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Abstract

High-Level Synthesis (HLS) has emerged as a promising technology to re-

duce the time and complexity that is associated with the design of digital

logic circuits. HLS tools are capable of allocating resources and scheduling

operations from a software-like behavioral specification. In order to main-

tain the productivity promised by HLS, it is important that the designer can

debug the system in the context of the high-level code. Currently, software

simulations offer a quick and familiar method to target logic and syntax

bugs, while software/hardware co-simulations are useful for synthesis veri-

fication. However, to analyze the behaviour of the circuit as it is running,

the user is forced to understand waveforms from the synthesized design.

Debugging a system as it is running requires inserting instrumentation

circuitry that gathers data regarding the operation of the circuit, and a

database that maps the record entries to the original high-level variables.

Previous work has proposed adding this instrumentation at the Register

Transfer Level (RTL) or in the high-level source code. Source-level instru-

mentation provides advantages in portability, transparency, and customiza-

tion. However, previous work using source-level transformations has focused

on the ability to expose signals for observation rather than the construction

of the instrumentation itself, thereby limiting these advantages by requiring
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Abstract

lower-level code manipulation.

This work shows how trace buffers and related circuitry can be inserted

by automatically modifying the source-level specification of the design. The

transformed code can then be synthesized using the regular HLS flow to

generate the instrumented hardware description. The portability of the

instrumentation is shown with synthesis results for Vivado HLS and LegUp,

and compiled for Xilinx and Altera devices correspondingly. Using these

HLS tools, the impact on circuit size varies from 15.3% to 52.5% and the

impact on circuit speed ranges from 5.8% to 30%. We also introduce a

low overhead technique named Array Duplicate Minimization (ADM) to

improve trace memory efficiency. ADM improves overall debug observability

by removing up to 31.7% of data duplication created between the trace

memory and the circuit’s memory structures.
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Chapter 1

Introduction

Computation scaling through recent years has not seen the same return in

terms of higher operational frequency and power efficiency that was obtained

from shrinking transistor sizes. As processor performance plateaus, com-

puter architectures have moved to parallel execution models. Such models

either replicate processing units or use heterogeneous computing. Heteroge-

neous computing merges different computing architectures into one system,

where each architecture targets a specific task or type of tasks.

There are two domains in which this trend is specially important. First,

embedded devices, in which energy efficiency can be achieved by offloading

tasks from the main processor core to custom cores that consume less power,

allowing the more powerful resources to go to a standby state. Second,

in High Performance Computing (HPC) or any compute-demanding appli-

cation, where higher performance can only be obtained with application-

specific logic, and both the sequential processing unit(s) and custom logic

can execute in tandem. However, design and fabrication of Application Spe-

cific Integrated Circuits (ASICs) is not only time consuming, but also often

unaffordable.

More flexible heterogeneous computing systems integrate programmable

1
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General Purpose (GP) devices instead of specialized ASICs. This balances

the customizability and performance of ASICs, while preserving the flexi-

bility and affordability of software programmable cores. For example, Sys-

tems on Chip (SoC) can integrate two Central Processing Units (CPUs)

with architectures focused for performance and for power efficiency [7], or

the CPU(s) can be integrated with a GPGPU (General Purpose Graphics

Processing Unit) [25, 58] which has become attractive in scientific comput-

ing and other HPC applications. The reprogrammable many-core Single-

Instruction Multiple-Data (SIMD) execution model offered by GPUs can be

used to solve graph and matrix based problems, among other applications. A

more suitable approach for some applications is to provide finer-grained re-

programmability, to also allow Multiple-Instruction Multiple-Data (MIMD)

parallelism with custom logic design. This execution model is offered by

Programmable Logic Devices (PLDs), namely, Field-Programmable Gate

Arrays (FPGAs).

1.1 Field Programmable Gate Arrays

The fine-grained nature of FPGAs allows them to emulate the behaviour

of any digital logic circuit. Their architecture is based on Look-Up Tables

(LUTs) for digital gates, memory blocks for RAMs and ROMs, registers

for sequential logic, programmable I/O blocks, and programmable switch

blocks for custom interconnection. More specialized blocks are also seen in

state-of-the-art devices. This extensive flexibility made these devices a suit-

able match for prototype development, Application Specific Integrated Cir-

2
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cuit (ASIC) emulation for design verification, and as interfacing devices for

system-level design, otherwise called “glue logic”. More recently, FPGA re-

source density has increased to such degree that complex, multi-core, multi-

clock domain systems can be fully implemented in programmable logic [26].

The easily replicable homogeneity of modern FPGA architectures has lead to

impressive records for transistor density in one chip [4, 64]. FPGAs also en-

able a faster time-to-market; this is advantageous when compared to ASIC

design [65]. At the same time, FPGAs can offer a significant increase in

performance compared to CPU and GPU implementations [66].

This great potential for acceleration has been successfully put into prac-

tice for multiple applications where custom functional units and pipelined

execution can be designed to take advantage of existing parallelism [55, 78].

Notable applications exist in high-demand cloud computing [11, 60], where

each server node is augmented with one FPGA configured with multiple

custom Processing Elements (PE). Recently, Intel Corporation acquired one

of the largest FPGA companies, Altera Corporation [18], while major ef-

forts from other companies have also been seen in order to incorporate FP-

GAs into mainstream computing, especially for machine learning on the

cloud [8, 23, 78]. However, programming FPGAs requires greater effort

than programming GPUs or CPUs in order to extract optimal efficiency

[10, 26, 55, 66], mainly because these designs need to be described at a

lower abstraction, requiring ample knowledge of the device architecture and

hardware-specific design methodologies.

Traditionally, FPGA applications are specified using Hardware Descrip-

tion Languages (HDLs) which require hardware expertise (e.g. VHDL or

3
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Verilog). HDLs are used to write a structural or behavioral description of

the circuit, in which low-level logic (logic functions and flip-flops) and de-

tailed timing requirements (rising and falling edge triggering) are specified;

this is defined as the Register-Transfer Level (RTL). Other alternatives such

as block diagram specifications are available, but these are often tedious to

read and analyze with larger and more complex designs.

1.2 High Level Synthesis

FPGA vendors and academic research have invested significant effort into

providing a software-like design environment for FPGAs in the form of High-

Level Synthesis (HLS) tools. This involves automatically transforming a be-

havioral description into a digital circuit design. High-Level Synthesis (HLS)

has emerged as a leading technology to reduce the design time and complex-

ity that is associated with FPGAs, and to enable software programmers to

use FPGAs in such a way that their expertise can be put into practice for

compute acceleration without a steep learning curve [36, 37]. In order to

do this, the behavioral description language and programming flow needs to

resemble that of software.

This software-like behavioral description can be done using Domain Spe-

cific Languages (DSLs) (i.e. SystemC, BSV [57]), or subsets and extensions

of existing software programming languages (i.e. Java, C, C++). The pre-

ferred language for existing and recent HLS tools is C [56]. C-based tools

often use either GCC or LLVM [45], which are open source C/C++ compiler

frameworks. These compilers are modified to include a new backend. The

4
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backend is the last stage in the compilation flow, where the Intermediate

Representation (IR) or code written with generic low-level instructions, is

converted to comply with the target architecture, i.e. x86, ARM, MIPS

or other binary executables in the software approach. When targeted to-

wards FPGAs or logic design, this backend translates the IR into an HDL

specification.

Most software concepts can remain unchanged in the language-subset

approach, such as “calling function”, “jumping to instructions” and “vari-

able pointers”, except these are translated into digital logic instead of binary

instructions. This is attractive to software developers and hardware devel-

opers alike for two main reasons, portability and ease of transition. Existing

software can be compiled for an FPGA device, and because HLS tools use

a well-known programming language, it is more likely that the developer is

already familiar with it and can focus on optimization rather than the ini-

tial implementation. Along with FPGAs and HLS tools to program them,

it is necessary to have a development infrastructure. This should include

assistance in the code writing process, as found in multiple Integrated Devel-

opment Environments (IDE) [22], but should also allow the users to analyze

and debug the behaviour of their design. Specifically, debugging should be

possible in the context of the abstraction level at which the logic circuit is

being designed.

5



1.3. HLS Debug

1.3 HLS Debug

High-level synthesis compilers are not enough. An entire ecosystem includ-

ing support for debug and optimization is required. During the design pro-

cess, the developers move through multiple iterations of the design. Flaws or

bugs in the execution of the circuit can appear in different stages of develop-

ment and can be found using different debugging techniques. Starting from

the lowest level of abstraction, debugging can target electrical bugs such as

manufacturing defects, device wear out, and unmet timing. Moving up the

abstraction level, bugs can generally be classified into logic, arithmetic, or

syntactic. Most syntax bugs can be found statically; these are code struc-

tures that do not comply with the programming language, or are mistyped

expressions (variable name mismatch, wrong operator, wrong variable type,

etc.). Logic and arithmetic bugs refer to operational discrepancies from the

expected behaviour (incorrect statements, loop bounds, division by zero),

whether these are caused by a flawed description of the design, or by a

mistake in one of the synthesis (or compile) stages. As represented in Fig-

ure 1.1, an HLS design can be debugged at three different levels, i.e Software

simulation, co-simulation, and in-system debug.

1.3.1 Software Simulation

Currently, HLS tools incorporate software simulations. These offer a quick

and familiar method to target logic and syntax bugs following the same

standards applicable to software debugging. As previously mentioned, C-

based HLS tools use standard C compiler frameworks, and the resemblance

6



1.3. HLS Debug

Figure 1.1: HLS Debugging Techniques

of the HLS programming flow to a software programming counterpart is

such that the behavioral specification can be compiled and executed on

the workstation using the regular software compilers. This type of source

simulation helps finding bugs early in the design, and without the need for

executing the synthesis flow.

1.3.2 Co-Simulation

Some HLS tools also provide software/hardware (C/RTL) co-simulations,

which encompass the bug coverage provided by C simulations but are also

useful for synthesis verification, i.e. checking for tool bugs or tool usage

errors. Here, a cycle-accurate simulation of the generated circuit runs along

with the binary executable. Inconsistencies can be checked during execution

or by comparing return values to golden data which is useful for uncovering

the root cause of errors or performance bottlenecks that arise when the code

is synthesized to hardware, possibly due to incorrect compiler settings (such

as pragmas), and to provide confidence that the HLS tool produced correct

hardware.
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1.3.3 In-System Debugging

Although software simulation and hardware/software co-simulation are an

essential part of the HLS ecosystem, they are not sufficient to find the root

cause of all bugs. Many of the most elusive bugs do not become apparent

unless the design is run in-system, exercised by real input traffic, at-speed,

for long periods of time. As a specific example, simulating an SoC as it boots

Linux would take years in modern simulators, yet there are many types of

bugs that need at least this before appearing. Further, many elusive bugs

(such as those related to the timing interactions between HLS and legacy

RTL blocks) may not occur unless the system is running at-speed, which in

FPGA design can be accomplished from an early stage of development.

Running at-speed, however, means that data regarding the state of the

circuit is being updated constantly. If exposed to the user, the amount of

information regarding all available signals in the circuit would require very

high throughput and I/O resources. Also, in contrast to software debugging,

step by step execution of a digital logic design is often not possible for correct

operation. This is due to interfaces with additional modules that can only

be observed at runtime, whether because the source code is inaccessible or

nonexistent at the same high level, or because the module requires external

inputs from peripherals. These cases are common due to the use of external

IP in most designs.

The alternative approach that is found in commercial in-system debug-

ging solutions, is to use a trace record-replay technique. Instrumentation,

or additional circuitry is added to the design in order to store the changes of
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signals of interest until a predefined event is encountered. At that point in

the execution, all captured data is retrieved and the behaviour of the circuit

is “replayed”, presented as waveforms to the designer. In Chapter 2, several

examples for in-system debug are presented.

Source-Level In-System Debugging for HLS

In HLS systems, providing support for in-system debug is especially chal-

lenging, due to the mismatch between the hardware running on-chip and the

HLS (software) designer’s view of the system [8, 27]. A software designer

views the design as a set of sequential statements with limited parallelism,

while the actual hardware consists of many sequential and combinational

hardware units running at the same time. A software designer does not con-

sider the notion of a “clock” when specifying a design, yet the cycle-by-cycle

behaviour is inherent in the structure and operation of the hardware. This

is especially challenging if the HLS tool performs many optimizations on the

code, leading to a structure and schedule that may be very unfamiliar to

the designer.

Although there are many debuggers that provide visibility into the de-

sign at the system level, these tools provide information commonly presented

as signal waveforms that only have meaning to a hardware designer. These

signals are generated by the synthesis tool, and can be completely detached

from the initial source code nomenclature and design intuition, e.g. the gen-

erated circuit will likely contain Finite State Machines (FSMs), of which the

value of the register holding the current state might be of great interest for a

hardware designer, however, this is meaningless from a software perspective.
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To be effective and maintain the productivity promised by HLS, the in-

system debug technique must present the execution in terms of C-level vari-

ables and C-level control flow, rather than presenting cycle-by-cycle wave-

forms that the designer must manually relate to the original C design [8].

The objective is to have source-level in-system debug for HLS.

This has led several research groups to develop techniques to provide a

software-like view of running hardware, allowing the software designer to

observe variable values and single-step code as if it was software. Early

work presented a system for the JHDL-based Sea Cucumber (SC) frame-

work [39] allowing software optimizations instead of using a debug version of

the code. More recently, LegUp’s release included source-level in-system de-

bugging support [12, 27] using custom RTL instrumentation and a database

to relate hardware signals to source-code statements, LLVM’s Intermediate

Representation (IR), and Verilog. Subsequent research [30] focused on op-

timizing resource utilization, successfully storing longer execution histories.

1.3.4 Instrumentation

Key to any in-system debug approach is efficient and effective instrumenta-

tion that is added to the user design to record the behaviour of the design

as it runs. Since I/O pins are limited, and since it is desired to run the chip

at-speed, existing systems instrument the user design by adding memories

(trace buffers) and support circuitry to record the behaviour of key signals

into these trace buffers. After the chip has been run, these trace buffers can

be interrogated using a software-like debugging tool, allowing the designer

to understand the behaviour of the system.
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The instrumentation is built using resources of the same reconfigurable

fabric used for the user’s circuit. As such, this instrumentation can be added

at any stage of the design process, bitstream-level [31], gate-level at compile

time [2, 43], incrementally after place and route [24], RTL-level [12, 27],

or in high-level source code [53]. These different approaches either need to

modify the synthesis tools to insert the instrumentation while performing

the synthesis process, or modify (instrument) the code before putting it

through the subsequent synthesis stage.

Source-Level Instrumentation

High-level source code instrumentation, or source-level instrumentation, is

an HLS specific approach in which the user’s source code is transformed

before any lower-level code generation. The motivation behind source-level

instrumentation is threefold.

• First, inserting instrumentation at the source level creates a runtime-

verifiable design that is portable between any HLS tool that uses the

same high-level language. Source-level isntrumentation avoids the dif-

ficult task of mapping circuit-level structures to C-level elements. In

solutions such as [12, 27], such a mapping requires access to a debug

database from the HLS tool, making it difficult to apply the technique

to a commercial HLS flow.

• Second, code transformations can be written in such a way that it

takes advantage of the HLS and Logic synthesis optimizations; both

the source code and the instrumentation will be optimized together.
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• Third, the instrumented C code is readable and familiar to the design-

ers, allowing them to better understand the role of the instrumentation

in the debugging process.

A key challenge of instrumenting at the C level is the possibility that the

overhead may quickly become overwhelming if too much instrumentation is

added. In [52], it is shown experimentally that this overhead can be kept

reasonable, suggesting this technique is feasible.

1.4 Contributions

In this work, a methodology is described to use source-level instrumentation

for C-based HLS tools, to create memories and related circuitry to gather

trace data that provides visibility into the operation of the circuit. This

trace is then matched with a database that maps each memory entry to the

high-level variables that have meaning to the designer during debug. The

contributions of this work are presented here.

1. In previous work [52, 53], the focus was on connecting internal sig-

nals to Event-Observability Ports (EOPs) to provide access points in

the design. These are left unconnected and meant to be connected

to memories by modifying the generated RTL, or through proprietary

ELAs[54]. In this work, we implement not only the connections to

access points in C, but also insert trace buffer memories, as well as

trace readback and related circuitry in the C-level design. This elimi-

nates the need to make modifications after compilation, and as we will

12
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show, can lead to further co-optimization opportunities between the

trace buffer memories and the circuit memories. We experimentally

evaluate the overhead associated with such instrumentation.

2. Exactly which signals or events should be instrumented is vital to

the effectiveness of this technique. In this work, we distinguish be-

tween two strategies, control flow instrumentation and data capture

instrumentation, each of which provides different views of the circuit’s

behaviour to the debugger, and evaluate the overhead for each of these

strategies.

3. We introduce and evaluate a low overhead technique named Array

Duplicate Minimization (ADM) to improve trace memory efficiency.

ADM improves overall debug observability by removing up to 31.7% of

data duplication created between the trace memory and the circuit’s

memory structures. This optimization is enabled by the inclusion of

the trace buffer memories in the original C code.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the corresponding

background about FPGA programming and debugging solutions. This is

backed by references from recent surveys and applications developed using

HLS that demonstrate the growing availability and usability of this type of

programming environment. These examples also emphasize the need for a

debugging infrastructure that allows the user to remain in the higher ab-
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straction level while still taking advantage of the flexibility of the underlying

hardware. Related projects on source-level debugging are also contained in

Chapter 2 to establish the state of the art in instrumentation techniques.

Chapter 3 presents the debugging flow that the user can expect from

using the tools created for this project and also describes the methodology

followed to implement those tools. Both Control Flow and Data Capture

instrumentation are presented by using code examples. Chapter 4 presents

the motivation behind our Array Duplication Minimization (ADM) tech-

nique and the methodology followed for its implementation.

In Chapter 5, the quantification of the instrumented designs is presented.

These results are compared with data available from related work and the

feasibility, trends, and corner cases of the proposed technique are analyzed.

Chapter 6 concludes and suggests future work.
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Chapter 2

Related Work

This chapter presents related work, describing the state of the art in HLS

in-system debugging. Initially, this chapter introduces the HLS flow and

several HLS frameworks. The HLS tools chosen to evaluate the proposed

approach are presented in more detail. This is followed by Section 2.2

which contains an introduction to Embedded Logic Analyzers (ELAs), a

standard in-system debugging approach for RTL-based FPGA designs. Ver-

ification and debugging methods for HLS frameworks are then described

in Sections 2.3 and 2.4, covering several tools and instrumentation levels.

Then, in Section 2.5, source-to-source transformation, its applications, and

the framework used for this purpose are reviewed.

2.1 High-Level Synthesis Frameworks

HLS tools for digital design have been a focus of research for more than three

decades [70]. The idea behind HLS is to specify a behavioral description

and have the Computer-Aided Design (CAD) tools find the best use of logic

resources to implement the operations and variables using functional units

and registers.

Recently, with the proliferation of FPGAs, a wide range of tools have
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been made available by the device manufacturers, CAD tool companies,

and by academic research efforts [15, 19, 44, 57, 67–69, 75, 77]. These

and more are described in the latest HLS tools surveys [8, 21, 49], with

the most recent one [56] listing and categorizing many of these tools. A

common observation gathered from these surveys is that the quality and

ease of adoption of C-based HLS tools are beyond other HLS tools using

DSLs or other languages. This is measured using multiple factors, such as

ease of implementation, abstraction level, supported data types, exploration,

verification, area results, documentation, and learning curve.

In addition to the frameworks included in said surveys, the latest OpenCL-

based products from Intel (Altera) [3] and Xilinx [74] make use of a similar

infrastructure to compile C-based kernels into IP modules with the corre-

sponding interface, to be called from a host device. Most recently, Altera

announced the A++ compiler [1] for standalone IP design from C/C++

specifications. These design environments provide compelling productivity

improvements for FPGA designers, and may open the field of FPGA accel-

eration to more designers than ever before.

2.1.1 HLS Flow

Figure 2.1 is a representation of the internal stages identified in most HLS

tools. Similar to a software compilation flow, the HLS flow can be divided

into three main stages: input code parsing, optimization, and unparsing. For

this reason, HLS tools are commonly based on open source software-compiler

infrastructures (i.e. LLVM or GCC), borrowing the nomenclature for many

of their components. These three stages correspond to the frontend, opti-
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Figure 2.1: HLS Flow

mizer, and backend. An HLS flow can be seen as a software compilation,

where the backend is modified in order to generate an HDL specification

instead of an architecture-specific binary file. However, the frontend and

optimizer are modified to target this specific flow, avoid unsupported con-

structs, and for optimization.

The frontend is in charge of generating a formal representation, be it

an Intermediate Representation (IR) code (a generic low-level version of the

user code), a Control and Data Flow Graph (CFDG), or both. The frontend

can be set to recognize statements that are incompatible with hardware

design, and therefore unsupported (i.e. dynamic memory allocation, system

17



2.1. High-Level Synthesis Frameworks

calls, etc.). These can in turn be transformed into supported constructs,

ignored (printf() statements), or synthesis flow can be halted. The optimizer,

through multiple passes, transforms the IR to minimize the number of low-

level instructions and, in general, the amount of resources required according

to the constraints of the target architecture.

The backend consists of a set of steps that create an internal represen-

tation that can be unparsed into an HDL specification. These steps can be

classified as allocation, scheduling, binding, and RTL generation.

Allocation The number and type of operations identified in the IR are

mapped into functional units. All variables, registers or memory values are

assigned to physical structures of the corresponding type.

Scheduling Through dependency analysis heuristics, such as the System

of Difference Constraints (SDC) [14, 17], the allocated functional units are

scheduled, and a set of states are defined for the execution of one or multiple

threads.

Binding When possible, non conflicting functional units can be merged

into one unique instance that is multiplexed throughout the execution, these

will mostly apply to scarce, resource-demanding structures such as dividers

and multipliers.

RTL Generation Once optimized using the least resources, the data

structure used to represent the logic system architecture is transformed into

an RTL representation that is possible to compile using the corresponding
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EDA tool.

2.1.2 Vivado HLS

Previously owned by AutoESL under the name AutoPilot [79], this HLS

tool was acquired by Xilinx in 2011 and is offered alongside the Vivado De-

sign Suite package. The Vivado HLS IDE uses a familiar GUI, resembling

that of the C/C++ Development Tool (CDT) for Eclipse [22]. As such, the

IDE offers different perspectives or environments for Synthesis, Analysis, and

Debug. Synthesis of C, C++, SystemC, and OpenCL kernels is supported,

with a large set of standard circuit interfacing options and the use of TCL

directives to control code optimizations such as unrolling, pipelining, inlin-

ing, chaining, memory partitioning, etc. The compile flow uses LLVM for its

frontend and optimization passes. Visualization of the generated schedule

of execution is possible using a Gantt Diagram representation, as well as a

raw data report for more advanced analysis.

The Debug perspective is a C/C++ Software Debugging tool, there-

fore, it features a complete set of software debugging capabilities, such as

breakpoint insertion, variable monitoring, custom expression analysis, and

register monitoring. The Debug perspective is activated when using the C

simulation tools. This does not take into account any of the synthesis results

and, instead, executes a sequential version compiled for the host architec-

ture. Therefore, as mentioned before, bugs created during the synthesis flow

or activated during in-system interfaces will not be captured.

For synthesis verification, Vivado HLS offers the C/RTL Co-simulation.

This is an RTL simulation using one of the provided hardware simulators
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(i.e. Vivado Simulator, Modelsim, etc.) and requiring a testbench as a wrap-

per of the synthesizable code. The testbench can contain a simple return

value comparison or contain complex user-designed Vector Based verifica-

tion procedures. The testbench return value is the measure of success, and

the tool reports this and the Co-simulation latency, or number of cycles of

execution observed in the simulation.

In order to perform in-system debugging of the generated hardware, one

must first export the generated RTL to a Vivado RTL project. Once syn-

thesized, before implementation (optimization, place, route, and bitstream

generation), the in-system debug flow requires the insertion of the propri-

etary Debug Cores provided by Xilinx, configuration of the cores’ properties,

and connection of the cores’ probe ports to signals of interest, either as data,

triggers, or both. There are no HLS related configurations or features at this

design level.

2.1.3 LegUp

The LegUp framework, being developed at the University of Toronto, is an

open-source HLS research tool [15]. LegUp takes ANSI-C as an input and is

currently capable of generating Verilog circuits for a small set of Altera and

Xilinx devices. The framework lacks a GUI interface for code editing and

project management, but offers a considerable set of features configurable

through TCL scripts for code optimizations and options for hardware gen-

eration, such as loop pipelining, loop unrolling, function inlining, and RAM

grouping. A LegUp design choice is to group global arrays and arrays refer-

enced in multiple functions into one memory with a single memory controller
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interface. This is contrary to Vivado HLS, in which these are assigned to

independent memory blocks.

The LegUp design flow offers three options for design compilation: a

hardware-only implementation, a software-only alternative including a soft

MIPS processor in the FPGA to execute the software provided, or a hybrid

version that runs top-level functions in the soft processor and calls hardware

accelerators for user-chosen functions. A profiler is also provided to inform

the user regarding the behaviour of the program on the soft processor and

aid in the choice of functions for acceleration.

LegUp offers an integrated in-system debugging experience. In version

4.0, LegUp provides the HLS Debugger infrastructure, which is part of the

open source repository. With this tool, users can recompile the code and

include debugging instrumentation. Section 2.4.2 provides a more detailed

description of this infrastructure.

In order to fully support the approach used in this work, LegUp was

modified to provide port declaration in the same way as is done in Vivado

HLS. Appendix A explains the modification.

2.1.4 Benchmarks

The CHStone benchmark suite is widely used to evaluate HLS tools. This

benchmark suite is based on a selection and creation of programs that span

multiple domains with various quantifiable characteristics [38].

Although C-based HLS tools take C-like programs as input, such tools

do not completely comply with the ANSI/ISO C standard and only support

a subset of the C language. This benchmark suite is designed according

21



2.2. FPGA Debug

to these limitations by avoiding, for instance, the use of dynamic memory

allocation and recursion. This, however, does not guarantee that all pro-

grams can be synthesized on every HLS tool since every tool has specific

requirements for the input code. For the HLS tools used in the experiments

for this work, 3 out of 12 of the original programs did not compile in at

least one of the HLS tools; these have been removed from the results. The

remaining majority of programs give a good representation of the behaviour

of the tools with and without the debugging techniques presented herein.

2.2 FPGA Debug

Debugging a digital circuit on FPGA requires a thorough understanding of

the implementation. In particular, understanding the behaviour of a design

often requires observing these signals over time. Due to resource constraints,

it is not possible to observe the behaviour of all signals, therefore, it is

important for the designer to be able to select and analyze only the most

relevant signals of the design [42]. Once identified, the behaviour of those

signals of interest can be exposed to the user through built-in readback

mechanisms or trace recording. Built-in logic such as the JTAG interface,

also used for programming, provides read access from all circuit nodes [6].

However, using the JTAG scan-based infrastructure to observe the execution

in real-time and in situ can be destructive. The execution of the circuit needs

to be paused to read out all signals of interest.

The alternative trace record-replay approach described in Section 1.3.3 is

achieved through the use of Embedded Logic Analyzers (ELA). We describe
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ELAs below, followed by similar approaches targeting HLS design flows.

2.2.1 Embedded Logic Analyzers

Embedded Logic Analyzers enable the monitoring of selected hardware sig-

nals, in situ and at runtime, through the insertion of trace buffers. The

ELAs store the signals of interest cycle-by-cycle and use a trigger unit to

choose when to read back these buffers. Traced signals and signals for trig-

ger conditions are chosen before synthesis, while trigger conditions are often

allowed to vary after place and route. Some reconfigurability is allowed to

avoid recompilation. These signals are presented as waveforms to the de-

signer and labeled using the name of the HDL or the post-fitting (place and

route) resource.

Commercial ELA tools such as SignalTap II [2], ChipScope (now called

LogiCORE Integrated Logic Analyzer [73]), and Certus [50] use this ap-

proach and incorporate multiple optimizations to maximize the use of mem-

ory resources. Recent work on ELAs focuses on resource optimization and

incremental instrumentation. The latter is concerned with the reduction

of compilation time by creating a field-configurable trigger network overlay

[24, 43].

2.2.2 HLS Verification & Source-Level Debug

When debugging circuits created using an HLS flow, analyzing signals at the

hardware level is challenging. The user provides a C specification and ulti-

mately implements a circuit into FPGA, therefore, debugging should be per-

formed in the context of the original source code. In related work there are
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two main approaches: HLS verification and HLS source-level debug infras-

tructures. The first category is based on On-Chip Monitors (OCMs) which

are created to automatically identify inconsistencies between the execution

of the generated hardware and the software-like specification. Work in this

category includes Assertion Based Verification (ABV) [20, 35, 63], Control

Flow Integrity (CFI) Verification [9], and Embedded Signature Monitoring

(ESM) [13].

Instrumentation for HLS source-level debug, on the other hand, has the

objective of allowing the user to observe a step by step execution of the

code, as introduced in Section 1.3.

Although both verification and source-level debug infrastructures have

different objectives, both approaches require instrumentation or hardware

resources in order to capture, store, or monitor the behaviour of the user’s

design.

2.3 HLS On-Chip Monitors

On-Chip Monitors (OCMs) are runtime verification tools which can target

different behaviours for analysis. OCMs automatically recognize unexpected

behaviour in the generated hardware and notify the user of such events.

Counter reactions can be implemented in order to correct the errors de-

tected, although work on reactive OCMs, to our knowledge, has not yet

been developed for HLS. Relevant work in this area is presented below.
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2.3.1 Assertion Based Verification

Although this approach is commonly used when designing hardware at the

RTL level, related work for HLS is more limited. Examples of HLS flows

with the capability to recognize assertion statements have been developed

by upgrading the tool to support assertions for simulation [63], to synthesize

them into custom OCMs [35], or by performing source-to-source transfor-

mations into synthesizable constructs [20].

Work on temporal assertions by Ribon in 2011 [63] made use of sim-

ulations and HDL built-in assertion statements. These were inserted au-

tomatically during program synthesis by translating behavioural assertion

statements into temporal assertions. Temporal assertions are assertions with

timing specifications, therefore described in a HDL. This translation in-

cluded information on operation scheduling, data availability, and uses the

corresponding signals associated with the high-level variables.

In order to complement the verification and debugging approach given

by assertions in software, HLS can also make use of timing information

to generate OCMs. In 2011 Curreri’s ABV approach [20] used Impulse-

C and the time library to automatically insert clock() calls in the circuit

and evaluate the time passed between calls, which is then compared with a

predefined value to determine timing compliance. This is only applicable to

the CoDeveloper HLS tool developed by Impulse [44]. The inclusion of the

time library and other standard libraries is a feature that is missing from

most HLS tools.

In 2014, Hammouda proposed two flows that can be applied to any HLS

25



2.3. HLS On-Chip Monitors

tool. The first flow is to automatically synthesize assertion statements as

OCMs [35], while the second flow automatically generates a CFI verification

OCM infrastructure [9]; the latter is explored in the next subsection. The

ANSI-C assertion synthesis flow differs from previous work in that this cre-

ates an FSM and Datapath, independent from that of the user circuit. This

requires access to the internals of the tools’ source code, something that is

not assumed by Curreri, but necessary in order to target any HLS tool by

using the CDFG (Control and Data Flow Graph) representation.

2.3.2 Control Flow Integrity Verification

Control Flow Integrity (CFI) in software is a safety property to detect at-

tacks that provoke unintended software behaviours. In a broader sense, CFI

verification for programmable hardware can help detect unintended circuit

behaviours when compared to the high-level source code. For this purpose,

only control flow information is required.

The CFI application of Hammouda’s [9] work uses the same independent

circuit approach seen in [35], which is only feasible if there is access to

modify the internals of the HLS tool. This circuit takes the STATUS of

the user circuit as its input and recognizes control flow discrepancies during

execution. The STATUS signal is the name given by the authors to a generic

set of signals that indicate the state of execution of the synthesized circuit;

i.e. state of an FSM, and/or flags in a Status Register (SR). This approach

then relies on static analysis of the CDFG of the program and the generation

of a fairly complex OCM architecture.

At the same time, the OCM architecture uses an I/O Control Unit
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(IOCU) to verify that register loads are performed in the corresponding

states, providing both control flow and I/O timing behaviour monitoring.

The proposed flow targets any HLS tool, although experimental results are

done using a combination of GCC and GAUT [19].

2.3.3 Embedded Signature Monitoring

More recent work from Chen [13] makes use of Embedded Signature Moni-

toring (ESM). In ESM, the synthesized hardware is extended with the instru-

mentation for signature generation. Signatures are produced from several

circuit state signals, including memory interface signals (address, data in,

data out), and FSM and datapath registers. This work uses a co-simulation

approach, in which the source code is instrumented both for hardware and

software execution; the two versions are executed in tandem to generate and

verify signatures using the software execution as the golden model. Several

challenges were addressed in this work, including memory address matching

between SW and HW, LFSR implementation for signature generation, and

area optimization through instrumentation resource binding.

2.4 HLS Source-Level Debug

HLS source-level debugging allows the designer to find and analyse unex-

pected circuit behaviour in-situ and by inspecting the high-level source code.

This debugging approach borrows part of the hardware debugging method-

ology that allows the visualization of the state of the circuit by inserting

instrumentation to record a set of signals of interest into a collection of
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memories. After running the design, these memories will contain a history

of the execution which can then be read and the behaviour of the circuit can

be reconstructed. For this to be useful to the designer in an HLS workflow,

the signals have to be related back to source-level variables and statements.

The user can then, offline, replay a step-by-step reproduction of the ex-

ecution of the program to look for unexpected behaviour, iterating through

the complete runtime by pausing program execution, collecting data from

the trace buffers, and then resuming the execution. The size of the mem-

ories, often called trace buffers, and their efficiency in the use of storage,

determines the observability of the program. Better observability improves

the probability of finding the root cause of the unexpected behaviour. In

order to allow greater coverage of the execution history, the trace buffer

memories have a rollover behaviour, meaning old buffer entries are evicted

for each new write access.

2.4.1 JHDL Debug

Previous work presented in 2003 developed the debugging infrastructure

for the JHDL-based Sea Cucumber (SC) framework [39]. This project pre-

sented the basis for a debug system that relates the hardware signals of

synthesized circuits with the high-level language statements. Special atten-

tion was put on allowing software optimizations, since most compiler passes

can substantially modify the execution schedule and variable nomenclature.

Instrumentation for the SC framework made use of device specific readback

mechanisms and additional debug circuitry.
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2.4.2 LegUp Debug

Recently, two similar approaches were presented for the C-based LegUp

HLS framework, namely Inspect[12] and Goeders’ HLS Debugger [27]. The

latest version of the LegUp repository contains code from both of these

projects [59]

Inspect

Inspect allows single-stepping through either HW cycles or source code state-

ments by using SignalTap II for data capture and storage, and a database to

relate signals to LLVM’s [45] Intermediate Representation (IR) nodes, and

to Verilog. Inspect works as both a debugging infrastructure and an OCM

due to its capability of comparing the software execution with the RTL sim-

ulation, but more importantly by integrating a discrepancy detection flow.

These features allow for RTL verification at the same time as providing the

user with the source-level debugging information. On the other hand, due

to Inspect’s use of proprietary circuitry for instrumentation (i.e. SignalTap

II), the debugging infrastructure is not optimized for HLS. Signals for in-

strumentation must be selected manually and are limited by the available

on-chip RAM.

Goeders’ HLS Debugger

Parallel work presented similar features with the insertion of a custom de-

bugging system during the synthesis process [29], instead of using SignalTap

II. This work and subsequent research [28, 30] collected in [27], has focused
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on optimizing resource utilization, allowing multiple thread instrumentation,

and successfully obtaining longer replay window lengths. This translates into

more lines of code available in a step-through interface comparable to gdb.

The architecture of this instrumentation includes the following modules:

Debug Manager This module is the communication manager, receiving

and transmitting commands from and to the workstation in order to start

data collection routines, start/pause/stop execution, etc. Communication

is done through a RS232 serial connection with custom commands.

Stepping and Breakpoint Unit This unit enables or disables a clock

buffer, controlling the execution of the user circuit. The user is allowed to

put a breakpoint in the source code in the same way as it’s done in software

IDEs. This breakpoint then translates into conditions triggered by a certain

circuit state, memory address, or chosen variable value.

Memory Arbiter The instrumentation can take control of the main mem-

ory controller in the circuit and use it to retrieve all memory values. The

arbiter is used to grant access to either the user circuit or the instrumenta-

tion.

State Encoder One of the values recorded into the trace buffer is a state

identifier. This is used to relate the execution with one or more statements

scheduled concurrently. However, the architecture of the synthesized circuit

uses a one-hot encoding which needs be reencoded or compressed to be

stored in the trace buffer.
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Trace Recorder This is the bulk of the instrumentation. Besides contain-

ing the memory blocks to store data and states, this includes a Signal-Trace

Scheduler. Only signals relevant to the state in execution are stored, and

due to previous knowledge of these signals sizes and schedule, it is possible

to rearrange them and make better use of the memory space.

This instrumentation and its optimizations rely heavily on LegUp’s mem-

ory architecture and synthesis flow. Most of the debugging system stands

between the main module and the main memory controller. This LegUp

architecture is advantageous for the debugging system, but often impacts

design flexibility and performance when compared to Vivado’s distributed

memories, representing a bottleneck for some array accesses.

2.4.3 Event Observability Ports

The most closely related work to the work of this thesis is on Event Ob-

servability Ports (EOPs). Work on EOPs has focused on adding points of

connection in the circuit [51] to extract data. It further showed a method of

providing these access points through source-to-source transformations [53],

followed by a set of experiments to demonstrate their feasibility by not caus-

ing significant impact to circuit performance and resource utilization [52].

In the encompassing thesis [54] the researcher presented additional meth-

ods to instrument variable pointers and to add compatibility with both Vi-

vado HLS and LegUp. This work, however, did not consider the C-level

instrumentation of the trace buffers or associated circuitry, and is mainly

focused on guaranteeing that this observability does not significantly impact
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the original behaviour of the circuit.

This work remarks that source-level instrumentation adds reasonable

overhead to the user’s circuit. In section 5.1 we compare the results from

EOP instrumentation to our own approach, which includes trace buffers

and the buffer access circuitry. In appendix B we show a method to insert

EOPs, different from the one found in [54], and show the results of additional

experimentation.

The main drawback of this implementation is that even though this

brings the instrumentation to a higher level of abstraction, it is still necessary

to perform significant transformations in RTL or rely on proprietary tools.

This work suggests the use of custom logic or ELAs in combination with

the EOPs in order to add the triggering logic and trace buffers. In [51], a

problem of buffer unbalancing is pointed out, this occurs when the EOPs

are connected to individual Event Observability Buffers (EOBs). Due to

varying refreshing rates for each variable, these buffers are often not used

very efficiently. In response, the authors presented the Relative Assertion

Rate (RAR) metric and its use for the allocation of a relative size of EOB

per variable by using dynamic analysis [51].

2.5 Source-to-Source Transformations

Source-to-source transformation is the manipulation of lines of code, state-

ments, and expressions. In order to allow this, a piece of code or a collection

of source code files need to be read into a data structure. The Abstract Syn-

tax Tree (AST) representation is used for this purpose in compilers. An AST
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is elaborated following a dictionary and a set of syntactic rules, and creat-

ing nodes representing blocks of code, statements, expressions, and symbols.

Once parsed, modifications to the AST can be either translated into a lower-

level representation, or unparsed in order to generate the original code with

the modifications.

2.5.1 ROSE Compiler Infrastructure

The ROSE compiler infrastructure is an open source project by the U.S.

Department of Energy with the goal of designing code optimization tools.

Through the repository, ROSE provides an Application Program Interface

(API) for the inclusion of compiler techniques and optimizations, and also

the infrastructure to develop source-to-source transformation tools for cus-

tom purposes.

The ROSE API provides a parsing tool that supports multiple files and

preprocessing of the source code. A set of query functions allows finding AST

nodes according to different attributes and classes; these queries can be very

specific or generic in order to do a custom post-filtering of the statements of

interest once the query is finished. Statement generation using the ROSE

API requires creating the expressions bottom-up, incrementally generating

the desired line of code or statement. When unparsing, the ROSE API

allows the designer to run a full set of tests called Sanity Check, not only to

make sure the AST is unparsed correctly but to make sure it is consistent.

Figure 2.2 presents the Node hierarchy with the main Nodes of interest

used in this work. These nodes are represented in an Intermediate Rep-

resentation (IR) code specific to ROSE called Sage III, and automatically
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Figure 2.2: Hierarchy ROSE AST Nodes

generated using ROSETTA [62]. The Sg- prefix is part of the IR nomencla-

ture.

• An SgLocatedNode is a node with a specific location in the source files,

also called instructions.

– SgExpressions are instructions that have return values, such as

operations, and variable/function references.

– SgStatements are any type of instruction, such as control flow

modifiers (SgIfStmt, SgForStatement), declarations, and expres-

sion statements which are made out of one or multiple SgExpres-

sions.

• SgType nodes do not have a specific location in the source files, but

are used to define each variable type.
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• SgSymbol nodes are shared and unique for each variable, function,

enumerator, label, or any other symbol in the source code.

• SgSupport nodes represent all other type of nodes, such as attributes,

modifiers (constant, volatile, etc.), and higher level data structures

including ROSE projects, files, and tables for internal use by ROSE.

Each node has a set of attributes that indicate its branches or leaves

and the characteristics of that class of node. Figure 2.3 is the listing of an

example node taken from one of the benchmarks used for the experiments

described in this thesis.

Code Transformations

One example of using the ROSE Compiler Infrastructure with HLS applica-

tions is a tool flow that can automatically parallelize loops in C/C++ pro-

grams that use pointer arithmetic [71]. This work also distributes dynam-

ically allocated data structures between on-chip memory, adding support

for dynamic memory allocation calls. Both transformations are performed

at the source level, resulting in generic implementations that can be put

through various compatible HLS tools.

Code Restructuring

Other work targeting HLS flows has been done in order to optimize the

synthesis results through source-level transformations. In [48] and [47] the

authors studied the use of loop transformations and pre-optimized templates

to aid the user in the process of circuit optimization. Future work, however,
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Figure 2.3: Example ROSE AST Node

is aimed towards automatic code restructuring using source-to-source trans-

formation tools to replace the user’s code with a more suitable construct,

according to the findings of this work.

Others

There is a great amount of research in source-to-source transformations for

software applications, which is often relevant for HLS. This is a great ad-

vantage of using HLS with the language subset approach. Relevant work in
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this area has been presented using the ROSE compiler infrastructure, with

two notable examples.

In [46], the researchers present a code outliner. This is a transformation

tool capable of generating modular kernels out of whole programs without

affecting performance. This is targeted towards parallel computing applica-

tions since it includes the use of OpenMP to further optimize the kernels.

Moreover, due to recent advances in the use of OpenMP and Pthreads for

HLS [16] this work can be applicable to HLS.

Similar work without using ROSE can also be found for paralleliza-

tion optimizations embedded within HLS tools such as SPARK [34] and

ROCCC [33]. Work on source-to-source transformations on specific pro-

grams such as X10 [40] have also contributed in developing optimization

tools at this level of abstraction. In [40], researchers recently presented

methods to incorporate Loop Unrolling, Inlining, Stack allocation, and Loop

Invariant Hoisting into the ROSE API.

2.6 Summary

This chapter described the previous work in this area. The objective of this

thesis and referenced work is to bridge the gap between software program-

mers and FPGA implementations. A debug infrastructure is necessary to

achieve this goal and it needs to work at the design level (C code), using

the information from the implementation level (Hardware signals). Cap-

turing those signals is possible through the use of instrumentation, which

can be specified and inserted at various levels of the design. Source-level
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instrumentation, however, offers greater portability than other levels of in-

strumentation, and previous explorations of this approach have been able

to achieve this with low impact to the user’s circuit performance and area.
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Chapter 3

Source-Level

Instrumentation

An important part of an effective in-system debug infrastructure is the in-

strumentation that provides access to internal signals in the design. Such

infrastructure needs to consume as little area as possible, and result in the

least intrusion possible into the user design. While previous work proved

the feasibility of adding EOPs to the user’s circuit at the source-level, the

work in this thesis includes the trace buffer and associated circuitry. This is

beneficial for portability, eliminating the need for RTL editing, and allowing

further optimization during synthesis.

This chapter presents our instrumentation that provides both control

flow and data capture capabilities, as well as the methods we use to insert

this instrumentation. In Section 3.1, the debug framework is presented,

which is necessary to insert this instrumentation, and also to be able to

retrieve and interpret the data related to the original source code. In Sec-

tions 3.2 and 3.3, each proposed feature of the debug framework instrumen-

tation is presented with the corresponding method for insertion (Control

Flow and Data Capture) and code examples of the resulting source code.
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3.1. Source-Level Debug Framework

Figure 3.1: HLS In-System Debug Framework with Source-Level Instrumen-
tation

3.1 Source-Level Debug Framework

Figure 3.1 shows our overall in-system debug framework. Starting at the

top-left, the original user C code is parsed into the Abstract Syntax Tree

(AST) representation. Instrumentation is automatically inserted using the

custom tool built using the ROSE source-to-source compiler infrastructure

API [61]. Simultaneously, the database is created, mapping the IDs used in

these new statements to user’s code constructs, statements and/or variable

symbols. The last stage in the ROSE compiler unparses the AST to a

modified set of C source files.

Initial stages in HLS tools can also perform AST parsing and editing,
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meaning these could be modified to incorporate an instrumentation stage,

and would, therefore, not require unparsing. Keeping the instrumentation

and synthesis separate has an insignificant impact on processing time, while

favoring portability.

The modified C code is then compiled using the HLS tool of choice.

In our experiments this is either Vivado HLS or LegUp. The synthesized

RTL description is then instantiated by a generic top level module that

contains elements of the debugging infrastructure (i.e. communication with

the workstation, clock buffering, circuit resetting), and is then put through

the EDA compilation flow to generate the FPGA bitstream containing the

user’s circuit and the instrumentation.

3.1.1 Instrumentation

The inserted instrumentation, as seen in Figure 3.1, consists of 1© a network

that taps off of key signals in the user design, 2© a collection of memo-

ries, referred to as trace buffers, which are used to store a history of the

behaviour of these signals, and 3© the serial connection between the chip

and the debug workstation to retrieve the data after the circuit has run.

The amount of history available depends on the size of the trace buffers, as

well as the efficiency in which data is stored in the trace buffers [30]. This

trace record-replay technique is preferable over on-line debugging, where

signals are retrieved on every step of execution, because the latter restricts

the circuit from running at-speed.

An Integrated Development Environment (IDE) may provide a software-

like debugging experience, as described in related work [29], by communi-
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cating with the instrumentation provided in this work. The IDE allows the

user to run the design at speed, stop at a pre-determined breakpoint, and

then retrieve the current value of variables of interest. To provide more

information, the trace also contains a history of variable values and control-

flow information; the larger this history, the easier it will be for the designer

to narrow down the root cause of a bug. The code version used through this

IDE is the original code. The instrumented code is only for internal use of

the HLS process.

In the following subsections we describe how the designs are instru-

mented, first, to record control-flow information, useful for Control Flow

Integrity (CFI) verification. Then, as the main objective is to provide a

software-like debugging infrastructure, we provide an extension of the instru-

mentation to record variable data information and provide a trace readback

mechanism.

3.2 Control Flow

We first consider instrumentation that provides sufficient data for an IDE to

replay circuit execution, allowing the designer to understand how the design

behaved while it was running. Such data can also be used for CFI verifi-

cation, to find discrepancies between the recorded path and the designer’s

expectation, by comparing the captured trace to a software simulation, or

to a Control Flow Graph (CFG) generated using static analysis.
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3.2.1 Control Constructs

In our system, each control construct in the AST of the original code is

instrumented. Each of the control constructs is a collection of statements

(e.g. For-loop bodies, if-true and if-false bodies, While-loop bodies, Function

definitions). At the same time, a database is populated with unique IDs

mapped to those constructs. As the circuit executes, each time a control

construct is encountered, the instrumentation stores an ID of that construct

in the trace buffer.

In the ROSE compiler framework, control constructs can be identified

using the SgBasicBlock node class. SgBasicBlocks differ from the Basic

Blocks found in compiler frameworks and do not follow the same definition.

The Basic Block definition used in compiler frameworks refers to a sequence

of lower-level instructions (using the compiler’s IR) that only allows one

entry and one exit point. An SgBasicBlock, on the other hand, is a sequence

of statements of the original source code and does not have this restriction.

3.2.2 Code Example

Listing 3.1 shows an example of this instrumentation. In this example,

every execution of the function call pushDbgCF(<ID>) “pushes” the ID of

the construct of interest into the trace buffer. Lines 1-8, 10, and 13 are

the instrumentation code; lines 1-8 are inserted in the global scope while

lines 10 and 13 are prepended in each control construct. Line 1 creates

the Trace Buffer. A monolithic approach (single trace buffer) was chosen,

rather than multiple buffers, to avoid the need for buffer balancing and
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Listing 3.1: C Control Flow Instrumentation

1 volatile int TRACEBUFFER[TRACESIZE];
2 unsigned int bufIndex=0;
3 void pushDbgCF(int ID){
4 TRACEBUFFER[bufIndex++] = ID;
5 if (bufIndex==TRACESIZE){
6 bufIndex=0;
7 }
8 }
9 void foo(){

10 pushDbgCF(CDBGID STMNT1);
11 ...
12 if(...){
13 pushDbgCF(CDBGID STMNT2);
... ...

event-sequence reconstruction. The trace buffer is configured as a circular

memory, meaning old buffer entries are evicted. Lines 2, 3-7 provide a trace

buffer index and access function; The pushDbgCF(<ID>) function contains

only the buffer write and a conditional statement to avoid invalid addressing.

Experimentally, we have found that this if-statement does not affect the store

routine latency when synthesized.

3.3 Data Capture

In order to build a debugging infrastructure, the instrumentation needs to

capture the data that is produced while the circuit is running. The second

instrumentation strategy we consider provides the ability to gather data

regarding the history of variable values over the run of the circuit. Such

data can be used in conjunction with an IDE such as that in [27] to provide

the ability for the user to observe values in variables using the original code,

to help understand the overall behaviour of the circuit.
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Figure 3.2: Hierarchy of Assignment Statements

3.3.1 Assignment Statements

In the Data Capture strategy, each location in the code in which a vari-

able is updated is assigned a unique ID. An ID is assigned to basic as-

signments (a=b, a=fn()), compound assignments (a+=b), and unary op-

erations (a++). More complex statements are split recursively, and IDs

are assigned to those basic statements. Figure 3.2 shows various exam-

ples of splitting higher-hierarchy classes (left), until the basic statements of

interest are found (shaded blocks on the right). For each assignment state-

ment found in the original code, the transformation tool inserts a call to

pushDbg(<data>),<ID>).

Implicitly, this instrumentation acts as triggering circuitry. Triggering

circuitry specifies when and which signals to store in the trace buffer. In

a custom HDL-based approach, a trigger condition needs to be specified

for signals of interest, and inserted at design time or incrementally using
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spare resources [24, 43]. In HLS instrumentation, triggering conditions are

implicitly defined by the assignment statements, meaning that signals are

only stored when the state machine reaches the state where its value is

modified.

Note that instrumenting for data capture will also provide control flow

information. As long as each control construct contains at least one data

capture, we will have sufficient data to reconstruct the control flow, meaning

this method subsumes that in Subsection 3.2. If a basic block does not

contain a data capture (which we did not encounter in our benchmarks)

then control flow logging for this particular block can be added. This saves

trace buffer space, allowing more updates to be stored in a fixed amount of

memory.

3.3.2 Code Example

Listing 3.2 is an example of this technique; lines 1-17, 23, 26 and 28 repre-

sent the instrumentation. In this example, two trace buffer access functions

are used – one for 32-bit quantities (Line 4) and one for double-length quan-

tities (Line 8). A casting statement using pointer indirection is used in line

26 in order to support storing floating-point data types in the same buffer.

Experimentally, we found that having multiple operations in the store rou-

tine (i.e. cast, shift, or, and) does not affect the latency of the synthesized

hardware.
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Listing 3.2: C with Data Instrumentation and Readback

1 volatile Ulong TRACE[TRACESIZE];
2 unsigned int bI = 0;
3 volatile Ulong traceOut;
4 void pushDbg(int data,int ID){
5 TRACE[bI++] = ((ULong)ID) << 32 | ((UInt)data);
6 ...//Conditional for invalid addressing
7 }
8 void pushDbgLong(long dataL,int ID){
9 TRACE[bI++] = (((Ulong)ID)<<32) | ((UInt)(dataL>>32));

10 ...//Conditional for invalid addressing
11 TRACE[bI++] = (((Ulong)ID)<<32) | ((UInt)dataL);
12 ...//Conditional for invalid addressing
13 }
14 void traceUnload(){
15 Unload: for (int i = 0; i < TRACESIZE; i++)
16 traceOut = TRACE[i];
17 }
18 int main(){
19 int temp[SIZE];
20 double result;
21 ...
22 temp[i]=fn(); //Assignment Type: int
23 pushDbg(temp[i], CDBGID STMNT);
24 ...
25 result += temp[i]∗3.14159f; //Assignment Type: double
26 pushDbgLong(∗(long∗)&result, CDBGID STMNT2);
27 ...
28 traceUnload();
29 return result;
30 }
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3.4 Trace Readback

The instrumentation techniques described above do not consider any trace

reading mechanism. One approach is to instrument the synthesized memory

in Verilog by tapping into the Address, Data, and Control signals connected

to it. This would affect the high-level compatibility of the rest of the instru-

mentation, although not drastically since every memory primitive has very

similar interfaces. However, to keep the level of abstraction at the source

level, it is possible to insert a new function call that will unload the trace

memory.

A read-back of the trace buffer must be triggered by an event. This

causes the circuit execution to be paused and all data to be sent over the

serial connection to the user’s workstation. In our implementation, rather

than inserting the communication controller in the C code, we halt execution

and expose the contents of the trace buffer to be transmitted by a generic

serial communication controller in the top module. A simple RS232 inter-

face was implemented for communication between the workstation and the

circuit. In HLS, the readback-trigger events coincide with the use of break-

points; wherever the user sets a breakpoint in an IDE, a trace-unloading

routine needs to be inserted.

3.4.1 Code Example

Listing 3.2 shows an example in which the output port declaration and trace-

unloading function definition are in lines 3 and 14-17, respectively. Line

28 calls the trace-unloading routine. Although such a call can be added
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anywhere in the code, care must be taken to avoid adding these calls inside

latency sensitive blocks, since interfaces can timeout. Preferably, unload

calls can be inserted after a critical section. A call to traceUnload() is added

by default before the main return statement.

3.5 Trace Reconstruction

Trace reconstruction is the step necessary to relate the trace, obtained from

the circuit, with the database created during the source transformations.

The generated AST needs to be stored and not regenerated, this is due to in-

deterministic address assignments during source code parsing. Even though

the resulting AST structure is deterministic, the addresses associated to each

node can vary; in Figure 2.3 these values can be seen as pointer:0x1c75f40

for that specific node, and that node’s parent and branches (i.e. p parent,

p lhs operand, p rhs operand).

The database contains a one-to-one relation between the Identifiers as-

signed for each pushDbg(<ID>) call and the pointer value to one statement.

These statements are control assignments or assignment statements and,

therefore, contain information about the exact location of the instruction

and its attributes.

3.6 Summary

This chapter described our approach for inserting instrumentation into a

user design. Unlike previous work, our instrumentation includes the trace

buffer and associated circuitry in order to capture the data flow of the execu-
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tion. In addition, this Chapter presented the Control Flow instrumentation,

allowing the user to opt for a less detailed, less invasive debugging flow

alternative.

A set of transformation tools built using the ROSE compiler infrastruc-

ture were developed to test these different features through the experiments

described in Chapter 5. All the tools follow the same automatic process

described in Section 3.1 and can be easily configured to perform either Con-

trol Flow or Data Capture instrumentation insertion, change the buffer size,

or to enable/disable optimizations like the one described in the following

chapter.
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Chapter 4

Array Duplicate

Minimization

The instrumentation approach described in this work can lead to unneces-

sary data duplication. The fact that we use instrumentation at the source

level, however, provides a unique opportunity to address the duplication.

This chapter explains this opportunity for optimization, followed by two

strategies to improve data observability and minimize data duplication. Af-

terwards, an example is used to demonstrate the advantages of the proposed

Array Duplicate Minimization (ADM) strategy, and to present the metrics

that allow us to quantify how ADM benefits observability.

4.1 Array Duplication

Data duplication occurs every time a value that lives in a user’s circuit struc-

ture (memory or register) is stored in the trace buffer; some transient values

may only exist in wires and won’t be duplicated. Until the variable or array

entry is changed, the value lives in two places: the user circuit and the trace

buffer. This duplication is reasoned by the fact that, ultimately, the trace

buffer will contain a history of the values and not just the current content.
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Figure 4.1: Data Duplication

In the case of variable arrays, updates are less frequent than for scalar vari-

ables. Therefore, array duplicates are more likely to be evicted from the

trace buffer before the next update, meaning, these did not contribute to

the trace history.

Figure 4.1 is an example of a section of user code with instrumentation

inserted at the source-level. The original code, along with the instrumenta-

tion, is shown in the center of the figure. The boxes on the left side of the

figure represent on-chip storage that is part of the user circuit; this storage

holds values of user variables and arrays as the code executes. The right side

of the figure shows the trace buffer; this is part of the debug instrumentation

which stores a history of variable and array values. The arrows on the right

indicate the rollover behaviour of the memory in which new entries replace

the oldest. Blocks with values that are contained in both the user circuit

and in the trace buffer are shaded; this represents duplication that we seek

to reduce or eliminate in this chapter.
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4.2 Merged Instrumentation

In this strategy, we selectively identify arrays in the user circuit. For all

updates to these arrays, we do not add instrumentation code to store values

in the trace buffers. Instead, we modify the trace unload function, so that

when the trace buffer is read, these select arrays are unloaded, along with the

trace buffers. The IDE software can then use this information to determine

the latest values for all elements in the array. Intuitively, this strategy will

result in fewer trace buffer updates, meaning a longer history of the other

user variables can be stored (recall that the trace buffers are configured as

circular buffers, and when full, old data is evicted). In addition, fewer trace

buffer updates lead to less contention for memory, reducing the impact on

circuit latency.

However, this method may make it impossible to reconstruct control

flow history. Recall from Section 3.3 that the data capture instrumentation

strategy subsumes the control flow strategy assuming there is at least one

data update in each control flow construct. By removing writes to the trace

buffer, we increase the likelihood that the IDE does not have sufficient in-

formation to reconstruct the control flow. Although we can add control flow

instrumentation within the affected control flow constructs, this eliminates

the advantage of this strategy.

4.3 Old Value Store

In this strategy, we also modify the trace unload function, so that when

the trace buffer is read, select arrays are unloaded. For all updates to the
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Listing 4.1: C with Array Duplicate Minimization

1 ...//Buffer, index, functions and output declaration
2 void traceUnload();
3 volatile ARRAY1TYPE T array1[ARRAY1SIZE];
4 int main(){
5 ...
6 pushDbg(array1[x],CDBGID LINE)
7 array1[x]=a;
8 ...
9 }

10 void traceUnload(){
11 traceUnload: for (int i = 0; i < TRACESIZE; i++)
12 traceOut = TRACEBUFFER[i];
13 array1Unload: for (int i = 0; i < ARRAY1SIZE; i++)
14 traceOut = (long)array1[i];
15 }

Listing 4.2: Alternative to Store Old Value

... // This method favors Common Subexpression Elimination
6 int *temp ptr array1 803 866 = &array1[x];
7 pushDbg(*temp ptr array1 803 866,CDBGID LINE);
8 *temp ptr array1 803 866 = a;
... ...

selected arrays, however, we add instrumentation to store the old value of

the array element rather than the new value. Although this does not reduce

pressure on the trace buffers, it does increase the history available for the

elements of the select arrays, while also providing information that can be

used to reconstruct control flow. A longer history for these array values

means that an engineer using the IDE would have more information to help

locate the root cause of observed incorrect behaviour.

4.3.1 Code Example

Example instrumentation for this technique is shown in Listing 4.1; the ar-

ray array1 is moved to global scope, and is read by the traceUnload function.
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The function call in line 6 in Listing 4.1 is inserted before the assignment

statement. This has two benefits: it allows us to reconstruct the control

flow (as long as there is at least one access in each control construct) and

it extends the effective history of the array data. These modifications are

uniquely possible at the source-level, where array reference and pointer deref-

erence expressions are explicitly identifiable. An alternative way to call the

pushDbg routine that we found gives better synthesis results is shown in

Listing 4.2.

Note that only the array accesses are affected; writes to scalar variables

are performed as previously. This technique does not need to be applied

for every array in the user circuit. The selection of arrays for which this

technique is applied is currently done manually. The selection of arrays is

important, since if we indiscriminately apply the technique, resource utiliza-

tion may rise. The investigation of automatic array selection policies is left

as future work. Note that this technique could be applied to individual vari-

ables in the user circuit (not just arrays), however, we feel that the overhead

in doing so would be too high.

4.3.2 Trace Example

To better understand the idea behind ADM to extend the effective history

of array data, consider the example of Table 4.1. This table shows the

history of both array and variable updates for a particular run of the MIPS

simulator program from the CHStone benchmark set [38]. Each row of the

table shows an assignment statement as well as the line number where it

can be found in the source code. The table includes an event number (EX)
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Table 4.1: MIPS Benchmark Example History
Event Line Data Assignment Statement

E0 142 pc = pc + 4;

E1 258 dmem[DADDR (reg[RS] + (ins & 0xffff))] = reg[RT];

E2 141 ins = imem[IADDR (pc)];

E3 142 pc = pc + 4;

E4 241 reg[RT] = reg[RS] + (ins & 0xffff);

E5 141 ins = imem[IADDR (pc)];

E6 142 pc = pc + 4;

E7 258 dmem[DADDR (reg[RS] + (ins & 0xffff))] = reg[RT];

Table 4.2: Trace Buffer Contents
ID Data

pc 142 pc+4

dmem[x] 258 reg[RT]

ins 141 imem[x]

pc 142 pc+4

reg[y] 241 reg[RS] + ...

ins 141 imem[y]

pc 142 pc+4

dmem[z] 258 reg[RT]

(a) Data Capture

ID Data

pc 142 pc+4

dmem[x] 258 dmem[i]old
ins 141 imem[x]

pc 142 pc+4

reg[y] 241 reg[j]old
ins 141 imem[y]

pc 142 pc+4

dmem[z] 258 dmem[k]old

(b) Data Capture with ADM
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for each statement; these will be used in the following discussion.

Assuming a trace buffer size of eight entries, Table 4.2 shows the contents

of the trace buffer after the code is executed for two scenarios: without ADM

(4.2a) and with ADM (4.2b). As described previously, each entry in the trace

buffer contains an ID and the data update. In the table corresponding to the

ADM scenario, three data elements are shaded; these elements are memory

entries (rather than scalar variable accesses). In these cases, the Old Value

of the array element is stored in the trace buffer as described above.

4.3.3 Trace Analysis

After running the circuit, when the execution is replayed using the off-line

software tool, the amount of information available to the user is limited by

the information that can be obtained through the readback routine.

Figure 4.2 shows a representation of the history of data values available

for each variable accessed in the code. The horizontal axis in each diagram

represents time, going backwards from the instant when execution of the

code was halted. The left-most record (E0) is the oldest record and the

right-most record (E7) occurred immediately before the readback routine.

The top diagram shows the scenario without ADM. In that case, a history

of three values is available for PC; these values correspond to the updates

labeled E0, E3, and E6 in Table 4.1. Correspondingly, only one value is

available for reg[y] from E4, and so on.

The lower figure shows the scenario with ADM. In this case, a history

of two values is available for reg[y]: the value corresponding to update E4

(retrieved from the array itself) as well as an older value (update E9 in
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(a) Trace without ADM

(b) Trace with ADM

Figure 4.2: Trace Buffer Analysis

the diagram). This older value represents the assignment that was made

to reg[y] before the update E4. In this way, the ability to retrieve the old

values for array accesses increases the amount of history available, providing

more information to the user, possibly allowing him or her to have a more

complete picture of the operation of the circuit.

4.4 Observability

We expect that an increase in observability, provided by ADM, would have

a beneficial impact on the debugging experience. With more observability

the user may be able to replicate the bug and find the root cause of that
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behaviour using fewer iterations.

Using Figure 4.2 we illustrate how much of the circuit’s execution we can

observe with that trace sample. In order to measure this, we identified a

unit of time. For our instrumentation, even though timestamps or execution

cycles are not stored, the events’ sequence can be used as a proxy to measure

time.

4.4.1 History Coverage

In the sequence of events represented in Figure 4.2a, the entry for event E1

was recorded earlier than the entry for E7. To quantify this relation, we

use the number of entries as a proxy to measure the time that each entry is

valid.

After the entry for event E1 was recorded, six more entries were recorded

before readback. The entry for event E1 is valid for seven entries, counting

its own.

On the other hand, E7 was the last event recorded in the trace buffer

before readback, which means zero entries were recorded after it. The entry

for event E7 is valid for one entry.

Consequently, on Figure 4.2a we can observe variable dmem[x] for 7

entries, and variable dmem[z] for 1 entry. We call this a variable’s History

Coverage.

Multiple Entries per Variable

Some variables have multiple entries, e.g. variable pc has three entries (E0,

E3, and E6). In those cases, an entry is valid until readback or until the
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4.4. Observability

Table 4.3: MIPS History Metrics Example

Variable
History

Coverage
History Coverage

w/ ADM
History Coverage

Increase

pc 8 8 0

dmem[x] 7 8 1

ins 6 6 0

reg[y] 4 8 4

dmem[z] 1 8 7

Total 26 38 12 (46%)

next update. The entries for events E0 and E3, for example, are valid for

three entries, while the entry for E6 is valid for two entries. The History

Coverage for variable pc is the sum of those values. With this in mind, we

obtain column 2 of Table 4.3.

Old Value Entries

In the sequence of events represented in Figure 4.2b, the History Coverage

needs to consider the use of old array values. These are values in entries as-

sociated to variable-arrays that were selected during the ADM optimization

(i.e. E1, E4, and E7); we call these Old Value Entries.

For example, the Old Value Entry provided by event E1, is a value that

was assigned to dmem[x] on a previous event (E8). That entry, however,

is only valid for one entry. We cannot assume the observability of dmem[x]

further back, because the oldest recorded entry is for event E0, meaning any

event previous to E0 could have modified dmem[x].

On the other hand, the value read directly from the circuit memory

synthesized for dmem[x] corresponds to the value assigned to dmem[x] on

60



4.5. Summary

event E1. This value is, therefore, valid for the same seven entries as the

previous case without ADM, from event E1 until readback.

The History Coverage for variable dmem[x] is now the sum of the valid

entries of the Old Value Entry and the value read directly from the circuit

memory. Column 3 of Table 4.3 shows the History Coverage when using

ADM with arrays dmem[], and reg[] selected for optimization. Column 4

shows the increase in observability for each variable.

4.4.2 Total History Coverage

The total history coverage at one point in the execution is the sum of the

History Coverage of all variables. The last row in Table 4.3 obtains this

value for the sample trace of the MIPS program, without ADM in column

2, with ADM in column 3, and the overall increase in column 4.

Overall, from Figure 4.2 we can measure a 46% History Coverage in-

crease, achieved with the use of ADM selecting arrays dmem[], and reg[].

These metrics are collected automatically during the experiments pre-

sented in Section 5.4.1.

4.5 Summary

Data duplication is caused by the use of the record and replay technique for

debugging instrumentation. The trace buffer needs to temporarily store the

same values contained in the circuit’s structures. This duplication can be

reduced by using ADM.

ADM is an optimization focused on removing data duplication for select
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arrays. This is done by adding instrumentation to read directly from arrays

and recording the old value that was stored in the array index whenever it is

updated. This allows us to reconstruct the control and data flow of the exe-

cution without duplication and with additional information; arrays selected

in ADM are fully visible and old values may provide more observability.

In this chapter we presented two trace examples, with and without the

use of ADM. We showed the trace buffer contents from the execution of

the MIPS benchmark in the CHStone benchmark suite in those two cases.

Finally, this chapter introduced a way to determine how much of the circuit

execution can be observed with the content of the trace buffer at one point

in the execution. This observability metric is used in the experiments for

ADM in the following chapter.
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Chapter 5

Experiments and Results

In this chapter, we experimentally evaluate the size and performance over-

head caused by the insertion of instrumentation at the C level. Experiment

1 is inspired by [52]. As in the previous work, our goal is to determine the

overhead required by our instrumentation techniques. Unlike the previous

work, our instrumentation includes the trace buffer memories and associated

circuitry, while the instrumentation in [52] is aimed at connecting key points

in the circuit to EOPs.

Experiment 2 evaluates the overhead added by the instrumentation when

all identified statements of interest are instrumented. Control Flow and Data

Capture alternatives are explored for latency and resource overheads.

Experiment 3 investigates partial instrumentation, and measures the

variability that is observed. A variability agent is identified and a new con-

figuration of the HLS tool is evaluated using the same experiment. ADM

experimentation follows a similar methodology, again focusing on latency

and resource overhead.
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Table 5.1: Latency Impact Comparison for ADPCM Single Assignment
Tool Min Avg Max Stdev

EOP[52]-Vivado HLS -15.00% 0.00% 3.10% 1.00%

Data Capture-Vivado HLS -15.41% -0.09% 10.39% 2.40%

Data Capture-LegUp -0.02% 1.99% 20.00% 4.90%

Control Flow-Vivado HLS -15.41% -0.35% 0.69% 2.33%

Control Flow-Legup 1.08% 6.03% 21.25% 5.85%

Table 5.2: LUT Impact Comparison for ADPCM Single Assignment
Tool Min Avg Max Stdev

EOP[52]-Vivado HLS -1.10% 0.20% 4.80% 0.60%

Data Capture-Vivado HLS -3.51% -0.09% 3.17% 0.69%

Data Capture-LegUp -4.41% 0.04% 16.38% 1.84%

Control Flow-Vivado HLS -3.30% -0.01% 2.47% 0.94%

Control Flow-Legup -4.27% 0.38% 3.69% 1.36%

Table 5.3: FF Impact Comparison for ADPCM Single Assignment
Tool Min Avg Max Stdev

EOP[52]-Vivado HLS -7.40% 0.20% 10.70% 1.20%

Data Capture-Vivado HLS -6.62% 0.22% 8.26% 1.50%

Data Capture-LegUp -4.45% 0.75% 19.79% 2.20%

Control Flow-Vivado HLS -6.25% 0.40% 3.55% 1.27%

Control Flow-Legup -4.73% 0.72% 4.88% 1.79%

Table 5.4: LE/LC* Impact Comparison for ADPCM Single Assignment
Tool Min Avg Max Stdev

EOP[52]-Vivado HLS† N/A N/A N/A N/A

Data Capture-Vivado HLS -1.33% 1.18% 6.89% 0.98%

Data Capture-LegUp -4.43% 0.54% 18.91% 2.04%

Control Flow-Vivado HLS -1.58% 1.73% 3.81% 1.22%

Control Flow-Legup -4.59% 0.62% 4.33% 1.57%

* Logic Elements (LEs) for LegUp and Logic Cells (LCs) for Vivado HLS
† EOP results do not include this metric
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5.1. Experiment 1: Single Instrumentation Point

5.1 Experiment 1: Single Instrumentation Point

We first consider the impact of instrumenting single points of interest. In

this experiment, we cycled through all possible data and control instrumen-

tation points (assignments and control constructs) and instrumented each

in isolation. We assumed a 256-entry trace buffer and performed our exper-

iments using the CHStone benchmark suite. As in [52], we were unable to

compile three of the CHStone benchmarks for Vivado HLS without hand-

coded modifications, and so they were omitted from the experiments.

Tables 5.1-5.3 show the results for one benchmark circuit, ADPCM. Ex-

periments using Vivado HLS used the Xilinx Artix-7 XC7A35T [72] FPGA

device while LegUp uses the Altera Stratix V 5SGXEA7 [5]. The changes

in latency, number of LookUp-Tables (LUTs), number of Flip-Flops (FFs),

and number of Logic Elements (LEs) or Logic Cells (LCs) are shown. LEs

and LCs are, respectively, the names given by Altera and Xilinx to a unit

of configurable fabric that includes LUTs and FFs. For each, we tabulate

the minimum, maximum, average, and standard deviation over all instru-

mentation points in the circuit. Results are shown using both LegUp and

Vivado HLS, using both Control Flow and Data Capture, as well as results

from [52]. The latency results represent a slowdown if positive or speedup

if negative.

Comparing the first two rows of numbers in Tables 5.1-5.3 (EOP and

Data Capture-Vivado HLS), we see that the overhead results of our ap-

proach match those in [52] closely. The results for the other circuits in the

benchmark suite also matched the trends presented in [52]. This suggests
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5.2. Experiment 2: Complete Instrumentation

that the extra overhead due to the trace buffers and extra control logic for

single assignments do not significantly affect the size and performance of

the instrumented circuit. Comparing these to the third rows of Tables 5.1-

5.3 (Data Capture-LegUp), we see the latency overhead is higher if LegUp

rather than Vivado HLS is used. We expect that this is because the version

of LegUp we used groups all global variables in a single monolithic mem-

ory, meaning it is more likely that trace buffer writes interfere with variable

updates in the user circuit. On the other hand, Vivado HLS instantiates

multiple memory arrays and controllers, meaning it can better tolerate the

extra memory updates added with our instrumentation.

Rows four and five of Tables 5.1-5.4 have the results of these experiments

for control flow instrumentation. The area and performance overhead results

for single control flow statements are similar to those for data capture. Ta-

ble 5.4 shows the changes in LEs or LCs according to the HLS tool; LegUp

or Vivado HLS respectively. These numbers represent circuit size overhead

in one single value.

5.2 Experiment 2: Complete Instrumentation

For our second experiment, we considered the overhead if all control con-

structs or assignment statements are instrumented simultaneously. The lat-

ter would be required in a flow similar to the one found in [27] which provides

access to all variables within a window of interest. Such a strategy is im-

portant if we wish to provide a debug experience similar to software; in

software debuggers such as GDB, access to all variables is provided. How-
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ever, due to the overhead of hardware debug instrumentation, the common

HLS debug workflow will focus on a selection of variables. CFI verifica-

tion scenarios would also benefit from complete control flow information. In

this experiment, we gather separate results for control flow instrumentation

(as described in Section 3.2) as well as data capture instrumentation (as

described in Section 3.3) using a 256-entry buffer.

Numbers for latency are presented first. Latency is a critical metric

for debug instrumentation. A modification that affects latency could also

remove the root cause of a system-level bug, or create one, making the instru-

mentation detrimental for the debugging process. A change in latency can

be caused by the addition or removal of states in the state machine or stages

in the datapaths, or different assignments of resources during allocation and

binding. These translate to changes to the critical path, the creation of

helpful/harmful delay slots, or affect (cause or prevent) conflicting use of

resources. This type of bug, which may appear or disappear due to the in-

sertion of instrumentation, is classified as a Heisenbug [32]. For source-level

instrumentation, maintaining a low impact on latency is a greater challenge

because there is less control over resource allocation and operation schedul-

ing; these tasks are relegated to the HLS tool. During our experiments, all

benchmarks executed correctly before and after instrumentation, meaning

we did not observe Heisenbugs.

5.2.1 Latency Impact

The latency results for control and data instrumentation are shown in Ta-

bles 5.5 and 5.6. Columns 3 and 4 show both the total latency of the resulting
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instrumented circuit, and the overhead percentage over the original latency.

The percentage is used in order to analyze how the original latency affects

the results. Here, instrumentation on circuits with short original latencies

tend to generate a higher percentage overhead (i.e. DFADD, DFMUL).

However, this is also the case for other benchmarks (i.e. MIPS) as will be

described below.

When instrumentation is added, latency tends to increase, partly because

source-level instrumentation may interfere with optimizations that optimize

away certain operations or signals. When optimized, however, signals are

prone to be removed and their behavior is not available during an RTL-

instrumented debug. A source-instrumented version will preserve all signals

directly relatable to source variables, producing a functionally-identical cir-

cuit but possibly interfering with an optimization that could have produced

a more efficient design. The impact of this, however, was found to be small.

Control Flow

As in Experiment 1, we see that the latency overhead is more significant

when compiling the design with LegUp, due to the increased congestion for

access to the single memory caused by the instrumentation. The ADPCM

circuit on LegUp has the most significant impact which seems to be caused

by a more frequent use of global arrays when compared to other circuits.

This increases congestion with accesses to the trace buffer.
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Table 5.5: LegUp Cycles (Slowdown)
Benchmark Original Control Data

ADPCM 13221 31585(138.9%) 65308(394.0%)

AES 9193 10892(18.5%) 11538(25.5%)

BF 163925 186862(14.0%) 188983(15.3%)

DFADD 673 3166(370.4%) 1308(94.4%)

DFDIV 1916 2806(46.5%) 2674(39.6%)

DFMUL 224 1113(396.9%) 983(338.8%)

DFSIN 59061 88162(49.3%) 51090(-13.5%)

GSM 4771 6059(27.0%) 5710(19.7%)

MIPS 5035 10892(116.3%) 7805(55.0%)

Average 28669 37949(32.4%) 37267(30.0%)

Table 5.6: Vivado HLS Cycles (Slowdown)
Benchmark Original Control Data

ADPCM 28880 31633(9.5%) 41249(42.8%)

AES 3159 3223(2.0%) 3623(14.7%)

BF 107429 107950(0.5%) 112889(5.1%)

DFADD 405 519(28.1%) 433(6.9%)

DFDIV 1980 2043(3.2%) 1979(-0.1%)

DFMUL 215 284(32.1%) 227(5.6%)

DFSIN 51635 55547(7.6%) 50810(-1.6%)

GSM 3728 3963(6.3%) 3721(-0.2%)

MIPS 2541 3251(27.9%) 5535(117.8%)

Average 22219 23157(4.2%) 24496(5.8%)
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Data Capture

Data capture results reveal the same trend of the previous experiments. The

impact on latency for LegUp instrumentation is higher.

In more detail, the higher latency overhead found for the MIPS bench-

mark generated by both HLS tools is caused by multiple concurrent assign-

ments that could not be scheduled efficiently. These assignments belong

to decoded signals from the ins (instruction) variable, which is split into

multiple variables for decoding. A constraint of the trace buffer limits the

number of inputs to two on each cycle (inferred dual-port RAM), however,

the scheduler also uses available slots in the following cycles. This situation

is witnessed in other benchmarks but, in this particular case, all available

slots are occupied. This affects all loop iterations of the program, causing a

significant impact. The ADPCM benchmark using LegUp presents an enor-

mous overhead, which is caused by a combination of the previous factors;

multiple assignments are scheduled concurrently and the memory bottleneck

is significantly stressed. In this case, ADPCM’s higher impact over that on

MIPS appears to be due to the former’s heavier use of global memory as

seen with the Control Flow instrumentation.

On the other hand, some benchmarks show unchanged latency or even

a speedup of up to 20%. Speedups, although beneficial during normal syn-

thesis, are unsought during debug instrumentation. These imply a change

that could cause Heisenbugs. These results, however, suggest there is an-

other consideration that causes scheduling changes; this is further explored

in Section 5.3.
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Table 5.7: LegUp Complete Instrumentation Logic Elements (Overhead)
Benchmark Original Control Data

ADPCM 22216 26511(19.3%) 29962(34.9%)

AES 26546 27241(2.6%) 30818(16.1%)

BF 14778 16568(12.1%) 17213(16.5%)

DFADD 12324 14555(18.1%) 14161(14.9%)

DFDIV 18809 20209(7.4%) 18771(-0.2%)

DFMUL 8901 10502(18.0%) 8929(0.3%)

DFSIN 39096 44851(14.7%) 45639(16.7%)

GSM 18705 21612(15.5%) 19662(5.1%)

MIPS 6541 9189(40.5%) 8456(29.3%)

Average 18657 21249(13.9%) 21512(15.3%)

5.2.2 Resource Utilization

Area results are presented in terms of Logic Elements in Table 5.7 and in

terms of Logic Cells in Table 5.8. Columns 3 and 4 show both the total

resources required by the resulting instrumented circuit, and the overhead

percentage over the original implementation. In these results, we see the

percentages are rather stable. As the number of signals and, therefore, size

of the original circuit increase, the instrumentation also increases in order

to create the access network from the signals to the trace buffer.

Overall, area overhead when using LegUp is lower than that when us-

ing Vivado HLS for data capture. However, the total resource utilization

for LegUp is significantly higher even though all optimizations (-O3) were

enabled. Outlying results, such as ADPCM, are found to be caused mostly

by inlining changes; this will be further explored in Section 5.3.

For implementation, a Stratix V 5SGXEA7 [5] was chosen for LegUp

and an Artix-7 XC7A35T [72] FPGA for Vivado HLS. The resource uti-
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Table 5.8: Vivado HLS Complete Instrumentation Logic Cells (Overhead)
Benchmark Original Control Data

ADPCM 6764 7064(4.4%) 11305(67.1%)

AES 2386 3936(65.0%) 4562(91.2%)

BF 1645 1642(-0.2%) 4185(154.4%)

DFADD 2826 2716(-3.9%) 3892(37.7%)

DFDIV 2894 3011(4.0%) 3707(28.1%)

DFMUL 1397 1594(14.1%) 2310(65.4%)

DFSIN 11549 12035(4.2%) 15351(32.9%)

GSM 3871 4193(8.3%) 5518(42.5%)

MIPS 1329 1333(0.3%) 2036(53.2%)

Average 3851 4169(8.8%) 5874(52.5%)

lization numbers are presented in Tables 5.7 and 5.8. An increase can be

seen between control and data instrumentation. Since data instrumenta-

tion requires connecting all active bits of each variable, the multiplexing

logic required to share access to the trace buffer is significantly higher than

that for control flow. Control flow instrumentation only needs to multiplex

Identifiers which are constants and can be optimized during logic synthesis.

Comparison with Previous Work

In Tables 5.9 and 5.10 we compare the numbers gathered from our ex-

periments with those from the EOP [52] and Goeders’ RTL instrumenta-

tion [30], respectively. Goeders’ results were obtained using the same Stratix

V 5SGXEA7 FPGA as used in our LegUp experiments, while the EOP ex-

periments were performed on a Xilinx Zynq XC7Z020 FPGA [76]; both the

Artix-7, used in our experiments, and Zynq devices use 6 input LUTs. Al-

though common debug instrumentation would only target a set of signals,

these results with all statements instrumented reveal characteristics of the
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Table 5.9: Vivado HLS EOP vs Data Capture Overhead

Benchmark
EOP[52]* Data Capture

LUTs FFs LUTs FFs

ADPCM 25% 2% 76% 37%

AES 22% 2% 119% 41%

BF 50% 25% 413% 76%

DFADD 70% 10% 43% 17%

DFDIV 27% 2% 42% 10%

SHA 27% 5% 55% 19%

Average 37% 8% 58% 25%

*EOP results do not include a trace buffer or a buffer access network

different approaches.

EOP EOP results taken from [52] are only given in LUTs and FFs over-

head percentage for a smaller subset of the CHStone benchmark suite. The

numbers for Data Capture in Table 5.9 show the impact caused by the mul-

tiplexing logic needed to share access to the trace buffer. The trace buffer

itself uses on-chip RAM. The numbers from [52] only represent the impact to

the original circuit and do not include the multiplexing logic of the buffer ac-

cess network. The LUTs overhead in our experiments increases significantly

as the number of variables increases, due to the need of more multiplexing

logic. The increase in FF numbers may be due to an increase in the number

of states and impact on optimizations. The EOP experiments in [52] or [54]

do not present latency impact for all statements instrumented.

Goeders’ The results of using Goeders’ HLS Debugger are compared with

our results using LegUp in Table 5.10. Multiple factors pose a challenge to

make this a direct comparison. In terms of the modules included, Goeders’
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Table 5.10: LegUp HLS Debugger vs Data Capture Logic Elements (Over-
head)

Benchmark
Goeders’[30] This thesis*

Original Debug Original Data Capture

ADPCM 17900 22244 (24%) 22216 29962 (35%)

AES 16966 18372 (8%) 26546 30818 (16%)

BF 10448 13692 (31%) 14778 17213 (16%)

DFADD 7261 10473 (44%) 12324 14161 (15%)

DFDIV 12233 16018 (31%) 18809 18771 (0%)

DFMUL 4171 6414 (54%) 8901 8929 (0%)

DFSIN 24982 31928 (28%) 39096 45639 (17%)

GSM 9096 11415 (25%) 18705 19662 (5%)

JPEG 35691 38305 (7%) 48354 69110 (43%)

MIPS 3162 4380 (39%) 6541 8456 (29%)

Average 14191 17324 (22%) 18657 21512 (15%)

*These results do not include the RS232 communication manager.

results are affected by the inclusion of the RS232 communication manager

and the scheduling logic in the trace recorder. Our results do not include

either as they focus on the impact caused to the original circuit. Adding

the estimated LEs necessary to include the communication manager, which

is similar between both approaches, increases the average impact to approx-

imately 21%. However, Goeders’ trace scheduler, which allows longer trace

recordings in the RTL approach [27], represents a large part of the overhead

and has no analogy in our approach.

The comparison between these two approaches is made harder by the sig-

nal selection stage of each process. On the source-level approach, variables

selected in the original source-code are instrumented regardless of the result-

ing circuit. An RTL approach, however, instruments an optimized descrip-

tion of the logic, starting with high-level optimization passes, and followed by
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logic synthesis optimizations. High-level optimization passes like dead code

elimination (DCE) apply to both cases, where ”unreachable” instructions

are eliminated, including the instrumentation in the source-level approach.

However, optimizations that apply constant folding techniques, can result

in (a) constant inputs to the trace buffer in a source-level approach, and

(b) signals that are not available in hardware and ideally inferred during

synthesis.

Therefore, a direct comparison would require listing these cases and ap-

plying source-level instrumentation only to the variables for which RTL in-

strumentation was inserted. This experiment is out of the scope of this work

but is proposed as future work, along with the integration of source-level op-

timizations as discussed in 6.1.

Overall, RTL instrumentation for LegUp often provides observability

with lower impact to the original circuit than source-level instrumentation.

Additional resources can then be used to optimize this architecture to allow

longer trace records. This, however, is the result of tool-specific design

and optimizations. Goeders’ instrumentation relies heavily on the memory

architecture used in LegUp.

5.3 Experiment 3: Partial Instrumentation

The data capture overhead numbers in Tables 5.5 and 5.6 are large; this

implies that it may be appropriate to consider instrumenting only a subset

of the available signals. Intuitively, and as shown by [52], cumulatively

increasing the number of statements that are instrumented increases the cost
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Figure 5.1: Latency Histogram for Variation of ADPCM

of that instrumentation. However, the total cost of instrumenting multiple

assignments may be less than multiplying the number of assignments by the

cost of instrumenting each single assignment individually, due to resource

usage overlap.

For further experimentation, we created a set of 1000 different instances

of the ADPCM benchmark, each instance with 10 random statements in-

strumented, to observe the variability of the results depending on what

assignments are chosen. The sample set is a small subset of all possible

combinations
(
119
10

)
, however, the distribution trend was validated with dif-

ferent set sizes and random selection seeds. Each instance was compiled

using Vivado HLS, and hardware simulation latency results for all 1000 in-

stances are shown in the histogram of Figure 5.1. The left vertical axis

shows the count of instances that performed with a latency matching the

ranges in the horizontal axis. The right vertical axis is the cumulative per-

centage. From these results, 60.4% of the instances require less than or an
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Figure 5.2: Latency Histogram for Variation of ADPCM All-Inlined

equal amount of cycles as the original design (28880 cycles). Average latency

is -0.6% lower than the original, and standard deviation is 4.4%. Average

resource utilization is 1.7% higher, with a standard deviation of 152 LCs

(2.2%).

The observed latency changes were caused, in part, by the considerations

mentioned above. However, changes during the inlining optimization of

the HLS tool were found to be more significant. The HLS tools can be

configured to use a different inline threshold or to inline every function in

the program. An experiment using the same set of 1000 instances of the

ADPCM benchmark with all functions inlined, produced a distribution of

latency results with less variation. For the data in Figure 5.1, the standard

deviation was 1263 cycles (4.4%), and average 28694 cycles; the always-

inlined version of these instances showed a standard deviation of 604 cycles

(2.1%), with an average of 28180 cycles (-2.4% lower). This lower latency

and less variant latency, however, requires higher resource utilization [41].
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Table 5.11: Duplication Metrics

Benchmark
Average

Memory Entries
Average

Duplicates
Coverage
Increase

ADPCM 75.09(29.3%) 41.73(16.3%) 43.76%

AES 112.98(44.1%) 48.36(18.9%) 90.37%

BF 122.61(47.9%) 55.41(21.6%) 91.31%

GSM 76.03(29.7%) 69.23(27.0%) 59.52%

JPEG 76.59(29.9%) 76.14(29.7%) 95.44%

MIPS 23.65(9.2%) 16.13(6.3%) 65.41%

SHA 80.36(31.4%) 80.36(31.4%) 124.47%

Average 81.04(31.7%) 55.34(21.6%) 84.28%

Average resource utilization is 4.6% higher, with a standard deviation of 328

LCs (5.1%).

5.4 ADM Evaluation

In this section we evaluate the ADM strategies. To understand their po-

tential, we first measured how often data is duplicated between memory

arrays and the trace buffer. Results for the following experiments on each

benchmark program are presented in Table 5.11. We made these measure-

ments using a subset of the CHStone benchmark, excluding the arithmetic

domain programs (DFADD,DFDIV,DFMUL,DFSIN) because of their algo-

rithmic/structural simplicity, i.e. read from ROM, compute, and compare;

which does not require arrays for computation.

On average, from the second column of Table 5.11, we found that 31.7% of

the trace buffer entries are from user memories. These would allow the

Merged Instrumentation technique from Section 4.2 to use up to 31.7% more

entries for scalar values, depending on which arrays are selected. Moreover,
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we found that 21.6% of the trace buffer entries are from user memory entries

that are not evicted – multiple assignments to the same entry in an array

are counted as one. Therefore, a Data Capture instrumentation with Old

Value Store ADM has the potential to reduce the amount of data duplica-

tion by 21.6%. Appendix C shows the array access profiles of the CHStone

benchmark programs obtained during the implementation of the previous

experiment.

5.4.1 Observability

We performed an experiment with the observability metrics proposed in

Section 4.4 to evaluate the average increase in history coverage we can obtain

from the Old Value Store ADM technique.

We gathered the results in the third column of Table 5.11 based on our

experiments on the CHStone benchmarks. This shows that an average of

84.2% more history coverage can be stored in the trace buffer using this

technique. This demonstrates the benefit of implementing Old Value Store

ADM, suggesting that HLS-generated circuits contain enough identifiable

arrays, such that, storing the value being evicted from those arrays can

result in a significant contribution to circuit execution observability.

5.4.2 Resource Utilization

To analyze the impact on area overhead of ADM, we measured the resource

utilization after place and route of (a) the original ADPCM benchmark, (b)

the circuit instrumented with data capture instrumentation, (c) the same

instrumentation with our data duplication minimization approach applied
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Table 5.12: ADM Resource Utilization for ADPCM Instances

Instance BRAM
FFs

(Overhead)
LUTs

(Overhead)

(a) Original 7 5135 9200

(b) Data Capture 9 7448 (45.0%) 14203 (54.4%)

(c) ADM array100 9 7464 (45.4%) 14284 (55.3%)

(d) ADM array24 9 7460 (45.3%) 14288 (55.3%)

(e) ADM (both) 9 7476 (45.6%) 14307 (55.5%)

(f) ADM (13 arrays) 9 7579 (47.6%) 14616 (58.9%)

to one array of size 100, (d) to one different array of size 24, (e) to both

arrays, and (f) to all data accesses in the circuit (13 arrays were identified).

Table 5.12 shows that it is increasingly less expensive to add multiple arrays,

and that memory utilization is kept constant, as expected. Moreover, for

the full instrumentation of the ADPCM circuit (f), adding 2.6% more FFs

and 4.5% more LUTs to (b) allowed 16.3% duplication to be removed, with

43.76% more history coverage.

5.5 Summary

This chapter presented the methodology and results of various experiments

to evaluate the impact caused by the insertion of debug instrumentation at

the source level. In our first set of experiments we instrumented single points

of interest. This showed that, on average, instrumenting these single points

causes low impact on the area and speed of the original designs. This obser-

vation, also observed in previous work on EOPs, is extended here to include

the insertion of a trace buffer and related circuitry. The second experiment,

instrumenting all points of interest, showed how the impact on the original
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circuit increases, suggesting that source-level debugging using source-level

instrumentation may benefit from prior selection of regions of interest in

the source code to avoid impractical overheads. The third experiment, iden-

tified the causes of performance overhead when partial instrumentation is

applied. Occasionally, states are added to the circuit FSMs to schedule trace

buffer writes. However, results would vary significantly due to changes in

the resulting code after inlining optimizations.

We also presented experiments to evaluate our ADM approach. The use

of ADM in our instrumentation allows us to extend circuit observability with

low overhead. Using our metric for History Coverage we found that ADM

can extend circuit observability by an average of 84%. This is the result of

being able to observe the values of select arrays before the time they were

evicted.
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Chapter 6

Conclusion

High-level synthesis tools promise increased productivity for designers, al-

lowing them to create compute accelerators more rapidly, and test them

in the application environment from an early stage of development. This

promise, however, will only be realized if the compilers are accompanied by

an entire ecosystem including a debugging framework that allows designers

to debug their designs in the context of the original C code, while running

in silicon.

In-system source-level debugging tools for HLS rely on instrumentation

to record the behaviour of the design as it executes, for later interrogation

by an off-line software debugger. We showed a source-level instrumentation

technique that includes the trace buffer and related circuitry. This instru-

mentation is inserted by automatic source-to-source transformation tools to

record both the control flow and data assignments into trace buffers. The

impact on circuit size varies from 15.3% to 52.5% and the impact on circuit

speed ranges from 5.8% to 30% when all assignment statements are instru-

mented. The impact on circuit size for single point instrumentation ranges

from -4.6% to 18.9% and the impact on circuit speed ranges from -15.4%

to 21.3%. A variability agent is identified in the inlining optimization and
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evaluated.

During these transformation the tools also create a database that maps

source code statements to unique identifiers. Matching the trace captured

after execution with the offline database allows mapping the behaviour of

the circuit back to the original C code.

We also showed how our design can be optimized to make better use

of resources by eliminating up to 31.7% of the data duplication between

circuit memories and trace buffers. This helps extending visibility into the

execution history, resulting in 84.2% more coverage, which we anticipate

will translate into a faster and easier debugging experience, requiring fewer

executions to find the root cause of observed incorrect behaviour.

6.1 Limitations

When instrumenting high-level code there are changes that can affect lower

level optimizations. The nature of the statements being inserted can espe-

cially affect loop optimizations. A noticeable effect is found on loop-invariant

code; this consists of variables or expressions inside a loop body that are

unaffected by all loop iterations and can, therefore, be moved outside of

the loop body. This is called loop-invariant code motion, hoisting or scalar

promotion. Adding a function call to pushDbg() inside the loop with that

expression as an argument creates a false dependency that invalidates the

optimization.

In the scope of this work, the impact of source code manipulation in

loop-invariant code motion were not considered.
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However, there is a considerable amount of work on source-level opti-

mizations, including the use of the ROSE compiler framework for those

specific optimizations [40], as well as others, mentioned in Section 2.5.

Therefore, these optimizations can be incorporated as a step previous to

the instrumentation insertion, either with automatic code transformations

or using programmer feedback to indicate the loop-invariant expression.

An addition that can be suggested for a better debugging experience is

the inclusion of execution cycles numbers with every entry in the trace buffer.

Although this is not necessary for a behavioral representation of the code,

this is useful for performance analysis and more advanced debugging. RTL

instrumentation techniques [12, 27] implement custom counters in logic for

this purpose. However, when using source-level instrumentation, this would

have to rely on tool-specific features to incorporate custom Verilog; this

approach has been used for timing analysis assertions [20]. A more suitable

alternative is the inclusion of the <time.h> library as an API for HLS tools.

For the HLS tool user, this would mean being able to call functions like

clock() and time() and meaningful macros such as CLOCKS PER SEC in

their programs. For debugging purposes, using these same functions would

allow adding timestamps to trace buffer entries.

6.2 Future Work

As mentioned above, the incorporation of timestamps into the trace buffer

would be beneficial to expand the capabilities of this approach towards tim-

ing analysis and performance debugging. Working with open source HLS
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tools to add API support of the time.h library could be appealing for devel-

opers and suggest a standard for proprietary HLS tools to follow. The work

in [20] lays an approach with the basic requirements.

Future work specific to ADM involves developing heuristics to select

memories for minimization, as well as quantifying and comparing the per-

formance (e.g. lines of code in a replay window) of this, other types of

optimizations, and other types of instrumentation.

Work on EOPs [54] made a compatibility study of other HLS tools,

without the need for empirical testing. This was accomplished by identi-

fying the requirements to allow such transformations, and found that only

1 (Shang [80]) out of 12 tools was incompatible; LegUp was also deemed

incompatible for not being able to schedule concurrent I/O, but this limita-

tion, although unnecessary for the enhanced instrumentation approach, can

be overcome through the modifications explained in Appendix A.

With the upcoming release of Altera’s A++ HLS framework [1], empir-

ical testing of RTL generation of source-level instrumented circuits on this

tool will be necessary.

85



Bibliography

[1] Altera. Altera Announces New Spectra-Q Engine for Industry-

leading Quartus II Software to Accelerate FPGA and SoC

Design. http://newsroom.altera.com/press-releases/

nr-altera-spectraq-quartusii-software-fpga-soc.htm, May

2015.

[2] Altera. Quartus Prime Pro Edition Handbook, volume 3, chapter 9:

Design Debugging Using the SignalTap II Logic Analyzer. November

2015.

[3] Altera. Altera SDK for Opencl. https://www.altera.com/

products/design-software/embedded-software-developers/

opencl/overview.html, 2016.

[4] Altera. Stratix 10 FPGA and SoC - Overview. https://www.altera.

com/products/fpga/stratix-series/stratix-10/overview.html,

2016.

[5] Altera. Stratix V FPGAs - Overview. https://www.altera.com/

products/fpga/stratix-series/stratix-v/overview.html, 2016.

[6] H. Angepat, G. Eads, C. Craik, and D. Chiou. Nifd: Non-intrusive fpga

86

http://newsroom.altera.com/press-releases/nr-altera-spectraq-quartusii-software-fpga-soc.htm
http://newsroom.altera.com/press-releases/nr-altera-spectraq-quartusii-software-fpga-soc.htm
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-v/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-v/overview.html


Bibliography

debugger – debugging fpga ’threads’ for rapid hw/sw systems prototyp-

ing. In 2010 International Conference on Field Programmable Logic and

Applications, pages 356–359, Aug 2010.

[7] ARM. big.LITTLE Technology: The Future of Mobile.

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_

Futue_of_Mobile.pdf, 2016.

[8] David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA Programming

for the Masses. Queue, 11(2):40:40–40:52, February 2013.

[9] Mohamed Ben Hammouda, Philippe Coussy, and Loic Lagadec. A

Design Approach to Automatically Generate On-chip Monitors During

High-level Synthesis of Hardware Accelerator. In Proceedings of the

24th Edition of the Great Lakes Symposium on VLSI, GLSVLSI ’14,

pages 273–278. ACM, 2014.

[10] John Bodily, Brent Nelson, Zhaoyi Wei, Dah-Jye Lee, and Jeff Chase. A

Comparison Study on Implementing Optical Flow and Digital Commu-

nications on FPGAs and GPUs. ACM Trans. Reconfigurable Technol.

Syst., 3(2):6:1–6:22, May 2010.

[11] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow.

FPGAs in the Cloud: Booting Virtualized Hardware Accelerators

with OpenStack. In Field-Programmable Custom Computing Machines

(FCCM), 2014 IEEE 22nd Annual International Symposium on, pages

109–116, May 2014.

87

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf


Bibliography

[12] N. Calagar, S.D. Brown, and J.H. Anderson. Source-level Debugging

for FPGA High-Level Synthesis. In Field Programmable Logic and Ap-

plications (FPL), 2014 24th International Conference on, Sept 2014.

[13] Keith A. Campbell, David Lin, Subhasish Mitra, and Deming Chen.

Hybrid Quick Error Detection (H-QED): Accelerator Validation and

Debug Using High-level Synthesis Principles. In Proceedings of the 52nd

Annual Design Automation Conference, DAC ’15, pages 53:1–53:6, New

York, NY, USA, 2015. ACM.

[14] A. Canis, S.D. Brown, and J.H. Anderson. Modulo SDC scheduling with

recurrence minimization in high-level synthesis. In Field Programmable

Logic and Applications (FPL), 2014 24th International Conference on,

Sept 2014.

[15] Andrew Canis, Jongsok Choi, et al. LegUp: An Open-source High-level

Synthesis Tool for FPGA-based Processor/Accelerator Systems. ACM

Trans. Embed. Comput. Syst., 13(2):24:1–24:27, September 2013.

[16] Jongsok Choi, S. Brown, and J. Anderson. From software threads

to parallel hardware in high-level synthesis for FPGAs. In Field-

Programmable Technology (FPT), 2013 International Conference on,

pages 270–277, Dec 2013.

[17] J. Cong and Zhiru Zhang. An efficient and versatile scheduling algo-

rithm based on SDC formulation. In Design Automation Conference,

2006 43rd ACM/IEEE, pages 433–438, 2006.

88



Bibliography

[18] Intel Corporation. Intel Completes Acquisition of Altera. http://www.

intc.com/releasedetail.cfm?ReleaseID=948014, December 2015.

[19] Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric

Senn, and Eric Martin. GAUT: A High-Level Synthesis Tool for DSP

Applications, pages 147–169. Springer Netherlands, Dordrecht, 2008.

[20] John Curreri, Greg Stitt, and Alan D. George. High-level Synthesis of

In-circuit Assertions for Verification, Debugging, and Timing Analysis.

Int. J. Reconfig. Comput., 2011:1:1–1:17, January 2011.

[21] Luka Daoud, Dawid Zydek, and Henry Selvaraj. Advances in Sys-

tems Science: Proceedings of the International Conference on Systems

Science 2013 (ICSS 2013), chapter A Survey of High Level Synthesis

Languages, Tools, and Compilers for Reconfigurable High Performance

Computing, pages 483–492. Springer International Publishing, 2014.

[22] Eclipse CDT. Eclipse CDT (C/C++ Development Tooling). http:

//www.eclipse.org/cdt/, 2016.

[23] Chris Edwards. Growing pains for deep learning. Commun. ACM,

58(7):14–16, June 2015.

[24] F. Eslami and S. J. E. Wilton. An adaptive virtual overlay for fast

trigger insertion for FPGA debug. In Field Programmable Technology

(FPT), 2015 International Conference on, pages 32–39, Dec 2015.

[25] Zhe Fan, Feng Qiu, A. Kaufman, and S. Yoakum-Stover. Gpu cluster

89

http://www.intc.com/releasedetail.cfm?ReleaseID=948014
http://www.intc.com/releasedetail.cfm?ReleaseID=948014
http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/


Bibliography

for high performance computing. In Supercomputing, 2004. Proceedings

of the ACM/IEEE SC2004 Conference, pages 47–47, Nov 2004.

[26] Philip Garcia, Katherine Compton, Michael Schulte, Emily Blem, and

Wenyin Fu. An Overview of Reconfigurable Hardware in Embedded

Systems. EURASIP J. Embedded Syst., 2006(1), January 2006.

[27] J. Goeders and S. Wilton. Signal-Tracing Techniques for In-System

FPGA Debugging of High-Level Synthesis Circuits. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,

PP(99):1–1, 2016.

[28] J. Goeders and S. J. E. Wilton. Using round-robin tracepoints to debug

multithreaded hls circuits on fpgas. In Field Programmable Technology

(FPT), 2015 International Conference on, pages 40–47, Dec 2015.

[29] J. Goeders and S.J.E. Wilton. Effective FPGA debug for high-level syn-

thesis generated circuits. In Field Programmable Logic and Applications

(FPL), 2014 24th International Conference on, Sept 2014.

[30] J. Goeders and S.J.E. Wilton. Using Dynamic Signal-Tracing to Debug

Compiler-Optimized HLS Circuits on FPGAs. In Field-Programmable

Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual Inter-

national Symposium on, pages 127–134, May 2015.

[31] Paul Graham, Brent Nelson, and Brad Hutchings. Instrumenting Bit-

streams for Debugging FPGA Circuits. In Proceedings of the the 9th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, FCCM ’01, pages 41–50, 2001.

90



Bibliography

[32] Michael Grottke and Kishor S Trivedi. A classification of soft-

ware faults. Journal of Reliability Engineering Association of Japan,

27(7):425–438, January 2005.

[33] Zhi Guo, Betul Buyukkurt, Walid Najjar, and Kees Vissers. Optimized

Generation of Data-Path from C Codes for FPGAs. In Proceedings of

the Conference on Design, Automation and Test in Europe - Volume 1,

DATE ’05, pages 112–117, March 2005.

[34] Sumit Gupta, Manev Luthra, Nikil Dutt, Rajesh Gupta, and Alex Nico-

lau. Hardware and Interface Synthesis of FPGA Blocks Using Paral-

lelizing Code Transformations. In Proceedings of the International Con-

ference on Parallel and Distributed Computing and Systems, November

2003.

[35] M. Ben Hammouda, P. Coussy, and L. Lagadec. A Design Approach to

Automatically Synthesize ANSI-C Assertions During High-Level Syn-

thesis of Hardware Accelerators. In 2014 IEEE International Sympo-

sium on Circuits and Systems (ISCAS), pages 165–168, June 2014.

[36] Frank Hannig, Dirk Koch, and Daniel Ziener, editors. Proceedings of

the First International Workshop on FPGAs for Software Programmers

(FSP 2014), August 2014.

[37] Frank Hannig, Dirk Koch, and Daniel Ziener, editors. Proceedings of the

Second International Workshop on FPGAs for Software Programmers

(FSP 2015), August 2015.

91



Bibliography

[38] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada.

Proposal and Quantitative Analysis of the CHStone Benchmark Pro-

gram Suite for Practical C-based High-level Synthesis. Journal of In-

formation Processing, 17:242–254, 2009.

[39] K.S. Hemmert, J.L. Tripp, B.L. Hutchings, and P.A. Jackson. Source

level debugger for the Sea Cucumber synthesizing compiler. In Field-

Programmable Custom Computing Machines, 2003. FCCM 2003. 11th

Annual IEEE Symposium on, pages 228–237, April 2003.

[40] Michihiro Horie, Mikio Takeuchi, Kiyokuni Kawachiya, and David

Grove. Optimization of x10 Programs with ROSE Compiler Infras-

tructure. In Proceedings of the ACM SIGPLAN Workshop on X10,

X10 2015, pages 19–24, 2015.

[41] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi,

Nazanin Calagar, Stephen Brown, and Jason Anderson. The Effect of

Compiler Optimizations on High-Level Synthesis-Generated Hardware.

ACM Trans. Reconfigurable Technol. Syst., 8(3):14:1–14:26, May 2015.

[42] E. Hung and S. J. E. Wilton. Speculative Debug Insertion for FPGAs.

In 2011 21st International Conference on Field Programmable Logic

and Applications, pages 524–531, Sept 2011.

[43] Eddie Hung and Steven J. E. Wilton. Accelerating FPGA De-

bug: Increasing Visibility Using a Runtime Reconfigurable Observation

and Triggering Network. ACM Trans. Des. Autom. Electron. Syst.,

19(2):14:1–14:23, March 2014.

92



Bibliography

[44] Impulse Accelerated Technologies. CoDeveloper from Impulse

Accelerated Technologies. http://www.impulseaccelerated.com/

ReleaseFiles/Help/iAppMan.pdf, 2015.

[45] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In Proceedings of

the International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization, CGO ’04, pages 75–86,

2004.

[46] Chunhua Liao, Daniel J. Quinlan, Richard Vuduc, and Thomas Panas.

Effective source-to-source outlining to support whole program empirical

optimization. In Guang R. Gao, Lori L. Pollock, John Cavazos, and

Xiaoming Li, editors, Languages and Compilers for Parallel Computing:

22nd International Workshop, LCPC 2009, Newark, DE, USA, October

8-10, 2009, Revised Selected Papers, pages 308–322. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010.

[47] J. Matai, D. Lee, A. Althoff, and R. Kastner. Composable, parameter-

izable templates for high-level synthesis. In 2016 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 744–749, March

2016.

[48] J. Matai, D. Richmond, D. Lee, and R. Kastner. Enabling FPGAs

for the Masses. In Proceedings of the First International Workshop on

FPGAs for Software Programmers, pages 15–20, Aug 2014.

[49] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk
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Appendix A

LegUp Interface Directive

Vivado HLS provides a comprehensive set of interfacing options for IP inte-

gration in the Vivado logic synthesis flow. LegUp, on the other hand, uses a

relatively limited memory-mapped approach, although it is possible to use

other LegUp features to generate interface descriptions similar to what is

provided in Vivado HLS (e.g. Custom Verilog code insertion [54]). The work

in this thesis included a modification of LegUp’s source code to allow the

creation of I/O ports with validity signals, in order to have a more direct

comparison between LegUp and Vivado HLS implementations.

To resemble the format used by Vivado HLS, the implemented LegUp

feature supports adding a TCL directive to convert a global variable into an

I/O port. Listing A.1 is an example of C source code with EOP instrumenta-

tion for the “sum”. Listings A.2 and A.3 shows the TCL directives for each

tool to convert the “eop 14 sum 16” variable into an output port. Vivado’s

implementation allows modifying the mode and location. These examples

use the default settings to create a port with a validity signal located in the

main “function/module”.

In LegUp, the value assignments to the specified global variables are

scheduled using the System of Difference Constraints (SDC) heuristic [17]
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Appendix A. LegUp Interface Directive

without any resource constraints. Multiple concurrent port writes are al-

lowed by both Vivado HLS and this LegUp implementation. The variables

are then synthesized into I/O ports (input-only if no values are assigned to

it; output-only if no assignments are made from it).

Listing A.1: C with EOP Instrumentation

1 //Non−volatile for output−only in Vivado HLS

2 volatile int eop 14 sum 16;

3 int main (){

4 ...

5 sum += A1[i][k] ∗ B1[k][j];

6 eop 14 sum 16 = sum;

7 ...

8 }

Listing A.2: Vivado HLS “directives.tcl”

1 #set directive interface [OPTIONS=−mode(ap vld)] <location=main> <port>

2 set directive interface eop 14 sum 16

Listing A.3: LegUp “config.tcl”

1 #set interface port <global variable1> <global variable2> ...

2 set interface port eop 14 sum 16
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Appendix B

EOP Experiment

A custom source-to-source transformation tool for EOP insertion was de-

veloped using the ROSE compiler infrastructure for evaluation of this ap-

proach. For Vivado HLS, this was achieved using global variables and the

”interface” directive to instruct the HLS tool to convert these into port in-

terfaces. Vivado HLS automatically includes a “valid” signal that is true

during the state with the variable assignment. On the other hand, a new

I/O feature had to be implemented in LegUp in order to allow the same

type of transformations to be synthesized, this is explained in Appendix A.

In spite of the exhaustive experimentation presented in [52], our ap-

proach was used for an unexplored behavior. An experiment was set to un-

derstand the motivation for implementing independent EOBs and, generally,

the amount of concurrent port writes that are scheduled by either LegUp

or Vivado. The CHStone benchmark [38] was instrumented with EOPs for

all identified assignments, synthesized and wrapped by a top module that

included a set of Concurrent Port Writes Counters. These counters keep

track of the number of valid EOPs at each execution cycle. Figures B.1 and

B.2 show the results of this experiment for all the programs in the CHStone

benchmark. The X axis shows the number of EOPs, the left Y axis shows
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Appendix B. EOP Experiment

Figure B.1: LegUp EOP Writes

the frequency that the given number of EOPs were found valid, and the

right axis is the percentage of that amount over the total number of execu-

tion cycles. In general, there is at least 1 valid EOP for 20-30% of the time

of the execution. Also, even though HLS is set to identify all possible par-

allelism and schedule simultaneous assignments, the number of valid ports

is generally 1 or 2, and reduces abruptly after 2. Using this information

for EOB allocation would require dynamic analysis to guarantee an optimal

EOB balancing. Thorough dynamic analysis, however, is not feasible for

programs with input-dependent behaviour.

This metric can also be useful for performance profiling, determining

the amount of extracted parallelism by finding the number of simultaneous

variable assignments that were scheduled.
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Appendix B. EOP Experiment

Figure B.2: Vivado HLS EOP Writes

103



Appendix C

Memory Access Profiles

The setup of the experiments used in chapter 5 that allowed us to measure

array duplication in the CHStone benchmark suite can also be used to obtain

a Memory Access Profile of the program. For these experiments, each pro-

gram was first instrumented for Data Capture in C using our ROSE-based

transformation tool. Using Vivado HLS, the C code was synthesized and

then added to a Vivado project in order to perform logic synthesis. These

files can then be used for simulation and obtain behavior details through

Verilog System Tasks and Functions (i.e. readmem() and writemem()). Us-

ing file I/O functions we can periodically dump the contents of the trace

memory at any time without the need for trace read back routines; this

approach is used in other debugging techniques and this data is what is

matched with the database. In our experiments, the in-system debug is the

main contribution and simulation is only used for benchmark characteriza-

tion and analysis.

The set of files obtained from each circuit can then be analyzed by read-

ing and matching their contents with the database generated during instru-

mentation. Trace entries belonging to arrays can be identified as well as the

array index used in that statement in order to count the number of dupli-
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Appendix C. Memory Access Profiles

cates found in memory. Accesses to the same array index are counted only

once, since only the last entry is duplicated, or available in both the trace

buffer and the circuit memory.

The following graphs indicate the number of unique array entries in the

trace buffer on the Y axes and the execution cycles on the X axes. Although

some profiles of the CHStone benchmark are generally balanced (e.g. MIPS,

ADPCM, SHA), most can be used to determine possible bottlenecks in cir-

cuit implementations. In general, it can be seen that memory accesses are

common and, as seen in Table 5.11, can represent an average of more than

30% of the assignments carried out in the execution. This is a great moti-

vation for ADM and should be considered as the target for optimizations in

future work.
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Figure C.1: ADPCM

Figure C.2: AES

Figure C.3: BLOWFISH

Figure C.4: GSM
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Figure C.5: JPEG

Figure C.6: MIPS

Figure C.7: SHA
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