.4.4 Tight-binding model

We have a one-dimensional periodic chain of atoms located at sites r with a
spacing a. The potentials are so large that the electrons spend most of their
time close to the core and only occasionaly jump to a neighbouring atom
- they are tightly bound [162]. Here, we go through the deviation of the
most basic tight-binding model, following Ref. [161]. This serves to estab-
lish the formalism and our notations. At multiple occasions in this thesis we
will map the kicked rotor model onto such a one-dimensional tight-binding
model.

The atomic wave function (atomic orbital) φm(r) of the m-th atom sat-
isfies the Schrödinger equation Hat φm(r) = Eat φm(r), where Hat is the
Hamiltonian for an isolated atom. In a lattice, however, the electron sees
not only the atomic potential but also a contribution V (j) from neighbouring
atoms j 6= m. Due to the strong binding these contributions are considered
small. The tight-binding Hamiltonian for the m-th atom is

H = Hat +
∑
j 6=m

V (j) . (2.34)

We assume that the wave function of the one-dimensional lattice can be
expressed as a linear combination of all individual atomic wave functions

|Ψ 〉 =
∑
m

cm|φm 〉 . (2.35)
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In the case of isolated atoms the orbitals are orthogonal 〈φn |φm〉 = δn,m, but
when the atoms get closer - as it is the case in a lattice - the orthogonality
is lifted. Fortunately, the solution of the problem is not much affected
by whether the wave functions are orthogonal or not. Thus, we assume
orthonormal orbitals for simplicity [161].

We try to solve the time-independent Schrödinger equation H|Ψ 〉 =
E|Ψ 〉. Using the linear combination of states and the orthogonality, we
arrive at an effective Schrödinger equation∑

m

Hn,m cm = E cn , (2.36)

with the matrix elements Hn,m = 〈φn |H|φm 〉.
In the simplest model of only nearest-neighbour interactions, we set∑
j 6=m V

(j)
n,m = −W for n = m ± 1. This describes a hopping of the elec-

tron from the m-th atom to the n-th via the interaction of all j 6= m atoms.
We will refer to W as the hopping term (dimension of energy). Further,∑

j 6=m V
(j)
n,m = T0 for n = m, which presents an on-site energy shift. We will

refer to T = T0 + Eat as the on-site energy. The matrix elements of this
Hamiltonian are

Hn,m = Tδn,m −W (δn+1,m + δn−1,m) . (2.37)

This model is in accordance with Bloch’s theorem (Sec. 2.4.2). In fact,
one can show that the wave function Ψ(r) is indeed a Bloch wave that
matches the periodicity of the lattice φ(r) = φ(r + R) for all lattice trans-
lations R [162]. The tight-binding approach is often used to approximate
electronic band structures in solids.

Solution

The ansatz cn = exp(−ikna) presents a solution to the effective Schrödinger
equation (Eq. 2.36 and 2.37) [161]. The obtained energy spectrum

E(k) = T − 2W cos(ka) (2.38)

is periodic in k-space with the period 2π/a 5. Figure 2.6 shows the dispersion
relation, with the boundaries of the first Brillouin zone marked by dashed
vertical lines. Electrons only have energies in a band spanning a width

5We will return to this dispersion relation in Sec. 5.3 when we address the phenomenon
of Bloch oscillations.
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of 4W . At a hopping strength W = 0, we are at the atomic limit. For
increasing W , the atomic orbital spread into bands.

The implications of this model become obvious when we compare the
energy Ee = ~2k2

2me
of a free electron with mass me, to the dispersion rela-

tion. For ka � 1 equation 2.38 is parabolic E(k) ∝ Wa2k2. This suggests
that electrons near the bottom of the band move like free electrons with an
effective mass mW = ~2

2Wa2
[161]. The larger the hopping term, the smaller

the effective mass, and the more freely move the electrons.

2.4.5 Anderson model

We showed that for a periodic (infinite) lattice the electrons can move quasi-
freely through the entire lattice. The system experiences no attenuation due
to scattering, because the periodic order of scatterers is responsible for a
constructive interference of all scattering events. This will no longer be true
if we introduce disorder into the lattice.

The Anderson model describes a quantum particle in a lattice where all
the lattice sites m have random potentials Tm. As in the standard tight-
binding model the hopping term Wr is responsible for the transfer of the
particle to the r-th neighbour. The probability amplitude um to find the
particle at site m is given by the Schrödinger equation

Tm um +
∑
r

Wr um+r = 0 . (2.39)

All solutions um, belonging to different quasi-energies, are localized eigen-
states. This means that rather than being extended Bloch states that spread
over the full periodic lattice, illustrated in Fig. 2.7(a), the eigenstates are
now exponentially localized in a disordered lattice with um ∼ e−|n−m|/l,
illustrated in Fig. 2.7(b). The probability amplitude to find a particle at
site m away from the localization center at n falls off exponentially with a
characteristic localization length l.

A simplistic explanation for this intriguing effect can be given as follows.
The solutions of the Anderson model are quasi-energy states as we have
shown above. The initial system is a wave packet comprised of a finite
number of states. At any point of time, we can only populate quasi-energy
states that overlap with the initially populated states. It is known that
nearly-identical quasi-energies localize at different sites, whereas states with
similar localization centers (compared with the localization length) have
different quasi-energies [52, 76]. We conclude that the final wave packet will
have a discrete energy spectrum with a finite amount of peaks. The wave
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(a) (b)
𝑢𝑚
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n+1nn-1… … n+1nn-1… …m m

Figure 2.7: (a) Extended Bloch waves (red curve) describe a quantum parti-
cle in a periodic lattice (black curve), with lattice sites m. (b) The quantum
particle is localized in a disordered lattice (black curve), with a probability
(red curve) to find it at site m, which is decreasing exponentially away from
the localization center at m = n. The disorder in this so-called bi-chromatic
lattice is produced by adding two periodic lattices of incommensurable pe-
riods: here, the one (black curve) from (a) and a second weaker one (blue
curve).

packet dynamics associated with such a spectrum must be quasi-periodic.
An initial diffusive spreading of the wave packet will turn into a quasi-
periodic motion after a certain time, approximately when the wave packet
spread has reached the localization length [77]. An unbounded growth of
the wave packet is prohibited by Anderson localization.

Anderson localization in one-dimension

The theory of Anderson localization originated more than 50 years ago to
describe electron conduction in solid states [6]. Nowadays, the effect has
been observed in many different materials using classical as well as matter
waves, and the same theory has been applied to other physical systems,
for instance the kicked rotor. A brief overview will be given later in the
motivation of chapter 6. Here, we discuss the phenomenon in disordered
electronic systems, for reviews see Ref. [97, 98].

Electrons do not scatter on ions of a regular lattice, scattering only occurs
at random impurities, resulting in a diffusive motion of the electrons, a ran-
dom walk. In earlier models it was believed that more impurities lower the
conductivity according to Ohm’s law [9], which did not capture the real be-
haviour. The conductivity completely vanishes beyond a critical amount of
impurities [6], an effect that could only be explained with the wave character
of the electron. All scattered waves for each electron self-interfere destruc-
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2.4. Correspondence to crystalline solids

tively, such that the electronic wave function becomes spatially localized,
with the probability amplitudes falling off exponentially to the sides. An-
derson’s theory describes a disorder-induced phase transition from classical
diffusion to complete localization which prohibits any charge transport.

Anderson localization in higher dimensions

In a one dimensional disordered system all quantum states are localized
[6, 7]. The generalization of Anderson’s theory to higher dimensions took
another 15 years [1]. The formulation of a scaling theory of localization in
1979 [2] was another milestone. A scaling parameter was introduced that
governed the dependence of the localization transition on the size of the
material. It was proven that any one- or two-dimensional system localizes
regardless of the disorder strength, provided the system size is large enough,
a fact that is not true in three-dimensions. Here, the disorder strength
determines a critical energy, called the mobility edge. Energy states can
either be localized (insulator) or extended (conductor) depending on the
magnitude of the energy with respect to the mobility edge [153] 6.

The observation of Anderson localization in a solid lattice is extremly
hard due to several decoherence mechanisms, e.g. lattice vibrations or
electron-electron interactions. Signs of “weak localization” (reduced con-
ductivity) have been demonstrated, but “strong localization” (suppressed
conductivity) has not been observed in atomic crystals, read the review in
Ref. [98].

2.4.6 Mapping the kicked-rotor onto the Anderson model

In the seminal paper from 1982, Fishman et.al. gave a mathematical proof
that the periodically kicked quantum rotor can be mapped onto the Ander-
son problem of electronic transport in a one-dimensional disordered lattice
[52], drawn in Fig. 2.8(a). The equivalent rotational lattice in Fig. 2.8(b) is
built of the “J-sites” with the occupation probabilities |cJ |2 known through
the rotor wave function |ψ 〉 =

∑
J cJ | J 〉. We are going to outline this map-

ping for the relevant case of laser-kicked molecules. Our derivation is based
on the original work of a planar rotor [52, 76], also see the book on quan-
tum chaos by Haake [77]. The extension to real three-dimensional rotors
has been made for the case of linear molecules exposed to either periodic
microwave fields [28] or ultra-short laser pulses [63].

6In general, each energy band of a disordered solid has two mobility edges: The ex-
tended states are around the center of each band with the localized states in the wings.
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(a) (b)

J+4J+2JJ-2J-4n+2n+1nn-1n-2

m

Figure 2.8: (a) Quantum particle in a disordered lattice of lattice sites m.
(b) Quantum rotor as an angular momentum lattice with rotational sites J .

We are investigating linear molecules exposed to periodic laser pulses.
The pulses are approximated by δ-functions to simplify the mathematics;
we refer to Ref. [28, 63] for a treatment with real pulses. The wave function
immediately before an instantaneous kick is labelled as ψ− and the one after
a δ-kick is labelled ψ+. Due to the periodicity of the kicking, the solutions
of the time-dependent Schrödinger equation ψ± must be Floquet states ψ±α .
We look at the evolution over one period T in two independent steps. In
the first step, the time between kicks is a free evolution when the Floquet
state accumulates a phase. The Floquet state is represented in the basis of
the free rotor (spherical harmonics | J,M 〉) with the Hamiltonian H0

ψ−α (t+ T ) = e−iH0T/~ ψ+
α (t) = e−iEαT/~ ψ−α (t) . (2.40)

The second part of the equation takes advantage of Floquet’s theorem, see
Eq. 2.31, with the quasi-energy Eα. We define the phase φ = (Eα −H0)T/~
and reorganize to get

ψ−α (t) = eiφ ψ+
α (t) (2.41)

u−α = eiφ u+
α . (2.42)

In Eq. 2.42 we rewrote the Floquet states via ψ±α (t) = e−iEαt/~ u±α (t), see
Eq. 2.30, and note that it is sufficient to study u±α [52, 76]. We dropped the
t-dependence in the notation of u±α for simplicity. In the second step, the
evolution from immediately before to immediately after the δ-kick is given
as

ψ+
α (θ, t) = eiP cos2 θ ψ−α (θ, t) (2.43)

u+
α (θ) = eiP cos2 θ u−α (θ) , (2.44)
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which is written in the angle representation (Eq. 2.21) 7. To show the
connection to the Anderson model we need to use the one-cycle propagator
U , which was introduced earlier in Eq. 2.33. We find [28, 63]

U u±α = e−iEαT/~ u±α (2.45)

U = e−iH0T/~ eiP cos2 θ . (2.46)

Next, we have to transform Eq. 2.42 into the angle representation, which can
be done by means of the propagator. We start with the reverse of Eq. 2.44
e−iP cos2 θ u+

α (θ) = u−α (θ) and propagate it by one cycle by multiplying U
from the left side [77]. The left-hand side collapses to e−iH0T/~ u+

α (θ) because
of Eq. 2.46 and the right-hand side yields e−iEaT/~ u−α (θ) due to Eq. 2.45.
The combination yields the desired expression in angle representation:

u−α (θ) = eiφ u+
α (θ) . (2.47)

A new vector is defined uα(θ) = 1
2 [u+

α (θ) + u−α (θ)] as well as an Hermitian
operator W (θ) [52, 76, 77], its relevance will be discussed shortly

uα(θ) =
u+
α (θ)

1 + iW (θ)
=

u−α (θ)

1− iW (θ)
. (2.48)

Using these relations, we substitute u±α (θ) in Eq. 2.47.

[1− iW (θ)] uα(θ) = eiφ[1 + iW (θ)] uα(θ) , (2.49)

which is followed by a separation into two terms, with and without W (θ)
dependence

i
1− eiφ

1 + eiφ
|uα 〉+W (θ) |uα 〉 = 0 . (2.50)

The states are |uα 〉 ≡ uα(θ) in angle representation and | J,M 〉 in angular-
momentum representation, which are the eigenstates of the free rotor with
EJ the eigenvalues, H0| J,M 〉 = EJ | J,M 〉. Per definition i1−eiφ

1+eiφ
= tan(φ2 )

and we relate the tangent function to an energy T
(α)
J ≡ tan(φ2 ). All that is

left to do is a projection onto the angular momentum states

〈 J,M |T (α)
J |uα 〉+ 〈 J,M |W (θ)|uα 〉 = 0

T
(α)
J 〈J,M |uα 〉+

∑
J ′

〈 J,M |W (θ)| J ′,M 〉〈 J ′,M |uα〉 = 0 .
(2.51)

7A verification of this equation and details were discussed earlier in Sec. 2.3.6.
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Since the quantum number M does not change in the interaction (Sec. 2.3.6)
it is treated as a parameter.

T
(α)
J u

(α,M)
J +

∑
J ′

W
(M)
J,J ′ u

(α,M)
J ′ = 0 . (2.52)

The mapping between Anderson’s tight binding model and the periodically

kicked rotor is complete. The equation for u
(α,M)
J = 〈J,M |uα 〉 matches

the Schrödinger equation of a quantum particle in a lattice with the on-site

energy T
(α)
J and the hopping term W

(M)
J,J ′ [63]

T
(α)
J = tan

[
(Eα − EJ)T

2~

]
(2.53)

W
(M)
J,J ′ = 〈 J,M |W (θ)| J ′,M 〉 . (2.54)

The probability amplitude to find the quantum particle at site J is given by

u
(α,M)
J . Considering Eq. 2.44 and 2.48 we can express the kicking operator

in terms of W (θ) as [77, 28, 63]

eiP cos2 θ =
1 + iW (θ)

1− iW (θ)
, (2.55)

which tells us more about the ‘hopping operator’ W (θ) = tan
[
P cos2 θ

2

]
.

2.4.7 Anderson model of the laser kicked rotor

We evaluate the details of the Anderson model (Eq. 2.52) in the case of
linear molecules that are periodically kicked by ultra-short laser pulses. The
periodic lattice of this true quantum rotor are the angular momentum states
J . The effective lattice constant is ∆J = 2 because only states of the same
parity are coupled. The energies of the rotational states are EJ = hc[BJ(J+
1)−DJ2(J+1)2], with the rotational constant B and the centrifugal constant
D. And the on-site energy term (Eq. 2.53) is given by T (J) and φ(J)

T (J) = tan[φ(J)]

φ(J) = πT

(
Eα
h
− cBJ(J + 1) + cDJ2(J + 1)2

)
=
τ

4

(
Eα
hcB

− J(J + 1) +
D

B
J2(J + 1)2

)
,

(2.56)
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as a function of the period T , or alternatively, as a function of the effec-
tive Planck constant τ = 2πT/Trev = 4πcBT . The molecular constants B
and D are irrational numbers, which means that under most conditions the
values of φ(J) modulus π uniformly cover all angles. Consequently, the en-
ergies TJ that follow from the nonlinear tangent function are distributed in
a pseudo-random fashion. The result is dynamical localization in the angu-
lar momentum space [59, 63]. Chapter 6 is dedicated to the experimental
investigation of this phenomenon.

When we excite the rotor with a period that coincides with the quantum
resonance at T = Trev = (2cB)−1, the energies TJ are not pseudo-random
anymore. However, this statement applies only to small rotational states J ,
when we can neglect the centrifugal term

φrev(J) =
π

2

(
Eα
hcB

− J(J + 1)

)
. (2.57)

The phase φrev(J) modulo π is independent of J and the on-site energy
of neighbouring states will be constant. Similar non-random energies are
obtained at fractional resonances T = p

qTrev with integers p, q. All these
resonance excitation scenarios are studied in chapter 5. In section 5.3 we
will investigate how the localized states under non-resonant excitation turn
into extended Bloch states when we tune to the quantum resonance. The
phenomenon of Bloch oscillations will be demonstrated.

We summarize the mapping between the one-dimensional Anderson model
and the QKR and emphasize the connections and differences in table 2.4.7.
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Electron in a
one-dimensional disordered

lattice

Quantum kicked rotor
(off-resonant)

lattice in real space ladder of rotational states

stationary potential time-dependent potential

hopping strength kick strength

random disorder of on-site
energy

pseudo-random rotational
on-site energy

Anderson localization in
real space

dynamical localization in
angular momentum space

interactions between
electrons, phonons

non-interacting

Table 2.2: Comparison of the electron in a disordered lattice versus a quan-
tum kicked rotor.
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Chapter 3

Techniques I: Generation of
a long and high-energy
femtosecond pulse sequence

Series of ultra-short laser pulses, also known as “pulse trains”, have found
widespread use in the field of quantum coherent control of matter with laser
light (for a recent review of this topic, see [177] and references therein).
Numerous applications require multiple pulses of relatively high intensity,
on the order of 1013 to 1014 W/cm2, to attain the regime of strong-field
interaction with each pulse, just below the damage threshold of the ma-
terial system under study. Using coherent control of molecular rotation
- an area of our own expertise - as only one representative example: Se-
quences of intense ultra-short pulses have been key in enhancing molecu-
lar alignment [19, 101, 41] and aligning asymmetric top molecules in three
dimensions [102, 139], selective excitation of molecular isotopes and spin
isomers [54, 55], initiating uni-directional rotation [57, 90, 193] and control-
ling gas hydrodynamics [188]. A series of recent works [192, 64, 88] has
used high-intensity pulse trains to study the quantum δ-kicked rotor. The
great utility of pulse trains stems from two main factors. First, by matching
the timing of pulses in the train to the dynamics of the system of inter-
est, e.g. the vibrational or rotational period of a molecule, one can often
significantly improve the selectivity of excitation. Second, the ability to re-
distribute the energy among multiple pulses without losing the cumulative
excitation strength enables one to avoid detrimental strong-field effects, such
as molecular ionization and gas filamentation.

There are two common techniques to produce a pulse train with vari-
able time separation between transform-limited (TL) pulses. In the first
technique, the incoming laser pulse is split into 2n pulses using n nested
Michelson interferometers. Even though sequences of up to 16 pulses [160]
have been generated using this method, the scheme becomes increasingly
more difficult to implement with the increasing value of n. In addition
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Chapter 3. Techniques I: Generation of pulse sequences

the control over the pulse timing is rather limited in that it cannot be
changed independently for each individual pulse in the train. Similarly lim-
ited flexibility is characteristic of a pulse splitting method based on stacking
a number of birefringent crystals [195]. The second common approach is
based on the technique of femtosecond pulse shaping where the spatially
dispersed frequency components of the pulse are controlled in phase and
amplitude [179, 47], or via the direct space-to-time conversion [100]. This
offers much higher flexibility at the expense of being limited to the rela-
tively low energy trains. The latter limitation is due to both the damage
threshold of a typical pulse shaper, and also the necessity to block multiple
spectral components in order to generate a train of pulses in the time do-
main. Phase-only shaping has been often used to create a series of pulses
without the loss of energy [181, 182, 46, 140, 134], but in this case, the dis-
tribution of the pulse amplitudes within the train is uneven and no control
over this distribution is available.

Our objective was to establish a technique to generate femtosecond pulse
trains, which simultaneously satisfies the following specific characteristics:
(1) consist of a large number of transform-limited pulses; (2) exhibit a rel-
atively flat amplitude envelope; (3) can be easily tuned in terms of the
timing of the constituent pulses; and (4) carry energies in excess of 100 µJ
per pulse. The method that we developed is based on the combination of a
pulse shaper, which provides the often required flexibility in controlling the
timing and amplitudes of individual pulses on the time scale of 50 ps, and a
set of Michelson interferometers, which enables extending the overall length
of the train to much longer times. Key to this approach is the integration of
a multi-pass amplifier (MPA), which compensates the energy loss during the
pulse shaping stage. We note that although amplification of shaped pulses
is commonly used in chirped-pulse amplifiers [48, 131], and has also been
employed to amplify pulse sequences [109, 47, 49, 196], pulse trains with the
above mentioned specifications have not been demonstrated before.

This chapter presents all the optical components of our setup and ex-
plains all the details necessary to produce the above motivated pulse se-
quences. First, we introduce the representation of ultra-short pulses in the
frequency and time domains, as well as the mathematical concepts of pulse
shaping in Sec. 3.1. Experimental details about the laser system are given
in Sec. 3.2, where we also elaborate on a technique to characterize our fem-
tosecond pulses. This will be of great importance to confirm the quality and
accuracy of the generated pulse trains. Section 3.3 deals with pulse shap-
ing via a femtosecond pulse shaper. We explain the optical setup, which is
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based on spatial light modulation, and give details of how the generation
of pulse sequences is implemented. Section 3.4 is about pulse shaping by
means of Michelson interferometers. This is followed by the description of
a multi-pass amplifier in Sec. 3.5 which is crucial to reach high-intensity
pulse trains. Besides technical considerations, we discuss the performance
and limitations of all essential building-blocks: pulse shaper, Michelson in-
terferometer and MPA. The versatility of our techniques is demonstrated
with various different pulse trains, e.g. a long pulse train consisting of 84
equally strong pulses.

3.1 Laser pulses and pulse sequences

We establish the mathematical framework and our notation to work with
ultra-short pulses. We show the connection between spectral and temporal
representation via a series of diagrams for different pulse shapes: transform-
limited pulses (Sec. 3.1.1), frequency-chirped pulses (Sec. 3.1.2) and pulse
sequences (Sec. 3.1.3).

3.1.1 Transform-limited pulse

Ultra-short pulses are called transform-limited (TL) if their duration is at
the lower limit given by the spectral bandwidth of the pulse. This condition
is met when the time-bandwidth product is at its minimum, in other words
the spectral phase is constant across the whole spectrum of the pulse. The
ultra-short pulses of our laser system are Gaussian pulses. Here, we give
the electric field E of a Gaussian pulse whose phase φ is independent of
frequency ω

E(ω) = A0 · exp

(
−(ω − ω0)2

2Γ2

)
≡ ETL(ω) . (3.1)

The amplitude of the TL pulse is A0, the constant phase φ = φ0 has been
omitted. The Gaussian is centred around the frequency ω0 and has a band-
width of Γ. Fourier transform results in a Gaussian pulse in the time domain

E(t) = E0 · exp

(
− t2

2τ2

)
exp(iω0t) , (3.2)

with the amplitude E0 = A0Γ/
√

2π and the duration τ = 1/Γ. A larger
bandwidth will thus yield shorter pulses with higher amplitudes. The exact
derivation is given in appendix D.1.
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Figure 3.1: (a) Amplitude mask (blue line) and phase mask (red line) ap-
plied to the electric field of a TL pulse (black dashed line), shown in the
spectral domain. (b). Amplitude (blue line) and phase (red line) of the
corresponding electric field in the temporal domain. Electric fields are nor-
malized to unity.

The intensity I(t) of a pulse is proportional to |E(t)|2 and can be calcu-
lated with the expression

I(t) =
cε0
2
E(t)2 , (3.3)

where ε0 is the vacuum permittivity and c the speed of light.

To illustrate the transformation of the electric field of any laser pulse
from the spectral domain to the time domain and vice versa, we introduce a
diagram showing both domains in two separate plots. Figure 3.1 illustrates
this for a TL pulse. Panel (a) presents the electric field of a given pulse
ETL as the black dashed line, normalized to unity. The field is plotted as a
function of the wavelength λ, which is related to the frequency as ω = 2πc/λ.
The pulse has a central wavelength of 800 nm with a bandwidth of 9 nm
(FWHM), corresponding to the parameters of our Ti:Sapph laser system
8. Our approach of pulse shaping allows for the individual control of the
amplitude and the phase of all spectral components, which is done with the
help of a spatial light modulator (SLM). A detailed description of the pulse
shaper follows in Sec. 3.3. The SLM consists of two masks that are used to
implement an amplitude function ASLM, plotted as the solid blue line (left
axis, normalized to unity), and a phase function φSLM, plotted as the solid
red line (right axis, in radians). Here, for the trivial case of a TL pulse

8 For a Gaussian pulse, the expression xFWHM = 2
√

2 ln 2 xσ ≈ 2.3548 xσ is used to
convert the 1/e2 width to FWHM.
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neither amplitude ASLM(ω) = 1 nor phase φSLM(ω) = 0 are modulated.
Panel (b) displays the electric field of the shaped pulse in the time domain
E(t). It is obtained by calculating the Fourier transform of the final electric
field in the spectral domain which is given by the expression

E(ω) = ETL(ω) ·ASLM(ω) · exp[iφSLM(ω)] . (3.4)

The phase φ(t) is plotted as the solid red line (right axis, in radians) and
the amplitude A(t) as the solid blue line (left axis). For the case of a TL
pulse, shown here, the amplitude is normalized to unity. For all other shaped
pulses, shown later, the amplitude is normalized to the amplitude of the TL
pulse. This will allow an easy comparison of the absolute pulse amplitudes in
each individual pulse of different pulse trains. In the following subsections,
we will frequently revisit this type of diagram. The color coding and the
axes will always remain the same.

3.1.2 Linearly-chirped pulse

Cutting the bandwidth will lead to longer pulses. Another possibility to
stretch pulses is to introduce a quadratic phase φ(ω) = α′

2 (ω−ω0)2 with the
spectral chirp α′. This concept is used in the chirped-pulse amplification,
see Sec. 3.5.1. Now, the electric field in Eq. 3.1 acquires the additional phase
term

E(ω) = ETL(ω) · exp[iφ(ω)] (3.5)

= A0 · exp

(
−(ω − ω0)2

2Γ2
+ i

α′

2
(ω − ω0)2

)
. (3.6)

A similar Fourier transform shown in appendix D.2 yields the electric field
of a Gaussian pulse in the time domain

E(t) = E0 · exp

(
− t2

2τ2

)
exp

(
iω0t− i

α

2
t2
)
, (3.7)

with the temporal phase φ(t) = ω0t− α
2 t

2 and the temporal chirp α. These
pulses are called linearly-chirped because their instantaneous frequency changes
in a linear fashion ω(t) = dφ/dt = ω0−αt. The relation between bandwidth
and duration is given by τ2 = (1 +α′2Γ4)/Γ2 and the one between temporal
chirp α and spectral chirp α′ by α = α′ Γ2/τ2 (for details see appendix D.2).
If there is no chirp α′ = α = 0, we obtain the limit of a TL pulse. For a
non-zero chirp, the pulse duration increases with larger chirp values α′.
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Figure 3.2: (a) Amplitude mask (blue line) and phase mask (red line) for a
frequency-chirped pulse with α′ = 10.000 fs2, applied to the electric field of a
TL pulse (black dashed line, normalized to unity), shown in the spectral do-
main. (b) Amplitude (blue line, normalized to the TL pulse in Fig. 3.1) and
phase (red line) of the corresponding electric field in the temporal domain.

The interplay between the spectral and temporal domains for a linearly-
chirped pulse is shown in Fig. 3.2. To achieve such a pulse with the pulse
shaper, phase-only shaping is sufficient. This means, that we do not lose
any energy in the process; the amplitude mask ASLM(ω) = 1 does not cut
any frequencies. The energy is merely distributed over a longer time, which
explains the drop in amplitude of the stretched pulse.

3.1.3 Pulse sequences

We are interested in creating pulse sequences where each individual pulse is
a replica of the initial TL pulse with a duration of ∆tFWHM = 130 fs. In
the time domain, we design a pulse train of N pulses; N ∈ N is a natural
number. The train is strictly periodic with a period T and all pulses have
the same amplitude. We call this a flat pulse train. A schematic is shown
in Fig. 3.3. The electric field of such a sequence is described as

E(t) =
∑
k

E0 exp

(
−(t− tk)2

2τ2
+ iω0t

)
· exp

(
i
β

2
k2

)
. (3.8)

We need to sum over all N sub-pulses that are labelled with the index
k = [−N−1

2 ,−N−1
2 + 1, ..., N−1

2 − 1, N−1
2 ]. Each term in the sum describes a

Gaussian pulse at the time tk = kT , which is a TL pulse (Eq.3.2). We also
define a quadratic piecewise chirp β across all sub-pulses by adding a phase
to each k-th pulse, which depends quadratically on k. This kind of chirp

45



3.1. Laser pulses and pulse sequences
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Figure 3.3: Schematic of the amplitude (blue line) and phase (red line) of
a flat pulse train in the temporal domain with N = 5 pulses and a piecewise
quadratic chirp.

has been developed earlier in our group Ref. [154, 156] to execute a process
of piecewise adiabatic passage (PAP). In the PAP scheme, population can
be transferred in a two-level system in a stepwise adiabatic fashion. In our
work, however, the piecewise chirp β plays an important role for a completely
different reason: to reduce energy losses in the shaping process (described
in this section below).

In appendix D.3 we derive the analytic expression for the corresponding
electric field in the spectral domain

E(ω) = A0 exp

(
−(ω − ω0)2

2Γ2

)
·
∑
k

exp

(
−i(ω − ω0)tk + i

β

2
k2

)
. (3.9)

The term in front of the sum gives the TL spectrum of a single pulse ETL(ω)
as in Eq. 3.1. Evaluating the sum and making use of Eq. 3.4 we can then
retrieve the spectral amplitude ASLM(ω) and the spectral phase φSLM(ω)
needed to obtain the input pulse train

ASLM(ω) · exp(iφSLM(ω)) =
∑
k

exp

(
−i(ω − ω0)tk + i

β

2
k2

)
. (3.10)

Sequences with zero phase

First, we look at the simpler case of β = 0, when all pulses in the sequence
have a zero phase offset with respect to the carrier oscillations ωt. Figure 3.4
plots the spectral and temporal domains of three different pulse trains to
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Figure 3.4: (a,c,e) Section of the amplitude mask (blue line) and phase mask
(red line) for three different pulse trains, applied to the electric field of a TL
pulse (black dashed line, normalized to unity), shown in the spectral domain.
(b,d,f) Amplitude (blue line, normalized to the TL pulse in Fig. 3.1) and
phase (red line) of the corresponding electric fields in the temporal domain.
The three sequences are characterized by the following pulse numbers and
periods: (a,b) N = 5 & T = 1 ps, (c,d) N = 5 & T = 2 ps and (e,f) N = 9
& T = 1 ps.
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3.1. Laser pulses and pulse sequences

visualize their dependence on the parameters N and T . From top to bottom,
we have a sequence of 5 pulses separated by 1 ps (a,b), followed by 5 pulses
with twice the period of 2 ps (c,d) and at last a train of 9 pulses again
spaced out by 1 ps (e,f).

To understand the Fourier transformation from one domain to the other,
we make use of the convolution theorem, see Appendix D.4. A periodic pulse
train with a finite number of N pulses that are all of equal amplitude can
be described as the multiplication of an infinite pulse train with period T
times a squared envelope of width NT . The Fourier transform of a square
function yields the sinc function whose width δω is inversely proportional
to NT . We also know, that the spectrum of an infinite pulse train is a
frequency comb where the separation of the comb teeth ∆ω is inversely
proportional to the train period T . Then, according to the convolution
theorem (Eq. D.21) this point-wise multiplication in the time domain is
equal to the convolution in the frequency domain. Hence, the spectrum of
a finite train is a frequency comb convolved with the sinc function, exactly
what can be observed in Fig. 3.4. When we double the pulse train period
from (b) to (d), the frequency separation between the main comb teeth
∆ω ∝ 1/T from (a) to (c) is split in half. The period from (b) to (f)
remains the same, and so does the spacing ∆ω from (a) to (e). Each main
comb tooth has the shape of the sinc function sin(x)/x, when one considers
the π phase jumps for its negative values. The width of the sinc function
δω ∝ 1/(NT ) decreases by a factor of two from (a) to (c,e) since the total
duration of the pulse train increases from 4 ps (b) to 8 ps (d,f).

The same convolution theorem can be applied a second time in the re-
verse direction (Eq. D.20) to derive the minimum duration of each individ-
ual pulse in the sequence. The electric field due to the amplitude and phase
masks has to be multiplied with the electric field of a TL pulse. This Gaus-
sian TL pulse is given by the laser system (dashed black line in (a,c,e)).
The Fourier transform of a Gaussian function remains a Gaussian function.
Therefore, we have to convolve the electric field in the time domain with
a Gaussian function. This explains that each sub-pulse in (b,d,f)) has a
duration equal to the single pulse duration prior to shaping.

In conclusion, we apply amplitude and phase shaping to achieve a pe-
riodic pulse train. The phase mask is comprised of π-steps, whereas the
amplitude mask cuts out a comb-like structure. The (partial) suppression
of frequencies leads to a reduced energy in the shaped output pulses. The
ratio δω/∆ω = 1/N estimates the amount of energy remaining in the pulse
train (PT) after shaping. We confirm the validity of this approximation by
calculating the energy throughput T . The energy W of each shaped pulse
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Figure 3.5: (a,c) Section of the amplitude mask (blue line) and phase mask
(red line) for two different pulse trains in the PAP scheme, applied to the
electric field of a TL pulse (black dashed line, normalized to unity), shown in
the spectral domain. (b,d) Amplitude (blue line, normalized to the TL pulse
in Fig. 3.1) and quadratic piecewise phase (red line) of the corresponding
electric fields in the temporal domain. The two sequences are characterized
by the following parameters: (a,b) N = 5, T = 1 ps & β = 1.17 and (c,d)
N = 9, T = 1 ps & β = 0.79.

can be calculated by integrating over its intensity spectrum W ∝
∫
I(ω)dω,

with I(ω) ∝ |E(ω)|2. The throughputs T = WPT/WTL for the three differ-
ent pulse trains in Fig. 3.4 are (a) 20%, (b) 20% and (c) 11.1%.

Sequences with piecewise quadratic phase

Second, we look at the case of β 6= 0, when all pulses in the sequence change
their phase offset from pulse-to-pulse in a stepwise fashion. Originally, the
piecewise quadratic phase was intended to emulate the adiabatic popula-
tion transfer by a single frequency-chirped pulse. We are interested in this
shaping scheme because of its higher energy throughput T , compared to the
same pulse train with β = 0.

In all our experiments, we are using pulse sequences to impulsively excite
rotational states via Raman transitions (Sec. 2.3.1). This two-photon pro-
cess with the electric field ERaman(t) = E(t)E∗(t) is phase-independent. The
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3.2. Laser source

two photons that are absorbed and emitted in the Raman process stem from
the same field E(t) and as such the phases of both photons are identical and
cancel each other. As long as the phase offset of each individual pulse in a
pulse train is constant, regardless of its absolute value, the Raman field will
stay the same. In other words, a piecewise chirp will not alter the rotational
Raman excitation. We benefit from this degree of freedom by optimizing
β to minimize our shaping losses. It could be shown empirically that the
energy throughput will lie around 60% independently of N or T . We do not
claim that a piecewise quadratic chirp yields the optimum energy efficiency.
However, we were not able to achieve higher efficiencies, with any other em-
pirically chosen phase profiles. Significantly higher throughputs than what
we already obtained cannot be expected, therefore further optimization was
deemed unnecessary.

Figure 3.5 plots the spectral and temporal domains of two pulse trains
in the PAP scheme. Both sequences have a period of 1 ps, one consists of
5 pulses with β = 1.17 (a,b) and the other of 9 pulses with β = 0.79 (c,d).
In either case, β has been optimized to a maximum throughput, reaching
61.7% (a) and 56.3% (b).

Other shaping techniques to create pulse sequences do exist, many of
which are based on the phase-only shaping [181, 182, 46, 140, 134]. How-
ever, neither of these methods yield the necessary flexibilities needed for our
experiments and will therefore not be introduced. All our pulse trains were
built as discussed in this section.

3.2 Laser source

We use a Titanium:Sapphire (Ti:Sapph) femtosecond laser system (SpitFire
Pro, Spectra-Physics) producing uncompressed frequency-chirped pulses with
the spectral bandwidth of 9 nm (FWHM) at the central wavelength of
800 nm, 1 KHz repetition rate and 2 mJ per pulse. Part of the beam
(60% in energy) is compressed to 130 fs pulses (FWHM) via a grating-based
pulse compressor. It is used as a reference beam in cross-correlation mea-
surements (see Sec. 3.2.1) or as a probe beam in spectroscopy measurements
(see Sec. 4.1). The second part (40% in energy) is used for the generation
of high energy pulse sequences, typically as uncompressed pulses of 150 ps
(FWHM), as described in Sec. 3.3, 3.4, 3.5.
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3.2. Laser source

3.2.1 Pulse characterization

Ultra-short pulses are most commonly characterized with a technique known
as frequency-resolved optical gating (FROG) [169]. The idea is to do a cor-
relation measurement in which the pulse to be characterized is gated with
another pulse. In FROG, the spectrally-resolved auto-correlation of the un-
known pulse yields enough information to numerically retrieve the spectral
phase and amplitude of the pulse. Rather than using an auto-correlation
function, it is also possible to use a well-characterized reference pulse to per-
form cross-correlation frequency-resolved optical gating (XFROG). Further
information about this technique can be found in Ref. [107].

We elaborate on both techniques with our experimental setup shown
in Fig. 3.6. Panel (a) is used to characterize a single femtosecond pulse,
e.g. as produced by our Ti:Sapphire laser system. The incoming beam is
split into two equal parts on a beamsplitter. After travelling some distance,
both beams are focused onto a nonlinear BBO crystal where they spatially
overlap. The generated second harmonic light of each individual beam is
blocked. We are solely interested in measuring the sum-frequency signal
with a spectrometer. The spectrum is recorded as a function of the temporal
delay between both pulses. This way, the unknown pulse is gated by itself
and an iterative algorithm can be used to retrieve the spectral amplitude and
phase of the pulse. Panel (b) shows a slight variation, known as XFROG.
Here, the unknown pulse is gated by a well characterized reference pulse,
in an otherwise identical procedure. We use XFROG to characterize our
pulse sequences. As the reference pulse we use a TL pulse9, that has been
characterized via FROG.

Figure 3.7(a & b) show two different XFROG spectrograms correspond-
ing to two different pulse shapes. The spectrum on the vertical axes is
recorded with a spectrometer (Photon Control Inc., SPM-002-B) with a
resolution of 0.094 nm at a wavelength of 400 nm. The horizontal axes
present the delay between the shaped pulse and the reference pulse which is
computer-controlled by a delay line [Newport: Motion Controler, ESP301;
translation stage, UTS-100CC (for XFROG) & MFA-CC (for FROG)] with a
minimum step size better than 7 fs. We refer to such a two-dimensional rep-
resentation of a pulse in the spectral and time domains as an XFROG trace.
Panel (a) shows a transform-limited pulse with a symmetric trace. Panel
(b), on the other hand, presents a linearly chirped pulse (α′ = 50.000 fs2);
the instantaneous frequency changes linearly over time, while the total band-

9For a definition of transform-limit (TL) see Sec. 3.1.1.
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Reference

Time 
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a)

b)

Spectrometer

Spectrometer

Figure 3.6: Two variations of the experimental setup used for ultra-short
pulse characterization: (a) frequency-resolved optical gating (FROG) and
(b) cross-correlation frequency-resolved optical gating (XFROG).

width is preserved. To obtain the temporal profile of a pulse, we integrate
over the entire spectrum, see Fig. 3.7(c). As expected, frequency chirping
(dashed black line) leads to a longer pulse of ≈ 1.4 ps (FWHM) with a
lower peak intensity in comparison to the unshaped pulse (red solid line)
with a 130 fs duration (FWHM). The procedure equally applies to a pulse
sequence. Various examples of different pulse trains will be shown later
during the discussion of the shaping techniques.

Compensation of phase distortions

Ultra-short pulses that propagate through any kind of dispersive material,
e.g. glass optics, air, etc., do accumulate phase distortions. As a conse-
quence, the spectral phases of a pulse will become frequency dependent,
visible in a distorted XFROG trace and leading to longer pulse durations.
For the purpose of our experiments, we want to achieve the shortest possible
pulse duration, i.e. a transform-limited pulse. We use multiphoton intra-
pulse interference phase scan (MIIPS) to compensate for all phase distortions
[111]. The technique relies on a pulse shaper to apply a spectral phase func-
tions to compensate for the distorted phase of the pulse. The compensation
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Figure 3.7: XFROG spectrograms: (a) transform-limited 130 fs pulse, (b)
linearly chirped 1.4 ps pulse. (c) Their respective temporal profiles as solid-
red line and dashed-black line.

function is retrieved iteratively by analysing the second-harmonic spectrum
of the pulse. We use the same setup described in Fig 3.6 but measure the
second-harmonic signal of the pulse. More details of the MIIPS procedure
are given in Ref. [191]. We achieve a 130 fs pulse duration for all pulse
shaping scenarios.

3.3 Pulse shaping I: The pulse shaper

The femtosecond pulse shaper allows the creation of pulse sequences with
great flexibility. Pulse trains can be formed within certain limitations,
namely a minimum pulse duration of 130 fs given by the transform limit
of the laser system and a maximum length of the sequence of 50 ps given
by the spectral resolution of the shaper, derived below. The ‘magic’ of a
pulse shaper is based on spectral phase and amplitude modulation of the
femtosecond pulses implemented with a spatial light modulator (SLM). We
introduce the optical setup (Sec. 3.3.1), as well as its experimental imple-
mentation (Sec. 3.3.2). In particular, we address the method of choice to
create pulse sequences and demonstrate the shaping flexibility by showing
different pulse trains (Sec. 3.3.3).
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Figure 3.8: Pulse shaper in ’4f ’-folded design: top view and side view. The
dashed boxes indicate the beam profiles on various optical elements.

3.3.1 Optical setup

We send the laser beam to a femtosecond pulse shaper which is used to split
a single pulse into a series of pulses. The shaper, shown schematically in
Fig. 3.8, is built in the standard ’4f ’-geometry [180] and uses a liquid crystal
spatial light modulator (SLM, Cambridge Research and Instrumentation,
Inc.).

A transmissive grating (Kaiser Optical Systems, 1800 g/mm) disperses
the input beam. A spherical mirror (Edmund Optics, f = 36 inch) at the
distance f from the grating focuses different frequency components at dif-
ferent locations in the Fourier plane of the shaper, again at the distance
f . Here a mirror sends the beam back the same optical path but offset in
height, such that we have a non-dispersed, collimated beam at the output of
the shaper. The total optical path length sums up to 4f , hence the name of
the design. The optical path can be followed step-by-step in Fig. 3.8 through
a top and a side view, which also visualizes the dispersion and focusing of all
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3.3. Pulse shaping I: The pulse shaper

spectral components. If no spectral mask is applied in the Fourier plane, the
input and output pulses will be identical, in the ideal case that the shaper
does not introduce any spatial or spectral distortions due to a misalignment
of any optical component. In order to “shape” the femtosecond pulse we
introduce a spatial light modulator (SLM) in the Fourier plane, where all fre-
quencies are dispersed and focused. The SLM is the heart of the shaper and
it consists of a double-layer 640-pixel mask that is used to control the phase
and amplitude of all spectral components of the laser pulse. To achieve any
desired waveform of the output pulse, e.g. a pulse train, we first calculate
the required frequency masks via the Fourier transform of the target tempo-
ral profile and subsequently apply the masks with the SLM. Mathematical
details are found in sections 3.1.1 to 3.1.3 and the implementation procedure
in section 3.3.2.

The spectral resolution of the pulse shaper of ∆λ = 0.04 nm per pixel sets
the upper limit for the total duration of the pulse train to ∆T = λ2/c∆λ ≈
50 ps, where the central wavelength λ = 800 nm and c is the speed of light
in vacuum. Within this window, virtually any pulse shape can be achieved.
In this work, we focus on producing pulse sequences.

Pulse shaping can be done with uncompressed pulses, in which case we
use a grating compressor at the output of the shaper to compress all pulses
in the train. Alternatively, we can compress the pulse prior to the pulse
shaping. The choice depends on the amplification process that will follow
and is discussed in Sec. 3.5.1. In either case, the minimum duration of each
sub-pulse in the train is around 130 fs set by the transform-limited pulse
duration of the laser system.

Further details about techical aspects of such a femtosecond pulse shaper
have been described in detail in the dissertation of S. Zhdanovich [191]. This
includes more information on selecting the appropriate optical components
to maximize the shaper resolution, and on aligning and calibrating this
specific instrument.

3.3.2 Implementation of pulse sequences

In Sec. 3.1.3, we introduced the mathematical foundation to form a pulse
train via phase and amplitude shaping. Here, we will elaborate on the
experimental implementation.

The analytically calculated phase and amplitude masks have to be dis-
cretized with a step size that matches the resolution of the SLM. Given in
units of wavelength, the resolution is ∆λ = 0.04 nm per pixel. The peak
of the spectrum is placed in the center of the 640-pixel mask. Figure 3.9
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Figure 3.9: Section of an amplitude mask (red dotted line) and its discretized
version, matching the experimental SLM resolution, to generate a pulse train
with (a) N = 5, T = 2 ps; β = 0 or (b) N = 5, T = 11.67 ps; β = 0.

shows the discretization of two different pulse sequences. For demonstration
purposes, we plot only the amplitude masks in the spectral window from
800 to 803 nm, corresponding to a width of 75 pixels. The center pixel 320
matches the central frequency of λ = 800 nm. The red dotted lines show
the desired amplitude masks, the solid blue lines are the discretized versions.
Panel (a) presents the mask to achieve a train of 5 pulses with a 2 ps period.
The overall length of the train with 8 ps lies well within the shaper limit
of ∆T ≈ 50 ps. Panel (b), however, shows an example where the target
pulse train reaches the shaper limitation. A train of 5 pulses with a 11.67 ps
period spans a total duration of 47 ps. Every comb tooth in the spectrum
has the width of only a single pixel of the SLM. A similar pulse train is used
e.g. in Sec. 5.4.1, when the period matches the rotational revival time of
16O2 (Sec. 2.3.9).

Figure 3.9(b) reveals one source of inaccuracy in the shape of the experi-
mental pulse train. The discretized function does not describe the amplitude
mask well enough and will lead to deviations in the temporal shape. Rather
than obtaining a sequence of identical pulses, the amplitudes of the indi-
vidual pulses will vary. Other discrepancies that we typically observe close
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Figure 3.10: Protocol to iteratively compensate for irregularities in the out-
put temporal profile with the objective to reach a flat pulse train.

to the shaper limit are: unwanted pre- and post-pulses appearing outside
the 50 ps window, and a spectral chirp of the sub-pulses lying closest to the
edge of the 50 ps window.

Pulse train corrections: We developed an approach to minimize shaping
errors and inaccuracies in the output pulse sequence. The idea is to pre-
compensate for all the discrepancies that occur in the shaping process.

Starting with Eq. 3.8, we introduce more control parameters: Rather
than having a flat pulse train, we can adjust the amplitude of each individ-
ual pulse; rather than being comprised of TL pulses, each sub-pulse can get
a linear chirp; rather than being a strictly periodic pulse train, the period
between all pulses can be chosen separately. We use the protocol illustrated
in Fig. 3.10 to achieve a flat PT. First, we design the desired pulse train
according to the analytic expression in Eq. 3.9 and apply the calculated am-
plitude and phase masks via the SLM. Next, we measure the intensity profile
IXFROG(t) of the actual shaped pulse via a cross-correlation measurement
in the time domain (the technique of XFROG is explained in Sec. 3.2.1).
Deviations of all sub-pulses from the ideal are determined and compensated
for in the next generation of the pulse train. Via a Fourier transform we
obtain the new amplitude and phase masks. The procedure is iteratively
repeated until the termination criterion is met and the output shape closely
resembles the target pulse train.

The method proved to be very effective, which will be seen in Sec. 3.3.3
and 3.5.3 in several examples. Besides compensating for shaping errors, the
procedure also serves to deal with nonlinearities due to the amplification
in the MPA, discussed in Sec. 3.5. In addition, the flexibility of the shap-
ing technique enables us to design any arbitrary pulse sequence, e.g. non-
periodic sequences or sequences with various sub-pulse amplitudes. Such
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3.4. Pulse shaping II: The Michelson interferometer

sequences will be of importance in almost all of the presented experiments.

3.3.3 Demonstration of pulse sequences

Femtosecond pulse shaping offers the flexibility of creating arbitrary pulse
sequences within the limits of the shaper’s temporal and spectral resolution.
In Fig. 3.11, we demonstrate this flexibility using the example of a pulse train
with nine pulses. The overall energy of the train was set to 1 mJ. A flat train
of pulses with almost equal amplitudes (7% flatness) separated by T = 4ps is
shown in Fig. 3.11(a). In Fig. 3.11(b), a linear amplitude tilt was applied to
the train’s envelope and its sixth pulse was completely suppressed, while the
total energy was kept constant at 1 mJ. Figures 3.11(c) and (d) demonstrate
our ability to produce high-energy flat-amplitude sequences with multiple
periods and completely random timing of pulses, respectively.

3.4 Pulse shaping II: The Michelson
interferometer

For some experiments the number of pulses that can be fitted within a 50 ps
time frame is not sufficient. In contrast to the pulse shaper, an interfero-
metric setup [160] has no limitation on the overall length of the final pulse
train. We built two polarization-based Michelson setups that allow us to
quadruple the number of pulses in the sequence and extend its duration to
at least four times that produced by the shaper.

In Fig. 3.12, an incoming linearly polarized laser beam is split into
two beams with equal amplitude but opposite polarization axes (s & p-
polarization) via the combination of a λ/2-waveplate and a polarization
cube. Each beam is reflected back by a dielectric mirror, passing through
a λ/4-waveplate twice to flip the polarization axis. The output behind the
cube is now a laser beam that consists of two pulses of opposite polarization
whose temporal spacing can be adjusted with a computer controlled delay
line (Newport: Motion Controler, ESP301; translation stage, MFA-CC).
Those optical elements can be put in series n times to split a single pulse
into a sequence of 2n pulses. We implemented this design with two Michel-
son interferometers n = 2. In order to get a final pulse sequence where
all pulses share the same polarization we use another λ/2-waveplate and a
cube to split the pulse train into s & p-polarization. In our setup, we use
only p-polarization. Neglecting losses of optical components, polarization
multiplexing results in the energy loss of 50%.
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Figure 3.11: Temporal profiles of four different sequences of nine pulses: (a)
Periodic train of equal-amplitude pulses separated by 4 ps. (b) Same train
with linearly decreasing pulse amplitudes and the sixth pulse suppressed.
(c) Flat pulse train with two different time periods of 5 ps and 3 ps. (c)
Flat non-periodic pulse sequence with a random timing of pulses.
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Figure 3.12: Two polarization-based Michelson interferometers quadruple
the number of incoming linearly polarized pulses. Computer-controlled delay
lines allow variable time delays between the pulses. At the output, half the
energy is lost to the opposite polarization.

3.5 Multi-pass amplification

To compensate for the losses of femtosecond pulse shaping and interfero-
metric splitting, we send the long pulse train through a home-built multi-
pass amplifier (MPA), see Fig. 3.13. After passing four times through a
Ti:Sapph crystal, pumped by a neodymium-doped yttrium aluminium gar-
net (Nd:YAG) laser (Powerlite Precision II, Continuum, 800 mJ at 532 nm
and 10 Hz repetition rate), the weak pulses are amplified to reach energies
of more than 100 µJ per pulse. The size and divergence of the 800 nm beam
are adjusted with a telescope to control the gain. In the same way, the
pumped volume in the crystal can be controlled with another telescope on
the 532 nm pump beam. The final gain is set to the desired value by tuning
the power of the 532 nm pump beam. The repetition rate of the amplified
pulses is limited to 10 Hz, the frequency of the Nd:YAG pump laser. The
synchronization with the 1 KHz femtosecond laser systems is done with a
home-built pulse generator.

In the following, we give some more technical details for the setup and
the alignment of the MPA:

(1) The 800 nm beam should propagate through the Ti:Sapph crystal
at the Brewster angle. It is very important, that the pulses are set to a
perfect p-polarization, first, to minimize losses due to the reflection of the
surface, and second, to achieve a smooth amplified pulse train. In the case
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Figure 3.13: Diagram of the home-built multi-pass amplifier.

of a polarization misalignment the birefringence of the Ti:Sapph crystal will
lead to a temporal splitting of the input pulse. Recording the final pulse
shape via XFROG (Sec. 3.2.1) will reveal undesired pre- and post-pulses if
they are present.

(2) The telescope on the 800 nm beam serves primarily to adjust the
beam divergence. The actual beam size is chosen as large as possible to
minimize the pulse intensities. At the same time, the diameter needs to be
smaller than the pump beam diameter to obtain a uniform amplification of
the entire beam profile.

(3) Optimal working conditions of the MPA are checked on a weekly
(daily) basis. Since our experiment requires long optical beam paths, mi-
nuscule changes in the beam alignment can have rather large effects on the
nonlinear amplification of the pulses. A rough alignment is guaranteed by
multiple sets of irises throughout the setup. The fine adjustment is done
by measuring the energy iteratively after each stage of the amplifier with
a photo-diode. Tuning the respective optical mirror helps to maximize the
amplification of each pass. This procedure is done at low amplifications.

(4) To attain a nice pulse train of equally strong sub-pulses, the align-
ment of the Michelson interferometers is of crucial importance, too. In order
to reach the same gain in each of the four pulse train copies, the four different
beams originating in the four arms of the Michelson interferometers must be
spatially recombined to travel on an identical path through the MPA. We
align the optical beam path for a single arm of the Michelson setup first,
as described in (2). In a second step we overlap each other Michelson arm
with the first arm in the far field without amplifying the pulses. At last,
we check the uniform amplification of all pulses by means of an XFROG
measurement.
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(5) A potential danger in the nonlinear amplification process lies in self-
phase modulation. Self-focusing of the beam can lead to increasing intensi-
ties and to the damage of the crystal. We choose a slightly diverging 800 nm
beam at the MPA input (diameter about 1 mm) which has increased to
about twice the size at the output. Once the MPA is running, we check the
amplification at each stage to guarantee an equal amplification throughout
the MPA. A sudden increase in amplification is an indicator for decreasing
beam sizes and rapidly growing intensities. In this case the beam divergence
should be increased to counteract the detrimental self-focusing. Under ideal
working conditions, we achieve amplification factors of around 5 per stage,
however we did occasionally operate with factors of up to ∼ 7 per stage.

3.5.1 Compressed versus chirped amplification

Our laser generates frequency-chirped pulses. Compressing them down to
the TL duration and shaping them into a pulse train are two linear-optics
operations. As such, they commute with one another and can be executed
in either order.

At first, we investigate how the amplification of a single pulse is affected
by its compression. The input laser pulse into the multi-pass amplifier can ei-
ther be an uncompressed frequency-chirped pulse or a compressed TL pulse.
Hereby, the compression is done with a standard grating-based pulse com-
pressor. We compare the output pulses when the amplification is done with
chirped pulses versus compressed pulses and give a list of arguments for or
against each scenario.

Compressed-pulse amplification: Multi-pass amplifiers typically oper-
ate with chirped pulses that are recompressed after the amplification. This
keeps the peak intensities below the damage threshold of the Ti:Sapph crys-
tal. However, we show that it is possible to amplify 130 fs pulses (FWHM)
up to energies of at least 200 µJ. In this configuration, we first compress
the chirped pulses down to the Fourier transform limit, before creating and
amplifying the pulse train. With beam diameters inside the MPA as small
as 1 mm (FWHM), the amplified 800 nm pulse can reach intensities on the
order of 1011W/cm2. Even though this does not damage the Ti:Sapph crys-
tal, it does affect the spectrum. The pulses are propagating through air
over a distances of about 7 m inside the MPA and acquire spectral modula-
tions. This propagation effect due to self-phase modulation (SPM) has been
studied in detail by Nibbering et.al. [125]. In Fig. 3.14(a) we show how
the input Gaussian spectrum of a single transform-limited pulse (black solid
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Figure 3.14: (a) Compressed-pulse amplification: spectrum of a single pulse
before the MPA (black solid), after the MPA unamplified at 5.4 µJ (blue
dotted) and amplified to 144 µJ (red dashed). (b) Chirped-pulse amplifi-
cation: spectrum of a single pulse unamplified at 0.4 µJ (black solid) and
amplified to 100 µJ (red dashed). The inset shows spectral modulations af-
ter the amplified pulse is focused through a cell filled with 6 atm of nitrogen
(green dotted) or oxygen (blue dashed) molecules.

line) changes as it propagates through the MPA. At the output, the spec-
trum is already distorted even if the Nd:YAG laser is turned off and there
is no amplification (blue dotted line). The energy of this pulse is measured
to be 5.4 µJ. When the same pulse is amplified to an energy of 144 µJ the
modulations become much more severe (red dashed line).

Chirped-pulse amplification: In a second scheme, we use the uncom-
pressed 150 ps pulses (FWHM) from our laser system. The amplification is
applied to chirped pulses that are only recompressed to femtosecond pulses
at the output. As a consequence, the intensities within the MPA will be
decreased by about three orders of magnitude. Since the propagation effects
scale with intensity, we can now see a clean output spectrum in Fig. 3.14(b),
measured after the pulse compression. The spectrum of a single pulse am-
plified 250 times to an energy of 100 µJ (red dashed line) is almost indistin-
guishable from the spectrum of an unamplified pulse at 0.4 µJ (black solid
line). As a proof that the mentioned SPM effects are due to high intensity
pulse propagation in air, we focus (f = 100mm) the same transform-limited
pulse into a gas cell filled with 6.5 atm of nitrogen (green dotted line) or
Oxygen (blue dashed line) in the inset of Fig. 3.14(b). Spectral modulations
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similar to the ones in Fig. 3.14(a) become apparent.

In conclusion, chirped pulse amplification ensures negligible spectral dis-
tortions of the output pulses due to propagation effects in air. It also presents
the safer option in terms of damaging optical components because of high
intensity pulses. Any experiment that requires high pulse energies should
therefore implement this scheme. For all other experiments that do not rely
on a smooth spectrum or high intensities it is worth considering to work
with compressed pulses for technical reasons. First, no energy is lost af-
ter the amplification process, as we can send the pulses straight to the gas
sample. We do not have to compensate for optical losses of the grating
compressor. Second, the optical alignment of the pulse shaper is facilitated
with compressed pulses. It becomes a non-trivial task with chirped pulses
because the shaper itself can act like a grating compressor. Third, the MPA
needs regular (daily) adjustments to maintain optimal amplification. Ev-
ery change in the beam path through the MPA, necessitates a re-alignment
through the compressor. The optimal compression is sensitive to the optical
path. Experimentally, we simplified this procedure by setting up several
irises throughout the setup to indicate a reference path.

3.5.2 Amplification of pulse sequences

Most of our experiments rely on strong pulses. Thus, we chose the scheme
of chirped-pulse amplification. The complete setup is depicted in Fig. 3.15.
The chirped pulses from our Ti:Sapph laser system are sent to a pulse shaper
followed by two Michelson interferometers (dotted box) to form long pulse
sequences, that are then amplified in an MPA (dashed box). At the final
stage, a standard grating-based pulse compressor compresses each pulse of
the sequence to a 130 fs duration (FWHM). The second part of the beam
from the laser system (60% in energy) is immediately compressed with an
identical grating compressor and utilized as a reference beam.

Losses and Amplification: Unavoidable optical energy losses in the
combined pulse shaper and Michelson interferometer setup can be quantified
as follows. In a typical 4f pulse shaper, about 50% of energy is lost due to
the diffraction efficiency of the gratings. The energy throughput owing to the
splitting of the initial pulse into a sequence of N identical pulses by means of
the spectral shaping can be estimated as 1/N . This scaling can be derived
from the following consideration of a pulse train in the frequency domain.
The spectrum of an infinite pulse train is a frequency comb. The separation
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Figure 3.15: Diagram of the optical setup. The output beam of a Ti:Sapph
laser with frequency-chirped 150 ps pulses is split into two parts. The pump
beam is used to generate long sequences of high-energy pulses; the other
beam serves as a probe. Both outputs are compressed to a 130 fs duration
(FWHM).

of the comb teeth is inversely proportional to the train period T , ∆ω ∝ 1/T .
The spectrum of a finite train of N pulses is the same comb convolved with
the sinc function whose width is inversely proportional toNT , δω ∝ 1/(NT ).
The ratio δω/∆ω determines the amount of energy remaining in the train
after shaping. A more complete mathematical foundation has been derived
in Sec. 3.3.2. The polarization multiplexing in the interferometer setup
accounts for another energy loss of factor 1/2. In total, each of the 4N pulses
in the train carries 1/(16N2) of the input energy.

The amount of available energy is typically limited to less than 1 mJ by
the damage threshold of a pulse shaper, which in our case corresponded to
300 µJ. For a train of 4N = 84 pulses demonstrated in Sec. 3.5.3, one ends
up with . 0.2 µJ per pulse. Imperfections of various optical components
bring this number even further down, well below the typical requirements for
a strong-field regime of the laser-molecule interaction. In order to compen-
sate for all the losses, each pulse gets amplified with the MPA. The largest
demonstrated amplification factor of 2800 has been for the mentioned train
of 84 pulses. Generally, we work with pulse sequences where each pulse
exceeds an energy of 100 µJ.
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Figure 3.16: (a) XFROG spectrogram of an amplified pulse train with
21 equally spaced pulses and (b) its corresponding temporal profile before
(dashed black) and after (solid red) the amplification by a factor of 400.
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3.5.3 Demonstration of amplified pulse sequences

Figure 3.16(a) shows an XFROG spectrogram for the pulse train of 21 equally
spaced pulses with a period of 2 ps. The spectrogram demonstrates that each
pulse in the train is transform-limited with no residual frequency chirp, con-
firming that proper pulse compression is attainable at the end of the com-
bined shaping and amplification process. Integrating over the whole spec-
trum, one finds the distribution of energy among the pulses in the train,
plotted as the red solid line in Fig. 3.16(b). Here, the gain factor of 400
was required for reaching an average energy of 124 µJ per pulse. Such high
gain levels result in the increased sensitivity of the output pulse sequence
to the energy fluctuations in the seed train entering the MPA, as well as
in pulse dependent amplification rates. Equalizing the output amplitudes
is achieved through the iterative process shown in Fig. 3.10, in which the
correction function is fed back to the pulse shaper in order to compensate
for the irregularities in the output temporal profile. In the presented exam-
ple, the corrected seed train is shown in Fig. 3.16(b) by the black dashed
line. The final degree of flatness is limited by the nonlinearity of the MPA
amplification process and is on the order of 10%, determined as the standard
deviation of the pulse-to-pulse energy fluctuations.

Adding a set of nested Michelson interferometers enables us to generate
pulse sequences longer than the 50 ps time limit set by the spectral resolu-
tion of the shaper and with more pulses, while still maintaining the energy
level in excess of 100 µJ per pulse. In Figures 3.17(a) and (b), we show pe-
riodic sequences of 20 and 84 pulses stretching over a duration of ≈ 170 ps
(pulse separation of 8 ps and 2 ps, respectively) and carrying ≈ 110µJ per
pulse. The latter train has been amplified 2800 times to the total energy of
9 mJ. One can see that longer pulse trains suffer from a higher amplitude
noise, e.g. standard deviations of 13% and 18% in (a) and (b), respectively.
The increasing noise is due to the higher MPA amplification factors and
the correspondingly higher nonlinearity of the amplification process. The
four colors represent the four different pathways through the Michelson in-
terferometers. Without amplitude noise, each of the four copies would be
identical.
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Figure 3.17: Temporal profile of two periodic pulse sequences: (a) 20 pulses
separated by 8 ps and amplified 500 times to 114 µJ per pulse; (b) 84 pulses
separated by 2 ps and amplified 2800 times to 107 µJ per pulse. The four
colors represent the four different pathways through the Michelson interfer-
ometers.
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Chapter 4

Techniques II: Rotational
Raman spectroscopy in a
molecular jet

In chapter 3 we introduced a method to generate high-intensity pulse se-
quences, which are necessary to implement the “molecular kicked rotor”.
This chapter will present the experimental techniques used to explore and
understand the dynamics of the molecular kicked rotor.

All our experiments share the same detection technique: “Rotational
Raman spectroscopy”. In Sec. 4.1 we describe how the method works and
how it is implemented. We discuss two slightly different variations: one,
where the molecular sample is contained in a gas cell; and the other, where
the experiments are conducted in a molecular jet. We explain a typical
Raman spectrogram as it will reoccur in the presentation of all later results.
Experiments that rely on a narrow initial distribution of rotational states
have to be done in a molecular jet, topic of Sec. 4.2, where the rotational
motion is substantially cooled down. We explain how a molecular beam
works and show our experimental realization. We investigate the rotational
temperature and the molecular density during a supersonic jet expansion by
analysing the Raman spectrum.

4.1 Raman spectroscopy

In order to implement the technique of coherent Raman spectroscopy we
need a weak probe pulse with controlled spectral width, which determines
our frequency resolution. The experimental scheme is shown in Fig. 4.1. The
800 nm pump pulse, which in almost all of our experiments is a high-intensity
sequence of femtosecond pulses, is produced as discussed in chapter 3. The
probe, which originates from the Ti:sapphire laser system (for details see
Sec. 3.2), is sent through another pulse shaper. This shaper is built in the
same folded geometry as the pump shaper in Fig. 3.8 (Sec. 3.3.1), but with
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Figure 4.1: Scheme of the experimental setup: A weak probe pulse is
frequency-doubled in a nonlinear BBO-crystal and combined with a train of
strong femtosecond pulses (pump). Both beams are focused (a) into a cell
filled with a molecular gas or (b) onto a supersonic jet of molecules inside a
vacuum chamber. The change of probe polarization is analysed as a function
of the wavelength by means of two crossed polarizers and a spectrometer,
and as a function of the tunable time delay.
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some different optical components [reflective grating (1200 g/mm), spherical
mirror (f = 50 cm)]. In the Fourier plane of the probe shaper, we place a
mechanical slit, rather than a liquid-crystal SLM, to withstand higher laser
intensities. The slit is used to narrow down the spectrum. The central
wavelength is then shifted to 400 nm by means of the second harmonic
generation (SHG) in a nonlinear BBO crystal. Finally, the probe pulses of
0.15 nm spectral width (FWHM) are linearly polarized at 45° with respect to
the pump pulses. Both beams are combined on a dichroic beamsplitter and
focused onto the molecular sample of oxygen O2 or nitrogen N2. Special care
is taken to minimize detrimental effects of spatial averaging by making the
probe beam significantly smaller than the pump (FWHM beam diameters
of 20 µm and 60 µm, respectively).

We distinguish two scenarios illustrated in Fig. 4.1: In panel (a) the gas
of linear molecules is contained in a cell at variable pressure. The pump and
probe beams are combined prior to entering the cell. This setup is used to
conduct experiments at room temperature in dense gases. In panel (b) both
beams are first focused into a vacuum chamber, where they are then com-
bined on a dichroic beamsplitter and intersect a supersonic jet of molecules.
We use a 500 µm diameter pulsed nozzle, operating at the repetition rate
of 10 Hz and the stagnation pressure of 33 bar. We achieve rotational tem-
peratures around T = 25K at a distance of 1.9 mm from the nozzle. A
summary of rotational cooling via a supersonic jet expansion is given in the
next section 4.2.

Coherent molecular rotation, produced by a pump pulse, modulates the
refractive index of the gas. The mechanism can also be viewed as a two-
photon Raman process, introduced earlier in Sec. 2.3. As a result, the spec-
trum of a weak probe light acquires Raman sidebands shifted from its central
frequency and polarized orthogonally to its initial polarization [95, 96]. The
Raman sidebands are analysed in a polarization sensitive measurement by
passing the output probe light through an analyser set at 90° with respect
to the initial probe polarization.

Some of the experiments rely on measuring the Raman spectrum with a
dynamic range of three to four orders of magnitude. In chapter 6 for exam-
ple, we need to demonstrate an exponential shape of the observed Raman
spectrum, which would not be possible without such a dynamic range. It
is therefore important to suppress the initial probe polarization as much
as possible, which in turn will reduce the noise floor. We use two Glan-
Thompson polarizers, one before and one after the vacuum chamber, and
two additional waveplates. The λ/4- and the λ/2-waveplates compensate
for polarization changes that the probe beam accumulates as it propagates
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through the optical windows of the chamber and the dichroic beamsplitters.
This results in a lower level of the residual probe light10.

We record the rotational Raman spectrum with a spectrometer (McPher-
son Inc., model 2035, with a 1800 grooves/mm diffraction grating) equipped
with a CCD camera (Andor iDus, DV401A-BV). The camera has a dynamic
range greater than four orders of magnitude. The resolution of the spectrom-
eter of 0.056 nm per pixel (at a wavelength of 400 nm) is good enough to
resolve individual rotational states in lighter diatomic molecules (e.g. N2 or
O2). A computer-controlled translation stage allows for time-resolved spec-
trograms by scanning the delay between the pump and probe pulses (New-
port: Motion Controller, ESP301; translation stage, UTS-100CC; minimum
increment ≈ 7 fs). The temporal resolution will be given by the duration of
the probe pulse.

4.1.1 Raman spectrogram

When a weak probe pulse follows the pump through a cloud of rotating
molecules, its spectrum acquires Raman sidebands. Here, we will explain
the interpretation of such a Raman spectrum. The shift of each Raman peak,
∆ωJ , is equal to the frequency spacing between the rotational levels |J〉 and
|J + 2〉, while its magnitude is proportional to the square of the rotational
coherence [96], a more rigorous expression is found in section 2.3.6.

We use oxygen or nitrogen in our experiments, for several reasons de-
scribed in Sec. 2.3.9. In the first approximation these linear molecules behave
as rigid rotors and their rotational energy is given by EJ = hcBJ(J + 1).
Hence, the frequency shift of each Raman peak is linearly proportional
to the rotational quantum number J and can be expressed as ∆ωJ =
(EJ+2 − EJ)/h = 2Bc(2J + 3).

Figure 4.2 displays a Raman spectrum of N2 recorded after the rotational
excitation by a single pump pulse. Shown are the measurements in a gas
cell (solid black line) in comparison to the measurement with a molecular
jet (red dashed line). We see a progression of Raman peaks as a function of
the wavelength shifted away from the probe wavelength at 400.6 nm. This
wavelength shift can be translated to the rotational quantum number J ,
shown along the lower horizontal axis. According to the nuclear spin statis-
tics of nitrogen, the ratio between even and odd rotational states J must
be 2:1 (described in Sec. 2.3.9). Our probe pulse with a spectral width of
0.15 nm (FWHM) is narrower than the line separation ∆ωJ+2−∆ωJ ∝ 8B

10The extinction ratio is greater than five orders of magnitude.
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Figure 4.2: Raman spectrum of N2 after the rotational excitation by a single
weak pulse, measured in a gas cell (solid black line) or with a molecular jet
(red dashed line).

enabling us to resolve individual rotational states and thus to determine the
shape of the excited rotational wave packet.

The entire spectrum consists of a Rayleigh peak, polarized along the
input probe polarization (selection rule: ∆J = 0), and two progressions of
Raman sidebands shifted up (∆J = +2) or down (∆J = −2) with respect
to the Rayleigh frequency and polarized in the orthogonal direction. We
measure only the red-shifted sidebands. As a consequence of a non-ideal
polarization suppression of the input probe light, we detect a Rayleigh peak
of substantial magnitude which can exceed that of the scattered Raman
spectrum. We set our spectrometer to measure all Raman spectra only for
values J ' 1, to truncate the unwanted Rayleigh peak.

In Fig. 4.2 the pump pulse is set to a weak kick strength of P � 1
which will not lead to much angular momentum transfer. Therefore, the
population distribution will hardly change and closely represent the initial
thermal distribution. The two plotted lines show the clear difference in
the initial rotational temperature. In the case of the gas cell (black solid
line) the distribution follows a Boltzmann distribution at room temperature,
whereas in the case of the jet (red dashed line) we retrieve a temperature
around 25 K (details in Sec. 4.2).

Figure 4.3 shows the Raman spectrum of oxygen, recorded under iden-
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Figure 4.3: Raman spectrum of O2 after the rotational excitation by a single
weak pulse, measured in a gas cell (solid black line) or with a molecular jet
(red dashed line).

tical conditions as described above for nitrogen. The main difference with
Fig. 4.2 stems from the nuclear spin statistics of O2, allowing only odd quan-
tum numbers J .

The interpretation of state-resolved Raman spectra remains the same in
all experiments. When the molecules are excited with sequences of strong
pulses, however, the assumption of a rigid rotor is not valid anymore. Thus,
the exact position of the Raman peaks is calculated with the energy ex-
pression of a non-rigid rotor EJ = hc[BJ(J + 1) −DJ2(J + 1)2]. The line
separation will decrease for higher J values. This change is insignificant for
J < 30, as they are typically excited in our experiments. All the presented
Raman spectra are taken with the probe pulse arriving immediately after
the last pulse in the train or after the specific pulse of interest within the
train. This way we minimize the decrease in Raman signal due to collisional
decay.
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4.2 Molecular beam source

A majority of the QKR phenomena that we studied can only be observed
in rotationally cold molecular samples. One well established technique to
cool molecules is based on a supersonic expansion [115, 5]. A high pressure
gas that is passing through a nozzle into a low pressure region will expand
adiabatically leading to a drop in temperature. Rotational temperatures of
a few Kelvin are routinely achieved.

We implemented a supersonic jet of molecules, which resulted in rota-
tional temperatures around 25 K. First, we present a concise summary of
the theory of molecular beams in Sec. 4.2.1. Second, our specific setup with
a pulsed nozzle producing a jet suitable for Raman spectroscopy is described
in Sec. 4.2.2. Finally, we show experimental Raman spectra of N2 and O2

in Sec. 4.2.3, investigating temperatures and densities and their dependence
on externally controllable parameters.

4.2.1 Theory of supersonic expansion

All physical concepts and thermodynamic equations in this section were
adapted from the books by Miller [115] and Anderson [5].

At first, we introduce the thermodynamic quantity γ. All molecules
have a specific heat ratio γ = Cp/Cv, calculated via the specific heats at
constant pressure Cp and constant volume Cv. Next, we look at a beam of
diatomic molecules (γ = 7/5), i.e. N2 or O2 entering a vacuum chamber
through a nozzle. Initially the gas is at stagnation pressure p0 and room
temperature T0. The pressure inside the vacuum chamber is set to pb. We
approximate the beam as a steady-state continuous jet from the nozzle as
shown in Fig. 4.4 (in the actual experiment we will be using a pulsed jet.) If

the pressure ratio p0/pb is greater than a critical value of G =
(
γ+1

2

)γ/(γ−1)
,

for diatomics G ≈ 1.89, the speed of the molecules exiting the orifice will be
supersonic with a Mach number M � 1. The Mach number measures the
speed v of the gas past the nozzle in relation to the speed of sound a. For
an ideal gas a =

√
γRT/m with the molecular weight m and the universal

gas constant R. Before the expansion, the molecules at the orifice of the
nozzle have a velocity of M = 1. In the subsequent adiabatic expansion of
the gas, the velocity will increase, leading to a drop in molecular density and
temperature. However, if the pressure ratio p0/pb is not sufficiently large,
the gas will exit the nozzle at a pressure of pb with no further expansion.

Different empirical equations exist to calculate the Mach number along
the centerline of the jet, see Ref. [115]. We quote one that is suitable for
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Figure 4.4: Diagram of a supersonic jet expansion. Indicated are the dif-
ferent regions of the beam with their respective molecular speeds given in
Mach numbers M .

close distances from the nozzle, relative to the nozzle diameter d

M =
(x
d

) γ−1
j

[
C1 +

C2

x/d
+

C3

(x/d)2
+

C4

(x/d)3

]
. (4.1)

The constants j, C1, C2, C3 and C4 are γ-dependent (molecule-dependent)
and can be looked up in tables [115, 167]. The expression is valid for x/d >
0.5.

The supersonic expansion is an isentropic process, under the assumption
that no friction or other dissipative effects occur, which would lead to a
change in the entropy. For an ideal gas we can then use known relations
to estimate some thermodynamic quantities like temperature T , pressure p
and density ρ inside the beam

T

T0
=

(
p

p0

) γ−1
γ

=

(
ρ

ρ0

)γ−1

. (4.2)

Primarily, we are interested in the dependency of those quantities on the
distance from the nozzle. We calculate the (translational) temperature as a
function of the Mach number which is related to the distance via Eq. 4.1

T

T0
=

(
1 +

γ − 1

2
M2

)−1

. (4.3)

The temperature and the pressure continue to decrease as long as collisions
occur in the flow. This correlates with an asymptotically rising velocity
of the molecules. Collisions are also responsible for the rotational cooling.
During a free-jet expansion the molecules typically experience around 102

to 103 binary collisions. This is sufficient to cool the rotational degree of
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4.2. Molecular beam source

freedom: Most diatomics require between 10 to 100 collisions to equilibrate
with the translational motion. Hence, we estimate the rotational tempera-
ture with Eq. 4.3. The vibrational degree of freedom hardly relaxes in a jet
expansion as many more collisions are necessary > 104. Fortunately, almost
all molecules in our experiment at room temperature are already in the vi-
brational ground state. At some point the expansion will transition into a
collisionless flow, typically after several nozzle diameters. At this point the
terminal velocity is reached and the isentropic description breaks down.

Eventually, the gas will overexpand as a result of the supersonic flow
which is unaware of the downstream boundary conditions. Information, i.e.
about the pressure pb inside the chamber, cannot travel faster than the speed
of sound (M = 1). This results in shock waves indicated in Fig. 4.4, which
will recompress the system. For the purpose of our experiment, we have to
make sure that the Mach disk location

xM
d

= 0.67

(
p0

pb

)1/2

, (4.4)

is further away than the interaction region with the laser pulses. The zone
of silence is confined within the barrel shock wave with an approximate
diameter of 0.75xM , the diameter of the Mach disk is about 0.5xM [167].

Often, experimental setups place skimmers inside the zone of silence to
extract a small solid angle of the beam. This reduces the momentum spread,
enables differential pumping to prevent the formation of shock waves, and
generally leads to colder temperatures. Our experiments are done in close
proximity to the nozzle, since we rely on high molecular densities for the
Raman detection (described in Sec. 4.1). The implementation of a skimmer
is not feasible.

4.2.2 Beam setup

Figure 4.5 shows a diagram of our molecular beam setup. We use a pulsed
valve (Parker Hannifin, Series9, 009-0582-900) with an orifice of d = 500 µm.
The valve is operated at a repetition rate of 10 Hz (Newport Corporation,
BV100 Beam Valve Driver). The pulse width is set to ≈ 200µs. The stag-
nation pressure p0 can be regulated up to 33 bar. All our experiments were
done at this maximum pressure. The chamber is pumped by a vacuum pump
(Edwards, model: E2M40) down to a pressure of 3·10−2 torr without a load.
When the pulsed valve is operated, the pressure settles at pb ≈ 1 torr. This
highlights the importance of working with a pulsed nozzle; the rotary pump
could not handle the load in the case of a steady flow.
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Figure 4.5: Diagram of the molecular beam setup. The pump and probe
pulses are both focused onto the supersonic jet of rotationally cold molecules.
The probe pulse is focused down to a smaller beam size to reduce spatial
averaging over the pump profile in the interaction region.

Our Raman experiments are done at a small distance x from the nozzle,
with the exact location being determined as a trade-off between colder rota-
tional temperature and sufficiently high density. Raman spectroscopy relies
on the induced birefrigence of the gas, which changes the probe polarization
[141] (for a detailed explanation see Sec. 4.1). The Raman signal is propor-
tional to the molecular density squared and benefits from a smaller distance.
At the same time, we want to maximize the distance to reach lower initial
temperatures and not suffer under a collisional decay of the Raman signal.
The ideal distance was found at x = 1.9 mm ∼ 4d. All these considerations
will be verified with experimental data in Sec. 4.2.3.

The pump and probe beams both propagate through the molecular jet in
~z-direction, see Fig. 4.5. We minimize detrimental effects of spatial averaging
by making the probe (400 nm) profile significantly smaller than the pump
(800 nm) profile. The FWHM beam diameters D are 20 µm and 60 µm,
respectively. This way, the probe beam primarily samples the high-intensity
center of the pump beam and the spatial averaging of the Raman signal
over the laser profiles is reduced. At the same time, we also improve the
confinement in ~z-direction because of the jet. Due to a close proximity to
the nozzle, most molecules are present within the Rayleigh range of the laser
beams.

In Gaussian beam optics [120], the Rayleigh range zR = πw2
0/λ is defined

as the distance from the smallest beam waist (i.e. the focus) to the point
where the beam radius increased by a factor of

√
2. This is the point, where
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Figure 4.6: Simulated temperature T (blue solid line, left axis) and pressure
p (red dashed line, right axis) as a function of the distance to the nozzle x,
based on our molecular beam setup. Experimental values retrieved from N2

measurements are indicated as red crosses (p) and dark-blue crosses (T ), the
light-blue crosses (T ) correspond to O2 measurements.

the area of the beam cross-section has doubled. The beam radius w0 is
where the Gaussian intensity is 1/e2 of its peak value. It can be derived
that w0 = D/

√
2 ln2. In our experiment, the Rayleigh range of the probe

beam is estimated at 2.3 mm and the one of the pump at 10.2 mm.

Simulation

We simulate the expected temperature and pressure as a function of the
distance from the nozzle based on our experimental parameters: p0 = 33 bar
(3.3 · 106 N/m2), pb = 1 torr (1.3 · 102 N/m2) and T0 = 293 K. At these
settings we expect a supersonic flow, because the ratio of p0/pb ≈ 2.5 ·
104 � G lies well above the threshold value of G ≈ 1.89. We use Eq.4.1
to calculate the Mach number at a distance x/d with d = 500 µm. The
empirical constants for the axisymmetric expansion of a diatomic molecule
are j = 1, C1 = 3.606, C2 = −1.742, C3 = 0.9226 and C4 = −0.2069 [115].
Next, we get the temperature from Eq. 4.3 and subsequently the pressure
from Eq.4.2.

The result is plotted in Fig. 4.6 with temperature as the solid blue line
(left axis) and pressure as the dashed red line (right axis, log scale). We
also retrieved temperatures and pressures experimentally from Raman mea-
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4.2. Molecular beam source

surements at different nozzle distances; the procedure is discussed in the
next section 4.2.3. The experimental values are added to the graph with
crosses. Note, that only the relative distance between different measure-
ments are known with certainty. The absolute distance x from the nozzle
is approximated by shifting the pressure values from the measurements in
N2 (red crosses) to match the simulation. Owing to the retrieval procedure,
the obtained pressures are more accurate than the temperatures. There is
a discrepancy in the observed temperature which settles at a lower level
than expected according to the simulation. The dark blue crosses stem
from a measurement in N2, the light blue ones from O2. (We did not get
pressure estimates from the oxygen measurements because of complicated
spin-rotation dynamics, more details in the next section.) There are two
obvious explanations for inaccuracies: First, our setup works with a pulsed
nozzle, whereas the simplistic calculations are based on a continuous jet.
Other approximations, that might cause deviations, assume an ideal gas
and a frictionless flow without any dissipative effects. Second, the Rayleigh
length of the probe pulse zR ∼ 2.3 mm is of a similar order than the width of
the molecular jet, sketched in Fig 4.5. As a consequence, our Raman spectra
yield an average over the spatial temperature and density distributions in
~z-direction, see Ref. [167].

For distances of x > 3 mm the local densities become too low for sensitive
Raman spectroscopy. All our measurements are done at x = 1.9 mm, far
before the Mach disk location at xM ≈ 53 mm, calculated from Eq. 4.4.

At last, we point out some general relations: The residual pressure pb
inside the chamber determines the Mach disk location, but does not affect
the cooling rate. The stagnation pressure p0 has no influence on the obtained
temperature T , but the final pressure depends on it p ∝ p0. The nozzle
diameter d determines the rate of the cooling process.

4.2.3 Beam characterization

It is possible to map the temperature and density distribution of a supersonic
jet expansion using Raman spectroscopy. Rather than creating a complete
two-dimensional map as done in Ref. [167], we look only along the center
axis of the jet in the region of interest.

Pressure

We use a single high-intensity pump pulse to create strong rotational co-
herences that we subsequently detect with a weak probe pulse via Raman
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4.2. Molecular beam source

spectroscopy (Sec. 4.1). Figure 4.7 shows the mean Raman intensity for
nitrogen (a) and a state-resolved spectrum for oxygen (b) as a function of
time. Plotted are the results for two relative distances between the nozzle
orifice and the intersecting laser beams, a smaller distance of x = 0.9 mm
and a larger one of x = 1.9 mm. Our goal is to use the decay of the Raman
signal due to collisions to estimate the pressure. This is done by compar-
ing the decay times to the decay rates measured in a gas cell at different
pressures.

In nitrogen, all individual rotational states behave identically. Thus, we
plot their integrated signal in panel (a) which decays exponentially with
time. The top solid line (x = 1.9 mm) and the bottom solid line (x =
0.9 mm) are both fitted with an exponential function f(t) = a · exp(−t/τ),
shown as the red-dotted lines. The decay times are found to be τ = (1.13±
0.09) ns and (196 ± 6) ps, respectively with the error given by the 95%
confidence bounds of the fit.

The same measurements done in oxygen at the distance x = 0.9 mm
(b1) and x = 1.9 mm (b2) reveal much more complicated dynamics. The
collisional decoherence is superimposed on spin-rotational oscillations. Para-
magnetic oxygen has a non-zero spin in the electronic ground state (S = 1)
which is coupled to the molecular rotation (nuclear rotation quantum num-
ber N). This coupling splits each rotational level into three levels with the
total angular momenta (J = N,N ± 1). It also means that the N → N + 2
Raman process actually consists of six separate transitions [79]. Owing to
the spin-rotation coupling, we observe beat notes that depend on the ro-
tational quantum number N . We plot the state-dependent dynamics for
N = 1 (blue dashed), N = 3 (red dotted) and N = 5 (black solid). The
spin-rotational dynamics of oxygen has been investigated experimentally
11 [116, 117]. For quantum numbers N > 5 the dynamics is dominated by
branches that lead to the oscillation periods on the order of 600 ps, which is
much longer than any time scale that we are concerned with. We are only
affected by the spin-rotation coupling at low quantum numbers.

In this thesis, we will disregard the effect of spin-rotation coupling, since
we are operating on time scales of 250 ps or less and since we are usually not
interested in the very low quantum numbers. For simplicity, we will always
label the rotational quantum number with J , for both nitrogen and oxygen.

We calculate the collisional decay times of nitrogen in the jet for a series

11 The fast beating at a period of ∼ 17 ps belongs to the two lowest lines of the R-branch
(∆J = 1) and has been observed before [116].
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Figure 4.7: (a) Rotational spectroscopy of nitrogen: Mean Raman intensity
for nozzle distances of x = 1.9 mm (top solid line) and x = 0.9 mm (bottom
solid line) and their respective exponential fits (red dotted lines). (b) State-
resolved spectroscopy in oxygen for J = 1 (blue dashed), J = 3 (red dotted)
and J = 5 (black solid) for nozzle distances of x = 0.9 mm (b1) and x =
1.9 mm (b2). Maximum signals are normalized to unity.
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Figure 4.8: Collisional decay times as a function of gas pressure, recorded
via Raman spectroscopy in a cell of nitrogen. Horizontal dashed lines indi-
cate the decay rates from molecular jet experiments at various nozzle dis-
tances. Their corresponding pressures can be interpolated.

of different nozzle distances (1) 0.9 mm, (2) 1.15 mm, (3) 1.4 mm, (4)
1.65 mm, (5) 1.9 mm by fitting the Raman signal as a function of time
with an exponential, analogous to the description above and Fig. 4.7(a).
In order to estimate the corresponding pressure values, we use Fig. 4.8, a
graph that shows the relation of pressure versus collisional decay in a cell
filled with nitrogen. Based on this set of calibrated data points, we can
interpolate the pressure in the jet. The results are (1) 210 torr at a decay
time of 0.20 ns, (2) 110 torr at 0.38 ns, (3) 65 torr at 0.64 ns, (4) 39 torr
at 1.01 ns, (5) 34 torr at 1.13 ns. No values exist below the pressure of
∼ 30 torr because the collisional decay times become too long to reliably
fit an exponential function to our experimental data (maximum time delay
was 450 ps). Therefore, the procedure could not be applied to distances of
x > 2 mm. The interpolated pressure values are the ones that have been
added to Fig. 4.6.

Temperature

In a similar fashion we use the Raman spectrum after a single pump pulse to
retrieve the rotational temperature. However, this time we use a weak pump
pulse with a kick strength of P � 1, which creates weak coherences but
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4.2. Molecular beam source

hardly changes the rotational state distribution. The shape of the Raman
spectrum then reflects the initial rotational distribution.

Figure 4.9 demonstrates the narrowing of the spectrum with larger nozzle
distances, which corresponds to rotational cooling of the molecules: nitrogen
in (a) and oxygen in (b). The six lines from the broadest to the narrow-
est distribution are measured with distances of x = 0.9, 1.15, 1.4, 1.65, 1.9
and 2.15 mm. As a representative example we pick the Raman spectrum
at 1.9 mm, shown in the insets. The best matched rotational distribu-
tion is marked with crosses and serves to estimate the temperature. These
theoretical Raman spectra were calculated numerically based on a thermal
Boltzmann distribution of states PJ = (2J + 1) exp(−EJ/kBT ). Details of
our numerical simulation are discussed in section 2.3.6. The rotational tem-
peratures for all nozzle distances have been added to Fig. 4.6. We note, that
the Raman spectra, in particular the ones close to the nozzle, deviate from
the Boltzmann distribution, leading to large errorbars. One possible expla-
nation lies in the averaging over the temperature profile of the molecular jet
along the ~z-direction, the direction in which the laser beams propagate.

In conclusion, we set our distance to x = 1.9 mm in all experiments.
Here, the pressure is estimated to be around (35 ± 5) torr, sufficient for
sensitive measurements, and the rotational temperature is approximated to
be (23± 7) K, where the most populated state is J = 2 in nitrogen or J = 3
in oxygen.

Our results are in agreement with the ones found in other Raman spec-
troscopy methods implemented in beams of N2 molecules, e.g. coherent
anti-stokes Raman spectroscopy (CARS) [26] or spontaneous Raman scat-
tering [137].
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Figure 4.9: Rotational Raman spectra of (a) nitrogen and (b) oxygen, mea-
sured in a molecular jet at various distances from the nozzle: x = 0.9, 1.15,
1.4, 1.65, 1.9 to 2.15 mm (from broadest to narrowest distribution). The
insets compare the experimental spectrum recorded at a distance of 1.9 mm
(solid lines), with the simulated distribution at 23 K (crosses). The maxi-
mum signals are normalized to unity.
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Chapter 5

Resonant excitation of
molecular rotation

The periodically kicked rotor exhibits rich dynamics. In the classical limit it
is described by the “standard map” (Sec. 2.1.1), which is known as one of the
simplest representations of chaotic behaviour. Here, we study the dynamics
of periodically kicked linear molecules - a system of quantum rotors. Owing
to the discreteness of rotational energies, we need to distinguish between
two regimes: the one of periodic excitation on quantum resonances and the
one of periodic excitation away from quantum resonances. In this chapter 5,
we exclusively investigate various phenomena that are all a consequence
of quantum resonances. The following chapter 6 will treat the other case,
where the period of the pulse train is chosen to be incommensurable with
all quantum resonances of the system.

We established the “resonance map” (Sec. 2.3.8) as a helpful means to
study the QKR. In Sec. 5.1, we verify this map experimentally by expos-
ing an ensemble of room temperature molecules to a periodic sequence of
pulses. This knowledge is used to set the train period to different resonances
in order to demonstrate different effects. To achieve cleaner results, these
measurements are typically done in rotationally cold molecules. When the
period is chosen to coincide with a single rotational resonance, in Sec. 5.2,
we observe Rabi oscillations between the constituent rotational states. We
observe that the amplitude and period of the oscillations depend on the de-
tuning from the resonance. If instead of a single rotational resonance the
period matches the full quantum resonance, we observe another type of os-
cillations. In Sec. 5.3, we investigate how the angular momentum of the
rotor oscillates in a fashion that has been connected to Bloch oscillations in
solid state physics [60, 64, 62]. Again, we can manipulate the dynamics by
adjusting the detuning from the quantum resonance.

In Sec. 5.4, our goal is the excitation of broad rotational wave packets,
which is commonly done via periodic excitation on quantum resonance [41,
192]. We evaluate the efficiency of this process and assess the limitations for
a non-rigid rotor. Despite long sequences with extremely high cumulative
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5.1. Demonstration of the resonance map

kick strengths, we fail to populate rotational levels that are significantly
above thermally excited states. We propose a scheme of a non-periodic
pulse train that makes use of fractional resonances to extend the reach of
the impulsive excitation. Section 5.5 concludes the topic of impulsive multi-
pulse excitation of molecular rotation using fractional and full quantum
resonances.

5.1 Demonstration of the resonance map

In this first experimental demonstration, we investigate the rotational co-
herences created by a periodic pulse sequence. We excite a room tempera-
ture ensemble of oxygen molecules with a large number of rotational states
thermally populated. This simplifies the observation of many fractional
resonances and the study of their ensueing dynamics. We use rotational
Raman spectroscopy in a gas cell filled with oxygen, as described earlier in
Fig. 4.1(a). The exitation is done via relatively weak femtosecond pulses,
in sequences of up to 15 pulses. These sequences were produced by a pulse
shaper without interferometric splitting (details of the pulse train generation
are given in chapter 3).

In Fig. 5.1, two-dimensional plots show the observed Raman peaks (color
coded from dark to bright red) as a function of the pulse train period T .
Each Raman spectrum is plotted as a function of wavelength (left vertical
axis) or converted to J-numbers (right vertical axis). The apparent pattern
of peaks can be interpreted via the resonance map (Sec. 2.3.8). Even J ’s are
missing due to the oxygen nuclear spin statistics. We set all individual pulses
to weak energies, where the accumulated kick strength is PN = P ·N . 1,
so as to look at the dynamics in a perturbative regime.

In Fig. 5.1(a), the period of five pulses is varied from 10.8 to 12.6 ps.
Oxygen 16O2 has a revival time of Trev = 11.67ps. If we choose the period
to match the revival time T = Trev, then we excite the molecules with a
train tuned to the quantum resonance. The result is the generation of a
broad rotational wave packet, when all J-states are excited simultaneously.
We will investigate this scenario in more detail in Sec. 5.4. The Raman
spectrogram matches well with the simulated resonance map, indicated by
light blue crosses. Whenever the train period coincides with a fractional
resonance, we excite a coherence between the states |J〉 and |J + 2〉. At all
other time periods the rotational coherences are suppressed. This supports
the provided interpretation of the coherent accumulation in the rotational
multi-pulse excitation.
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Figure 5.1: State and time resolved Raman spectrogram of room tempera-
ture 16O2 after the excitation with a periodic pulse train. The train period T
is scanned around the revival time for a sequence of 5 pulses (a) and around
a quarter of the revival time for a sequence of 15 pulses (b). Light blue
crosses indicate the time moments when a coherent wave packet consisting
of two rotational states, |J〉 and |J + 2〉, accumulates a phase of π.
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5.1. Demonstration of the resonance map

Scanning the period from 0.7 to 3.5 ps for a sequence of 15 pulses in
Fig. 5.1(b) covers the dynamics around the quarter revival T ≈ 2.92ps.12 In
this range, no period exists when all J-states can be excited simultaneously.
We point out that we can virtually suppress any coherence completely by
choosing a period around 3 ps. This period overlaps with the point in time
where the molecules are anti-aligned and thus leads to perfectly destructive
interference. Read more about the revival dynamics and molecular align-
ment in the introduction, Sec. 2.3.7.

5.1.1 Excitation of single coherences

If the chosen period of a pulse train matches a fractional resonance TJ , the
population of this state J will be transferred to the state J + 2. At the
same time, the coherence ρJ,J+2 will grow in a stepwise fashion, which we
measure as the intensity of the rotational Raman signal. At weak energies,
coherences can only be created at thermally populated states. For demon-
stration purposes, we select seven different periods T1, marked with solid
vertical lines in the two-dimensional Raman spectrogram of Fig. 5.2. At
these times, the train excites one single coherence, J = 5, 7, 9, 11, 13, 15 or
17 at the fractional resonances of T1/Trev equal to 2/13,

3/17,
4/21,

1/5,
6/29,

7/33

or 8/37, respectively. In the case of oxygen this corresponds to T1 = 1.80 ps
for J = 5 (purple), T1 = 2.06 ps for J = 7 (blue), T1 = 2.22 ps for J = 9
(light blue), T1 = 2.33 ps for J = 11 (turquoise), T1 = 2.41 ps for J = 13
(yellow), T1 = 2.48 ps for J = 15 (orange) and T1 = 2.52 ps for J = 17
(red).

Figure 5.3(a) plots the normalized Raman spectra after these periodic se-
quences of 15 pulses. The respective target states clearly show the strongest
coherences. Minor signal can be seen at other J values due to the finite
pulse duration of 130 fs leading to a partial overlap with other quantum
resonances.

The concept of accumulating coherence over several pulses is not re-
stricted to periodic trains. Building a sequence that alternates between two
different periods T1 and T2 both of which are resonant with the same target
state J will show the same effect. Furthermore, we expect that the selec-
tivity can be enhanced, since the overlap of the finite width pulses with
other fractional resonances may be different for T1 and T2. We build three

12Both sequences utilized in Fig. 5.1(a) & (b) were created with the pulse shaper,
without interferometric splitting, in order to simplify the setup. A pulse train of 5 pulses
with a period of 12.6 ps spans a duration of 50 ps, reaching the pulse shaper limit. A
pulse train of 15 pulses with a period of 3.5 ps spans a similar duration of 49 ps.
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Figure 5.2: Raman spectrogram of room temperature oxygen 16O2 after
the excitation with a periodic pulse train of 15 pulses (same color map as
Fig. 5.1). Highlighted are selected periods to excite single coherences.

such trains, for J = 5, 9 or 13 at the fractional resonances of T1/Trev and
T2/Trev equal to 2/13 and 3/13, 4/21 and 2/21, or 6/29 and 4/29, respectively.
The newly added T2 timings are marked as dotted vertical lines in Fig. 5.2.
The observed Raman spectra in Fig. 5.3(b-d) (dashed black lines) prove the
increased selectivity compared to the previous results (solid coloured lines)
taken from (a). The measurements were done with the following periods:
(b) T1 = 1.80 ps, and T2 = 2.69 ps, (c) T1 = 2.22 ps and T2 = 1.11 ps, (d)
T1 = 2.41 ps and T2 = 1.61 ps.

A number of our studies required periodic sequences of high intensities
(P > 1). Once the accumulated kick strength of the pulse train is sufficient
to transfer more than 50% of the population from the initial state J to the
state J + 2, the maximum coherence, or the maximum Raman signal, is
reached. In the case of even stronger pulses, we observe oscillations between
the mentioned states, similar to Rabi oscillations in a two-level system. This
phenomenon is discussed in Sec.5.2.

When we investigate the phenomenon of dynamical localization in chap-
ter 6, we examine the angular momentum distribution after the excitation
with a high-intensity pulse train, whose period is chosen off-resonance. How-
ever, each pulse of the train has a finite duration. Thus, the choice of the
train period might affect the shape of the distribution, because of the ‘par-
tial’ overlap of pulses with particular quantum resonances. Peaks in the
spectra at certain states J can often be explained by the proximity of a corre-
sponding fractional resonance. For that reason, the simple non-perturbative
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Figure 5.3: Normalized Raman spectrum after the excitation by a sequence
of 15 pulses. (a) The seven coloured lines are obtained with seven different
periodic trains. The periods T1 are chosen to each excite only a single co-
herence ρJ,J+2. (b-d) The black-dashed line shows the improved selectivity
using a pulse train with two alternating periods T1 and T2 both optimized
to excite the same single coherence ρJ,J+2 for (b) J = 5, (c) J = 9 and (d)
J = 13. The coloured lines are the spectra after the strictly periodic train
with T = T1, as shown in (a). All periods are given in the text and marked
in Fig. 5.2.
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picture of the resonance map is useful in the interpretation of the results.

5.2 Rabi oscillations in molecular rotation

In this section, we demonstrate robust and selective population transfer be-
tween two isolated rotational states of the QKR. If the goal is to maximize
the population transfer in a simple two-level system, one distinguishes be-
tween two approaches: A single pulse that executes half a cycle of a Rabi
oscillation (the so-called π-pulse) will invert the population [44, 29], however
this method is generally very sensitive to the pulse parameters. A robust al-
ternative is an adiabatic technique [176] which excels in complete population
transfer.

Many adiabatic schemes lose their appeal in multi-level systems when
they become sensitive to exact frequency chirps or pulse intensities [159, 30,
113]. In a series of theoretical works, Shapiro et.al. [154, 156, 155] studied
population transfer by a piecewise adiabatic passage and a robust population
transfer was demonstrated between two quantum states [194]. The piecewise
procedure is transferable to selective excitation in more complex quantum
systems. The idea of using pulse sequences to optimize population transfer
has also been applied to many non-adiabatic schemes, e.g. Refs. [186, 132],
or has been found as a solution via a genetic search algorithm [168].

We present a technique that uses a pulse train of ultra-short pulses to
address two-states in a multi-level system. We exploit the fact that a pulse
train of broadband ultra-short pulses is a comb in the frequency domain,
which enables selective excitation, just like with narrowband continuous-
wave lasers [171]. The selectivity of a comb is combined with the accumula-
tive effect of a pulse sequence. More specifically, we choose the pulse train
period to pre-select an effective two-level system of two rotational states,
| J 〉 and | J + 2 〉. In this non-adiabatic approach the number of pulses and
their strength can be used to transfer the system into any arbitrary super-
position of two states. We demonstrate the effect of Rabi oscillations and
study their dependence on the pulse train parameters. The scheme relies on
a periodic sequence of many femtosecond pulses and has not been reported
yet.

In Sec. 5.2.1 we describe the theory of population transfer in a two-level
system and apply it to the QKR. In Sec. 5.2.2 we review the experimental
details, before presenting the results in Sec. 5.2.3. The observation of Rabi
oscillations was used to calibrate the kick strength of our laser pulses in all
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5.2. Rabi oscillations in molecular rotation

other experiments. Details of this method can be found in Sec. 5.2.4.

5.2.1 Theory and simulation

At first we describe the Rabi formalism in a real two-level system, which
is then applied to the case of a kicked molecule. We will then demonstrate
the phenomenon via numerical simulations to clarify certain properties that
cannot be shown in the experiment.

Two-level system

Monochromatic light of frequency ω is used to excite a transition in a two-
level system with the states | a 〉 and | b 〉, whose energy difference is given
by Eb − Ea = ~ω0.

| 𝑎 〉

| 𝑏 〉

𝜔

𝛥

𝜔0

Figure 5.4: Energy diagram of a two-level system.

I.I. Rabi showed that the population in a two-level system will oscillate
between both states under the influence of a constant electric field. The
potential energy of the interaction is described as the product of the dipole
moment µ of the atomic transition and E(t) the electric field amplitude,
V (t) = µE(t). We define the Rabi-frequency as

Ω(t) =
µE(t)

~
, (5.1)

and a generalized Rabi frequency Ω′ for non-resonant fields with a detuning
of ∆ = ω0 − ω

Ω′ =
√

Ω2 + ∆2 . (5.2)

The time-dependent probability to occupy either of the two states is [44, 29]

|cb(t)|2 =
Ω

Ω′
sin2

(
Ω′

2
t

)
(5.3)

|ca(t)|2 = 1− |cb(t)|2 . (5.4)
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5.2. Rabi oscillations in molecular rotation

with the total wave function |Ψ(t) 〉 = ca(t)e
−iEat/~ | a 〉+ cb(t)e

−iEbt/~ | b 〉.
The population oscillates with the generalized Rabi frequency. For resonant
light, the maximum transfer is 100 %. Once we detune from resonance the
efficiency drops - the amplitude of Rabi oscillations decreases while the oscil-
lation frequency increases. For time-dependent electric fields it is convenient
to introduce the pulse area A =

∫
dt Ω′. A complete transfer (at ∆ = 0)

is achieved when the pulse area is an odd multiple of π, referred to as a
“π-pulse”.

Effective two-level system in the periodically kicked rotor

The QKR is a multi-level system with many rotational levels. By taking
a long pulse sequence and setting the period to match a specific fractional
quantum resonance, the QKR will behave as an effective two-level system.

According to the resonance map (Sec. 2.3.8) we can choose a period
which is in resonance with a superposition of two states | J 〉, | J + 2 〉. The
excitation of all other states in the vicinity is efficiently suppressed due
to the repeated kicking with a period that is incommensurable with their
rotational periods. The effective wave function reduces to the form |Ψ(t) 〉 =
cJ(t)e−iEJ t/~ | J 〉+ cJ+2(t)e−iEJ+2t/~ | J + 2 〉. We have isolated a two-level
system that is coupled with a two-photon transition within a multi-level
system. The number of kicks N , which are spaced out with a period T ,
represents a unit of time. In the experiment we will demonstrate how the
population oscillates between the states | J 〉 and | J + 2 〉 as a function of
N .

The potential energy of the QKR has been introduced in Eq. 2.8 as
V (θ, t) = −∆α

4 E
2(t) cos2 θ. Similarly to Eq. 5.1, the Rabi-frequency of the

QKR behaves according to

ΩQKR(t) ∝ ∆α E2(t)

4~
. (5.5)

We discuss the case where the period of the pulse train is chosen on resonance
first. As we learned in the last section, Rabi oscillations depend on the pulse
area A =

∫
dt Ω(t), which is re-evaluated for the new system by integrating

over the duration of the pulse train

AQKR =

∫ NT

0
dt ΩQKR ∝

∆α

4~

∫ NT

0
E2(t)dt = PN . (5.6)

Here, we used the definition of the kick strength (Eq. 2.11). On resonance,
we expect Rabi oscillations with a frequency that is proportional to the kick
strength and the number of kicks; complete population transfer is possible.
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5.2. Rabi oscillations in molecular rotation

Detuning from the resonance results in a decrease of the oscillation am-
plitude and a simultaneous increase of the oscillation frequency, which is best
understood in the frequency domain, where the pulse train is represented
by a frequency comb. Changing the pulse train period is equivalent to mod-
ifying the comb spacing. Thus, it is obvious that a detuning of the train
period from a fractional quantum resonance is nothing else but a detuning
of the comb teeth from the resonant two-photon frequency.

We stress two points: (1) This discussion is only valid for relatively weak
pulses (P . 1), when a single pulse couples only nearest neighbour states.
We will show that for larger kick strength values population gets lost to other
rotational states. (2) As a consequence of the degenerate M -sublevels, which
interact slightly differently with the laser pulses, our system is not a true
two-level system, but rather a superposition of several two-level systems.
(3) The shift of the levels due to the AC Stark effect cannot be neglected
and will become noticeable in an off-resonance excitation.

Rotational population versus coherence

By solving the Schrödinger equation, we obtain the complex amplitudes cMJ
used to calculate the rotational population PJ =

∑
M 〈|cMJ |2〉J′,M′ and the

modulus squared of the coherences C
(2)
J =

∑
M 〈|cM∗J cMJ+2|2〉J′,M′ . Both ex-

pressions include the summation over the degenerate M -sublevels and the
thermal average over initially populated states | J ′,M ′ 〉. Check Sec. 2.3.6
for details.

Figure 5.5 shows the intrinsic connection between both quantities, PJ
and C

(2)
J , for the example of nitrogen molecules exposed to a sequence of

60 weak pulses at P = 0.2 per pulse. To simplify the picture, we start
with the molecules initially being in the rotational ground state at 0 K.
Due to a non-zero nuclear spin of 14N2, there are two spin isomers with the
corresponding statistical weights of P0 = 2/3 and P1 = 1/3. Both parities are
not coupled and evolve independently; we look at even rotational states.

The resonance condition for the quantum state | J,M 〉 = | 0, 0 〉 is met
exactly when we choose a train period of T = 0.3354 Trev, marked with a
solid line in the resonance map, Fig. 5.6. Owing to the AC Stark-shifts of the
levels, it deviates from the classical prediction of 1/3 by 0.62% (more details
follow in the next subsection). The excitation dynamics of this idealistic
case is plotted in Fig. 5.5(a). We achieve a complete population transfer
between the states J = 0 and 2, with the respective populations P0 = |c0

0|2
(dashed black line) and P2 = |c0

2|2 (dotted black line). The strength of the
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Figure 5.5: Excitation of N2 molecules, initially in J = 0, with a sequence of
60 pulses at P = 0.2 per pulse. The population (left axis) oscillates between
J = 0 (dashed line) and J = 2 (dotted line). The quantity of interest is the
corresponding modulus squared of the coherence (red solid line, right axis).
Shown are different detunings from the period T/Trev = 0.3354 with (a) 0%,
(b) 1%, (c) 2% and (d) 4%.
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Figure 5.6: Resonance map: A pulse train with period T/Trev = 1/3 (solid
line) induces Rabi oscillations between J = 0 and 2. For T/Trev = 1/7

(dashed line) or 6/7 (dotted line) they are between J = 2 and 4.
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kicks affects the Rabi period, i.e. the number of pulses required to achieve

one full cycle. The coherence and its modulus squared C
(2)
0 = |c0∗

0 c
0
2|2 (red

solid line) is maximized when both states are equally populated and is zero
when one of the states has no population.

Figure 5.5(b-d) explores the oscillation dynamics for steadily increasing
detuning from the particular resonance by 1%, 2% and 4%, respectively.
As in the case of a two-level system, we expect faster oscillations with a
smaller amplitude for growing detunings. We observe the same behaviour
in kicked molecules. The transfer of population T decreases from (a) 100%,
(b) 78%, (c) 47% to (d) 18%, while the oscillation frequency increases. The

observable C
(2)
0 contains the same information in a less obvious way: (a)

On resonance (T = 100%) we see regular oscillations with half the period
of the population oscillations; (b) Off resonance (T > 50%) a double-peak
oscillation is visible as two maxima merge, the oscillation amplitude remains
unchanged; (c,d) Further off resonance (T < 50%) the regular oscillations
have the same period as the population oscillations, but with a decreasing
amplitude.

In the experiment, we do not directly detect rotational populations PJ .
We use rotational Raman spectroscopy (Sec. 4.1) that yields a state-resolved

Raman spectrum whose intensity is proportional to C
(2)
J . We fit our calcu-

lations to match the measured Raman intensities IJ = b ·C(2)
J with a single

fitting parameter b.

Manifold of M-substates

It is impossible to separate individual M channels experimentally. The ob-
served Raman spectra are always an incoherent sum over all initially pop-
ulated | J ′,M ′ 〉 states. In Fig. 5.7 we reveal the individual dynamics nu-
merically for N2 at a realistic temperature of 25 K. The total population in
the initial | 2,M ′ 〉 manifold is 0.37, of which one fifth is in each degenerate
M ′ = 0,±1,±2 substate. We excite these molecular states with a sequence
of 100 weak pulses of P = 0.2 with a period of T = 1/7 Trev (dashed line
in Fig. 5.6) and compare the evolution of the population P2 (dashed black
line), the population P4 (dotted black line) and the modulus squared of their

coherence C
(2)
2 (red solid line).

The dynamics differ significantly for each individual initial state | J ′,M ′ 〉
under identical excitation conditions. In Fig. 5.7 we compare the dynamics of
molecules initially occupying (a1) | 2, 0 〉, (b1) | 2, 1 〉 and (c1) | 2, 2 〉. Note,
that these three plots describe the entire dynamics since each | 2,±M ′ 〉 in-
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Figure 5.7: Excitation of N2 molecules at 25 K with a sequence of 100 pulses
at P = 0.2 per pulse. Plotted are the populations (left axis) oscillating
between J = 2 (dashed line) and J = 4 (dotted line), and the modulus
squared of their coherence (red solid line, right axis). In column (1), we
set the period to T = 1/7 Trev and resolve the dynamics of different initial
states | J ′,M ′ 〉: (a) | 2, 0 〉, (b) | 2, 1 〉, (c) | 2, 2 〉. (d) is the average of all
M ′-substates in | 2,M ′ 〉. In column (2), we adjust the period individually
for each substate to regain complete population transfer, achieved at the
detunings of (a) −0.04%, (b) +0.17% and (c) +0.83%.
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teracts with the pulses in the same way. We emphasize two key signatures,
that were both discussed in Sec. 2.3.6 under “M -degeneracy”. First, the
effective kick strength decreases with higher magnetic quantum numbers
- more pulses are needed to complete one Rabi cycle. Second, the reso-
nance condition changes due to the dynamic Stark shift. We quantify the
difference with the max population transfer T , which is a measure of the
detuning from the resonance. We obtain efficiencies of T = 100%, 99%
and 61%,respectively. The graph (d1) is the average over all five M ′ sub-
states starting in the | 2,M ′ 〉 manifold. Since there is no unique period that
satisfies the resonance condition for all participating states, we cannot ex-
pect pure Rabi oscillations. Instead a quasi-periodic pattern with reduced
contrast emerges 13.

Owing to the quadratic Stark-shift, which is lifting the M -degeneracy,
one obtains a resonance condition that depends on the magnetic quantum
number. The resonant period is shifted proportionally to the kick strength
P . It is possible to compensate the phase shift by detuning the train period
away from T = 1/7 Trev. This is done individually for each | 2,M ′ 〉 regaining
a 100% population transfer. We empirically retrieve the following detunings
(a2) −0.04% , (b2) +0.17% and (c2) +0.83%.

5.2.2 Experiment

We implement rotational Raman spectroscopy in nitrogen molecules cooled
to a rotational temperature around 25 K via a supersonic expansion, as
described earlier in Fig. 4.1(b). Our pump is a periodic train of intermediate
kick strength around P = 1 or less. We conducted measurements with two
different sequences, one of 29 pulses at a period of 1/7 Trev, and the other
one with 24 pulses at a period of 6/7 Trev. Both timings are marked on
the resonance map in Fig. 5.6. The revival time of 14N2 is Trev = 8.38 ps.
Owing to the overall length of the pulse train, the generation of the first
sequence is done with only the pulse shaper, whereas the latter one requires
two additional Michelson interferometers (details are found in chapter 3).
The weak probe is a single narrowband pulse with a spectral width small
enough to resolve the individual rotational states of nitrogen.

We deliberately choose nitrogen over oxygen as our sample. The phe-
nomenon is independent of the type of molecule, but oxygen bears the disad-
vantage of spin-rotation coupling (Sec. 4.2.3). In particular at low rotational
quantum numbers, where the resulting dephasing of the Raman signal is on

13To reproduce the experimental Raman spectrum, we would need to include all other
J ′-states that can couple to J = 2 or 4, as well.
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a similar time scale as the length of the pulse train, the data interpretation
would be more complicated.

5.2.3 Observation of Rabi oscillations

This section summarizes our experimental investigations regarding Rabi os-
cillations in a quantum rotational system. We present the dependence of the
phenomenon on various pulse train parameters, i.e. the choice of a particular
fractional resonance, the detuning from that resonance, the kick strength,
the number of pulses and their bandwidth. The results are shown in one
of two ways: Either we plot the Raman intensity for a selected J-state as
a function of the pump-probe delay, or we plot a two-dimensional Raman
spectrogram displaying the entire Raman spectrum along its second axis.
The time delay is expressed in the number of pulses N that have interacted
with the molecules.

Dependence on the detuning

We study the rotational excitation of nitrogen molecules after a pulse se-
quence of 29 pulses with a period of 1/7 Trev. This fractional resonance is
commensurable with the dynamics of the (| 2 〉, | 4 〉) wave packet, see Fig. 5.6.
It has been chosen because J = 2 is the most populated state (37%) at a
temperature of 25 K. (The state J = 4 holds another 13% of the initial
population.) Figure 5.8 analyses the rotational dynamics for different de-
tunings from the resonance, changing from −10% (top left) in 1% steps to
+1% (bottom right). Plotted are the spectra between J = 0 and J = 6.
The only state in the Raman spectrum with a substantial intensity IJ is the
one at J = 2, which features multiple oscillations with a high contrast. We
point out that barely any population escapes to different rotational states,
which otherwise would be seen as additional Raman peaks, e.g. at J = 4.
Although 50% of the population is initially not in J = 2 or 4, the coherent
accumulation of a sequence of non-resonant pulses results in virtually no
Raman signal away from I2.

Looking at the oscillations, we make several key observations. Tuning
slowly away from the resonance leads to the merging of two maxima, e.g. at
−1%,−2%. The explanation has been given in the theory section. Tuning
far away from the resonance leads to faster oscillations and a simultaneous
drop of the amplitude. All spectrograms in Fig. 5.8 share the same intensity
scale, the absolute amplitudes are therefore comparable. At the detuning of
−10% we count three complete oscillations.
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Figure 5.8: Rabi oscillations observed in the Raman spectrum of 14N2

after the excitation with a periodic sequence of N = 29 pulses with a kick
strength of P = 0.33. Amplitude and period of the oscillations are controlled
by adjusting the period of the train around the fractional resonance at T =
1/7 Trev in twelve 1% steps from −10% (top left) to +1% (bottom right).
Each spectrogram in this table compares numerical simulations at T = 25 K
(top) with experimental results (bottom).
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The experimental Raman spectra (bottom) are compared to the numer-
ically calculated ones (top). The only free parameter in the simulation -
the kick strength - has been adjusted to reproduce the observed oscilla-
tions. We found the best match at P = 0.33. For negative detuning, both
graphs are very similar within experimental noise. On resonance and toward
positive detuning the experimental contrast decreases with the number of
oscillations, which is not reproduced in the simulation. The origin of this
discrepancy lies in the finite duration of the pulses, and will be discussed
later in the respective subsection.

Figure 5.9 provides a more quantitative comparison between the numer-
ics and the experiment by showing the intensity I2 for selected periods. The
detunings from the resonance are (a) 0%, (b) −3%, (c) −6% and (d) −9%.
The graphs represent cross-sections of the two-dimensional Raman spectro-
grams in Fig. 5.8 at J = 2. After determining the kick strength of P = 0.33
and rescaling, the simulation (black dots) reproduces the experiment (solid
red line) with an error of (a) 44%, (b) 12%, (c) 9% and (d) 32%. We cal-
culated the root mean square deviation (RMSD) found from the deviations
for all integer values of N . The percentages are the RMSD values divided
by the mean experimental signal.

The explanation of the non-zero minima of Rabi oscillations, e.g. in
panel (a), is the existence of five individual channels corresponding to the
five magnetic quantum numbers M = 0,±1,±2. As discussed earlier, in
the impulsive multi-pulse excitation, the resonance condition for each non-
degenerate M -state is different. Our experiments provide a verification of
that discussion in the theory section. At larger detunings from the fractional
quantum resonance, e.g. in panel (d), the relative differences in the individ-
ual detunings between all M -channels become smaller. Thus, the contrast
of the oscillation increases.

Dependence on the kick strength

So far, we have looked at Rabi oscillations at weak kicks of P � 1. In
Fig. 5.10 we examine the dynamics due to a periodic pulse sequence with
increasingly higher pulse energies. At P = 0.6 (a) we resolve two oscilla-
tions within 24 pulses. We provide a direct comparison between simulation
(1) and experiment (2) with a reasonable agreement. At larger strengths
of P = 0.83 (b) and P = 1.1 (c) we observe faster oscillations but the cor-
respondence to the simulation becomes increasingly worse. As the number
of pulses grows, the Raman intensity of I2 diminishes. Owing to the finite
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Figure 5.9: Rabi oscillations in 14N2 observed in the Raman signal after the
excitation with a periodic sequence of N = 29 pulses with a kick strength
of P = 0.33. Amplitude and period of the oscillations are controlled by
detuning the period of the train by (a) 0%, (b) −3%, (c) −6% and (d) −9%
with respect to the fractional resonance at T = 1/7 Trev. The intensity of
the experimental result (solid red line) is normalized to fit the numerical
simulation (black dots, connected with a dashed line).
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Figure 5.10: The effect of pulse energy on Rabi oscillations observed in the
Raman spectrum of 14N2 after the excitation with a periodic sequence of
N = 24 pulses tuned to the fractional resonance at T = 6/7 Trev. The period
of the oscillations decreases with the kick strength from (a) P = 0.6, (b)
P = 0.83 to (c) P = 1.1; shown are numerical simulations at T = 25 K (1)
and experimental results (2). The same pulse trains with a period tuned to
match the quantum resonance at T = Trev lead to a linear growth in angular
momentum; shown are experimental results (3).
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pulse duration, the coupling to other states is larger in the experiment than
in the idealistic calculation with δ-kicks. Consequently, we detect Raman
peaks belonging to higher-J coherences, e.g. I4. Further investigations on
the subject of pulse duration are performed in the next section.

We want to emphasize that Fig. 5.10 has been recorded for a pulse train
whose period is set to T = 6/7 Trev, unlike the train with T = 1/7 Trev in
Fig. 5.8. Both periods are tailored to the same coherent wave packet and
exemplify the universality of the process.

Finally, we put the strength of the pulse train in context. For all three
scenarios in Fig. 5.10(a-c) we include an additional spectrogram (3) outlin-
ing the linear growth of angular momentum when the period of an otherwise
identical pulse train is moved from fractional quantum resonance to the full
quantum resonance T = Trev. The total energy in the train is sufficient to
reach much higher rotational states. This excitation scenario is discussed in
detail in Sec. 5.3.

Effect of finite pulse duration

The finite duration of our 130 fs pulses manifests itself even at the excitation
of such low rotational quantum numbers as studied here in the context of
Rabi oscillations. We demonstrate consequences of a limited bandwidth
by pointing out differences between the experimental results and the δ-kick
simulation.

We excite nitrogen with a pulse train similar to those used before, i.e.
29 pulses of medium strength P = 0.57, adjusted to the 1/7 fractional res-
onance. We fine tune the period by −4% below this resonance, indicated
with the dashed line in Fig. 5.11(1). Here, the period is as far detuned as
possible from the resonances of the next higher Raman peak I4. A second
pulse train is tuned to +4% above the resonance, marked by the dotted line,
so as to get it closer to the resonance at J = 4.

In Fig. 5.11(2) we discover that these small relative changes in the train
period do matter in the rotational excitation. Specifically, we look at the
intensity of the Raman peaks I2 (blue lines) and I4 (red lines). According to
the simulation (dots, with dashed lines) the expected oscillatory behaviour
is apparent for the Raman peak I2, whereas the peak I4 is of virtually
zero intensity. This is true for both detunings, −4% (2a) and +4% (2b).
Hence, the δ-kick excitation is very selective. Only in the proximity of a
quantum resonance will the respective states be populated. Compared to
that are the experimental results (solid lines). We see oscillations in I2

regardless of the detuning. However, the behaviour of I4 is sensitive to
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Figure 5.11: (1) Resonance map, marked are the train periods matched
exactly with the 1/7 fractional resonance (solid line), and detuned from it by
−4% (dashed line) and +4% (dotted line). (2) Compromising effect of the
laser bandwidth on Rabi oscillations in 14N2 seen in the Raman signal IJ
of the states J = 2 (blue lines, left axes) and J = 4 (red lines, right axes).
A periodic sequence of N = 29 pulses with a kick strength of P = 0.57
is detuned by (2a) −4% and (2b) +4% from the fractional resonance at
T = 1/7 Trev. The experimentally measured intensity I2 (solid blue line) is
rescaled to fit the simulation (blue dots, dashed line). The same rescaling
is applied to the experimental intensity I4 (red solid line) and compared to
the simulation (red dots, dashed line).
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the choice of the period: very little intensity is measured for the optimized
detuning of −4% (2a) but a significantly higher intensity is seen for +4%
(2b). Hence, the experiment with kicks of finite duration is more sensitive
to different quantum resonances, and the population “leaks” more easily to
other rotational states.

It is helpful to keep this conclusion in mind for all other QKR studies. For
example, when we investigate the phenomenon of dynamical localization in
chapter 6, it is important to stay away from all fractional resonances. Owing
to the finite pulse width, one will always partially overlap some resonances,
which in turn will affect the shape of the Raman spectrum. In order to
minimize these effects, we will average over several pulse trains with different
periods.

5.2.4 Kick strength calibration

The fact that we can identify multiple Rabi oscillations with high precision
is used to calibrate the kick strength of our pulses for all future experiments.
We obtain an accurate measure of the kick strength in the interaction region
of the experiment, without relying on the (often inaccurate) measurements
of the pulse parameters, i.e. beam diameter, pulse energy or pulse duration.

Regardless of the specific experimental requirements, in terms of the
number of pulses and the period in a pulse sequence, we can always find a
suitable fractional quantum resonance to observe Rabi oscillations nearby.
We record oscillations for several different detuning from the chosen res-
onance to create a compilation of plots similar to Fig. 5.8. The scans are
done at weak pulse intensities (P � 1) where the population is well confined
between both target states. The actual kick strength in the interaction re-
gion of the experiment is found by matching the simulation to the real data.
Knowledge of the input energy of the pulse train, which we measure with an
energy meter prior to the vacuum chamber, suffices to extrapolate the final
kick strength at higher pulse energies.

5.3 Bloch oscillations in molecular rotation

This section is dedicated to the impulsive excitation of molecules with se-
quences of high-intensity, ultra-short laser pulses whose periods are tuned
on full quantum resonance, i.e. around the rotational revival time of the
molecule. Resonant excitation schemes have been studied before in thermal
ensembles [41, 192], demonstrating a growing rotational energy. The popu-
lation of increasingly higher angular momentum states, however, is limited
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5.3. Bloch oscillations in molecular rotation

by the centrifugal distortion. In a series of theoretical works [60, 64, 62]
Floss et.al. demonstrated that at a critical value of the angular momentum
the centrifugal distortion will lead to a “back-scattering” of population to-
wards lower J ’s, representing Bloch oscillations in the molecular rotation.
These were reported for the first time in 2015 [64], measured indirectly via
molecular alignment of room temperature nitrogen exposed to eight periodic
pulses.

We present a more detailed investigation of Bloch oscillations in a quan-
tum rotational system. The results demonstrated here improve the previous
study in several aspects: (1) The use of rotational Raman spectroscopy al-
lows for a state-resolved detection. For the first time, Bloch oscillations are
directly observed in the angular momentum space. (2) Our experiment with
molecules cooled to rotational temperatures below 30 K greatly decreases
the width of the rotational wave packet, which increases the contrast of
Bloch oscillations. (3) Significantly longer pulse sequences enable us to bet-
ter capture the rotational dynamics. The disadvantage of our approach is
a smaller spectral bandwidth of the laser pulses, which imposes a limita-
tion for reaching higher rotational states. Under certain circumstances this
prevents the observation of Bloch oscillations.

The phenomenon of Bloch oscillations in angular momentum is unique
to real molecules. It does not appear in the case of a kicked rigid rotor. It is
also not present in related physical systems like the atom-optic realization
of a kicked rotor [121, 135]. Further, our experiment with real molecules
offers great controllability over the oscillations. We demonstrate variable
oscillation amplitudes and frequencies by detuning the pulse train period
from the quantum resonance.

Bloch oscillations were first predicted in 1929 [25] to describe the elec-
tron motion in a crystalline solid subject to a DC electric field. The effect
is extremely hard to show in real lattices as even small defects will destroy
the process. The first experimental realization was done only in 1992 in a
semiconductor superlattice [51]. Bloch oscillations have since been shown
in a few different systems, i.e. in optical lattices, where ultracold atoms are
subject to standing laser waves [17, 123, 93] or in periodic photonic struc-
tures [122, 133, 148, 37, 170]. Periodically kicked molecules offer another
opportunity to study this effect in a new light.

The section has the following structure. First, we present the necessary
theoretical background. In Sec. 5.3.1 we talk about Bloch oscillations in
crystalline solids. The example of a one-dimensional crystal serves to show
the analogy with the QKR system in Sec. 5.3.2. Section 5.3.3 gives the
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5.3. Bloch oscillations in molecular rotation

details of our numerical simulations and section 5.3.4 the details of our
experimental studies. All the results are shown and analysed in Sec. 5.3.5.

5.3.1 Theory I: Bloch oscillations in crystalline solids

Electrons in a crystalline solid subject to an external DC electric field ex-
hibit an oscillatory motion, first discovered by Bloch and Zener [25, 190].
Although ’quasi-free’ electrons in a band are exposed to an external force
f = −eE , with the electric charge of an electron e and the electric field
strength E , the solid acts as an insulator. The electrons oscillate but no net
charge is carried through the crystal. This model only works in a perfectly
periodic crystal without impurities.

The electron wave function describes a wave packet, i.e. a superposition
of plane waves with the group velocity [162]

v =
1

~
∂E

∂k
. (5.7)

An external force applied to the electrons in a crystal is equal to [162]

f = ~
∂k

∂t
= −eE . (5.8)

We explain the mechanism using the tight-binding example of a lattice
in one dimension with only nearest neighbour interactions of Sec. 2.4.4.
The quasi-momentum of the electron is k(t) = − eE

~ t found by integrating
Eq. 5.8 with the boundary condition k(0) = 0. The dispersion relation
E(k) = T −2W cos(ka) from Eq. 2.38 is used to calculate the group velocity
and the position of the band electron by integrating v = ∂r/∂t with r(0) = 0

v(t) = −2Wa

~
sin

(
aeE
~
t

)
(5.9)

r(t) =
2W

eE

[
cos

(
aeE
~
t

)
− 1

]
. (5.10)

The electron starts at the bottom of the band at k = 0 when we turn on
the electric field at t = 0. The electron responds by moving in negative
r-direction. As k changes uniformly with time, the electron moves up the
band E(k). At k = −π/2a it has reached the maximum velocity, before the
velocity decreases again and reverses the sign at the Brillouin zone boundary
−π/a. At this time the electron has reached its farthest position in real space
before it is Bragg scattered in the opposite direction. The quasi-momentum
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5.3. Bloch oscillations in molecular rotation

keeps linearly decreasing but due to the 2π periodicity of the reciprocal
lattice, the k value changes to π/a. The process repeats with the velocity
and the position of the electron bounded. The electrons oscillate with a
Bloch frequency of ωB = aeE/~.

5.3.2 Theory II: Bloch oscillations in a molecular rotor

Behaviour similar to that of an electron in a periodic lattice subject to a DC
electric field reappears in the angular momentum space of the periodically
kicked quantum rotor. The Schrödinger equation governing the dynamics of
the QKR is derived in appendix E based on Ref. [62]

i
dcJ(n)

dn
= V (J) c

(n)
J −

P

4

[
c

(n)
J+2 + c

(n)
J−2

]
. (5.11)

In this semi-classical model the discrete number of kicks N is approximated
with a continuous dimensionless time n. The parameters cJ(n) are the
amplitude coefficients for different eigenstates of the rotor wave function

|Ψ(n) 〉 =
∑

J c
(n)
J | J 〉 belonging to the ‘J-sites’ of a one-dimensional rota-

tional lattice. The two terms on the right hand side are the on-site potential
V (J) and the kinetic term, which expresses the hopping between neighbour-
ing sites (previously labelled T and W , respectively).

For a periodic lattice, if V (J) is constant, we recover the tight-binding
model yielding extended Bloch states; the rotational population will ‘hop’
over the entire lattice. This condition (here, V (J) = 0) is fulfilled only for
a rigid rotor excited on quantum resonance, but not for realistic molecules,
i.e. non-rigid rotors.

Non-rigid rotor, resonant excitation: The period between the kicks
is set to match the full quantum resonance T = Trev. The on-site potential
calculated in appendix E.1 is approximately [62]

V (J) ≈ −πD
B
J2(J + 1)2 . (5.12)

Compared to Eq. E.9, we neglect the small constant shift P/2. The gradi-
ent of the potential energy acts as a force, where the spatial coordinate is
represented by the J-number f = −dV (J)/dJ . To make a connection with
the solid state picture, we can also express the external force (Eq. 5.8) as
f = dk/dn in dimensionless units [62]

dk

dn
= −dV (J)

dJ
≈ 4π

D

B
J3 . (5.13)
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In contrast to a uniform force, the effective force here becomes stronger with
increasing J-numbers.

Rigid rotor, non-resonant excitation (δ 6= 0): Let us now assume a
period T = (1 + δ)Trev with a detuning δ. If it is large enough to dominate
over the centrifugal distortion effects, the latter one can be neglected. The
on-site potential calculated in appendix E.2 is [62]

V (J) = πδJ(J + 1) , (5.14)

resulting in an external force

dk

dn
= −dV (J)

dJ
≈ −2πδJ . (5.15)

The second quantity of interest is the group velocity (Eq. 5.7) in dimen-
sionless units v = dE(k)/dk, which in the lattice frame is v = dJ/dn. In
direct comparison to the solid state case [E(k) = T−2W cos(ka) in Eq. 2.38],
the energy dispersion relation becomes

E(k) = −P
2

cos(2k) , (5.16)

after substituting T = 0 as the on-site energy14 andW = P/4 as the strength
of the hopping and a = 2 for the rotational lattice spacing. The group
velocity of the rotational wave packet is therefore

dJ

dn
=
dE(k)

dk
= P sin(2k) , (5.17)

displaying the oscillatory motion, equivalent to Bloch oscillations.

The two coupled equations for dJ/dn and dk/dn are equations of motion
with the conjugate variables J and k. Floss et.al. showed the relation k =
−θ between quasi-momentum and polar angle [62]. The same undulating
behaviour manifests itself in the position on the angular momentum lattice
J(n), calculated by solving the two coupled equations. The turning points
of Bloch oscillations are the edge of the lattice 15 and at the “Bloch wall”

14Strictly speaking, this assumption is only valid on resonance at δ = 0.
15The edge of the lattice depends on the M -substate and the parity, but cannot lie

below J = |M |.
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JB, which has been derived semi-classically in Ref. [62]

Non-rigid rotor(δ = 0) : JB =
4

√
J4

0 +
B

D

P

2
≈ 4

√
B

D

P

2

Rigid rotor(δ 6= 0) : JB =

√
J2

0 +
P

π|δ|
≈

√
P

π|δ|
,

(5.18)

where J0 is the initial angular momentum. The approximate expressions are
valid if one starts at cold temperatures, close to the rotational ground state
16.

We interprete the rotational analogue of Bloch oscillations as follows [64]:
At time zero, we start with a quasi-momentum k = π/4 because the initial
growth rate dJ/dn = P is determined by the strength of the first kick.
The rotor feels an accelerating potential V (J) because of the centrifugal
distortion and/or negative detuning. This corresponds to a weak force at
low J-states and an increasingly stronger force at higher states. As the quasi-
momentum k grows, it eventually reaches the Brillouin zone boundary at π/2

and the Bloch wave is Bragg reflected because its length is comparable to the
lattice spacing of ∆J = 2. We refer to this location as the “Bloch wall” JB.
If the detuning is positive, it will counteract the centrifugal term and push
the Bloch wall to higher rotational states, but since the centrifugal force
scales as J3, Bloch oscillations will always occur. The Bloch wall location
can be controlled by the detuning as well as the kick strength.

5.3.3 Numerical simulation

Bloch oscillations in molecular rotation manifest themselves in the rotational
populations and coherences. We calculate the rotational population PJ and

the modulus squared of the coherences C
(2)
J , taking into account all the

degenerate M -sublevels and the thermal mixture of initially populated states
(Sec. 2.3.6).

Figure 5.12 shows a comparison between the calculated population (a)
and the calculated modulus squared of the coherence (b) at a realistic tem-
perature of 25 K. Plotted are the distributions after each δ-kick in a sequence
of 30 kicks of P = 3 with a period matched to the quantum resonance in
16O2. The identical oscillatory behaviour is evident, and expected by the

16The calculation of the Bloch wall are based on the ε-classics approach [62], which
cannot treat a non-rigid rotor with a detuning. Nonetheless, the qualitative behaviour is
clear from the above two equations.
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Figure 5.12: Bloch oscillations in molecular rotation: Numerically calcu-
lated populations (a) and the modulus of coherences squared (b) for 16O2

at a temperature of 25 K after the excitation with a sequence of N = 30
pulses. The pulses have a kick strength of P = 3 and are separated by the
revival time T = Trev, corresponding to the case of zero detuning from the
quantum resonance.

relation of both quantities (Sec. 2.3.5). There is no coherence if the cor-
responding states are not populated; the coherence is maximal when two
Raman-coupled states | J 〉 and | J + 2 〉 are equally populated. These sim-
ple arguments require that the oscillations of the population of the rotational
states must also be present in the coherences (provided the oscillation am-
plitude is larger than ∆J = 2).

From now on, all our studies concentrate exclusively on the latter quan-

tity C
(2)
J , because experimentally, the intensity of the observed Raman signal

is proportional to it, IJ ∝ C(2)
J .

5.3.4 Experiment

We decided to study Bloch oscillations in diatomic oxygen instead of nitro-
gen for the following reason: The D/B ratios of 16O2 and 14N2 are similar,
which puts their respective Bloch walls at similar angular momentum values,
according to equation 5.18. However, the density of Raman peaks is higher
in oxygen due to a smaller rotational constant B, which means that the ab-
solute energy of the Bloch wall will be lower. This is a substantial advantage,
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because the maximum reachable rotational energy is restricted by the finite
laser bandwidth. Expressed in the rotational quantum number, this limit is

J
(N2)
lim ≈ 15 or J

(O2)
lim ≈ 21. The explanation is written down in the following

subsection. If one can choose the parameters such that JB 6 Jlim, one should
be able to demonstrate Bloch oscillations in molecular rotation of oxygen 17.

We implement rotational Raman spectroscopy in oxygen molecules cooled
to a rotational temperature around 25 K via a supersonic expansion, as seen
earlier in Fig. 4.1(b). The driving field is a periodic train of 20 high-intensity
femtosecond pulses. Each individual pulse is set to the same kick strength,
whose value is chosen freely inbetween P = 0.45 and P = 4.4, depending on
the experiment. The exact kick strength is calibrated by measuring Rabi
oscillations first and fitting them to the numerical simulation. The pulse se-
quences with periods tuned around the revival time of 16O2 at T = 11.67 ps
are produced with the combined setup shown in Fig. 3.15 and discussed in
Sec. 3.5.2. The weak probe is a single narrowband pulse with a spectral
width small enough to resolve the individual rotational states.

Bandwidth limitation

We are limited in the excitation of high values of angular momentum because
of the finite duration of our laser pulses, i.e. ∆t = 130 fs (FWHM). If a
molecule rotates by & 90° during the length of the pulse, the effective kick
strength will diminish and further rotational excitation will be suppressed.

The classical rotation period of a rigid rotor has been derived in Sec. 2.3.8
as τJ = Trev(J + 3/2)−1. To estimate the bandwidth limit, one needs to set
a quarter period equal to the pulse duration τJ/4 = ∆t and solve for the
rotational quantum number J . For our laser system, we calculate Jlim ≈ 15
for nitrogen or Jlim ≈ 21 for oxygen. If the pulse sequence is strong enough
to populate such high rotational states, one will witness a turn-off in the
rotational excitation at J > Jlim, where the impulsive approximation is not
applicable anymore. It is referred to as “adiabatic localization” [63]. Our
δ-kick simulations do not suffer from a limited bandwidth, and as such do
not show adiabatic localization.

17The detrimental effect due to spin-rotation coupling in oxygen (Sec. 4.2.3) is expected
to play a minor role. At most times the population resides in higher rotation states that
have a longer dephasing time.
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Figure 5.13: Bloch oscillations observed in the Raman spectrum of 16O2

after the excitation with a sequence of N = 20 pulses with P = 2.2 per
pulse. The Raman signal is normalized to unity and colour-coded (color
map on top). The amplitude and period of the oscillations are controlled
by setting the train period to match the quantum resonance (a), or to be
below the quantum resonance by δ = −0.2% (b) and −0.6% (c).

5.3.5 Observation of Bloch oscillations

This section is a comprehensive summary of our experimental investigations
regarding Bloch oscillation in a quantum rotational system. We present
the dependence of the phenomenon on various parameters, i.e. the detuning
from resonance, the kick strength, the number of pulses and their bandwidth.
The results are presented as two-dimensional Raman spectrograms: Each
spectrum is plotted as a function of the rotational quantum number J for
a specific pump-probe delay, which is expressed in the number of pulses N
that have interacted with the molecules.

Dependence on the detuning

Figure 5.13 displays the predicted oscillatory behaviour for several pulse
sequences with different periods T = (1 + δ)Trev at a fixed kick strength of
P = 2.2. The angular momentum increases, following a distinct trace, before
its direction is reversed at the Bloch wall and the momentum subsequently
decreases again. Such a well-defined trace can only be observed at cold
temperatures with a narrow initial distribution. We distinguish a periodic
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Figure 5.14: Bloch oscillations observed in the Raman spectrum of 16O2

after the excitation with a periodic sequence of N = 20 pulses tuned below
the quantum resonance by δ = −0.4% (same color map as Fig. 5.13). The
amplitude and period of the oscillations are controlled by setting the kick
strength of each pulse to (a) P = 4.4, (b) P = 2.2 and (c) P = 1.1.

excitation (a) on quantum resonance when δ = 0, (b) with δ = −0.2% and
(c) −0.6% below resonance, with the Bloch wall shifting from JB = 17 to 13
to 9, respectively. The first case barely resolves the upper turn-around for
the given number of 20 pulses, the second case shows one oscillation, whereas
the last case exhibits two complete oscillations. The first minimum, where
no higher angular momentum states are left excited, is achieved with great
fidelity. However, the next oscillation always suffers from a significant drop
in Raman intensity. Possible reasons will be discussed later. All Raman
spectra start at J = 2 to cut off the unwanted Rayleigh peak, see Sec. 4.1.1.

Dependence on the kick strength

Figure 5.14 illustrates the same oscillatory behaviour when the energy of
the pulses is changed but the period of the pulse train is fixed at δ = −0.4%
below quantum resonance. Shown are the dynamics for trains with the kick
strength set to (a) P = 4.4, (b) P = 2.2 and (c) P = 1.1, reducing the
Bloch wall from JB = 15 to 11 to 7, respectively. The oscillation period
decreases from about two oscillations per 20 kicks down to one oscillation
per 20 kicks. Again the Raman intensity drops after the first oscillation.
This effect seems to intensify for stronger kicks and is not observed in the
simulations.
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Experiment versus simulation

So far, we have confirmed that Bloch oscillations respond to a change in the
periodicity T or the pulse strength P as expected. Now, we will demon-
strate that the dynamics is in agreement with our calculations as well. In
Fig. 5.15 we explore the two-dimensional parameter space with T (rows) and
P (columns), while comparing the experimental Raman spectrum (bottom)
with the simulated one (top). For the same pulse train of 20 pulses, the
period changes from (a) on quantum resonance to (b) −0.2% to (c) −0.6%
below quantum resonance, with a kick strength that varies from (1) P = 1.8
to (2) P = 0.9 to (3) P = 0.45.

The traces in each column have the same slope, which is defined by P .
If the kick strength is larger, more angular momentum can be transferred
to the molecule per kick. The amplitude of the Bloch oscillations, i.e. the
Bloch wall, is smallest in the bottom right corner (c3) and increases with
both parameters to its maximum in the top left corner (a1). This trend can
be found in both, the simulations and the experiment: the best match is
in the bottom right corner, the largest discrepancy is in the top left corner.
The culprit is the limited bandwidth of the experimental pulses, which is
responsible for adiabatic localization at Jlim ≈ 21. Once the impulsive
approximation breaks down, the effective kick strength declines for higher
rotational quantum numbers. This becomes visible in a decreased slope of
the trace.

Decay of the signal

Whenever the excited states are close to the bandwidth limit Jlim, the in-
tensity of the Raman signal decreases with every consecutive kick. Fast
rotating molecules get out of phase with ‘long’ kicks, once the impulsive
approximation is failing. It becomes evident in a loss of coherence. Further
numerical investigations are necessary to determine the exact effects of the
finite frequency bandwidth.

In addition, there is a number of other experimental reasons that result
in a decrease of the Raman signal and a loss of contrast in Bloch oscilla-
tions. Spatial averaging over the Gaussian beam profiles is equivalent to an
averaging over different laser intensities, i.e. different molecules experience
different kick strengths. This will ‘smear out’ Bloch oscillations with time.
We tried to minimize this effect by sampling primarily the high-intensity
center of the pump beam with a small probe beam. Experimental amplitude
noise in the pulse train has similar consequences [63]. In a thermal ensem-
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Figure 5.15: Bloch oscillations observed in the Raman spectrum of 16O2

after the excitation with a periodic sequence of N = 20 pulses (same color
map as Fig. 5.13). Amplitude and period of the oscillations are controlled by
two parameters: the kick strength (1) P = 1.8, (2) P = 0.9, (3) P = 0.45;
and the train period (a) on quantum resonance, (b) −0.2%, (c) −0.6% below
quantum resonance. Each spectrogram in this table compares numerical
simulations (top) with experimental results (bottom).
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ble of molecules, a multitude of different (J,M)-states are populated. The
degenerate M -substates interact differently with the same pulse train, as
discussed earlier in Sec. 5.2.1, yielding slightly different Bloch oscillations.
At the same time, Bloch oscillation amplitudes vary for the different (J,M)-
states because the lower turning points are set by the M -values, as discussed
earlier. Any initial state, that is inbetween both turning points can follow
a trace toward higher J-values or lower J-values [63], the rotor is either
accelerated or decelerated before it is Bragg-reflected. In conclusion, many
Bloch oscillations with different amplitudes and periods will ‘wash out’ a
clear picture.

We reduced the number of initially populated states by lowering the
temperature to ∼ 25 K, i.e. about 40% of the total population are each in
the J = 1 and J = 3 manifolds. The previous study of Bloch oscillations in
room temperature nitrogen [64] attributed deviations from their simulation
to collisional decoherence. At our pressures we expect only minor effects
from collisions. More research needs to be done to explain why consecutive
oscillations suffer from a significant drop in signal strength. This observation
seems to intensify for stronger kicks.

Bloch oscillations on quantum resonance

The dynamics of a kicked rigid rotor can be described by a tight-binding
model. A detuning from the quantum resonance introduces an effective
potential that will cause Bloch oscillations in the angular momentum space.
Recently, this effect has been demonstrated with a periodic sequence of eight
pulses [64]. We expanded this study in the discussion above.

Real molecules - non-rigid rotors - will feature Bloch oscillations even
when the periodic kicks are tuned to the quantum resonance. In this case,
the effective potential stems from the centrifugal distortion, which results in
a detuning for higher J-states. This has not been demonstrated yet, since it
is harder to show: The period of Bloch oscillations is longer which requires
more pulses.

Our Raman spectrogram in Fig. 5.13(a) reveals signs of oscillatory dy-
namics for periodic excitation on the quantum resonance. We are unable
to measure a complete cycle of a single Bloch oscillation as a consequence
of the following dilemma: At the kick strength of P 6 2.2, when the Bloch
wall is below our laser bandwidth limit (JB < Jlim), we cannot produce
enough pulses, due to a technical limitation of the pulse shaping method
(Sec. 3.3 & 3.4). However, if we increase the kick strength such that one
full Bloch oscillation occurs within 20 pulses, the Bloch wall is out of reach
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Figure 5.16: Compromising effect of the laser bandwidth on Bloch oscil-
lations observed in the Raman spectrum of 16O2 after the excitation with
a sequence of N = 20 pulses with P = 3 per pulse (same color map as
Fig. 5.13). The train period is tuned δ = +0.17% above the quantum res-
onance (a) or on quantum resonance (b,c). The pulses in the train are
transform-limited at 130 fs (a,b) or frequency-chirped to ≈ 250 fs (c).

(JB > Jlim) and oscillations are suppressed by adiabatic localization. The
optimized condition to show the onset of Bloch oscillations have been cho-
sen in Fig. 5.13(a). Substituting oxygen for another linear molecule, would
not help either: The situation for N2 is similar, but the D/B ratio is less
favourable. Heavier molecules are not compromised by our laser bandwidth,
but the smaller B constants result in longer time scales which cannot be
covered by our pulse shaper.

Effect of bandwidth

We can verify the role that the laser bandwidth plays in the excitation of the
rotational states by adjusting the instantaneous bandwidth of the pulses. A
sequence of 20 pulses with P = 3 per pulse excites a rotational wave packet
in oxygen, shown in Fig. 5.16. The plot in the center (b) fulfils the quantum

resonance condition, the Bloch wall is situated at J
(b)
B = 19. In comparison

with Fig. 5.13(a), a smaller portion of the Raman signal reflects off the
Bloch wall. The reason lies in stronger kicks resulting in an elevated Bloch
wall. Therefore, its position in the angular momentum space is similar to the

bandwidth limit of the transform-limited pulses J
(b)
B ∼ J

(TL)
lim , which yields

a loss of signal as discussed earlier.
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5.4. Generation of broad rotational wave packets

In Fig. 5.16(a) we tuned the period by δ = +0.17% above the quan-

tum resonance. This pushes the Bloch wall higher (J
(a)
B > J

(b)
B ) owing to

a cancelling effect between the effective potential caused by the centrifu-
gal distortion and the one caused by the positive detuning. The angular
momentum keeps growing and saturates significantly higher at J ≈ 21.

Instead of lifting the Bloch wall above the bandwidth limit J
(a)
B > J

(TL)
lim ,

we can also engineer the reversed scenario. In Fig. 5.16(c), for a periodic ex-
citation on resonance, we lowered the bandwidth limit below the Bloch wall

J
(chirped)
lim < J

(b)
B . By applying a linear frequency chirp, the instantaneous

bandwidth of each individual pulse in the train was reduced, as illustrated
in Fig. 3.7(b). With a duration of ≈ 250 fs the chirped pulses correspond to

a new J
(chirped)
lim ≈ 10. Indeed, we observe the saturation level in Fig. 5.16(c)

drop to J ∼ 13. All three plots are comparable because the strength of
P = 3 is maintained. 18

5.4 Generation of broad rotational wave packets

If our goal is to extend the reach of rotational excitation and to excite
broad rotational wave packets, one may distinguish “adiabatic” and “non-
adiabatic” techniques. One of the most successful adiabatic methods, an
optical centrifuge [89, 175] has been used to create coherent superpositions
of more than 50 rotational quantum states [118]. However, owing to the
adiabatic mechanism, controlling the phases of the individual states in such
ultra-broad wave packets is difficult and the absolute number of excited
molecules can be low. A second alternative route to generate broad rota-
tional wave packets with well defined relative phases uses impulsive excita-
tion with long sequences of pulses [41]. By tuning the period of a pulse train
to the quantum resonance we expect a ballistic growth of the wave function
(Sec. 2.2.1). Under these conditions, however, we also discussed the lim-
ited reach of angular momentum states as a consequence of the centrifugal
distortion (Sec. 5.3). In this section, we explore the excitation efficiency
with non-periodic pulse sequences and determine strategies of exciting the
broadest rotational wave packet.

A femtosecond laser pulse creates a wave packet whose width can be
characterized by the dimensionless kick strength P , which is proportional to

18For chirped pulses, the energy in each pulse is conserved but distributed over a longer
duration σ with a smaller peak intensity I0 ∝ E20 ∝ σ−1. According to Eq. 2.11 for a
Gaussian pulse, the kick strength (P ∝ E20 σ) is constant.
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5.4. Generation of broad rotational wave packets

the intensity of the laser field (Sec. 2.3.2). Naively, a broader wave packet can
thus be generated by increasingly stronger pulses. In reality, the ionization
threshold of a given molecule only allows the excitation of a few rotational
states with a single kick. The idea of a pulse train is to remain below the
ionization limit by dividing the total energy among N pulses. If the pulses
are separated by the quantum revival time Trev, the cumulative kick strength
PN of the whole train is the sum of the kick strengths of its individual pulses
[12]. Multiple schemes of using long periodic pulse trains for the controlled
rotational excitation of molecules have been proposed theoretically [12, 103,
104, 166, 187], and implemented experimentally, as discussed in the previous
section [41, 192, 64, 88].

Here, we investigate the rotational excitation of room temperature oxy-
gen in a gas cell by long sequences up to N = 28 pulses with cumulative
kick strength up to PN ≤ 140. These pulse trains are significantly longer
and stronger than previous realizations, most notably N = 8, PN ≤ 40 in
Ref. [64]. In Sec. 5.4.1, we study the shape of the achieved wave packets and
its dependence on the train period with respect to the quantum resonance.
As discussed in Sec. 5.3, populating high rotational levels proves impossi-
ble due to the centrifugal distortion and despite the high cumulative kick
strengths of the periodic train. For fast rotating molecules, the revival time
becomes dependent on the angular momentum J and as a result, the reso-
nant condition and the accumulation of the total kick strength from pulse to
pulse is inhibited. In Sec. 5.4.2, we exploit fractional revivals and apply four
non-periodic kicks per Trev. This optimization for efficient rotational exci-
tation extends our reach to J ≈ 29. The propagation of such an optimized
pulse train through a dense medium is examined in Sec. 5.4.3.

5.4.1 Periodic excitation

To connect with the previous sections, we start by re-examining the ro-
tational coherences created by a periodic pulse sequence on and near the
quantum resonance. Here, the goal is the creation of broad rotational wave
packets, which can be anticipated on the quantum resonance, i.e. for a pe-
riod T = Trev when the excitation of all angular momentum states should
be equally efficient. The necessary pulse sequences are produced with the
combined setup shown in Fig. 3.15 and discussed in Sec. 3.5.2. We use
state-resolved coherent Raman detection in a room temperature ensemble
of oxygen molecules, see Fig. 4.1(a), to explicitly demonstrate the effect of
the centrifugal distortion as the main reason for the inhibited rotational lad-
der climbing.
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5.4. Generation of broad rotational wave packets

Figure 5.17(a) revisits the 2D Raman spectrogram from Fig. 5.1(a), but
this time we analyse the spectrum for much higher quantum numbers J ≈
40. The times TJ = (2J + 3)× τJ/2, indicated by light blue squares, mark
the times when all (|J〉, |J + 2〉) wave packets perform an integer number
NJ = 2J + 3 of half-rotations 19. As mentioned before, these times make
up an almost vertical “trajectory” originating at the revival time for low
values of the rotational quantum number (light blue squares). Away from
the quantum resonance, the NJ = const. trajectories bend away from the
vertical lines. For instance, increasing (decreasing) NJ to the next integer
value 2J + 4 (2J + 2) results in a curved trajectory marked with triangles
(circles), along which no two rotational wave packets corresponding to two
different values of J are in phase simultaneously.

Even when the conditions of the quantum resonance are met for the lower
rotational states, they no longer hold at higher J ’s owing to the centrifugal
distortion of the molecular bond. With increasing J , the centrifugal term
in the rotational energy EJ = hc[BJ(J + 1) −DJ2(J + 1)2] becomes non-
negligible, making the resonance J-dependent and, therefore, impossible to
satisfy for all quantum states simultaneously. In Fig. 5.17(a), this effect
is seen through the apparent curving of the resonant trajectory (light blue
squares) away from the vertical line at T = Trev above J ≈ 15. As a result,
the efficiency of the accumulative rotational excitation by a resonant pulse
train (T = Trev) deteriorates with growing J , resulting in Bloch oscillations
discussed in Sec. 5.3. To demonstrate the described centrifugal limit we
increased the number of kicks as well as their strength. Fig. 5.17(b) shows
the detected Raman signal generated by the periodic resonant train of 20
strong pulses with the pulse intensity of 3 · 1013W/cm2 per pulse (black
solid line). Despite the increased cumulative kick strength of P20 ≈ 140, the
highest excited level remains significantly below that value, J ≈ 17 � P20.
In fact, even though the perturbative analysis used earlier is not applicable in
the case of strong pulses, the measured limit agrees well with the conclusions
of Sec. 5.3.

Utilizing the resonance map further, one arrives at a simple method
of extending the reach of rotational excitation by a periodic train of fem-
tosecond pulses. As seen in Fig. 5.17(a), by shifting the train period above
the quantum resonance, its overlap with the time of complete half-rotations
TJ of the rotational wave packets with higher J ’s can be improved. In Sec-
tion 5.3, this “trick” was introduced in the context of shifting the Bloch wall

19For a detailed description of the resonance map, see Sec.2.3.8.
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Figure 5.17: (a) State and time resolved Raman spectrogram of 16O2 after
the excitation by a sequence of five pulses with a period T scanned around
the rotational revival time Trev (vertical solid line). The vertical shaded
band represents the length of our Gaussian pulses (FWHM), whereas the
shaded horizontal band covers the rotational quantum numbers (shown on
the right vertical axis) corresponding to the thermally populated rotational
states (population higher than 10 %). Light blue markers indicate the time
moments at which a coherent rotational wave packet consisting of two states,
|J〉 and |J + 2〉, completes an integer multiple of half rotations, NJ . The
central trajectory (squares) corresponds to NJ = 2J + 3, while the two
neighbouring sets of circles and triangles represent the cases of NJ = 2J + 2
and NJ = 2J + 4, respectively. (b) Raman spectra after a sequence of
20 periodic pulses on quantum resonance (black solid), −0.4% below quan-
tum resonance (blue dashed) and +0.4% above quantum resonance (green
dotted).
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5.4. Generation of broad rotational wave packets

higher up by compensating the centrifugal term with the positive detuning
from the quantum resonance. However, the degree of such control is rather
limited, because detuning the pulse train far from the resonance reduces the
excitation efficiency of the initially populated low-J states. The limitation
can be analysed by inspecting the two shaded bands in Fig. 5.17(a): the
vertical one represents the temporal width of our pulses (FWHM), whereas
the horizontal one covers the thermally populated rotational states. The
length of a continuous set of blue markers under the vertical band tells us
about the width of the created rotational wave packet. On the other hand,
how many of them are covered by the intersection of the two shaded areas
is a qualitative indicator of the thermal fraction of molecules in the wave
packet. As the train period shifts to the right of the quantum resonance,
higher J states are reached, but the amount of rotationally excited molecules
decreases.

For the length and strength of our experimental pulse trains, we found
the detuning of +0.4% to result in the highest enhancement of the wave
packet’s width, while not causing a significant loss of the overall excitation
efficiency. As illustrated in Fig. 5.17(b), by increasing the train period
0.4% above the quantum resonance (green dotted line), we indeed shift the
rotational excitation to higher J states. Similarly, setting the train period
0.4% below the resonance (blue dashed line) results in the narrower excited
wave packet with the lower “center of mass”.

We note, that due to the power broadening of the individual rotational
transitions, higher pulse intensities should allow farther detunings from the
quantum resonance and correspondingly broader rotational wave packets.
Stronger pulses effectively push the centrifugal limit higher. Nevertheless, as
discussed earlier, the ultimate limit for the reach of the rotational excitation
is set by the finite width of the laser pulses. Once a molecule rotates too fast
for the pulses to act as instantaneous kicks, it does not climb the rotational
ladder any further.

5.4.2 Non-periodic excitation

The effect of the centrifugal distortion grows in time as the wave packet
spreads out. The dispersion of the revival times with J accumulates, making
every next kick less and less efficient [41]. Hence, to fully benefit from the
large number of pulses, one needs to apply them on as short of a time
scale as possible. To achieve this goal, we employ tunable non-periodic
pulse sequences. Here, we make use of fractional quantum revivals [13] and
expose molecules to four rotational kicks per Trev. Such an optimized train
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Figure 5.18: Temporal profile of a long periodic pulse train (a) and a dense
non-periodic pulse train (b), 20 pulses each (note different time scale). The
four shades of red correspond to one of the four different pathways through
the two Michelson interferometers.

allows us to “pack” more pulses within the limited amount of time before
the centrifugal distortion suppresses further excitation. By fine tuning the
timing around each fractional and full revival, we extend our reach from
J ≈ 17 to J ≈ 29, utilizing more efficiently the cumulative strength of a
long train with 20 pulses.

Such a dense non-periodic pulse train optimized for the maximum rota-
tional excitation is generated in the following way: Rather than adding the
interferometer copies consecutively one after another to form a long periodic
pulse train of 20 pulses as shown in Fig. 5.18(a), we interleave those copies
with variable timings T1, T2 and T3 ≡ T1 + T2 as shown in Fig. 5.18(b).
Here, Tk is the time between the beginning of the sequence to its k-th pulse.
The procedure to find these timings is described next.

To start, we demonstrate that utilizing two pulses per every revival time
can indeed enhance the excitation, if the timing is chosen appropriately. For
that purpose, a resonant train of five pulses with a period T4 = Trev is pro-
duced with the pulse shaper. Using a single Michelson interferometer, the
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Figure 5.19: (a) Raman spectrogram for the rotational excitation by a
sequence of two identical periodic pulse trains, five pulses each (same color
map as Fig. 5.17(a)). The period of each train is fixed at Trev, while the
time delay T1 between the two trains is scanned. The integrated signal
above reveals the times of maximum total coherence. (b) Alignment-induced
birefringence signal as a function of the probe delay after a weak transform-
limited pump pulse. (c) Raman response after the rotational excitation by
a sequence of 20 pulses: a periodic pulse train with T = Trev (black solid)
and an optimized non-periodic pulse train (red dashed). The two trains are
drawn schematically in the upper right corner.
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5.4. Generation of broad rotational wave packets

train is then split in two parts, which are overlapped in space with the time
delay T1 between them (see Fig. 5.18(b) for the definition of time intervals T1

and T4). Similarly to the Raman spectrogram in Fig. 5.17(a), in Fig. 5.19(a)
we plot the observed frequency-resolved Raman signal as a function of the
delay T1 between the two interleaved periodic pulse trains. As before, strong
Raman peaks correspond to the time moments of enhanced rotational ex-
citation. At some of those time moments marked with solid vertical lines,
slightly before or after the (1

4 , 1
2 and 3

4) × Trev fractional revivals, the Ra-
man response is simultaneously high for the largest number of rotational
states, in exact analogy to the previously discussed response to the periodic
excitation at the quantum resonance. We highlight this in the upper panel
by plotting the same Raman signal integrated over wavelength. The latter

is proportional to
∑

J C
(2)
J

20 and should not be confused with the degree
of transient molecular alignment which is plotted in Fig. 5.19(b) for com-
parison21. One can now interpret the optimal T1 values in Fig. 5.19(a) as
the times of the maximum positive derivative of the alignment signal, when
the majority of molecules move towards the aligned state. A second kick,
introduced at this time, accelerates the rotation further. In contrast, dashed
vertical lines correspond to the maximum negative derivative of the align-
ment signal, when the majority of molecules move away from the aligned
state. A second kick arriving at this time decelerates the rotation, lowering
the degree of excitation, as reflected by the dips in the integrated coherence
signal in panel (a).

The above analysis suggests a possibility of enhancing the rotational
excitation by adding up to six pulses per every revival period [six vertical
white lines in Fig. 5.19(a)]. Our pulse shaping scheme enables convenient
scanning of four pulses per Trev: near one full revival and three fractional
revivals. We set the four variable delay times to the following optimal values
taken from the integrated coherence signal in Fig. 5.19(a): T1 = 0.242 ·Trev,
T2 = 0.519·Trev, T3 = 0.761·Trev and T4 = 1.004·Trev = 11.72 ps, i.e. slightly
above the full revival as explained earlier. We note that these optimized
delays depend on the kick strength of the pulses in the train. The stronger
the pulses, the higher the rotational excitation after each pulse, the larger
the centrifugal distortion, the bigger the required shift from every fractional
revival.

The result of the excitation by an optimized non-periodic train is shown
in Fig. 5.19(c). By shortening the duration of the pulse train, while using the

20Here, C
(2)
J is the modulus squared of the coherences, described in Sec. 5.3.3.

21The alignment signal was recorded with a 130 fs probe pulse following a single kick.
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5.4. Generation of broad rotational wave packets

same number of pulses (N = 20), we extend our reach from J=17 with one
pulse per revival (black solid curve) to J ≈ 29 with four pulses per revival
(dashed red curve). Although the centrifugal limit of the periodic excitation
has been circumvented, the efficiency of the non-periodic optimized pulse
train is still well below its accumulated kick strength of PN = 140. The
main limitation is now the finite duration of the laser pulses, prohibiting
further excitation.

5.4.3 Propagation effects

Long sequences of femtosecond pulses drive molecules to a highly coherent
state. In a dense medium, it makes the latter a strong light modulator
(for recent reviews of this effect, see [163, 14]). In this section, we study
how pump and probe pulses are affected when propagating through a gas of
rotationally excited molecules under high pressure. In oxygen at pressures
up to 6.5 atmospheres, we observe the generation of frequency sidebands via
the cascaded rotational Raman scattering [124]. We show that the molecular
phase modulation (MPM) imparted on the probe pulse is maximized when
its delay coincides with the full revival of the rotational wave packet, as
well as if its timing is close to that of a fractional revival [15]. Here we
demonstrate that when a non-periodic train is optimized for the efficient
rotational excitation, the spectral bandwidth is increasingly broadened from
pulse to pulse [128].

Cascaded Raman scattering

The rotational coherence in a molecular ensemble induced by our optimized
pulse train is rather strong. This can be seen through Raman processes
of higher orders, i.e. cascaded Raman scattering, which are especially pro-
nounced at higher gas pressure. In Fig. 5.20(b), we plot the spectra of a
weak probe pulse following a pulse train of 28 pulses at four different pres-
sures ranging from 1.7 to 6.5 atm. The timing of the pulses in the train has
been optimized at 6.5 atm so as to achieve the highest integrated coherence

signal at J > 17, i.e. for maximizing the sum
∑

J>17C
(2)
J , by means of the

same optimization procedure as described in the previous section 5.4.2.
With an optimized non-periodic pulse sequence, we count up to 250 Ra-

man peaks. Note, that this number does not reflect the rotational quantum
number reached by the end of the excitation process (indeed, at such high J
values, the separation between the consecutive peaks should have decreased
significantly due to the centrifugal distortion). Rather, large frequency shifts
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Figure 5.20: (a) Simplified illustration of the first three scattering orders
in the process of cascaded Raman scattering. The grey profile represents
the Boltzmann distribution of rotational population. (b) Rotational Ra-
man spectra of oxygen gas excited by the optimized non-periodic train of
28 pulses. The four curves correspond to the gas pressures of 1.7 atm (lower
blue), 2.4 atm (middle orange), 5.1 atm (higher red) and 6.5 atm (top black).
First, second and higher orders of the cascaded Raman scattering are indi-
cated with arrows. More than 235 Raman peaks are observed at higher
pressure values, as shown in the inset.
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5.4. Generation of broad rotational wave packets

are caused by the cascaded Raman scattering giving rise to multiple coher-
ent sidebands [124]. The process is illustrated schematically in Fig. 5.20(a).
A strong pump pulse (solid orange arrow) creates multiple coherences via
several two-photon Raman processes (for clarity, only one Raman transition
with an average frequency shift ∆ is shown in the figure). The shape of the
resulting Raman spectrum, which consists of a series of n red-shifted peaks,
reflects the initial thermal distribution of molecules among the rotational
states (grey profile). In the second-order process, all n emitted photons
(dashed red arrow) re-scatter off the induced coherences, giving rise to the
secondary set of n2 Raman lines (dotted brown arrow), centered around 2∆
from the input laser frequency. The third-order process results in yet an-
other red shift by ∆ (dotted brown to dash-dotted black) and so on. This
picture explains the repetitive broad spectral features in Fig. 5.20(b), e.g.
those marked as “higher orders”, resembling the Raman spectrum observed
after a single weak pulse, plotted earlier in Fig. 4.3. The features are sepa-
rated by the frequency shift ∆ corresponding to the peak of the Boltzmann
distribution. The number of Raman processes in each order m of the cas-
caded scattering grows as nm. We note, that the output spectrum consists
of uniformly spaced Raman lines, owing to the repetitive scattering off the
same set of coherences, induced by the strongest first-order interaction.

We verified experimentally that the conversion efficiency into the higher-
order sidebands increases with the intensity of the pulse train and the num-
ber of molecules in the interaction region, both leading to the stronger ro-
tational coherence in the system. Raising the density of molecules by in-
creasing the gas pressure revealed an anticipated Bessel-like dependence of
the strength of the Raman sidebands on the scattering order number [124].
For instance, as can be seen in Fig. 5.20(b), at P = 5.1 and 6.5 atm, the
second-order coherences exceed those induced by the first-order scattering
process.

Pulse broadening

Until now, we have used narrowband probe pulses for the state-resolved
detection of the observed spectral broadening driven by the Raman transi-
tions of multiple orders. In the time domain, the process can be described as
the transient molecular phase modulation (MPM) owing to the periodically
modulated refractive index of the medium. If a femtosecond pulse coincides
with a full or a fractional wave packet revival, when the phase modulation
is maximized, its frequency bandwidth is broadened [15]. The broadening
effect has been theoretically predicted to accumulate from pulse to pulse in
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Figure 5.21: (a) Time-resolved Raman spectrogram (log scale) of oxygen
gas excited by the optimized non-periodic train of 28 pulses under the pres-
sure of 6.5 atm. (b) Raman spectra at the time moments indicated with
arrows in the spectrogram: before the first kick (black solid), at the time of
the first kick (blue dashed), and at the time of the third kick (red dotted).
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5.5. Conclusion

a periodic sequence of pulses, as long as the train period is equal to the
rotational revival time [128].

To demonstrate this accumulative broadening, we scan the time delay
of a 130 fs probe pulse across the optimized non-periodic pulse train de-
scribed earlier, while recording the probe spectrum. The results are plotted
in Fig. 5.21(a) as a function of the probe delay with respect to the first
pulse in the train. As expected, the spectrum of the probe pulse remains
unchanged unless the latter coincides in time with a full or a fractional re-
vival of the wave packet. The further down the pulse train we probe, the
broader and more red-shifted the probe spectrum becomes, as illustrated in
Fig. 5.21(b).

5.5 Conclusion

We investigated the excitation of molecular rotation using long pulse se-
quences of femtosecond pulses that are tailored to match the fractional and
full quantum resonances. In the case of a pulse sequence with weak pulses
spaced by a fractional revival time, we observe two-photon Rabi oscillations.
The population oscillates in an effective two-level system of two rotational
states as a function of the number of pulses. Once we change the periodicity
to the full quantum resonance, the population efficiently moves up the “ro-
tational ladder” until the inevitable centrifugal distortion prohibits further
excitation. The consequence is oscillations in the angular momentum space,
which can be related to the solid-state phenomenon of Bloch oscillations. We
demonstrated the difficulties in the impulsive excitation of high rotational
states and presented a strategy to partially mitigate the detrimental effect
of the centrifugal distortion by adjusting the train period and by using non-
periodic pulse sequences. The induced rotational coherence was significantly
enhanced.

In theory, one could follow the rotational wave packet to higher states
by continuously adjusting the train period. By avoiding the periodicity
altogether, one would break the tight-binding analogy and might expect a
continuous diffusive growth of the molecular angular momentum, limited
only by the laser bandwidth. Non-periodic pulse sequences of this type are
investigated in the following chapter 6.

We envision that our long pulse trains will be useful for all applications
that require high transient molecular alignment at field-free conditions such
as the generation of ultra-short laser pulses [15] or the control of high har-
monic generation [174, 82]. It will be beneficial in impulsive gas heating [188]
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or large amplitude plasma wave generation [172]. Similar effects have been
studied in the context of propagation of intense femtosecond laser pulses in
atmospheric air [173, 129, 128, 188].
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Chapter 6

Dynamical localization in
molecular rotation

The quantum kicked rotor is characterized by two qualitatively different
regimes: In the last chapter 5 we examined the one when the kicking occurs
on quantum resonances. In this chapter, the focus is on off-resonant periodic
excitation, when the wave function of the quantum rotor undergoes dynam-
ical localization. The wave function does not grow wider in the angular
momentum space with every consecutive kick, but instead localizes near the
initial rotational state due to the interference of quantum interaction path-
ways [31, 84]. An exponential distribution around the localization center
is considered a necessary component and a distinct signature of dynamical
localization. Although the phenomenon has been studied experimentally
in Rydberg atoms [67, 16, 27, 65] and a cold-atom analogue of the QKR
[121, 4, 43, 146, 145, 34], it has never been observed in a system of true
quantum rotors.

Floss et.al. theoretically demonstrated the possibility to observe dynami-
cal localization in laser-kicked molecules [59, 63]. The first step toward that
goal was reported in 2015, when an onset of localization was observed in
laser-induced molecular alignment [88]. Here, we describe the direct obser-
vation of dynamical localization. We are able to show the hallmark features
of the exponentially localized states and the suppressed growth of the rota-
tional energy. An overview of all experimental observations, the underlying
theory and a numerical analysis constitute this chapter.

Section 6.1 puts the work on dynamical localization into the context
of the well-known effect of Anderson localization in disordered solids. Sec-
tion 6.2 outlines the theoretical basis for our system. We analyse the tight-
binding model, which is mapped onto the QKR, and explain the origin of
the “disorder” in the rotational “lattice” that is responsible for the local-
ization. Our experiment is described in Sec. 6.3. We will elaborate on our
detection scheme and how we retrieve the angular momentum distribution
from our measurement. Section 6.4 presents our key results: Cold initial
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6.1. Experiments on Anderson localization

conditions and high-sensitivity detection enable us to observe the distribu-
tion of the molecular angular momenta evolving into an exponential line
shape, characteristic of a localized state. We study the dependence of the
localization on the number of kicks (6.4.1) and the strength of the kicks
(6.4.2). Owing to the state-resolved detection we identify the suppressed
growth of rotational energy (6.4.3). Dynamical localization is a coherent
effect that relies on wave interferences. Therefore, we also implement two
different types of noise in our studies to destroy the localization and to re-
cover classical diffusion. Control over the position of the localization center
is investigated (6.4.4). Section 6.5 builds a bridge between chapters 5 and 6
where we examine the transition from the quantum resonance to the regime
of localization. Concluding remarks are found in Sec. 6.6.

6.1 Experiments on Anderson localization

In the last decades, there has been great interest and many achievements in
studying Anderson localization in various systems of different dimensional-
ity. Since the phenomenon relies on the wave character, it is ubiquitious and
should also appear with classical waves. In fact, in our three-dimensional
world the transition from diffusion to localization should occur for any type
of classical or matter waves in any disordered media if the wavelength be-
comes comparable to the mean-free path between random scattering events
[165].

After the proposal of localization with electromagnetic waves [86], it
has been demonstrated with light in synthesized strong scattering materi-
als [183, 165] and with microwaves [68, 42, 33]. Ultrasound was used to
show localization of acoustic waves [178, 80]. All cited works used fully ran-
dom potentials, without the presence of any lattice. With the realization of
Anderson localization in photonic crystals [150, 99] experimentalists made
another step toward the original Anderson model by superposing fluctua-
tions onto a periodic structure.

Just as Bloch waves describe a quasi-free electron in an atomic crystal,
matter waves can be placed in optical potentials created by laser interference
patterns. Two common techniques are used to create disordered potentials,
via the laser speckle patterns [39, 18] or by adding two optical lattices with
incommensurable periods [50, 143] (see a review in Ref. [10]). More recently,
much attention has been drawn by the studies of the mobility edge [94, 85,
153] and the effect of particle interaction on localization [38, 130, 149].

The QKR presents an alternative system to study Anderson localization,
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and offers an interesting testing ground for new physics.

6.2 Theory

In section 2.4.6 we established the relationship between a quantum particle
in a disordered solid and the periodically kicked rotor. The Schrödinger
equation for the quantum rotor was derived in Eq. 2.52 as

TJ uJ +
∑
J ′

WJ,J ′ uJ ′ = 0 , (6.1)

with the probability amplitude uJ to find the quantum rotor at the rotational
state J of the angular momentum lattice. The two terms describe the hop-
ping term WJ,J ′ and the on-site energy TJ = tan(φJ) with φJ = (Eα−EJ )T

2~ .
If the function TJ is independent of the rotational states J , we arrive at

the tight-binding model for a periodic lattice. The solutions are extended
Bloch states [62]. This scenario has been discussed in the context of rota-
tional Bloch oscillations in Sec. 5.3 and it will be further analysed in the
context of dynamical localization in Sec. 6.5.1. If the on-site energies TJ are
random, also referred to as “diagonal disorder”, we arrive at the Anderson
model. In this case, the solution is given by quasi-energy states (Foquet
states) that are localized in the angular momentum space [52].

Next we look at the actual expression of TJ for linear molecules. We
neglect the centrifugal term and use the rotational energy EJ = hcBJ(J+1).
If the period between kicks T = p

qTrev is a rational fraction (p, q are integers)

of the revival time Trev = (2cB)−1

φ(J) =
π

2

p

q

(
Eα
hcB

− J(J + 1)

)
. (6.2)

The variation of the on-site energy between neighbouring rotational states
J and J + 2 of the angular momentum lattice is therefore

∆φ(J) = |φ(J + 2)− φ(J)| = π
p

q
(2J + 3) . (6.3)

If pq = 1, the lattice is strictly periodic (TJ = const.). For other rational val-
ues of p/q, we obtain a quasi-periodic lattice. Note, that the phase difference
∆φ(J) has been analysed with the resonance map in Sec. 2.3.8, where each
value of π corresponding to a fractional resonance was marked with a cross.
In this chapter, we are interested in irrational values of T/Trev, which are
of order unity. Due to the periodicity of the tan-function, only ∆φ modulo
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π affects the variation of the on-site energy. Here, any rotational quantum
number yields a magnitude of ∆φ(J) that exceeds several π. This makes
T (J) a pseudo-random number [52], resulting in dynamical localization.

Two points are noteworthy: (1) The values of TJ are not truely ran-
dom. They are calculated deterministically but they behave stochastically.
It has been shown numerically, that “pseudo-random” energies are sufficient
to observe Anderson localization in a one-dimensional system [52, 76]. For
these reasons, the QKR is sometimes called the “pseudo-Anderson model”
[76, 77]. (2) The rigid-rotor approximation is sufficient to describe the An-
derson model. Adding the centrifugal term merely adds more randomness.

6.3 Experiment

Our approach to demonstrate dynamical localization with molecular rotors
[63] bears a number of experimental challenges. First, the need to assess the
shape of the rotational distribution calls for a sensitive detection method
capable of resolving individual rotational states. According to the theo-
retical studies [63], the population of a few tens of rotational states must
be measured with high sensitivity over the range of at least two orders of
magnitude. Second, for the localized state not to be smeared out due to
the averaging over the initial thermal distribution, the latter must be nar-
rowed down to as close to a single rotational state as possible, requiring cold
molecular samples. Finally, an important test of dynamical localization, the
recovery of classical diffusion under the influence of noise and decoherence,
demonstrated experimentally with atoms [27, 4, 92, 119, 127] and theoret-
ically with molecular QKR [63], requires long sequences of more than 20
strong kicks.

We address all three of the above challenges and study the rotational
dynamics of nitrogen molecules, cooled down to 25 K in a supersonic expan-
sion and kicked by a periodic series of 24 laser pulses, whose kick strengths
are as high as P = 3 per pulse. We use state-resolved coherent Raman
spectroscopy, described in detail in Sec. 4.1 [Fig. 4.1(b)] to demonstrate the
exponential shape of the created rotational wave packet, indicative of dy-
namical localization. The dependence of the rotational distribution on the
number of pulses and their strength is investigated. Our ability to resolve
individual rotational states allows for a direct extraction of the absorbed en-
ergy, whose growth is shown to cease completely after as few as three pulses.
To confirm the coherent nature of the observed localization, we study the
effect of both timing noise and amplitude noise, which are shown to yield
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a non-exponential distribution of angular momenta and revive the diffusive
growth of energy. Our results are in good agreement with the existing the-
oretical analysis [63] and our own numerical simulations.

6.3.1 Calibration of experimental parameters

The important experimental quantities in this study are the initial tempera-
ture of the molecular ensemble and the pulse train parameters: the number
of pulses N , the train period T and the strength P of the individual pulses.

Temperature: The rotational temperature of our molecular sample is de-
termined by fitting the Raman spectrum after a very weak kick, which to
a good degree of approximation does not change the population distribu-
tion. The procedure and its results were discussed earlier in the technical
section 4.2.3. We estimate an initial temperature around 25 K.

Pulse train parameters: The exact shape of the pulse train is set by
the pulse shaper and the Michelson interferometers. We confirm the final
pulse train parameters via an XFROG measurement, which was described
in Sec. 3.2.1. This cross-correlation measurement, which is carried out im-
mediately before sending the beams into the vacuum chamber, yields the
temporal profile of each sequence. Besides the pulse number and the time
separation between the pulses, we can also measure the relative pulse am-
plitudes, however their absolute values remain unknown.

Kick strength: We determine the exact pulse intensity in the interaction
region with an additional measurement. We tune the period of the pulse
train to T = 6

7Trev, indicated by the dashed line in Fig. 6.1. As discussed
earlier, this timing coincides with the rotational period of a wave packet
consisting of two rotational states with J = 2 and J = 4. Fitting the
frequency of the ensuing Rabi oscillations between the two states provides an
accurate way of measuring the intensity of the pump pulses. For the physical
picture and more details, read section 5.2 on Rabi oscillations in molecular
rotation. The pulse intensity is expressed in the dimensionless units of kick
strength P , reflecting the typical amount of angular momentum (in units
of ~) transferred from the laser pulse to the molecule [57]. By amplifying
the sequence of 24 pulses in the multi-pass amplifier (MPA), we are able
to reach kick strengths of up to P = 3 per pulse (2 × 1013 W/cm2). The
standard deviation of the pulse energy fluctuations is below 15%.

139



6.3. Experiment

0.5 0.6 0.7 0.8 0.9 1

Pulse train period   ( T/Trev )

0

2

4

6

8

10

Q
u

a
n

tu
m

 n
u

m
b

e
r

J

10

13
< 𝜏 <

5

6
7

8
< 𝜏 <

13

14

Rotational 
Resonances

𝝉 =
𝟔

𝟕

Figure 6.1: Resonance map with an illustration of the choice of pulse train
periods. The period T/Trev = 6/7 (dashed line) serves to induce Rabi
oscillations between the states J = 2 and 4. Ten equidistant periods in
each of the two shaded bands are chosen to observe dynamical localization
in molecular rotation.

Pulse Period: Localized states in the quantum kicked rotor are known to
exist away from the quantum resonances, i.e. when the time between kicks
is not equal to a rational fraction of the revival period [52]. For molecular
nitrogen 14N2, the revival time is Trev = 8.38 ps. As long as T 6= p

qTrev, where
p and q are integers, the behaviour of localization is universal [63]. To satisfy
this condition, we choose 10 evenly spaced pulse train periods T in each of
the two intervals, 10/13 < T/Trev < 5/6 and 7/8 < T/Trev < 13/14, seen in
Fig. 6.1. Although we (partially) overlap with some fractional resonances,
none of them are of low order, i.e. correspond to small integer values of q like
1
2 ,2

3 ,3
4 . Hence, their effect on the rotational excitation is rather negligible.

Moreover, by taking the mean over all 20 Raman spectra, we reduce the
influence of nearby quantum resonances and we achieve a better signal-to-
noise ratio.

6.3.2 Population retrieval from the experiment

Dynamical localization of the QKR manifests itself in the exponential distri-
bution of angular momentum around the localization center. The initial dis-
tribution of molecules in our supersonic jet is close to the rotational ground
state. Therefore, we expect the population to fall off exponentially towards
higher rotational quantum numbers. Our detection technique of Raman
spectroscopy, however, does not provide a direct measure of the rotational
population. Here, we describe our procedure to retrieve populations from
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the measured Raman spectra.
In Sec. 2.3.6 we derived the intensity of the observed Raman peaks as

IJ ∝
∑

M 〈|cM∗J cMJ+2|2〉J′,M′ , the modulus squared of the induced coherence
summed over the degenerate M -sublevels and averaged over the mixture of
initially populated states | J ′,M ′ 〉. If the initial ensemble contained only
one populated level |J ′ = J0,M

′ = M0〉, the strength of the Raman signal
would reduce to IJ ∝ PJ,M0PJ+2,M0 , where PJ,M = |cMJ |2 is the rotational
population. For localized and non-localized dynamics of the QKR, we expect
exponential or Gaussian population distributions, respectively [40, 92]. In
either case, the Raman spectrum can be further simplified to IJ ∝ (PJ,M0)2,
offering the direct measure of the rotational population. As we show below,
this proportionality holds even at a non-zero temperature, when the Raman
signal is produced by a number of independent rotational wave packets orig-
inating from different initial states. At 25 K most population is initially at
J ′ = 2. Thus, the smallness of M ′ = 0,±1,±2 with respect to the angular
momentum of the majority of states in the final wave packet results in an
interaction Hamiltonian which to a good degree of approximation does not
depend on M ′. Having all molecules in the thermal ensemble respond to
the laser field in an almost identical way enables us to extract rotational
populations from the Raman signal as PJ = a

√
IJ , with the coefficients a

found from normalizing the total population to unity.

6.4 Observation of dynamical localization

Figure 6.2(a) shows a set of 20 Raman spectra, obtained with the 20 differ-
ent periodic pulse trains mentioned above. As before, the Raman frequency
shift (horizontal axis) has been converted to the rotational quantum number
J . All of the observed Raman signals IJ decay exponentially across 4 orders
of magnitude and 15 rotational states, independent of the train period. The
average Raman signal is plotted with the solid red line in Fig. 6.2(c). It
has a distinctly different shape than the initial thermal distribution, plotted
with the solid grey line 22. The remaining oscillations are a consequence of
the nuclear spin statistics of nitrogen, which dictates the 2:1 ratio for the
two independent rotational progressions consisting of only even and only
odd values of angular momentum. The exact shape of each individual dis-
tribution in Fig. 6.2(a) depends on the period of the corresponding train
and is affected by its proximity to fractional quantum resonances of higher
orders. In Fig. 6.2(d), the solid red line illustrates the distribution of the

22The initial distribution was measured after a single weak pulse.
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Figure 6.2: Rotational Raman spectrum of nitrogen molecules excited with
a train of N = 24 pulses at a kick strength of P = 2.3 for 20 different (a)
periodic and (b) non-periodic sequences. (c) The average experimental dis-
tributions (solid lines) are compared to the numerical simulations (dashed
lines) for both the periodic (middle red lines) and the non-periodic (up-
per black lines) pulse trains. The initial distribution is shown by the lower
grey lines. (d) The exact calculated populations (dashed lines) and the ap-
proximate populations (solid lines), retrieved from the experimental Raman
signal. The retrieved populations are fitted with an exponential/Gaussian
function (thick green lines). The dotted vertical line represents the excita-
tion limit due to the finite pulse duration.
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rotational population, extracted from the average Raman signal according
to PJ ∝

√
IJ . The evident exponential shape, highlighted by an exponential

fit (thick green line) with a localization length (1/e width) Jloc = 3.2, is a
hallmark of Anderson localization in this true QKR system.

To confirm the coherent nature of the observed localization, we repeat
the same measurement with a set of 20 non-periodic pulse trains. The
kick strength is set to the same value of P = 2.3 per pulse, but the time
intervals between the 24 pulses in each train is randomly distributed around
the mean value of 0.85Trev with a standard deviation of 33%. Here, all the
individual Raman spectra, their average and the population distribution
retrieved from it (solid black lines in Fig. 6.2(b), (c) and (d), respectively)
show a qualitatively different non-exponential shape. As expected for a
quantum kicked rotor, dynamical localization is destroyed by the timing
noise. Classical diffusion, with its characteristic Gaussian distribution of
angular momentum (thick green line) with a 1/e width of Jdiff = 7.4, is
recovered.

In Figures 6.2(c) and (d), we also compare our experimental data to
the results of numerical simulations, shown with dashed lines. The latter
are carried out by solving the Schrödinger equation for nitrogen molecules
interacting with a sequence of δ-kicks, as described in Sec. 2.3.6. We cal-
culate the complex amplitudes cJ,M of all rotational states in the wave
packet created from each initially populated state |J ′,M ′〉. Averaging over
the initial thermal mixture, we simulate the expected Raman signals IJ ∝∑

M 〈|cM∗J cMJ+2|2〉J′,M′ , and find the exact populations PJ =
∑

M 〈|cMJ |2〉J′,M′ .
In the case of a periodic sequence of kicks, the observed Raman line shape
[Fig. 6.2(c)] is in good agreement with the numerical result down to the in-
strumental noise floor around IJ ≈ 10−4. Calculated populations [Fig. 6.2(d)]
demonstrate the anticipated exponential decay with the rotational quantum
number, but deviate slightly from the experimentally retrieved distribution.
We attribute this discrepancy to the small finite thermal width of the initial
rotational distribution, not accounted for in approximating the populations
by
√
IJ , as discussed earlier.

When the timing noise is simulated numerically, both the calculated
Raman response and the population distributions show a non-exponential
shape and match the experimental observations below J ≈ 15 (i.e. to the
left of the dotted vertical line). The disagreement at higher values of angular
momentum is because of the finite duration of our laser pulses, as discussed
in Sec. 5.3.4. The dotted line represents this bandwidth limit.

Dynamical localization is also susceptible to amplitude noise. Rather
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Figure 6.3: Rotational Raman spectrum of nitrogen molecules excited with
a train of N = 24 pulses at a kick strength of P = 2.3 for 20 different periodic
sequences (a) without amplitude noise and (b) with amplitude noise. (c)
The average experimental distributions (solid lines) are compared to the
numerical simulations (dashed lines) for both pulse trains, without noise
(lower red lines) and with noise (upper blue lines). (d) The exact calculated
populations (dashed lines) and the approximate populations (solid lines),
retrieved from the experimental Raman signal. The retrieved populations
are fitted with an exponential/Gaussian function (thick green lines). The
dotted vertical line represents the excitation limit due to the finite pulse
duration.
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than introducing timing noise to our pulse sequence, we now randomly vary
the pulse amplitudes within a sequence. The individual amplitudes are dis-
tributed around the mean kick strength of P = 2.3 with a standard deviation
of 41%. We plot the results in Fig. 6.3. The red lines for the periodic pulse
train without noise are identical to Fig. 6.2. The results for the pulse trains
with amplitude noise are plotted with blue lines. We observe the same qual-
itative behaviour: noise destroys the localization. Again, the population
distribution acquires a non-exponential shape, albeit not as pronounced as
in the case of timing noise. Fitting a Gaussian distribution (thick green
line) yields a smaller 1/e width of Jdiff = 6.9. We conclude that the phe-
nomenon of dynamical localization in molecular rotation is more susceptible
to timing noise than to amplitude noise. In the context of demonstrating
dynamical localization, this works in our favour since the timing noise of our
experimental pulse trains can be suppressed much better than the remaining
fluctuations in the pulse amplitudes.

In the whole section 6.4 we will use the same color coding: ‘red’ - periodic
pulse train without noise, ‘blue’ - periodic pulse train with amplitude noise,
‘black’ - non-periodic pulse train due to timing noise. The amount of noise
remains unchanged at 41% amplitude noise or 33% timing noise, given in
standard deviation.

6.4.1 Dependence on the number of kicks

Figure 6.4 shows the evolution of the rotational distribution with the number
of kicks N . For the case of a periodic pulse train illustrated in Fig. 6.4(a1),
the distribution becomes exponential within a few kicks and hardly changes
after that: Jloc = 3.1, 3.3 and 3.3 for N = 8, 16 and 24, respectively. In
sharp contrast, the line shapes in Fig. 6.4(b1&c1) remain non-exponential
and keep broadening with increasing N in the case of periodic kicking with
amplitude noise (Jdiff = 6.0, 7.2 and 7.4) and non-periodic kicking due to
timing noise (Jdiff = 5.6, 6.2 and 7.9), respectively. This behaviour demon-
strates the destruction of dynamical localization by noise and clearly distin-
guishes it from other mechanisms of suppressed rotational excitation.

We also give a comparison between the experimentally retrieved popula-
tion in the left column (1) and the exact calculated population in the right
column (2). Qualitatively, both sets are in agreement. Quantitatively, we
observe two substantial deviations, as expected. First, the calculated local-
ization lengths in Fig. 6.4(a2) with Jloc = 2.1, 2.3 and 2.3 for N = 8, 16 and
24, respectively, are shorter than the experimentally retrieved ones. This
discrepancy is a result of the single-initial-state approximation. Second, a
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Figure 6.4: Evolution of the molecular angular momentum distribution
with the number of kicks N for a periodic excitation without noise (a),
with amplitude noise (b) and with time noise (c). The mean kick strength
per pulse is P = 2.3. The left column (1) shows the populations retrieved
from the experiment, the right column (2) are the numerically calculated
ones. Exponential and Gaussian fits, respectively, indicate the changes of
the distributions at N = 8, 16 and 24 (thick green lines).
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Figure 6.5: Dependence of the experimental populations on the kick
strength P for an excitation with N = 24 kicks, that are periodic with-
out noise (a), periodic with amplitude noise (b) and non-periodic (c). For
each case, the kick strength is varied from P = 1 (dotted), P = 2 (solid) to
P = 3 (dashed). The dotted vertical line represents the excitation limit due
to the finite pulse duration.

substantial deviation is caused by the bandwidth limit in the experiment.
Due to the final pulse duration, the effective kick strength in nitrogen di-
minishes for J & 15. This limit in the excitation of rotational states is not
present in the calculation with δ-kicks. In Fig. 6.4(b2&c2) the 1/e widths
of the Gaussian distributions grow wider than the experimentally retrieved
ones. In the case of a pulse train with amplitude noise Jdiff = 5.9, 6.8 and
7.9 and for time noise Jdiff = 6.4, 8.0 and 9.2.

6.4.2 Dependence on the kick strength

The dependence of the rotational distribution on the strength of the kicks
is shown in Fig. 6.5. For all three of the discussed scenarios, we show the
population after a train of pulses with P = 1 (dotted line), P = 2 (solid line)
and P = 3 (dashed line). As expected for a periodically kicked quantum
rotor (a), the localization length grows with increasing P : Jloc = 2.2, 2.9
and 4.7 for P = 1, 2 and 3, respectively. The line shape remains exponential
below the cutoff value of J ≈ 15 discussed earlier. For each kick strength, the
Gaussian distribution after a noisy pulse sequence lies well above its localized
counterpart, despite being equally affected by the cutoff, and thus confirming
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the universality of the observed dynamics. The distributions obtained under
the influence of timing noise (c) with Jdiff = 6.7, 7.5 and 10.8 are broader
than those corresponding to amplitude noise (b) with Jdiff = 5.1, 7.3 and
9.0, emphasizing the higher susceptibility to timing noise. For clarity, the
fitted lines have not been included in Fig. 6.5.

6.4.3 Rotational energy

Owing to our state resolved detection, the total rotational energy of a
molecule can be calculated as

∑
J EJPJ , with populations PJ extracted

from the observed Raman spectra IJ . The rotational energy is plotted as a
function of the number of kicks for all three excitation scenarios in Fig. 6.6.
For periodic kicking, the retrieved energy (red squares) increases during
the first 3 kicks, after which its further growth is completely suppressed -
a prominent feature of dynamical localization in the QKR. The same be-
haviour is reproduced in the simulation (red dashed line), with the difference
of a systematic offset in the absolute energy. Numerically we can show that
this offset is due to the approximations done to retrieve the populations.
Random variations in the pulse amplitudes destroy the localization, which
is manifested by the continuously increasing rotational energy of the rotors
with the number of kicks. This is true for the experiment (blue triangles)
and the exact simulation (blue dash-dotted line). Breaking the periodicity
of the pulse sequence with timing noise results in an even stronger recovery
of the classical diffusion (black circles). A linear growth rate is expected
according to the calculations (black dotted line). The observed sub-linear
growth is due to the finite duration of our laser pulses.

6.4.4 Dependence on the period

Previously, we pointed out the necessary condition for dynamical localiza-
tion in the QKR: The period of the kicking field must not coincide with any
fractional quantum resonances T 6= p

qTrev [52], where p and q are integers.
However, we also stressed the influence of a finite pulse duration in terms
of ‘partially’ overlapping with exactly those fractional resonances. In this
section, we investigate how the exact choice of the pulse train period will
affect the localization.

We switch our molecular sample to oxygen, where only one spin parity
exists and only half of all fractional quantum resonances are of concern.
This simplifies the interpretation of the results. We use a pulse sequence
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Figure 6.6: Rotational energy as a function of the number of kicks N with
a mean strength of P = 2.3. Compared are the experimentally retrieved
energies (connected symbols) with the numerically calculated ones (lines),
for a periodic sequence (red squares, dashed line), and the same sequence
after the introduction of amplitude noise (blue triangles, dash-dotted line)
or timing noise (black circles, dotted line).

of 13 pulses with periods on the order of T = 1
3Trev. Experimentally, these

sequences are produced without any Michelson interferometers. In the ab-
sence of polarization multiplexing in the latter, we can reduce the optical
losses by a factor of two. This enables us to achieve stronger pulses with up
to P = 8 per pulse. More details regarding the generation of pulse sequences
can be found in chapter 3.

Figure 6.7(1a) shows an exponential distribution of angular momentum
obtained after the molecules were exposed to such a pulse sequence. The
distribution localizes after about 4 kicks. In order to smoothen the spec-
trum, we measured the distribution after each pulse N . Plotted is the mean
distribution averaged over the measurements for N = 6 to 13. We also
averaged over 10 pulse trains with equally spaced periods in the interval
0.26 6 T/Trev 6 0.29, marked in the resonance map (2a). These periods are
chosen to not overlap with any fractional resonances associated with low-
lying rotational states. As expected, the rotational population distribution
falls off exponentially away from the initially populated states centred at
J = 1. We compare three scenarios with pulses of different kick strengths
P = 4 (dark-red, dashed line), P = 6 (light-red, dotted line) and P = 8 (red,
solid line). The localization length increases with stronger kicks. Once the
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Figure 6.7: (1a,1b) Localized angular momentum distribution of oxygen
molecules excited with a periodic train of 13 pulses for three selected kick
strengths of P = 4 (dashed), P = 6 (dotted) and P = 8 (solid). The
dotted vertical line represents the excitation limit due to the finite pulse
duration. Shown are the mean distributions obtained from ten pulse trains
with equidistant periods in the interval 0.26 6 T/Trev 6 0.29 (2a) and
0.315 6 T/Trev 6 0.325 (2b), marked in the resonance maps at the bottom.
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6.4. Observation of dynamical localization

population is getting closer to the bandwidth limit at Jlim ≈ 21 (dotted ver-
tical line), we notice a sub-exponential tail due to the additional adiabatic
localization.

Next, we compare the key parameters of the QKR: the kick strength P ,
the effective Planck constant τ and the stochasticity K = τP (see Sec. 2.2.3),
with respect to our previous study in nitrogen, i.e. Fig. 6.2 and Fig. 6.6. (1)
The pulse train periods are smaller by about a factor of three. Therefore
the effective Planck constant is reduced to τ ≈ 2π 1

3 ≈ 2, which is still in
the quantum regime of the QKR dynamics (τ > 1). (2) Previously we were
limited to P(N2) = 3. Now we reach P(O2) = 8, larger by about a factor
of three. Owing to stronger kicks, we observe longer localization lengths.
(3) The stochasticity parameter K of both studies is comparable. For all
measurements presented in Fig. 6.7(1a) it is well in the classically chaotic
regime K & 5.

Figure 6.7(1b) shows the angular momentum distribution, obtained with
the same procedure, but using 10 equally spaced periods in a different inter-
val 0.315 6 T/Trev 6 0.325, marked in the resonance map (2b). Although
these periods are non-resonant as well, the proximity of the resonances for
J = 3 and 5 alter the shape of the distributions notably. The final pop-
ulation distribution is achieved similarly after about 4 kicks, but the lo-
calization center has shifted to J ∼ 5, 7. Apparently, the vicinity of the
fractional quantum resonances can (to some degree) facilitate the transfer
of population into higher states when one uses laser kicks of non-zero length.
Provided strong enough kicks, the center of the distribution initially moves
up until it is further off all resonances, at which point the wave function
once again localizes, but now with a shifted localization center.

The same principle applies to the diffusive growth of angular momentum
that we observe under the influence of noise. In Fig. 6.8 we use the same
13 pulses as before but eliminate the periodicity with timing noise. The
mean period remains at T ∼ 1

3Trev with a standard deviation of ∼ 40%. For
better statistics we again average over 10 different pulse trains. In direct
analogy to Fig. 6.7(1a,1b), we compare the final population distribution af-
ter one ‘quasi’-random pulse train, which is engineered to avoid all quantum
resonances that efficiently excite low-lying rotational states J = 1, 3 or 5,
in Fig. 6.8(1a), and after another fully random pulse train in Fig. 6.8(1b).
The 120 different periods belonging to each measurement are indicated in
the respective resonance maps (2a,2b).

In both scenarios (1a,1b) we observe a non-exponential distribution that
diffusively grows with the number of kicks, shown is the final distribution af-
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Figure 6.8: (1a,1b) Angular momentum distribution of oxygen molecules
excited with a non-periodic train of 13 pulses for three selected kick strengths
of P = 4 (dashed), P = 6 (dotted) and P = 8 (solid). The dotted vertical
line represents the excitation limit due to the finite pulse duration. Shown
are the average distributions obtained from ten different pulse trains. The
random periods follow a Gaussian distribution with a mean and standard
deviation of (a) T/Trev = 0.34 and 35%, (b) T/Trev = 0.32 and 43%, re-
spectively. All 120 periods are marked in the resonance maps (2). In case
(a), we make sure that no period is within 150 fs of any fractional resonance
associated with J = 1, 3 or 5, whereas no such filtering is applied in case
(b). The dashed red line marks the 1/3 resonance.
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6.5. Transition from Bloch oscillations to dynamical localization

ter 13 pulses. With increasing kick strength from P = 4 (dark-blue, dashed
line), P = 6 (light-blue, dotted line) and P = 8 (blue, solid line) the distri-
bution grows wider. For the quasi random train the most populated states
remain in the vicinity of the initial distribution. For the fully random train
the distribution grows faster and the distribution center moves to J ∼ 11. As
the distribution becomes increasingly broader with more/stronger kicks, the
difference between both cases will diminish. Then, the low-lying resonances
play a minor role in the whole picture and full randomness is approached.

6.5 Transition from Bloch oscillations to
dynamical localization

Here, we examine the phenomenon of localization in the vicinity of the
quantum resonance. So far, we have analysed the excitation with periods
far from the quantum resonance, leading to the dynamical localization of
angular momentum (Sec. 6.4). We also analysed the excitation on or near
resonance to study Bloch oscillations in angular momentum (Sec. 5.3). Now,
we will revisit this regime, but with the intent to investigate the exponen-
tially localized population distribution and how it is affected by the detun-
ing. We will give an alternative explanation of Bloch oscillations where the
resonant excitation is in fact limited by the dynamical localization at high
quantum numbers. This transition between dynamical localization and a
linear growth in momentum has been studied theoretically by Floss et.al.
[184, 59, 63]. There exists no published experimental work with the QKR
on this subject.

6.5.1 Anderson wall

The rotational tight-binding model makes it evident that the occurrence
of Bloch oscillations in the angular momentum space is closely related to
the phenomenon of dynamical localization. Beyond a critical value of the
angular momentum, the “Anderson wall”, the wave function localizes. As
a consequence, Bloch oscillations will appear in the molecular rotation only
below the Anderson wall.

In this section we are investigating the QKR exposed to periodic resonant
excitation with periods T in the proximity of the quantum resonance Trev =
(2cB)−1 with

T = (1 + δ) Trev , (6.4)

and the detuning |δ| � 1. We start our theoretical treatment by revisiting
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6.5. Transition from Bloch oscillations to dynamical localization

equation 2.57, the on-site energy term T (J) = tan[φ(J)] of the rotational
tight-binding model (Sec. 2.4.6), under our specific conditions

φ(J) =
π

2

(
(1 + δ)E
hcB

− (1 + δ)J(J + 1) + (1 + δ)
D

B
J2(J + 1)2

)
φ(J) ≈ π

2

(
(1 + δ)E
hcB

− δJ(J + 1) +
D

B
J2(J + 1)2

)
.

(6.5)

In the second line, we neglected the term, which is of second-order in both
perturbations |δ| � 1 and D

B � 1, as well as the term π
2J(J + 1) because

multiples of π result in the same energy T (J) [62].
We will explore four distinct scenarios, distinguishing a rigid rotor versus

a non-rigid one, that is excited on quantum resonance or detuned from it.

Rigid rotor, resonant excitation (δ = 0): In the rigid rotor approxi-
mation, the centrifugal term D in the energy expression is set to zero

φ(J) =
π

2

E
hcB

. (6.6)

The expression has no J-dependence and will result in a constant energy shift
T (J). Therefore, the tight-binding model presents a completely periodic
lattice, which supports unlimited spreading of the rotational wave function,
see Sec. 2.4.4. The quasi-energy states are extended over the rotational
lattice [62], analogous to the Bloch states in crystalline solids.

The realization of this scenario leads to a “ballistic growth” of rotational
energy. Starting from an initial wave packet that is close to the rotational
ground state, the wave packet’s center will increase linearly in angular mo-
mentum, which translates into a quadratic growth of energy due to the
E(J) ∝ J2 relation. This correlates with our intuitive understanding, that
any rotational wave packet reproduces itself after an integer multiple of the
revival time (see the description of the resonance map in Sec. 2.3.8). Thus,
N kicks with the kick strength of P will add constructively and excite the
molecule equivalently to a single kick with the strength NP .

Non-rigid rotor, resonant excitation (δ = 0): In the experiment, we
will observe a linear growth of the rotational population only for a limited
number of pulses N , due to the non-rigidity of real molecules. Faster spin-
ning of the molecule results in a stretching of the bond, i.e. centrifugal
distortion. The increased moment of inertia will in turn modify the reso-
nant frequency, making the quantum resonance J-dependent, which becomes
most notable at higher quantum numbers.
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6.5. Transition from Bloch oscillations to dynamical localization

In the picture of the tight-binding model, we gradually transition from a
periodic lattice at low J-states to a pseudo-random lattice at higher J-states.
Floss et.al have shown numerically that the phenomenon of dynamical lo-
calization will occur beyond a threshold value JA, which they called the
“Anderson wall” [60, 62]

φ(J) =
π

2

(
E
hcB

+
D

B
J2(J + 1)2

)
. (6.7)

The quantity of importance is the change of the on-site energy between the
neighbouring rotational states J and J+2 of the angular momentum lattice,
which is carried through

∆φ(J) = |φ(J + 2)− φ(J)| ≈ 4π
D

B
J3 . (6.8)

We regard only the leading term that scales with J3. Once ∆φ(J) reaches
π/2, the tan(∆φ) diverges. For larger J-values, the phase difference ∆φ
grows increasingly faster. However, only ∆φ modulo π affects the variation
of the on-site energy. The continued wrapping makes T (J) a pseudo-random
number. This statement is valid because D/B is irrational. The estimated
position of the Anderson wall is [60, 62]

JA ∼
1

2
3

√
B

D
. (6.9)

If the initial rotational wave packet consists of low-lying rotational states
J < JA, we anticipate a spreading of the angular momentum with the
number of kicks, which is bounded by J = 0 below, and the Bloch wall JB 6
JA above. The states at J > JA project onto localized quasi-energy states,
which have no overlap with the initial wave packet, and therefore cannot
be populated at any point in time. Instead of an unbounded spreading,
one observes Bloch oscillations discussed earlier in Sec. 5.3. For oxygen and

nitrogen molecules, the Anderson walls are expected around J
(O2)
A ∼ 33 and

J
(N2)
A ∼ 35, respectively, way above our bandwidth limit.

Rigid rotor, non-resonant excitation (δ 6= 0): A similar behaviour
may be induced by detuning from the quantum resonance T = (1 + δ)Trev.
If the detuning δ is large enough, the centrifugal term can be neglected and

φ(J) =
π

2

(
(1 + δ)E
hcB

− δJ(J + 1)

)
. (6.10)
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6.5. Transition from Bloch oscillations to dynamical localization

Again, we can distinguish two regimes, the one of extended states and the
one of localized states, depending on

∆φ(J) = πδ(2J + 3) . (6.11)

Owing to the linear dependence on J , the two regimes will alternate in the
angular momentum space [62]. Whenever the rotational states are in the

vicinity of J
(n)
A ∼ 2n+1

4δ such that ∆φ(J) ∼ 2n+1
2 π with integers n, the on-

site energies are quasi-random for neighbouring J-states. We consider those
states as effective Anderson walls. If the rotational states, however, are close
to J ∼ 2n

4δ such that ∆φ(J) ∼ nπ, adjacent lattice sites have nearly equal
energies, which corresponds to a periodic case with extended eigenstates.

In the experiment with the initial wave packet close to J ≈ 0, it projects
predominantly onto extended states (n = 0). The initial linear growth in

the angular momentum is bound by the lowest Anderson wall J
(0)
A . For our

experimental conditions with moderate kick strengths, we are not able to
“jump” across this Anderson wall to the next set of extended states (n = 1).
Qualitatively, we expect to observe the same Bloch oscillations mentioned
above (in the case of a non-rigid rotor at δ = 0), but this time we can control
the location of the Anderson wall by adjusting the detuning δ.

Non-rigid rotor, non-resonant excitation (δ 6= 0): This scenario is
a combination of the last two. Using the same arguments, the term that
dominates the expression of ∆φ(J) with increasing J-states will determine
the location of the Anderson wall.

The magnitude of the phase difference ∆φ(J) determines whether the
particular rotational states will map onto extended quasi-energy eigenstates
(∆φ(J) → 0) or the localized ones (∆φ(J) → π/2). For a specific diatomic
molecule (D/B = const.), the width and the location of these regions of
extended and localized dynamics can be controlled by the detuning δ from
the quantum resonance. The overlap of the initial states with either of the
two regions will determine the dynamics of the QKR, i.e. whether it will
dynamically localize or feature Bloch oscillations.

We note an important difference between the described behaviour of
the QKR and the dynamics of a quantum particle in a disordered one-
dimensional lattice. In the latter case, the particle will localize no matter
how weak the disorder is. In a rotational lattice, however, introducing a
small detuning from the resonance may not necessarily lead to the expo-
nential localization of the wave function. The reason is the dependence of
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6.5. Transition from Bloch oscillations to dynamical localization

the on-site energy on the site number J (cf. Eq. 6.11). Effectively, the “ro-
tational disorder” increases with the distance from the edge of the lattice
at J = 0. Hence, even though any detuning will result in the restricted
growth of angular momentum, the distribution of the wave function will not
necessarily be exponential.

6.5.2 Evolution of angular momentum

At first, we look at the angular momentum distribution and how it evolves
with the number of kicks. The general procedure including the population
retrieval from the Raman spectra is equivalent to the one described before.
Figure 6.9 and 6.10 are a compilation of six different periodic pulse trains,
whose periodicities are continuously tuned further below the quantum res-
onance. Shown are plots for the following detunings: (a) 0%, (b) −0.08%,
(c) −0.16%, (d) −0.24%, (e) −0.5% and (f) −1.0%. The left column (1) of
experimentally retrieved populations are compared to the calculated exact
populations in the right column (2). The kick strength of the pulses in a
sequence of 24 kicks is set to P = 0.9. For nitrogen molecules this means
that the bandwidth limit of Jlim ≈ 15 will be reached at the end of the train
23.

On the quantum resonance in Fig. 6.9(a), the center of the population
distribution linearly increases to higher J-states, as expected and seen in
the calculations (a2). At the end of the train the population reaches as far
as the Anderson wall allows. For higher quantum numbers, the distribution
falls off exponentially, owing to dynamical localization due to the centrifugal
distortion of the non-rigid rotor. This concept was introduced in section 5.3
on Bloch oscillations. In the experiment (a1) the linear growth of angular
momentum slows down towards the end of the train. For these higher quan-
tum numbers, the effective kick strength decreases due to the finite pulse
duration. It results in a stronger localization - a superposition of adiabatic
localization and dynamical localization.

In the following rows (b-f) we detune the period increasingly further be-
low the quantum resonance. According to the theory (2), we push down the
wall responsible for the turning point of Bloch oscillations. At a detuning
between −0.16% (c2) and −0.24% (d2) the population distribution com-
pletes one full Bloch oscillation within 24 kicks. Eventually, at a detuning
of −1% (f2), the population distribution is barely distinguishable from its

23For quantum numbers exceeding J = 15 the population is adiabatically localized. This
particular value of the kick strength has been chosen to avoid multiple Bloch oscillations
under the resonance condition.
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Figure 6.9: Evolution of the molecular angular momentum distribution
with the number of kicks N for a periodic sequence. Each individual pulse
carries the kick strength P = 0.9. Left column (1) contains the experimental
results; right column (2) shows the corresponding numerical plots. The
periodicity is continuously tuned further below the quantum resonance (a)
with detunings of δ = −0.08% (b) and −0.16% (c). (continued in Fig. 6.10.)
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Figure 6.10: (Continuation of Fig. 6.9.) Evolution of the molecular angular
momentum distribution with the number of kicks N for a periodic sequence.
Each individual pulse carries the kick strength P = 0.9. Left column (1)
contains the experimental results; right column (2) shows the corresponding
numerical plots. The periodicity is continuously tuned further below the
quantum resonance with detunings of δ = −0.24% (d), −0.5% (e) and
−1.0% (f).
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initial distribution, apart from some residual fast Bloch oscillations. For de-
tunings > 1% the system is completely governed by dynamical localization.
The experimental results (1) demonstrate the same behaviour, i.e the Bloch
wall location in the angular momentum space is continuously lowered, Bloch
oscillations become visible (d1), and eventually the population distribution
localizes and does not grow anymore (f1).

For large detunings from the quantum resonance our kick strength of
P = 0.9 is not sufficient to significantly alter the initial thermal distri-
bution. All states are localized, but the shape of the observed spectrum
remains close to the thermal Boltzmann distribution.
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Figure 6.11: Populations, retrieved from the experimental Raman signal,
after the excitation by 24 periodic pulses with a kick strength of P = 0.9 per
pulse. The detuning from the quantum resonance ranges from 0 to −0.08%,
−0.16%, −0.24%, −0.5% and −1.0% (blue to red coloured lines, see legend).

In Fig. 6.11 we plot the final population of the angular momentum states
of nitrogen molecules after the excitation with 24 pulses. Shown are the
distributions for all six periods with detunings from the quantum resonance
ranging between 0% and −1%. The figure provides a good comparison to
the same theoretical plot presented in Ref. [59, 63]. On resonance (blue line)
the distribution is flat for J 6 12 (on a logarithmic scale) before it sharply
falls off. With increasing detuning, the extend of the plateau decreases,
but the sharp drop remains. For the largest detuning (red line) the plateau
has vanished and the population is localized. Owing to the weakness of
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Figure 6.12: Rotational energy as a function of the number of kicks N with
a strength of P = 0.9. Different panels show the dependence on the pulse
train period: (a) on the quantum resonance, 0%, (b) −0.08%, (c) −0.16%,
(d) −0.24%, (e) −0.5% and (f) −1.0% away from the quantum resonance.

the pulses at P = 0.9, the distribution resembles the initial Boltzmann
distribution at 25 K.

6.5.3 Evolution of rotational energy

It is instructive to look at the total rotational energy in the system. We
have seen in Fig. 6.6 that in the case of non-resonant periodic kicking, the
energy diffusively grows for several kicks before the growth is suppressed
by dynamical localization. In the case of resonant excitation the energy is
expected to grow quadratically at first, before the centrifugal distortion will
lead to oscillations in the total energy.

For the same six periodic pulse trains, we now calculate the rotational
energy in the molecular system. In Fig. 6.12 the energy is given as a function
of the number of pulses in the train. On resonance (a) the energy increases
monotonically throughout all 24 pulses. With larger detunings, the total
energy that the system accepts becomes smaller. The initial growth rate is
the same, but the reduced Bloch wall forces the energy to oscillate. Finally,
for a −1% detuning (f) the energy growth is completely suppressed. This
is a powerful demonstration of the consequence of dynamical localization:
Although in all six cases the energy of the pulse train is identical and the
period changes by merely 1%, the total amount of energy that one can pump
into the system differs by a factor of almost eight.

Besides the dependence on the detuning, we can also plot the dependence
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Figure 6.13: Rotational energy as a function of the number of kicks N
with a strength of P = 1.1 (dashed lines) or P = 2.3 (solid lines). Different
panels show the dependence on the pulse train period: (a) on the quantum
resonance, 0%, (b) −0.24%, (c) −1.0% away from the quantum resonance.

on the kick strength. In Fig. 6.13, for three values of the detunings [(a) 0%,
(b) −0.24%, (c) −1.0%], we plot the observed energy growth for two kick
strengths of P = 1.1 (dashed line) and P = 2.3 (solid line). Stronger
pulses lead to a more rapid growth of energy and to a higher maximum
energy value. The reason has already been given in the context of Bloch
oscillations in Sec. 5.3 when we demonstrated that the amplitude of the
oscillations in the angular momentum space increases with the kick strength.
The initial growth of energy has to be quadratic, which can be observed most
clearly in panel (a). For the largest detuning in panel (c), there are about
two complete oscillations. According to the theory, one would expect clean
oscillations with maximum contrast: the energy at the minimum of each
oscillation should equal the initial energy of the molecule. This is not the
case in the experimental data. The most likely suspect for the mismatch
is that averaging over the spatial beam profiles washes out the oscillations.
Similar contrast in Bloch oscillations were reported by Kamalov et.al. with
a different detection technique [88].

6.6 Conclusion

We presented the first experimental demonstration of the quantum phe-
nomenon of dynamical localization in the angular momentum space of a
periodically kicked rotor.

We showed that laser-kicked molecules have the potential of a testing
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ground for a number of new physical phenomena. Some of them have been
previously studied in AOKR, e.g. dynamical localization, the quantum res-
onance, the susceptibility to noise. At the same time, the QKR system
offers new perspectives. The molecular angular momenta are quantized,
whereas continuous translational atomic momenta hinder a clear observa-
tion of momentum distributions. Cold temperatures achieved in standard
supersonic expansions are sufficient to reach the rotational ground state,
while the AOKR requires ultracold atoms, obtained in complex experimen-
tal setups. The periodic excitation of real rotors also leads to some unique
phenomena, e.g. the occurence of Bloch oscillations due to centrifugal dis-
tortion (Sec. 5.3) or the predicted and yet-to-be-demostrated edge states[61].

163



Chapter 7

Coherent control of quantum
chaos

Control of molecular dynamics with external fields is a long-standing goal
of physics and chemistry research. Great progress has been made by ex-
ploiting the coherent nature of light-matter interaction. At the heart of
coherent control is the interference of quantum pathways leading to the de-
sired target state from a well-defined initial state [158, 157]. In this context,
an exponential sensitivity to the initial conditions, characteristic for classi-
cally chaotic systems, poses an important question about the controllability
in the quantum limit (for a comprehensive review of this topic, see [71]).
As the underlying classical ro-vibrational dynamics of the majority of large
polyatomic molecules is often chaotic, the answer to this question has far
reaching implications for the ultimate prospects of using coherence to control
chemical reactions.

Success in steering the outcome of chemical reactions by the means of
feedback-based adaptive algorithms [11], using the methods of optimal con-
trol theory [87], proved that such control is feasible. Theoretical works on
quantum controllability in the presence of chaos, both in general [142] and
with regard to specific molecular systems [70, 3], pointed at the importance
of coherent evolution. To investigate the roles of coherence, stochasticity and
quantumness further, Gong and Brumer considered the quantum kicked ro-
tor to study quantum effects on classically chaotic dynamics [69, 70, 71].
They demonstrated that the energy of the localized state can be controlled
by modifying the initial wave packet. Quantum coherences, as opposed to
the classical structures in the rotor’s phase space, are indeed responsible for
the achieved control over the chaotic dynamics of the QKR [154].

In this chapter, we present an experimental proof of the Gong-Brumer
control scheme. We prepare oxygen molecules in a coherent rotational wave
packet and control the localization process of the QKR by varying the rela-
tive phases of the initial states. In Sec. 7.1, we outline relevant theoretical
concepts and discuss the transition from quantum to classical regimes of the
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QKR dynamics. We give a brief overview of the experiment in Sec. 7.2 and
present all results in Sec. 7.3. The conclusions are in Sec. 7.4.

7.1 Theory

The main experimental approach is based on the effect of dynamical local-
ization, described in detail in chapter 6.

7.1.1 Coherent control

The general concept of “coherent control” is based on the availability of
quantum interferences, which can be altered in order to change the proba-
bility of reaching the desired target state [157]. Until now, coherent control
has been used most frequently in atomic or molecular systems exhibiting
relatively simple, e.g. periodic, dynamics [71, 157]. The focus of this work
is on the control of quantum objects, whose underlying classical dynamics
is chaotic.

7.1.2 Quantum-to-classical transition

The transition from classical behaviour to quantum behaviour can be defined
by comparing the Planck’s constant ~ with the classical action of the system
[53]. In the case of the quantum kicked rotor, the latter can be expressed
as (I/T ), the moment of inertia divided by the period of kicking [77]. Thus,
the effective Planck constant τ = ~(I/T )−1, from Eq. 2.5, provides a simple
estimate of the degree of “quantumness”. For τ → 0, the system approaches
the classical limit, whereas for τ > 1 it is expected to show its quantum
nature [77, 138].

The fact that the stochasticity K = τP of the QKR is comprised of two
individual parameters, the effective Planck constant and the kick strength,
allows for a unique control knob. One can fix K in the deeply chaotic
regime and observe the quantum-to-classical transition by reducing τ from
values greater than one towards zero. However, even if a quantum system
can initially be described by means of the classical equations of motion,
quantum effects will still accumulate with time, making the system deviate
from its classical counterpart after the “quantum break time” [53]. In other
words, the ability to tune τ to smaller values results in a larger window
where the classical behaviour can be observed. The correspondingly larger
values of the kick strength P for a constant stochasticity K, result in a
longer localization length. Therefore, it takes more pulses for the QKR
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to diffuse over a distance comparable to the localization length. But once
it has diffused that far, quantum effects will again lead to the dynamical
localization.

The conjugate variables of the QKR are the angle and the angular mo-
mentum, which obey the commutation relation [J, θ] = −i~ [77]. The clas-
sical trajectory, described by the standard map, is presented via the scaled
angular momentum J̃ = J(I/T )−1 = Jτ/~, which yields the dimensionless
commutation relation [J̃ , θ] = −iτ .

In the following we give an intuitive explanation of the classical to quan-
tum transition, which is adapted from Ref. [53]. (1) An initial state of a
quantum system is assumed to be a localized wave packet, i.e. a small area
in the available phase space. Its minimum size, a “Planck cell”, is limited
by the Heisenberg uncertainty principle and according to the commutation
relation is given by τ . The corresponding classical system consists of several
points in the phase space occupying the same area. (2) As a function of
time, the wave packet spreads diffusively, with each initial point following
its classical trajectory. (3) After the quantum break time, the wave packet
has spread so much, that its different parts start overlapping, and hence in-
terfering, with one another. The resulting interference is purely a quantum
phenomenon.

The true transition to a classical kicked rotor can be implemented by
introducing noise, as we showed in Sec. 6.4, or other decoherence mecha-
nisms, e.g. collisions between the molecules. This will destroy the quantum
coherences in the system irrevocably such that dynamical localization can
no longer occur.

7.2 Experiment

The setup and the experimental procedure is mostly identical to the ones
used to observe dynamical localization (Ch. 6). The only crucial difference
is the shape of the femtosecond pulse train. A sequence of 15 high-intensity
laser pulses is generated in the combined setup of a pulse shaper and a
multi-pass amplifier (MPA). It consists of two independent parts, shown in
Fig. 7.1. The first three “preparation” pulses are separated in time by Tpre =
0.237 Trev, close to a fractional quantum resonance at T = 1/4 Trev, and
are used to excite a broad rotational wave packet, defined by the resonant
process studied in Sec. 5.4. The period Tloc of the second “localizing” train
of 12 pulses is chosen between 0.26 Trev and 0.27 Trev, corresponding to the
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effective Planck constant of 1.6 < τ < 1.7. This window is chosen so as to
avoid strong fractional quantum resonances of low orders.
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Figure 7.1: Train of fifteen laser pulses, with three variable time constants
indicated by horizontal arrows.

The experiments are done with oxygen, whose nuclear spin statistics
(Sec. 2.3.9) make only half of all fractional resonances relevant. Figure 7.2
visualizes pulse train periods with respect to the position of the fractional
resonances. The time delay ∆T between the two pulse trains, and hence the
relative quantum phases of the initial states, serves as a “control knob”. It
will be used to control the amount of the rotational energy that is absorbed
by the molecules before its further growth is suppressed by localization.

0 0.1 0.2 0.3 0.4
0

5

10

15

20

Pulse train period   ( T/Trev )

Q
u
a
n
tu

m
 n

u
m

b
e
r

J

Figure 7.2: Resonance map indicating all relevant times: Tpre = 0.237 Trev

(red dotted line) and 0.26 Trev < Tloc < 0.27 Trev (blue area).
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Figure 7.3: (a) Rotational energy of oxygen molecules as a function of the
number of kicks N . Shown are thirteen experimental realizations (dotted
lines) for each of the two control scenarios corresponding to a maximum
(upper green lines, at ∆T1 = 0.243 Trev) and a minimum in the absorbed
rotational energy (lower red lines, at ∆T2 = 0.264 Trev). The corresponding
average values are plotted as the green solid line and the red dashed line,
respectively, with error bars representing one standard deviation. In com-
parison, the numerical calculations are indicated by connected green circles
(∆T1) and red squares (∆T2). (b) Numerically calculated dependence of
the final rotational energy on the delay ∆T . Two vertical lines mark the
experimental delays ∆T1 (solid green) and ∆T2 (dashed red).
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7.3 Demonstration of coherent control in
quantum chaotic system

Our main result is shown in Fig. 7.3(a), where we plot the rotational energy
of oxygen molecules, measured after each of 15 laser pulses for a number of
pulse trains, all with Tloc = 0.267 Trev. The kick strength is set to P = 3.8,
which corresponds to a stochasticity parameter K = 6.4 lying deep in the
classically chaotic regime. By design, the first three preparation pulses in
all trains lead to a fast growth of molecular energy. The time delay ∆T
between the three preparation pulses and the localizing train of 12 pulses
is scanned around the quarter revival time, between ∆T/Trev = 0.223 and
0.284, where we anticipate the highest degree of control, as discussed below.

When the delay is set to ∆T1 = 0.243 Trev (upper green lines), the en-
ergy growth continues for a few more kicks and ceases after that, reflecting
dynamical localization of the molecular angular momentum, investigated in
chapter 6. Different thin lines correspond to different experimental runs,
with their average indicated by the thick green curve. On the other hand,
when the very same localizing pulse sequences are separated from the prepa-
ration pulses by ∆T2 = 0.264 Trev, the suppression of the energy growth
occurs much earlier and results in a lower (by 40 ± 7%) energy of the final
localized states (lower red lines).

In Fig. 7.3(a) we also show the results of the equivalent numerical cal-
culations by connected green circles for the delay ∆T1 and red squares for
∆T2. Despite the used approximation of infinitely short δ-kicks, the nu-
merical results are in good qualitative agreement with the observations.
We further exploit the numerical model for calculating the dependence
of the rotational energy on the single control parameter ∆T , plotted in
Fig. 7.3(b). The availability of control is apparent around fractional re-
vivals, ∆T/Trev = 1/4,

1/2,
3/4 and 1, which suggests an intuitive picture of

its mechanism. The first kick from the localizing pulse train either continues
the quantum-resonant excitation of the preparation sequence or opposes it,
affecting the energy level, at which the rest of the train localizes the system.
The dephasing of the rotational states in the prepared wave packet leads to
a loss of control between the fractional revivals. The two vertical lines mark
our experimental values of ∆T in Fig. 7.3(a).

The described control mechanism is also evident from the experimentally
retrieved average distributions of the localized angular momentum, shown
in Fig. 7.4 by thick lines with no markers. Solid green and dashed red traces
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Figure 7.4: Localized population distribution of oxygen molecules excited
by a train of 15 pulses with P = 3.8. Plotted is the experimentally retrieved
average population distribution (thick lines, no markers) and the numeri-
cally calculated one (markers, connected by thin lines). The distributions
correspond to the high (upper green lines, ∆T1 = 0.243 Trev) and low (lower
red lines, ∆T2 = 0.264 Trev) localization energy in Fig. 7.3.

correspond to the localized wave packets with higher and lower rotational en-
ergies, respectively. As the higher energy clearly correlates with the broader
wave packet, the achieved control can be attributed to populating different
sets of quasienergy (Floquet) states [63]. Because each wave packet contains
more than a single quasienergy state, the distributions are not expected to
(and, indeed, do not) exhibit exponential line shapes [69].

Numerically calculated population distributions, corresponding to the
experimental parameters for the high and low energy localized wave pack-
ets, are shown in Fig. 7.4 with connected green circles and red squares, re-
spectively. The simulated and experimental distributions show qualitative
agreement down to the instrumental noise floor around PJ ≈ 5 · 10−3. The
systematic underestimation of the experimentally extracted population at
low rotational states is attributed to two effects. First, the approximations
in the population retrieval from the measured Raman spectra neglects the
dependence on the magnetic quantum number and the thermal population
of multiple rotational states, as discussed in Sec. 6.3.2. Second, the effect of
spin-rotation coupling in oxygen (Sec. 4.2.3) leads to a more rapid dephasing
of the Raman signal at low J-states, which is not taken into account in the
numerics.

170



7.3. Demonstration of coherent control in quantum chaotic system

5 different PTs: common vs optimized delays

(PLOT4   exchanged by the one from 1.5.2016)

Number of kicks N

5 10 5 105 10 5 10 5 10

0

50

100

0

50

100

E
n

e
rg

y
 (

a
rb

. 
u

n
it
s
)

0.02 ± 0.04 0.20 ± 0.04 −0.06 ± 0.05 0.40 ± 0.07 0.05 ± 0.11

0.34 ± 0.05 0.39 ± 0.06 0.32 ± 0.04 0.40 ± 0.07 0.36 ± 0.10

1a 2a 3a 4a 5a

1b 2b 3b 4b 5b

Figure 7.5: Top row (a): rotational energy for both time delays, ∆T1 =
0.243 Trev (sold green line) and ∆T2 = 0.264 Trev (dashed red line) for a set
of five different Tloc periods (1)-(5), given in the text. Other parameters
of the localizing train remain unchanged. Bottom row (b): for the same
five values of Tloc, delays ∆T1 and ∆T2 are individually adjusted for the
respectively highest and lowest energy of the localized state. The degree of
control is given in each plot. Column (4) is equivalent to Fig. 7.3.

7.3.1 Robustness of control

The stability of the implemented control scheme with respect to the under-
lying classically chaotic dynamics is analysed in Fig. 7.5. In the top row
(a) we show the dependence of the rotational energy on the period of the
localizing train Tloc. As earlier, the value of the control parameter is either
∆T1 = 0.243 Trev (sold green line) or ∆T2 = 0.264 Trev (dashed red line).
Shown is a representative set for five values of Tloc/Trev: (1) 0.260, (2) 0.261,
(3) 0.263, (4) 0.267 and (5) 0.270. The respective degree of control, defined
as E1−E2

(E1+E2)/2 with Ei being the final rotational energy for the delay ∆Ti, is
shown at the bottom of each plot. We observe wide fluctuations from a total
loss of control in panels (1a,3a,5a) to the maximum control of about 40%
in panel (4a).

High sensitivity of the QKR dynamics to the exact train period is well ex-
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Figure 7.6: Same as Fig.7.3, but for two different values of the effective
Planck constant: τ = 1.7 (a) and τ = 0.6 (b). The stochasticity parameter
is held constant at K = 3.4. The inset gives a numerical comparison of
both regimes, with lower (top) and higher (bottom) value of τ , for longer
sequences of infinitely short δ-kicks.

pected [154] and can be attributed to the existence of fractional resonances,
Tloc/Trev = p/q, where quantum diffusion is accelerated. Yet despite the
observed sensitivity of the control, we found that it can be successfully re-
gained by optimizing the control parameter, i.e. the delay time ∆T , for
each individual realization of the localizing train. In the bottom row (b) of
Fig. 7.5 we demonstrate this sustained controllability, which supports the
assumption of its coherent nature. We note that our numerical calculations
of the molecular response to the localizing train of infinitely short δ-kicks
(not plotted) show more stable control, which suggests that the finite ex-
perimental pulse width may also contribute to the observed sensitivity.

7.3.2 Quantum-to-classical transition

To distinguish between the quantum and classical mechanisms of the achieved
control, we analyse its dependence on the effective Planck constant τ . Smaller
values of τ , realized with shorter periods of the pulse train, take us closer
to the classical limit (i.e. the well-known standard map [31]), at which the
dynamics is less sensitive to the discreteness of the QKR spectrum. We
keep the stochasticity parameter constant at K = τP = 3.4, large enough
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to remain in the fully chaotic regime, and reduce τ while increasing the kick
strength P proportionally. As demonstrated in Fig. 7.6(a), for τ = 1.7, the
localized states are reached after about 10 kicks. The quantum break time
is longer than the one in Fig. 7.3(a) due to the lower kick strength (P = 2
vs. 3.8). The maximum degree of control (25± 3%) is established between
∆T1 = 0.232 Trev (solid green line) and ∆T2 = 0.263 Trev (dashed red line).

Figure 7.6(b) shows the result of the same experiment with τ = 0.6
and P = 5.6. Owing to much stronger kicks, the quantum break time has
become longer than the available number of pulses, such that the kicked rotor
behaves classically within the observable time frame. Although the dynamics
is still sensitive to ∆T , the unbounded growth of rotational energy results
in the decreasing relative difference between the two cases and, therefore,
diminishing degree of coherent control. The apparent energy saturation at
later times is due to the finite duration of our laser pulses. It results in the
suppressed excitation of rotational states with J & 21, as we explained at the
end of Sec. 5.3.4. Numerical simulations with a larger number of δ-kicks,
shown in the inset, better illustrate the transition between the controlled
localization at τ = 1.7 (bottom two lines) and the uncontrolled classical
diffusion at τ = 0.6 (top two lines). Evidently, the latter effective Planck
constant is small enough for the diffusive energy growth to persist. This
behaviour is universal if the two periods are both chosen to be in the off-
resonance regime.

7.4 Conclusion

In summary, we used oxygen molecules exposed to a sequence of strong
laser pulses as true quantum kicked rotors. We demonstrated that despite
the exponential loss of memory about the initial conditions in the classically
chaotic limit, the relative phases in the initial coherent superposition of
rotational states can be used to control the QKR dynamics in the absence
of noise or decoherence. Adjusting a single control parameter results in
the changing rotational distribution of the final localized state: its peak is
shifted from a low (here, J = 7) to a high (J = 11) angular momentum.
This corresponds to a relative change in the rotational energy, absorbed
by the laser-kicked molecules. The coherent quantum nature of the control
mechanism is evident from the demonstrated high sensitivity of the localized
wave packet to the exact period of the pulse train, and the ability to regain
control for any value of that parameter. Driving the system closer to the
classical limit, while maintaining the same degree of stochasticity, results in
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a gradual loss of control.
This proof-of-principle experiment in a simple chaotic system marks a

first step towards the control of more complex systems.

174



Chapter 8

Outlook

In this thesis, we described the recent progress in the experimental stud-
ies of the quantum kicked rotor. Linear molecules, i.e. diatomic oxygen
or nitrogen, served as quantum rotors and were exposed to periodic se-
quences of high-energy femtosecond laser pulses. The main achievements
were the direct observation of dynamical localization and the ability to ex-
ecute the methods of coherent control in the regime of quantum chaos. We
analysed the dependence of the localization phenomenon on various kicking
parameters, i.e. kick strength, number of pulses, pulse duration and pulse
period. We studied the effect of the quantum resonances and investigated
rotational Bloch oscillations and rotational Rabi oscillations. In addition,
the quantum nature of the observed phenomena was tested and confirmed.
We transitioned from the quantum to the classical limit in two fundamen-
tally different ways, by introducing noise or by reducing the time period and
with it, the effective Planck constant of the QKR. Upon this transition, the
classically chaotic behaviour was recovered and the possibility of control was
lost. A more detailed summary of each separate topic can be found in the
conclusion sections of the experimental chapters 5, 6 and 7.

Most of the observations were made possible due to the development of
new excitation and detection technologies, described in the chapters 3 and
4. Our work paves the way to many interesting studies. We outline some of
them in the next closing pages of this thesis.

Edge states

An interesting theoretical prediction is the existence of the localized edge
states [61]. The rotational quantum number of a three-dimensional rotor
has an effective edge at J = 0 in the rotational lattice. Floss et.al. showed
that under certain conditions, the quantum rotor can be localized at this
edge, similarly to the localization of a particle near the edge of a real lattice.

According to the calculations, we can meet all the necessary requirements
to observe this new effect. We did manage to see the glimpse of the edge
state in O2 but the definitive demonstration would require heavier molecules
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like N2O or CO2. Such demonstration is of interest because it represents a
phenomenon, which is unique to three-dimensional rotors and does not exist
in the AOKR.

Coherent control of quantum chaos

We studied the Gong-Brumer control scheme where the phases of the initial
rotational states are used to control the dynamical localization [70, 69].
However, changing the phases of the initial states does not affect the Floquet
evolution operator. This means that the average localization length, which
is determined by the quasi-energy eigenstates, cannot be changed.

Other control scenarios have been studied theoretically, which do allow
more drastic changes of the QKR dynamics. For example, the modified
kicked rotor (MKR), where the kicking field is reversed every n kicks, can
control the localization length and the shape of the localized distribution
[73]. The energy absorption of the MKR can be significantly accelerated
compared to the underlying classical anomalous diffusion [72]. The MKR
would be easy to implement experimentally. The periodic field reversal is
equivalent to a π phase shift, which can be executed by introducing an ap-
propriate time delay between the kicks. The pulse train with a field reversal
at every second kick (n = 2), could easily be designed with the Michelson
interferometers by shifting the time delay of one arm of an interferome-
ter. One needs to verify, however, whether the limited amount of pulses is
sufficient to show the predicted effects.

Decoherence

We investigated the effect of noise on the QKR. Timing noise or amplitude
noise in the periodic kicking is essentially destroying the analogy with the
tight-binding model of a one-dimensional periodic lattice. Therefore, the
system no longer corresponds to an Anderson model and dynamical local-
ization gives way to classical diffusion.

Instead of introducing noise, one could couple the QKR system to the
environment, which would leave the Anderson model intact. Studying the
effects of true decoherence on quantum chaos could yield important insights
into the quantum-classical transition and the question of controllability. A
practical way to induce decoherence in the experiment is through collisions.
A background gas with tunable pressure can be leaked into the vacuum
chamber to create an adjustable decoherence mechanism.
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Dynamical localization in three dimensions

An interesting future direction is the generalization of the QKR to higher
dimensions. It was shown that using several driving fields with incommensu-
rable frequencies is equivalent to higher dimensions of the Anderson model
[32]. Each frequency corresponds to a spatial coordinate in the Anderson
model. Such quasi-periodic pulse sequences have been realized in the AOKR
[34, 106, 110], enabling for example the study of the metal-insulator phase
transition.

Work in this direction will likely require an improvement or modification
of our current pulse shaping setup. Rather than just using the technique of
pulse multiplexing via Michelson interferometers, it might be beneficial to
combine several pulse shapers to create the required multiple frequencies.

Multi-pulse excitation schemes

Our unique setup could be used to explore other multi-pulse excitation
schemes, following goals that are not related to dynamical localization.

For instance, one can use long pulse sequences to improve the degree of
molecular alignment. One could follow the proposal of Averbukh [12] or, as
mentioned in Sec. 5.5, adjust the train period from kick to kick. It would
be best to try these optimization schemes in heavier molecules where the
bandwidth limit is of no concern.

More interesting is the alignment or orientation of larger and asymmetric
molecules. In a recent work, three pulses have been used for the three-
dimensional alignment of asymmetric top molecules [139]. It has been shown
that the alignment factor will get better with an increasing number of kicks.

Improvement of the setup

Apart from different research directions, the experimental setup can be im-
proved in several ways. For instance, by reaching colder temperatures with
the goal of starting the excitation from a single rotational state, or by adapt-
ing the developed techniques to a laser system with shorter pulses. Numer-
ically, the calculations should be refined by including the laser bandwidth
to get better comparison with the experimental data.
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Appendix B

Classical dynamics of the
kicked rotor

B.1 Equations of motion

We derive the equations of motion for a classical kicked rotor starting from
the classical version of the Hamiltonian in Eq. 2.1

H =
I

2
θ̇2 + V (θ) , (B.1)

with the potential energy term V (θ) = −~P cos2(θ)
∑N−1

n=0 δ(t− nT ). New-

ton’s second law for the rotating KR is of the form I d
2θ
dt2

= −dV (θ)
dθ , which

results in

I
d2θ

dt2
= −~P sin(2θ)

N−1∑
n=0

δ(t− nT ) . (B.2)

Here, we used the identity 2 sin(θ) cos(θ) = sin(2θ). We define ξ = t/T ,
which effectively counts the periods, and a dimensionless angular momentum

J̃ = J
T

I
=

(
I
dθ

dt

)
T

I
=
dθ

dξ
. (B.3)

Substituting the scaled angular momentum into the differential equation
yields

dJ̃

dξ
= −P~T

2

I
sin(2θ)

N−1∑
n=0

δ(t− nT ) (B.4)

= −Pτ sin(2θ)

N−1∑
n=0

Tδ(t− nT ) , (B.5)

where we used the dimensionless time τ = ~T/I. The stochasticity parame-
ter is K = τP . Another identity Tδ(t−nT ) = δ(t/T −n) is needed to reach
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B.1. Equations of motion

the final form, the two coupled equations of motion

dθ

dξ
= J̃

dJ̃

dξ
= −K sin(2θ)

N−1∑
n=0

δ(ξ − n) .

(B.6)

The equivalent formulation in the form of a discrete mapping gives a stan-
dard map

θN = θN−1 + J̃N

J̃N = J̃N−1 −K sin(2θN−1) ,
(B.7)

with the canonical variables after each kick N .
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Appendix C

Spectral decomposition of
the kicked rotor wave
function

C.1 The kicked rotor

The procedure described here follows the Ref. [63]. We solve the Schrödinger
equation for a kicked rotor after a single Gaussian pulse

i~
∂

∂t
|ψM (t) 〉 =

[
Ĵ2

2I
− P~√

πσ
cos2 θ e−t

2/σ2

]
|ψM (t) 〉 . (C.1)

We insert the wave function of Eq. 2.16 and evaluate the left-hand side (lhs)
and the right-hand side (rhs) individually.

(lhs) =
∑
J

(
i~
∂cMJ
∂t

e−iEJ t/~ + EJ c
M
J e−iEJ t/~

)
| J,M 〉

(rhs) =
∑
J

[
EJ −

P~√
πσ

cos2 θ e−t
2/σ2

]
cMJ e−iEJ t/~ | J,M 〉

(C.2)

The (lhs) was obtained with the product rule, whereas the (rhs) made use

of the relation Ĵ2| J,M 〉 = ~2J(J+1)| J,M 〉 and the definition of rotational
energy EJ . Now, the kinetic energy terms on both sides cancel.∑

J

∂cMJ
∂t

e−iEJ t/~ | J,M 〉 =
iP√
πσ

cos2 θ e−t
2/σ2

∑
J

cMJ e−iEJ t/~ | J,M 〉

(C.3)
We multiply 〈 J ′,M ′ |× from the left to both sides, knowing that the spher-
ical harmonics form an orthonormal basis 〈J ′,M ′| J,M 〉 = δJJ ′δMM ′ with
the Kronecker delta δJJ ′ = 1 for J = J ′ and zero in all other cases, and
δMM ′ = 1 since M = M ′.

∂

∂t
cM
′

J ′ =
iP√
πσ

e−t
2/σ2

∑
J

cMJ e−i(EJ−E
′
J )t/~〈 J ′,M ′ | cos2 θ| J,M 〉 (C.4)
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C.2. The periodically kicked rotor

This set of coupled differential equations can be solved numerically to get
the complex amplitudes of the wave function.

C.2 The periodically kicked rotor

This section is based on Ref. [57] and the quantum nechanics book by Saku-
rai [147].

C.2.1 The wave function ψ+

First, we prove that |ψ+ 〉 = exp(iP cos2 θ) |ψ− 〉 (Eq. 2.21) is indeed a
solution to the Schrödinger equation of a δ-kicked rotor (Eq. 2.20) by differ-
entiating ψ+ with respect to time.

i~
∂|ψ+ 〉
∂t

= i~
(
i cos2 θ

∂P

∂t
exp(iP cos2 θ)|ψ− 〉+ exp(iP cos2 θ)

∂|ψ− 〉
∂t

)
= −~ cos2 θ

∂P

∂t
|ψ+ 〉

= −~ cos2 θ

(
∆α

4~
E2(t)

)
|ψ+ 〉

= V (θ, t) |ψ+ 〉
(C.5)

In the first line, we used the product rule of differentiation, whereas the
second term vanishes, because the initial wave function |ψ− 〉 does not de-
pend on time. The second line uses the definition of |ψ+ 〉, the third one
the derivative of the kick strength P defined in Eq. 2.11. As desired, this
describes the Schrödinger equation (without the kinetic part).

C.2.2 Decomposition of ψ+

The transformation of |ψ+ 〉 into spherical harmonics is done by introducing
an artificial time τ . Immediately before the kick (τ = 0) only the initial
state |ψ− 〉 = | J0,M0 〉 is populated. This translates to cMJ (τ = 0) = 1 for
| J,M 〉 = | J0,M0 〉 and zero for all other | J,M 〉. Immediately after the kick
(τ = 1) the wave function is |ψ+ 〉. We start with setting the two equation
for |ψ+(τ) 〉 equal, Eq. 2.21 and Eq. 2.22,

exp(iP cos2 θ · τ) | J0,M0 〉 =
∑
J,M

cMJ (τ) | J,M 〉 . (C.6)
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C.2. The periodically kicked rotor

Note, that the artificial time has been introduced. We differentiate Eq. C.6
with respect to τ∑

J,M

∂cMJ
∂τ
| J,M 〉 = iP cos2 θ exp(iP cos2 θ · τ) | J0,M0 〉

= iP cos2 θ
∑
J,M

cMJ | J,M 〉
(C.7)

and project both sides onto 〈 J ′,M ′ |×

∂

∂t
cM
′

J ′ (τ) = iP
∑
J,M

cMJ 〈 J ′,M ′ | cos2 θ| J,M 〉 . (C.8)

As in appendix C.1 we used the orthonormality of the spherical harmonics
basis set.

C.2.3 The coupling matrix

In this section we study Eq. 2.23 / C.8 and look at the coupling matrix,
that couples the quantum numbers before the kick (J,M) with the ones
after the kick (J ′,M ′). At first, however, we will establish some basics for
the addition of angular momenta J = J1 + J2, with the angular momentum
operators J1 and J2. The entire system has two obvious options for a basis.
One basis is | J1J2;M1M2 〉 which is simultaneously an eigenfunction for J2

1,
J2

2, J1z and J2z. The other basis is | J1J2; JM 〉 which is simultaneously an
eigenfunction for J2

1, J2
2, J2 and Jz. Both bases are connected via a unitary

transformation [147].

| J1J2; JM 〉 =
∑
M1

∑
M2

| J1J2;M1M2 〉〈J1J2;M1M2| J1J2; JM 〉 . (C.9)

The elements of the transformation matrix 〈J1J2;M1M2| J1J2; JM 〉 are
called the Clebsch-Gordan coefficients (CGC). The transformation matrix
itself is a unitary matrix, which means that all CGC must be real values.
Some important properties of the CGC are

M =M1 +M2 (C.10)

|J1 − J2| 6J 6 J1 + J2 (C.11)

If these conditions are not fulfilled the CGC are zero. For a proof see the
book by Sakurai [147].
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C.2. The periodically kicked rotor

Now, we switch back to Eq. 2.23 and C.8. We transform the elements of
the coupling matrix 〈 J ′,M ′ | cos2 θ| J,M 〉 by translating cos2 θ into spherical
harmonics | J,M 〉 = |YM

J (θ, φ) 〉. To do that we use the formal definition

of Y 0
2 = 1

4

√
5
π (3 cos2 θ − 1). The new expression reads as

〈 J ′,M ′ | cos2 θ| J,M 〉 =
4

3

√
π

5
〈YM ′

J ′ |Y 0
2 |YM

J 〉+
1

3
〈YM ′

J ′ |YM
J 〉 (C.12)

The second term yields only diagonal matrix elements, i.e. when J ′ = J
and M ′ = M . The more interesting first term contains a product of three
spherical harmonics. There exists a helpful relation between such a product
and the Clebsch-Gordan coefficients (CGC) [147].∫ 2π

0

∫ π

0
YM∗
J YM1

J1
YM2
J2

sin θ dθdφ =√
(2J1 + 1)(2J2 + 1)

4π(2J + 1)
〈 J1J2; 00 |J1J2; J0〉〈 J1J2;M1M2 |J1J2; JM〉

(C.13)

The notation is as introduced above. The square root and the first CGC are
independent of M1 and M2 (independent of the molecular orientation θ).
The second CGC describes the angular momentum summation. Matching
this relation to our product in Eq. C.12 yields

〈YM ′
J ′ |Y 0

2 |YM
J 〉 =√

5(2J + 1)

4π(2J ′ + 1)
〈 2J ; 00 |2J ; J ′0〉〈 2J ; 0M |2J ; J ′M ′〉

(C.14)

The values of CGC are well known and can be looked up or calculated. One
important revelation from this angular momentum algebra are the selection
rules that apply to our system of a kicked rotor. The CGC properties
(Eq. C.10 and C.11) for our system simplify to

M ′ = M (C.15)

|J − 2| 6J ′ 6 J + 2 . (C.16)

It also follows that only J quantum numbers of the same parity are coupled.
We summarize: The magnetic quantum number has to be preserved ∆M =
M ′ −M = 0, and the angular momenta are only coupled between states of
the same parity that satisfy the condition ∆J = J ′ − J = 0,±2 .
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Appendix D

Fourier transform of shaped
pulses

Ultra-short pulses contain a broad frequency spectrum; the shorter the
pulses the wider the spectrum. Depending on the circumstances, it can
be beneficial or more intuitive to solve a problem or to understand some
physical concept by looking at the pulses either in the spectral domain or
alternatively in the time domain. In general, the mathematical transfor-
mation that is applied to switch from one domain to the other is called the
Fourier transform. It is equally valid for a transformation in both directions.
In our case, we will look at the Fourier transform of a function F (ω) in the
frequency domain into the time domain f(t), and vice versa

F (ω) =

∫ +∞

−∞
f(t) exp(−iωt) dt (D.1)

f(t) =
1

2π

∫ +∞

−∞
F (ω) exp(iωt) dω. (D.2)

We also want to introduce the Fourier transform shift theorem

F{f(t− tk)} = exp(−iωtk) · F{f(t)}, (D.3)

which is essential in the transformation of pulse sequences with individual
pulses at the timings tk (App. D.3).

D.1 Fourier transform of a TL pulse

We start with the spectrum of a Gaussian pulse (Eq. 3.1) and do a Fourier
transform (Eq. D.2) to obtain the electric field in the time domain

E(t)
D.2
=

1

2π

∫ +∞

−∞
E(ω) exp(iωt) dω

3.1
=

1

2π
A0 ·

∫ +∞

−∞
exp

(
−(ω − ω0)2

2Γ2
+ iωt

)
dω .

(D.4)
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D.2. Fourier transform of a chirped pulse

Using the substitution β = ω−ω0√
2Γ
− i Γt√

2
we can rewrite the exponential

(ω − ω0)2

2Γ2
− i(ω − ω0)t− iω0t = β2 +

Γ2t2

2
− iω0t . (D.5)

Using the derivative dβ/dω = 1/
√

2Γ the expression of the electric field can
be transformed to

E(t) =
1

2π
A0 ·

∫ +∞

−∞
exp

(
−β2 − Γ2t2

2
+ iω0t

)
·
√

2Γdβ

=
Γ√
2π
A0 · exp

(
−Γ2t2

2
+ iω0t

)
·
∫ +∞

−∞
exp(−β2)dβ .

(D.6)

The solution of the integral is
√
π. This yields the analytic expression of the

electric field of a TL Gaussian pulse in the time domain

E(t) = E0 · exp

(
− t2

2τ2

)
· exp(iω0t) (D.7)

with the amplitude E0 = A0Γ/
√

2π and the duration τ = 1/Γ.

D.2 Fourier transform of a chirped pulse

Again, we start with the electric field in the spectral domain (Eq. 3.5) and
obtain the time domain via the Fourier transform (Eq. D.2)

E(t)
D.2
=

1

2π

∫ +∞

−∞
E(ω) exp(iωt) dω

3.5
=

1

2π
A0 ·

∫ +∞

−∞
exp

(
−(ω − ω0)2

2Γ2
+ iα′

(ω − ω0)2

2
+ iωt

)
dω

=
1

2π
A0 ·

∫ +∞

−∞
exp

(
−(ω − ω0)2

2Γ2
(1− iα′Γ2) + iωt

)
dω .

(D.8)

We define the constant x2 = (1 − iα′Γ2) and do a similar substitution as
before β = xω−ω0√

2Γ
− i Γt

x
√

2
such that the exponential can be rewritten as

x2 (ω − ω0)2

2Γ2
− i(ω − ω0)t− iω0t = β2 +

Γ2t2

2x2
− iω0t . (D.9)
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D.3. Fourier transform of a pulse train

Making use of the derivative dβ/dω = x/
√

2Γ, the altered expression of the
electric field becomes

E(t) =
1

2π
A0 ·

∫ +∞

−∞
exp

(
−β2 − Γ2t2

2x2
+ iω0t

)
·
√

2Γ

x
dβ

=
Γ√
2πx

A0 · exp

(
−Γ2t2

2x2

)
· exp(iω0t) ·

∫ +∞

−∞
exp(−β2)dβ .

(D.10)

The solution of the integral is
√
π. We still need to re-substitute x. The

first exponential in eq. D.10 turns into

Γ2t2

2x2
=

Γ2t2

2(1− iα′Γ2)

(1 + iα′Γ2)

(1 + iα′Γ2)

=
Γ2t2

2(1 + α′2Γ4)
+ i

α′Γ4

2(1 + α′2Γ4)
t2

=
t2

2τ2
+ i

α

2
t2

(D.11)

where we defined the duration τ and the temporal chirp α

τ2 =
1

Γ2
(1 + α′2Γ4) (D.12)

α = α′
Γ4

1 + α′2Γ4
= α′

Γ2

τ2
. (D.13)

In the limit of large chirps, we can approximate α ≈ 1/α′. The final version
of eq. D.10 yields the electric field of a linearly chirped Gaussian pulse in
the time domain

E(t) = E0 · exp

(
− t2

2τ2

)
exp

(
iω0t− i

α

2
t2
)

(D.14)

with the complex amplitude E0 = A0Γ/(
√

2π ·
√

1− iα′Γ2).

D.3 Fourier transform of a pulse train

We have built the desired pulse train in the time domain with the elec-
tric field given in equation 3.8. Now, we will perform a Fourier transform
(Eq. D.1) to get the electric field in the spectral domain. Once we have the
knowledge of amplitude and phase in the frequency representation we are
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D.3. Fourier transform of a pulse train

able to send the corresponding masks to our SLM and create this pulse train
with the shaper.

E(ω)
D.1
=

∫ +∞

−∞
E(t) exp(−iωt) dt

3.8
=
∑
k

E0

∫ +∞

−∞
e−

(t−tk)
2

2τ2 eiω0t ei
β
2
k2 exp(−iωt) dt

=
∑
k

E0

∫ +∞

−∞
e−

(t−tk)
2

2τ2 eiω0(t−tk) e−iωt dt︸ ︷︷ ︸
F{f(t−tk)}

·eiω0tk ei
β
2
k2

(D.15)

We use the FT shift theorem (Eq. D.3) with the function f(t − tk) =

exp
(
− (t−tk)2

2τ2
+ iω0(t− tk)

)

F{f(t− tk)} = exp (−iωtk)
∫ +∞

−∞
e−

t2

2τ2 eiω0t e−iωt dt . (D.16)

Now, we eliminated all k-dependences inside the integral

E(ω) =
∑
k

e−iωtk
(
E0

∫ +∞

−∞
e−

t2

2τ2 eiω0t e−iωt dt

)
eiω0tk ei

β
2
k2 . (D.17)

We pull everything in brackets in front of the sum and solve the integral.
Under closer inspection it can be seen that the integral is merely the Fourier
transform (Eq. D.1) of a TL pulse (Eq. 3.2 or Eq. D.7)∫ +∞

−∞
E0 e

− t2

2τ2 eiω0t e−iωt dt
3.2
=

∫ +∞

−∞
E(t) e−iωt dt

D.1
= E(ω) (D.18)

whose expression we gave earlier in Eq. 3.1. Thus, the analytic expression
for the electric field of a periodic and flat pulse train in the spectral domain
is given as

E(ω) = A0 exp

(
−(ω − ω0)2

2Γ2

)
·
∑
k

exp

(
−i(ω − ω0)tk + i

β

2
k2

)
(D.19)

with the amplitude A0 = E0

√
2π/Γ. The term in front of the sum gives the

spectrum of the unshaped, TL pulse as in Eq. 3.1. Once we evaluate the
sum, it will tell us how we have to shape the amplitude and phase in order
to obtain the pulse train.
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D.4. Convolution theorem

D.4 Convolution theorem

The convolution theorem states that the Fourier transform of a convolution
is equal to the point-wise product of Fourier transforms. We denote F as
the Fourier transform operator. Let us use two functions f(t) and g(t) as a
function of time t. Their respective Fourier transforms are F (ω) = F{f(t)}
and G(ω) = F{g(t)} as a function of frequency ω, defined in Eq. D.1.

F{f(t)⊗ g(t)} = F (ω) ·G(ω) (D.20)

F{F (ω)⊗G(ω)} = f(t) · g(t) (D.21)

The symbol ⊗ denotes convolution.
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Appendix E

Semi-classical model of
rotational Bloch oscillations

We derive a semi-classical model to describe the phenomenon of Bloch os-
cillations in rotating molecules. We start with a stroboscopical description
of the rotor after each kick n. The wave function is a linear combination of
free-rotor eigenstates

|Ψ(n) 〉 =
∑
J

c
(n)
J | J 〉 , (E.1)

where we neglect the magnetic quantum number M since it does not change
in the interaction. The wave function right after a δ-kick is governed by

|Ψ(n+1) 〉 = eiP cos2 θ e−iEJT/~|Ψ(n) 〉 . (E.2)

Here, the one-cycle operator contains the kicking operator, see Sec. C.2.1,
and a free-evolution term. Insert Eq. E.1 as a function of J ′ into Eq. E.2
and multiply 〈 J | from the left side to get an expression for the amplitude
coefficients

c
(n+1)
J =

∑
J ′

c
(n)
J ′ 〈 J |e

iP cos2 θ| J ′ 〉 e−iEJT/~ (E.3)

The following derivation from Ref. [62] assumes pulses of P � 1. However,
the same result is obtained in the “ε-classics” approach [184, 185], which is
more involved but does not rely on the weak pulse approximation. A Taylor
expansion yields

c
(n+1)
J =

∑
J ′

c
(n)
J ′ 〈 J |1 + iP cos2 θ| J ′ 〉 e−iEJ′T/~ . (E.4)

Further, we investigate two distinct scenarios.
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E.1. Non-rigid rotor on quantum resonance

E.1 Non-rigid rotor on quantum resonance

Taking into account centrifugal distortion the free evolution term with a
period T = Trev = (2cB)−1 breaks down into

e−iEJ′Trev/~ = e−iπJ
′(J ′+1) eiπ

D
B
J ′2(J ′+1)2 ≈ 1 + iπ

D

B
J ′2(J ′ + 1)2 (E.5)

where the first exponential is equal to unity and the second one is expanded
in another Taylor series around D

B � 1. We insert the expression into Eq. E.4
and neglect the (P D

B )-term

c
(n+1)
J = c

(n)
J + iπ

D

B
J2(J + 1)2c

(n)
J + iP

∑
J ′

c
(n)
J ′ 〈 J | cos2 θ| J ′ 〉 . (E.6)

The cos2 term is approximated as [62]

〈 J | cos2 θ| J ′ 〉 =


1/2 for J ′ = J

1/4 for J ′ = J ± 2

0 else

(E.7)

and we obtain

−i
[
c

(n+1)
J − c(n)

J

]
=

[
π
D

B
J2(J + 1)2 +

P

2

]
c

(n)
J +

P

4

[
c

(n)
J+2 + c

(n)
J−2

]
. (E.8)

Finally, since each kick is very weak and hardly changes the angular mo-

mentum distribution, we replace the difference term c
(n+1)
J − c(n)

J by a dif-
ferential dcJ(n)/dn. The result is a Schrödinger equation for the rotational
tight-binding model with a continuous dimensionless time n

i
dcJ(n)

dn
=

[
−πD

B
J2(J + 1)2 − P

2

]
c

(n)
J −

P

4

[
c

(n)
J+2 + c

(n)
J−2

]
. (E.9)

E.2 Rigid rotor detuned from quantum resonance

If we neglect the centrifugal distortion but consider a detuning δ from the
resonance T = (1 + δ)Trev the free evolution term has the form

e−iEJ′ (1+δ)Trev/~ = e−iπJ
′(J ′+1) e−iπδJ

′(J ′+1) ≈ 1− iπδJ ′(J ′ + 1) . (E.10)

All the other steps are identical to Sec. E.1, and the final differential equation
will be

i
dcJ(n)

dn
= [πδJ(J + 1)] c

(n)
J −

P

4

[
c

(n)
J+2 + c

(n)
J−2

]
. (E.11)
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