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Abstract

Test suite effectiveness is measured by assessing the portion of faults that can
be detected by tests. To precisely measure a test suite’s effectiveness, one
need to pay attention to both tests and the set of faults used. Code coverage
is a popular test adequacy criterion in practice. Code coverage, however,
remains controversial as there is a lack of coherent empirical evidence for its
relation with test suite effectiveness. More recently, test suite size has been
shown to be highly correlated with effectiveness. However, previous studies
treat test methods as the smallest unit of interest, and ignore potential factors
influencing the correlation between test suite size and test suite effectiveness.
We propose to go beyond test suite size, by investigating test assertions inside
test methods. First, we empirically evaluate the relationship between a test
suite’s effectiveness and the (1) number of assertions, (2) assertion coverage,
and (3) different types of assertions. We compose 6,700 test suites in total,
using 24,000 assertions of five real-world Java projects. We find that the
number of assertions in a test suite strongly correlates with its effectiveness,
and this factor positively influences the relationship between test suite size
and effectiveness. Our results also indicate that assertion coverage is strongly
correlated with effectiveness. Second, instead of only focusing on the testing
side, we propose to investigate test suite effectiveness also by considering
fault types (the ways faults are generated) and faults in different types of
statements. Measuring a test suite’s effectiveness can be influenced by using
faults with different characteristics. Assessing test suite effectiveness without
paying attention to the distribution of faults is not precise. Our results
indicate that fault type and statement type where the fault is located can
significantly influence a test suite’s effectiveness.
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Preface

This thesis presents two large-scale empirical studies on the influencing fac-
tors of test suite effectiveness, conducted by myself in collaboration with
my supervisor Professor Ali Mesbah. Chapter 3 has been published as a
full conference paper at the joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2015) [44]. The results described in
Chapter 4 are submitted to a software testing conference as a full paper. I was
responsible for devising the experiments, running the experiments, analyzing
the results, and writing the manuscript. My supervisor was responsible for
guiding me with the creation of the idea and experimental methodology, the
design of the procedure for analyzing the experimental results, as well as
writing Chapters 3 and 4.
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Chapter 1

Introduction

Software testing has become an integral part of software development. A
software product cannot be confidently released unless it is adequately tested.
Code coverage is the most popular test adequacy criterion in practice. How-
ever, coverage alone is not the goal of software testing, since coverage without
checking for correctness is meaningless. A more meaningful adequacy metric is
the fault detection ability of a test suite, also known as test suite effectiveness.

Test suite effectiveness measures how well a test suite is capable of
detecting faults. A common technique used to measure test suite effectiveness
is mutation testing, in which small programmer errors are simulated to see if
the test suite can kill the mutant. Naturally, the measurement is dependent
on two components, namely, the test suite and faults simulated.

There have been numerous studies analyzing the relationship between
test suite size, code coverage, and test suite effectiveness [17, 18, 23–26, 33].
More recently, Inozemtseva and Holmes [28] found that there is a moderate
to very strong correlation between the effectiveness of a test suite and the
number of test methods, but only a low to moderate correlation between
the effectiveness and code coverage when the test suite size is controlled
for. These findings imply that (1) the more test cases there are, the more
effective a test suite becomes, (2) the more test cases there are, the higher the
coverage, and thus (3) test suite size plays a prominent role in the observed
correlation between coverage and effectiveness.

All these studies treat test methods as the smallest unit of interest.
However, we believe such coarse-grained studies are not sufficient to show
the main factors influencing a test suite’s effectiveness. In this thesis, we
propose to dissect test methods and investigate why test suite size correlates
strongly with effectiveness. To that end, we focus on test assertions inside
test methods. Test assertions are statements in test methods through which
desired specifications are checked against actual program behaviour. As such,
assertions are at the core of test methods. We hypothesize that assertions1

have a strong influence on test suite effectiveness, and this influence, in turn,
1We use the terms ‘assertion’ and ‘test assertion’ interchangeably in this thesis.
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1.1. Thesis Contribution

is the underlying reason behind the strong correlation between test suite size,
code coverage, and test suite effectiveness.

Additionally, measuring test suite effectiveness not only depends on the
quality of the tests, but it might also depend on which faults are seeded and
where. Assessing test suite effectiveness without noticing the distribution
of faults can be biased. We hypothesis that, seeded faults with different
characteristics can influence measuring a test suite’s effectiveness. In this
thesis, we also measure test effectiveness against different types of faults
and faults located in different types of statements. To the best of our
knowledge, we are the first to conduct a large-scale empirical study to assess
the relationship between test suite effectiveness and fault type and location.

In this thesis, We use mutants to simulate real faults. Mutants have been
widely adopted to substitute real faults in the literature [18, 27, 28, 33, 37, 39].
There is also empirical evidence for mutants being representable for real faults
[14, 15, 19, 29]. We generate mutants by using the seven default mutation
operators provided by PIT [10].

1.1 Thesis Contribution

This thesis makes the following main contributions:

• The first large-scale study analyzing the relation between test assertions
and test suite effectiveness. Our study composes 6,700 test suites in
total, from 5,892 test cases and 24,701 assertions of five real-world Java
projects in different sizes and domains.

• Empirical evidence that (1) test assertion quantity and assertion cover-
age are strongly correlated with a test suite’s effectiveness, (2) assertion
quantity can significantly influence the relationship between a test
suite’s size and its effectiveness, (3) the correlation between statement
coverage and effectiveness decreases dramatically when assertion cover-
age is controlled for.

• A classification and analysis of the effectiveness of assertions based on
their properties, such as (1) creation strategy (human-written versus
automatically generated), (2) the content type asserted on, and (3) the
actual assertion method types.

• Empirical evidence that assertions classified by their types, such as the
content type they assert on, or assertion method types, (1) might not
be fine-grained enough to differentiate from each other, and (2) cannot
significantly influence a test suite’s effectiveness

2



1.2. Thesis Organization

• A quantitative analysis of the relationship between (1) seeded fault type
and test suite effectiveness, and (2) seeded fault location (in different
statement types) and test suite effectiveness.

• Empirical evidence that fault type and statement type where fault is
located can significantly influence a test suite’s measured effectiveness.

1.2 Thesis Organization

This chapter serves to establish the overarching goal and motivation of this
thesis. Chapter 2 discusses the related work. Chapter 3 describes in detail the
experimental design and results found from the investigation of the influence
of assertions on test suite effectiveness. Chapter 4 describes in detail the
experiments we conducted to explore the influence of mutants on measuring
test suite effectiveness. Chapter 5 discusses the findings from Chapter 3 and
Chapter 4, and Chapter 6 concludes and presents future research directions.

An initial version of Chapter 3 is published as a full conference paper:
Yucheng Zhang, and Ali Mesbah. “Assertions Are Strongly Correlated with
Test Suite Effectiveness”. In Proceedings of the joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). 214-224, 2015 [44].

3



Chapter 2

Related Work

2.1 Coverage Metrics

There is a large body of empirical studies investigating the relationship
between different coverage metrics (such as statement, branch, MC/DC) and
test suite effectiveness [17, 18, 23–26]. All these studies find some degree of
correlation between coverage and effectiveness. However, coverage remains a
controversial topic [18, 28] as there is no strong evidence for its direct relation
with effectiveness. The reason is that coverage is necessary but not sufficient
for a test suite to be effective. For instance, a test suite might achieve 100%
coverage but be void of test assertions to actually check against the expected
behaviour, and thus be ineffective.

2.2 Test Suite Size

Researchers have also studied the relationship between test suite size, coverage,
and effectiveness [28, 33]. In these papers, test suite size is measured in terms
of the number of test methods in the suite. Different test suites, with size
controlled, are generated for a subject program to study the correlation
between coverage and effectiveness. Namin and Andrews [33] report that
both size and coverage independently influence test suite effectiveness. More
recently, Inozemtseva and Holmes [28] find that size is strongly correlated with
effectiveness, but only a low to moderate correlation exists between coverage
and effectiveness when size is controlled for. None of these studies, however,
looks deeper into the test cases to understand why size has a profound impact
on effectiveness. In our work, we investigate the role test assertions play in
effectiveness.

4



2.3. Assertion Coverage

2.3 Assertion Coverage

Schuler and Zeller [38] propose the notion of ‘checked coverage’2 as a metric
to assess test oracle quality. Inspired by this work, we measure assertion
coverage of a test suite as the percentage of statements directly covered by
the assertions. We are interested in assertion coverage because it is a metric
directly related with the assertions in the test suite. In the original paper
[38], the authors evaluated the metric by showing that there is a similar
trend between checked coverage, statement coverage, and mutation score. In
this thesis, we conduct an empirical study on the correlation level between
assertion coverage and test suite effectiveness. In addition, we compose a
large set of test suites (up to thousands) for each subject under test, whereas
only seven test suites were compared in the original paper. Moreover, we
study the correlation between statement coverage and test suite effectiveness,
to compare with the relationship between assertion coverage and test suite
effectiveness, by composing test suites with assertion coverage controlled.

2.4 Test Characteristics

Cai and Lyu [18] studied the relationship between code coverage and fault
detection capability under different testing characteristics. They found that
the effect of code coverage on fault detection varies under different testing
profiles. Also, the correlation between the two measures is strong with
exceptional test cases, while weak in normal testing settings. However, they
did not examine the role assertions might play in different profiles on the
effectiveness of test cases. To the best of our knowledge, we are the first to
investigate the influence of different assertion properties on suite effectiveness.
We classify assertion properties in three categories, and study the effectiveness
of each classification separately.

2.5 Mutation Operators

Researchers have also sought to find sufficient subsets of mutation operators
to reduce the computational cost of mutation testing. Offutt and Rothermel
empirically compared the effectiveness of selective mutation with standard
mutation in [34, 35]. They empirically evaluated [35] the mean loss in
mutation score using 2-selective, 4-selective, and 6-selective mutation. They

2We use the terms ‘assertion coverage’ and ‘checked coverage’ interchangeably in this
thesis.
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2.5. Mutation Operators

found [34] 5 out of 22 mutation operators, used by Mothra, suffice to efficiently
implement mutation testing for achieving 99.5 percent mutation score. Wong
and Mathur [42] implemented the idea of constraint mutation by using only
two mutation operators. From their evaluation, 80 percent of mutants are
reduced with only 5 percent loss in mutation score. Mresa and Bottaci
[30] took the cost of detecting equivalent mutants into consideration while
evaluating selective mutation.

In addition, researchers have explored [31, 32, 40, 41] the sufficient subset
of mutation operators for measuring test effectiveness. More recently, Deng
et al. [22] and Delamaro et al. [20] evaluated statement deletion mutation
operator (SDL), and found mutants generated by SDL require tests that are
highly effective at killing other mutants for Java and C programs, respectively.
Researchers have also investigated guidelines for mutation reduction [13,
16, 21]. Zhang et al. [43] examined if operator-based mutant-selection
techniques are superior to random mutation selection. All of the studies
mentioned, compare between groups of mutation operators, in the context of
mutation selection. They aim at reducing the number of mutants generated
without significantly loss of test effectiveness. In this thesis, however, we
compare between individual mutation operators. We are mainly interested in
whether using mutants generated by different mutation operators can lead to
a significant influence on measuring test suit effectiveness. To the best of our
knowledge, we are the first to conduct a large scale empirical study on the
influence of fault location on measuring test effectiveness

6



Chapter 3

Assertions Are Strongly
Correlated with Test Suite
Effectiveness

Code coverage is a popular test adequacy criterion in practice. Code coverage,
however, remains controversial as there is a lack of coherent empirical evidence
for its relation with test suite effectiveness. More recently, test suite size has
been shown to be highly correlated with effectiveness. However, previous
studies treat test methods as the smallest unit of interest, and ignore potential
factors influencing this relationship. We propose to go beyond test suite size,
by investigating test assertions inside test methods. We empirically evaluate
the relationship between a test suite’s effectiveness and the (1) number
of assertions, (2) assertion coverage, and (3) different types of assertions.
We compose 6,700 test suites in total, using 24,000 assertions of five real-
world Java projects. We find that the number of assertions in a test suite
strongly correlates with its effectiveness, and this factor directly influences
the relationship between test suite size and effectiveness. Our results also
indicate that assertion coverage is strongly correlated with effectiveness and
different types of assertions can influence the effectiveness of their containing
test suites.

This chapter was partially published as “Assertions Are Strongly Corre-
lated with Test Suite Effectiveness” in the Proceedings of the joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE) [44].

3.1 Experimental Design

The goal of this chapter is to study the relationship between assertions and
test suite effectiveness. To achieve this goal, we design controlled experiments
to answer the following research questions:

RQ1 Is the number of assertions in a test suite correlated with effectiveness?

7



3.1. Experimental Design

RQ2 Is the assertion coverage of a test suite correlated with effectiveness?
RQ3 Does the type of assertions in a test suite influence effectiveness?

We examine these three main aspects of assertions in our study because
(1) almost all test cases contain assertions, but the number of assertions
varies across test suites (see Table 3.2); we aim to investigate if the number
of assertions plays a role in effectiveness, (2) the fraction of statements in the
source code executed and checked directly by assertions should intuitively be
closely related to effectiveness; we set out to explore if and to what degree this
is true; and (3) assertions have different characteristics, which may potentially
influence a test suite’s effectiveness, such as their method of creation (e.g.,
human-written, automatically generated), the type of arguments they assert
on (e.g., boolean, string, integer, object), and the assertion method itself
(e.g., assertTrue, assertEquals).

All our experimental data is publicly available.3

3http://salt.ece.ubc.ca/software/assertion-study/
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Table 3.1: Characteristics of the subject programs.

ID Subjects Java SLOC Test SLOC Test cases Assertions Statement coverage Assertion coverage
1 JFreeChart [8] 168,777 41,382 2,248 9,177 45% 30%
2 Apache Commons Lang [1] 69,742 41,301 2,614 13,099 92% 59%
3 Urban Airship Java Library [12] 35,105 11,516 503 1,051 72% 53%
4 lambdaj [9] 19,446 4,872 310 741 93% 65%
5 Asterisk-Java [2] 36,530 4,243 217 633 24% 10%

Total/Average 329,600 103,314 5,892 24,701 45% 30%

9



3.1. Experimental Design

3.1.1 Terminology

Test case: a JUnit4 test method annotated with @Test. We use the terms
‘test method’ and ‘test case’ interchangeably in this chapter.

Test suite: the collection of a subject program’s test cases.
Test suite size: number of test cases in a test suite.
Master/original test suite: the test suite written by the developers of a

subject program.

3.1.2 Subject Programs

To automate data collection, we selected Java programs that use Apache
Maven4 as their build system, and JUnit4 as their testing framework. We
select programs of different sizes to ensure the experiment results are not
project size dependent.

Our set of subjects contains five projects in different application domains.
JFreeChart [8] is a free Java chart library for producing charts. Apache
Commons Lang [1] is a package of Java utility classes for the classes that are
in java.lang’s hierarchy. Urban Airship Java Library [12] is a Java client library
for the Urban Airship API. Lambdaj [9] is a Java project for manipulating
collections in a pseudo-functional and statically typed way. The last subject,
Asterisk-Java [2], is a free Java library for Asterisk PBX integration.

The characteristics of these subject programs are summarized in Table
4.1. Lines of source code are measured using SLOCCount [11]. Columns
5–8 illustrate test suite size in terms of number of test methods, assertion
quantity, statement coverage, and assertion coverage, of each subject’s master
test suite, respectively. Table 3.2 presents descriptive statistics regarding the
number of assertions per test case for the subject systems.5

3.1.3 Procedure

To study the relationship between assertions and test suite effectiveness, a
large set of test suites with different assertion related properties are required.
In this section, we present how the experiments are conducted with respect
to each research question. We first discuss the variables of interest, then
explain how test data are collected by generating new test suites, and finally
describe how the results are analyzed.

4http://maven.apache.org
5We were surprised to see such high max numbers of assertions per test case, so we manually

verified these numbers. For instance, the 114 max assertions for JFreeChart are in the testEquals
test method of the org.jfree.chart.plot.CategoryPlotTest class.

10
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3.1. Experimental Design

Table 3.2: Number of assertions per test case.

ID Min 1st Q. Median 3rd Q. Max Mean σ

1 0 1 2 4 114 4.1 6.7
2 0 1 3 6 104 5.1 7.4
3 0 0 1 2 42 2.1 3.6
4 0 1 2 3 21 2.8 3.2
5 0 1 2 3 17 3.0 2.9

Effectiveness of Assertion Quantity (RQ1)

In order to answer RQ1, we investigate three variables, namely, number of
test methods, number of assertions, and test suite effectiveness. We collect
data by generating test suites in three ways, (1) randomly, (2) controlling
test suite size, and (3) controlling assertion quantity. For each set of test
suites, we compute the correlation between the three variables.

Number of test cases We implemented a tool that uses the JavaParser
[6] library to identify and count the total number of test cases in a given test
suite.

Number of assertions For each identified test case, the tool counts the
number of test assertions (e.g., assertTrue) inside the body of the test case.

Test suite effectiveness Effectiveness captures the fault detection ability
of a test suite, which can be measured as a percentage of faults detectable
by a test suite. To measure the fault detection ability of a test suite, a
large number of known real faults are required for each subject, which is
practically unachievable. Instead, researchers generate artificial faults that
resemble developer faults using techniques such as mutation testing. In
mutation testing, small syntactical changes are made to random locations in
the original program to generate a large number of mutants. The test suite
is then run against each mutant. A mutant is killed if any of the test case
assertions fail or the program crashes.

Mutation score. The mutation score, calculated as a percentage of killed
mutants over total number of non-equivalent mutants, is used to estimate fault
detection ability of a test suite. Equivalent mutants are syntactically different
but semantically the same as the origin program, and thus undetectable by
any test case. Since there is no trivial way of identifying equivalent mutants,
similar to other studies [28], we treat all mutants that cannot be detected by a
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program’s original (master) test suite, as equivalent mutants when calculating
mutation scores for our generated test suites.

Mutations are produced by transforming a program syntactically through
mutation operators, and one could argue about the eligibility of using the
mutation score to estimate a test suite’s effectiveness. However, mutation
testing is extensively used as a replacement of real fault detection ability in the
literature [18, 28, 33]. There is also empirical evidence confirming the validity
of mutation testing in estimating test suite effectiveness [14, 15, 19, 29].

We use the open source tool PIT [10] to generate mutations. We tested
each of our subject programs to ensure their test suites can successfully
execute against PIT. We use PIT’s default mutation operators in all of our
experiments.

Generating test suites To answer RQ1, we generate test suites in three
different ways, from the master test suites of the subject programs.

Random test suites. We first generate a set of test suites by randomly
selecting a subset of the test cases in the master test suite, without replace-
ment. The size of each generated test suite is also randomly decided. In
other words, we generate this set of test suites without controlling on test
suite size or assertion quantity.

Controlling the number of test methods. Each test case typically
has one or more assertions. A test suite with more test cases is likely to
contain more assertions, and vice versa. From our observations, if test suites
are randomly generated, there exists a linear relationship between test suite
size and the number of assertions in the suites. If there is a linear relationship
between two properties A (e.g., assertion quantity) and B (e.g., suite size),
a relationship between A and a third property C (e.g., effectiveness) can
easily transform to a similar relationship between B and C through transitive
closure. To remove such indirect influences, we generate a second set of test
suites by controlling the size. More specifically, a target test suite contains all
of the test methods but only a subset of the assertions from the master test
suite. Based on the total number of assertions in the master test suite, we
first select a base number b, which indicates the size of the smallest test suite,
and a step number x, which indicates size differences between test suites.
Therefore, the i-th test suite to be generated, contains all of the test cases
but only b+ x ∗ i randomly selected assertions of the master test suite.

Controlling the number of assertions. We also generate another set
of test suites by controlling on assertion quantity. To achieve this, we first
assign test cases to disjoint buckets according to the number of assertions they
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contain. For instance, for JFreeChart, test cases are assigned to three disjoint
buckets, where bucket low contains test cases with 2 or less assertions, bucket
middle contains test cases with 3 or 4 assertions, and bucket high contains
the rest of test cases which have 5 or more assertions. We divide test cases in
this way such that each bucket has a comparable size. Then we generate 100
test suites from each of the buckets randomly without replacement. Following
this process, with a similar test suite size, test suites generated from bucket
high always contain more assertions than test suites generated from bucket
middle, and so forth.

Correlation analysis For RQ1, we use Pearson and Kendall’s correlation
to quantitively study the relationship between test suite size, assertion quan-
tity, and test suite effectiveness. The Pearson correlation coefficient indicates
the strength of a linear relationship between two variables. The Kendall’s
correlation coefficient measures the extent to which, as one variable increases,
the other variable tends to increase, without requiring that increase to be
represented by a linear relationship.

Effectiveness of Assertion Coverage (RQ2)

To answer RQ2, we measure a test suite’s assertion coverage, statement
coverage, and effectiveness. We collect data by first looking at the set of
test suites which were randomly generated for RQ1, then generate a new set
of test suites by controlling their assertion coverage. For each of the two
sets of test suites, we study and compare the correlations between the three
variables using the same analysis methods as described in Section 3.1.3.

Explicit mutation score Not all detectable faults in a program are de-
tected by test assertions. From our observations, mutants can either be
explicitly killed by assertions or implicitly killed by program crashes. Pro-
grams may crash due to unexpected exceptions. Program crashes are much
easier to detect as they do not require dedicated assertions in test cases. On
the other hand, all the other types of faults that do not cause an obvious
program crash, are much more subtle and require proper test assertions for
their detection. Since the focus of our study is on the role of assertions in
effectiveness, in addition to the mutation score, we also compute the explicit
mutation score, which measures the fraction of mutants that are explicitly
killed by the assertions in a test suite. Table 3.3 provides mutation data
in terms of the number of mutations generated for each subject, number
of mutants killed by the test suites, number of mutants killed only by test
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Table 3.3: Mutation data for the subject programs.

ID Mutants Killed (#) Killed by As-
sertions (#)

Killed by As-
sertions (%)

1 34,635 11,299 7,510 66%
2 11,632 9,952 7,271 73%
3 4,638 2,546 701 28%
4 1,340 1,084 377 35%
5 4,775 957 625 65%

assertions (e.g., excluding crashes), and the percentage of mutants killed by
assertions with respect to the total number of killed assertions.

From what we have observed in our experiments, PIT always generates
the same set of mutants for a piece of source code when executed multiple
times. Thus, to measure the explicit mutation score of a test suite, we remove
all assertions from the test suite, measure its mutation score again, and then
subtract the fraction of implicit killed mutants from the original mutation
score.

Assertion coverage Assertion coverage, also called checked coverage [38],
measures the fraction of statements in the source code executed via the
backward slice of the assertion statements in a test suite.

We use the open source tool JavaSlicer [7] to identify assertion checked
statements, which are statements in the source code executed through the
execution of assertions in a test suite. JavaSlicer is an open-source dynamic
slicing tool, which can be used to produce traces of program executions and
offline dynamic backward slices of the traces. We automatically identify
checked statements of a test suite by (1) identifying all assertion statements
and constructing slicing criteria, (2) using JavaSlicer to trace each test class
separately, and (3) mining the traces computed in the previous step to identify
dynamic backward slices of the assertions, and finally (4) since each backward
slice of an assertion includes statements from the test case, calls to the JUnit
APIs, and statements from the source code, we filter out the data to keep
only the statements pertaining to the source code.

For large test suites, we observed that using JavaSlicer is very time
consuming. Thus, we employ a method to speed up the process in our
experiments. For all the test classes in each original master test suite,
we repeat steps 1–4 above, to compute the checked statements for each
test method individually. Each statement in the source code is uniquely

14



3.1. Experimental Design

identified by its classname and line number and assigned an ID. We then save
information regarding the checked statements of each test method into a data
repository. Once a new test suite is composed, its checked statements can
be easily found by first identifying each test method in the test suite, then
pulling the checked statements of the test method from the data repository,
and finally taking a union of the checked statements. The assertion coverage
of a generated test suite is thus calculated as the total number of checked
statements of the suite divided by the total number of statements.

Statement coverage Unlike assertion coverage, which only covers what
assertion statements execute, statement coverage measures the fraction of
the source code covered through the execution of the whole test suite.

In this chapter, we select statement coverage out of the traditional code
coverage metrics as a baseline to compare with assertion coverage. The
reason behind our selection is twofold. First, statement coverage is one of the
most frequently used code coverage metrics in practice since it is relatively
easy to compute and has proper tool support. Second, two recent empirical
studies suggest that statement coverage is at least as good as any other
code coverage metric in predicting effectiveness. Gopinath et al. [26] found
statement coverage predicts effectiveness best compared to block, branch, or
path coverage. Meanwhile, Inozemtseva and Holmes [28] found that stronger
forms of code coverage (such as decision coverage or modified condition
coverage) do not provide greater insights into the effectiveness of the suite.
We use Clover [3], a highly reliable industrial code coverage tool, to measure
statement coverage.

Generating test suites To answer RQ2, we first use the same set of test
suites that were randomly generated for RQ1. In addition, we compose
another set of test suites by controlling assertion coverage. We achieve this
by controlling on the number of checked statements in a test suite. Similarly,
based on the total number of checked statements in the master test suite of
a program, we predefine a base number b, which indicates assertion coverage
of the smallest test suite, and a step number x, which indicates assertion
coverage differences between the test suites. When generating a new test
suite, a hash set of the current checked statements is maintained. If the
target number for checked statements is not reached, a non-duplicate test
method will be randomly selected and added to the test suite. To avoid too
many trials of random selection, this process is repeated until the test suite
has [b+ x ∗ i, (b+ x ∗ i) + 10] checked statements. This way, the i-th target
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test suite has an assertion coverage of (b + x ∗ i)/N , where N is the total
number of statements in the source code.

Effectiveness of Assertion Types (RQ3)

RQ3 explores the effectiveness of different characteristics of test assertions.
To answer this research question, we first automatically assign assertions
to different categories according to their characteristics, then generate a set
of sample test suites for each category of assertions, and finally conduct
statistical analysis on the data collected from the generated test suites.

Assertion categorization Assertions can be classified according to their
characteristics. Some of these characteristics may be potential influence
factors to test suite effectiveness. We categorize assertions in three ways:

Human-written versus generated. Human-written test cases contain
precise assertions written by developers about the expected program be-
haviour. On the other hand, automatically generated tests contain generic
assertions. Commonly, it is believed that human-written test cases have
a higher fault detection ability than generated assertions. We test this
assumption in our work.

Assertion content type. Test assertions either check the value of
primitive data type or objects of different classes. We further classify Java’s
primitive data types into numbers (for int, byte, short, long, double, and
float), strings (for char and String), and booleans. This way, depending on
the type of the content of an assertion, it falls into one of the following
classes: number-content-type, string-content-type, boolean-content-type, or
object-content-type. We explore whether these assertion content types have
an impact on the effectiveness of a test suite.

For assertion content type, we apply dynamic analysis to automatically
classify the assertions in a given test suite to the different categories. We
first instrument test code to probe each assert statement for the type of
content it asserts on. Then, we run the instrumented test code, and use
the information collected to automatically assign assertions to the different
content type categories.

Assertion method type. It is also possible to categorize assertions
according to their actual method types. For instance, assertTrue and
assertFalse, assertEquals and assertNotEquals, and assertNull and
assertNotNull can be assigned to different categories. We investigate if
these assertion method types have an impact on effectiveness.
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3.2. Results

For assertion method types, we parse the test code and syntactically
identify and classify assertions to different assertion method type classes.

Generating test suites Under each assertion categorization, for each as-
sertion type, we compose 50 sample test suites, each containing 100 assertions.
A sample test suite contains all test methods in the master test suite, but only
100 randomly selected assertions of the target type. For instance, a sample
test suite of the type string-content-type will contain all the test methods
in the master test suite but only 100 randomly selected string-content-type
assertions.

To quantitively compare the effectiveness between human-written and
generated assertions, for each subject program, we generate (1) 50 sample
test suites, each containing 100 human-written assertions from the master
test suite, and (2) 50 sample test suites, each containing 100 automatically
generated assertions using Randoop [36], a well-known feedback-directed test
case generator for Java. We use the default settings of Randoop.

Analysis of variances For assertion content type and assertion method
type, since there are multiple variables involved, we use the One-Way ANOVA
(analysis of variance) statistical method to test whether there is a significant
difference in test suite effectiveness between the variables. Before we conduct
the ANOVA test, we used the Shapiro-Wilk test to pretest the normality of our
data, and Levene’s test to pretest the homogeneity of their variances. Both
were positive. ANOVA answers the question whether there are significant
differences in the population means. However, it does not provide any
information about how they differ. Therefore, we also conduct a Tukey’s
Honest Significance Test to compare and rank the effectiveness of assertion
types.

3.2 Results

In this section, we present the results of our experiments.

3.2.1 Effectiveness of Assertion Quantity

Ignoring test suite size Figure 3.1 depicts plots of our collected data
for JFreeChart.6 Figures 3.1a and 3.1b show that the relationship between

6Note that we observed a similar trend from the other subjects, and only include plots
for JFreeChart due to space limitations.

17



3.2. Results

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Test Cases

M
ut

at
io

n 
S

co
re

(a)

0 2000 4000 6000 8000
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Assertions

(b)

0 500 1000 1500 2000

0
20
00

40
00

60
00

80
00

Number of Test Cases

N
um

be
r o

f A
ss

er
tio

ns

(c)

Figure 3.1: Plots of (a) suite size versus effectiveness, (b) asser-
tion quantity versus effectiveness, and (c) suite size versus asser-
tion quantity, for the 1000 randomly generated test suites from
JFreeChart. The other four projects share a similar pattern con-
sistently.
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test suite size and effectiveness is very similar to the relationship between
assertion quantity and effectiveness. As the plot in Figure 3.1c shows, there
exists a linear relationship between the number of test methods and the
number of assertions, in the 1000 randomly generated test suites.

Table 3.4: Correlation coefficients between test suite size and effec-
tiveness (m), and assertion quantity and effectiveness (a). ρp shows
Pearson correlations and ρk represents Kendall’s correlations.

Subject ID ρp(m) ρp(a) ρk(m) ρk(a) p-value
1 0.954 0.954 0.967 0.970

< 2.2e− 16
2 0.973 0.973 0.969 0.969
3 0.927 0.927 0.917 0.917
4 0.929 0.928 0.912 0.930
5 0.945 0.947 0.889 0.894

Table 3.4 shows the Pearson (ρp ) and Kendall’s (ρk) correlations between
effectiveness with respect to suite size (m) and assertion quantity a, for the
test suites that are randomly generated for all the five subjects. As the table
shows, there is a very strong correlation between number of assertions in a test
suite and the test suite’s effectiveness, and the correlation coefficients are very
close to that of suite size and effectiveness. This is consistent with the plots
of Figure 3.1. The correlations between assertion quantity and effectiveness
are slightly higher or equal to the correlations between the number of test
methods and effectiveness.
Finding 1: Our results indicate that, without controlling for test suite size,
there is a very strong correlation between the effectiveness of a test suite
and the number of assertions it contains.

Controlling for test suite size Table 3.5 shows our results when we
control for test suite size. Column 2 shows the number of assertions in the
smallest test suite, and column 3 shows the difference in assertion quantity
between generated test suites. Columns 3 and 4 present the Pearson and
Kendall’s correlations, respectively, between the assertion quantity and the
effectiveness of the test suites that are generated from the five subjects by
controlling test suite size. As the high correlation coefficients indicate in
this table, even when test suite size is controlled for, there is a very strong
correlation between effectiveness and the number of assertions.
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Table 3.5: Correlations between number of assertions and suite
effectiveness, when suite size is controlled for.

Subject ID Base Step ρp(a) ρk(a) p-value
1 1,000 50 0.976 0.961

< 2.2e− 16
2 100 100 0.929 0.970
3 0 10 0.948 0.846
4 100 10 0.962 0.839
5 100 5 0.928 0.781

Finding 2: Our results suggest that, there is a very strong correlation
between the effectiveness of a test suite and the number of assertions it
contains, when the influence of test suite size is controlled for.
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Figure 3.2: Plot of mutation score against suite size for test suites
generated from assertion buckets low, middle, and bucket high
from JFreeChart. The other four projects share a similar pattern
consistently.

Controlling for assertion quantity Figure 3.2 plots the effectiveness of
the test suites generated by controlling for the number of assertions. Three
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buckets of high, middle and low in terms of the number of assertions were
used for generating these test suites (see Section 3.1.3). From low to high,
each bucket contained 762, 719, and 742 test cases in total, and the average
number of assertions per test case was 0.9, 2.5, and 9.1, respectively. From
the curves in the plot, we can see that the effectiveness increases as the
number of test methods increase. However, comparing the curves, there is a
clear upward trend in a test suite’s effectiveness as its assertion quantity level
increases. For every given test suite taken from the lower curve on the plot,
there exits a test suite with the same suite size that has a higher effectiveness
because it contains more assertions.
Finding 3: Our results indicate that, for the same test suite size, assertion
quantity can significantly influence the effectiveness.

3.2.2 Effectiveness of Assertion Coverage

To answer RQ2, we first computed the assertion coverage, statement coverage,
and mutation score of the randomly generated test suites (see section 3.1.3).
Figure 3.4a plots our results. The two fitted lines both have a very high
adjusted R2 and p-value smaller than 2.2e− 16; this indicates a very strong
correlation between assertion coverage and effectiveness as well as statement
coverage and effectiveness. The plot also shows that a test suite having
the same assertion coverage as another test suites’s statement coverage, is
much more effective in detecting faults. Compared with statement coverage,
assertion coverage is a more sensitive predictor of test suite effectiveness.

Figure 3.4b plots assertion coverage against number of assertions in a test
suite. From the plot, assertion coverage of a test suite increases as test suite
size increases. However, the increasing rate of assertion coverage decreases
as test suite size increases. There is a strong increasing linear relationship
between assertion coverage and test suite effectiveness. Therefore, it is
expected that, test suite effectiveness increases as test suite size increases but
with a diminishing increasing rate, which is again consistent with our results
in section 3.2.1.
Finding 4: Our results suggest that, assertion coverage is very strongly
correlated with test suite effectiveness. Also, ignoring the influence of
assertion coverage, there is a strong correlation between statement coverage
and the effectiveness.
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Table 3.6: Statistics of test suites composed at different assertion coverage levels.

Subject ID Assertion Coverage Stat. Coverage Corr. Mutation Score Statement Coverage
ρgeneral ρexplicit general explicit

1

4.2% 0.62 0.17 0.21 0.13 15%
8.4% 0.60 0.22 0.35 0.24 23%
12.5% 0.59 0.11 0.48 0.35 30%
16.7% 0.63 0.33 0.61 0.45 36%
20.9% 0.58 0.26 0.73 0.61 41%
25.1% 0.71 0.32 0.85 0.75 47%

2

9.9% 0.67 0.49 0.17 0.12 21%
17.7% 0.67 0.51 0.30 0.22 34%
25.5% 0.65 0.48 0.43 0.31 46%
33.7% 0.66 0.50 0.56 0.40 57%
41.4% 0.58 0.27 0.69 0.50 68%

3

6.7% 0.62 0.06 0.18 0.05 19%
13.5% 0.74 0.06 0.33 0.10 30%
20.2% 0.76 0.01 0.46 0.14 39%
26.9% 0.75 0.07 0.59 0.17 48%
33.6% 0.76 0.05 0.70 0.20 55%

4

9.5% 0.76 0.21 0.17 0.06 19%
19.0% 0.73 0.33 0.31 0.10 32%
28.5% 0.70 0.30 0.46 0.15 45%
38.0% 0.63 0.23 0.61 0.20 58%
47.5% 0.50 0.10 0.76 0.26 70%

5

1.6% 0.73 0.63 0.10 0.06 4%
3.0% 0.76 0.35 0.23 0.15 8%
4.3% 0.70 0.38 0.41 0.28 12%
5.8% 0.60 0.25 0.57 0.43 16%
7.3% 0.62 0.24 0.71 0.56 19%
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Figure 3.4: Plots of (a) mutation score against assertion cover-
age and statement coverage, (b) assertion coverage against asser-
tion quantity, for the 1000 randomly generated test suites from
JFreeChart.

Controlling for assertion coverage Figure 3.3 shows box plots of our
results for the test suites generated by controlling their assertion coverage.
The adjusted R2 value for each regression line is shown in the bottom right
corner of each box plot. It ranges from 0.94 to 0.99 between assertion coverage
and mutation score, and 0.80 to 0.99 between assertion coverage and explicit
mutation score. This indicates assertion coverage can predict both mutation
score and explicit mutation score well.

Table 3.6 summarizes statistics for these test suites. Column 3 contains
the Kendall’s correlations between statement coverage and mutation score
(0.50–0.76), column 4 presents the Kendall’s correlations between statement
coverage and explicit mutation score (0.01–0.63). When assertion coverage is
controlled for, there is a moderate to strong correlation between statement
coverage and mutation score, and only a low to moderate correlation between
statement coverage and explicit mutation score. For instance, only about
1/3 of the mutants generated for Urban Airship Library (ID 5) and lambdaj
(ID 4) are explicitly detectable mutants; correspondingly there is only a
weak correlation (0.01–0.33) between their statement coverage and explicit
mutation score. A higher fraction (≈ 2/3) of the mutants generated for
the other three subjects are explicitly detectable mutants, and thus the
correlation between their statement coverage and explicit mutation score
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increases significantly (from 0.11 to 0.63).
Columns 5–7 in Table 3.6 pertain to the average mutation score, average

explicit mutation score, and average statement coverage of the test suites
at each assertion coverage level, respectively. As the results show, a slight
increase in assertion coverage can lead to an obvious increase in the mutation
score and explicit mutation score. For instance, for JFreeChart (ID 1), when
assertion coverage increases by around 4%, the mutation score increases by
around 12.4% and explicit mutation score increases by around 11%. On
the other hand, a 4% increase in the statement coverage does not always
increase either mutation score or explicit mutation score. This shows again
that assertion coverage is a more sensitive indicator of test suite effectiveness,
compared to statement coverage.

Finding 5: Our results suggest that, assertion coverage is capable of
predicting both mutation score and explicit mutation score. With asser-
tion coverage controlled for, there is only a moderate to strong correlation
between statement coverage and mutation score, and a low to moderate
correlation between statement coverage and explicit mutation score. Test
suite effectiveness is more sensitive to assertion coverage than statement
coverage.

3.2.3 Effectiveness of Assertion Types

Initial Study

To answer RQ3, we first examined the 9,177 assertions of JFreeChart.

Assertion generation strategy Figure 3.5a plots the effectiveness of
human-written test suites and Randoop generated test suites against assertion
quantity. As we can observe, the effectiveness of human-written and generated
test suites both increase as the assertion quantity increases. However, the
effectiveness of the generated test suites gets saturated much faster than
human-written test suites.

From our observations of the composed test suites, the 50 human-written
sample test suites are effective in killing mutants, while the 50 generated test
suites can hardly detect any mutant. We increased the assertion quantity in
the sample test suites to 500, but still saw the same pattern.

Finding 6: Our results indicate that, human-written test assertions are
far more effective than automatically generated test assertions.
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Figure 3.5: Plots of (a) assertion quantity versus effectiveness of
human-written and generated tests, (b) assertion content types
versus effectiveness, and (c) assertion method types versus effec-
tiveness. In (b) and (c), each box represents the 50 sample test
suites generated for each type; the total number of assertions of
each type are indicated in red.

Assertion content type Assertions are also classified based on the types
of the content they assert on. Figure 3.5b box plots the effectiveness of
the sample test suites that exclusively contain assertions on object, boolean,
number, or string types. Tables 3.7 and 3.8 show the ANOVA and the Tukey’s
Honest Significance test, respectively. The F value is 1544 with a p-value
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Table 3.7: One-Way ANOVA on the effectiveness of assertion con-
tent types and actual assertion types.

Df Sum Sq Mean Sq F value Pr(>F)
Assertion Content Types

Type 3 0.15675 0.05225 1544 <2e-16
Residuals 196 0.00663 0.00003

Assertion Method Types
Type 2 0.01398 0.006988 87.87 <2e-16
Residuals 147 0.01169 0.000080

very close to 0, thus we can confidently reject the null hypothesis of equal
variances (effectiveness) for the four assertion content types. Table 3.8 shows
the estimated difference in mutation score in column 2, and the 95% confidence
interval of the difference in columns 3 and 4. The Tukey’s test indicates that
there is a significant difference between the effectiveness of assertions that
assert on boolean/object, string, and number types. Assertions that assert
on boolean types are as effective as assertions that assert on objects.

Assertion method type Assertions can also be classified by their actual
method types. Figure 3.5c plots the effectiveness of the sample test suites
that belong to the three assertion method types. In this chapter, we did not
study assertSame and assertNotSame, because there were only 27 of them in
JFreeChart, which is a low number to be representative. The bottom half of
tables 3.7 and 3.8, present the ANOVA and Tukey’s Honest Significance test,
respectively, for assertion method types. The F value is 87.87 with a p-value
very close to 0, thus we can reject the null hypothesis of equal variances
(effectiveness) for the three assertion method types. The Tukey’s test shows
that there exists a significant difference between the effectiveness of the three
assertion method types.

Followup Study

One year after we conducted the initial study, we conducted a followup study
on assertion content type and method type. We examined the 17182 assertions
of JFreeChart, Urban Airship Java Library, lambdaj, and Asterisk-Java on
their most up to date versions.
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Figure 3.6: Plots of (a) number of mutants killed versus asser-
tion content types, (b) number of mutants killed versus assertion
method types. Each box represents the 50 sample test suites gen-
erated for each assertion type. 28
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Table 3.8: Tukey’s Honest Significance Test on the effectiveness of
assertion content types and assertion method types. Each of the
sample test suites used for the comparison contains 100 assertions
of a target type.

Types diff lwr upr p adj
Assertion Content Types

Boolean vs. Ob-
ject

-0.0002 -0.0032 0.0028 0.9985

Number vs.
Boolean

-0.0470 -0.0500 -0.0440 0.0000

String vs. Num-
ber

-0.0156 -0.0186 -0.0126 0.0000

Assertion Method Types
assertNull/Not -0.0103 -0.0145 -0.0060 1e-07
vs. assert-
True/False
assertEquals/Not -0.0133 -0.0175 -0.0091 0e+00
vs. assert-
Null/Not

Assertion content type

Figure 3.6a box plots the effectiveness of the sample test suites that exclusively
contain assertions on object, boolean, number, or string types. Test suites
with object-content-type assertions are the most effective in JFreeChart, Java-
library, and Lambdaj, and second effective in Asterisk. Test suites with
string-content-type assertions test suites are least effective in JFreeChart,
but most effective in Asterisk. The results for JFreeChart is different from
the initial study. Therefore, there is not a consistent pattern between the
effectiveness of assertions assert on different content types.

Table 4.3 shows the One-Way ANOVA test on the effectiveness of assertion
content types for project JFreeChart. The F value is 0.128 with P value
equals to 0.943 (close to 1) tells there is not a significant difference between
the effectiveness of different content types of assertions. We receive a same
message from the tests conducted on the rest three subjects.

Finding 7: There is not a consistent ranking nor a statistical significant
difference between assertion content types in terms of their test effectiveness.
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Table 3.9: One-Way ANOVA on the effectiveness of actual asser-
tion types and assertion content types on JFreeChart.

Df Sum Sq Mean Sq F value Pr(>F)
Assertion Content Types

Type 3 18883 6294 0.128 0.943
Residuals 196 9603200 48996

Assertion Method Types
Type 2 659 330 0.005 0.995
Residuals 147 10721504 72935

Assertion method type

Figure 3.6b plots the effectiveness of the sample test suites that belong to
the three assertion method types. Test suites with assertTrue/False are
most effective in JFreeChart, second effective in Java-library and Lambdaj,
but least effective in Asterisk. Test suites with assertEquals/Not are most
effective in all of the projects except for second effective in JFreeChart. Test
suites with assertNull/Not are least effective in all of the projects except for
second least effective in Asterisk. The results for JFreeChart is also different
from the initial study. Therefore, there is not a consistent ranking in the
effectiveness of assertions of different method types.

Table 4.3 shows the One-Way ANOVA test on the effectiveness of assertion
method types for project JFreeChart. The F value is 0.005 with P value
equals to 0.995 (close to 1) tells there is not a significant difference between
the effectiveness of different content types of assertions. We get a similar test
result for the rest three subjects.

Finding 8: There is not a consistent ranking nor a statistical significant
difference between assertion method types in terms of their test effectiveness.
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Chapter 4

Fault Type and Location
Influence Measuring Test Suite
Effectiveness

Test suite effectiveness is measured by assessing the portion of faults that
can be detected by tests. To precisely measure a test suite’s effectiveness,
one needs to pay attention to both tests and the set of faults used to measure
effectiveness. Instead of only focusing on the testing side, we propose to
investigate test suite effectiveness also from fault types (the ways faults are
generated) and fault location. We empirically evaluate the relationship be-
tween test suite effectiveness, assertions, and faults based on 17,182 assertions
and 18,820 artificial faults generated from four real-world Java projects. Our
results indicate that fault type and statement type where the fault is located
can significantly influence a test suite’s effectiveness. Assessing test suite
effectiveness without paying attention to the type and distribution of faults
can provide misleading results.

4.1 Experimental Design

Our goal in this study is to answer the following research questions through
controlled experiments:

RQ1 Is measuring test effectiveness influenced by fault type?
RQ2 Is measuring test effectiveness influenced by fault location?

4.1.1 Subject Programs

We select four subject programs, which were also used in the previous chapter.
We conduct our experiments on the latest versions of these subjects. The
characteristics of these subject programs are summarized in Table 4.1. Column
version contains the version number and Github [5] commit id of the subjects.
Lines of source code and test code are measured using SLOCCount [11].
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The table also shows the total number of test assertions, and the number of
mutants generated, for each subject program.
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Table 4.1: Characteristics of the subject programs.

ID Subjects Version Java SLOC Test SLOC Assertions Mutants
1 JFreeChart [8] jfreechart-1.0.19 168,777 41,382 11,915 13,744
2 Urban Airship Java Library [12] 96cedd21fbe37ddbc555008c353c3a8736fda0e3 35,105 11,516 1,935 2,719
3 lambdaj [9] bd3afc7c084c3910454a793a872b0a76f92a43fd 19,446 4,872 2,674 1,308
4 Asterisk-Java [2] 5e9b16f2816cf5e6d6c6fa81e924ccdf3ead197f 36,530 4,243 658 1,049

Total/Average 329,600 103,314 17,182 18,820
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Table 4.2: Default mutation operators provided by PIT.

ID Mutation operator Definition
CBM Conditionals Boundary Mutator replaces the relational operators <, <=, >, >=.
IM Increments Mutator mutate increments, decrements and assignment increments and decrements of local variables (stack variables).
INM Invert Negatives Mutator inverts negation of integer and floating point numbers.
MM Math Mutator replaces binary arithmetic operations for either integer or floating-point arithmetic with another operation
NCM Negate Conditionals Mutator mutate all conditionals ==, !=, <=, >=, <, >.
RVM Return Values Mutator mutates the return values of method calls.
VMC Void Method Calls Mutator removes method calls to void methods.
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4.1. Experimental Design

4.1.2 Procedure

Fault Types (RQ1)

RQ1 explores how easy different types of faults can be detected by assertions.
To answer this question, we first observe the distribution of mutants generated
by different mutation operators. Then, we automatically sample subsets of
mutants for each type, with size controlled for, and statistically compare the
number of detectable mutants in the subsets of the original test suite. Finally,
we remove each type of mutant separately, and examine if they cause any
significant difference in measuring test effectiveness.

Simulating fault types We use mutants to simulate real faults. Mutants
have been widely adopted to substitute real faults in the literature [18, 27, 28,
33, 37, 39]. There is also empirical evidence for mutants being representable
for real faults [14, 15, 19, 29]. In mutation testing, mutation operators are
used to simulate different types of programming errors. They define the rules
of how mutants are constructed from the original program. Therefore, we
assign mutants to different fault types according to their mutation operators.
Again, we use PIT [10] to generate mutants. We use the (seven) default
mutation operators provided by PIT, shown in table 4.2.

Assertions vs. detectable mutants matrix To speed up our experi-
mentation, it is necessary to construct a matrix, which maps from assertions
(and crashing statements) to their detected mutants, or vice versa. We noticed
(1) PIT stops executing the rest of the test cases after a test case first detects
a mutant, (2) PIT stops executing the rest of statements after a statement
crashes the program, and (3) PIT does not provide a fine grained mapping
between mutants generated and test cases, nor test assertions. In other word,
PIT does not provide the functionality to create such a matrix. We extended
PIT to construct this matrix. We first modified PIT so that it always executes
all test cases even after any test case fails. We then instrument the test
suite by surrounding its test statements with JUnit ErrorCollector [4]. The
ErrorCollector allows the execution of a test to continue even after a test
failure. This way, we record failure information during the execution of all
tests against each mutant.

Subsets of mutants Some mutation operators generate more mutants than
others. Also, a mutation operator may generate more mutants for a different
program. To quantitatively compare the mutants generated by different
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4.1. Experimental Design

mutation operators, we randomly sample subsets of mutants generated by
each mutation operator by controlling on the mutant quantity. For each
subject program, we randomly select 50 subsets of mutants generated by each
mutation operator. Each subset contains 10 randomly selected mutants of
the target type without replacement. We picked 10 according to the least
number of mutants generated by the mutation operators, so that each subset
does not contain too many duplicate mutants.

Omitting mutation operator In addition to comparing between mutants
generated by each of the mutation operators, we compare between mutants
generated by all of the mutation operators and mutants generated by omitting
each mutation operator, separately. To achieve this goal, we first sample 50
subsets of mutants of size 100 from the mutants generated by all mutation
operators. Then, we leave out each of the mutation operators in turn, and
sample 50 subsets of mutants of size 100 from the mutants generated by the
rest of mutation operators. We evaluate if there is any statistically significant
influence in test effectiveness when a mutation operator is missing.

Fault Location: Types of Statement Mutated (RQ2)

RQ2 studies whether fault location influences the test effectiveness measure-
ment. To answer this question, we examine if the statement type where a
program is mutated affects how easy a mutant can be detected. We start
with observing the distribution of mutants in different types of statements.
Then, we correlate the distribution with the mutation score of the subjects.

Types of statement Mutation happens in different types of statements.
To simplify our experimental design, we classify program statements as
follows:

1. Conditional statements can change the control flow of the program
and include if-else, for, and while constructs.

2. Return statements are statements with return keyword.
3. Statements are normal statements that are neither conditional state-

ments nor return statements.

Mutants can also be located in nested statements. For example, a state-
ment can be nested inside an if-else statement. Therefore, we also classify
mutants based on their level of nesting.

36



4.2. Results

Table 4.3: One-Way ANOVA on the effectiveness of actual asser-
tion types and assertion content types on JFreeChart.

Df Sum Sq Mean Sq F value Pr(>F)
Assertion Content Types

Type 3 18883 6294 0.128 0.943
Residuals 196 9603200 48996

Assertion Method Types
Type 2 659 330 0.005 0.995
Residuals 147 10721504 72935

Subsets of mutants Different number of mutants can be generated in
different types of statements. Thus, as we did for RQ1, we compose subsets
of mutants in different types of statements by controlling on the mutants
quantity. For each subject program, we randomly sample 50 subsets of
mutants which are generated by mutating a program in each statement type.
Each subset contains 100 randomly selected mutant, without replacement.
We pick 100 according to the total number of mutants generated in each type
of statement for the subjects.

4.2 Results

4.2.1 Fault Type (RQ1)

Distribution of fault types

Figure 4.1 shows bar charts of the distribution of the number of mutable
locations, number of mutants generated, and number of mutants detected
by different mutation operators. Note that we did not include the mutation
operator Invert Negatives Mutator in this figure, since it generates very few
mutants in the subject programs. Each stacked bar as a whole illustrates
the number of mutable locations of the mutation operator in a program’s
production code. It also shows the number of mutants actually generated and
detected, separately. The correlation scores between the number of mutable
locations and mutants generated are listed on the top left conner of the
bar charts. The figure shows Return Values Mutator, Negate Conditionals
Mutator, and Void Method Calls Mutator always generate more mutants
than Conditional boundary Mutator, Increments Mutator, and Math Mutator.
And the distribution of mutants generated by the mutation operators aligns
with the distribution of possible mutable locations of the operators. The
correlation scores range betwee [0.9801–0.6559], which indicates that the
number of mutants generated are strongly to very strongly correlated with
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the number of mutable locations.
Finding 9: Our results show that, different mutation operators generate
different number of mutants, which largely depends on the number of mutable
locations present in the source code.

Controlling mutant type and quantity

To examine how easy mutants generated by different mutation operators
can be detected, we control mutant type by sampling subsets of mutants
generated by each mutation operator, one at a time. Each subset contains a
fixed number of mutants. We observe the number of mutants that can be
detected in the subsets by the original test suite. We performed one-way
ANOVA tests of equal mean on the number of detectable mutants between
the six mutation operators. The F values were 466.9, 944.3, 830.4, 135.5,
respectively with p-values close to 0. Thus, we can confidently reject the
equal mean hypothesis and conclude that mutants generated by different
mutation operators are not at the same level of easiness to be detected.

We further pair-wisely compare the number of detectable mutants between
the mutation operators by conducting a Tukey’s Honest Significance Test.
The results show some significant and consistent patterns within some of the
fault type pairs. Table 4.5 illustrates these patterns. Column diff shows the
estimated difference in the number of detectable mutants. Column lwr and upr
show the 95% confidence interval of the difference. The p-values are very close
to zero, which indicate the patterns we found are significant. From the table,
we can conclude that mutants generated by Increments Mutator are easier
to be detected than mutants generated by Conditionals Boundary Mutator,
Negate Conditionals Mutator is easier than Conditionals Boundary Mutator,
Return Values Mutator is easier than Conditionals Boundary Mutator, Negate
Conditionals Mutator is easier than Math Mutator, Math Mutator is harder
than Increments Mutator, and Void Method Calls Mutator is harder than
Return Values Mutator. All the other pairwise comparisons either show
inconsistent or non-significant results.

Finding 10: Our results indicate that, there is a significant difference
between how easy mutants generated by different mutation operators can be
detected.
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Figure 4.1: Plots of number of mutable locations, number of mutants generated, and number of
mutants detected by all of the mutation operators.
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Table 4.4: One-Way ANOVA on the number of mutants killed.
Each of the sample subsets of mutants used for the comparison
contains 10 mutants generated by a specific mutation operator.

Df Sum Sq Mean Sq F value Pr(>F)
JFreeChart

Operator 5 4207 841.4 466.9 <2e-16
Residuals 594 1070 1.8

Java-library
Operator 5 5549 1109.7 944.3 <2e-16
Residuals 594 698 1.2

Asterisk
Operator 5 4863 972.6 830.4 <2e-16
Residuals 594 696 1.2

Lambdaj
Operator 5 1103.7 220.74 135.5 <2e-16
Residuals 594 967.6 1.63

Omitting mutation operators. We explored whether omitting any single
mutation operator can lead to a significant difference in measuring test
effectiveness.

Our statistical analysis shows that omitting a single mutation operator
does not always cause a significant difference in test effectiveness. For
example, without using Math Mutator, there exists a significant difference
in test effectiveness for subject 1 (p-value equals to 0), but no significant
difference in the rest of the subjects. It is similar for Void Method Calls
Mutator, Conditionals Boundary Mutator and Negate Conditionals Mutator.
However, there always exists a significant loss in test effectiveness if omitting
Return Values Mutator. Without using Increments Mutator and Invert
Negatives Mutator, there is no significant change in test effectiveness.

Combining this finding with Figure 4.1, which illustrates the distribution
of number of mutants generated by the mutation operators, we can see that
Increments Mutator and Invert Negatives Mutator always generate the least
number of mutants in the subjects. The number of neglect mutants may not
be significant enough compared to the total number of mutants generated to
influence measuring test suite effectiveness. Return Values Mutator generates
the most number of mutants in Java-library, Lambdaj, and Asterisk, and
second most number of mutants in JFreeChart. It always generates relatively
more mutants than other mutation operators. Therefore, omitting Return
Values Mutator is likely to reveal the influence on measuring test effectiveness
if there is any difference between mutants generated by Return Values Mutator
and other mutation operators. We observed that omitting Return Values
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Table 4.5: Tukey’s Honest Significance Test on the number of mu-
tants killed. Each of the sample subsets of mutants used for the
comparison contains 10 mutants generated by a specific mutation
operator..

diff lwr upr p adj
IM-CBM

4.74 4.197245 5.282755 0
4.40 3.96167569 4.8383243 0
6.35 5.9124172 6.78758276 0
2.36 1.8439404 2.8760596 0

NCM-CBM
2.90 2.357245 3.442755 0
4.63 4.19167569 5.0683243 0
5.18 4.7424172 5.61758276 0
2.32 1.8039404 2.8360596 0

RVM-CBM
4.94 4.397245 5.482755 0
4.92 4.48167569 5.3583243 0
4.66 4.2224172 5.09758276 0
2.05 1.5339404 2.5660596 0

MM-IM
-6.49 -7.032755 -5.947245 0
-7.55 -7.98832431 -7.1116757 0
-1.77 -2.2075828 -1.33241724 0
-3.43 -3.9460596 -2.9139404 0

NCM-MM
4.65 4.107245 5.192755 0
7.78 7.34167569 8.2183243 0
0.60 0.1624172 1.03758276 0.0015
3.39 2.8739404 3.9060596 0

VMC-RVM
-5.71 -6.252755 -5.167245 0
-0.60 -1.03832431 -0.1616757 0.0014
-2.09 -2.6060596 -1.5739404 0

Mutator always causes a significant loss in test effectiveness, which potentially
indicates that Return Values Mutator may generate easy to detect mutants.
Intuitively, Return Values Mutator always mutates return statements.

Finding 11: Omitting certain mutation operators, such as ‘Return Values
Mutator’, always cause a significant loss in the measured test effectiveness.

This finding gives us the insight that there may be a difference in measuring
test effectiveness when mutations are located in different types of statements.

4.2.2 Fault Location (RQ2)
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Table 4.6: Tukey’s Honest Significance Test on the number of mu-
tants killed between using all mutation operators and omitting
each mutation operator in turn. Each of the sample subsets con-
tains 100 mutants either generated by all mutation operators or
leaving out each operator in turn.

Subject diff lwr upr p adj
Without ReturnValsMutator

1 -8.22 -9.4971 -6.9429 0
2 -3.64 -4.832444 -2.447556 0
3 -3.89 -5.051185 -2.728815 0
4 -4.56 -5.881209 -3.238791 0

Without MathMutator
1 4.25 2.985603 5.514397 0
2 1.23 0.05409759 2.405902 0.0404424
3 -0.05 -1.25359 1.15359 0.9347913
4 -0.67 -1.932948 0.5929484 0.2967606

Without VoidMethodCallMutator
1 8.15 6.959959 9.340041 0
2 0.82 -0.3725293 2.012529 0.1766477
3 1.52 0.3547874 2.685213 0.0108299
4 13.3 12.18597 14.41403 0
Without ConditionalsBoundaryMutator

1 0.96 -0.2902678 2.210268 0.1315736
2 0.97 -0.1547487 2.094749 0.0905699
3 0.05 -1.137623 1.237623 0.9339165
4 2.22 1.061811 3.378189 0.0002076

Without IncrementsMutator
1 -0.88 -2.200685 0.4406852 0.1903678
2 0.41 0.7976888 1.617689 0.5039673
3 -1.06 -2.170466 0.0504664 0.0612489
4 -0.24 -1.386161 0.9061614 0.6801049

Without NegateConditionalsMutator
1 -7.35 -8.735988 -5.964012 0
2 0.95 -0.2667233 2.166723 0.1252245
3 -13.37 -14.60836 -12.13164 0
4 -3.01 -4.160555 -1.859445 6e-07

Without InvertNegsMutator
1 -0.69 -1.957531 0.5775308 0.2843542
2 0.59 -0.5303536 1.710354 0.3003026
3 -0.35 -1.443749 0.7437485 0.5287379
4 -0.45 -1.690054 0.7900544 0.475069
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Figure 4.2: Plots of number of different types of statements, number of mutants generated by
mutating different types of statements, and number of mutants detected from the generated mutants.
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Distribution of mutants in different types of statements Figure 4.2
summarizes the statistics of mutants located in different types of statements
in the source code. In each bar chart, a group of three bars, from left to
right, represents (1) number of the type of statements, (2) number of mutants
located in that type of statements, and (3) number of detected mutants from
(2). The top left corner of each bar chart lists the overall mutation score of
the subject program.

The distribution of number of different types of statements varies between
subjects. For example, there are less return statements than conditional
statements in JFreeChart, but more return statements than conditional
statements in the rest three subjects. The distribution of mutants located
in different types of statements is also subject dependent. However, a larger
portion of return and conditional statements is always mutated compared to
normal statements.

In addition, the number of mutants generated in conditional statements
is larger than the number of conditional statements in Java-library and
Lambdaj. The number of mutants generated in return statements is larger
than the number of return statements in Lambdaj as well. The observation
indicates that a statement in a program can be mutated more than once and
in different ways.

Finding 12: Normal statements are less likely to be mutated compared to
return statements and conditional statements. A program statement may be
mutated more than once in different ways.

Compare across subjects In Figure 4.3, for each type of statement, the
mutation score is plotted against the percentage of mutants located in the
type of statement, for each subject program separately. The distribution of
mutants in different types of statements has a strong to very strong correlation
with the mutation score of the subjects. The correlation between the mutation
score and the ratio of mutants is very strong if a program is mutated in return
statement (0.86) and normal statement (-0.87), and strong if a program is
mutated in conditional statement (-0.62). The negative correlation indicates
a relationship between two variables in which one variable increases as the
other decreases, and vice versa. For instance, the mutation score will increase
as the ratio of mutants in normal and conditional statement decreases, and
vice versa.
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Figure 4.3: Plot of mutation score against percentage of mutants
generated in different types of statements. For each type of state-
ment, a data point represents one of the for subject programs.

Finding 13: The percentage of mutants generated by mutating different
types of statements is strongly to very strongly correlated with test suite
effectiveness.

Compare within subjects

We compared the number of detectable mutants in the subsets, by controlling
on statement type and mutants quantity. Figure 4.4 shows box-plots of our
results. From the plots, we can observe a clear decreasing trend of number of
detectable mutants by the original test suite located in: return statements,
conditional statements, and normal statements. This result is consistent with
our findings in Section 4.2.1 when comparing between subjects.

We performed ANOVA tests of equal mean for the number of detectable
mutants located in different type of statements. The F values were 4659.6,
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Figure 4.4: A box-plot of number of mutants killed at different
mutation locations : return statements, condition statements, and
normal statements. Each box represents the 100 subsets of mu-
tants that were randomly selected from all mutants generated at
the location for each subject. Each subset contains 100 mutants.

241.35, 7936.5 and 195.07 respectively for the subjects with p-value very close
to 0. Thus we can confidently reject the null hypothesis of equal variance (of
number of detectable mutants) for the four subjects. Next we applied Tukey’s
Honest Significance test of pair-wisely comparing between mutants located
in different type of statements. The test estimated the pairwise difference
between number of killed mutants in different type of statements. The test
result is consistent with what we have observed in the box-plot in figure 4.4.
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Finding 14: Our results indicate that, the types of statements mutated
significantly influence test suite effectiveness when comparing within each
subject. Mutants in return statements are easiest to be killed. Mutants in
condition statements are easier to be killed then those in normal statements.

Table 4.7: Tukey’s Honest Significance Test on the number of mu-
tants killed. Each of the sample subsets of mutants used for the
comparison contains 100 mutants.

Types diff lwr upr p adj
JFreeChart

Return-Condition 20.80 19.38946 22.21054 0
Statement-
Condition

-36.31 -37.72054 -34.89946 0

Statement-
Return

-57.11 -58.52054 -55.69946 0

Java-library
Return-Condition 4.69 3.427404 5.952596 0
Statement-
Condition

-7.01 -8.272596 -5.747404 0

Statement-
Return

-11.70 -12.962596 -10.437404 0

Asterisk
Return-Condition 1.65 0.5488635 2.751137 0.0014
Statement-
Condition

-50.16 -51.2611365 -49.058863 0

Statement-
Return

-51.81 -52.9111365 -50.708863 0

Lambdaj
Return-Condition 7.76 6.552742 8.9672583 0
Statement-
Condition

-1.75 -2.957258 -0.5427417 0.0021

Statement-
Return

-9.51 -10.717258 -8.3027417 0
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Table 4.8: Distribution of mutation location for each mutation operator.

Mutation Operators Java-Library Asterisk
Con % Ret % Smt % Con % Ret % Smt %

ReturnValsMutator 39 3 1143 97 0 0 2 0.8 259 99.2 0 0
VoidMethodCallMutator 26 5.2 0 0 475 94.8 2 0.9 0 0 231 99.1

NegateConditionalsMutator 763 80.7 53 5.6 129 13.7 402 93.5 13 3.0 15 3.5
MathMutator 0 0 2 5.3 36 94.7 14 31.1 4 8.9 27 60.0

ConditionalsBoundaryMutator 30 83.3 3 8.3 3 8.3 61 96.8 1 1.6 1 1.6
IncrementsMutator 14 82.4 0 0 3 17.6 16 94.1 0 0 1 5.9
InvertNegsMutator 0 0 0 0 0 0 0 0 0 0 0 0

JFreeChart Lambdaj
ReturnValsMutator 18 0.7 2600 98.7 17 0.65 119 17.7 555 82.3 0

VoidMethodCallMutator 171 4.8 0 0 3395 95.2 11 8.7 0 0 116 91.3
NegateConditionalsMutator 4818 86.1 26 0.5 167 3.3 293 72.5 81 20.0 30 7.4

MathMutator 54 3.1 116 6.7 1569 90.2 14 38.9 10 27.8 12 33.3
ConditionalsBoundaryMutator 517 93.3 7 1.3 30 5.4 29 85.3 5 14.7 0 0

IncrementsMutator 149 86.6 0 0 23 13.4 25 80.6 0 0 6 19.4
InvertNegsMutator 5 11.1 7 15.6 33 73.3 0 0 2 100 0 0
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Statement type vs. mutation operator Table 4.8 summarizes the
number of mutants generated in different types of statements by each mutation
operator. The first column indicates which mutation operator is responsible
for generating the mutants. Conlumn Con contains number of mutants
generated in conditional statements, Ret shows number of mutants generated
in return statements, and Smt presents number of mutants generated in
normal statements. Column % represents the ratio of mutants generated
in the type of statements as stated in the previous column by the operator.
For example, for subject JFreeChart, 18 mutants (0.7 %) are generated in
conditional statements, 2600 (98.7 %) in return statements, and 17 (0.65 %)
in normal statements by the Return Values Mutator operator.

From the table, we can observe that most of the mutants generated by
Return Values Mutator are in a return statement (82.3–99.2%). Mutants
generated by Void Method Calls Mutator are always in normal statements
(94.8–99.1%). Negate Conditionals Mutator, Conditionals Boundary Mutator,
and Increments Mutator usually mutate conditional statements (81–93.5%).
However, Math Mutator and Invert Negatives Mutator do not show a consis-
tent pattern across projects. Therefore, five out of the seven mutators studied
in this thesis are able to influence the distribution of mutants generated in
different types of statements.

Finding 15: Our results indicate that, 5/7 of the mutation operators
studied correlate with the type of statement mutated.
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Table 4.9: Statistics of mutants at different nesting level.

Levels JFreeChart Java-Library Lambdaj Asterisk
Nstmt Mtotal Mkilled MS Nstmt Mtotal Mkilled MS Nstmt Mtotal Mkilled MS Nstmt Mtotal Mkilled MS

1 24810 8894 4281 48.1 3892 1384 1101 79.6 811 698 545 78.1 6465 739 486 65.8
2 10970 3279 1627 49.6 979 878 582 66.3 318 180 136 75.6 1168 217 169 77.9
3 3391 979 286 29.2 175 121 106 87.6 112 27 16 59.3 317 59 48 81.4

>=4 2121 569 75 13.2 43 335 273 81.5 118 28 20 71.4 142 34 31 91.2

Table 4.10: Statistics of explicit detectable mutants at different nesting level.

Levels JFreeChart Lambdaj Java-Library Asterisk
killed explicit % killed explicit % killed explicit % killed explicit %

1 4281 2814 65.7 355 197 55.5 1101 641 58.2 486 382 78.6
2 1627 1337 82.2 169 71 42.0 582 168 28.9 169 140 82.8
3 286 209 73.1 389 247 63.5 106 42 39.6 48 40 83.3

>=4 75 40 53.3 102 49 48.0 273 89 32.6 31 22 71.0
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Nesting levels Table 4.9 shows the statistics of statements and mutants
at different nested levels. Column Nstmt shows total number of statements
at different nested levels, column Mtotal indicates total number of mutants
generated at each level, column Mkilled shows the number of detectable
mutants at that level, and column MS calculates the mutation score of
the original test suite if only consider the mutants generated at the level.
The mutation score decreases as nested level increases from 48.1% to 13.2%
for JFreeChart, but increases from 65.8 % to 91.2 % in Asterisk. There is
not a clear increasing/decreasing trend in mutation score as nested level
goes up in Java-library and Lambdaj. Therefore, we did not observe any
correlation between the nested level of a mutant and how easy/hard it can
be detected. Table 4.10 summaries the distribution of explicitly detected
mutants by assertions out of all detected mutants. There is no correlation
between the level of nesting and the ratio of explicitly detected mutants.
This might be due to the presence of dedicated test assertions that testers
write for nested statements. There is thus no evidence that testers pay less
attention to deeper nested statements.

Finding 16: Our results indicate that, there is no correlation between
how easy a mutant can be killed and the depth of nesting of the mutated
statement.
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Chapter 5

Discussion

5.1 Test Suite Size vs. Assertion Quantity

From the findings 1 and 2, the number of assertions in a test suite is very
strongly correlated with its effectiveness with or without controlling for the
influence of test size. However, according to finding 3, if we in turn control for
the number of assertions, a test suite’s effectiveness at a same test size level
can be directly influenced by the number of assertions it contains. Thus, test
suite size is not sufficient in predicting the effectiveness without considering
the influence of assertion quantity. In addition, assertion quantity provides
extra indications about the suite’s explicit mutation score, which constitutes
a large portion of the mutation score. Therefore, test suite size can predict
the effectiveness only under the assumption that there is a linear relationship
between the number of test methods and the number of assertions in the
test suite. We believe this is an interesting finding, which explains why
previous studies [28] have found a strong correlation between suite size and
effectiveness.

5.2 Implicit vs. Explicit Mutation Score

We noticed an interesting phenomenon, namely, that mutants that are implic-
itly detectable can also be detected by assertions, if the mutated statement
falls in the coverage of the assertion. However, mutants that are explicitly
detectable by assertions can never be detected by non-assertion statements
of the tests. This is because explicitly detectable mutants cannot be detected
by simply executing the mutated part of a program; i.e., a specific assertion
statement is required to catch the program’s unexpected behaviour. This is
due to the fact that explicitly detectable mutants inject logical faults into a
program that lead to a contradiction with the programmers’ expectations.
From our observations, more than half of all detectable mutants (28%–73%)
are explicitly detected by assertions in a test suite; and therefore assertions
strongly influence test suite effectiveness. If we only focus on explicitly de-
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tectable mutants, then test assertions are the only means to achieve suite
effectiveness. This might also explain why statement coverage achieves a
relatively low correlation with explicit mutation score.

5.3 Statement vs. Assertion Coverage

From findings 4 and 5, assertion coverage is a good estimator of both mutation
score and explicit mutation score. If the influence of assertion coverage is
controlled, there is a passable level of correlation between statement coverage
and mutation score, while only a weak correlation between statement coverage
and explicit mutation score. Therefore, statement coverage is a valid estimator
of mutation score only under the assumption that not all of generated mutants
are explicitly detectable mutants. In other words, statement coverage is not
an adequate metric of logical-fault detection ability. Statement coverage
includes more statements than assertion coverage from source code, without
providing any extra insights for predicting test suite effectiveness. Compared
with statement coverage, assertion coverage is very strongly correlated with
the effectiveness regardless of the distribution of implicitly or explicitly
detectable mutants. Our results suggest that testers should aim at increasing
the assertion coverage of their test suite instead of its statement coverage,
when trying to improve a test suite’s effectiveness.

5.4 Assertion Type

Findings 8 and 7 indicate that there is no consistent ranking nor a significant
difference between the effectiveness of different types of assertions. We
manually assessed the assertions in the sample test suites and found that
the assertions of one type can be easily interpreted as another type. For
example, assertEquals/Not can be easily interpreted as assertTrue/False:
assertEquals(A, B) can also be written as assertTrue(A.equals(B)), and
assertNotEquals(A, B) can also be written as assertFalse(A.equals(B)).
For assertEquals/Not(A, B), the assertion content type is the type of A and
B, whereas the assertion content type of assertTrue/False(A.equals(B)) is
boolean, with effectiveness of the assertion stays the same. assertNull/Not
can be interpreted as assertTrue/False as well: assertNull(A) can be
written as assertTrue(A==null), where the assertion content type changes
from the type of A to boolean. Therefore, the way we classify assertions is
not able to distinguish them into disjoint sets. Assertions should be classified
according to a more fine-grained methodology to measure their impact on
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test effectiveness.

5.5 Distribution of Mutants

Finding 9 shows that the number of mutants generated by different mutation
operators is not distributed evenly. Their distributions are strongly correlated
with the distribution of mutable locations of the mutators in the source
code. Finding 15 tells us that mutants generated by 5/7 mutation operators
are strongly correlated with program statement types. In other word, the
distribution of mutants is strongly correlated with the code characteristics
of a program. Therefore, we believe, in the context of mutation testing,
researchers and tester should always consider (and report) the characteristics
their subjects, such as the distribution of different statement types.

5.6 Mutation Selection

Findings 10 and 11 indicate that there is always a significant difference
between how easy mutants generated by different mutators can be killed.
And, omitting Return Values Mutator always influences measuring test suite
effectiveness. There are many influencing factors of whether omitting a
mutation operator will cause a significant change in test suite effectiveness.
One reason can be, mutants generated by the operator are easy/hard to
detect mutants compare to all of the mutants generated for the subject. For
example, as suggested by finding 14, mutants generated by Return Values
Mutator are easy to detect since most of them are in return statements. In
addition, the total number of mutants generated by a mutation operator is
also important. Omitting a small number of mutants may not be significant
enough to reveal the difference. Therefore, the two factors should be carefully
considered before omitting any mutation operator when assessing test suite
effectiveness through mutation testing. For example, if there is a big portion
of return statements in the program, Return Values Mutator is likely to
generate a large number of easy-to-detect mutants in return statements, and
omitting the operator is likely to influence measuring test suite effectiveness.

5.7 Statement Type

From findings 13 and 14 we learn that the type of statement where a program
is mutated significantly influences how easy a mutant is detected. Mutants
in return statements are easiest to be killed. We believe this is because
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return statements are the statements where values propagate and are passed
between methods. Since tests target the return statements of methods, errors
in return statements are easiest to be revealed. Mutants in conditional
statements are harder to be detected compared to return statements. Faults
in conditional statements can change the control flow of a program, therefore
requiring a specific test to be revealed. From finding 12, PIT is more likely to
mutate return statements and conditional statements than normal statements.
Therefore, PIT may overestimate a test suite’s effectiveness, since mutants in
normal statements are hardest to be detected. This is important to consider
when measuring test suite effectiveness.

5.8 Threats to Validity

Internal validity: To conduct the controlled experiments, we made use
of many existing tools, such as PIT [10], Clover [3], and JavaSlicer [7]. We
assumed these tools are able to produce valid results. Therefore, any erroneous
behaviours of these tools might introduce unknown factors to the validity of
our results. To mitigate such factors as much as possible, we tested our own
code that uses these external tools.

Similar to previous studies [28], we treated mutants that cannot be
detected by the master test suites as equivalent mutants, which might over-
estimate the number of equivalent mutants. However, since we are mainly
concerned with the correlations between mutation/explicit mutation score
and the other metrics, subtracting a constant value from the total number of
mutants generated, will not impact the correlations.

External validity: We studied the relationship between assertions and
test suite effectiveness using more than 24,000 assertions collected from five
open source Java programs. However, programs written in Java may not
be representative of the programs written in other languages. Thus, our
results might not extend to other languages. Moreover, the assertions we
examined in this thesis are JUnit4 assertions, and our results may not apply
to assertions used in other testing frameworks. We mainly looked at the 9,177
assertions for JFreeChart [8] when comparing the effectiveness of different
assertion types. Although the set of assertions used is large and written
by real developers, our findings may not generalize to other programs. In
addition, we used PIT to conduct mutation testing; PIT stops executing
once a test assertion detects a mutant. However, it is helpful to know all the
assertions that would fail when studying assertion types. We mainly looked
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at mutants that are generated by the seven default mutation operators of
PIT. Although the mutants generated have covered all types of program
statements (return, conditional, and normal statements), they may not be
representative of all existing types of program faults. We used Randoop to
generate test cases with assertions, which were compared to human-written
assertions. However, there also exist other test oracle generation strategies
than feedback-directed random test generation, and using a different test
generation strategy might influence the results. We used Randoop, because
of its relative ease of use. .

Construct validity: The mutants we used in this thesis are generated
by using PIT [10]. When assessing the distribution of different types of
faults and faults in different types of statements, the implementation decision
of the tool can influences what we observe. Utilizing a different mutation
testing tool may influence the results. We used PIT because it is the most
popular Java mutation testing tool, which has also been widely adopted in
the literature, such as [26, 28, 37, 39, 44].

Our empirical data as well as the five subject programs are all available
online, making our study repeatable.
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Chapter 6

Conclusions and Future Work

In this thesis, we studied the influence of assertions and mutants on mea-
suring test suite effectiveness. First, we examined the correlation between
assertion quantity and the effectiveness, and further analyzed the influence
of assertion quantity on the correlation between test suite size and the effec-
tiveness. Second, we investigated the relationship between assertion coverage
and suite effectiveness, and explored the impact of assertion coverage on the
relation between statement coverage and effectiveness. Third, we compared
the effectiveness of different assertion characteristics. Fourth, we investigated
different types of faults (simulated by mutants generated by different mutation
operators). We explored the distribution of mutants generated by different
mutation operators, compared different types of mutants in terms of test
suite effectiveness, and studied the influence of omitting each single mutation
operator, separately. Finally, we investigated faults located in different types
of program statements. We observed the distribution of mutants generated
in different types of program statements, compared mutants generated in
different types of statements in terms of test effectiveness, studied the re-
lationship between types of statements and operators, and the influence of
depth of nesting of program statements and the effectiveness. Based on an
analysis of over 24,000 assertions collected from five cross-domain real-world
Java programs, we found that:

• There is a very strong correlation between the number of assertions
and test suite effectiveness, with or without controlling for the number
of test methods in the test suite. Thus, the number of assertions in a
test suite can significantly influence the prediction power of test suite
size for the effectiveness.

• There is a very strong correlation between assertion coverage and
test suite effectiveness. With assertion coverage controlled for, there
is a moderate to strong correlation between statement coverage and
mutation score, and only a weak to moderate correlation between
statement coverage and explicit mutation score. Therefore, statement
coverage is an adequate metric of test suite effectiveness only under
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the assumption that the faults to be detected are not only explicitly
detectable, while assertion coverage is a good estimator of test suite
effectiveness without such a constraint.

• Types of assertions can influence the effectiveness of their containing
test suites: human-written assertions are more effective than generated
assertions.

• There is no evidence to support that assertion content types and
assertion method types significantly influence test suite effectiveness.

• There is a significant difference between mutants generated by different
mutation operators in terms of test effectiveness. The distribution of
different types of mutants is strongly correlated with the distribution of
mutable locations of the operators. Omitting a single mutation operator
does not always significantly influence test suite effectiveness. From
our observations, omitting Return Val Mutator always leads to a loss
in test suite effectiveness, Omitting Increments Mutator and Invert
Negatives Mutator can not introduce a significant difference in test
suite effectiveness.

• There is a significant difference between mutants located in different
types of statements, in terms of how easy they can be killed. We found
that the distribution of mutants in different types of statements strongly
correlates with test suite effectiveness. Mutants generated in return
statements are easiest to be detected. Mutants generated in conditional
statements are easier to be detected than mutants generated in normal
statements. Five out of seven mutation operators studied in this thesis
are correlated with mutation location.

Our results indicate that it might be sufficient to use the assertion quantity
and assertion coverage as criteria to measure a suite’s adequacy, since these
two metrics are at least as good as suite size and statement coverage. In
addition, fault type and fault location significantly influence measuring test
suite effectiveness. To precisely assess a test suite’s effectiveness, it is essential
to describe the set of faults used by indicating the distribution of fault types
and locations.

For future work, we would like to conduct experiments using more pro-
grams to further validate our findings. We plan to include more mutation
operators in our studies in the future to improve generalization of the findings.
We did not find a significant difference between different assertion types since
different types of assertions can sometimes be difficult to distinguish one
from another. To obtain a more fine-grained analysis, assertions should be
classified more precisely as disjoint groups. For example, assertEquals(A, B)
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and assertTrue(A.equals(B)) should always be classified as one type instead
of two. Moreover, we will conduct a taxonomy on assertions to more precisely
differentiate their characteristics.
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