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Abstract

Time dynamic systems can be used in many applications to data modeling.
In the case of longitudinal data, the dynamics of the underlying differential
equation can often be inferred under minimal assumptions via smoothing
based procedures. This is in contrast to the common technique of assuming
a prespecified differential equation, and estimating it’s parameters.

In many cases, one wants to learn the dynamics of a differential equation
that incorporates more than just one stochastic process. In the following, we
propose extensions to existing two-step smoothing methods that allow for
the presence of additional functional data arising from a second stochastic
process. We further introduce model comparison techniques to assess the
hypothesis that there is a significant change in fit provided by this additional
process. These techniques are applied to the instantaneous dynamics of
mouse growth data and allow us to make comparisons between mice who
have been assigned different genetic and physical conditions. Finally, to
study the statistical properties of our proposed techniques, we carry out a
simulation study based on the mouse growth data.
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Preface

This thesis is an original and unpublished work of the author, Jeffrey Bone,
under the supervision of Dr. Nancy Heckman.

The research question is an extension of the work done by Nicolas Verze-
len, Wenwen Tao and Hans-Georg Müller on stochastic dynamics of func-
tional data. Namely, we propose techniques to include additional stochastic
processes in the data-driven differential equation framework and to assess
their impact in describing functional data.
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Chapter 1

Introduction

In functional data analysis (FDA), one generally has data samples consisting
of points that are assumed to come from a smooth curve or other infinite
dimensional object. This can be thought of as data on N different scatter-
plots, each corresponding to a curve. Data of this form arise in many ap-
plications such as genetic trait modeling (Kirkpatrick and Heckman, 1989),
online auction dynamics (Liu and Müller, 2009) and growth studies (Gasser
et al., 1984; Verzelen et al., 2012). The standard introduction to FDA is
provided in an accessible manner by Ramsay and Silverman (2002, 2005).

A common approach in FDA is to use a prespecified differential equation
to model each of the curves (Cao and Ramsay 2007; Ramsay et al. 2007;
Liang and Wu 2008; Cao et al. 2012). The parameters of this prespecified
differential equation are then estimated for each of the curves. This approach
relies on the ability to identify a differential equation that is appropriate for
the data before doing any fitting. The curve by curve method is a powerful
one in situations when the data are densely observed or when one is inter-
ested in the exact dynamics of individual observations. On the other hand,
in longitudinal studies where data are repeatedly observed for many sub-
jects, pooling information across curves may improve estimation. Moreover,
in situations where the underlying processes are stochastic, the presumed
underlying dynamics may not be well understood and thus prescribing a
differential equation can lead to poor fits. Examples of such processes can
be seen in subject specific studies of viral levels in HIV patients (Miao et al.,
2009) and in auction price trajectories (Reddy and Dass, 2006). In these
situations, alternative ways of viewing and modeling the data may improve
the analysis.

This alternative is to view each curve as a realization of some unknown
underlying stochastic process (Yao et al. 2005; Liu and Müller 2009; Müller
and Yang 2010; Müller and Yao 2010; Verzelen et al. 2012). From this view-
point, there are no prespecified dynamics, but rather one tries to learn the
underlying dynamics from the data. This approach does not require strong
assumptions on the data, often just that the underlying stochastic process
admits a Karhunen-Loève expansion (Ash and Gardner, 1975). Much work
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Chapter 1. Introduction

has been done in developing techniques for learning the dynamics of these
underlying processes. Usually these techniques borrow information across
curves to better estimate the underlying process. When the data are sparse
but the pooled data are sufficiently dense, Yao et al. (2005) have proposed
Principal Component Analysis through Conditional Expectation (PACE).
This method provides a structure for estimation of covariances relating to
the underlying process, X, for instance, for estimating the covariance be-
tween X(t) and X ′(s) or between X(t) and X(s). It should also be noted
that the PACE method is in contrast to approaches such as functional re-
gression (Ramsay and Dalzell, 1991), where the entire process is included
in the modeling of the entire response. The applications are plentiful and
include areas such as yeast cell cycles (Yao et al., 2005) and online auction
dynamics (Liu and Müller, 2009).

Often, a relationship of particular interest is that between X ′(t) and
X(t). For Gaussian processes, the idea of a dynamic transfer function has
been developed to understand this relationship and to estimate E[X ′(t)|X(t)]
(Liu and Müller, 2009; Müller and Yang, 2010). This transfer function is
defined as β in the equation

X ′(t) = µX′(t) + β(t)[X(t)− µX(t)] + Z(t) (1.1)

E[X ′(t)|X(t)] = µX′(t) + β(t)[X(t)− µX(t)], (1.2)

where X(t) and Z(t) are independent. Müller and Yao (2010) show that the
Gaussianity assumption guarantees the existence of such a transfer function,
and of a first order linear differential equation satisfied by each observed
trajectory. Verzelen et al. (2012) have extended this work to non-Gaussian
processes. They show that each trajectory of a smooth stochastic process
satisfies a first order nonlinear differential equation given by

X ′(t) = f(t,X(t)) + Z(t) (1.3)

E{X ′(t)|X(t)} = f(t,X(t))

and provide a two-step smoothing procedure to estimate f . In the Gaussian
case, f(t,X(t)) reduces to µX′(t) + β(t)[X(t) − µX(t)] from (1.1). That
being said, as Heckman (2010) has pointed out, this conditional expectation
does not give us the exact underlying differential equation nor the behavior
of the process, X, it only provides a way to study the relationship between
X ′(t) and X(s).

To date, the work on instantaneous dynamics has only included a single
process in the conditional expectation given in (1.3). We propose an addition
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Chapter 1. Introduction

to the model in (1.3) that allows for a second process, W (·), where W (t) is
thought to have an influence on X ′(t). We then extend the work of Müller
and Yao (2010) and Verzelen et al. (2012) for determining the domains where
one model explains the variation in X ′(t) significantly better than another.
In our case, we compare the model that includes W (t) to that which does
not. To determine this, we formulate a hypothesis test and a permutation
approach to calculating its significance level.

As mentioned previously, FDA, and in particular the approach of Yao
et al. (2005) for longitudinal data, lends itself well to growth studies (Gasser
et al., 1984; Verzelen et al., 2012). In continuing with this theme, we apply
the two-step smoothing procedure of Verzelen et al. (2012) and our subse-
quent extensions of this to data comprised of observations on eight distinct
groups of mice. These observations include the weekly body masses of the
mice, as well as their weekly amounts of food eaten. The eight distinct
groups are characterized by selective breeding (yes/no), access to an exer-
cise wheel (yes/no) and gender (male/female). It is of biological and evolu-
tionary interest as to how the instantaneous dynamics between body mass
and growth rate differ between each of these groups. With this in mind,
we first estimate the growth rates of each mouse and then use the approach
of Verzelen et al. (2012) to estimate the relationship between body mass at
week t and growth rate at week t. Further, we apply our new methods for
including the additional stochastic process, W , corresponding to the weekly
amount eaten, in model (1.3). This allows us to determine for which of the
eight groups and during which weeks, the amount eaten in a week signifi-
cantly effects the instantaneous relationship between body mass and growth
rate.

The remainder of the thesis is organized as follows. In Chapter 2, we
give a detailed description of the mouse data set, including the breeding and
experimental design as well as some exploratory analysis and observations.
Chapter 3 reviews foundational smoothing techniques such as smoothing
splines and kernel smoothing, as these are essential for the subsequent anal-
yses. We also address some standard techniques for choosing the smoothing
parameters. The topic of FDA and in particular the contrasts between the
curve by curve approach and that of learning the differential equation from
the observed data is discussed in greater detail in Sections 4.1 and 4.2. In
the remainder of Chapter 4 we formulate the models, model fitting proce-
dures and model comparison techniques proposed by Müller and Yao (2010)
and Verzelen et al. (2012), as well as our extensions. The analysis of the
mouse data introduced in Chapter 2 is described in Chapter 5, along with
the presentation and discussion of the results. Finally, Chapter 6 provides
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Chapter 1. Introduction

the method and results from a simulation study to determine the statistical
properties of our nonparametric testing method for determining the signifi-
cance of W (t) in the relationship between X ′(t) and X(t), while Chapter 7
provides concluding remarks.
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Chapter 2

The Data Set

The data set, first described in Swallow et al. (1998), was provided by Pro-
fessor Patrick Carter, School of Biological Sciences, Washington State Uni-
versity. The data are comprised of weekly measurements taken from 320
house mice (Mus domesticus), who have been housed individually in a labo-
ratory setting over a period of 80 weeks. Only 292 of these mice are included
in the subsequent analysis, as the remaining 28 died early.

2.1 Breeding Design

The lines of house mice used here are from replicate lines selected for 16
generations. The breeding resulted in eight closed genetic lines. These lines
were established as follows (Swallow et al., 1998). A set of 224 mice (112 of
each male and female) were purchased from Harlan Sprague Dawley, Indi-
anapolis. This initial group of mice was paired for breeding, with the excep-
tion that sibling mating was disallowed. This resulted in approximately 112
litters. From each of these litters, one male and one female were randomly
selected, thus resulting in approximately 224 mice, referred to as generation
−1. The mice from generation -1 were then randomly paired, again with
sibling pairings disallowed. From these generation −1 pairs, eight lines were
formed by randomly selecting 10 pairs for each line. The eight lines were
randomly split into two groups of four (selection and control). The offspring
of the chosen generation −1 pairs were designated generation 0. Figure 2.1
gives a schematic of the above description of breeding up to generation 0.

Within each line, from each of generations 0-9, 13 males and 13 females
were chosen to produce the next generation. At each generation, these 26
breeder mice were selected at age 10 weeks. The 13 males and 13 females
were randomly paired to breed, with the condition that no pair were siblings.
The first 10 litters with two pups of each sex were used to maintain the line.
The 13 pairs, rather than just 10, were used to ensure that there would be
at least 10 litters with two pups of each sex.

In each generation, the 13 pairs of breeding mice in a selection line were
chosen based on the average number of wheel revolutions run on days 5 and
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2.2. Experimental Design

6 on an activity wheel. From each of the 10 families, the highest running
male and female were selected to breed. To make up the remaining 3 pairs
of the 13 required, three additional males and females were chosen. These
six mice were chosen based on being the second highest runners from the
families with the highest running totals, with the condition that no two of
the six additional mice were siblings. These 26 mice were randomly paired to
breed the next generation as described in the preceding paragraph. Figure
2.2 provides a schematic of how (for the selected lines) generation i produces
generation i+ 1.

In each generation, the 13 pairs of breeding mice each control line were
chosen randomly as follows. One male and one female mouse were randomly
selected from each of the 10 families. Then an additional 3 males and 3
females were randomly chosen, with the condition that no two of the six
additional mice were siblings. These 13 males and 13 females were then
randomly paired for breeding, again with the condition of no pair being
made up of siblings.

2.2 Experimental Design

Our analysis is based on observations made from generation 15 of the above
breeding design. As described in the preceding section, of the eight genetic
lines, four are control and four are selected for wheel running. From these
eight lines, 5 pairs of breeding mice were selected to produce the next gen-
eration. For each of the five families within each line, two mice of each sex
were assigned to be active, i.e, have access to a running wheel, and two mice
of each sex were to be sedentary (Theodore J. Morgan, 2003). This divides
the resulting 320 mice into two groups of 160: active and sedentary. These
two groups can be further partitioned by the sex and line type (1-8) of the
mice. The mice are thus divided into 32 balanced categories. In our analysis,
when only 292 mice are used, these 32 categories have sizes of approximately
8-12 mice.

Weekly measurements were taken for each mouse over a period of 80
weeks. These measurements include the body mass of the mouse (grams),
the amount eaten in the last week (grams) and (for the active group) the
number of revolutions ran in the last week. At the end of each week, each
mouse was weighed and the amount of food left in the bowl was measured.
The amount eaten was calculated as the difference between the food in the
bowl at the beginning of the week and the amount remaining in the bowl at
the end. This could be subject to error, as some mice would bury or dispose
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2.3. Data Summary

of food without actually eating it.
For the purpose of our analysis, we ignore the dependence within the 8

lines, thus treating the mice as independent. Therefore, we consider cate-
gories formed by sex, the presence of an exercise wheel and whether or not a
mouse is selectively bred or not. This results in eight groups, each comprised
of 30-40 mice, where each group has roughly comparable size.

2.3 Data Summary

Figures 2.3 and 2.4 show the body masses over the 80 weeks for the 292
mice, and for each of the eight groups, respectively. Figure 2.5 shows the
point-wise standard deviations of the body masses of the 292 mice. Clearly,
as the mice age there is greater variation in the body masses. This pattern
in the variation is also evident within each group, as shown in Figure 2.6.
There are some weeks when the body mass was not observed, typically
corresponding to holidays. This can be seen by the missing slices in Figures
2.3 and 2.4. In the original data set, the researchers who collected the data
had imputed these data points with the proceeding week’s observations.
With the permission of researcher Patrick Carter, we treat the first k − 1
of k consecutive identical values as missing. On average, it appears that
the sedentary mice are heavier for both males and females. Also, for both
genders, those mice that were not selectively bred seem to be heavier.

Figures 2.7 and 2.8 show the amount eaten over the 80 weeks for the 292
mice, and for each of the eight groups, respectively. Each of the eight groups
appears to show similar patterns, although the female sedentary mice exhibit
greater variation. Figure 2.9 shows that the point-wise standard deviations
of the amount eaten are fairly uniform, particularly after the twentieth week.
This pattern is similar within each group, as seen in Figure 2.10. There are
also some substantial outliers evident in Figures 2.7 and 2.8. For example,
in the lower left panel of Figure 2.8, there is a single point at 100 grams,
while every other measurement is below 75 grams. These outliers explain
the spikes in the point-wise standard deviations, seen in Figure 2.10. After
discussion with Professor Carter, this and three other similar points were
determined to be inaccurate measurements or were due to food being wasted
without the researcher who collected the data knowing and thus we treated
them as missing values. There was also a negative measurement on an active
male, in the selected group, which we also replaced by a missing value.
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2.4 Previous Research and Research Objectives

The data collected from the mice of generation 10 from the breeding design
described in Section 2.1 have been used to study a variety of genetic and
evolutionary traits. Natural questions concern things such as how the body
mass, amount of energy used and food consumption vary between groups
(Koteja et al. 1999; Koteja et al. 2001). For example, it was found that the
selected mice from generation 10 ran 70% more total revolutions per day
than their control counterparts and that overall, males ran less than females
(Koteja et al., 1999). Other work has addressed topics such as the variation
in the amount of food wasted between the groups (Koteja et al., 2003), where
it was found that there were significant differences in the amount of food
wasted between replicate lines, but not between the selected and control
groups. In most of these studies, it is of interest to compare the selected
mice to those that are randomly bred and the active mice to the sedentary.
In general, the primary focus is not on between gender comparisons as these
do not provide as many conclusions about the evolutionary process of the
mice.

Our objective for the data is two-fold. We treat both the body mass and
the amount eaten as being governed by underlying stochastic processes. We
first aim to explore the relationship between growth rate at a given age, t,
and body mass at t for each of the eight groups. This is in contrast to using
a more complex historical model that includes all the information about the
body mass up to age t in order to study the growth rate. After estimating
this relationship, we try to draw some general conclusions as well as make
comparisons between the groups. The second objective is to explore how the
relationship between body mass at age t and growth rate at age t is changed
by including the amount eaten at t in the model. This allows us to determine
in which of the groups the amount eaten at t contributes significantly to
explaining the growth rate at t, providing a better understanding of the
underlying biological traits.
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Figure 2.1: A schematic depicting the initial breeding and formation of the
eight genetic lines.
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Figure 2.2: A schematic depicting the formation of generation i + 1 from
generation i. This figure corresponds to one of the four selected lines.
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Figure 2.3: The body mass (grams) of all 292 mice as a function of age
(weeks). The missing slices correspond to weeks when the body mass was
not recorded.

Figure 2.4: The body masses (grams) of the 292 mice as a function of
age (weeks), organized into each of the eight groups. The missing slices
correspond to weeks when the mass was not recorded.
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Figure 2.5: The point-wise standard deviations of the body masses (grams)
as a function of age (weeks).

Figure 2.6: The point-wise standard deviations of the body masses (grams)
for each of the eight groups as a function of age (weeks).
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Figure 2.7: The amount eaten (grams) by the 292 mice as a function of age
(weeks).
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Figure 2.8: The amount eaten (grams) as a function of age (weeks), for each
of the eight groups.

Figure 2.9: The point-wise standard deviations of the amount eaten (grams)
for the 292 mice as a function of age (weeks).
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Figure 2.10: The point-wise standard deviations of the weekly amount eaten
(grams) for each of the eight groups as a function of age (weeks).
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Chapter 3

Smoothing Techniques

Consider a set of regression points (x1, y1), (x2, y2), . . . , (xn, yn) such that
xi ∈ [a, b] for all i and suppose that

yi = m(xi) + εi,where εi are i.i.d with E(εi) = 0, Var(εi) = σ2.

If instead we have regression points, (x1, w1, y1), . . . , (xn, wn, yn), then the
previous model is adapted to

yi = m(xi, wi) + εi,where εi are i.i.d with E(εi) = 0, Var(εi) = σ2.

This can be further generalized to include more covariates, but we restrict
our focus to the univariate and bivariate cases.

Smoothing techniques attempt to capture trends in the data by providing
an estimate of the function m. These estimates of m are obtained in such a
way that the noise in the data is reduced. Smoothing techniques are typically
used to extract information from the data, while providing flexibility and
robustness.

In contrast to parametric regression, smoothing does not require any
predetermined assumptions about the form of the relationship between the
response and the explanatory variables. Instead, this relationship is deter-
mined completely by the information from the data. For this reason, larger
sample sizes are typically needed for smoothing, when compared with those
for parametric regression. In this section we will discuss two specific types
of smoothing: smoothing splines and kernel smoothing.

3.1 Smoothing Splines

Definition: φ : [a, b] → R is a spline of degree p, with interior knots t1 <
· · · < tn, where a < t1 and tn < b, if:

(1) the restrictions of φ to the intervals [a, t1], [ti, ti+1] and [tn, b] are poly-
nomials of degree p for i = 1, . . . , n,
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3.1. Smoothing Splines

(2) φ(·) is a p − 1 continuously differentiable function at the points ti, for
i = 1, . . . , n.

In the context of regression data, (x1, y1), (x2, y2), . . . , (xn, yn) such that
xi ∈ [a, b] and xi < xi+1 for all i, we are usually interested in minimizing
the mean squared error (MSE),

1

n

n∑
i=1

(yi −m(xi))
2, (3.1)

with respect to m. Now, suppose we want to penalize m based on certain
characteristics. Then we can include a penalty term in (3.1) and minimize:

G(m,λ) =
1

n

n∑
i=1

(yi −m(xi))
2 + λP (m), (3.2)

for a fixed λ. We call λ the smoothing parameter and P the penalty function.
This criterion indicates that we are willing to accept an estimate of m that
increases the MSE if it also reduces the penalty. A common choice is to
penalize m based on its curvature; that is, P (m) =

∫ b
a [m′′(x)]2dx (Hastie

and Tibshirani, 1990). In this case, it can be shown that the minimizer of
G is a natural cubic spline with interior knots x1, . . . , xn. These natural
cubic splines are cubic splines that are subject to the condition

∫ x1
a m′′(x) =∫ b

xn
m′′(x) = 0 and are thus linear on the intervals [a, x1] and [xn, b]. See

Figures 3.1 and 3.2 for examples of cubic splines fit to data.
To better understand the penalized optimization problem in (3.2), we

consider the extreme cases of λ. One can show that, when λ → ∞, the
minimizer of (3.2), m̂λ, approaches the least squares line. Heuristically, for
increasing λ we must have P (m̂λ) tending to 0 and the problem reduces
to minimizing (3.1) with m̂λ restricted to having P (m̂λ) = 0; that is, m̂λ

restricted to a line. On the other hand, if λ = 0, then we can choose m̂λ

so that the first term in (3.2) is 0 by setting m̂λ to be the interpolating
spline that passes through each data point. For intermediate values of λ,
the minimizing function m̂λ is a compromise between the least squares line
and the interpolating function.

3.1.1 Fitting Smoothing Splines

We now focus on how a smoothing spline can be fit to regression data. Con-
sider the case where the penalty function in (3.2) is given by the curvature
of m. Then, as stated before, the minimizer in (3.2) is a natural cubic

17



3.2. Kernel Smoothing

spline. Our input data, x1, x2, . . . , xn, are the interior knots of the cubic
spline and give us n + 1 segments of the interval [a, b]. Therefore, it ap-
pears we need to determine four coefficients for each segment, for a total of
4(n+ 1) coefficients. Fortunately, our natural cubic splines are smooth and
twice continuously differentiable on [a, b] and linear on the intervals [a, x1]
and [xn, b]. This places restrictions on the coefficients and thus reduces the
number of basis functions needed to n. Thus, the dimension of the space of
natural cubic splines with interior knots x1, . . . , xn is equal to n. Denote a
set of basis functions as {Bi, i = 1, . . . , n}. We can now write our natural
cubic spline as

m(x) =
n∑
i=1

αiBi(x).

Typical choices for the Bi’s include the truncated power basis or the
B-spline basis. Notice that we have reduced our infinite dimensional class of
m’s to an n-dimensional model that is linear in the Bi’s. We can thus rewrite
our objective function from (3.2) in matrix form. Setting (B)ij = Bj(xi),
this yields:

G(m,λ) =
1

n
(y −Bα)T (y −Bα) + λαTCα, (3.3)

where y = (y1, . . . , yn)t, α = (α1, . . . , αn)t and (C)ij =
∫ b
a B
′′
i (x)B′′j (x)dx

contains the curvature information of the basis functions. Setting the deriva-
tive of G with respect to α equal to zero and solving yields

α̂ = (BTB + nλC)−1BTy,

which is the unique minimizer of G providedBTB+nλC is positive definite.
This minimizing α̂ yields the following fitted values for yi,

ŷ = B(BTB + nλC)−1BTy = Sλy,

where Sλ is called the smoothing or hat matrix. There are various ways to
choose the smoothing parameter, λ, that will be discussed in Section 3.3.
Finally, the above discussion is restricted to univariate splines, as these are
all that is required in our application. In more complex situations, one may
require, for example, bivariate splines.

3.2 Kernel Smoothing

An alternative method to smoothing splines is to smooth the data via Kernel
smoothing. Kernel smoothing is typically used in two different applications.
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3.2. Kernel Smoothing

The first is for obtaining a density estimate from a sample. The second is
for investigating a regression relationship, such as the one outlined at the
beginning of this chapter. We will focus our proceeding discussion on the
latter case.

For both density estimation and regression, the smoothing is done via a
kernel function, K(·;h) (Wand and Jones, 1995). We restrict K(·;h) to be a
symmetric density function with mean 0. The scale parameter, h, controls
the degree of smoothing and can sometimes be thought of as the standard
deviation of the random variable with density equal to the kernel function.
Some typical choices for K are the Gaussian, the Epanechnikov and the box
kernels.

The simplest approach to nonparametric kernel regression is to adopt a
local mean approach. The estimate at an evaluation point z is given by

m̂h(z) =

∑n
i=1K(xi − z;h)yi∑n
i=1K(xi − z;h)

.

This is referred to as the Nadaraya-Watson estimate (Nadaraya, 1964; Wat-
son, 1964). More generally, for a fixed p, the β̂0, β̂1, . . . , β̂p that minimize

n∑
i=1

[yi − β0 + β1(xi − z) + · · ·+ βp(xi − z)p]2K(xi − z;h)

provide the pth degree polynomial estimates of m and its derivatives eval-

uated at z. Namely, the estimates are given by m̂(i)
h(z) = i!β̂i(z) for

i = 0, . . . , p. Note that when p = 0 the Nadaraya-Watson estimate is recov-
ered. Setting p = 1 is a common choice, and is referred to as local-linear
estimation. The local linear approach is good when used to estimate m,
but higher order polynomials are recommended for obtaining estimates of
m’s derivatives (Wand and Jones, 1995). Figure 3.3 gives an example of
a Nadaraya-Watson (left pane) and local linear (right pane) estimate of m
based on simulated regression data.

If we have two real-valued covariates, x and w, and data (xi, wi) for
i = 1, . . . , n, then the local mean estimator of m is given by

m̂h1,h2(z1, z2) =

∑n
i=1K(xi − z1, wi − z2;h1, h2)yi∑n
i=1K(xi − z1, wi − z2;h1, h2)

and the local linear estimate of m(z1, z2) is the value of β0 gotten from the
least squares criterion

min
β0,β1,γ1

n∑
i=1

[yi − β0 + β1(xi − z1) + γ1(wi − z2)]2K(xi − z1, wi − z2;h1, h2).
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3.3. Choice of Smoothing Parameter

The multivariate kernel, K, can take many forms. Here, we restrict our
multivariate kernels to those of the multiplicative form

K(xi − z1, wi − z2;h1, h2) = K1(xi − z1;h1)K2(wi − z2;h2), (3.4)

where K1 and K2 are univariate kernels. See Figure 3.4 for an example of a
local linear bivariate smooth.

In both the univariate and bivariate case, m̂ can be seen as a weighted
average of the yi’s. These weights depend on the choice of the kernel func-
tion, bandwidth and the proximity of the evaluation points to the data.
Furthermore, as the minimizing criterion is a least squares problem and
thus quadratic, we have that ŷ is linear in y = (y1, . . . , yn)t. Therefore, as
in the case of smoothing splines, there exists a smoothing (hat) matrix, Sh
such that ŷ = Shy.

3.3 Choice of Smoothing Parameter

In both of the previous sections our estimates of m depend on a value which
determines the degree to which our estimating function smooths the data. In
the case of smoothing splines, the smoothing parameter, λ, controls smooth-
ing. Likewise, for kernel smoothing, the bandwidth, h, controls smoothing.
Choosing these parameters is important as a poor choice can lead to over-
or under-smoothing of the data.

In both smoothing splines and kernel smoothing, leave-one-out cross-
validation (Hastie et al., 2001) is often used to determine λ, h or (h1, h2).
This algorithm can be described as follows for choosing λ. Choosing h or
(h1, h2) is similar. For each value of i = 1, . . . , n, the ith data point is left
out of the fitting and is then predicted with the resulting natural spline. The

prediction error, e∗i (λ) = yi − ŷ(−i)i , for this data point is then computed.
We define the cross-validation function as the sum of the squared prediction
errors, CV (λ) =

∑n
i=1[e

∗
i (λ)]2. The λ with the lowest CV is chosen as the

smoothing parameter.
Fixing the trace of the smoothing matrix is another method to specify

the smoothing parameter or bandwidth. Recall, that in both smoothing
splines and kernel smoothing, the fitted values could be written as ŷ = Sy,
for some matrix S that depends on λ or h. Notice that this is a similar
framework to that of linear regression, where the hat matrix, H, plays the
role of S in determining ŷ. In this case, the trace of H is called the degrees
of freedom and is equal to the number of parameters in the regression model.
Similarly, for smoothing splines and kernel smoothing, we define the degrees
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3.3. Choice of Smoothing Parameter

of freedom to be the trace of S. Since the smoothing matrix S depends
on the smoothing parameter, by fixing trace(S) =

∑n
i=1 Sii to some desired

value, the smoothing parameter can then be computed numerically. As
Sλ is an n × n matrix, the degrees of freedom are equal to the sum of
Sλ’s eigenvalues. In general, the lower the degrees of freedom the greater
the degree of smoothing. For an example of this, see the two splines in
Figure 3.2. Finally one possible advantage to tuning the degrees of freedom
as opposed to for example, cross validation, is that one may get better
performance for approximating derivatives. Moreover, if one wishes to have
the same amount of smoothing over many curves (for example, mice body
masses), tuning via the degrees of freedom provides a way to ensure this.

There are other methods, such as ones based on the Akaike Information
Criterion (Sakamoto et al., 1986), that can also be used for determining the
smoothing parameters. In particular, for local polynomial kernel regression
the so called “plug in” method is often used (Wand and Jones, 1995). The
plug in method uses the idea of plugging in estimates of the unknown pa-
rameters in the expression of the asymptotically optimal bandwidth. This
asymptotically optimal bandwidth is the one which optimizes the asymptotic
mean square error. Finding estimates for the unknown parameters in the
formula for the optimal bandwidth can be challenging. These estimates are
often found using kernel smoothing, thus requiring their own bandwidths,
which must be chosen. This hierarchal structure and its properties have
been explored in detail by Hall et al. (1992).
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Figure 3.1: An example of a cubic smoothing spline fit to 46 data points,
where the smoothing parameter has been selected by leave-one-out cross-
validation.
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Figure 3.2: An example of two cubic smoothing splines fit to 46 data points,
with different degrees of freedom (smoothing parameters). The dashed line
corresponds to using 40 degrees of freedom, while the solid line corresponds
to using 10.
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Figure 3.3: An example of Nadaraya-Watson (left) and Local Linear (right)
estimates of a regression function, based on 81 data points. A standard
normal kernel with bandwidth 5 is used.
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(a)

(b)

Figure 3.4: An example of a contour plots of a bivariate local linear estimate
of m using a multiplicative Gaussian kernel with standard deviations 1.3 and
3.75. Plot (a) shows the estimate of m evaluated at the data points. Plot
(b) shows the estimate of m evaluated on a 20×20 grid of evaluation points
derived from data (bottom).
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Chapter 4

Differential Equation Models

Differential equations can be used to model processes encountered in a vari-
ety of disciplines. The objective is typically either to estimate the trajectory
specific parameters of the differential equation or to understand the govern-
ing dynamics of the underlying process from the observed data.

4.1 Parametric Models

In many previous works, (Ramsay and Silverman 2005; Cao and Ramsay
2007; Cao et al. 2012) a previously specified nonrandom differential equa-
tion is assumed to describe the underlying process, X(·). The goal is then
to estimate the parameters of this differential equation from the observed
data, denoted (tj , Yj) for j = 1, . . . , J . The Yj ’s are assumed to be a noisy
realization of the underlying process

Yj = Y (tj) = X(tj) + εj , (4.1)

where εj ’s are mean zero independent identically distributed random vari-
ables with Var(εj) = σ2. Formally, the aim is to minimize the following
penalized least squares problem

J (c|β, λ) =

n∑
i=1

[Y (tj)−X(tj)]
2 + λ

∫
[LβX(t)]2dt,

where c is the vector of coefficients from a basis function expansion of X(·)
and Lβ is a differential operator depending on the unknown parameter vec-
tor, β. We define a differential operator as in Ramsay et al. (1997) to be

LβX(t) =

m−1∑
j=0

βjD
jX(t) +DmX(t),

where the notation DjX(t) indicates the jth derivative of X(t). One reason
to use a general linear operator, instead of a more specific term such as the
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4.2. Modeling Dynamics

curvature, is to be able to penalize X in more accurately. For example,
if we know that locally X satisfies some differential equation, then we may
wish to use a differential operator that penalizes departure from this specific
equation.

Much previous work has been done to estimate the parameters of the
above minimization problem. Heckman and Ramsay (2000) jointly estimate
c and β but find the estimators to be unsatisfactory. Cao and Ramsay (2007)
modify this criterion and propose a two step estimation method. They first
minimize J , for a fixed β, with respect to the coefficient vector, c, yielding
ĉ(β). An un-penalized criterion involving ĉ(β) is then used to determine
the optimum β. It is important to note that this method is not iterative.

The trajectory-wise approach described above can be generalized to sit-
uations where there is more than one observed trajectory of X(·). In these
cases, often each trajectory is modeled via the same parametric differential
equation but with a different parameter vector, β, which is treated as a ran-
dom effect. Alternatively, one can estimate the parameter vector separately
for each observed trajectory, as described above.

4.2 Modeling Dynamics

As described in the preceding section, the trajectory-wise approach to fitting
a differential equation model relies on the ability to specify a differential
equation that describes the underlying process. If the underlying process
is not well understood then this may not always be practical. Conversely,
if many realizations of the underlying process are available, one can try
to learn the differential equation directly from these trajectories (Liu and
Müller, 2009; Müller and Yang, 2010; Verzelen et al., 2012). Specifically,
given n realizations, X1, . . . , Xn, of a stochastic process X on a domain
T , we assume that we observe the noisy measurements of the process, Yi,
according to

Yi(tij) = Xi(tij) + εij , j = 1, . . . , Ji, (4.2)

where the εij ’s are mean zero, independent identically distributed random
variables with Var(εij) = σ2.

The method of attempting to learn the differential equation from the
data uses observations from all n realizations together to estimate the under-
lying dynamics, rather than estimating the parameter of the aforementioned
prespecified differential operator on a path by path basis. This method is
particularly powerful in situations when data are sparsely observed for each
realization of X. In these cases, estimation of these individual trajectories
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is difficult, and more so for their derivatives. The borrowing of information
from each trajectory can often aid in this estimation. For such sparse situa-
tions, Yao et al. (2005) propose the use of Functional Principle Component
Analysis through Conditional Expectation (PACE). The PACE method has
been applied to Gaussian processes (Müller and Yang, 2010) and to online
auction dynamics (Müller and Yao, 2010).

In longitudinal studies, one may be interested in relating X(t) or X ′(t)
to X(s) for a fixed s ≤ t. Studying these relationships can provide insight
into typically unknown mechanisms governing the observations. For Gaus-
sian processes, Liu and Müller (2009) have proposed the use of dynamic
transfer functions to provide an estimate of the influence that X(t) has on
X(ν)(t) for ν > 0. These transfer functions can be related to the conditional
expectation of X(ν)(t) given X(t). Müller and Yang (2010) have extended
the idea of transfer functions for Gaussian processes, to allow one to predict
trends in, for example, X ′(t), based on previous levels of the process X at
s. The instantaneous dynamics between X(t) and X ′(t) will be the focus
of Sections 4.3-4.5 but before proceeding, we reiterate the methodological
differences between the trajectory wise approach described in Section 4.1
and the alternative of learning the underlying process from the data, as
described at the start of this section.

The two predominant differences between these two approaches are in
how the data are used. When the governing differential equation can be
reasonably assumed, each of the observed trajectories can be analyzed sep-
arately (Ramsay and Silverman 2005; Cao and Ramsay 2007; Cao et al.
2012). In contrast, when the underlying dynamics are to be inferred from
the data, then for each t, all observations from the n realizations of X can
be used to estimate the underlying process at t (Yao et al. 2005; Liu and
Müller 2009; Müller and Yang 2010; Müller and Yao 2010; Verzelen et al.
2012). Essentially, for the approach described in Section 4.1, an equation
is first specified and then the unknown parameters are estimated. On the
other hand, when trying to learn the differential equation from the data,
one estimates the overlying equations from the observations. Furthermore,
when each trajectory is analyzed individually, typically the entire trajectory
is to be estimated (Ramsay and Silverman 2005; Cao and Ramsay 2007; Cao
et al. 2012), while when information is borrowed from across the observed
trajectories, the estimation is “local” in t. Indeed, with this local approach,
the focus may be on studying specific time intervals (Müller and Yao, 2010;
Verzelen et al., 2012).
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4.3 Instantaneous Dynamics

In many applications, estimation of the instantaneous relationship between
X(t) and X ′(t) is of interest. More precisely, for a fixed time, determining
how the value of the stochastic process is effecting its rate of change can
be informative. For example, in growth studies, one may wish to infer how
the current body mass of an individual at age t is related to the individual’s
growth rate at age t. Likewise, in finance, one may wish to infer the direction
of a stock price based on its current valuation. As mentioned in Section
4.2, for Gaussian processes, the use of transfer functions to describe these
relationships has been explored (Liu and Müller, 2009; Müller and Yang,
2010). Verzelen et al. (2012) extended this work to non-Gaussian processes,
proposing a two step kernel estimation procedure. To our knowledge, a
further generalization to include the effect of additional stochastic processes
on these instantaneous dynamics has not yet been studied.

This section is comprised by first reviewing how the rate of change can
be partitioned into deterministic and random components and by examining
some specific cases of this decomposition, as described in Verzelen et al.
(2012). We then conclude by discussing a similar decomposition to account
for the influence of an additional stochastic process.

Consider a differentiable stochastic process, X, on a domain, T , such
that X and X ′ have finite variance. Provided E[X ′(t)] exists, we can de-
compose X ′(t) as

X ′(t) = E{X ′(t)|X(t)}+ Z(t) where Z(t) = X ′(t)− E{X ′(t)|X(t)}.

Note that we always have E{Z(t)|X(t)} = 0 and Cov(Z(t), E{X ′(t)|X(t)}) =
0 almost surely. Moreover, we can write E{X ′(t)|X(t)} = f(t,X(t)) for
some function f . This allows us to write the nonlinear differential equation

X ′(t) = f(t,X(t)) + Z(t) (4.3)

f(t,X(t)) = E{X ′(t)|X(t)}

We refer to f as the deterministic part of the equation and Z as the stochastic
part. When f is unknown and must be estimated from the data, we refer
to the first equation in (4.3) as a data-driven differential equation. In some
applications, f may be time independent, in which case (4.3) is referred to
as an autonomous system (Verzelen et al., 2012).

The simplest case of (4.3) is when f is just the mean function of X ′ and
so X ′ and X are uncorrelated. In this case, (4.3) reduces to

X ′(t) = µX′(t) + Z(t). (4.4)
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If X is a Gaussian process, then it can be shown that f(t,X(t)) is of the
form µX′(t) + β(t)[X(t)− µX(t)] and thus only µX′(t) and β(t) need to be
estimated. In this case, β is referred to as the transfer function (Liu and
Müller, 2009; Müller and Yang, 2010). Here, (4.3) becomes

X ′(t) = µX′(t) + β(t)[X(t)− µX(t)] + Z(t) (4.5)

≡ µ∗(t) + β(t)X(t) + Z(t)

This linear relationship may also hold for non-Gaussian processes in some
cases. However, many processes are more complex than what can be cap-
tured by the linear dynamics in (4.5). In these cases, Verzelen et al. (2012)
propose estimating f(t,X(t)) with a two step smoothing procedure, which
is described in Section 4.4. We now conclude this section by considering a
natural extension to that of the system in (4.3).

While the system in (4.3) can be used to describe various types of re-
lationships between X(t) and X ′(t), it leaves no room for modeling the
dependence of X ′(t) on additional processes. For example, in the case of
how growth rate is effected by an individual’s body mass, one could easily
hypothesize that the amount eaten at age t−∆, for some ∆ ≥ 0, also plays
a role in the growth rate at t. In the preceding, we consider only ∆ = 0.

For applications requiring the modeling of X ′(t)’s dependence on a pro-
cess W (·), (4.3) can be generalized to:

X ′(t) = f(t,X(t),W (t)) + ζ(t) (4.6)

f(t,X(t),W (t)) = E{X ′(t)|X(t),W (t)}

where ζ(t) = X ′(t)−E[X ′(t)|X(t),W (t)]. The framework that includes the
process W (·) can be used when one suspects that a significant amount of
the variation in X ′(t) can be explained by W (t).

4.4 Two Step Estimation Procedure

Recall that in Section 4.3, we formulated three possible models to describe
the instantaneous relationship between X ′(t) and X(t) (and possibly W (t)).
These were given in (4.3), (4.5), and (4.6), where the notation of f and Z
is reused. The linear model, (4.5), is a simple, specific case of (4.3) where
f(t,X(t)) = µ∗(t) + β(t)X(t). Thus, these models can be seen as ascending
in complexity from (4.5), to (4.3), up to the nonlinear model, (4.6), where
X ′(t) depends on X(t) and W (t) as opposed to just X(t). We now describe
how each of these models can be fit, before proceeding to comparing fits in
Section 4.5.
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For each of the three models, the first step is to estimate the trajectories
Xi and X ′i from the raw observations, Yij , j = 1, . . . , Ji, as modeled in
(4.2). For i = 1, . . . , n, we estimate the trajectory, Xi, and subsequently, its
derivative, X ′i, by the method of smoothing splines, as discussed in Section
3.1. We call these estimates X̂i and X̂ ′i, respectively. This is in slight
contrast to previous work, where convolution kernel smoothing estimates
are used (Verzelen et al., 2012).

For the linear model in (4.5), one can view (X̂i(t), X̂
′
i(t)) as regression

data for each fixed t. Thus, a natural estimate of β(t) is the slope estimate
from least squares linear regression at fixed t. Alternatively, one can use
information from the whole process to estimate the best linear unbiased
predictor (BLUP) of X ′(t) given X(t) of the form α(t) + β(t)X(t). This
BLUP is given by

β(t) =
Cov[X ′(t), X(t)]

Var[X(t)]
.

If X(t) and X ′(t) are jointly bivariate normal, then the above is the exact
solution to (4.5) (Müller and Yao, 2010). Therefore to obtain an estimate,
β̂(t), for β(t), one can estimate Cov[X ′(t), X(t)] and Var[X(t)]. One way to
do this is by estimating the covariance function of X(·) in order to estimate
the eigenfunctions from X’s Karhunen-Loéve expansion (Rice and Silver-
man, 1991). These estimated eigenfunctions then allow for the estimation
of Cov[X ′(t), X(t)] and Var[X(t)] (Liu and Müller, 2009).

For the nonlinear models (4.3) and (4.6), we use a two step smoothing
procedure to estimate f . As mentioned above, the first step is to smooth
the trajectories. The second step is to obtain an estimate of f . This two
step procedure proceeds from the same idea used by Ellner et al. (2002) for
autonomous systems and Verzelen et al. (2012) for systems as in (4.3).

In the univariate case (4.3), at each fixed time point, t, our data are given
by (X̂i(t), X̂

′
i(t)) for i = 1, . . . , n. We obtain the estimate of f(t, ·), denoted

f̂(t, ·), by using a local linear kernel smooth (Wand, 2015) of X̂ ′i(t) on X̂i(t),
as described in Section 3.2. The corresponding bandwidth is chosen by
cross-validation, as outlined in Section 3.3. Doing this for each t gives the
estimate of the smooth function f . This approach is in small contrast to
the work Verzelen et al. (2012), where a Nadaraya-Watson estimate is used
instead of a local linear estimate.

To estimate f(t,X(t),W (t)) as in (4.6), we simply extend the above
method for (4.3) to a bivariate local linear smooth, as described in Section
3.2. For a fixed t, our data are given by (X̂i(t),Wi(t), X̂

′
i(t)) for i = 1, . . . , n.

To obtain f̂ we smooth X̂ ′i(t) on (X̂i(t),Wi(t)). Again, cross validation is
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used to select the bandwidths. It is important to note that we do not
always need to preprocess the trajectories of W by smoothing. Rather,
whether or not to smooth these trajectories relies on the assumed nature
of the underlying process W . In Chapter 5, we do not smooth the amount
eaten in our application to the mouse data set described in Chapter 2.

4.5 Model Comparisons

Given observations from n realizations, X1, . . . , Xn, it is natural to want to
determine which of models (4.3) and (4.5) best describes the instantaneous
relationship between X(t) and X ′(t). This section will first discuss the tech-
niques for assessing and comparing the fits of these two models, as developed
by Verzelen et al. (2012). Then, assuming the presence of observations from
n realizations, W1, . . . ,Wn, of W , we propose a statistic to test if including
both W (t) and X(t) leads to a significant increase in explaining the varia-
tion in X ′(t) when compared to X(t) alone. In other words, we propose a
test to assess whether the model given in (4.6) provides a superior fit to the
data than that in (4.3).

We begin our discussion by reviewing the method of Verzelen et al. (2012)
for assessing the fit of the model given in (4.3) as well as the specific case
in (4.5). When the fit is good, X(·) may be close to the solution of the
equation X ′(t) = f(t,X(t)). To assess whether X(·) can be viewed this way,
we determine the relative size of Z(·) using the decomposition of variance
Var[X ′(t)] = Var[f(t,X(t))] + Var[Z(t)]. This decomposition allows us to
assess the fraction of variance of X ′(t) explained by f(t,X(t)) using the
coefficient of determination (Müller and Yao, 2010; Verzelen et al., 2012):

R2(t) =
Var[f(t,X(t))]

Var[X ′(t)]
= 1− Var[X ′(t)− f(t,X(t))]

Var[X ′(t)]
. (4.7)

On sub-domains of T when R2(t) is close to 1 then X(·) may be close
to the solution of the equation X ′(t) = f(t,X(t)). Given n realizations,
X1, . . . , Xn, a natural estimate of R2(t) is

R̂2(t) = 1−
∑n

i=1[X̂
′
i(t)− f̂(t, X̂i(t))]

2∑n
i=1[X̂

′
i(t)−

¯̂
X ′(t)]2

. (4.8)

The numerator of this estimate is the sum of the squared residuals from the
estimate of f , while the denominator is (n − 1) times the sample variance
of the X̂ ′i(t)’s.
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When one wishes to assess the fit of the simpler, linear model in (4.5)
then (4.8) reduces to

R̂2
L(t) = 1−

∑n
i=1[X̂

′
i(t)− µ̂∗(t)− β̂(t)X̂i(t)]

2∑n
i=1[X̂

′
i(t)−

¯̂
X ′(t)]2

. (4.9)

Since for a given set of trajectories of X, one does not know whether
or not the linear form of f(t,X(t)) suffices, one may wish to compare the
fit of this linear form in (4.5) to the fit of the nonlinear in (4.3). For this,
one can compare the two corresponding R2 values. When the ratio between
R̂2
L(t) in (4.9) to R̂2(t) in (4.8) is small, then the nonlinear model provides a

significantly better fit to the data. Conversely, when this ratio is large, the
simpler linear model may be acceptable.

The above comparison is valid when one is interested in what type of
effect X(t) has on X ′(t). To study the improvement in the fit given by
including W (t), as in model (4.6) of Section 4.3, we propose modifying (4.7)
to the coefficient of determination given by

R2
W (t) =

Var[f(t,X(t),W (t))]

Var[X ′(t)]
= 1− Var[X ′(t)− f(t,X(t),W (t))]

Var[X ′(t)]
(4.10)

and estimated by

R̂2
W (t) = 1−

∑n
i=1[X̂

′
i(t)− f̂(t, X̂i(t),Wi(t))]

2∑n
i=1[X̂

′
i(t)−

¯̂
X ′(t)]2

. (4.11)

To determine whether or not W (t) provides a substantially better fit to the
data than the model only including X(t), we compare R2

W (t) with R2(t) via

r2(t) ≡
R2
W (t)

R2(t)
=

Var[X ′(t)− f(t,X(t),W (t))]

Var[X ′(t)− f(t,X(t)]
. (4.12)

When r2(t) is large, we have a comparable amount of variation of X ′(t)
explained by models (4.3) and (4.6), indicating that including W (t) does
not provide a significantly better fit. On the other hand, when this ratio is
small, it indicates that the fit with W (t) included is better to that without
W (t) and that model (4.3) is more appropriate. Following from (4.8) and
(4.11), we estimate r2(t) by

r̂2(t) ≡
R̂2
W (t)

R̂2(t)
=

∑n
i=1[X̂

′
i(t)− f̂(t, X̂i(t),Wi(t))]

2∑n
i=1[X̂

′
i(t)− f̂(t, X̂i(t))]2

. (4.13)
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To test the null hypothesis that, for all t, the overall instantaneous rela-
tionship between X and X ′ at t is unaffected by W (t) we propose the test
statistic

S =

∫
t∈T

r̂2(t)dt. (4.14)

Since in practice, one does not have data at all t ∈ T , we replace S by

Ŝ =
J∑
k=1

r̂2(t∗k), (4.15)

for some evenly spaced grid of points, t∗1 < · · · < t∗k. When Ŝ falls below
a given quantile of its null distribution, we reject the null hypothesis and
conclude that (4.6) provides a better overall fit then model (4.3).

The null distribution of S is unknown and therefore must be approxi-
mated. To estimate this null distribution and thus the corresponding p-value
of the test statistic, a permutation test with the Wi’s is used. That is, from
our derived observations {(X̂i,Wi), i = 1, . . . , n} we obtain N new data
sets. The kth data set is {(Xi,Wγ(i)), i = 1, . . . , n}, where γ(1), . . . , γ(n) is
a random permutation of the ordered set, {1, . . . , n}. Via a permutation,
each of the observed trajectories Wj is randomly assigned to a new “part-
ner” X̂i. Heuristically, in the new data set, there will be no dependence
between X ′ and W as the trajectories Xi and Wj are paired together at
random. Note that this permutation induces a distribution that is a special
case of the null distribution. The null distribution does not require indepen-
dence of X and W . Rather, the assumption of the null distribution is that
E[X ′(t)|X(t),W (t)] does not depend on W (t), a weaker assumption.

For each of these N data sets, the smoothing described in Section 4.4 is
then carried out for each of the two models (4.3) and (4.6) and the sample
ratios, r̂21(t), r̂22(t), . . . , r̂2N (t), for t ∈ {t∗1, · · · , tk} along with the test statis-

tics Ŝ1, Ŝ2, . . . , ŜN are computed. We then use the empirical distribution
of Ŝ1, Ŝ2, . . . , ŜN to provide an approximation the null distribution of S.
When the observed ratio falls below a given quantile of this approximate
null distribution, we conclude that, in terms of instantaneous dynamics, the
two processes, X and W , account for a significantly higher portion of the
variation in X ′, when compared to X alone.

Admittedly, the test statistic S combines information across t. In many
applications, W (t) might only be significant to the relationship between
X(t) and X ′(t) on certain sub-domains of T , while not significant overall.
The nonparametric method, described above, also allows us to explore this
possibility by approximating the null distribution of r̂2(t) for each fixed t.
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For a fixed t, the observed value of r̂2(t) can be compared to the distri-
bution of r̂21(t), r̂22(t), . . . , r̂2N (t). When r̂2(t) is below a given quantile, we
conclude that W (t) together with X(t) provides a significantly better fit to
X ′(t), when compared to the fit provided by X(t) alone. Of course, if this
comparison of the observed value, r̂2(t) is done for many t’s, one should be
aware of multiple testing issues and a correction factor to the rejection level
could be applied.
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Chapter 5

Dynamics of Mouse Growth
Data

The methods described in Chapter 4 can be used to estimate the dynamics
of the mouse growth data outlined in Chapter 2. We first briefly describe the
smoothing of the data from each of the eight groups of mice. We then use
the model fitting procedure outlined in Section 4.4, both including and not
including the amount eaten. These models provide insight into not only the
individual groups, but also the differences between them. Specifically, we
attempt to understand the growth processes of the mice in the eight groups
and how these processes vary. Finally, for each group, we compare the fits
of these models and study if and when the amount eaten plays a significant
role in the relationship between body mass and growth rate.

5.1 Model Fitting

5.1.1 Growth Rate Depending on Body Mass

As outlined in Section 4.4, before fitting a nonparametric regression model,
the raw data are smoothed to approximate the underlying process and its
derivative. For each mouse, we use smoothing splines using the statistical
programming language R (R Core Team, 2015) to obtain the estimated
body mass curve and the subsequent growth rate as a function of age. We
set the smoothing parameter by setting the degrees of freedom, as outlined
in Section 3.3. For the smoothing of the body masses we set the degrees of
freedom to 10, while for the estimated growth rates they are set to 5. Here we
fix the degrees of freedom, rather than using cross-validation to ensure that
each mouse has a comparable amount of smoothing. Moreover, in the case
of derivative estimation, cross-validation does not perform reliably. Figure
5.1 shows the smoothed body masses, X̂i(t), of mice in each of the eight
groups. In general, the male mice are heavier than their female counterparts.
Likewise, the sedentary mice appear heavier than the active. For both males
and females, the heaviest individual mice belong to the sedentary control
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5.1. Model Fitting

groups.
Figure 5.2 shows the estimated growth rates, X̂ ′i(t), of mice in each of

the eight groups. As one would expect, the growth rates at early weeks
are much higher than those in the middle or later weeks. For some mice
estimated growth rates are negative during later weeks. This characteristic
is most prevalent in the male sedentary groups. Furthermore, the flattening
out of the curves in many of the panes in Figure 5.2 indicates that, for most
mice, the growth rate is relatively constant after the younger ages.

As outlined in Section 4.4, to estimate the deterministic part, f(t, ·),
of the nonlinear differential equation in equation (4.3), we use a local lin-
ear estimate (Bowman and Azzalini, 2014) where for each t, the estimated
growth rate, X̂ ′i(t), is regressed on the smoothed body mass, X̂i(t). The
kernel is chosen to be Gaussian and the smoothing parameter is selected by
cross validation. Figure 5.3 shows this estimate, f̂(t, x), at weeks t = 5, 30,
55 and 80 from the active male mice from the control group. As we can
see, the nonparametric approach picks up on some of the nonlinear trends
in the data. At t = 5 the relationship between body mass and growth rate
is monotone increasing. At t = 30, 55, and 80 the relationship appears to
be relatively constant with noise. However, for t = 30 and 80, there may
be slight increases in growth rate for increase in body mass for mice within
the middle weights. For each of the eight groups and each age, plots such as
those in Figure 5.3 can be found in the digital appendix in the subdirectory
/1D Plots.

We can further examine the active male mice from the control group
through the contour plot in Figure 5.4, which displays the entire estimate
f̂(t, x). The values of f̂ range from around 0.05 to 0.1 at the early ages, while
at the older ages they are nearly all below 0.025. Examining the relationship
between body mass and expected growth rate given in Figure 5.4 we see that
all young mice have high growth rates, regardless of body mass. From ages
10 to 35, growth rate is high for both light and heavy mice. Further, from
ages 35 to 60, growth rate decreases with increasing body mass. Lastly, for
ages beyond 60 weeks, the pattern is unclear. Similar plots for the other 7
groups show this pattern as well and can be found in the digital appendix
in the subdirectory /Contour 1D Fits.

Figure 5.5 provides a comparison of the estimated relationship between
body mass and growth rate for each of the eight groups. Within each panel
of Figure 5.5 we see 80 curves, each representing f̂(t, ·) for a fixed age t. The
darker the color of the curve, the larger the value of t. Although one can
attempt to draw some general conclusions from Figure 5.5, the best way to
determine how the relationship between body mass and growth rate changes
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over time is to examine the data and its corresponding curve at each t. Table
5.1 provides a description of this relationship for each of the eight groups.
As previously mentioned, the individual scatter plots can be found in the
subdirectory /1D Plots.

Mouse Group Description of f̂(t, x)

F.Act.Ctrl • Relatively flat between weeks 1 and 15, with a slight
uptrend and one exceptionally heavy mouse.

• Monotone increasing between weeks 16 and 50, with
the exception of two heavy mice.

• For weeks 50 and 80, there are several heavy mice whose
growth rates don’t fit the pattern. Other then these
mice, the estimate still appears to be monotone increas-
ing.

F.Act.Sel • Relatively flat between weeks 1 and 15 except for the
lightest/heaviest mice.

• Monotone increasing between weeks 16 and 45, with the
exception of the heaviest mice, which have low growth
rates.

• Relatively flat with a slight uptrend from weeks 45 and
80.

F.Sed.Ctrl • Monotone increasing between weeks 1 and 9, with the
exception of the heaviest mice, which have low growth
rates and the lightest mice, which have high growth
rates.

• Monotone increasing between weeks 10 and 40.

• For weeks 41 and 49 the fits are poor due to a number
of heavy mice who have very different growth rates.

• Flat between weeks 50 and 60.

• For weeks 60 and 80, the fit is again poor due to the
heavy mice with different trends.
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F.Sed.Sel • Noisy upward trend from weeks 1 and 15, with the
exception of two heavy mice.

• Monotone increasing from weeks 16 and 40.

• Flat from weeks 40 and 59, with the exception of one
heavy mouse whose growth rate is much lower than
others.

• Flat from weeks 60 and 80, with the exception of a
slight uptrend from weeks 75 and 80.

M.Act.Ctrl • Monotone increasing from weeks 1 and 30.

• Flat with a lot of noise from weeks 30 and 80.

M.Act.Sel • Monotone increasing from weeks 1 and 30, with the
exception of two light mice.

• Flat with noise from weeks 30 and 80. From weeks 30
to 75 there is one exceptionally heavy mouse with a
high growth rate. From weeks 65 t 80 there are two
light mice with very low growth rates.

M.Sed.Ctrl • Increasing overall trend (with lots of noise) from weeks
1 and 50.

• Relatively flat with noise from weeks 50 and 80. There
are several mice with negative growth rates that lead
to poor fits at some weeks.

M.Sed.Sel • Monotone increasing between weeks 1 and 40.

• Relatively flat (with noise) from weeks 40 and 80.

Table 5.1: The general trends in the estimated instantaneous relationship
between body mass and growth rate for each of the eight groups as seen in
the subdirectory /1D Plots of the digital appendix.

Table 5.1 allows us to make some general conclusions about the groups.
In both the female active groups there appears to be an increase in estimated
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growth rate with an increase in body mass, with the exception of the early
weeks. On the other hand, the female sedentary mice show this increase at
the young and middle ages but not at the older ages. In all four of the male
groups we see a similar trend of an increase in estimated growth rate with
an increase in body mass up to week 30-50.

5.1.2 Including Amount Eaten

The above analysis focuses strictly on the instantaneous relationship be-
tween the body mass and growth rate in each of the eight groups. We now
fit the model given in equation (4.6), where W (t) is the amount eaten in
week t. The weekly amount eaten is displayed for each group in Figure 5.6.
As mentioned at the end of Section 4.4, we choose not to smooth W , as
biologically there is no reason to assume the process is intrinsically smooth.

The model is fit via local linear bivariate kernel smoothing (Bowman and
Azzalini, 2014), as outlined in Section 3.2, using the multiplicative kernel
in equation (3.4), where K1 = K2 are Gaussian. The bandwidths, h1 and
h2, are chosen by cross validation. For each t, the evaluation points for the
estimate, f̂(t, x, w), form an equally spaced grid on [mini X̂i(t),maxi X̂i(t)]×
[miniWi(t),maxiWi(t)].

Including the process W in the model makes visual representations anal-
ogous to Figures 5.4 and 5.5 difficult. Rather, the best we can do is to make
contour plots for the expected growth rate as a function of body mass and
amount eaten at each t. Figure 5.7 gives an example of these contour plots
at t = 5, 30, 55 and 80 for the active males from the control group. These
plots are at the same ages and in the same group as the plots in Figure
5.3, which do not include W . In Figure 5.3, at t = 5, expected growth rate
increases with body mass. In Figure 5.7, we see a similar trend: at t = 5,
for a fixed amount eaten there appears to be an increase in expected growth
rate with an increase in body mass, with the exception of when the amount
eaten is high. At t = 30 the expected growth rate is relatively constant
as in Figure 5.3, with the exception of one heavy mouse, who can be seen
in the upper right pane of Figure 5.3. For t = 55, for lighter mice there
is an increase in expected growth rate as the amount eaten increases. For
moderate and heavy body masses, the relationship is constant. Finally, at
t = 80, the growth rate is constant with the exception of the heavier mice.
For these mice, it appears that an increase in the amount eaten increases
the expected growth rate.

Similar plots from 80 times points and 8 different groups, are included
in the subdirectory /2D Plots in the digital appendix. This subdirectory
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also contains animations of the 80 contour plots for each of the 8 groups
in .gif files. These allow for some interpretation of how the amount eaten
and body mass effect the expected growth rate. These interpretations are
discussed at the end of the proceeding section.

5.2 Model Comparisons

For each of the eight groups, we now compare the models in equations
(4.3) and (4.6) using the techniques outlined in Section 4.5. Recall that
we quantify the extent to which the deterministic part of models (4.3) and
(4.6) explains the variation in X ′(t) with the ratios R2(t) and R2

W (t), given
in equations (4.8) and (4.11), respectively. Figure 5.8 shows a comparison
between R2(t) and R2

W (t) for each of the eight groups, while Figure 5.9 shows
a 95% bootstrap confidence interval for R2

W (t) for the male active control
group. These point-wise confidence intervals were obtained by computing
R2
W (t) for each of 200 samples (with replacement) of the data. The standard

errors of the resulting 200 R2
W (t)’s were then computed at each t and used

with standard normal quantiles to construct the confidence bands. Similar
plots for each of the eight groups can be found in the digital appendix in
the /Bootstrap subdirectory. We now make some observations about the
model fits and some comparisons between groups. These observations are
strictly exploratory as there are no standard values of R2

W (t) and R2(t) to
be compared to.

Firstly, for all eight groups and all time points, we have R2
W (t) ≥ R2(t),

thus indicating that the amount of variation in the growth rate explained
by model (4.6) is uniformly higher than model (4.3). This is expected, as
model (4.6) is richer than (4.3). In general, the values of R2

W and R2 are
fairly high for ages 10-30, while for many of the groups, we see a drop in
the values of R2

W and R2 between weeks 40 and 50. This drop is generally
followed by an uptrend for the later ages, especially for model (4.6) .

Secondly, we examine the differences between groups. In both the male
and female sedentary control groups, at young ages, the values of R2

W and
R2 are large. In contrast, for older ages, only R2

W is large. The sedentary
selected males and females are similar to the sedentary control groups, with
the exception that R2

W is small for the later ages in the male group. In
the active selected groups, R2 has uniformly low values for both the male
and females. Model (4.6) is slightly better, although R2

W is still relatively
low, especially in the females. In general, both models seem to fit the active
control groups better, in particular at the younger and older ages.
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We now formally test whether the fit from model (4.6) is significantly
better than that from model (4.3). For this test, we carry out the hypothesis
testing procedure based on the test statistic Ŝ, outlined in Section 4.5. For
each of the eight groups we use 500 permutations of the amounts eaten.

Figure 5.10 gives the approximated null density of Ŝ for the sedentary
female group as well as the observed value of Ŝ. Recall that when Ŝ is small,
we reject the null hypothesis and conclude that the model in (4.6) provides a
significantly better fit to that in (4.3). In Figure 5.10 the observed value of Ŝ
is less than the 5th percentile of the approximated null density and therefore
the model in (4.6) provides a significantly better fit. This indicates that the
amount eaten in week t significantly effects the relationship between body
mass and growth rate at week t, at least for some values of t. The densities
for the other seven groups are similar and can be seen in the digital appendix
under /Density Curves. The resulting p-values are displayed in Table 5.2.
At a rejection level of 5%, only the null hypothesis for the sedentary female
groups (both control and selected) is rejected. That being said, the p-values
are all lower for the sedentary groups versus their active counterparts. This
indicates that there is more evidence of an effect of the weekly amount eaten
on the instantaneous relationship between body mass and growth rate for
the sedentary mice.

Figure 5.11 gives the ratios r̂2(·) in equation (4.13) of Section 4.5 for
each of the eight groups. The dashed lines correspond to the point-wise 5th

and 95th percentiles resulting from the permutation testing method given
in Section 4.5. When r̂2(t) falls below the 5th percentile, this indicates that
the value is unusually low, providing evidence that the amount eaten is
significant for explaining the growth rate at time t, and thus in favor of the
alternative hypothesis given in model (4.6). Conversely when the value lies
significantly above the 5th percentile, there is no evidence that the amount
eaten is significant in the instantaneous relationship between body mass and
growth rate.

Given the p-values in Table 5.2 it is natural to want to determine for
which weeks and in what way the weekly amount eaten is significant in
the instantaneous relationship between body mass and growth rate. To
answer these questions, we examine Figure 5.11, the point-wise p-values
obtained from the permutation method, provided in Figure 5.12, as well
as the individual contour plots in /2D /Plots of the digital appendix. The
contour plots are challenging to interpret, particularly since it is difficult to
tell if results are driven by a few unusual mice. Note that a contour plot
indicates that W is not important in determining expected growth rate if
each vertical line on the contour plot is of one colour/growth rate. We focus
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Active Sedentary
Control Selected Control Selected

Female 0.752 0.330 0.002 0.000
Male 0.330 0.114 0.150 0.060

Table 5.2: The p-values for each of the eight groups, resulting from the
permutation test from Section 4.5 to test the null hypothesis that the amount
eaten at week t does not significantly effect the instantaneous relationship
between body mass and growth rate.

our discussion on the sedentary females groups as they were the only two
groups with overall p-values less than 0.05 in Table 5.2.

In the selected females who were sedentary, we have an overall p-value
of 0.000. The top right panel of Figure 5.12 indicates for this group that
the weekly amount eaten is significant during weeks 3 and 4, 15 and 16,
21 to 33, 38, 44 and 45, 58 to 65 and 71 to 74. To determine how the
amount eaten effects the expected growth rate, we examine the contours in
/2D Plots /F.Sed.Sel of the digital appendix. During weeks 3, 4, 15 and 16
the growth rate is mostly constant, with the exception of the heavy mice
where the expected growth rate is decreasing as the amount eaten increases.
For weeks 21 to 33 the growth rate is constant for the lighter mice. For the
heavier mice, expected growth rate initially decreases with an increase in
amount eaten and then increases. Weeks 38, 44 and 45 are similar, but the
pattern is less clear. During weeks 58 to 65 and 71 to 74, the heaviest mice
have by far the fastest growth rate, making it difficult to see other patterns.
That being said, in some of these weeks it appears that an increase in food
consumption leads to an increase in expected growth rate.

For the sedentary females from the control group, whose overall p-value is
0.002, it appears that for many ages past week 40, the weekly amount eaten
is significant in explaining the growth rate. Specifically, weeks 40 to 42, 47
to 52, 60 to 62 and 68 to 75 all have p-values less than 0.05. During weeks
40 to 42 and 47 to 52, for the heavier mice, the growth rate is largest for
an intermediate value of amount eaten. In addition, during weeks 47 to 52,
for the lighter mice, the expected growth rate increases as the amount eaten
increases. For weeks 60 to 62 there appears to be an increase in expected
growth rate for an increase in amount eaten, although one fast growing and
one shrinking mouse at weeks 61 and 62 make these observations slightly
more difficult to see. We see a similar, but small, increase for moderate and
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heavy mice during weeks 68 to 75. During these weeks there are some light
mice with negative growth rates that do not show this pattern.

We conclude this section by pointing out some important facts. Firstly,
since for each group we are testing 80 different hypotheses (one for each
week), we must be aware of multiple comparison issues and therefore exercise
caution over significant results. Secondly, as will be discussed in Chapter 6,
the point-wise power of the above test is often low. Therefore, it is possible
that some of the p-values are higher than they would be under a superior
testing method. As discussed, individual analysis of the contour plots can
provide insight into whether this is the case. That being said, complex
nonlinear relationships are not always obvious from such plots and therefore
the possibility exists that some of our conclusions could be further refined.
Finally, we point out that each group is made up of 30-40 mice and that this
is a somewhat small number for fitting nonparametric models. An increase
in sample size may provide greater clarity in the individual contour plots as
currently a small number of mice who exhibit different trends from the true
underlying relationship may cloud the figures.

Figure 5.1: The smoothed body masses (grams) for each of the eight groups
of mice as a function of age (weeks).
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Figure 5.2: The estimated growth rates (grams/week) for each of the eight
groups of mice as a function of age (weeks).
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Figure 5.3: An example of the estimated deterministic component, f̂(t, ·),
as a function of body mass (grams) for the active males from the control
group at weeks 5, 30, 55, and 80.
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Figure 5.4: Contour plot of the nonparametric estimate, f̂(t, x), for the
active male mice from the control group. The x-axis corresponds to age
(weeks), while the y-axis is body mass (grams).
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Figure 5.5: The estimated relationship, given by f̂(t, x), between body mass
(grams) and growth rate (grams/week) for each of the eight groups. The
increase in darkness of the curves indicates an increase in age.
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5.2. Model Comparisons

Figure 5.6: The amount eaten (grams) as a function of age (weeks), orga-
nized into each of the eight groups. This is the same as Figure 2.8, with the
exception that here the outliers have been removed.
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Figure 5.7: A sample of four contour plots, at weeks 5, 30, 55 and 80, from
the control males who were active. The x-axis indicates body mass (grams),
while the y-axis corresponds to the weekly amount eaten (grams). The
coloring is based on the value of f̂(t, x, w), the conditional expected growth
rate.

50



5.2. Model Comparisons

Figure 5.8: A comparison of R2(t) (dashed) and R2
W (t) (solid) as a function

of age (weeks) for each of the eight groups.

Figure 5.9: A 95% bootstrap confidence interval (dashed,red) for R2
W (t) for

the active males in the control group.

51



5.2. Model Comparisons

Figure 5.10: The approximated density of Ŝ for the sedentary females from
the control group. The red line corresponds to the observed value from the
data, while the blue line indicates the 5th percentile of the approximated
null density of Ŝ.

Figure 5.11: The ratio r̂2 as a function of age (weeks) for each of the 8
groups. The dashed lines represent the 5th and 95th percentiles resulting
from the permutation method described in Section 4.5.
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Figure 5.12: The point-wise p-values for each of the eight groups result-
ing from the permutation test in Section 4.5 of the null hypothesis that
the amount eaten at week t does not significantly effect the instantaneous
relationship between body mass and growth rate.
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Chapter 6

Simulation Study

To assess the statistical properties of our methods for the model comparisons
proposed in Section 4.5, we carry out a series of simulations based on the
data collected on mice, as described in Chapter 2.

Recall that we are interested in how body mass, X, and the amount
eaten, W , at a given age, t, effect the growth rate in the eight different
groups of mice. Our findings for each of the eight groups were outlined in
Chapter 5. Specifically, we tested the hypothesis that the amount eaten at
age t has a significant effect on the relationship between body mass and
growth rate at t. To assess the statistical properties of our methods for this
hypothesis test, we simulate data sets which are similar to those in Chapter
2 and carry out the analysis described in Chapter 5. This is repeated for
various levels of correlation between the body mass and the amount eaten.
For simplicity, we only simulate data sets based on one of the eight groups.

6.1 Models for Simulated Data

We generate data, Ỹi, W̃i ∈ RJ , for i = 1, . . . , n, that are independent iden-
tically distributed as (Ỹ , W̃ ), where Ỹ = (Y1, . . . , YJ), W̃ = (W1, . . . ,WJ),
with

Ỹj = X(tj) + εj (6.1)

W̃j = a+ γe(tj) (6.2)

for j = 1, . . . , J , where

X(tj) = µX(tj) +
K∑
k=1

αkϕk(tj),

µX(tj) = E[X(tj)],

αk ∼ N (0, λk) and Cov[αk, αl] = 0 for all k 6= l,

εj ∼ N (0, σ2j ), and Cov[εk, εl] = 0 for all k 6= l,

Cov[αk, εl] = 0 for all k and l
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6.1. Models for Simulated Data

and

a ∼ N (µa, σ
2
a),

E(e(t)) = 0,Cov(e(s), e(t)) = I(s = t),

Cov[a, e(t)] = 0 for all t,

Cov[αk, a] = ck for all k,

Cov[εj , a] = 0 for all j,

Cov[εj , e(t)] = 0 for all j and t.

One can think of the Ỹi and W̃i as the simulated noisy body masses and
amounts eaten, respectively, of the ith mouse.

We now discuss how the values of the above parameters are chosen in
order to generate Ỹi and W̃i. To choose these parameters we use estimates
based on the data from the group of male mice who were active on wheels and
were from the control breeding group. We denote these data as (tj , yij , wij)
for i = 1, . . . , n = 38 and j = 1, . . . , J = 79, where yij denotes the body
mass and wij denotes the amount eaten for mouse i at time tj . In addition,
we denote the smoothed body mass of mouse i at time tj as xij .

To generate the Xi’s, that is, to determine values for K,λ1, . . . , λK and
ϕk(t1), . . . , ϕk(tJ), we perform a principal component analysis on the data
vectors (xi1, . . . , xiJ)t for i = 1, . . . , n. From this PCA, we choose K = 2,
as the first two principal components explain 95.56% of the variation in
the data vectors. We then set (ϕ1(t1), . . . , ϕ1(tJ)) and (ϕ2(t1), . . . , ϕ2(tJ))
to be the eigenvectors from the PCA, shown in Figure 6.1, and (λ1, λ2) =
(639.89, 24.71) to be the corresponding eigenvalues. Further, we set

µX(tj) =
1

n

n∑
i=1

xij .

This function is displayed in Figure 6.2. For the error variances of the εj ’s
we set

σ2j =
n∑
i=1

(yij − xij)2/n.

For the simulated amounts eaten, we set γ2, µa and σ2a as

γ2 =
1

n(J − 1)

n∑
i=1

J∑
j=1

(Wij − W̄i·)
2 = 11.64 gm2,
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6.2. Simulation Results

where W̄i· =
∑J

j=1Wij/J and

µa = W̄·· =
∑
i,j

Wij/(nJ) = 41.18 gm

σ2a =
1

n− 1

n∑
i=1

(W̄i· − W̄··)2 −
γ2

J
= 17.09 gm2.

To simplify the model we choose Cov(α2, a) = 0. This assumption is
not unreasonable as the variance of α2 is much smaller than that of α1

and therefore ϕ2 could possibly be omitted all together from modeling the
dependence between X and W . Thus, as shown in Appendix (2), to have a
proper covariance structure between Ỹi and W̃i it suffices that:

Corr2(α1, a) < 1.

We simulate data using varying levels of correlation between α1 and a.
These levels are 0, 0.2, 0.4, 0.6, and 0.8. For each of these correlations, 500
data sets are generated and analyzed with the method of Chapter 4. An
example of one of these data sets can be found in Figure 6.3. The proceeding
section outlines the corresponding results.

6.2 Simulation Results

In this section we present the results from the simulation study described
in Section 6.1. All simulations were carried out in R (R Core Team, 2015)
and the results are displayed using ggplot2 (Wickham, 2009). As men-
tioned in Section 6.1, we simulate 500 data sets for each of Corr(α1, a) =
0, 0.2, 0.4, 0.6, 0.8. For each of these data sets, a p-value based on the test
statistic

Ŝ =

J∑
j=1

r̂2(tj) (6.3)

is calculated via the permutation method described in Section 4.5 to test
the hypothesis that, for all t, the overall instantaneous relationship between
X and X ′ at t is unaffected by W (t). In the following, we have used 200
permutations for each data set.

Figure 6.4 shows the histograms of the 500 p-values obtained from the
permutation method, for each of the five correlation levels. We first note
that when the correlation between α1 and a is 0, the distribution of the
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p-values is approximately uniform. Moreover, as expected, when the corre-
lation between α1 and a and hence X and W is high, we observe that the
resulting p-values are much lower than when the correlation is low. This
indicates that when the correlation between the two processes is high, Ŝ can
be reasonably expected to indicate whether or not the additional process,
W , effects the overall instantaneous relationship between X and X ′. When
the correlation between the two is lower, we may not expect the test to
adequately inform of the relationship. This is further illustrated in Figure
6.5 where the power curves of the test statistic, Ŝ, are shown. For low cor-
relation levels the test has little power to detect the significance of W on
the instantaneous relationship between X and X ′, while for higher levels
of correlation (and higher rejection levels), we observe substantially higher
power. Tables 6.1 and 6.2 provide more detailed information about the val-
ues plotted in Figure 6.1, in particular, about the variability of the values
displayed.

In Table 6.1 we display 95% confidence intervals for the achieved signifi-
cance level of our test, that is, for the proportion of times the null hypothesis
is rejected at various rejection levels, when the correlation between a and α1

is 0. We expect that these confidence intervals should contain the nominal
rejection level, given in the first column of Table 6.1. This is the case for
each of the first four rejection levels (as well as nearly true for α = 0.2),
thus illustrating the viability of the test.

Further standard errors for the power of our 5% level test at various
correlation levels can be seen in Table 6.2. The standard errors for the
other rejection levels shown in Figure 6.1 are similar and are thus not shown
here.

Alpha Proportion Rejected 95% Confidence Interval

0.01 0.01 (0.00,0.02)
0.05 0.05 (0.03,0.07)
0.1 0.09 (0.07,0.12)
0.15 0.13 (0.10,0.16)
0.2 0.17 (0.13,0.20)

Table 6.1: The proportion of the null hypotheses rejected based on Ŝ when
the correlation between a and α1 is set to 0 as well as a 95% confidence
interval of the expected proportion.

As mentioned in Section 4.5, as the test statistic Ŝ is a sum over all tj ,
it cannot identify at which time points W (t) and X(t) better explain X ′(t)
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Correlation Proportion Rejected SE 95% Confidence Interval

0.0 0.050 0.010 (0.030,0.070)
0.2 0.070 0.011 (0.048,0.092)
0.4 0.080 0.012 (0.565,0.104)
0.6 0.140 0.015 (0.112,0.169)
0.8 0.390 0.022 (0.345,0.433)

Table 6.2: The proportion of null hypotheses rejected based on Ŝ, at signif-
icance level of 0.05, their standard errors and a 95% confidence interval for
the expected proportion rejected.

when compared to just X(t). To determine this, for each fixed tj , we test
the hypothesis

H0 : E[X ′(tj)|X(tj),W (tj)] = f0(tj , X(tj)) (6.4)

H1 : E[X ′(tj)|X(tj),W (tj)] = f1(tj , X(tj),W (tj))

For this test, we obtain a p-value by using the empirical distribution of
the 200 values of r̂2(tj) which result from the permutations of the data.
Thereby, for each fixed tj , we have 500 p-values (one for each simulated
data set). To determine the point-wise power of our test, these 500 p-values
are compared to a chosen rejection level to obtain the proportion of times
the null hypothesis is rejected.

To give ourselves a measure for comparison, we fit for each fixed tj ,
j = 1, . . . , J , the linear model

X ′i(tj) = β0 + β1(tj)Xi(tj) + β2(tj)Wi(tj) + τi (6.5)

τi ∼ N (0, σ2τ )

and test the hypothesis

H0 : β2(tj) = 0 (6.6)

H1 : β2(tj) 6= 0.

Testing this for each of the 500 data sets, using the normal linear model
approach to computing p-values, allows us to estimate the power of this
hypothesis test for each tj . We can then compare the point wise power of
our test, described in the preceding paragraph, with that obtained from the
linear models test. Since we have generated data according to Gaussian
distributions, we would anticipate that (6.5) holds (at least when error is
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not included), and thus the standard linear model test of (6.6) would be a
“gold standard”. Of course, if (6.6) does not hold, then we should use the
nonparametric approach outlined in Sections 4.4 and 4.5.

Figures 6.6 and 6.7 provide a comparison of the power of the tests of
the hypotheses (6.4) and (6.6) as a function of the correlation between a
and α1 at a significance level of 5%. Predictably, for both tests, we ob-
serve much better performance for higher correlation between the generated
observations.

For both the hypothesis test of the linear model and that of the non-
parametric model we observe much higher power for younger ages when
compared to older ages. While the joint distribution of X ′(t), X(t) and
W (t) does depend on t in a complicated way, examining the contour plots
for various ages, there does not appear to be an obvious reason for this
higher power at younger ages.

Figure 6.8 shows the proportion of times the null hypothesis in (6.4) is
rejected minus the proportion of times the null hypothesis in (6.6) is rejected,
as a function of t. As seen in Figures 6.6 and 6.7, when the correlation
between a and α1 is low, neither test of the point-wise relationship has any
sizable power and indeed, the tests are comparable, as can be seen in Figure
6.8. For high correlations, the linear model test has much higher power at
young ages, but significantly lower power for t ∈ (10, 60). This implies that
for most ages, our method is an acceptable alternative to simply fitting linear
models to the data. Moreover, the nonparametric method likely allows for
the possibility of detecting nonlinear relationships in the data that a simple
regression cannot.

In Table 6.3 we display, for each of the five correlation levels and a sig-
nificance level of 0.05, the total number of times that each test correctly
rejected, while the other test failed to reject, as well as when both or neither
test rejected. As we can see, the majority of the time, neither of the tests
reject. This indicates that to determine the significance of any relationship
at a particular tj , more work should be done to develop a more powerful
alternative. That being said, we see that the test of (6.4) rejects a greater
number of times than the test of (6.6). In particular, when the correlation is
0.8 there is a large difference in the total number of times the null hypothe-
ses are rejected. It should be noted that, as mentioned above, the “gold
standard” applies to the unsmoothed data with no error. Therefore, the
actual linearity of the relationship may not perfectly hold after smoothing
the noisy simulated data.

We conclude this section by describing some the potential issues with
our study, as well as some ways it could be improved. Firstly, since each
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simulated data set contains only 38 mice, we may observe greater power
if the sample size were increased. Secondly, as mentioned in Section 4.5,
our permutation method to approximate the null distribution of Ŝ only
captures a subset of this null distribution. Using a different approach to
approximating this underlying distribution may also lead to greater power.
Further, due to computational restraints, we use only 200 permutations per
data set when calculating the null distribution of Ŝ. Increasing the number of
permutations would increase the accuracy of the reported p-values. Finally,
in Section 6.1 we specify a probability model for W . It is possible that
this model is not the best representation of this process and therefore if a
different model were used, it may make the test more powerful.

Null Hypothesis Rejected

Correlation Linear Only Nonparametric Only Both Neither Total

0.2 1781 1923 387 35409 39500
0.4 2236 2638 517 34109 39500
0.6 3046 3400 1438 31616 39500
0.8 3344 5447 3799 26910 39500

Table 6.3: The total number (across all tj) of times the null hypotheses are
rejected for a significance level of 0.05 at each correlation level. The linear
and nonparametric columns correspond to test (6.6) and (6.4) respectively.
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Figure 6.1: The first eigenvector (red), and second eigenvector (blue) from
the principal component analysis of the data vectors (xi1, . . . , xiJ)t for i =
1, . . . , n. These are used as ϕ1 and ϕ2 in the simulation study.
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Figure 6.2: The mean body mass (grams) of the male active control mouse
group, used as µX(t) in the simulation study.
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Figure 6.3: A simulated data set of body mass (grams) is given in the left
pane, while a simulated data set of the amount eaten (grams) is given in the
right. The correlation between the two processes has been set to 0.
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Figure 6.4: Histograms of the 500 p-values resulting from the nonparametric
hypothesis test from Section 4.5. The correlation between α1 and a is set
to 0, 0.2, 0.4, 0.6 and 0.8.
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Figure 6.5: The power of the test statistic, Ŝ, as a function of the correlation
between α1 and a. Each power curve corresponds to a fixed rejection level
for the test.
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Figure 6.6: The point-wise power of the hypothesis test in (6.6) using a
standard linear model (left) compared to the point-wise power of the test
in (6.4) using our r̂(t)2 statistic, at a significance level of 5%. The x-axis
indicates each of the five fixed correlations between a and α1. The darker
the color of a point, the greater the value of tj .
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Figure 6.7: Point-wise power curves of the hypothesis test in (6.6) (left) using
a standard linear model, and of the test in (6.4), using our r̂(t)2 statistic
(right) as functions of the correlation between a and α1. The significance
level is 5% and the darker the color of a line, the greater the value of tj .
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Figure 6.8: The proportion of times the null hypothesis in (6.4) is rejected
minus the proportion of times the null hypothesis in (6.6) is rejected, as a
function of t. The different colors represent the different correlation levels
between a and α1.
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Chapter 7

Conclusion

In this thesis, we have proposed extensions to existing techniques for study-
ing the instantaneous relationship between a process and its derivative. In
many applications, this instantaneous relationship may be significantly in-
fluenced by an additional, related stochastic processes. To include an ad-
ditional process in estimating the relationship between X(t) and X ′(t), we
use a two step smoothing procedure in the mold of Verzelen et al. (2012)
as follows (Section 4.4). First, we smooth the data to obtain estimated tra-
jectories of X and of its derivative, X ′. Secondly, we fit a nonparametric
regression model via bivariate kernel smoothing, where for each t, X ′(t) is
regressed on X(t) and W (t).

Furthermore, we have developed a test statistic, Ŝ, to determine whether
the addition of W (t) in the nonparametric regression provides a significantly
better fit to using just X(t) alone. Under the null hypothesis that W (t) does
not provide a significantly improved fit, we approximate the distribution
of Ŝ through a permutation method (Section 4.5). We further use this
permutation approach to attempt to determine at which specific time points
or intervals the inclusion of W (t) improves the fit significantly.

These techniques are applied to the data set described in Chapter 2,
comprised of mouse growth data for eight distinct groups. These groups are
characterized by gender (male/female), breeding design (selected/control)
and access to an exercise wheel (sedentary/active). We carry out the two-
step smoothing procedure with the estimated growth rate regressed on body
mass only, and then on body mass and the previous weeks’ amount eaten.
(Chapter 5). These models are fit for each of the eight groups and we note
a variety of observations and comparisons.

Paramount to these comparisons is that, based on our testing methods,
only the two sedentary female groups had a relationship between growth
rates at age t and body mass at age t that was explained significantly better
by including the amount eaten in week t. In future work, it would be inter-
esting to carry out similar analyses while also taking into account the genetic
dependence that results from the eight genetic lines of mice, as described in
Chapter 2.
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Chapter 7. Conclusion

To improve our understanding of the statistical properties of our testing
approach, a simulation study based on the mouse growth data was carried
out in Chapter 6. The point-power of our method was compared to that of
the standard test for coefficient significance in a linear model. Surprisingly,
our method resulted in greater power, except when testing at smaller values
of t.

As final remarks, it is important to discuss the limitations and possible
continuations of this work. Firstly, our simulations and data analysis make
clear that Ŝ works well for determining whether or not W (t) is significant
overall in explaining X ′(t), but that determining what values of t contribute
to a significant value of Ŝ is challenging. Trying to refine the method to
more clearly determine these values of t is a natural first step in any sub-
sequent research. Further, although our testing method outlined in Section
4.5 is flexible, the permutation method only approximates a subset of the
Ŝ’s null distribution. A further understanding of this underlying distribu-
tion and better ability to approximate it may result in a more powerful
test. Moreover, we have not developed any asymptotic properties for the
components of our test statistic. Certainly, properties analogous to those
in Verzelen et al. (2012) would be desirable and provide an exciting oppor-
tunity for future work. Another possible extension would be to explore the
effects of additional processes on the relationship between X(t) and X ′(t).
Our current approach is restricted to the addition of just one process but
could be extended to include more.
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Appendix A

Calculation of Conditional
Expectation for Simulations

Let X(·),W (·) be Gaussian processes with mean and covariance functions
given by µX(·), CX(·, ·) and µW (·), CW (·, ·), respectively.

For a fixed t, X(t),W (t) andX ′(t) are jointly normal, (X(t),W (t), X ′(t))T ∼
N (µ(t),Σ(t)), where µ(t) = (µX(t), µW (t), µX′(t))T and Σ(t) is the covari-
ance matrix of X(t),W (t) and X ′(t). We will first state a useful result for
computing the conditional expectation of X ′(t) given X(t),W (t).

Proposition 1. Let Z = (Z1, Z2, . . . , Zn)T and Y = (Y1, Y2, . . . , Ym)T be
two multivariate normal distributions of size n and m, respectively, such
that Z and Y are jointly normal with covariance matrix partitioned as

Σ = Cov

[(
Z
Y

)
;

(
Z
Y

)]
=

(
ΣZZ ΣZY

ΣZY
T ΣY Y

)
.

Then the conditional expectation of Y on Z is given by

E[Y |Z] = µY + ΣZY
TΣZZ

−1(Z − µZ),

where µZ and µY are the means of Z and Y , respectively.

Proof. Appendix A in Statistics for High-Dimensional Data. Methods, The-
ory and Applications, P. Buhlmann and S. van de Geer, Springer 2011.”

For a fixed t, we can now apply this result with Z = (X(t),W (t)) and
Y = X ′(t), to find the conditional expectation of X ′(t) on X(t) and W (t).
After some simple matrix multiplication we obtain:

E[X ′(t)|X(t),W (t)] = µX′(t)+

1

D(t)
{Var(W (t))Cov(X(t), X ′(t))− Cov(W (t), X ′(t))Cov(X(t),W (t))}{X(t)− µX(t)}+

1

D(t)
{Var(X(t))Cov(W (t), X ′(t))− Cov(X(t), X ′(t))Cov(X(t),W (t))}{W (t)− µW (t)},
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where

D(t) = det

[
Var(X(t)) Cov(X(t),W (t))

Cov(X(t),W (t)) Var(W (t))

]
.

We can calculate

C(W (s), X ′(t)) =
∂

∂t
C(W (s), X(t)),

C(X(s), X ′(t)) =
∂

∂t
C(X(s), X(t)) and

CX′(s, t) =
∂2CX
∂s∂t

.

If we want E[X ′(t)|X(t),W (t)] to have no dependence on W (t) then we
require Var(X(t))Cov(W (t), X ′(t))−Cov(X(t), X ′(t))Cov(X(t),W (t)) = 0.
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Appendix B

Calculation of Covariance
Structure for Simulations

We wish to simulate two correlated stochastic processes, X and W . In the
following, we assume that we can write X as

X(t) =
J∑
j=1

αjϕj(t), (B.1)

where the αj ’s are uncorrelated, mean 0 random variables with the variance
of αj equal to λj , and W as

W (t) = a+ σε(t), (B.2)

where a is a mean zero random variable with variance σ2a, uncorrelated with
ε(t) for all t, and E(ε(t)) = 0, Cov(ε(s), ε(t)) = I(s = t), the indicator of s
equal to t. With these assumed decompositions and some additional stated
assumptions, we will define the proper covariance structure for the processes
observed at a fixed set of time points.

For a fixed set of time points, t1, . . . , tk, we will generate observations of
X and W at each ti. Let t = (t1, . . . , tk)

t. Then we can write

X(t) = (X(t1), . . . , X(tk))
t = Φα (B.3)

where Φ = (ϕ1(t), . . . , ϕJ(t)) is a k × J matrix and α = (α1, . . . , αJ)t.
Similarly, we can write

W (t) = (W (t1), . . . ,W (tk))
t = a1k + σε, (B.4)

where ε = (ε(t1), . . . , ε(tk))
t. Therefore, to simulate X(t) and W (t) we will

generate values of α, a, and ε. Having a proper covariance structure for
X(t) and W (t) is equivalent to the J + 1 + k dimensional covariance matrix
of α, a, and ε being positive definite. We further assume that

Cov(α, ε) = 0
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and
Cov(a, ε) = 0.

It follows from these assumptions that to have the covariance matrix of
α, a, and ε positive definite, we need only have the covariance matrix of α
and a positive definite; that is, for an arbitrary v ∈ RJ , and z ∈ R such that
(v, z) 6= 0, we must have

(vt, z)Σ(vt, z)t > 0, (B.5)

where Σ is the covariance matrix of (αt, a). A simple calculation yields the
following equivalent condition for positive definiteness:

J∑
j=1

λjv
2
j + 2z

J∑
j=1

vjcj + σ2az
2 > 0, (B.6)

where cj = Cov(αj , a). A sufficient condition for (B.6) is to have

c2j
λjσ2a

<
1

J
or equivalently Corr2(αj , a) <

1

J
. (B.7)

Given values of λj and σ2a, one can thus set the cj ’s according to the desired
strength of covariance between X and W . If a subset of size I of the cj ’s is
set to zero, then condition (B.7) can be replaced by

Corr2(αj , a) <
1

J − I
, (B.8)

for each j such that cj 6= 0.
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