Deciphering Decomposition and the Effects of Disturbance in Forest Soil Microbial Communities with Metagenomics and Stable Isotope Probing

by Roland Conrad Wilhelm

BA.H, University of Guelph, 2010MSc., McGill University, 2009BSc.H., University of Guelph, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Microbiology and Immunology)

THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)

October 2016

© Roland Conrad Wilhelm, 2016

Abstract

Forest industries are expected to bolster the renewable resource economy, but must contend with ecological challenges in maintaining the long-term fertility of forest plantation soils, and technological challenges in converting forest biomass into industrially relevant sources of carbon and energy. This thesis advances research related to both, first by describing the broad changes in soil microbial communities in the decades following timber harvesting, their implications for soil processes and the influence of biomass retention for mitigation (Chapter 3) and, second, by conducting the first comprehensive culture-independent survey of lignocellulolytic organisms in forest soils to expand knowledge of their diversity and catabolic capabilities (Chapter 4).

Analysis of over 1,300 bacterial (16S rRNA gene) and fungal (ITS region) pyrotag libraries demonstrated consistent changes in microbial communities at harvested sites across North America, such as i) the increase of desiccation- and heat-tolerant organisms, ii) the general decline of ectomycorrhizal (EM) fungi with a rise of select EM genera (*Suillus* and *Thelephora*), iii) the moderation of population shifts by organic matter retention and iv) changes in the functional character of harvested soils, including reduced methanotrophic populations and cellulolytic activity. Biogeographical differences in community structure revealed the potential for variation in the impacts of harvesting. Overall, a number of taxonomic groups were identified that may be important indicators for assessing the long-term impact of timber harvesting.

Stable isotope probing revealed the degradation of model hemicellulose, cellulose and lignin substrates by specialized taxa, active on a sole substrate, and groups capable of degrading all three plant polymers, such as members of *Burkholderiales* and *Caulobacteraceae*. Bacterial lignin-degraders were more active than fungi in soil microcosms, represented by taxa with characterized lignolytic capability (*Sphingobacteriaceae* and *Sphingomonadaceae*) and novel taxa, such as members of *Elusimicrobia* and *Acidobacteria*. Differences in lignocellulolytic populations were observed among ecozones and soil layers. Mineral soils harboured a greater proportion of poorly characterized functional taxa and represent reservoirs of unexplored catabolic diversity. Metagenome assembly was ~3 to 20-fold higher as a result of SIP, providing a trove of sequence data containing carbohydrate- and lignin-active enzymes from lignolytic and cellulolytic taxa for future characterization.

Résumé

On s'attend des industries forestières qu'elles agissent comme un pilier de l'économie des ressources renouvelables. Pour y arriver, elles doivent d'abord adresser des défis écologiques en terme de maintien à long terme de la fertilité des sols des forêts de plantation, ainsi que des défis technologiques en terme de conversion de biomasse forestière comme source industrielle significative de carbone et d'énergie. La présente thèse avance la recherche sur ces deux défis : d'abord, en décrivant les changements généraux de communautés microbiennes durant les décennies suivant la récolte du bois, leur implication sur les processus de sol, et leur influence sur la rétention de biomasse à mitiger les changements (chapitre 3), ensuite, en menant la première campagne d'évaluation détaillée d'organismes lignicellulolytique de sols forestiers afin d'élargir les connaissances sur la diversité de taxa non-cultivés et sur les enzymes catalytiques qu'ils possèdent (chapitre 4).

Des analyses de plus de 1300 banques pyrotags bactériennes (ARNr 16S) et fongiques (région ITS) ont démontré des changements réguliers des communautés microbiennes aux sites échantillonnés à travers l'Amérique du Nord, dont i) l'expansion des organismes tolérants à la sécheresse et la chaleur, ii) la chute accrue de champignons ectomycorhizes (EM) avec une augmentation de champignons spécifiques EM (*Suillus* et *Thelephora*), iii) la régulation de changements de population par la rétention de matière organique et iv) des changements dans les caractéristiques fonctionnelles des sols récoltés, incluant une réduction des populations métanotrophes et de l'activité cellulolytique. Des différences biogéographiques dans les structures de communautés ont révélé le potentiel de variation des impacts de récolte. En somme, une variété de groupes taxonomiques pouvant servir d'importants indicateurs pour évaluer l'impact à long terme de la récolte forestière fut identifiée.

L'utilisation de marquage isotopique stable (SIP) révéla que la dégradation d'hémicellulose modèle, de cellulose, et de substrats ligneux est entreprise par des taxa spécialisés, actifs sur un seul substrat, mais aussi par des groupes capables de dégrader les trois polymères végétaux, dont des membres des Burkholderiales et Caulobacteraceae. Les décomposeurs bactériens de lignine furent plus actifs que les champignons, représentés par des possédant des lignolytiques caractérisées capacités (Sphingobacteriaceae taxa et Sphingomonadaceae) ainsi que de nouveaux taxa, comme Elusimicrobia et Acidobacteria. Des différences de populations lignicellulotytiques furent observées parmi les zones

biogeoclimatiques et couches de sol, avec les sols minéraux abritant une plus grande proportion de taxa de fonction peu caractérisée. L'utilisation de SIP mena à un assemblage métagénomique ~ trois à vingt fois plus élevé, fournissant une mine de données de séquences contenant des enzymes actives de carbohydrate et lignine provenant d'une variété de taxa putativement lignicellulolytiques.

Preface

The course of my thesis research was planned in consultation with Dr. William W. Mohn

Material from a published paper (R., Wilhelm, A., Szeitz, T.L., Klassen, and W.W. Mohn. 2014. *Appl. Environ. Microbiol.* **80**:7206-7211,) has been adapted and incorporated into the methods section of this thesis. With respect to my role in this work, I identified the need for a method to quantify ¹³C-enrichment of nucleic acids, devised the methodology in consultation with Auclair *et al.*, (2011; *Can. J. Microbiol.*, **58**: 287-292), prepared and analyzed samples and wrote the paper. A. Szeitz operated the mass spectrometer, designed the UHPLC protocol and offered invaluable advice on how to improve sensitivity and accuracy. Klassen and Mohn provided comments on the final draft prior to publication.

Other contributors to the work presented in this thesis include Lionel D. Jensen, who performed the respiration assays included in Section 3.3.1; Hilary Leung, whose SIP-hemicellulose bacterial pyrotag libraries were re-analyzed in Chapter 4 and who processed approximately one third of soil samples; Larissa McNeil processed the other third of soils and the majority of DNA extractions and PCR for samples described in Section 2.2.1; Dr. Erick Cardenas performed the first batch of draft genome binning, provided hidden Markov models for a number of lignin-modifying gene families and provided guidance for bioinformatic analyses throughout; Dr. Pedro Dimitriu provided guidance for statistical analyses and Dr. Kendra Maas facilitated the bulk sequencing of samples and collation of metadata used for the analyses in Section3.2. The custom synthesis of DHP-lignin by Dr. Rahul Singh was critical to research presented in Chapter 4.

I am responsible for all other experimental design, data collection, analysis, research and writing presented in this thesis.

Table of Contents

Abstract / Résumé	ii
Preface	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi
List of Abbreviations	XV
Acknowledgments	xvi
Dedication	xvii
Chapter 1: Introduction	1
1.1 Above and Belowground Perspectives on Timber Harvesting, Soil Microbial Communit the Long-term Sustainability of Forest Plantations	
1.1.1 Current Context of the B.C. Forest Industry	1
1.1.2 An Introduction to Forest Management and the Long-term Soil Productivity Study	2
1.1.3 Soil Ecology and Long-term Soil Productivity	4
1.1.4 Harvesting Impacts on Lignocellulose-degrading Populations	7
1.1.5 Forests: A History of Disturbance	9
1.1.6 Contrasting Timber Harvesting with Natural Disturbances	12
1.1.7 Long-term Impacts of Forest Fire on Soil Communities	14
1.1.8 Research Objectives for Assessment of Harvesting Impacts (Chapter 3)	16
1.2 Descriptions of Cellulolytic and Lignolytic Populations of Forest Soils: their Natural Hi and History of Industrial Use	•
1.2.1 Valorization of Lignocellulosic Biomass	
1.2.2 Origins of Research into Cellulolytic and Lignolytic Organisms and Enzymes	19
1.2.3 Natural History of Lignocellulose Synthesis and Degradation	20
1.2.4 Lignocellulose-degrading Niches	23
1.2.5 Lignin-degrading Fungi and Bacteria	24
1.2.6 Cellulose-degrading Fungi and Bacteria	27
1.2.7 Lignocellulolytic Bacteria and Fungi in Forest and Other Soil Environments	
1.2.8 Symbioses of Lignocellulolytic Fungi and Bacterial	
1.2.9 Stable Isotope Probing in Characterizing Lignocellulose-degrading Communities	
1.2.10 Overview of Classes of Ligninase and Cellulase Enzymes	
1.2.11 Cellulases and Accessory Enzymes	

1.2.12 Lignin-modifying and 'Auxiliary Activity' Enzymes	37
1.2.13 Research Objectives in the Survey of Cellulolytic and Lignolytic Taxa from Forest Across North America (Chapter 4)	
Chapter 2: Materials and Methods	43
2.1 Sample Collection from Long-term Soil Productivity Study Sites	43
2.1.1 Site Descriptions	43
2.1.2 Sample Collection	43
2.2 Molecular Methods	44
2.2.1 Preparation of 16S rRNA gene and ITS region Pyrotag Libraries	44
2.2.2 Preparation of and Sequencing of Shotgun Metagenome Libraries	47
2.2.3 Stable Isotope Probing	
2.2.3.1 Preparation and Properties of ¹³ C-labeled Cellulose	
2.2.3.2 Preparation and Properties of ¹³ C-labeled Lignin	50
2.2.3.3 Microcosm Preparation	50
2.2.3.4 Analysis of SIP-Phospholipid Fatty Acids (PLFA)	51
2.2.3.5 Quantitation of ¹³ C-enriched DNA	52
2.2.3.6 Recovery of ¹³ C-enriched DNA	55
2.2.3.7 Estimating Effects of GC Content on DNA Recovery from Heavy Fractions	56
2.2.4 Methodology Exclusive to Study of Treatment Effects	56
2.2.4.1 Soil Respiration Microcosms	56
2.2.5 Methodology Exclusive to Survey of Cellulolytic and Lignolytic Organisms	57
2.2.5.1 Fungicide Amended Microcosm Experiment	57
2.3 Bioinformatic Analyses	58
2.3.1 General Statistical Approaches	58
2.3.2 Phylogenetics, Taxonomic and Ecological Classifications	58
2.3.3 Diversity, Rarefaction, Ordination and perMANOVA	60
2.3.4 Indicator Species Analysis	60
2.3.5 Designating Cellulolytic and Lignolytic Taxa	60
2.3.6 Metagenome Assembly and Draft Genome Recovery	61
2.3.7 Characterization of Carbohydrate-Active Enzyme (CAZy) Content	62
Chapter 3: Long-term Impacts of Timber Harvesting on Soil Communities	64
3.1 Rationale	64

3.2 Community Responses to Timber Harvesting	65
3.2.1 Overview of Community Composition Across Ecozones	66
3.2.2 Description of Harvesting Impacts on the Soil Properties	70
3.2.3 Ecozone-wide, Global Responses to Harvesting	74
3.2.4 Ecozone-specific, Localized Responses to Harvesting	97
3.3 Impacts of Harvesting on Cellulolytic Populations	108
3.3.1 Effects of Harvesting on Respiration	109
3.3.2 Characterization of SIP-Enrichment for Cellulose and Lignin	109
3.3.3 Harvesting Effects on Cellulolytic Activity	112
3.3.4 Harvesting Effects on Community Structure	115
3.3.5 Description of Cellulolytic Community	130
3.4 Discussion	137
Chapter 4: Survey of Lignocellulolytic Populations of Forest Soils from Across North	America
with Stable Isotope Probing	153
4.1 Rationale	153
4.2 Results	153
4.2.1 ¹³ C-Enrichment by Substrate, Soil Layer and Ecozone	154
4.2.2 Comparison of Hemicellulolytic, Cellulolytic and Lignolytic Taxa	161
4.2.3 Carbohydrate Active Enzymes in Cellulolytic and Lignolytic Populations	181
4.2.4 Relative Contributions of Lignocellulose-degrading Taxa	194
4.2.5 Ecozone-Specific Lignin and Cellulose-degrading Populations	204
4.2.6 In situ Abundances of Lignocellulose-degrading Populations	207
4.2.7 Impacts of Timber Harvesting on Lignocellulosic Taxa	209
4.3 Discussion	211
Chapter 5: Conclusions	225
References	230
Appendix A – Synthesis of Coniferyl Alcohol	
Appendix B – Broad Ecological Impacts of Timber Harvesting	
Appendix C – Extended Characterization of Lignocellulolytic Taxa	
Appendix D – IsoLife ¹³ C-Cellulose Purity Report	276
Appendix E – Supplementary Tables	277

List of Tables

Chapter 3

Table 3.1 . Curated list of bacterial and fungal taxa showing population expansion or decline in response to harvesting
Table 3.2. Curated list of bacterial and fungal taxa showing population expansion at intermediate intensities of OM removal

Table 3.3. List of putatively cellulolytic bacterial and fungal taxa in Californian forest soil.....119

Chapter 4

Appendix E - Supplementary Tables

List of Figures

Chapter 1
Figure 1.1. Overview of sampling locations
Figure 1.2. A census of studies on the impact of timber harvesting on forest regeneration
Figure 1.3. Chronology showing natural history of major forest species10
Figure 1.4. Representations of the structure of cellulose, lignin and lignocellulose
Chapter 2
Figure 2.1. Bar plot illustrating differences in soil properties among ecozones
Figure 2.2. Photographs of initial set up of Californian LTSP sites
Figure 2.3 . Examples of mass spectra for natural abundance and ¹³ C-enriched DNA54
Chapter 3
Figure 3.1: Variation explained by abiotic and treatment factors (perMANOVA)67
Figure 3.2. Overlap of OTUs among ecozones and among treatments (Venn diagram)
Figure 3.3: Rarefaction curves showing the sequencing depth obtained at each site
Figure 3.4. Bar plots illustrating differences in soil properties among treatments72
Figure 3.5: Mean daily soil temperature data for various sites across various time-scales73
Figure 3.6: Snowflake plots showing the most common abundance patterns of OTUs75
Figure 3.7. Richness and diversity estimates among harvesting treatments
Figure 3.8: Relative abundance of bacterial and fungal OTUs at the Phylum level82
Figure 3.9. Contrasted abundances of <i>Basidiomycota</i> to <i>Ascomycota</i>
Figure 3.10. Abundance pattern of unclassified fungal and bacterial sequences
Figure 3.11. Top OTUs from indicator taxa responding to harvesting (dot plot)86
Figure 3.12. Expansion of Terrabacteria and pyrophilous fungi
Figure 3.13. Abundance patterns of methanotrophic bacteria (<i>Methylocapsa</i>)93
Figure 3.14. Abundance plots of ectomycorrhizal fungi
Figure 3.15. Richness and diversity estimates of ectomycorrhizal fungi
Figure 3.16. Taxa with greatest abundances at intermediate intensities of OM removal
Figure 3.17. Abundances patterns of 'wood saprotroph' fungi among harvesting treatments100
Figure 3.18. Non-parametric multidimensional scaling of bacterial and fungal libraries102
Figure 3.19. Taxa responding differently to harvesting according to North – South axis103
Figure 3.20 . Taxa responding differently to harvesting according to West – East axis104
Figure 3.21. Phylogenetic tree of fungal genus, <i>Suillus</i> , and bacterial genus, <i>Kitasatospora</i> 105

Figure 3.22. Phylogenetic tree of fungal genus, <i>Rhizopogon</i> 106
Figure 3.23. Responses to harvesting in EM fungi from the family <i>Thelephoraceae</i> 107
Figure 3.24 . Overview of the samples, experiments and datasets utilized in studying the effects of timber harvesting on the cellulolytic community108
Figure 3.25. Dot-plot showing soil respiration in mineral soils from reference and harvested treatments
Figure 3.26. Time-course assay of cellulose enrichment of organic and mineral layer soils111
Figure 3.27 . Comparison of organic and mineral layer soil characteristics and cellulolytic activity
Figure 3.28. Trends in cellulolytic populations based on PLFAs
Figure 3.29. Overview of ¹³ C-enrichment of soil DNA and total DNA recovery by SIP116
Figure 3.30. NMDS of cellulolytic bacterial communities
Figure 3.31. Variation explained by treatment factors in SIP-cellulose (perMANOVA)118
Figure 3.32. Overview of draft genome bins and read mapping by treatment
Figure 3.33. Bar plots showing abundances of indicator taxa libraries
Figure 3.34. Abundance patterns of Gram-positive bacteria and fungi from Chaetomiaceae124
Figure 3.35. Linear regressions of <i>Sordariomycetes</i> and C:N ratio126
Figure 3.36. Linear regressions of Actinobacteria and C:N ratio
Figure 3.37. Dot plot showing the differences in C:N ratio among harvesting treatments128
Figure 3.38. Linear regressions of actinobacterial abundance with pH among ecozones129
Figure 3.39. Non-parametric multidimensional scaling of cellulolytic fungi
Figure 3.40. Classification of all unassembled metagenomic reads at the rank Phylum133
Figure 3.41. Relative abundances of <i>Basidiomycota</i> to <i>Ascomycota</i> 134
Figure 3.42. Taxonomic affiliations of CAZy genes enriched in SIP-metagenomes
Chapter 4
Figure 4.1. Overview of the degree of enrichment of microbial biomass
Figure 4.2 Metagenome assembly according to substrate ecozone and soil layer 157

Figure 4.2. Metagenome assembly according to substrate, ecozone and soil layer	157
Figure 4.3. Mass of DNA recovered according to CsCl gradient fractions	158
Figure 4.4. Comparison of 'Nextera' or 'Nextera XT' kits	159
Figure 4.5. Heat map of delta- ¹³ C enrichment of PLFAs across time-course experiments	160
Figure 4.6. Venn diagrams showing overlap among SIP and <i>in situ</i> pyrotag libraries	161
Figure 4.7. Principle components analysis of delta- ¹³ C enrichment of PLFAs	163
Figure 4.8. Abundances of Ascomycota and Basidiomycota in metagenomic libraries	164

Figure 4.9. Abundances of bacterial phyla illustrating differences in hemicellulolytic,	
cellulolytic and lignolytic activity among taxa and ecozones	165
Figure 4.10. NMS plots showing differences in community composition of cellulolytic an	d
lignolytic populations	
Figure 4.11. Abundant classes of bacteria in pyrotag libraries by substrate and soil layer	169
Figure 4.12. Abundances of lignocellulolytic genera of <i>Caulobacteraceae</i>	172
Figure 4.13. Phylogenetic tree of lignocellulolytic OTUs from Caulobacteraceae	173
Figure 4.14. Overview of top quality draft genomes	176
Figure 4.15. Abundances of putatively multi-substrate utilizing OTUs	178
Figure 4.16. Heat map of fungal orders and genera in metagenomic libraries	180
Figure 4.17. Overview of lignin-modifying Auxiliary Activity enzyme families	183
Figure 4.18. Heat map showing abundant CAZy subfamilies in ¹³ C-metagenomes	185
Figure 4.19. Rank abundance and CAZyme density of CAZy clusters	187
Figure 4.20 Taxonomy of CAZy clusters containing lignin-modifying enzymes	188
Figure 4.21 Taxonomy of scaffolds containing genes from the β -ketoadipate pathway	191
Figure 4.22. Differences in cellulolytic and lignolytic CAZy profiles for Caulobacteracea	e192
Figure 4.23. Taxonomy heat maps for fungi-exclusive families AA2, AA8 and AA9	193
Figure 4.24. Correlation between ¹³ C-enrichment of DNA and pyrotag abundance	195
Figure 4.25. Classification of all unassembled metagenomic reads at the rank Order	196
Figure 4.26. Box and whisker plots showing the average enrichment of PLFAs	198
Figure 4.27 . Box and whisker plots showing the ¹³ C-enrichment of fungi relative to bacter	
normalized to pre-existing biomass	
Figure 4.28 . ¹³ C-enrichment of PLFAs in samples incubated with or without antibiotic Figure 4.29 . Barplots illustrating predominant families in metagenomic libraries derived f	
¹³ C-lignin incubations with and without the addition of fungicide	
Figure 4.30. Abundance patterns lignolytic taxa in fungicide treated soils	203
Figure 4.31. Correlation between abundance <i>in situ</i> and enrichment in ¹³ C-libraries	204
Figure 4.32. Venn diagram showing overlap of ¹³ C-cellulose libraries among ecozones	205
Figure 4.33. Localized patterns of abundance for cellulolytic or lignolytic taxa	206
Figure 4.34. Phylogenetic tree of lignolytic Solirubrobacterales	208
Figure 4.35. Abundances of lignocellulolytic taxa according to OM removal	210

Appendix B

Figure B.1. Barplots showing harvesting impacts on higher Eukaryotes and Lecanicillium.....263

Appendix C

Figure C.1. Barplots of prominent hemicellulolytic taxa in pyrotag libraries	265
Figure C.2. Barplots of prominent cellulolytic taxa in pyrotag libraries	266
Figure C.3. Barplots of prominent lignolytic taxa in pyrotag libraries	269
Figure C.4. Barplots of prominent lignolytic taxa in whole shotgun metagenomes	271
Figure C.5. Abundances of all genera within the family <i>Ectothiorhodospiraceae</i> in whole	
shotgun metagenomes	272
Figure C.6. Abundances of hemicellulolytic, cellulolytic and lignolytic genera of	
Burkholderiales	273

List of Abbreviations

	symbol for "or" or "nor" as in 'neither OM1 OM2 showed significant differences'
^{12}C	most abundant (~98.9%) stable isotope of carbon
^{13}C	a heavier stable isotope of carbon (~1.1% natural abundance)
AA	'Auxiliary Activity,' the category for lignin-modifying genes in the CAZy database
BC	British Columbia
BS	'Black Spruce' ecozone with sites near Thunder Bay, Ontario
CAZy	a carbohydrate-active enzyme (also CAZyme)
C:N	ratio of total carbon to total nitrogen, 'C:N ratio'
DHP	dehydrogenatively polymerized
DNA	deoxyribonucleic acid
enrOTU	OTUs that have 'enriched' abundance in ¹³ C- relative to ¹² C-sequencing libraries
GH	glycosyl hydrolase
IDF	'Interior Douglas Fir' ecozone with sites near Kamloops, B.C.
JP	'Jack Pine' ecozone with sites near Sault Ste. Marie, Ontario
LCA	lowest common ancestor – a classification method based on consensus of top BLAST hits
LP	'Loblolley Pine' ecozone with sites near Kurth, Texas
LPMO	lytic polysaccharide monooxygenase
MS	mass spectrometry
NCBI	National Center for Biotechnology Information (United States of America)
NMS NMDS	non-parametric multidimensional scaling
OM	organic matter, typically used in referring to organic matter removal or retention
OTU	operational taxonomic unit
PCR	polymerase chain reaction
PCA	principle components analysis
PP	'Ponderosa Pine' ecozone in the Sierra Nevada Mountains of California
SBS	'Sub-Boreal Spruce' ecozone in northern B.C.
SIP	stable isotope probing
UHPLC	ultra-high performance chromatography

Acknowledgements

This work was generously supported by a Large-Scale Applied Research Project Grant from Genome Canada and Genome British Columbia. I received personal funding in the form of an Alexander Graham Bell Canada Graduate scholarship (CGS) from the Natural Sciences and Engineering Research Council of Canada and a Four Year Fellowship from UBC. Together, the support from funding agencies encouraged my full commitment to research and, in the case of the large-scale grant, fostered a sense of common purpose among my colleagues and I.

This work could not have been done without the intellectual oversight and magnanimity of my supervisor Dr. William Mohn. Dr. Mohn leads a diverse research group and has built a community of committed researchers in microbial ecology. He is an adroit teacher from whom I have gained valuable insights. I thank him for the opportunity to conduct my research as well as for giving me access to current research trends by supporting my attendance at conferences.

The success of this research is indebted to the forward thinking scientists who devised and implemented the Long-term Soil Productivity Study and those who have sustained its operations. All soil samples used in this thesis were collected by collaborators in the Canadian Forestry Services (Dr. Paul Hazlett), the Ontario Ministry of Natural Resources (Dr. David Morris), and the U.S. Forest Service (Dr. Matt Busse and Dr. Andy Scott). These individuals also provided valuable data on soil conditions in the decade and half since harvesting.

I thank Hilary Leung for his company at the bench and his readiness to discuss or assist in trouble-shooting all things lab-related; Andras Seitz for his valuable expertise in mass spectroscopy; Dr. Linoj Kumar for providing lignocellulosic substrates used in respiration experiments described in Section 3.3.1; Dr. Thomas Beatty for lending his vertical rotor for use in density gradient ultracentrifugation; Dr. Marie-Claude Fortin for effectively managing our project and ensuring my research received its budgeted funds; Gordon Stewart for being a dependable, well-organized and knowledgeable lab manager and Dr. Josh Neufeld for his valuable early work in SIP and for providing *G. xylinus* for producing bacterial cellulose.

I would like to acknowledge the work of individuals whose passion for programming languages gave me the impetus to become a practitioner. I thank Dr. Rita McNamara, Dr. Keith Loese and Dr. Benjamin Purzycki, for facilitating an R group, Dr. David Williams-King for instruction on scripting, Dr. Haddock and Dr. Dunn for writing "Practical Computing for Biologists," and Dr. Jenny Bryan for allowing me to audit her incredibly useful courses (STAT540 and STAT545).

I would like to acknowledge the biologists, bioinformaticians and scientists around the world upon whose creative intelligence and hard work this research depends. In particular, the vision of public repositories and analytic tools such as those provided by NCBI, Argonne National Lab (MG-RAST), Schloss *et al.* (Mothur) and Joint Genome Institute (IMG-ER).

This research was enabled by support from WestGrid (www.westgrid.ca) and Compute Canada Calcul Canada (www.computecanada.ca). In particular, the patient assistance of Dr. Doug Phillips, at the University of Calgary, in trouble-shooting the effective multi-threaded use of Ray-meta for metagenome assembly.

Thanks to Dr. Guillaume Lamarche-Gagnon who translated my abstract into French under field conditions en route to Svalbard.

Dedication

I dedicate this work to my parents, Diane Bielicki and James Wilhelm, who gave so much and who cared deeply about me *and* about living an examined life.

To my brother whose own curiousity and pluck enriched my life.

To my family and the memory of my grandmothers, who patiently encouraged me as I focused on building a career in microbiology.

To my companions over the past five years, including Jessie Saunders, Dr. Nikolaus Fortelny, Hilary Leung, Dr. Erick Cardenas, Dr. Yaseen Mottiar, Pauline Morand, Dr. Jackie Goordial, Patrick Conroy, Dr. Greg and Emma Gervalis, Dr. Tim Höllering, Camilo Cortes Aguirre, Dr. Thomas Hauch-Fenger, Cheryn Wong, Magdalena Grömer, Dr. Dan Brox, Dr. Stephen Hay, Mark Schutzbank and Tim Shaw, Dr. Alex Martin, Stacey Auld, Dr. Nagissa Mahmoudi, Christina Toms, Dr. Christina Turner, Dr. Ben Sylvester, Dr. Irwin Chang, Dr. Natalie Ceperely, Dr. Don Beith, Inti Dewey, Dr. Meike Singer, Eric and Linds Cole, Dr. Kim and Noel Ma-krakel, Greg Uchitel, Brandon Miliate, Ste. Anne's Franchises everywhere, and Lucas at the Bike Kitchen *et al.*

To Green College of UBC, where there exists a culture of learning and sharing that sets precedent for what the university experience should be.

To Dr. Thomas Niederberger, Dr. Ofelia Rodriguez, Dr. Blaire Stevens, Dr. Nadia Mykytczuk and Dr. Lyle Whyte, who guided my earliest experiments in research.

To those who endeavor to understand the complexity of soil microbial ecology and who will undertake research to answer questions posed here. And, to the revitalization and continuing legacy of forestry in B.C. and Canada of which future generations can be proud.

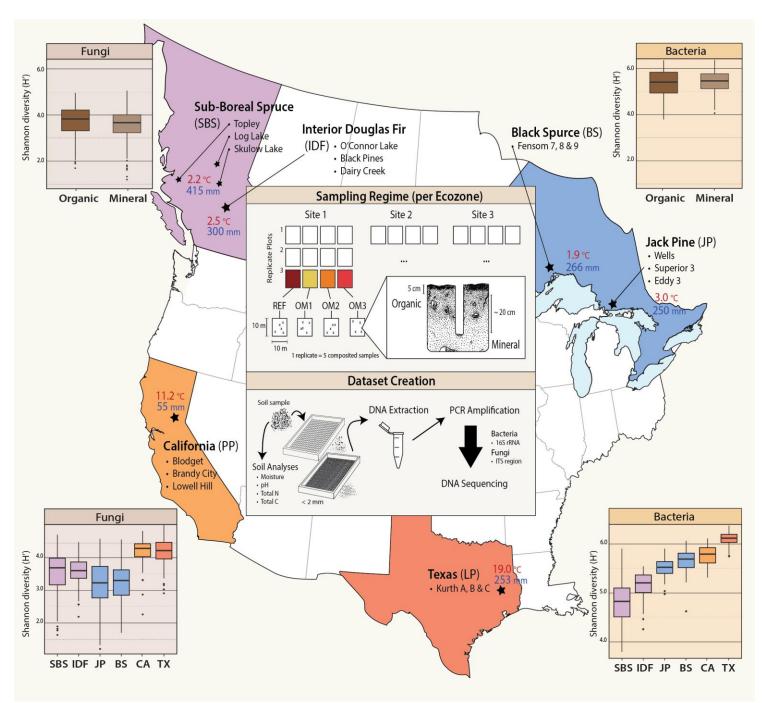
To the journalists at the Canadian Broadcasting Corporation, in particular Anna-Maria Tremonti and Bob MacDonald, the Globe and Mail and the British Broadcasting Corporation and to other cultural icons who kept me engaged and entertained during my commute and long hours of lab work, in particular Gord Downie, Dr. Thomas King, Geoff Berner, and Rae Spoon.

To Rita Laszlo, whose mutualism adds joy to my content.

Chapter 1: Introduction

1.1 Above and Belowground Perspectives on Timber Harvesting, Soil Microbial Communities and the Long-term Sustainability of Forest Plantations

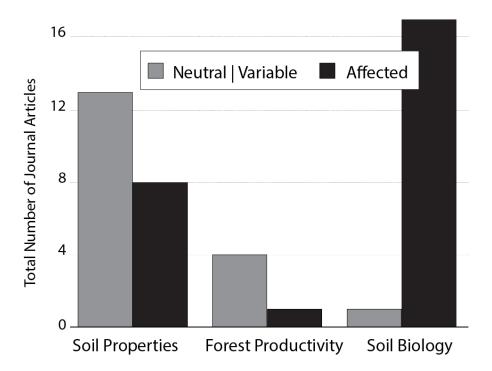
1.1.1 Current Context of the B.C. Forest Industry


The forest industry remains a vital sector in British Columbia's economy that sustains large manufacturers, thousands of small businesses and whole frontier towns. In 2011, wood products accounted for 22% of all goods sold in British Columbia (by volume) and a total of 5.5% of the GDP (B.C. Ministry of Forests, 2012). Canada-wide, the forest sector comprises 1.25% of Canada's GDP (~\$20 billion) also driven by industries in Ontario and Quebec. Yet, since the turn of the millennia, the B.C. forestry sector has seen job losses in the tens of thousands, the closure of mills and mass emigration from once thriving communities (B.C. Government and Service Employees Union Report, 2011). In 2012, the B.C. auditor general issued a report revealing large areas damaged by wildfire and mountain pine beetle had not been replanted and concluded that the future vitality of the industry lay in jeopardy (Office of the B.C. Auditor General, 2012). Both the Auditor General and public sector union stress the need to generate more value from forest products and commit to improved stewardship of the land. As stakeholders from business, government and local communities plan future development, there are still many unanswered questions about the basic nature of long-term forest management, such as how to maintain soil fertility under intensified land use. This research examines the belowground impacts of harvesting on microbial communities and processes related to forest ecology and soil fertility, providing a basis to develop principles of long-term stewardship (Chapter 3). At the same time, this research addresses the need to generate more value from forestry products, by surveying lignocellulolytic organisms in a search for industrially relevant biocatalysts (Chapter 4).

1.1.2 An Introduction to Forest Management and the Long-term Soil Productivity Study

Logging rights in B.C. were first granted by the Crown in the 1800s, and logging practices were eventually regulated by B.C.'s first Forest Act in 1912 (Marchak, 1983). Despite periods of rapid growth of resource extraction, by the late 1990's the amount of managed forested land in Canada and the United States had largely stabilized by reforestation and decades of improved forest management (Powers, 2006). Without the capacity to expand further, demands for shorter crop cycles, densified plantations and the harvesting of additional sources of woody biomass has increased (Fox, 2000; Allmer et al., 2009). Yet, the long-term sustainability of such land-use intensification is uncertain, since the consequences of harvesting (i.e. the removal of substantial amounts of organic nutrients) on soil fertility and forest regeneration remains poorly understood. Given the slow rate of forest regeneration, on average between 50-70 years (~ 25 years in more southern latitudes) before subsequent harvest, the science examining the effects of multiple crop cycles on forest soil fertility is a young science (Nambiar, 1996). Yet, there is a governmental mandate in both the U.S. (National Forest Management Act, 1976) and in Canada (Forestry Act, 1985 and Timber Regulations, 1993) to steward forested lands, though Canadian legislation does not explicitly provision for impacts on soil. Foreseeing the need to evaluate the long-term effects of biomass removal and other associated impacts of harvesting, such as compaction, the U.S. Forestry Service initiated the Long-term Soil Productivity Study in 1989, which was joined by Canadian counterparts soon after. The LTSP network includes over one hundred experimental sites across North America which have all implemented a similar experimental design assessing three intensities of organic matter removal and, in many cases, three intensities of soil compaction. The work detailed in this thesis was based on samples taken from LTSP sites in British Columbia, California, Ontario and Texas (Figure 1.1).

Figure 1.1. Overview of six North American ecozones and LTSP sites where soil sampling occurred. Data on mean annual temperature and precipitation along with the Shannon diversity (H') estimates for fungal and bacterial communities from data described in this thesis are provided. Each ecozone contained three sampling sites and, at each site, multiple experimental plots for each harvesting treatment as illustrated by the center panel providing an overview of the experimental design for Section 3.2.


Note: the term 'ecozone' is not used in accordance with the classification system provided by Environment Canada (Ecological Stratification Working Group, 1996), but as a general descriptor of differences in local assemblages of organisms and in climatic factors.

1.1.3 Soil Ecology and Long-term Soil Productivity

The long-term sustainment of any industry based on plant-based biomass, whether forest or agricultural, is contingent on prudent soil management. Nutrient depletion from biomass removal is one of many concerns for long-term soil fertility of forest plantations, others include: soil compaction, erosion, heating, drying, and changes in soil chemistry and prevailing microbial processes, including those related to carbon sequestration and greenhouse gases (Schoenholtz et al., 2000; Powers et al., 2005; Schulze et al., 2012; Merilä et al., 2014). Assessments of the ecological impact of timber harvesting and organic matter removal on soil communities near unanimously report impacts, while, in contrast, most studies on physicochemical properties of soil or forest productivity report neutral, variable and temporal responses (Figure 1.2; Table E.1). These findings suggest that forest regeneration may be broadly insensitive to variation in soil microbial communities, or that the community and concomitant biological processes are themselves variable or have forthcoming impacts. These suppositions remain largely untested due to historical overgeneralizations of microbial community structure and challenges overcoming the substantial diversity and variability of soil communities. Without sufficiently detailed knowledge of i) the prominent soil community members; ii) differences among forest soil communities; iii) the function of microbial processes in ecosystem maintenance and iv) how communities respond to long-term management practices, questions surrounding the impacts of harvesting on soil microbial processes remain in the realm of conjecture.

To date, timber harvesting reportedly alters long-term ecological processes related to mycorrhizal symbioses and soil gas fluxes. Populations of type-II methanotrophs were found to decline in the decades following harvesting, resulting in the decreased uptake of methane by soils. **Figure 1.2.** A census of the conclusions from studies of the impact of timber harvesting on forest regeneration years and decades post-harvest. Studies were categorized by whether they were studying physicochemical properties of soil, the forest biomass ('productivity') or biological features of soil. Studies which showed variable responses among study sites were categorized with neutral findings due to typically small effect sizes even where effects were observed. Table E.1 contains information on every study consulted.

The time until recovery to pre-harvest rates of methane consumption in pine plantations was estimated to be 47 years (Nazaries *et al.*, 2011). Shifts in the composition of ectomycorrhizal fungi (EM), symbionts of *Pinaceae*, persist in the decades following harvest (Hartmann *et al.* 2009; Hartmann *et al.* 2012) and reportedly upwards of 50 years (McGuire *et al.* 2014). EM fungi dramatically improve host fitness, providing surplus water and scavenge inaccessible nutrients from mineral rock, such as phosphorus, copper, and iron, or nitrogen from organic matter (Cairney and Chambers, 1999). Shifts in EM populations have significant potential to impact forest regeneration, but the long-term impacts are not clear due to the poorly understood natural succession of EM fungi (Visser *et al.*, 1995; Twieg *et al.*, 2007).

In a comprehensive meta-analysis of timber harvesting impacts on microbial communities, Holden et al., (2013a) concluded that harvesting broadly reduced microbial biomass and heterotrophic activity. These effects did not significantly differ between unharvested and partially logged forests, only in clear-cut sites. This raises questions about whether differences in timber harvesting strategies, such as the machinery used, degree of plant biomass removal and sitepreparation for replanting, may mitigate changes in soil microbial community structure. The underlying cause of reduced heterotrophic activity and microbial biomass is not clearly understood, yet, recent studies have implicated the possible importance of organic matter removal. In a recent landmark LTSP-based study, the first to utilize high-throughput sequencing, the degree of organic matter removal had a greater impact than soil compaction, but both were less than differences in community composition among soil layers and geography in the 'ecozones' surveyed (Hartmann et al., 2012). The retention of some degree of organic matter onsite resulted in microbial communities that differed, albeit slightly, from both unharvested and intensely harvested sites. This was not altogether surprising, given that coarse woody debris selects for organisms with specialized capabilities, illustrated by the natural succession of decomposers as forest litter matures (Voriskova and Baldrian, 2013). In one instance, the retention of coarse woody debris following harvesting increased the diversity of wood-inhabiting fungi above that of unharvested sites (Brazee et al., 2014). Not only does the retention of woody debris shift the quality and quantity of organic matter input to soils, it mitigates other physical changes to the soil environment such changes in pH, aridity and temperature (Entry, 1986; Bååth et al., 1995).

During the intervening years between harvesting and full canopy closure of reforested land, harvested soils experience substantial changes in physical conditions which include higher temperature and moisture extrema, diurnal fluctuation as well as higher average temperatures (Kranabetter *et al.*, 1999; Kulmala *et al.*, 2014) and lower average moisture availability throughout the soil column (Childs and Flint, 1987; Paz, 2001; Redding *et al.*, 2003; Tan *et al.*, 2005). Soil moisture can, however, increase over the short-term following harvesting (Adams *et al.*, 1991) and occur only in near-surface layers (Fleming *et al.*, 1997), reflecting the influence in the loss of transpiration from trees in deeper soils. Warmer, arid soil conditions are expected to be major factors influencing the composition of post-harvest communities, though there is a paucity of information about how soil communities respond to these changes. Long-term studies of regenerating forests destroyed by wildfire experience similar shifts in environmental conditions (described in Section 1.1.7). The retention of organic matter can affect these abiotic changes, mitigating increases in aridity and soil temperature (Paz, 2001) that, over the long-term, may influence microbial succession. Assessing the relative importance of organic matter retention as a nutritional substrate or in terms of moderating physical changes motivated this thesis research.

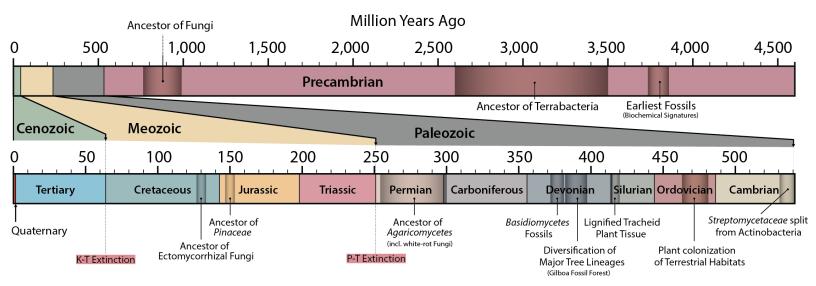
The scope and scale of the effect of organic matter retention on soil microbial communities following harvesting may signal its value as a mitigation strategy against long-term disturbance. Questions about the impact of organic matter removal are of increasing importance as the production of biofuel, wood pellets and other materials incentivize the removal of more forest biomass, previously left onsite. Allmer *et al.*, (2009) report that 38% of all fine woody debris is now being claimed for commercial use in Sweden, raising concerns about how to manage woody debris without depleting nutrient capital, altering soil processes or substantial habitat loss (Harmon, 2001). This thesis addresses such questions by contrasting long-term changes in microbial community structure at three intensities of biomass removal implemented in the LTSP Study experiment.

1.1.4 Harvesting Impacts on Lignocellulose-degrading Populations

The decomposition of lignocellulosic biomass shapes soil structure, pH, carbon and nitrogen content and other properties which govern fertility. The composition and abundance of

soil organic matter, particularly in the upper 'organic' horizon, affects the bioavailability of nutrients and energy flux through the heterotrophic food-web and also the sequestration of carbon (Merilä *et al.*, 2010; Fontaine *et al.*, 2011; Ge *et al.*, 2013). The decomposition of lignocellulose is a rate-limiting step in the decomposition of plant biomass, in particular in coniferous forests, where carbon accumulates as soil detritus and humic compounds. Partially decomposed woody biomass accounts for an estimated 50% of all terrestrial carbon (Myneni *et al.*, 2001), building a case for studying the conditions that govern the net storage of carbon in these environments, at the forefront of which are physiological and ecological traits of decomposers (Singh *et al.*, 2010).

Timber harvesting results in the loss of tree hosts and increase in belowground necrotic root tissue that generally shifts soil fungal communities from mycorrhiza-dominated to decomposition-dominated systems (Hartmann et al., 2012). Despite the shift towards saprobic populations, the consensus is that timber harvesting slows decomposition (Whitford et al., 1981; Yin et al., 1989; Prescott et al., 2000). Reduced microbial respiration has been observed upwards of 15 years after reforestation (Webster et al., 2016), suggesting that not only early-stage abiotic constraints, such as reduced water availability, but late-stage developments, likely relating to biological changes, affect the decline of heterotrophic activity. Long-term shifts in the composition of forest soil decomposers at harvested sites have been linked with a decreased potential to degrade complex carbohydrates like lignocellulose (Cardenas et al., 2015). Therefore, the decline in heterotrophic activity may be driven by both changes in quality of organic litter and the capacity of organisms that thrive in post-harvest conditions to decompose it. This is evidenced by the fact that not all populations of saprobes fare equally well following harvesting. Basidiomycota populations, such as brown and white-rot species, decline, while faster growing ascomycotal populations expand (Bader et al., 1995; Hartmann et al., 2012; Štursová et al., 2014; McGuire et al., 2014). Certain actinobacterial decomposers, such as Streptomycetaceae, decline in the face of an overall greater predominance of fungi (Hartmann *et al.*, 2009; Hartmann *et al.*, 2012; Lewandowski *et al.*, 2015). Greater fluctuations in soil temperature and moisture, found at harvested soils, are also expected to select for hardier taxa such as those observed in arid environments, like yeasts and dark-septate fungi (Gallo *et al.*, 2009) and bacterial phyla well-regarded for their tolerance to harsh conditions, such as *Armatimonadetes, Firmicutes, Chloroflexi, Deinococcus-Thermus* and *Actinobacteria* (Rastogi *et al.*, 2009; Gabani *et al.*, 2012; Soares *et al.*, 2012).


This thesis research is the first attempt to directly link the changes in the rate of decomposition, brought about from timber harvesting, with changes in cellulolytic community by means of stable isotope probing (SIP). SIP enables the concomitant measurement of the rate of cellulose decomposition along with in-depth, sequencing-based assessment of the cellulolytic community structure. This thesis examines whether long-term changes in temperature, aridity or decreased organic matter, brought about by timber harvesting, significantly alter cellulolytic community structure, diversity and activity (Section 3.3). One way in which these expectations may prove off the mark is that forest soil communities are adapted to disturbances and cope with changes in environmental conditions post-harvest and during maturation. The following sections describe the potential resiliency of forest soil communities and the potential similarity between the long-term impacts of timber harvesting and natural disturbances like wildfire.

1.1.5 Forests: A History of Disturbance

A discussion of the impacts of timber harvesting would be incomplete without consideration of the role disturbance has played in the natural history of forest ecosystems. One of the central aims of forestry science is to design timber harvesting methods that emulate natural disturbance, based on evidence that many plant species, including many of the very trees we harvest, have evolved to punctuated large-scale disturbances (Bond and Keeley 2005).

The earliest fossil preserve of a forest ecosystem is the Gilboa Fossil Forest in central New York State, dating to ~390 Mya (Stein *et al.*, 2012). Softwood, conifer-like forests were the dominant forest type during the Mesozoic Era, surviving both Permian-Triassic and Cretaceous-Tertiary (K-T) extinctions (Thomas, 2014; Figure 1.3). Their prominence has been attributed to an ability to resist severe drought and colonize immature mineral-rich soils likely with the help of mycorrhizal fungi (Thomas, 2014). The evolutionary divergence of *Pinaceae* has been dated to ~150 Mya and the symbiotic partnership of *Pinaceae* with ectomycorrhizal fungi has been dated to ~130 Mya, suggesting the development of *Pinaceae*, and their hardiness, has been shaped by symbiosis (Berbee and Taylor, 1992; LePage *et al.*, 1997; Wang *et al.*, 2000). By the end of the Cretaceous period, hardwood species increasingly infringed on the territory of conifers owing to a warmer, moister global climate (Thomas, 2014).

Figure 1.3. Natural history of major forest species relating to topics covered in this thesis. Molecular clock estimations for the original ancestral split for major lineages are shown with error estimates spanning the shaded area. The top plot presents the complete geological history of Earth. The bottom plot presents a more detailed account of the most recent 500 million years. All references appear in text.

Of equal importance to the historical development of forests would be the natural history of soil, known as 'paleopedology' (Retallack 2008). The biosphere of ancient soils is not well understood, and is beyond the scope of this thesis. However, it is clear that early colonizers of mineral-rich terrestrial soils possessed extreme tolerances to radiation and desiccation as evidenced by the recent phylogenetic delineation of the major bacterial lineage: 'Terrabacteria.' The ancestors of Terrabacteria possessed extreme tolerances to desiccation, radiation and heat believed to have been necessary for the expansion and diversification of bacterial life on land approximately 3.5 - 2.6 Gya (Battistuzi *et al.*, 2009). Members of this superphylum are, to this day, commonly abundant in soils, such as *Actinobacteria, Armatimonadetes, Chloroflexi, Cyanobacteria, Firmicutes* and *Deinococcus-Thermus*, and many taxa from these groups have the capacity to degrade cellulose and other plant polymers. It is, therefore, possible that endemic forest soil microorganisms have the capacity to adapt and endure a range of extremes and continue to fulfil functional roles important for ecosystem regeneration in the decades following harvesting.

Mimicking natural disturbance has been a guiding principle of conventional forestry operations since the 1990s. These principles are founded on the observation that forested land are subject to continual disturbances and that numerous species that comprise forests have evolved to take advantage of these disturbances, such as pyrophilous or ruderal species. Management practices emulate disturbances through prescribed burns and 'retention forestry,' which aims to maintain biological refugia by retaining a greater number of living trees and plant detritus, such as coarse woody debris and snag trees (Gustafsson *et al.*, 2012). Both burning and retention have been shown to mitigate a variety of harvesting impacts on macro-fauna, maintaining diversity and higher order trophic interactions, such as predator-prey relationships for beetle populations (Heikkala *et al.*, 2016). How well these forestry principles extend to the belowground biosphere has not been studied, though the LTSP and others, such as the Ecosystem Management Emulating

Natural Disturbance study (EMEND) are beginning to include belowground surveys in their data collection (Hannam *et al.*, 2006; Hartmann *et al.*, 2012). Overall, a better understanding of the similarities and differences of how soil communities are impacted by forestry and natural disturbance is needed before the full merits or shortfalls of such mimicry can be known.

1.1.6 Contrasting Timber Harvesting with Natural Disturbances

For the most part, natural disturbances affect small areas of forest (<1 ha) producing a mosaic of forest with varying legacies resulting from the senescence of even-aged stands, physical damage by wind, localized fire or biological damage from pathogen or insect outbreaks. Minor disturbances are estimated to occur on an average cycle of 50 - 200 years at a given plot of land. In contrast, large-scale disturbances causing the destruction of forests on the order of ~10 to 100 ha occur on an average cycle of 800 to 10,000 years, typically resulting from wildfire, glaciation, hurricanes and insect or pathogen epidemics (Seymour *et al.*, 2002). In comparison, the typical plot size of a managed forest plantation is between one and ten hectares and is harvested on a 50 to 70-year cycle. In terms of both frequency and scale, timber harvesting surpasses the magnitude of major natural disturbances in any one managed area of land, though not in terms of total land affected (see caveat below).

A shortened interval between disturbances has the potential to create a long-term imbalance in the regeneration time for forest species in favour of ruderal, early colonizing taxa that thrive in the years immediately following disturbance (Roberts *et al.*, 2016). For example, shorter intervals between prescribed burning of forested land increased the total effect size of changes in EM communities (Oliver *et al.*, 2015). Shorter intervals between regeneration also increase the net time soil communities are exposed to warmer and drier 'canopy-free' conditions relative to natural disturbances. Further, under natural disturbance regimes, forests and forest soils would have hundreds of years to regenerate, making the accumulation of organic matter another major point of

difference to timber harvesting regimes. These points of difference between managed and natural forest disturbances have the clear potential to broadly affect the long-term ecology of forest plantations and soil microbial processes.

Conventional timber harvesting differs in other ways from large-scale natural disturbances that may have other long-term homogenizing effects on forest ecosystems. Soil compaction is unique to harvesting disturbance, resulting from the use of heavy machinery during harvesting, though it has been found to have a minor impact on soil communities (Hartmann *et al.*, 2012). There are far reaching concerns that reforestation efforts have a homogenizing effect on genetic diversity, despite concerted efforts in breeding, on the genetic composition of mixed-aged stands (Friedman and Foster, 1997). Homogenization can lead to increased susceptibility to forms of disturbance (Fettig *et al.*, 2014; Klapwijk *et al.*, 2016) and will likely affect belowground organisms such as ectomycorrhizal fungi (EM), which demonstrate host-preference and even differences according to stand maturity (Visser, 1995; Twieg *et al.*, 2007). Management strategies offers the possibility of mitigating undesirable changes in soil communities. Yet, the current lack of baseline and long-term monitoring data on the effects of repeated forest disturbance limit our understanding of the full extent of impacts. Studying similar canopy-removing disturbances, like wildfire, may augment the lack of long-term data.

One caveat to aforementioned differences between harvesting and natural disturbances is that the total area of land affected by natural disturbance far surpasses the total land affected by the forest industry. In 2013 alone, Canadian forests were affected by insect and wildfire at a scale of 20 and 4.5 million hectares, respectively, dwarfing that of forestry activity (~0.75 million hectares) (Stats Canada Forest Inventory, 2013). However, natural disturbances do not match the frequency of disturbance at a given location under management.

1.1.7 Long-term Impacts of Forest Fire on Soil Communities

Wildfire can remove a comparable amount of aboveground biomass to timber harvesting, but typically leaves subsurface soil organic matter intact. The complete loss of upper organic layer soils can occur in high-severity forest fires, though the occurrence is rare (Jurgensen *et al.*, 1997). The initial combustion of both living and dead organic matter and extreme temperature alters subsurface communities and reduces microbial biomass and rates of decomposition (Dooley and Treseder, 2012; Holden *et al.*, 2015). During forest renewal, soil inhabitants are exposed to a new baseline of environmental conditions which are analogous to those following harvesting, such as increased dryness, diurnal fluctuations and increase soil temperatures. Oliver *et al.*, (2015) report that the diversity and richness of fungal communities had not declined eleven years on, but that the overall community structure had shifted towards heat-tolerant fungi, such pyrophilous taxa.

Estimates for the return of microbial communities to pre-harvest or pre-fire composition are on the order of decades (Holden *et al.*, 2013a; Holden *et al.*, 2013b). Holden *et al.*, (2013b) found the greatest differences in fungal composition between burned and unburned sites occurred in the first 10 to 20 years following fire, roughly the time till canopy closure, after which affected sites had begun to resemble unaffected sites. Oliver *et al.*, (2015) found that disparate fire-affected soils shared similar compositional changes in fungi in the decade following disturbance, demonstrating a consistent selection pressure following disturbance. The decline of *Basidiomycota* at the expense of increased ascomycotal populations has been observed in decades following fire (Buscardo *et al.*, 2015; Holden *et al.*, 2013b), similar to what has been reported post-harvesting (Hartmann *et al.*, 2012). An explanation for these differences is not clear, but both fire and harvesting can damage the fine hyphal networks of *Basidiomycota*, which typically have slower growth rates than *Ascomycota* (Strickland and Rousk, 2010; Holden *et al.*, 2015). The fact that many *Ascomycota* are thermo-tolerant or that EM fungi (*Basidiomycota*) are sensitive to fire disturbance (Holden *et al.*, 2013b) are also likely factors. Yet, some species of EM fungi are heattolerant and prosper in the years following fire, such as *Rhizopogon*, *Suillus*, *Thelephoraceae*, *Tomentella* and *Wilcoxina* among others (Buscardo *et al.*, 2015; Glassman *et al.*, 2015; Oliver *et al.*, 2015). Arbuscular mycorrhiza (*Glomeromycota*) are resilient to fire disturbance, likely due to their dependence on understory vegetation which recovers rapidly post-fire (Xiang *et al.*, 2015).

Shifts in the bacterial community following fire are also pronounced and, similar to fungi, select for stress-tolerant taxa. Weber et al., (2014) studied bacterial communities at burned and unburned sites three-months after a fire and reported that 'the presence of specific taxa may be more important in predicting community compositional shifts after exposure to high burn severity than overall community composition or physical and chemical parameters of unburned soils." They reported no significant differences in bulk soil community, suggesting disturbance did not turnover, but rather community structure was reorganized. The following taxa were identified as responding positively post-disturbance: Oxalobacteraceae (Oxalicibacterium, Naxibacter & Massilia), Bacteroidetes (Flavisolibacter, Pedobacter & Adhaeribacter), and Actinobacteria (Arthrobacter), while some taxa were more abundant in unburned forest soils: Verrucomicrobia (Spartobacteria & Opitutus), Acidobacteria (Granulicella and Groups 1,3 6, 7 and 16), Gemmatimonadetes, Planctomycetes (Zavarzinella), and Bacteroidetes (Mucilaginibacter). The report by Tas et al., (2014) on longer-term (7 years later) effects of fire on bacterial communities in tundra soil found similar responses at the phylum level, where Planctomycetes and Verrucomicrobia populations declined. However, the major group of bacteria that rose to prominence following fire were members of candidate phylum AD3, with virtually nothing known about these organisms. Bacterial diversity did not significantly differ between burned and unburned sites, following trends reported for fungi. From these studies, it is clear that a subset of organisms, likely stress-tolerators and ruderal species (Grime, 1977), are able to take advantage of the relatively harsher soil conditions in the period following disturbance, resulting in nuanced overall structural change without substantial effects on diversity.

1.1.8 Research Objectives for Assessment of Harvesting Impacts (Chapter 3)

The research detailed in Chapter 3 seeks to improve understanding of the impacts of timber harvesting, and relative importance of organic matter retention, in shaping the long-term diversity and structure of microbial communities in general (Section 3.2), and specifically cellulolytic populations (Section 3.3). The LTSP framework afforded the opportunity to compare and contrast the effects of harvesting at three intensities of organic matter removal ('OM removal') among different biogeographic and climatic zones ('ecozones') in North America (Figure 1.1). Approximately 680 phylogenetic gene marker libraries for both 16S rRNA genes (bacteria) and ITS region (fungi) were made from a highly replicated experimental design which accounted for heterogeneity of soils within plots, and within ecozones. Multi-faceted sequencing and biochemical data were collected from microcosm experiments with ¹³C-cellulose to quantify changes in activity and identify corresponding composition changes in cellulolytic populations.

Timber harvesting is expected to select for organisms adapted to changes in organic matter quality as well as the new post-harvest regime of warmer, drier soil conditions. The changes will likely feature a shift towards more generalist, stress-tolerant species, resulting in no net changes to microbial diversity. Cellulolytic members of *Basidiomycota* are expected to be negatively impacted, given reports of their decline post-harvest (Hartmann *et al.*, 2012), while harsher conditions may favour bacterial degraders. Alternatively, cellulolytic fungi may predominate where coarse woody debris is retained, resulting from the selection of specialized wood-degrading fungi. While the impact of harvesting on the alpha-diversity of cellulolytic taxa has not been assessed, repeated prescribed burnings were shown to reduce the alpha-diversity of cellulolytic fungi (Bastias *et al.*, 2009), suggesting that cellulolytic populations may possess fewer stress-tolerant taxa that succeed following disturbance.

In accordance with the goals of the LTSP to 'develop indices of soil quality practicable in monitoring' (Powers, 2006), this research sought to document new phenomena of interest and identify specific taxonomic groups which may be relevant to monitoring efforts. The research was oriented to examine fine-scale differences occurring among all ecozones ('globally') and phenomena which are ecozone-specific ('locally') in order to contribute to a better understanding of whether variation in forest regeneration among LTSP sites may be attributed to differences in microbiota. A systematic assessment was made of the previous phenomena related to ectomycorrhizal, methanotroph and saprotroph populations, testing these observations across broadly different geographic zones, forests and soil types. These assessments, along with gauging the mitigating influence of varying amounts of organic matter retention, were made to help inform long-term forest management practices. Comparisons to the long-term effects of forest fire were included to relate features of anthropogenic and more natural forms of large-scale disturbance.

Beyond the examination of harvesting impacts, there are few examples of comprehensive, molecular-based study comparing microbial communities from different coniferous forests at the scale and degree of replication as the research presented in Chapter 3. As such, this research also provides a general characterization of forest soil communities among different forest types and ecozones across North America. Similarly, in gauging the impacts of timber harvesting on the cellulolytic community using SIP, Chapter 3 attributes function to previously unknown and uncultured cellulolytic taxa. In this aspect, parts of Chapter 3 complement the aims of the research presented in Chapter 4. Section 3.3 provides the first part of a survey of cellulolytic taxa from organic and mineral soils and an assessment of the cellulose-degrading potential therein.

Descriptions of Cellulolytic and Lignolytic Populations of Forest Soils: their Natural History and History of Industrial Use

Chapter 4 focuses on a largely separate research topic than the effects of timber harvesting, though section 4.2.7 revisits the data collected for Chapter 3 and assesses harvesting impacts on taxa designated as putatively lignocellulolytic.

1.2.1 Valorization of Lignocellulosic Biomass

The earliest studies on lignin and cellulose decomposition were carried out to understand threats posed to textile and wood-products by plant-degrading organisms. Commercial ethanol production from wood was attempted in 1898 by Simonsen using a non-biological method, and experiments with fermentative processes soon followed (Moore, 1914). As early as 1935, attempts were made to gasify lignin for energy (methane) and, at the same time, recover pure cellulose for ethanol fermentation (Levine *et al.*, 1935). Following the outbreak of WWII, and subsequent wars like Vietnam, northern nations operated in tropical regions where the decay of plant fibre-based materials became a significant economic driver for research in both cellulose (Siu, 1951) and lignin-degrading (Gottlieb, 1951) organisms. The manufacture of vanillin was perhaps the earliest example of the successful valorization of lignin by Kürschner, who laid the foundations for commercial production of vanillin in 1928. In 1948, an editorial published in Scientific American stated the case for valorization of lignin waste, highlighting its potential as nature's most abundant source of aromatic precursors (Gesinger, 1948).

The steady growth in industrial processing of wood biomass since Gesinger's time has prompted widespread attempts to valorize the correspondingly sizeable waste streams. In 2012, lignocellulosic biomass wastes were estimated at approximately 2×10^{11} t/year worldwide (Tuck *et al.*, 2012). Cellulosic ethanol production is now a commercially viable enterprise exemplified by the Beta Renewables plant in Crescentino, Italy, generating 75 million L year⁻¹. Given their structural role in plant tissues, is not surprising that both lignin and cellulose are being used to strengthen materials such as concrete (Ataie et al., 2014) and in the production of composite plastics (Chung et al., 2013; Kalia et al., 2011), foam (Li and Ragauskas, 2012) and carbon nanofibers (Dumanli et al., 2012; Li et al., 2015). Cellulose has the potential use in a wide variety of fermentative processes, however, as a fibre, cellulose has been functionalized for specific applications such as research in molecular biology (Araujo et al., 2012), medicine (Brinchini et al., 2013) and tissue culturing (Bodin et al., 2007). The number of applications of functionalized cellulose fibre are enormous given recent advancements in carbohydrate chemistry and widespread interest in carbohydrate-active enzymes (Xu et al., 2012). As nature's most abundant aromatic compound, lignin is a promising renewable source of aromatic precursors for a myriad of synthetic processes. It is expected to compete with a number of petrochemical products such as resins, lubricant and fuel additives, such as benzene, toluene, and xylene (Linger et al., 2014; Ragauskas et al., 2014). Recent applications include the anodic material for lithium ion batteries (Zhang et al., 2015) and air filters and respirators (Chang et al., 2016). The old adage that 'you can make anything from lignin... but money' is being tested under the current climate for renewable resources and a near 100-year history of research.

1.2.2 Origins of Research into Cellulolytic and Lignolytic Organisms and Enzymes

The science of wood decay originated in 1833 with Hartig's study of the fungal plant pathogen, *Phellinus pini*, commonly known as "red ring rot." It remained the domain of biology, mostly mycology, until the latter half of the 19th century when organic chemists began disassembling the chemical components of wood and analyzing the bi-products of wood rot. The structure of cellulose was first described by Payen in 1838, who also coined the name 'cellulose,' basing his observations on the remnants plant matter after treatment with strong acids. The first insight into the chemical composition of lignin was provided by Klason who described it, in 1896, as a coniferyl alcohol-based compound and later published a method for measuring lignin content that is commonly used today (Klason, 1910). The enzyme-mediated degradation of cellulose was first demonstrated by Sachs, in 1862, during his study of germinating grass seeds. The earliest studies to demonstrate the biologically-mediated degradation of lignin involved white-rot fungi (Bayliss, 1908; Zeller, 1916). Then, as now, the central challenge in characterizing catabolic capabilities hinged on how the cellulose or lignin was prepared, casting doubt, especially in the case of lignin, on the true nature of the microbial activity (early criticism by Gottlieb, 1951). By 1927, the activity of brown and white rot fungi had been delineated with a growing complement of knowledge on cellulase and phenol-oxidase enzymes (Falck, 1927). Yet, the definition of whiteversus-brown rot has been eroded in the age of genomics, as canonical degradative capabilities have been found in the genomes of non-canonical members of each category (Riley et al., 2014; Floudas et al., 2015). This break from a near century old convention exemplifies the possibilities afforded by phylogenetics and comparative genomics to characterize how cellulolytic and lignolytic organisms, and the catabolic pathways they possess, have evolved.

1.2.3 Natural History of Lignocellulose Synthesis and Degradation

The origins of cellulose and lignin biosynthesis predate terrestrial life, leaving no traces of its earliest development in today's fossil record. The cellulose synthase genes common to plants are believed to originate from *Cyanobacteria* (photosynthetic bacteria), yet we find cellulose synthesis spread across a variety of bacterial phyla, including a number of *Proteobacteria* (Nobles *et al.*, 2001). The closest common ancestor to land plants are marine Aerophyte green algae, which possess many features of the cellulose structure and overall carbohydrate complexity of modern forms of plant cell walls, though without any lignin (Mikkelsen *et al.*, 2014; Domozych *et al.*, 2012). The growth in lignin content in plant cell walls followed the colonization of land, which

occurred around 470 million years ago and resulted in the diversification of plant cell wall architecture (consult Figure 1.3 for overview of natural history).

The evolution of lignin biosynthesis began in early land plants with the shunting of phenylalanine pathway to synthesize hydroxylated aromatics for UV radiation protection (Weng and Chapple, 2010). This newly evolved form of phenylpropanoid synthesis led to the synthesis of lignin precursors, hydroxyphenyl and guaiacyl lignin. By the late Silurian period (416 Mya), vascular plants had evolved lignified tracheid tissue for conducting water and, by the end of the Middle Devonian (398 to 382 Mya), trees had evolved independently in several major groups, and an abundance of chemically stable, lignified plant matter began to accumulate (Robinson, 1990). The rate of accumulation reached a maximum during the Carboniferous and Permian, resulting in the formation of vast coal deposits derived primarily from lignin (Berner *et al.*, 2003). Coal deposits from the Permian and Carboniferous period outweigh all other periods and were responsible for fueling the industrialization of modern civilization. Similarly, at the time of the Carboniferous, the accumulated mass of lignified plant matter was a rich resource to any organisms that developed the capability of exploiting it.

The earliest ancestors of terrestrial decomposers of cellulose and aromatic polymers predate the colonization of land. The origin of terrestrial decomposers was believed to result from Earth's changing climate, leading to shifting ocean water levels and the accumulation of ocean biomass on land. Our ability to reconstruct the ecology of this ancestral habitat is limited and, so too is our understanding of the early evolution of terrestrial decomposers (for a review see: Raven, 1997). Our understandings of the natural history of fungal lignocellulose decomposers has been aided by the recovery of fossils from filamentous fungi. The earliest *Basidiomycetes* have a fossil record that dates back to the Upper Devonian (382 – 372 Mya; Stubblefield and Taylor, 1986), which contain the class *Agaricomycetes*, widely considered the most successful degraders of

lignocellulose. Both white and brown rot fungi are members of *Agaricomycetes*, whose earliest ancestor has been dated to the Permian period (298 - 252 Mya) from deposits in Antarctica and in tree trunks found in North America (Taylor and Osborn, 1996). The sharp decline in coal deposition by the end of the Permo-Carboniferous (~300 Mya) matches molecular clock estimates of when multiple gene duplications of catalase-peroxidases occurred in white-rot *Agaricomycetes*. These duplications are believed to underlie effective lignin decomposition, leading to the hypothesis that the early ancestors of white-rot fungi were the first to benefit from the growing surplus of lignified plant matter (Floudas *et al.*, 2012).

While prosperity may have been assured to any organism capable of modifying lignin, the catalase-peroxidases utilized by white-rot fungi evolved primarily to cope with oxidative stress (Benzie, 2000). During the late Carboniferous period, atmospheric oxygen concentrations reached the highest levels planet Earth had seen (~35%; Graham, 1995). Peroxidase activity became critical to detoxify oxidative compounds and the adaptation to utilize increasingly abundant lignin as reductant has bene hypothesized to be the indirect outcome (Morgenstern *et al.*, 2008). Given that the coupling of catalase-peroxidase activity to lignin was a recent development, the peroxidase superfamily to which these catabolic enzymes belong (Class II) contains two other major classes of intracellular protective enzymes (Class I) and lignin biosynthetic enzymes (Class III), which likely predate the Class II catabolic homologs (Zámocký *et al.*, 2015). As such, homology-based searches of lignin-degrading peroxidases requires careful phylogenetic discrimination between classes as well as supporting evidence through assays of lignin-modifying activity.

White-rot fungi are highly successful lignin-degraders as a result of multiple gene duplications of Class II catalase-peroxidases, but also due to the physical ability of hyphae to penetrate through plant walls (Selosse and Tacon, 1998; James *et al.*, 2006). Similarly, the majority of actinobacterial families exhibit mycelia-like growth, providing an example of convergent evolution believed to result from spatial complexity in the colonization of soils, though this physiology has not been directly correlated with growth on lignin (Ventura *et al.*, 2007). Perhaps unsurprisingly, many of the best known bacterial lignocellulose decomposers are Actinobacteria. *Streptomyces viridisporus* T7A, was the first bacterium characterized to decompose lignin (Pasti, 1990). Notably, the split between *Streptomycetaceae* and other major actinobacterial families occurred at much the same period in time as the appearance of filamentous fungi, approximately 500 Mya (Embley and Stackebrandt, 1994). Substantial rates of lignin degradation have really only been observed by *Basidiomycota*, though a wide variety of fungi demonstrate less well-characterized degradation, like 'soft rot' or 'brown rot' (Worral *et al.*, 1997; Riley *et al.*, 2014; Floudas *et al.*, 2015). The major focus of Chapter 4 is to expand the known diversity of lignin-degrading organisms; to assess the co-evolution of lignolytic with cellulolytic or hemicellulolytic traits, and to characterize the relative role of bacterial and fungal degraders.

1.2.4 Lignocellulose-degrading Niches

What we know of the ecology and metabolic diversity of lignolytic and cellulolytic taxa is largely based on a number of model organisms studied *in vitro*. Collectively these organisms exhibit aerobic, facultative and anaerobic lifestyles for both cellulose and lignin decomposition and inhabit a broad range of environments such as marine, insect, ruminant, plant (pathogen), sediment, soil and compost (*cellulose*: Hanson *et al.*, 2008; Scharf *et al.*, 2008; Distel *et al.*, 2002; Izquierdo *et al.*, 2010; Hess *et al.*, 2011; Dougherty *et al.*, 2012 and *lignin*: Geib *et al.*, 2008; Thevenot *et al.*, 2010; DeAngelis *et al.*, 2011). Co-culturing experiments demonstrate that decomposer communities exhibit high levels of syntrophic growth on lignocellulosic substrates (Leschine *et al.*, 1995), and environmentally-derived cell slurries show higher rates of decomposition of lignocellulose sourced from co-endemic plants (Ayres *et al.*, 2009; Prescott, 2010; Freschet *et al.*, 2012). The critical role of lignolytic and cellulolytic organisms is supported

by models of decomposition that show enzymes produced by small sub-populations drive overall decomposition in forest litter (Allison *et al.*, 2012; Goldfarb *et al.*, 2011). With modern tools in molecular biology, microbiologists can characterize the full variety of niches without the need for enrichment cultures, enabling a more accurate description of environment-specific taxa and catabolic mechanisms. For instance, a gut environment would select for organisms adapted to degrade physically altered, pre-digested substrates, whereas soil organisms likely possess a greater range of capabilities for gaining access (adhesion and penetration) to unaltered plant material, as well as a greater range of tolerances to environmental conditions and even interesting redox coupling. Ko *et al.*, (2009) demonstrated lignin and cellulose co-metabolism coupled with sulfate reduction using inoculum sourced from landfill soil. Targeted characterization of specific niches and the consortia using molecular techniques, such as SIP, will drive future discoveries of novel lignocellulose-degrading consortia and catabolic machinery.

1.2.5 Lignin-degrading Fungi and Bacteria

Wood-degrading fungi demonstrate a preference for the degradation of either cellulose, producing brown coloured wood rot, or lignin, producing a whitish colour of decaying wood. Both phenotypes share a common ancestor within the order *Agaricomycetes*. Specialization in lignin decomposition correlates with increased numbers of glycosyl hydrolase (GH) genes relative to non-specialized taxa and multiple gene duplications in GH and 'auxiliary activity' (AA), largely peroxidase, enzyme families (Floudas *et al.*, 2012). Brown rot species modify lignin to access cellulose and have incurred substantial GH and AA gene loss, having only retained the capacity to abundantly express a reduced set of cellulose-degrading enzymes (Eastwood *et al.*, 2011). Similar adaptive loss was reported in closely related ectomycorrhizal fungal genomes, demonstrating the phylogenomic basis for specialization and niche partitioning in the forest soil community (Martin and Selosse, 2008). However, mycorrhiza may partake in lignin and cellulose decomposition,

albeit believed to be related to nitrogen and phosphorous scavenging (Baldrian *et al.*, 2009; Rineau *et al.*, 2012). Outside of well-studied *Basidiomycota*, some *Ascomycota* (*Xylaria* and *Daldinia* spp.) are also capable of lignin modification, generally known as soft-rot (Floudas *et al.*, 2012). This capability depends on laccase-like activity and more closely resembles brown-rot (Liers *et al.*, 2011).

The study of lignin-degrading bacteria is a relatively young field of research, largely pioneered in the late 1970's by Donald and Ronald Crawford. To date, the bacterial strains proposed to be capable of decomposing lignin polymers or lignin-related compounds occur in the following phyla (or sub-phyla): Actinomycetes, Bacteroidetes, Firmicutes, Alpha- Beta- and Gammaproteobacteria (see Table E.2 for a list of all known lignin and cellulose-degrading isolates). All of these organisms have been isolated and characterized in vitro through screening or enrichment culturing with polyaromatic compounds, kraft-lignin or lignin-related dimeric substrates. The most commonly cited organisms are Streptomyces viridisporus T7A (Pasti et al., 1990; Davis et al., 2013), Sphingobium sp. SYK-6 (Masai et al., 2007), Sphingobacterium sp. T2 (Taylor et al., 2012; Rashid et al., 2015), Enterobacter lignolyticus SCF1 (DeAngelis et al., 2011), Pseudomonas spp. (Zimmerman, 1990) and Amycolatopsis sp. 75iv2 (Brown et al., 2012). These taxa, and others, are described in detail in a number of reviews (Vicuna, 1988; Bugg et al., 2010; Zimmerman, 1990; Brown and Chang 2014; Tian et al., 2014). Consistent with the idea that lignocellulose degradation is performed by a specialized sub-set of microorganisms, many of the lignin-modifying genera also contain well-known cellulose-degraders, such as *Streptomyces*, Enterobacter, Sphingobacterium, Pseudomonas and Acinetobacter (Štursová et al., 2012; Pourramezan et al., 2012; Medie et al., 2012). The limited number of experimentally-verified, bacterially-produced lignin-modifying enzymes is insufficient to make generalizations about functional diversity. However, bacterial lignin-modifying mechanisms appear to be based on similar oxidative enzymes as fungi, such as peroxidase (DypAB) and laccase (bacterial laccase) enzymes. A unique set of glutathione-dependent enzymes that reductively cleave β -aryl bonds, termed the 'Lig operon,' was described by Masai *et al.*, (1993). These bonds constituted the majority of inter-molecular bonds within lignin.

Despite the culturing of bacteria with lignin-degrading capabilities, there have been few surveys describing their diversity within environmental lignin-degrading niches. There have been surveys of compost, deciduous forest (Pold et al., 2015) and tropical forest soil (DeAngelis et al., 2011; Woo et al., 2014) all originating from the same research group (see Section 1.2.7 for more details). The gut microbiome of wood-boring insects and termites (Harazono et al., 2003) have also been surveyed for lignin-degrading bacteria, implicating many familiar taxa (Streptomyces, Burkholderia and Pseudomonas) and some unique ones (Citrobacter, Escherichia, Paracoccus, Elusimicrobia and Yersinia). Studies of wood-ingesting mammalian gut microbiomes are underway for the beaver and moose (Dr. Keith Mewis and Dr. Kelly Wrighton, personal communication). Anaerobic lignin degradation has been reported in tropical forest soils, where lignolytic activity actually increased under fluctuating oxic conditions (Hall et al., 2015). The phenomenon reflected the relatively high catabolic rate of oligomeric forms of lignin under anaerobic conditions (coupled to iron reduction), combined with presumably necessary oxidative conditions to fuel oxidative catabolism of polymerized lignin (Hall et al., 2015). Anaerobic lignin degradation is supported by the recent description of Enterobacter lignolyticus, a facultative anaerobe capable of degrading model lignin compounds (DeAngelis et al., 2011). Lignindegradation has also been observed in anaerobic or sub-oxic marine environments (Benner et al., 1984) based on the activity of Ascomycetes (Bucher et al., 2004), Streptomyces (Buraimoh et al., 2015), and Sagittula stellata (Gonzalez et al., 1997). Given the relatively new reconception of bacteria as contributors to lignin-degradation and the recent development of metagenomic-based research, environmental surveys of lignin-degrading bacteria are few and far between. One of the major goals of this research was to determine whether previously characterized bacterial lignin-degraders are active *in situ* in forest soils and expand our knowledge of their diversity.

1.2.6 Cellulose-degrading Fungi and Bacteria

Few microorganisms possess the enzymes necessary to depolymerize cellulose and these are largely fungal and bacterial in origin, though invertebrates and higher eukaryotes possess some cellulase activity (Lo et al., 2003; Wilson et al., 2011). Bacteria that have evolved a specialization for growth on crystalline cellulose, present in plant cell walls (Figure 1.4), possess an overall greater number of CAZymes than their generalist counterparts (Berlemont and Martigny, 2013). They also possess a full complement of glycosyl hydrolase (GH) enzymes (endo- and exo- acting; Berlemont and Martigny, 2013) and often lytic polysaccharide monooxygenases (LPMO). These hardcore cellulose degraders are broadly distributed across 15 bacterial phyla, although closely related organisms ($\leq 98\%$ similar) do not necessarily, or even commonly, share the same capacity for cellulose degradation (Berlemont and Martigny, 2013). These characteristics suggest a significant role for horizontal gene transfer and convergent evolution in cellulose degradation, reflecting the diversity and abundance of cellulose-rich niches on Earth. Five phyla contain 89% of known bacterial cellulose-degraders (Actinobacteria, Firmicutes, Proteobacteria, CFB and Chlorobi), including model degraders like Cytophaga hutchinsonii and Clostridium cellulyticum. Decomposition of crystalline cellulose is relatively common across fungal saprophytes (i.e. nonparasitic fungi), which includes taxa from Basidiomycota, Ascomycota, Neocallismatigomycota (anaerobic fungi) and even the most ancestral lineage in fungi, Chytridiomycota (Gleason et al., 2011; Schneider et al., 2012; Štursová et al., 2012). A complete list of validated and predicted cellulose-degraders can be found in Table E.2. Unlike lignolytic populations, a number of environmental surveys of cellulolytic populations have been conducted in forests and in other environments.

1.2.7 Lignocellulolytic Bacteria and Fungi in Forest and Other Soil Environments

Forest soils are generally more acidic than other commonly studied soil types and pH exerts a strong influence over microbial community composition (Lauber et al., 2008). The groups of cellulolytic taxa identified in agricultural soils were notably absent in the most comprehensive surveys of forest soil cellulose-degraders to date (Štursová et al., 2012; Eichorst and Kuske, 2012), such as Cellulomonas, Kitasatospora, Micrococcus and Streptomyces (Actinobacteria), Mesorhizobium and Sphingomonas (Alphaproteobacteria), and Firmicutes, such as Bacillus and Paenibacillus (El Zahar Haichar et al., 2007; Ulrich et al., 2008; Schellenberger et al., 2010). One shared characteristic between forest and agricultural soils in these studies was the predominance of Betaproteobacteria (Burkholderia) and CFB (Mucilaginibacter, Cytophaga, and Pedobacter). In contrast, Štursová et al. (2012) as well as Eichorst and Kuske (2012) identified cellulolytic populations of acidobacterial subdivision I, and cultured a representative cellulolytic isolate (Lladó et al., 2016), implicating members of this ubiquitous phylum as cellulolytic for the first time. The aforementioned surveys of forest soils also identified cellulolytic members of the following groups: Myxococcales, Asticcacaulis (Alphaproteobacteria), Cellvibrio (Gammaproteobacteria), Cohnella (Firmicutes), Armatimonadetes (formerly OP10) and Verrucomicrobia. The single forest soil sample considered in Wang et al., (2015) was dominated by Caulobacter, followed by Beta-, Delta- and Gammaproteobacteria and Bacteroidetes. Verastegui et al., (2014) found that Myxococcales were indicators of cellulose-decomposition in forest soils, while members of Caulobacterales (Phenylobacterium), and Actinomycetales were common cellulolytic taxa found in tundra, agricultural soil and forest.

In fungi, members of *Ascomycota* predominate cellulose decomposition in soil. In proteomic data from forest litter, *Agaricomycetes* produced the fewest cellulases relative to ascomycotal groups, such *Leotiomycetes*, *Eurotiomycetes* and *Sordariomycetes* (Schneider *et al.*, 2012). *Agaricomycetes*, and *Basidiomycota* in general, are more common wood-inhabiting organisms, though some cellulolytic yeast-like groups, such as *Trichosporon* and *Cryptococcus*, occur in soils (Štursová *et al.*, 2012). In a survey of cellulolytic bacteria and fungi among five soil types, Eichorst and Kuske (2012) found cellulolytic chytrids and dinoflagellates along with ascomycotal groups, such as *Arthrobotrys*, *Cladophialophora*, *Chaetomium*, *Dactylaria*, *Hypocrea* and *Trichocladium*. Hemicellulolytic populations of forest soils were predominantly *Burkholderia* and *Pseudomonas*, with lesser populations of *Duganella*, *Variovorax*, *Mucilaginibacter* and *Paenibacillus* (Leung *et al.*, 2016).

A survey of lignin-degrading communities in temperate forest soil, using *in situ* enrichment and sequencing, identified putative activity in a number *in vitro* bacterial lignin degraders, such as *Pseudomonas sp.*, *Sphingobacterium sp.*, *Rhodococcus sp.*, *Sphingobium sp.* and *Ochrobactrum sp.*, as well as other taxa known to degrade lignocellulose, not previously implicated in lignin catabolism: *Cytophaga sp.*, *Paenibacillus sp.* and *Agrobacterium sp.* (Pold *et al.*, 2015). A similar study examining lignin-degrading bacteria in Puerto Rican rain forest soil identified lignolytic members of *Alphaproteobacteria*, *Betaproteobacteria*, *Acidobacteria* and *Chloroflexi* (DeAngelis *et al.*, 2011). Surprisingly, in both environmental surveys by DeAngelis *et al.*, canonical lignindegraders from *Streptomycetaceae* were absent. These reports provide insight into the native, *in situ* communities actively decomposing lignocellulose in forest soils. Yet, of these studies, only Leung *et al.* (2016) and Eichorst and Kuske (2012) considered deeper mineral forest soil communities, the latter studying the 'root zones.' An oft overlook soil type, in favour of plantmatter rich upper layers, mineral soils represent a potential source for novel lignocellulolytic taxa and catabolism. It has been suggested that mineral soils may favour bacterial decomposers over fungal ones, given few wood-degrading fungi have been found in mineral soils (Hall *et al.*, 2015) and all are aerobic, thus not well suited to deeper, anaerobic soils. Mineral soils were targeted in this thesis in order to capture a broader diversity of lignocellulolytic populations.

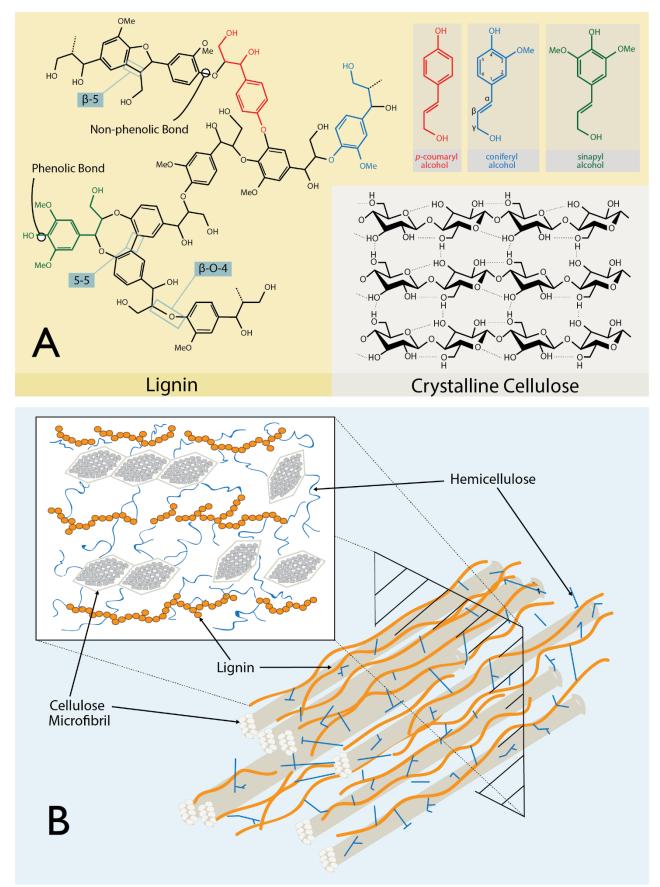
1.2.8 Symbioses of Lignocellulolytic Fungi and Bacterial

General physiological differences exist between bacterial and fungal lignocellulosedegraders which impart advantages during different stages of decomposition and under varying conditions in forest soils. Fungi predominate in the upper organic and litter horizons, due to a greater capacity for dispersal, colonization and penetration of fresh plant matter; substantially higher metabolic rates, and more powerful oxidative enzymes (Moore-Kucera et al., 2008; Voriskova and Baldrian, 2013). In one proteomic study of forest litter, the main producers of extracellular hydrolytic enzymes were fungi with no bacterial hydrolases detected (Schneider et al., 2012). Bacteria tend to predominate in later stages of litter decomposition as they possess greater metabolic diversity; adaptation to low oxygen environments and resilience to broad environmental conditions (Berg *et al.*, 2010). Yet, despite these predispositions, decomposition is a stochastic process performed by diverse populations of bacteria and fungi and a range of both antagonistic and mutualistic interactions have been reported (de Boer et al., 2005; Rousk et al., 2008). Fungal colonization of wood was shown to reduce bacterial abundance and diversity, but also consistently select for specific co-habiting bacteria, namely Burkholderia spp. and Xanthomonadas spp. (Folman et al., 2008). In a separate study, the rate of decomposition by mixed fungal and bacterial cultures demonstrated non-additive, synergistic effects (Romani et al., 2006). A variety of mechanisms for mutualism between wood-degrading fungi and bacteria have been proposed, but none well characterized, such as the syntrophic removal of metabolic byproducts, detoxification, provision of nitrogen and the production of growth promoting compounds (Frey-Klett *et al.*, 2007; Effmert *et al.*, 2012; Martin *et al.*, 2012). Conversely, the magnitude of antagonistic interactions in forest soil communities was exemplified in the reported five-fold greater abundance of antibiotic production and resistance genes in forest soils compared to more oligotrophic soils (Fierer *et al.*, 2012). Antagonistic interactions include antibiotic production and resistance, cell-wall degradation (chitinase vs. peptidoglycanase), competition to sequester resources (ex. siderophore production), interference of growth strategies and the modification of quorum sensing molecules (Zhang and Dong, 2004). Tolonen *et al.*, (2014) reported the cometabolism of cellulose and fungal cell walls by *Clostridium phytofermentans*, where chitinases were actually produced in greater abundance than cellulases, revealing the co-evolution of competitive strategies for cellulose decomposition. In this thesis, the contributions and interactions between these two domains of life is considered and their relative cellulolytic and lignolytic activity described.

1.2.9 SIP in Characterizing Lignocellulose-degrading Communities

Even as the culture-dependent constraints of early microbial ecology studies fade, highthroughput sequencing approaches are still challenged by the heterogeneity of soil and the rich diversity of microorganisms harboured therein. An indication of this is the poor metagenomic assembly from sequencing libraries derived from soil. In the case of one metagenomic study of forest soil, only 2% of reads could be assembled (Cardenas *et al.*, 2015) in contrast to the near 30% assembly from a marine environment (Iverson *et al.*, 2012). As a result, the diversity of lignocellulolytic groups has generally been underestimated and information on the ecological features of these communities is somewhat scarce. SIP offers the possibility of studying these populations by enriching for those organisms which assimilated carbon from a given substrate, thereby reducing the complexity of soil-derived sequencing data. However, even among studies which have successfully applied SIP to study cellulose decomposition, there are other pitfalls, such as the selection of substrate and the choice of incubation conditions, which makes SIP a hybrid between *in vitro* and *in situ* approaches. For example, there have been a number of recent SIPcellulose studies (Bastias *et al.* 2009; Schellenberger *et al.* 2010; Štursová *et al.* 2012, Koranda *et al.* 2014; Torres *et al.*, 2014) that made use of the commercially available ¹³C-cellulose manufactured by IsoLife which was found, here, to be unsuitably pure to target the exclusive activity of cellulolytic taxa (Section 2.2.3.1). The research described in this thesis represents a conservative SIP approach, which included the development of methods to optimize experimental conditions, to validate ¹³C-enrichment of DNA and assay the quality of substrate utilized.

Recent '-omic' and functional-based screening methods have provided a steady discovery of novel organisms and enzyme families possessing activity on lignin and cellulose (Bugg et al., 2010; DeAngelis et al., 2010; Hess et al., 2011; Levasseur et al., 2013). On one hand, these discoveries reflect our underestimation of the biochemical complexity required for decomposing lignocellulose and diversity of adaptations at the organismal level. On the other hand, many of the enzymes of interest catalyze a broad range of substrates and are involved in other cellular processes, exemplified by the various classes of catalase-peroxidases. One should expect that a major proportion of novel discoveries based on functional screening or other *in vitro* testing may be attributed to non-specific activity and may not translate into ecological significance, especially for those displaying low activity. SIP methods offer a unique solution to this problem by enabling functionally-oriented studies of microbial communities directly in an environmental and ecological context. SIP methods have a significant likelihood of novel discovery, having been successful in the targeted recovery of desired functional traits (Dumont et al., 2006; Pinnell et al., 2014) and the discovery of novel functional taxa (Buckley et al., 2007; Chen et al., 2008; Eichorst and Kuske, 2012).


1.2.10 Overview of Classes of Ligninase and Cellulase Enzymes

The breakdown of lignocellulose is slow and energetically unfavourable because of chemical properties selected by plant evolution, such as the facilitation of transpiration (hydrophobic), the ability to withstand high pressures and support heavy structures like branches (rigid) and the ability to resist microbial attack (random, stable and racemic). The synthesis of lignocellulose requires over 1,000 genes (Somerville *et al.*, 2004) and results in a complex, interwoven matrix of four major polymeric compounds: lignin, cellulose, hemicellulose and pectin. Of the four general components, lignin and cellulose are the most chemically inert and, due to the complexation of lignocellulose (Figure 1.4), impede overall decomposition (Ding *et al.*, 2012). For example, the half-life of cellulose was estimated to be on the order of millions of years in the absence of biological activity (Wilson, 2011). The following sections summarize current knowledge about the enzymes and pathways utilized to breakdown cellulose and lignin.

1.2.11 Cellulases and Accessory Enzymes

For many decades, the central paradigm for cellulose degradation revolved around the production of extracellular, 'free' (unbound) hydrolases that synergistically cleave within the crystalline inner stretches of polymer (endoglucanases) or at the termini (exoglucanase) producing oligosaccharides which are eventually cleaved into glucose by β -glucosidases. Many of the most prolific and best-characterized cellulolytic organisms employ this strategy (*T. reesei* and *C. hutchinsonii*). Exoglucanases are fast-acting, processive enzymes, unlike endoglucanases which adsorb and desorb at a much slower rate (Maurer *et al.*, 2012). Exoglucanases also act in a unidirectional manner, either from the non-reducing (EC 3.2.1.91) or the reducing (EC 3.2.1.176) ends of cellulose polymers. Endoglucanases acting in a processive manner, though rare, have been reported (Wilson and Kostylev, 2012). Some cellulases exhibit both endo- and exocellulase activity, which is not too surprising given the differences between exo- and endo-activity can

Figure 1.4. Representations of the structure of (A) lignin, crystalline cellulose and (B) their complexation with hemicellulose to form lignocellulose, the structural component of plant cell walls. The structural diagram for lignin was modified from Zakzeski *et al.* (2010) and the representation of lignocellulose was modified from Zeng *et al.* (2014).

differ by slight structural changes near the active site (Oliviera *et al.*, 2013). Exo- and endoglucanases from the GH family 6, which possess near identical structure and catalytic residues, differ in activity based on the presence or absence of a tunnel or loop conformation at the active site (Damude *et al.*, 1996). Both endo- and exoglucanases show a rich diversity of structure and function that result from the paralogous expansions as well as convergent evolution (Lynd *et al.*, 2002; Cantrel *et al.*, 2012). This diversity is further multiplied by their modular associations with carbohydrate-binding modules (CBMs). The discovery of novel GH families has been aided by such modular associations, such as CBMs, conserved protein motifs (Busk and Lange, 2013) or signal peptides (Emanuelsson *et al.*, 2007; Warnecke *et al.*, 2007), that provide targets for homology searches.

In 1983, Lamed *et al.*, reported on a new paradigm in cellulose-degrading machinery, termed the 'cellulosome,' a self-assembling multi-enzyme scaffold capable of binding to lignocellulose substrates and catalyzing a number of catabolic reactions. The first cellulosome was characterized from the rumen-inhabiting anaerobe *Clostridium thermocellum*, and subsequently in other anaerobic bacteria and fungi (Bayer *et al.*, 1994). The cellulosome revealed the degree of specialization possessed by decomposers and how evolution has addressed the complexity of heteropolymeric carbohydrate substrates. A cellulosome is constructed from a number of functional enzymes possessing 'dockerin' domains, which bind to 'cohesin' domains located on a large 'scaffoldin' protein, which is tethered to an anchor in the cellulolytic organism's cell wall. These structural elements, namely cohesins, dockerins and scaffoldins, provide a target for metagenomics surveys of cellulosomes, termed "cellulosomics" (Bayer *et al.*, 2008). Cellulosomes are significant to the metabolism of many ruminants and have recently been found in the human gut (Cann *et al.*, 2016).

In 2000, Shipman *et al.*, described a multigene 'starch utilization system' (Sus operon), which was the first example of the 'polysaccharide utilization loci' (PUL) paradigm. A PUL refers to a syntactic gene cluster which encodes a set of proteins that bind a polysaccharide to the outer membrane, cleave it and transport oligosaccharides inwards. PULs were first described in *Bacteroidetes*, from which the best characterized examples originate. A number of PUL-like operons possess synergistic activity on both cellulose and a wide range of other polysaccharides, demonstrating the importance of the PUL-paradigm (Mackenzie *et al.*, 2012; Koropatkin *et al.*, 2012). The most current elaboration on cellulose-degrading machinery was the discovery, in 2013, of an unbound, extracellular enzyme that possessed multiple catalytic sites (both endo- and exoglucanases) and multi-functional catalytic sites, acting on both xylose and cellulose (Brunecky *et al.*, 2013). These proteins, produced by a thermophilic bacterium, exemplify a hybrid between the multi-functionality of a cellulosome and the classic 'free' extracellular cellulase.

Hydrolysis may be the most common mechanism for the depolymerization of polysaccharides in nature and enzymes of this class, i.e. glycosyl hydrolases, comprise most of the best researched cellulolytic enzymes. Yet, there exists a growing number of non-hydrolytic enzyme classes which decompose polysaccharides or act synergistically to enhance breakdown. The discovery of lytic polysaccharide monooxygenases (LPMOs) represented a significant paradigm shift in understanding the decomposition of recalcitrant polymers like chitin and cellulose (Harris *et al.*, 2010; Vaaje-Kolstad *et al.*, 2010). LPMOs are believed to act synergistically to accelerate cellulose depolymerization, cleaving crystalline cellulose and providing hydrolytic enzymes access the substrate. LPMO redox reactions have been coupled to chlorophyll, yielding substantially elevated cellulose hydrolysis in an artificial thykaloid membrane containing LPMOs when exposed to light (Cannella *et al.*, 2016). There are other non-hydrolytic cellulase-enhancing factors, such as expansins, which can disrupt or loosen crystalline

cellulose and enhance substrate availability (Arantes and Saddler, 2010). Polysaccharide lyases are another class of non-hydrolytic enzymes, however they do not act on cellulose (Linhardt *et al.*, 1986). Carbohydrate esterases also do not cleave cellulose, but perform reactions that accelerate decomposition, such feruloyl esterases which deacetylating cellulose (Biely, 2012; Kroon *et al.*, 2000) and free carbohydrates bound to lignin (Blum *et al.*, 2000; Benoit *et al.*, 2006).

The diversity of cellulolytic machinery results, in part, from the structural heterogeneity of plant polymers which requires highly adapted enzyme-substrate adsorption chemistry and diverse catalytic activity. To aid in unraveling this complexity, polysaccharide degrading enzymes are being organized into families by their primary sequences and folding topologies (Henrissat, 1991) and, subsequently, categorized and annotated in the publicly available 'Carbohydrate-active Enzyme Database' (CAZy db; Cantarel *et al.*, 2009). This database is accompanied by 'CAZypedia,' which provides more detailed knowledge on the enzyme classes and families therein (http://www.cazypedia.org/). Most recently, the CAZy database released a tool for predicting PULs based on sequences from *Bacteroidetes*, which may prove useful in identifying PULs in the genomes of other species (http://www.cazy.org/PULDB/; Terrapon *et al.*, 2015). The 'dbCAN' offers a complementary service for annotating CAZymes using hidden Markov models (www.csbl.bmb.uga.edu/dbCAN/; Yin *et al.*, 2012). Despite spanning a full century of research, our understanding of the diversity of activity of cellulolytic enzymes continues steady growth.

1.2.12 Lignin-modifying and 'Auxiliary Activity' Enzymes

The discovery that lignin decomposition is a fundamentally oxidative process is attributed to Bavendamm, who, in 1927, differentiated between white and brown-rot fungi based on colorimetric changes from the oxidation of phenolic compounds. Bose and Sarkar were the first to characterize the oxidative enzyme as a 'laccase' from white-rot fungi in 1937. Laccases were one of the earliest enzymes to ever be characterized (Bertrand, 1894), while peroxidases were described later (Reed, 1916). The work of Manskaya was the first to implicate free radical chemistry in lignin biosynthesis, by demonstrating the partial polymerization of coniferyl alcohol using a peroxidase (Manskaya, 1948).

The evolution of lignolytic peroxidases was driven by the heterogeneous, hydrophobic and electrochemically stable structure of lignin, which resists direct enzymatic attack (Figure 1.4). To overcome steric resistance, class II catalase-peroxidases evolved surface exposed catalytic residues exemplified by lignin peroxidases (LiPs; Ruiz-Dueñas et al., 2009) or oxidized mediator compounds, like Mn²⁺ or veratryl alcohol, which could access and oxidize deeper structures within the lignin, exemplified by manganese peroxidases (MnP). Versatile peroxidases, as the name implies, are able to make use of both mechanisms (Camarero et al., 1999). Collectively, the class II catalase-peroxidases possess some of the strongest oxidation potentials of any characterized enzymes, which is not surprising given the need to oxidize lignin's highly stable non-phenolic bonds. Both LiP (with a redox potential of +1500 mV) and horseradish peroxidase (+950 mV) can create phenoxy radicals, while laccases are reported to oxidize only phenolic bonds (< +800 mV) (Havashi and Yamazaki 1979; Kersten et al., 1990; Li et al., 1999). Peroxidases and other ligninmodifying enzymes are categorized as 'Auxiliary Activity' enzymes in the CAZy database (Levasseur et al., 2013). However, 'PeroxiBase' offers the capability to more accurately compare and delineate catalase-peroxidase families (Fawal et al., 2013).

A second class of peroxidases, known as 'Dye-decolourizing peroxidases' (DyP), show lignin-modifying activity, but belong to the peroxidase–chlorite dismutase superfamily (Zámocký *et al.*, 2015). DyPs were first differentiated as novel peroxidases due to their ability to oxidize a range compounds which were poorly oxidized by other classes of peroxidase (Kim *et al.*, 1995). As of January 2014, the DyP superfamily was comprised of mainly bacterial enzymes (~97%), with the remainder found in Eukaryotes and a handful present in Archaea (Colpa *et al.*, 2014). DyP-like enzymes have been isolated and characterized in lignin-degrading bacteria (Ahmad *et al.*, 2011; Brown *et al.*, 2012; Davis *et al.*, 2013). The best-characterized DyP enzymes, DypB and Dyp2, oxidize and decompose lignin and exhibit MnP-like activity by way of Mn²⁺ oxidation (Ahmad *et al.*, 2010; Brown *et al.*, 2012). The characterizations of DyP enzymes is relatively new and they have not been assigned an AA family in CAZy. However, a comprehensive phylogenetic analysis of DyPs was recently completed (Singh and Eltis, 2015), leading the way to better functional characterization and homology searches.

Laccases exhibit the capacity to oxidize a remarkably diverse set of phenolic substrates. Their lignolytic activity, in the absence of peroxidases, has been demonstrated in both fungal (Ander and Eriksson, 1976) and bacterial systems (Majumdar et al., 2014). Laccases differ from peroxidases in their use of molecular oxygen to oxidize polyphenols (ex. tannins), but lack the oxidative power to readily cleave the predominantly non-phenolic bonds within lignin. Efficacious degradation of lignin has been demonstrated by coupling laccases with redox mediator compounds, similar to the activity of peroxidases (Munk et al., 2015). Lignin-degrading laccases are also challenging targets for bioinformatics analyses because their diverse functional roles in cell chemistry. Laccases are multicopper oxidases, which can be involved in intra- and extracellular developmental processes, morphogenesis, pigmentation and pathogenesis (Ausec et al., 2012). Their role is further complicated by their ability to act on a wide range of substrates and ambiguous coupling with redox mediators (Reiss et al., 2013). Identifying secreted laccases also does little to distinguish putative lignin-degrading activity, given that over 70% of all bacterial laccases contain signal peptides (Ausec et al., 2012). Laccases are deposited in the CAZy database under the AA family I, while HMMs for two- and three-domain laccases have been published (Ausec et al., 2012).

The selection of bioinformatic approaches used to study ligninases and cellulases will differ according to what features are distinguishable at the sequence level. To date, lignindegrading genes have not been found associated with other features which can, by proxy, suggest a functional role, unlike cellulases which can be identified by their association with PULs, cellulosomes, CBMs and in gene clusters (Bélaich et al., 1997; Morita et al., 2009; Dai et al., 2012). Identifying lignin-degrading genes is further complicated by the fact related genes are involved in a variety of core functions such as oxidative stress, detoxification and biosynthesis and, thus, conserved features of previously characterized lignolytic enzymes must be carefully delineated or enzyme activity validated. As a result, bioinformatics predictions of cellulolytic activity have shown promise (Hess et al., 2011), while most lignin-degrading enzymes have been discovered by functional assays. Bioinformatic approaches for identifying lignin-degrading genes have therefore gravitated to other 'guilt-by-association' methods, relying on organism-level traits which suggest adaptations to a lignin-degrading niche (Brown et al., 2012; Eastwood et al., 2011). One motivation for this thesis was to combine stable isotope probing with metagenomics provide an underlying functional basis for the bioinformatic identification of putative lignolytic enzymes.

1.2.13 Research Objectives in the Survey of Cellulolytic and Lignolytic Taxa from Forest Soils Across North America (Chapter 4)

The major goal of research described in Chapter 4 was to survey the biodiversity of lignocellulolytic populations in forest soils from across North America. Decomposers of all three major components of lignocellulose, namely hemicellulose, cellulose and lignin, were surveyed, pioneering the use of SIP-lignin. Shotgun metagenomics enabled the recovery of draft genomes from lignin- and cellulose-degrading taxa, permitting the identification of catabolic genes and aromatic degradation pathways to validate putative function. Studies have already used SIP to survey cellulolytic communities, but have focused on a relatively small number of samples from a

narrow range of sources given the cost and labour required for SIP experiments. Furthermore, a number of recent SIP-cellulose were compromised by the use of impure ¹³C-labeled maize cellulose (Bastias *et al.* 2009; Schellenberger *et al.* 2010; Štursová *et al.* 2012, Koranda *et al.* 2014, Torres *et al.*, 2014). This research endeavoured to process a large number of samples in order to make broad, replicated comparisons among lignocellulolytic communities from a wide range of forest soils.

The extent to which lignocellulolytic organisms have evolved the capacity to decompose all three major components of lignocellulose was assessed in Chapter 4. The presumption was that these traits would co-occur, given the example of certain wood-degrading fungi that can degrade all three substrates (Eastwood *et al.*, 2011; Floudas *et al.*, 2015). Thus, the identification of species (OTUs) which exhibit enrichment in ¹³C-libraries from all three substrates was attempted. SIPhemicellulose data was included, but, as the data was not collected for this thesis and has been previously published (Leung *et al.*, 2016), it was not the focus of Chapter 4. The characterization of active, *in situ* lignin-degrading bacteria would be a significantly novel contribution to our understanding of the process of decomposition. Comparisons of the activity of bacterial and fungal lignin-degraders was made. A SIP-lignin experiment with the addition of fungicide was used to confirm the degree of bacterial assimilation of carbon from lignin. The expectation is that fungi will predominate in the degradation of both lignin and cellulose, at least in organic layer soils.

In addition to comparisons of taxa that degrade individual lignocellulosic polymers, the presented in this Chapter comprises a diversity of sample types from forests across North America and from upper organic and deeper mineral soil layers. The distribution and soil layer preference of lignocellulolytic taxa can inform our understanding of how differences in climate, soil-type and forest-type select for certain physiological traits. The relative abundances of putatively lignocellulolytic taxa in field samples (i.e. not microcosm based) was used as further evidence to

support biogeographical trends and to relative abundance of lignocellulolytic populations relative to the community at large. Lignocellulolytic populations were expected to be a minority (Allison *et al.*, 2012; Goldfarb *et al.*, 2011), though recent research has suggested that one of the most abundant bacterial taxa in forest soils could potentially degrade lignin by-products (VanInsberghe *et al.*, 2015). An assessment of whether putatively lignocellulolytic taxa were impacted by timber harvesting was made, given the overlap of samples used in Chapter 3, with the assumption that lignocellulolytic populations may be most abundant in OM1 where woody biomass was retained.

Finally, a link between community composition and rate of decomposition was explored. In SIP-data, community or functional gene composition can be used to explain variation in the quantitative estimates of ¹³C-enrichment of DNA or PLFA. Chapter 4 investigated possible associations between the presence or absence of certain taxa and/or functional genes and higher or lower rates of lignolytic or cellulolytic activity. While informative, SIP microcosm- based estimations of activity may not reflect *in situ* rates, nor are culture-independent designation of lignocellulolytic activity without error. Thus, the strength of SIP evidence was weighed and caveats for the SIP method discussed.

Chapter 2: Materials and Methods

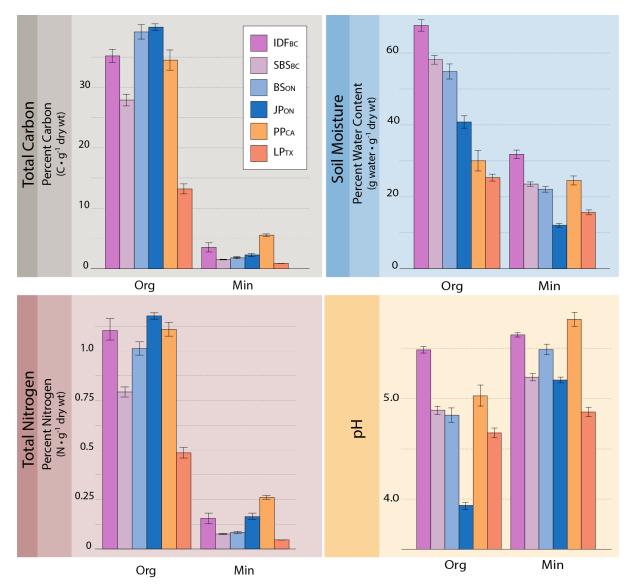
2.1 Sample Collection from Long-term Soil Productivity Study Sites

2.1.1 Site Descriptions

Soil samples were collected from reforested experimental plots within the Long-Term Soil Productivity (LTSP) Study from eighteen different sites spread across six prominent coniferdominated North American 'ecozones' (Figure 1.1). The term 'ecozone' is a general descriptor that delineates differences in local assemblages of organisms and climatic factors. In this thesis, it is not used in accordance with the classification system provided by Environment Canada (Ecological Stratification Working Group, 1996). Ecozones were chosen to exemplify a broad range of climates and regions of North America where forestry is a major industry. Ecozones differed by a number of factors, including soil type, mean annual temperature and precipitation as well as predominant tree species reported in Table E.3. Ecozones also differed based on bulk soil chemistry, such as carbon and nitrogen content and pH (Figure 2.1). Each of the three sites within an ecozone contained triplicate plots for each of the four harvesting treatments: an unharvested reference plot, 'REF,' and three harvesting intensities resulting in varying degrees of organic matter removal: 'OM1,' where tree boles (stems) were debranched and woody debris left in situ; 'OM2,' where whole trees and branches were removed and, 'OM3,' where whole trees were removed and the upper organic layer of forest floor scraped away (Figure 2.2). Compaction was controlled at these sites and plots with minimum compaction were sampled. The age of forest varied from 11 to 17 years, with a majority over 15 years post-harvest.

2.1.2 Sample Collection

Samples from all three sites within an ecozone were collected within, at most, three months of each other between March and September. Sampling occurred between 2008 and 2012, depending on the ecozone (Table E3). Each site in BS_{ON} and JP_{ON} had triplicate plots from


which replicate samples were collected, while in the other four ecozones triplicate samples were collected from three separate transects in a single plot. In sampling, the litter layer was first removed and organic layer samples (~ 5 cm of the O-horizon) were collected with a trowel. Then, the top 20 cm of mineral soil (including the A and occasionally upper B-horizon) was collected using a Stoney auger (5 cm diameter). Sampling was performed to reflect consistent soil characteristics among treatments and sites. To account for heterogeneity at the plot level and ensure sufficient soil material, a single soil sample from a plot or transect was composited from between three to five sampling points. Samples were stored at 4°C during transport, sieved through 2-mm mesh and stored at -80°C until DNA was extracted within three months of sampling date.

2.2 Molecular Methods

2.2.1 Preparation of 16S rRNA gene and ITS region Pyrotag Libraries

DNA was extracted from 0.5 g of soil using the FastDNATM Spin Kit for Soil (MPBio, Santa Ana, CA) according to the manufacturer's protocol. PCR amplification was performed on bacterial 16S rRNA gene (V1–V3) and fungal internal transcribed spacer region (ITS2) using barcoded primers according to methods described in Hartmann *et al.*, (2012). PCR amplifications were performed in triplicate and pooled prior to purification and quantification. All DNA was quantified using Pico-Green fluorescent dye (ThermoFisher, MA, USA). Samples were sequenced using the Roche 454 Titanium platform (GS FLX+) at the McGill University and Genome Québec Innovation Centre, yielding on an average > 5,000 bacterial and fungal (200 bp) reads per sample. Read libraries were quality filtered and processed according to the Schloss "454 SOP" (accessed October 2013; Schloss *et al.*, 2009). 16S rRNA gene libraries were clustered into operational taxonomic units (OTUs) at 1% dissimilarity to produce abundance

matrices. Fungal sequences were clustered at 5.5% dissimilarity using CrunchClust according to Hartmann *et al.*, (2012) due to the hypervariability of the ITS region. Taxonomic classification was performed using the RDP Classifier (Wang *et al.*, 2007) with the Greengenes database for 16S rRNA genes (database gg_13_8_99; August 2013) and the Mothur-formatted release of UNITE for ITS (sh_mothur_release_08.12.2013; August 2013). All OTU counts were normalized to total counts per thousand reads.

Figure 2.1. Bar plot of differences in total carbon, total nitrogen, soil moisture and pH among ecozones.

Figure 2.2. Photographs capturing the initial set-up of the harvested Californian LTSP sites (A-C) and the appearance approximately 15 years after reforestation when sampling was conducted (D). Image A illustrates harvesting treatment 'OM1' as well as the efforts to minimize soil compaction. Image B and C illustrate harvesting treatment 'OM2' and 'OM3', respectively. [Photo credit: Matt Busse; <u>mbusse@fs.fed.us</u>]

2.2.2 Preparation of and Sequencing of Shotgun Metagenome Libraries

All SIP-Cellulose metagenomic libraries were prepared from 40-50 ng of ¹³C-enriched DNA using the Nextera DNA Sample Preparation Kit (Illumina Inc., CA, USA), while all SIP-Lignin metagenomic libraries were prepared from 1 ng of ¹³C-enriched DNA using the Nextera XT DNA Sample Preparation Kit. The discrepancy was due to the difference in amount of ¹³C-enriched DNA recovered from each incubation. Preliminary tests comparing different library preparation methods from identical samples concluded that the 1 ng (Nextera XT) approach comparable to the 50ng (Nextera), if not better due to the ability to pool fewer fractions to achieve the library prep kit requirements (see Section 4.2.1). Four sample libraries were multiplexed per lane for all sequencing libraries and sequencing was performed on an Illumina HiSeq 2500 (2 x 100-bp). Samples were combined for multiplexing based on average fragment size not sample origin or soil type.

Metagenomic data was collected in four major batches. The first batch of libraries were prepared for the SIP-cellulose investigation into treatment effects (Section 3.3.4) that included four libraries from ¹³C-DNA recovered from PP_{CA} mineral soils corresponding to REF, OM1, OM3 and ¹²C-DNA from REF plots. Sufficient ¹³C-DNA was achieved by pooling all Californian sites, which was necessary due to the depletion of DNA stock from the creation of 16S rRNA gene and ITS pyrotag libraries. The second installment of libraries were prepared for the SIP biodiversity survey of cellulolytic taxa (Section 4.2) and included thirty-eight libraries from both organic and mineral soil for every REF plot for every site in all five ecozones: IDF_{BC}, BS_{ON}, JP_{ON}, PP_{CA} and LP_{TX}, including one ¹²C-DNA control composited from comparable heavy factions of DNA from three sites from within each ecozone and for each layer (note: pyrotag libraries have fully paired controls, while metagenomic libraries have only one control per sample type). The third batch was for the SIP biodiversity survey of lignolytic taxa (Section 4.2)

and included forty-six libraries from organic and mineral soil (composites OM1 and OM2 due to shortage of soil) for each site in Ontario (BSoN & JPoN), PP_{CA} and LP_{TX}. Fewer ecozones were covered due to limited availability of substrate and the intention of ensuring sufficient replication. Due to poor recovery of DNA and soil inhibitors, numerous additional library preparations failed and therefore all forty-six libraries represent unbalanced pairing of ¹³C- and ¹²C-samples (out of a total of 72 samples prepared). Each sample type is represented by at least one ¹²C-sample (for example: PP_{CA}-organic layer or LP_{TX}-mineral layer), with commonly more than one. The final batch of metagenomes were sequenced for the SIP-lignin antibiotics experiment (Section 2.2.5.1), where microcosms were incubated with or without fungi-specific antibiotics (Section 4.2.4), yielding a total of eight metagenomes corresponding to paired incubations of mineral soil (¹³C-lignin + antibiotic versus ¹³C-lignin w/o) for two sites in BS_{ON} (A7 & A8) and one each in PP_{CA} (BR) and LP_{TX} (TXA).

2.2.3 Stable Isotope Probing

2.2.3.1 Preparation and Properties of ¹³C-labeled Cellulose

Bacterial cellulose was chosen as the substrate to target cellulolytic activity via SIP due to irremediable impurities in commercially available plant-derived ¹³C-cellulose from IsoLife (58% glucose + 4.4% lignin + unknown percentage of sugars from hemicellulose; Appendix D) which was initially tested and ultimately abandoned. Bacterial cellulose is more comparable to plant-derived cellulose than other preparations, such as Avicell, Sigmacell or filter paper, which are typically low molecular weight and less crystalline and, most importantly, are also not free of oligosaccharide contaminants.

Plant cellulose is produced in the form of microfibrils which are fine, crystalline structures derived from the aggregation of 18 or 36 (still disputed) or more chains of β -(1,4)-D-glucose (Newman *et al.*, 2013). The crystalline nature of cellulose is a key determinant of the

rate of mineralization (amorphous regions decompose more rapidly) and type of enzymes required for hydrolysis, where specially evolved carbohydrate binding modules are necessary for effective hydrolysis of crystalline cellulose (Wilson, 2011). Bacterial cellulose is produced by homologous cellulose synthase proteins, but they are arranged in a linear array of single or multiple rows in contrast to plants which possess hexagonal conformations. As a result, bacterial cellulose microfibrils, termed "nanocellulose," are around 100 times thinner than the average plant microfibril (~30 nm). Despite these clear differences, bacterial cellulose fares well in a comparison of traits correlated to enzymatic degradation: it has comparable polymer length (3000 – 9000 units) and crystallinity (80-90% crystalline) and demonstrates similar mechanical properties to plant cell walls (Chanliaud *et al.*, 2002).

Bacterial cellulose was produced by growing *Gluconacetobacter xylinus* str. KCCM 10100 with ¹³C-labeled glucose (99 atom % 13C, Cambridge Isotope Laboratories, MA, USA) in Yamanaka media under conditions outlined in Ruka *et al.*, (2012). To ensure media was highly oxygenated, a requirement for the production of cellulose, cultures were grown in a 200 mL volume in a much larger 2 L Erlenmeyer flask with sponge tops tightly covered with aluminum foil to retard evapouration. Cellulose was purified according to Dunford (2011) but with longer boiling times (4 hrs) and three repetitions of boiling in 1% sodium hydroxide. Following purification and soaking the cellulose in a mildly acidic solution, contamination from DNA and protein was not detectable by spectrophotometry (A₂₆₀ and A₂₈₀). The carbohydrate composition of bacterial cellulose was 100% glucose and nearly pure ¹³C% (only impurities would be from protein added to culture broth).

2.2.3.2 Preparation and Properties of ¹³C-labeled Lignin

Plant lignin is synthesized by the coupling of free-radical phenylpropanoids after activation by plant peroxidases. Synthetic dehydrogentively polymerized (DHP) lignin emulates the plant mechanism using horseradish peroxidase to generate radicals of *p*-hydroxyphenyl, guaicyl and syringyl lignins. The DHP lignin which most resembles extracted "milled wood" lignin is prepared from coniferyl alcohol via the "zutropfen" method (Saake *et al.*, 1996). DHP lignins typically have a lower molecular weight than plant lignin (~1600 – 9000 g · mol⁻¹, or 8 -50 units) and possess different frequencies of inter-linkages. DHP contains more β-5, β-β bonds and fewer β-O-4 bonds (Figure 1.4), which predominate in softwood lignin (~80%) (Brunow and Lundquist, 1980). DHP lignin is a reasonable surrogate for softwood lignin given the recent report demonstrating that native softwood lignin is oligomeric and minimally branched contrary to prevailing convention (Crestini *et al.*, 2011). DHP lignin structurally resembles softwood lignin and has a long history of use as a model substrate for lignin-degrading activity.

¹³C-labeled DHP lignin was synthesized from ring-labeled coniferyl alcohol using horseradish peroxidase as described Kirk and Brunow (1988). Ring-labeled coniferyl alcohol was synthesized from ¹³C-ring labelled vanillin (Sigma Aldrich, CA) according to the procedure described in the Appendix. The resulting DHP lignin had a weight average molecular weight (M_w) of 2,624 g mol⁻¹ which equates to polymer lengths of ~ 14 units. DHP lignin was washed once in distilled water to remove residual unpolymerized coniferyl alcohol and its purity verified by HPLC. The resulting labeled DHP lignin was 75% atom ¹³C.

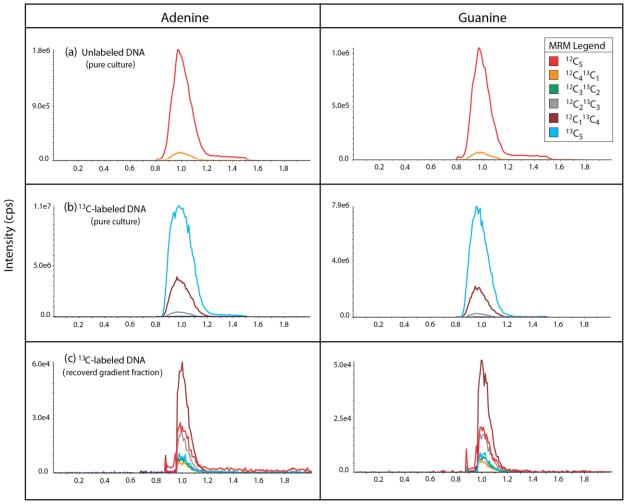
2.2.3.3 Microcosm Preparation

Microcosms were prepared by adding between 1-2 g dry wt organic or mineral soil to 30mL serum vials, adjusting moisture content to 60% (mineral) and 125% (organic) (w/v).

Moisture content was selected based on preliminary CO₂ assays which identified maximal respiration rates for soil type (data not shown). Microcosms were pre-incubated for one week prior to the addition of substrate. Microcosms were amended with either 10% w/w of ¹³Ccellulose or ¹³C-lignin and paired with microcosms amended with identically prepared unlabeled, substrates (~1.1% atom ¹³C). These ¹²C-control microcosms were used to correct for natural, background ¹³C-carbon content in SIP-phospholipid fatty acid (PLFA) work and to control for background populations of organisms with naturally higher genomic GC content (i.e. heavier DNA) in SIP-DNA work. Microcosms were then incubated at 20° C for either 9 days (organic soils + cellulose), 14 days (mineral soils + cellulose) or 60 days (both soil layers + lignin). The incubation length was optimized by preliminary time-course experiments described in results Section 3.3.2. Due to poor enrichment of microbial biomass in organic soils from DHP-lignin, organic soils were mixed 1:3 with double-autoclaved mineral soil from corresponding samples in order to dilute preexisting organic matter. Following incubation, soil samples were lyophilized and stored at -80° C until processing. All SIP-PLFA, SIP-pyrotag and SIP-metagenomic data for a given sample and substrate were derived from the same set of microcosms. In contrast, 'in situ' sequencing data was derived from corresponding field samples that were not incubated. SIPpyrotag libraries were taken from Leung et al., (2016) who incubated with ¹³C-hemicellulose in an identical fashion, except for a period of 48 hrs.

2.2.3.4 Analysis of SIP-Phospholipid Fatty Acids (PLFA)

PLFAs were extracted from 0.75 g (organic) or 1.0 g (mineral) dry wt soil according to Bligh and Dyer (1959) and ¹³C-content was analyzed using ion ratio mass spectrometry (UBC Stable Isotope Facility) ported with gas chromatography as detailed in Churchland *et al.*, (2013) with the following exceptions: (i) methyl undecanoate (c11:0) was used for the internal standard, and (ii) quantitation was based on an average of three serial dilutions of undecanoate, nonadecanoate (c19:0), and methyl cis-13-docosenoate (c22:1 ω 9). Peak identification was based on retention time compared against two reference standards: bacterial acid methyl-ester standard (47080-0; Sigma–Aldrich, St. Louis) and a 37-Component fatty acid methyl-ester mix (47885-U; Sigma–Aldrich, St. Louis). Unidentifiable enriched peaks, termed "unidentified fatty acids" (UFA), were included in analysis if they met the following conditions: i) detection in > 3 samples, ii) average δ ¹³C > +50 ‰ and iii) confirmed as long-chain alkane methyl esters by GC-MS using the identical instrumentation and method as in Leckie *et al.*, (2004). Taxonomic affiliations of specific PLFAs were assigned according to Högberg *et al.*, (2013), with c18:1 ω 9 and c18:3 ω 6 added as additional fungal PLFAs (Ruess and Chamberlain, 2010). All comparisons between taxonomic groups were performed using values normalized to total PLFA content. All SIP-PLFA raw data was processed identically in R using scripts that can be found at: https://github.com/roli-wilhelm.


2.2.3.5 Quantitation of ¹³C-enriched DNA

Quantitation of the total mass and atom % 13 C of DNA was measured with UHPLC-MS/MS. One nanogram of DNA was sufficient for quantitation, though typically 5 ng was used where possible to ensure a strong signal. DNA was diluted or concentrated to 5 µL and mixed with 95 µL of 88% formic acid in 250 µL PCR tubes and incubated at 70°C for 2 hrs to hydrolyze the DNA polymer. The acid solvent was completely evapourated using a Savant SpeedVac SC110A (Thermoscientific, U.S.) with a custom-made acid trap (a 500-mL air-tight container packed with soda lime) to prevent damage to equipment. The sample was suspended in 40 µL of UHPLC mobile phase (0.22 micron-filtered solution consisting of 98% solvent A,

water with 0.1% v/v formic acid, plus 2% solvent B, methanol with 0.1% v/v formic acid) and run according to the details described in Wilhelm *et al.*, (2014).

Atom % ¹³C-carbon of DNA was calculated by summing the peak area for the various isotopic species of guanine and adenine. Both compounds contain five carbons, thus the incorporation of ¹³C produced incrementally heavier species, for adenine m/z 136.0/119.0 to m/z 141.0/124.0, and for guanine m/z 152.1/135.1 to m/z 157.1/140.1 (Figure 2.3). The mass of unlabeled and labeled DNA was proportioned according to the following summations of peak area: i) Allc12 + 5c121c13*0.077+ 3c122c13*0.0048; and ii) Allc13 + 1c125c13 + 2c124c13 + 3c123c13*0.9952 + 4c122c13*0.923. According to these formula, we observed average natural abundances of 5.9% (+/- 0.2% SE) from lambda DNA and 7.7% (+/- 0.2% SE) from DNA extracted from unlabeled soil samples. Given the natural abundance of ¹³C (1.11%), the theoretical amount of a six carbon compounds containing a single ¹³C isotope in a mixture is 5.9%.

Figure 2.3. Examples of mass spectra for adenine and guanine for three samples: (a) unenriched DNA from a *Gluconacetobacter sp.* culture, (b) ¹³C-enriched DNA from *Gluconacetobacter sp.* grown on pure ¹³C-glucose, and (c) ¹³C-enriched DNA recovered from a high density fraction following the CsCl gradient ultracentrifugation of DNA extracted from soil fed ¹³C-cellulose.

Time (min)

2.2.3.6 Recovery of ¹³C-enriched Nucleic Acids

¹³C-enriched DNA was separated using cesium chloride density centrifugation according to the method outlined by Neufeld et al., (2007) with the following modifications: i) the amount of DNA applied to the column was standardized according to the degree of ¹³C-enrichment as determined by UHPLC, resulting in between $6 - 10 \mu g$ of DNA used per sample and ii) DNA was recovered from the cesium chloride solution (i.e. desalting) using Amicon Ultra-0.5 mL filters (EMD Millipore, MA, USA). Heavy fractions (1.727-1.735 g· mL⁻¹; typically F₁-F₇) were pooled and concentrated in the 500 µL filter columns by centrifugation for 3 min at 14,000 rcf. Samples were then washed three times with 450 µL of PCR-grade water. The modification in DNA recovery (shortened processing time and reduced labour) was necessary for higher sample throughput and also resulted in 2-fold higher yields. During fractionation, a constant flow rate was maintained by pumping coloured water into the top of centrifuge tubes with a syringe pump (Model R-E; Razel Scientific, U.S.) and fractions were collected every 30 seconds, resulting in 20 fractions of approximately 250 µL. Density was measured using a refractometer and converted to g CsCl \cdot mL⁻¹ using the following formula: density = (refractive index)*10.927 -13.593. DNA was suspended in 30 µL of pure water and quantified using Pico-Green fluorescent dye or UHPLC. The ¹²C-control DNA were treated identically, however typically insufficient DNA for PCR was recovered from heavy fractions, resulting in the need to pool additional fractions (~F₁-F₉). The successful recover of highly ¹³C-enriched DNA was verified by the previously described method for quantitation (Section 2.2.3.5).

2.2.3.7 Estimating Effects of GC Content on DNA Recovery from Heavy Fractions

The efficacy of CsCl density gradient centrifugation at separating enriched DNA from high-GC bacteria was tested by artificially spiking in unlabeled genomic DNA from *Nocardioides sp.* (70% GC; IMG Taxon ID: 2519899648) in ¹³C-enriched soil DNA extract. Genomic DNA was spiked at 5, 10, 15 and 20% (v/v) of total DNA applied to the CsCl gradient. After purification, PCR amplification and sequencing of 16S rRNA libraries, the heavy fractions of DNA yielded fewer than 3% reads corresponding to the *Nocardioides sp.*, though the number of reads that did match were roughly proportional to the amount of spiked DNA, 1.0%, 1.4%, 1.5% and 2.9%, respectively. Based on this data, we concluded that GC content would have marginal impact on recovering unlabeled DNA in heavier fractions.

2.2.4 Methodology Specific to Study of Treatment Effects

2.2.4.1 Soil Respiration Microcosms

Organic and mineral layer soil samples from Californian LTSP treatments REF, OM1 and OM3 were incubated with or without one of three milled lignocellulosic substrates derived from Douglas-fir: (i) "lignocellulose," from debarked, untreated Douglas-fir woodchips, (ii) "lignin + cellulose," from steam treated woodchips, where hemicellulose was solubilized and removed and (iii) "cellulose," from steam treated woodchips which were subsequently delignified (Kumar *et al.*, 2012). Microcosms were prepared by adding 4.5 g dry wt soil to 30-mL serum vials, adjusting moisture content to 60% (mineral) and 125% (organic) (w/v) and pre-incubated for one week. Substrate was then added (0.45 g) along with CO₂ traps, consisting of sterile glass vials containing 2 mL NaOH. Microcosms were incubated at 20 °C for an additional 14 days. Net respiration was determined by titration of the NaOH traps according to methods outlined by Haney *et al.* (2008).

2.2.5 Methodology Specific to Survey of Cellulolytic and Lignolytic Organisms

The biodiversity survey described in Chapter 4 was completed subsequent to the research on the effects of timber harvesting. Having founds ITS (fungal) pyrotag libraries to be relatively uninformative in identifying differentially abundant taxa in ¹³C- vs. ¹²C-libraries (see Section 3.3.4), only 16S rRNA libraries were use in subsequent analyses. This decision was made to conserve ¹³C-enriched DNA, in particular for SIP-lignin experiments. Shotgun metagenomic data contained a much stronger signal for fungi and, therefore, was sufficient for the purposes of research. One caveat is that higher replication was achieved with pyrotag libraries and, while fungal reads were easily differentiated from bacterial reads by lowest common ancestor (LCA) analyses, the taxonomic resolution afforded by LCA was poor.

SIP-lignin was performed on a subset of ecozones given the desire to conclude with significant replication any observation and the scarcity of 13 C-enriched material. The synthesis of DHP-lignin was costly (~ \$10,000 + labour) and yielded only ~ 800 mg of substrate. As a result, only LP_{TX}, BS_{ON} and PP_{CA} were selected for broadest coverage.

2.2.5.1 Fungicide Amended Microcosm Experiment

To demonstrate the degree of bacterial involvement in the degradation of DHP-lignin, a select number of soils were incubated with anti-fungal compounds. Cycloheximide and fungizone (amphotericin B) were selected based on reports on the efficacy of anti-fungal soil amendments by Ingham *et al.*, (1984). Mineral soil samples from two sites in BS_{ON} (A7 and A8) and one from both PP_{CA} and LP_{TX} were chosen based on their high levels of enrichment in prior SIP-lignin incubations. Soil microcosms were prepared as previously stated. Two parallel sets of microcosm were amended with ¹³C-DHP lignin with one set dosed with antibiotic cocktail on a weekly basis at 1 mg g⁻¹ soil (cylcoheximide) and 1.2 mg \cdot g⁻¹ soil (fungizone). A 10 mg \cdot mL⁻¹

cylcoheximide solution was prepared in distilled, autoclaved water at pH 5.0 and a $30\text{mg} \cdot \text{mL}^{-1}$ fungizone solution was prepared in DMSO. Both were stored at 4 °C and protected from light. Soil microcosms were dried out for 2 hrs in a flow-hood prior to the addition of antibiotics to prevent soils from becoming water-logged by the regular addition of moisture (140 µL per week). Samples were lyophilized, stored at -80 °C and analyzed for PLFA content and by shotgun metagenomic sequencing of ¹³C-enriched DNA.

2.3 Bioinformatic Analyses

2.3.1 General Statistical Approaches

R (R Core Team, 2015; v. 3.1.0) was used for all statistical analyses with general reliance on the capabilities provided in the following packages: reshape2, ggplot2, plyr (Wickam, 2007; Wickam, 2009; Wickam, 2011), combinat (Chasalow, 2012), limma (Ritchie, 2015), Hmisc (Harrell and Dupont, 2015) and phyloseq (McMurdie and Holmes, 2014). Phyloseq proved highly useful in working with phylogenetic libraries as it kept OTU count matrices, taxonomic classifications and sample data as one easy-to-use object. Where necessary, P-values were adjusted according to the Benjamini & Hochberg (1995) false discovery rate (FDR) correction. All correlational testing was performed with 'rcorr' from the Hmisc package. The majority of graphs were made using ggplot2, saved as pdf and customized with vector graphics editing software. All raw data and R code used to process and analyze data was made available as Supplementary Data.

2.3.2 Phylogenetics, Taxonomic and Ecological Classifications

Phylogenetic trees were prepared either by maximum likelihood (bootstrapping, n=500) with MEGA6 (Tamura *et al.*, 2013) based on MUSCLE sequence alignment, trimmed to ensure complete alignment of all sequences (Chapter 3) or by parsimony in ARB (Westram *et al.*,

2011), adding directly to the pre-aligned and curated SILVA tree (Pruesse *et al.*, 2007; 'SSURef_NR99_123_SILVA_12_07_15'). As previously mentioned, classification was performed using the RDP Classifier (Wang *et al.*, 2007) using Greengenes for 16S rRNA genes (database gg_13_8_99; August 2013) and the Mothur-formatted release of UNITE for ITS (sh_mothur_release_08.12.2013; August 2013). Taxonomic classification of raw or assembled metagenomic data was based on lowest common ancestor analysis from MEGAN (Huson *et al.*, 2007; v. 5.10.1) using the output from DIAMOND blastx (Buchfink *et al.*, 2015; v. 0.7.9) against a local version of the 'nr' database from NCBI (downloaded October 2014). MEGAN classification was based on the consensus taxonomy of the top 10 valid hits to the 'nr' database. DIAMOND blastx searches were rapidly performed on the WestGrid system 'Breezy.'

The designation of functional guilds of fungi was based on FUNGuild (Nguyen et al., 2015; v. 1.0). Radiation, desiccation, and heat-tolerance were assigned to a group if members were reportedly abundant in lithic or desert environments or if a cultured representative had been documented to have exceptional tolerance. The superphylum, 'Terrabacteria,' refers to the grouping of the following bacterial phyla: Actinobacteria, Armatimonadetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes and Tenericutes. Ectomycorrhizal status was attributed to the following genera based on a broad literature review: Alpova, Amanita, Amphinema, Boletus, Cadophora, Cantharellus, Cenococcum, Chroogomphus, Clavulina, Cortinarius, Craterellus, Elaphomyces, Endogone, Entoloma, Genabea, Genea, Gilkeya, Gomphus, Hebeloma, Helvella, Hydnum, Hygrocybe, Hygrophorus, Hysterangium, Inocybe, Laccaria, Lactarius, Leccinum, Lycoperdon, Lyophyllum, Melanogaster, Otidea, Paxillus, Phlebopus, Phylloporus, Piloderma, Pisolithus, Pseudotomentella, Pulvinula, Ramaria, Rhizopogon, Russula, Schizophyllum, Scleroderma, Sebacina, Sistotrema, Suillus, Thelephora,

Tomentella, Tomentellopsis, Tricholoma, Truncocolumella, Tuber, Tylospora, Wilcoxina and Xerocomus.

2.3.3 Diversity, Rarefaction, Ordination and perMANOVA

Chao1 richness and Shannon diversity estimates were calculated on rarefied data using the 'plot_richness' function (phyloseq). Reported estimates represent the average of 500 random samplings. Simpson's measure of evenness was calculated using 'evenness' (RAM; Chen *et al.*, 2016) and was also calculated from the average of 100 rarefied random samples. Rarefaction curves were calculated using 'rarecurve' and permutational analysis of variance (perMANOVA) using 'adonis', both from the 'vegan' R-package (Oksanen *et al.*, 2015). Non-parametric multidimensional scaling ordination was performed on Bray-Curtis dissimilarity matrices using 'ordinate' (phyloseq).

2.3.4 Indicator Species Analysis

Indicator species analysis was performed using the R-package 'indicspecies' (De Cáceres and Legendre 2009). Two types of data were analyzed: OTU count data and count data binned by taxonomic classification. In the latter case, analysis was repeated at each taxonomic rank. In addition to running analysis on aggregated data, analysis was also performed on subsetted data according to individual ecozone and ecozone x soil layer. Results were compiled and dereplicated and can be found in the Supplementary Data.

2.3.5 Identifying Cellulolytic and Lignolytic Taxa

Due to the nature of incomplete separation of ¹³C-enriched from unenriched DNA, particularly DNA with high GC content, a number of statistical methods were applied to identify OTUs and taxa differentially abundant between ¹³C- and ¹²C-libraries in both pyrotag and shotgun libraries. Two primary methods were used to identify differentially abundant OTUs or taxonomic bins: "DESeq" (Anders and Huber 2010) and indicator species ('indicspecies), though two additional methods were used in characterizing SIP-cellulolytic communities in Chapter 3: "limma-voom" (Ritchie *et al.*, 2015) and a custom script for calculating relative abundance. DESeq and limma-voom were used due to their statistical correction for the high variance among low abundance OTUs. Overall, for an OTU or taxa to be deemed ¹³C-enriched (enrOTU), and assigned a putative activity, it had to be on average 3-fold more abundant in ¹³C libraries according to at least one method and in at least one ecozone. Due to insufficient replication of shotgun metagenomes, differential abundance in them was based only on indicator species analysis and on average relative abundances and, where possible, supported by pyrotag library data. The influence of community composition on the total amount of ¹³C-enrichment in PLFAs was assessed using permutation-based regression tree analysis in the R package 'Boruta' (Kursa *et al.*, 2010).

2.3.6 Metagenome Assembly and Draft Genome Recovery

Shotgun metagenome libraries were preprocessed using Trimmomatic (Bolger *et al.*, 2014; v. 0.32), to trim sequencing primers and low quality ends, and FastX Toolkit (Gordon and Hannon, 2010; v. 0.7), to quality filter short or low quality read. Paired end and orphaned reads were included in metagenome assembly using the default setting of software 'Ray-meta' on WestGrid's high-memory node 'Breezy' (Boisvert *et al.*, 2012). In order to recover draft genome, super assemblies were constructed by compositing shotgun metagenomic libraries from the same ecozone and soil layer and assembling with the low-memory assembler MEGAHIT (Li *et al.*, 2015; v. 1.0.2). Two strategies were used to populate draft genome bins: i) Metawatt (Strous *et al.*, 2012; v. 2.1), was used to bin scaffolds derived from the super assembly based on tetranucleotide frequency; and ii) MetaBAT (Kang *et al.*, 2014; v. 0.18.6). MetaBAT required

that reads from each of the composited libraries be mapped back to the super assembly and indexed using Bowtie2 (Langmead and Salzberg, 2012). Indexed files were subsequently fed into MetaBAT which binned based on both tetranucleotide frequency and covariance of read abundance among composite libraries. MetaBAT was the more successful of the two binning methods and was used exclusively for the binning described in Chapter 4. The quality of draft genome bins was assessed by scanning for essential single-copy, house-keeping genes with the hidden Markov model provided by Albertsen *et al.*, (2013) and using CheckM (Parks *et al.*, 2015). The efficacy of recovering draft genomes was compared between compositing with or without corresponding ¹²C libraries. Inclusion resulted in the recovery of the greatest number of draft genomes, likely due to the increase in sample number and increase variation in read abundances between ¹²C- and ¹³C libraries. Read mapping with Bowtie2 was also used to calculate the relative abundance of these draft bins across harvesting treatments in Chapter 3.

2.3.7 Characterization of Carbohydrate-Active Enzyme (CAZy) Content

The complete CAZy database (Cantarel *et al.*, 2008; <u>www.cazy.org</u>) was downloaded and formatted into a DIAMOND blastx searchable database (accessed 2014-05-06, for Chapter 3, and again on 2015-08-19 for Chapter 4). The database was downloaded with a script implemented in Metapathways 2.5 (Konwar *et al.*, 2015) which is publicly available at https://github.com/nielshanson/CAZy_utils. Metagenomic reads were annotated by CAZy family based on the top hit of blastx searches with minimum e-value of 10^{-5} , as described in Cardenas *et al.*, (2015). The following glycosyl hydrolase (GH) families contain enzymes with endoglucanase activity: GH5, 6, 7, 8, 9, 12, 26, 44, 45, 48, 51, 61, 74, 81 and 131 (Yagüe *et al.*, 1990; Hasper et al., 2002; Petersen *et al.*, 2009; Harris *et al.*, 2010; Vlasenko *et al.*, 2010; Warner *et al.*, 2011; Lafond et al., 2012; Boyce *et al.*, 2015; Brumm *et al.*, 2015). A custom python script was used to identification of clusters of CAZymes which first identified putative CAZyme sequences by a) blasting against the CAZy database, b) using 'hmmscan' (HMMER v. 3.1b1; Eddy, 2011) using hidden Markov models for CAZymes provided by dbCAN (Yin *et al.,* 2012) and custom hidden Markov models for aryl and vanillyl alcohol oxidases, laccases, dye decolorizing peroxidases (Dyp2), and versatile peroxidases (Erick Cardenas, unpublished). The script then identifies groups of three or more CAZymes on assembled scaffolds and recovered these sequences. This script implemented gene-predicting software Prodigal (Hyatt *et al.,* 2010; v. 2.6.2).

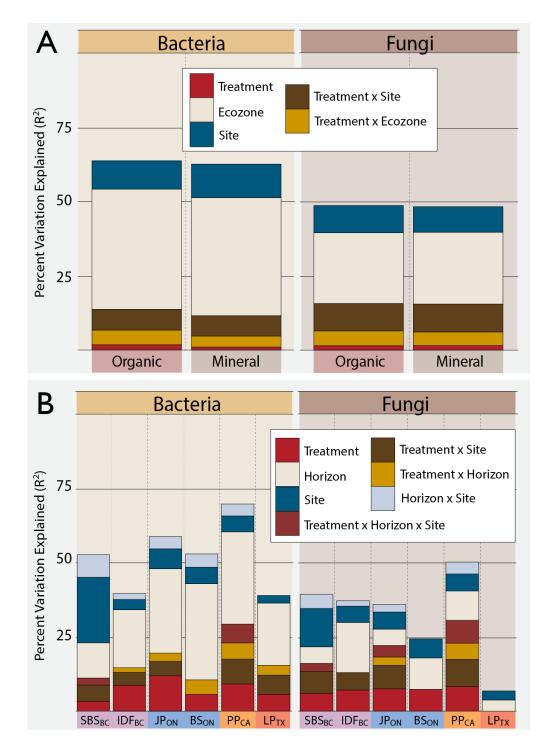
Chapter 3: Long-term Impacts of Timber Harvesting on Soil Communities

3.1 Rationale

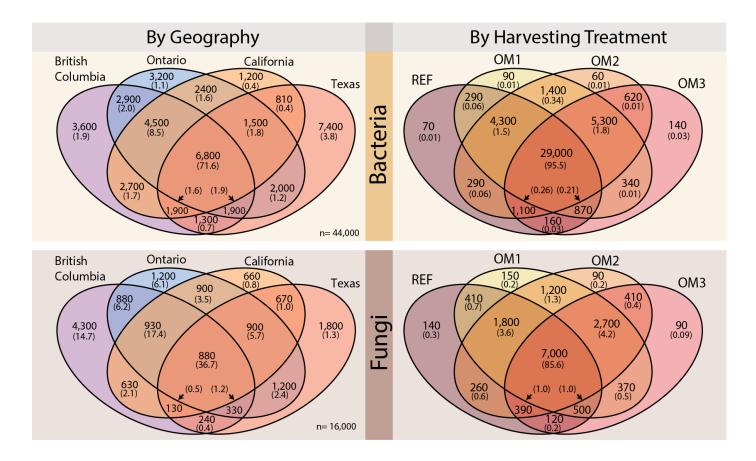
To date, studies of harvesting impacts on soil communities report that edaphic and geographic differences among samples can obscure the effects of disturbance. Heterogeneity accorded to those factors accounted for between 4 and 14-fold more variation in community structure than harvesting (Hartmann *et al.*, 2012; Cardenas *et al.*, 2015; Leung *et al.*, 2016). Yet, the majority of studies on harvesting disturbance report persistent, long-term shifts in microbial community composition resulting from timber harvesting, upwards of 50 years post-harvest (McGuire *et al.*, 2014). While the list of potential impacts is relatively long, and likely to grow in coming years (see Section 1.1.3), there has yet to be an assessment of how robust and generalized these trends are across different geographic zones, forests and soil types. Further, in the face of growing incentive to harvest woody debris previously left onsite, the effect of organic matter removal on soil community structure needs to be assessed. This research provides a comprehensive study of the differences in bacterial and fungal communities from soils at reforested sites across North America where varying amounts of organic matter have been removed (or retained).

This research used the highly replicated LTSP experimental design and both field samples ('*in situ*') and SIP-cellulose microcosms to assess impacts on community structure and function. Multiple datatypes were considered, including shotgun metagenomic and phylogenetic gene marker libraries (16S rRNA gene and ITS), respiration assays, and quantitative PLFA analysis. In accordance with the goals of the LTSP Study to 'develop indices of soil quality practicable in monitoring' (Powers, 2006), specific taxonomic groups were identified which may be relevant to monitoring efforts.

3.2 Community Responses to Timber Harvesting


All raw sequencing data described in Section 3.2 can be retrieved from the European Nucleotide Archive under the study accession PRJEB12501 (all ITS + B.C. 16S rRNA gene libraries) and PRJEB8599 (majority of 16S rRNA gene libraries). All additional data, including sample metadata and representative FASTA sequences for indicator taxa can be found in the Supplementary Data. Figure 1.1 describes the overall experimental design and datasets utilized in Section 3.2. A total of 685 bacterial 16S rRNA gene and 696 fungal ITS region samples were analyzed (average library size = \sim 5,000 reads). A complete breakdown of sample totals according to ecozone, soil layer and treatment can be found in Table E.4. Additional samples were processed from LP_{TX} and JP_{ON} ecozones due to the inclusion of plots that had been exposed to herbicide at the time of replanting. No differences in community composition were attributed to herbicide application (data not shown) and samples were included in analysis without special treatment. The following samples were removed due to insufficient sequencing depth (< 1,000 reads): TXA035 (ITS libraries) & JS061 (16S rRNA libraries).

3.2.1 Overview of Community Composition Across Ecozones


The majority of variation in both bacterial and fungal community structure was attributable to biogeography and soil layer, while a minor, though significant (p < 0.01), portion was due to degree of OM removal (Figure 3.1). Of the total variation explained by experimental factors (i.e. excluding residual variation), ecozone accounted for 64% and 67% of variation, bacterial and fungal, respectively, followed by site (15 and 21%), soil layer (18 and 7%) and OM removal (3 and 5%). Despite the large variation in community between ecozones, the most abundant bacterial OTUs among all ecozones were cosmopolitan genera abundant at every site and in both soil layers. The core OTUs shared among all ecozones (~15% of total OTUs) accounted for 72% of all bacterial reads while a similar, but less pronounced, trend was observed

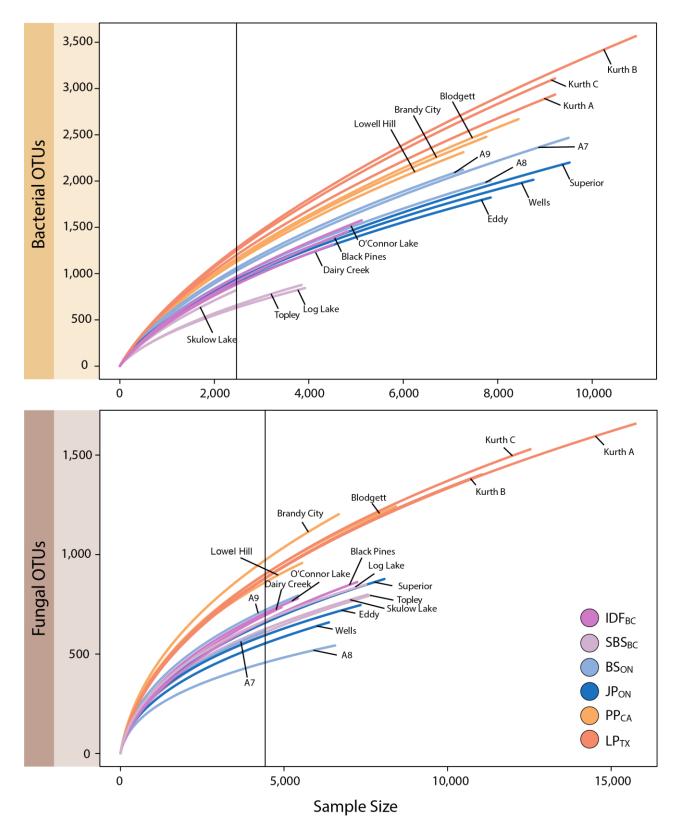

for fungi, 5.5% and 37%, respectively (Figure 3.2). Variation in both fungal and bacterial communities among ecozones was driven by differences in composition of middle and lesser abundant taxa. Alpha-diversity significantly differed between ecozones (Figure 1.1), though community composition was more similar between proximal ecozones. The sampling depth obtained (~ 10 K per sampling site) did not exhaust either bacterial or fungal species richness according to rarefaction curves (Figure 3.3). While diversity was substantial, the rarity of certain taxa may be attributed to the fact sequencing libraries represent relative abundances. As such, cosmopolitan taxa occupy a large proportion of reads, causing other taxa to be overshadowed and creating the appearance of a long tail of relatively 'rare' taxa.

Figure 3.1. Bar plots of the percent variance (\mathbb{R}^2) explained by each experimental variable based on perMANOVA ($n_{perm}=1000$) using Bray-Curtis dissimilarities for either 16S rRNA gene (bacteria) or ITS gene (fungal) libraries. Only statistically significant (p < 0.01) factors were included. Panel A shows the variability in each library type according to soil layer, while panel B shows variability within each ecozone with both layers combined. Consult Figure 1.1 for ecozone codes.

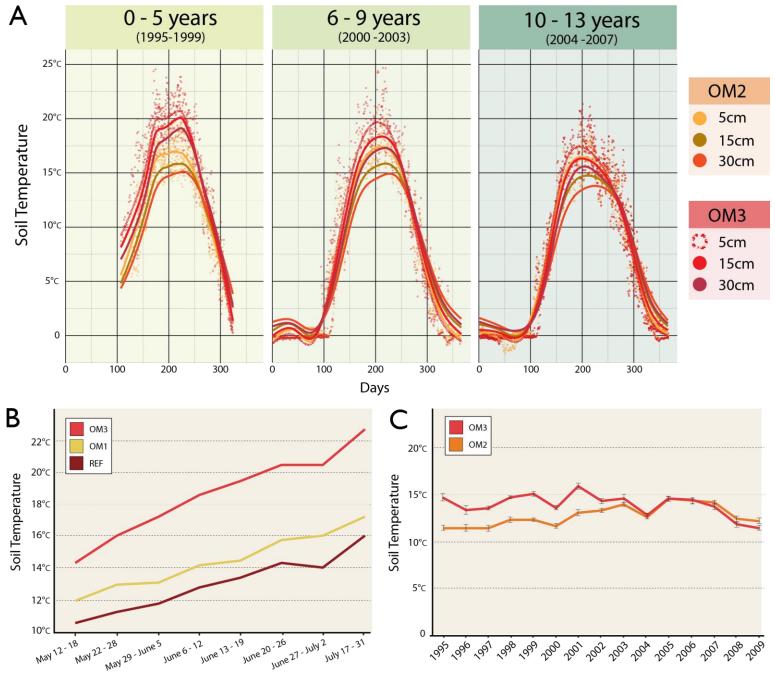
Figure 3.2. Venn diagrams displaying the number of overlapping OTUs overlap among ecozones and harvesting treatments for bacterial and fungal pyrotag libraries. The total number of OTUs is given followed by the percent abundance of all OTUs in brackets.

Figure 3.3. Rarefaction curves showing the depth of sampling obtained at each site also grouped by Ecozone (colour).

Cosmopolitan bacterial groups included Rhodoplanes (on average 5-7% of total proportion of library reads), Mycobacterium (0.4-4%), Burkholderia (0.5-3%), Reyranella (0.4-2%), and candidate acidobacterial genera: Koribacter (0.2-1.5%) and Solibacter (0.2-1%). Members of Bradyrhizobiaceae were by far the most abundant taxa in both soil layers, with the greatest abundance in western ecozones: IDFBC and SBSBC (~25% of all reads) and PPCA (~13%), and to a lesser extent in JP_{ON}, BS_{ON} and LP_{TX} (~8%). Cosmopolitan fungal families included Atheliaceae (3 - 24%), Russulaceae (3.5 - 18%) and Suillaceae (3 - 9%) occurring at high abundances in most ecozones, while PP_{CA} was dominated by *Trichocomaceae* (8-14%) and LP_{TX} by Mortierellaceae (~15%). Broad differences between soil layers were observed in bacterial communities at higher taxonomic ranks with Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Actinobacteria all more abundant in organic soil, while candidate phylum AD3, Chloroflexi, Betaproteobacteria, Deltaproteobacteria, Firmicutes and Acidobacteria more abundant in mineral soils. No significant differences between soil layers occurred for fungi at rank phylum, which was consistent with the lesser degree of variation explained in perMANOVA testing (Figure 3.1).

3.2.2 Harvesting Impacts on the Soil Properties

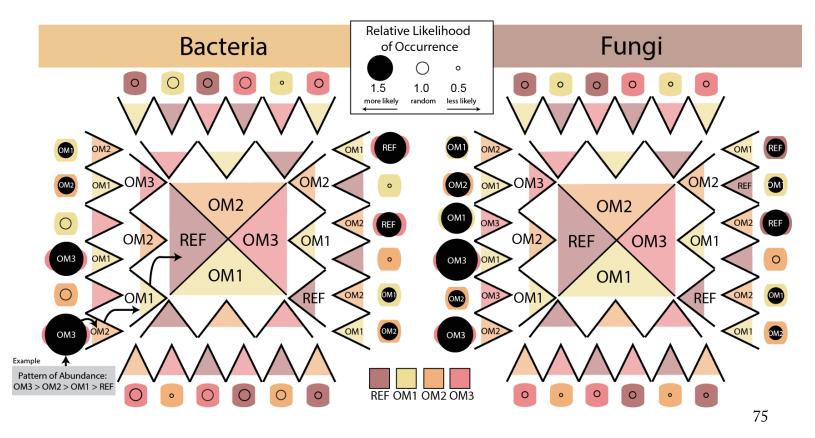
The harvesting gradient achieved by the removal of between 40-70% of aboveground biomass in OM1, 70-90% in OM2 and nearly 100% in OM3 treatment plots (Powers *et al.*, 2006), resulted in a clear gradation of soil organic matter at the time of sampling. Total carbon and nitrogen content per gram of soil was diminished according to the gradient in the organic layer of soil of all ecozones, but not in the mineral layer (Figure 3.4; full details in Table E.5). At time of sampling, organic layer soil development reflected the OM removal gradient with the average depth of organic soils in the BSoN sites: 0.4 cm (OM3), 3.2 cm (OM2), 4.0 cm (OM1) and 4.8 (REF). Accurate data from other sites was missing, yet a similar depth gradient likely


existed, exemplified by the lack of an organic layer in OM3 sites in JP_{ON} and both B.C. ecozones. Soil pH was slightly increased in harvested plots in northern ecozones, but remained similar to unharvested plots or decreased in southern ecozones (Table E.5).

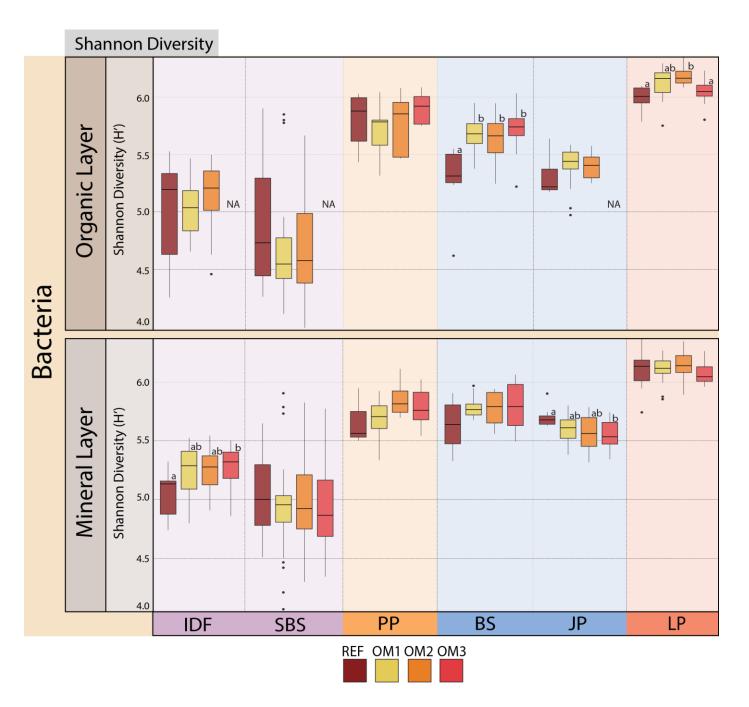
Mean daily soil temperature was significantly higher in harvested plots and increased with OM removal (Figure 3.5). Five years post-harvest at PP_{CA} sites, soil temperatures were consistently warmer in OM1 (+1.5 °C) and OM3 (+6 °C) than unharvested plots (Figure 3.5B). At Ontario sites, where long-term soil temperature data was available, there were marked differences between OM2 and OM3 (Figure 3.5 A and C). After 5 years, OM3 soils were ~ 4 °C warmer during summer months than OM2 soils at 5 cm belowground. This difference was no longer observed ten to thirteen years after harvesting in BSoN, and had diminished to ~ 2 °C in JPON. The diminishing differences in soil temperature over time illustrate the influence of ground cover and canopy development on soil conditions (Figure 3.5A). During summertime, the variation in temperature was on average ~ 60% greater in OM3 than in OM2 (t =-3.8; p<0.001), which, for example, amounted to differences in temperature extrema by an additional $\pm 1.8^{\circ}$ C during the month of July. This increased variation in soil temperature did not diminish over time. Unfortunately, comparable long-term data for REF (unharvested reference plots) and OM1 was not collected. Soil moisture also reflected differences according to the OM removal gradient (Figure 3.4). While the data represents a single time-point, it is still informative that decreased moisture retention was found with increased OM-removal. These differences likely relate to the compounding effects of OM loss (absorptive material) and warmer soil temperatures (higher evapourative flux).

Figure 3.4. Bar plot illustrating differences in total carbon, total nitrogen, soil moisture and pH among treatments in all ecozones. REF corresponds to unharvested reference plots. Error bars correspond to one standard error of the mean.

Figure 3.5. Mean daily soil temperature data for JP_{ON} (A), PP_{CA} (B) and BS_{ON} (C) ecozones. Panel A contains long-term temperature data at varying depths along the soil profile for the two highest intensities of OM removal. Multiple years were grouped and averaged over a 4 to 5-year window. Transparent dots correspond to all daily measurements at 5 cm for OM2 (yellow) and OM3 (red). Panel B depicts soil temperatures averaged across the entire soil profile for REF, OM1 and OM3 plots in PP_{CA} (sourced from Paz 2001 and reprinted with permission from Dr. Lucas Paz). Panel C illustrates the convergence of mean yearly soil temperatures over 14 years at the interface of organic and mineral layers (upper 10cm) in OM2 and OM3 from 18 replicates per treatment.


3.2.3 Ecozone-wide, Global Responses to Harvesting

Modeling of bacterial and fungal OTU abundance patterns revealed three main trends among harvesting treatments: i) expansion in relative abundance in harvested plots, OM3 > OM2 \approx OM1 > REF, ii) decline in relative abundance from unharvested levels, REF > OM2 \approx OM1 > OM3, and iii) a predominance at either intermediate intensity, OM1 \approx OM2 > OM3 \approx REF (Figure 3.6). Overall, the pattern of 'expansion' (i), a term used to describe this phenomenon throughout this chapter, was observed in 14.1% and 12.5% of bacterial and fungal OTUs, respectively, while the pattern of 'decline' (ii) was observed in 12.1% and 9.4% of OTUs, and the predominance of OM1 or OM2 in a total of 10.6% and 13%, respectively. Not all ecozones showed the third trend (JPON, BSON, PPCA and SBSBC), and some showed a stronger expansion than others (LP_{TX} and IDF_{BC}). These patterns demonstrated that, over a decade after harvesting, the harvesting gradient produced a comparable gradient in the abundance of bacterial and fungal communities. Further, the retention of OM had selected for taxa not necessarily abundant in REF or OM3, corroborated by the fact OM1 and OM2 shared the greatest percentage of overlap of any two treatments and, conversely, REF and OM3 the least (Figure 3.2).


The alpha-diversity of bacterial and fungal communities significantly differed among harvesting treatments in a minority of ecozones and, depending on ecozone, exhibited increasing or decreasing trends in harvested plots (Figure 3.7). Five of the six statistically supported differences were indicative of increasing diversity in harvested plots. Fungal populations in mineral soils were consistently more diverse in harvested plots across all ecozones, though statistically significant in only SBS_{BC} and JPON. On average, fungal diversity was greatest in OM1 mineral soils everywhere except for LPTx. Bacterial diversity was also greater in harvested plots in mineral soils in half of the six ecozones, but exhibited a reduction in diversity in the other half.

Harvesting produced broad differences in community structure at the phylum level in both fungal and bacterial communities (Figure 3.8). Populations of *Chloroflexi*, candidate phylum *AD3* and *Gemmatimonadetes* (mineral layer-associated) and *Cyanobacteria* (organic layer-associated) expanded with increasing OM removal across all ecozones. Conversely, populations of *Acidobacteria*, *Actinobacteria* and *Gammaproteobacteria* declined in harvested plots, though not always consistently across all ecozones. Samples from Texas (LPTx), in particular, did not exhibit any broad changes at the phylum level. Fungal communities exhibited a consistent decline in the ratio of *Basidiomycota* to *Ascomycota*, everywhere except for LPTX (Figure 3.9). Unclassifiable sequences increased with OM removal (Figure 3.10) with approximately double the amount of unclassified in OM3 compared to REF.

Figure 3.6. Snowflake plots showing the most common abundance patterns of OTUs among harvesting treatments. Each possible permutation in pattern is apparent by moving from the outermost coloured squares (greatest abundance) inwards step-by-step (ex. bottom-left of figure). Circles are scaled to the frequency of the pattern occurring relative to randomized data. Solid circles indicate that the pattern is more likely to occur and hollow circles less likely.

Figure 3.7. Box and whisker plots of Shannon diversity (H'), Chao1 richness and Simpsons's Evenness estimates of bacterial and fungal communities among harvesting treatments according to ecozone and soil layer. The estimation for a given sample was based on an average of 500 calculations on OTU tables rarefied to an equal sequencing depth. Tukey HSD supported, pairwise differences are grouped by lettering.

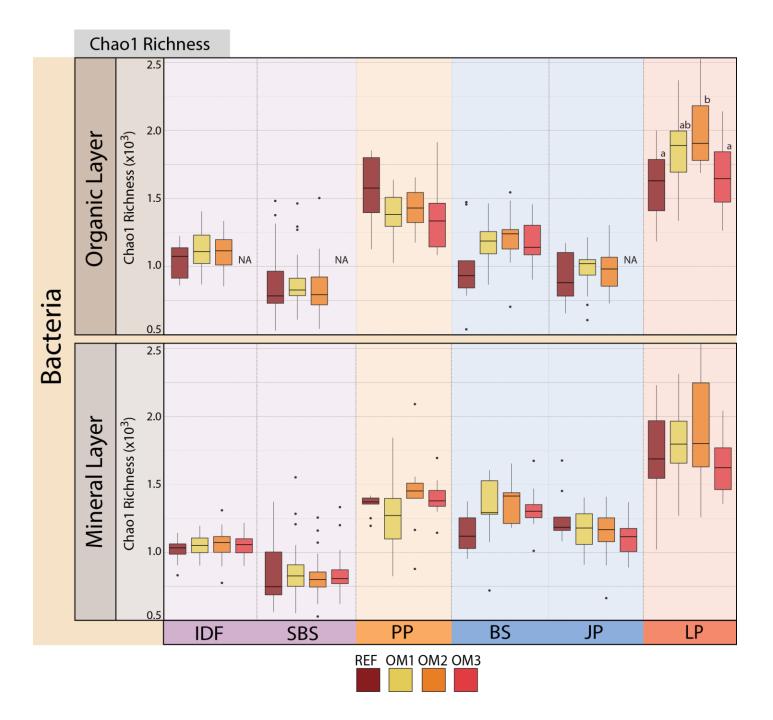


Figure 3.7 ... continued.

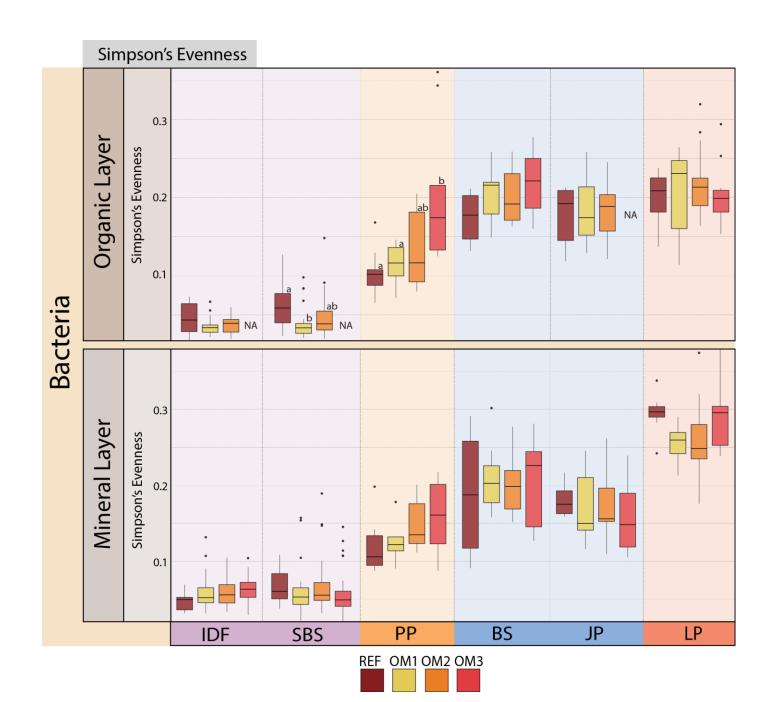
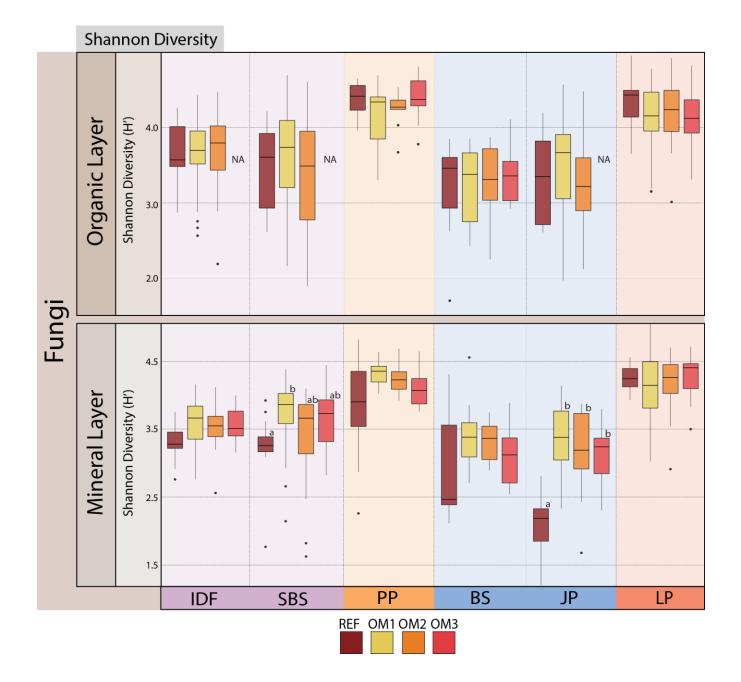
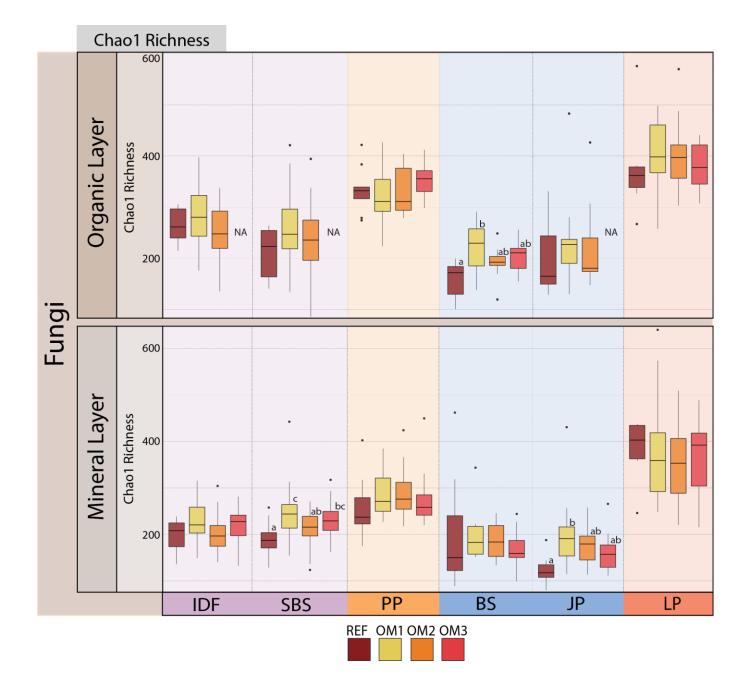
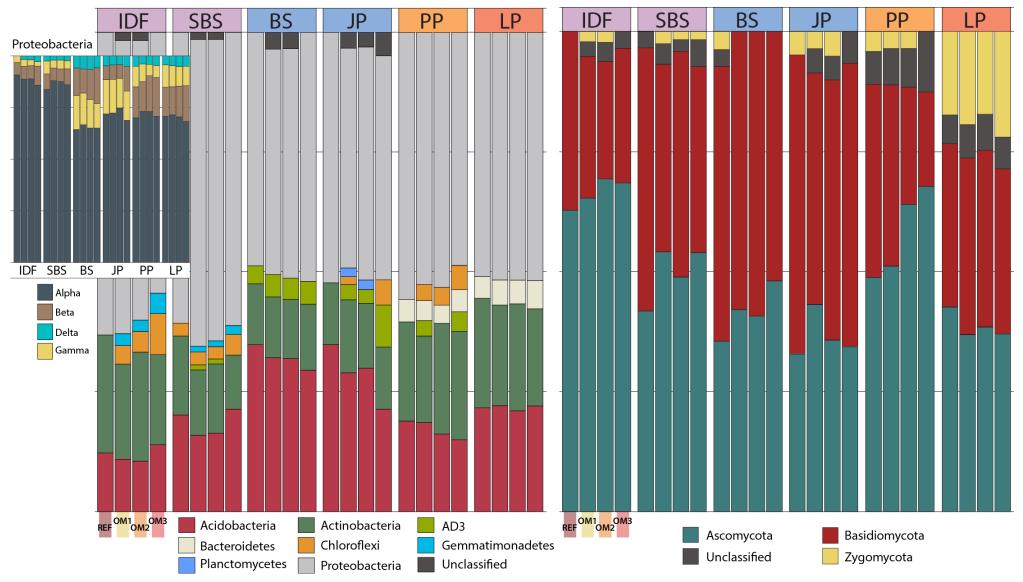
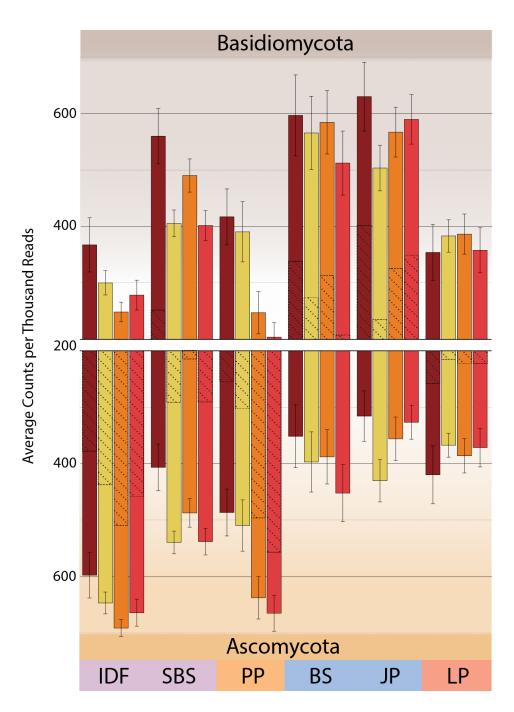




Figure 3.7 ... continued.





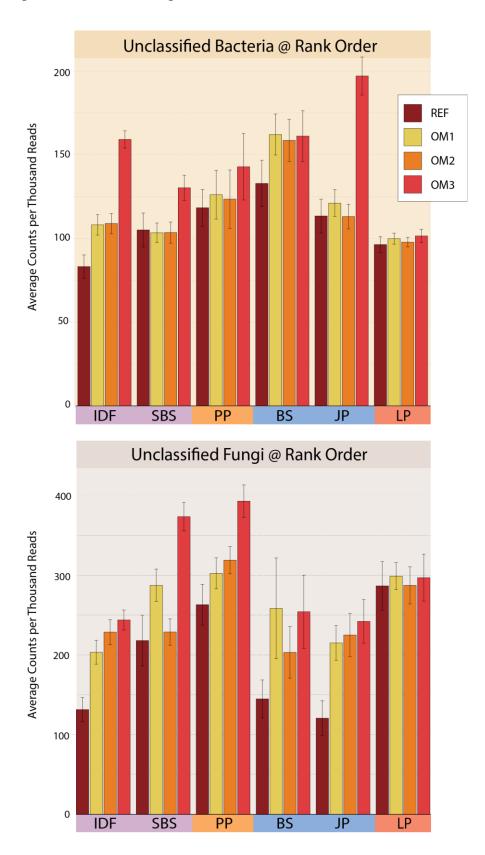

Figure 3.8. Barplots displaying the relative abundance (0 - 100%) of bacterial and fungal OTUs classified at the phylum level faceted by ecozone and harvesting treatments. The relative abundance of divisions within the phylum *Proteobacteria* are inset. Phyla with low abundances (< 0.075% of total reads) were filtered to reduce clutter.

Figure 3.9. Relative abundances of *Basidiomycota* (top) to *Ascomycota* (bottom) according to ecozone and harvesting treatment. The log ratio of the ratio of their abundances is displayed by overlain patterned bars, illustrating the general decrease in *Basidiomycota* relative to *Ascomycota* according to OM-removal. Error bars correspond to one standard error of the mean.

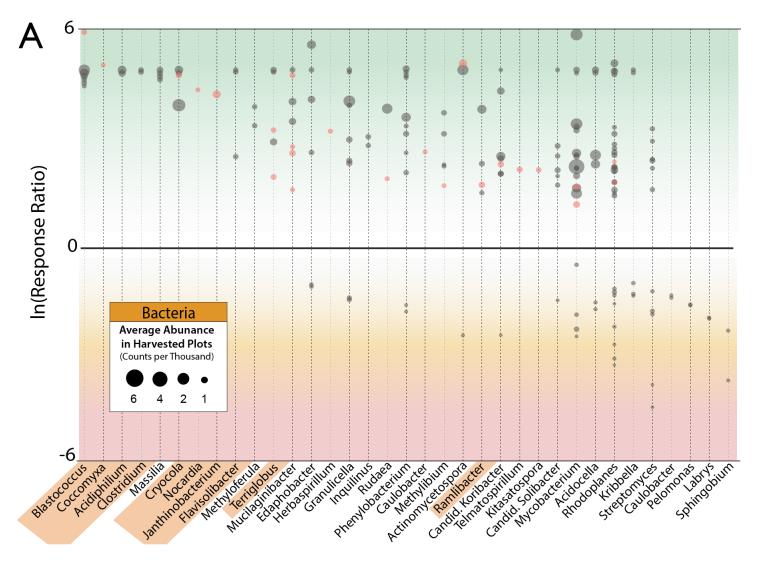


Figure 3.10. Abundance pattern of unclassified fungal and bacterial sequences at the rank order, exhibiting an increased proportion of sequences from poorly characterized or uncultured taxa in harvested plots. Error bars correspond to one standard error of the mean.

Fine-scale, OTU-based differences in community composition were identified through indicator analysis. Among the OTUs showing the greatest expansion following harvesting were radiation, desiccation and heat-tolerant taxa (shaded orange; Figure 3.11). Bacteria from the 'Terrabacteria group' (Actinobacteria, Armatimonadetes, Chloroflexi, Cyanobacteria and *Firmicutes*) were all more abundant in harvested plots, though certain families of *Actinobacteria* declined in abundance relative to unharvested plots (Figure 3.12A). Many of the stress-tolerant taxa were highly abundant (0.2-3.3% of total bacterial community), and included endolithic Actinobacteria (Geodermatophilaceae) and other Actinobacteria (Gaiellaceae spp. and Arthrobacter), Firmicutes (Alicyclobacillus, Bacillus and Clostridium), Cyanobacteria (Nostoc), a number of Chloroflexi, and members of other genera such as Segetibacter, Flavisolibacter, Methylobacterium, Geothrix and Geobacter. Similar growth of stress-tolerant fungal taxa was observed, including known pyrophilous fungi (Figure 3.12B), lichenized fungi (Lecanorales), lichenicolous fungi, and melanized, rock-inhabiting fungi, such as members of the genus Phaeotheca (Sterflinger, 2000), and desert-adapted taxa such as Talaromyces (Stolk et al., 1965), Hormonema (Burford et al., 2004) and Preussia (Rao et al., 2016). Glomeromycota, a phylum containing arbuscular mycorrhiza, substantially expanded in harvested sites in BS_{ON} (undetected in REF and ~1% of total reads in OM3). A curated table of indicator taxa was prepared based on results from indicator analysis, representing taxa which responded most to harvesting (Table 3.1; full table in Table E.6). Indicator taxa with expanding populations were two-fold more common than taxa showing a decline in harvested plots. Fewer indicator taxa were observed for the mineral layer (n=38) than in the organic layer (n=51) and all but two showed patterns of expansion, whereas indicator taxa associated with organic layer showed relatively equal numbers of taxa indicative of expansion (n=24) or decline (n=27).

Figure 3.11. Dot plot displaying taxa containing OTUs indicative of harvesting treatments of bacteria (Panel A) and fungi (Panel B). The response ratio represents the average relative abundance of an OTU in all three OM treatments divided by the relative abundance in REF. OTUs are ordered from left to right by average abundance in harvested plots. All dots correspond to indicator OTUs with an indicator value > 0.5 and p-value <0.01. Dot area is scaled to average counts. A red dots indicates that the OTU met the criteria across all ecozones. Orange labels indicate members of the taxa have reported tolerance to radiation, desiccation and/or heat. Green labels indicate ectomycorrhizal fungi (Panel B). OTUs are grouped by genus (x-axis).

... continued on next page

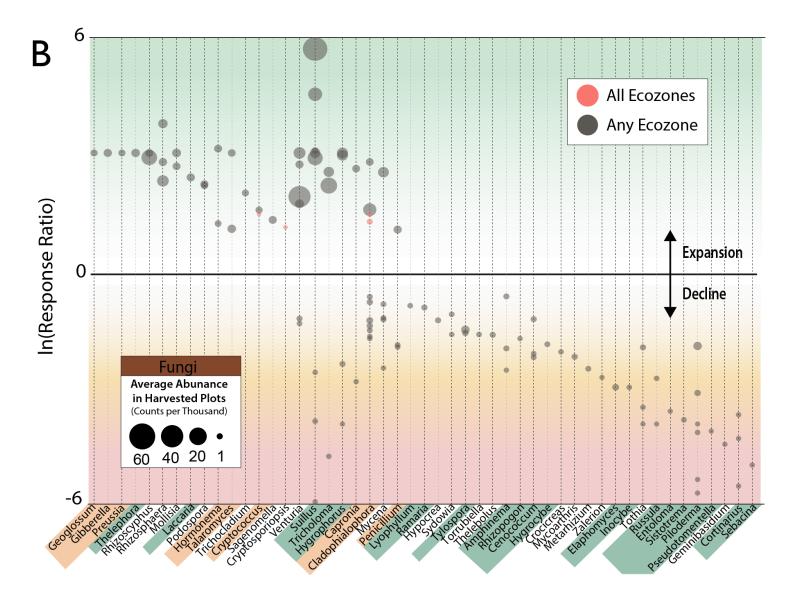
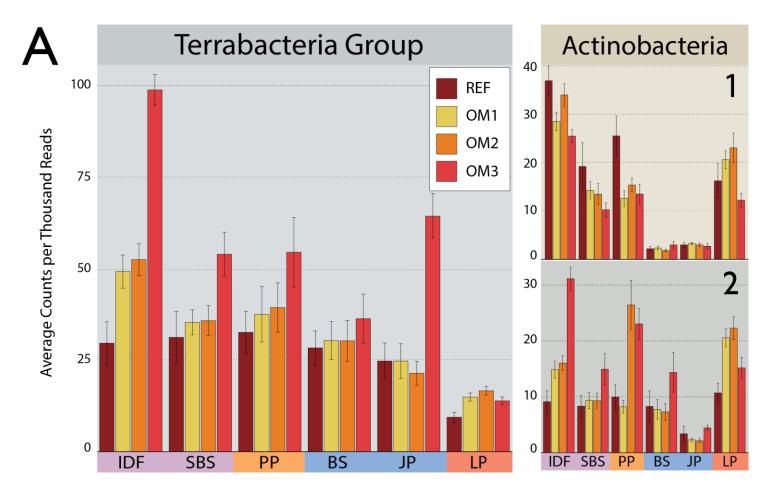
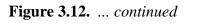




Figure 3.11 ... continued.

Figure 3.12. Expansion of stress-tolerant taxa evidenced by the increased abundances of phyla within the Terrabacteria group (*Actinobacteria*, *Armatimonadetes*, *Chloroflexi*, *Cyanobacteria* and *Firmicutes*) (A) and pyrophilous fungal genera (B). In (A), all phyla exhibited similar trends and were aggregated except for *Actinobacteria* which were plotted separately due to differences in response to harvesting at the family level. The following actinobacterial families exhibited declining populations (panel 1): *Actinospicaceae*, *Micromonosporaceae*, *Solirubrobacteraceae*, *Streptosporangiaceae*, *Thermomonosporaceae*, and *Streptomycetaceae*. The following actinobacterial families had expanded populations (panel 2): *Gaiellaceae*, *Geodermatophilaceae* and *Micrococcaceae*.

... continued on next page

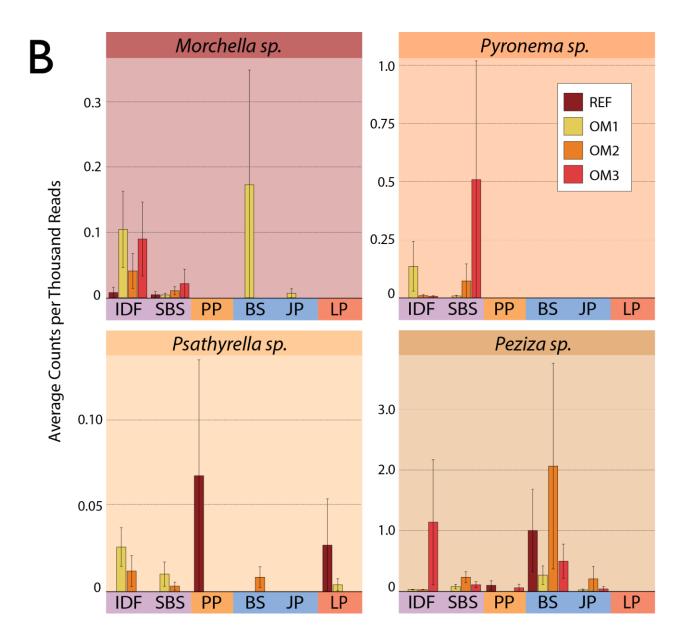
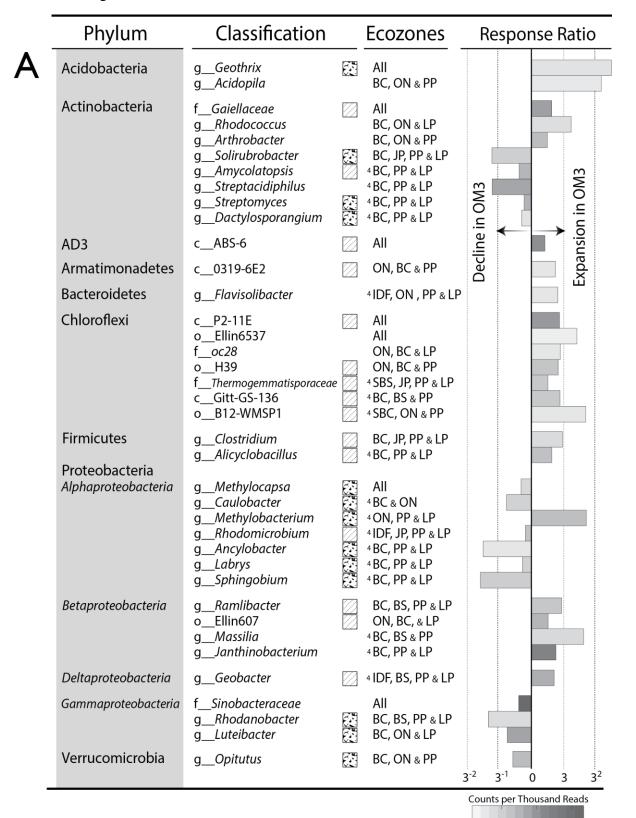
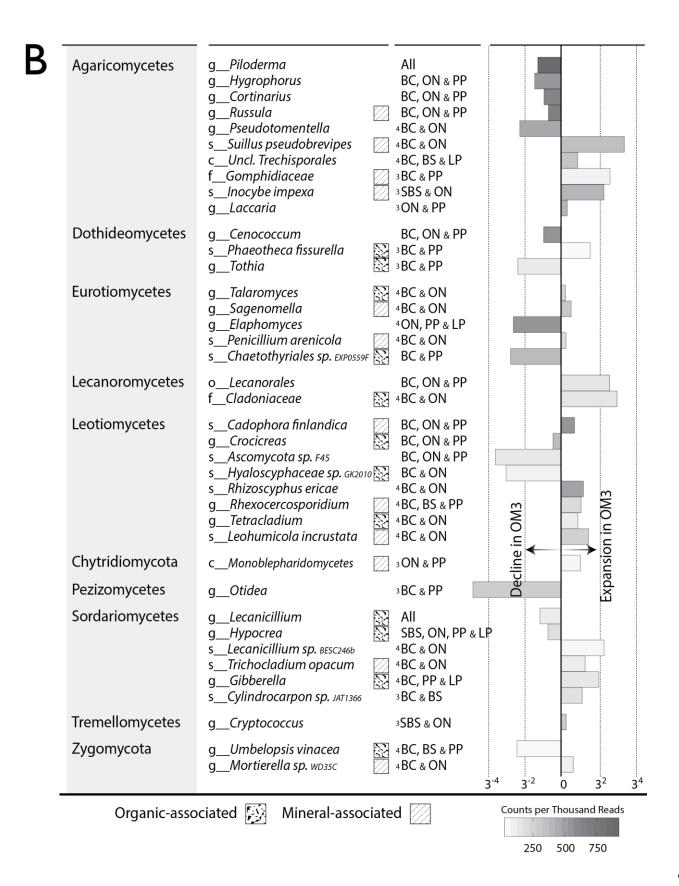
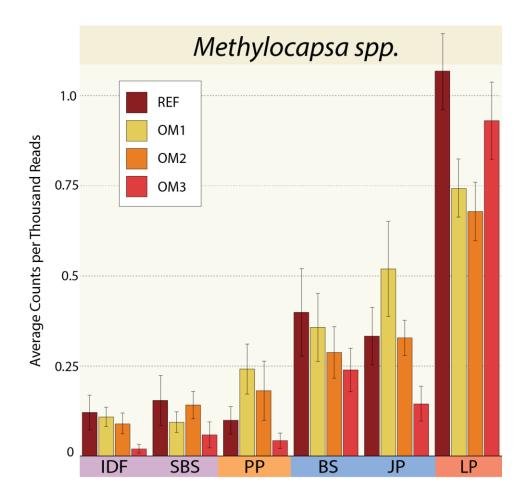



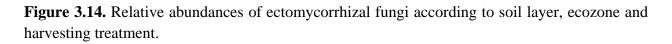
Table 3.1. A list of bacterial (A) and fungal (B) taxa that consistently expanded or declined in relative abundance in four or more ecozones in response to harvesting. Classification refers to the lowest possible classification with a bootstrap value > 80. Each classification is prefaced with its associated rank (i.e. "o " corresponds to Order, etc.). Ecozones displaying trends are given. Mineral layer and organic layerassociations are noted by shaded squares. Horizontal barplots display the response ratio, which corresponds to the average abundance in OM3 divided by the average abundance in REF. Bars are coloured according to the maximum observed relative abundance of each taxon.

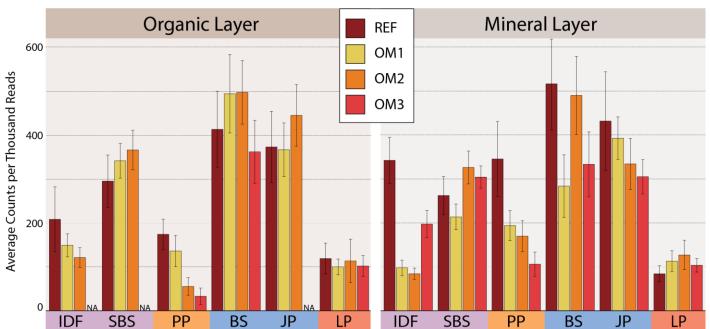


20

40

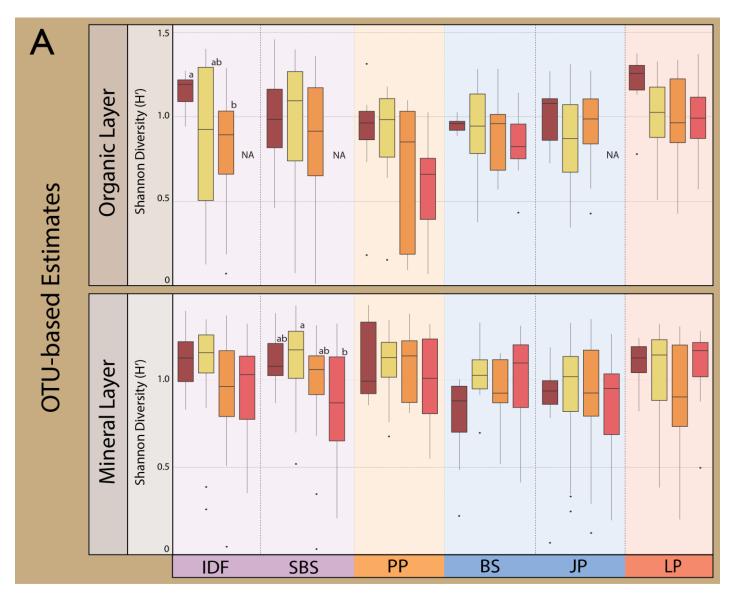

60


Table 3.1 ... continued.



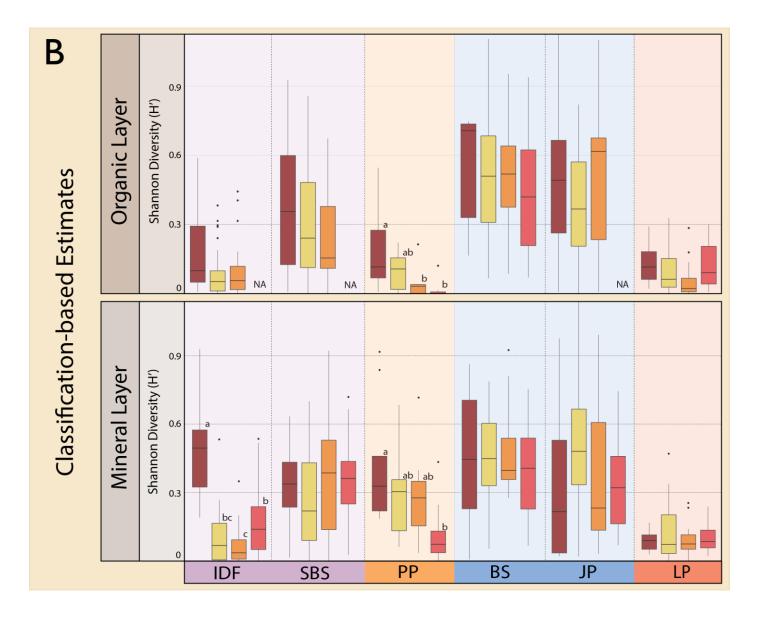
Declining relative abundances were observed in three or more ecozones for the following bacterial Verrucomicrobia (Opitutus), Gammaproteobacteria (unclassified taxa: Sinobacteraceae, Rhodanobacter and Luteibacter), Alphaproteobacteria (Methylocapsa, see Figure 3.13; Rhodomicrobium and Ancylobacter) and Actinobacteria (Streptomycetaceae, Solirubrobacter and Dactylosporangium). Fungi were more likely to be indicators of declining abundance (27/69) than bacteria (17/63). Ectomycorrhizal (EM) fungi were highly abundant $(\sim 10 - 50\%$ of total ITS libraries) and far more likely to decline compared to known saprotrophic taxa (odds ratio 7.1, p=0.002). A majority of EM genera declined post-harvesting, such as Russula, Cenoccocum, Cortinarius, Otidea, Piloderma, Hygrophorus, and Pseudotomentella. However, some EM populations expanded in OM1 and/or OM2 (Figure 3.14) and a minority of EM taxa were consistently and heavily expanded in harvested plots, such as Suillus (3 to 6-fold increases), Thelephora, Tomentella and Wilcoxina.

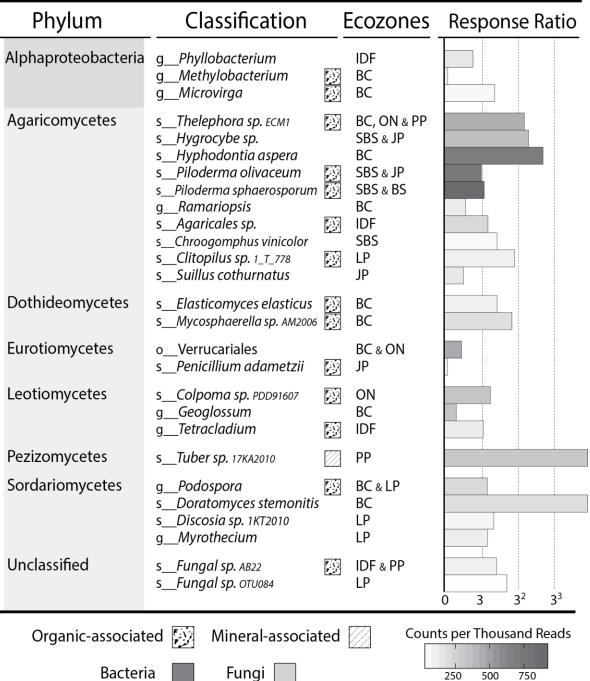
The diversity of EM was generally reduced in harvested plots in both soil layers, though more so in organic layer soils. Diversity estimates based on OTU profiles or genus-level classifications both demonstrated a reduction in diversity of EM taxa in harvested plots, though the effect was more pronounced in classification-based estimations (Figure 3.15). All statistically supported differences exhibited decreases in the diversity of EM in harvested plots, except one instance in SBS_{BC} mineral soil where OM1. **Figure 3.13.** Abundance patterns of the methanotrophic bacterial genus, *Methylocapsa*, exhibiting declining populations with increasing harvesting intensity. Error bars correspond to one standard error of the mean. *Methylocapsa* reads were originally classified as *Methylocella* using Green Genes, but further analysis of these sequences suggested they were more closely related to *Methylocapsa* based on best BLAST hits (97-98% match to NR_028923) as well as alignment and classification using both the Ribosomal Database Project and Silva 'All-Species Living Tree Project.'



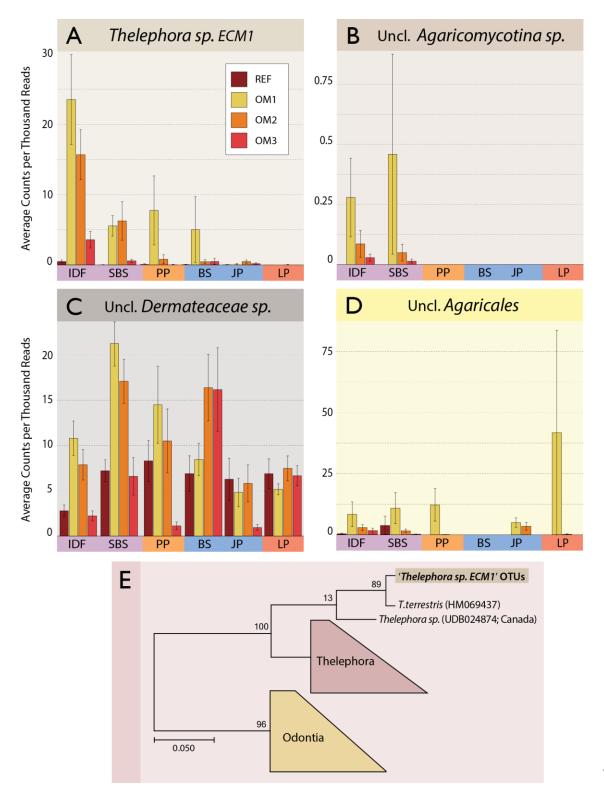
Ectomycorrhizal Fungi

Figure 3.15. Box and whisker plots showing the average Shannon diversity estimate for all ectomycorrhizal fungi by soil layer, ecozone and harvesting treatments based on OTU profiles (Panel A) or genus levels classifications (Panel B). Estimations were based on an average of 100 calculations on data rarefied to equal sequencing depth. Statistically supported differences are grouped by lettering.

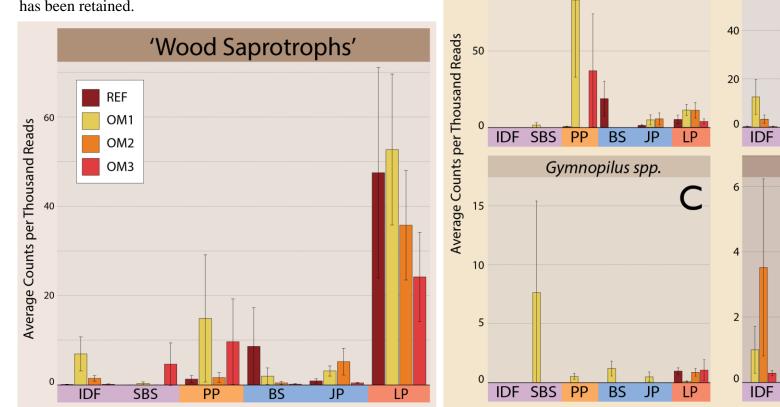



Figure 3.15 ... continued.

Modeling of the abundance patterns (Figure 3.6) revealed that a sizeable proportion of OTUs exhibited higher relative abundance at intermediate levels of OM removal. Twenty-four fungal taxa and three bacterial genera were identified to be maximally abundant in OM1 or OM2 (Table 3.2) and all but one was more abundant in the organic layer. However, the trend in any given taxa was less consistent across ecozones in comparison to taxa indicative of expansion or decline. One EM species, Thelephora sp. ECM1, demonstrated a consistent increase at intermediate OM treatments in all ecozones except LP_{TX} (Figure 3.16A) and was positively correlated to C:N ratio (r=0.25, p < 0.001). Two other groups that were significantly correlated to C:N ratio showed predominance in OM1 and OM2 (Figure 3.16C and D): a group of unclassified Agaricales OTUs (r=0.30, p < 0.0001) and an OTU from Dermataceae (r=0.36, p < 0.0001). A species of unclassifiable Agaricomycotina demonstrated similar abundance patterns, but was not significantly correlated to C:N (Figure 3.16B). Each of these taxa exhibited the trend in both soil layers. The proportion of OTUs predominant at OM1 and OM2 was slightly higher among OTUs significantly correlated to C:N ratio, increasing by 4.4% and 3.5% in fungal and bacterial pyrotag libraries, respectively. A number of genera designated as 'wood saprotrophs' by FUNGuild had notably higher relative abundance in OM1 and/or OM2, including Serpula, Coniophora, Gymnopilus, Perenniporia and Trechispora (Figure 3.17).


3.2.4 Ecozone-specific Responses to Harvesting

The extent of ecozone-specific effects of harvesting was in line with the broad differences in community composition among ecozones. LP_{TX} shared the lowest overall overlap with other ecozones and, as one might expect, the fewest number of common taxa indicative of harvesting. In LP_{TX}, *Russula*, an EM fungus, expanded in OM3 in contrast to all other ecozones. Similarly, the EM genus *Amanita* was increased solely in harvested plots in LP_{TX} (Table E.6).


Table 3.2. A curated list of bacterial and fungal taxa showing population expansion with intermediate intensities of OM removal (i.e. OM1 and OM2) in contrast to REF and OM3 plots. Classification refers to the lowest possible classification with a bootstrap value > 80. Each classification is prefaced with its associated rank (i.e. "o_" corresponds to Order, etc.). Mineral layer and organic layer-associations are noted by shaded squares. Horizontal barplots display the response ratio, which corresponds to the average abundance in OM1 and OM2 divided by the average abundance in REF and OM3. Bars are coloured according to the maximum observed abundance of each taxon in any single library. For a complete list of indicator taxa see Table E.7.

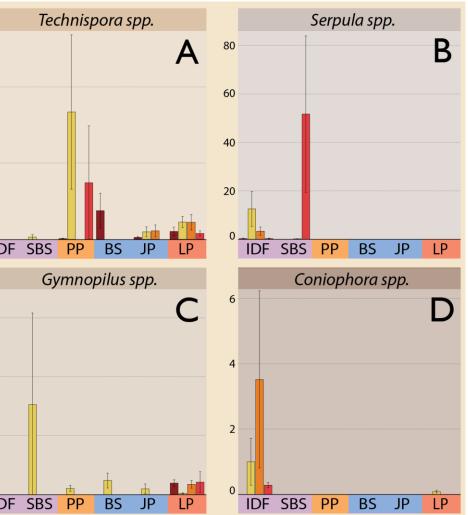
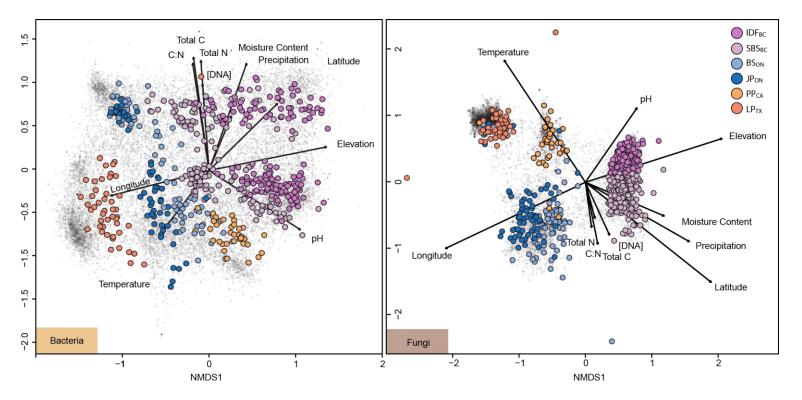
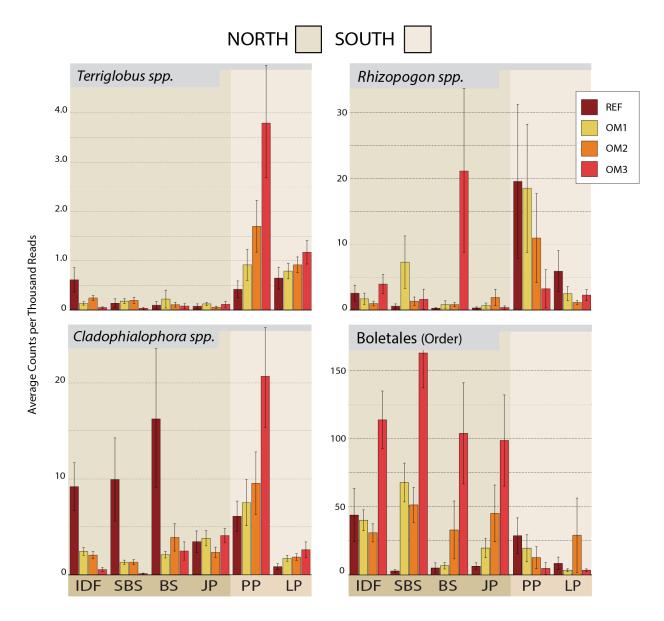


Figure 3.16. Abundance profiles of OTUs which displayed increased abundance at intermediate intensities of OM removal. Plots B and C correspond to a single OTU, while plots A and D correspond to 20 and 17 OTUs, respectively, all exhibiting the same pattern of abundance. Error bars correspond to one standard error of the mean. Plot E illustrates the phylogenetic relationship of OTUs classified as '*Thelephora sp. ECM1*' due to historic misclassification of putatively saprotrophic *Odontia* as *Thelephora* (sequences derived from Tedersoo *et al.*, 2014).

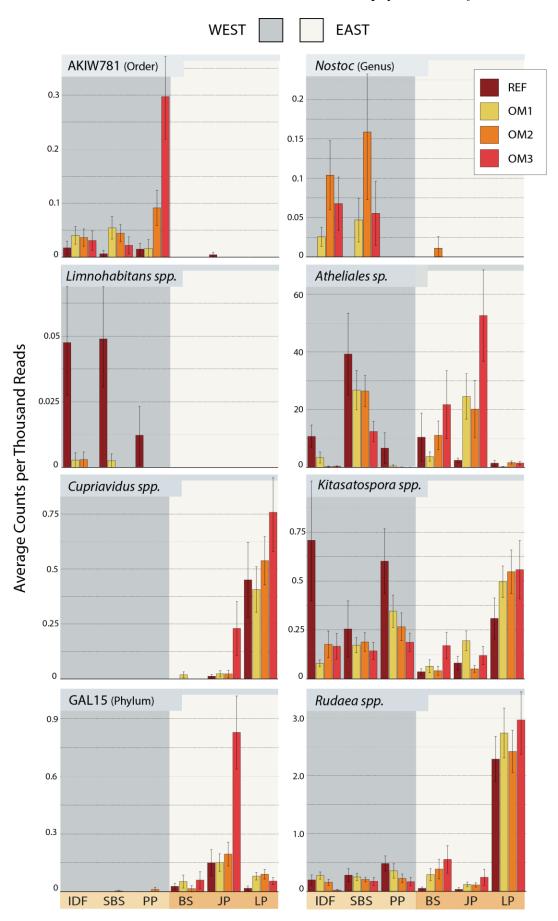
Figure 3.17. Aggregated abundances of all fungal genera designated 'wood saprotrophs' by FUNGuild, including plots for subsetted by genus for taxa associated with white rot (A), brown rot (B & D) or both (C). All exhibited characteristics of increased abundance in plots were a degree of organic matter has been retained.

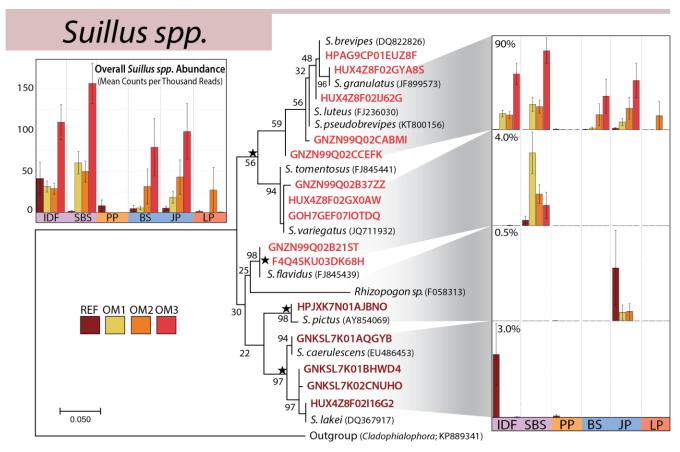

Similarly, a number of bacterial indicator taxa were exclusive to PP_{CA}, such as *Spirosoma* and *Rubrobacter*, which have cultured representatives with extreme tolerances to radiation (Ferreira *et al.* 2009; Lee *et al.* 2014). The expansion of unclassifiable *Syntrophobacteraceae* (*Deltaproteobacteria*) was a strong feature in IDF_{BC}, and, to a lesser extent, in the SBS_{BC}, with two-fold greater relative abundance in harvested plots (TukeyHSD; p < 0.001).

Common responses were typical of proximal ecozones presumably reflecting the similarity of environmental conditions (Figure 3.18). However, a number of taxa exhibited contrasting responses along a North-South axis, such as *Terriglobus* (bacteria) and *Cladophialophora* (fungi) which declined in B.C., but expanded in PP_{CA} and LP_{TX} (Figure 3.19). Conversely, fungi from the order *Boletales*, driven by increases of *Suillus* and *Rhizopogon*, expanded in northern and declined in southern harvested plots. Northern and southern sites exhibited marked differences in soil temperature, precipitation and soil moisture (Table E.5). Harvested plots in northern ecozones had slightly more basic soil pH, a trend not observed in southern sites. Other populations exhibited an East-West divide with some taxa exclusive to eastern (*Cupriavidus* and candidate phylum *GAL15*) or western sites (*Limnohabitans, Nostoc* and *AKIW781*) and other taxa exhibiting contrasting responses according to geography, such as *Rudaea, Kitasatospora* and members of *Atheliales* (Figure 3.20).


A number of bacterial and fungal taxa exhibited patterns of both expansion and decline in response to harvesting (Figure 3.11). For a subset of these taxa, the variation could be attributed to different responses among closely related species. For example, fungal OTUs within the EM genus *Suillus* that increased in harvested plots formed a distinct clade (along with *S. variegatus*, *S. luteus* and *S. pseudobrevipes*) separate from OTUs that declined (grouping with *S. lakei* and *S. caerulescens*; Figure 3.21). *Rhizopogon* exhibited similar species-level differences in response to

harvesting, notably according to northern and southern location (Figure 3.22). Species of *Kitasatospora* also exhibited different responses, which also differed in their distribution in eastern and western ecozones (Figure 3.21). Two EM genera within the same family, *Tomentella* and *Pseudotomentella*, also exhibited different responses to the impacts of timber harvesting (Figure 3.23). However, the majority of OTUs within taxa that showed both declining and expanding populations did not display a clear phylogenetic basis for their abundance pattern.


Figure 3.18. Non-parametric multidimensional scaling of bacterial (left) and fungal (right) pyrotag libraries based on Bray-Curtis dissimilarities. Individual OTUs were mapped as black crosses (~44, 000 bacterial and 16,000 fungal OTUs). Samples were mapped as coloured circles. Samples from the organic layer in PP_{CA} and LP_{TX} were not mapped due to incomplete environmental data. Bacterial samples exhibit a clear split between organic (top) and mineral (bottom) layers. Experimental factors were fitted to ordination with the length of the arrow proportional to the correlation between variable and ordination.


Figure 3.19. Abundances of four taxa with differing responses to harvesting (i.e. expansion or decline) between northern and southern sites. OM removal treatments are represented by conventional colours. Y-axis corresponds to average counts per thousand reads and error bars depict one standard error of the mean. For a more detailed phylogenetic breakdown of OTUs within genus *Rhizopogon*, consult Figure 3.22.

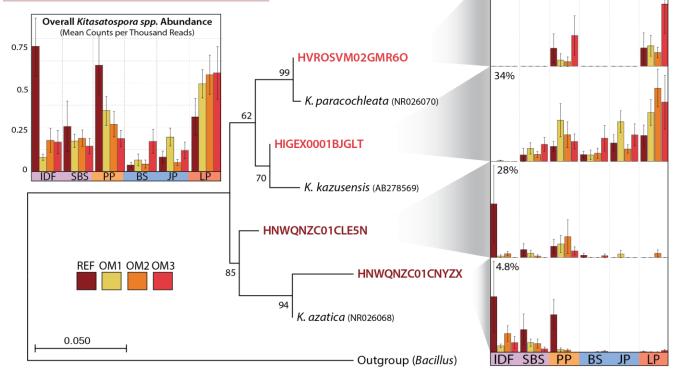
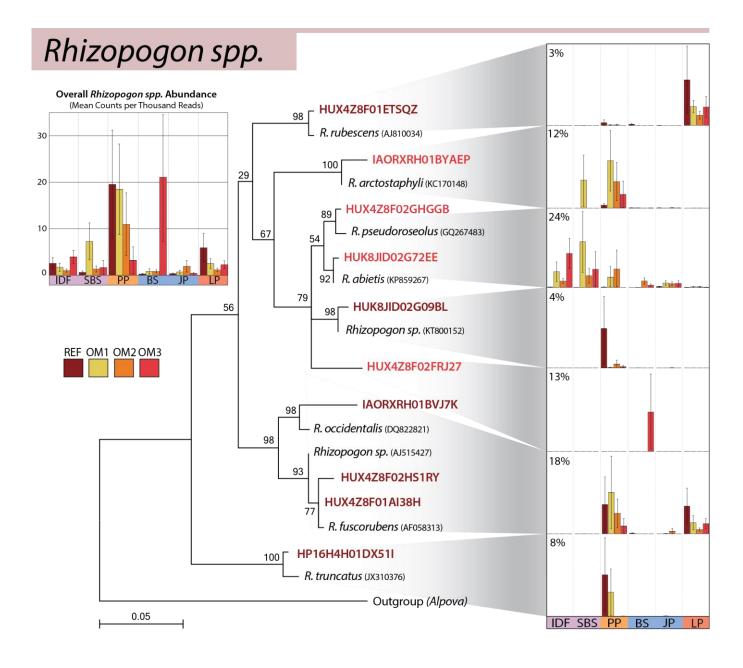
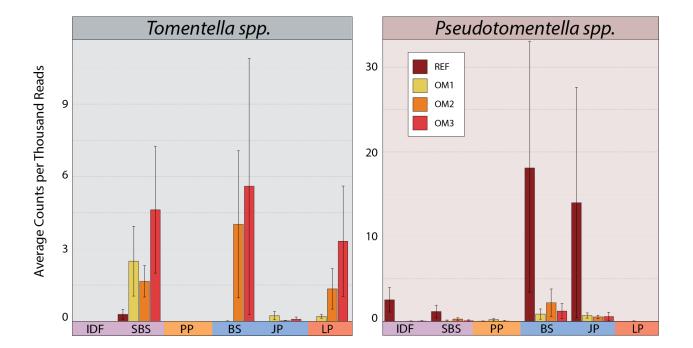

Figure 3.20. Abundance patterns for eight taxonomic groups exhibiting contrasting responses to harvesting (i.e. expansion or decline) between western and eastern sites. Error bars depict one standard error of the mean. The order AKIW781 is within the phylum *Chloroflexi*.

Figure 3.21. Phylogenetic tree of fungal genus, *Suillus*, and bacterial genus, *Kitasatospora*, accompanied by their abundances across OM removal treatments and ecozones. Inset barplots show the total counts for each genus, while barplots along the right-hand side show counts for each individual phylogenetic clades (marked with star). For simplification, the Y-axis of the right-hand plots, corresponds to percent relative abundance. On average, *Suillus spp.* accounted for 5% of ITS reads per library, while *Kitasatospora spp.* accounted for an average of 0.05% per library. Aligned sequences were trimmed to 355 bp (*Suillus*) and 250 bp (*Kitasatospora*) prior to tree building.

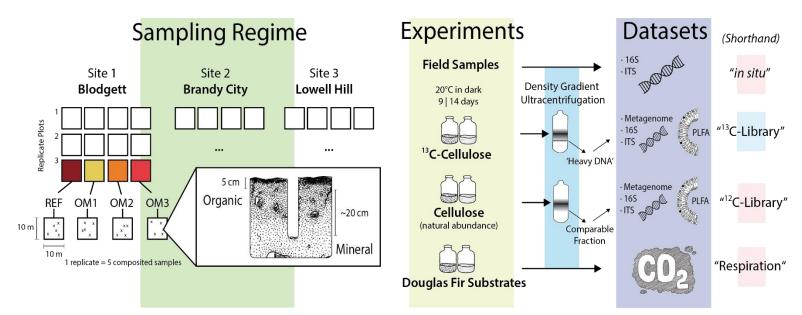


Kitasatospora spp.



3.2%

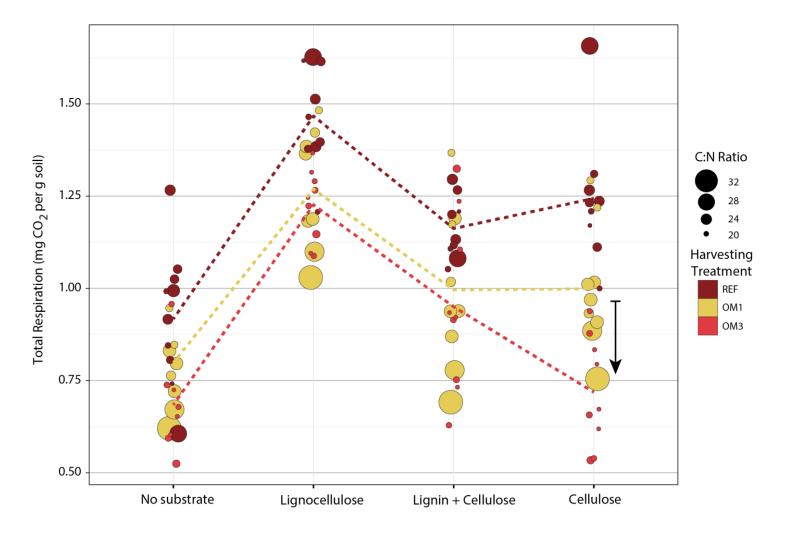
Figure 3.22. Phylogenetic tree of fungal genus, *Rhizopogon*, accompanied abundance by data across OM removal treatments and ecozones. The inset bar plot shows the relative abundance of all reads classified as *Rhizopogon*, while barplots along the right-hand side correspond to the percent abundance of individual phylogenetic clades. These 10 OTUs account for 82% of all reads of the 51 OTUs classified as *Rhizopogon*. On average, *Rhizopogon spp*. accounted for 0.7% of ITS reads per library. Aligned sequences were trimmed to 420 bp prior to tree building.


Figure 3.23. Differential responses to harvesting in two closely related ectomycorrhizal fungi from the family *Thelephoraceae*: *Tomentella* and *Pseudotomentella*. Error bars depict one standard error of the mean.

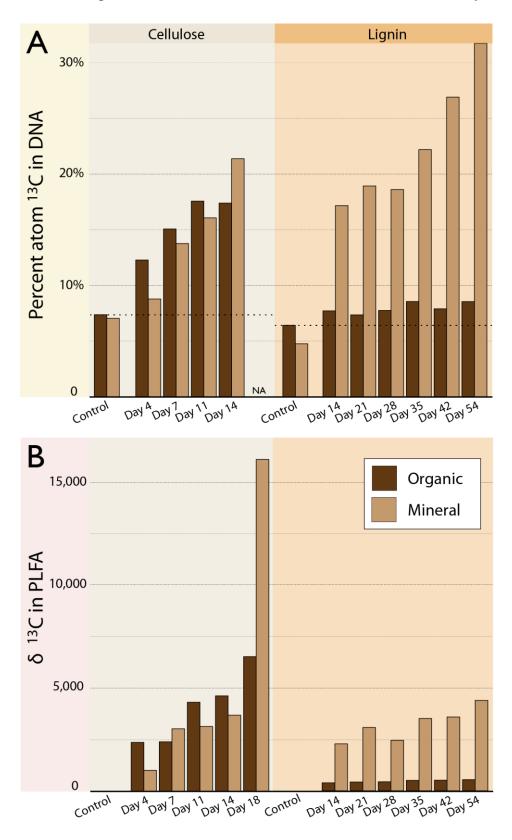
3.3 Impacts of Harvesting on Cellulolytic Populations

Figure 3.24 provides an overview of the sampling regime, experiments and data collected for analysis in Section 3.3. A total of 48 bacterial 16S rRNA gene and 46 fungal ITS region pyrotag libraries (half ¹³C- and half ¹²C-libraries) plus pyrotag libraries from PP_{CA} (section 3.2), 72 PLFA samples, 108 respiration assays, and 4 metagenomes were analyzed in this sub-chapter. All raw sequencing data described in Section 3.3 can be retrieved from the European Nucleotide Archive under the study accession (PRJEB9761) for 16S rRNA gene (ERS803692-ERS803739) and ITS pyrotag libraries (ERS803740-ERS803786), draft genomes (ERZ288956 - ERZ288966) and metagenomic libraries (ERS1099581- ERS1099584). All additional data, including sample metadata, other raw datasets, and representative FASTA sequences for putative cellulolytic taxa can be found in the Supplementary Data.

Figure 3.24. Overview of the samples, experiments and datasets utilized in studying the effects of timber harvesting on the cellulolytic community.


3.3.1 Effects of Harvesting on Respiration

The first test of whether timber harvesting affected microbial activity in PP_{CA} was to measure net respiration among treatments with or without the addition of Douglas-fir lignocellulosic substrate. Despite considerable variability, respiration in mineral soils was significantly reduced by harvesting (ANOVA, p < 0.01), but was not different between soils from OM1 and OM3 harvesting treatments (Figure 3.25). Respiration was greatest with the addition of raw lignocellulose, while amendments of 'cellulose + lignin' and cellulose-only supported similarly low level increases in respiration. Respiration in cellulose-amended soil from OM3 was particularly low, suggesting that cellulose-degrading populations were disproportionately affected by OM-removal (t=-2.65; p=0.009). Respiration was positively correlated with pH (r=0.34; p < 0.001) and weakly with the total carbon content of soil (r=0.19; p=0.049), but not with the total nitrogen content or C:N ratio. Organic layer soils respired 3-fold more CO₂ than mineral soils, but no significant harvesting treatment differences were observed in organic layer soils due to its highly variable background respiration, which confounded the detection of differences between microcosms with and without added substrate.

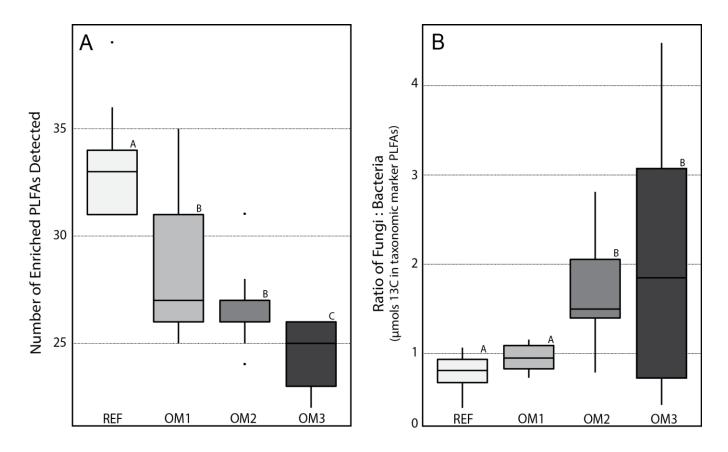

3.3.2 Characterization of SIP-Enrichment for Cellulose and Lignin

Prior to testing for the impacts of harvesting, time-course experiments were performed to characterize the rate and quality of ¹³C-incorporation from labeled cellulose. Low-level enrichment was detected as early as four days into the incubation (Figure 3.26) and rose gradually with time (more details in Section 4.2.1). Despite the low amount of ¹³C relative to ¹²C (δ -¹³C) in PLFAs from organic soils, the total amount of ¹³C incorporated was comparable to mineral soils. Both DNA-based and PLFA-based quantitative methods revealed similar trends in enrichment (Figure 3.27).

Figure 3.25. Dot-plot showing soil respiration in mineral soils from reference and harvested treatments (coloured lines are averages; n=9). Dot area is scaled to carbon to nitrogen ratio of individual soil samples. In all cases, respiration was significantly different between reference and harvested plots (t=16.9; p < 0.01), but not between OM1 and OM3. An arrow depicts the interaction between OM3 and respiration on cellulose, which was statistically supported (t=-2.65; p=0.01).

Figure 3.26. Time-course assay of enrichment of organic and mineral layer soils from LP_{TX} revealed by measurements of ¹³C-incorporation into DNA (A) and PLFA biomass (B) by both cellulose and lignin substrates. Microcosms were sacrificed at each time-point rather than sub-sampled (n=1 for all time points). Natural abundances of ¹³C in DNA are indicated by dotted lines.

111

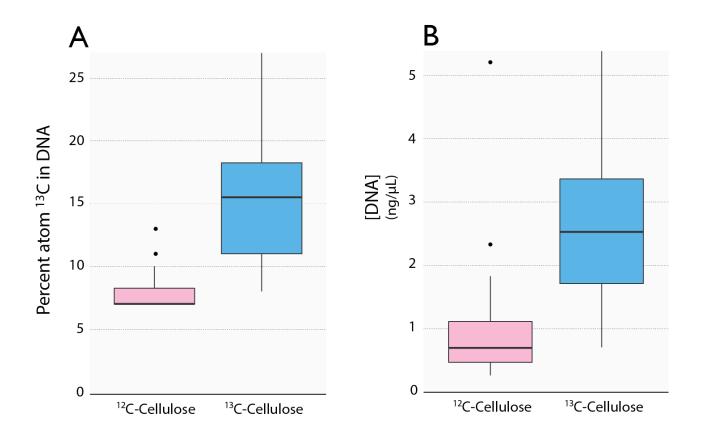

3.3.3 Harvesting Effects on Cellulolytic Activity

The incorporation of ¹³C into PLFAs was generally lower in soil from harvested plots (Figure 3.27; Table E.9). The trend was clearest in mineral soils, where REF had significantly higher δ^{-13} C enrichment in PLFAs and DNA than harvested plots; though, in organic soils, OM2 had the highest levels followed by REF. The total number of PLFAs showing ¹³C-enrichment above natural abundance was reduced in harvested plots in both soil layers (Table E.9), though only statistically supported in the organic layer (Figure 3.28A; TukeyHSD, p < 0.01). Bacterial cellulolytic activity was higher in unharvested soils exemplified by the lower ratio of fungal to bacterial PLFAs relative to all harvested plots in both soil layers (Figure 3.28B; TukeyHSD, p < 0.01). This trend was evident in both ¹²C and ¹³C PLFA profiles, driven by an increase in fungal biomass in OM3 (1.8-fold higher than REF) as well as higher amounts of Gram-positive and Gram-negative bacterial biomass in the unharvested treatments, 1.4-fold and 1.3-fold higher than OM3, respectively. REF had the highest proportion of Gram-positive PLFAs (47%), relative to OM1 (35%) and OM2 (31%), followed by OM3 (28%). Overall, the organic layer was host to more microbial biomass, approximately 4-fold greater total abundance of PLFA biomass than mineral soils and exhibited greater total cellulolytic activity. Fungi showed double the amount of ¹³C-enrichment relative to Gram-negative bacteria and quadruple that of Gram-positive bacteria in both soil layers.

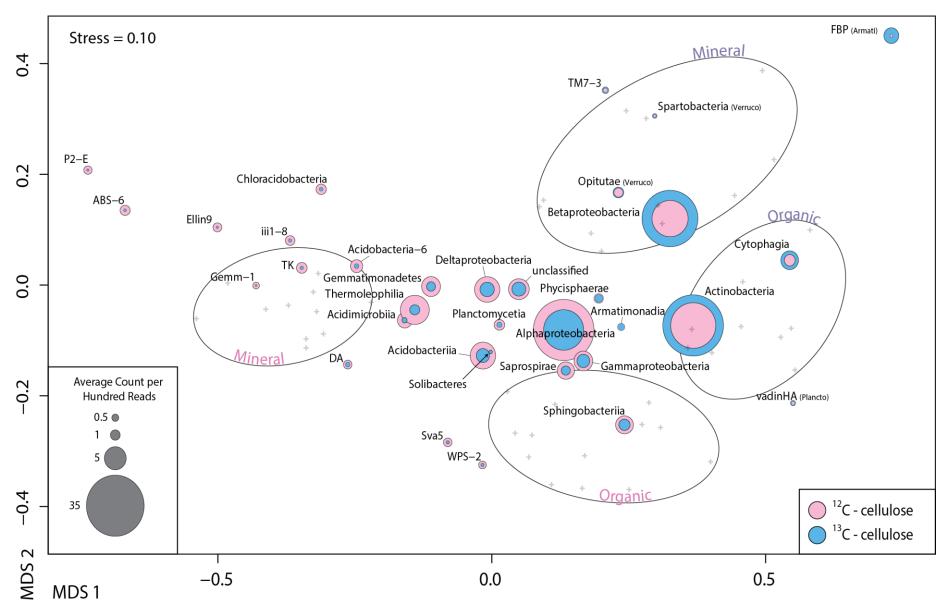
Figure 3.27. Soil properties and microbial activity in microcosms incubated with ¹³C-cellulose with harvesting treatments indicated by bar colours. Panels are scaled according to the highest value in each and treatments are ordered descending from highest to lowest value. Within groups of four treatments, paired values which have asterisks (in bold) are significantly different (p < 0.05), whereas values denoted by different letters are significantly different based on Tukey's Honest Significant Difference. Respiration data from organic layer soils was not included because of extreme variability. Table E.9 presents a more detailed version of these data, including standard error.

	Soil Properties		<u>USSE</u>	Organic Laye	er hste			Mineral Layer	
n=9	% Carbon		32*	33	37	42*	5.9	6.4	7.6
n=9	% Nitrogen		1.1	1.2 1.2		1.3	0.26		0.32 0.31
n=9	C:N Ratio		2	30	31	33	20*	22	25*
n=9	рН		4.4*		5.1 5.2	2 5.5 *		5.5	6.1
n=36	Respiration (mg CO ₂ per g soil)	CO ₂	NA				0.90 ^c	1.0 ^B	1.2^
n=9 (l	Biomass umols ¹² C-PLFA per g soil) z ł	17		26	32	5.0 5.0		6.2 6.6
С _{n=9} (µ	ellulolytic Activit mols ¹³ C- PLFA per g soil	, ,	0.45*	0.62		1.0*	0.24 ^B		0.42 [^] 0.41 [^] 0.43 [^]
<u>с</u> n=9	ellulolytic Activity (‰δ ¹³ C in PLFA)	*	1,100	1,400		2,300	3,200*	4,800 4,800	6,400*
n=3	Cellulolytic Activi (% ¹³ C in DNA)	ty of	3.3	4.5	4.8	5.6	9.1 * 9.9	10	15*
	Microbial Activity	12			REF	OM1	OM2	OM3	

Figure 3.28. Trends in PLFAs in organic layer soil incubations with ¹³C-cellulose: (A) average total number of ¹³C-enriched PLFAs and (B) the ratio of fungal versus bacterial ¹³C-PLFAs. Mineral soils showed similar, but less pronounced, trends (Table E.9). Statistically supported differences are grouped by lettering.



3.3.4 Harvesting Effects on Community Structure


SIP-cellulose proved effective in recovering DNA from actively cellulolytic populations. This was illustrated by the elevated levels of ¹³C-carbon in total DNA extracted from soils incubated with ¹³C-cellulose and the resulting 2.5-fold higher concentrations of DNA in heavy CsCl gradient fractions (Figure 3.29). Ordination of OTU profiles from the resulting pyrotag libraries exhibited distinct clustering of samples according to ¹³C-enrichment and soil layer (Figure 3.30). Furthermore, shotgun metagenomes derived from ¹³C-enriched DNA had substantial improvements in assembly over the ¹²C-control library (Figure 4.1; next section).

Harvesting significantly changed which bacterial populations incorporated ¹³C, accounting for ~9% of the total variation in ¹³C-pyrotag profiles (p < 0.05), comparable to the variation explained by soil layers (Figure 3.31). Harvesting alone was not a significant factor in explaining differences among fungal ¹³C-pyrotag profiles; rather, pH and harvesting had an interacting influence (p=0.053, $R^2=0.11$). Harvesting treatments did not affect the alpha diversity (Shannon-Weaver diversity) or beta diversity (UniFrac) of ¹³C-pyrotag libraries. Harvesting did alter the predominant taxa incorporating ¹³C from cellulose but did not cause the complete loss or gain of cellulolytic taxa. Soil from harvested plots yielded ¹³C-libraries with significantly diminished abundances of cellulolytic *Verrucomicrobia (Chthoniobacter* and *Opitutaceae)*, *Streptomycetaceae*, *Burkholderia*, unclassified *Rhizobiaceae* and *Caulobacter* (Table 3.3). Overall, populations of *Verrucomicrobia, Streptomycetaceae* and *Caulobacter* were sufficiently abundant and active (i.e. enriched by SIP) to yield partial or complete draft genomes (Table E.11).

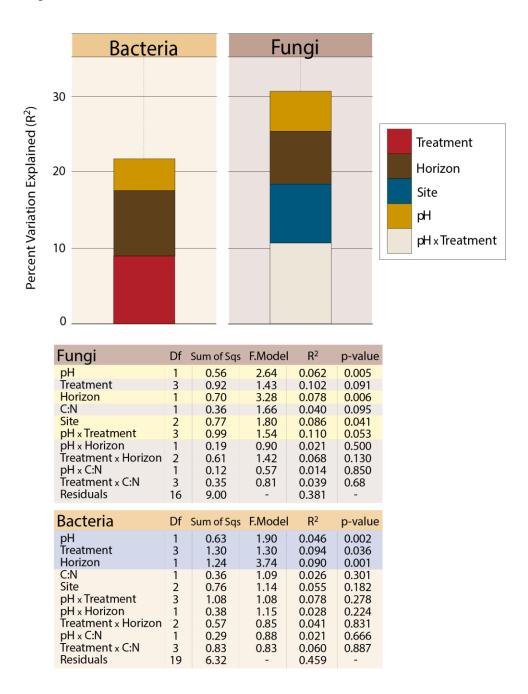
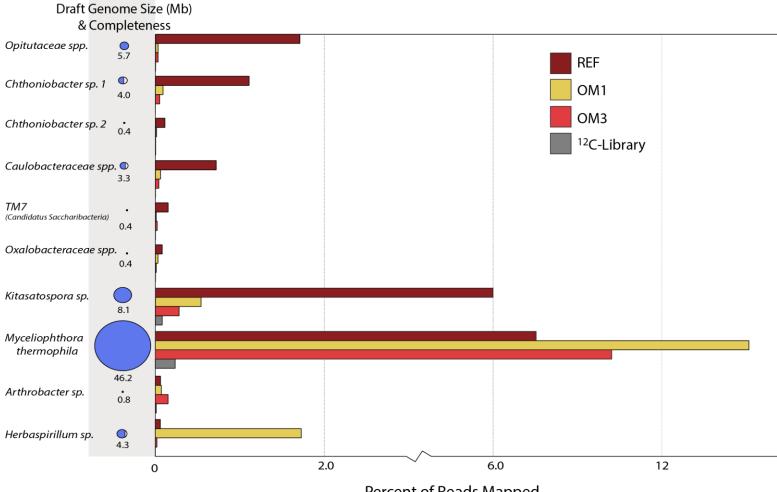

Figure 3.29. Comparisons of (A) 13 C-enrichment of soil DNA extract and (B) total DNA recovery from fraction F₁-F₇ between microcosms fed 12 C- and 13 C-cellulose. Consult Wilhelm *et al.* 2014 for additional comparisons and characterizations of successful separation and recovery of enriched nucleic acids.

Figure 3.30. Non-parametric multidimensional scaling of 16S rRNA gene pyrotag libraries based on Bray-Curtis dissimilarities. Ovals indicate the distribution of samples (grey crosses) that clustered according to ¹³C-enrichment (separated along x-axis) and soil layer (separated along y-axis). Blue and pink coloured circles represent the ordination of bacterial classes and are scaled to normalized abundances in ¹²C- (pink) and ¹³C-libraries (blue). Only classes with relative abundances greater than 0.15% are shown. Candidate taxa without designated classes are identified as *FBP* (division of *Armatimonadetes*) and *WPS-2* (phylum).

Figure 3.31. Bar plot of the percent variance (R^2) explained by each factor based on perMANOVA (n_{perm}=1000) using Bray-Curtis dissimilarities for either 16S rRNA gene or ITS pyrotag libraries. Only factors with statistical support (p < 0.05) factors were included in the plot. The full tabular perMANOVA results are included.

Table 3.3. List of putatively cellulolytic bacterial and fungal taxa determined by differential abundance between ¹³C- and ¹²C-libraries 16S rRNA gene and ITS pyrotags (¹³C:¹²C). Harvested/reference indicates taxa significantly (p < 0.05) more abundant in microcosms with soil from harvested plots (right bar) or reference plots (left bar) based on log response ratio (the natural log of the mean abundance in soil from harvested plots divided by the mean abundance in soil from reference plots). Mineral layer and organic layer-associated taxa are noted by shaded squares. Taxa with isolates possessing previously described cellulolytic activity are denoted by solid circles. Classification refers to the lowest possible taxonomic rank for the group of OTUs with a bootstrap value of > 80. Each classification is prefaced with its associated rank (i.e. "o_" corresponds to Order, etc.). The "# enrOTU" represents the total number of 13C-enriched OTUs assigned to a corresponding taxon. A full list of enrOTUs with corresponding accession numbers can be found in Supplementary Data.


Phylum	Best Classification		# enrOTU	¹³ C/ ₁₂ C	Harvested / Reference
Actinobacteria	o_Actinomycetales f_Microbacteriaceae f_Streptomycetaceae g_Kitasatospora f_Micrococcaceae g_Cryocola ^o	ZEINR N	₩₩₩ ₩₩₩₩₩ 	18 5 11 11 7 3	
Alphaproteobacteria	oRhizobiales fRhizobiaceae ^o fCaulobacteraceae gCaulobacter• gAsticcacaulis• gPhenylobacterium• fSphingomonadaceae• gSphingomonas•		 	20 9 4 11 9 6 7 4	Decline Expansion
Armatimonadetes	oFW68			¹³ C-only	Dec
Bacteroidetes	oCytophagales		ШШ.	155	
Betaproteobacteria	g_Burkholderia [•] g_Leptothrix [°] g_Paucibacter [°] f_Comamonadaceae [•] g_Pelomonas [°] f_Oxalobacteraceae [•] g_Janthinobacterium [•]			8 9 6 11 25 6	
Deltaproteobacteria	oMyxococcales fPolyangiaceae● oMIZ46	\square	₩1 Ⅲ ₩1	22 13 38	
FBP	pFBP	\sum		345	
Planctomycetes	oWD2101 oDH61	\sum	Ш. Ш.	41 ¹³ C-only	
TM7 (Candidatus Saccharibacteria)	cTM7-3	\sum	Ш	17	
Verrucomicrobia	f_Verrucomicrobiaceae° f_Chthoniobacteraceae• f_Opitutaceae•		 	34 11 126	
Unclassified	-			-	
Agaricomycetes Sordariomycetes	oSebacinales fSebacinaceae [°] gClitopilus• gHumicola• fChaetomiaceae•			87 5 111 3 81	
Bacter	gChaetomium•	nic ac	sociated	5	0.125 8.0

• Previously reported cellulolytic activity by members of group

Their reduced abundances in soil from harvested plots was supported by the proportion of metagenomic reads which mapped back to these genomes (Figure 3.32) as well as abundance patterns in ¹³C- and ¹²C- pyrotag libraries (Figure 3.33). Their reduced *in situ* abundances in harvested plots were also apparent (Figure 3.33). Conversely, a number of different cellulolytic taxa were enriched in soils from harvested plots, including a number of *Betaproteobacteria* and members of *Myxococcales, Planctomycetes* and the Basidiomycota *Clitopilus* (Table 3.3).

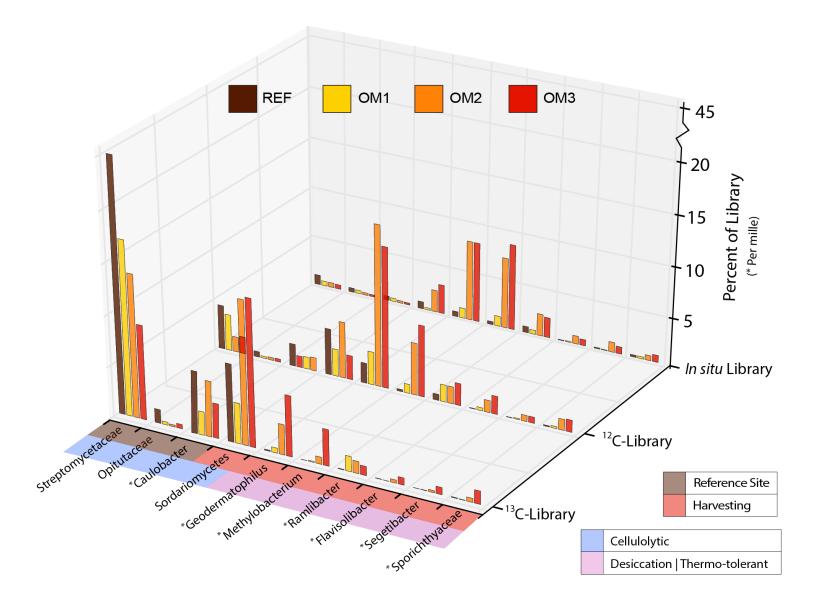
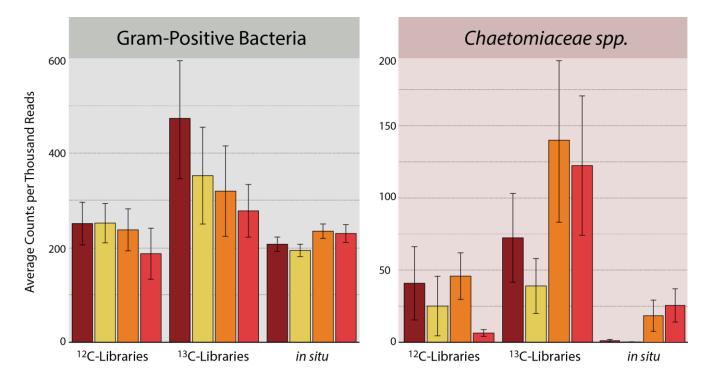

The decline of Actinobacteria relative to fungi in soil from harvested treatments was corroborated in PLFA, ¹³C- and *in situ* pyrotag and shotgun metagenomic data. Abundances of the order, Actinomycetales, as well as the family Streptomycetaceae were reduced in harvested treatments (Figure 3.33 & Figure 3.34). Read mapping to the Kitasatospora draft genome (family Streptomycetaceae) further supported this trend (Figure 3.32). The predominant cellulolytic fungi, from the family Chaetomiaceae (Sordariomycetes), had expanded populations in soils from harvested plots in both ¹³C- and *in situ* pyrotag libraries (Figure 3.33). Chaetomiaceae were highly abundant in all ITS libraries with a total percent of 2%, 3%, and 9% in in situ, ¹²-C and ¹³C-libraries, respectively. Read mapping to the recovered fungal draft genome, most closely related to the genome of Myceliophthora thermophila (family Chaetomiaceae), supported the increased abundances of Chaetomiaceae in microcosms from harvested plots (Figure 3.33 & Figure 3.34). Both Sordariomycetes and Actinobacteria populations were consistently negatively correlated to C:N ratio, though not always supported by a strong p-value (Figure 3.35; Figure 3.36). C:N ratio did not significantly differ among harvested plots, suggesting that C:N ratio, as a proxy for litter quality, did not explain differences in these two populations (Figure 3.37). Abundances of Actinobacteria were positively correlated with pH (Figure 3.38), which could not be said for Sordariomycetes.

Figure 3.32. Draft genomes recovered from metagenome assemblies from ¹³C-enriched DNA. Bars indicate the percentage of reads contributed by metagenomes from each treatment group. Genome size corresponds to size of bubble (also written) and completeness to the bubble fill. For additional details on completeness, taxonomic uniformity and accession numbers, consult Table E.11.



Percent of Reads Mapped

Figure 3.33. The abundance in the three types of 16S rRNA gene or ITS pyrotag libraries (z-axis) that are indicators of either reference (beige) or harvested (red) treatments. Taxa were designated as either identified in this study as cellulolytic (blue) or previously reported to be desiccation and/or heat tolerant (pink). Abundances of taxa with asterix (*) represent per mil, rather than per cent abundance.

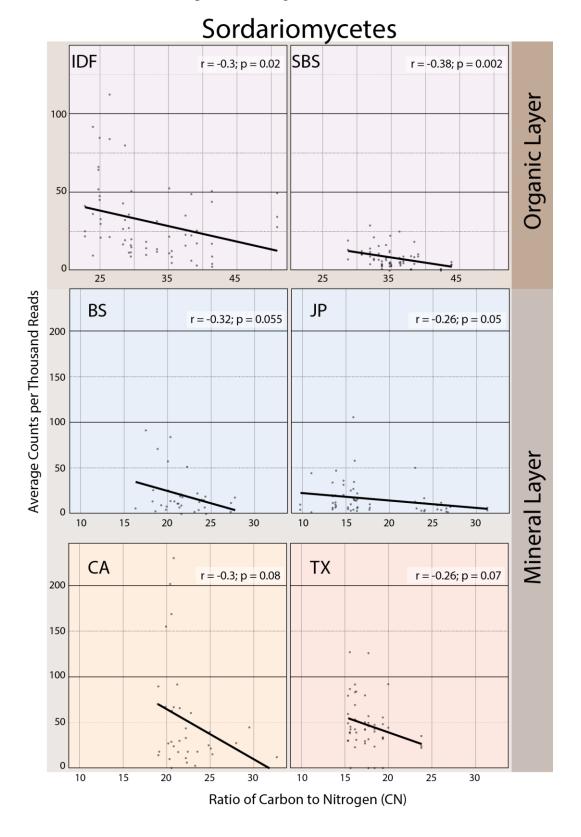
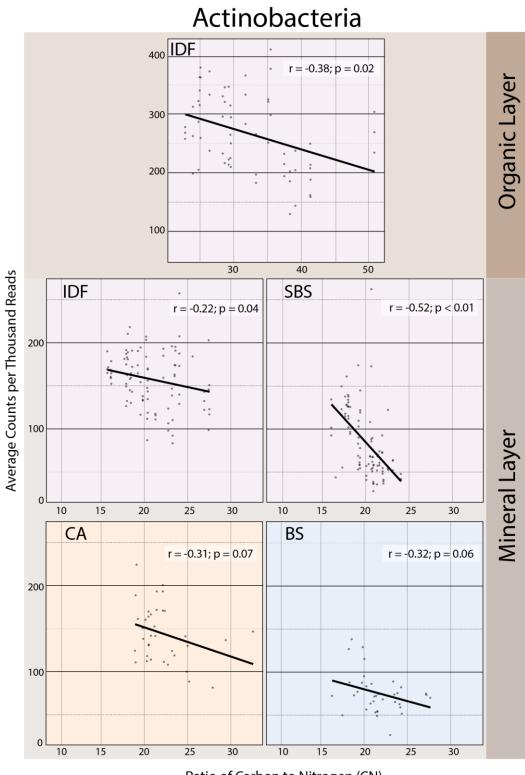


Figure 3.34. Abundance patterns of Gram-positive bacteria (*Firmicutes* and *Actinobacteria*) and the main group of cellulolytic fungi from family *Chaetomiaceae*. The identical pattern is observed when data is aggregated at class *Sordariomycetes* (see Figure 3.33). Error bars correspond to one standard error of the mean.



Indicator species analysis revealed bacterial taxa with consistently expanded populations in soils from harvested plots across all pyrotag libraries (Figure 3.33). These taxa were previously identified in Section 3.2.3, demonstrating consistency between broadly different datasets. As previously noted, the majority of these indicator taxa have been isolated from desert environments and are reported to be tolerant of heat, radiation and desiccation: *Geodermatophilus* (Montero-Calasanz *et al.*, 2014; Sghaier *et al.*, 2016), *Sporichthya* (Eppard *et al.*, 1996), *Ramlibacter* (de Luca *et al.*, 2011), *Flavisolibacter* (Joo *et al.*, 2015), *Methylobacterium* (Nogueira *et al.*, 1998; Romanovskaya *et al.*, 2002) and *Segetibacter* (Liu *et al.*, 2014).

Figure 3.35. Linear regressions of Sordariomycetes abundance and carbon to nitrogen ratio (C:N). This figure contains six of the twelve possible plots (6 ecozone x 2 horizons) which showed notable statistical support. Plots that have not been shown had p-values ranging from 0.12 - 0.6 with no discernable positive or negative trends.

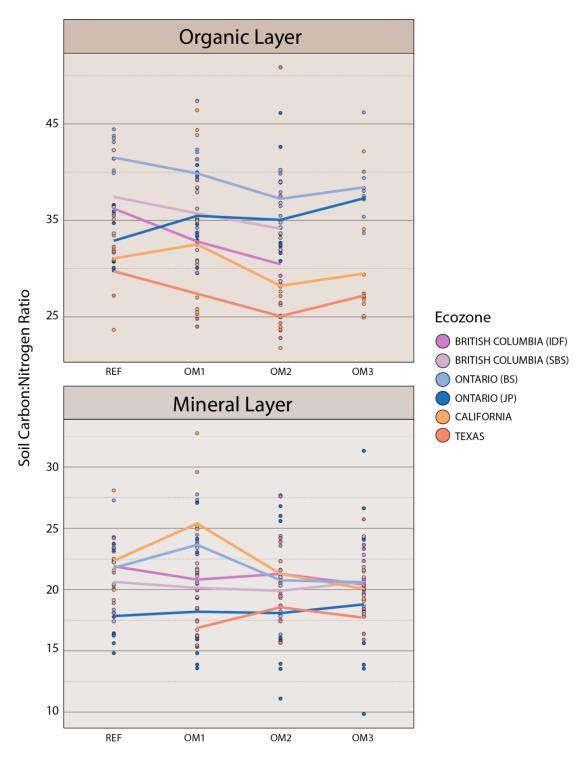
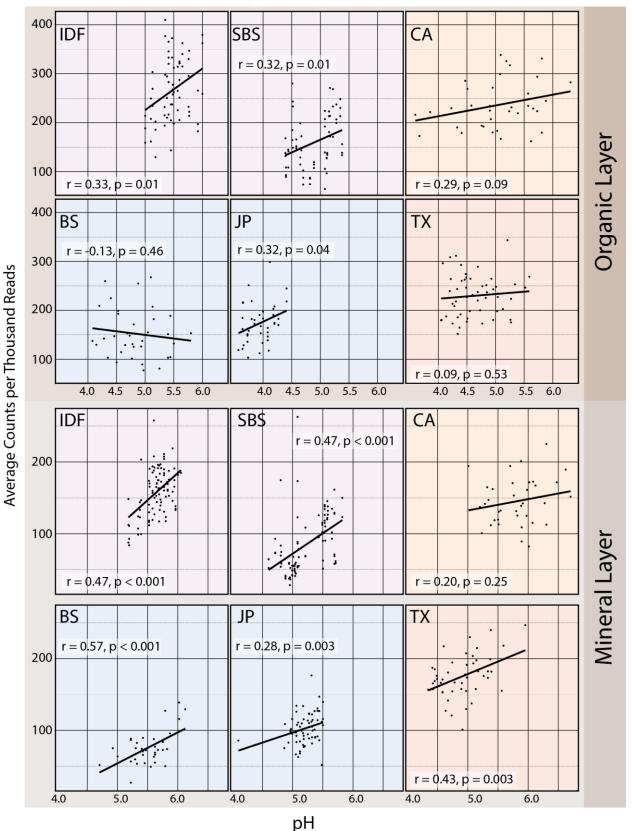


Figure 3.36. Linear regressions of Actinobacteria abundance and carbon to nitrogen ratio (C:N). This figure contains five of the twelve possible plots which showed notable statistical support. Plots that have not been shown had p-values ranging from 0.35 - 0.93 with no discernable positive or negative trends.



Ratio of Carbon to Nitrogen (CN)

Figure 3.37. Dot plot showing the differences in C:N ratio among harvesting treatments at all ecozones. Lines correspond to the mean of each group. Few contrasts were statistically supported, so they were not plotted. The following contrasts within an ecozone were 'significant': $OM2_{TX;Min}-OM1_{TX;Min}$ (p=0.04); $OM2_{CA;Min}-OM1_{CA;Min}$ (p=0.01); $OM3_{CA;Min}-OM1_{CA;Min}$ (p < 0.001) and $OM2_{SBS;Org}-REF_{SBS;Org}$ (p=0.04).

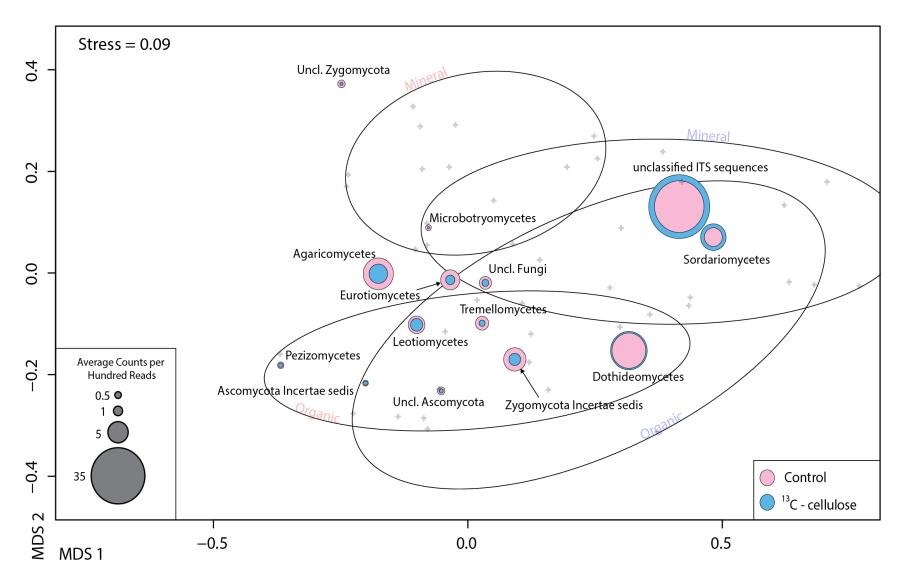
Figure 3.38. All possible linear regressions of actinobacterial abundance with pH among ecozones and soil layers. No statistically supported correlation occurred between pH and abundance of *Sordariomycetes*.

Actinobacteria

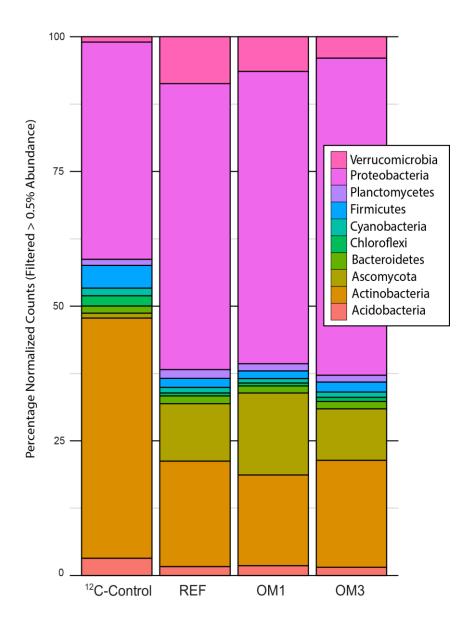
3.3.5 Description of Cellulolytic Taxa

Chapter 4 provides a detailed description of lignocellulolytic taxa, yet, an initial characterization of cellulolytic populations in PP_{CA} was needed to assess harvesting impacts. Therefore, a preliminary description based exclusively on Chapter 3 datasets is presented here.

We identified a total of 234 bacterial ¹³C-enriched OTUs (enrOTUs) representing nine phyla. EnrOTUs were classified to *Actinomycetales, Armatimonadetes, Cytophagales, Myxococcales, Planctomycetes, Rhizobiales, Opitutaceae* and *Oxalobacteraceae* (Table 3.3). Non-metric dimensional scaling confirmed broad differences between ¹³C- and ¹²C-libraries as well as distinct cellulolytic communities in each soil layer (Figure 3.30). The organic-rich soil layer was comprised of previously known cellulose-degrading phyla, *Cytophaga* and *Actinobacteria*, while the mineral layer consisted of *Betaproteobacteria* and less characterized phyla such as *Armatimonadetes* (candidate division *FBP* and order *FW68*), *Verrucomicrobia* (classes *Opitutae, Spartobacteria*) and *Candidatus Saccharibacteria* (formerly *TM7*).


The delineation of fungal enrOTUs was less successful due to sparse overlap amongst OTUs in ITS libraries, which were typically dominated by a few highly abundant OTUs. This is illustrated by the poor separation of samples by NMS (Figure 3.39) and the relatively small number of fungal enrOTU identified (n=16). These included unclassified *Ascomycota* and members of *Agaricomycetes* and *Sordariomycetes* (Table 3.3), though clustering in NMS suggest the involvement of *Dothideomycetes* and a large proportion of unclassified ITS sequences. The massive difference in proportion of reads classified as *Ascomycota* between ¹³C- versus ¹²C- metagenomes (0.8% and 10.6%, respectively) and enrichment of fungal PLFAs both suggested that *Ascomycota* were the predominant cellulose-degraders under our experimental conditions (Figure 3.40). *Clitopilus* was the only cellulolytic *Basidiomycota* to be identified.

Basidiomycotal sequences were between ~ 10^3 and 10^4 times less abundant than *Ascomycota* in 13 C-pyrotag libraries and the ratio between the two did not significantly vary according to harvesting treatment in either 12 C- or 13 C-libraries, but the relative abundance of *Ascomycota* did significantly expand in harvested plots *in situ* (Figure 3.41), as previously noted among other ecozones (Figure 3.9).


One third of enrOTUs were detected *in situ*, demonstrating that low abundance cellulolytic populations were enriched for by SIP. enrOTUs occupied at most 1.4% of total reads and at least 0.08% with a median abundance of 0.42% among all samples. The most abundant single enrOTU (uncl. *Streptomycetaceae*) occupied, at most, 0.6% of a given sample with a mean abundance of 0.1%, followed by enrOTUs from *Janthinobacterium* (max: 0.5%), *Burkholderia* (0.4%), and uncl. *Microbacteriaceae* (0.3%). Of all enrOTU detected *in situ*, 90% were detected in the organic layer. For fungi, six out of the sixteen enrOTU were detected *in situ* with a surprisingly low maximum abundance of 0.3%, but based on taxonomic binning of OTUs, members of *Chaetomiaceae* averaged ~2% of *in situ* libraries.

Metagenome assembly was greatly improved by SIP with the percentage of reads assembled in the ¹³C-metagenomes amounting to 17% (OM3), 23% (OM1), and 29% (REF) compared to less than 1% in the ¹²C-metagenome. Improved assemblies enabled the recovery of ten taxonomically uniform partial genomes of putatively cellulolytic bacteria (Figure 3.32; details in Table E.10). The most complete genomes were related to *Myceliophthora thermophila* (*Ascomycota*), *Kitasatospora sp.* (*Actinobacteria*), *Opitutaceae spp.* (*Verrucomicrobia*), *Herbaspirillum sp.* (*Betaproteobacteria*), *Chthoniobacter sp.* (*Verrucomicrobia*) and *Caulobacteraceae spp.* (*Alphaproteobacteria*).

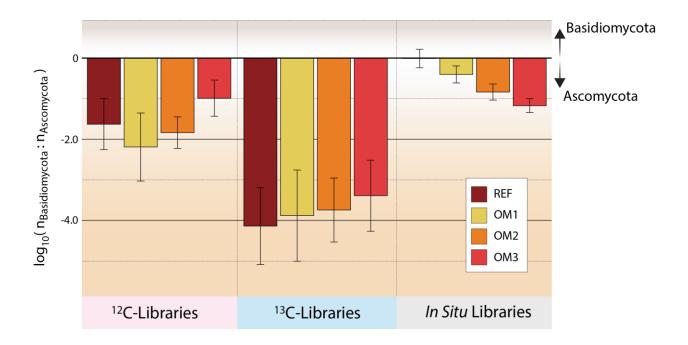

Figure 3.39. Non-parametric multidimensional scaling of ITS pyrotag libraries based on Bray-Curtis dissimilarities. Ovals indicate the distribution of samples (grey crosses) that clustered according to ¹³C-enrichment and soil layer. Coloured circles represent the ordination of fungal classes of greater than 0.15% overall relative abundance and are scaled to their normalized abundances in ¹²C-(pink) and ¹³C-libraries (blue).

Figure 3.40. Lowest-common ancestor classification of all unassembled metagenomic reads at the phylum level. Phyla with an abundance of reads < 0.5% of the total were excluded.

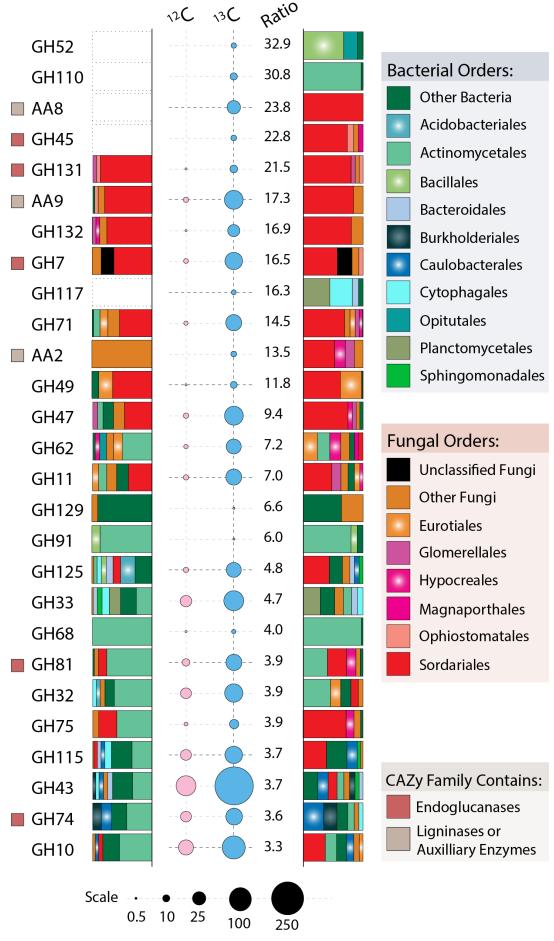


Figure 3.41. Relative abundances of *Basidiomycota* versus *Ascomycota* in pyrotag libraries. The y-axis corresponds to the log of the ratio of Basidiomycota to Ascomycota. Only *in situ* libraries showed a statistically significant trend.

Unassembled ¹³C-metagenomes contained double the relative abundance of glycosyl hydrolase genes (GH) and three-fold more GH families with reported endoglucanase activity than the ¹²C-metagenome. Six endoglucanase-containing families and lytic polysaccharide monooxygenases (AA9) were among the most enriched CAZy gene families in ¹³C-metagenomes (Figure 3.42). Lignin-modifying enzymes, peroxidases (AA2) and iron reductase domains (AA8), were also highly enriched in ¹³C-metagenomes and were classified to the order *Sordariales* with the exception of one catalase-peroxidase identified in the *Herbaspirillum sp.* draft genome. The majority of differentially abundant GH enzymes were actinobacterial and fungal (*Sordariales*), while a lesser number were from *Bacillales, Bacteroidales, Burkholderiales, Cytophagales, Opitutales,* and *Planctomycetes*.

Figure 3.42. Taxonomic affiliations of CAZy genes enriched in ¹³C- (blue) versus ¹²C-control (pink) metagenomes. Bubble area is scaled to counts per million among quality-filtered, unassembled reads, and the ratio corresponds to the relative counts between ¹³C and ¹²C metagenomes. CAZy gene families without a bubble had fewer than 0.5 counts per million reads. A beige square denotes lignin-modifying activity, while a red square denotes endoglucanase activity, based on <u>www.cazy.org</u>. Taxa comprising fewer than 5% of reads for any given family were binned as either 'Other Bacteria' or 'Other Fungi.'

⁽Counts per million reads)

3.4 Discussion

A decade and a half after the initiation of the LTSP Study and harvesting, a clear gradient had formed in soil organic matter, temperature and moisture corresponding to the initial degree of OM removal. The existence of a corresponding gradient in the relative abundances of a number of bacterial and fungal taxa demonstrated the long-term influence of these environmental factors. Though the majority of cosmopolitan, and also most abundant, taxa appeared unaffected by harvesting, significant compositional changes were observed in both upper organic soil layers and in deeper mineral layers. In mineral soil, the absence of differences in organic content proved that the quantity and quality of organic matter were not the sole factors driving changes. The expansion of radiation, desiccation and heat-tolerant organisms reflected the increased dryness and temperature in the decades post-harvesting. These compositional shifts were shared among biogeographically distinct forest soils, demonstrating the generalizability of long-term selection pressures on certain taxa. Yet, local differences in community structure, and the corresponding ecozone-specific effects of timber harvesting, have the potential to influence how harvesting impacts microbial processes during forest regeneration. This discussion will weigh considerations of biogeography, the relative influence of OM removal on biotic versus abiotic parameters and highlight where results confirm and expand upon previous observations of longterm harvesting effects on saprotrophic, methanotrophic and ectomycorrhizal communities.

To date, the LTSP Study has shown that rates of forest regeneration are highly variable and dependent on local conditions and, overall, that the effects of varying degrees of OM removal on primary productivity appear minor (Keenan and Kimmins, 1993; Page-Dumroese *et al.*, 2006; Sanchez *et al.*, 2006; Powers *et al.*, 2005; Fleming *et al.*, 2006; Thiffault *et al.*, 2011; Ponder *et al.*, 2012; Holub *et al.*, 2013). Where harvesting impacted soil microbial communities, the effect was greatest at the highest level of organic matter removal (OM3), while the effects of intermediate levels (OM1 and OM2) were generally indistinguishable from one another, but distinct from unharvested controls (Hartmann *et al.*, 2012; Cardenas *et al.*, 2015; Leung *et al.*, 2015). The present findings are in accordance with these reports, where patterns of expanding or declining abundances were clearest between REF and OM3, while OM1 and OM2 abundances were typically interchangeable and midway in-between. The most pronounced shifts in relative abundance were observed in taxa adapted to, or susceptible to, warmer and drier conditions or, in the case of EM fungi, the loss of tree hosts. Yet, a unique set of taxa had been selected for at intermediate harvesting treatments, and these populations have greater likelihood of responding to the trophic effects of retaining OM (i.e. nutritional), opposed to OM mitigating abiotic factors.

The claim that organic matter retention was a significant factor in the long-term of distinct communities was supported by the number of uniquely overlapping OTUs (i.e. not present in REF or OM3) in OM1 and OM2 and a number of taxa indicative of intermediate harvesting intensities. Taxa indicative of OM1 and OM2 were largely associated with the organic layer, where differences in organic content were most pronounced. The predominance of saprotrophic groups and other strict wood-rot fungi in OM1 (and to a lesser extent OM2) reflected the influence of retaining coarse woody debris. Yet, despite the fact a large number of OTUs indicative of intermediate OM removal exhibited strong signals, their abundance patterns were less consistent across ecozones. These localized responses may have ecological meaning, since certain populations may be adapted to local sources of organic matter (Ayres *et al.*, 2009; Prescott, 2010; Freschet *et al.*, 2012). Yet, the sheer volume of individual, ecozone-specific cases that result made reporting and interpretation difficult, especially given the lack of knowledge regarding the ecological roles of the vast majority of taxa identified.

The hypothesis that OM retention might stimulate decomposition by selecting for saprotrophs was a major motivation for characterizing the impact on cellulolytic populations with SIP. The well-documented adaptation of wood rot fungi to colonize coarse woody debris (Folman *et al.*, 2008) led to the hypothesis that OM retention would select for higher abundances and diversity of cellulolytic fungi. However, contrary to these expectations, both organic matter rich OM1 and REF soils exhibited predominantly bacterial cellulolytic activity relative to OM2 and OM3, which were dominated by fungi. These differences were attributed to shifts in the relative abundance of members of *Actinobacteria* (*Streptomycetaceae*) and *Sordariomycetes* (*Chaetomiaceae*). The abundances of both *Actinobacteria* (positively) and *Sordariomycetes* (negatively) have previously been correlated to C:N ratio in litter and soil samples (Lauber *et al.*, 2008; Strickland *et al.*, 2009), revealing how OM quality can influence the decomposer community. Yet, in SIP and *in situ* pyrotag libraries, both *Sordariomycetes* and *Actinobacteria* populations were negatively correlated with C:N ratio, and C:N ratio did not significantly differ among treatments. Therefore, it is unlikely that differences in organic matter quality were driving the abundance of these groups and overall differences in cellulolytic activity.

The more plausible cause for the expansion of cellulolytic fungi according to the OM removal gradient, were long-term changes in abiotic condition such as soil temperature and moisture. The fungi which expanded were members of *Chaetomiaceae*, either *Chaetomium* (ITS classification) or *Myceliopthora* (draft genome classification). Members of both groups are thermophilic, cellulolytic 'dark septate' (melanized) fungi reportedly abundant in hot, arid environments (Berka *et al.*, 2011; Powell *et al.*, 2012) and also possess the ability to decompose furans produced by forest fire (Rajulu *et al.*, 2014). Though the decline in *Streptomycetaceae* in harvested plots was a robust trend in both SIP-cellulose and *in situ* pyrotag libraries (in B.C., PP_{CA} and LP_{TX}), it was unclear from the present data what the underlying cause might be. *Streptomycetaceae* are predominantly mesophilic organisms, with some thermophilic species (Kämpfer *et al.*, 2014), and their sensitivity to desiccation could not be established in the

literature. *Streptomycetaceae* were not the only family of Actinobacteria to exhibit declining populations in harvested plots, others included *Actinospicaceae*, *Micromonosporaceae*, *Solirubrobacteraceae*, *Streptosporangiaceae*, *Thermomonosporaceae*. Future studies of these groups may provide an explanation, but from the data gathered here, the role of OM quality or abiotic factors are unclear.

The inclusion of OM3 treatment, where organic layer soil was removed and where abiotic changes were most pronounced, led to the identification of the strongest populations trends. Yet, the forestry practice mimicked by OM3, to remove the seed bank fast-growing shrubs that outcompete seedlings, was rare even in the early 1990's when the LTSP was initiated. It was included as an extreme example of possible changes resulting from organic matter removal. Despite the limited comparison to current harvesting strategies, OM3 proved useful in identifying the rise in radiation, desiccation and heat-tolerant organisms, occurring even in OM1 and OM2. This phenomenon has largely gone unnoticed in previous surveys of harvesting impacts on soil communities (Hartmann et al., 2009; Hartmann et al., 2012; Holden et al., 2013a; Leung et al., 2016). However, the pronounced effects of OM3 may give the appearance that abiotic factors are of greater importance than biotic changes, as they were artificially most pronounced in the removal of topsoil. A closer examination of the character and size of effect between OM1 and OM2 may yield additional insights to the effects of harvesting, especially given that OM1 and OM2 treatments represent the most realistic management decisions regarding OM removal.

The extent of ecological change brought about by harvesting was reflected in the consistent expansion of sequences corresponding to mitochondrial rRNA genes classified to mosses (*Polytrichum* and *Trichostomum*) and algae (*Pavlova* and *Exanthemachrysis*) as well as the expansion of plastid rRNA genes classified to a variety of higher plants in harvested plots

140

(Appendix B; Figure B.1). The decline of fungi from the genus Lecanicillium, across all ecozones, further illustrated the scale of impact traceable through soil pyrotag libraries (Figure B.1). Lecanicillium are commonly entomopathic fungi with many nematophagous species (Goettel et al., 2008). Their decline suggests changes occurring at higher trophic levels, possibly related to the decline of nematode populations that has been observed in the years following harvest (Persiani et al., 1998; Forge and Simard, 2001). These observations reflect the broad differences in environmental conditions in harvested plots relating to a greater exposure to radiation, wind erosion, moisture loss, soil compaction, elevated temperatures, diurnal fluctuation and changes in soil chemistry/nutrients. Soil temperatures throughout the top 20-30 cm were 2 °C warmer between REF and the lowest organic matter removal treatment (OM1) and became progressively warmer with OM3 plot. Greater fluctuations in daily soil temperature were observed and soil moisture was correspondingly drier in all harvested plots. The rise of taxa from the 'Terrabacteria group,' well-regarded for their tolerance to desiccation, radiation and heat (Battistuzi et al., 2009; Sghaier et al., 2016), was evidence for the significant changes in microbial community brought about by the altered physical regime post-harvesting.

The expansion of Terrabacteria phyla, specifically *Actinobacteria*, *Armatimonadetes*, *Chloroflexi*, *Cyanobacteria* and *Firmicutes*, has been reported following forest fire (Xiang *et al.*, 2014; Tas *et al.*, 2014) and in other exposed soil environments such as glacial forefelds (Rime *et al.*, 2015). Populations of members within Terrabacteria broadly increased in harvested plots, including populations of endolithic, desert-dwelling *Actinobacteria* from the family *Geodermatophilaceae* (Sghaier *et al.*, 2016). The response of all groups within Terrabacteria was not coherent, as noted with *Streptomycetaceae*, but the scale of expansion of groups that did respond was readily detectable even aggregated at the superphylum level. The increase in sequences recovered from both fungal (*Cladonia sp.* and *Lecanorales*) and cyanobacterial

substituent of lichen, and lichenolous fungi, and desert or rock-inhabiting fungi further indicated the shift in harvested plots towards desiccation, radiation and heat-tolerant organism. Many taxa flourishing in harvested plots resembled those found in glacial forefelds, where mostly barren soil is exposed to high levels of UV radiation, temperature and moisture fluctuation, with even similarities in pH, total carbon and nitrogen (Rime *et al.*, 2015). These taxa included *Clostridium*, *Cupriavidus*, *Geobacter*, and *Massilia* (bacteria) and *Cryptococcus*, *Cladophialophora* and *Tetracladium* (fungi).

Shifts in the functional character of soil communities of stress-tolerant taxa has the potential to impact soil chemistry during the decades of forest renewal. This phenomenon has possibility to compound over multiple harvesting cycles given the capacity of hardier species to persist in soil. Sampling for this research occurred just prior to canopy closure, a moment during forest regeneration where conditions selecting for stress-tolerant taxa may begin to wane, but following a significant period of time during which populations could influence soil chemistry. The expansion of thermophilic sulfate reducers *Syntrophobacteraceae* (Kuever *et al.*, 2014) was a major feature in BC ecozones, while populations of metal-reducing bacterial genera, *Geothrix* and *Geobacter*, expanded in the majority of all ecozones to sizeable population (~0.2% of total reads). Long-term changes in bulk soil chemistry may even result from differences in the quality of microbial biomass. Stress-tolerant taxa typically have unique cell envelope structures, such as Gram-positive bacteria, which persist longer in soils than their Gram-negative counterparts (Throckmorton *et al.*, 2012).

The functional character of cellulolytic populations was altered by the dramatic shift in relative abundance of *Chaetomiaceae* and *Streptomycetaceae* in OM2 and OM3, leading to reduced cellulolytic activity. Similar long-term changes in relative abundance of saprotrophic fungi and Gram-positive bacteria were observed in regenerating forests seven (Lewandowski *et*

142

al., 2015), fifteen (Hartmann et al., 2009; Hartmann et al., 2012) and forty years after timber harvesting (Chatterjee et al., 2008) and following forest fire (Xiang et al., 2014). Populations of Sordariales, including the family *Chaetomiaceae* expanded in logged forests in Southeast Asian tropical forests (McGuire et al., 2014), as well as following large-scale tree die back due to insect herbivory (Štursová et al., 2014), revealing these trends may be broadly applicable to forest disturbance. The conclusion that an increase in relative abundance of cellulolytic fungi resulted in decreased cellulolytic activity is at odds with the conventional view that fungi predominate the breakdown of recalcitrant plant polymers. However, there are a number of cases in which soil properties, nutrient availability and litter quality influence whether decomposition predominantly fungal or bacterial. The following studies demonstrated bacterial is decomposition can predominate with changes in the N:P ratio (Güsewell and Gessner 2009), minimization of disturbance (Jastrow et al., 2007), and at higher soil pH (Strickland and Rousk 2010). The inverse relationship between cellulolytic activity of Streptomycetaceae and Chaetomiaceae (family of Sordariomycetes) populations, and an overall reduction in respiration, reported here was not without precedent. Strickland et al., (2009) demonstrated that the abundance of Sordariomycetes was negatively correlated with net respiration during litter decomposition, while the reverse was true for Actinobacteria. These observations suggest that the underlying cause of the reduction in respiration and rate of decomposition commonly found in harvested plots (Whitford et al., 1981; Yin et al., 1989; Prescott et al., 2000; Webster et al., 2016), may result from biological changes, not solely abiotic constraints.

The decline of more susceptible taxa may also alter the functional character of soil communities. Ectomycorrhiza were the most prominent group of fungi, occupying between 10 to 50% of ITS libraries, and were also one of the populations most clearly impacted by harvesting. The decreased relative abundance and diversity of EM populations in harvested plots was

consistent with expectations, given the removal of tree hosts and previous characterizations of harvesting impacts at B.C. LTSP sites (Hartmann et al., 2012). So, too, was the strong expansion of a small minority of EM taxa, namely Rhizopogon, Suillus, Wilcoxina, Tomentella and Thelephora that are commonly observed as early-colonizers of young conifer stands (Visser, 1995) and in the years and decades following forest fire (Buscardo et al., 2015; Glassman et al., 2015; Oliver et al., 2015) and timber harvesting (Hartmann et al., 2012; McGuire et al., 2014). The success of these EM fungi may be due to their ability to outcompete other EM species during root colonization (Cairney and Chambers 1999) or their resistance to high temperatures (Horton et al., 1998; Baar et al., 1999; Peay et al., 2009). One EM species of Thelephora was consistently more abundant at OM1 sites, lending evidence to the claim that some EM may function as facultative decomposers (Lindahl and Tunlid, 2015). Yet, the recent re-classification of a number of *Thelephora sp.* as *Odontia*, a non-EM, putatively saprobic group (Tedersoo et al., 2014), suggests that the phylogenetic delineations of saprobic and EM lifestyles between Thelephora and Odontia are not yet clear. Thelephora represent an interesting lifestyle, documented as cryptic, epiphytic by Ramírez-López et al., (2013). Compositional shifts in EM community have clear implications for the long-term ecology of forest plantations, especially given that, of all EM genera observed to expand, only Rhizopogon are known to stimulate host growth (Cairney and Chambers 1999). Yet, mycorrhizal communities demonstrate successional changes according to stand maturity (Visser, 1995; Twieg et al., 2007), and early-stage EM may fulfill nutritional needs of young plantations (Kranabetter, 2004), exemplified by the nitrogen fixing activity in Suillus tomentosus tubers (Paul et al., 2012). Thus, the potential long-term consequences of changes in EM abundance and diversity need to be studied in greater detail and in relation to planned harvesting cycles.

The decline of a number of rhizospheric bacteria also has the potential to alter the functional character of regenerating forest soils. All but one of the indicator taxa classified as Alphaproteobacteria and Gammaproteobacteria were indicative of population decline and nearly all of the genera identified (Ancylobacter, Caulobacter, Labrys, Luteibacter, Rhodanobacter and Sphingobium) have isolates characterized from the rhizosphere. These taxa were consistently more abundant in organic layer soils, revealing that they are exposed the greatest changes in terms of exposure to heat and desiccation. Yet, similar to the phenomenon observed with EM fungi, the population of a common rhizospheric genus, Methylobacterium (Alphaproteobacteria), was drastically expanded in organic layer soils from harvested plots across all ecozones (26-fold in PP_{CA}). Some members of *Methylobacterium* possess extreme radiation and desiccation tolerance, such as Methylobacterium radiotolerans (Noguiera et al., 1998; Rokitko et al., 2003). Members of *Methylobacterium* also possess plant-growth promoting (Abanda-Nkpwatt et al., 2006; Kutschera et al., 2007) and nitrogen fixing capabilities (Renier et al., 2008), revealing that shifts in the composition of rhizospheric bacteria have the possibility to be neutral or even have positive effects on plant regeneration. A previous LTSP study found no differences in the rhizospheric bacterial populations of lodgepole pine seedlings in a comparison of OM2 and OM3 (Chow et al., 2002), though this study may have missed the larger effect between unharvested and harvested plots. Future study of the impacts of harvesting on EM fungi may be complemented by considerations of the potential impacts on rhizospheric bacteria.

Given the scale of forestry operations in North America and threat of greenhouse gasinduced climate change, one of the most serious consequences of timber harvesting may be the sizeable reduction of methane oxidation by soil-borne methanotrophs. Temperate forest soils are significant atmospheric methane sinks due to these populations (Henckel *et al.*, 2000; Kolb *et al.*, 2005) and harvesting has been widely reported to decrease methane uptake over the short (Castro *et al.*, 2000; Zerva and Mencuccini, 2005; Takakai *et al.*, 2008; Kulama *et al.*, 2014) and long term (Wu *et al.*, 2011; Nazaries *et al.*, 2011). In one case, this phenomenon was attributable to declining abundances of *Methylocapsa*-related, type-II methanotrophs (Nazaries *et al.*, 2011), which was a major trend in harvested plots across all ecozones in the present research. No explanation for this phenomenon has yet been proposed, though analysis performed for this thesis revealed that *Methylocapsa* were more abundant in upper organic layer soil and negatively correlated with pH (r=-0.39, p < 0.001). It is reasonable to suspect that these populations may be adversely affected by exposure to the warmer, drier soils and compounded by the slight increase of pH found at harvested plots. Notably, in two ecozones, PP_{CA} and JP_{ON}, the retention of woody debris in OM1 had a net positive effect on population sizes, and, overall, retention was seen to mitigate the decline of *Methylocapsa*. Further research is needed to understand what is driving the decline of *Methylocapsa* and whether biomass retention may be a viable mitigation strategy.

The long-term rise of stress-tolerant groups in harvested plots, reported here, resembled the compositional shifts found in the decades following forest fire. Both types of disturbance did not alter overall diversity, as the expansion of heat-tolerant taxa did not dominate communities, nor did susceptible taxa disappear altogether, as evidenced in repeated burnings of forests plots (Oliver *et al.*, 2015). Further, the decline in relative abundance of *Basidiomycota* in favour of *Ascomycota* was consistent with long-term changes in fire-affected soils (Buscardo *et al.*, 2015; Holden *et al.*, 2013b). The expansion of arbuscular mycorrhiza, from phylum *Glomeromycota*, in BS_{ON} (undetected in REF and ~1% of total reads in OM3) was consistent with their rapid rebound post-fire (Xiang *et al.*, 2015). The decrease in *Verrucomicrobia* (*Spartobacteria & Opitutus*) observed among a majority of ecozones was consistent with their decreased abundances in fire-affect soils upwards of seven-years post-fire (Tas *et al.*, 2014; Weber *et al.*, 2014). One of the most notable similarities between the two disturbances was the sizeable

146

expansion of populations of candidate phylum *AD3*, which quadrupled in OM3 of JP_{ON} (~ 8% of the total library) and was a major finding of Tas *et al.*, (2014) where *AD3* populations had expanded by ~ 68% seven years after forest fire. Nothing is known about the ecology or physiology of AD3, but this research suggests they may possess adaptations to post-disturbance conditions or may be associated with the rhizosphere of ruderal plant species, given the similar pattern of expansion in plant mitochondrial and chloroplast DNA in JP_{ON} (Figure B.1).

Soil microbial diversity decreased in forested land converted to agricultural use (Rodrigues et al., 2013; Paula et al., 2014), yet comparisons between primary and secondary forests typically note no discernible changes in diversity (Lauber et al., 2008; Paula et al., 2014; Štursová et al., 2014; Oliver et al., 2015). The impacts of timber harvesting on microbial diversity reported here were also not striking. The only consistent trend was the increased diversity of fungal populations in mineral soils at all harvesting intensities for five out of six ecozones. In every case, the increase in diversity was driven by an increase in both species richness and the evenness of populations. McGuire et al., (2014) found a similar, though slight, increase in fungal diversity in a 50-year-old secondary forest relative to unharvested controls, but there is a paucity of data on this potential phenomenon and no proposed explanation as of yet. Globally, biodiversity is strongly correlated with temperature purportedly due to the kinetics of biochemical reactions (Allen et al., 2002). In one study of fungal populations, higher mean annual temperature was the main driver of increased diversity in forest soils along an altitudinal gradient (Bahram et al., 2011). It is possible that the increased diversity in mineral soil fungal populations may be driven by increased temperature, though it is unclear why organic layer populations do not exhibit a similar trend. Hartmann et al., (2012) hypothesized that increased fungal evenness in harvested plots (diversity was not described) may relate to a loss of functional organization, due to the loss of EM and expansion of more diverse saprotrophic populations. Yet,

the two ecozones exhibiting the greatest increase in overall fungal diversity in mineral soils (SBS_{BC} and JP_{ON}) did not exhibit significant or exceptionally strong changes in EM abundance or diversity among harvested plots. In cellulose incubations, the decreased richness of ¹³C-enriched fatty acids with increasing organic matter removal was another indication that harvesting can reduce the diversity of other sub-populations than just EM fungi. However, this trend may or may not reflect the actual diversity of cellulolytic taxa given that lower richness of ¹³C-labeled PLFAs could also result from a reduced interdependency of organisms feeding on cellulolytic organisms or their by-products, suggesting, rather, a degree of decreased trophic complexity. Trends in diversity have unclear implications on the long-term impacts of timber harvesting, though diversity has been linked to the robustness of soil processes (Griffiths and Philippot, 2013), and may be of secondary importance to studying the nature of change brought about by shifts in specific taxa.

The distinct composition of microbial communities among ecozones was a source of ecozone-specific responses to harvesting. Localized responses were mainly the result of differences in the relative abundance, even presence or absence, of taxa among ecozones. The irregular distribution of many taxa was expected given the large differences in edaphic factors, historical soil development and plant overstory among ecozones. A recent biogeographical survey of *Streptomyces*, part of the same family as *Kitasatospora*, found species distributions were affected by latitude, which was attributed to the last glaciation (Choudoir *et al.*, 2016). This study reveals geography can play a major role in species distribution across the continent, a feature which was evident in our data. *Kitasatospora* exhibited variation in species and response to harvesting according to east and west populations, perhaps resulting from the boundary presented by the Columbian mountain range.

The impacts of harvesting on any given population may also vary depending on changes in local environmental conditions (climate, soil type etc.) brought about from harvesting. For example, populations of *Boletales* showed stark increased in harvested plots in northern ecozones, yet declined in southern locations. A plausible explanation for this pattern might be that soil warming in northern climes had a positive effect on organisms with higher temperature growth optima, but temperature extrema rose above tolerance thresholds in southern sites.

Differences in response to harvesting between closely-related species suggests that ecotypic variation may be factor in localized responses. Ecotypic variation in genome content may confer different tolerance traits and has been commonly observed among organisms sharing highly similar (Rocap *et al.*, 2003) or even identical copies of the 16S rRNA gene (VanInsberghe *et al.*, 2015). However, the impacts of such variation are rarely considered in broad characterizations of disturbance on microbial communities. Youngblut *et al.*, (2012) found that species and strain level responses to disturbance played an important role in the potential ecological impacts of disturbance. Timber harvesting produced different responses among a number of closely related genera (*Pseudotomentella spp.* and *Tomentella spp.*) and species (within *Kitasatospora, Rhizopogon* and *Suillus*), demonstrating the necessity of both fine-scale and broad characterizations of community structure. Focusing attention on resolving fine-scale phylogenetic has the secondary benefit of identifying novel phenotypes, aiding both our understanding of the physiology of forest soil microorganisms and disturbance ecology.

The degree to which biogeographical differences may limit generalizations about the long-term effects of harvesting was evident in the absence of many common trends in LP_{TX}. No remarkable differences in the abundance or diversity of EM fungi or relative abundances of *Basidiomycota* and *Ascomycota* were observed in LP_{TX}, which were major features of all other ecozones. LP_{TX} was the only ecozone in which harvesting treatments were insignificant in

explaining variation in fungal populations. LP_{TX} was an outlier in terms of other broad trends such as the expansion of candidate phylum AD3 and unclassified sequences as well as the decline of Verrucomicrobia. The distinctive lack of common trends observed in LP_{TX} mirrors the general distinctiveness of its community which had double the number of unique bacterial taxa (7,400) relative to other ecozones and the second highest number of unique fungal taxa. Lignocellulolytic populations, described in Chapter 4, were also largely unique in LP_{TX} . Conditions in LP_{TX} soils were markedly different, containing less than half the total C and total N found at other sites and had the most acidic of any mineral layer soil. The conditions, coupled with the fact LP_{TX} had the lowest soil moisture content and highest mean annual temperature, suggest that the microbial community may be composed of taxa already adapted to the harsher conditions caused by harvesting. Another critical consideration is that LP_{TX} REF plots were the only plots that had been previously harvested (~75 years prior to sampling), and still exhibited signs of past disturbance such as skid roads (Andrew Scott, USDA, personal communication). Historically, the LP_{TX} forests have been managed with fire for many hundreds of years by humans and are also prone to lightning fires (Andrew Scott, USDA, personal communication). The lack of clear distinction between REF plots and harvested plots in LP_{TX} may exemplify the equilibration of soil communities to long-term exposures to disturbance (i.e. a perpetual disturbed state). A third explanation, none of which are mutually exclusive, may be that microbial communities have rebounded more quickly to a pre-harvest conditions due to the faster forest regeneration observed at LP_{TX} sites (Ponder *et al.*, 2012), where trees reach maturity in approximately half the time (~ 25 year cycles). Thus, LP_{TX} exemplifies how biogeographical factors and land-use legacy can influence the potential impacts of harvesting. As a case study, LP_{TX} may help reveal which organisms and microbial process have the greatest effect on

regeneration by correlating differences in community composition with measures of forest productivity in perpetually disturbed and less disturbed sites.

One important caveat to consider when interpreting data presented in Chapter 3 is that OM removal affected the depth of organic layer soil development. Therefore, abundances in organic soils from harvested plots were unavoidably weighted towards surficially abundant taxa. This distortion would likely favour taxa adapted to radiation, desiccation and heat which would thrive in surficial soil. Yet, stress-tolerant taxa also flourished in mineral layer soils including a number of desert-dwelling taxa, such as *Ramlibacter*, *Lysobacter*, *Rubrobacter* and *Clostridium*, and thermophilic fungi. Soil temperature was elevated along the full depth profile and, presumably, so too was higher degree of dryness, though the mineral samples processed did not notably differ in moisture content. In future, this bias may be avoided by sampling more finely along the soil profile.

Substantiating the SIP method, the majority of taxa we identified (~75%) had previously documented cellulolytic activity, including well-characterized groups such as *Actinobacteria*, *Bacteroidetes*, *Cytophaga Myxococcales* and *Sordariomycetes*. The greatest number of novel cellulolytic taxa were associated with mineral layer soil, which, in our microcosms, demonstrated comparable cellulolytic activity to organic layer populations. These novel taxa included *Armatimonadetes* from candidate division *FBP*, with no representative genome or isolate, and members of the ubiquitous, yet poorly characterized phylum, *Candidatus Saccharibacter* (formerly TM7), of which we were able to recover a partial draft genome (~0.4 Mb). Other members of *Armatimonadetes*, as well as members of *Verrucomicrobia* and *Planctomycetes*, were also designated cellulolytic and associated with the mineral layer. These three groups have few cultured representatives, but at least one of each is known to degrade cellulose (Sangwan *et al.*, 2004; Dedysh *et al.*, 2013; Lee *et al.*, 2014). Populations of fungal of

cellulose-degraders were represented by largely well-known saprotrophic fungi, such as *Clitopilus, Humicola, Myceliopthora* and *Chaetomium*. The identification of members of *Sebacinaceae*, a group of saprobic and mycorrhizal fungi, as cellulolytic was novel, but consistent with circumstantial evidence that *Sebacinaceae* played a role in decomposition of maize lignocellulose in agricultural soils (Kuramae *et al.*, 2013).

Our research builds upon previous studies that demonstrated a consistent long-term impact of timber harvesting on forest soil microbial communities. Here, we provide evidence that organic matter removal during harvesting impacted soil populations, in particular at the extreme in OM3, and that changes in soil physical properties, such as temperature and moisture content, may be equal to or more important than changes in organic matter quality in mediating this impact. Canopy closure had occurred in the years immediately prior to sampling in most ecozones. Thus, sampling occurred at a time just after soils experienced the longest period of heightened exposure to solar radiation, soil drying and temperature. Outside of groups with known importance to forest ecology, such as EM fungi, the impacts of shifting microbial populations during these first decades of regeneration are unknown. In the case of stress-tolerant taxa, any impact will likely depend on their sustained activity as forests mature and whether they persist across harvesting cycles. The potential legacy effect could be strong. For example, in cellulolytic populations, the early colonization of decaying woody debris can influence succession and ultimately the quality of decomposition (Song et al., 2015). Further, the totality of the changes brought about by timber harvesting are far from clear, exemplified by the expansion of unclassifiable sequences in harvested plots. As such, this work contributes a foundation upon which future research can build towards better understanding the impacts of forest disturbance and what soil processes underlie variation in forest regeneration across North America.

Chapter 4: Survey of Lignocellulolytic Populations of Forest Soils from Across North America with Stable Isotope Probing

4.1 Rationale

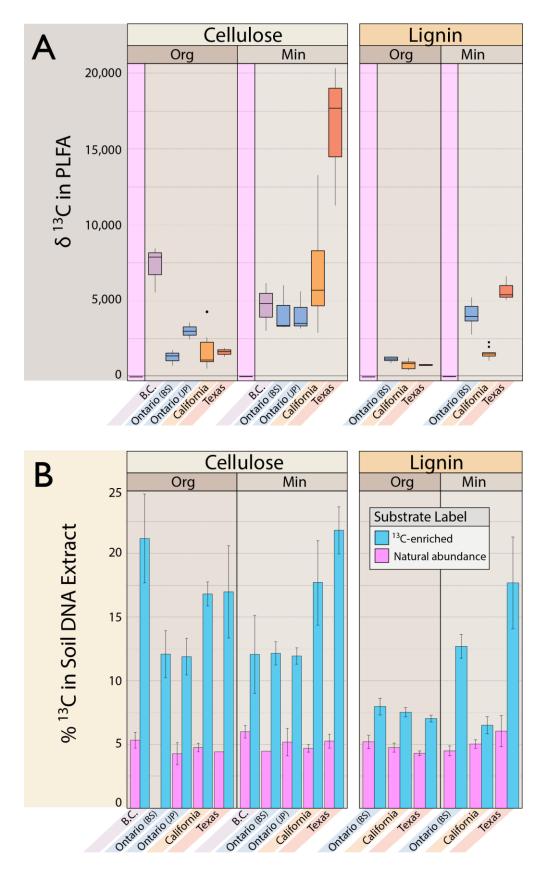
The following section describes a broad survey of hemicellulolytic, cellulolytic and lignolytic populations from soil layers and ecozones previously described in Chapter 3. Samples were selected to maximize the diversity of lignocellulolytic taxa observed in order to i) attribute activity to an array of novel uncultured taxa, ii) assess the prevalence of previously characterized taxa in an environmental context; iii) determine if the overall rate of decomposition during incubations was correlated with community composition; and iv) study the biogeography of the decomposer communities. The contributions of bacterial and fungal degraders were contrasted given the recent evidence that bacterial lignin-degrading activity may be underestimated (Bugg *et al.*, 2011). All three major polymers of lignocellulose were tested in hope of identifying taxonomic groups that possess specialization for the degradation of recalcitrant plant matter.

4.2 Results

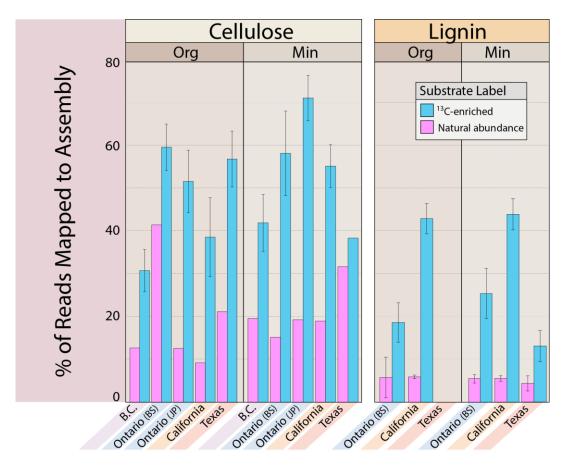
SIP-microcosms amended with ¹³C-labeled bacterial cellulose (99 atom % ¹³C) were performed on samples from all ecozones except SBS_{BC}, while SIP-lignin (DHP-lignin; 75 atom % ¹³C) was performed only on PP_{CA}, BS_{ON} and LP_{TX} and SIP-hemicellulose only on IDF_{BC} and PP_{CA}. All datasets utilized in Chapter 4 are summarized in Table E.4. In brief, DNA from SIPcellulose and SIP-lignin microcosms was sequenced to produce: i) 59 cellulose and 64 lignin pyrotag libraries (~ half ¹²C-controls) averaging 8,400 high-quality 250-bp reads per sample; ii) 100 corresponding PLFA profiles (including ¹²C-controls); iii) 38 cellulose and 46 lignin shotgun metagenomic libraries with an average of 86 million and 56 million quality filtered 100 bp reads per library, respectively, and iv) eight shotgun metagenomic libraries from mineral soil incubated with ¹³C-lignin with or without fungicide, averaging 63 million reads per library. All raw sequencing libraries can be found at the European Sequencing Archive under the project accession PRJEB12502. Pyrotag libraries were supplemented with 50 SIP-hemicellulose libraries (~ half ¹²C-controls) from Leung *et al.*, (2016) and 94 '*in situ*' libraries from corresponding reference field samples from Chapter 3.

4.2.1 Characterization of ¹³C-Enrichment by Substrate, Soil Layer and Ecozone

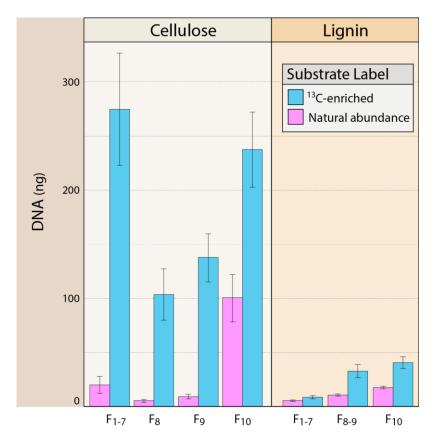
Time-course experiments revealed low-level enrichment as early as four days into incubations with labeled cellulose and lignin (Figure 3.26). The enrichment of microbial biomass (DNA and PLFA) was comparable between organic and mineral layers in cellulose (~ 15% atom C% in DNA), while enrichment occurred more gradually from lignin and was lower in the modified organic soils than in mineral soils, at 8 and 11 atom C% DNA, respectively (Figure 4.1). Measures of enrichment in DNA and PLFA were in close agreement, demonstrating that organisms assimilating ¹³C were growing and replicating. Improved assembly of metagenomes derived from ¹³C-enriched DNA demonstrated a reduced diversity of genomic content, indicative of a selection for sub-populations (Figure 4.2).

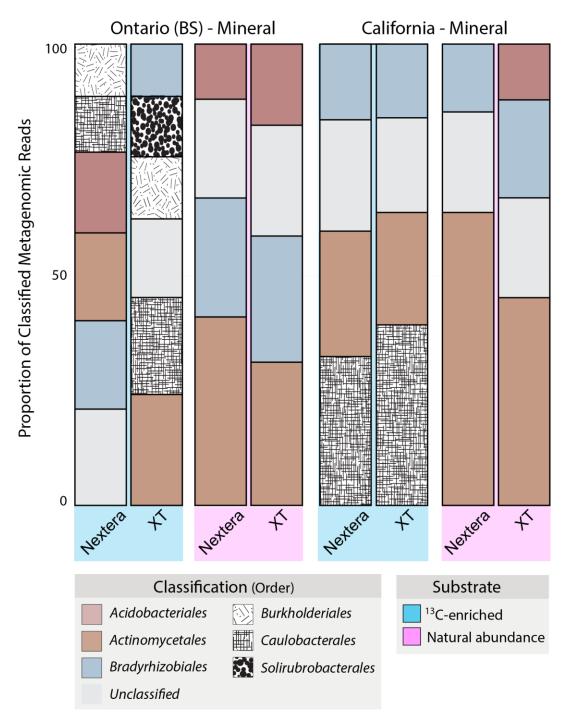

The ¹³C-enrichment of microbial biomass was comparable among ecozones except for a few stand-out cases. The assimilation of cellulose was considerably greater in IDF_{BC} than in any other organic layer soil. Cellulolytic and lignolytic taxa from LP_{TX} mineral soil had the highest activities of any lignocellulolytic populations. Notably, the quality of assembly for these stand-out samples was lower than other samples (Figure 4.2), possibly resulting from the higher proportion of fungi found at these sites whose larger, more complex genomes were less readily assembled (see section 4.2.4).

Of the initial eighty-four microcosms incubated with ¹³C-lignin, approximately ¹/₄ of lignin samples did not yield sufficient DNA or sufficiently clean DNA for PCR amplification and approximately half of metagenomic library preparations failed. Texan soils, in particular, contained high levels of inhibitory compounds which were partly remedied for PCR by diluting template DNA. However, this was not an option in preparing metagenomic libraries due to concentration requirements. A polyvinylpyrrolidone treatment was attempted, but did not help.


Despite comparable levels of enrichment in soil DNA extracts from both cellulose and lignin microcosms, the net recovery of ¹³C-enriched DNA from lignin was far lower than from cellulose (Figure 4.3). Low DNA yields for lignin samples necessitated the use of Nextera XT library preparation which required only 1 ng of DNA. A comparison between the Nextera and Nextera XT prep kits demonstrated the two methods were comparable and that the ability to pool fewer fractions, afforded by the XT kit, resulted in greater differentiation between ¹²C- and ¹³C-libraries (Figure 4.4).

The assimilation of ¹³C-carbon by non-functional populations (i.e. cross-feeding) was not apparent in preliminary time-course experiments. Assuming that PLFAs lacking enrichment at Day 4, when the active community had already become slightly enriched, represent the nonfunctional community (also likely the slow growing functional community), the total enrichment of 'non-functional' PLFAs was less than 5% by the end of the time course. Select PLFAs showed increasing enrichment over-time, while a broad pattern of progressive enrichment, what might be indicative of cross-feeding, was not observed (Figure 4.5). However, in experimentation with fungicide, the co-decline of fungal and bacterial enrichment suggested cross-feeding (see section 4.2.4 for more details).


Figure 4.1. Overview of the ¹³C-enrichment of microbial biomass according to substrate, ecozone and soil layer in delta-¹³C in PLFA (A) and % atom ¹³C in soil DNA extract (B). In panel A, control microcosms incubated with ¹²C-compounds are shaded pink.


Figure 4.2. Comparison of metagenome assembly according to substrate, ecozone and soil layer as evidence for the selection of lignocellulolytic subpopulations and decrease in overall complexity in SIP metagenomes.

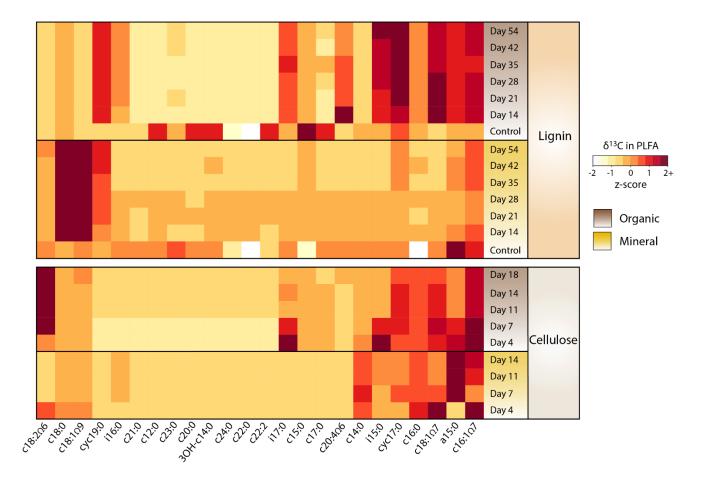
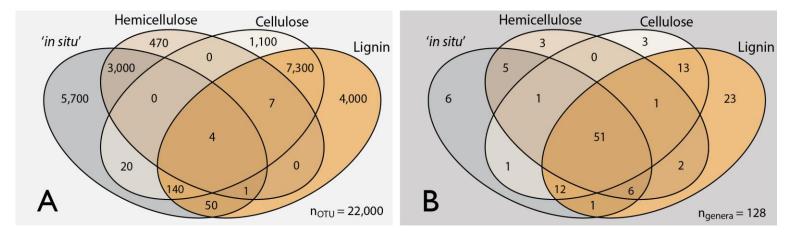

Figure 4.3. Average mass of DNA recovered from the densest CsCl gradient fractions according to substrate. Identical patterns were observed in both mineral and organic soil layers. Pyrotag and metagenomic libraries were created from DNA recovered from F_{1-7} , though additional fractions had to be pooled to recover sufficient DNA for the occasional ¹²C-control library.

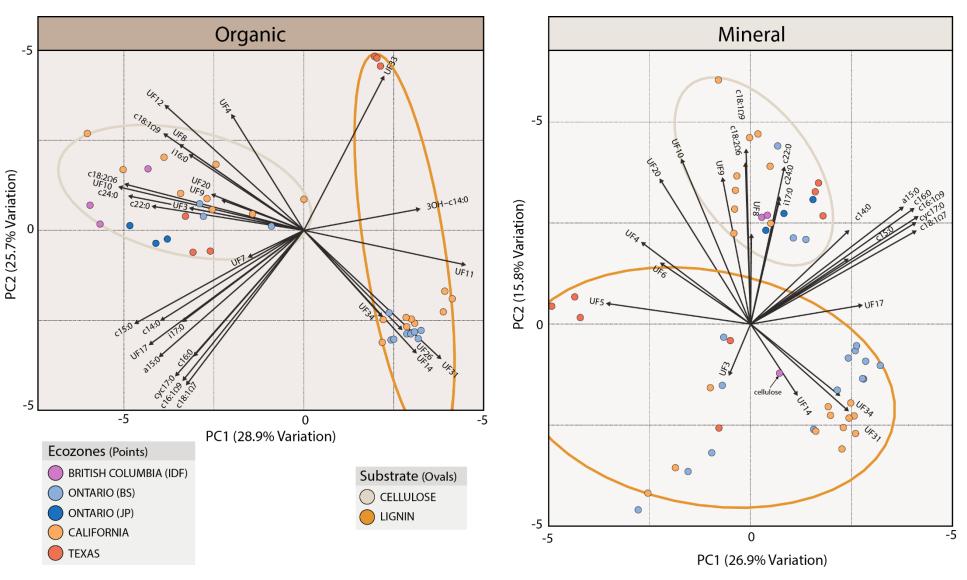
Figure 4.4. Comparison of metagenomic libraries prepared using either 'Nextera' (50 ng DNA) or Nextera 'XT' (1 ng DNA) kits based on LCA classification of unassembled reads at the rank order. Two samples incubated with lignin were arbitrarily selected and fractions heavy fractions were sequenced from ¹²C and ¹³C-pairs. In order to recover 50 ng of DNA for 'Nextera' prep, fractions F_1 - F_9 were pooled, while fractions F_1 - F_7 were used for 'XT'. Only taxa occupying greater than 0.5% of total library are shown. Taxa found in both ¹²C and ¹³C-libraries are coloured solid, while taxa only found in ¹³C-libraries in black and white pattern.


Figure 4.5. Heat map of the normalized delta-¹³C enrichment of PLFAs across time-course experiments for both soil layers and substrates. Each time-point is represented by a single sample. Samples were sacrificed, not repeatedly sampled.

4.2.2 Comparison of Hemicellulolytic, Cellulolytic and Lignolytic Taxa

Among 16S rRNA gene pyrotag libraries, ¹³C-cellulose and ¹³C-lignin libraries shared few common OTUs with *in situ* libraries and even fewer with ¹³C-hemicellulose libraries based on clustering at 0.01% (Figure 4.6A). Conversely, *in situ* and ¹³C-hemicellulose libraries shared substantial overlap. More overlap was observed based on taxonomic classifications of genera (Figure 4.6B). The alignment of all pyrotag libraries was manually validated and, while sequencing libraries were prepared by different people, the same methods, primer stocks, and sequencing facility were used and raw files were processed concurrently in Mothur. Differences may be explicable given the substantially shorter incubation period used for hemicellulose (2 days) versus cellulose (~14 days) versus lignin (~60 days), as well as the possibility that SIP substrates enriched for largely different functional populations.

Figure 4.6. Venn diagrams depicting overlapping OTUs (A) and genera (B) among ¹³C- and *in situ* pyrotag libraries for all lignocellulose substrates.



Differences existed between populations decomposing lignin and cellulose polymers based on profiles of PLFA ¹³C-enrichment (Figure 4.7; hemicellulose data not available). The most discriminating feature between cellulose and lignin-degrading populations was the

enrichment of fungal PLFAs (c18:1Ω9 and c18:2Ω6) and a number of longer chain PLFAs associated with eukaryotes (likely fungal) in cellulose microcosms. The prominence of fungi in SIP-cellulose samples, and relative absence in SIP-lignin samples, was supported by metagenomic data (Figure 4.8). Markers for Gram-positive bacteria (branched PLFAs i16:0 and i17:0) were also correlated to ¹³C-cellulose PLFA profiles, whereas one Gram-negative PLFA (3OH-c14:0) was correlated to ¹³C-lignin profiles in organic soils. These differences in the utilization of cellulose and lignin were reflected in the prevalence of *Actinobacteria* (Gram-positives) in ¹³C-cellulose pyrotag libraries and *Betaproteobacteria* and *Alphaproteobacteria* (Gram-negatives) in ¹³C-lignin pyrotag libraries (Figure 4.9). Cellulolytic and lignolytic populations were also discriminated by unidentifiable PLFAs ('UF'; i.e. PLFAs not present in the standard used for peak identification). Lignin-degrading taxa from LP_{TX} soils were substantially different than degraders from other ecozones, consistent with observations throughout this thesis of the unique community therein.

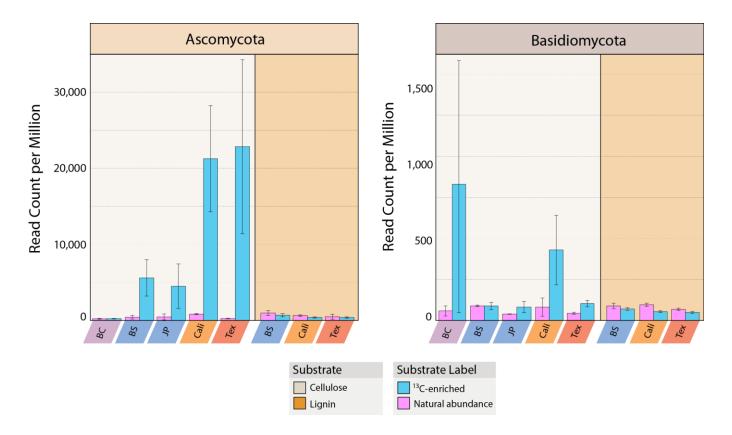
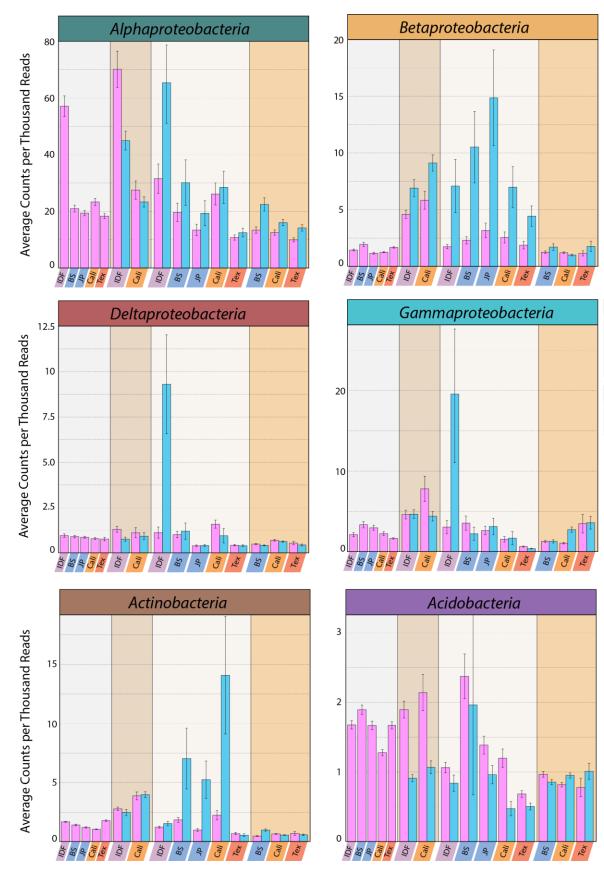

NMS of pyrotag libraries reinforced a number of differences between cellulolytic and lignolytic populations and helped further identify which groups were driving differences (Figure 4.10). ¹³C-cellulose libraries demonstrated greater clustering and diverged more clear from their paired ¹²C-libraries in contrast to lignin libraries. *Burkholderiales* and *Caulobacterales* were clearly associated with, and more abundant in, both ¹³C-cellulose and ¹³C-lignin libraries. Other groups that clustered with ¹³C-cellulose libraries included *Cytophagales, Opitutales* (*Verrucomicrobia*), *FW68* (*Armatimonadetes*), *BD7-3* (*Planctomycetes*), *Myxococcales* (*Deltaproteobacteria*) and *Actinomycetales*. Groups that clustered with ¹³C-lignin libraries (left side and bottom of Figure 4.10) included *Elusimicrobiales* and *FAC88* (*Elusimicrobia*), *Solibacterales* and *iii1-15* (*Acidobacteria*), *Gaiellales* and *Solirubrobacterales* (*Actinobacteria*).

Figure 4.7. Principal components analysis of delta-¹³C enrichment of PLFAs for cellulose and lignin and both soil layers. All included samples were amended with a ¹³C-labeled substrate (i.e. controls not included). Vectors were fitted for individual PLFAs to illustrate the relative contributions to the differentiation of enrichment profiles.



163

Figure 4.8. Abundances of *Ascomycota* and *Basidiomycota* in metagenomic libraries. Error bars correspond to one standard error of the mean.

Figure 4.9. Abundances of prominent bacterial phyla (classes) according to differential abundance in ¹²C- and ¹³C-pyrotag libraries for hemicellulose, cellulose and lignin among ecozones. Error bars correspond to one standard error of the mean.

Substrate
In Situ
Hemicellulose
Cellulose
Lignin
Substrate Label
1³C-enriched
Natural abundance

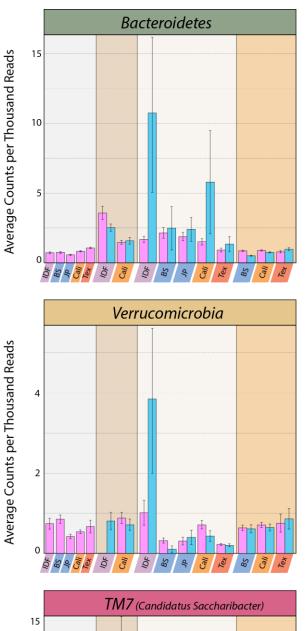
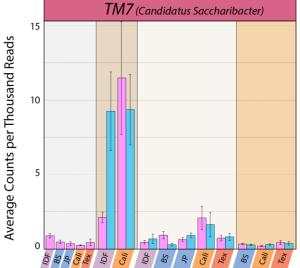
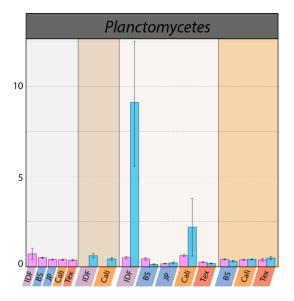
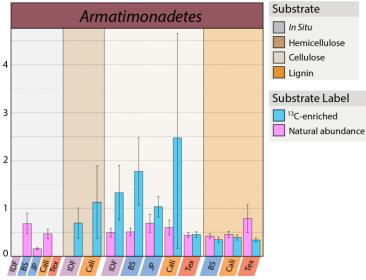
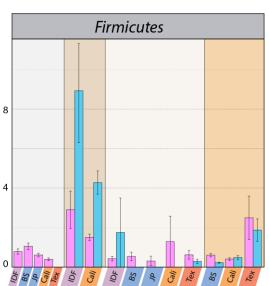
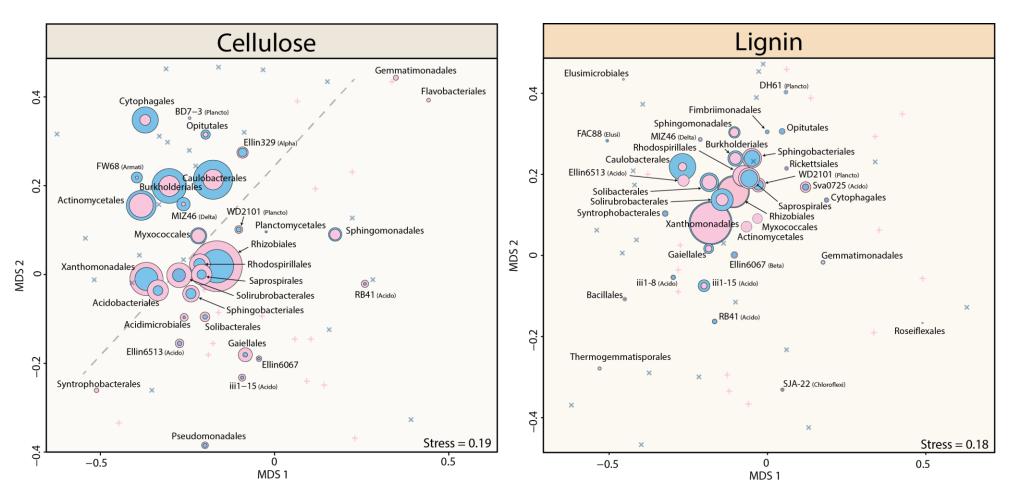
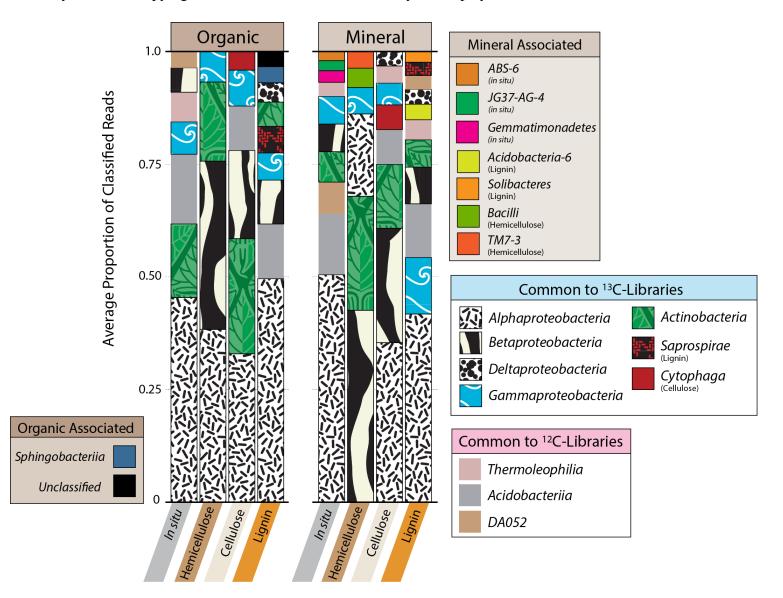






Figure 4.9 continued...



166


Figure 4.10. Non-parametric multidimensional scaling plots depicting differences in composition of ¹²C- and ¹³C- pyrotag libraries for cellulose and lignin. Bray-Curtis dissimilarities among samples were calculated from OTU count matrices and plotted with coloured x's corresponding to samples (blue: ¹³C; pink ¹²C) and with taxa corresponding to circles scaled to average abundances in ¹²C (pink) or ¹³C (blue) libraries. ¹²C- and ¹³C-cellulose libraries were delineated by a single dotted line.

All ¹³C-pyrotag libraries were enriched in a number of bacterial classes not common in ¹²C-libraries with notable differences among these groups according to substrate and soil layer (Figure 4.11). Yet, a large number of putatively lignocellulolytic bacterial classes were common in both ¹²C- and ¹³C- libraries and differed only at lower taxonomic ranks. For example, the differential abundance of certain families of *Alphaproteobacteria*, such as *Caulobacteraceae*, was obscured by the widespread abundance of *Bradyrhizobiaceae* in all samples, a group which was not implicated in decomposition of any lignocellulosic substrate. A combination of DESeq2 and indicator species analysis was used to assign putative lignocellulolytic function to differentially abundant taxonomic groups in ¹³C-pyrotag and metagenomic libraries (Table 4.1).

Members of *Burkholderiales* and family *Caulobacteraceae* exhibited marked assimilation of ¹³C-label from all three substrates. All three major families of *Burkholderiales*, namely *Burkholderiaceae*, *Comamonadaceae* and *Oxalobacteraceae*, possessed taxa differentially abundant in ¹³C-pyrotag libraries (Appendix Figure C.6). In the family *Caulobacteraceae*, the genus *Asticcacaulis* exhibited activity on both hemicellulose and cellulose, while *Caulobacter* demonstrated the capacity to degrade all three (Figure 4.12). Putatively cellulolytic OTUs were spread throughout the *Asticcacaulis* clade (not shown), whereas OTUs assigned to *Caulobacter* and other unclassified *Caulobacteraceae* formed relatively cohesive clades (Figure 4.13). Lignolytic *Caulobacteraceae* grouped into four clades ('L1' - 'L4'), while one cluster of cellulose and hemicellulose-degrading *Caulobacter* was identified ('CH'). Lignolytic clades were more abundant in mineral soils (μ_{org} =6.0, μ_{min} =21.5; p=0.02), whereas their outgroups (i.e. closely related clusters of OTUs that did not show any or, in some cases mixed, enrichment) were more abundant in organic soils (μ_{org} =3.0, μ_{min} =1.4; p < 0.001).

Figure 4.11. Abundant classes of bacteria in pyrotag libraries according to substrate and soil layer. Taxa are organized into groups based on whether they were common to ¹²C-libraries (muted, solid colour), common to ¹³C-libraries (patterned), or specific to either organic and mineral horizon (solid colour). Only classes occupying more than 0.5% of the total library are displayed.

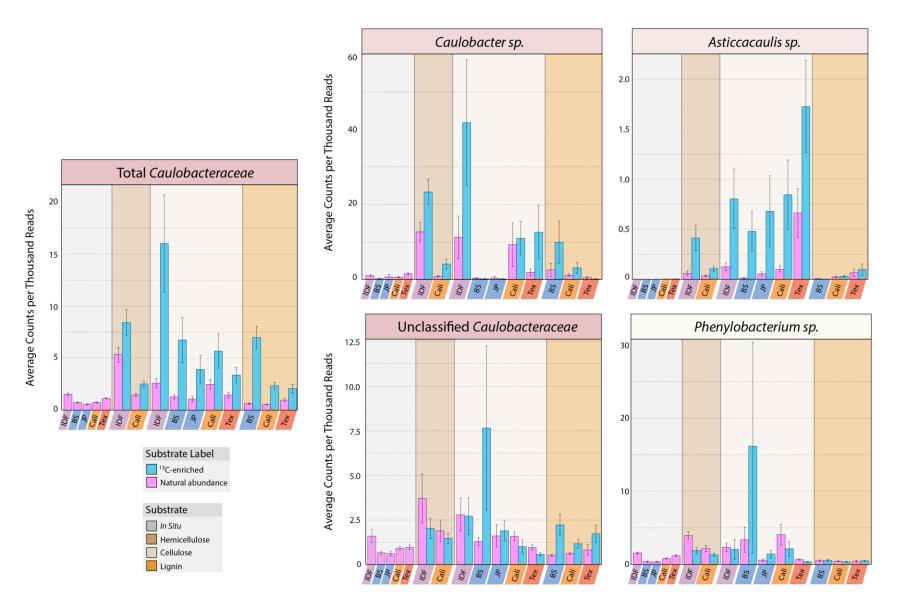
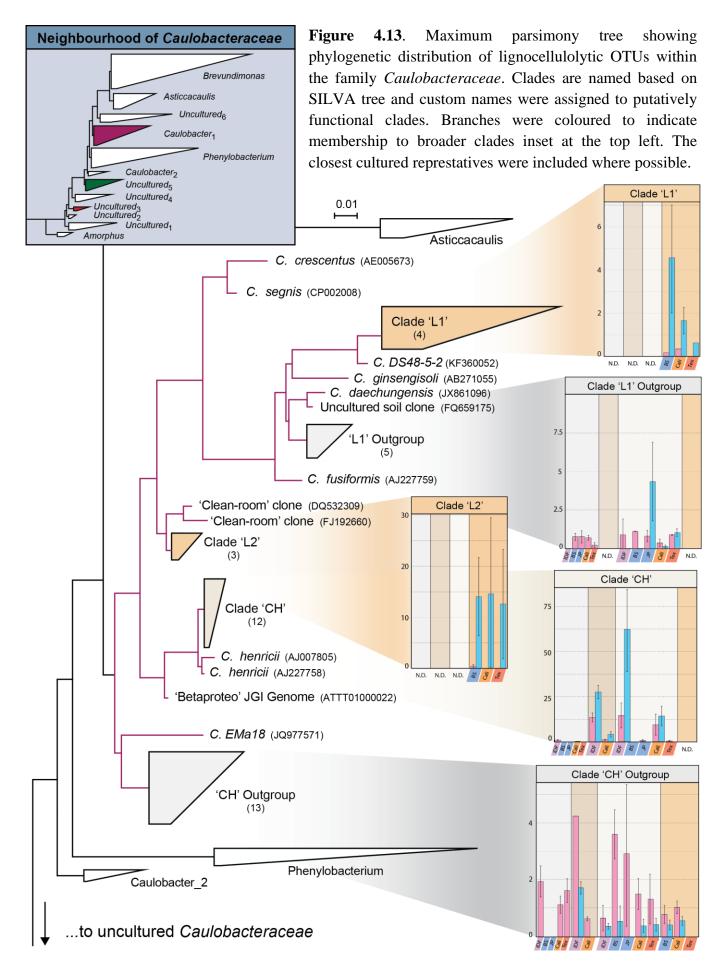
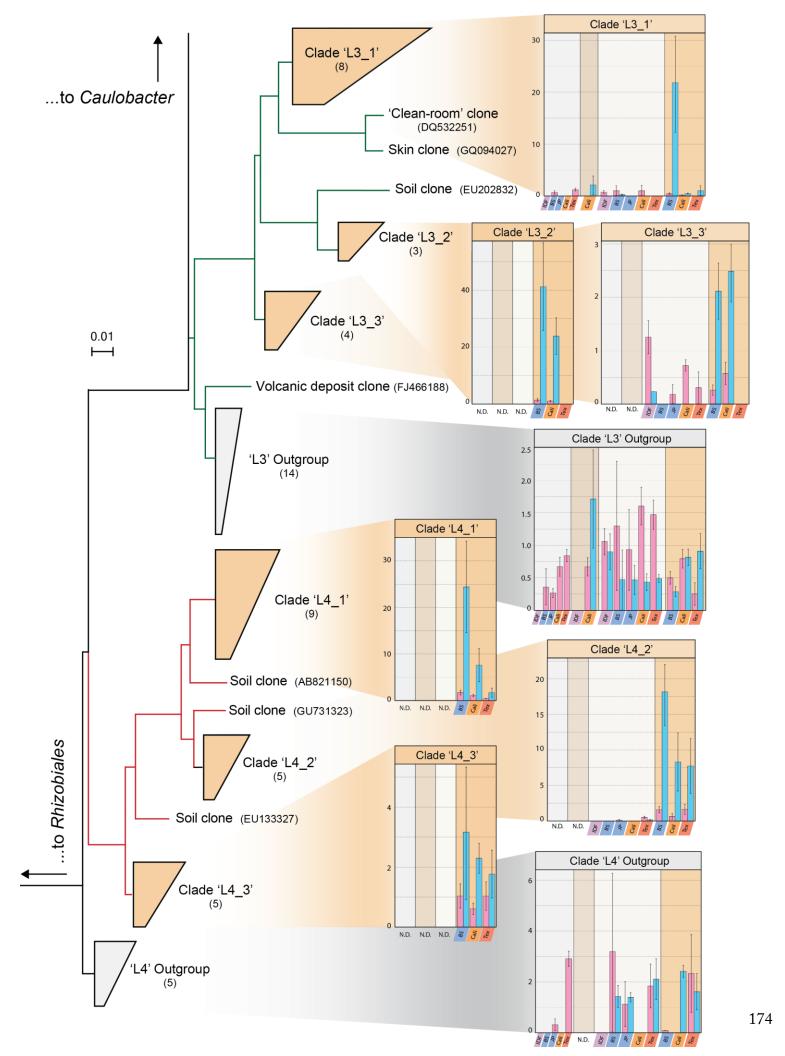


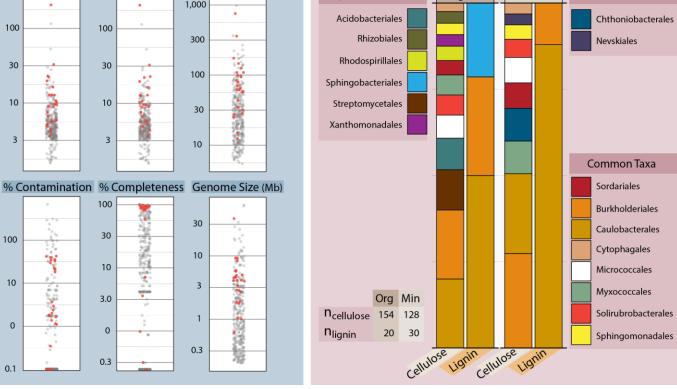
Table 4.1. All putatively hemicellulolytic, cellulolytic and lignolytic taxa based on differential abundance between ¹³C and ¹²C-pyrotag or metagenomic libraries. Best classifications have been given with the prefix corresponding to taxonomic rank. The *in situ* abundance of each taxon is represented by a scaled circle which has been coloured according to whether the taxon was differentially abundant for a given substrate in that ecozone. White circles indicate data was not gathered for that ecozone (both SIP-hemicellulose and SIP-lignin experiments use a subset of ecozones) and grey circles indicate data existed, but the taxon was not enriched in ¹³C-libraries from microcosms in that ecozone. The total number of enriched OTUs are given as well as the averaged ratio of abundance in ¹³C- by ¹²C-libraries for each taxon (not each OTU) and each substrate where differentially abundance was observed. Additional information can be found in Table E.12.


			# OTU
o_iii1-15 😳 o_Ellin6513 ⊙ o_Solibacterales	2.5 2.3 1.5		
oAcidimicrobiales fACK-M1 fFrankiaceae 🕢 fNocardiaceae	1.3 ∞ 7.2 17	· · · · · · · · · · · · · · · · · · ·	 *
	3.8 3.6 1.3 3.8 1.3 4.4		
o_Gaiellaceae 🛈 o_Solirubrobacterales ⊙ f_Conexibacteraceae	2.4 1.2 24 4.9 1.2 12		"
dFBP oFW68	22	· · · · · · ·	JHT I
fSphingobacteriaceae 🕢 fCytophagaceae gCytophaga	1.6 4.6 1.2 4.0	· • · · · • · · · • · · · • · • • •	₩1 Ⅲ ₩1Ⅲ
cC0119 🖸	3.4	0-	1
oFAC88	7.9		,IHT
g_Bacillius 🔿 f_Paenibacillaceae ⊙	8.1 5.1	• • • • • • • • • • • •	l ₩
oDH61	14	······································	
f_Caulobacteraceae g_Asticcacaulis 🕝 g_Caulobacter g_Bosea g_Devosia 🕝	3.6 2.4 7.7 4.4 4.8 2.1 6.7 4.4 1.2 2.3 1.6 2.0		
g_Agrobacterium g_Telmatospirillum () f_Sphingomonadaceae () g_Azospirillum () f_Erythrobacteraceae	1.9 4.6 4.6 2.3 20 17		 ₩ ■
g_Burkholderia 🕢 f_Comamonadaceae g_Pelomonas 🕢 g_Leptothrix 😳 g_Variovorax f_Oxalobacteraceae ⊙ g_Janthinobacterium 😳	3.2 1.8 4.9 2.2 4.0 3.8 4.5 0 3.9 10 16 2.2 3.0		₩₩₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
	 o_Ellin6513 () o_Solibacterales o_Acidimicrobiales f_ACK-M1 f_Frankiaceae () f_Nocardiaceae f_Microbacteriaceae g_Salinibacterium f_Micrococcaceae () f_Streptomycetaceae () g_Streptomyces o_Gaiellaceae () o_Solirubrobacterales () f_Conexibacteraceae g_Conexibacter o_FW68 f_Sphingobacteriaceae () f_Cytophagaceae g_Cytophaga c_C0119 () o_FAC88 g_Bacillius () f_Paenibacillaceae () o_DH61 f_Caulobacteraceae g_Asticcacaulis () g_Caulobacter g_Bosea g_Devosia () g_Agrobacterium g_Telmatospirillum () f_Sphingomonadaceae g_Leptothrix () g_Variovorax f_Oxalobacteraceae () 	o_Ellin6513 ()2.3o_Solibacterales1.5o_Acidimicrobiales1.3f_ACK-M1	o_Ellin6513 ③ 23 o_Solibacterales 115 o_Acidimicrobiales 113 f_ACK-M1 9 f_Frankiaceae () 722 f_Nocardiaceae 117 f_Microbacteriaceae 28 20 g_Salinibacterium 38 36 f_Micrococcaceae ③ 13 38 f_Streptomycetaceae ④ 144 g_Streptomyces 24 o_Solirubrobacteraleceae 12 12 o_Gaiellaceae ③ 12 12 o_Gaiellaceae ③ 12 12 o_Solirubrobacteraleceae 144 g_Conexibacteraceae 149 g_Conexibacteraceae 149 g_Conexibacteraceae 140 f_Cytophagaceae 12 12 o_FAC88 79 g_Bacillius ③ 51 f_Paenibacillaceae ⑤ 51 o_DH61 14 f_Caulobacteraceae 16 22 g_Asticcacaulis ④ 16 22 g_Agrobacterium 17 g_Agrobacterium 19 g_Agrobacterium 12 12 g_Agrobacterium 12 23


 Table 4.1 continued...

Phylum	Best Classi	ification	Substrate	in situ	#OTU
Deltaproteobacteria	oMIZ46 fCystobacte fPolyangiac		30 21 6.4	· · · · · · · · · · · · · · · · · · ·	
Gammaproteobacteria	-	siaceae ⊙ aceae 🛛 😳	5.7 6.5 2.3 2.5 2.3 1.9 250 3.0 2.8		
TM7 (Candidatus Saccharibacteria) Verrucomicrobia	cTM7-3 ⊙ pVerrucomi fOpitutacea		12 2.0 1.4	· • • • • • • • • • • • • • • • • • • •	 *
Ascomycota	gPseudogyr gBotrytis gArthrobotr fSaccharom gVerticillium gTrichodern gHypocrea gFusarium (gOphiocord gChaetomiu gHumicola gMyceliopth gNeurospor gMagnapor	rys () ycetaceae () n () na () yceps im nora () a ()	61 11 10 8.4 20 15 4.6 23 8.9 46 30 54 25 37 52		* * * * * * * * * * * * * * * * * * *
Basidiomycota	gPleurotus gCoprinops gSchizophy gLaccaria gPiriformos gTrichospor gCryptococ	llum 🕢 pora ron 🕝	5.2 2.8 2.3 1.6 42 2.4 2.4		* * * * *
Bacteria	Fungi 📃 🛛 C	Organic-associ	ated 🕝 🛛 Mir	neral-associat	ed ⊙
Ecozone British Colum California (PP) Ontario (BS) Ontario (JP) Texas (LP)	bia (IDF)	Substra Hemice Cellulos Lignin	ellulose se	Scale	128
 No SIP Data Av No Activity in E 		 by members of * Assigned base 		s	

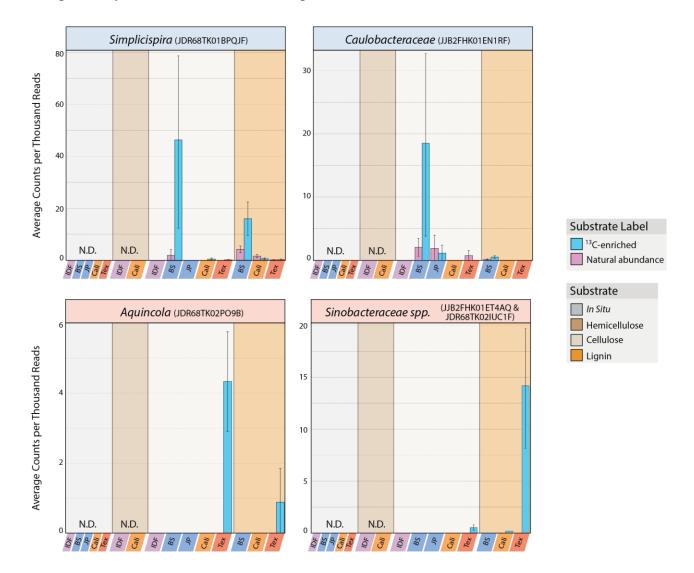
Figure 4.12. Abundances of all prominently hemicellulolytic, cellulolytic and lignolytic genera of *Caulobacteraceae* based on differential abundance between ¹²C- and ¹³C-pyrotag libraries.


Partial draft genomes classified to *Caulobacteraceae* accounted for over half of all drafts recovered from ¹³C-lignin and approximately a quarter from ¹³C-cellulose libraries (Figure 4.14). Of the drafts recovered for cellulolytic *Caulobacteraceae*, 40% were classified as *Asticcacaulis*, 53% as *Caulobacter*, while drafts recovered from lignolytic taxa were 95% *Caulobacter*. Similar differences between cellulolytic and lignolytic *Caulobacteraceae* were found based on CAZy content (section 4.2.3).

The bacterial genera with the greatest enrichment in ¹³C-hemicellulose libraries were *Agrobacterium, Bacillus, Paenibacillus, TM7-3* and *Streptomyces* and included taxa also active on cellulose, such as *Cellvibrio, Janthinobacterium, Cytophagaceae* and *Salinibacterium*. The most notable cellulose-degraders were from candidate division *FBP* and order *FW68* within *Armatimonadetes*, which were highly enriched across all ecozones, though were low abundance *in situ*. Novel putatively lignolytic bacteria were classified to poorly characterized taxonomic groups, such as acidobacterial groups 2 (*Ellin6531*), 3 (*Solibacterales*) and 6 (*iii1-15*), *Elusimicrobia*, and *Sinobacteraceae*, as well as to a number of taxa available in culture collections, such *Bradyrhizobium canariense* ('*Bosea*' in Table 4.1), *Altererythrobacter dongtanensis* ('*Erythrobacteraceae'*). Aquaspirillum polymorphum ('*Telmatospirillum'*), and *Cystobacter gracilis* ('*Cystobacteraceae'*). Descriptions and detailed phylogenetic affiliations of lignocellulolytic taxa can be found in Appendix C.

No single OTU possessed activity on all three substrates, which reflects the low degree of overlap with hemicellulolytic libraries. A custom search for OTUs differentially abundant for multiple substrates within a given ecozone yielded a total of five OTUs putatively active on lignin and cellulose, which were related to *Simplicispira (Burkholderiaceae)*, *Aquincola (Comamonadaceae)*, *Caulobacteraceae spp.* (clade 'LH3_1') and two *Sinobacteraceae spp.* (Figure 4.15).

Figure 4.14. Overview of information on top quality draft genomes recovered from ¹³C-cellulose and lignin libraries, including a list of all top quality genomes recovered (< 40% 'contamination' and >80% 'completeness'), an overview of bin characteristics derived from CheckM, and the LCA taxonomic classifications of all draft genome bins. Points shaded red in the scatterplots correspond to the listed top quality drafts. The following colours were used to code substrate, ecozone and horizon: off-white (cellulose), dark gold (lignin); purple (BC_{IDF}), blue (O.N. ecozones), yellow (PP_{CA}), orange (LP_{TX}); dark brown (organic layer) and light brown (mineral layer). [Figure Appears on Next Page]


	Phylum	Classification	S <mark>ubstrat</mark> e	Ecozone	Horizon	Complete	Genome Size	Longest Scaffold	n50 (Scaffold)
	a - Proteo;	gAsticcacaulis (87%)					4.1 Mb	43 Kb	10.9 Kb
	a - Proteo;	g_Asticcacaulis (94%)				ē	4.7	109	29.0
	NA	d_Unclassified					2.9	357	119
	Actinobacteria;	g_Conexibacter (44%)					3.4	56	10.6
	Actinobacteria;	g_Conexibacter (55%)					2.7	174	36.7
	a - Proteo;	g_Caulobacter (50%)					4.5	145	42.1
	Actinobacteria;	g_Leifsonia (42%)					4.6	93	15.3
	β - Proteo;	g_Herbaspirillum (41%)					4.0	109	7.6
	Verrucomicrobia;	g_Chthoniobacter (51%)					9.3	98	19.2
	Verrucomicrobia;	f_Verrucomicrobiaceae (48%)				\bigcirc	8.3	755	435
	Actinobacteria;	g_Arthrobacter (78%)					4.9	70	12.6
	Actinobacteria;	g_Conexibacter (56%)					2.8	84	34.6
	δ - Proteo;	gSorangium (67%)					9.2	27	5.7
	Verrucomicrobia;	g_Opitutus (65%)				\bigcirc	4.1	61	18.4
	a - Proteo;	g_Magnetospirillum (28%)					1.9	62	23.4
	β - Proteo;	g_Collimonas (46%)				\bigcirc	5.9	79	14.7
	a - Proteo;	g_Caulobacter (44%)					5.7	34	6.5
	β - Proteo;	g_Comamonadaceae (75%)					4.9	64	12.6
	α - Proteo;	g_Caulobacter (58%)					4.1	58	16.8
	Ascomycota;	g_Chaetomium (21%)				Θ	1.7	32	4.4
	Ascomycota;	g_Pseudogymnoascus (91%)				Θ	0.62	12.3	6.1
	NA	d_Unclassified				Θ	1.0	25	6.3
	Ascomycota;	g_Neurospora (22%)				Θ	1.0	28	6.4
	Ascomycota;	g_Chaetomium (48%)				\bigcirc	38.6	125	14.6
	Ascomycota;	g_Neurospora (21%)				\bigcirc	1.8	15	3.5
Me	an Scaffold (Kb)	N50 (Kb) Longest Scaffold	d (Kb)	Organic Asso	ciated (Organic	Mineral	Mine	ral Associated
	•	• 1,000		Acidobacteria	les			_ С	hthoniobacterale
100	100	300		Rhizobia	les				evskiales
30			-	Rhodospirilla	les			_	
50	30	100		Sphingobacteria	les				
10	10	30		Streptomyceta	les				

0.1

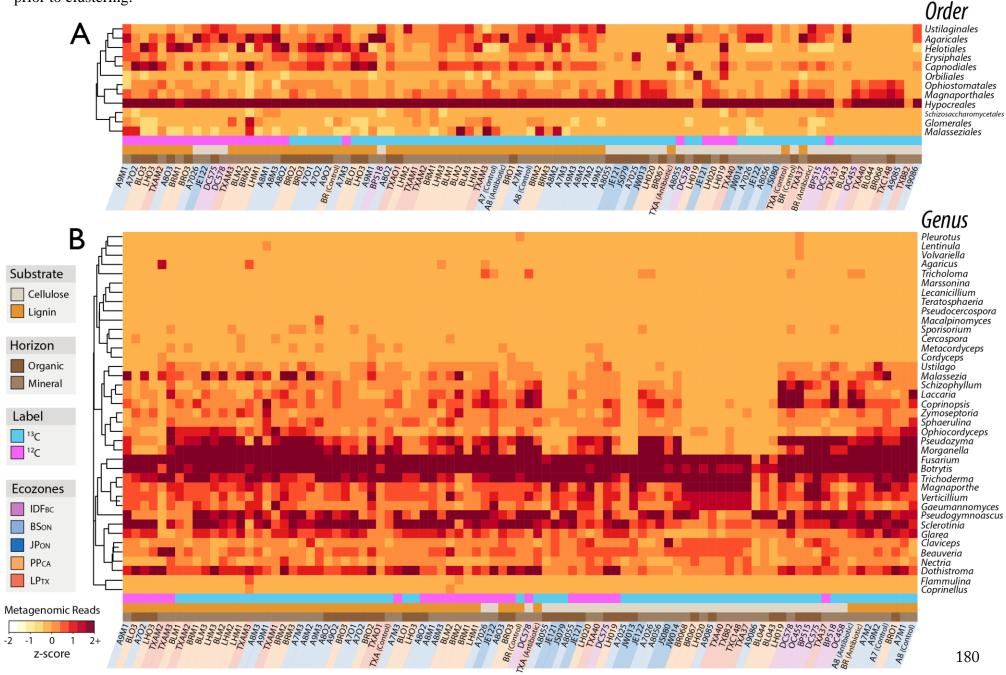
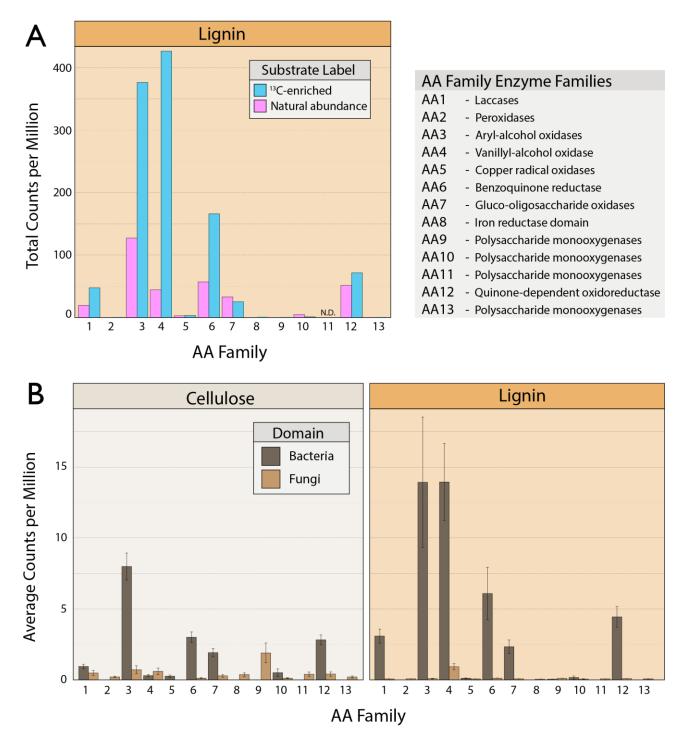

•

Figure 4.15. Abundances plots of OTUs enriched in both lignin and cellulose ¹³C-pyrotag libraries within the same ecozone. Plots are labeled with the lowest taxonomic classification supported and with representative read names. Where two OTUs were combined, both independently exhibited the trend in multiple substrate use.

Fungal taxa were characterized using metagenomic libraries (ITS pyrotag libraries were no prepared) based on LCA classification. Distinct clustering of ¹²C- and ¹³C-libraries as well as cellulose- and lignin-degrading taxa occurred based on taxonomic profiles at both the rank order and genus (Figure 4.16). Ophiostomatales and Magnaporthales (Ascomycota) and Agaricales (Basidiomycota) were enriched in ¹³C-cellulose libraries, while Malasseziales and Ustilaginales (both *Basidiomycota* from class *Ustilaginomycotina*) were enriched for in ¹³C-lignin libraries. Members of the order Hypocreales were abundant in both ¹²C- and ¹³C-libraries (0.04% and 0.2% of total metagenomes, respectively), but genera within *Hypocreales*, such as *Trichoderma*, Verticillium, Ophiocordyceps and Fusarium, were differentially abundant in ¹³C-cellulose libraries. Ascomycota were highly abundant in 13C-cellulolytic libraries, including members of the Sordariales, such as Chaetomium, Myceliophthora and Neurospora, as well as other groups, such as Arthrobotrys and Cladophialophora (Table 4.1). While Ascomycota were far more differentially abundant than *Basidiomycota* in ¹³C-cellulose libraries, a number of putatively cellulolytic Basidiomycota were identified, namely: Piriformospora, Trichosporon, Cryptococcus, Coprinopsis, Schizophyllum and Laccaria. The only fungal family differentially abundant in ¹³C-lignin libraries was Saccharomycetaceae (Appendix C; Figure C.3). Saccharomycetaceae were not differentially abundant in cellulose libraries and were the only fungal group to be associated with mineral soil (~2-fold more abundant therein). A necessary caveat regarding LCA-based classifications is that reads originating from a single genome may be artificially classified to separate genera due to the lack of specificity of BLAST-based homology searches used in LCA classification. This phenomenon was apparent in closely related genera (i.e. within a family) which frequently had nearly identical abundance patterns across ecozones and between ¹²C- and ¹³C-libraries, making it difficult to positively identify to which genus the reads actually belong (Appendix C; Figure C.5).

Figure 4.16. Heat map of the relative abundance of the most populous fungal orders (A) and genera (B) based on LCA classification of unassembled metagenomic libraries. Clustering was performed on Bray-Curtis dissimilarity of samples (x-axis) and taxa (y-axis). Read counts were normalized prior to clustering.

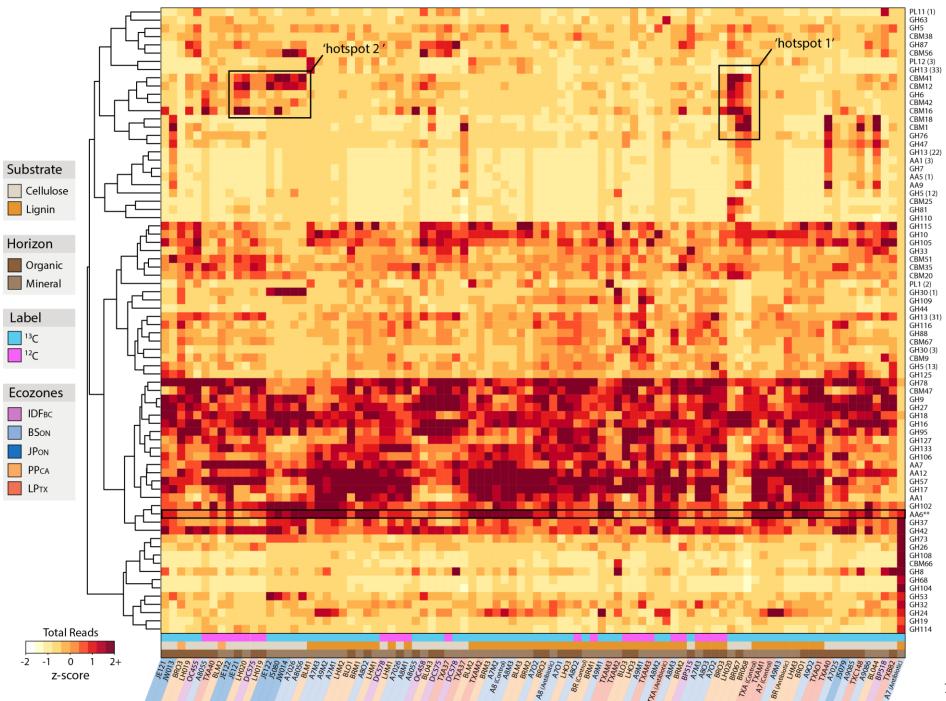
4.2.3 Carbohydrate Active Enzymes in Cellulolytic and Lignolytic Populations


CAZyme genes related to cellulose and lignin degradation were expanded in unassembled ¹³C-metagenomes. All endoglucanase containing GH families were between 1.3 and 32-fold more abundant in ¹³C- than in ¹²C-cellulose libraries (Table 4.2). A substantial number of 'Auxiliary Activity' families containing lignin-modifying enzymes were also enriched in ¹³C-cellulose libraries, such as iron reductase domains (AA8) and lytic polysaccharide monooxygenases (AA9, AA10, A11, & AA13). For DHP-lignin libraries, the majority of all endoglucanases and AA families were actually depleted in ¹³C- relative to ¹²C-libraries, with genes from only three endoglucanases (GH7, GH12 & GH26), and vanillyl-alcohol oxidases (AA4) more abundant in ¹³C-libraries (Table 4.2). However, when read sets annotated to AA families were subsetted to contain only families previously designated as lignolytic (Table 4.1), a number of AA families were more abundant in ¹³C-libraries (Figure 4.17). Laccases (AA1), oxidases (AA3, AA4 & AA7) and quinone-dependent oxidoreductases (AA6 & AA12) were largely bacterial, while peroxidases, iron reductase domains and most lytic polysaccharide monooxygenase families were fungal (Figure 4.17).

CAZy family abundance profiles differed between ¹³C-cellulose and ¹³C-lignin metagenomic libraries (ANOSIM: R=0.08, p=0.004), but not between soil layers or among ecozones. CAZy composition did not significantly covary with taxonomic composition according to a Mantel test on Bray-Curtis dissimilarities (r=-0.07; p-value=0.91). However, a variety of samples formed distinct groups based on substrate, ecozone and horizon when samples were clustered (Figure 4.18a). The clustering revealed the co-occurrence of a number of CAZymes within certain ecozones (see 'hotspots' in Figure 4.18b) indicative of the prevalence of certain functional taxa present there.

Table 4.2. Overview of abundances of GH families containing characterized endoglucanases and 'Auxiliary Activity' enzymes with known lignin-modifying activity. Abundances correspond to the average counts per million reads (RCPM) in unassembled metagenomic libraries. The percentage of libraries in which a given GH or AA family were detected is given. The rounded ratio of counts in ¹³C- relative to ¹²C is provided.

CAZy	Cellulose					Lignin					
Family	¹² C-lib	% lib	¹³ C-lib	% lib	¹³ C: ¹² C	¹² C-lib	% lib	¹³ C-lib	% lib	¹³ C: ¹² C	
AA1	0.96 ±0.3	100	1.33 ±0.2	100	1.0	7.22 ±1.4	100	3.21 ±0.5	100%	0.5	
AA2	0.02 ±0.0	50	0.2 ±0.1	82	13.0	0.72 ±0.6	38	0.03 ±0.0	39%	0.04	
AA3	4.57 ±0.6	100	9.3 ±1.2	100	2.0	15.27 ±2.4	100	14.84 ±4.6	100%	1.0	
AA4	0.29 ±0.1	100	0.85 ±0.2	100	3.0	4.86 ±1.5	100	16.02 ±3.1	100%	3.3	
AA5	0.24 ±0.1	100	0.37 ±0.1	93	1.6	0.39 ±0.1	75	0.13 ±0.1	84%	0.3	
AA6	1.15 ±0.1	100	3.14 ±0.4	100	2.7	5.65 ±1.0	100	6.18 ±1.8	100%	1.0	
AA7	3.05 ±0.3	100	2.53 ±0.4	100	0.8	8.73 ±1.8	100	2.72 ±0.6	97%	0.3	
AA8	-	6	0.36 ±0.1	39	-	-	0	-	5%	-	
AA9	0.04 ±0.0	40	1.93 ±0.7	75	55.0	0.88 ±0.8	31	0.03 ±0.0	32%	0.04	
AA10	0.26 ±0.1	100	0.74 ±0.3	100	2.8	1.79 ±0.5	94	0.38 ±0.1	97%	0.2	
AA11	-	10	0.4 ±0.2	57	38.7	1.19 ±1.6	13	0.03 ±0.0	11%	0.03	
AA12	1.49 ±0.2	100	3.13 ±0.4	100	2.1	8.28 ±1.8	100	4.55 ±0.7	97%	0.6	
AA13	-	0	0.21 ±0.1	43	-	0.13 ±0.1	19	0.02 ±0.0	5%	0.1	
GH5	0.68 ±0.2	100	1.88 ±0.4	100	2.8	1.87 ±0.4	100	0.77 ±0.1	97%	0.4	
GH6	0.62 ±0.1	100	1.66 ±0.6	96	2.7	1.23 ±0.3	94	0.35 ±0.1	92%	0.3	
GH7	0.03 ±0.0	40	0.88 ±0.3	86	28.3	0.02 ±0.1	19	0.04 ±0.0	24%	1.6	
GH8	0.45 ±0.1	100	1.55 ±0.3	100	3.4	3.67 ±2.3	88	3.19 ±2.7	100%	0.9	
GH9	1.41 ±0.4	100	4.69 ±0.6	100	3.3	10.61 ±3.2	100	2.28 ±0.5	97%	0.2	
GH12	0.16 +0.1	100	0.67 ±0.1	100	4.2	0.23 ±0.1	63	0.37 ±0.1	95%	1.6	
GH26	0.65 ±0.1	100	0.83 ±0.2	100	1.3	2.18 ±0.6	94	4.02 ±3.7	100%	1.8	
GH44	0.25 ±0.1	100	0.42 ±0.1	100	1.6	3.14 ±1.0	100	0.71 ±0.1	97%	0.2	
GH45	-	10	0.11 ±0.1	75	10.4	0.34 ±0.4	13	0.01 ±0.0	11%	0.04	
GH48	0.06 ±0.0	100	0.09 ±0.0	79	1.3	0.26 ±0.2	56	0.06 ±0.0	63%	0.2	
GH51	2.84 ±0.8	100	7.54 ±0.9	100	2.7	20.31 ±4.3	100	5.68 ±0.8	97%	0.3	
GH74	1.89 ±0.4	100	2.48 ±0.4	100	1.3	11.42 ±2.2	100	3.08 ±0.8	97%	0.3	
GH81	0.19 ±0.1	100	1.0 ±0.4	100	5.4	0.42 ±0.1	81	0.05 ±0.0	66%	0.1	
GH131	-	10	0.33 ±0.1	61	32.7	-	0	-	0%	-	


Figure 4.17. Characterization of metagenomic reads annotated as lignin-modifying, 'Auxiliary Activity' (AA) families illustrating (A) the differential abundance of AA families summed for all putatively lignolytic families identified in pyrotag analysis (Table 4.1) and (B) the largely bacterial classification of all AA genes found in SIP-cellulose or SIP-lignin metagenomes. [Note: In Panel A, lignin families AA2, AA8, AA9 and AA13 are present at low abundances and exclusively in ¹³C-libraries.]

The taxonomic profiles of CAZymes clustered in 'hot spot 1', namely CBM41, CBM12, GH6 (a family of strict endoglucanases) and CBM16, were consistently assigned to *Actinomycetales (Streptomycetaceae)* in Californian samples BR067, BR068 and LH020 (Figure 4.18b). In contrast, these families were classified to groups of *Proteobacteria* in samples comprising 'hotspot 2.' However, not all CAZymes that clustered within a given hotspot were taxonomically uniform, such as CBM18 and CBM1 ('hotspot 1'), which were largely from *Ascomycota* (Figure 4.18b). The BSoN sample treated with fungicidal compounds, "A7 (Antibiotic)" had a distinct CAZy profile (far right Figure 4.18a) from all others and was comprised nearly exclusively of sequences from *Burkholderiaceae* (see Figure 4.39; section 4.2.4). The major AA enzymes identified in this sample were 'benzoquinone reductases' (AA6), which were one of the AA families frequently more abundant in ¹³C-lignin libraries (highlighted row in Figure 4.18a).

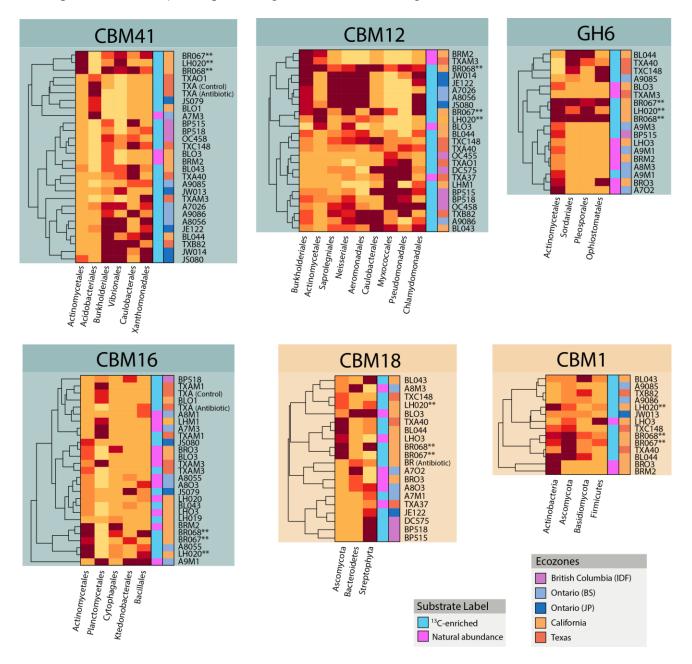
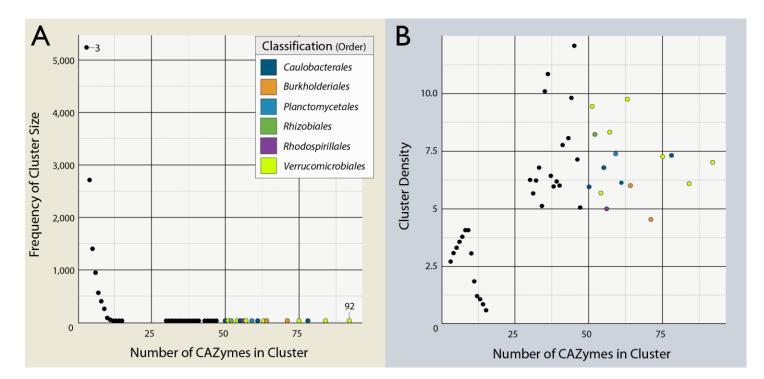

The search for clusters of three or more CAZy genes on a scaffold recovered a total of ~11,500 clusters containing ~51,000 putative CAZymes. A number of longer scaffolds containing over 50 CAZymes were found and were largely classified to *Verrucomicrobiales* (Figure 4.19A). Longer scaffolds typically had lower clustering density of CAZymes, in particular large scaffolds which stretched the notion of a 'cluster.' However, scaffolds containing between 10 – 15 CAZymes exhibited an unexpected increased clustering density (Figure 4.19B), which were fungal in origin. A number of CAZy clusters contained lignin-modifying genes (Figure 4.20). Clusters containing lignin-modifying genes were predominantly bacterial in origin and all corresponded to taxa previously identified as putatively lignolytic with *Burkholderiales*, *Caulobacterales* and *Sordariales* exhibiting characteristic predominance.

Figure 4.18a. Heat map of CAZy family profiles for metagenomic libraries including only the most discriminating GH, PL, CBM and AA families (>1 sample with z-score > 1.5). Clustering was based on Bray-Curtis dissimilarity of samples (x-axis) and CAZy subfamilies (y-axis).



185

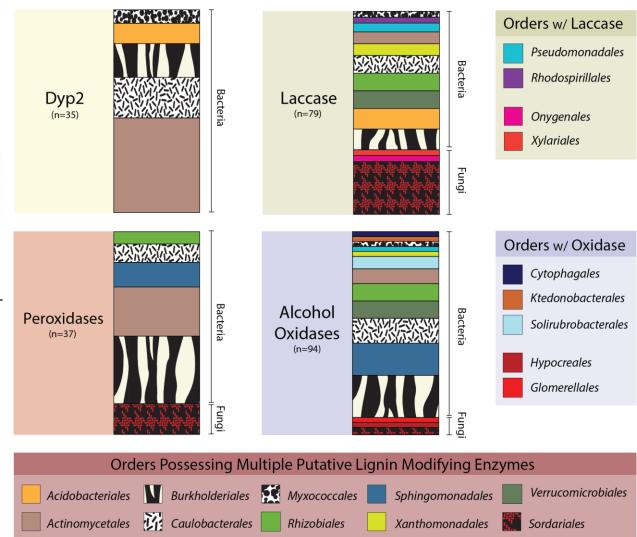
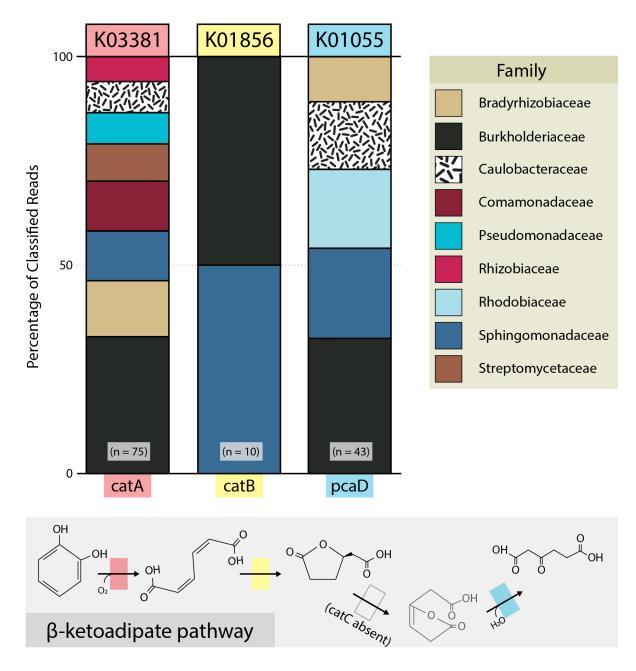

Figure 4.18b. Taxonomic profiles of CAZymes grouping in 'hotspots' in Figure 4.18a displayed as heat maps. Backgrounds are coloured according to the taxonomic affiliation of California samples BR067, BR068 and LH020 (¹³C-cellulose) classified as either *Actinomycetales* (turquoise) or *Ascomycota* (pale orange). Differences among ecozone are also evident.

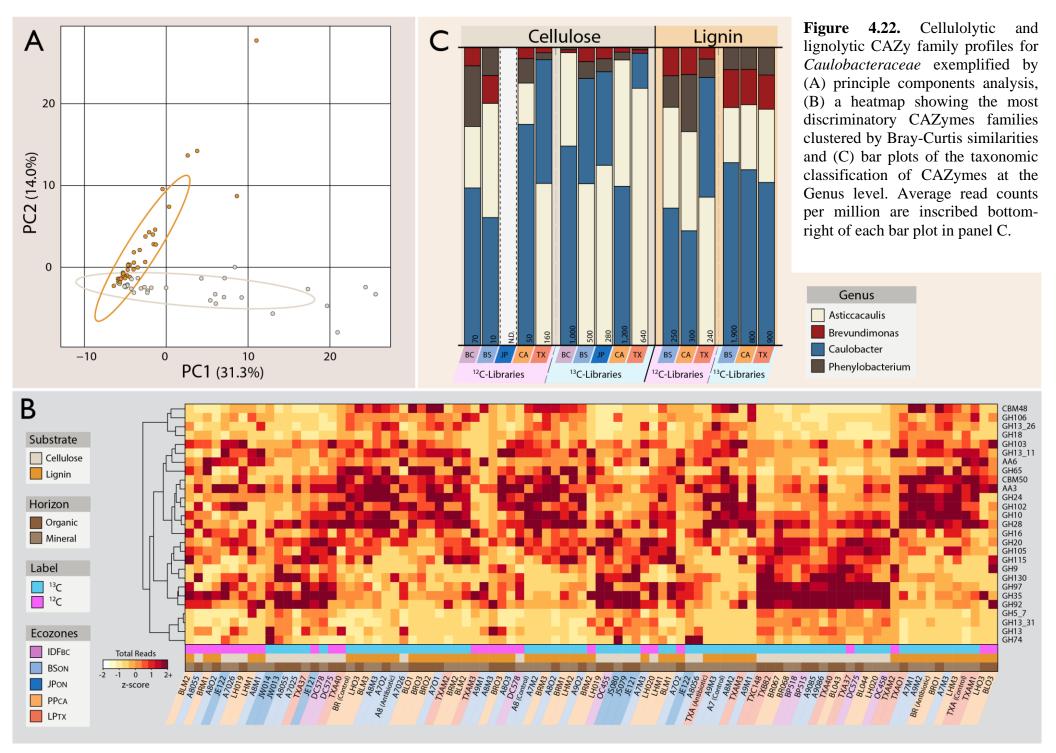
Figure 4.19. Characterization of scaffolds containing clusters of three or more putative CAZymes based on rank abundance of CAZy cluster size (Panel A) and CAZyme cluster density (scaffold length / number of CAZymes; Panel B). Clusters were derived from both cellulose and lignin ¹³C-libraries.

Figure 4.20. Taxonomic classification of CAZy clusters from ¹³C-metagenomes which contain lignin-modifying enzymes: Dyp2, laccases, peroxidases and alcohol oxidases (aryl alcohol and vanillyl alcohol). Only orders which contained more than one CAZy cluster with a given lignin-modifying enzyme are displayed. Full details can be found in Table E.14.

The majority of putative bacterial peroxidases (AA2) were classified by PeroxiBase as Class I - catalase-peroxidases. One putative AA2 classified to Actinomycetales had 31% identity to a lignin peroxidase (Class II – catalase-peroxidase). All fungal AA2 genes were classified to hybrid ascorbate cytochrome C peroxidases. CAZy clusters encoding putatively lignin-modifying genes were recovered from all three families of Burkholderiales implicated in lignin-degradation with each containing at least one peroxidase (either DyP2 or AA2), laccase and oxidase (Table E.14). DyP2-like peroxidases were found in putatively novel lignolytic taxa, namely Acidobacteriales, Ktedonobacterales (Chloroflexi), and Cystobacteraceae (Myxoccocales). The recovery of Nocardiaceae clusters encoding Dyp2-like and vanillyl alcohol oxidase genes from LP_{TX} was consistent with their expanded populations following antibiotic treatment (Figure 4.29; section 4.2.4). Clusters containing Dyp genes were mainly actinobacterial: Microbacteriaceae (4 clusters), Frankiaceae (1) and Streptomycetaceae (5). Other novel lignolytic groups, such as Chromatiales, Rhodospirillales and Rhodobacterales possessed clusters containing laccase genes. One cluster, containing multiple laccase genes, was classified by LCA to Enterobacter *lignolyticus*, which possess characterized lignolytic capabilities. Clusters containing ligninase genes from Streptomycetaceae, Pseudomonadaceae and Bradyrhizobiaceae were unexpectedly abundant given the absence of differential abundance in pyrotag libraries. Sphingobacteriaceae were underrepresented in CAZy clusters with only a single cluster containing an aryl oxidase gene found. Forty-seven percent of CAZy clusters contained a putative CBM and, of those, ~ 1% contained a laccase, $\sim 0.5\%$ an aryl or vanilly loxidase, and $\sim 0.2\%$ some form of peroxidase.

To assimilate ¹³C from the ring-labeled DHP-lignin organisms would need to possess the capability to cleave and transform aromatic compounds into central metabolites. The paradigm for oxic degradation of aromatic compounds involves peripheral pathways which convert degradation products into protocatechuate or catechol intermediates which then feed into the β -ketoadipate pathway, though additional oxic and anoxic pathways have recently been reported (Fucks *et al.*,


2011). The presence of genes in the KEGG Orthology (KO) β-ketoadipate module (M00568) was assessed in partial genome bins and in ¹³C-lignin metagenome assemblies. Nine partial genomes contained homologous genes for the entire KO module and were classified as *Burkholderia*, *Sphingomonas*, *Caulobacter* and *Sorangium*. Upon closer examination, the specific scaffolds encoding the genes in the two *Caulobacter* bins were classified as *Sphingomonadaceae* (all other genome classifications matched their scaffold classifications). Assemblies from a diverse array of organisms possessed homologs of *catA*, encoding catechol 1,2-dioxygenase (Figure 4.21), including *Caulobacteraceae*. The *catC* gene, encoding muconolactone D-isomerase, was absent in all ¹³C-lignin assemblies. Fourteen scaffolds contained neighbouring homologs for at least three of the four β-ketoadipate pathway genes and were classified to *Burkholderiaceae*, *Oxalobacteraceae*.


CAZyme family profiles further substantiated differences in cellulolytic and lignolytic groups within *Caulobacteraceae*. Their CAZy profiles exhibited greater differentiation between cellulose and lignin libraries (ANOSIM; R=0.202; p<0.001) than overall metagenome profiles (R=~ 0.08) and also grouped by ecozone (ANOSIM; R=0.09, p=0.02). The distinction between lignolytic and cellulolytic *Caulobacteraceae* was supported by PCA and by hierarchical clustering using Bray-Curtis dissimilarities (Figure 4.22). A number of CAZy families were differentially abundant in lignolytic *Caulobacteraceae* populations, including the oxidase family AA3, and in cellulolytic populations, such as the endoglucanase-containing family GH9 (Figure 4.22B). Taxonomic classifications also differed, with CAZymes classified as *Asticcacaulis* more abundant in ¹³C-cellulose libraries and *Brevundimonas* and *Caulobacter* more abundant in ¹³C-lignin libraries (Figure 4.22C), consistent with results from pyrotag analysis.

Fungi possessed far higher proportions of peroxidases (AA2), iron reductase domains (AA8) and lytic polysaccharide monooxygenases (AA9) in unassembled ¹³C- libraries. These AA families were most abundant in southern ecozones, PP_{CA} and LP_{TX} , where members of the order

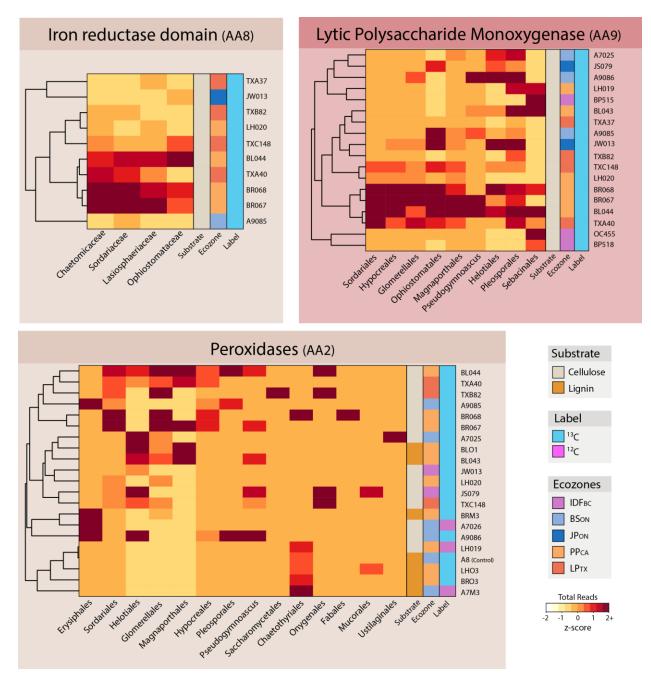
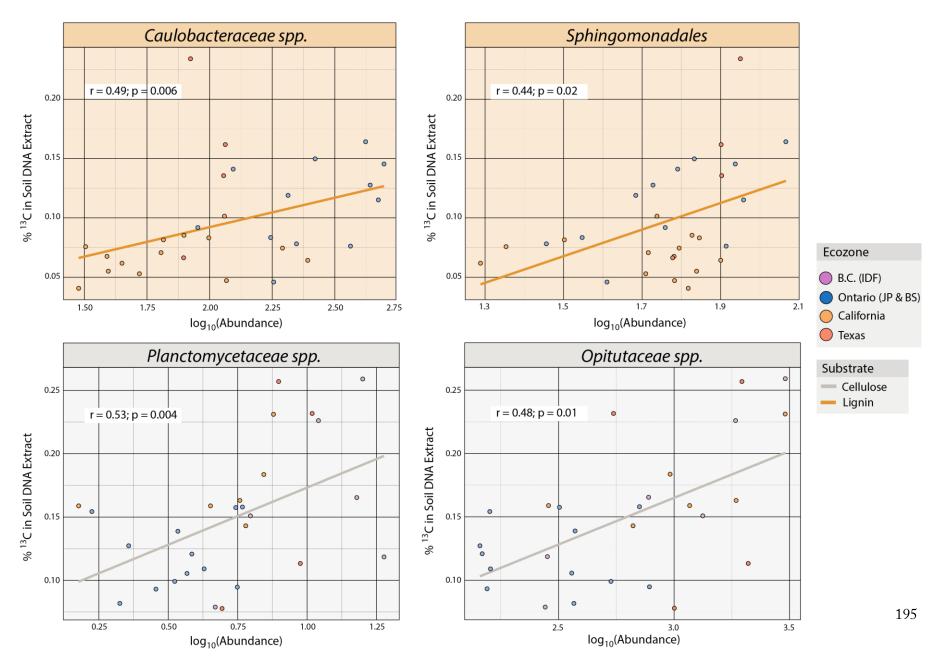
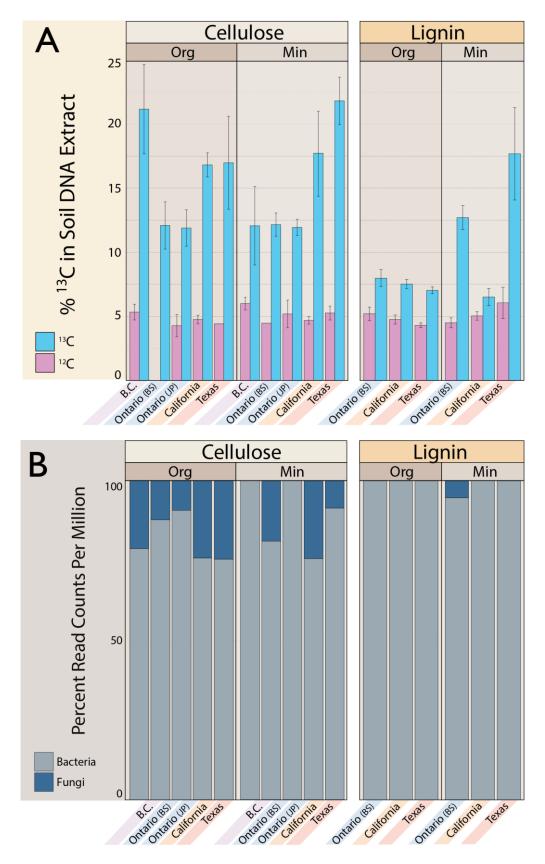
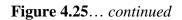
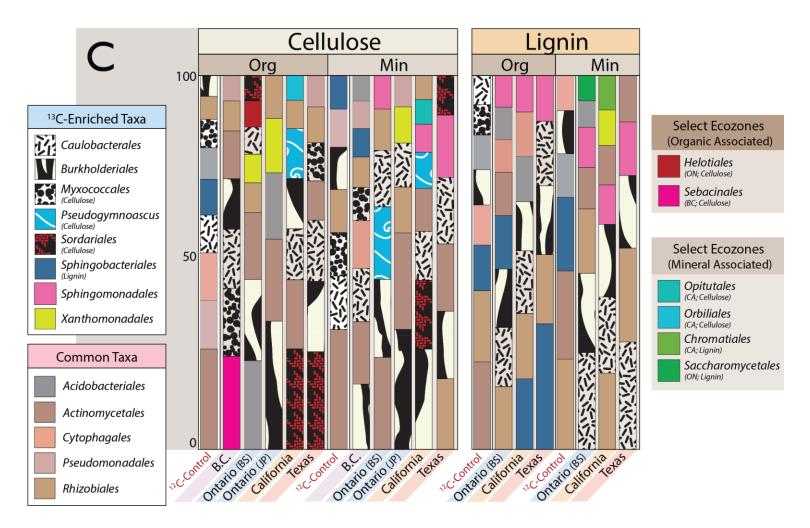

Sordariales were most abundant (Figure 4.23). LPMOs were also classified to *Sebacinales*, supporting their designation as cellulolytic in analysis of pyrotag libraries as well as their endemicity in western ecozones (Figure 4.23; details in section 4.2.5).

Figure 4.21. Taxonomic classifications of assembled scaffolds from ¹³C-lignin metagenomes containing genes from the β -ketoadipate pathway: catechol 1,2-dioxygenase (*catA*; K03381), muconate cycloisomerase (*catB*; K01856) and 3-oxoadipate enol-lactonase (*pcaD*; K01055). Only families with >3 scaffolds are shown.


Figure 4.23. Heat maps showing the relative abundance of fungal taxa in fungi-exclusive CAZyme families AA2, AA8 and AA9.


4.2.4 Relative Contributions of Lignocellulose-degrading Taxa


The importance of any given taxon in the rate of 13 C-assimilation from labeled substrate was assessed using 'Boruta' to test whether specific taxa were predictors of delta- 13 C enrichment in both DNA and PLFA. A number of taxa were identified that were correlated with enrichment levels across all samples, namely *Caulobacteraceae* (r=0.49, p=0.006) and *Sphingomonadales* (r=0.44, p=0.02) for lignin, and *Opitutacaeae* (r=0.48; p=0.01) and *Planctomycetaceae* (r=0.53, p=0.004) for cellulose (Figure 4.24). Other lignolytic taxa were also selected, such as *Rhodospirillales* and *iii1-15*, though these groups exhibited a narrower distribution across samples. No fungal taxa were selected, but this could also be due to their inconsistent distribution among samples. Notably, the majority of samples with the highest average enrichment had greater proportions of fungi (Figure 4.25AB) from classes *Sebacinales*, *Helotiales*, *Sordariales*, *Orbilliales* and *Pseudogymnoascus* (Figure 4.25C).


Total bacterial incorporation of ¹³C into PLFAs surpassed that of fungi for both cellulose and lignin substrates. Fungi and Gram-negative bacteria had comparable levels of enrichment on cellulose, whereas fungi had surprisingly low activity on lignin except in LP_{TX} (Figure 4.26). Fungal activity was more apparent when ¹³C-enrichment was normalized to pre-existing biomass (Figure 4.27). Gram-negative bacteria had the highest delta-¹³C enrichment from both substrates in 51 of 73 PLFA samples, while fungi and Gram-positive bacteria were comparable at 18 and 14, respectively. The total enrichment in samples dominated by fungi was not significantly greater than those dominated by Gram-negative bacteria (t-test; p=0.89), nor was ¹³C-enrichment of PLFA or DNA correlated to the total number of bacterial or fungal metagenomic reads. The enrichment of fungal PLFAs had greater overall variability, between 2 and 10-fold greater variance, relative to Gram-negative and Gram-positive bacteria, respectively. **Figure 4.24.** Linear regression of ¹³C-enrichment of DNA and abundance for taxa selected by Boruta analysis as indicators of overall enrichment on either cellulose (off-white) or lignin (brown-gold). Spearman's rank correlation coefficients and p-values derived from randomization are given.

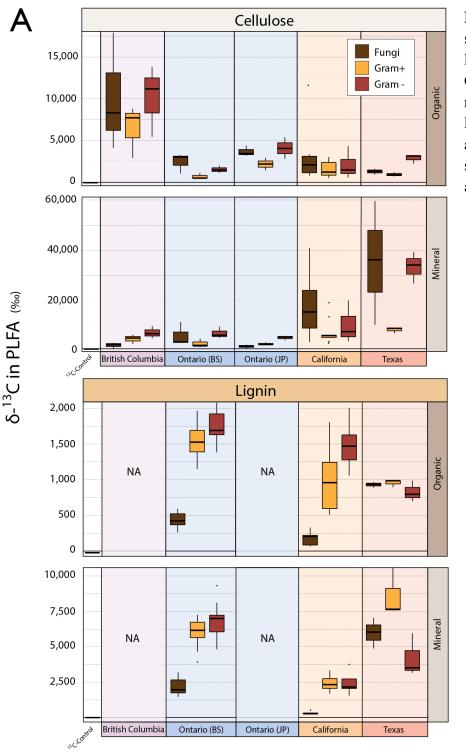
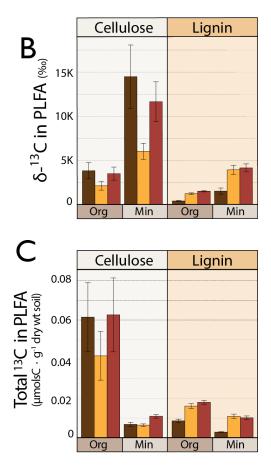


Figure 4.25. Total ¹³C-enrichment of DNA (A) and corresponding ratio of Fungi:Bacteria (B) and overall taxonomic composition of metagenomic libraries (C) among ecozones and soil horizons. Barplots correspond to the proportion of unassembled metagenomic reads classified at the domain (B) and order (C) level. Taxa occupying fewer than 0.5% of reads were not shown.



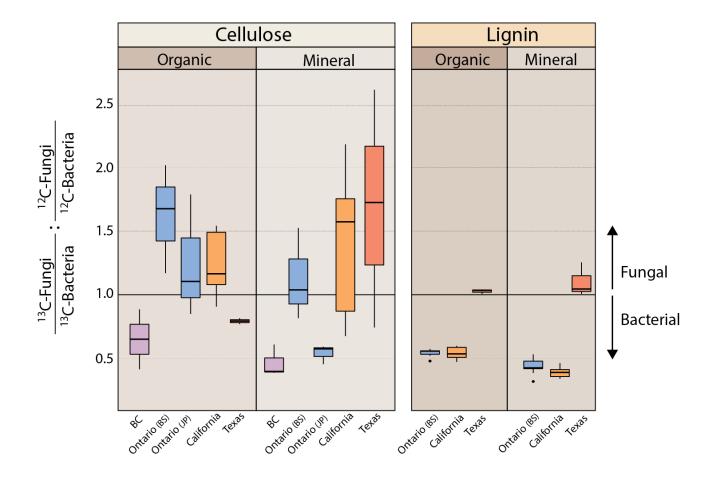


Figure 4.26. Box and whisker plots showing the average ¹³C-enrichment of PLFAs indicative of fungal (brown), Gram-positive (yellow) and Gram-negative bacterial biomass among soil layers and ecozones (A) as well as aggregated enrichment for each substrate and horizon for delta-¹³C (B) and total ¹³C (C).

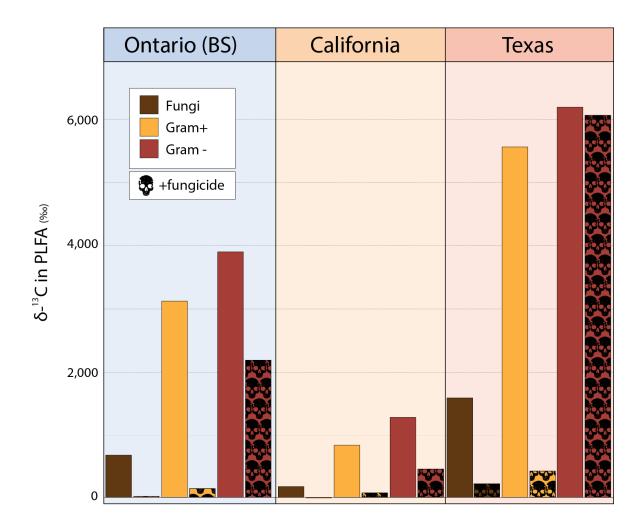
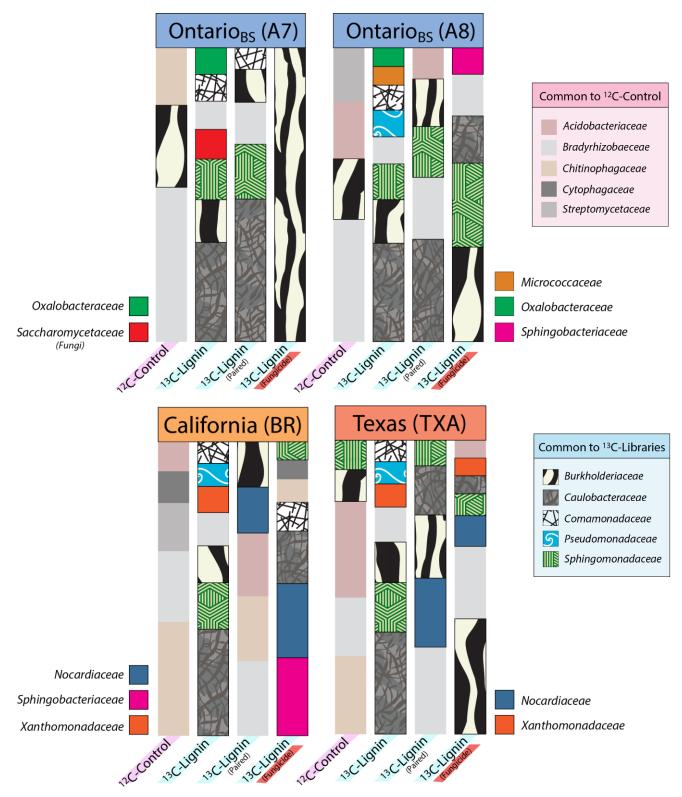


Figure 4.27. Box and whisker plots showing the relative enrichment of fungal relative to bacterial PLFAs (¹³C-fungi:¹³C-bacteria) normalized to pre-existing PLFA biomass (¹²C-fungi:¹²C-bacteria).



Fungicide treatment reduced the overall ¹³C-enrichment of PLFAs by 70% and produced a steep decline in the enrichment of both fungi and Gram-positive bacteria during incubations with labeled lignin. Fungicide reduced ¹³C-enrichment of fungal PLFAs by ~90%, reducing fungal enrichment in PP_{CA} to levels comparable to incubations with unlabeled substrate, -9 ‰ versus -28 ‰ delta-¹³C, respectively (Figure 4.28). The enrichment of Gram-positive and Gramnegative bacteria was also reduced by fungicide treatment, ~90 and ~50%, respectively, but by only 2% for Gram-negative bacteria in soils from LPTX. The major taxonomic groups active in fungicide treated microcosms were distinct from untreated incubations (Figure 4.29). The sustained activity of Gram-negative groups was evident in the increased relative abundance of families from *Burkholderiales*. In the case of BSON (site A7), the entire metagenomic library was classified as Burkholderiaceae (99%), demonstrating unprecedented recovery of DNA from functional subpopulations from a SIP experiment. Notably, Burkholderiaceae spp. showed the highest differential abundance in BS_{ON} between ¹³C- and ¹²C-lignin pyrotag libraries (Appendix Figure C.6). In contrast Burkholderiaceae populations were unaffected by fungicide treatment in PP_{CA} and were also not differentially abundant in pyrotag libraries. Despite the reduction in Gram-positive PLFA ¹³C-enrichment, the relative abundance of Actinobacteria increased in metagenomes from fungicide treatments (Figure 4.30). Certain families of Actinobacteria were negatively impacted by fungicidal treatment, such as Acidimicrobiales and Conexibacteraceae, while others increased in abundance, such as Nocardiaceae Microbacteriaceae and Micrococcaceae.

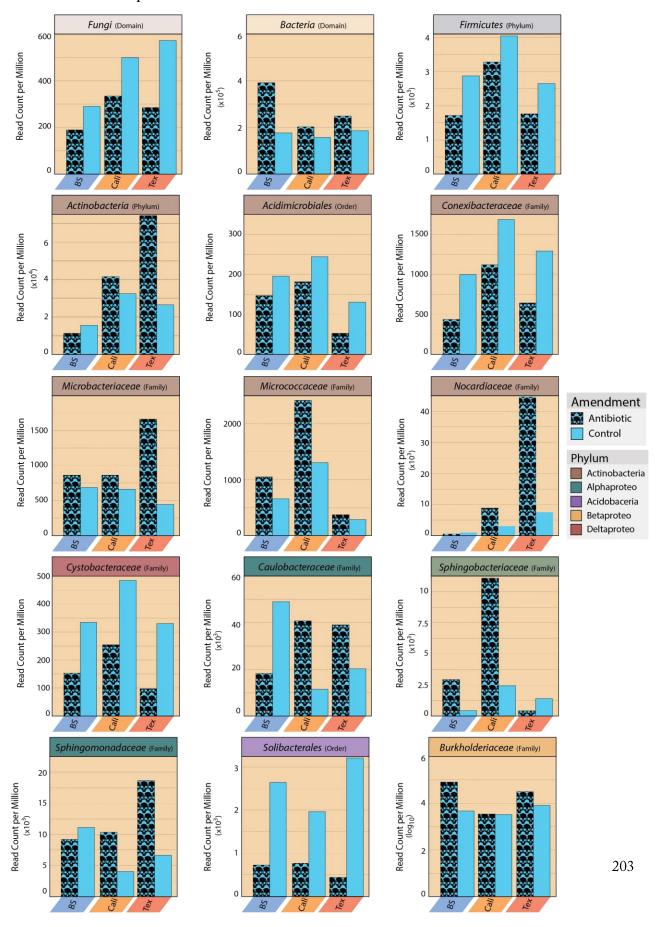
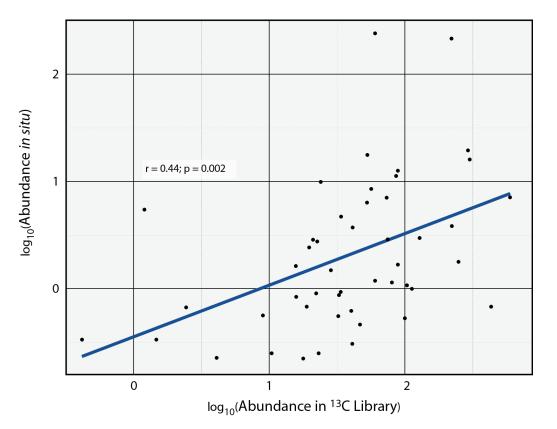

Figure 4.28. Enrichment of PLFAs in soil samples incubated with ¹³C-lignin with or without the addition of anti-fungal cocktail. Each bar represents a single sample, except for in BS_{ON} where n=2.

Figure 4.29. Abundances of predominant families in unassembled metagenomic libraries derived from ¹³C-lignin incubations treated with 'fungicide' and without ('paired'). The averaged abundances of ¹²C- and ¹³C-lignin metagenomes from separate incubations were also included.


Figure 4.30. Abundances of select taxa previously identified as lignolytic in unassembled metagenomic libraries from soils amended ¹³C-lignin with or without antibiotic. Each bar represents a single sample, except for in BS_{ON} where n=2. Taxa were selected which exhibited notable trends of expansion or decline in antibiotic or control libraries.

4.2.5 Ecozone-Specific Lignin and Cellulose-degrading Populations

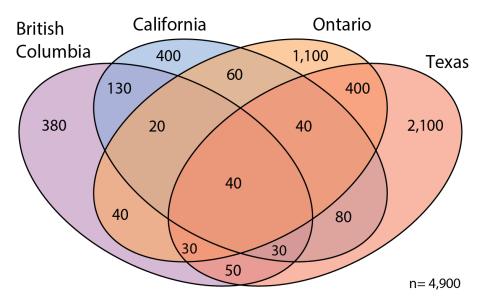
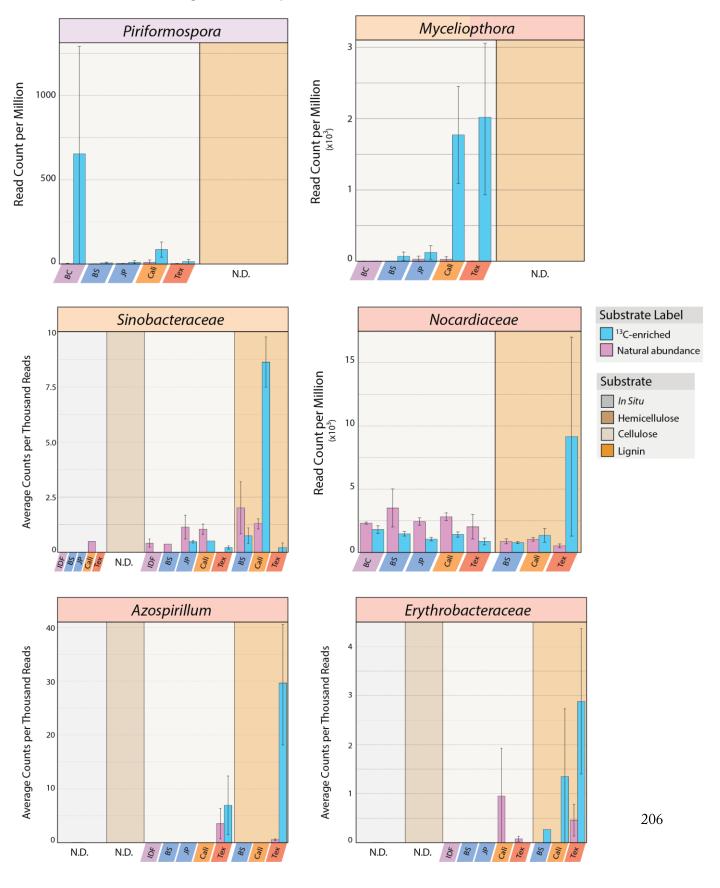

Of the total OTUs identified as differentially abundant between ¹²C- and ¹³C-pyrotag libraries (503), only 41 were abundant enough to be detected *in situ*, indicating a strong enrichment by SIP for low abundant OTUs. The majority of enrOTU found *in situ* were hemicellulose-degraders (90%), while only six lignolytic (*Solibacterales, iii1-15, Myxococcales* and *Gaiellales*) OTUs were found (no cellulolytic OTUs were found). This was consistent with the observation that hemicellulolytic and *in situ* libraries shared a majority of OTUs, in contrast to other libraries (Figure 4.6). Of the OTUs found *in situ*, their abundances in SIP-libraries was strongly correlated with *in situ* abundances (Figure 4.31). JPoN and BSON sites had the greatest percentage of overlapping OTUs of any two ecozones (23%), while PP_{CA} and IDF_{BC} shared the second highest degree of overlap (17%). LP_{TX} had the lowest proportion of overlap with other ecozones (Figure 4.32).

Figure 4.31. Linear regression between *in situ* abundance of OTU deemed lignocellulolytic and their abundance in corresponding ¹³C-pyrotag libraries.

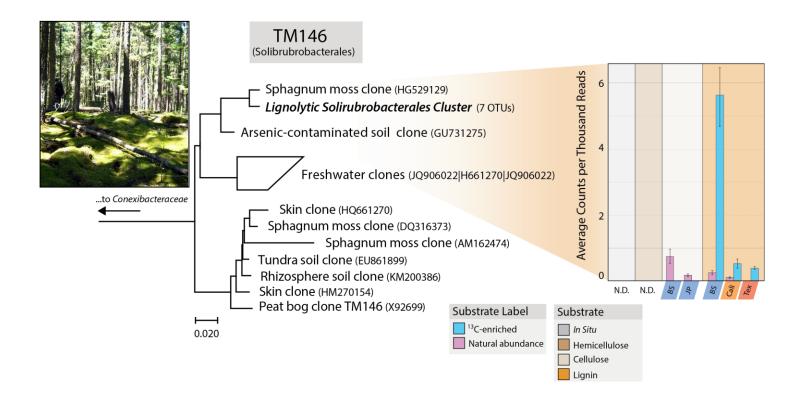
204



One of the most notable biogeographical features was the domination of bacterial cellulose-degraders in the IDF_{BC} ecozone and by a broadly different set of taxa than in others. Cellulolytic populations of *Deltaproteobacteria* (*MIZ46*), *Gammaproteobacteria* (*Cellvibrio*), *Planctomyces, Bacteroidetes* and *Verrucomicrobia* (*Opitutaceae*) were highly enriched in SIP-libraries from IDF_{BC}, but not elsewhere (Figure 4.9 and Appendix Figure C.2). Cellulolytic *Ascomycota*, prominent among all other ecozones, were also largely absent in IDF_{BC} (Figure 4.8; pg. 129). In contrast, cellulolytic *Piriformospora* (*Sebacinales; Basidiomycota*) were highly abundant, and to a lesser extent abundant in the other western ecozone PP_{CA} (Figure 4.33). The presence of cellulolytic *Sebacinales* in western ecozones was corroborated by the abundance pattern of LPMO family AA9 (Figure 4.23; pg. 158). Conversely, southern ecozones shared a predominance of cellulolytic *Ascomycota*, such as *Humicola, Arthrobotrys, Myceliopthora* and *Chaetomium* (Figure 4.33) also illustrated in LPMO family AA9 (Figure 4.23).

Biogeographical differences in lignolytic taxa were less pronounced than cellulolytic populations. A number of actinobacterial groups were specific to BS_{ON}, namely: *Gaiellaceae*,

Figure 4.33. Localized patterns of putatively cellulolytic or lignolytic taxa in either unassembled metagenomic (*Piriformospora, Myceliopthora & Nocardiaceae*) or pyrotag libraries (uncl. *Xanthomonadales, Azospirillum & Erythrobacteraceae*).

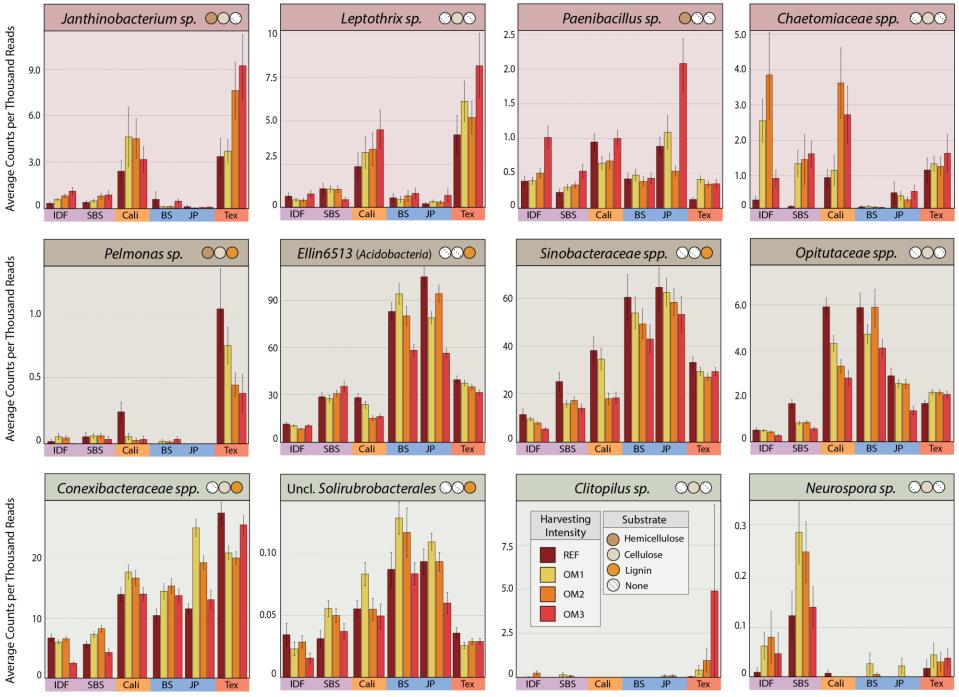

ACK-M1 and members of *Solirubrobacterales* clade 'TM146.' The prevalence of TM146 OTUs in BS_{ON} was notable given that soils there were blanketed with Sphagnum moss, not found at other ecozones. The clade *TM146* was named for a bacterial isolate from Sphagnum moss and contains a number of sequences from similar environments (Figure 4.34).

Lignolytic populations in LP_{TX} were distinct from other ecozones in both organic and mineral soils based on PLFA enrichment profiles (Figure 4.7; pg. 128). The majority of lignolytic OTUs exclusive to LP_{TX} (n=64) were members of genera common to all ecozones, illustrating fine-scale phylogenetic differences of localized populations. LP_{TX} also possessed a number of genera uncommon to other ecozones of which *Azospirillum* and *Nocardiaceae* were most abundant (Figure 4.33) and other exceptions included: *Ellin6513* (*Acidobacteria*), *Uliginosibacterium*, a number of *Actinobacteria* (*Salinispora*, *Nocardiopsaceae*, *Geodermatophilaceae*, *Pseudonocardiaceae* and *Gordoniaceae*), and *Holosporaceae*.

4.2.6 In situ Abundances of Lignocellulose-degrading Populations

Due to the poor overlap of OTUs between *in situ*, cellulose and lignin pyrotag libraries, the *in situ* abundances of lignocellulosic taxa could not be reliably assessed. During analyses performed in Chapter 3, one third of cellulolytic OTUs were detected *in situ* and, of those detected, their abundances were modest. Cellulolytic OTUs constituted between 0.08% and 1.4% of total reads with a median abundance of 0.42% among all samples. The most abundant single OTU (uncl. *Streptomycetaceae*) occupied, at most, 0.6% of a given sample with a mean abundance of 0.1%, followed by OTUs from *Janthinobacterium* (max: 0.5%), *Burkholderia* (0.4%), and uncl. *Microbacteriaceae* (0.3%). Of all enrOTU detected *in situ*, 90% were detected in the organic layer, suggesting SIP-incubations selected for low abundance taxa in mineral soils below the sequencing depth of *in situ* libraries.

Figure 4.34. Maximum parsimony phylogenetic tree for lignolytic OTUs classified to *Solirubrobacterales (Actinobacteria)* predominant in BS_{ON}. OTUs clustered in the 'TM146' clade (SILVA), named after a peat bog clone. *Inset* - Picture of sampling site in BS_{ON} with Sphagnum as predominant ground cover.



For fungi, six out of the sixteen enrOTU were detected *in situ* in low abundance (maximum 0.3% of any given sample), though, when binned by taxonomic classification, members of *Chaetomiaceae* occupied an average of ~2% of total *in situ* libraries. Consistent with observations in Chapter 3, taxa lacking reported lignocellulolytic activity were more common in mineral soils, including *Armatimonadetes* (hemicellulose | cellulose), *Candidatus Saccharibacter* (formerly *TM7*; hemicellulose), *Delta-* and *Gammaproteobacteria* (all three substrates) and *Acidobacteria* (lignin). In contrast, known cellulolytic and lignolytic taxa were more common in the organic layer, including an array of fungi, *Actinobacteria, Alpha-* and *Betaproteobacteria* (Table 4.1).

4.2.7 Impacts of Timber Harvesting on Lignocellulosic Taxa

Given the observations of fine-scale phylogenetic differences in response to harvesting reported in Chapter 3, the poor overlap between SIP and *in situ* OTUs make any characterization of harvesting impacts on lignocellulosic taxa highly speculative. In addition to the cellulolytic taxa affected by harvesting identified in section 3.3, namely, Chaetomium, Opitutaceae, Streptomycetaceae and Caulobacteraceae, the populations of a number of putatively lignocellulosic taxa may be affected. In situ populations of Janthinobacterium, Paenibacillus, Cryptococcus and Leptothrix all expanded in harvested plots (Figure 4.35; coloured red). Conversely, populations of putatively lignolytic taxa declined in harvested plots, such as Pelomonas, Ellin6513 (Acidobacteria) and Sinobacteraceae, and cellulosic taxa, such as Hypocrea and Sebacinaceae (not shown) (Figure 4.35; coloured brown-grey). Notably, populations of *Pelomonas* and *Ellin6513* exhibited clearest declines in LP_{TX}, the only ecozone where they were identified as lignolytic. Three lignocellulosic groups had slight and consistent increased relative abundance at intermediate harvesting intensities, in particular in OM1: unclassified Conexibacteraceae and Solirubrobacterales (both Actinobacteria) and Neurospora (Fungi), (Figure 4.35; coloured green). Clitopilus sp., previously identified as cellulolytic in PP_{CA} in Chapter 3, exhibited higher relative abundance at intermediate harvesting intensities, though appeared to also favour conditions in OM3 in LP_{TX} (Figure 4.35; coloured green).

Figure 4.35. Abundances of taxa designated putatively on one or more substrate among harvesting treatments in *in situ* pyrotag libraries coloured by whether populations expanded in harvested sites (shaded red), declined (shaded brown-grey) or peaked in OM1 or OM2 plots (shaded green).

210

4.3 Discussion

SIP surveying lignocellulolytic taxa in forest soils across North America expanded the diversity of putative degraders and provided evidence that, in many cases, contradicted or tempered conventional views of decomposer populations. Hemicellulolytic, cellulolytic and lignolytic microorganisms were identified in fourteen bacterial phyla and two fungal divisions, which were largely evident among all ecozones studied. Some of these groups exhibited exclusive activity on a single substrate, while others the capacity to degrade all three lignocellulosic polymers. The decomposition of DHP lignin in soil microcosms was largely bacteria-driven, predominated by Gram-negative groups, while fungi were substantial contributors to cellulose decomposition. Putatively lignocellulolytic taxa included a sizeable contingent of taxonomic groups with previously characterized in vitro activity, revealing their activity in soils and expanding knowledge of their phylogenetic diversity. This thesis reports, for the first time, the potential capacity to depolymerization lignin, and/or catabolize lignin biproducts, by members of Acidobacteria, Chloroflexi, Elusimicrobia and Deltaproteobacteria as well as novel groups within Actinobacteria and Gammaproteobacteria. The attribution of lignolytic activity was supported by the recovery of CAZy gene clusters encoding AA genes classified to the aforementioned groups. Similarly, for cellulose depolymerization, the substantial enrichment for Planctomycetes, Armatimonadetes and Verrucomicrobia revealed hereto unrecognized populations of decomposers in forest soils.

The ability of *Caulobacteraceae spp.* to degrade all three lignocellulosic substrates was unexpected, though, in retrospect, a number of lines of evidence suggest their involvement. The earliest evidence originates from work done by Henrici and Johnson (1935), who grew the first cultures of *Caulobacter* in cellulose-amended liquid culture. After their initial characterization, *Caulobacter* quickly became better known as model organisms for dimorphism and for

possessing strong adhesive 'holdfast' proteins (Poindexter, 1964). Recent attention has been given to their potential role in breakdown of lignocellulosic substrates after an array of CAZy genes were identified in the first sequenced genome (Nierman et al., 2001). Subsequently, the capability of C. crescentus to degrade xylose was shown along with its expression of an unexpectedly high diversity of TonB-dependent sugar transporters (Hottes et al., 2004; Blanvillain et al., 2007). More recently, C. crescentus was shown to catabolize a broad range of carbohydrates, including cellobiose, both aerobically (Presley et al., 2014) and anaerobically at temperatures up to 45°C (Song *et al.*, 2013). The capacity for lignin catabolism by *C. crescentus* is further supported by its growth on vanillic acid, benzoate and other aromatics as well the presence of a vanillate-inducible promoter in its genome (Chatterjee and Bourquin, 1987; Thanbichler et al., 2007). Al-Thukair and Malik (2016) reported a Caulobacter sp. isolated from an oil-contaminated site that could degrade pyrene, while a laccase gene was previously identified in the C. crescentus genome based on homology, but has not been characterized (Li et al., 2009). The potential role of *Caulobacter* species in decomposition in environmental samples has been shown in SIP-cellulose experiments in forest soil (Wang et al., 2015) and a range of soils (Verastegui et al., 2014), and in lignin-degrading cultures in tropical and temperate forest soils incubations (DeAngelis et al., 2011; Pold et al., 2015), though no study as conclusively or as explicitly as this research.

This thesis firmly solidifies the importance of genera within *Caulobacteraceae* as major lignocellulolytic groups. *Caulobacteraceae* were one of the few taxonomic groups significantly correlated with the degree of ¹³C-enrichment from labeled lignin and their activity endured in fungicide treated soils. Lignin-degrading *Caulobacteraceae* were members of largely uncultured clades, which were more abundant in the mineral soil layer, supporting the existence of relatively unknown degraders of recalcitrant compounds in deeper, low nutrient soils. The differentiation

among cellulolytic/hemicellulolytic and lignolytic clades within Caulobacter and between its highly cellulolytic relative, Asticcacaulis, was supported by 16S rRNA gene libraries as well as CAZy content, suggesting the study of *Caulobacteraceae* may provide an interesting case study of niche partitioning. Asticcacaulis were originally differentiated from Caulobacter based on differences in stalk angle and localization of holdfast protein (Poindexter, 1964). So, while speculative, the differences in substrate utilization (lignin vs. cellulose) between these close relatives may relate to differences in cell structure and attachment. The observation of cellulolytic activity by Asticcacaulis was relatively novel with only one study reporting a cellulolytic Asticcacaulis isolate (Kim et al., 2013) and another predicting activity based on genome content (Medie et al., 2012). Notably, the closely related genus, Phenylobacterium, which possess large number of laccases and characterized phenol oxidase activity (Muller and Lingens, 1983; Lu et al., 2015), were not enriched on any substrate in this study. Comparative studies of these genera, as well as species within uncultured clades of *Caulobacteraceae*, may yield insights into the evolutionary and natural history of what may become a new model group for the degradation of lignocellulose.

Caulobacteraceae were one of the taxonomic groups whose populations declined in the decades following timber harvesting (Chapter 3) and also in a study of soil warming on lignolytic populations (Pold *et al.*, 2015). Sensitivity to changes in moisture regime may be the most likely cause of population declines given *Caulobacter* are famously cultivable from oligotrophic fresh water habitats that include distilled water (Poindexter, 1964). Information to confirm such a sensitivity is limited, though *Caulobacter* populations were found to be one of the microbial populations to respond most rapidly to re-wetting of dry river sediments (Fazi *et al.*, 2008). Speculatively, moisture may play an important role in their dimorphic lifestyle in which colonization of plant biomass may occur during periods of wetness, followed by a strong

adherence to the substrate during drying. This may ensure proximity of the cell to the resource and confer greater benefit from secreted extracellular catabolic enzymes. Further research is necessary to uncover why *Caulobacteraceae* populations decline in warmer, drier soils and whether the ability to adhere to a substrate may be implicated in their efficacious decomposition of lignocellulosic polymers.

Many of the taxa designated here as lignocellulolytic have been observed in previous SIP studies, in enrichment cultures or have characterized lignocellulolytic isolates and enzymes. The predominance of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Firmicutes and Actinobacteria in decomposition in soil has been widely reported in culture-independent surveys (Lee et al., 2011; Štursová et al., 2012; DeAngelis et al., 2015; Leung et al., 2016). In the forest soils studied here, Alpha- and Betaproteobacteria exhibited the most prolific differential abundance in ¹³C-libraries for all three lignocellulose polymers as well as in the recovery of CAZymes. Metatranscriptomic profiling of forest and grassland soil communities indicated that Burkholderia (Betaproteobacteria) and Azospirillum (Alphaproteobacteria) were far more abundant in forest soils and were correlated with increased abundances of aromatic and xenobiotic degradation genes (Nacke et al., 2014). Members of both these genera were identified as lignolytic in the present research and have previously characterized lignolytic activity (Faure et al., 1996; Woo et al., 2014). Other prominent lignolytic Alphaproteobacteria identified were members of Sphingomonadaceae, from which novel lignin degradation genes (the lig genes of S. paucimobilis SYK-6) have been characterized (Masai et al., 2007). Sphingomonadaceae were one of the most common groups from which genes encoding peroxidases and oxidases were recovered. Sphingomonadaceae were also one of the few taxonomic groups found to degrade hemicellulose and lignin, but not cellulose, others included Micrococcaceae (Actinobacteria) and Sphingobacteriaceae (Bacteroidetes).

Betaproteobacteria have been identified as the major degraders of cellulose (Štursová et al., 2012) and hemicellulose (Leung et al., 2016) in SIP-surveys of forest soils. All lignocellulolytic Betaproteobacteria identified in this thesis were members of Burkholderiales and represent relatively unknown taxa. Of the two major cellulolytic genera, Leptothrix and Janthinobacterium, both associated with mineral soils, only Janthinobacterium has previously reported evidence for cellulolytic activity (Avellaneda-Torres et al., 2014). Pelomonas and Variovorax, found here to assimilate carbon from DHP-lignin, have never been implicated in lignin degradation, though Pelmonas saccharophila (formerly Pseudomonas saccharophila) can degrade polyaromatic hydrocarbons (Chen and Aitken 1999) and a species of Variovorax reportedly grows on homovanillate (Allison et al., 1995), and close relatives able to degrade kraft lignin (Chen et al., 2012). Pelomonas populations were also enriched in microcosms fed hemicellulose and cellulose, consistent with previous characterizations (Shil et al., 2014). The predominance of Alpha- and Betaproteobacteria in degrading lignocellulose in forest soils was a major feature of this study and was broadly supported, though incomplete, in the literature.

Members of *Ascomycota* and *Basidiomycota* were the only fungi to exhibit cellulolytic or lignolytic activity. *Ascomycota* were the primary fungal degraders of cellulose, which has been reported in other SIP-cellulose experiments in forest soils (Štursová *et al.*, 2012) and longitudinal studies of decomposition (Voriskova and Baldrian, 2013). The minor proportion of reads classified to fungi in ¹³C-lignin metagenomes was unexpected and was at odds with the levels of ¹³C-enrichment observed in PLFA, comparable in some samples to bacterial enrichment. This discrepancy suggests that fungi assimilating ¹³C into PLFAs were not replicating DNA at sufficient levels to be recovered during density gradient ultracentrifugation, resulting in their underrepresentation in sequencing data. This explanation is indirectly supported by the observation that fast-growing fungi and yeasts, with short doubling times, were the predominant

type of fungal taxa found in SIP-cellulose libraries, such as *Trichoderma*, *Neurospora* and *Chaetomium*. The sole putatively lignolytic fungi was also a yeast (*Saccharomycetaceae spp.*). Slow-growing *Agaricomycetes* would be the most likely fungal taxa to degrade lignin, and while reported to assimilate carbon from DHP-lignin (Haider and Trojanowki, 1975), may do so at a rate unamenable to SIP-DNA experiments.

Gram-negative taxa drove lignin decomposition in soil microcosms and were largely unaffected by fungicide, which dramatically reduced ¹³C-enrichment of fungal and Grampositive PLFAs. The relative importance of Gram-negative taxa in lignin decomposition (3-fold higher than fungi) was also reported in decomposers in semi-arid soils (Torres et al., 2014). However, the same study reported 5- to 10-fold higher enrichment from lignin than cellulose, likely the result of using impure commercial ¹³C-substrates. Burkholderiaceae exhibited the ¹³C-assimilation following fungicide growth in treatment. greatest along with Sphingobacteriaceae (Bacteroidetes), Sphingomonadaceae, and Xanthomonadaceae. Lignolytic Xanthomonas, a common plant pathogen, have been characterized (Kern and Kirk, 1987). A Sphingobacterium isolate from deciduous woodland soil had notable lignolytic activity (Taylor et al., 2012), leading to discovery of two novel superoxide dismutases potentially able to degrade lignin (Rashid et al., 2015). This novel mechanism may help explain the surprising lack of lignin-modifying genes recovered from Sphingobacteriaceae, despite their clear enrichment in ¹³C-lignin pyrotag libraries, most closely related to *Mucilaginibacter*.

The steep decline in ¹³C-enrichment of Gram-positive PLFAs in fungicide treatments suggests some form of syntrophy between Gram-positive bacteria and fungi. Metagenomic data corroborated PLFA data, but showed a more modest decrease in fungal reads and expansion of bacteria. Overall, reads classified to *Actinobacteria* actually increased in antibiotic treatment, but two major groups of putatively lignolytic *Actinobacteria* decreased, namely *Acidimicrobiales*

and Conexibacteraceae (Solirubrobacterales). The increase in Actinobacteria was driven by populations of Microbacteriaceae, Micrococcaceae and Nocardiaceae, all in the order Actinomycetales, which expanded prodigiously in LPTX soil following fungicide treatment. Members of the latter three families possess isolates with lignin-degrading capabilities and include the characterization of dypB genes in Rhodococcus (Taylor et al., 2012; Ahmad et al., 2011). The identification of dyp genes classified to Nocardiaceae from fungicide treated LP_{TX} soil underlines the potential relevance of DyP peroxidases in bacterial, soil-based lignindegradation. The decline in ¹³C-enrichment of Gram-positive PLFAs may have been driven by the substantial decline in *Firmicutes* population, yet no putatively lignolytic taxa were identified from this phylum. The possibility of non-targeted effects of the fungicides used is unlikely given that both cycloheximide (targets eukaryotal 60S ribosome) and amphotericin B (targets ergesterol) are produced by *Streptomyces*, and are routinely used in culturing *Actinobacteria* (Gontang et al., 2007). There is also the possibility that Gram-positive PLFA markers are not exclusive and may be produced by fungi, though there is no evidence for this in the literature. PLFA enrichment profiles in the antibiotic experiments strongly suggest some degree of crossfeeding, yet the balance of evidence still supports a substantial capacity of bacteria to degrade lignin in forest soils, which was the central purpose for conducting the fungicidal treatments.

A number of lignin-modifying gene families were mainly comprised of bacterial reads, such as laccases, alcohol oxidases, benzoquinone reductases, quinone-dependent oxidoreductases and Dyp-type peroxidases, keeping with the near exclusivity of Dyp-type peroxidases in the bacterial domain (Colpa *et al.*, 2014). The sizeable increase of vanillyl alcohol oxidase genes in ¹³C-lignin metagenomes was consistent with the chemical composition of DHP-lignin, comprised of oligomers of ring-labeled vanillyl alcohol. Laccases and benzoquinone reductases were also enriched in ¹³C-libraries, but only after subsetting to taxa designated putatively

lignolytic from pyrotag analysis. Without subsetting, the abundance of AA genes in ¹³C-lignin libraries was at parity or depleted relative to ¹²C-libraries, revealing the ubiquity of oxido-reductase enzymes with homology to AA families and the challenge it presents to targeting specific lignolytic homologs.

The sole hemicellulolytic activity of *Streptomyces* was unexpected given their reputation as both cellulose and lignin-degraders. *Streptomyces* were one of the first characterized bacterial degraders of lignin (Crawford et al., 1978), leading to the characterization of Streptomyces viridosporus T7A (Pasti et al., 1990) and eventual discovery of small laccases (Majumdar et al., 2014) and a Dyp-type peroxidase encoded in its genome (Davis et al., 2013). This ground breaking work, partly inspired by the similarity in hyphal morphology to fungi, garnered Streptomyces attention. However, the lack of lignolytic Streptomyces in this study corroborates other reports of modest lignolytic activity. In one study, only a small subset of *Streptomyces* isolates exhibited relatively weak lignolytic activity on DHP lignin (Vetrovsky et al., 2014). In another case, forest soil enrichments for lignolytic taxa were actually depleted in Streptomyces (Pold et al., 2015). In this thesis, Streptomyces were only identified as hemicellulolytic, while Kitasatospora and other unclassified Streptomycetaceae were significantly active on both hemicellulose and cellulose. Yet, Streptomycetaceae had the highest proportion of CAZy clusters encoding putative Dyp genes and also the sole potential bacterial Class II peroxidase. This discrepancy may indicate an overrepresentation of Streptomycetaceae in databases used for annotating peroxidase genes, but also the possibility of more complex trophic requirements in Streptomycetaceae. Streptomycetaceae exhibited substantial activity in SIP experiments using ¹³C-labeled whole plant tissue (Lee *et al.*, 2011), suggesting that lignin-degrading gene expression may depend on the presence of plant carbohydrates. Similarly, Bacillus possess characterized cellulolytic and lignolytic taxa (Tian et al., 2014; Menendez et al., 2015), yet were

only identified here as hemicellulolytic. It could be that *Bacillus* were identified as the earliest organisms to respond to xylose amendments in a similar SIP experiment, but were eventually overtaken by the slower-growing but more active *Bacteroidetes*, then *Micrococcales* (Pepe-Ranney *et al.*, 2016). Discrepancies between SIP studies and *in vitro* characterization are likely the result of both technical and ecological factors, stressing the necessity of complementary approaches.

The characterization of mineral soil provided evidence for distinct and novel lignocellulolytic populations in a largely overlooked niche for microbial decomposition. Cellulolytic populations were highly active in mineral soils, incorporating far more carbon relative to pre-existing biomass than populations in organic soils. Strong enrichment for longestablished cellulolytic taxa, such as Cellvibrio (Berg et al., 1972), Cytophaga (Stanier, 1942), Sorangium (Imsenecki and Solntzeva, 1936) and a long list of fungi, was evident in organic soils, while most mineral-associated cellulolytic taxa were implicated in cellulose-degradation for the first time, including the following bacterial groups: candidate division FBP (Armatimonadetes), *FW68* (Armatimonadetes), Leptothrix (Betaproteobacteria), Janthinobacterium (Betaproteobacteria) and DH61 (Planctomycetes), and MIZ46 (Myxococcales). The pronounced cellulolytic activity from members of Armatimonadetes was corroborated by a recent SIPcellulose experiment (Wang et al., 2015) and by the cellulolytic activity of one of the three cultured representatives of Armatimonadetes (Lee et al., 2014). Lignolytic Acidobacteria were also more abundant in mineral soils, including members of poorly characterized subgroup 2 (Ellin6531) and 6 (iii1-15). All three Dyp2-type genes classified as acidobacterial were recovered from mineral soil metagenomes. This is the first assignment of lignolytic activity to members of these groups, though microarray profiling of lignin-bead amended tropical forest soil enrichments had suggested the involvement of Acidobacteria (DeAngelis et al., 2011). SIP-

cellulose-based discovery of cellulolytic *Acidobacteria* (subgroup 1) by Eichorst and Kuske (2012) and Štursová *et al.*, (2012) was not observed in this study, resulting either from biogeographical differences or their use of impure ¹³C-maize cellulose.

SIP shines light on the multitude of uncultured taxa, commonly described as 'microbial dark matter,' which proved effective in identifying a number of uncultured, putatively lignolytic bacteria. OTUs belonging to the myxobacterial family *Cystobacteraceae* showed a twenty-fold enrichment in ¹³C-lignin libraries. Two CAZy clusters were recovered from *Cystobacteraceae* encoding a putative Dyp and laccase, respectively. OTUs clustered with *Cystobacter gracilis*, a species commonly isolated from decaying plant material that lacks the capacity to degrade cellulose (Reichenback, 2005), a phenotype consistent with our findings. A close relative of *Cystobacter, Stigmatella aurantiaca*, reportedly degrades phenolic compounds (dos Santos *et al.,* 2014). This suggests a putative role for *C. gracilis* in lignin degradation, recently proposed to represent its own genus within *Cystobacteraceae* (Garcia *et al.,* 2010).

Another newly designated phylum, *Elusimicrobia*, originally named 'Termite Group 1,' was roughly eight-fold enriched in ¹³C-lignin pyrotag libraries. Sequences classified to *Elusimicrobia* occupied as much as 20% of bacterial 16S rRNA libraries in a study of lower termite guts (Boucias *et al.*, 2013) and have been found in a number of lignin-rich environments, such as leaf-cutter ant fungus gardens (Suen *et al.*, 2011) and peatlands (Urbanova and Barta 2014), as well other environments like ocean sediments (Oni *et al.*, 2015). Huang *et al.*, (2013) reported that termites fed woody diets were particularly populated by *Elusimicrobia*, with the highest populations occurring in termites fed pine, as opposed to poplar, maize or sorghum. Despite extensive circumstantial evidence for their role in lignin-degradation, there is no direct evidence of lignolytic activity. The sole cultured representative from the phylum, isolated from

the gut of a beetle larva, is strictly anaerobic and ferments sugars using typical anaerobic pathways and possessed no noteworthy AA or CAZyme gene content (Herlemann *et al.*, 2009).

Two novel groups of *Gammaproteobacteria* were designated as putatively lignolytic in addition to *Enterobacteriaceae*, which has two isolates with characterized lignin-degrading activity: *E. lignolyticus* (DeAngelis *et al.*, 2011) and *E. soli* (Manter *et al.*, 2011). The recovery of a CAZy cluster containing multiple laccase genes classified to *E. lignolyticus* is noteworthy. The putative lignolytic capability of members of purple sulfur bacteria (PSB), *Ecothiorhodospiraceae*, was evidenced in the differential abundance in ¹³C-lignin metagenomes in all three ecozones assayed. While PSB are unlikely candidates as lignin degraders, the designation was weakly supported by the recovery of a CAZy cluster encoding an *Ecothiorhodospiraceae* CBM and laccase. The other novel group within *Gammaproteobacteria* was represented by a single OTU that clustered with uncultured '*Xanthomonadales incertae sedis Acidibacter*' in SILVA and was classified as *Piscirickettsiaceae*, a fish pathogen, with GreenGenes. *Piscirickettsiaceae* was among the top most differentially abundant families for AA4 (4.8-fold) and AA6 (2.9-fold) in unassembled ¹³C-lignin metagenomes.

The capacity to degrade multiple lignocellulosic substrates strongly suggests an organism's involvement in the decomposition of plant matter. In this study, approximately 35% of putatively lignocellulolytic taxonomic groups were capable of degrading more than one substrate. This may be an underestimate given the incomplete coverage of ecozones for SIP-hemicellulose and lignin. However, few individual species exhibited multi-substrate use, with only five examples of OTUs degrading cellulose and lignin and also the minimal overlap between hemicellulose pyrotags and the other two SIP libraries. These findings suggest that few bacterial species have co-evolved metabolism of lignocellulosic polymers, implying that decomposition may be structured by a division of labour. This hypothesis was put forward by

Berlemont and Martiny (2013), whose comparative genomic study demonstrated that the genetic capacity to degrade crystalline cellulose was occurred in clusters of closely related species (~0.013% dissimilarity), while the capacity to degrade oligomeric forms of cellulose was more widely distributed within and among lineages. The findings reported here, that few OTUs based on a cutoff of 0.01% utilized more than one substrate, is in agreement with the degree of functional specialization suggested by Berlemont and Martiny. Similarly, Vetrovsky *et al.*, (2014), concluded that the co-metabolism of polysaccharides and DHP-lignin by *Streptomycetes* was negligible. On the other hand, the recovery of fungal draft genomes containing endoglucanases, lytic polysaccharide monooxygenases, oxidases and peroxidases was evidence for the multi-substrate degradative capacity of fungi, consistent with the long-established understanding of their life histories.

Similar to observations reported in Chapter 3, biogeographical differences in the composition of lignocellulolytic populations were evident among ecozones. These differences were related to differences in *in situ* abundances, but also commonly the presence or absence of a taxa. Lignocellulolytic populations from proximal ecozones, such as in Ontario, shared the greatest similarity, while LP_{TX} communities were most distinct. Cellulolytic populations exhibited the greatest differences according to the East-West divide, exemplified by the relative involvement of *Basidiomycota*, and also a North-South divide, based on increasing participation of *Chaetomiaceae* in southern sites. The western distribution of *Sebacinaceae* was a notable biogeographical feature as well as novel feature of the SIP-metagenomic data. *Sebacinaceae* are known for ectomycorrhizal associations and, while a few saprobic species have been described, cellulolytic activity has not previously been shown (Oberwinkler *et al.*, 2013; Weiß *et al.*, 2016). Differences between North American and European cellulose-degrading populations was apparent in the broad differences in cellulolytic taxa reported in Czech forest soils, namely

222

Collimonas, Alkanindiges, Streptacidiphilus and *Herminiimonas* (Štursová *et al.*, 2012). These genera were present in low abundances *in situ* in all ecozones studied here, but were not enriched in any ¹³C-libraries. Similarly, *Myxococcales* were reportedly unique to forest soils in a SIP-cellulose survey of soils performed by Verastigui *et al.*, (2014) and, while *Myxococcales* were prominent cellulolytic taxa in some ecozones, they were not equally prominent in soil incubations among all ecozones. Biogeographical differences can be useful for the study of the physiology and ecology of the decomposer community. Such differences are likely to account for meaningful variation in the rate of decomposition among forests, demonstrated here by the correlation of the rate of enrichment with the abundances of a number of taxa.

Despite the overall success of SIP in addressing the goals of the research, there are notable limitations and caveats to the method. SIP microcosm experiments require conditions that encourage detectable levels of enrichment and favour certain taxa over others, such as faster growing *Ascomycota* over *Basidiomycota*. This might help explain why *Paenibacillus sp*. were not identified as putatively cellulolytic in SIP experiments despite being highly abundant in culture collections of cellulolytic taxa from the same soils (unpublished) and being detected *in situ* (~0.03% of total library). Yet, SIP may be the best approach to discriminate functional and non-functional populations relative to other environmental context-focused characterizations, as evidenced by the detailed phylogenetic analysis of *Caulobacteraceae*, and SIP offers a far less biased approximation to *in situ* conditions than conventional culturing-based surveys.

The most common criticism of SIP is the possibility of misattributing function due to cross-feeding that results from the assimilation of carbon by predators, parasites or opportunists. This is a particularly relevant concern given the extracellular nature of lignocellulose depolymerization. The clearest suggestion that cross-feeding had occurred in this study was the steep decrease in enrichment of Gram-positive PLFAs in soils incubated with fungicide. While

this is a relatively unambiguous indication that cross-feeding was occurring, the observation that the abundances of many Gram-positive taxa deemed putatively lignolytic actually increased in antibiotic treatments suggests the possibility of other, as of now, unknown explanations for this phenomenon. Cross-feeding may also have led to the putative designation of members of Candidatus Saccharibacter (formerly TM7) as cellulolytic in Chapter 3. This group contains obligate parasites, including the recent cultivation of a TM7 parasite of Actinobacteria (He et al., 2015). While this specific TM7 parasite had only 85% 16S rRNA similarity to putatively cellulolytic OTUs, misattribution through tightly interdependent parasitism of Actinobacteria is a distinct possibility given the substantial cellulolytic activity of Actinobacteria observed. Similarly, in Chapter 4, a draft genome classified as *Parcubacterium*, suspected to be obligate symbionts (Nelson and Stegen, 2015), was recovered. In a previously published SIP-cellulose experiment, OTUs classified as *Xiphinematobacter* met the criteria for cellulolytic designation, yet are also obligate cytoplasmic symbionts of nematodes (El Zahar Haichar et al., 2007). While the evidence for cross-feeding is noteworthy, time-course experiments showed that the same subset of PLFAs enriched on Day 4 remained the predominant enriched PLFAs and that the enrichment of other PLFAs was minimal. Štursová et al., (2012) reported a similar lack of evidence for widespread cross-feeding, comparing incubations with cellulose at eight and fifteen days. Most importantly, confidence in SIP data should stem from the accuracy in which previously characterized lignocellulolytic taxa are found to occur.

Chapter 5: Conclusions

The research described in this thesis contributes new knowledge and perspective along with valuable data and methodology for understanding forest soil decomposers and postharvesting selection pressures on soil microbial communities. This work is one of few studies to employ SIP to study broader ecological phenomena, rather than solely as a tool to target and identify novel functional taxa. SIP linked, for the first time, changes in cellulolytic populations with changes in overall activity. In that experiment, the increased relative abundance of Chaetomiaceae, and other bacteria associated with desert-environments, led to the discovery that desiccation, radiation and heat-tolerant taxa were thriving in soils. Not completely surprising, given the exposed nature of clear-cut forest soils, this phenomenon was documented in detail in this thesis, highlighting specific taxa relevant for monitoring and posing questions about the long-term implications of such a change. What might be the persistence and legacy of these stress-tolerant taxa across multiple harvesting cycles? Will their influence compound or dissipate over time? The commonalities identified between taxa thriving post-harvesting and following wildfire suggest that chronosequences from fire-affected forests may be reasonable analog systems for studying microbial succession in the decades following timber harvesting.

The potential long-term functional consequences of timber harvesting were apparent in a number of experimental results. The previously mentioned reductions in cellulolytic activity and net respiration in microcosms according to treatment (section 3.3) or, the decline of populations *Caulobacteraceae* and *Opitutaceae*, each correlated with total levels of enrichment from lignin and cellulose, respectively (section 4.2.7). The overall decline of methanotrophic populations was consistent with a growing body of research showing significant impacts on methane-uptake following harvest. The functional impact of the shifts in ectomycorrhizal fungi and decline of

rhizospheric bacteria are less clear, and these organisms represent populations of key interest for future research.

Varying the degree of organic matter removal (or retention) influenced the relative abundance of a number of populations in the decades following harvesting. OM retention had two major observable effects i) mitigating abiotic factors and the corresponding degree of population expansion or decline; and ii) fostering saprotrophic populations, including those specialized in wood decay. The potential of OM retention to mitigate abiotic changes and population shifts appeared to be the stronger of the two effects, given the modeling of abundance patterns. As such, this research found that OM retention may be a pragmatic tool in broadly managing the abiotic effects of disturbance on soil communities, of particular interest on methanotrophic populations. Yet, assessing the impact of intermediate levels of OM retention was more challenging given the lack of environmental data and the generalizability of patterns across ecozones. Therefore, the extent of differences between OM1 and OM2 treatments, most relevant to modern forestry practices, may not be fully clear and closer attention to differentiate the two should be made in future LTSP studies.

Comparisons of forest soils communities from across North America revealed the scope of variation in community structure. The degree of variation observed raises the possibility that soil management may require monitoring and assessment of soil ecology at the local level. Bacterial species were far more cosmopolitan than fungi and, thus, had a greater likelihood of demonstrating generalized responses to harvesting. The more discrete, localized distribution of fungi strongly supports the need to perform regional or local assessments, given their major role in forest soil ecology. Studying the sources of biogeographical variation, whether due to environmental conditions or ecotypic variation within closely related populations, can reveal aspects of the physiology, evolution and dispersal of forest soil microorganisms. Similarly, the abundance patterns of species (OTUs) may inform understanding of physiology. For example, evidence for a saprobic, wood-degrading lifestyle of members of *Thelephora* may be inferred by their sizably expanded populations in OM1 and OM2. Despite broad biogeographical variation in community structure, a number of phyla were consistently associated with organic (Alphaproteobacteria and *Bacteroidetes*) and mineral layer soils (Deltaand Gammaproteobacteria, TM7, Firmicutes, Armatimonadetes and Chloroflexi). The lack of knowledge of taxa endemic to mineral soils should be a major focus in future studies of both harvesting impacts, given substantive expansion of *Chloroflexi* and *AD3*, as well as the unique cellulolytic (Armatimonadetes, Planctomycetes and Verrucomicrobia) and lignolytic taxa therein (Acidobacteria and Sinobacteraceae).

The potential of bacteria to degrade lignin has become more established in recent years through culture-based screening and enzyme characterization, but only a handful of studies have examined their activity from an environmental perspective. As such, this research offers the most extensive characterization of bacterial lignin-degraders from a wide range of forest soils to date. The work confirmed that a number of previously characterized genera were active in soil and implicated a number of novel taxa in an attempt to direct the search for novel lignin-modifying enzymes. This research marks an end to speculation on the involvement of *Caulobacter* and *Caulobacteraceae spp.* in the decomposition of all three major lignocellulose polymers. In doing so, it may open an interesting case-study in the evolutionary history and lignocellulolytic adaptation of a bacterial lineage with notably unique methods of dispersal and adhesion. The relatively diminutive role of fungi in lignin degradation in SIP microcosm experiments challenges the conventional perspective on the role of fungi as the most prominent members of the soil decomposer community. A similar break from convention was the finding that cellulolytic activity decreased when populations of fungi (*Chaetomiaceae*) expanded. These

results draw attention to the involvement of bacteria in degrading recalcitrant forms of carbon below the surface.

Given the aim of the LTSP network to study forest regeneration in the decades to come, this research provides comprehensive data on the state of microbial community structure prior to canopy closure. The data has been carefully curated, and made publicly available to facilitate the longitudinal study. The scope and scale of SIP work is unprecedented with replicated PLFA, pyrotag and whole shotgun metagenomic data from over one hundred soil samples. The recovery of ¹³C-labeled DNA alone required over 70 ultracentrifugation runs, amounting 140 days of ultracentrifugation. To ensure the quality of research, a highly sensitive and accurate method for quantifying ¹³C-content in DNA was developed along with a high-throughput method for recovering DNA from the CsCl gradient. Both were critical to optimize experiments and process the high volume of fractions recovered in processing so many samples. The improved assembly of metagenomic data illustrates the utility of SIP methods for culture-independent studies of highly diverse soil communities. Without the 3 to 20-fold increase in percentage of read assembled, considerable information about the CAZy content of lignocellulolytic taxa could not have been obtainable. And, given the quality and abundance of assembled data, this thesis may be just the beginning of a wealth of discovery by those prospecting for novel CAZymes.

Even with the efforts documented in this thesis to better understand the impacts of timber harvesting on soil communities, forest researchers are a far from a conceptual understanding of what microbial processes are occurring and what effects shifts in microbial communities might have. In this study, 30% of taxa impacted by harvesting were unclassifiable beyond the family level, and the total number of unclassified reads increased with increasing harvesting intensity. These stats reveal how far we are from a clear assessment of the ecology of forest soil communities and timber harvesting disturbance. For plant communities, timber harvesting increased the richness of ground cover species, driven by the colonization of r-strategists even over the long-term (Roberts *et al.*, 2016). Microbial studies may borrow such broad ecological categorizations to begin inferring consequences of harvesting without knowledge of the ecology of all taxa. For example, metagenomics makes it possible to infer the relative abundance of microbial r-strategist versus K-strategists based on estimations of average genome size (Nayfach and Pollard, 2015). The concept of function-oriented phylogenetic databases, such as FUNGuild, may also prove useful in building towards a relevant functional characterization of microbial communities. Amidst the vast complexity and considerable unknowns of soil microbial ecology, long-term studies like the LTSP provide stable, comprehensive data collection, which leads to the discovery and formulation of valuable new perspectives.

Combining the study of forest soil microbial ecology with bioprospecting for commercially relevant biocatalysts is a shrewd strategy for advancing interests in the forest industry. Properly paired, they can improve forest management practices and contribute to basic research that can create new revenue streams for forest products. This thesis demonstrates that SIP research, too, can be used in combination to assess both ecological effects and, at the same time, recover sequence data of potential value for novel biocatalyst discovery. Given the importance of forestry to the Canadian economy, Canada is uniquely positioned to be a world leader in a genomics-based understanding of forest ecosystems, with the potential to develop substantive research expertise in forestry, microbial ecology and genomics.

References

Abanda-Nkpwatt, D., Müsch, M., Tschiersch, J., et al., (2006) Molecular interaction between *Methylobacterium extorquens* and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. *J Exp Bot*, **57**: 4025-4032.

Adams, P.W., Flint, A.L. and Fredriksen, R.L. (1991) Long-term patterns in soil moisture and revegetation after a clearcut of a Douglas-fir forest in Oregon. *Forest Ecol Manag*, **41**: 249-263.

Ahmad, M., Roberts, J.N., Hardiman, E.M., et al., (2011) Identification of DypB from *Rhodococcus jostii* RHA1 as a lignin peroxidase. *Biochem*, **50**: 5096-5107.

Ahmad, M., Taylor, C.R., Pink, D., et al., (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin-degraders. *Mol Biosyst*, **6**: 815-821.

Al-Thukair, A.A. and Malik, K. (2016) Pyrene metabolism by the novel bacterial strains *Burkholderia fungorum* (T3A13001) and *Caulobacter sp.* (T2A12002) isolated from an oil-polluted site in the Arabian Gulf. *Int Biodeter Biodegr*, **110**: 32-37.

Albertsen M., Hugenholtz P., Skarshewski A., Nielsen K.L., Tyson GW, Nielsen P. (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. *Nat Biotechnol* **31**:6 533-538.

Allen, A.P., Brown, J.H. and Gillooly, J.F. (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. *Science*, **297**: 1545-1548.

Allison, N., Turner, J.E. and Wait, R. (1995) Degradation of homovanillate by a strain of *Variovorax paradoxus* via ring hydroxylation. *FEMS Microbiol Lett*, **134**: 213-219.

Allison, S.D. (2012) A trait-based approach for modelling microbial litter decomposition. *Ecol Lett*, 15: 1058-1070.

Allmér, J., Stenlid, J. and Dahlberg, A. (2009) Logging-residue extraction does not reduce the diversity of litter-layer saprotrophic fungi in three Swedish coniferous stands after 25 years. *Can J Forest Res*, **39**: 1737-1748.

Ander, P. and Eriksson, K.E. (1976) The importance of phenol oxidase activity in lignin degradation by the white-rot fungus *Sporotrichum pulverulentum*. *Arch Microbiol*, **109**: 1-8.

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. *Genome Biol* **11**: R106.

Arantes, V. and Saddler, J.N. (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. *Biotechnol Biofuels*, **3**: 1.

Araújo, A.C., Song, Y., Lundeberg, J., et al., (2012) Activated paper surfaces for the rapid hybridization of DNA through capillary transport. *Anal Chem*, **84**: 3311-3317.

Ataie, F.F. and Riding, K.A. (2014) Use of bioethanol byproduct for supplementary cementitious material production. *Constr Build Mater*, **51**: 89-96.

Ausec, L., Zakrzewski, M., Goesmann, A., et al., (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. *PLoS One*, **6**: e25724.

Avellaneda-Torres, L.M., Pulido, C.P.G. and Rojas, E.T. (2014) Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia. *Braz J Microbiol*, **45**: 1211-1220.

Ayres, E., Steltzer, H., Berg, S., and Wall, D.H. (2009). Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. *J Ecol*, **97**: 901-912.

Baar, J., Horton, T.R., Kretzer, A. and Bruns, T.D. (1999) Mycorrhizal colonization of *Pinus muricata* from resistant propagules after a stand-replacing wildfire. *New Phytol*, **143**: 409-418.

Bååth, E., Frostegård, Å., Pennanen, T. and Fritze, H. (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. *Soil Biol Biochem*, **27**: 229-240.

Babalola OO, Kirby BM, Roes-Hill L, Cook AE, Cary SC, Burton SG *et al.* (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. *Environ Microbiol* **11**: 566-576.

Bader, P., Jansson, S. and Jonsson, B. (1995) Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. *Biol Conserv*, **72**: 355-362.

Bahram, M., Põlme, S., Kõljalg, U., et al., (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. *New Phytol*, **193**: 465-473.

Baldrian, P. (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? *Oecologia*, **161**: 657-660.

Bastias, B.A., Anderson, I.C., Rangel-Castro, J.I., et al., (2009) Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. *Soil Biol Biochem*, **41**: 467-472.

Battistuzzi, F.U. and Hedges, S.B. (2009) A major clade of prokaryotes with ancient adaptations to life on land. *Mol Biol Evol*, **26**: 335-343.

Bavendamm, W. (1927). Neue Untersuchungen faber die Lebensbedingungen holzzerstorender Pilze. Ein Beitrag zur Immunitatsfrage. *Ber botan Ges*, **45**: 357-367.

Bayer, E.A., Morag, E. and Lamed, R. (1994) The cellulosome - A treasure-trove for biotechnology. *Trends Biotechnol*, **12**: 379-386.

Bayer, E.A., Lamed, R., White, B.A. and Flint, H.J. (2008) From cellulosomes to cellulosomics. *Chem Record*, **8**: 364-377.

B.C. Government and Service Employees Union (2011). B.C. Forests in Crisis – a Community Call for Reform. Conference Proceedings.

B.C. Ministry of Forests, Lands and Natural Resource Operations (2012). 2011 Economic State of the B.C. Forest Sector. Ed. Jie Shu, Governmental Report.

Bayliss, J.S. (1908) The biology of *Polystictus versicolor* (Fries). Thesis, University of Birmingham, Department of Zoology.

Bélaich, J.P., Tardif, C., Bélaich, A. and Gaudin, C. (1997) The cellulolytic system of Clostridium cellulolyticum. *J Biotechnol*, **57**: 3-14.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc B Met*, 289-300.

Benner, R., Newell, S.Y., Maccubbin, A.E. and Hodson, R.E. (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. *Appl Environ Microbiol*, **48**: 36-40.

Benoit, I., Navarro, D., Marnet, N., et al. (2006) Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. *Carbohyd Res*, **341**: 1820-1827.

Benzie, I.F. (2000) Evolution of antioxidant defence mechanisms. Eur J Nutrition, 39: 53-61.

Berbee, M.L. and Taylor, J.W. (1993) Dating the evolutionary radiations of the true fungi. *Can J Bot*, **71**: 1114-1127.

Berg, B., Davey, M., De Marco, A., et al. (2010) Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. *Biogeochemistry*, **100**: 57-73.

Berg, B., Hofsten, B.V. and Pettersson, G. (1972) Electronmicroscopic observations on the degradation of cellulose fibres by *Cellvibrio fulvus* and *Sporocytophaga myxococcoides*. *J Appl Bacteriol*, **35**: 215-219.

Berka, R., Grigoriev, I.V., Otillar, R., et al., (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi *Myceliophthora thermophila* and *Thielavia terrestris*. *Nat Biotechnol* **29**: 922-927.

Berlemont, R. and Martiny, A.C. (2013) Phylogenetic Distribution of Potential Cellulases in Bacteria. *Appl Environ Microbiol*, **79**: 1545-1554.

Berner, R.A. (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. *Nature*, **426**: 323-326.

Bertrand, G. (1894) Sur le latex de l'arbre à laque. CR Hebd. Acad. Sci. 118: 1215-1218.

Biely, P. (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. *Biotechnol Adv*, **30**: 1575-1588.

Blanvillain, S., Meyer, D., Boulanger, A., et al. (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. *PLoS One*, **2**: e224.

Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. *Can J Biochemi Phys* **37**: 911-917.

Blum, D.L., Kataeva, I.A., Li, X.L. and Ljungdahl, L.G. (2000) Feruloyl Esterase Activity of the *Clostridium thermocellum* Cellulosome Can Be Attributed to Previously Unknown Domains of XynY and XynZ. *J Bacteriol*, **182**: 1346-1351.

Bodin, A., Ahrenstedt, L., Fink, H., et al., (2007) Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. *Biomacromolecules*, **8**: 3697-3704.

Boer, W.D., Folman, L.B., Summerbell, R.C. and Boddy, L. (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. *FEMS Microbiol Rev*, **29**: 795-811.

Boisvert S, Raymond F, Godzaridis É, Laviolette F & Corbeil J. (2012) Ray Meta: scalable de novo metagenome assembly and profiling. *Genome Biol* **13**: R122.

Bolger, A.M., Lohse, M. and Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. *Bioinformatics*, btu170.

Bond, W.J. and Keeley, J.E. (2005) Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. *Trends Ecol Evol*, **20**: 387-394.

Bose, S. and Sarkar, S. (1937) Enzymes of some wood-rotting Polypores. *P R Soc B-Biol Sci*, **123**: 193-213.

Boucias, D.G., Cai, Y., Sun, Y., et al., (2013) The hindgut lumen prokaryotic microbiota of the termite *Reticulitermes flavipes* and its responses to dietary lignocellulose composition. *Mol Ecol*, **22**: 1836-1853.

Boyce, A. and Walsh, G. (2015) Characterisation of a novel thermostable endoglucanase from *Alicyclobacillus vulcanalis* of potential application in bioethanol production. *Appl Microbiol Biotech*, **99**: 7515-7525.

Brazee, N.J., Lindner, D.L., D'Amato, A.W., et al., (2014) Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. *Biodivers Conserv*, **23**: 2155-2172.

Brinchi, L., Cotana, F., Fortunati, E. and Kenny, J. (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. *Carbohyd Polym*, **94**: 154-169.

Brown, M.E. and Chang, M.C. (2014) Exploring bacterial lignin degradation. *Curr Opin Chem Biol*, **19**: 1-7.

Brown, M.E., Barros, T. and Chang, M.C. (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. *ACS Chemical Biol*, **7**: 2074-2081.

Brumm, P.J., Hermanson, S., Gowda, K., Xie, D. and Mead, D.A. (2015) *Clostridium thermocellum* Cel5L-Cloning and Characterization of a New, Thermostable GH5 Cellulase. *Int J Biochem Res Rev*, **6**: 62.

Brunecky, R., Alahuhta, M., Xu, Q., et al. (2013) Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. *Science*, **342**: 1513-1516.

Brunow, G. and Lundquist, K. (1980) Comparison of a synthetic dehydrogenation polymer of coniferyl alcohol with milled wood lignin from spruce, using 1H NMR spectroscopy. *Paperi ja Puu*, **62**: 669-672.

Bucher, V., Hyde, K., Pointing, S. and Reddy, C. (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. *Fungal Divers*, **15**: 1-14.

Buchfink, B., Xie, C. and Huson, DH. (2015). Fast and Sensitive Protein Alignment using DIAMOND. *Nat Methods*, **12**: 59–60

Buckley, D.H., Huangyutitham, V., Hsu, S.F. and Nelson, T.A. (2007) Stable Isotope Probing with ${}^{15}N_2$ Reveals Novel Noncultivated Diazotrophs in Soil. *Appl Environ Microbiol*, **73**: 3196-3204.

Buckley DH, Schmidt TM. (2001) Environmental factors influencing the distribution of rRNA from *Verrucomicrobia* in soil. *FEMS Microbiol Ecol* **35**: 105-112.

Bugg, T.D.H., Ahmad, M., Hardiman, E.M. and Singh, R. (2011) The emerging role for bacteria in lignin degradation and bio-product formation. *Curr Opin Biotechnol*, **22**: 1-7.

Buraimoh, O.M., Amund, O.O. and Ilori, M.O. (2015) Kraft Lignin Degradation by Autochtonous Streptomyces Strains Isolated from a Tropical Lagoon Ecosystem. *J Microbiol Biotechnol Food Sci*, **5**: 248.

Burford, E.P., Kierans, M. and Gadd, G.M. (2003) Geomycology: fungi in mineral substrata. *Mycologist*, **17**: 98-107.

Buscardo, E., Rodríguez-Echeverría, S., Freitas, H., et al., (2015) Contrasting soil fungal communities in Mediterranean pine forests subjected to different wildfire frequencies. *Fungal Divers*, **70**: 85-99.

Busk, P.K. and Lange, L. (2013) Function-Based Classification of Carbohydrate-Active Enzymes by Recognition of Short, Conserved Peptide Motifs. *Appl Environ Microbiol*, **79**: 3380-3391.

Cairney, J.W. and Chambers, S.M. (2013) Ectomycorrhizal fungi: key genera in profile. Springer Science & Business Media.

Cann, I., Bernardi, R. and Mackie, R. (2016) Cellulose degradation in the human gut: *Ruminococcus champanellensis* expands the cellulosome paradigm. *Environ Microbiol*, **18**: 307-310.

Cannella, D., Möllers, K.B., Frigaard, N.U., et al., (2016) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. *Nature Comm*, **7**:11134.

Cantarel, B., Coutinho, P. and Henrissat, B. (2012) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. *Nucleic Acids Res*, **37**: 79-84.

Cardenas, E., Kranabetter, J., Hope, G., et al., (2015) Forest harvesting reduces the soil metagenomic potential for biomass decomposition. *ISME J*, **9**: 2465-2476.

Castro, M.S., Gholz, H.L., Clark, K.L. and Steudler, P.A. (2000) Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations. *Can J Forest Res*, **30**: 1534-1542.

Chang, C.Y. and Chang, F.C. (2016) Development of Electrospun Lignin-based Fibrous Materials for Filtration Applications. *BioRes*, **11**: 2202-2213.

Chanliaud, E., Burrows, K., Jeronimidis, G. and Gidley, M. (2002) Mechanical properties of primary plant cell wall analogues. *Planta*, **215**: 989-996.

Chasalow, S. (2012). combinat: combinatorics utilities. R package version 0.0-8. http://CRAN.R-project.org/package=combinat

Chatterjee, D.K. and Bourquin, A.W. (1987) Metabolism of aromatic compounds by *Caulobacter crescentus*. *J Bacteriol*, **169**: 1993-1996.

Chen, S.H. and Aitken, M.D. (1999) Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by *Pseudomonas saccharophila* P15. *Environ Sci Technol*, **33**: 435-439.

Chen, W., Simpson, J. and Levesque, C.A. (2016). RAM: R for Amplicon-Sequencing-Based Microbial-Ecology. R package version 1.2.1.3, http://cran.r-project.org/package=RAM.

Chen, Y., Chai, L., Zhu, Y., et al., (2012) Biodegradation of kraft lignin by a bacterial strain *Comamonas* sp. B-9 isolated from eroded bamboo slips. *J Appl Microbiol*, **112**: 900-906.

Chen, Y., Dumont, M.G., McNamara, N.P., et al., (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. *Environ Microbiol*, **10**: 446-459.

Childs, S. and Flint, L. (1987) Effect of shadecards, shelterwoods, and clearcuts on temperature and moisture environments. *Forest Ecol Manag*, **18**: 205-217.

Choudoir, M.J., Doroghazi, J.R. and Buckley, D.H. (2016) Latitude delineates patterns of biogeography in terrestrial *Streptomyces*. *bioRxiv*, doi: 10.1101/032169

Chow, M.L., Radomski, C.C., McDermott, J.M., et al., (2002) Molecular characterization of bacterial diversity in Lodgepole pine (*Pinus contorta*) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. *FEMS Microbiol Ecol*, **42**: 347-357.

Chung, Y.L. Olsson, J.V., Li, R.J., et al., (2013) A renewable lignin–lactide copolymer and application in biobased composites. *ACS Sus Chem Eng*, **1**: 1231-1238.

Churchland, C., Grayston, S.J. and Bengtson, P. (2013) Spatial variability of soil fungal and bacterial abundance: consequences for carbon turnover along a transition from a forested to clear-cut site. *Soil Biol Biochem* **63**: 5-13.

Colpa, D., Fraaije, M. and van Bloois, E. (2014) DyP-type peroxidases: a promising and versatile class of enzymes. *J Ind Microbiol Biot*, **41**: 1-7.

Crawford, D.L. (1978) Lignocellulose decomposition by selected *Streptomyces* strains. *Appl Environ Microbiol*, **35**: 1041-1045.

Crawford, D.L. and Crawford, R.L. (1980) Microbial degradation of lignin. *Enzyme Microb Tech*, **2**: 11-22.

Crestini, C., Melone, F., Sette, M. and Saladino, R. (2011) Milled wood lignin: a linear oligomer. *Biomacromolecules*, **12**: 3928-3935.

Dai, X., Zhu, Y., Luo, Y., et al. (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. *PLoS One*, **7**: e40430.

Damude, H.G., Ferro, V., Withers, S.G., and Warren, R. (1996) Substrate specificity of endoglucanase A from Cellulomonas fimi: fundamental differences between endoglucanases and exoglucanases from family 6. *Biochem J*, **315**: 467-472.

Davis, J.R., Goodwin, L., Teshima, H., et al. (2013) Genome sequence of *Streptomyces viridosporus* strain T7A ATCC 39115, a lignin-degrading Actinomycete. *Genome Announc*, 1: e00416-00413.

DeAngelis, K.M., Allgaier, M., Chavarria, Y., et al. (2011) Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil. *PLoS ONE*, **6**: e19306.

DeAngelis, K.M., D'Haeseleer, P., Chivian, D., et al. (2011) Complete genome sequence of *Enterobacter lignolyticus* SCF1. *Standards in Genomic Sciences*, **5**: 69-85.

De Caceres, M. and Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. *Ecology*, **90**: 3566-3574.

De Luca, G., Barakat, M., Ortet, P., et al., (2011) The Cyst-Dividing Bacterium *Ramlibacter tataouinensis* TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment. *PLoS ONE*, **6**: e23784.

Dedysh, S.N. and Kulichevskaya, I.S. (2013) Acidophilic Planctomycetes: Expanding the Horizons of New Planctomycete Diversity. In, Planctomycetes: Cell Structure, Origins and Biology. Ed. J.A. Fuerst. Springer, New York, pp. 125-139.

Ding, S.Y., Liu, Y.S., Zeng, Y., et al., (2012) How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility. *Science*, **338**: 1055-1060.

Distel, D.L., Morrill, W., MacLaren-Toussaint, N., et al., (2002) *Teredinibacter turnerae* gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). *IJSEM*, **52**: 2261-2269.

Domozych, D.S., Ciancia, M., Fangel, J.U., et al., (2012) The cell walls of green algae: a journey through evolution and diversity. *Front Plant Sci*, **3**: 1-7.

Dooley, S.R. and Treseder, K.K. (2011) The effect of fire on microbial biomass: a meta-analysis of field studies. *Biogeochemistry*, **109**: 49-61.

Dougherty, M., D'Haeseleer, P., Hazen, T., et al., (2012) Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization. *BMC Biotechnol*, **12**: 38.

dos Santos, D.F.K., Kyaw, C.M., De Campos, T.A., et al., (2014) The Family *Cystobacteraceae*. In, The Prokaryotes. Eds, E. Rosenberg et al., Springer, Berlin, pp. 19-40.

Dumanlı, A.G. and Windle, A.H. (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci, 47: 4236-4250.

Dumont, M.G., Radajewski, S.M., Miguez, C.B., et al., (2006) Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. *Environ Microbiol*, **8**: 1240-1250.

Dunford, E.A. (2011) Characterization of Active Cellulolytic Consortia from Arctic Tundra. University of Waterloo - Masters Thesis.

Eastwood, D.C., Floudas, D., Binder, M., et al. (2011) The Plant Cell Wall Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. *Science*, **333**: 762-765.

Ecological Stratification Working Group (1996). A National Ecological Framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research, and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/ Hull. Report. (ISBN 0-662-24107-X)

Eddy, S.R. (2011) Accelerated profile HMM searches. PLoS Comput Biol, 7: e1002195.

Edwards, I.P., Zak, D.R., Kellner, H., et al., (2011) Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. *PloS One*, **6**: e20421.

Effmert, U., Kalderas, J., Warnke, R. and Piechulla, B. (2012) Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. J Chem Ecol, **38**: 665-703.

Eichorst, S.A. and Kuske, C.R. (2012) Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing. *Appl Environ Microbiol*, **78**: 2316-2327.

El Zahar Haichar, F., Achouak, W., Christen, R., et al. (2007) Identification of cellulolytic bacteria in soil by stable isotope probing. *Environ Microbiol*, **9**: 625-634.

Emanuelsson, O., Brunak, S., von Heijne, G. and Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. *Nat Protocols*, **2**: 953-971.

Embley, T. and Stackebrandt, E. (1994) The molecular phylogency and systematics of the actinomycetes. *Annual Rev Microbiol*, **48**: 257-289.

Entry, J.A., Stark, N.M. and Loewenstein, H. (1986) Effect of timber harvesting on microbial biomass fluxes in a northern Rocky Mountain forest soil. *Can J Forest Res*, **16**: 1076-1081.

Eppard, M., Krumbein, W.E., Koch, C., et al., (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. *Arch Microbiol*, **166**: 12-22.

Falck, R. and Haag, W. (1927) Der Lignin-und der Cellulose-Abbau des Holzes, zwei verschiedene Zersetzungsprozesse durch holz-bewohnende Fadenpilze. *Ber Deutschen Chem Ges-AB*, **60**: 225-232.

Faure, D., Bouillant, M., Jacoud, C. and Bally, R. (1996) Phenolic derivatives related to lignin metabolism as substrates for *Azospirillum* laccase activity. *Phytochemistry*, **42**: 357-359.

Fawal, N., Li, Q., Savelli, B., et al. (2013) PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. *Nucl Acids Res*, **41**: D441-D444.

Fazi S, Amalfitano S, Piccini C, Zoppini A, Puddu A, Pernthaler J. (2008). Colonization of overlaying water by bacteria from dry river sediments. *Environ Microbiol* **10**: 2760-2772.

Ferreira, A.C., Nobre, M.F., Moore, E., et al., (1999) Characterization and radiation resistance of new isolates of *Rubrobacter radiotolerans* and *Rubrobacter xylanophilus*. *Extremophiles*, **3**: 235-238.

Fettig, C.J., Gibson, K.E., Munson, A.S. and Negrón, J.F. (2014) Cultural practices for prevention and mitigation of mountain pine beetle infestations. *Forest Sci*, **60**: 450-463.

Fierer, N., Leff, J.W., Adams, B.J., et al. (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. *PNAS*, **109**: 21390-21395.

Fleming, R., Black, T., Adams, R. and Stathers, R. (1998) Silvicultural treatments, microclimatic conditions and seedling response in Southern interior clearcuts. *Can J Soil Sci*, **78**: 115-126.

Fleming, R., Powers, R.F., Foster, N.W., et al. (2006) Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: a regional comparison of Long-Term Soil Productivity sites. *Can J Forest Res*, **36**: 529-550.

Floudas, D., Held, B.W., Riley, R., et al. (2015) Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of *Fistulina hepatica* and *Cylindrobasidium torrendii*. *Fungal Gen Biol*, **76**: 78-92.

Floudas, D., Binder, M., Riley, R, et al. (2012) The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, **336**: 1715-1719.

Folman, L.B., Klein Gunnewiek, P.J.A., Boddy, L. and De Boer, W. (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. *FEMS Microbiol Ecol*, **63**: 181-191.

Fox, T.R. (2000) Sustained productivity in intensively managed forest plantations. *Forest Ecol Manag*, **138**: 187-202.

Fontaine, S., Henault, C., Aamor, A., et al. (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. *Soil Biol Biochem*, **43**: 86-96.

Frey-Klett, P., Garbaye, J. and Tarkka, M. (2007) The mycorrhiza helper bacteria revisited. *New Phytol*, **176**: 22-36.

Freschet, G.T., Aerts, R., and Cornelissen, J.H. (2012). Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. *J Ecol*, **100**: 619-630.

Friedman, S. and Foster, G. (1997) Forest genetics on federal lands in the United States: public concerns and policy responses. *Can J Forest Res*, **27**: 401-408.

Fuchs, G., Boll, M. and Heider, J. (2011) Microbial degradation of aromatic compounds - from one strategy to four. *Nature Rev Microbiol*, **9**: 803-816.

Gabani, P., Copeland, E., Chandel, A.K. and Singh, O.V. (2012) Ultraviolet-radiation-resistant isolates revealed cellulose-degrading species of *Cellulosimicrobium cellulans* (UVP1) and *Bacillus pumilus* (UVP4). *Biotechnol Appl Biochem*, **59**: 395-404.

Gallo, M.E., Porras-Alfaro, A., Odenbach, K.J. and Sinsabaugh, R.L. (2009) Photoacceleration of plant litter decomposition in an arid environment. Soil Biol Biochem, **41**: 1433-1441.

Garcia, R., Gerth, K., Stadler, M., et al., (2010) Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. *Mol Phylogenet Evol*, **57**: 878-887.

Ge, X., Zeng, L., Xiao, W., et al., (2013) Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review. *Acta Ecologica Sinica*, **33**: 102-108.

Geib, S.M., Filley, T.R., Hatcher, P.G., et al. (2008) Lignin degradation in wood-feeding insects. *PNAS*, **105**: 12932-12937.

Gesinger, E. (1948). One Third of Wood. Scientific American.

Glassman, S.I., Levine, C.R., DiRocco, A.M., et al., (2015) Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. *ISME* J. 1-12.

Gleason, F.H., Marano, A.V., Digby, A.L., et al. (2011) Patterns of utilization of different carbon sources by *Chytridiomycota*. *Hydrobiologia*, **659**: 55-64.

Goldfarb, K.C., Karaoz, U., Hanson, C.A., et al. (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. *Front Microbiol*, **2**: 1-10.

Gontang, E.A., Fenical, W. and Jensen, P.R. (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. *Appl Environ Microbiol*, **73**: 3272-3282.

Gonzalez, J., Mayer, F., Moran, M., et al., (1997) *Sagittula stellata* gen. nov., a lignin-transforming bacterium from a coastal environment. *IJSEM*, **47**: 773-780.

Gordon, A. and Hannon, G.J. (20120) Fastx-toolkit. Computer program distributed by the author, website http://hannonlab. cshl. edu/fastx_toolkit/index. html [accessed October 2014].

Gottlieb, S. and Pelczar, M.J. (1951) Microbiological aspects of lignin degradation. *Bacteriol Rev*, **15**: 55.

Graham, J.B., Dudley, R., Aguilar, N.M. and Gans, C. (1995) Implications of the late Paleozoic oxygen pulse for physiology and evolution. *Nature*, **375**: 117-120.

Griffiths, B.S. and Philippot, L. (2013) Insights into the resistance and resilience of the soil microbial community. *FEMS Microbiol Rev*, **37**: 112-129.

Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. *Am Nat*, **111**: 1169-1194.

Güsewell, S. and Gessner, M.O. (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. *Funct Ecol*, **23**: 211-219.

Gustafsson, L., Baker, S.C., Bauhus, J., et al. (2012) Retention forestry to maintain multifunctional forests: a world perspective. *BioScience*, **62**: 633-645.

Haider, K., Trojanowski, J. and Sundman, V. (1978) Screening for lignin-degrading bacteria by means of ¹⁴C-labelled lignins. *Arch Microbiol*, **119**: 103-106.

Hall, S.J., Silver, W.L., Timokhin, V.I. and Hammel, K.E. (2015) Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils. *Glob Change Biol*, **21**: 2818-2828.

Harris, P.V., Welner, D., McFarland, K.C., et al. (2010) Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family. *Biochemistry*, **49**: 3305-3316.

Haney, R., Brinton, W. and Evans, E. (2008) Soil CO₂ respiration: Comparison of chemical titration, CO₂ IRGA analysis and the Solvita gel system. *Renew Agr Food Syst*, **23**: 171-176.

Hannam, K., Quideau, S. and Kishchuk, B. (2006) Forest floor microbial communities in relation to stand composition and timber harvesting in northern Alberta. *Soil Biol Biochem*, **38**: 2565-2575.

Hanson, C., Allison, S., Bradford., M., et al., (2008) Fungal Taxa Target Different Carbon Sources in Forest Soil. *Ecosystems*, **11**: 1157-1167.

Harazono, K., Yamashita, N., Shinzato, N., et al., (2003) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite *Coptotermes formosanus*. *Biosci Biotech Bioch*, **67**: 889-892.

Harmon, M.E. (2001) Moving towards a new paradigm for woody detritus management. *Ecol Bulletins*, **49**: 269-278.

Harrell, F.E. and Dupont, C. (2015). Hmisc: Harrell Miscellaneous. R package version 3.17-1. https://CRAN.R-project.org/package=Hmisc

Hartig, G.L. (1833) Gutachten über die Fragen: Welche Holzarten belohnen den Anbau am reichlichsten? Berlag von Dunder und Humblot, Berlin.

Hartmann, M., Lee, S., Hallam, S.J. and Mohn, W.W. (2009) Bacterial, archaeal and eukaryotal community structures throughout soil horizons of harvested and naturally disturbed forest stands. *Environ Microbiol*, **11**: 3045-3062.

Hartmann, M., Howes, C.G., VanInsberghe, D., et al. (2012) Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. *ISME J*, **6**: 2199-2218.

Hasper, A.A., Dekkers, E., van Mil, M., van de Vondervoort, P.J.I. and de Graaff, L.H. (2002) EglC, a New Endoglucanase from *Aspergillus niger* with Major Activity towards Xyloglucan. *Appl Environ Microbiol*, **68**: 1556-1560.

Hayashi, Y. and Yamazaki, I. (1979) The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. *J Biol Chem*, **254**: 9101-9106.

He, X., McLean, J.S., Edlund, A., et al. (2015) Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. *PNAS*, **112**: 244-249.

Heikkala, O., Martikainen, P. and Kouki, J. (2016) Decadal effects of emulating natural disturbances in forest management on saproxylic beetle assemblages. *Biol Conserv*, **194**: 39-47.

Henckel, T., Jäckel, U., Schnell, S. and Conrad, R. (2000) Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. *Appl Environ Microbiol*, **66**: 1801-1808.

Henrici, A.T. and Johnson, D.E. (1935) Studies of Freshwater Bacteria: II. Stalked Bacteria, a New Order of Schizomycetes. *J Bacteriol*, **30**: 61.

Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. *Biochem J*, **280**: 309-316.

Herlemann, D.P.R., Geissinger, O., Ikeda-Ohtsubo, W., et al. (2009) Genomic Analysis of *Elusimicrobium minutum*, the First Cultivated Representative of the Phylum Elusimicrobia (Formerly Termite Group 1). *Appl Environ Microbiol*, **75**: 2841-2849.

Hess, M., Sczyrba, A., Egan, R., et al. (2011) Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen. *Science*, **331**: 463-467.

Högberg, M., Högbom, L. and Kleja, D. (2013) Soil microbial community indices as predictors of soil solution chemistry and N leaching in *Picea abies* (L.) Karst. forests in S. Sweden. *Plant Soil*, **372**: 507-522.

Holden^a, S.R. and Treseder, K.K. (2013) A meta-analysis of soil microbial biomass responses to forest disturbances. *Front Microbiol*, **4**: 163.

Holden^b, S.R., Gutierrez, A. and Treseder, K.K. (2013) Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. *Ecosystems*, **16**: 34-46.

Holden, S.R., Berhe, A.A. and Treseder, K.K. (2015) Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire. *Soil Biol Biochem*, **87**: 1-9.

Holub, S.M., Terry, T.A., Harrington, C.A., Harrison, R.B. and Meade, R. (2013) Tree growth ten years after residual biomass removal, soil compaction, tillage, and competing vegetation control in a highly-productive Douglas-fir plantation. *Forest Ecol Manag*, **305**: 60-66.

Horton, T.R., Cázares, E. and Bruns, T.D. (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (*Pinus muricata*) seedlings in the first 5 months of growth after wildfire. *Mycorrhiza*, **8**: 11-18.

Hottes, A.K., Meewan, M., Yang, D., et al., (2004) Transcriptional profiling of *Caulobacter* crescentus during growth on complex and minimal media. *J Bacteriol*, **186**: 1448-1461.

Huson, D.H., Auch, A.F., Qi, J. and Schuster, S.C. (2007) MEGAN analysis of metagenomic data. *Genome Res* 17: 377-386.

Hyatt, D., Chen, G.L., LoCascio, P.F., et al., (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC bioinformatics*, **11**: 1.

Imsenecki, A. and Solntzeva, L. (1936) On aerobic cellulose-decomposition bacteria. *Bull Acad Sci URSS ser Biol*, **6**: 1115-1172.

Ingham, E. and Coleman, D. (1984) Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms. *Microb Ecol*, **10**: 345-358.

Iverson, V., Morris, R.M., Frazar, C.D., et al., (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. *Science*, **335**: 587-590.

Izquierdo, J.A., Sizova, M.V. and Lynd, L.R. (2010) Diversity of Bacteria and Glycosyl Hydrolase Family 48 Genes in Cellulolytic Consortia Enriched from Thermophilic Biocompost. *Appl Environ Microbiol*, **76**: 3545-3553.

Jastrow JD, Amonette JE, Bailey VL. (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. *Climatic Change* **80**: 5-23.

James, T.Y., Kauff, F., Schoch, C.L., et al. (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. *Nature*, **443**: 818-822.

Joo, E., Cha, S., Kim, M., et al., (2015) *Flavisolibacter swuensis* sp. nov. Isolated from Soil. J *Microbiol*, **53**: 442-447.

Jurgensen, M., Harvey, A., Graham, R., et al., (1997) Review article: Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. *Forest Sci*, **43**: 234-251.

Kalia, S., Dufresne, A., Cherian, B.M., et al., (2011) Cellulose-based bio-and nanocomposites: a review. *Int J Polym Sci*, 1-35.

Kämpfer, P., Glaeser, S.P., Parkes, L., van Keulen, G., and Dyson, P. (2014). The Family Streptomycetaceae. In The Prokaryotes. Ed E. Rosenberg, Springer Berlin, pp. 889-1010

Kang, D.D., Froula, J., Egan, R. and Wang, Z. (2014) A robust statistical framework for reconstructing genomes from metagenomic data. *bioRxiv*, 011460.

Keenan, R.J. and Kimmins, J. (1993) The ecological effects of clear-cutting. *Environ Rev*, 1: 121-144.

Kern, H.W. and Kirk, T.K. (1987) Influence of molecular size and ligninase pretreatment on degradation of lignins by *Xanthomonas* sp. strain 99. *Appl Environ Microbiol*, **53**: 2242-2246.

Kersten, P.J., Kalyanaraman, B., Hammel, K.E., et al., (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. *Biochem J*, **268**: 475-480.

Kim, S., Gong, G., Park, T.H. and Um, Y. (2013) *Asticcacaulis solisilvae* sp. nov., isolated from forest soil. *IJSEM*, **63**: 3829-3834.

Kim, S.J., Ishikawa, K., Hirai, M. and Shoda, M. (1995) Characteristics of a newly isolated fungus, *Geotrichum candidum* Dec 1, which decolorizes various dyes. *J Ferment Bioeng*, **79**: 601-607.

Kirk, T.K. and Brunow, G. (1988) Synthetic ¹⁴C-labeled lignins. In, Methods in enzymology. Eds. Colowick, S.P. and Kaplan, N.O, **161**: 65-73.

Klapwijk, M.J., Bylund, H., Schroeder, M. and Björkman, C. (2016) Forest management and natural biocontrol of insect pests. *Forestry*, cpw019.

Klason, P. (1910) Determining of lignin in sulphite wood pulp. Papierfabrik, 8: 1285-1286.

Ko J.J., Shimizu, Y., Ikeda, K., et al., (2009) Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability and degradation by-products. *Bioresource Technol*, **100**: 1622-1627.

Kolb, S., Knief, C., Dunfield, P.F. and Conrad, R. (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. *Environ Microbiol*, **7**: 1150-1161.

Konwar, K.M., Hanson, N.W., Bhatia, M.P., et al. (2015) MetaPathways v2.5: quantitative functional, taxonomic and usability improvements. *Bioinformatics*, **31**: 3345-3347.

Koranda, M., Kaiser, C., Fuchslueger, L., et al., (2013) Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. *FEMS Microbiol Ecol*, 1-11.

Koropatkin, N.M., Cameron, E.A. and Martens, E.C. (2012) How glycan metabolism shapes the human gut microbiota. *Nat Rev Microbiol*, **10**: 323-335.

Kranabetter, J. and Chapman, B. (1999) Effects of forest soil compaction and organic matter removal on leaf litter decomposition in central British Columbia. *Can J Soil Sci*, **79**: 543-550.

Kranabetter, J.M. (2004) Ectomycorrhizal community effects on hybrid spruce seedling growth and nutrition in clearcuts. *Can J Bot*, **82**: 983–991.

Kroon, P.A., Williamson, G., Fish, N.M., et al., (2000) A modular esterase from *Penicillium funiculosum* which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. *Eur J Biochem*, **267**: 6740-6752.

Kulmala, L., Aaltonen, H., Berninger, F., et al., (2014) Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. *Agr Forest Meteorol*, **188**: 33-44.

Kumar, L., Arantes, V., Chandra, R. and Saddler, J. (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. *Biores Technol*, **103**: 201-208.

Kuramae, E.E., Hillekens, R.H., de Hollander, M., et al., (2013) Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf. *FEMS Microbiol Ecol*, **84**: 519-531.

Kursa, M.B. and Rudnicki, W.R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11), 1-13. URL http://www.jstatsoft.org/v36/i11/.

Kürschner, K. (1928) "Die Darstellung größerer Mengen von Vanillin aus Sulfitablauge." Journal für Praktische Chemie, **118**: 238-262.

Kutschera, U. (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. *Plant Sig Behav*, **2**: 74-78.

Lladó, S., Benada, O., Cajthaml, T., Baldrian, P. and García-Fraile, P. (2016) *Silvibacterium bohemicum* gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park. *System Appl Micr*, **39**: 14-19.

Lafond, M., Navarro, D., Haon, M., Couturier, M. and Berrin, J.G. (2012) Characterization of a Broad-Specificity β -Glucanase Acting on β -(1,3)-, β -(1,4)-, and β -(1,6)-Glucans That Defines a New Glycoside Hydrolase Family. *Appl Environ Microbiol*, **78**: 8540-8546.

Lamed, R., Setter, E., Kenig, R. and Bayer, E. (1983) The cellulosome—a discrete cell surface organelle of *Clostridium thermocellum* which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. *Biotech Bioeng Symp*, **13**: 163-181.

Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**(4): 357-359.

Lauber, C.L., Strickland, M.S., Bradford, M.A. and Fierer, N. (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. *Soil Biol Biochem*, **40**: 2407-2415.

Law, K. (1950) Phenol oxidases in some wood-rotting fungi. Ann Bot-London, 69-78.

Leckie, S.E., Prescott, C.E., Grayston, S.J., et al., (2004) Comparison of chloroform fumigationextraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. *Soil Biol Biochem*, **36**: 529-532.

Lee, C.G., Watanabe, T., Sato, Y., et al., (2011) Bacterial populations assimilating carbon from ¹³C-labeled plant residue in soil: analysis by a DNA-SIP approach. *Soil Biol Biochem*, **43**: 814-822.

Lee, K.C., Morgan, X.C., Dunfield, P.F., et al., (2014) Genomic analysis of *Chthonomonas calidirosea*, the first sequenced isolate of the phylum Armatimonadetes. *ISME J*, **8**: 1522-1533.

LePage, B., Currah, R., Stockey, R. and Rothwell, G. (1997) Fossil ectomycorrhizae from the Middle Eocene. *Am J Bot*, **84**: 410-410.

Leschine, S.B. (1995) Cellulose degradation in anaerobic environments. *Annu Rev Microbiol*, **49**: 399-426.

Leung, H.T., Maas, K.R., Wilhelm, R.C. and Mohn, W.W. (2016) Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils. *ISME J*, **10**: 363-375.

Levasseur, A., Drula, E., Lombard, V., et al, (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. *Biotechnol Biofuel*, **6**: 41.

Levine, M., Nelson, G., Anderson, D. and Jacobs, P. (1935) Utilization of Agricultural Wastes I. Lignin and Microbial Decomposition. *Ind Eng Chem*, **27**: 195-200.

Lewandowski, T.E., Forrester, J.A., Mladenoff, D.J., et al., (2015) Soil microbial community response and recovery following group selection harvest: Temporal patterns from an experimental harvest in a US northern hardwood forest. *Forest Ecol Manag*, **340**: 82-94.

Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W., (2015) MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics*, doi: 10.1093/bioinformatics/btv033.

Li, J., Yuan, H. and Yang, J. (2009) Bacteria and lignin degradation. Front Biol China, 4: 29-38.

Li, K., Xu, F. and Eriksson, K.E.L. (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. *Appl Environ Microbiol*, **65**: 2654-2660.

Li, Y. (2015) Structures, properties and applications of multifunctional lignin nanofibres. University of British Columbia, PhD Thesis.

Li, Y. and Ragauskas, A.J. (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol, **32**: 210-224.

Liers, C., Arnstadt, T., Ullrich, R. and Hofrichter, M. (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. *FEMS Microbiol Ecol*, **78**: 91-102.

Lindahl, B.D. and Tunlid, A. (2015) Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs. *New Phytol*, **205**: 1443-1447.

Lindeberg, G. (1948) On the Occurrence of Polyphenol Oxidases in Soil-inhabiting Basidiomycetes. *Physiologia Plantarum*, **1**: 196-205.

Linger, J.G., Vardon, D.R., Guarnieri, M.T., et al. (2014) Lignin valorization through integrated biological funneling and chemical catalysis. *PNAS*, **111**: 12013-12018.

Linhardt, R., Galliher, P. and Cooney, C. (1987) Polysaccharide lyases. *Appl Biochem Biotechnol*, **12**: 135-176.

Liu R, Li K, Zhang H, Zhu J, Joshi D. (2014) Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. *J Microbiol* **52**: 898-907.

Lo, N., Watanabe, H. and Sugimura, M. (2003) Evidence for the Presence of a Cellulase Gene in the Last Common Ancestor of Bilaterian Animals. *Proc Biol Sci*, **270**: S69-S72.

Lu, L., Zeng, G., Fan, C., et al. (2015) Environmental factors shaping the abundance and distribution of laccase-encoding bacterial community with potential phenolic oxidase capacity during composting. *Appl Microbiol Biotechnol*, **99**: 9191-9201.

Lynd, L.R., Weimer, P.J., van Zyl, W.H. and Pretorius, I.S. (2002) Microbial Cellulose Utilization: Fundamentals and Biotechnology. *Microbiol Mol Biol Rev*, **66**: 506-577.

Mackenzie, A., Pope, P., Pedersen, H.L., et al., (2012) Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant *Bacteroidetes* phylotype bind strongly to cellulose. *Appl Environ Microbiol*, **78**: 5935-5937.

Majumdar, S., Lukk, T., Solbiati, J.O., et al., (2014) Roles of small laccases from *Streptomyces* in lignin degradation. *Biochem*, **53**: 4047-4058.

Männistö, M.K., Schumann, P., Rainey, F.A., et al., (2000) *Subtercola boreus* gen. nov., sp. nov. and *Subtercola frigoramans* sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. *IJSEM*, **50**: 1731-1739.

Manskaya, S. (1948) Participation of oxidases in lignin formation. *Nauk SSSR*, **62**: 369. Manter, D., Hunter, W. and Vivanco, J. (2011) *Enterobacter soli* sp. nov.: A Lignin-Degrading γ -Proteobacteria Isolated from Soil. *Curr Microbiol*, **62**: 1044-1049.

Marchak, P. (1983). Green gold: The forest industry in British Columbia. UBC Press.

Martin, F. and Selosse, M.A. (2008) The Laccaria genome: a symbiont blueprint decoded. *New Phytol*, **180**: 296-310.

Martin, G., Guggiari, M., Bravo, D., et al. (2012) Fungi, bacteria and soil pH: the oxalate–carbonate pathway as a model for metabolic interaction. *Environ Microbiol*, **14**: 2960-2970.

Masai, E., Katayama, Y. and Fukuda, M. (2007) Genetic and Biochemical Investigations on Bacterial Catabolic Pathways for Lignin-Derived Aromatic Compounds. *Biosci Biotechnol Biochem*, **71**: 1-15.

Masai, E., Katayama, Y., Kubota, S., et al., (1993) A bacterial enzyme degrading the model lignin compound β -etherase is a member of the glutathione-S-transferase superfamily. *FEBS Lett*, **323**: 135-140.

Maurer, S.A., Bedbrook, C.N. and Radke, C.J. (2012) Competitive sorption kinetics of inhibited endo-and exoglucanases on a model cellulose substrate. *Langmuir*, **28**: 14598-14608.

McMurdie, P.J. and Holmes, S. (2014) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS One*, **8**: e61217.

Medie, F.M., Davies, G.J., Drancourt, M. and Henrissat, B. (2012) Genome analyses highlight the different biological roles of cellulases. *Nat Rev Microbiol*, **10**: 227-234.

Menéndez, E., Ramírez-Bahena, M.H., Fabryová, A., et al. (2015) *Pseudomonas coleopterorum* sp. nov., a cellulase-producing bacterium isolated from the bark beetle *Hylesinus fraxini*. IJSEM, **65**: 2852-2858.

Merilä, P., Mustajärvi, K., Helmisaari, H.S., et al. (2014) Above- and below-ground N stocks in coniferous boreal forests in Finland: Implications for sustainability of more intensive biomass utilization. *Forest Ecol Manag*, **311**: 17-28.

McGuire, K., D'Angelo, H., Brearley, F., et al. (2014) Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests. *Microb Ecol*, **69**: 733-747.

Mikkelsen, M.D., Harholt, J., Ulvskov, P., et al. (2014) Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. *Ann Bot*, **114**: 1217-1236.

Montero-Calasanz ,M.C., Hofner, B., Göker, M., et al. (2014) *Geodermatophilus poikilotrophi* sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble. *BioMed Res Int*, 914767.

Moore, H.K. (1914) Process of Making Ethyl Alcohol from Wood. U.S. Patent Application. Moore-Kucera, J. and Dick, R.P. (2008) Application of 13C-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids. *Soil Biol Biochem*, **40**: 2485-2493.

Morgenstern, I., Klopman, S. and Hibbett, D. (2008) Molecular Evolution and Diversity of Lignin-degrading Heme Peroxidases in the Agaricomycetes. *J Mol Evol*, **66**: 243-257.

Morita, H., Toh, H., Oshima, K., et al., (2009) Complete Genome Sequence of the Probiotic *Lactobacillus rhamnosus* ATCC 53103. *J Bacteriol*, **191**: 7630-7631.

Müller, R. and Lingens, F. (1983) Oxygenation Pathways in Bacteria. In Biological oxidations, Eds. H. Sund and V. Ullrich, Springer, Berlin, pp. 278-287.

Munk, L., Sitarz, A.K., Kalyani, D.C., et al., (2015) Can laccases catalyze bond cleavage in lignin? *Biotechnol Adv*, **33**: 13-24.

Myneni, R.B., Dong, J., Tucker, C.J., et al. (2001) A large carbon sink in the woody biomass of Northern forests. *PNAS*, **98**: 14784-14789.

Nacke, H., Fischer, C., Thürmer, A., et al., (2014) Land use type significantly affects microbial gene transcription in soil. *Microbial Ecol*, **67**: 919-930.

Nambiar, E. (1996) Sustained productivity of forests is a continuing challenge to soil science. *Soil Sci Soc Am J*, **60**: 1629-1642.

Nazaries, L., Tate, K.R., Ross, D.J., et al. (2011) Response of methanotrophic communities to afforestation and reforestation in New Zealand. *ISME J*, **5**: 1832-1836.

Nelson, W.C. and Stegen, J.C. (2015) The reduced genomes of *Parcubacteria* (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol, **6**: 1-14.

Neufeld, J.D., Vohra, J., Dumont, M.G., et al., (2007) DNA stable-isotope probing. *Nat Protoc*, **2**: 860-866.

Newman, R.H., Hill, S.J. and Harris, P.J. (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. *Plant Phys*, **163**: 1558-1567.

Nguyen, N.H., Song, Z., Bates, S.T., et al. (2015) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. *Fungal Ecol*, **20**: 241-248.

Nierman, W.C., Feldblyum, T.V., Laub, M.T., et al. (2001) Complete genome sequence of *Caulobacter crescentus*. *PNAS*, **98**: 4136-4141.

Nobles, D.R., Romanovicz, D.K. and Brown, R.M. (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? *Plant Physiol*, **127**: 529-542. Nogueira F, Botelho ML, Tenreiro R. (1998) Radioresistance studies in *Methylobacterium spp. Radiat Phys Chem* **52**: 15-19.

Oberwinkler, F., Riess, K., Bauer, R., et al., (2013) Enigmatic Sebacinales. Mycol Progress, **12**: 1-27.

Office of the B.C. Auditor General (2012). Report 11: An Audit of the Ministry of Forests, Lands and Natural Resource Operations' Management of Timber. Office of the Auditor General of British Columbia.

Oksanen, J., Blanchet, F.G., Kindt, R., et al., (2015). vegan: Community Ecology Package. R package version 2.3-1. http://CRAN.R-project.org/package=vegan

Oliveira, G., Ulhoa, C., Silveira, M., et al., (2013) An alkaline thermostable recombinant *Humicola grisea* var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates. *World J Microbiol Biot*, **29**: 19-26.

Oliver, A.K., Callaham, M.A. and Jumpponen, A. (2015) Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. *Forest Ecol Manag*, **345**: 1-9.

Oni, O.E., Schmidt, F., Miyatake, T., et al., (2015) Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland Mud Area, North Sea. *Front Microbiol*, **6**: 1-16.

Page-Dumroese, D.S., Jurgensen, M.F., Tiarks, A.E., et al. (2006) Soil physical property changes at the North American Long-Term Soil Productivity study sites: 1 and 5 years after compaction. *Can J Forest Res*, **36**: 551-564.

Parks, D.H., Imelfort, M., Skennerton, C.T., et al., (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res*, **25**: 1043-1055.

Pasti, M.B., Pometto, A.L., Nuti, M.P. and Crawford, D.L. (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. *Appl Environ Microbiol*, **56**: 2213-2218.

Paul, L.R., Chapman, W.K. and Chanway, C.P. (2012) Diazotrophic bacteria reside inside *Suillus tomentosus / Pinus contorta* tuberculate ectomycorrhizae. *Botany*, 91: 48-52.

Paula, F.S., Rodrigues, J.L., Zhou, J., et al. (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. *Mol Ecol*, **23**: 2988-2999.

Payen, A. (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. *Comptes rendus*, **7**: 1052-1056.

Paz, L.W. (2001) Soil-water Characteristics and Hydrologic Implications Following Forest Soil Disturbance: The Relative Influence of Organic Residue and Soil Compaction on Permeability and Moisture Capacity: a Study on Cohasset Soil in the Sierra Nevada Mixed Conifer Zone. University of California, Berkeley.

Peay, K.G., Garbelotto, M. and Bruns, T.D. (2009) Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing *Pinus muricata* seedlings. *J Ecol*, **97**: 537-547.

Pepe-Ranney, C., Campbell, A.N., Koechli, C.N., Berthrong, S. and Buckley, D.H. (2016) Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. *Front Microbiol*, **7**: 703

Petersen, L., Ardèvol, A., Rovira, C. and Reilly, P.J. (2009) Mechanism of Cellulose Hydrolysis by Inverting GH8 Endoglucanases: A QM/MM Metadynamics Study. *J Phys Chem B*, **113**: 7331-7339.

Pinnell, L.J., Dunford, E., Ronan, P., et al., (2014) Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria. *Can Journal Microbiol*, **60**: 469-476.

Poindexter JS. (1964) Biological properties and classification of the *Caulobacter* group. *Bacteriol Rev* 28: 231.

Pold, G., Melillo, J.M. and DeAngelis, K.M. (2015) Two decades of warming increases diversity of a potentially lignolytic bacterial community. *Front Microbiol*, **6**:480.

Ponder, Jr F., Fleming, R.L., Berch, S., et al. (2012) Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons. *Forest Ecol Manag*, **278**: 35-54.

Pourramezan, Z., Ghezelbash, G.R., Romani, B., et al., (2012) Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite *Microcerotermes diversus* (Silvestri). *Microbiol*, **81**: 736-742.

Powell, A.J., Parchert, K.J., Bustamante, J.M., et al., (2012) Thermophilic fungi in an aridland ecosystem. *Mycologia*, **104**: 813-825.

Powers, R.F. (2006) Long-Term Soil Productivity: genesis of the concept and principles behind the program. *Can J Forest Res*, **36**: 519-528.

Powers, R.F., Scott, A.D., Sanchez, F.G., et al. (2005) The North American long-term soil productivity experiment: Findings from the first decade of research. *Forest Ecol Manag*, **220**: 31-50.

Prescott, C., Blevins, L. and Staley, C. (2000) Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia. *Can J Forest Res*, **30**: 1751-1757.

Prescott, C. (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? *Biogeochemistry*, **101**: 133-149.

Presley, G.N., Payea, M.J., Hurst, L.R., et al., (2014) Extracellular gluco-oligosaccharide degradation by *Caulobacter crescentus*. *Microbiology*, **160**: 635-645.

Pruesse, E., Quast, C., Knittel, K., et al., (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. *Nucl Acids Res*, **35**: 7188-7196.

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ragauskas, A.J., Beckham, G.T., Biddy, M.J., et al. (2014) Lignin valorization: improving lignin processing in the biorefinery. *Science*, **344**: 1246843.

Rajulu, M.G., Lai, L.B., Murali, T., et al., (2014) Several fungi from fire-prone forests of southern India can utilize furaldehydes. *Mycol Prog*, **13**: 1049-1056.

Ramírez-López, I., Villegas Ríos, M. and Cano-Santana, Z. (2013) Phenotypic plasticity of the basidiomata of *Thelephora sp.(Thelephoraceae*) in tropical forest habitats. *Revista de Biología Tropical*, **61**: 343-350.

Rao, S., Chan, Y., Bugler-Lacap, D.C., Bhatnagar, A., Bhatnagar, M., Pointing, S.B. (2016) Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, *India*. *Indian J Microbiol*, **56**: 35-45.

Rashid, G.M., Taylor, C.R., Liu, Y., et al., (2015) Identification of manganese superoxide dismutase from *Sphingobacterium sp.* T2 as a novel bacterial enzyme for lignin oxidation. *ACS Chem Biol*, **10**: 2286-2294.

Rastogi, G., Bhalla, A., Adhikari, A., et al., (2010) Characterization of thermostable cellulases produced by *Bacillus* and *Geobacillus* strains. *Biores Technol*, **101**: 8798-8806.

Raven, J.A. (1997) The role of marine biota in the evolution of terrestrial biota: gases and genes. *Biogeochemistry*, **39**: 139-164.

Redding, T., Hope, G., Fortin, M.J., Schmidt, M. and Bailey, W. (2003) Spatial patterns of soil temperature and moisture across subalpine forest-clearcut edges in the southern interior of British Columbia. *Can J Soil Sci*, **83**: 121-130.

Reed, G. (1916) The mode of action of plant peroxidases. Bot Gaz, 233-238.

Reichenbach, H. (2005) *Cystobacter Schroeter* 1886, 170 AL. Bergey's Manual® of Systematic Bacteriology, 1086-1096.

Reiss, R., Ihssen, J., Richter, M., et al., (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. *PLoS One*, e65633.

Renier, A., Jourand, P., Rapior, S., et al., (2008) Symbiotic properties of *Methylobacterium nodulans* ORS 2060T: A classic process for an atypical symbiont. *Soil Biol Biochem*, **40**: 1404-1412.

Retallack, G.J. (2008) Soils of the past: an introduction to paleopedology. John Wiley & Sons, London.

Riley, R., Salamov, A.A., Brown, D.W., et al. (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. *PNAS*, **111**: 9923-9928.

Rime T, Hartmann M, Brunner I, Widmer F, Zeyer J, Frey B. (2015) Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. *Mol Ecol*, **24**: 1091-1108.

Rineau, F., Roth, D., Shah, F., et al. (2012) The ectomycorrhizal fungus *Paxillus involutus* converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. *Environ Microbiol*, **14**: 1477-1487.

Ritchie, M.E., Phipson, B., Wu, D., et al., (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucl Acids Res*, **43**: e47.

Roberts, M.W., D'Amato, A.W., Kern, C.C. and Palik, B.J. (2016) Long-term impacts of variable retention harvesting on ground-layer plant communities in *Pinus resinosa* forests. *J Appl Ecol*, doi: 10.1111/1365-2664.12656.

Robinson, J.M. (1990) Lignin, land plants, and fungi: biological evolution affecting Phanerozoic oxygen balance. *Geology*, **18**: 607-610.

Rocap, G., Larimer, F.W., Lamerdin, J., et al. (2003) Genome divergence in two *Prochlorococcus* ecotypes reflects oceanic niche differentiation. Nature, **424**: 1042-1047.

Rodrigues, J.L., Pellizari, V.H., Mueller, R., et al. (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. *PNAS*, **110**: 988-993.

Rokitko, P.V., Romanovskaya, V.A., Malashenko, Y.R., et al., (2003) Soil drying as a model for the action of stress factors on natural bacterial populations. *Microbiol*, **72**: 756-761.

Romaní, A.M., Fischer, H., Mille-Lindblom, C. and Tranvik, L.J. (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. *Ecology*, **87**: 2559-2569.

Romanovskaya VA, Rokitko PV, Mikheev AN, Gushcha NI, Malashenko YR, Chernaya NA. (2002) The Effect of γ -Radiation and Desiccation on the Viability of the Soil Bacteria Isolated from the Alienated Zone around the Chernobyl Nuclear Power Plant. *Microbiol* **71**: 608-613.

Rousk, J., Demoling, L.A., Bahr, A. and Bååth, E. (2008) Examining the fungal and bacterial niche overlap using selective inhibitors in soil. *FEMS Microbiol Ecol*, **63**: 350-358.

Ruess, L. and Chamberlain, P.M. (2010) The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. *Soil Biol Biochem*, **42**: 1898-1910.

Ruiz-Dueñas, F.J. and Martínez, Á.T. (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. *Microb Biotechnol*, **2**: 164-177.

Ruka, D.R., Simon, G.P. and Dean, K.M. (2012) Altering the growth conditions of *Gluconacetobacter xylinus* to maximize the yield of bacterial cellulose. *Carbohyd Polym*, **89**: 613-622.

Saake, B., Argyropoulos, D.S., Beinhoff, O. and Faix, O. (1996) A comparison of lignin polymer models (DHPs) and lignins by ³¹P NMR spectroscopy. *Phytochemistry*, **43**: 499-507.

Sachs, J. (1862) Zur Keimungsgeschichte der Graser. Bot Z, 20: 145-150.

Sanchez, F.G., Scott, D.A. and Ludovici, K.H. (2006) Negligible effects of severe organic matter removal and soil compaction on loblolly pine growth over 10 years. *Forest Ecol Manag*, **227**: 145-154.

Sangwan, P., Chen, X., Hugenholtz, P. and Janssen, P.H. (2004) *Chthoniobacter flavus* gen. nov., sp. nov., the First Pure-Culture Representative of Subdivision Two, Spartobacteria classis nov., of the Phylum Verrucomicrobia. *Appl Environ Microbiol*, **70**: 5875-5881.

Scharf, M.E. and Tartar, A. (2008) Termite digestomes as sources for novel lignocellulases. *Biofuel Bioprod Bior*, **2**: 540-552.

Schellenberger, S., Kolb, S. and Drake, H.L. (2010) Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen. *Environ Microbiol*, **12**: 845-861.

Schloss, P.D., Westcott, S.L., Ryabin, T., et al., (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl Environ Microbiol* **75**: 7537-7541.

Schneider, T., Keiblinger, K.M., Schmid, E., et al. (2012) Who is who in litter decomposition - Metaproteomics reveals major microbial players and their biogeochemical functions. *ISME J*, **6**: 1749-1762.

Schoenholtz, S.H., Miegroet, H.V. and Burger, J.A. (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. *Forest Ecol Manag*, **138**: 335-356.

Schulze, E.D., Körner, C., Law, B.E., Haberl, H. and Luyssaert, S. (2012) Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. *GCB Bioenergy*, **4**: 611-616.

Selosse, M.A., Strullu-Derrien, C., Martin, F.M., et al., (2015) Plants, fungi and oomycetes: a 400-million-year affair that shapes the biosphere. *New Phytol*, **206**: 501-506.

Seymour, R.S. and White, A.S. (2002) Natural disturbance regimes in northeastern North America—evaluating silvicultural systems using natural scales and frequencies. *Forest Ecol Manag*, **155**: 357-367.

Sghaier, H., Hezbri, K., Ghodhbane-Gtari, F., et al., (2016) Stone-dwelling actinobacteria *Blastococcus saxobsidens*, *Modestobacter marinus* and *Geodermatophilus obscurus* proteogenomes. *ISME J*, **10**: 21-29.

Shil, R.K., Mojumder, S., Sadida, F.F., et al., (2014) Isolation and identification of cellulolytic bacteria from the gut of three phytophagus insect species. *Braz Arch Biol Technol*, **57**: 927-932.

Shipman, J.A., Berleman, J.E. and Salyers, A.A. (2000) Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface of *Bacteroides thetaiotaomicron. J Bacteriol*, **182**: 5365-5372.

Simonsen, E. (1898) Einar simonsen. U.S. Patent.

Singh, B.K., Bardgett, R.D., Smith, P. and Reay, D.S. (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. *Nat Rev Micro*, **8**: 779-790.

Singh, R. and Eltis, L.D. (2015) The multihued palette of dye-decolorizing peroxidases. *Arch Biochem Biophys*, **574**: 56-65.

Siu, R. (1951) Microbial decomposition of cellulose with special reference to cotton textiles. New York: Reinhold Publ. Corp.

Soares, F.L., Melo, I.S., Dias, A.C.F. and Andreote, F.D. (2012) Cellulolytic bacteria from soils in harsh environments. *World J Microbiol Biotechnol*, **28**: 2195-2203.

Somerville, C., Bauer, S., Brininstool, G., et al. (2004) Toward a Systems Approach to Understanding Plant Cell Walls. *Science*, **306**: 2206-2211.

Song, N., Cai, H.Y., Yan, Z.S. and Jiang, H.L. (2013) Cellulose degradation by one mesophilic strain *Caulobacter sp.* FMC1 under both aerobic and anaerobic conditions. *Biores Technol*, **131**: 281-287.

Stanier, R. (1942) The *Cytophaga* group: a contribution to the biology of myxobacteria. *Bacteriol Rev*, **6**: 143.

Stein, W.E., Berry, C.M., Hernick, L.V. and Mannolini, F. (2012) Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. *Nature*, **483**: 78-81.

Sterflinger K, Tesei D, Zakharova K, (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. *Fungal Ecol*, **5**: 453-462.

Stolk, A.C. (1965) Thermophilic species of Talaromyces benjamin and Thermoascus miehe. *A Van Leeuw J Microb*, **31**: 262-276.

Strickland, M.S. and Rousk, J. (2010) Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. *Soil Biol Biochem*, **42**: 1385-1395.

Strous, M., Kraft, B., Bisdorf, R. and Tegetmeyer, H.E. (2012) The binning of metagenomic contigs for microbial physiology of mixed cultures. *Front Microbiology*, **3**: 410.

Stubblefield, S.P. and Taylor, T.N. (1986) Wood decay in silicified gymnosperms from Antarctica. *Bot Gaz*, **147**: 116-125.

Štursová, M., Žifčáková, L., Leigh, M.B., Burgess, R. and Baldrian, P. (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. *FEMS Microbiol Ecol*, **80**: 735-746.

Štursová M, Snajdr J, Cajthaml T, Barta J, Santruckova H, Baldrian P. (2014) When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. *ISME J* 8: 1920-1931.

Suen, G., Scott, J.J., Aylward, F.O. and Currie, C.R. (2011) The Microbiome of Leaf-Cutter Ant Fungus Gardens. In Handbook of Molecular Microbial Ecology II: Metagenomics in Different Habitats. Ed F.J. de Bruijn, Wiley-Blackwell, New York, pp. 367-379.

Sugano, Y., Muramatsu, R., Ichiyanagi, A., et al, (2007) DyP, a Unique Dye-decolorizing Peroxidase, Represents a Novel Heme Peroxidase Family ASP171 Replaces the Distal Histidine of Classical Peroxidases. *J Biol Chem*, **282**: 36652-36658.

Takakai, F., Desyatkin, A.R., Lopez, C.L., et al., (2008) Influence of forest disturbance on CO₂, CH₄ and N₂O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia. *Soil Sci Plant Nutr*, **54**: 938-949.

Tamura, K. Stecher, G., Peterson, P., et al., (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol*, **30**: 2725-2729.

Tan, X., Chang, S.X. and Kabzems, R. (2005) Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. *Forest Ecol Manag*, **217**: 158-170.

Tas, N., Prestat, E., McFarland, J.W., et al. (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. *ISME J*, **8**: 1904-1919.

Taylor, C.R., Hardiman, E.M., Ahmad, M., et al., (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. *J Appl Microbiol*, **113**: 521-530.

Taylor, T.N. and Osborn, J.M. (1996) The importance of fungi in shaping the paleoecosystem. *Rev Palaeobot Palynol*, **90**: 249-262.

Tedersoo, L., Harend, H., Buegger, F., Pritsch, K., Saar, I. and Kõljalg, U. (2014) Stable isotope analysis, field observations and synthesis experiments suggest that *Odontia* is a non-mycorrhizal sister genus of *Tomentella* and *Thelephora*. *Fungal Ecol*, **11**: 80-90.

Thanbichler, M., Iniesta, A.A. and Shapiro, L. (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in *Caulobacter crescentus*. *Nucl Acids Res*, **35**: e137.

Thevenot, M., Dignac, M.F. and Rumpel, C. (2010) Fate of lignins in soils: A review. *Soil Biol Biochem*, **42**: 1200-1211.

Thiffault, E., Hannam, K.D., Paré, D., Titus, B.D., Hazlett, P.W., Maynard, D.G. and Brais, S. (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests— A review. *Environ Rev*, **19**: 278-309.

Thomas, P.A. (2014) Trees: their natural history. Cambridge University Press.

Throckmorton, H.M., Bird, J.A., Dane, L., Firestone, M.K. and Horwath, W.R. (2012) The source of microbial C has little impact on soil organic matter stabilization in forest ecosystems. *Ecol Lett*, **15**: 1257-1265.

Tian, J.H., Pourcher, A.M., Bouchez, T., et al., (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. *Appl Microbiol Biotechnology*, **98**: 9527-9544.

Tolonen, A.C., Cerisy, T., El-Sayyed, H., et al., (2014) Fungal lysis by a soil bacterium fermenting cellulose. *Environ Microbiol*, **17**: 2618-2627.

Torres, I.F., Bastida, F., Hernandez, T., et al., (2014) The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass. *Soil Biol Biochem*, **75**: 152-160.

Tuck, C.O., Pérez, E., Horváth, I.T., et al., (2012) Valorization of biomass: deriving more value from waste. *Science*, **337**: 695-699.

Twieg, B.D., Durall, D.M. and Simard, S.W. (2007) Ectomycorrhizal fungal succession in mixed temperate forests. *New Phytol*, **176**: 437-447.

Urbanová, Z. and Bárta, J. (2014) Microbial community composition and *in silico* predicted metabolic potential reflect biogeochemical gradients between distinct peatland types. *FEMS Microbiol Ecol*, **90**: 633-646.

Vaaje-Kolstad, G., Westereng, B., Horn, S.J., et al., (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. *Science*, **330**: 219-222.

VanInsberghe, D., Maas, K.R., Cardenas, E., et al., (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. *ISME J*, **9**: 2435-2441.

Ventura, M., Canchaya, C., Tauch, A., et al., (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. *Microbiol Mol Biol Rev*, **71**: 495-548.

Verastegui, Y., Cheng, J., Engel, K., et al. (2014) Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities. *mBio*, **5**: e01157-01114.

Větrovský, T., Steffen, K.T. and Baldrian, P. (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. *PloS One*, **9**: e89108.

Vicuña, R. (1988) Bacterial degradation of lignin. Enzyme Microb Tech, 10: 646-655.

Visser, S. (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. *New Phytol*, **129**: 389-401.

Vlasenko, E., Schülein, M., Cherry, J. and Xu, F. (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. *Bioresource Technol*, **101**: 2405-2411.

Voriskova, J. and Baldrian, P. (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. *ISME J*, **7**: 477-486.

Wang, Q., Garrity, G.M., Tiedje, J.M. and Cole, J.R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol*, **73**: 5261-5267.

Wang, X.Q., Tank, D.C. and Sang, T. (2000) Phylogeny and Divergence Times in *Pinaceae*: Evidence from Three Genomes. *Mol Biol Evol*, **17**: 773-781.

Wang, X., Sharp, C.E., Jones, G.M., et al., (2015) Stable-Isotope Probing Identifies Uncultured Planctomycetes as Primary Degraders of a Complex Heteropolysaccharide in Soil. *Appl Environ Microbiol*, **81**: 4607-4615.

Warnecke, F., Luginbuhl, P., Ivanova, N., et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. *Nature*, **450**: 560-565.

Warner, C.D., Go, R.M., García-Salinas, C., Ford, C. and Reilly, P.J. (2011) Kinetic characterization of a glycoside hydrolase family 44 xyloglucanase/endoglucanase from *Ruminococcus flavefaciens* FD-1. *Enzyme Microb Tech*, **48**: 27-32.

Weber, C.F., Lockhart, J.S., Charaska, E., et al., (2014) Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. *Soil Biol Biochem*, **69**: 242-250.

Webster, K.L., Wilson, S.A., Hazlett, P.W., et al., (2016) Soil CO2 efflux and net ecosystem exchange following biomass harvesting: Impacts of harvest intensity, residue retention and vegetation control. *Forest Ecol Manag*, **360**: 181-194.

Weng, J.K. and Chapple, C. (2010) The origin and evolution of lignin biosynthesis. *New Phytol*, **187**: 273-285.

Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.A. (2016) *Sebacinales*-one thousand and one interactions with land plants. *New Phytol*, Tansley Review.

Westram, R., Bader, K., Prüsse, E., et al., (2011) ARB: a software environment for sequence data. In, Handbook of molecular microbial ecology I: metagenomics and complementary approaches. Ed. de Bruijn, F.J. pg. 399-406.

Whitford, W.G., Meentemeyer, V., Seastedt, T.R., et al. (1981) Exceptions to the AET Model: Deserts and Clear-Cut Forest. *Ecology*, **62**: 275-277.

Wickham, H. (2007). Reshaping Data with the reshape Package. J Stat Soft, 21: 1-20.

Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. J Stat Soft, 40: 1-29.

Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

Wilson, D.B. (2011) Microbial diversity of cellulose hydrolysis. *Curr Opin Microbiol*, **14**: 259-263.

Wilson, D.B. and Kostylev, M. (2012) Cellulase processivity. In, Biomass Conversion Methods and Protocols, Methods in Molecular Biology. Ed. Himmel., M.E., Springer, 93-99.

Woo, H.L., Hazen, T.C., Simmons, B.A. and DeAngelis, K.M. (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. *Syst Appl Microbiol*, **37**: 60-67.

Woo, H.L., Utturkar, S., Klingeman, D., et al., (2014) Draft Genome Sequence of the Lignin-Degrading *Burkholderia sp.* Strain LIG30, Isolated from Wet Tropical Forest Soil. *Genome Announc*, 2: e00637-14.

Worrall, J.J., Anagnost, S.E. and Zabel, R.A. (1997) Comparison of wood decay among diverse lignicolous fungi. *Mycologia*, **89**: 199-219.

Wu, X., Brüggemann, N., Gasche, R., et al., (2011) Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany. *Environ Pollut*, **159**: 2467-2475.

Xiang, X., Gibbons, S.M., Yang, J., et al., (2015) Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. *Plant Soil*, **397**: 347-356.

Xiang, X., Shi, Y., Yang, J., et al., (2014). Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. *Scientific Rep*, **4**: 3829.

Xu, C., Spadiut, O., Araújo, A.C., et al., (2012) Chemo-enzymatic Assembly of Clickable Cellulose Surfaces via Multivalent Polysaccharides. *ChemSusChem*, **5**: 661-665.

Yagüe, E., Béguin, P. and Aubert, J.P. (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of *Clostridium thermocellum*. Gene, **89**: 61-67.

Yin, X., Perry, J.A. and Dixon, R.K. (1989) Influence of canopy removal on oak forest floor decomposition. *Can J Forest Res*, **19**: 204-214.

Yin, Y., Mao, X., Yang, J., et al., (2012) dbCAN: a web resource for automated carbohydrateactive enzyme annotation. *Nucl Acids Res*, **40**: W445-W451

Youngblut, N.D., Shade, A., Read, J.S., et al., (2012) Lineage-Specific Responses of Microbial Communities to Environmental Change. *Appl Environ Microbiol*, **79**: 39-47.

Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L. and Weckhuysen, B.M. (2010) The catalytic valorization of lignin for the production of renewable chemicals. *Chem Rev*, **110**: 3552-3599.

Zámocký, M., Hofbauer, S., Schaffner, I., et al. (2015) Independent evolution of four heme peroxidase superfamilies. *Arch Biochem Biophy*, **574**: 108-119.

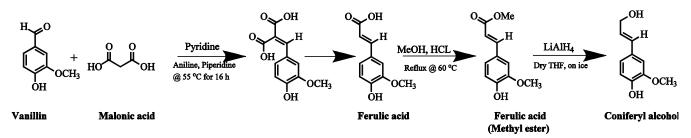
Zeller, S.M. (1916) Studies in the physiology of the fungi. II. *Lenzites saepiaria* Fries, with special reference to enzyme activity. *Ann Missouri Bot Garden*, **3**: 439-512.

Zeng, Y., Zhao, S., Yang, S. and Ding, S.Y. (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. *Curr Opin Biotech*, **27**: 38-45.

Zerva, A. and Mencuccini, M. (2005) Short-term effects of clearfelling on soil CO₂, CH₄, and N₂O fluxes in a Sitka spruce plantation. *Soil Biol Biochem*, **37**: 2025-2036.

Zhang, L.H. and Dong, Y.H. (2004) Quorum sensing and signal interference: diverse implications. *Mol Microbiol*, **53**: 1563-1571.

Zhang, W., Yin, J., Lin, Z., et al., (2015) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. *Electrochimica Acta*, **176**: 1136-1142.


Zimmermann, W. (1990) Degradation of lignin by bacteria. J Biotechnol, 13: 119-130.

Zumsteg, A., Luster, J., Göransson, H., et al. (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. *Microbial Ecol*, **63**: 552-564.

Appendix A

Synthesis of Coniferyl Alcohol from ¹³C-ring labelled Vanillin

Written and performed by Dr. Rahul Singh

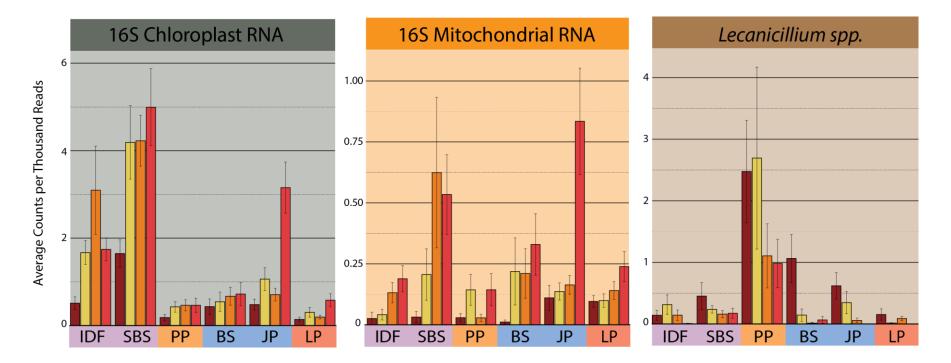
Aldol condensation of vanillin in the presence of malonic acid

Aldol condensation of 1:1 molar ratio of malonic acid and vanillin in the presence of catalytic amounts of piperidine and aniline (~6 drops) in pyridine. Thus, in a 3-neck flask (100 ml), 10 ml pyridine, 2.5 g vanillin and 2 g malonic acid were added and the mix was reflux at 55 °C for ~16 h.

Working up the reaction

Post reflux, the mix was removed from the flask and 60 ml chloroform was added (rinsed the flask with that as well). This mixture was extracted 6 times with acidic water (pH \sim 2). Essentially, ferulic acid precipitates in acidic water. Ferulic acid can be recovered as precipitate as well as extraction by ethyl acetate. After recovery, the yield was ~ 87%. Check on TLC (1:1 ethyl acetate/hexane) for the leftover vanillin (salvage in the case of labeled material).

Esterification of ferulic acid

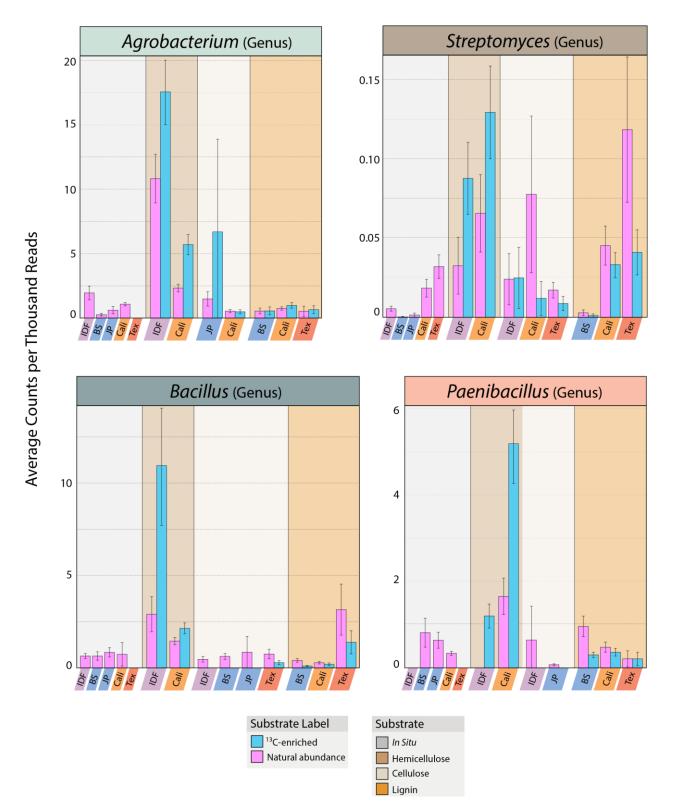

Esterification eases the reduction of ferulic acid to coniferyl alcohol. In a 3 neck flask, 2.5 g ferulic acid was mixed with 10 ml methanol and ~ 50 μ l conc. HCL. This mixture was refluxed at 65-70 °C for 5-6 h. Test the progress of the reaction on TLC, if required add more HCL. Once finished, recover the sample using ethyl acetate and dry under vacuum. Expected yield is ~ 95%

Reduction with Lithium Aluminium Hydride (LiAlH)

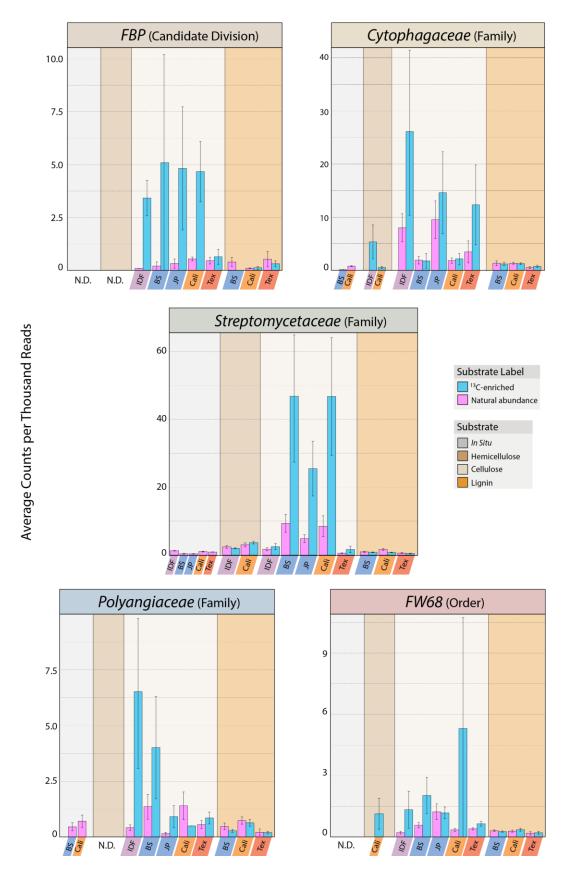
A 2 neck flask was set up with an add funnel under positive nitrogen pressure. The flask was preweighed with 0.732 g of LiAlH, to which 60 ml of freshly distill THF was added slowly, while stirring. Methyl ester of ferulic acid (~ 2.5 g) was mixed with 14 ml of freshly distill dry THF and placed in the add funnel. The flask was kept on ice and ester was added drop wise really slowly. Towards the end, some additional THF was used to rinse the add funnel. The solution was stirred at room temperature for additional 2 h and then bought back at 0 °C. At this point, 12 ml ethyl acetate was added drop wise, followed by 70 ml of 2 N HCl. These were added slowly as the residual LiAlH was reactive initially. Also, note that stirring also gets difficult towards the end due to accumulation of salts. Finally, the product was extracted in ethyl acetate and dried under vacuum. Following drying, the product can be purified using silica chromatography.

Appendix B – Broad Ecological Impacts of Timber Harvesting

Figure B.1. Abundance pattern of taxa that illustrate the broad character of environmental change detectable in soil pyrotag libraries. Taxa from 16S rRNA libraries reveal the expansion of plant ground cover (Chloroplast and Mitochondrial rRNA genes). The decline of entomopathic fungi (*Lecanicillium spp.*) reveal potential changes in insect host populations. Error bars correspond to one standard error of the mean.



Appendix C – Detailed Descriptions of Lignocellulolytic Bacterial Populations


The most prominent bacterial hemicellulolytic genera were Agrobacterium, Bacillus, Paenibacillus, and Streptomyces (Figure C.1) and included taxa also active on cellulose, such as Cellvibrio, Janthinobacterium, Cytophagaceae and Salinibacterium (Figure C.2). The most prominent cellulose-degraders were members of the candidate division 'FBP' within Armatimonadetes (Figure C.2). Sequences annotated as FBP were, at best, 80% similar to any sequence in NCBI's curated rRNA database and clustered with sequences from uncultured organisms, distantly related to Fimbriimonas ginsengisoli in the SILVA tree. Other groups of the Armatimonadetes (FW68) were also designated cellulolytic (Figure C.2). Exclusively cellulolytic bacterial taxa included Kitasatospora and other unclassified Streptomycetaceae; DH61 (Planctomycetes); MIZ46 and *Polyangiaceae* (*Deltaproteobacteria*), and *Leptothrix* (Burkholderiales) (Figure C.2). Binning assembled metagenomic data from ¹³C-cellulose libraries yielded one high-quality, and numerous lower quality, draft genomes classified as Sorangium (Polyangiaceae), as well as lower quality drafts classified by LCA as Myxococcus, Cytophaga, Chthonomonas (Armatimonadetes), and Chthoniobacter and Pedosphaera (Verrucomicrobia) (Figure 4.14). A number of high-quality draft genomes were recovered for cellulolytic fungi, including *Chaetomium*, *Neurospora* and *Pseudogymnoascus*.

Lignolytic bacterial taxa were typically from novel and uncultured clades or uncultured clades within better known families. Taxa originating from poorly characterized clades included *Acidobacteria* from Grp-2 (*Ellin6531*), Grp-3 (*Solibacterales*; SILVA clade 'Unknown Family_Candidatus Solibacter') and Grp-6 (*iii1-15*) (Figure C.3). These clades

Figure C.1. Abundance barplots of prominent hemicellulolytic taxa depicting differential abundance between ¹²C- and ¹³C-pyrotag libraries including *in situ* abundances across ecozones.

Figure C.2. Abundance barplots of prominent cellulolytic taxa depicting differential abundance between ¹²C- and ¹³C-pyrotag libraries including *in situ* abundances across ecozones.

266

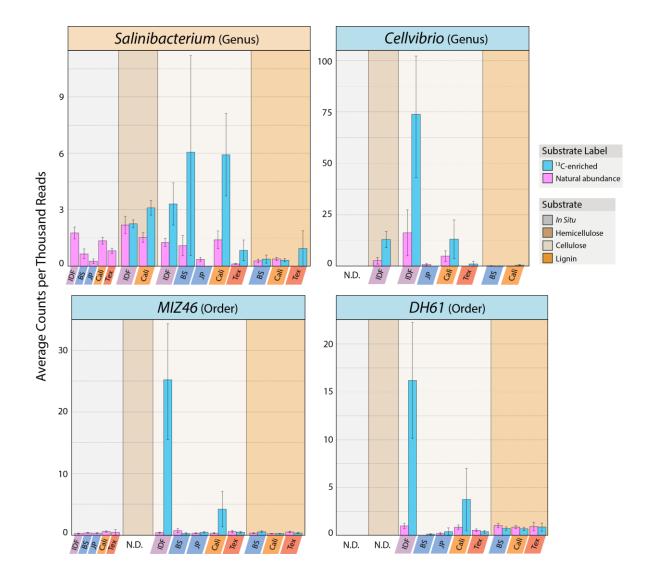
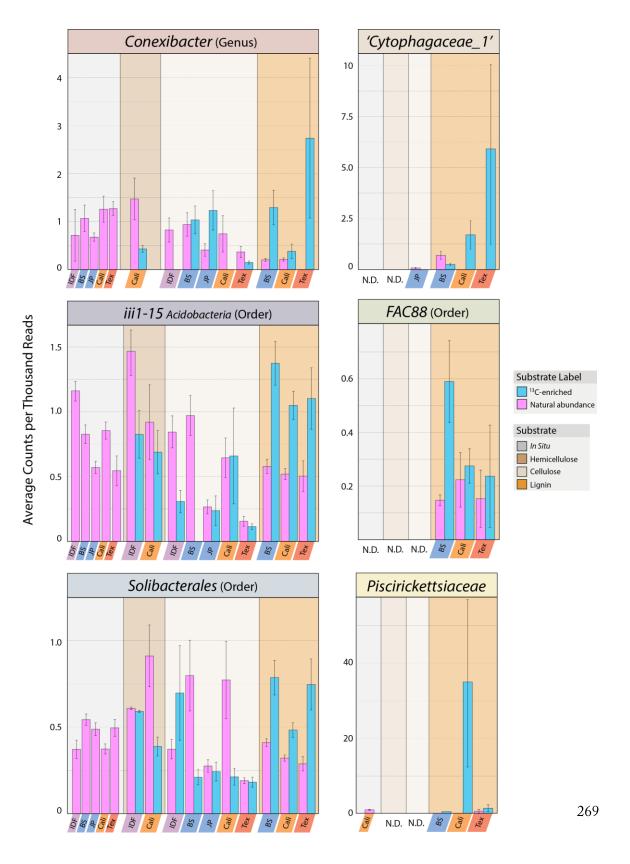
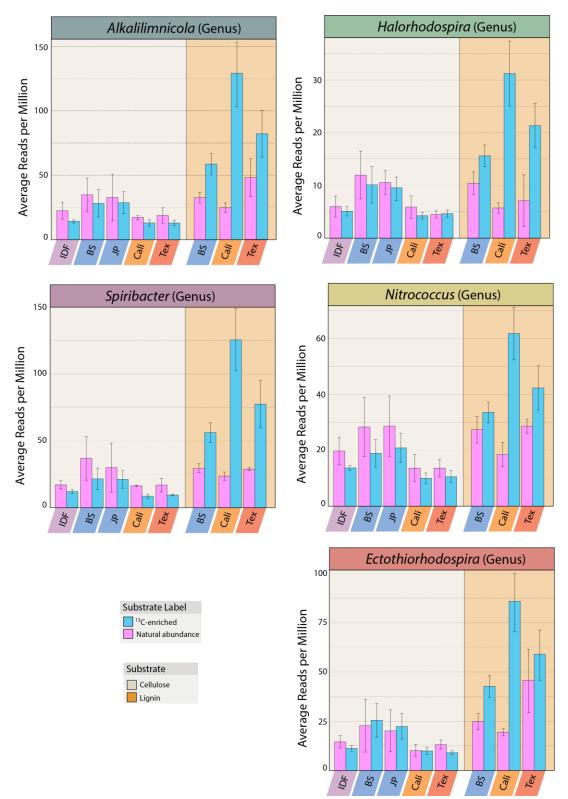



Figure C.2. continued...

possess a prodigious number of sequences in the SILVA repository (493, 1,466 and 3,817, respectively), but possess no cultured representatives. These groups were not related to the predominant groups of Acidobacteria common among in ¹²C-libraries. Three low-quality draft genomes of Acidobacteria were recovered from ¹³C-lignin libraries (Table E.13). Lignolytic Actinobacteria were identified from novel clades within Conexibacteraceae (SILVA clade 'YNPFFP1') and Gaiellaceae, as well as clades with cultured representatives such as Conexibacter (closest representative: C. woesi), Lysinimonas (Microbacteriaceae: L. soli), Arthrobacter (Micrococcaceae; A. soli), and Jatrophihabitans (Frankinaceae; J. endophyticus). Two low quality draft genomes classified to *Conexibacter* were recovered from ¹³C-lignin libraries. Putatively lignolytic members of *Bacteroidetes* grouped with a clade of environmental sequences in the family Cytophagaceae (SILVA clade 'Cyotphagaceae 1) and with *Mucilaginibacter* (SILVA clade 'Mucilaginibacter 1'), which were closely related to cultured taxa M. frigoritolerans and M. herbaticus. Low-quality draft genomes classified as Mucilaginibacter and Chitinophagaceae were recovered from ¹³C-lignin libraries. Other lignolytic OTUs from poorly characterized clades included Elusimicrobia, formerly Termite SILVA Group1, (*FAC88*; clade 'Lineage IIa'); Sinobacteraceae (SILVA clade 'Xanthomonadales Intercetae Sedis_Acidibacter'); Cystobacteraceae (SILVA clade 'uncultured' within Piscirickettsiaceae (SILVA clade 'uncultured' *Myxococcales*) and within Xanthomonadales). Lignolytic OTUs also clustered with a number of taxa available in culture collections, such Bradyrhizobium canariense ('Bosea' in Table 4.1), Altererythrobacter dongtanensis (Erythrobacteraceae), Novosphingobium lentum and Sphingomonas echinoides (Sphingomonadaceae), Aquaspirillum polymorphum (*Telmatospirillum*), Azospirillum doebereinerae (Alphaproteobacteria) and Cystobacter gracilis (Cystobacteraceae).

Figure C.3. Abundance barplots of prominent lignolytic taxa depicting differential abundance between ¹²C- and ¹³C-pyrotag libraries including *in situ* abundances across ecozones. 'Cytophagaceae_1' was classified as *Clostridium (Firmicutes)* by GreenGenes, but placed in the 'Cytophagaceae_1' clade in SILVA (*Bacteroidetes*).


Additional lignolytic taxa were identified from metagenomic libraries corresponding to *Cardiobacteriaceae*, *Enterobacteriaceae*, *Ectothiorhodospiraceae*, *Hyphomonadaceae* and *Pseudomonadaceae* (Figure C.4). Attempts to identify which genera within these families were differentially abundant were unsuccessful due to the lack of specificity of LCA classification, an example of which is provided for family *Ectothiorhodospiraceae* (Figure C.4). Another notable and problematic result of using LCA classification was illustrated by the classification of *Pantholops*, a Tibetan antelope from the ruminant family *Bovidae*, as differentially abundant in ¹³C-lignin libraries (12-fold) among all ecozones. Given the nature of samples used, it is unlikely that the genome assembly frequently the top blast hit used in LCA (Accession: GCA_000400835) was the real source of these sequences. Instead, the Pantholops genome may contain contamination from lignolytic microorganisms or, though improbable, horizontally transferred genes from lignolytic organisms.

The genus *Burkholderia* and members of unclassified *Burkholderiaceae* were active on all three substrates. Lignolytic *Burkholderia* clustered with *B. nodosa* and *B. tropica* in SILVA. Members of *Variovorax* and unclassified *Comamonadaceae* were active on lignin, while *Leptothrix* and *Polaromonas*, both from family *Comamonadaceae*, were cellulolytic and hemicellulolytic. One unclassified *Comamonadaceae* OTU showed considerable cellulolytic activity across all ecozones and grouped with *Aquincola* in SILVA (Figure C.6). Metagenomic binning recovered one high quality draft genome classified as *Comamonadaceae* (Figure C.6) and a lower-quality draft from *Variovorax* (Table E.13). Cellulolytic *Oxalobacteraceae* related to *Janthinobacterium* and other unclassified groups within *Oxalobacteraceae*, while members of *Pelomonas* were active on all three substrates. Lignolytic OTUs from *Pelomonas* grouped with *Chlorochromatium* (*C. aggregatum*) in SILVA. A draft genome classified as *Collimonas sp.* (*Oxalobacteraceae*) was recovered from ¹³C-lignin libraries.

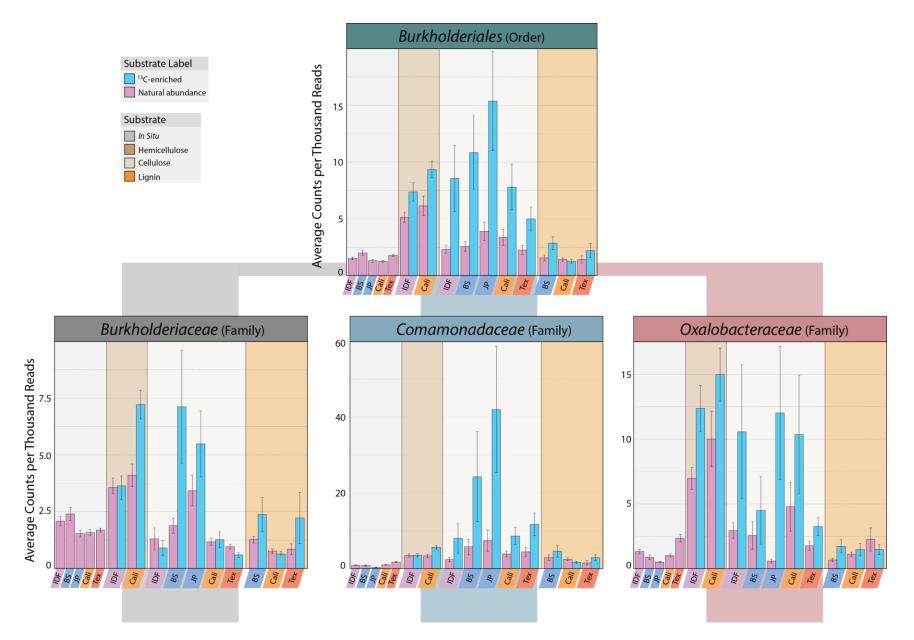

Figure C.4. Abundances of prominent lignolytic taxa identified by differential abundance between ${}^{12}C$ - and ${}^{13}C$ -whole shotgun metagenomes for cellulose and lignin. These taxa were not identified in analyses of pyrotag libraries.



Figure C.5. Abundances of metagenomic reads classified to all genera within the family *Ectothiorhodospiraceae*. Each genus shows a nearly identical abundance pattern in which ¹³C-lignin libraries are differentially more abundant than ¹²C-lignin libraries. The consistency of this pattern is unlikely biological, but rather related to the use of LCA to classify metagenomic reads. These graphs demonstrate why genus-level classification with LCA is putative at best.

Figure C.6. Abundances of all prominently hemicellulolytic, cellulolytic and lignolytic genera of *Burkholderiales* based on differential abundance between ¹²C- and ¹³C-pyrotag libraries.

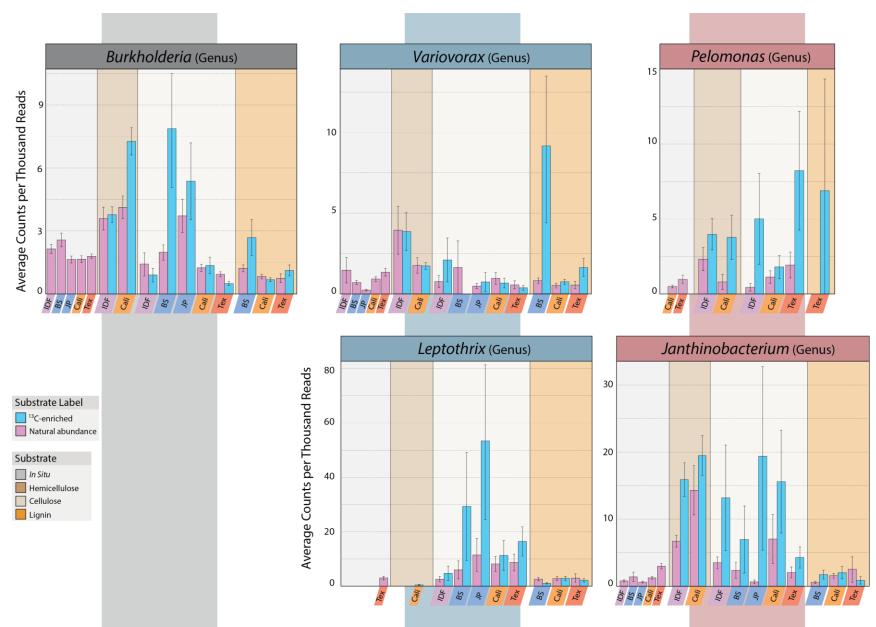
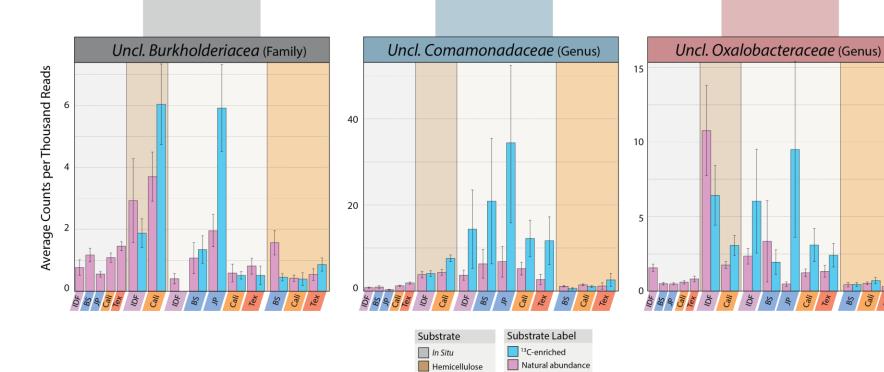



Figure C.6 ... continued

Cellulose Lignin

ŝ

Appendix D

Iso *Life*

Iso *Life* bv, P.O. Box 349 NL -6700 AH Wageningen Visiting address: Droevendaalsesteeg 1, Bldg 107, NL -6708 PB Wageningen, The Netherlands Info@isolife.nl Tel: +31 (0) 317 480512 www.isolife.eu

CERTIFICATE OF ANALYSIS

Article name:	U-13 C Cellulose high DP
Origin:	Maize stem <i>(Zea mays L.)</i>
Catalogue number: Lot number:	U-10508 0901 –0273
Isotopic enrichment:	Uniform, 97 atom $\%$ ¹³ C
Chemical purity: DP (average; by viscosity in cueen): Average Mol. Wt. Crystallinity (by WAXS): Carbohydrate analysis: Residual lignin: Appearance:	58 % glucose (w/w) 2,100 350 kD optional optional 4.4 % (w/w) fluffy, fibrous, off-white

April 15, 2010

lso *Life*

Appendix E – Supplementary Tables

Impact	Since Harvest	Major Conclusions	Geographic Location	Forest	Response Variable(s)	Focus	Reference
Affected	1 year	Forest floor removal affects nitrogen content.	Northern British Columbia, Canada	Coniferous	Stable isotope analysis	Chemical	Choi 2005
Affected	5 - 7 years	Differences in soil carbon pools with depth on account of organic matter removal.	Washington State, USA	Coniferous	Soil carbon	Chemical	Strahm 2009
Affected	4 years	Reduced methane uptake in clear-cut forest; no effect in selective cut.	Bavaria, Germany	Coniferous	Methane flux; soil properties	Chemical	Wu 2011
Affected	1 - 8 years	Decomposition rates slow ed post-harvesting.	British Columbia, Canada	Coniferous	Mass loss	Chemical & Ecological	Prescott 2000
Affected	1 year	Arthrobacter populations increase with harvesting.	Northern British Columbia, Canada	Coniferous	PLFA; bacterial culturing	Ecological	Axelrood 2002
Affected	1 year	Reduction in Pseudomonas populations from harvesting.	Northern British Columbia, Canada	Coniferous	16S Library	Ecological	Axelrood 2002
Affected	13 years	Change in microbial community structure.	Northern British Columbia, Canada	Coniferous	Bacterial, archael and fungal phylogenetic genes	Ecological	Hartmann 2009
Affected	10 years	Change in microbial community structure.	Northern British Columbia, Canada	Coniferous	Bacterial and fungal phylogenetic genes	Ecological	Hartmann 2012
Affected	12 - 16 years	Modest changes in hemicellulolytic microbial populations.	LTSP - Broadly Distributed Across USA and Canada	Coniferous	Stable isotope probing; bacterial and fungal phylogenetic genes	Ecological	Leung 2015
Affected	30 years	Reduced respiration and changes in microbial community.	Wyoming, USA	Coniferous	PLFA; CO2 flux; soil properties	Ecological	Chatterjee 2008
Affected	20 years	Changes in fungal abundance and microbial community structure.	Northern Alberta, Canada	Coniferous	PLFA; bacterial and fungal phylogenetic genes	Ecological	Hynes 2012
Affected	1 & 8 years	Diversity of omnivorous and predacious nematodes low ered in clearcuts.	British Columbia, Canada	Coniferous	Nematode populations	Ecological	Forge and Simard 200
Affected	2 years	Soil microbial communities were altered by harvesting, but intensification did not cause further disturbance.	Northern Ontario	Coniferous	Bacterial and fungal phylogenetic genes; microbial biomass	Ecological	Smenderovac 2014
Affected	4 years	OM removal altered community structure.	Missouri, USA	Coniferous	PLFA	Ecological	Ponder 2002
Affected	5 - 11 years	No loss in species richness, but shift in community by harvesting.	Borneo	Palm	Bacterial phylogenetic genes	Ecological	Lee-Cruz (2013)
Affected	1 - 42 years	Partial cutting reduced biomass; significant variation unexplained by cutting intensity.	Global	Mixed	Tree biomass	Productivity	Zhou 2013

Table E.1. Summary of studies on the long-term impacts of timber harvesting on physicochemical properties of soil, forest productivity and soil biological.

Impact	Since Harvest	Major Conclusions	Geographic Location	Forest	Response Variable(s)	Focus	Reference
Affected Negative	2 - 4 years	CO2 flux reduced by organic matter removal.	Northern Ontario	Coniferous	Soil CO2 flux; soil properties	Chemical	Fleming 2006a
Affected Negative	40 years	Soil respiration reduced from organic matter removal.	Northern Ontario	Coniferous	Soil CO2 flux; soil properties	Chemical	Webster 2016
Affected Negative	6 - 10 years	Decreaes in microbial biomass and protease, phosphatase and dehydrogenase activities.	Northern British Columbia, Canada	Coniferous	Microbial C & N; enzyme activity	Ecological	Tan 2008
Affected Negative	12 years	Lignocellulose degrading gene abundance reduced.	Northern British Columbia, Canada	Coniferous	Metagenomic DNA libraries	Ecological	Cardenas 2015
Affected Negative	1 - 20 years	Net decrease in microbial biomass and activity.	Global	Mixed	Biomass and respiration	Ecological	Holden 2013
Affected Positive	2 years	Minor increase in decomposition with harvesting, likely due to physical rather than biological changes	Northern British Columbia, Canada	Coniferous	Litter mass; mesofauna; soil properties	Chemical & Ecological	Kranabetter 1999
Neutral	3 - 7 years	No negative impact of forest floor removal on N transformation rates	Northern British Columbia, Canada	Coniferous	Microbial C & N	Chemical	Tan 2005
Neutral	10 years	CO2 flux unaffected, slight soil C increase with harvesting	North Carolina, USA	Coniferous	Soil CO2 flux; soil properties	Chemical	Butnor 2006
Neutral	5 years	Organic removal had negatively affected by harvesting	LTSP - Broadly Distributed Across USA and Canada	Coniferous	Total C & N	Chemical	Sanchez 2005
Neutral	3 - 7 years	No net changes microbial CN content or respiration	Northern British Columbia, Canada	Coniferous	Microbial C & N; respiration; soil properties	Chemical	Mariani 2006
Neutral	1 - 10+	Harvesting had little to no effect on soil C and N in meta-analysis	Global	Mixed	Total C & N	Chemical	Johnson and Curtis 2001
Neutral	10 years	No net differences in tree biomass	LTSP - Broadly Distributed Across USA and Canada	Coniferous	Tree biomass; soil properties	Productivity	Sanchez 2006
Neutral	10 years	Few consistent effects on planted tree biomass	LTSP - Broadly Distributed Across USA and Canada	Coniferous	Tree biomass; foliar nutrients	Productivity	Ponder 2012
Neutral	10 years	Tree biomass unaffected by organic matter removal	Washington State, USA	Coniferous	Tree biomass	Productivity	Holub 2013
Tempoeral Variable	3 years	Increased rate of tree grow th after 1 year, follow ed by reductions	British Columbia, Canada	Coniferous	Tree biomass	Productivity	Kneeshaw 2002
Temporal Affected	1, 2, 4, 5 & 7 years	Long-term shift in ratio of bacterial and fungal abundance	Wisconsin, USA	Deciduous	PLFA	Ecological	Lew andow ski 2015
Temporal Affected	20, 40 & 40+ years	Diversity of fungi reduced in harvested sites	Northern Alberta, Canada	Mixed	Culturable fungi	Ecological	Lumley 2001
Temporal Affected	2 years	Lignocellulose mineralization initially increased, then decreated as w ell as reductions in other soil elments like S, and K	Missouri, USA	Coniferous	14-C lignocellulose mineralization; soil properties	Ecological & Chemical	Spratt 2000

Impact	Since Harvest	Major Conclusions	Geographic Location	Forest	Response Variable(s)	Focus	Reference
Temporal Affected Negative	3 & 10 years	Nutrient depletion over time	Vancouver Islanc, Canada	Coniferous	Foliar and microbial C & N; soil properties	Chemical & Ecological	Chang et al 1995
Temporal Neutral	10 years	Soil CO2 flux w as impact follow ing harvesting, but returned to near pre-harvested state after 10 years	Central Ontario, Canada	Deciduous	Soil CO2 flux; soil properties	Chemical	Peng and Thomas 2006
Temporal Neutral	3 - 6 years	N mineralization unaffected by organic matter removal	North Carolina, USA	Deciduous	Nitrogen contents	Chemical	Lee 2003
	10-11 years	Soil chemistry unaffected by harvesting	Northern Alberta, Canada	Coniferous	Foliar nutrients; soil properties	Chemical & Productivity	Kishchuk et al. 2015
Temporal Variable	1 - 20 years	Impacts on soil properties variable by time post- harvesting, soil depth and geography	LTSP - Broadly Distributed Across USA and Canada	Coniferous	Soil properties	Chemical	Thiffault 2011
Variable	40 + years	Soil N replenished under stem-only harvesting, uncertain under w hole-tree	Norw ay	Coniferous	N contents	Chemical	Merila 2014
Variable	4 - 8 years	Elemental concentrations were variably impacted post- harvestin	Southern Sweden	Coniferous	Soil properties	Chemical	Gronflaten 2008
Variable	5 years	Impacts on tree survival and biomass variable by geography & tree species	LTSP - Broadly Distributed Across USA and Canada	Coniferous	Tree survival, biomass	Chemical & Productivity	Fleming 2006b
Variable	2 years	Organic removal had variable influence on tree biomass	Northern British Columbia, Canada	Coniferous	Tree biomass,;foliar N	Chemical & Productivity	Kamaluddin 2005
Variable	1 year	Nitrifying communities unaffected; reduction in soil respiration; no impact on tree grow th	Ottaw a, Canada	Mixed	Culturing; CO2 flux; nitrogen contents	Ecological & Productivity	Hendrickson 1985

Table E.2. Extensive compilation of all known lignolytic and cellulolytic bacteria, including both predicted function (based on genomic content) and validated function. Fungal degraders have been included in this list, but without a comprehensive effort. Table ordered by substrate, activity, then according to descending taxonomic rank.

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	M ycobacterium s meg matis
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	M ycobacterium tuberculosis
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Nocardiaceae	Rhodococcus	Rhodococcus erythropolis TA421
Taylor 2012	Aromatics	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Nocardiaceae	Rhodococcus	Rhodococcus erythropolis A5.1
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Nocardiaceae	Rhodococcus	Rhodococcus fascians
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Nocardiaceae	Rhodococcus	Rhodococcus equi
Taylor 2012	Aromatics	Validated	Actinobacteria	Actinobacteria	Micrococcales	Microbacteriaceae	Microbacterium	Microbacterium phyllosphaerae A1.1
Taylor 2012	Aromatics	Validated	Actinobacteria	Actinobacteria	Micrococcales	Microbacteriaceae	Microbacterium	Microbacterium marinilacus A1.2
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces cyaneus CECT 3335
Tian 2014	Aromatics	Validated	Actinobacteria	Actinobacteria	Streptosporangiales	Nocardiopsaceae	Thermo b if id a	Thermo bifid a fus ca
Tian 2014	Aromatics	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus halodurans
Tian 2014	Aromatics	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus subtilis
Tian 2014	Aromatics	Validated	Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	B urkho ld eria	Burkholderia cepacia
Tian 2014	Aromatics	Validated	Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	Burkholderia sp. VE22
Tian 2014	Aromatics	Validated	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia	Es cherichia co li J M 109
Tian 2014	Aromatics	Validated	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Kleb s iella	Klebsiella pneumoniae
Ghodake 2009	Aromatics	Validated	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	Acinetobacter calcoaceticus NCIM 2890
Tian 2014	Aromatics	Validated	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas fluorescens GcM5-1A
Tian 2014	Aromatics	Validated	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas aeruginosa BCH
Medie 2012	Cellulose	Predicted	Acidobacteria	Acidobacteriia	Acidobacteriales	Acidobacteriaceae	Acidobacterium	Acidobacterium capsulatum ATCC 51196
Med ie 2012	Cellulose	Predicted	Acidobacteria	Acidobacteriia	Acidobacteriales	Acidobacteriaceae	Acidobacterium	Acidobacterium sp. MP5ACTX9
Medie 2012	Cellulose	Predicted	Acidobacteria	Acidobacteriia	Acidobacteriales	Acidobacteriaceae	Koribacter	Candidatus Koribacter versatilis Ellin345
Med ie 2012	Cellulose	Predicted	Acidobacteria	Acidobacteriia	Acidobacteriales	Acidobacteriaceae	Terriglobus	Terriglobus saanensis SPIPR4
Med ie 2012	Cellulose	Predicted	Acidobacteria	Solibacteres	Solibacterales	Solibacteraceae	Solibacter	Solibacter usitatus Ellin6076
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Acidothermales	Acidothermaceae	Acidothermus	Acidothermus cellulolyticus 11B ATCC 43068
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium adolescentis ATCC 15703
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium animalis subsp. lactis AD011
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium animalis subsp. lactis Bb12
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium animalis subsp. lactis DSM 10140
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium animalis subsp. lactis V9
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium dentium Bdl
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium long um subsp. BBMN68
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium longum subsp. JDM301
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium long um subsp. JCM 1217
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifid o bacterium long um NCC2705
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium long um subsp. infantis 157F
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifid o bacterium long um subsp. long um F8
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium long um DJOl0A
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium long um subsp. infantis JCM 1222
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Bifidobacterium pseudocatenulatum D2CA
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Catenulisporales	Catenulisporaceae	Catenulispora	Catenulispora acidiphila DSM 44928
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	Mycobacterium sp. JLS
Med ie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	M ycobacterium sp. KM S
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	Mycobacterium sp. MCS

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Medie 2012	Cellulose	Predicted	Actinobacteria	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	Mycobacterium vanbaalenii PYR-1
Medie 2012		Predicted	Actinobacteria		Corynebacteriales	Nocardiaceae	Rhodococcus	Rhodococcus equi 103S
Medie 2012		Predicted	Actinobacteria		Corynebacteriales	Tsukamurellaceae	Tsukamurella	Tsukamurella paurometabola DSM 20162
Medie 2012	Cellulose	Predicted	Actinobacteria		Frankiales	Frankiaceae	Frankia	Frankia alni ACN14a
Medie 2012		Predicted	Actinobacteria		Frankiales	Frankiaceae	Frankia	Frankia sp. EANlpec
Medie 2012	Cellulose	Predicted	Actinobacteria		Geodermatophilales	Geodermatophilaceae	Geodermatophilus	Geodermatophilus obscurus DSM 43 l60
Medie 2012		Predicted	Actinobacteria		Glycomycetales	Glycomycetaceae	Stackebrandtia	Stackebrandtia nassauensis DSM 44728
Medie 2012		Predicted	Actinobacteria		Kineosporiales	Kineosporiaceae	Kineococcus	Kineococcus radiotolerans SRS30216
Medie 2012		Predicted	Actinobacteria		Micrococcales	Beutenbergiaceae	Beutenbergia	Beutenbergia cavernae DSM 12333
Medie 2012		Predicted	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulomonas fimi ATCC 484
Medie 2012		Predicted	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulo mo nas	Cellulomonas flavigena DSM 20109
Medie 2012		Predicted	Actinobacteria		Micrococcales	Dermabacteraceae	Brachybacterium	Brachybacterium faecium DSM 4810
Medie 2012		Predicted	Actinobacteria		Micrococcales	Jonesiaceae	Jonesia	Jonesia denitrificans DSM 20603
Medie 2012		Predicted	Actinobacteria		Micrococcales	Microbacteriaceae	Clavibacter	Clavibacter michiganensis subsp. michiganensis NCPPB 382
Medie 2012		Predicted	Actinobacteria		Micrococcales	Microbacteriaceae	Clavibacter	Clavibacter michiganensis subsp. sepedonicus ATCC33113
Medie 2012		Predicted	Actinobacteria		Micrococcales	Microbacteriaceae	Leifsonia	Leifsonia xyli subsp. xyli str. CTCB07
Medie 2012		Predicted	Actinobacteria		Micrococcales	Microbacteriaceae	Microbacterium	Microbacterium testaceum StLB037
Medie 2012		Predicted	Actinobacteria		Micrococcales	Micrococcaceae	Arthrobacter	Arthrobacter phenanthrenivorans Sphe3
Medie 2012		Predicted	Actinobacteria		Micrococcales	Promicromonosporaceae		Xylanimonas cellulosilytica DSM 15894
Medie 2012		Predicted	Actinobacteria		Micrococcales	Sanguibacteraceae	Sanguibacter	Sanguibacter keddieii DSM 10542
Medie 2012		Predicted	Actinobacteria			Micromonosporaceae	Micromonospora	Micromonospora aurantiaca ATCC 27029
Medie 2012		Predicted				Micromonosporaceae	Micromonospora	Micromonospora sp. L5
Medie 2012		Predicted	Actinobacteria		-	Micromonosporaceae	Salinispora	Salinis pora arenico la CNS-205
Medie 2012		Predicted	Actinobacteria		*	Micromonosporaceae	Salinispora	Salinis pora tropica CNB-440
Medie 2012		Predicted	Actinobacteria		-	Micromonosporaceae	Verrucosispora	Verrucosispora maris AB-18-032
Medie 2012		Predicted	Actinobacteria		None	None	Thermobispora	Thermobispora bispora DSM 43833
Medie 2012		Predicted	Actinobacteria		Propionibacteriales	Nocardioidaceae	Kribbella	Kribbella flavida DSM 17836
Medie 2012		Predicted	Actinobacteria		Propionibacteriales	Nocardioidaceae	Nocardioides	Nocardioides sp. JS614
Medie 2012		Predicted	Actinobacteria		Pseudonocardiales	Pseudonocardiaceae	Actinosynnema	Actinosynnema mirum DSM 43827
Medie 2012				Actinobacteria		Pseudonocardiaceae	Amycolatopsis	Amycolatopsis mediterranei U32
Medie 2012		Predicted	Actinobacteria		Pseudonocardiales	Pseudonocardiaceae		Saccharopolyspora erythraea NRRL2338
Medie 2012		Predicted	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces avermitilis MA-4680
Medie 2012		Predicted	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces bingchenggensis BCW-1
Medie 2012		Predicted	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces coelicolor A3(2)
Medie 2012		Predicted	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces flavogriseus ATCC 33331
Medie 2012		Predicted	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces griseus subsp. griseus NBRC 13350
Medie 2012		Predicted	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces scabiei 87.22
Medie 2012		Predicted		Actinobacteria	Streptosporangiales		Nocardiopsis	Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111
Medie 2012		Predicted	Actinobacteria		Streptosporangiales		Thermo b ifid a	Thermo bifida fusca YX
Medie 2012		Predicted	Actinobacteria			Streptosporangiaceae		Streptosporangium roseum DSM 43021
Medie 2012		Predicted		Actinobacteria		Thermomonosporaceae	Thermomonospora	Thermomonospora curvata DSM 43183
Medie 2012		Predicted	Actinobacteria		Coriobacteriales	Coriobacteriaceae	Coriobacterium	Coriobacterium glomerans PW2
Medie 2012		Predicted			Solirubrobacterales	Conexibacteraceae	Conexibacter	Conexibacter woesei DSM 14684
Medie 2012 Medie 2012		Predicted	Bacteroidetes	Bacteroidetes	incertae sedis	Rhodothermaceae	Rhodothermus	Rhodothermus marinus DSM 4252
Medie 2012 Medie 2012		Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteriodes	Bacteriodes xylanisolvens XB1A
Medie 2012 Medie 2012		Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteriodes Aylanisolvens ABIA Bacteroides fragilis 638R
Medie 2012 Medie 2012		Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides fragilis VCH46
Medie 2012 Medie 2012		Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides helcogenes P 36-108 ATCC 354 17
Medie 2012 Medie 2012		Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides salanitronis DSM 18170
			Bacteroidetes					
Med ie 2012	Cenulose	Predicted	Bacteroldetes	Bacteroidia	Bacteroidales	Porp hyro monad aceae	Paludibacter	Paludibacter propionicigenes WB4

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Medie 2012	Cellulose	Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	Prevotella denticola F0289
Medie 2012	Cellulose	Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	Prevotella ruminico la 23
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	Alistipes shahii WAL8301
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	Cytophaga hutchinsonii ATCC 33406
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Dyadobacter	Dyadobacter fermentans DSM 18053
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Leadbetterella	Leadbetterella byssophila DSM 17132
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Spirosoma	Spirosoma linguale DSM 74
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Capnocytophaga	Capnocytophaga ochracea DSM 7271
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Cellulophaga	Cellulophaga algicola DSM 14237
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Cellulophaga	Cellulophaga lytica DSM 7489
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Flavobacterium	Flavobacterium johnsoniae UW 101
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Zunongwangia	Zunong wang ia profunda SM-A87 SMA-87
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Flavobacteriia	Flavobacteriales	None	Flavobacteriales	Flavobacteriales bacterium HTCC2 170
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Chitinophagaceae	Chitinophaga	Chitinophaga pinensis DSM 2588
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Pedobacter	Pedobacter heparinus DSM 2366
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Pedobacter	Pedobacter saltans DSM 12145
Med ie 2012	Cellulose	Predicted	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Sphingobacterium	Sphingobacterium sp. 21
Med ie 2012	Cellulose	Predicted	Chloroflexi	Chloroflexia	Chloroflexales	Roseiflexaceae	Roseiflexus	Roseiflexus castenholzii DSM 13941
Med ie 2012	Cellulose	Predicted	Chloroflexi	Chloroflexia	Herpetosiphonales	Herpetosiphonaceae	Herpetosiphon	Herpetosiphon aurantiacus ATCC 23779
Med ie 2012	Cellulose	Predicted	Deinococcus-the	Deinococci	Deinococcales	Deinococcaceae	Deinococcus	Deinococcus geothermalis DSM 11300
Med ie 2012	Cellulose	Predicted	Deinococcus-the	Deinococci	Deinococcales	Trueperaceae	Truepera	Truepera radiovictrix DSM 17093
Med ie 2012	Cellulose	Predicted	Fibrobacteres	Fibrobacteria	Fibrobacterales	Fibrobacteraceae	Fibrobacter	Fibrobacter succinogenes subsp. succinogenes S85
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Alicyclobacillaceae	Alicyclobacillus	Alicyclobacillus acidocaldarius subsp. DSM 446
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus amyloliquefaciens FZB42
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus cellulosilyticus DSM 2522
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus clausii KSM-Kl6
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus halodurans C-125
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus licheniformis ATCC 14580 / DSM13
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus pumilus SAFR-032
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus subtilis BSn5
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus subtilis subsp. subtilis str. 168
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus subtilis subsp. spizizenii str. W23
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus subtilis subsp. natto BEST195
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	Paenibacillus polymyxa SC2
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	Paenibacillus polymyxa E681
Med ie 2012	Cellulose	Predicted	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	Paenibacillus sp. JDR-2
Med ie 2012		Predicted	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	Paenibacillus sp. Y4 12 MC 10
Medie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Lactobacillus brevis ATCC 367
Med ie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Lactobacillus crispatus ST1
Medie 2012			Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Lactococcus	Lactococcus lactis subsp. cremoris NZ9000
Med ie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Lactococcus	Lactococcus lactis subsp. cremoris MGI363
Med ie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Lactococcus	Lactococcus lactis subsp. lactis KF l47
Med ie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Lactococcus	Lactococcus lactis subsp. cremoris SKII
Med ie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	Streptococcus gallolyticus subsp. ATCC BAA-2069
Medie 2012		Predicted	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	Streptococcus gallolyticus UCN34
Med ie 2012		Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium acetobutylicum ATCC 824
Medie 2012		Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium acetobutylicum EA 2018
Medie 2012		Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium cellulo lyticum HI0
Medie 2012		Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium cellulovorans 743B
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium lentocellum DSM 5427

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium phytofermentans ISDg95
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium saccharolyticum WM1
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium thermocellum ATCC 27405
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium thermocellum DSM 1313
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium eligens ATCC 27750
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium rectale ATCC 33656
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium rectale DSM 17629
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium rectale M104/1
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium siraeum 70/3
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium siraeum V10Sc8a
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Butyrivibrio	Butyrivibrio fibrisolvens 16/4
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Butyrivibrio	Butyrivibrio proteoclasticus B316
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Coprococcus	Coprococcus sp. ART55/1
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Roseburia	Roseburia intestinalis XB6B4
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Roseburia	Roseburia intestinalis M50/1
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	None	Anaerocellum	Anaero cellum thermophilum DSM 6725
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminococcus	Ruminococcus albus DSM 20455
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminococcus	Ruminococcus sp. 18P13
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor hydrothermalis 108
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor kristjanssonii 177R IB
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor kronotskyensis 2002
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor obsidiansis OB47
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor owensensis OL
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor saccharolyticus DSM 8903
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero b actera	incertae sed is	Thermo anaero bacter	Thermoanaerobacterium thermosaccharolyticum DSM 571
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	Thermo anaero bacteraceae	Thermoanaerobacter	Thermoanaerobacter italicus Ab9
Med ie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero b actera	Thermoanaero bacteraceae	Thermo anaero bacter	Thermoanaerobacter mathranii A3 DSM11426
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero bactera	Thermo anaero bacteraceae	Thermoanaerobacter	Thermoanaerobacter mathranii subsp. mathranii str. A3
Medie 2012	Cellulose	Predicted	Firmicutes	Clostridia	Thermo anaero b actera	Thermo anaero bacteraceae	Thermoanaerobacter	Thermoanaerobacter tengcongensis MB4
Medie 2012	Cellulose	Predicted	Planctomycetes	Planctomycetia	Plancto mycetales	Planctomycetaceae	Planctomyces	Planctomyces brasiliensis DSM 5305
Med ie 2012	Cellulose	Predicted	Planctomycetes	Planctomycetia	Planctomycetales	Planctomycetaceae	Rhodopirellula	Rhodopirellula baltica SH 1
Medie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Caulobacterales	Caulobacteraceae	Asticcacaulis	Asticcacaulis excentricus CB 48
Medie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Caulobacterales	Caulobacteraceae	Caulobacter	Caulobacter crescentus CB 15
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Caulobacterales	Caulobacteraceae	Caulobacter	Caulobacter crescentus NA1000
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Caulobacterales	Caulobacteraceae	Caulobacter	Caulobacter segnis ATCC 21756
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Caulobacterales	Caulobacteraceae	Caulobacter	Caulobacter sp. K31
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Brad yrhizo biaceae	Bradyrhizobium	Bradyrhizobium japonicum USDA 110
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Methylobacteriaceae	Methylobacterium	Methylobacterium radiotolerans JCM 2831
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Methylobacteriaceae	Methylobacterium	Methylobacterium sp. 4-46
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Agrobacterium	Agrobacterium radiobacter K84
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Agrobacterium	Agrobacterium sp. H13-3
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Agrobacterium	Agrobacterium tumefaciens str. C58
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Agrobacterium	Agrobacterium vitis S4
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Rhizobium	Rhizobium et li CFN 42
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Rhizobium	Rhizobium et li CIAT 652
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Rhizobium	Rhizobium leguminosarum bv. trifolii WSM 1325
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Rhizobium	Rhizobium leguminosarum bv. trifolii WSM2304
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Rhizobium	Rhizobium leguminosarum bv. viciae 3841
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Rhizobium	Rhizobium sp. NGR234
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Sinorhizobium	Sinorhizobium medicae WSM4 19
								202

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Medie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhodobacterales	Hyp ho mo nad aceae	Hirschia	Hirschia baltica ATCC 49814
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Rhodospirillales	Rhodospirillaceae	Azospirillum	Azospirillum sp. B510
Med ie 2012	Cellulose	Predicted	Proteobacteria	Alphaproteobact	Sphing o monad ales	Sphingomonadaceae	Sphingobium	Sphingobium japonicum UT26S UT26S (=NBRC 101211)
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia ambifaria MC40-6
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia ambifaria AMMD
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia cenocepacia HI2424
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia cenocepacia J23 15
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia cenocepacia AU 1054
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia gladioli BSR3
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia glumae BGR l
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkhold eria	Burkholderia multivorans ATCC 17616
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia phymatum STM815
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Burkholderia	Burkholderia sp. CCGE1002
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkhold eriales	Burkholderiaceae	Ralstonia	Ralstonia solanacearum CFBP2957
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Ralstonia	Ralstonia solanacearum GMI1000
Medie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Ralstonia	Ralstonia solanacearum IPO1609
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Ralstonia	Ralstonia solanacearum PSI07
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Ralstonia	Ralstonia solanacearum MolK2
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Ralstonia	Ralstonia solanacearum CMR 15
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Comamonadaceae	Acidovorax	Acidovorax avenae subsp. citrulli AAC00-1
Med ie 2012	Cellulose	Predicted	Proteobacteria	Betaproteobacte	Burkholderiales	Comamonadaceae	Ramlibacter	Ramlibacter tataouinensis TTB310
Med ie 2012	Cellulose	Predicted	Proteobacteria	Deltaproteobact	Myxococcales	Cystobacteraceae	Stigmatella	Stigmatella aurantiaca DW4/3-1
Med ie 2012	Cellulose	Predicted	Proteobacteria	Deltaproteobact	Myxococcales	Myxococcaceae	Myxococcus	Myxococcus xanthus DK 1622
Med ie 2012	Cellulose	Predicted	Proteobacteria	Deltaproteobact	Myxococcales	Polyangiaceae	Sorangium	Sorangium cellulosum 'So ce 56'
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Aeromonadales	Aeromonadaceae	Aeromonas	Aeromonas salmonicida subsp. salmonicida A449
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Alteromonadales	Colwelliaceae	Colwellia	Colwellia psychrerythraea 34H
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Alteromonadales	Pseudoalteromonadaceae	Pseudoalteromonas	Pseudoalteromonas atlantica T6c
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Alteromonadales	Shewanellaceae	Shewanella	Shewanella violacea DSS12
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Cellvibrionales	Cellvibrionaceae	Cellvibrio	Cellvibrio japonicus Ueda 107
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Cellvibrionales	Cellvibrionaceae	Saccharophagus	Saccharophagus degradans 2-40
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Cellvibrionales	Cellvibrionaceae	Teredinibacter	Teredinibacter turnerae T7901
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Citrobacter	Citrobacter rodentium ICC 168
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Cronobacter	Cronobacter turicens is
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Dickeya	Dickeya dadantii 3937
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Dickeya	Dickeya dadantii Ech586
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Dickeya	Dickeya dadantii Ech703
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Dickeya	Dickeya zeae Ech1591
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter cloacae subsp. cloacae ATCC 13047
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter cloacae NCTC 9394
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter sakazakii ATCC BAA-894
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter sp. 638
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia amylovora ATCC 49946
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia amylovora CFBP1430
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia amylovora IL-5
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia pyrifoliae DSM 12163
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia pyrifoliae Ep 1/96
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia sp. Ejp617
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia tas maniens is Et I/99
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Klebsiella	Klebsiella pneumoniae NTUH-K2044

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	CEnterobacteriales	Enterobacteriaceae	Klebsiella	Klebsiella pneumoniae subsp. pneumoniae MGH 78578
Medie 2012		Predicted			«Enterobacteriales	Enterobacteriaceae	Klebsiella	Klebsiella variicola At-22
Medie 2012	Cellulose	Predicted		-	Enterobacteriales	Enterobacteriaceae	Pantoea	Pantoea ananatis AJ 13355
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Pantoea	Pantoea ananatis LMG 20103
Medie 2012	Cellulose	Predicted		-	Enterobacteriales	Enterobacteriaceae	Pantoea	Pantoea sp. At-9b
Medie 2012	Cellulose	Predicted			Enterobacteriales	Enterobacteriaceae	Pantoea	Pantoea vagans C9-1
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Pectobacterium	Pectobacterium atrosepticum SCRII043
Medie 2012	Cellulose	Predicted			Enterobacteriales	Enterobacteriaceae	Pectobacterium	Pectobacterium carotovorum subsp. carotovorum PC1
Medie 2012	Cellulose	Predicted		-	Enterobacteriales	Enterobacteriaceae	Pectobacterium	Pectobacterium wasabiae WPP163
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Rahnella	Rahnella sp. Y9602
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia enterocolitica subsp. enterocolitica 8081
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia enterocolitica subsp. palearctica 105.5R(r)
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia enterocolitica subsp. palearctica Y11
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis Antiqua
Medie 2012		Predicted		-	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis biovar Medie 2012 valis str. Harbin 35
Medie 2012	Cellulose	Predicted			Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis D106004
Medie 2012	Cellulose	Predicted		-	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis D182038
Medie 2012	Cellulose	Predicted			Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis KIM
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis Nepal516
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis biovar Microtus str. 91001
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis Pestoides F
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pestis Z176003
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pseudotuberculosis IP 3 1758
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pseudotuberculosis IP 32953
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pseudotuberculosis PB l/+
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Yersinia	Yersinia pseudotuberculosis YPIII
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Legionellales	Legionellaceae	Legionella	Legionella longbeachae NSW 150
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	• Oceanospirillales	Hahellaceae	Hahella	Hahella chejuensis KCTC 2396
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas fluorescens SBW25
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas putida BIRD-1
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas putida F1
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas syringae pv. phaseolicola 1448A
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas syringae pv. tomato str. DC3000
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas syringae pv. syringae B728a
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Vibrionales	Vibrionaceae	Photobacterium	Photobacterium profundum SS9
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Vibrionales	Vibrionaceae	Vibrio	Vibrio furnissii NCTC 112 18
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Pseud o xantho mo nas	Pseudoxanthomonas suwonensis 11-1
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xanthomonas	Xanthomonas albilineans
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xantho mo nas	Xanthomonas axonopodis pv. citri str. 306
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xanthomonas	Xanthomonas campestris pv. Campestris B 100
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xantho mo nas	Xanthomonas campestris pv. campestris str. 8004
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xanthomonas	Xanthomonas campestris pv. campestris str. ATCC 33913
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xantho mo nas	Xanthomonas campestris pv. vesicatoria str. 85-10
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xanthomonas	Xanthomonas oryzae pv. oryzae MAFF 3 110 18
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xantho mo nas	Xanthomonas oryzae pv. oryzae KACC 10331
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xanthomonas	Xanthomonas oryzae pv. oryzae PXO99A
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xylella	Xylella fastidiosa M23
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xylella	Xylella fastidiosa Temecula l
Medie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xylella	Xylella fastidiosa M 12
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho monad aceae	Xylella	Xylella fastidiosa subsp. fastidiosa GB514
								285

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Med ie 2012	Cellulose	Predicted	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho mo nad aceae	Xylella	Xylella fastidiosa 9a5c
Med ie 2012	Cellulose	Predicted	Spirochaetes	Spirochaetia	Spirochaetales	Spirochaetaceae	Spirochaeta	Spirochaeta thermophila DSM 6192
Med ie 2012	Cellulose	Predicted	Spirochaetes	Spirochaetia	Spirochaetales	Spirochaetaceae	Treponema	Treponema succinifaciens DSM 2489
Med ie 2012	Cellulose	Predicted	Thermotogae	Thermotogae	Thermotogales	Thermotogaceae	Thermotoga	Thermotoga lettingae TMO
Med ie 2012	Cellulose	Predicted	Thermotogae	Thermotogae	Thermotogales	Thermotogaceae	Thermotoga	Thermotog a maritima MSB8
Med ie 2012	Cellulose	Predicted	Thermotogae	Thermotogae	Thermotogales	Thermotogaceae	Thermotoga	Thermotog a naphthophila RKU-10
Med ie 2012	Cellulose	Predicted	Thermotogae	Thermotogae	Thermotogales	Thermotogaceae	Thermotoga	Thermotog a neapolitana DSM 4359
Med ie 2012	Cellulose	Predicted	Thermotogae	Thermotogae	Thermotogales	Thermotogaceae	Thermotoga	Thermotog a petrophila RKU-1
Med ie 2012	Cellulose	Predicted	Thermotogae	Thermotogae	Thermotogales	Thermotogaceae	Thermotoga	Thermotoga sp. RQ2
Med ie 2012		Predicted	Verrucomicrobi	-	Opitutales	Opitutaceae	Opitutus	Opitutus terrae PB90-1
Med ie 2012	Cellulose	Predicted	Verrucomicrobi	a Opitutae	Puniceicoccales	Puniceicoccaceae	Coraliomargarita	Coraliomargarita akajimensis DSM 45221
Koeck 2014	Crystalline	Validated	Actinobacteria		Acidothermales	Acidothermaceae	Acidothermus	Acidothermus cellulolyticus
Koeck 2014	-	Validated	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulomonas biazotea
Koeck 2014		Validated	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas cellasea
Koeck 2014		Validated	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas fimi
Koeck 2014		Validated	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas flavigena
Koeck 2014		Validated	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas gelida
Koeck 2014		Validated	Actinobacteria	Actinobacteria	Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas iranensis
Koeck 2014		Validated	Actinobacteria		Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas persica
Koeck 2014		Validated	Actinobacteria	Actinobacteria	Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas terrae
Koeck 2014		Validated	Actinobacteria	Actinobacteria	Micrococcales	Cellulo mo nad aceae	Cellulomonas	Cellulo mo nas ud a
Koeck 2014		Validated	Actinobacteria		Micrococcales	Microbacteriaceae	Curtobacterium	Curtobacterium flaccumfaciens
Koeck 2014		Validated	Actinobacteria		Micrococcales	Promicromonosporaceae	Cellulosimicrobium	Cellulo simicro bium cellulans
Koeck 2014		Validated	Actinobacteria		Micrococcales	Promicromonosporaceae		Cellulo simicro bium cellulans
Koeck 2014		Validated	Actinobacteria		Micrococcales	Promicromonosporaceae		Xylanimonas cellulosilytica
Koeck 2014		Validated	Actinobacteria			Micromonosporaceae	Micromonospora	Micromonospora aurantiaca
Koeck 2014		Validated	Actinobacteria	Actinobacteria	-	Micromonosporaceae	Micromonospora	Micromonospora chalcea
Koeck 2014		Validated	Actinobacteria		Micromonosporales	M icro mo no s po raceae	Micromonospora	Micromonospora melanospora
Koeck 2014		Validated	Actinobacteria	Actinobacteria	Micromonosporales	Micromonosporaceae	Micromonospora	Micromonospora propionici
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Micromonosporales	Micromonosporaceae	Micromonospora	Micromonospora ruminantium
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	None	None	Thermobispora	Thermobispora bispora
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Pseudonocardiales	Pseudonocardiaceae	Actinosynnema	Actino synnema mirum
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces albogriseolus
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces aureofaciens
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces cellulolyticus
Koeck 2014		Validated	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces flavogriseus
Koeck 2014	-	Validated	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces lividans
Koeck 2014		Validated	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces nitrosporeus
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces olivochromogenes
Koeck 2014	Crystalline	Validated	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces reticuli
Koeck 2014		Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces rochei
Koeck 2014	Crystalline	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces thermovulg aris
Koeck 2014		Validated	Actinobacteria		Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces viridosporus
Koeck 2014		Validated	Actinobacteria		Streptosporangiales		Thermo b ifid a	Thermo b ifid a alb a
Koeck 2014		Validated	Actinobacteria		Streptosporangiales	-	Thermo b ifid a	Thermo b if id a cellulo lytica
Koeck 2014		Validated	Actinobacteria		Streptosporangiales		Thermo b ifid a	Thermo b if id a fus ca
Koeck 2014		Validated	Actinobacteria			Streptosporangiaceae	Streptosporangium	Streptosporang ium subroseum
Koeck 2014		Validated	Actinobacteria			Thermo mo no sporaceae	Thermomonospora	Thermomonospora curvata
Koeck 2014		Validated	Bacteroidetes	Bacteroidetes	incertae sedis	Rhodothermaceae	Rhodothermus	Rhodothermus marinus
Koeck 2014		Validated	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides cellulosilyticus
								286

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Bacteroides sp. P-1	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	Cytophaga aurantiaca	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	Cytophaga haloflava	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	Cytophaga hutchinsonii	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	Cytophaga krzemieniewska	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	Cytophaga rosea	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Sporocytophaga	Sporocytophaga myxococcoides	
Koeck 2014	Crystalline	Validated	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Flavobacterium	Flavo bacterium jo hns o niae	
Koeck 2014	Crystalline	Validated	Fibrobacteres	Fibrobacteria	Fibrobacterales	Fibrobacteraceae	Fibrobacter	Fibrobacter succinogenes	
Koeck 2014	Crystalline	Validated	Firmicutes	Bacilli	Bacillales	Alicyclobacillaceae	Caldibacillus	Caldibacillus cellulovorans	
Koeck 2014	Crystalline	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus circulans	
Koeck 2014	Crystalline	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus pumilis	
Koeck 2014	Crystalline	Validated	Firmicutes	Bacilli	Bacillales	Thermoactinomycetaceae	Thermo actino myces	Thermoactino myces sp. YX	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostrid ium cellulo fermentans	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostrid ium cellulo vorans	
Koeck 2014	-	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium chartatabidum	
Koeck 2014		Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium longisporum	
Koeck 2014		Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostridium sp. C7	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Clostrid ium thermop ap yro lyticum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Lachnoclostrid ium	Lachnoclostrid ium phytofermentans	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium alkalicellulosi	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium cellulolyticum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium cellulosi	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium clariflavum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium josui	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium papyrosolvens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium stercorarium	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostrid ium	Ruminiclostridium straminisolvens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostrid ium	Ruminiclostridium termitidis	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Ruminiclostridium	Ruminiclostridium thermocellum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	Eubacterium cellulosolvens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Butyrivibrio	Butyrivibrio fibrisolvens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Cellulosilyticum	Cellulosilyticum lentocellum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Cellulosilyticum	Cellulosilyticum ruminicola	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Lachno clostrid ium	Lachnoclostrid ium celerecrescens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Lachno clostrid ium	Lachnoclostrid ium herb ivorans	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Lachno clostrid ium	Lachnoclostrid ium populeti	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	None	Thermoanaerobacter	Thermoanaerobacter cellulolyticus	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Acetivibrio	Acetivibrio cellulolyticus	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Acetivibrio	Acetivibrio cellulosolvens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Pseudobacteroides	Pseudobacteroides cellulosolvens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminiclostrid ium	Ruminiclostridium aldrichii	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminiclostrid ium	Ruminiclostridium caenicola	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminiclostrid ium	Ruminiclostridium cellobioparum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminiclostrid ium	Ruminiclostridium hungatei	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminiclostrid ium	Ruminiclostridium sufflavum	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminococcus	Ruminococcus albus	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Clostridiales	Ruminococcaceae	Ruminococcus	Ruminococcus flavefaciens	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Halanaerobiales	Halanaerobiaceae	Halocella	Halocella cellulosilytica	
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Thermo anaero b actera	incertae sed is	Caldicellulosiruptor	Caldicellulosiruptor bescii	
									287

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Thermoanaerobactera	incertae sed is	Caldicellulosiruptor	Cald icellulo sirup tor hydrothermalis
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Thermoanaerobactera	incertae sed is	Caldicellulosiruptor	Cald icellulo sirup tor kristjans sonii
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Thermoanaerobactera	incertae sed is	Caldicellulosiruptor	Cald icellulo sirup tor kronots kyensis
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Thermoanaerobactera	incertae sed is	Caldicellulosiruptor	Cald icellulo sirup tor lacto aceticus
Koeck 2014		Validated	Firmicutes	Clostridia	Thermo anaero b actera	incertae sed is		Cald icellulo sirup tor obsidians is
Koeck 2014		Validated	Firmicutes	Clostridia	Thermo anaero b actera	incertae sed is		Cald icellulo sirup tor saccharolyticus
Koeck 2014	Crystalline	Validated	Firmicutes	Clostridia	Thermo anaero b actera	Thermo anaero bacteraceae	Thermoanaerobacter	Thermo anaero b acter thermo copriae
Koeck 2014	Crystalline	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Alcaligenaceae	Achromobacter	Achromobacter piechaud ii
Koeck 2014	Crystalline	Validated	Proteobacteria	Deltaproteobacte	Myxococcales	None	Myxobacter	Myxobacter sp. AL-1
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Cellvibrionales	Cellvibrionaceae	Cellulomonas	Cellulomonas gilvus
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Cellvibrionales	Cellvibrionaceae	Cellvibrio	Cellvibrio japonicus
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Cellvibrionales	Cellvibrionaceae	Cellvibrio	Cellvibrio mixtus
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Cellvibrionales	Cellvibrionaceae	Cellvibrio	Cellvibrio vulgaris
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Enterobacteriales	Enterobacteriaceae	Dickeya	Dickeya dadantii
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Xantho mo nad ales	Xantho mo nad aceae	Rudaea	Rudaea cellulosilytica
Koeck 2014	Crystalline	Validated	Proteobacteria	Gammaproteobac	Xantho mo nad ales	Xantho mo nad aceae	Xantho mo nas	Xanthomonas sp.
Koeck 2014	Crystalline	Validated	Thermotogae	Thermotogae	Thermotogales	Fervidobacteriaceae	Fervidobacterium	Fervid o bacterium is land icum
Koeck 2014	Crystalline	Validated	Thermotogae	Thermo to g ae	Thermotogales	Thermotogaceae	Thermotog a	Thermotogamaritima
Koeck 2014	Crystalline	Validated	Thermotogae	Thermo to g ae	Thermotogales	Thermotogaceae	Thermotog a	Thermotoga neapolitana
Vicuna 1988	Lignin	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Corynebacteriaceae	Corynebacterium	Corynebacterium sp.
Zimmermann	Lignin	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Corynebacteriaceae	Corynebacterium	Corynebacterium sp.
Woo 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Gordoniaceae	Gordonia	Gordonia sp.
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Nocardiaceae	Nocardia	Nocardia sp. DSM 1069
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Corynebacteriales	Nocardiaceae	Rhodococcus	Rhodococcus jostii RHA1
Bugg 2011	Lignin	Validated	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Arthrobacter	Arthrobacter globiformis
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Micrococcus	Micrococcus luteus
Taylor 2012	Lignin	Validated	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Micrococcus	Micrococcus luteus E1.1
Taylor 2012	Lignin	Validated	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Micrococcus	Micrococcus luteus B5.3
Zimmermann	Lignin	Validated	Actinobacteria	Actinobacteria	Propionibacteriales	Nocardioidaceae	Arthrobacter	Arthrobacter simplex
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Pseudonocardiales	Pseudonocardiaceae	Amycolatopsis	Amycolatopsis sp. 75iv2
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Pseudonocardiales	Pseudonocardiaceae	Nocardia	Nocardia autotrophica
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces viridosporus T7A
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces flavovirens
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces badius ATCC 39117
Tian 2014	Lignin	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces psammoticus
Zimmermann	Lignin	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces rimosus
Bugg 2011	Lignin	Validated	Actinobacteria	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	Streptomyces coelicolor
Zimmermann	Lignin	Validated	Actinobacteria	Actinobacteria	Streptosporangiales	Streptosporangiaceae	Thermomonospora	Thermomonospora mesophila
Zimmermann	Lignin	Validated	Actinobacteria	Actinobacteria	Streptosporangiales	Thermomonosporaceae	Actino mad ura	Actino madura sp.
Zimmermann	Lignin	Validated	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Flavobacterium	Flavobacterium sp.
Tian 2014	Lignin	Validated	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Sphingobacterium	Sphingobacterium sp. CKTN2
Goran 2015	Lignin	Validated	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Sphingobacterium	Sphing obacterium sp. T2
Duan 2014	Lignin	Validated	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Sphingobacterium	Sphingobacterium sp. HY-H
Tian 2014	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus megaterium
Tian 2014	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus pumilus
Tian 2014	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus atrophaeus
Tian 2014	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Bacillus licheniformis
Bugg 2011	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Aneurinibacillus	Aneurinib acillus aneurinilyticus
Tian 2014	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	Paenibacillus sp. IIRC-S6
Tian 2014	Lignin	Validated	Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Paenibacillus	Paenibacillus sp. CBMAI868

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
Zimmermann	Lignin	Validated	Proteobacteria	Alphaproteobact	Rhizobiales	Beijerinckiaceae	Beijerinckia	Beijerinckia sp.
Taylor 2012	Lignin	Validated	Proteobacteria	Alphaproteobact	Rhizobiales	Brucellaceae	Ochrobactrum	Ochrobactrum p seud o g rig no nense A4.3
Taylor 2012	Lignin	Validated	Proteobacteria	Alphaproteobact	Rhizobiales	Brucellaceae	Ochrobactrum	Ochrobactrum rhizosphaerae C4.1
Si 2015	Lignin	Validated	Proteobacteria	Alphaproteobact	Rhizobiales	Rhizobiaceae	Agrobacterium	Agrobacterium sp. S5-1
Gonzalez 199	9 Lignin	Validated	Proteobacteria	Alphaproteobact	Rhodobacterales	Rhodobacteraceae	Sagittula	Sagittula stellata E-37
Zimmermann	Lignin	Validated	Proteobacteria	Alphaproteobact	Sphing o monadales	Sphing o monad aceae	Pseudomonas	Pseudomonas paucimobilis
Tian 2014	Lignin	Validated	Proteobacteria	Alphaproteobact	Sphing o monadales	Sphing o monad aceae	Sp hing o mo nas	Sphing o mo nas paucimo bilis SYK-6
Zimmermann	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Alcaligenaceae	Achromobacter	Achromobacter sp.
Woo 2014	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Burkholderia	Burkholderia sp. LIG30
Tian 2014	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Pandoraea	Pandoraea sp. B-6
Zimmermann	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Pseudomonas	Pseudomonas cepacia
Zimmermann	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Burkholderiaceae	Pseudomonas	Pseudomonas multivorans
Chen 2012	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Comamonadaceae	Comamonas	Comamonas sp. B-9
Zimmermann	Lignin	Validated	Proteobacteria	Betaproteobacte	Burkholderiales	Comamonadaceae	Pseudomonas	Pseudomonas acidovorans
Woo 2014	Lignin	Validated	Proteobacteria	Betaproteobacte	Neisseriales	Chromobacteriaceae	Aquitalea	Aquitalea sp.
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Aeromonadales	Aeromonadaceae	Aeromonas	Aeromonas sp.
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Citrobacter	Citrobacter freundii IITRLI
Harazono 20)(Lig nin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Citrobacter	Citrobacter sp. VA53
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Citrobacter	Citrobacter sp. IITRSU7
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter aerogenes
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter lignolyticus SCF1
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter soli
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter cloacae KBH3
Zimmermann	Lignin	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Erwinia	Erwinia sp.
Zimmermann	Lignin	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Moraxellaceae	Acinetobacter	Acinetobacter sp.
Zimmermann	Lignin	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Moraxellaceae	Pseudomonas	Pseudomonas cruciviae
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas putida mt-2
Tian 2014	Lignin	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas putida GB-1
Zimmermann	Lignin	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas ovalis
Zimmermann	Lignin	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas pseudoalcaligenes
Kern 1987	Lignin	Validated	Proteobacteria	Gammaproteoba	Xanthomonadales	Xantho mo nadaceae	Xantho mo nas	Xanthomonas sp.
Tamboli 201	1 Phenols	Validated	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	Sphingobacterium	Sphing obacterium sp. ATM
Tian 2014	Phenols	Validated	Proteobacteria	Alphaproteobact	Rhizobiales	Brucellaceae	Brucella	Brucella sp. GXY-1
Tian 2014	Phenols	Validated	Proteobacteria	Alphaproteobact	Sphing o monadales	Sphing o monad aceae	Sphingobium	S p hing o b ium chloro p heno licum
Tian 2014	Phenols	Validated	Proteobacteria	Gammaproteoba	Enterobacteriales	Enterobacteriaceae	Enterobacter	Enterobacter cloacae DG-6
Tian 2014	Phenols	Validated	Proteobacteria	Gammaproteoba	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas sp. SUK1
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Agaricales	Cortinariaceae	Gymno p ilus	Gymnopilus chrysopellus PR-1187
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Agaricales	Fistulinaceae	Fistulina	Fistulina hepatica
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Agaricales	Schizophyllaceae	Schizophyllum	Schizophyllum commune H4-8
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Agaricales	Schizophyllaceae	Schizophyllum	Schizophyllum commune Loenen D
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Agaricales	Schizophyllaceae	Schizophyllum	Schizophyllum commune Tattone D
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Boletales	Coniophoraceae	Coniophora	Coniophora puteana
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Boletales	Paxillaceae	Hyd no merulius	Hydnomerulius pinastri
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Boletales	Serpulaceae	Serpula	Serpula lacrymans S7.3
JGI	Cellulose	Validated		Agaricomycetes		Serpulaceae	Serpula	Serpula lacrymans S7.9
JGI	Cellulose	Validated	-	Agaricomycetes		Serpulaceae	Serpula	Serpula lacrymans var shastensis SHA2 l-2
JGI	Cellulose	Validated		Agaricomycetes		Corticiaceae	Schizopora	Schizopora paradoxa KUC8 140
JGI	Cellulose	Validated		Agaricomycetes		Sphaerobolaceae	Sphaerobolus	Sphaerobolus stellatus
JGI	Cellulose	Validated		Agaricomycetes		Gloeophyllaceae	Gloeophyllum	Gloeophyllum trabeum
JGI	Cellulose	Validated		Agaricomycetes		Gloeophyllaceae	Neolentinus	Neolentinus lepideus
								200

Source	Substrate	Activity	Phylum	Class	Order	Family	Genus	Full Name
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Gomphales	Gomphaceae	Ramaria	Ramaria rubella (R. acris) UT-36052-T
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Jaapiales	Jaapiaceae	Jaapia	Jaapia argillacea
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Daedalea	Daedalea quercina
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Laetiporus	Laetiporus sulphureus var. sulphureus
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Postia	Postia placenta MAD 698-R
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Postia	Postia placenta MAD-698-R-SB12
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Wolfiporia	Wolfiporia cocos MD-104 SS 10
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Fomitopsidaceae	Antrodia	Antrodia sinuosa
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Fomitopsidaceae	Fomitopsis	Fomitopsis pinicola FP-58527 SS1
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Fibroporia	Fibroporia radiculosa
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Polyporus	Polyporus arcularius
JGI	Cellulose	Validated	Basidiomycota	Agaricomycetes	Trechisporales	Hydnodontaceae	Sistotremastrum	Sistotremastrum niveocremeum HHB9708 ss-1 1.0
JGI	Cellulose	Validated		Agaricomycetes	-	Hydnodontaceae	Sistotremastrum	Sistotremastrum suecicum
JGI	Cellulose	Validated	Basidiomycota		NA	Dacrymycetaceae	Calocera	Calocera cornea
Bucher 2004		Validated	Ascomycota	Dothideomycetes		Aigialaceae	Ascocratera	Ascocratera manglicola
Bucher 2004		Validated	Ascomycota	Dothideomycetes		Pleosporales incertae sed		Astrosphaeriella striatispora
Bucher 2004		Validated	Ascomycota	Sordariomycetes	-	Diatrypaceae	Cryptovalsa	Cryptovalsa halosarceicola
	-		-	2			••	
Bucher 2004		Validated	Ascomycota	Sordariomycetes		Xylariales incertae sed is	Linocarpon	Linocarpon bipolaris
JGI	Lignin	Validated		Agaricomycetes	-	Agaricales incertae sed is	Plicaturopsis	Plicaturopsis crispa
JGI	Lignin	Validated	-	Agaricomycetes	-	Omphalotaceae	Gymno p us	Gymnopus androsaceus JB14
JGI	Lignin	Validated		Agaricomycetes		Pleurotaceae	Pleurotus	Pleurotus ostreatus PC 15
JGI	Lignin	Validated	-	Agaricomycetes	-	Pleurotaceae	Pleurotus	Pleurotus ostreatus PC9
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Agaricales	Strophariaceae	Galerina	Galerina marginata
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Agaricales	Tricho lo mataceae	Panellus	Panellus stipticus KUC8834
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Auriculariales	Auriculariaceae	Auricularia	Auricularia subglabra
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Auriculariales	Exidiaceae	Exidia	Exid ia g land ulo s a
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Corticiales	Corticiaceae	Phlebia	Phlebia brevispora HHB-7030 SS6
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Hymeno chaet ales	Hymenochaetaceae	Fomitiporia	Fomitiporia mediterranea
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Trametes	Trametes ljubarskyi CIRM 1659
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Coriolaceae	Trametes	Trametes versicolor
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Ganodermataceae	Ganoderma	Ganoderma sp. 10597 SS1
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Lentinaceae	Lentinus	Lentinus tigrinus ALCF2SS1-6
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Lentinaceae	Lentinus	Lentinus tigrinus ALCF2SS1-7
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Lentinaceae	Lentinus	Lentinus tigrinus
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Meruliaceae	Bjerkandera	Bjerkandera adusta
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Meruliaceae	Ceriporiopsis	Ceriporiopsis (Gelatoporia) subvermispora B
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Meruliaceae	Obba	Obba rivulosa 3A-2
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Phanerochaetaceae	Phanerochaete	Phanerochaete carnosa HHB-10118-Sp
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Phanerochaetaceae	Phanerochaete	Phanerochaete chrysosporium RP-78 v2.2
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Phanerochaetaceae	Phlebiopsis	Phlebiopsis gigantea
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Artolenzites	Artolenzites elegans CIRM 1663
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Cerrena	Cerrena unicolor
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Dicho mit us	Dichomitus squalens
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Pycnoporus	Pycnoporus cinnabarinus BRFM 137
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Pycnoporus	Pycnoporus coccineus BRFM 310
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Pycnoporus	Pycnoporus coccineus CIRM 1662
JGI	Lignin	Validated	Basidiomycota	Agaricomycetes	Polyporales	Polyporaceae	Pycnoporus	Pycnoporus sanguineus BRFM 1264
JGI	Lignin	Validated		Agaricomycetes		Polyporaceae	Trichaptum	Trichap tum ab iet inum
JGI	Lignin	Validated	-	Agaricomycetes	••	Stereaceae	Stereum	Stereum hirsutum FP-9 1666 SS1
JGI	Lignin	Validated	Basidiomycota		NA	Dacrymycetaceae	Calocera	Calocera viscosa
JGI	Lignin	Validated		Tremellomycetes		Tremellaceae	Tremella	
								290
Bucher 2004	+ Lignin	Validated	NA	NA	NA	NA	NA	Rhizophila marina

Table E.3. Overview of all sampling sites within the ecozones utilized in this study, including sampling information, climatic information and the date harvesting took place. Data was sourced from collaborators (Dr. Matt Busse, Dr. Andy Scott, Dr. Paul Hazlett and Dr. David Morris) and Ponder et al. 2012 and Hartmann et al. 2012

Name	Site	Sample Collection	Lat.	Long.	Elevation (m)	Soil Classification	Tree Cover	Climatic Zone	Annual Temp (°C)	Precipitation (mm)	Year Est.	Country
Fensom	A7	7/3/2011	49.07	-89.41	445	Orthic Dystric Brunisol	Black Spruce	Dfb, Humid Continental warmsummer	2.4	266	1995	CANADA
Fensom	A8	7/4/2011	49.08	-89.38	450	Orthic Dystric Brunisol	Black Spruce	Dfb, Humid Continental warmsummer	1.8	266	1995	CANADA
Fensom	A9	7/5/2011	49.07	-89.39	442	Gleyed Dystric Brunisol	Black Spruce	Dfb, Humid Continental warmsummer	1.5	266	1995	CANADA
Brandy City	BR	6/22/2011	39.55	-121.04	1135	Mesic Ultic Haploxeralfs	Ponderosa pine, sugar pine, w hite fir, giant sequoia	Csa, Mediterranean hot summer	11.2	55	1995	USA
Blodgett	BL	9/16/2011	38.88	-120.64	1350	Mesic Ultic Haploxeralfs	Ponderosa pine, sugar pine, w hite fir, giant sequoia	Csa, Mediterranean hot summer	11.2	55	1994	USA
Low ell Hill	LH	9/16/2011	39.26	-120.78	1268	Mesic Ultic Haploxeralfs	Ponderosa pine, sugar pine, w hite fir, giant sequoia	Csa, Mediterranean hot summer	11.2	55	1995	USA
Wells	JW	7/7/2011	46.42	-83.37	228	Orthic Humo-Ferric Podzol	Jack Pine, Black Spruce, Red Pine	Dfb, Humid Continental cool summer	4.4	248	1993-1994	CANADA
Superior	JS	8/4/2011	47.57	-82.85	426	Orthic Dystric Brunisol	Jack Pine, Black Spruce	Dfb, Humid Continental cool summer	1.7	250	1993-1994	CANADA
Eddy	JE	8/3/2011	46.75	-82.25	490	NA	Jack Pine, Balsam fir, White birch	Dfb, Humid Continental cool summer	2.8	242	1993-1994	CANADA
Kurth	ТХА	3/12/2012	31.11	-95.15	88	Aquic Glossudalfs	Loblolly Pine, Beautyberry, Yaupon, Sw eetgum, Oaks	Cfa, Humid subtropical	19.0	253	1997	USA
Kurth	ТХВ	3/12/2012	31.11	-95.15	88	Aquic Glossudalfs	Loblolly Pine, Beautyberry, Yaupon, Sw eetgum, Oaks	Cfa, Humid subtropical	19.0	253	1997	USA
Kurth	тхс	3/12/2012	31.11	-95.15	88	Aquic Glossudalfs	Loblolly Pine, Beautyberry, Yaupon, Sw eetgum, Oaks	Cfa, Humid subtropical	19.0	253	1997	USA
O'Connor Lake	OC	6/26/2010	50.88	-120.35	1075	Brunisolic Gray Luvisol	Douglas fir	Dfb, Humid Continental warmsummer	2.5	300	1999	CANADA
Black Pines	BP	6/22/2010	50.93	-120.28	1180	Brunisolic Gray Luvisol	Douglas fir, Lodgepole pine	Dfb, Humid Continental warmsummer	2.5	300	1999	CANADA
Dairy Creek	DC	6/25/2010	50.85	-120.42	1150	Brunisolic Gray Luvisol	Douglas fir, Subalpine fir, Lodgepole pine	Dfb, Humid Continental warmsummer	2.5	300	1999	CANADA
Log Lake	LL	7/9/2008	54.35	-122.61	780	Orthic Humo-Ferric Podzol	Subalpine fir, Douglas fir, Interior Spruce	Dfc, Boreal cool summer	2.2	415	1994	CANADA
Topley	то	7/11/2008	52.32	-126.31	1100	Orthic Gray Luvisol, Gleyed Gray Luvisol	Lodgepole pine, Subalpine fir, Interior spruce	Dfc, Boreal cool summer	2.2	415		CANADA
Skulow Lake	SL	8/14/2009	52.32	-121.92	1050	Orthic Gray Luvisol	Lodgepole pine, Interior spruce	Dfc, Boreal cool summer	2.2	415	1994	CANADA

$ \frac{\begin{tabular}{ c c c c c } \label{eq:relation} \end{tabular}{line} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Experiment	Ecozone	Horizon	Treatment	16S rRNA Libraries	ITS Libraries
$ \begin{tabular}{ c c c c c c } & Org & OM1 & 27 & 27 \\ OM2 & 27 & 27 \\ OM3 & 0 & 0 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$				REF		
$\begin{split} \ddot{N} in \ situ' \\ Harvesting Effects (Chapter 3) \\ \hline Nin \ Otherwise (UPF) \ Variable ($						
$ \believed bases of the second se$			Org			
$ \frac{Var}{(DF)} = V$						
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						
In situ' Harvesting Effects (Chapter 3) In situ' In situ' Harvesting In situ' In situ' In situ' In situ' Harvesting In situ' In situ' In situ' Harvesting In situ' In situ' In situ' Harvesting In situ' In situ' In situ' In situ' In situ' Harvesting In situ In situ' In situ'		(IDF)				
İn situ' Harvesting (Chapter 3) Org Om3 27 27 British Columbia (SBS) Org Org REF 12 12 Min OM3 0 0 30 30 OBS Min OM3 0 0 30 Min OM3 0 0 30 OM3 32 33 0 0 Org OM1 8 8 0 OM2 9 9 0 0 9 OM3 9 9 0 0 1 1 Harvesting Effects (Chapter 3) Org Om1 18 17 0 Org Org OM1 18 18 1 1 California REF 9 9 9			Min			
$ \frac{\begin{tabular}{ c c c c c } & REF & 12 & 12 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $						
$ \frac{\begin{tabular}{ c c c c } \label{eq:second} \end{tabular}{lem: 1.5ex 1.5$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \frac{\begin{tabular}{ c c c c } \label{eq:second} \begin{tabular}{ c c c c } \hline Shtish \\ Columbia \\ Columbia \\ (SBS) \end{tabular} \\ (SBS) \end{tabular} \\ \end$			Org			
$ \frac{ \begin{tabula} \\ (SBS) \\ (SB) \\ (SBS) \\ (SB) \\ (SBS) \\ (SB) \\ (SB$		British				
$ \frac{\begin{tabular}{ c c c c c } \label{eq:second} \end{tabular}{lllllllllllllllllllllllllllllllllll$		Columbia				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(SBS)				
$ \frac{\text{in situ'}}{\text{Harvesting}} = \frac{ 0 \text{M2} 31 33 \\ 0 \text{M3} 32 33 \\ 0 \text{M1} 8 \\ 0 \text{M2} 9 \\ 0 \text{M2} 9 \\ 9 \\ 0 \text{M2} 9 \\ 9 \\ 0 \text{M2} 9 \\ 9 \\ 9 \\ 0 \text{M2} 9 \\ 9 \\ 9 \\ 0 \text{M2} 9 \\ 9 \\ 9 \\ 9 \\ 0 \text{M2} 9 \\ 9 \\ 9 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 18 \\ 17 \\ 0 \\ 0 \\ 0 \\ 1 \\ 18 \\ 18 \\ 18 \\ 18 \\ 0 \\ 1 \\ 1 \\ 18 \\ 18$, , ,	Min			
$ \frac{{}^{'insitu'}}{{}^{Harvesting}}{}_{Effects} (Chapter 3) \\ California \\ \hline Texas \\ \hline Texas \\ \hline Texas \\ \hline Texas \\ \hline \\ $						
$ \frac{{}^{'}nsitu'}{{}^{'}} \\ \frac{1}{nsitu'}{}^{'}} \\ \frac{1}{harvesting}{}^{'}_{Effects}{}_{(Chapter 3)} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \frac{'n situ'}{Harvesting} \\ (Chapter 3) \\ (Chapter 3) \\ (Intario (BS) \\ (Chapter 3) \\ (Intario (JP) \\ (Intario (JP) \\ Intario (JP) \\ Intario (JP) \\ (Intario (JP) \\ Intario (JP) \\ (Intario (JP) \\ Intario (JP) \\ Intario (JP) \\ (Intario (JP) \\ Intario (JP) \\ Intari$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ontario (BS)	Ora			
$ \frac{\text{'in situ'}}{\text{Harvesting}} = \frac{\text{Contario (BS)}}{\text{Harvesting}} = \frac{\text{REF}}{\text{Harvesting}} = \frac{\text{REF}}{\text{OM2}} = \frac{9}{9} = \frac{9}{9$			Olg	OM2	9	9
$ \frac{'n situ'}{\text{Harvesting}} = \frac{\text{ReF}}{\text{effects}} 9 9 \\ \text{Min} 0M1 9 9 \\ OM2 9 9 \\ OM3 9 9 \\ OM3 9 9 \\ OM3 9 9 \\ OM3 9 9 \\ OM1 18 17 \\ OM2 16 17 \\ OM3 1 1 \\ Neg 0M3 1 1 \\ Neg 0M3 1 1 \\ Neg 0M3 1 1 \\ OM3 1 18 18 \\ OM1 18 18 \\ OM2 17 15 \\ OM3 18 18 \\ OM2 17 15 \\ OM3 18 18 \\ OM2 9 9 \\ OM3 11 18 19 \\ OM2 9 9 \\ OM3 9 9 \\ OM3 12 15 \\ OM3 15 21 \\ OM1 0M1 15 21 \\ OM2 0M1 15 21 \\ OM1 0M1 15 21 \\ OM2 0M2 19 17 \\ \end{array} $				OM3	9	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ontario (BS)		REF	9	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			N 4 inc	OM1	9	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	'in situ'		IVIIN	OM2	9	9
$ \begin{array}{c c} \mbox{Effects} \\ \mbox{(Chapter 3)} \\ \mbox{(Chapter 3)} \\ \mbox{(JP)} \end{array} \begin{array}{c} \mbox{REF} & 7 & 9 \\ \mbox{Org} & \mbox{$OM1$} & 18 & 17 \\ \mbox{$OM2$} & 16 & 17 \\ \mbox{$OM3$} & 1 & 1 \\ \mbox{$OM3$} & 1 & 1 \\ \mbox{$OM2$} & \mbox{11} & 18 \\ \mbox{$OM2$} & \mbox{17} & 15 \\ \mbox{$OM3$} & 18 & 18 \\ \mbox{$OM2$} & \mbox{18} & 18 \\ \mbox{$OM2$} & \mbox{9} & \mbox{9} \\ \mbox{$OM1$} & \mbox{9} & \mbox{9} \\ \mbox{$OM2$} & \mbox{9} & \mbox{9} \\ \mbox{$OM3$} & \mbox{9} & \mbox{9} \\ \mbox{$OM3$} & \mbox{9} & \mbox{9} \\ \mbox{$OM1$} & \mbox{9} & \mbox{9} \\ \mbox{$OM1$} & \mbox{9} & \mbox{9} \\ \mbox{$OM2$} & \mbox{9} & \mbox{9} \\ \mbox{$OM3$} & \mbox{9} & \mbox{9} \\ \mbox{$OM3$} & \mbox{9} & \mbox{9} \\ \mbox{$OM3$} & \mbox{12} & \mbox{15} \\ \mbox{15} & \mbox{20} \\ \mbox{$OM3$} & \mbox{12} & \mbox{15} \\ \mbox{15} & \mbox{20} \\ \mbox{Min} & \mbox{$OM1$} & \mbox{15} & \mbox{20} \\ \mbox{$OM3$} & \mbox{12} & \mbox{15} \\ \mbox{15} & \mbox{20} \\ \mbox{Min} & \mbox{$0M1$} & \mbox{15} & \mbox{21} \\ \mbox{$OM3$} & \mbox{12} & \mbox{15} \\ \mbox{15} & \mbox{20} \\ \mbox{$0M1$} & \mbox{15} & \mbox{21} \\ \mbox{Min} & \mbox{$0M1$} & \mbox{15} & \mbox{21} \\ \mbox{15} & \mbox{15} \\ \mbox{15} & \mbox{15} \\ \mbox{15} & \mbox{16} \\ \mbox{16} & \mbox{15} & \mbox{15} \\ \mbox{15} & \mbox{15} \\ \mbox{15} & \mbox{15} & \mbox{15} \\ \mbox{15} & \mbox{16} \\ \mbox{16} & \mbox{16} & \mbox{16}$						
$ \begin{array}{c} ({\mbox{Chapter 3}}) \\ ({Chapte$	-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_			
$\begin{split} & \text{Ontario} (\text{JP}) & \begin{array}{cccc} & \text{OM3} & 1 & 1 \\ & \text{REF} & 9 & 9 \\ & \text{OM1} & 18 & 18 \\ & \text{OM2} & 17 & 15 \\ & \text{OM3} & 18 & 18 \\ \\ & & & & & & & & & & & & & & & & & $	(Org			
$\begin{tabular}{ c c c c c } \hline Fexas & REF & 9 & 9 \\ \hline Min & OM1 & 18 & 18 \\ OM2 & 17 & 15 \\ OM3 & 18 & 18 \\ \hline OM3 & 9 & 9 \\ OM1 & 9 & 9 \\ OM2 & 9 & 9 \\ OM3 & 9 & 9 \\ OM3 & 9 & 9 \\ \hline OM1 & 9 & 9 \\ OM2 & 9 & 9 \\ OM2 & 9 & 9 \\ OM2 & 9 & 9 \\ OM3 & 9 & 9 \\ \hline OM3 & 9 & 9 \\ OM3 & 9 & 9 \\ \hline OM3 & 9 & 9 \\ OM2 & 15 & 20 \\ OM3 & 12 & 15 \\ \hline Fexas & REF & 8 & 7 \\ OM1 & 18 & 19 \\ OM2 & 15 & 20 \\ OM3 & 12 & 15 \\ \hline Min & OM1 & 15 & 21 \\ OM1 & 15 & 21 \\ OM2 & 19 & 17 \\ \hline \end{tabular}$						
Min OM1 18 18 OM2 17 15 OM3 18 18 REF 9 9 Org OM1 9 9 OM2 9 9 OM2 9 9 OM2 9 9 OM3 9 8 REF 9 9 OM3 9 9 OM1 9 9 OM1 9 9 OM2 9 9 OM2 9 9 OM2 9 9 OM3 9 9 OM3 9 9 OM2 15 20 OM3 12 15 OM1 15 21 OM1 15 21 OM2 19 17		Ontario (JP)				
$\begin{tabular}{ c c c c c } \hline Implement{Final}{ c c c c } \hline Implement{Final}{ c c }$						
Image: California Image: OM3 18 18 REF 9 9 Org OM1 9 9 OM2 9 9 OM3 9 8 REF 9 9 OM3 9 9 Min OM1 9 9 OM2 9 9 9 OM3 10 18 19 OM3 12 15 20 OM3 12 15 15 Min OM1 15 21 OM1 15 21 0 OM2 19 17 17			Min			
$\begin{tabular}{ c c c c c } \hline REF & 9 & 9 \\ Org & $OM1$ & 9 & 9 \\ $OM2$ & 9 & 9 \\ $OM3$ & 9 & 8 \\ \hline Min & $OM1$ & 9 & 9 \\ $OM2$ & 9 & 9 \\ $OM2$ & 9 & 9 \\ $OM2$ & 9 & 9 \\ $OM3$ & 9 & 9 \\ \hline $OM3$ & 9 & 9 \\ \hline $OM3$ & 9 & 9 \\ \hline Org & $OM1$ & 18 & 19 \\ $OM2$ & 15 & 20 \\ $OM3$ & 12 & 15 \\ \hline Min & $OM1$ & 15 & 21 \\ $OM2$ & 19 & 17 \\ \hline \end{tabular}$						
California Org OM1 9 9 California 9 9 9 9 Min 9 9 9 9 Min 0M3 9 9 9 OM2 9 9 9 9 OM1 9 9 9 9 OM2 9 9 9 9 OM3 9 9 9 9 OM3 18 19 0 15 OM3 12 15 20 0 OM1 15 21 0 0 Min 0M2 19 17 16						
California Org OM2 9 9 California 0M3 9 8 REF 9 9 9 Min 0M1 9 9 OM2 9 9 9 OM1 9 9 9 OM2 9 9 9 OM2 9 9 9 OM3 9 9 9 Org OM1 18 19 OM2 15 20 0 OM3 12 15 Texas REF 8 7 Min OM1 15 21 OM1 15 21 0 OM2 19 17 15						
California OM2 9 9 California REF 9 9 Min OM1 9 9 OM2 9 9 9 OM2 9 9 9 OM3 9 9 9 OM3 9 9 9 Org OM3 9 9 Texas Org OM1 18 19 OM3 12 15 20 0M3 12 15 Texas REF 8 7 0M1 15 21 Min OM1 15 21 0M2 19 17			Org			
California REF 9 9 Min OM1 9 9 OM2 9 9 OM3 9 9 Org OM1 18 19 OM2 15 20 OM3 12 15 Texas REF 8 7 Min OM1 18 19 OM3 12 15 REF 8 7 OM3 12 15 OM3 12 15 OM1 15 21 OM2 19 17			_			
REF 9 9 9 Min OM1 9 9 9 OM2 9 9 9 9 OM3 9 9 9 9 Press Press REF 8 7 Org OM1 18 19 OM2 15 20 OM3 12 15 Texas REF 8 7 Min OM1 15 21 OM2 19 17		California				
Min OM2 9 9 OM3 9 9 REF 8 7 Org OM1 18 19 OM2 15 20 OM3 12 15 Texas REF 8 7 Min OM1 18 19 OM3 12 15 Min OM1 15 21 OM2 19 17						
Image: Normal distribution of the system OM2 9			Min			
Texas REF 8 7 Org OM1 18 19 OM2 15 20 OM3 12 15 REF 8 7 Min OM1 15 21 OM2 19 17						
Org OM1 18 19 OM2 15 20 OM3 12 15 Min OM1 15 21 OM1 15 21 OM2 19 17						
Texas Org OM2 15 20 Min OM3 12 15 Min OM1 15 21 OM2 19 17						
Texas OM2 15 20 OM3 12 15 REF 8 7 Min OM1 15 21 OM2 19 17			Ora	OM1	18	19
REF 8 7 Min OM1 15 21 OM2 19 17			Org	OM2	15	20
REF 8 7 Min OM1 15 21 OM2 19 17		Taura			12	15
Min OM1 15 21 OM2 19 17		iexas				
Min OM2 19 17						
			Min			
OM3 13 12				OM3	13	12

Table E.4. Overview of all PLFA, pyrotag and metagenomic libraries collected from ecozones, substrates and soil layers.

Experiment	Library	Horizon	Treatment	PLFA	16S rRNA Libraries	ITS Libraries
			REF	9	3	3
		Ora	OM1	9	3	2
		Org	OM2	9	3	3
	¹³ C Librory		OM3	9	3	3
	¹³ C-Library		REF	9	3	3
		Min	OM1	9	3	3
SIP-Cellulose		IVIIII	OM2	9	3	3
Harvesting			OM3	9	3	3
Effects			REF	1	3	3
(Chapter 3)		Org	OM1	-	3	2
		Olg	OM2	-	3	2
	¹² C-Library		OM3	-	3	2
	C-Library		REF	1	3	3
		Min	OM1	-	3	3
		11111	OM2	-	3	3
			OM3	-	3	3

Table E.4... continued

Table E.4... continued

	Ecozone	Horizon	Substrate	PLFA	¹³ C- Pyro	¹² C- Pyro	¹³ C- Meta	¹³ C- Anti	¹² C- Meta
			'in situ'	-	-	12	-	-	-
		Org	Hemicellulose	-	3	4	-	-	-
	British	Olg	Cellulose	3	6	3	3	-	1
	Columbia		Lignin	-	-	-	-	-	-
	(IDF)		'in situ'	-	-	12	-	-	-
	(121)	Min	Hemicellulose	-	6	4	-	-	-
			Cellulose	3	3	3	3	-	1
			Lignin	-	-	-	-	-	-
			'in situ'	-	-	9	-	-	-
	Ontario (BS)	Org	Hemicellulose	-	-	-	-	-	-
		0.9	Cellulose	3	3	3	3	-	1
			Lignin	10	4	8	4	-	3
	(BS)		'in situ'	-	-	9	-	-	-
		Min	Hemicellulose	-	-	-	-	-	-
			Cellulose	0	2	3	3	-	1
			Lignin	10	8	7	8	4	4
			'in situ'	-	-	7	-	-	-
		Org	Hemicellulose	-	-	-	-	-	-
SIP-		0.9	Cellulose	1	3	3	3	-	1
Biodiversity	Ontario		Lignin	0	-	-	-	-	-
(Chapter 4)	(JP)		'in situ'	-	-	9	-	-	-
(0		Min	Hemicellulose	-	-	-	-	-	-
			Cellulose	2	3	3	3	-	1
			Lignin	0	-	-	-	-	-
			'in situ'	-	-	9	-	-	-
		Org	Hemicellulose	-	8	4	-	-	-
			Cellulose	9	3	3	3	-	1
	California		Lignin	10	6	9	5	-	3
			'in situ'	-	-	9	-	-	-
		Min	Hemicellulose	-	15	3	-	-	-
			Cellulose	9	3	3	3	-	1
			Lignin	10	9	6	9	2	4
	Texas		'in situ'	-	-	9	-	-	-
		Org	Hemicellulose	-	-	-	-	-	-
			Cellulose	3	3	3	3	-	1
			Lignin	3	2	-	1	-	0
			'in situ'	-	-	9	-	-	-
		Min	Hemicellulose	-	-	-	-	-	-
			Cellulose	0	3	3	1	-	1
			Lignin	5	3	2	3	2	2

						C	Drganic Lay	er									
			REF				OM1				OM2				OM3		
	Ecozone	mean	std. error	n	sig	mean	std. error	n	sig	mean	std. error	n	sig	mean	std. error	n	sig
	SBS	63.81	13.91	12	а	57.21	8.11	30	b	56.84	9.63	30	b	-	-	-	-
Moisture	IDF	68.13	11.08	9	ns	67.12	12.64	27	ns	68.13	13.30	27	ns	-	-	-	-
Content	BS	65.28	8.01	9	а	52.50	11.12	9	b	51.36	12.10	9	b	50.24	12.43	9	b
(w/w)	JP	48.08	14.74	9	а	37.47	8.11	18	b	40.75	11.62	16	ab	-	-	-	-
(~~/~~)	CALIFORNIA	33.17	18.20	9	ns	29.73	19.61	9	ns	29.28	16.81	9	ns	27.96	15.07	9	ns
	TEXAS	29.71	7.44	9	b	28.16	5.37	25	b	19.36	9.15	21	а	26.25	6.97	17	b
	SBS	4.72	0.49	9	ns	4.93	0.26	27	ns	4.89	0.33	27	ns	-	-	-	-
	IDF	5.25	0.19	9	b	5.48	0.23	27	а	5.56	0.25	27	а	-	-	-	-
pН	BS	4.45	0.29	9	b	4.87	0.33	9	ab	4.84	0.41	9	ab	5.16	0.39	9	а
рп	JP	3.83	0.23	9	ns	3.97	0.23	18	ns	3.92	0.23	16	ns	-	-	-	-
	CALIFORNIA	5.30	0.55	9	ab	4.40	0.61	9	b	5.11	0.60	9	ab	5.28	0.37	9	а
	TEXAS	4.46	0.27	9	b	4.83	0.37	24	а	4.69	0.47	21	ab	4.45	0.19	15	b
	SBS	-	-	-	-	1.58	0.14	27	ns	1.63	0.10	27	ns	-	-	-	-
	IDF	-	-	-	-	1.29	0.15	27	а	1.37	0.13	27	b	-	-	-	-
Bulk Density	BS	0.13	0.02	9	b	0.19	0.03	9	а	0.22	0.03	9	а	0.19	0.03	9	а
(g/cm ³)	JP	7.43	1.47	9	ns	6.77	0.98	18	ns	7.48	1.64	16	ns	-	-	-	-
	CALIFORNIA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	TEXAS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	SBS	33.83	11.64	9	а	27.78	6.32	27	b	26.07	6.28	27	b	-	-	-	-
Total	IDF	44.29	0.09	9	а	36.18	2.32	27	b	31.22	11.03	27	С	-	-	-	-
Carbon	BS	44.42	1.54	9	а	38.72	4.81	9	а	42.00	4.23	9	а	31.53	8.22	9	b
	JP	40.53	4.06	9	ns	40.18	4.31	18	ns	39.48	2.75	16	ns	-	-	-	-
(%)	CALIFORNIA	38.23	4.87	6	а	41.28	2.43	6	а	29.66	3.89	6	b	27.72	10.20	5	b
	TEXAS	17.98	4.81	9	а	11.32	1.77	9	b	10.97	5.44	8	b	12.21	2.40	8	b
	SBS	0.89	0.25	9	ns	0.78	0.18	27	ns	0.77	0.21	27	ns	-	-	-	-
Total	IDF	1.24	0.14	9	ns	1.13	0.18	27	ns	1.03	0.36	27	ns	-	-	-	-
	BS	1.08	0.08	9	а	1.00	0.16	9	ab	1.13	0.12	9	а	0.84	0.27	9	b
Nitrogen	JP	1.24	0.10	9	ns	1.16	0.08	18	ns	1.17	0.13	16	ns	-	-	-	-
(%)	CALIFORNIA	1.26	0.19	6	а	1.24	0.26	6	ab	1.02	0.19	6	ab	0.88	0.21	5	b
	TEXAS	0.63	0.16	9	а	0.44	0.08	9	b	0.43	0.19	8	b	0.43	0.06	8	b
	SBS	37.44	3.82	9	а	35.72	3.86	27	ab	34.13	2.78	27	b	-	-	-	-
	IDF	36.23	4.20	9	а	32.81	6.01	27	ab	30.45	8.38	27	b	-	-	-	-
OND	BS	41.44	2.72	9	а	39.29	5.93	9	ab	37.24	2.94	9	b	38.43	3.50	9	ab
C:N Ratio	JP	32.89	2.97	9	ns	35.33	3.69	18	ns	34.59	4.55	16	ns	-	-	-	_
	CALIFORNIA	30.67	3.78	6	ns	34.84	8.87	6	ns	29.73	5.20	6	ns	31.05	7.10	5	ns
	TEXAS	28.60	1.95	9	а	25.69	1.90	9	b	25.42	1.95	8		28.02	2.14	8	a

Table E.5. Overview of soil properties among ecozones, soil layers and harvesting treatments. Within groups of treatments, significantly different values (p < 0.05) have been denoted by lettering based on Tukey's Honest Significant Difference.

Table E.5... continued

						Ν	lineral Lay	er									
			REF				OM1				OM2				OM 3		
	Ecozone	mean	std. error	n	sig	mean	std. error	n	sig	mean	std. error	n	sig	mean	std. error	n	sig
	SBS	21.73	7.50	11	ns	23.86	5.87	31	ns	24.11	6.02	29	ns	23.30	6.20	30	ns
Moisture	IDF	31.63	10.81	9	ns	33.66	10.17	27	ns	31.91	10.37	27	ns	30.02	12.91	27	ns
Content	BS	25.96	4.12	9	а	22.79	3.17	9	а	21.61	5.28	9	ab	17.98	2.95	9	b
(w/w)	JP	15.42	3.09	9	а	9.97	4.51	18	b	12.89	3.40	17	ab	11.73	4.07	18	b
(w/w)	CALIFORNIA	22.49	7.07	9	ns	26.54	6.99	9	ns	24.99	8.43	9	ns	24.19	7.60	9	ns
	TEXAS	14.70	3.19	9	ns	14.60	5.14	24	ns	17.16	6.87	21	ns	15.87	5.19	16	ns
	SBS	5.15	0.41	8	ns	5.18	0.38	28	ns	5.15	0.28	26	ns	5.31	0.33	27	ns
	IDF	5.48	0.23	9	b	5.59	0.26	27	b	5.60	0.13	27	b	5.75	0.12	27	а
	BS	5.33	0.27	9	b	5.39	0.30	9	b	5.48	0.24	9	ab	5.74	0.28	9	а
рН	JP	4.97	0.41	9	b	5.18	0.14	18	ab	5.20	0.14	17	ab	5.27	0.16	18	а
	CALIFORNIA	6.11	0.44	9	а	5.54	0.31	9	b	5.86	0.28	9	ab	5.62	0.39	9	b
	TEXAS	-	-	-	-	4.94	0.25	24	а	4.97	0.43	21	а	4.60	0.27	16	b
	SBS	-	-	-	-	1.57	0.14	28	ns	1.64	0.10	26	ns	1.60	0.14	27	ns
	IDF	-	-	-	-	1.29	0.15	27	b	1.37	0.13	27	b	1.50	0.14	27	а
Bulk Density	BS	1.08	0.25	9	b	1.16	0.20	9	ab	1.27	0.20	9	ab	1.32	0.26	9	а
(g/cm ³)	JP	7.43	1.47	9	ns	6.77	0.98	18	ns	7.51	1.59	17	ns	7.30	1.31	18	ns
	CALIFORNIA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	TEXAS	-	-	-	-	1.30	0.02	24	а	1.27	0.05	21	b	1.32	0.01	16	а
	SBS	1.22	0.30	8	b	1.50	0.55	28	b	1.76	0.84	26	а	1.44	0.42	27	b
Total	IDF	2.19	0.29	9	ns	2.42	0.59	27	ns	6.69	12.66	27	ns	1.99	0.32	27	ns
Carbon	BS	2.00	0.68	9	ab	2.42	1.02	9	а	1.47	0.74	9	b	1.39	0.54	9	b
	JP	1.92	0.82	9	ns	2.13	0.95	18	ns	2.14	0.87	17	ns	2.80	3.68	18	ns
(%)	CALIFORNIA	6.12	1.20	9	а	6.11	1.30	9	а	4.90	0.96	9	b	5.14	1.05	9	ab
	TEXAS	-	-	-	-	0.92	0.11	24	а	0.95	0.20	21	ab	0.80	0.11	16	b
	SBS	0.06	0.01	8	а	0.07	0.02	28	ab	0.09	0.04	26	b	0.07	0.02	27	ab
Total	IDF	0.10	0.00	9	ns	0.12	0.02	27	ns	0.27	0.45	27	ns	0.10	0.01	27	ns
	BS	0.09	0.02	9	ns	0.10	0.04	9	ns	0.07	0.03	9	ns	0.07	0.03	9	ns
Nitrogen	JP	0.13	0.06	9	ns	0.14	0.09	18	ns	0.19	0.15	17	ns	0.17	0.16	18	ns
(%)	CALIFORNIA	0.29	0.06	9	ns	0.25	0.06	9	ns	0.23	0.06	9	ns	0.26	0.06	9	ns
	TEXAS	-	-	-	-	0.05	0.00	24	а	0.05	0.00	21	а	0.04	0.00	16	b
	SBS	21.03	2.24	8	ns	20.16	2.20	28	ns	19.77	1.22	26	ns	20.53	2.15	27	ns
	IDF	21.90	2.87	9	ns	20.82	3.35	27	ns	21.28	4.10	27	ns	20.42	2.55	27	ns
	BS	21.77	2.82	9	ns	23.65	2.73	9	ns	20.76	2.59	9	ns	20.60	1.76	9	ns
C:N Ratio	JP	17.84	3.29	9	ns	18.19	4.94	18	ns	17.86	5.65	17	ns	18.79	6.82	18	ns
	CALIFORNIA	21.10	1.42	9	b	24.69	4.50	9	а	21.28	0.77	9	b	19.62	0.99	9	b
	TEXAS	-	-	-	-	16.90	1.17	24	b	18.95	3.20	21	a	17.83	1.48	16	

Phylum	Order	Family	Таха	Ecozones	Soil Layer	Response	Mean Abundance	Max. Abundance	Response ratio
Acidobacteria	Acidobacteriales	Acidobacteriaceae	Edaphobacter	BC, JP, CA, TX	Org	Variable	0.58	13.22	0.7
Acidobacteria	Acidobacteriales	Acidobacteriaceae	Acidopila	ON, BC, CA	-	Expanded	0.26	1.49	10.1
Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	BC, ON	Org	Variable	0.82	40.33	0.6
Acidobacteria	Acidobacteriales	Acidobacteriaceae	Telmatobacter	TX	Org	Expanded	0.20	1.27	15.7
Acidobacteria	Acidobacteriales	Koribacteraceae	Candidatus Koribacter	ON, BC, TX	-	Variable	0.52	18.02	1.5
Acidobacteria	Holophagales	Holophagaceae	Geothrix	All	Org	Expanded	0.35	2.25	14.2
Actinobacteria	Actinomycetales	Geodermatophilaceae	Blastococcus	BC, CA	-	Expanded	0.28	10.62	31.8
Actinobacteria	Actinomycetales	Geodermatophilaceae	Modestobacter	BC, CA	Org	Expanded	0.69	23.06	25.3
Actinobacteria	Actinomycetales	Geodermatophilaceae	Geodermatophilus	SBS, CA , TX	Org	Expanded	0.24	1.37	3.0
Actinobacteria	Actinomycetales	Kineosporiaceae	Kineosporia	BC, CA	Org	Declined	0.28	4.27	0.7
Actinobacteria	Actinomycetales	Microbacteriaceae	Subtercola	CA	Org	Expanded	0.33	1.15	11.7
Actinobacteria	Actinomycetales	Micrococcaceae	Arthrobacter	ON, BC, CA	-	Expanded	0.35	11.12	1.7
Actinobacteria	Actinomycetales	Micromonosporaceae	Dactylosporangium	BC, CA, TX	Org	Declined	0.25	2.14	0.7
Actinobacteria	Actinomycetales	Mycobacteriaceae	Mycobacterium	BC, BS, CA, TX	Org	Variable	1.03	92.86	0.8
Actinobacteria	Actinomycetales	Nocardiaceae	Rhodococcus	BC, ON, TX	-	Expanded	0.34	3.03	3.7
Actinobacteria	Actinomycetales	Nocardioidaceae	Kribbella	BC, TX	-	Variable	0.29	6.42	0.6
Actinobacteria	Actinomycetales	Pseudonocardiaceae	Amycolatopsis	BC, CA, TX	Min	Expanded	0.56	13.31	0.7
Actinobacteria	Actinomycetales	Pseudonocardiaceae	Actinomycetospora	CA, TX	Org	Expanded	0.46	17.85	3.2
Actinobacteria	Actinomycetales	Streptomycetaceae	Streptacidiphilus	BC, CA, TX	-	Declined	0.49	18.48	0.3
Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	BC, CA, TX	Org	Declined	0.31	13.90	0.8
Actinobacteria	Rubrobacterales	Rubrobacteraceae	Rubrobacter	CA	Min	Expanded	0.16	0.33	7.3
Actinobacteria	Gaiellales	Gaiellaceae	Gaiellaceae	All	Min	Expanded	0.39	20.48	2.0
Actinobacteria	Solirubrobacterales	unclassified	Solirubrobacter	BC, JP, CA, TX	Org	Declined	0.25	5.97	0.3
AD3	NA	NA	ABS-6	All	Min	Expanded	0.86	26.41	1.6
Armatimonadetes	NA	NA	0319-6E2	ON, BC, CA	Min	Expanded	0.20	1.76	2.2
Bacteroidetes	Cytophagales	Cytophagaceae	Spirosoma	CA	Org	Expanded	0.16	0.90	4.1
Bacteroidetes	Saprospirales	Chitinophagaceae	Flavisolibacter	IDF, ON, CA, TX	-	Expanded	0.25	1.69	2.4
Bacteroidetes	Saprospirales	Chitinophagaceae	Segetibacter	ON, CA	Min	Expanded	0.23	0.90	2.4
Chloroflexi	H39	NA	H39	ON, BC, CA	Min	Expanded	0.24	8.84	2.4
Chloroflexi	SBR1031	oc28	oc28	ON, BC, TX	-	Expanded	0.21	1.86	2.6
Chloroflexi	AKIW781	NA	AKW781	BC, CA	Org	Expanded	0.21	1.38	6.8
Chloroflexi	NA	NA	Gitt-GS-136	BC, BS, CA	Min	Expanded	0.46	7.70	2.6

Table E.6 Full list of bacterial and fungal taxa showing clear expansion or decline in response to harvesting.

Table E.6... continued

Phylum	Order	Family	Таха	Ecozones	Soil Layer	Response	Mean Abundance	Max. Abundance	Response ratio
Chloroflexi	B12-WMSP1	NA	B12-WMSP1	SBS, ON, CA	Min	Expanded	0.20	1.87	6.1
Chloroflexi	Thermogemmatisporales	Thermogemmatisporaceae	Thermogemmatisporaceae	SBS, JP, CA, TX	Min	Expanded	0.32	7.88	1.7
Chloroflexi	NA	NA	P2-11E	All	Min	Expanded	0.77	22.54	2.5
Chloroflexi	Ellin6537	NA	Ellin6537	All	-	Expanded	0.17	0.85	4.5
Cyanobacteria	Nostocales	Nostocaceae	Nostoc	BC	Org	Expanded	0.33	5.22	7.6
Firmicutes	Bacillales	Alicyclobacillaceae	Alicyclobacillus	BC, CA, TX	Min	Expanded	0.59	9.84	2.0
Firmicutes	Bacillales	Bacillaceae	Bacillus	BC, TX	Min	Expanded	0.28	5.83	1.4
Firmicutes	Bacillales	Bacillaceae	Geobacillus	BC	Min	Expanded	0.37	3.86	3.9
Firmicutes	Bacillales	Thermoactinomycetaceae	Thermoactinomycetaceae	BC	Min	Expanded	0.33	3.61	5.3
Firmicutes	Clostridiales	Clostridiaceae	Clostridium	BC, JP, CA, TX	Min	Expanded	0.25	3.52	2.8
GAL15	NA	NA	GAL15	ON, TX	Min	Expanded	0.20	2.50	4.5
Proteobacteria	Xanthomonadales	Rhodanobacteraceae	Luteibacter	BC, ON, TX	Org	Declined	0.62	18.97	0.5
Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC, ON	Org	Declined	0.44	5.38	0.4
Proteobacteria	Rhizobiales	Beijerinckiaceae	Methylocella	All	Org	Declined	0.25	4.08	0.7
Proteobacteria	Rhizobiales	Hyphomicrobiaceae	Rhodomicrobium	IDF, JP, CA, TX	Min	Declined	0.97	9.23	0.8
Proteobacteria	Rhizobiales	Hyphomicrobiaceae	Rhodoplanes	JP, CA, TX	Min	Variable	1.01	86.45	1.0
Proteobacteria	Rhizobiales	Methylobacteriaceae	Methylobacterium	ON, CA, TX	Org	Expanded	0.38	10.75	6.2
Proteobacteria	Rhizobiales	Rhizobiaceae	Ensifer	IDF, CA, TX	-	Expanded	0.14	0.22	Harv.Only
Proteobacteria	Rhizobiales	Xanthobacteraceae	Ancylobacter	BC, CA, TX	Org	Declined	0.24	1.71	0.2
Proteobacteria	Rhizobiales	Xanthobacteraceae	Labrys	BC, CA, TX	Org	Declined	0.34	5.59	0.7
Proteobacteria	Rhodospirillales	Acetobacteraceae	Acidocella	BC, JP, CA, TX	Org	Variable	0.78	31.58	0.6
Proteobacteria	Rhodospirillales	Acetobacteraceae	Acidiphilium	BC, JP, TX	Org	Variable	0.48	10.42	0.9
Proteobacteria	Rhodospirillales	Rhodospirillaceae	Skermanella	IDF	Org	Expanded	0.51	1.39	Harv.Only
Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingobium	BC, CA, TX	Org	Declined	0.23	6.41	0.2
Proteobacteria	Burkholderiales	Comamonadaceae	Ramlibacter	BC, BS, CA, TX	Min	Expanded	0.48	8.26	2.7
Proteobacteria	Burkholderiales	Comamonadaceae	Limnohabitans	BC, CA	Org	Declined	0.25	0.90	0.0
Proteobacteria	Burkholderiales	Comamonadaceae	Pelomonas	CA, TX	Org	Declined	0.30	3.59	0.4
Proteobacteria	Burkholderiales	Oxalobacteraceae	Massilia	BC, BS, CA	-	Expanded	0.34	4.00	5.6
Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	BC, CA, TX	-	Expanded	1.07	34.07	2.3
Proteobacteria	Burkholderiales	Oxalobacteraceae	Cupriavidus	JP, TX	Min	Expanded	0.28	4.27	2.5
Proteobacteria	Ellin6067	NA	Ellin6067	ON, BC, TX	Min	Expanded	0.51	13.28	1.7
Proteobacteria	Desulfuromonadales	Geobacteraceae	Geobacter	IDF, BS, CA, TX	Min	Expanded	0.34	15.16	2.1

Table E.6... continued

Phylum	Order	Family	Таха	Ecozones	Soil Layer	Response	Mean Abundance	Max. Abundance	Response ratio
Proteobacteria	Myxococcales	Cystobacteraceae	Cystobacter	JP, CA, TX	-	Expanded	0.24	1.92	2.5
Proteobacteria	Nevskiales	Sinobacteraceae	Sinobacteraceae	All	-	Declined	1.16	66.63	0.7
Proteobacteria	Alteromonadales	Alteromonadaceae	Cellvibrio	TX	Min	Expanded	0.30	1.82	8.8
Proteobacteria	Xanthomonadales	Rhodanobacteraceae	Rhodanobacter	BC, BS, CA, TX	Org	Declined	0.29	3.27	0.2
Proteobacteria	Xanthomonadales	Xanthomonadaceae	Lysobacter	IDF	Min	Expanded	0.47	0.82	Harv.Only
Verrucomicrobia	Opitutales	Opitutaceae	Opitutus	ON, BC, CA	Org	Declined	0.23	11.56	0.5
Chloroplast	Trebouxiophyceae	Coccomyxa	Соссотуха	SBS, ON, CA, TX	Org	Expanded	0.24	1.25	7.9
Chloroplast	NA	NA	Chloroplast	All	-	Expanded	0.55	49.81	3.4
Chloroplast	NA	NA	Stramenopiles	BC	Org	Expanded	0.23	1.27	11.2
Proteobacteria	Rickettsiales	mitochondria	mitochondria	All	-	Expanded	0.36	15.83	7.9
Ascomycota	Capnodiales	Incertae sedis	Phaeotheca fissurella	BC, CA	Org	Expansion	0.29	1.71	8.8
Ascomycota	Dothideales	Dothioraceae	Hormonema	CA	Org	Expansion	0.60	52.23	10.5
Ascomycota	Microthyriales	Microthyriaceae	Tothia	BC, CA	Org	Decline	0.91	16.25	0.0
Ascomycota	Pleosporales	NA	Pleosporales sp 2 MU 2012	BC	Org	Expansion	1.80	52.00	13.9
Ascomycota	Pleosporales	Sporormiaceae	Preussia	CA	Org	Expansion	0.54	23.89	0.7
Ascomycota	Pleosporales	Venturiaceae	Venturia	CA BC	Org	Decline	1.47	210.98	1.1
Ascomycota	Pleosporales	Venturiaceae	Rhizosphaera	CA	Org	Expansion	1.20	31.32	5.0
Ascomycota	Pleosporomycetidae	Gloniaceae	Cenococcum	BC, ON, CA	-	Decline	4.69	331.43	0.3
Ascomycota	Chaetothyriales	Herpotrichiellaceae	Cladophialophora	BC, BS	Org	Variable	0.78	56.67	0.5
Ascomycota	Chaetothyriales	Herpotrichiellaceae	Capronia	BC	Org	Variable	2.18	159.86	0.2
Ascomycota	Chaetothyriales	Herpotrichiellaceae	Rhinocladiella	BC	Org	Decline	0.77	3.19	0.0
Ascomycota	Chaetothyriales	NA	Chaetothyriales sp EXP0559F	BC, CA	Org	Decline	1.95	162.09	0.0
Ascomycota	Eurotiales	Elaphomycetaceae	Elaphomyces	ON, CA, TX	-	Decline	14.44	334.23	0.0
Ascomycota	Eurotiales	Trichocomaceae	Sagenomella	BC, ON	Min	Expansion	3.07	102.85	2.1
Ascomycota	Eurotiales	Trichocomaceae	Penicillium arenicola	BC, ON	Min	Expansion	1.92	44.97	1.4
Ascomycota	Eurotiales	Trichocomaceae	Talaromyces	BC, ON	Org	Expansion	2.02	60.00	1.4
Ascomycota	Lecanorales	Cladoniaceae	Cladoniaceae	ON, BC	Org	Expansion	0.81	26.42	65.3
Ascomycota	Lecanorales	NA	Lecanorales	BC, ON, CA	-	Expansion	0.74	26.42	37.5
Ascomycota	Helotiales	Dermateaceae	Cryptosporiopsis	BC	-	Expansion	0.48	19.14	2.4
Ascomycota	Helotiales	Dermateaceae	Mollisia	CA	Org	Expansion	0.78	20.81	14.8
Ascomycota	Helotiales	Helotiaceae	Crocicreas	BC,ON, CA	Org	Decline	1.10	150.27	0.6
Ascomycota	Helotiales	Helotiaceae	Rhizoscyphus ericae	BC, ON	-	Expansion	2.56	263.51	5.3

Table E.6... continued

Phylum	Order	Family	Таха	Ecozones	Soil Layer	Response	Mean Abundance	Max. Abundance	Response ratio
Ascomycota	Helotiales	Hyaloscyphaceae	Hyaloscyphaceae sp I GK 2010	BC, ON	Org	Decline	0.78	6.76	0.0
Ascomycota	Helotiales	Hyaloscyphaceae	Mycoarthris	SBS, CA	Org	Decline	0.94	21.91	0.1
Ascomycota	Helotiales	Incertae sedis	Cadophora finlandica	BC, ON, CA	Min	Expansion	3.05	322.32	2.7
Ascomycota	Helotiales	Incertae sedis	Rhexocercosporidium	BC, BS, CA	Min	Expansion	1.03	50.12	4.5
Ascomycota	Helotiales	Incertae sedis	Tetracladium	BC, ON	Org	Expansion	0.52	14.22	3.5
Ascomycota	Incertae sedis	Incertae sedis	Leohumicola incrustata	BC, ON,	Min	Expansion	4.14	73.63	7.8
Ascomycota	Leotiales	Leotiaceae	Leotiaceae	SBS, BS	-	Expansion	6.20	190.66	159.7
Ascomycota	NA	NA	Ascomycota sp F45	BC, ON, CA	-	Decline	1.32	20.23	0.0
Ascomycota	Rhytismatales	Rhytismataceae	Lophodermium molitoris	ON	-	Expansion	0.49	4.88	15.7
Ascomycota	Thelebolales	Thelebolaceae	Thelebolus	IDF	Org	Decline	2.38	432.70	0.1
Ascomycota	NA	NA	fungal sp TRN36	BC, ON, CA	-	Expansion	0.80	16.15	49.4
Ascomycota	NA	NA	ascomycete sp olrim916	BC, BS	Min	Expansion	1.14	59.16	13.0
Ascomycota	NA	NA	Ascomycete CR 2004	BC, CA	Org	Decline	0.49	4.90	0.0
Ascomycota	NA	NA	Ascomycota sp X33	BC	-	Expansion	1.93	118.72	11.8
Ascomycota	NA	NA	ascomycete sp CH Co24	ON	Org	Expansion	0.60	121.94	10.3
Ascomycota	NA	NA	Ascomycota sp PIMO 418	CA	Org	Expansion	1.14	74.68	46.9
Ascomycota	Pezizales	Pyronemataceae	Otidea	BC, CA	-	Decline	8.16	85.16	0.0
Ascomycota	Hypocreales	Bionectriaceae	Clonostachys rosea catenulata	ТХ	Min	Decline	1.89	500.00	0.0
Ascomycota	Hypocreales	Cordycipitaceae	Lecanicillium	All	Org	Decline	0.82	14.22	0.2
Ascomycota	Hypocreales	Cordycipitaceae	Lecanicillium sp. BESC 246b	ON, BC	-	Expansion	0.35	3.15	24.7
Ascomycota	Hypocreales	Hypocreaceae	Hypocrea	SBS, ON, CA, TX	Org	Decline	1.13	37.29	0.4
Ascomycota	Hypocreales	Nectriaceae	Gibberella	BC, CA, TX	Org	Expansion	0.74	21.22	16.7
Ascomycota	Hypocreales	Nectriaceae	Cylindrocarpon sp JAT1366	BC, BS	-	Expansion	0.84	32.31	4.8
Ascomycota	Sordariales	Chaetomiaceae	Trichocladium opacum	BC, ON	Min	Expansion	0.66	14.59	6.0
Basidiomycota	Agaricales	Amanitaceae	Amanitaceae	тх	-	Decline	10.07	290.76	0.4
Basidiomycota	Agaricales	Cortinariaceae	Cortinarius	BC, ON, CA	-	Decline	5.27	427.35	0.3
Basidiomycota	Agaricales	Hydnangiaceae	Laccaria	ON, CA	-	Expansion	5.13	185.14	1.6
Basidiomycota	Agaricales	Hygrophoraceae	Hygrophorus	BC, ON, CA	-	Decline	17.59	316.98	0.1
Basidiomycota	Agaricales	Inocybaceae	Inocybe impexa	SBS, ON	Min	Expansion	5.34	183.45	24.3
Basidiomycota	Agaricales	Lyophyllaceae	Lyophyllum	BC	Org	Decline	1.27	36.95	0.0
Basidiomycota	Agaricales	Mycenaceae	Mycena corynephora	ТХ	-	Expansion	2.14	62.74	7.5
Basidiomycota	Agaricales	Tricholomataceae	Tricholoma triste	IDF	-	Decline	1.06	12.71	0.0

Table E.6... continued

Phylum	Order	Family	Таха	Ecozones	Soil Layer	Response	Mean Abundance	Max. Abundance	Response ratio
Basidiomycota	Atheliales	Atheliaceae	Piloderma	All	-	Decline	18.70	907.86	0.2
Basidiomycota	Boletales	Gomphidiaceae	Gomphidiaceae	BC, CA	Min	Expansion	0.98	6.85	38.5
Basidiomycota	Boletales	Gomphidiaceae	Chroogomphus	BC	-	Expansion	0.72	6.85	45.7
Basidiomycota	Boletales	Rhizopogonaceae	Rhizopogon fuscorubens	ТХ	-	Decline	0.83	25.78	0.5
Basidiomycota	Boletales	Suillaceae	Suillus pseudobrevipes	BC, ON	Min	Expansion	60.18	1000.00	111.0
Basidiomycota	Boletales	Suillaceae	Suillus tomentosus	BC	-	Expansion	4.62	403.77	36.2
Basidiomycota	Gomphales	Gomphaceae	Ramaria	IDF, TX	-	Decline	1.73	14.94	0.0
Basidiomycota	Russulales	Russulaceae	Russula	BC, ON, CA	Min	Decline	17.15	514.38	0.4
Basidiomycota	Sebacinales	Sebacinaceae	Sebacina	BC	Org	Decline	1.65	78.74	0.5
Basidiomycota	Thelephorales	Thelephoraceae	Pseudotomentella	BC, ON	-	Decline	4.24	238.57	0.0
Basidiomycota	Trechisporales	NA	uncultured Trechisporales	BC, BS, TX	-	Expansion	3.56	116.62	3.5
Basidiomycota	NA	NA	Agaricomycotina sp	BC, ON	-	Expansion	4.34	84.19	106.4
Basidiomycota	Filobasidiales	Filobasidiaceae	Cryptococcus	SBS, ON	-	Expansion	2.48	99.67	1.5
Chytridiomycota	Monoblepharidales	Oedogoniomycetaceae	Oedogoniomyces	CA	-	Expansion	0.46	3.22	17.3
Chytridiomycota	NA	NA	Monoblepharidomycetes	CA, ON	Min	Expansion	0.65	4.60	4.3
Uncl. Fungi	NA	NA	fungal sp aurim625	ON, BC	Min	Expansion	1.62	67.77	6.7
Zygomycota	Mortierellales	Mortierellaceae	Mortierella sp WD35C	BC, ON	Min	Expansion	0.75	8.85	2.5
Zygomycota	Mucorales	Umbelopsidaceae	Umbelopsis vinacea	BC, BS, CA	Org	Decline	0.39	2.51	0.0

Phylum	Order	Family	Таха	Ecozones	Soil Layer	Max Abundance OM1 OM2	Mean Abundance	Max Abundance REF OM3	Response ratio
Proteobacteria	Rhizobiales	Phyllobacteriaceae	Phyllobacterium	IDF	None	20.96	0.52	8.50	2.4
Proteobacteria	Rhizobiales	Methylobacteriaceae	Methylobacterium	BC	Org	10.75	0.38	9.90	1.1
Proteobacteria	Rhizobiales	Methylobacteriaceae	Microvirga	IDF	Org	2.54	0.33	0.70	4.7
Basidiomycota	Agaricales	Clavariaceae	Ramariopsis	BC	None	16.32	5.25	67.99	2.0
Basidiomycota	Agaricales	Entolomataceae	Clitopilus sp. 1_T_778	ТΧ	Org	9.22	0.72	0.53	8.7
Basidiomycota	Agaricales	Hygrophoraceae	Hygrocybe sp	SBS, JP	None	145.08	4.30	16.88	13.3
Basidiomycota	Agaricales	NA	Agaricales sp.	IDF	Org	53.88	1.50	10.88	3.8
Basidiomycota	Atheliales	Atheliaceae	Piloderma sphaerosporum	SBS, BS	Org	907.86	23.70	344.53	3.4
Basidiomycota	Atheliales	Atheliaceae	Piloderma olivaceum	SBS, JP	Org	614.16	21.51	363.71	3.1
Basidiomycota	Boletales	Gomphidiaceae	Chroogomphus vinicolor	SBS	None	2.32	0.36	1.24	5.1
Basidiomycota	Boletales	Suillaceae	Suillus cothurnatus	JP	None	19.67	0.98	10.66	1.8
Basidiomycota	Hymenochaetales	Schizoporaceae	Hyphodontia aspera	BC	None	547.24	8.52	35.76	20.7
Basidiomycota	Thelephorales	Thelephoraceae	Thelephora sp. ECM1	BC, ON, CA	Org	212.67	2.46	22.03	11.7
Ascomycota	Hypocreales	Incertae sedis	Myrothecium	ТХ	None	13.96	0.96	1.88	3.8
Ascomycota	Microascales	Microascaceae	Doratomyces stemonitis	BC	None	35.20	1.11	0.20	81.2
Ascomycota	Sordariales	Lasiosphaeriaceae	Podospora	BC, TX	Org	53.91	2.01	10.47	3.8
Ascomycota	Xylariales	Amphisphaeriaceae	Discosia sp.1_KT_2010	ТХ	None	5.01	0.21	1.65	4.6
Ascomycota	Pezizales	Tuberaceae	Tuber sp. 17_KA_2010	CA	Min	106.17	20.44	0.00	OM 1 OM 2 only
Ascomycota	Geoglossales	Geoglossaceae	Geoglossum	BC	None	117.42	4.47	25.92	4.1
Ascomycota	Helotiales	Incertae sedis	Tetracladium	IDF	Org	14.22	0.52	5.68	3.3
Ascomycota	Rhytismatales	Rhytismataceae	Colpoma sp. PDD_91607	ON	Org	6.72	1.91	8.83	1.1
Ascomycota	Eurotiales	Trichocomaceae	Penicillium adametzii	JP	Org	123.47	2.09	72.22	1.5
Ascomycota	Verrucariales	NA	Verrucariales	BC, ON	None	234.90	1.92	58.45	1.7
Ascomycota	Capnodiales	Incertae sedis	Elasticomyces elasticus	BC	Org	10.44	0.92	3.35	5.1
Ascomycota	Capnodiales	Mycosphaerellaceae	Mycosphaerella sp. AM_2006c	BC	Org	38.64	0.82	2.98	8.0
Unclassified	NA	NA	Fungal sp. AB22	IDF, CA	Org	8.72	0.52	2.51	5.0
Unclassified	NA	NA	Fungal sp. OTU_084	тх	None	0.39	0.12	0.13	6.8

Table E.7. Full list of bacterial and fungal taxa showing population expansion in intermediate intensities of OM-removal.

Table E.8. Overview of site characteristics for environmental and soil parameters and microbial activity. Values denoted by letters are statistically significant (p < 0.05) by lettering group based on Tukey's Honest Significant Difference.

		Blodgett	Brandy City	Lowell Hill
	Year Established	1994	1995	1995
Site Data	Lat / Long	38.88N / 120.64W	39.55N / 121.04W	39.26N / 120.78W
Sile Dala	Elevation	1350 m	1135 m	1268 m
	Soil type	Mesic	Ultic Haploxeralfs (Lo	amy)
	Average Percent Carbon	8 ^A ± 0.36	7 ^B ± 0.15	4.7 ^C ± 0.14
Soil composition (n=9)	Average Percent Nitrogen	$0.37^{A} \pm 0.019$	$0.32^{B} \pm 0.007$	$0.2^{\rm C} \pm 0.004$
Soli composition (n=9)	Average C:N Ratio	22.1 ± 0.45	22.2 ± 0.42	23.5 ± 0.77
	Average pH	5.69 ± 0.04	5.77 ± 0.08	5.81 ± 0.09
Respiration (n=36)	Average mg CO2 per g soil	1.13 ^A ± 0.05	1.02 ± 0.04	0.97 ^B ± 0.05
	Average delta- ¹³ C	1400 ^A ± 100	3300 ^B ± 400	2500 ^B ± 300
PLFA Biomass (n = 12)	Total ¹³ C Biomass (umols C per g soil)	0.33 ^A	0.63 ^B	0.53
(11 - 12)	Total ¹² C Biomass (umols C per g soil)	46.5 ^A	25.8 ^B	21.3 ^B

Technical error (S.D.) for delta- 13 C is 80, which is equivalent to an average of ± 0.0003 umols C

Table E.9. Overview of soil properties and cellulolytic activity (i.e. ¹³C-enrichment of PLFA or DNA) among soil layers and harvesting treatments. All values correspond to the mean \pm standard error. Within groups of treatments, significantly different values (p < 0.05) have been denoted by lettering based on Tukey's Honest Significant Difference.

		Organic Layer				Mineral Layer				
		REF	OM1	OM2	OM3	REF	OM1	OM2	OM3	
	Average Percent Carbon	37.0 ± 2.2	41.5 ^A ± 1.0	33.0 ± 2.4	31.5 ^B ± 3.6	5.9 ± 0.5	7.6 ±0.7	-	6.4 ± 0.8	
Soil composition	Average Percent Nitrogen	1.21 ± 0.09	1.34 ± 0.11	1.21 ± 0.13	1.10 ± 0.13	0.26 ± 0.02	0.31 ± 0.04	-	0.32 ± 0.04	
(n=9)	Average C:N Ratio	31.1 ± 1.5	32.5 ± 3.3	28.2 ± 1.7	29.5 ± 2.2	22.3 ± 0.9	25.4 ^A ± 1.3	-	20.0 ^B ± .03	
	Average pH	5.47 ± 0.2	4.35 ^A ± 0.2	5.1 ± 0.2	5.2 ^B ± 0.1	6.1 ± 0.2	5.5 ± 0.1	-	5.6 ± 0.1	
Repiration (n=36)	Repiration (n=36) Average mg CO_2 per g soil		-	-	-	1.20 ^A ± 0.04	1.01 ^B ± 0.04	-	0.90 ^C ± 0.05	
	Average Delta ¹³ C	1,600 ± 110	1,100 ± 130	2,300 ± 170	1,400 ± 70	6,400 ^A ± 870	4,800 ± 650	4,800 ± 700	3,200 ^B ± 540	
	Total ¹³ C carbon (umols ¹³ C per g soil)	0.96 ^A	0.45 ^B	0.62	0.68	0.42 ^A	0.43 ^A	0.41 ^A	0.24 ^B	
PLFA Biomass Measures (n= 9)	Total ¹² C carbon (umols ¹³ C per g soil)	32.2 ^A	19.0 ^B	16.6 ^B	25.8 ^A	5.0 ⁴	6.6 ^B	6.2	5.0	
	Median number of enriched FA	33 ^A ± 0.9	27 ^C ± 1.2	27 ^B ± 0.7	25 ^C ± 0.5	29 ± 1.2	29 ± 0.7	29 ± 0.6	27 ± 0.7	
	Fungal:Bacteria Ratio (¹³ C)	0.78 ^A ± 0.07	0.95 ^A ± 0.05	1.68 ^B ± 0.21	1.95 ^B ± 0.48	0.64 ± 0.13	0.71 ± 0.15	0.92 ± 0.13	1.03 ± 0.23	
DNA enrichment (n=3)	Atom % ¹³ C above natural abundance	4.8 ± 1.0	4.5 ± 1.5	5.6 ± 1.1	3.3 ± 0.5	14.6 ^A ± 2.2	9.9 ± 1.1	10.3 ± 0.6	9.1 ^B ± 1.1	

Technical error (S.D.) for Delta-values is 80, which is equivalent to an average of ± 0.0003 umols C

Table E.10. Complete list of OTUs designated putatively cellulolytic based on differential abundance between ¹³C- and ¹²C-pyrotag libraries.

Representative Sequence ID	Phylum	Lowest taxonomic classification	GenBank Accession	Soil Layer Affiliation	Ratio (¹³ C: ¹² C)	Mean Counts ¹³ C Libraries
IIKFCBR01BZTGT	FBP	-	KM391432	Min	380.4	86.46
IIKFCBR01BFFL6	FBP	-	KM391438	Min	138.8	63.08
HN7PONR02H7VJP	FBP	-	KM391441	None	95.8	52.25
IIKFCBR01AO3YU	FBP	-	KM391442	Min	86.0	50.83
HIGEX0001DHO1H	FBP	-	KM391496	Min	104.0	9.46
IIKFCBR01DEH19	FBP	-	KM391570	Min	13C-only	2.71
IIKFCBR01D1LXB	FBP	-	KM391612	Min	13C-only	1.5
IIKFCBR01D3UQS	FBP	-	KM391623	None	13C-only	1.21
IIKFCBR01EFACT	FBP	-	KM391624	Min	13C-only	1.21
IIKFCBR01CSGER	FBP	-	KM391628	Org	24.8	1.12
IIKFCBR01A1GBU	Chloroflexi	cAnaerolineae	KM391569	Min	9.2	2.5
HN7PONR02GQXBE	Chloroflexi	cAnaerolineae	KM391607	Min	33.0	1.5
IIKFCBR01BMT7K	TM7	cSC3	NA	Min	9.7	8.33
IIKFCBR01B8I79	TM7	cTM7-3	KM391459	Min	16.8	23.67
IIKFCBR01CC1CG	TM7	cTM7-3	KM391535	Min	5.4	3.92
IIKFCBR01AVU5M	TM7	cTM7-3	KM391552	Min	4.0	2.92
IIKFCBR01A3FLV	TM7	cTM7-3	KM391555	Min	76.1	3.46
HIGEX0001AOCX6	TM7	cTM7-3	KM391631	Min	23.8	1.08
IIKFCBR01EEO74	Acidobacteria	fAcidobacteriaceae	KM391499	Org	8.3	7.88
IIKFCBR01DRU3P	Betaproteobacteria	fBurkholderiaceae	KM391469	Org	8.6	16.33
IIKFCBR01CIYUN	Alphaproteobacteria	fCaulobacteraceae	KM391466	Min	3.8	16.67
IIKFCBR01DYD22	Alphaproteobacteria	fCaulobacteraceae	KM391477	Min	11.1	13.67
IIKFCBR01CIUIN	Verrucomicrobia	fChthoniobacteraceae	KM391501	Min	13C-only	8.08
IIKFCBR01ERXIS	Betaproteobacteria	fComamonadaceae	KM391426	Org	6.0	463
IIKFCBR01DS94Y	Betaproteobacteria	fComamonadaceae	KM391457	Org	8.9	24.12
IIKFCBR01C43J2	Betaproteobacteria	fComamonadaceae	KM391482	Min	32.0	13.08
IIKFCBR01A7C7S	Betaproteobacteria	fComamonadaceae	KM391506	Org	81.6	7.42
IIKFCBR01A1YGP	Betaproteobacteria	fComamonadaceae	KM391536	None	9.6	3.92
IIKFCBR01ANKGB	Betaproteobacteria	fComamonadaceae	KM391609	None	16.0	1.46
IIKFCBR01C5N8I	Betaproteobacteria	fComamonadaceae	KM391633	Org	11.5	1.04
IIKFCBR01EGBTI	Betaproteobacteria	fComamonadaceae	KM391634	None	11.5	1.04
IIKFCBR01BU6ZQ	Actinobacteria	fMicrobacteriaceae	KM391455	Org	4.9	23.17
IIKFCBR01C2U0N	Actinobacteria	fMicrobacteriaceae	KM391529	Org	9.3	4.62
IIKFCBR01B6QL0	Actinobacteria	fMicrobacteriaceae	KM391557	Org	37.6	3.42
IIKFCBR01APJE8	Actinobacteria	fMicrobacteriaceae	KM391584	Org	8.3	1.88
IIKFCBR01BYZFY	Actinobacteria	fMicrococcaceae	KM391440	Min	7.4	49

Representative Sequence ID	Phylum		Lowest taxonomic classification	GenBank Accession		Ratio (¹³ C: ¹² C)	Mean Counts ¹³ C Libraries
IIKFCBR01BCOEN	Actinobacteria	f_	_Micrococcaceae	KM391458	Min	9.4	24.04
IIKFCBR01DDYRU	Actinobacteria	f_	_Micrococcaceae	KM391474	Min	8.7	15
IIKFCBR01BJ93C	Actinobacteria	f_	_Micrococcaceae	KM391475	Min	11.7	14.88
HN7PONR01BR35E	Actinobacteria	f_	_Micrococcaceae	KM391480	Min	5.3	12.12
IIKFCBR01BDZM0	Actinobacteria	f_	_Micrococcaceae	KM391487	Min	6.9	10.92
IIKFCBR01BE44L	Actinobacteria	f_	_Micrococcaceae	KM391493	Min	6.1	8.62
IIKFCBR01C7YA6	Actinobacteria	f_	_Micrococcaceae	KM391494	Min	6.7	8.5
IIKFCBR01A57Z2	Actinobacteria	f_	_Micrococcaceae	KM391516	Min	11.9	5.96
IIKFCBR01B332I	Actinobacteria	f_	_Micrococcaceae	KM391527	Min	16.0	5.08
IIKFCBR01BLXQH	Actinobacteria	f_	_Micrococcaceae	KM391575	Min	5.7	2.08
IIKFCBR01B0YQ8	Actinobacteria	f_	_Micrococcaceae	KM391576	Min	16.2	2.21
IIKFCBR01AWDW0	Actinobacteria	f_	_Micrococcaceae	KM391579	Min	47.7	2.17
IIKFCBR01BFXK4	Actinobacteria	f_	_Micrococcaceae	KM391586	None	9.9	1.79
IIKFCBR01AEE5B	Actinobacteria	f_	_Micrococcaceae	KM391608	Min	10.4	1.42
IIKFCBR01BKECV	Actinobacteria	f_	_Micrococcaceae	KM391616	None	13C-only	1.42
IIKFCBR01CUHF7	Verrucomicrobia	f_	_Opitutaceae	KM391546	Min	13C-only	3.92
IIKFCBR01DZQMM	Betaproteobacteria	f_	_Oxalobacteraceae	KM391434	None	3.2	62.17
IAJCH1401CBT2J	Betaproteobacteria	f_	_Oxalobacteraceae	KM391436	Min	25.1	66.12
IIKFCBR01BAN8Z	Betaproteobacteria	f_	_Oxalobacteraceae	KM391449	Min	8.2	28.29
IIKFCBR01A76N2	Betaproteobacteria	f_	_Oxalobacteraceae	KM391451	Min	31.6	28.75
HNWQNZC02JYSX7	Betaproteobacteria	f_	_Oxalobacteraceae	KM391452	Min	7.6	26.04
IIKFCBR01BCCJU	Betaproteobacteria	f_	_Oxalobacteraceae	KM391484	Min	7.8	11.67
IIKFCBR01C2P23	Betaproteobacteria	f_	_Oxalobacteraceae	KM391497	Min	27.0	8.58
IIKFCBR01B6UNX	Betaproteobacteria	f_	_Oxalobacteraceae	KM391531	Min	8.7	4.33
IIKFCBR01CXGLN	Betaproteobacteria	f_	_Oxalobacteraceae	KM391532	Min	4.6	4
IIKFCBR01A2C6E	Betaproteobacteria	f_	_Oxalobacteraceae	KM391540	None	21.8	3.96
IIKFCBR01CHYHE	Betaproteobacteria	f_	_Oxalobacteraceae	KM391542	Min	43.5	3.96
IIKFCBR01EYBXG	Betaproteobacteria	f_	_Oxalobacteraceae	KM391549	None	9.1	3.29
IIKFCBR01B4BRK	Betaproteobacteria	f_	_Oxalobacteraceae	KM391581	Min	6.7	1.83
IIKFCBR01CHZ6D	Betaproteobacteria	f_	_Oxalobacteraceae	KM391615	None	31.2	1.42
IIKFCBR01B2HLT	Betaproteobacteria	f_	_Oxalobacteraceae	KM391625	None	13C-only	1.21
IIKFCBR01CPZBH	Betaproteobacteria	f_	_Oxalobacteraceae	KM391644	None	11.0	0.5
IIKFCBR01BXH5Y	Deltaproteobacteria	f_	_Polyangiaceae	KM391587	None	13.1	1.79
IIKFCBR01DEHMO	Deltaproteobacteria	f_	_Polyangiaceae	KM391594	Min	13C-only	1.75
IIKFCBR01DMDVI	Deltaproteobacteria	f_	_Polyangiaceae	KM391617	None	14.2	1.29
IIKFCBR01BYX3V	Alphaproteobacteria	f_	_Rhizobiaceae	KM391503	Min	9.2	7.12
IAJCH1401C9UV8	Alphaproteobacteria	f_	_Rhizobiaceae	KM391533	Org	4.5	3.71
IAJCH1401A7YMK	Alphaproteobacteria	f_	_Sphingomonadaceae	KM391488	None	6.7	10.29
IIKFCBR01C0549	Alphaproteobacteria	f_	_Sphingomonadaceae	KM391518	Org	20.8	5.67
IAJCH1401AEXIJ	Actinobacteria	f_	_Streptomycetaceae	KM391421	Min	10.9	1048.58
IIKFCBR01BYUBL	Actinobacteria	f_	_Streptomycetaceae	KM391422	Org	11.9	1039.96
IAJCH1401BBVVT	Actinobacteria	f_	_Streptomycetaceae	KM391425	Org	52.8	628.71
IIKFCBR01D5T95	Actinobacteria	f_	_Streptomycetaceae	KM391430	Org	15.9	101.46
IIKFCBR01AZO3D	Actinobacteria	f_	_Streptomycetaceae	KM391435	Org	20.1	75.75
IIKFCBR01ECL7T	Actinobacteria	f_	_Streptomycetaceae	KM391489	Org	4.8	9.58

Representative Sequence ID	Phylum	Lowest taxonomic classification	GenBank Accession	Soil Layer Affiliation	Ratio (¹³ C: ¹² C)	Mean Counts ¹³ C Libraries
IIKFCBR01CGLNH	Actinobacteria	fStreptomycetaceae	KM391490	Org	11.8	10.17
IAJCH1401BOAMR	Actinobacteria	fStreptomycetaceae	KM391512	Org	5.0	5.62
IIKFCBR01CLDHG	Actinobacteria	fStreptomycetaceae	KM391539	Org	90.8	4.12
IIKFCBR01AXDQT	Actinobacteria	fStreptomycetaceae	KM391547	Org	41.7	3.79
IIKFCBR01E0MN1	Actinobacteria	fStreptomycetaceae	KM391548	None	26.3	3.58
IIKFCBR01DMD0B	Actinobacteria	fStreptomycetaceae	KM391554	None	76.1	3.46
IIKFCBR01B5BIG	Actinobacteria	fStreptomycetaceae	KM391556	Org	12.1	3.29
IIKFCBR01DXW8W	Actinobacteria	fStreptomycetaceae	KM391558	Org	6.7	3.04
IIKFCBR01B7AGX	Actinobacteria	fStreptomycetaceae	KM391559	Org	74.3	3.38
IIKFCBR01CGADV	Actinobacteria	fStreptomycetaceae	KM391566	Org	14.9	2.71
IIKFCBR01EPBWF	Actinobacteria	fStreptomycetaceae	KM391567	Org	62.3	2.83
IIKFCBR01BOVHS	Actinobacteria	fStreptomycetaceae	KM391573	Org	28.4	2.58
IIKFCBR01AU6O6	Actinobacteria	fStreptomycetaceae	KM391574	Org	56.8	2.58
IIKFCBR01D7QZF	Actinobacteria	fStreptomycetaceae	KM391597	Org	11.6	1.58
IAJCH1401BKC7U	Actinobacteria	fStreptomycetaceae	KM391627	Org	24.8	1.12
IIKFCBR01AID29	Actinobacteria	fStreptomycetaceae	KM391637	Org	13C-only	0.96
IIKFCBR01DVIF8	Actinobacteria	fStreptomycetaceae	KM391638	Org	13C-only	0.79
IIKFCBR01CPO5D	Verrucomicrobia	fVerrucomicrobiaceae	KM391614	Min	31.2	1.42
IIKFCBR01EWOZA	Alphaproteobacteria	gAsticcacaulis	KM391431	Org	9.3	92.92
IIKFCBR01DL1OD	Alphaproteobacteria	gAsticcacaulis	NA	Min	249.7	56.75
IIKFCBR01CMBQF	Alphaproteobacteria	gAsticcacaulis	KM391445	Min	6.2	33.38
HS30DLI03GTYPT	Alphaproteobacteria	gAsticcacaulis	KM391453	Org	11.2	26.92
HTIQ2CV02D5F0W	Alphaproteobacteria	gAsticcacaulis	KM391486	Org	17.5	11.96
HTIQ2CV02EMOB8	Alphaproteobacteria	gAsticcacaulis	KM391491	Min	3.6	8.54
IIKFCBR01B3UOM	Alphaproteobacteria	gAsticcacaulis	KM391504	None	2.5	5.71
IIKFCBR01C57G0	Alphaproteobacteria	gAsticcacaulis	KM391509	Org	10.0	6.38
IAJCH1401CIS09	Alphaproteobacteria	gAsticcacaulis	KM391515	Org	2.8	4.88
IAJCH1401AWMYF	Alphaproteobacteria	gAsticcacaulis	KM391596	Org	8.0	1.46
IIKFCBR01DHW5N	Alphaproteobacteria	gAsticcacaulis	KM391604	Min	13C-only	1.58
IIKFCBR01DXYAY	Alphaproteobacteria	gBosea	KM391478	Min	9.7	13.25
IIKFCBR01ETHS5	Alphaproteobacteria	gBradyrhizobium	KM391485	None	2.9	9.71
HN5XJPU01A522S	Betaproteobacteria	gBurkholderia	KM391468	Org	8.1	16.5
IAJCH1401C0K4M	Betaproteobacteria	gBurkholderia	KM391476	None	6.0	13.46
IIKFCBR01C5DL9	Betaproteobacteria	gBurkholderia	KM391498	Org	9.3	8.04
IIKFCBR01AX8JN	Betaproteobacteria	gBurkholderia	KM391578	Org	22.9	2.08
IIKFCBR01DE6JJ	Alphaproteobacteria	gCaulobacter	KM391429	None	10.6	101.71
IIKFCBR01DW3ZT	Alphaproteobacteria	gCaulobacter	KM391463	None	10.7	20.88
IIKFCBR01D0O4W	Alphaproteobacteria	gCaulobacter	KM391583	Org	8.3	1.88
IIKFCBR01DE6JJ	Alphaproteobacteria	gCaulobacter	KM391429	None	13C-only	0.62
IIKFCBR01DWA8V	Verrucomicrobia	gChthoniobacter	KM391602	None	11.0	1.5
HNWQNZC01E81FU	Actinobacteria	gCryocola	KM391444	Min	3.0	33.83
IIKFCBR01CKQ7J	Actinobacteria	gCryocola	KM391461	None	5.0	20.04
IIKFCBR01DE9YX	Actinobacteria	gCryocola	KM391481	None	4.6	11.58
IIKFCBR01AYG8N	Actinobacteria	gCryocola	KM391483	None	13.1	12.54
IIKFCBR01ATR7O	Actinobacteria	gCryocola	KM391528	None	6.4	4.67

Representative Sequence ID	Phylum		Lowest taxonomic classification	GenBank Accession		Ratio (¹³ C: ¹² C)	Mean Counts ¹³ C Libraries
IIKFCBR01BOI04	Actinobacteria	g_	_Cryocola	KM391551	None	3.0	2.75
IIKFCBR01AGJ26	Actinobacteria	g_	_Cryocola	KM391565	Min	5.5	2.5
IIKFCBR01D19UA	Bacteroidetes	g_	_Cytophaga	KM391534	Org	6.3	4
IIKFCBR01DRRUD	Alphaproteobacteria	g_	_Devosia	KM391525	Min	5.5	4.71
IIKFCBR01EWZMX	Betaproteobacteria	g_	_Janthinobacterium	KM391423	Min	5.7	853.88
IIKFCBR01CGTHF	Betaproteobacteria	g_	_Janthinobacterium	KM391427	Min	9.1	290.62
IAJCH1401AD6I5	Betaproteobacteria	g_	_Janthinobacterium	KM391428	Min	5.2	122.12
IIKFCBR01AZ0B7	Betaproteobacteria	g_	_Janthinobacterium	KM391433	None	6.1	72.54
IIKFCBR01EOLME	Betaproteobacteria	g_	_Janthinobacterium	KM391446	None	4.9	29.79
IIKFCBR01B7Z4O	Betaproteobacteria	g_	_Janthinobacterium	KM391454	Org	15.2	26.92
IIKFCBR01DKN65	Betaproteobacteria	g_	_Janthinobacterium	KM391471	None	7.6	15.83
IAJCH1401B0CT5	Betaproteobacteria	g_	_Janthinobacterium	KM391502	Min	2.7	5.88
HNWQNZC01AW5S8	Betaproteobacteria	g_	_Janthinobacterium	KM391537	Min	2.7	3.17
IIKFCBR01ATT4K	Betaproteobacteria	g_	_Janthinobacterium	KM391560	None	17.4	3.17
IIKFCBR01CSF10	Betaproteobacteria	g_	_Janthinobacterium	KM391563	Org	22.0	3
IIKFCBR01B7NTC	Betaproteobacteria	g_	_Janthinobacterium	KM391580	Org	10.8	1.96
IIKFCBR01DPHE6	Betaproteobacteria	g_	_Janthinobacterium	KM391595	Min	11.6	1.58
IIKFCBR01EL7PJ	Betaproteobacteria	g_	_Janthinobacterium	KM391598	Min	6.4	1.46
HNWQNZC01DF0MN	Betaproteobacteria	g_	_Janthinobacterium	KM391622	None	8.3	1.12
IIKFCBR01BHM2D	Actinobacteria	g_	_Kitasatospora	KM391437	None	10.8	62.71
IIKFCBR01A92N7	Actinobacteria	g_	_Kitasatospora	KM391450	None	35.2	30.38
IIKFCBR01CPH7B	Actinobacteria	g_	_Kitasatospora	KM391524	Org	29.3	5.33
IIKFCBR01BNMKB	Betaproteobacteria	g_	_Leptothrix	KM391424	None	8.8	644.5
IIKFCBR01CBLMK	Betaproteobacteria	g_	_Leptothrix	KM391460	None	17.8	22.62
IIKFCBR01DDITR	Betaproteobacteria	g_	_Leptothrix	KM391513	None	4.3	5.46
IIKFCBR01DBPL1	Betaproteobacteria	g_	_Leptothrix	KM391635	Org	21.1	0.96
IIKFCBR01D9FYH	Betaproteobacteria	g_	_Leptothrix	KM391640	None	13C-only	0.71
IIKFCBR01CTV7M	Alphaproteobacteria	g_	_Mesorhizobium	KM391517	Min	4.0	4.96
IIKFCBR01EIWNB	Alphaproteobacteria	g_	_Mesorhizobium	KM391541	None	3.2	3.17
IIKFCBR01BMHDJ	Gammaproteobacteria	g_	_Nevskia	KM391467	Org	6.4	17.71
IIKFCBR01D4HTE	Verrucomicrobia	g_	_Opitutus	KM391654	Min	115.7	21.04
IIKFCBR01BJI11	Betaproteobacteria	g_	_Paucibacter	KM391448	None	4.7	27.08
IAJCH1401CKQZM	Betaproteobacteria	g_	_Paucibacter	KM391456	None	10.6	24.5
IIKFCBR01BZE2Q	Betaproteobacteria	g_	_Pelomonas	KM391465	None	10.6	19.83
IIKFCBR01EBDC6	Betaproteobacteria	g_	_Pelomonas	KM391530	Min	105.4	4.79
IIKFCBR01AQLQI	Betaproteobacteria	g_	_Pelomonas	KM391639	None	13C-only	0.75
IIKFCBR01BJ8KD	Alphaproteobacteria	g_	_Phenylobacterium	KM391462	Min	5.8	19.83
IIKFCBR01DVJID	Alphaproteobacteria	g_	_Phenylobacterium	KM391585	Min	6.3	1.71
HVPQ45002GZ4LA	Actinobacteria	g_	_Phycicoccus	KM391505	Min	5.9	6.75
IIKFCBR01A5WQO	Betaproteobacteria	g_	_Polaromonas	KM391521	Min	5.6	4.88
HPPSXLA04JDLB2	Betaproteobacteria	g_	_Ralstonia	KM391470	Min	129.9	17.71
IIKFCBR01ENIXV	Betaproteobacteria	g_	_Rubrivivax	KM391508	Min	4.3	5.83
IIKFCBR01CS2O2	Actinobacteria	g_	_Salinibacterium	KM391514	Org	5.7	5.71
IIKFCBR01CF4HA	Alphaproteobacteria	g_	_Sphingomonas	KM391443	Min	3.8	41.04
IAJCH1401ANLMS	Alphaproteobacteria	g_	_Sphingomonas	KM391619	Org	14.7	1.33

Representative			Lowest taxonomic	GenBank	Soil Layer	Ratio	Mean Counts ¹³ C
Sequence ID	Phylum		classification	Accession	-	(¹³ C: ¹² C)	Libraries
IIKFCBR01AP3GS	Alphaproteobacteria	g_	_Telmatospirillum	KM391561	Org	9.3	2.96
HNWQNZC01DTU7D	Betaproteobacteria	g_	_Variovorax	KM391492	Org	3.3	8.08
IIKFCBR01AK29F	Actinobacteria	0_	_Actinomycetales	KM391519	Min	17.7	5.62
HN7PONR02G9M87	Actinobacteria	0_	_Actinomycetales	KM391523	Min	11.4	5.17
IIKFCBR01DDQMW	Actinobacteria	0_	_Actinomycetales	KM391577	None	4.7	1.92
IIKFCBR01BDV50	Actinobacteria	0_	_Actinomycetales	KM391591	None	4.0	1.46
IIKFCBR01DKQLI	Betaproteobacteria	0_	_Burkholderiales	NA	Min	19.7	5.38
IIKFCBR01EGDAL	Betaproteobacteria	0_	_Burkholderiales	KM391522	None	8.5	5.04
IIKFCBR01DEFOY	Bacteroidetes	0_	_Cytophagales	KM391439	Min	142.1	58.12
IIKFCBR01AZQYV	Bacteroidetes	0_	_Cytophagales	KM391447	Min	21.3	33.83
HN5XJPU01C054O	Bacteroidetes	0_	_Cytophagales	KM391473	None	20.6	15.92
IIKFCBR01EUQP0	Bacteroidetes	0_	_Cytophagales	KM391495	Min	16.7	9.08
IIKFCBR01CGUSV	Bacteroidetes	o_	_Cytophagales	KM391510	Min	13C-only	6.96
IIKFCBR01D0ZL6	Bacteroidetes	0_	_Cytophagales	KM391562	Min	13C-only	3.25
IIKFCBR01BFRBV	Bacteroidetes	o_	_Cytophagales	KM391605	None	33.0	1.5
IIKFCBR01BID66	Bacteroidetes	0_	_Cytophagales	KM391620	None	29.3	1.33
IIKFCBR01DUERY	Bacteroidetes	0_	_Cytophagales	KM391621	None	27.5	1.25
IIKFCBR01CHWQH	Planctomycetes	0_	_DH61	KM391479	Min	13C-only	14.25
IIKFCBR01DSIAC	Planctomycetes	0_	_DH61	KM391572	Min	57.8	2.62
IIKFCBR01EN49F	Alphaproteobacteria	0_	_Ellin329	KM391511	Org	4.5	5.75
IIKFCBR01BGW6K	Alphaproteobacteria	0_	_Ellin329	KM391520	Org	5.1	4.83
IIKFCBR01DYEEF	TM7	0_	_EW055	KM391544	None	3.1	3.12
IIKFCBR01A2CCO	Armatimonadetes	0_	_FW68	KM391550	None	13C-only	3.58
IIKFCBR01ER26I	Armatimonadetes	0_	_FW68	KM391553	Org	8.8	3.21
IIKFCBR01DF006	Armatimonadetes	0_	_FW68	KM391590	Min	12.5	1.71
IIKFCBR01BKF9Q	Verrucomicrobia	0_	_Methylacidiphilales	KM391646	None	13C-only	0.46
IIKFCBR01B9OL1	Deltaproteobacteria	o_	_MIZ46	KM391472	Min	37.9	17.21
IAJCH1401DPXDE	Deltaproteobacteria	0_	_MIZ46	KM391507	Min	19.7	7.17
IIKFCBR01C6K44	Deltaproteobacteria	0_	_MIZ46	KM391526	Min	8.2	4.83
IIKFCBR01BRR15	Deltaproteobacteria	0_	_MIZ46	NA	None	8.0	1.46
IIKFCBR01CBA0U	Deltaproteobacteria	0_	_MIZ46	KM391613	None	32.1	1.46
IIKFCBR01DMVF6	Deltaproteobacteria	0_	_MIZ46	KM391632	Min	23.8	1.08
IIKFCBR01BM6WY	Deltaproteobacteria	0_	_Myxococcales	KM391582	None	22.0	2
IIKFCBR01CAP7T	Deltaproteobacteria	0_	_Myxococcales	KM391599	None	11.3	1.54
IIKFCBR01BF99Q	Deltaproteobacteria	0_	_Myxococcales	KM391626	Min	13C-only	1.21
IIKFCBR01C50P4	Deltaproteobacteria	0_	_Myxococcales	KM391636	None	19.3	0.88
IIKFCBR01DXTPR	Deltaproteobacteria	0_	_Myxococcales	KM391643	None	13C-only	0.58
IIKFCBR01C17DJ	Deltaproteobacteria		_Myxococcales	KM391645	None	13C-only	0.5
IIKFCBR01DRG3U	Alphaproteobacteria	0_	_Rhizobiales	KM391545	Min	20.4	3.71
IIKFCBR01EHNDT	Alphaproteobacteria	0_	_Rhizobiales	KM391589	Min	39.4	1.79
IIKFCBR01BEDM7	Planctomycetes		_WD2101	KM391653	Min	11.0	2
IIKFCBR01DJ6HG	Planctomycetes	0_	_WD2101	KM391588	None	7.3	1.67
IIKFCBR01DVO2Q	Planctomycetes		_WD2101	KM391593	Min	37.6	1.71
HN7PONR02HB4QW	Planctomycetes	0_	_WD2101	KM391601	Min	11.3	1.54
IIKFCBR01EHYT4	Planctomycetes	0_	_WD2101	KM391603	Min	7.8	1.42

Representative Sequence ID	Phylum	Lowest taxonomic classification	GenBank Accession	Soil Layer Affiliation	Ratio (¹³ C: ¹² C)	Mean Counts ¹³ C Libraries
IIKFCBR01A4L7J	Planctomycetes	oWD2101	KM391610	Min	10.4	1.42
IIKFCBR01DONLF	Planctomycetes	oWD2101	KM391611	Min	13C-only	1.5
IIKFCBR01BPA0N	Planctomycetes	oWD2101	KM391618	None	30.3	1.38
HN7PONR02FP5QD	Planctomycetes	oWD2101	KM391629	None	23.8	1.08
IIKFCBR01C0JKL	Planctomycetes	oWD2101	KM391630	None	11.5	1.04
IIKFCBR01DS8OU	Bacteroidetes	Unclassified	KM391464	Min	242.5	22.04
IIKFCBR01AELU7	Unclassified	Unclassified	KM391652	Min	47.1	10.71
IIKFCBR01BUBLL	Bacteroidetes	Unclassified	KM391500	Min	29.9	8.17
IIKFCBR01BHPNL	Bacteroidetes	Unclassified	NA	Min	29.2	7.96
IIKFCBR01E1K9Q	Alphaproteobacteria	Unclassified	KM391538	None	5.2	3.54
HN7PONR02JXI1W	Betaproteobacteria	Unclassified	KM391543	Org	13.9	3.79
IIKFCBR01BBGJU	Bacteroidetes	Unclassified	KM391564	Org	8.6	2.75
IIKFCBR01EI8BP	Unclassified	Unclassified	KM391568	Min	13C-only	2.79
IIKFCBR01ANT35	Bacteroidetes	Unclassified	KM391571	Min	58.7	2.67
IIKFCBR01CL9KO	Unclassified	Unclassified	NA	None	13C-only	2.25
IIKFCBR01D9WAN	Bacteroidetes	Unclassified	KM391592	Min	18.8	1.71
IIKFCBR01EPMN9	Verrucomicrobia	Unclassified	KM391600	Org	13C-only	1.67
IIKFCBR01CIOT3	Unclassified	Unclassified	KM391606	Org	33.0	1.5
IIKFCBR01BGI0P	Proteobacteria	Unclassified	NA	None	13C-only	0.71

Table E.11. Full details of draft genomes recovered from metagenomics assemblies. 'Completeness' is a measure of the total number of housekeeping genes present from a list of single copy 'essential' genes (Albertsen *et al.* 2013). 'Redundancy' refers to the number of times those house-keeping genes recurred. The final four columns correspond to the percentage of reads mapped to each draft genome from the respective metagenomic samples. Note: 'CheckM' was not used in this analysis, in contrast to Chapter 4.

Taxonomic Affiliation of Draft Genome Bin	MEGAN Classification (% of bases assigned)	Scaffold Accession Numbers (E.N.A.)	Size of Partial Genome (Mb)	Number of Contigs	Largest Scaffold (Kb)	% Complete	% Redundant	Control (%)	OM1 (%)	OM3 (%)	Reference (%)
Myceliophthora thermophila	Ascomycota (99%)	FJWA01000001-FJWA01010187	46.2	10187	32.1	100	24	0.47	14.07	9.67	7.97
Kitasatospora sp.	Actinobacteria (79%)	FJVZ01000001-FJVZ01001553	8.1	1553	31.7	100	21	0.08	0.54	0.28	6.05
Opitutaceae spp.	Verrucomicrobia (78%)	FJVV01000001-FJVV01001035	5.7	1035	46.9	100	18	0.00	0.03	0.03	1.71
Herbaspirillum sp.	β - Proteobacteria (100%)	FJVX01000001-FJVX01001352	4.3	1352	19.3	89	24	0.00	1.73	0.02	0.06
Chthoniobacter sp. 1	Verrucomicrobia (74%)	FJVU01000001-FJVU01000901	4.0	901	21.9	66	24	0.00	0.09	0.05	1.11
Caulobacteraceae spp.	α - Proteobacteria (96%)	FJVW01000001-FJVW01001105	3.3	1105	14.8	76	19	0.00	0.06	0.04	0.72
Heterogeneous Bin	Cand. Saccharibacteria (27%)	FJVY01000001-FJVY01000803	2.4	103	37.7	94	32	0.01	0.27	0.18	0.64
Arthrobacter sp.	Actinobacteria (60%)	FJVT01000001-FJVT01000548	0.8	548	5.3	10	0	0.01	0.07	0.15	0.06
Oxalobacteraceae spp.	β - Proteobacteria (96%)	FJVS0100001-FJVS01000283	0.4	283	3.4	0	NA	0.00	0.03	0.01	0.08
Candidatus Saccharibacteria	Cand. Saccharibacteria (56%)	FJVR01000001-FJVR01000103	0.4	803	16.0	38	34	0.00	0.01	0.02	0.15
Chthoniobacter sp. 2	Verrucomicrobia (65%)	NA	0.4	119	6.0	5	0	0.00	0.01	0.00	0.11

Table E.12. Complete list of OTUs designated putatively hemicellulolytic, cellulolytic and/or lignolytic based ondifferential abundance between 13 C- and 12 C-pyrotag or metagenomic libraries at ecozones across North America.Taxa identified exclusively in metagenomic libraries are denoted with an asterix (*).

Phylum	Class	Order	Family	Genus	Ecozones	Soil Assoc.	Substr.
Acidobacteria	Acidobacteria-6	iii1-15	Unclassified	Unclassified	BS;CA;TX	None	Lig
Acidobacteria	DA052	Ellin6513	unclassified	unclassified	TX	None	Lig
Acidobacteria	Solibacteres	Solibacterales	Unclassified	Unclassified	BS;CA;TX	None	Lig
Actinobacteria	Acidimicrobiia	Acidimicrobiales	unclassified	unclassified	BS,TX	None	Lig
Actinobacteria	Actinobacteria	Actinomycetales	ACK-M1	Unclassified	JP	None	Lig
Actinobacteria	Actinobacteria	Actinomycetales	Frankiaceae	Unclassified	BS,TX	None	Lig
Actinobacteria	Actinobacteria	Actinomycetales	Microbacteriaceae	Unclassified	All	None	Cell;Lig
Actinobacteria	Actinobacteria	Actinomycetales	Microbacteriaceae	Salinibacterium	BC;BS;CA;TX	None	Hemi;Cell
Actinobacteria	Actinobacteria	Actinomycetales	Micrococcaceae	Unclassified	BC;CA	Min	Hemi;Lig
Actinobacteria	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	BC;CA	None	Hemi
Actinobacteria	Actinobacteria	Actinomycetales	Streptomycetaceae	Unclassified	CA;BS;JP	None	Hemi;Cell
Actinobacteria	Thermoleophilia	Gaiellales	Gaiellaceae	Unclassified	TX	None	Lig
Actinobacteria	Thermoleophilia	Solirubrobacterales	Conexibacteraceae	Conexibacter	BS;TX	Org	Cell;Lig
Actinobacteria	Thermoleophilia	Solirubrobacterales	Conexibacteraceae	Unclassified	BS;TX	None	Lig
Armatimonadetes	Armatimonadia	FW68	Unclassified	Unclassified	BC;CA;BS;TX	None	Cell
Bacteroidetes	Bacteroidetes	Sphingobacteriales	Sphingobacteriaceae	Unclassified	BC;CA;TX	None	Hemi;Lig
Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	Cytophaga	BC;CA;TX	None	Cell
Chloroflexi	C0119	Unclassified	Unclassified	Unclassified	CA	Org	Lig
Elusimicrobia	Elusimicrobia	FAC88	Unclassified	Unclassified	BS	None	Lig
FBP	Unclassified	Unclassified	Unclassified	Unclassified	All	None	Cell
Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	BC	Min	Hemi
Firmicutes	Bacilli	Bacillales	Paenibacillaceae	Unclassified	CA	Min	Hemi
Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	TX;CA;BS	None	Lig
Planctomycetes	vadinHA49	DH61	Unclassified	Unclassified	BC;CA	None	Cell
Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC;CA;BS;TX		All
Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	All	None	Hemi;Cell
Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	All	None	Lig
Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Woodsholea	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Rhizobiales	Bradyrhizobiaceae	Bosea	CA;TX	None	Cell;Lig
Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaceae	Devosia	BC;CA;TX	Org	Hemi;Cell
Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiaceae	Agrobacterium	BC;CA	None	Hemi
Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	Oceanicaulis	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	Hyphomonas	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	Henriciella	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	Maricaulis	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	Hirschia	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Rhodospirillales	Rhodospirillaceae	Telmatospirillum	JP;TX	None	Cell;Lig
Proteobacteria	Alphaproteobacteria	Sphingomonadales	Erythrobacteraceae	Porphyrobacter	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Unclassified	CA;BS	None	Hemi;Lig
Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Zymomonas	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Citromicrobium	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Novosphingobium	BC;CA;TX	None	Lig
Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Blastomonas	BC;CA;TX	None	Lig
Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	BC;CA;BS;TX		Hemi;Cell
Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Cupriavidus	BC;CA;TX	Min	Lig
Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Pelomonas	BC;CA;TX	None	All
Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Leptothrix	All	None	Cell
Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Unclassified	All	None	Hemi;Cell
Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Variovorax	BS;TX	None	Lig
Proteobacteria	Betaproteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	CA;JP;TX	None	Cell
Proteobacteria	Betaproteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	All	None	Hemi;Cell
Proteobacteria	Deltaproteobacteria	MIZ46	Unclassified	Unclassified	BC;CA	None	Cell
TULEUDALLEIIA	Dellapioleobaciena	IVIIZ40	010103311100	Uliciassilieu	DU,UA	NULLE	

Phylum	Class	Order	Family	Genus	Ecozones	Soil Assoc.	Substr.
Proteobacteria	Deltaproteobacteria	Myxococcales	Cystobacteraceae	Unclassified	BS	Org	Lig
Proteobacteria	Deltaproteobacteria	Myxococcales	Polyangiaceae	Unclassified	BC;BS;JP	None	Cell
Proteobacteria	Gammaproteobacteria	Alteromonadales	Alteromonadaceae	Cellvibrio	BC;CA	None	Hemi;Cell
Proteobacteria*	Gammaproteobacteria	Cardiobacteriales	Cardiobacteriaceae	Cardiobacterium	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Chromatiales	Ectothiorhodospiraceae	Ectothiorhodospira	CA;BS	None	Lig
Proteobacteria*	Gammaproteobacteria	Chromatiales	Ectothiorhodospiraceae	Nitrococcus	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Chromatiales	Ectothiorhodospiraceae	Alkalilimnicola	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Chromatiales	Ectothiorhodospiraceae	Spiribacter	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Chromatiales	Ectothiorhodospiraceae	Halorhodospira	BC;CA;TX	None	Lig
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Morganella	BC;CA;TX		Lig
Proteobacteria	Gammaproteobacteria	Enterobacteriales	Erythrobacteraceae	Unclassified	BC;CA;TX	None	Lig
Proteobacteria	Gammaproteobacteria	Nevskiales	Sinobacteraceae	Nevskia	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Nevskiales	Sinobacteraceae	Hydrocarboniphaga	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Nevskiales	Sinobacteraceae	Solimonas	BC;CA;TX	None	Lig
Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	BC;CA	None	Hemi
Proteobacteria	Gammaproteobacteria	Salinisphaerales	Salinisphaeraceae	Salinisphaera	BC;CA;TX	None	Lig
Proteobacteria	Gammaproteobacteria	Thiotrichales	Piscirickettsiaceae	Unclassified	CA	Min	Lig
Proteobacteria*	Gammaproteobacteria	Xanthomonadales	Rhodanobacteraceae	Dyella	BC;CA;TX	None	Lig
Proteobacteria*	Gammaproteobacteria	Xanthomonadales	Rhodanobacteraceae	Frateuria	BC;CA;TX	None	Lig
Proteobacteria	Gammaproteobacteria	Xanthomonadales	Sinobacteraceae	Unclassified	CA	None	Lig
TM7	TM7-3	Unclassified	Unclassified	Unclassified	BC; CA	None	Hemi
Verrucomicrobia	Opitutae	Opitutales	Opitutaceae	Unclassified	BC;BS;JP	None	Cell
Verrucomicrobia*	Unclassified	Unclassified	Unclassified	Unclassified	BC;CA;BS;JP	None	Cell
Ascomycota*	Dothideomycetes	Incertae_sedis	Pseudeurotiaceae	Pseudogymnoascus	BC;CA	None	Cell
Ascomycota*	Leotiomycetes	Helotiales	Sclerotiniaceae	Botrytis	CA;BS;JP;TX	None	Cell
Ascomycota*	Orbiliomycetes	Orbiliales	Orbiliaceae	Arthrobotrys	CA;TX	Org	Cell
Ascomycota*	Saccharomycetes	Saccharomycetales		Unclassified	CA;BS	Min	Lig
Ascomycota*	Sordariomycetes	Glomerellales	Plectosphaerellaceae	Verticillium	CA;BS;JP;TX	Org	Cell
Ascomycota*	Sordariomycetes	Hypocreales	Hypocreaceae	Trichoderma	CA;BS;JP;TX	Org	Cell
Ascomycota*	Sordariomycetes	Hypocreales	Hypocreaceae	Hypocrea	BC;CA;BS;TX	-	Cell
Ascomycota*	Sordariomycetes	Hypocreales	Nectriaceae	Fusarium	CA;BS;JP;TX	Org	Cell
Ascomycota*	Sordariomycetes	Hypocreales	Ophiocordycipitaceae	Ophiocordyceps	CA;BS;JP;TX	None	Cell
Ascomycota*	Sordariomycetes	Sordariales	Chaetomiaceae	Chaetomium	CA;TX	None	Cell
Ascomycota*	Sordariomycetes	Sordariales	Chaetomiaceae	Humicola	CA;TX	None	Cell
Ascomycota*	Sordariomycetes	Sordariales	Chaetomiaceae	Myceliophthora	BC;CA;TX	Org	Cell
Ascomycota*	Sordariomycetes	Sordariales	Sordariaceae	Neurospora	CA;BS;JP;TX	Org	Cell
Ascomycota*	Sordariomycetes	Incertae_sedis	Magnaporthaceae	Magnaporthe	CA;BS;JP;TX	Org	Cell
Basidiomycota*	Agaricomycetes	Agaricales	Pleurotaceae	Pleurotus	BC;CA;BS;JP	None	Cell
Basidiomycota*	Agaricomycetes	Agaricales	Psathyrellaceae	Coprinopsis	BC;CA	None	Cell
Basidiomycota*	Agaricomycetes	Agaricales	Schizophyllaceae	Schizophyllum	BC;CA;TX	Org	Cell
Basidiomycota*	Agaricomycetes	Agaricales	Tricholomataceae	Laccaria	BC;CA	None	Cell
Basidiomycota*	Agaricomycetes	Sebacinales	Sebacinales group B	Piriformospora	BC;CA	None	Cell
Basidiomycota*	mitosporic Basidiomycota	NA	NA	Trichosporon	BC;CA;BS;JP	Org	Cell
Basidiomycota*	Tremellomycetes	Filobasidiales	Filobasidiaceae	Cryptococcus	All	Org	Cell
Bilateria*	Polychaeta	Annelida	Siboglinidae	Osedax	BC;CA;TX	None	Lig
Chordata*	Mammalia	Bovidae	Antilopinae	Pantholops	BC;CA;TX BC;CA;TX	None	Lig
Unoruala	maninalia	Dovidae	Аншоршае		00,04,17	NULLE	Liy

Table E.13. Complete list of draft genomes recovered from cellulose and lignin metagenomic libraries from across North America. Bins were made using both ¹²C and ¹³C-libraries and, therefore, not all bins correspond to taxa designated as cellulolytic or lignolytic, some correspond to generally abundant taxa.

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	26	0.41	76%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	18	0.25	81%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Org	10	0.36	97%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	38	0.39	92%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	TX	Min	34	0.32	75%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	5	0.42	77%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	TX	Min	47	0.63	98%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	52	0.35	73%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	9	0.67	69%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Org	13	1.50	98%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	46	6.15	35%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Org	36	1.91	96%
Cell	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Granulicella	ON	Org	25	0.32	71%
Cell	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	ON	Min	33	0.20	90%
Cell	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	ON	Org	54	0.56	58%
Cell	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	ON	Min	29	0.19	93%
Cell	Actinobacteria	Corynebacteriales	Mycobacteriaceae	Mycobacterium	ON	Org	48	0.66	93%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	ON	Org	11	1.94	42%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	CA	Org	27	1.48	26%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	CA	Org	9	0.47	34%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	ON	Org	16	0.21	26%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	ON	Min	15	1.87	52%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	CA	Min	21	4.45	51%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	ТХ	Min	19	0.17	28%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	TX	Org	31	0.31	32%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	BC	Min	15	0.08	33%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Microbacterium	ON	Org	20	0.06	24%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	BC	Org	7	0.14	24%
Cell	Actinobacteria	Micrococcales	Microbacteriaceae	Leifsonia	TX	Org	20	0.37	23%
Cell	Actinobacteria	Micrococcales	Micrococcaceae	Arthrobacter	CA	Min	4	2.83	80%
Cell	Actinobacteria	Micrococcales	Micrococcaceae	Arthrobacter	ON	Min	22	2.34	79%
Cell	Actinobacteria	Micrococcales	Micrococcaceae	Arthrobacter	TX	Min	6	3.82	78%
Cell	Actinobacteria	Propionibacteriales	Nocardioidaceae	Nocardioides	TX	Min	29	3.85	43%
Cell	Actinobacteria	Propionibacteriales	Nocardioidaceae	Nocardioides	BC	Min	16	1.22	56%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	1	1.21	56%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	22	0.25	34%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	7	0.23	75%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	55	0.17	60%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	42	0.25	52%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	CA	Org	7	0.16	71%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	37	0.18	23%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	35	2.34	33%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	17	6.00	33%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	27	1.48	55%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	38	0.11	21%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	ON	Org	34	0.07	21%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	CA	Org	3	2.61	57%
Cell	Actinobacteria	Streptomycetales	Streptomycetaceae	Streptomyces	CA	Org	25	0.47	55%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	TX	Org	39	0.47	33%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	17	0.21	39%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Min	15	1.45	55%
	ACTINUDACTELIA	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	35	0.13	55% 61%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Min	22	0.15	52%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	TX	Min	20	1.59	56%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Min	16	1.49	44%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	BC	Min	17	0.68	46%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	14	0.06	28%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	44	0.38	31%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	26	0.18	46%
Cell	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	BC	Org	3	0.28	27%
Cell	Armatimonadetes	Chthonomonadales	Chthonomonadaceae	Chthonomonas	TX	Min	25	1.05	23%
Cell	Bacteroidetes	Bacteroidales	Bacteroidaceae	Bacteroides	TX	Min	44	0.06	22%
Cell	Bacteroidetes	Cytophagales	Cytophagaceae	Cytophaga	ON	Org	21	0.16	32%
Cell	Bacteroidetes	Cytophagales	Cytophagaceae	Cytophaga	TX	Org	37	2.70	95%
Cell	Bacteroidetes	Cytophagales	Cytophagaceae	Cytophaga	TX	Min	10	0.14	26%
Cell	Bacteroidetes	Cytophagales	Cytophagaceae	Cytophaga	TX	Min	12	1.36	38%
Cell	Bacteroidetes	Cytophagales	Cytophagaceae	Cytophaga	ON	Org	22	0.26	54%
Cell	Bacteroidetes	Cytophagia	Cytophagales	Cytophagaceae	BC	Min	12	0.07	25%
Cell	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Sphingobacteriaceae	ON	Org	24	0.21	63%
Cell	Chloroflexi	Anaerolineales	Anaerolineaceae	Anaerolinea	BC	Min	11	0.67	39%
Cell	Firmicutes	Clostridiales	Peptococcaceae	Unclassified	ON	Org	6	0.29	23%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	TX	Org	15	0.10	38%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	TX	Min	33	23.30	69%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	ТΧ	Org	2	0.87	79%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	24	0.11	56%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	TX	Org	17	10.16	54%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC	Min	2	0.13	36%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	CA	Min	5	3.55	87%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC	Min	9	1.49	78%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	TX	Org	30	1.05	58%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	29	2.69	66%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	TX	Min	15	0.32	55%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	11	5.86	50%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	45	0.15	54%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	28	0.20	73%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC	Org	15	0.62	74%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	ТΧ	Min	5	0.44	67%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC	Min	18	1.38	58%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	CA	Min	12	2.72	87%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	9	0.40	23%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	10	2.10	48%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	ON	Org	4	0.17	55%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	ТΧ	Org	29	5.24	80%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	19	0.54	38%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	2	0.73	57%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC	Org	4	0.10	40%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	BC	Min	21	1.06	87%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	20	0.17	63%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	39	2.24	50%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	CA	Org	17	2.68	86%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	ON	Org	11	1.44	68%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	28	0.13	41%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	CA	Org	22	0.18	79%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	ON	Min	18	1.24	57%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	27	2.56	37%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	CA	Org	1	4.38	94%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	BC	Org	6	1.25	83%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	BC	Min	1	0.28	46%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	9	5.47	48%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	31	0.80	40%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	13	0.19	47%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	28	1.57	74%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	ON	Org	37	0.39	54%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	6	3.04	36%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	CA	Org	19	0.31	74%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	TX	Min	17	0.38	76%
Cell	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	28	0.22	60%
Cell	Proteobacteria	Rhizobiales	Hyphomicrobiaceae	Pelagibacterium	TX	Min	53	0.09	32%
Cell	Proteobacteria	Rhizobiales	Hyphomicrobiaceae	Pelagibacterium	BC	Org	18	0.17	40%
Cell	Proteobacteria	Rhizobiales	Hyphomicrobiaceae	Pelagibacterium	BC	Org	11	0.18	21%
Cell	Proteobacteria	Rhizobiales	Methylobacteriaceae	Methylobacterium	TX	Min	52	0.06	22%
Cell	Proteobacteria	Rhizobiales	Phyllobacteriaceae	Mesorhizobium	CA	Org	4	0.08	35%
Cell	Proteobacteria	Rhizobiales	Rhizobiaceae	Rhizobium	CA	Org	16	0.05	23%
Cell	Proteobacteria	Rhodospirillales	Acetobacteraceae	Unclassified	ON	Org	40	1.82	43%
Cell	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Unclassified	TX	Org	18	0.06	25%
Cell	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Magnetospirillum	TX	Org	1	0.54	28%
Cell	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Azospirillum	TX	Min	39	0.75	44%
Cell	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Azospirillum	TX	Org	23	0.10	42%
Cell	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Azospirillum	TX	Org	38	0.15	42%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	ТХ	Min	41	0.32	72%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Unclassified	ТΧ	Org	4	0.23	64%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	CA	Org	23	0.34	43%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Novosphingobium	ON	Min	17	0.32	56%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	CA	Org	8	0.23	49%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	ТΧ	Min	24	17.47	29%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	CA	Min	10	3.05	64%
Cell	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	ТΧ	Org	10	1.19	61%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ON	Org	15	7.52	63%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ON	Org	5	0.57	81%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ТΧ	Org	21	0.05	23%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Cupriavidus	ТΧ	Min	38	1.00	56%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ON	Org	43	0.32	98%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Unclassified	ON	Min	14	1.15	27%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Unclassified	ON	Min	19	0.17	31%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ТΧ	Min	18	0.15	52%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ON	Org	32	1.11	83%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Unclassified	ТΧ	Org	16	0.66	24%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Unclassified	CA	Min	30	0.20	22%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ON	Org	39	7.35	59%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Cupriavidus	ТΧ	Min	37	1.16	54%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	ON	Org	31	0.10	24%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Unclassified	ТΧ	Org	11	0.10	20%
Cell	Proteobacteria	Burkholderiales	Burkholderiaceae	Unclassified	ON	Min	1	0.61	24%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	ТΧ	Min	50	1.69	23%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Min	2	0.08	30%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	TX	Org	24	0.19	23%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	BC	Min	4	0.54	23%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Variovorax	BC	Org	16	0.42	77%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	CA	Min	23	0.38	78%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	CA	Org	2	1.32	22%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Min	10	0.19	34%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Min	14	0.20	25%
Cell	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	CA	Org	10	0.14	20%
Cell	Proteobacteria	Burkholderiales	incertae sedis	Rubrivivax	BC	Min	7	0.17	20%
Cell	Proteobacteria	Burkholderiales	incertae sedis	Rubrivivax	ON	Org	6	0.06	27%
Cell	Proteobacteria	Burkholderiales	incertae sedis	Rubrivivax	ΤХ	Min	13	0.65	48%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Proteobacteria	Burkholderiales	Unclassified	Unclassified	CA	Org	5	0.92	49%
Cell	Proteobacteria	Burkholderiales	Unclassified	Unclassified	ON	Min	1	0.10	50%
Cell	Proteobacteria	Burkholderiales	Unclassified	Unclassified	TX	Min	1	8.20	49%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	ON	Org	23	1.63	41%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	BC	Min	19	0.23	59%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Collimonas	ON	Min	21	0.19	68%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	ON	Org	3	0.79	81%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	ON	Org	40	0.19	70%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	ON	Org	23	0.18	30%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	CA	Min	19	0.48	46%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	ON	Org	13	0.22	43%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	ON	Min	30	3.20	63%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	ON	Org	8	0.33	47%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	ON	Min	7	0.39	24%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	ON	Min	16	0.14	40%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	CA	Org	12	0.54	61%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	ON	Min	12	7.15	76%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	TX	Org	34	0.24	33%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	ТΧ	Min	49	0.31	62%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Unclassified	CA	Min	18	0.90	64%
Cell	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	ON	Org	21	0.08	32%
Cell	Proteobacteria	Myxococcales	Myxococcaceae	Myxococcus	ON	Min	21	1.08	24%
Cell	Proteobacteria	Myxococcales	Myxococcaceae	Myxococcus	TX	Org	35	0.99	30%
Cell	Proteobacteria	Myxococcales	Myxococcaceae	Myxococcus	ТΧ	Min	48	0.40	22%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	BC	Min	13	0.87	42%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	TX	Min	55	0.40	79%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	CA	Org	21	10.44	40%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	TX	Org	12	6.12	67%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	ТΧ	Org	26	2.02	38%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	BC	Org	8	1.80	45%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	ТΧ	Org	19	4.08	38%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	CA	Min	16	1.39	42%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	BC	Min	10	4.07	41%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	TX	Min	32	4.23	20%
Cell	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	ON	Min	18	1.12	33%
Cell	Proteobacteria	Myxococcales	Sorangiineae	Polyangiaceae	CA	Min	11	0.10	24%
Cell	Proteobacteria	Myxococcales	Sorangiineae	Polyangiaceae	BC	Org	14	5.90	76%
Cell	Proteobacteria	Cellvibrionales	Cellvibrionaceae	Cellvibrio	BC	Org	9	0.43	61%
Cell	Proteobacteria	Chromatiales	Ectothiorhodospiraceae	Unclassified	ON	Min	25	0.15	21%
Cell	Proteobacteria	Nevskiales	Sinobacteraceae	Unclassified	ON	Min	4	0.26	27%
Cell	Proteobacteria	Nevskiales	Sinobacteraceae	Unclassified	ON	Min	2	0.91	27%
Cell	Proteobacteria	Nevskiales	Sinobacteraceae	Hydrocarboniphaga	ON	Min	6	0.05	23%
Cell	Proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	CA	Org	24	0.08	24%
Cell	Proteobacteria	Xanthomonadales	Rhodanobacteraceae	Rhodanobacter	ON	Org	3	0.45	29%
Cell	Proteobacteria	Xanthomonadales	Xanthomonadaceae	Unclassified	ON	Org	33	0.28	79%
Cell	Proteobacteria	Xanthomonadales	Xanthomonadaceae	Unclassified	ON	Org	20	0.72	91%
Cell	Proteobacteria	Xanthomonadales	Xanthomonadaceae	Unclassified	ON	Org	47	2.02	88%
Cell	Verrucomicrobia	Opitutales	Opitutaceae	Opitutus	ТΧ	Org	9	2.65	65%
Cell	Verrucomicrobia	Opitutales	Opitutaceae	Unclassified	CA	Min	13	0.10	30%
Cell	Verrucomicrobia	Opitutales	Opitutaceae	Unclassified	BC	Org	12	1.91	73%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ТΧ	Min	14	0.39	50%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ТΧ	Min	8	8.51	30%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ТΧ	Min	40	5.71	59%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	TX	Min	16	1.03	59%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	BC	Org	13	1.81	65%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	TX	Min	35	0.25	22%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ΤX	Min	22	4.72	51%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	TX	Min	11	0.21	46%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	CA	Min	26	0.75	67%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ON	Org	7	0.11	26%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ТΧ	Min	43	0.25	70%
Cell	Verrucomicrobia	Methylacidiphilales	Methylacidiphilaceae	Methylacidiphilum	CA	Org	13	0.05	21%
Cell	Verrucomicrobia	Methylacidiphilales	Methylacidiphilaceae	Methylacidiphilum	ON	Org	53	0.13	20%
Cell	Verrucomicrobia	Methylacidiphilales	Methylacidiphilaceae	Methylacidiphilum	CA	Min	3	0.54	26%
Cell	Verrucomicrobia	Verrucomicrobiales	Subdivision 3	Pedosphaera	ON	Org	32	0.24	43%
Cell	Verrucomicrobia	Verrucomicrobiales	Subdivision 3	Pedosphaera	TX	Min	23	0.07	21%
Cell	Verrucomicrobia	Verrucomicrobiales	Verrucomicrobiaceae	Unclassified	ТΧ	Min	9	4.00	48%
Cell	Ascomycota	incertae sedis	Pseudeurotiaceae	Pseudogymnoascus	CA	Min	24	0.56	91%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	8	0.31	25%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	ТΧ	Min	2	0.47	91%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	1	0.14	57%
Cell	Ascomycota	Sordariales	Sordariaceae	Neurospora	ON	Org	36	0.23	22%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	17	0.37	21%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	ТΧ	Org	8	0.24	45%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	ТΧ	Org	22	27.82	44%
Cell	Ascomycota	Sordariales	Sordariaceae	Neurospora	ТΧ	Org	33	0.39	21%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	9	0.09	36%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	ТΧ	Min	4	18.64	48%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	ТΧ	Min	3	0.16	58%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	ТΧ	Org	6	1.29	48%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ТΧ	Min	28	0.32	53%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Org	6	0.30	90%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	9	0.62	79%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ТΧ	Org	5	0.37	96%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	23	1.03	76%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	30	0.66	97%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	50	0.15	62%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ТΧ	Min	7	3.30	100%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	2	0.80	25%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Min	27	0.68	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	34	3.61	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	32	0.76	76%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Org	18	0.17	43%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Org	28	0.10	22%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	12	1.93	78%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Min	54	0.41	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	25	0.16	77%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Min	14	0.05	20%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	8	2.86	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Min	2	2.11	55%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	1	0.06	28%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	14	7.78	88%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	49	0.20	94%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Min	20	0.09	38%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	25	1.81	95%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	12	8.14	96%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Org	7	1.59	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	29	4.13	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	7	0.22	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Org	5	3.52	97%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	18	0.99	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	24	0.24	71%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Org	10	0.22	62%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	15	0.41	58%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	24	0.25	84%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Min	1	4.50	27%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	19	1.21	98%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Org	17	0.47	98%
Lig	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Org	9	0.14	23%
Lig	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Min	30	0.22	20%
Lig	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Min	27	0.30	30%
Lig	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	13	0.09	34%
Lig	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	CA	Min	26	0.37	29%
Lig	Bacteroidetes	Sphingobacteriales	Chitinophagaceae	Chitinophaga	ON	Org	3	0.09	29%
Lig	Bacteroidetes	Sphingobacteriales	Sphingobacteriaceae	Mucilaginibacter	ON	Org	15	0.17	42%
Lig	Bacteroidetes	Sphingobacteriales	Chitinophagaceae	Unclassified	ON	Org	10	0.84	57%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	3	3.36	47%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	32	0.60	37%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	33	0.40	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	14	0.67	26%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	19	0.64	36%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	ON	Min	29	0.92	26%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	2	2.49	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	4	6.66	49%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	38	0.15	45%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	1	4.58	48%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	TX	Min	2	0.18	53%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	4	0.37	54%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	33	0.88	49%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	9	1.06	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	7	2.38	58%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	24	1.29	39%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	5	1.19	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	6	1.94	47%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	4	0.25	56%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	20	0.98	35%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	11	1.45	42%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	25	0.44	48%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	21	0.38	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	13	0.86	40%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	36	0.81	41%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	12	3.09	33%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	8	2.78	49%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	9	0.95	35%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	ON	Min	6	0.76	24%
Lig	Proteobacteria	Rhizobiales	Bradyrhizobiaceae	Bradyrhizobium	CA	Org	5	0.10	33%
Lig	Proteobacteria	Burkholderiales	Burkholderiaceae	Cupriavidus	ON	Min	35	0.98	50%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	CA	Org	1	0.08	24%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Org	12	3.72	75%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	ON	Org	6	0.07	29%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Min	28	0.80	67%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	CA	Org	7	0.55	24%
Lig	Proteobacteria	Burkholderiales	Oxalobacteraceae	Collimonas	ON	Min	18	2.74	46%
Lig	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	ON	Min	11	1.36	30%
Lig	Parcubacteria	Unclassified	Unclassified	Unclassified	ON	Min	3	0.38	42%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	16	0.67	49%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	11	0.56	87%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	16	0.62	69%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	34	1.88	46%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	CA	Min	22	0.15	32%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	26	2.05	64%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Lig	Unclassified	Unclassified	Unclassified	Unclassified	CA	Org	8	0.41	97%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	CA	Min	26	0.75	67%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ON	Org	7	0.11	26%
Cell	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	ТΧ	Min	43	0.25	70%
Cell	Verrucomicrobia	Methylacidiphilales	Methylacidiphilaceae	Methylacidiphilum	CA	Org	13	0.05	21%
Cell	Verrucomicrobia	Methylacidiphilales	Methylacidiphilaceae	Methylacidiphilum	ON	Org	53	0.13	20%
Cell	Verrucomicrobia	Methylacidiphilales	Methylacidiphilaceae	Methylacidiphilum	CA	Min	3	0.54	26%
Cell	Verrucomicrobia	Verrucomicrobiales	Subdivision 3	Pedosphaera	ON	Org	32	0.24	43%
Cell	Verrucomicrobia	Verrucomicrobiales	Subdivision 3	Pedosphaera	ТХ	Min	23	0.07	21%
Cell	Verrucomicrobia	Verrucomicrobiales	Verrucomicrobiaceae	Unclassified	TX	Min	9	4.00	48%
Cell	Ascomycota	incertae sedis	Pseudeurotiaceae	Pseudogymnoascus	CA	Min	24	0.56	91%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	8	0.31	25%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	TX	Min	2	0.47	91%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	1	0.14	57%
Cell	Ascomycota	Sordariales	Sordariaceae	Neurospora	ON	Org	36	0.23	22%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	CA	Min	17	0.37	21%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	TX	Org	8	0.24	45%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	TX	Org	22	27.82	44%
Cell	Ascomycota	Sordariales	Sordariaceae	Neurospora	TX	Org	33	0.39	21%
Cell Cell	Ascomycota	Sordariales	Sordariaceae Sordariaceae	Chaetomium	CA TX	Min	9 4	0.09 18.64	36%
Cell	Ascomycota	Sordariales Sordariales	Sordariaceae	Chaetomium Chaetomium	TX	Min Min	4	0.16	48% 58%
Cell	Ascomycota	Sordariales	Sordariaceae	Chaetomium	TX		6	1.29	48%
Cell	Ascomycota Unclassified	Unclassified	Unclassified	Unclassified	TX	Org Min	28	0.32	40 <i>%</i> 53%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Org	6	0.32	90%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	9	0.62	30 <i>%</i> 79%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Org	5	0.02	96%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	23	1.03	76%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	30	0.66	97%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	50	0.15	62%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Min	7	3.30	100%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	2	0.80	25%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ТХ	Min	27	0.68	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	34	3.61	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	32	0.76	76%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Org	18	0.17	43%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ТΧ	Org	28	0.10	22%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	12	1.93	78%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ТХ	Min	54	0.41	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	25	0.16	77%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Min	14	0.05	20%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	8	2.86	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	CA	Min	2	2.11	55%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	1	0.06	28%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	14	7.78	88%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	49	0.20	94%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Min	20	0.09	38%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	25	1.81	95%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	12	8.14	96%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Org	7	1.59	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	29	4.13	91%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	7	0.22	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Org	5	3.52	97%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	18	0.99	99%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	24	0.24	71%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Org	10	0.22	62%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	15	0.41	58%

Substr	Phylum	Order	Family	Genus	Ecozone	Soil	Bin #	Total Bases (Mb)	Percent Classified
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	24	0.25	84%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	TX	Min	1	4.50	27%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	19	1.21	98%
Cell	Unclassified	Unclassified	Unclassified	Unclassified	BC	Org	17	0.47	98%
Lig	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Org	9	0.14	23%
Lig	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Min	30	0.22	20%
Lig	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Unclassified	ON	Min	27	0.30	30%
Lig	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	ON	Org	13	0.09	34%
Lig	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	CA	Min	26	0.37	29%
Lig	Bacteroidetes	Sphingobacteriales	Chitinophagaceae	Chitinophaga	ON	Org	3	0.09	29%
Lig	Bacteroidetes	Sphingobacteriales	Sphingobacteriaceae	Mucilaginibacter	ON	Org	15	0.17	42%
Lig	Bacteroidetes	Sphingobacteriales	Chitinophagaceae	Unclassified	ON	Org	10	0.84	57%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	3	3.36	47%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	32	0.60	37%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	33	0.40	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	14	0.67	26%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	19	0.64	36%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	ON	Min	29	0.92	26%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	2	2.49	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	4	6.66	49%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	38	0.15	45%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	1	4.58	48%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	TX	Min	2	0.18	53%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	4	0.37	54%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	33	0.88	49%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	9	1.06	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	7	2.38	58%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	24	1.29	39%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	5	1.19	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Org	6	1.94	47%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	4	0.25	56%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	20	0.98	35%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	11	1.45	42%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	25	0.44	48%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	21	0.38	44%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	13	0.86	40%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	CA	Min	36	0.81	41%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	12	3.09	33%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Org	8	2.78	49%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	ON	Min	9	0.95	35%
Lig	Proteobacteria	Caulobacterales	Caulobacteraceae	Unclassified	ON	Min	6	0.76	24%
Lig	Proteobacteria	Rhizobiales	Bradyrhizobiaceae	Bradyrhizobium	CA	Org	5	0.10	33%
Lig	Proteobacteria	Burkholderiales	Burkholderiaceae	Cupriavidus	ON	Min	35	0.98	50%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	CA	Org	1	0.08	24%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Org	12	3.72	75%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	ON	Org	6	0.07	29%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Unclassified	ON	Min	28	0.80	67%
Lig	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	CA	Org	7	0.55	24%
Lig	Proteobacteria	Burkholderiales	Oxalobacteraceae	Collimonas	ON	Min	18	2.74	46%
Lig	Proteobacteria	Myxococcales	Polyangiaceae	Sorangium	ON	Min	11	1.36	30%
Lig	Parcubacteria	Unclassified	Unclassified	Unclassified	ON	Min	3	0.38	42%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	16	0.67	49%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	11	0.56	87%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Org	16	0.62	69%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	34	1.88	46%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	CA	Min	22	0.15	32%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	ON	Min	26	2.05	64%
Lig	Unclassified	Unclassified	Unclassified	Unclassified	CA	Org	8	0.41	97%

Table E.14. List of contigs containing clusters of three or more hits based on BLAST or hmmscan to CAZymes. All CAZyme annotations are putative and have not been validated (i.e. most AA2 hits were to Class II catalase-peroxidases). Taxonomic classification was based on LCA for the full length of the cluster. Partial open-reading frames, as predicted by Prodigal, were not included. The following column names have been abbreviated: 'ecozone' (eco.), 'substrate' (subs.) and 'horizon' (hor.). Some CAZyme clusters may repeat if multiple lignin-modifying genes were present, or if the cluster appeared on multiple contigs within the same library.

CAZyme	SampleID	Source	Eco.	Subs.	Hor.	Cazyme Cluster	Phylum	Order	Family	Genus	Contig	Location
						CBM 50;GH35;GH42;GH42;dy						
dyp2	A8056	Assem.	ВS	Cell	Min	p2;AA3;GT4	Acidobacteria	Acidobacteriales	uncl. A cido bacteriaceae	Acidobacteriaceae	scaffold-1518	514-18981
						dyp2;GT2;GT2;GH36;GT4;GT						
dyp2	TXA37	Assem.	Tex	Cell	Min	4;GH63;GH19;GH88	Acidobacteria	Acidobacteriales	uncl. A cido bacteriaceae	Acidobacteriaceae	k99 542889	4101-94289
dyp2	Bin.14	Draft	BS	Cell		GH3;GT2;dyp2	Acidobacteria	Acidobacteriales	uncl. A cido bacteriaceae	Acidobacteriaceae	k99 414325	2702-32487
dyp2	BR Antib	Assem.	CA	Lig		CE10;GT4;dyp2;GH74	Actinobacteria	Actinomycetales	Frankiaceae	Frankia	scaffold-147	1692-17328
dyp2	Bin.11	Draft	BS	Cell		dyp2;GT2;GT2;AA3;2	Actinobacteria	Actinomycetales	Microbacteriaceae	Leifsonia	k99_262087	4089-13763
dyp2	A9086	Assem.	BS	Cell		GT2;CBM2;dyp2	Actinobacteria	Actinomycetales	Microbacteriaceae	Leifsonia	scaffold-1717	4036-13615
dyp2	Bin.21	Draft	CA	Cell		PL9;AA6;dyp2	Actinobacteria	Actinomycetales	Micrococcaceae	Arthrobacter	k99_1594532	8107-18322
						GT51;GT30;dyp2;CE1;GH16;C		-				
dyp2	DC578	Assem.	вс	Cell	Min	E14	Actinobacteria	Actinomycetales	M ycobacteriaceae	M yco bacterium	scaffold-4838	1734-32891
dyp2	TXA_Antib	Assem.	Tex	Lig	Min	GT53;CE5;dyp2;CBM51;CE11	Actinobacteria	Actinomycetales	Nocardiaceae	Nocardia	scaffold-186	2012-27483
						GH13;26;CBM48;dyp2;CE4;C						
dyp2	JS080	Assem.	JP	Cell	Min	E11	Actinobacteria	Actinomycetales	Streptomycetaceae	Kitasatospora	scaffold-250	1497-23907
dyp2	LH020	Assem.	CA	Cell	Min	CE14;AA5;dyp2;GH3	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-488	689-12473
dyp2	JS080	Assem.	JP	Cell	Min	dyp2;AA5;CE14;GH32	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-455960	5416-22058
						dyp2;GH1;GT5;GT2;CBM50;C						
dyp2	JS080	Assem.	JP	Cell	Min	BM 14;GH23;CBM 13	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-3202	4767-40835
dyp2	A8055	Assem.	BS	Cell	Org	GH65;GH65;dyp2;GH92	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-5450	871-14240
dyp2	JS080	Assem.	JP	Cell	Min	GT51;GH16;dyp2;AA5	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-1901	5192-25468
dyp2	JS080	Assem.	JP	Cell	Min	GT51;GT2;dyp2;AA5	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-457701	4606-18455
dyp2	JS080	Assem.	JP	Cell	Min	GT51;GT2;dyp2;AA5	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-448968	9547-23396
dyp2	JE121	Assem.	JP	Cell	Org	GT41;dyp2;GT4	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-1555	1675-10729
dyp2	JE122	Assem.	JP	Cell	Min	CBM 35;GH 109;CE11;CBM 48; GT2;GH32;GH32;GH 1;CE11;G T2;GH39;GH36;CBM 2;CE1;G H3;GT2;GH65;PL9;4;CE1;CB M2;GT2;GH28;GT2;GH	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	scaffold-798	1799-396092
-7F-						3;GT2;GT51;CBM61;CBM50; GH35;GH42;dyp2;AA3;GT4;C BM50;GT2;GH13;26;GT4;CB M50;GT2;GT51						
dyp2	TXA37	Assem.	Tex	Cell	Min	dyp2;PL1;GT5	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	k99_562108	6054-14556
dyp2	Bin.12	Draft	JP	Cell	Min	dyp2;GT2;CBM50	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herminiimonas	k99_130551	1930-16536
						CBM 50;GT2;GT80;GT4;CBM						
dyp2	JE121	Assem.	JP	Cell	Org	50;GT2;dyp2;GT4;GH23	Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthino bacterium	scaffold-1209578	12648-55728
dyp2	TXA37	Assem.	Tex	Cell	Min	GH125;GT4;dyp2	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	k99_282716	2677-48679
dyp2	A7M 1_13C	Assem.	BS	Lig	Min	CE1;GH16;dyp2;GT4;GH78	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-895	219-63108
dyp2	DC578	Assem.	вс	Cell	Min	CE14;dyp2;GT4	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-191	1176-13442
						GH37;dyp2;GT2;CE1;GH19;GT						
dyp2	OC458	Assem.	вс	Cell	Min	4;GH13;31	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-797	2837-70504
dyp2	Bin.11	Draft	BS	Cell	Min	GT2;dyp2;GH78	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	k99_450390	11800-49618
dyp2	A8056	Assem.	BS	Cell	Min	GT35;GH78;dyp2;GT2	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-462	13479-53223
dyp2	Bin.21	Draft	CA	Cell	Org	dyp2;GH16;CBM48;CBM2	Proteobacteria	Myxococcales	Cystobacteraceae	Stigmatella	k99_528071	216-12505
dyp2	DC578	Assem.	вс	Cell	Min	CE2;CBM 13;dyp2	Proteobacteria	Myxococcales	Myxococcaceae	Myxococcus	scaffold-1088	2732-15238
						CBM 61;CBM 50;GH35;GH42;						
dyp2	A7026	Assem.	BS	Cell	Min	dyp2;AA3;GT4	Proteobacteria	Rhizobiales	Rhizobiaceae	Rhizobium	scaffold-256	5796-30437
dyp2	BRM 2_13C	Assem.	CA	Lig	Min	dyp2;AA3;ary.oh.oxi;AA3	Proteobacteria	Rhodobacterales	Rhodobacteraceae	Thalassobacter	scaffold-1303	5267-10995
dyp2	DC578	Assem.	вс	Cell	Min	CE10;GT41;dyp2	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Nitrospirillum	scaffold-954	4536-24275
						CBM 13;GT2;CE10;CE1;CE10;		•	·			
dyp2	Bin.50	Draft	Tex	Cell	Min	GT5;PL1;dyp2	Proteobacteria	uncl. Burkholderiales	uncl.	Rubrivivax	k99_734139	11513-35776
dyp2	JS080		JP	Cell	Min	PL9;dyp2;GT2;GH65	uncl.	uncl.	uncl.	uncl.	scaffold-5687	856-12441
laccase	Bin.14	Draft	BS	Cell	Org	CE10;CBM2;AA1;GH53	Acidobacteria	Acidobacteriales	Acidobacteriaceae	Candidatus	k99 393656	806-22240
laccase	BRM2 13C		CA	Lig	Min	AA4;AA1;AA1	Acidobacteria	Acido bacteriales	Acidobacteriaceae	Candidatus	scaffold-8911	346-5363
laccase	Bin.14	Draft	BS	Cell	Org	GH 105;GH 109;A A 1	Acidobacteria	Acidobacteriales	uncl. A cido bacteriaceae	Acidobacteriaceae	k99_1926388	3111-7912
laccase	Bin.37	Draft	CA	Lig	Min	GT4;AA1;GT2;CBM5;CE1	Acidobacteria	Acidobacteriales	uncl. Acidobacteriaceae	Acidobacteriaceae	k99_154957	17646-52187
laccase	TXA37	Assem.		Cell	Min		Acidobacteria	Acidobacteriales	uncl. Acidobacteriaceae	Acidobacteriaceae	k99_433354	1-5823
					-							202

CAZyme	SampleID	Source	Eco.	Subs.	Hor.	Cazyme Cluster	Phylum	Order	Family	Genus	Contig	Location
laccase	BRO1_13C	Assem.	CA	Lig	Org	A A 1;A A 1;sm.lacc	Acidobacteria	Acidobacteriales	uncl. A cido bacteriaceae	Acidobacteriaceae	scaffold-909	66-1735
laccase	BRM 2_13C	Assem.	CA	Lig	Min	AA1;sm.lacc;AA1	Acidobacteria	Acidobacteriales	uncl. A cido bacteriaceae	Acidobacteriaceae	scaffold-6478	1548-3484
laccase	BRM 3_13C	Assem.	CA	Lig	Min	AA1;sm.lacc;AA1	Actinobacteria	Actinomycetales	Frankiaceae	Frankia	scaffold-357	1005-2848
laccase	BR_Antib	Assem.	CA	Lig	Min	AA1;lacc;sm.lacc;AA1	Actinobacteria	Actinomycetales	M ycobacteriaceae	M yco bacterium	scaffold-336	586-2265
laccase	BRO1_13C	Assem.	CA	Lig	Org	AA1;AA1;lacc	Actinobacteria	Actinomycetales	M ycobacteriaceae	M yco bacterium	scaffold-1020	498-2270
laccase	JS080	Assem.	JP	Cell	Min	CBM2;GH92;AA1	Actinobacteria	Actinomycetales	Streptomycetaceae	Kitasatospora	scaffold-3196	28554-36408
laccase	Bin.45	Draft	Tex	Cell	Min	GT2;AA1;GH18	Bacteroidetes	Cytophagales	Cytophagaceae	Emticicia	k99_70244	2923-9264
laccase	OC458	Assem.	BC	Cell	Min	GH30;1;GH43;AA1;AA1	Firmicutes	Bacillales	Paenibacillaceae	Paenibacillus	scaffold-71980	1776-14333
						AA1;GT2;CBM6;CBM6;GT4;						
laccase	Bin.16	Draft	Tex	Cell	Min	CBM 50	Planctomycetes	Planctomycetales	Planctomycetaceae	Gemmata	k99_772951	690-35445
laccase	Bin.12	Draft	JP	Cell	Min	GH13;GT41;AA1	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	k99_1039102	2419-19963
laccase	JE121	Assem.	JP	Cell	Ora	GH65;GT41;AA1	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-138654	98-16625
laccase	TXA37	Assem.		Cell	Min	CBM 13;AA 1;AA 1	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	k99_1267288	765-3222
laccase	A 8055	Assem.		Cell	Org	CE16;AA1;AA1	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-7250	10463-20720
laccase	A7026	Assem.		Cell	Min	cohesin;CBM35;CBM5;AA1	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	scaffold-3510	15182-29445
labbabb												
laccase	BRM2_13C	Assem.	CA	Lig	Min	GH3;GH3;GH15;AA1;lacc;AA1	Proteobacteria	Burkholderiales	Comamonadaceae	Variovorax	scaffold-10184	7046-29625
laccase	A7026	Assem.	BS	Cell	M in	CE11;GT2;GT2;AA1;AA1	Proteobacteria	Burkholderiales	Oxalobacteraceae	Herminiimonas	scaffold-349135	1932-10189
laccase	BRM 3_13C	Assem.	CA	Lig	Min	GH1;GH1;GH1;AA1;AA1	P ro teo bacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	scaffold-2048	2458-9179
laccase	A 9085	Assem.	BS	Cell	Org	GH27;CE6;GH55;GH97;GH39 ;GH120;GH1tGH9;GH51;GH43 ;GH95;GH3;CE6;CBM13;CE1; GH31;CE10;GH3;GH51;GH36; GH92;AA1;Jacc;GH130;GH2;C BM32;CE1;GH43;GH5;13;CB M13;GT2	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	scaffold-4490	11105-178981
laccase	Bin.11	Draft	BS	Cell	Min	GT2;GT2;AA1;GH2;GH53	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	k99_630852	5818-25520
laccase	TXA37	Assem.		Cell		GT51AA7:AA1:AA1:lacc	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	k99_410057	13757-20114
laccase	A9M 2_13C	Assem.		Lig		AA 1;AA 1;lacc	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-1394	3598-5737
laccase	A 8056	Assem.		Cell	Min	GT2;GT2;CBM32;AA1;AA1	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-109	1830-14549
						CBM51:AA1:CBM48						
laccase	Bin.40	Draft	Tex	Cell	Min	, ,	Proteobacteria	Chromatiales	Ectothiorhodospiraceae	Nitrococcus	k99_1587968	3187-10845
laccase	Bin.10	Draft	вС	Cell	Min	GH19;GT51;Iacc;CBM56;CB M2	Proteobacteria	Desulfobacterales	Desulfobacteraceae	Desulfobacter	k99_2309801	1172-25857
laccase	BRM 2_13C	Assem.	СА	Lig	M in	AA1;sm.lacc;AA1;CE11	Proteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacter	scaffold-4442	3422-7929
laccase	A8O2_12C	Assem.	BS	Lig	Org	CBM 50;CE14;GT51;GH2;GT2; AA1;AA1	Proteobacteria	Legionellales	Legionellaceae	Legionella	scaffold-17	21640-83058
laccase	TXA37	Assem.	Tex	Cell	Min	AA1;AA1;AA1	Proteobacteria	Methylococcales	Methylococcaceae	Methylobacter	k99_802051	248-5945
laccase	Bin.21	Draft	CA	Cell	Org	GH65;GH65;AA1	Proteobacteria	Myxococcales	Cystobacteraceae	Stigmatella	k99_710181	1701-11075
laccase	A 8M 3_13C	Assem.		Lig	Min	CE7;GT2;GT2;GH23;CE14;co	Proteobacteria	Myxococcales	Myxococcaceae	Corallococcus	scaffold-139	697-30917
				-		hesin;AA1			•			
laccase	A8056	Assem.		Cell		GT2;CBM50;AA1	Proteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	scaffold-452078	764-24395
laccase	LHO3_13C	Assem.		Lig	Org	AA 1;AA 1;AA 1	Proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	scaffold-563	634-2779
laccase	A8055	Assem.		Cell	Org	CE4;GT41;AA1	Proteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	scaffold-156	735-10054
laccase	Bin.37	Draft	CA	Lig		lacc;GH23;CE11;GT41;CBM2	Proteobacteria	Rhizobiales	Bradyrhizobiaceae	Bradyrhizobium	k99_288891	8799-52380
laccase	TXA37	Assem.		Cell	Min	GT2;GT2;GT4;AA1	Proteobacteria	Rhizobiales	Bradyrhizobiaceae	Bradyrhizobium	k99_51393	24292-38289
laccase	A7M2_13C	Assem.		Lig	Min		Proteobacteria	Rhizobiales	Methylocystaceae	Methylopila	scaffold-3314	1855-4974
laccase	Bin.12	Draft	JP	Cell	Min	AA1;AA1;lacc	Proteobacteria	Rhizobiales	Rhizobiaceae	Sinorhizobium	k99_4257	75-2310
laccase	JW014	Assem.	JP	Cell	M in	AA1;AA1;lacc	Proteobacteria	Rhizobiales	Rhizobiaceae	Sinorhizobium	scaffold-5331	1577-3794
laccase	JE122	Assem.	JP	Cell	Min	AA1;AA1;lacc;CBM16	Proteobacteria	Rhizobiales	Rhizobiaceae	Sinorhizobium	scaffold-489	75-7513
laccase	LHO3_13C	Assem.	CA	Lig	Org	AA1;lacc;AA1;lacc;AA1	Proteobacteria	Rhodospirillales	Acetobacteraceae	Acidiphilium	scaffold-1142	630-2906
laccase	A7026	Assem.	BS	Cell	Min	AA1;AA1;sm.lacc	Proteobacteria	Rhodospirillales	Acetobacteraceae	Gluconacetobacter	scaffold-1190	2748-4934
laccase	Bin.39	Draft	СА	Lig	Min	GH53;GH53;lacc;GT83	P ro teo bacteria	Xantho monadales	Xanthomonadaceae	Dyella	k99_91797	848-22665
laccase	A7O2_13C	Assem.	BS	Lig	Org	A A 1; A A 1; A A 1	Proteobacteria	Xantho mo nadales	Xanthomonadaceae	Rhodanobacter	scaffold-1779	971-2934
laccase	A7025	Assem.		Cell	Org	CE3;GT1;GH78;AA1	Proteobacteria	Xanthomonadales	Xanthomonadaceae	Rhodanobacter	scaffold-2524	7368-30232
laccase	Bin.1	Draft	CA	Lig			Proteobacteria	Xanthomonadales	Xanthomonadaceae	Xanthomonas	k99_696794	721-4014
laccase	Bin.16		Tex	Cell	Min	lacc;CBM 32;GT51	Verrucomicrobia	Chthoniobacterales	Chthonio bacteraceae	Chthoniobacter	k99_44625	581-7869
laccase	TXA37	Assem.		Cell		CE1;CE1;sm.lacc;sm.lacc	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	k99_1318568	2262-24587
laccase	TXA37	Assem.		Cell	Min	GT2;GH8;CBM51;AA1;AA1	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	k99_223923	558-14475
laccase	TXA37	Assem.		Cell		sm.lacc;CBM32;GT2	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	k99_137018	8120-20693
laccase	TXA37	Assem.		Cell		GH53;GT35;AA1	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	k99_181593	3893-9957
laccase	Bin.40		Tex	Cell		GH53;GT35;AA1	Verrucomicrobia		uncl.	Chthoniobacter	k99_971100	4879-10943
								Beoudo averação acoura				
laccase laccase	Bin.22		Tex	Cell	Org	AA 1;lacc;AA 1;3	Ascomycota	Pseudogymnoascus	Pseudeurotiaceae	Pseudogymnoascus	k99_1532366	4603-6745
IACCASE	JW013	Assem.	J٢	Cell	Org	AA 1;3;AA 1;AA 1	Ascomycota	Onygenales	Ajellomycetaceae	Blastomyces	scaffold-56842	290-1929

CAZyme	SampleID	Source		Subs.	Hor.		Phylum	Order	Family	Genus	Contig	Location
laccase	Bin.22	Draft	Tex	Cell	Org	A A 1;A A 1;3;A A 1;3	Ascomycota	Onygenales	Arthrodermataceae	Trichophyton	k99_1558275	8285-10049
laccase	Bin.22	Draft	Tex	Cell	Org	CE1;CBM 1;lacc;GH3;GH3	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_824021	7588-29529
laccase	Bin.22	Draft	Tex	Cell	Org	AA 1;2;sm.lacc;AA 1;2;AA 1;2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_29332	438-2259
laccase	Bin.22	Draft	Tex	Cell	Org	AA 1;2;AA 1;2;AA 1;2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_110531	1656-2937
laccase	Bin.22	Draft	Тех		Org	GH23;AA 1;2;AA 1;2;AA 1;2;AA 1; 2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_336935	385-6893
laccase	Bin.22	Draft	Tex		Org	A A 1;2;A A 1;2;A A 1;2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_965275	707-1996
laccase	Bin.22	Draft	Tex	Cell	Org	A A 1;3;A A 1;3;A A 1;3	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_349944	1160-2814
laccase	TXA40	Assem.		Cell	Org	AA 1;2;sm.lacc;AA 1;2;AA 1;2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	scaffold-31345	89-2192
laccase	TXA40			Cell	Org	AA 1;2;sm.lacc;AA 1;2;AA 1;2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	scaffold-20528	397-2009
laccase	Bin.22	Draft	Tex	Cell	Org	AA 1;2;AA 1;2;AA 1;2	Ascomycota	Sordariales	Chaetomiaceae	Thielavia	k99_1360305	2801-4831
laccase	Bin.22	Draft	Tex	Cell	Org	AA 1;AA 1;AA 1	Ascomycota	Sordariales	Chaetomiaceae	Thielavia	k99_1263514	843-2867
laccase	TXA40	Assem.		Cell	Org		Ascomycota	Sordariales	Chaetomiaceae	Thielavia	scaffold-369338	9-2125
laccase	TXA37	Assem.	Tex	Cell	Min		Ascomycota	Sordariales	Chaetomiaceae	Thielavia	k99_379059	2446-4578
laccase	TXA37	Assem.	Тех	Cell	Min	AA1;lacc;CBM2;CBM2;CBM2;CBM 2;GH55;GH55;CBM18	Ascomycota	Sordariales	Chaeto miaceae	Thielavia	k99_122719	16637-44890
laccase	Bin.22	Draft	Тех	Cell	Org	AA 1;3;AA 1;3;AA 1;3;AA 1;3;AA 1; 3;AA 1;3	Ascomycota	Sordariales	Sordariaceae	Neurospora	k99_125672	1667-4748
laccase	Bin.22	Draft	Tex	Cell	Org	PL1;10;PL1;10;PL1;10;CE5;CE5; AA1;3	Ascomycota	Sordariales	Sordariaceae	Neurospora	k99_1445522	2060-31698
laccase	TXA37	Assem.	Tex	Cell	Min	CBM2;CBM2;AA1;lacc	Ascomycota	Sordariales	Sordariaceae	Neurospora	k99_595818	56-9101
laccase	Bin.22	Draft	Tex	Cell	Org	GH43;AA 1;3;AA 1;3	Ascomycota	Sordariales	Sordariaceae	Sordaria	k99_440136	6533-26357
laccase	Bin.22	Draft	Тех	Cell	Org	GH13;5;GH13;5;GH43;AA1;3;A A1;3;AA1;3	Ascomycota	Sordariales	Sordariomycetidae	Melanocarpus	k99_524124	651-8035
laccase	JW013	Assem.	JP	Cell	Org	A A 1;A A 1;A A 1	Ascomycota	Xylariales	Xylariaceae	Daldinia	scaffold-2085	1312-3222
laccase	A 9085	Assem.		Cell	Org	A A 1;A A 1;A A 1;A A 1	Ascomycota	Xylariales	Xylariaceae	Daldinia	scaffold-239	671-3409
laccase	Bin.9	Draft	CA	Cell	Min	AA 1;3;AA 1;3;AA 1;3 CBM 32;AA3;CBM 18;CBM 50	uncl.	uncl.	uncl.	uncl.	k99_298110	239-2698
oxidase	A 9085	Assem.	BS	Cell	Org	;GH43;GH10;GT2;GT22;GH27; CE10;van.oh.oxi;CE6;CE7;GT 9;GH3;GH2;CE1;CE10;CBM32 ;GH108;GT2;GT19;GH23;GH2 3;GT2;CE4;GT41;CE9;GH20;G H1	A cido bacteria	A cido bacteriales	A cido bacteriaceae	Granulicella	scaffold-1955	2623-210198
oxidase	Bin.12	Draft	BS	Cell	M in	GT4;GH92;van.oh.oxi	Actinobacteria	Actinomycetales	M icrobacteriaceae	Microbacterium	k99_353450	11026-18644
oxidase	LH020	Assem.	СА	Cell	Min	AA3;GT2;ary.oh.oxi;GT2;GT2; GT2	Actinobacteria	Actinomycetales	Micromonosporaceae	Micromonospora	scaffold-581	1-18361
oxidase	TXA_Antib	Assem.	Tex	Lig	Min	GH1;GT9;AA2;GH15;van.oh.o xi;GT2	Actinobacteria	Actinomycetales	Mycobacteriaceae	Mycobacterium	scaffold-2307	1358-70445
oxidase	TXA_Antib	Assem.	Tex	Lig	Min	GT8;GH23;GT4;van.oh.oxi;GT 2	Actinobacteria	Actinomycetales	Nocardiaceae	Nocardia	scaffold-444	14052-81553
oxidase	A8M3_13C	Assem.	BS	Lig	Min	AA3;2;ary.oh.oxi;AA3;2	Actinobacteria	Actinomycetales	Pseudonocardiaceae	Amycolatopsis	scaffold-8167	18-1436
oxidase	A7026	Assem.	BS	Cell	Min	GT2;GH33;CBM32;van.oh.oxi	Actinobacteria	Actinomycetales	Ruaniaceae	Ruania	scaffold-14	4518-16378
oxidase	Bin.16	Draft	JP	Cell	M in	CE1;CBM50;van.oh.oxi	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	k99_265676	1245-11720
oxidase	DC578	Assem.	BC	Cell	M in	CE1;CBM50;van.oh.oxi CE1;van.oh.oxi;CBM32;GT9; GT2;GT2;GT2;GT2;GT2;GT4; GT4;GT2;GT83;GT2;GT2;GT4	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	scaffold-1323143	493-11106
oxidase	DC578	Assem.	вС	Cell	M in	;CBM50;GT2;GT2;GT4;GT2; GT4;GT34;GT2;GT4;GT2;GT2; GT32;GT32;GT2;GT2;GT2;GT2;G T2;AA11	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	scaffold-4847	11682-96970
oxidase	TXA37	Assem.		Cell	Min	CBM 50;van.oh.oxi;GT51	Actinobacteria	Solirubrobacterales	Conexibacteraceae	Conexibacter	k99_1401118	280-12942
oxidase	DC578	Assem.		Cell	Min	van.oh.oxi;GT9;GT4;GT4	Actinobacteria	Solirubrobacterales	Patulibacteraceae	Patulibacter	scaffold-11046	27326-68977
oxidase	A8_Antib	Assem.		Lig	Min	GH29;CBM9;ary.oh.oxi	Bacteroidetes	Cytophagales	Cyclobacteriaceae	Mariniradius	scaffold-3548	1042-8993
oxidase	BRO3_13C	Assem.		Lig	Org	CBM 51;CE1;van.oh.oxi	Bacteroidetes	Cytophagales	Cytophagaceae	Spirosoma	scaffold-402	7662-10934
oxidase	BRO3_13C	Assem.	CA	Lig	Org	CE9;ary.oh.oxi;CE4;CBM6	Bacteroidetes	Sphingobacteriales	Chitinophagaceae	Segetibacter	scaffold-765	5327-12507
oxidase	Bin.11	Draft	СА	Cell	Org	GH2;CE3;CE1;CE10;CE1;van.o h.o.xi	Chloroflexi	Ktedonobacterales	Ktedonobacteraceae	Ktedonobacter	k99_271091	144-10487
oxidase	JS080	Assem.	JP	Cell	Min	CBM 14;CE1;GH2;CE3;van.oh. oxi;CE1;CE1	Chloroflexi	Ktedonobacterales	Ktedonobacteraceae	Ktedonobacter	scaffold-3182	2048-25260

Dested BLALL Dest Dest <thdest< th=""> Dest Dest <</thdest<>	CAZyme	SampleID	Source	Eco.	Subs.	Hor.	Cazyme Cluster	Phylum	Order	Family	Genus	Contig	Location
oddsex disk disk disk Bisk <	oxidase	BLM 1_13C	Assem.	СА	Lig	Min	AA3;AA3;ary.oh.oxi	Cyanobacteria	Nostocales	Rivulariaceae	Calothrix	scaffold-406	503-2947
CAMP Assem Cold Model Campa Proteinbarting Burkholdenaceacc Burkholdenaceacc Burkholdenaceacc Burkholdenaceacc AMPS Assem Cold Model	oxidase	Bin.15	Draft	BS	Cell	Org	ary.oh.oxi;GT2;GH16	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	k99_805993	2307-10761
Oxfeet XA2/Y Assem, Tex, Cell Min Advance/Assom, Tex, Cell Min						0	· · · ·		Burkholderiales	Burkholderiaceae			
Alton Alton Alton Alton Alton Alton Buth blacksee													
oddes A3005 Assen B Cell Cell <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Addiage Bin H DVDL CAL Call Coll					-								
oddate AlM 3_ CC Alm 3_ CC Alm 3_ CC Alm 3_ CC Max Had Back 3_Assem, JP Light Mach 3_Assem, JP Light Mach 3_Assem, JP Cell Min Cell CLS ICT 3_Assem, JP Cell Min						0							
existes JSMD Assem P Cell Min CECEUE ECEST2/SUPANDAX Precestantina Bushholdenaless Acidevoras scattini 2/2205 37275 oxides Alabé Assem BS Cell Min CECEUE ECEST2/SUPANDAX Precestantina Bushholdenaless Acadevoras scattini 2/2205						0					•		
existical ABD6 Assem BS Cont Main CECEDE ETTAMAINATION Protechastication Buicholdenaise Commandascease Astervalue scattloid 422765 6718-2568 oxidee JETE2 Assem JF Col Main CECEDE ETTAMAINATION CONTRATION Protechastication Buicholdenaise Collinouras caliboacteraccee Collinouras eartifold 422765 6740-21000 oxidee Sinta Dest JF Col Min CTESCTETACTOR (ASCIDINGS) Protechastication Buicholdenaise Ovalobacteraccee Dugenais 692 70233 788-052710 oxidee Sinta JF Col Min CTESCTETACTOR (ASCIDINGS) Protechastication Buicholdenaise Ovalobacteraccee Hebesprillum kep 972033 788-052710 oxidea Sinta Assem JF Col Min CTESCTETACTOR (ASCIDINGS) Protechastication Ovalobacteraccee Hebesprillum kep 972033 789-27920 oxidea Sinta Assem As Kep Min CTESCTE					-								
outlow JETE2 Asser. JP Get Max GetSSST1AASSESST Bulkholdenises Orablactenscese Collmons scaffold-80 BUS2-2009 outlow Bin 2 Draft JP Get Max GetSSST1ASSESST Proteobacteni Butholdenises Outlow Bundoldenises Bugeneis Actiou-3000 3332-200 outlow Bin 2 Draft JP Get Max GetSSST1ASSESS Proteobacteni Butholdenises Outlow Hetasprillum Keg 270200 1969-05571 outlow Bin 2 Draft JP Get Max GetCOMPARASSESS Proteobacteni Butholdenises Outlow Matbactenscese Hetasprillum Keg 70000 11429 outlow JW10 Asser. JP Cel GetSSSTAASSESS Proteobactenic Jusholdenises Outlow Jusholdenises	oxidase	JW014	Assem.	JP	Cell	Min	AA3;AA3;2;ary.oh.oxi	Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	scaffold-2826	2110-3374
Automa Jump Automa Jump Calibration Screen Processor Control Screen							GH18;GT2;GH51;CBM5;CBM 50;GH53;GT4;AA6;van.oh.oxi; GT9;AA1;AA1;GH2;GT2;GT2; GT2;GT2;GT4;GH73;GH53;G						
bit 2 Draft JP Cell Min CELSTBERAAT Same JACK Poteobacteri Burkholderiales Oxalobacteraceae Herbasprillum K99_73000 TH4620 oxidase JUND Asser JP Cell Nin Cell Cell CELSTPAARS Poteobacteri Burkholderiales Oxalobacteraceae Herbasprillum K99_73000 TH4620 oxidase JUND Asser JP Cell Org Cell CELSTPAARS Poteobacteri Burkholderiales Oxalobacteraceae Herbasprillum K99_73000 TH4620 oxidase Bin 7 Orac Cell Org Cell CELSTPAARS Poteobacteri Burkholderiales Oxalobacteraceae Junhinobacteri Scaffold-80 228-8527 oxidase TA4 Asser TS Cell CESTPAARSA2AS24 Poteobacteri Caulobacteraceae Asticoacaults Scaffold-750 228-8527 oxidase TXA4 Asser Cell CESTPAARSA2AS24 Poteobacteri Caulobacteraceae Asticoacaults Scaffold-750 289-9320 228-9527							T51;GH28;GT2;CBM3;GT41;G						
Database DatabaseBin L2Unit DiamJ7CellMin GTS van hox JA AB GTS van hox JA AB 	oxidase	JW014	Assem.	JP	Cell	Min	· · · ·	Proteobacteria	Burkholderiales	Oxalobacteraceae	Duganella	scaffold-388931	3321-21104
oxidase Bit 2 Draft JP Cell Man Origination and XAA on CP2C+1074-0F510 (1974-0714) Protobacteria Burkholdeniales Oxalobacteriaceae Herbaspirillum keg 798009 711-4629 oxidase JW03 Assem JP Cell Org CF2CH28CH1074-0F5C12-AA849an, on Oxalobacteriaceae Herbaspirillum scaffold-843340 18609-320703 oxidase BMX2_150 Assem JP Cell Org CF2CH28CH1074-0F5C12-72; CF2ST22CBM 00CBMM058 Protobacteria Caulobacteriaceae Janthinobacteria scaffold-861 328-8528 oxidase BMX2_150 Assem Cell Org Org Protobacteria Caulobacteriaceae Asticcazaulis scaffold-75922 293-4314 oxidase BL03 Assem Cell Org SGM33ay.orb.ox/GF14/9704 Protobacteria Caulobacteriaceae Asticcazaulis scaffold-75922 293-4827 oxidase CAS Assem BS Ug Min GFM33ay.orb.ox/GF14/971 Protobacteria Caulobacteriaceae Asticcazaulis scaffold-75922 <td>oxidase</td> <td>Bin.12</td> <td>Draft</td> <td>JP</td> <td>Cell</td> <td>Min</td> <td></td> <td>Proteobacteria</td> <td>Burkholderiales</td> <td>Oxalobacteraceae</td> <td>Herbaspirillum</td> <td>k99_973203</td> <td>11698-105574</td>	oxidase	Bin.12	Draft	JP	Cell	Min		Proteobacteria	Burkholderiales	Oxalobacteraceae	Herbaspirillum	k99_973203	11698-105574
strate JW03 Assem JP Fell Grad CH (176) (176	azehiya	Bin 12	Draft	IP	Cell				Burkholderiales	Oxalobacteraceae	•		711-4629
Oxidase Bin Oxidase Draft Call Origination Protobactinal Oxidase Oxidase Janumobacterium Scattore Janumobacterium Januu							GT2;GH28;CE11;GT4;GT51;G H2;GH3;GH78;GT2;AA6;van. oh.oxi;GT2;GH23;GH39;GT2; GT2;GH17;GH6;CE11;CBM48; GT2;CE11;GT2;CBM2;GH2;G T4;AA3;2;GT1;GT1;PL9;2;GT2; GT2;GT2;CBM50;CBM50;G H28;GH53						
oxidaseTXA 0Assem. TexCellOrgGTSGT2GT2CETER TSGT2GT2CECEFS CBM35aryohoxiGH30CETProteobacterialCaulobacteraceaeAsticcacaulisscaffold-75922Z39-43941oxidaseBL043Assem. CACellOrgScaffold-2T2874-f8244CaulobacteraceaeAsticcacaulisscaffold-2T2874-f8244oxidaseDC575Assem. BCCellOrgScaffold-2T2874-f8244CaulobacteraceaeAsticcacaulisscaffold-1205835-f8449oxidaseDC575Assem. BCCellMinGEM35aryohoxiCE 2CH0 9ProteobacteriaCaulobacteraceaeCaulobacteraceaeAsticcacaulisscaffold-1205835-f8449oxidaseDiraftBSLigOrgvan.oh.oxiGT41CBM50GT4ProteobacteriaCaulobacteraceaeCaulobacteraceaeCaulobacteraksiccacaulisscaffold-1205835-f8449oxidaseCAC55Assem. BSLigMinCBM51GT28,GT4;AA7;GT4; GT51CBM50van.oh.oxiA73ProteobacteriaCaulobacteraceaeCaulobacteraceaeCaulobacterscaffold-38217222-62784oxidaseCAT4_13CAssem. BSLigMinAsaryohoxiAA3ProteobacteriaCaulobacteraceaeCaulobacteraceaeCaulobacterScaffold-38217242-62784oxidaseCAT4_2Assem. BSLigMinAsaryohoxiAA3ProteobacteriaCaulobacteraceaeCaulobacteraceaeCaulobacterScaffold-3821724-6784oxidaseTXA37Assem. TexCellMinCG55(A33ayohoxiAA	oxidase	BRM2_13C	Assem.	СА	Lig	Min		Proteobacteria	Burkholderiales	Oxalobacteraceae	Janthinobacterium	scaffold-156	328-16328
oxidaseBL043Assem. CACellOr CGN 93,CGN 93,CEEProteobacteriaCaulobacteralesCaulobacteraceaeAsticcaculisscaffold-27287-8284oxidaseDC575Assem. BCCellOrlOr 9ProteobacteriaCaulobacteralesCaulobacteraceaeAsticcaculisscaffold-1205535-5449oxidaseTXA37_2CAssem. TexCellMinCBM 35aryohoxix/CE 12:0419 9ProteobacteriaCaulobacteralesCaulobacteraceaeAsticcaculisscaffold-1205535-5449oxidaseBin.7DraftBSLigOr 9vanohoxixGT41CBM50;GTProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacteraAsticcaculisscaffold-1205535-5449oxidaseDC458Assem. BSLigMinCBM 5tGT28;GT4;AA7;GT4; GT5(CBM 30;yanohoxi;GT2ProteobacteriaCaulobacteraceaeCaulobacteraceaeCaulobacterscaffold-3817222-62784oxidaseDC578Assem. BSLigMinCBM 5tGT28;GT4;AA7;GT4; GT5(CH 30;yanohoxi;GT4ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-3817222-62784oxidaseDC578Assem. BSLigMinCBSA5,A37yohoxi;GT4 CT4C43791ProteobacteriaCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobacteralesCaulobactera	oxidase	Bin.17	Draft	СА	Cell	Org		Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	k99_528430	1228-18527
CBM 35;ary.oh.ox/;CE2;GH or oxidaseProteobacteriaCaulobacteralesCaulobacteraceaeAsticcacaulisscaffold-11205835-1344oxidaseTXA 37_2CAssem. TexCellMinCBM 35;ary.oh.oxi;CE2;GH or o stafstorProteobacteriaCaulobacteralesCaulobacteraceaeAsticcacaulisscaffold-11215835-1344oxidaseDraftBSLigOrgvan.oh.oxi;GT41;CBM 50;GT4ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterk99_17:59219-19680oxidaseOC458Assem. BSLigMinGT26/AA3;ary.oh.oxi;GT2;GT4; GT51CBM 50;van.oh.oxi;GT4; GT51CBM 50;van.oh.oxi;GT2;GT83ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-3817222-62784oxidaseTXA 37Assem. BSLigMinGT26/AA3;ary.oh.oxi;AT2;GT83ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-7234142248-13944oxidaseTXA 37Assem. BCCellMinGT51GH 037;CT2;GT83ProteobacteriaCaulobacteralesCaulobacteraceaePhysiobacteriumscaffold-19234142248-13944oxidaseTXA 37Assem. TexCellMinGT51GH 037;CT2;GT83ProteobacteriaCaulobacteralesCaulobacteraceaePhysiobacteriumscaffold-19234142248-13944oxidaseTXA 37Assem. TexCellMinGT24;GT4;AA3;CH72;AA3ProteobacteriaChromatialesEctothiorhodospiraceaeAlkyacoccusk99_6522690-6299622290-6299622	oxidase	TXA40	Assem.	Тех	Cell	Org		Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	scaffold-751922	1239-43941
oxidaseDC 575Assem. BCCellOrg9ProteobacteriaCaulobacteralesCaulobacteralesCaulobacteraleseAsticcacaulisscaffold-1205835-13449oxidaseBin.7DraftBSLigOrgvanobaxiCF12CETCHOProteobacteriaCaulobacteralesCaulobacteraceaeAsticcacaulisscaffold-1205835-13449oxidaseBin.7DraftBSLigOrgvanobaxiCF11CBM50/GT4ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacteraCaulobacteraScaffold-381222-62784oxidaseArXI-13CAssem. BSLigMinGE8AS15GT24(AA7,GT4) GT51GT8M50/vanobaxi/AA3ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacteraCaulobacterscaffold-381422-62784oxidaseArXI-13CAssem. BSLigMinGT26AA3aryohoxi/AA3 ProteobacteriaProteobacteriaCaulobacteraceaeCaulobacteraCaulobacterscaffold-381426-4774oxidaseTXA37Assem. BSLigMinGT26AA3aryohoxi/A3 ProteobacteriaProteobacteriaCaulobacteraceaeCaulobacteraceaeCaulobacterScaffold-7436-4774oxidaseTXA37Assem. TexCellMinGT26AA3aryohoxi/GT2GT83 GT44ProteobacteriaCaulobacteraceaeAlkaliimnicolaK9g.1522630-54880oxidaseBin.0DraftBCCellMinGT26T4Aryohoxi/GT2GT83 GT44ProteobacteriaMixococcalesMixococcalesMixococculMixococcul <td< td=""><td>oxidase</td><td>BL043</td><td>Assem.</td><td>СА</td><td>Cell</td><td>Org</td><td></td><td>Proteobacteria</td><td>Caulobacterales</td><td>Caulobacteraceae</td><td>Asticcacaulis</td><td>scaffold-217</td><td>2874-16284</td></td<>	oxidase	BL043	Assem.	СА	Cell	Org		Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	scaffold-217	2874-16284
DXIA32DXCellMill9ProteobacteriaCaulobacterialesCaulobacterialesAstrictacumsstati	oxidase	DC575	Assem.	вС	Cell	Org	· · ·	Proteobacteria	Caulobacterales	Caulobacteraceae	Asticcacaulis	scaffold-1120	5835-13449
oxidaseBin.7DraftBSLigOrgvan.ho.xigCT41CBM50/GT4ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterk99_17159219-19680oxidaseOC458Assem. BCCellMinCBM51GT28/GT4/AA7/GT4; GT51CBM50/van.bn.oxi/GT2ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-3817222-62784oxidaseA7M 1/3CAssem. BSLigMinGT26/A3/ary.oh.oxi/A3ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-7436-4774oxidaseDC578Assem. BCCellMinA3/ary.oh.oxi/GT2/GT83ProteobacteriaCaulobacteralesCaulobacteraceaePhenylobacteriumscaffold-3812101-210oxidaseDC578Assem. BCCellMinGT5/GT183/GT2/A3/ary.oh.oxi/GT2/GT3ProteobacteriaCaulobacteralesCaulobacteraceaePhenylobacteriumscaffold-3812101-210oxidaseBin.0DraftBCCellMinGT2/GT4/ary.oh.oxi/GT2/GT2/A3ProteobacteriaCaulobacteralesCaulobacteraceaeMixococcusk99_616522680-54880oxidaseBRM2_13CAssem. TexCellMinGT2/GT2/ary.oh.oxi/GT2/GT2/GT2/GT2/GT2/GT2/GT2/GT2/GT2/GT2	ovidaso	TYA 37 10C	Assom	Tox	Coll	Min		Protoobactoria	Caulobactoralos	Caulobactoracoao	Asticcacaulis	scoffold-1121	5835-13440
oxidaseOC 458Assem.BCCellMinCBM 5tGT28;GT4;AA7;GT4; GT5tCBM 50;yan.oh.oxi;GT2ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-3817222-62784oxidaseA7M 1.10CAssem.BSLigMinGT26;AA3aryohoxi;AA3ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterscaffold-3812101-210oxidaseDC578Assem.BCCellMinGT36;AA3aryohoxi;AA3ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacterascaffold-3812101-210oxidaseDC578Assem.BCCellMinGT51;GH33yan.oh.oxi;GT2;GT3ProteobacteriaCaulobacteralesCaulobacteraceaeClaulobacterac							0						
OxdaseOC439Assem. BCCellMinGT5tCBM 50,van.oh.oxi;GT2ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacteraceaeCaulobacterscaffold-3817222-2784oxidaseA7M 120CAssem. BSLigMinGT26;AA3;ary.oh.oxi;AA3ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacteraCaulobacteraScaffold-38121436-4774oxidaseDC578Assem. BCCellMinAA3;ary.oh.oxi;AA3ProteobacteriaCaulobacteralesCaulobacteraceaePhenylobacteriscaffold-381210+210oxidaseDC578Assem. BCCellMinGT5tGH103;van.oh.oxi;GT2;GT83ProteobacteriaCaulobacteralesCaulobacteraceaePhenylobacteriscaffold-381210+210oxidaseTXA37Assem. TexCellMinGT2;GT4;ary.oh.oxi;GT2;GT2ProteobacteriaChromatialesEctothiorhodospiraceaeAlkaliimnicolak99_162283047-103107oxidaseTXA37Assem. TexCellMinGT2;GT4;ary.oh.oxi;GT2;GT2ProteobacteriaMyxococcalesMyxococcaeaeMyxococcusk99_665226810-54880oxidaseBIN_213CAssem. TexCellMinGT4;AA3;ary.oh.oxi;CB109ProteobacteriaOceanospirillalesHalomonadaceaeHalomonasscaffold-1083711744oxidaseBIN_213CAssem. CALigMinGT4;AA3;ary.oh.oxi;CB109ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePs	UNIDAGE	Biii./	Dian	00	LIG	Olg	Vall.011.0XI,C14 ,CD1000,C14	i loteobacteria	Caulobacteraics	Caulobacteraceae	Cadiobacter	K00_1/ 100	2 13- 15000
oxidaseA7M2_16CAssem. BSLigMinAA3;aryonoxi;AA3ProteobacteriaCaulobacteralesCaulobacteraceaeCaulobacteraceaeCaulobacteriScaffold-3812101-210oxidaseTXA37Assem. TexCellMinAA3;aryonoxi;AA3ProteobacteriaCaulobacteralesCaulobacteraceaePhenylobacteriumscaffold-38122248-3394oxidaseTXA37Assem. TexCellMinGT5(GH103;yan.oh.oxi;GT2(GT4); CH4(CBM32;GH72;AA3ProteobacteriaChromatialesEctothiorhodospiraceaeAlkalilimnicolak99_1362283047-03107oxidaseBin.10DraftBCCellMinGH3(GT12;GT4; GT4ProteobacteriaMyxococcalesMyxococcaceaeMyxococccusk99_6165226810-54880oxidaseBRM2_13CAssem. TexCellMinGH3(GT12;van.oh.oxi;GE1t/CBM 18; GT4ProteobacteriaOceanospirillalesHalomonadaceaeHalomonasscaffold-10837319-1365oxidaseBRM2_13CAssem. TexCellMinGT4;AA3;aryon.oxi;AA3ProteobacteriaProteobacteriaPseudomonadalesPseudomonadaceaeCellvihriok99_43375711174oxidaseBRM2_13CAssem. TexCellMinGT4;AA3;aryon.oxi;AA3(GT3)ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaePseudomonadaceaeScaffold-10837319-1365oxidaseBRM2_13CAssem. TexCellMinGT4;AA3;aryon.oxi;CE10;AA2ProteobacteriaRhizobialesBradyrhizobiaceaeBr	oxidase	OC458	Assem.	вс	Cell	Min		Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-381	7222-62784
oxidaseDC578Assem. BCCellMinvan.oh.oxi;GT2;GT83ProteobacteriaCaulobacteralesCaulobacteraceaePhenylobacteriumscaffold-1323112248-13994oxidaseTXA37Assem. TexCellMinGT15(GH103,van.oh.oxi;GT12; GT2;GT4,ary.oh.oxi;GT2;CT2; GT4ProteobacteriaChromatialesEctothiorhodospiraceaeAlkalilimnicolak99_11362283047-103107oxidaseBin.10DraftBCCellMinGT2;GT4,ary.oh.oxi;GT2;GT3 GT2;GT4,ary.oh.oxi;GT2;GT4ProteobacteriaMyxococcalesMyxococcaeeMyxococcusk99_6299622290-18595oxidaseTXA37Assem. TexCellMinGH2;GT2;van.oh.oxi;GT16[M13]ProteobacteriaMyxococcalesMyxococcaeeMyxococcusk99_6165226810-54880oxidaseBin.9DraftBCCellMinGH2;GT2;van.oh.oxi;GH109ProteobacteriaOceanospirillalesHalomonadaceaeHalomonasscaffold-10837319-1365oxidaseBRM2_13CAssem. CALigMinGT4;GT2;van.oh.oxi;GH26;GT30;CE1ProteobacteriaProteobacteriaProteobacteriaPseudomonadaceaePs		_			-		· · · · · ·						
oxidaseTXA 37Assem.TexCellMinGT51GH103,yan.oh.oxi,GT41 CH4_CBM 32(GH72,AA3) GT26,Yan.oh.oxi,GT47 GT4ProteobacteriaChromatialesEctothiorhodospiraceaeAlkalilimnicolak99_1362283047-103107oxidaseBin.10DraftBCCellMinMinGT26;Yan.oh.oxi,GT47;GT4 GT26;Yan.oh.oxi,GT4CBT3;GT4 GT4ProteobacteriaMyxococcalesMyxococcaceaeMyxococcusk99_6299622290-18595oxidaseTXA 37Assem.TexCellMinGH2;GT2;yan.oh.oxi,GT4(GB109) GT4;GT2;yan.oh.oxi,GE1(SG100)ProteobacteriaMyxococcalesMyxococcaceaeMyxococcusk99_645226810-54880oxidaseBRM2_3CAssem.CALigMinGH2;GT2;yan.oh.oxi;GH109 ary.oh.oxi;GE1(SG100)ProteobacteriaProteobacteriaProteobacteriaPseudomonadaceaeHalomonadaceaeHalomonasscaffold-10837319-11365oxidaseBRM2_3CAssem.CellOrgary.oh.oxi;GE1(SG100)ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaeCellvibriok99_433757141744oxidaseBRM2_3CAssem.TexCellMinGT4;van.oh.oxi;CB105AProteobacteriaPseudomonadaceaePseudomonadaceaeBradyrhizobiumk99_430426128-35395oxidaseTXA37Assem.TexCellMinGT4;van.oh.oxi;CB105A2ProteobacteriaProteobacteriaPseudomonadaceaeBradyrhizobiumk99_4304319-16649oxidaseBRM2_3C <t< td=""><td></td><td>_</td><td></td><td></td><td>-</td><td></td><td>· · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_			-		· · · ·						
oxidaseTXA37Assem. TexCellMinCE14;CBM32;GH72;AA3 GT2;GT4;ary.oh.oxi;GT2;GT2; GT4ProteobacteriaChromatialesEctothiorhodospiraceaeAlkaliliminicolak99_13622830147-103107oxidaseBin.10DraftBCCellMinGT2;GT4;ary.oh.oxi;GT2;GT2; GT4ProteobacteriaMyxococcalesMyxococcaceaeMyxococcusk99_6299622290-18595oxidaseTXA37Assem. TexCellMinGH18;GH1ProteobacteriaMyxococcalesMyxococcaceaeMyxococcusk99_6165226810-54880oxidaseBRM2_13CAssem. CALigMinGH2;GT2;van.oh.oxi;GH109ProteobacteriaOceanospirillalesHalomonadaceaeHalomonasscaffold-10837319-1365oxidaseBRM2_13CAssem. CALigMinGT4;AA3;ary.oh.oxi;GH26;GT30;CE1ProteobacteriaPseudomonadalesPseudomonadaceaeHalomonasscaffold-10837319-1365oxidaseBRM2_13CAssem. CALigMinGT4;AA3;ary.oh.oxi;GH26;GT30;CE1ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaePseudomonadaceaeScaffold-10837319-1365oxidaseTXA37Assem. TexCellMinGT4;AA3;ary.oh.oxi;CBM50ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceaePseudomonadaceae	oxidase	DC578	Assem.	вC	Cell	Min			Caulobacterales	Caulobacteraceae	Phenylobacterium	scattold-1323141	2248-13994
OxidaseDraft <t< td=""><td>oxidase</td><td>TXA37</td><td>Assem.</td><td>Тех</td><td>Cell</td><td>Min</td><td>CE14;CBM32;GH72;AA3</td><td>Proteobacteria</td><td>Chromatiales</td><td>Ectothiorhodospiraceae</td><td>Alkalilimnicola</td><td>k99_1136228</td><td>30147-103107</td></t<>	oxidase	TXA37	Assem.	Тех	Cell	Min	CE14;CBM32;GH72;AA3	Proteobacteria	Chromatiales	Ectothiorhodospiraceae	Alkalilimnicola	k99_1136228	30147-103107
oxidaseTXA 37Assem. TexCellMinGH18;GH1ProteobacteriaProteobacteriaMyxococcaceaeMyxococcaceaeMyxococcusk99_6165226810-54880oxidaseBRM2_13CAssem. CALigMinGH2;GT2;van.oh.oxi;GH109ProteobacteriaProteobacteriaPseudomonadaceaeHalomonadaceaeCellvibriok99_433757111744oxidaseBRM2_13CAssem. TexCellMinGT4;xA3;ary.oh.oxi;GH26;GT30;CE1ProteobacteriaPseudomonadalesPseudomonadaceaeCellvibriok99_433757111744oxidaseTXA37Assem. TexCellMinGT4;xA3;ary.oh.oxi;GBM50ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonada	oxidase	Bin.10	Draft	BC	Cell	Min	GT4	Proteobacteria	Myxococcales	Мухососсасеае	Myxococcus	k99_629962	2290-18595
oxidaseBRM2_13CAssem. CALigMinGH2;GT2;van.oh.oxi;GH109ProteobacteriaOceanospirillalesHalomonadaceaeHalomonadsscaffold-10837319-11365oxidaseBin.9DraftBCCellOrgary.oh.oxi;GH26;GT30;CE1ProteobacteriaPseudomonadalesPseudomonadalesPseudomonadaceaeCellvibriok99_4337571-11744oxidaseBRM2_13CAssem. CALigMinGT4;AA3;ary.oh.oxiProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaePseudomonadsscaffold-10837319-11365oxidaseTXA37Assem. TexCellMinGT4;van.oh.oxi;CBM50ProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadace	ovideee	TYA 37	Assom	Toy	Cell	Min		Protochastoric	Myrococcoloc	Myrococcocco	Maracaccus	K00 616522	6810-51990
oxidaseBin.9DraftBCCellOrgary.oh.oxi;GH26;GT30;CE1ProteobacteriaPseudomonadalesPseudomonadalesPseudomonadaceaeCellvibriok99_4337571.11744oxidaseTXA37Assem. TexCellMinGT4;AA3;ary.oh.oxi;CBM50ProteobacteriaProteobacteriaPseudomonadalesPseudomonadaceaePseudo										-			
oxidaseBRM2_13CAssem.CALigMinGT4;AA3;ary.oh.oxiProteobacteriaPseudomonadalesPseudomonadaceaePseudomonadaceaePseudomonasscaffold-81605603-9762oxidaseTXA37Assem.TexCellMinGT4;van.oh.oxi;CBM50ProteobacteriaProteobact									•				
o xidaseTXA 37Assem. TexCellM inCB/M 14;van.oh.oxi;AA4;GT51; CE4Proteo bacteriaRhizobialesBradyrhizobiaceaeBradyrhizobiaceaeBradyrhizobiumk99_1600603195-16649o xidaseBRM 2_13CAssem. CALigM invan.oh.oxi;CE10;AA2Proteo bacteriaRhizobialesBradyrhizobiaceaeBradyrhizobiaceaeBradyrhizobiumscaffold-31024263-15793o xidaseA702_13CAssem. BSLigOrgAA3;2;AA3;2;AA3;2;ary.oh.oxiProteo bacteriaRhizobialesRhizobialesRhizobiaceaeRhizobiumscaffold-32612368-4695o xidaseBin.1DraftCALigM inGT2;PL1;van.oh.oxiProteo bacteriaRhizobialesRhodobiaceaeLutibaculumk99_7984735956-16637												—	
oxidase BRM2_13C Assem. CA Lig Min van.oh.oxi;CE10;AA2 Proteobacteria Rhizobiales Bradyrnizobiaceae Bradyrnizobiaceae <t< td=""><td>oxidase</td><td>TXA37</td><td>Assem.</td><td>Tex</td><td>Cell</td><td>Min</td><td></td><td>Proteobacteria</td><td>Rhizobiales</td><td>Bradyrhizobiaceae</td><td>B radyrhizo bium</td><td>k99_813141</td><td>26128-35395</td></t<>	oxidase	TXA37	Assem.	Tex	Cell	Min		Proteobacteria	Rhizobiales	Bradyrhizobiaceae	B radyrhizo bium	k99_813141	26128-35395
oxidase A7O2_13C Assem. BS Lig Org AA3;2;AA3;2;AA3;2;ary.oh.oxi Proteobacteria Rhizobiales Rhizobiaceae Rhizobium scaffold-3261 2368-4695 oxidase Bin.1 Draft CA Lig Min GT2;PL1;van.oh.oxi Proteobacteria Rhizobiales Rhodobiaceae Lutibaculum k99_798473 5956-16637	oxidase	TXA37	Assem.	Tex	Cell	Min		Proteobacteria	Rhizobiales	B radyrhizo biaceae	Bradyrhizobium	k99_160060	3195-16649
oxidase Bin.1 Draft CA Lig Min GT2;PL1;van.oh.oxi Proteobacteria Rhizobiales Rhodobiaceae Lutibaculum k99_798473 5956-16637	oxidase	BRM 2_13C	Assem.	СА	Lig	Min	van.oh.oxi;CE10;AA2	Proteobacteria	Rhizobiales	Bradyrhizobiaceae	B radyrhizo bium	scaffold-3102	4263-15793
	oxidase	A7O2_13C	Assem.	BS	Lig	Org	AA3;2;AA3;2;AA3;2;ary.oh.oxi	Proteobacteria	Rhizobiales	Rhizobiaceae	Rhizobium	scaffold-3261	2368-4695
325	oxidase	Bin.1	Draft	CA	Lig	Min	GT2;PL1;van.oh.oxi	Proteobacteria	Rhizobiales	Rhodobiaceae	Lutibaculum	k99_798473	

325

CAZyme	SampleID	Source	Eco.	Subs.	Hor.	Cazyme Cluster	Phylum	Order	Family	Genus	Contig	Location
		A	~ ^	1.1-	0	CE10;GH39;GH3;GH3;van.oh.	Destashestaria	Dhim histor	Dha da bia a sa	D a suite a suite sa		4070 40070
oxidase	BRO3_13C	Assem.	ĊA	Lig	Org		Proteobacteria	Rhizobiales	Rhodobiaceae	Parvibaculum	scaffold-1106	4272-10273
oxidase	TXA37	Assem.	Toy		Min	GT4;GT2;van.oh.oxi;GH31;CB	Proteobacteria	Rhizobiales	Xanthobacteraceae	Starkeya	k99 269685	6840-17977
	BRM2 13C	Assem.		Lig	Min	dyp2;AA3;ary.oh.oxi;AA3	Proteobacteria	Rhodobacterales	Rhodobacteraceae	Thalassobacter	scaffold-1303	5267-10995
	A7M 1_13C	Assem.		Lig	Min	GH75;van.oh.oxi;GH53	Proteobacteria	Rhodospirillales	Rhodospirillaceae	Azospirillum	scaffold-353206	1772-12716
				-		GT2;GT2;CE11;CBM 13;ary.oh.						
	TXA37	Assem.		Cell	Min	охі	Proteobacteria	Sphingo monadales	Sphingo monadaceae	Blastomonas	k99_727174	5169-11347
oxidase	TXA37	Assem.	Tex	Cell	IVI IN	ary.oh.oxi;GH3;AA6;GH92 GH92;GH109;CBM35;ary.oh.o	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Novosphingobium	k99_166369	1184-15132
oxidase	TXA37	Assem.	Tex	Cell		xi;GH2	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Novosphingobium	k99_248725	1147-22803
oxidase	A7M 1_13C	Assem.	BS	Lig	Min	GH2;van.oh.oxi;AA3;2	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingo bium	scaffold-112	11595-36855
oxidase	A7O1_13C	Assem.	BS	Lig	Org	AA4;AA4;van.oh.oxi	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingobium	scaffold-693	171-2081
oxidase	BRM 2_13C	Assem.	CA	Lig	M in	AA3;2;AA3;2;ary.oh.oxi	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingo bium	scaffold-1298	1785-4135
oxidase	BRM 2_13C	Assem.	CA	Lig	M in	AA3;2;ary.oh.oxi;AA3;2	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingobium	scaffold-9300	305-2347
oxidase	A9M2_13C	Assem.	BS	Lig	M in	AA4;AA4;van.oh.oxi	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingo bium	scaffold-1897	1174-3131
oxidase	A9M2_13C	Assem.	BS	Lig	Min	van.oh.oxi;AA3;2;AA3;2;ary.o h.oxi;GT9	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingo bium	scaffold-1228	674-32478
oxidase	A 9086	Assem.	BS	Cell	Min	AA3;AA3;ary.oh.oxi	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingobium	scaffold-574	3027-5011
oxidase	Bin.7	Draft	CA	Cell		GH32;GH109;ary.oh.oxi	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	k99_522714	5152-14423
oxidase	OC458	Assem.		Cell	Min	GH74;GH74;GT2;GT2;GT4;G	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	scaffold-1416	962-15150
oxidase	DC578	Assem.	вс	Cell	Min	T4;ary.oh.oxi GT4;GT28;van.oh.oxi;GT41	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	scaffold-1845	11006-28720
oxidase	OC458	Assem.	вс	Cell	Min	AA11;CE14;GT51;van.oh.oxi;C BM13;GT2	Proteobacteria	uncl. Burkholderiales	uncl.	Rubrivivax	scaffold-713	2854-81867
oxidase	DC578	Assem.	вс	Cell	Min	CBM 50;CBM 51;CBM 20;van. oh.oxi	Proteobacteria	Xanthomonadales	Xanthomonadaceae	Dyella	scaffold-1306171	2190-24584
oxidase	BRM2_13C	Assem.	СА	Lig	Min	AA3;2;ary.oh.oxi;AA3;2;GT35	Proteobacteria	Xanthomonadales	Xanthomonadaceae	Xanthomonas	scaffold-11	22109-28583
oxidase	DC578	Assem.		Cell	Min	GT4;GT2;van.oh.oxi;GT83	uncl. Bacteria	uncl.	uncl.	uncl.	scaffold-1323154	12358-25225
oxidase	Bin.40	Draft	Tex	Cell	Min	CBM 14;GT9;ary.oh.oxi	Verrucomicrobia	Chthoniobacterales	Chthoniobacteraceae	Chthoniobacter	k99_1017246	3011-9565
oxidase	Bin.45	Draft	Тех	Cell	Min	CBM27;van.oh.oxi;CBM32;C BM48	Verrucomicrobia	Opitutales	uncl. Opitutaceae	Opitutaceae	k99_116819	2087-13205
oxidase	TXA37	Assem.	Tex	Cell	Min	CBM 32;CBM 32;CBM 35;CB M 13;CBM 26;CBM 40;GH 18;G T2;GH97;PL11;2;PL4;1;GH93;G T41;PL8;CBM 47;CBM 47;PL4 ;1;GH39;van.oh.oxi;GH 109;CB M 32;PL11;2;CBM 32;GH 38;CB M 32;GT83;CE11;GT2;CBM 6; CBM 62;CBM 62;CBM 62;GH1 0;GH 109;CE1;GH 10;GH43;GH2 5;GT2;GT2;GT2;GT2;GT2;GT2;GT 2;CBM 66;GH 127;CBM 35;CB M 5;GH43;GT2	Verrucomicrobia	Verrucomicrobiales	uncl.	Pedosphaera	k99_260195	2693-310068
oxidase	TXA37	Assem.	Тех	Cell	Min	GT2;van.oh.oxi;CBM 13;GH13; CE11	Verrucomicrobia	Verrucomicrobiales	Verrucomicrobiaceae	Akkermansia	k99_193390	10277-48642
oxidase	TXA37	Assem.	Tex	Cell	M in	CBM 48;van.oh.oxi;GT83	Verrucomicrobia	Verrucomicrobiales	Verrucomicrobiaceae	Verrucomicrobium	k99_1062264	763-6837
oxidase	TXA37	Assem.		Cell	Min	PL4;PL11;2;ary.oh.oxi	Verrucomicrobia		uncl.	Chthoniobacter	k99_383562	22-13016
oxidase	TXA37	Assem.	Tex	Cell	Min	CBM 32;CBM 6;CBM 6;GT 19;v an.oh.oxi;GH 13;16	Verrucomicrobia		uncl.	Chthoniobacter	k99_797249	4272-40194
oxidase	TXA37	Assem.	Tex	Cell	M in	CBM 14;GT9;ary.oh.oxi	Verrucomicrobia		uncl.	Chthoniobacter	k99_227527	3011-9565
oxidase	TXA40	Assem.	Тех	Cell	Org	AA3;2;AA3;2;ary.oh.oxi;AA3;2 ;AA3;2	Ascomycota	Glomerellales	Plectosphaerellaceae	Verticillium	scaffold-87	3589-5618
oxidase	TXA37	Assem.	Тех	Cell	Min	AA3;2;AA3;2;AA3;2;ary.oh.oxi	Ascomycota	Glomerellales	Plectosphaerellaceae	Verticillium	k99_1426652	1842-3647
oxidase	JW013	Assem.	JP	Cell	Org	AA3;2;AA3;2;AA3;2;ary.oh.oxi	Ascomycota	Hypocreales	Hypocreaceae	Trichoderma	scaffold-767073	1-1925
oxidase	JW013	Assem.	JP	Cell	Org	AA3;2;AA3;2;ary.oh.oxi	Ascomycota	Hypocreales	Hypocreaceae	Trichoderma	scaffold-456930	3794-5630
					-	AA4;AA4;van.oh.oxi;AA4;AA						
oxidase	Bin.22	Draft	Tex	Cell	Org	4	Ascomycota	mitosporic Onygenales	Eurotiomycetidae	Coccidioides	k99_78246	433-2339

CAZyme	SampleID	Source	Eco.	Subs.	Hor.		Phylum	Order	Family	Genus	Contig	Location
oxidase	Bin.22	Draft	Tex	Cell	Org	AA3;2;AA3;2;AA3;2;ary.oh.oxi :AA3:2:GH31:GH31	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_469555	2585-14254
oxidase	TXA37	Assem.	Tex	Cell	Min	GH76;van.oh.oxi;GT2	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_1289398	8931-38076
oxidase	TXA37	Assem.	Tex	Cell	Min	GH109;GH51;GH51;GH51;van. oh.oxi	Ascomycota	Sordariales	Chaetomiaceae	Thielavia	k99_414188	29216-45953
pero xi	DC578	Assem.	вс	Cell	Min	CBM 32;CBM 32;CBM 32;AA 2	Actinobacteria	Actinomycetales	Frankiaceae	Frankia	scaffold-354	70-6228
pero xi	TXA_Antib	Assem.		Lig	Min	GH1;GT9;AA2;GH15;van.oh.o xi:GT2	Actinobacteria	Actinomycetales	Mycobacteriaceae	Mycobacterium	scaffold-2307	1358-70445
pero xi	TXC 148	Assem.			Org	ver.perox;GH35;GT2	Actinobacteria	Actinomycetales	Promicromonosporaceae	Xylanimonas	scaffold-103129	410-8446
pero xi	Bin.1	Draft	JP	Cell	Org	GH32;AA2;GT2;GT2;CE4	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	k99_423361	2688-18835
pero xi	Bin.17	Draft	BS	Cell	Org	GH13;26;CBM48;GH20;AA2 GT4;GT2;CBM32;AA2;AA2;	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	k99_178235	3568-13274
pero xi	BR_Antib	Assem.	СА	Lig	Min	CBM4;CBM50	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-179	30319-63022
pero xi	DC578	Assem.	BC	Cell	Min	GT4;AA2;GH2;GH53;CE14	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-4846	3278-34214
pero xi	A 8M 3_13C	Assem.	BS	Lig	Min	AA2;AA2;AA2	Actinobacteria	Actinomycetales	Streptomycetaceae	Streptomyces	scaffold-5768	240-2770
norovi	DC578	Accom	PC	Cell	Min	GT83;CE8;GT4;GT2;GT83;A	Firmioutoo	Bacillales	Aliovalahaaillaaaaa	Aliovalabaaillua	appfield E408	172-33467
pero xi pero xi	A7026	Assem. Assem.		Cell	Min	A2;CBM50 AA2;CE14;GH65	Firmicutes Proteobacteria	Burkholderiales	A licyclobacillaceae Burkholderiaceae	A licyclo bacillus B urkho Ideria	scaffold-5408 scaffold-224	1714-27222
peroxi	OC458	Assem.		Cell		PL11;2;GH128;GH128;AA2	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-414	4410-16251
						GH28;GT51;CBM5;AA2;GH3;						
pero xi	JE121	Assem.		Cell	Org	CBM 53;CE10	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-47	328-75445
peroxi	A7M2_13C	Assem.		Lig		CE1;GH39;CBM2;AA2	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-401	777-20133
pero xi	A8055	Assem.	BS	Cell	Org	AA2;GH23;GH23	Proteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia	scaffold-5535	4597-9679
pero xi	Bin.11	Draft	JP	Cell	Min	CBM 13;CBM 13;CBM 5;GH5; AA2;CE10;GT35;GH78;CBM5 0	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	k99_366491	20251-57297
pero xi	JS080	Assem.	JP	Cell	M in	GH23;AA2;GH12	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	scaffold-3043	4363-12183
pero xi	TXA37	Assem.	Тех	Cell	Min	AA2;AA2;GH102;CBM14;GT1; GT4;GT4;GT1;GT1	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	k99_373252	7468-44019
pero xi	JW014	Assem.	JP	Cell	Min	GH3;GH3;GH78;AA2	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	scaffold-3189	10878-24752
peroxi	A8056	Assem.		Cell	Min	GT4;GH12;AA2;GH51	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	scaffold-295	3692-16860
pero xi	JE122	Assem.	JP	Cell	Min	CBM 50;GH78;GT35;CE10;AA 2;CBM 13;CBM 13;CBM 5;GH5	Proteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	scaffold-407992	5342-42388
pero xi	OC458	Assem.	вс	Cell	Min	GH92;GH92;AA3;GT2;AA2;C BM50;CBM50	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-1346	11375-80365
pero xi	TXA37	Assem.	Тех	Cell	Min	GH3;GT2;GH3;GH78;GT35;A A2;GH43;GH43;GH32	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	k99_279297	11487-47415
pero xi	A 9085	Assem.		Cell	-	GH24;AA2;GH132;CBM50;G H13;23;CE6;GH4;CE1;GT51;C E1;CBM50;CBM18;AA10;CB M13;GT4;CE1;GT41;GT2;CE6; GT2;GH18;GT41;GT32;GT32; GH28;GT2;GH3;GT4;CBM57; CE10;GT2;GH29;GH1	Proteobacteria	Caulobacterales	Caulobacteraceae	Caulobacter	scaffold-9	133-263677
pero xi	BRM 2_13C	Assem.		Lig	Min	van.oh.oxi;CE10;AA2	Proteobacteria	Rhizobiales	Bradyrhizobiaceae	Bradyrhizobium	scaffold-3102	4263-15793
pero xi	TXA_Antib	Assem.		-	Min		Proteobacteria	Rhizobiales	Bradyrhizobiaceae	Nitrobacter	scaffold-398	52-5641
pero xi	TXA37	Assem.	Iex	Cell	Min	GT90;AA2;GT4;GH3 GH12;GT51;AA2;AA12;CBM2;	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Novosphingobium	k99_978139	384-31846
pero xi	TXA37	Assem.			Min	AA9;CE14;GH3	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	k99_444936	8022-76017
pero xi	A 9086	Assem.		Cell		GH2;AA2;AA2	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	scaffold-73	4353-12388
pero xi	A7M2_13C	Assem.	BS	Lig	Min	AA2;AA2;GT2 AA2;CBM32;CBM50;GH128;	Proteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingo pyxis	scaffold-810	5285-8158
pero xi	TXA37	Assem.	Тех	Cell	Min	PL11;2	Verrucomicrobia	Verrucomicrobiales	uncl.	Pedosphaera	k99_680169	1678-32259
peroxi	Bin.22	Draft	Tex	Cell	Org	ver.perox;AA5;1;AA5;1	Ascomycota	Glomerellales	Plectosphaerellaceae	Verticillium	k99_231870	2465-4926
pero xi	JW013	Assem.		Cell	Org	GH88;GH28;ver.perox	Ascomycota	Hypocreales	Hypocreaceae	Tricho derma	scaffold-843429	2919-11503
pero xi	Bin.22	Draft	Tex	Cell	Org	GT4;AA2;CBM50;CBM50	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_1470342	5281-15115
pero xi	Bin.22	Draft	Tex	Cell	Org	CE10;GT4;CBM1;AA2;CBM5 0;CBM50	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_414950	20866-38194
pero xi	TXA37	Assem.	Tex	Cell	Min	GH13;40;CBM50;CBM50;AA 2;GT4;CE10;AA7;GT4;GT4	Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_204014	8277-61013
pero xi	TXA37	Assem.			M in		Ascomycota	Sordariales	Chaetomiaceae	Chaetomium	k99_253334	1-3086
pero xi	TXA37	Assem.	Tex	Cell	M in	AA2;AA2;AA2	Ascomycota	Sordariales	Sordariaceae	Neurospora	k99_638427	491-1782