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Abstract

In this thesis, we describe how appropriately modelling the spatio-tempo-

ral mean surface can help resolve complex patterns of nonstationarity and

improve spatial prediction. Nonstationary fields are common in environmen-

tal science applications, and even more so in regions with complex terrain.

Our analyses focus on the Pacific Northwest, a region where rapid changes

and localized weather are very common, and where the terrain plays an

important role in separating often radically different climate and weather

regimes. To this end, we introduce two comparable strategies for spatial

prediction. The first is based on a Bayesian spatial prediction method,

where an exploratory analysis was performed in order to better understand

the localized weather regimes. The other is based on tackling the anomalies

of expected climate in the Pacific Northwest region, based on the average

values of temperature computed over a 30-year range obtained through a

climate analysis system.

Secondly, we focus on one of the recent challenges in spatial statistics

applications, the data fusion problem. There has been an increased need for

combining information from multiple sources that may be on different spa-

tial scales. Ensemble modelling is referred to as a statistical post-processing

technique based on combining multiple computer model outputs in a sta-

tistical model with the goal of obtaining probabilistic forecasts. We give

an overview of some ensemble modelling strategies, by combining observed

temperature measurements with outputs from an ensemble of determinis-

tic climate models. We also provide a comparison between the Bayesian

model averaging approach and a dynamic Bayesian ensemble strategy for

forecasting.
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Abstract

Finally, we introduce a novel strategy for the design of monitoring net-

work, where the goal is to select a high-quality yet diverse set of locations.

The idea of spatial repulsion is brought to this context via the theory of

determinantal point processes. Our design strategy is not only able to yield

spatially-balanced designs, but it also has the ability to assess similarity be-

tween the potential locations should there be extra sources of information

related to the underlying process of interest. We explore its relationship to

existing design methods, such as the entropy-based and space-filling designs.
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Chapter 1

Introduction

Spatial statistics focuses on the modelling of processes where geographi-

cal information is of interest or relevant to understand an underlying physical

phenomenon. The areas of application of these methodologies are vast, such

as in environmental sciences, forestry, and agriculture. It is often essential

that we understand these phenomena to better understand their effects in

nature. Notably in environmental science, there has been a growing need

for understanding the changes in the Earth’s climate as well as increas-

ing concerns due to their potential impact on human health. Our work is

mainly motivated by these concerns. We focus on diverse objectives related

to environmental sciences, which we describe below.

This thesis starts by providing some background on spatial statistics in

Chapter 2. In Chapter 3, we provide an overview of approximate methods

for performing Bayesian inference.

In Chapter 4, we analyze temperature fields in the Pacific Northwestern

region. The importance of modelling temperature fields goes beyond the

need to understand a region’s climate and serves too as a starting point for

understanding their socioeconomic, and health consequences. Particularly

due to the topography of this region, temperature modelling has been rec-

ognized to be challenging (Mass, 2008; Salathé et al., 2008; Kleiber et al.,

2013), and demands flexible spatio-temporal models that are able to handle

nonstationarity and changes in trend.

Our main message is on how appropriately modelling the spatio-temporal

mean can help resolve complex patterns for nonstationarity and improve spa-

tial prediction. This is often achieved with an exploratory analysis to better

understand the localized changes in trend, instead of simply focusing on the

modelling of the spatial covariance structure. We argue that carefully mod-
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elling the spatio-temportal mean is needed to better represent interesting

smaller-scale trends, especially for regions with a complex terrain like the

Pacific Northwest, which may not be captured by global climate models.

Another contribution is the ability to accommodate features in the mean

that vary over space by extending the spatio-temporal model proposed in

Le and Zidek (1992). This methodology is flexible and able to accommodate

nonstationarity.

We then introduce two comparable strategies for performing spatial pre-

diction. The first is based on the extended Bayesian spatial prediction

method after an exploratory analysis to better understand the local changes

in trend, and the realization of the need to account for interacted spatio-

temporal features in the mean. The second is based on tackling the anoma-

lies of expected climate in the Pacific Northwest, based on the average val-

ues of temperature computed over a 30-year range (1981-2010), provided

by PRISM Climate Group (Daly et al., 1994, 1997, 2000). For the latter

strategy, we observed a higher mean squared prediction error for out-of-the-

sample monitoring stations.

Subsequently, in Chapter 5, we explore the data fusion problem, where

our goal is to combine information from multiple sources that might have

been measured at different spatial scales. In weather studies, data measure-

ments are often supplemented by information brought by computer model

outputs. These computer models simulate physical phenomena in order bet-

ter understand complex physical systems. We provide a description of the

Bayesian Ensemble Melding model (BEM) methodology introduced by Liu

(2007) following Fuentes and Raftery (2005). The main idea lies in linking

processes on mismatched scales through an underlying “true” process. One

of the main disadvantages of these methodologies is the computational bur-

den faced while performing inference, as noted in many applications (Swall

and Davis, 2006; Smith and Cowles, 2007; Foley and Fuentes, 2008). Here,

we introduce a scalable inference methodology alternative for the BEM us-

ing integrated nested Laplace approximations (INLA) (Rue et al., 2009).

Following Lindgren et al. (2011), we take advantage of a Markov represen-

tation of the Matérn covariance family in a continuous space. We illustrate
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the methodology for combining an ensemble of computer model outputs with

data measurements of temperature across the Pacific Northwest.

Then in Chapter 6, we introduce a dynamic strategy with the objec-

tive of performing forecasting that builds on the BEM model’s ability to

accommodate time. The methodology uses an INLA framework and is com-

putationally efficient. We provide a comparison of the DBEM forecasting

strengths with a Bayesian Model Averaging (BMA) (Raftery et al., 2005)

alternative. The DBEM methodology is based on a mixture of posterior

distributions in a training set over time. Our empirical studies indicate that

the DBEM is able take advantage of this smoothing by borrowing strength

of nearby sites, yielding less uncertainty in forecasting intervals, but it un-

derperforms the BMA under a lot of uncertainty a posteriori.

Afterwards, in Chapter 8 we stress how monitoring networks play an

important role in surveillance of environmental processes. We introduce a

flexible monitoring network design strategy based on k-determinantal point

processes (DPP) (Kulesza and Taskar, 2012). An overview of DPPs is pro-

vided in Chapter 7. The k-DPP design is able to yield a spatially balanced

design by imposing repulsion on the distances between existing locations and

hence avoiding spatial clumping, but also has the ability to assess similarity

between the potential locations should there be extra sources of information

known to influence the underlying process of interest. We describe how the

methodology is able to handle both designing and redesigning of a monitor-

ing network.

Moreover, our empirical studies illustrate how the k-DPP sampling de-

sign strategy can be used as a spatially balanced sampling design alternative

to the space-filling design (Royle and Nychka, 1998). The main advantage is

due to to the fact that it is essentially a randomized design strategy, which

can be useful to help mitigate selection bias risks. Due to its flexibility, a

sampling k-DPP design strategy is particularly suited to the design of mo-

bile networks. Another notable characteristic of the k-DPP design objective

is that it is constructed in such way that is strongly similar to the entropy-

based design (Caselton et al., 1992), and can be viewed as a randomized

version of this design. We introduce a sampling strategy based on k-DPP
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that can be particularly useful to approximate the optimal solution for the

entropy-based design when the number of combinations is prohibitive, due

to the NP-hardness of this design criterion (Ko et al., 1995).

Finally, Chapter 9 reflects on what we have learned in the work reported

in this thesis and in turn the future research to which our work leads.
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Chapter 2

Spatial Statistics

Spatial statistics comprises a wide range of statistical methods intended

for the analysis of georeferenced data. Rapid advances in technology con-

tribute to the ease of collecting spatially referenced data. In science, spatial

data arise in many applications, including environmental sciences, epidemi-

ology, agriculture, and image processing, to name just a few. Notably in

environmental science, there is a need for understanding the changes in the

Earth’s climate as well as their impact in human health. Therefore, spatial

statistics studies are not only required from a scientific perspective, but also

for regulatory purposes. The spatial statistics literature is often divided into

three main branches: geostatistics, lattice data and point patterns (Cressie,

1993; Cressie and Wikle, 2011; Banerjee et al., 2014).

In geostatistical studies, the idea is that there exists an underlying spa-

tial process that governs a particular physical phenomenon, but data are

only observed at a finite set of locations. The locations, however, are con-

sidered fixed. This theory is often used to understand weather phenomena,

such as temperature fields, which will be the focus of Chapter 4. In such

applications, a monitoring network refers to the weather stations at which

the data are recorded. An overview is provided in Section 2.1.

Furthermore, the analysis of lattice data refers to data that are obtained

on subregions that make up a larger space. An example would be pixel values

from remote sensing. Despite the terminology, data need not be observed in

regularly spaced locations. For instance, in epidemiological studies, there is

an interest in mapping occurrences of diseases, but the information is often

gathered in a provincial or state scale.

Finally, point patterns are associated with studies in which the main in-

terest lies in the location of event occurrences, and assessing whether there
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2.1. Overview of Geostatistics

may be a systematic pattern. Unlike geostatistical studies, there is random-

ness associated to the locations. A brief overview is provided in Section

2.2.

2.1 Overview of Geostatistics

Geostatistics is a branch of spatial statistics in which inference for a spa-

tially continuous phenomenon is based on spatially discrete sampled data, for

instance, measurements of temperature obtained at several different weather

stations.

In geostatistics, the interest is in a latent continuous process {Y ∗(s) :

s ∈ Rd}, where d is the dimension of the space. Geostatistical analysis,

however, is based on a real-valued process {Y (s) : s ∈ G}, which is a partial

realization of the process on the whole space, where G ⊂ Rd. The data come

from measurements at each location si, denoted as Y (si), i = 1, . . . , n.

A stochastic process is assumed to be a spatial Gaussian process if,

for a finite collection of locations si, i = 1, . . . , n, the joint distribution

of Y = (Y (s1), . . . , Y (sn)) is multivariate Gaussian. Gaussian processes

have been central in spatial statistics, particularly in geostatistical studies.

Gelfand and Schliep (2016) provides a description of how Gaussian processes

have become “the most valuable tool in geostatistical modelling”. One of

the main advantages is that it suffices to describe a mean and covariance

structure and, additionally, the marginal and conditional distributions are

known.

Having said this, there are other works aimed at addressing scenarios in

which the normality assumption is not realistic, such as transformations of

the data as in De Oliveira et al. (1997), the flexibility of generalized linear

models in a geostatistical framework proposed by Diggle et al. (1998), or

even alternative stochastic representations introduced by a scale mixing of

a Gaussian process as in Palacios and Steel (2006).

As pointed out in Diggle and Ribeiro Jr (2007), the basic geostatistical
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model assumes that for each location s,

Y (s) = x(s)>β + η(s) + ε(s), ε(s) ∼ N(0, τ2), (2.1)

where the mean surface µ(s) = x(s)>β is a linear function of some spatially-

referenced explanatory variables stored in the vector x(s)>, η(s) is a second-

order stationary process with zero mean and variance σ2, as well as an

isotropic correlation function, and ε(s) is an uncorrelated Gaussian process

with zero mean and variance τ2. The variance τ2 is referred to as the nugget

effect and interpreted as measurement error and small-scale variation. The

quantity τ2 +σ2 is known as the sill whereas the variance σ2 is known as the

partial sill. In the above and throughout this thesis, > denotes transpose.

A random process η(s) is second-order stationary if

E[η(s)] = µ(s) = µ, and (2.2)

Cov(η(s + h), η(s)) = C(si − sj), (2.3)

that is, µ(s) is constant for all s ∈ D and the covariance between any two

points s and s + h in D depends only in the separation vector h. C(·) is

known as covariance function.

Furthermore, a random process η(s) is intrinsic stationary if

E[η(s + h)− η(s)] = 0, and (2.4)

Var[η(s + h)− η(s)] = 2γ(h), (2.5)

for all s and s + h ∈ D. The quantity 2γ(·) is known as a variogram

whereas γ(·) is known as a semivariogram, which are useful to describe

spatial dependency. Note that Cov(η(s + h), η(s)) can be written as

Cov(η(s + h), η(s)) = σ2ρ(||h||), (2.6)

where ρ(||h||) = Corr{η(s), η(s + h)}. Hence, another way of defining the
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semivariogram is through the correlation function ρ, where

γ(h) = σ2(1− ρ(h)), (2.7)

where ρ(h) = Corr{η(s), η(s + h)}.
When the covariance function depends only on the distance between the

sites, that is,

Cov(η(s + h), η(s)) = C(||h||), (2.8)

the process is known as isotropic. An isotropic and intrinsic stationary

process is known as homogenous process.

In the classical spatial textbooks Cressie (1993); Cressie and Wikle (2011);

Diggle and Ribeiro Jr (2007), there are several examples of isotropic para-

metric covariance functions, such as the Matérn family. In the Matérn fam-

ily, the covariance function is

C(u) = σ2
{

2κ−1Γ(κ)
}−1

(u/φ)κKκ (u/φ) , (2.9)

where u is the Euclidean distance between two locations, Γ denotes the

gamma function, Kκ is the modified Bessel function of order κ > 0. The

parameters σ2 and φ > 0 are the partial sill and scale, respectively.

The smoothness of the process is governed by the parameter κ. When

κ = 0.5, the Matérn covariance function reduces to the exponential, defined

as

C(u) = σ2 exp (u/φ) . (2.10)

It should be noted that the isotropy assumption is usually unrealistic in

environmental applications and there are numerous works in the literature

aimed at handling nonstationarity. An overview of such methods is provided

in Section 2.1.1.

One important objective in geostatistics is to perform spatial prediction

at unobserved locations. Kriging methods provide the best linear unbiased
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estimate of the field at unobserved locations. A detailed description of Krig-

ing methods can be found in the classical spatial textbooks Cressie (1993);

Diggle and Ribeiro Jr (2007); Cressie and Wikle (2011). More recently, there

has been an increased interest in combining multi-source spatially referenced

data. In studies about the weather, for instance, besides the data obtained

from monitoring stations, outputs from deterministic climate models could

provide additional information regarding large-scale variations about the

underlying phenomenon and could ultimately improve spatial prediction.

Since the climate model outputs and monitoring data are often on mis-

matched scales, there has been a growing interest in studying techniques for

handling this change of support problem. This will be the central focus of

Chapter 5.

Another important objective in geostatistical studies is deciding where

to position a monitoring station. The design problem will be the central

focus of Chapter 8.

2.1.1 Handling Nonstationarity

In environmental applications, the isotropy assumption is often unre-

alistic and it is crucial to handle nonstationarity in the spatial modelling.

Recently, many techniques have been developed. A simple approach is to

consider locally stationary models, based on the idea that the effects of

nonstationarity in smaller spatial domains may be negligible. Haas (1990)

suggests a moving-window technique, based on a circular subregion to where

the inference is restricted. The idea was later extended to a spatio-temporal

case (Haas, 1995).

Higdon et al. (1999) propose a model based on a moving average specifi-

cation of a Gaussian process whereas Fuentes and Smith (2001) and Fuentes

(2001, 2002) consider a class of nonstationary processes based on mixture of

local stationary processes. Unlike the moving-window approaches, the model

is defined on the whole region of interest, though locally it still behaves like

a stationary process.

Another idea is to assume that after some deformation of the space, the

9
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process may then be assumed stationary. Of particular note is the Sampson-

Guttorp approach (Sampson and Guttorp, 1992) to spatial deformation,

which considers models of the form

Cov(Y (s1), Y (s2)) = 2ρθ(||f(s1)− f(s2)||), (2.11)

where f is a smooth nonlinear map G → D from the geographical G-space

(G ⊂ Rd) to the deformed D-space (G ⊂ Rd).
The locations of the sites in the D-space are obtained via a multidimen-

sional scaling (MDS) algorithm. A mapping of the sites from the G-space

into the D-space is obtained through the minimization problem of the fol-

lowing criterion over all monotonic functions δ:

min
δ

∑
i<j [δ(dij)− hij ]2∑

i<j h
2
ij

, (2.12)

where dij and hij denote the observed dispersion and the distance between

between sites i and j in the D-space, respectively.

Once the locations of the sites are obtained in the D-space, Sampson

and Guttorp (1992) use thin-plate splines to obtain a smooth mapping of

the sites from the G-space into the D-space and the δ function is replaced

by a smooth function g such that dij ≈ g(hij). It is then possible to obtain

estimates of realizations of the spatial process at ungauged locations by first

smoothly mapping them onto the D-space and subsequently using standard

stationary modeling tools.

Damian et al. (2001) extended the Sampson and Guttorp (1992) ap-

proach in a Bayesian framework, where the locations in the deformed spaced

and the unknown parameters are estimated jointly, thus obtaining a smooth

extrapolation of the deformed space to the whole region of interest. Schmidt

and O’Hagan (2003) then proposed a similar spatial deformation method

based on a Bayesian model, though the mapping of sites is handled in a

single framework, and unlike Sampson and Guttorp (1992), their predic-

tive inferences take into account the uncertainty in the mapping. Schmidt

and O’Hagan (2003) argue that the Sampson and Guttorp (1992) method
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does not account for uncertainty about the mapping since their prediction

method is based on some fixed locations in the distorted space.

Other approaches consider the idea of decomposing the covariance func-

tion for nonstationary processes, such as the work of Nychka and Saltzman

(1998), which considered empirical orthogonal functions, and Nychka et al.

(2002), based on a wavelet basis decomposition. More recently, Bornn et al.

(2012) proposed a dimension expansion approach, based on the idea that

the underlying field can be more straightforwardly described in a higher

dimension.

2.2 Overview of Spatial Point Processes

A point process X is a stochastic mechanism whose realizations consist

of countable sets of points, often referred to as events or point patterns.

When this process generates a countable set of events in a limited region

D ⊂ Rk, it is called a spatial point process. In practice, the locations where

those events occur are of special importance and are modelled as random

variables. In particular, the focus is often on understanding and assessing

patterns in the locations of these events.

The analysis of spatial point processes can be seen in various scientific

applications. For instance, often in forestry applications there may be an

interest in determining whether there is a pattern in the locations of a certain

specie of trees in a forest, or in monitoring forest wildfires. Another common

area where the analysis of spatial point process is found is in epidemiology

applications, where the goal could be in monitoring whether there exists a

cluster in the locations of occurrence of a certain disease.

Spatial point processes are usually classified based on the pattern of the

points. A completely random process is when there is no obvious pattern

or structure in the points. These processes are often modelled using a ho-

mogenous Poisson process, and are sometimes referred to as complete spatial

randomness. The notion of homogeneity is due to the assumption that the

number of points falling in a region B is proportional to its area (or vol-

ume) |B| on average. More specifically, a homogeneous Poisson process X
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in D ⊂ Rk with intensity λ > 0 satisfies the following properties:

• The random variable Y (B) representing the number of events B ⊂ D
follows a Poisson distribution with mean µ(B) = λ|B|.

• For non-overlapping regions B1, . . . , Bm, the number of events in each

region are mutually independent random variables.

For more general inhomogenous Poisson process, the random variable

Y (B) representing the number of events B ⊂ D follows a Poisson distribu-

tion with mean µ(B) =
∫
B λ(x)dx.

When a pattern does exist, it may due to a clustering of events, in which

case it would be reasonable to assume that the occurrence of an event in a

region is associated with occurrence of events nearby. Those processes are

often referred to as aggregative point process.

On the other hand, when events are rather evenly spaced, it is reasonable

to assume that the occurrence of an event in a region is actually preventing

the occurrence of events nearby, that is, repelling events. Those processes are

often called repulsive or regular point processes. In Chapter 7, we introduce

one process of such type called called determinantal point processes.

In order to describe a spatial point process, we need to define its first

and second order properties. The intensity function is defined as

λ(x) = lim
|dx|→0

{
E[N(dx)]

|dx|

}
, (2.13)

where dx is an infinitesimal region that contains the point x, N(dx) denotes

the number of events in this infinitesimal region, and |dx| denotes the area

or volume of this infinitesimal region.

An estimate of the intensity function can be obtained by assuming a

parametric model on the intensity function or by using kernel density esti-

mators (Diggle, 1985; Berman and Diggle, 1989; Bivand et al., 2013). In the
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plane,

λ̂(x) =
1

h2

N∑
j=1

M
(
||x−xj ||

h

)
q(||x||)

, (2.14)

where xj ∈ {x1, . . . , xN} is an observed point, M is a bivariate symmetric

kernel function, and h > 0 is the bandwidth controlling the amount of

smoothing in the estimation. In practice, however, we only observe points

in a window W ∈ D where the point pattern was observed. The number of

points in a circle centred on an point inside the window W is not observable

if the circle extends beyond W , which creates an edge effect. Hence, q(||x||)
is a border correction to compensate for the missingness due to these edge

effects.

The second-order intensity function is defined as

λ(xi, xj) = lim
|dxi|,|dxj |→0

{
E[N(dxi)N(dxj)]

|dxi||dxj |

}
. (2.15)

where xi and xj denote two events in D. The second-order intensity function

is related to the chances of any pair of events occurring in the vicinities of

xi and xj .

When the spatial point process is stationary, its intensity function is

constant, i.e. the mean number of events per unit area is λ(x) = λ, and the

second-order intensity function is reduced to

λ2(x, y) ≡ λ2(xi − xj). (2.16)

For a stationary, isotropic process the second-order intensity function is

reduced to

λ2(x, y) ≡ λ2(||xi − xj ||). (2.17)

Another second-order property of a stationary process is given by the
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following function

K(t) = λ−1E(N0(t)), (2.18)

where N0(t) is the number of events within distance t of an arbitrary event.

Ripley’s K is often referred to as slightly modified estimator of the one in

Ripley (1988), given by

K̂(t) =
1

n(n− 1)
|W |

n∑
i=1

∑
j 6=i

eijI(dij ≤ t), (2.19)

where |W | denotes the area of the observation window, eij is an edge correc-

tion weight. The Ripley’s K is a very common exploratory methodology to

empirically evaluate inter-point dependencies. It is often compared with the

theoretical K based on a Poisson process given by K(t) = πt2, and serves

as a benchmark for no correlation (Baddeley et al., 2015).

A thorough statistical description o these processes can be found in Rip-

ley (1988); Møller and Waagepetersen (2004); Diggle (2013).

2.3 Lambert Conformal Conic Projection

It is extremely important to take into consideration the curvature of the

Earth, especially for large regions such as the ones studied in this thesis. In

order to do so, instead of considering the geographical coordinates of the

observations, such as latitude and longitude, we obtain their corresponding

locations based on a particular cartographic projection called the Lambert

Conformal Conic Projection.

As described in Snyder (1987), a cartographic projection is a systematic

transformation of the latitudes and longitudes of the observations on the

surface of the Earth on a plane. In particular, the Lambert Conformal

Conic Projection places a cone over the sphere of the Earth and projects

the surface conformally (i.e. preserving angles locally) onto the cone. The

scale is true along either one or two standard parallels of latitude.

Geographical coordinates, with λ and φ denoting longitude and latitude

14
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respectively, can be transformed into Lambert conformal conic projection

coordinates by

x = ρ sin θ (2.20a)

y = ρ0 − ρ cos θ, (2.20b)

where

ρ =
R× F

tann(π/4 + φ/2)
(2.21)

θ = n(λ− λ0) (2.22)

ρ0 =
R× F

tann(π/4 + φ0/2)
(2.23)

F = cosφ1 tann(π/4 + φ1/2)/n (2.24)

n =
ln(cosφ1/ cosφ2)

ln[tan(φ/4 + φ/2)/ tan(φ/4 + φ1/2)]
, (2.25)

φ0 and λ0 denoting the reference latitude and longitude, R the radius of

the Earth, φ1 and φ2 the standard parallels. If only one standard parallel is

used, i.e. φ1 = φ2, then n = sin(φ1).
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Chapter 3

Approximate Bayesian

Inference

Let Y be a random vector with density function or probability mass

function given by p(Y|Ψ), where Ψ is a parameter vector characterizing

the distribution of Y. In a Bayesian framework, before observing data, a

probability distribution is assumed for Ψ, namely a prior distribution. This

prior distribution refers to the initial uncertainty about Ψ. After observing

realizations of Y, namely the data y, and via the Bayes’ theorem, one can

obtain the posterior distribution of Ψ as follows

p(Ψ|y) =
p(y|Ψ)p(Ψ)∫
p(y|Ψ)p(Ψ)dΨ

. (3.1)

Statistical inference in a Bayesian framework is based on the posterior

distribution of Ψ, which contains all probabilistic information about Ψ. In

particular, suppose that Ψ = (Ψ1, . . . ,Ψk)
>. Marginal posterior distribu-

tions p(ΨI), where I ⊆ {1, . . . , k}, are obtained by

p(ΨI|y) =

∫
p(Ψ|y)dΨI, (3.2)

where I denote the complement of I.

A common challenge in Bayesian inference is that often it is not possible

to analytically solve the integral in equations (3.1) or (3.2). Numerical

approximations have been developed mostly in the 1980s, such as Naylor

and Smith (1982), Tierney and Kadane (1986), Smith et al. (1987) and

Tierney et al. (1989). With the recent advances in computational methods,

and perhaps motivated by the work of Gelfand and Smith (1990), Markov
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chain Monte Carlo (MCMC) methods have been increasingly popular since

the 1990s.

However, for the class of latent Gaussian models, MCMC strategies pro-

vide a significant computational burden and the need to deal with the com-

mon issue of correlated parameters. In this thesis, we focus on the more

recent and well-established work of Rue et al. (2009), that provides a de-

terministic attractive alternative to the computationally intensive MCMC

methods. We describe this methodology in Section 3.2. In the following

Section 3.1, we provide an overview of the Laplace’s method.

3.1 Laplace’s Method

In order to approximate unimodal posteriors, Tierney and Kadane (1986)

proposed the use of Laplace method to obtain moments of smooth positive

functions. For instance, let G be a smooth positive function on a parameter

space. The posterior mean of G(Ψ) can be written as

E[G(Ψ)] =

∫
G(Ψ)p(Ψ|y)dΨ =

∫
G(Ψ)l(Ψ; y)p(Ψ)dΨ∫
l(Ψ; y)p(Ψ)dΨ

, (3.3)

where p(Ψ|y) denotes the posterior distribution of Ψ, l(Ψ; y) the likelihood

function, and p(Ψ) the prior distribution of Ψ.

Firstly, let L(Ψ) = log(G(Ψ)l(Ψ; y)p(Ψ)) denote the logarithm of the

integrand of the numerator in equation 3.3. Expanding L(Ψ) around its

mode Ψ∗ gives

L(Ψ) ≈ L(Ψ∗)− 1

2
(Ψ−Ψ∗)>I−1(Ψ∗)(Ψ−Ψ∗), (3.4)

where I−1(Ψ∗) = −[∇2L(Ψ)]−1 is minus of the inverse of the Hessian matrix

of L(Ψ) evaluated at its mode Ψ∗. Hence,∫
g(Ψ)l(Ψ; y)p(Ψ)dΨ ≈

∫
exp

{
L(Ψ∗)− 1

2
(Ψ−Ψ∗)>I−1(Ψ∗)(Ψ−Ψ∗)

}
dΨ

= (2π)−
m
2 |I(Ψ∗)| 12 exp {L(Ψ∗)} , (3.5)
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3.2. Integrated Nested Laplace Approximation

where m is the dimension of the parameter vector Ψ.

Similarly, let L̃(Ψ) = log(l(Ψ; y)p(Ψ)) denote the logarithm of the in-

tegrand of the denominator in equation 3.3. Expanding L̃(Ψ) around its

mode Ψ̃
∗

gives

L̃(Ψ) ≈ L̃(Ψ̃
∗
)− 1

2
(Ψ− Ψ̃

∗
)>Ĩ−1(Ψ̃

∗
)(Ψ− Ψ̃

∗
), (3.6)

where Ĩ−1(Ψ̃
∗
) = −[∇2L(Ψ)]−1 is minus of the inverse of the Hessian matrix

L̃(Ψ) evaluated at its mode Ψ̃
∗
. Hence,∫

l(Ψ; y)p(Ψ)dΨ ≈
∫

exp

{
L̃(Ψ̃

∗
)− 1

2
(Ψ− Ψ̃

∗
)>Ĩ−1(Ψ̃

∗
)(Ψ− Ψ̃

∗
)

}
dΨ

= (2π)−
m
2 |Ĩ−1(Ψ∗)| 12 exp

{
L̃(Ψ̃

∗
)
}
. (3.7)

Finally, equation 3.3 can be approximated as

E[G(Ψ)] ≈ |I
−1(Ψ∗)|

1
2

|Ĩ−1(Ψ∗)|
1
2

exp
{
L(Ψ∗)− L̃(Ψ̃

∗
)
}
. (3.8)

3.2 Integrated Nested Laplace Approximation

The integrated nested Laplace approximation (INLA) method was pro-

posed by Rue et al. (2009) as a way of performing approximate Bayesian

inference for latent Gaussian models. The INLA package for computation

in R is available for download at www.r-inla.org (last accessed on June 15,

2016). In this section, we provide an overview of the INLA method.

Consider the following hierarchical structure

yi|x,θ ∼ p(yi|xi,θ) (3.9a)

x|θ ∼ p(x|θ) (3.9b)

θ ∼ p(θ), (3.9c)

where y = (y1, . . . , ynd)
′ denotes the observed data, x = (x1, . . . , xn)′ the

elements of the latent field, θ a m-dimensional hyperparameter vector, where

yi|x,θ belongs to the exponential family of distributions and x|θ is assumed
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3.2. Integrated Nested Laplace Approximation

to follow a Gaussian distribution. Furthermore, it is assumed that data are

conditionally independent given the latent field x. Hence,

p(y|x,θ) =

n∏
i=1

p(yi|xi,θ). (3.10)

The posterior distribution is then given by

p(x,θ|y) ∝ p(θ)p(x|θ)
n∏
i=1

p(yi|xi,θ). (3.11)

The latent field x is often of high dimension, but it is assumed that they

have conditional independence properties. In particular, Rue et al. (2009)

consider models that satisfy the Markov property, i.e, xi|x−i only depends

on a subset x−i, where x−i = (x1, . . . , xi−1, xi+1, . . . , xn). In this case, the

latent field is a Gaussian random field and its precision matrix is sparse,

which is the key ingredient for computational efficiency.

In particular, Rue et al. (2009) focus on approximating the following

marginal distributions

p(xi|y) =

∫
p(θ|y)p(xi|θ,y)dθ (3.12)

p(θj |y) =

∫
p(θ|y)dθ−j , (3.13)

for every i = 1, . . . , n and j = 1, . . . ,m.

When the integrals in (3.12) and (3.13) cannot be found analytically, ap-

proximations for p(xi|θ,y) and p(θ|y) are obtained and denoted by p̃(xi|θ,y)

and p̃(θ|y), respectively. Thus, one can construct the following nested ap-

proximations

p̃(xi|y) =

∫
p̃(θ|y)p̃(xi|θ,y)dθ (3.14)

p̃(θj |y) =

∫
p̃(θ|y)dθ−j . (3.15)

Via numerical integration, an approximation can be obtained for p̃(xi|y)
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as follows

p̃(xi|y) ≈
∑
j

p̃(xi|θj ,y)p̃(θj |y)∆j (3.16)

where ∆j denotes the area weights associated with the evaluation points θj .

Below, we discuss strategies for approximating p(θ|y), p(xi|θ,y), and

for the marginal likelihood of the data, p(y).

Approximation of p(θ|y)

The approximation of p(θ|y) is equivalent to the Laplace approximation

for the marginal posterior distribution originally proposed by Tierney and

Kadane (1986), and is given by

p̃(θ|y) ∝ p(x,θ,y)

p̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

, (3.17)

where p̃G(x|θ,y) is the Gaussian approximation of the full conditional dis-

tribution of x and x∗(θ) is the mode of the full conditional x for a given

θ. The proportional sign in (3.17) is due to the fact that the normalizing

constant of p(x,θ|y) is unknown.

Note that

p(x|θ,y) ∝ exp

{
−1

2
x′Q(θ)x +

∑
i

log(p(yi|xi,θ))

}
, (3.18)

where Q(θ) denotes the precision matrix of the Gaussian latent field with

hyperparameters θ. Obtaining the Taylor expansion of second order about

x∗ gives

p̃(x|θ,y) ∝ exp

{
−1

2
x′(Q(θ) + diag(c))x + d′x

}
, (3.19)

where c and d are the coefficients of the expansion, and diag(·) represents

a diagonal matrix.

In practice, Rue et al. (2009) note that there is no need to represent
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p̃(θ|y) parametrically, rather, explore it sufficiently well in order to select

“good” points for the numerical integration. That is done by locating the

mode θ∗ of p(θ|y) and exploring the log-posterior in order to select points

in regions of high probability mass for use in the integration.

However, should the number of hyperparameters be large, say greater

than 5, this grid exploration strategy can be very inefficient, with a compu-

tational cost that grows exponentially with the number of hyperparameters.

For such cases, Rue et al. (2009) propose the use of a central composite

design (CCD) strategy to help locate the integration points, which can then

be used to estimate the curvature of p(θ|y) around its mode.

Marginal Likelihood Approximation

An approximation for the marginal likelihood can be obtained from

(3.17),

p̃(y) =

∫
p(x,θ,y)

p̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

dθ, (3.20)

where p(x,θ,y) = p(θ)p(x|θ)p(y|x,θ).

Approximation of p(xi|θ,y)

There are different ways of approximating p(xi|θ,y) (Rue et al., 2009)

as described below. Throughout the applications in this thesis, we opted for

a Laplace approximation.

• Gaussian approximation: The simplest method of approximating

p(xi|θ,y) is based on a Gaussian approximation

p̃G(xi|θ,y) ≡ N(µi(θ), σ2
i (θ)), (3.21)

where µi(θ) and σ2
i (θ) are the marginal mean and variance from

p̃G(x|θ,y). This approximation can be useful in some cases, but as

noted in Rue and Martino (2007), it may lead to errors in the location

or lack of skewness.
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• Laplace approximation: Another way of approximating p(xi|θ,y)

is based on a Laplace approximation:

p̃LA(xi|θ,y) ∝ p(x,θ,y)

p̃GG(x−i|xi,θ,y)

∣∣∣∣
x−i=x∗−i(xi,θ)

, (3.22)

where x∗−i(xi,θ) is the mode of p(x−i|xi,θ,y) and p̃GG(x−i|xi,θ,y)

denotes the Gaussian approximation for x−i|xi,θ,y. A drawback is

the need to evaluate p̃GG for every xi and θ, which is computationally

inefficient. A way of overcoming this is by avoiding the optimization

step and instead obtaining an approximate mode as follows

x∗−i(xi,θ) ≈ Ep̃G(x−i|xi). (3.23)

• Simplified Laplace approximation: Rue et al. (2009) introduced

yet another way of approximating p(xi|θ,y) based on expanding (3.22)

about xi = µi(θ) up to third order, which allows for correcting the

Gaussian approximation p̃G(xi|θ,y) in terms of location and skewness

in a more computationally efficient way.
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Chapter 4

Temperature Fields in the

Pacific Northwest

4.1 Motivation

Meteorological variables are crucial to understand a region’s climate. In

particular, a much discussed topic in recent years is that the Earth’s climate

has been changing: global average atmospheric and sea surface temperature

have increased and extreme temperature events such as heat waves are now

more frequent. This changing climate has led to concerns about its impact

on human health.

Extreme temperatures may contribute to cardiovascular and respiratory

diseases, especially among elderly people, as is outlined in Åström et al.

(2013). Li et al. (2012) studied the relationship between temperature and

morbidity due to extreme heat and revealed that a number of hospital ad-

missions in Milwaukee, Wisconsin were detected to be significantly related

to high temperature. In fact, Robine et al. (2008) estimates an excess death

toll of 70,000 people due to high temperatures in Europe in 2003 and a

World Health Organization (WHO) assessment concluded that the modest

warming that has occurred since the 1970s was already causing over 140,000

excess deaths annually by the year 2004 (World Health Organization, 2009).

The spread of infectious diseases is also now being linked to the climate

change as per Hoberg and Brooks (2015). All of this highlights that the

importance of modelling temperature fields goes well beyond the natural

sciences.

Due to the topography of the study region, the modelling of tempera-
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4.1. Motivation

ture fields can be particularly challenging. Kleiber et al. (2013) recognized

the difficulty faced by statistical models in capturing complex spatial vari-

ability. By analyzing data from the state of Colorado, Kleiber et al. (2013)

developed a bivariate stochastic temperature model for minimum and max-

imum temperature via a nonparametric approach. In the Pacific North-

west, Salathé et al. (2008) focused on the development of a regional climate

model run at a 15-km grid spacing. The topography of the study region

contributes much to the complexity of modelling these fields and demands

flexible spatio-temporal models that are able to handle nonstationarity and

changes in trend.

4.1.1 Contributions

One of our contributions is the ability to accommodate features in the

mean that vary over space by extending the spatio-temporal model pro-

posed in Le and Zidek (1992), and easily performing spatial prediction. This

methodology is described in Section 4.4. Another important feature is its

flexibility due to the fact that no structure is assumed for the spatial covari-

ance matrix. The method thus is able to accommodate nonstationarity. We

illustrate our analysis based on the Sampson and Guttorp (1992) method

for estimating nonstationary spatial covariance structures.

Additionally, our work conclusively shows how appropriately modelling

the spatio-temporal mean field can resolve complex patterns for nonsta-

tionarity and improve spatial prediction. To this end, we also introduce

two comparable strategies for spatial prediction. The first is based on the

extended Bayesian spatial prediction method after a thorough exploratory

analysis to better understand the local changes in trend, and the need to ac-

count for spatio-temporal interactions in the mean. The second is based on

tackling the anomalies of expected climate in the Pacific Northwest, based

on the average values of temperature computed over a 30-year range (1981-

2010), provided by PRISM Climate Group. These data were obtained using

a climate model called PRISM (Parameter-elevation Relationship on Inde-

pendent Slopes Model), described in Daly et al. (1994, 1997, 2000). We
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4.2. The Pacific Northwest

provide an overview of the PRISM in Section 4.3.3.

The outline of this chapter is as follows. We begin by providing a de-

scription about the Pacific Northwestern region in Section 4.2, followed by a

description of the data sets in Section 4.3. Then, we introduce the Bayesian

spatial prediction methodology in Section 4.4. Finally, we discuss the results

in Section 4.5

4.2 The Pacific Northwest

The Pacific Northwest is the region in the western part of North Amer-

ica adjacent to the Northeast Pacific Ocean. It is a rather diverse region,

with four mountain ranges dominating it, including the Cascade Range, the

Olympic Mountains, the Coast Mountains and parts of the Rocky Moun-

tains.

This region is known to have a wet and cool climate overall, though in

more inland areas, the climate can be fairly dry, with warmer summers and

harsher winters. According to Mass (2008), the Northwest weather and cli-

mate are dominated mainly by the Pacific Ocean to the west and the region’s

mountain ranges that block and deflect low-level air. The ocean moderates

the air temperatures year-round and serves as a source of moisture, and

the mountains modify precipitation patterns and prevent the entrance of

wintertime cold-air from the continental interior.

The terrain is another key element to understand the Pacific Northwest

weather. East of the Rocky Mountains is where the coldest air is usually

located, but the Rockies preclude this cold air from reaching the Northwest

and the the cold air that does manage to cross gets warmer when descend-

ing to eastern Washington, Oregon, Cascade Range, British Columbia, and

Alaska. The temperatures in this region are thus controlled by the at-

mospheric circulation patterns, the proximity to the Pacific Ocean and by

elevation.

In the literature, spatial modelling in this region is recognized to be

rather complex and it has been the subject of critical observation by local

weather scientists. More recently, Mass (2008) apprises that the weather in
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4.3. Data Description

the Northwest is often surprising, both in its intensity and in the remarkable

contrasts between nearby locations. Rapid changes and localized weather are

very common in this region and the terrain plays an important role in sep-

arating often radically different climate and weather regimes. Mote (2004)

noticed an apparent tendency for high-elevation stations to exhibit weaker

warming trends than lower-elevation stations when examining temperature

trends in this region. In order to better understand this region, Salathé et al.

(2008) implies that global simulations may indicate large-scale patterns of

change though they may not capture the effects of narrow mountain ranges.

Increases in temperature have been observed throughout the Northwest.

Across the region from 1895 to 2011, a regionally averaged warming of about

0.7 degrees Celsius (1.3 Fahrenheit) was observed (Kunkel et al., 2013; Mote

et al., 2014). This change in climate influences hydrological and biological

changes, and ultimately, may lead to economic and social consequences. All

of this shows the importance of understanding the temperature fields in this

region.

4.3 Data Description

In this section we briefly describe the various temperature data sets

considered in this thesis and their sources. Most map images displayed in

this thesis were obtained via the ggmap R package (R Core Team, 2014;

Kahle and Wickham, 2013).

4.3.1 University of Washington (UW) Probcast Group

Data

The Probcast data set includes forecasts of surface level temperature

data 48 hours ahead, initialized at midnight Coordinated Universal Time

(UTC). Data are available for download at the University of Washing-

ton (UW) Probcast Group web page (http://www.stat.washington.edu/

MURI/, last accessed on June 15, 2016.). One of Probcast Group project’s

main goals was to create methods for the integration of multisource infor-
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4.3. Data Description

mation, derived from deterministic model outputs, observations, and expert

knowledge.

The time range availability for the Probcast data is from January 12,

2000 to June 30, 2000. This six-month period have become central for

this thesis. Stations whose types refer to ship reports, test automated sur-

face observing system reports from the National Weather Service (NWS)

or unidentified were considered unreliable by the Probcast Group and thus

have not been considered in this analysis. Also, we did not consider fixed

buoys type of stations. Figure 5.1 contains a map with the 833 monitoring

stations, spread over the Pacific Northwest.

Figure 4.1: Map of the 833 monitoring stations. Map created using R li-
brary ggmap with tiles by Stamen Design, under CC BY 3.0, and data by
OpenStreetMap, under CC BY SA.

The data come from the UW mesoscale short-range ensemble system

for the Pacific northwestern area, described in detail in Grimit and Mass

(2002). It corresponds to a five-member short-range ensemble consisting

of different runs of the Pennsylvania State University–National Center for

Atmospheric Research fifth generation Mesoscale Model (MM5). The runs

differ due to the different initial values considered. In these data, the grid-

scaled deterministic model outputs have been interpolated to the locations

of the monitoring stations by the Probcast group.
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4.3. Data Description

The MURI data set is not an integrated spatio-temporal data set in the

sense that the locations in which the measurements are available may vary

considerably for different days whilst some stations have very few measure-

ments and model outputs available. The temporal spacing of the observa-

tions is highly irregular as it can be seen in Figure 4.2.

Figure 4.2: Data availability. Notice the unsystematic missingness of the
data pattern.

4.3.2 U.S. Global Historical Climatology Network

The U.S. Global Historical Climatology Network - Daily (GHCND) is an

integrated database of climate summaries from land surface stations across

the globe, developed for several potential applications, including climate

analysis and studies that require data at a daily time resolution, as described

in Menne et al. (2012) and Lawrimore et al. (2011).

Figure 4.3 illustrates the locations of 97 stations where maximum daily

temperature data were downloaded from the GHCND database for the in-

vestigation reported in this thesis. Due to the irregular temporal spacing of

the observations as discussed in Section 4.3.1, we also collect the GHCND

data. Our goal is to emulate the 48-hour forecasts of surface level temper-

ature data from the Probcast group, hence for illustration purposes, the

selected spatio-temporal data time frame is from January to June of the
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year 2000.

Figure 4.3: Locations of 97 stations in the Pacific Northwestern area consid-
ered in this study. Map created using R library ggmap with tiles by Stamen
Design, under CC BY 3.0, and data by OpenStreetMap, under CC BY SA.

Figure 4.4 shows contours of average site temperatures for different

months, obtained by bivariate linear interpolation. Notice that cooler tem-

peratures are observed closer to the Pacific Ocean. Another interesting

feature is the different patterns of temperature variation across the region.

Warmer temperatures are generally found east of the Cascades and since

western Washington is more exposed to air coming from from Puget Sound,

the Straits of Juan de Fuca and Georgia, and the Pacific Ocean, it generally

experiences cooler temperatures.

Our preliminary analysis starts with an exploration of the spatio-temporal

trend, followed by an analysis of the unexplained residuals of the spatio-

temporal process.

Initially a simple geostatistical model was considered where the spatial

trend is described through a second-order polynomial regression model. The

temperature measured on day t at location s is denoted as Yt(s), where

t denotes the time in days and s = (s1; s2), the location coordinates, in

km, after a suitable projection of the relevant part of the globe onto a

flat surface. We considered projected spatial coordinates using the Lambert
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Figure 4.4: Averaged site temperatures for different months. Notice the
different patterns of temperature variation across the region. Map created
using R library ggmap with tiles by Stamen Design, under CC BY 3.0, and
data by OpenStreetMap, under CC BY SA.

conformal conic projection, but for simplicity, we still refer to these projected

coordinates as simply latitude and longitude.

For a fixed time t,

Yt(s) = µt(s) + νt(s), νt(s) ∼ N(0, σ2) (4.1)

µt(s) = αt + β1ts1 + β2ts2 + β3ts1s2 + β4ts
2
1 + β5ts

2
2.

Recall that when the spatial random field is stationary, the semivari-

ogram between two locations sk and sl at a fixed time point t is defined

as

γ(sk, sl) =
1

2
E[(Yt(sk)− Yt(sl))2]. (4.2)

For illustrative purposes, Figure 4.5 contains the binned empirical semi-
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variogram obtained separately for each of the two selected days (January 04

and June 21). The shaded area corresponds to Monte Carlo envelopes ob-

tained by repeatedly recomputing and plotting the semivariance after per-

mutations of the temperature data across the sampling locations. They

indicate regions of uncorrelated data.

Figure 4.5: Binned empirical semivariograms with Monte Carlo envelopes
in shaded area. These envelopes are obtained by permutations of the data
across the sampling locations, and indicate regions of uncorrelated data.

Figure 4.6 illustrates how the latitude and longitude effects change over

time. The longitude effect has a clearly increasing trend and this is possibly

due to the Cascade mountains that extend from southern British Columbia

through Washington and Oregon to Northern California. The Cascades

block the westward movement of most of the cold, dense air that manages

to reach eastern Washington and Oregon.

Our preliminary analysis indicates that for regions where topography

changes significantly, simple polynomial trends commonly used in practice

may introduce bias in the spatio–temporal residuals resulting in a semivari-

ogram with a large squared bias term that can lead to a spurious finding of

nonstationarity when none exists. Thus, our preliminary analysis points to

the need for the improved estimation of the spatial mean model as reported

in the sequel, one that accounts for extra features, notably elevation.

In particular, we recognize that our analysis needs to include spatio–

temporal interactions as well as a longitude–elevation interaction. The latter
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Figure 4.6: Latitude and longitude effects changing over time. The shaded
area represents 95% confidence intervals for these effects.

is due to the effect of the proximity to the Pacific Ocean, which also takes

into consideration the elevation effect due to the mountain ranges when

moving eastward. Moreover, the longitude effect is assumed to depend on

the elevation as well as how far north the station is located, and this effect

must be allowed to vary over time. Similarly, the latitude effect may vary

over time and it is dependent on how far east the weather station is located.

The above considerations lead to a spatio–temporal mean (trend) func-

tion that may be described as follows:

µt(s) ≡ f(long*lat*month,long*elev), (4.3)

where f denotes a linear function, s = (long, lat) are projected latitude

and longitude coordinates, month indicates the month in study, and elev

the elevation at s. The ∗ notation is used to indicate that the mean function

includes the individual, the two-way and, where applicable, the three-way

interaction effects.

However, an alternative method suggests itself, one based on the use of

historical temperature averages over the region to account for these complex

interactions, as a representation of the climate in the Pacific Northwest. We

describe this alternative in the following Subsection 4.3.3.
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4.3.3 PRISM Climate Group Data

PRISM is a climate analysis system that uses point data, a digital eleva-

tion model (DEM), i.e. digital representations of cartographic information

in a raster form, and other spatial data to generate gridded estimates of an-

nual, monthly and event-based climatic parameters (Daly et al., 1994, 1997).

It was developed primarily to interpolate climate elements in physiograph-

ically complex landscapes (Daly et al., 2008), and is particularly useful to

identify short and long-term climate patterns.

The extrapolation of climate over high elevation ranges is often needed

due to the lack of observations in mountainous regions. The use of PRISM

data would then be ideal for complex regions with mountainous terrain such

as the Pacific Northwest. In the literature, Daly et al. (1994, 1997, 2000)

provide a description of the methodology behind PRISM. The main idea

is that it calculates linear parameter–elevation relationships, allowing the

slope to change locally with elevation. Observations nearer to the target

elevation receive more weight than those further up or down slope. For

temperature, the elevation of the top of the boundary layer is estimated by

using the elevation of the lowest DEM pixels in the vicinity and adding a

climatological inversion height to this elevation. (Daly et al., 1997)

The PRISM data we obtained corresponds to average values for temper-

ature computed over a 30-year range (1981-2010), provided by the PRISM

Climate Group, Oregon State University, and available online at http:

//prism.oregonstate.edu (last accessed on June 15, 2016). Our goal is to

use these data as a representation of the climate in the Pacific Northwest.

Having this information enables a comparison with our observations and an

analysis of anomalies (i.e. differences between actual and expected values

via PRISM), which would highlight what could not have been explained by

the expected climate. This will also serve as a baseline comparison with

the more complex mean function proposed in Section 4.3.2 that includes

spatio–temporal interactions. Finally, in the sequel, PRISM data are used

to construct a spatio–temporal trend model as an alternative to that sug-

gested by the analysis reported in Section 4.3.2.
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4.4 Bayesian Spatial Prediction

In this section, we present an empirical Bayesian spatial prediction (BSP)

method built on the assumption that realizations of an underlying random

field are obtained from measurements made at g gauged stations and that

the goal is to obtain spatial predictions at the other u ungauged stations.

Let Yt ≡ (Y
(u)
t ,Y

(g)
t ) denote a p-dimensional row vector (p = u+ g), where

Y
(u)
t and Y

(g)
t corresponds to the row vectors at the ungauged and gauged

stations, respectively. The variables Yt are assumed to be independent

over time, or have passed a pre-filtering preliminary step, such that for

t = 1, . . . , n,

Yt|zt,B,Σ ∼ Np(ztB,Σ), (4.4)

where N denotes a multivariate normal distribution, with subscripts making

the dimension explicit; the zt is a k-dimensional row vector of covariates and

B denotes a (k × p) matrix of regression coefficients.

As originally formulated in Le and Zidek (1992), in the BSP modelling,

covariates were allowed to vary with time, but not space. Over the ensuing

decade the BSP was extended in a variety of ways as summarized in Le and

Zidek (2006). In particular, the response vector at each space–time point

could be multivariate, thus enabling site specific random covariates with

a Gaussian distribution to be incorporated in the BSP by first including

them in the fitted multivariate joint distribution in Equation (8.44) and

then conditioning on them to get the BSP. However, no way had been found

to incorporate site specific nonrandom covariates.

However, such covariates are confronted in our analysis of temperature

fields in complex regions, as the spatio-temporal mean function must include,

say, topographic features as well as the oftentimes crucial spatio-temporal

interactions. Thus, an extension was needed and the one that we developed,

will now be presented.

Let Y be a (n × p) response matrix such that Y ≡ (Y1, . . . ,Yn), Z is

a (n × k) design matrix and B a (k × p) matrix of regression coefficients.
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4.4. Bayesian Spatial Prediction

Assume that

Y|Z,B,Σ ∼ MN n×p(ZB, I,Σ) (4.5)

B|B0,Σ,F ∼ MN k×p(B0,F
−1,Σ) (4.6)

Σ ∼ W−1
p (Ξ, δ), (4.7)

where F−1 is a positive (k×k) definite matrix, and Ξ a (p×p) hyperparame-

ter matrix. Here,MN andW−1 denote the matrix normal and the inverted

Wishart distributions, respectively, with subscripts making the dimensions

explicit. We write

B0 =


β

(1)
0 . . . β

(p)
0

β
(1)
1 . . . β

(p)
1

...
...

β
(1)
k−1 . . . β

(p)
k−1

 , (4.8)

where β
(j)
0 = α +

∑
l βzlzlj includes the site–specific covariates at site j,

denoted as zlj , j = 1, . . . , p and for i = 1, . . . , k, β
(j)
i denotes the coefficients

of the non-site specific covariates. The first column of the Z matrix cor-

responds to a unit column vector, whereas the subsequent columns would

contain the non–site specific covariates. Note that the method entails “bury-

ing” the site–specific covariates in the intercepts β
(j)
0 . In practice, all of the

regression parameters are first estimated via least squares, and ultimately

plugged into the B0 matrix.

Denoting the matrices Σgg and Σuu as the covariance matrices of Y(g)

and Y(u), respectively, and Σug the cross-covariance, we can partition Σ

and similarly the hyperparameter matrix Ξ as

Σ =

(
Σuu Σug

Σgu Σgg

)
and Ξ =

(
Ξuu Ξug

Ξgu Ξgg

)
. (4.9)

For a fully (proper) Bayesian approach, extra hierarchy levels could be

specified. Nonetheless, the BSP was developed from its inception to save
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4.5. Results

computational time by bypassing this approach. It was recognized that, in

practice, the lack of prior knowledge would inevitably lead to a somewhat

arbitrary choice of a convenience prior in this high-dimensional model. Thus,

a preliminary empirical Bayes step is required for estimating B0 via a linear

regression modelling approach, as suggested by the preliminary analysis in

Section 4.3.2.

When performing spatial prediction, we use the result showed in Le and

Zidek (1992) that the conditional distribution of Y
(u)
t , where t ∈ {1, . . . , n}

is given by

Y
(u)
t |y

(g)
t ,Z,B0 ∼ tu

(
µ(u),

d

δ − u+ 1
Ξu|g, δ − u+ 1

)
, (4.10)

where

µ(u) = ztB
(u)
0 + ΞugΞ

−1
gg (y

(g)
t − ztB

(g)
0 ) (4.11)

d = 1 + ztF
−1z>t + (y

(g)
t − ztB

(g)
0 )Ξ−1

gg (y
(g)
t − ztB

(g)
0 )> (4.12)

Ξu|g = Ξuu −ΞugΞ
−1
gg Ξgu. (4.13)

Here B0 was partitioned as B0 = (B
(u)
0 ,B

(g)
0 ) according to the partition of

Yt (superscripts denoting the ungauged and gauged parts).

To finish model development, the covariance of the residual responses in

Equation (8.44), Ξu|g , must be specified. However, in practice and in our

applications, these residuals will not have a second-order stationary distribu-

tion. Thus, we need to handle residuals with a non-stationary distribution.

In this work, we adopt the Sampson-Guttorp (SG) warping method (Samp-

son and Guttorp, 1992), as described in Section 2.1.1.

4.5 Results

This section presents the results of applying the BSP method described in

Section 4.4. This is implementable using the EnviroStat v0.4-0 R package

(Le et al., 2014), including the extension proposed. For this purpose, we

initially selected 64 stations at random for training, leaving the remainder
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4.5. Results

of the 97 stations for validation purposes, as illustrated in Figure 4.7.

Figure 4.7: Locations of the stations selected for training and for validation
purposes. Map created using R library ggmap with tiles by Stamen Design,
under CC BY 3.0, and data by OpenStreetMap, under CC BY SA.

Work begins with an analysis of the spatio-temporal trend, as it is de-

scribed in the subsequent Section 4.5.1, followed by an analysis of the spatial

correlation in the residuals, after taking into account the mean trend in Sec-

tion 4.5.2.

4.5.1 The Spatio–temporal Trend

For the training stations, Figure 4.8 illustrates the effect of projected

latitude on temperatures considering different scenarios of longitude, eleva-

tion and time. Notice that moving north implies that the temperature in

fact decreases in different rates, depending on your initial scenario. We refer

to this as the RC-effect, which relates to a phenomenon where the effect of

latitude and longitude change over time, that is, at certain times, widely

separated sites might be strongly correlated. In a statistical model, this

effect alerts to the need to include space-time interactions.

Figure 4.9 indicates that the Gaussian assumption is reasonably met, so

no transformation is required.

37

http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://creativecommons.org/licenses/by-sa/3.0


4.5. Results

0

10

20

30

−5.0 −2.5 0.0 2.5

Centred Latitude (km × 10−2)

Te
m

pe
ra

tu
re

 (
°C

)

Scenarios
Eastern, Low, June

Western, Low, June

Eastern, High, June

Western, High, June

Western, Low, Feb

Eastern, Low, Feb

Western, High, Feb

Eastern, High, Feb

Figure 4.8: Investigating effect of projected latitude (centred) on tempera-
tures considering different interaction scenarios for longitude (eastern, west-
ern), elevation (high, low) and time (February, June).

Figure 4.9: Normal quantile-quantile plot of the residual temperatures of a
linear model with spatio-temporal mean function as in Equation 4.3.

The following Subsection 4.5.2 provides an analysis of the spatial corre-

lation in the residuals, after taking into account this spatio-temporal trend.
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4.5. Results

4.5.2 Spatial Correlation in the Residuals

An important diagnostic in applying the SG method, supplied with the

EnviroStat v0.4-0 R package (Le et al., 2014), is the biorthogonal grid

seen in Figure 4.10. It represents the degree of contracting and expanding

of the G-space needed to attain an approximately stationary domain in D-

space through deformation. The solid lines indicate contraction and dashed

lines, expansion. The expansions can be explained by the abrupt changes

in the residual temperatures for nearby regions, due to diverse terrain. A

contraction is seen in Eastern Washington, a basin located between the

Cascade and Rocky Mountains.

0 200 400 km

Figure 4.10: Biorthogonal grid for the thin-plate spline characterizing the
deformation of the G-space, using NCDC data set. Solid line indicates con-
traction and dashed lines indicate expansion.

Figure 4.11 illustrates the effect of different spline smoothing λ values in

the deformed space. Without any smoothing (λ = 0), the D-space is folded

over on itself, implying that widely separated sites tend to be more correlated

than sites located between them. To make the results more interpretable,

we have chosen λ = 5, a value that keeps more of the gains from deformation

seen in Figure 4.12, without folding the G-space.

Figure 4.12 contains estimated dispersions after applying the SG ap-
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4.5. Results

proach (Sampson and Guttorp, 1992) in G-space and D-space. A more sta-

tionary fit is seen in the distorted space, since less variability is seen around

the (stationary) variogram line.

We repeated the analysis using the PRISM data described in Section

4.3.3. This corresponds to average values for temperature computed over a

30-year range (1981-2010), and we use these data to represent the expected

climate in the Pacific Northwest. Instead of estimating trend coefficients

based on Equation 4.3, we analyze anomalies (i.e. differences between our

observed values and those via PRISM). The goal is to validate our estimated

trend by comparing improvements in prediction between these different anal-

yses.
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Figure 4.11: Deformation assuming different spline smoothing λ values.
Note that when λ = 0, no smoothing is applied.
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Figure 4.12: Estimated dispersions after SG approach in G-space and in
D-space. The solid line represents a fitted exponential variogram.

In the following section, we assess and compare the spatial predictions

made by our fitted spatio–temporal model with our two alternative ap-

proaches for modelling the spatio–temporal trend. We argue that PRISM

captures the large-scale trend well, but it may not capture the effects of

terrain at smaller scales.

4.5.3 Spatial Prediction

In this section we present our assessments of the prediction accuracy of

our fitted hierarchical spatio–temporal model. For validation purposes, we

compare the predicted values with the real values observed for the 33 left-

out stations. Figure 4.13 contains a map of the mean squared prediction

errors, averaged over time.

The prediction accuracy of the hierarchical spatio-temporal Bayesian

model is also compared to ordinary kriging. For ordinary kriging, we used

the geoR v.1.7-4.1 R package (Ribeiro Jr. and Diggle, 2001). The pa-

rameter estimates of the Exponential covariance function were obtained via

maximum likelihood for the different time points. Figure 4.14 displays the

mean squared prediction error for the ungauged stations and at different time

points, respectively. From Table 4.1, notice that the coverage for our space-

time interaction spatial mean is similar when analyzing PRISM anomalies,
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Figure 4.13: Map of mean squared prediction errors (◦C2), MSPE, averaged
over time for the different methods considered: Bayesian spatial prediction
(BSP), Bayesian spatial prediction with PRISM (BSP – PRISM), and ordi-
nary kriging (OK). The red triangles represent the stations used for training
purposes. Map created using R library ggmap with tiles by Stamen Design,
under CC BY 3.0, and data by OpenStreetMap, under CC BY SA.

which serves as a way to characterize the strength of our general temperature

mapping theory.

Table 4.1: Empirical coverage probabilities and prediction summaries for the
different methods considered: Bayesian spatial prediction (BSP), Bayesian
spatial prediction with PRISM (BSP – PRISM), and ordinary kriging. The
overall MSPE refers to the mean squared prediction errors (◦C2) averaged
over space and time.

BSP BSP – PRISM Ordinary kriging

Empirical coverage
probabilities of 95% CI

0.918 0.921 0.529

Overall MSPE 5.396 7.000 14.032

(std.error) (2.362) (3.733) (5.823)

In addition, Figure 4.14 shows that the mean squared prediction errors
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4.6. Concluding Remarks

across ungauged stations and across time are, on average, smaller for the

BSP method introduced considering the spatio-temporal interactions in the

mean function as in Equation 4.3. The reason for this could be due to

the fact that PRISM may not be capturing the effects of terrain at smaller

scales.

Another disadvantage is that the PRISM data are currently not available

at locations outside of the United States. Thus, we advocate that for regions

with complex terrain like the Pacific Northwest, a thorough exploratory

analysis is crucial to better understand the local changes in trend.
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Figure 4.14: Mean squared prediction errors (◦C2) averaged across ungauged
stations and across time for the different methods considered: Bayesian
spatial prediction (BSP), Bayesian spatial prediction with PRISM (BSP -
PRISM), and ordinary kriging (OK).

4.6 Concluding Remarks

This chapter focused on the modelling temperature fields in the Pacific

Northwest, where rapid changes in temperature and localized weather are

common particularly due to the complex terrain.

We introduced a flexible stochastic spatio-temporal model for daily tem-
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peratures in the Pacific Northwest that handles nonstationarity. We also

stressed the need for spatio-temporal interactions to understand the tem-

perature trends. We believe that global climate models may fail to explain

interesting smaller-scale trends, especially in regions with a complex terrain

like the Pacific Northwest.

In addition, we introduced two comparable strategies for spatial pre-

diction in regions with a complex terrain. The first is an extension of the

Bayesian spatial prediction proposed by Le and Zidek (1992). We extended

this method to take into account spatio-temporal interaction features in the

mean to capture the localized changes in trend. The second is based on

tackling the anomalies of the expected climate in the Pacific Northwest,

based on the average values of temperature computed over a 30-year range

(1981-2010), provided by PRISM Climate Group. PRISM data, however,

are currently not available at locations outside of the United States.

This work conclusively shows how appropriately modelling the spatio-

temporal mean field can help resolve these complex patterns for nonsta-

tionarity and improve spatial prediction in contrast to using simpler mean

structures. This can be seen by larger MSPEs observed for the BSP-PRISM,

where anomalies of expected weather were analyzed, instead of investigating

observed changes in temperature across the Pacific Northwest. Moreover,

we would like to emphasize the need to account for nonstationarity in this

region, as demonstrated by the underperformance of the more traditional

kriging methodology based on stationary models.

Our analysis also discovered abrupt changes in the observed tempera-

tures for nearby regions due to diverse terrain in a great part of the western

region, and less variable weather conditions in Eastern Washington, a basin

located between the Cascade and Rocky Mountains.
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Chapter 5

Ensemble Modelling

5.1 Motivation

The use of computer models has become increasingly common in envi-

ronmental science applications. These computer models are used to simulate

physical phenomena in order to better understand complex physical systems.

From a statistical perspective, the focus is often on processing information

brought by their outputs and gathering useful insights about the underlying

system. In practice, environmental agencies often depend on these kinds of

information for regulatory purposes.

It should be noted, however, that these outputs come from deterministic

models, and hence there are no indications of uncertainty associated with

them. Kennedy and O’Hagan (2001) dealt with uncertainty analysis and

introduced a Bayesian calibration technique by incorporating information

from both computer model outputs and monitoring data.

One of the recent challenges in spatial statistics applications is in fus-

ing information from multiple sources that might have been measured at

different spatial scales. This problem is often seen as data fusion and it is

also referred to as the change of support problem. Although the issue of

handling mismatched spatial scales is a well established problem, recent ad-

vances in remote sensing highlights the need for suitable statistical methods

to address it (Nguyen et al., 2012). A comprehensive review of methods for

dealing with mismatched spatial data can be found in Gotway and Young

(2002) and Gelfand (2010). In this chapter, we build upon Fuentes and

Raftery (2005), where we handle different spatial scales by linking them

through an underlying “true” process at the micro-scale.

Notably, in weather studies, data often come from monitoring stations,
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as it was the case in Chapter 4, but supplemented by the inclusion of the

computer model outputs in the modelling. In this chapter, we will explore

these ideas for combining multiple computer models for a temperature data

set in the Pacific Northwest. As noted in Nychka and Anderson (2010),

numerical weather prediction is one of the most successful applications of

the data fusion problem, where a large set of observations are combined

with physical models describing the atmosphere evolution and ultimately

producing high resolution weather forecasts.

Other strategies that do not assume an underlying “true” process include

downscaler models (Berrocal et al., 2010a,b, 2012) and a two-stage regression

approach (Guillas et al., 2006, 2008; Zidek et al., 2012). The downscaling

strategy handles the station and model outputs observations at mismatched

scales via a regression model with spatially varying coefficients. The two-

stage regression approach as in Guillas et al. (2006, 2008) is based on first

regressing the station data on the model outputs and then regressing the

estimated residuals of the first step on indicators of time and other temporal

components. The work in Zidek et al. (2012) provides an extension based

on an ad-hoc method to allow spatial interpolation of the coefficients of the

linear regression.

5.1.1 Contributions

Ensemble modelling is hereby referred to as a statistical post-processing

technique based on combining multiple computer models outputs in a sta-

tistical model with the goal of obtaining probabilistic forecasts.

In Section 5.2, we provide a description of the Bayesian Ensemble Meld-

ing model (BEM) methodology introduced by Liu (2007) following Fuentes

and Raftery (2005). The main idea lies in linking processes on mismatched

scales through an underlying “true” process. One of the main disadvantages

of these methodologies is the computational burden faced while performing

inference, as noted in many applications (Swall and Davis, 2006; Smith and

Cowles, 2007; Foley and Fuentes, 2008).

Moreover, simple MCMC strategies are known to be infeasible when
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handling large spatial data sets. In this chapter, our main objective is to

introduce a scalable inference methodology alternative for the BEM using

integrated nested Laplace approximations described in Section 3.2. We fol-

low Lindgren et al. (2011) and take advantage of a Markov representation of

the Matérn covariance family, connecting ideas from Gaussian Markov ran-

dom fields (GMRFs) and stochastic partial differential equations (SPDEs)

in a continuous space.

Since the BEM is essentially a spatial model, our ultimate goal is to

provide some background to Chapter 6, where we build upon the ability of

the BEM to accommodate time and describe a dynamic strategy with the

objective of performing forecasting. In that chapter, we will take advantage

of the computational gains of the INLA methodology for performing infer-

ence for the BEM. On the other hand, McMillan et al. (2010) proposed a

spatio-temporal extension through a specification of the underlying “true”

process at a grid cell scale. They made use of MCMC methods for perform-

ing inference and due to the large number of grid cells, the computational

burden was still an issue.

5.2 The Bayesian Ensemble Melding Model

The Bayesian Ensemble Melding (BEM) model described in Liu (2007)

can be viewed as an extension of the Bayesian model proposed by Fuentes

and Raftery (2005), by allowing the combination of the observed measure-

ments with outputs from an ensemble of deterministic models.

Similarly to Fuentes and Raftery (2005), the BEM model is able to

link processes on mismatched scales through an underlying “true” process

{Z(s) : s ∈ Rd}, where d is the dimension of the domain, and through the

consideration of the conceptual processes {Z̃j(s) : s ∈ Rd}, the deterministic

model output processes, j = 1, . . . , p.

The different spatial scales are dealt with by linking the underlying

“true” process in a micro-scale with the model outputs, which may be aver-

ages at a grid-scale resolution. A similar idea was used in Wikle and Berliner

(2005), where they describe it as a conditional change of support solution.
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Wikle and Berliner (2005) handle the mismatched scales by conditioning

a true unobserved spatially continuous process on an areal average of the

process at some support in which there is interest in performing inference.

For the BEM model, at a given location s ∈ Rd, the measurement process

is modeled as

Ẑ(s) = Z(s) + e(s), (5.1)

where the measurement error process at location s is assumed to be e(s) ∼
N(0, σ2

e), and independent of Z(s). We represent the realizations of the

measurement process at all locations as the vector Ẑ.

In addition, for each j = 1, . . . , p, the j-th output process from the

deterministic models {Z̃j(s) : s ∈ Rd} is modeled as:

Z̃j(s) = aj(s) + bj(s)Z(s) + δj(s), (5.2)

where for each j = 1, . . . , p, the error term is δj(s) ∼ N(0, σ2
δ,j). The param-

eter functions aj and bj measure the additive and multiplicative calibration

parameters for the j-th deterministic model. The processes δj(·) are assumed

independent of each other as well as independent of e(s), the measurement

error process.

Since the deterministic model outputs are generally measured in sub-

regions B1, . . . , Bm (blocks) of the study domain, for each deterministic

model j = i, . . . , p, and each sub-region i = 1, . . . ,m,

Z̃j(Bi) =
1

|Bi|

(∫
Bi

aj(s)ds + bj

∫
Bi

Z(s)ds +

∫
Bi

δj(s)ds

)
, (5.3)

where |Bi| denotes the area of the sub-regions of the study domain for i =

1, . . . ,m.

One way of approximating
∫
Bi
Z(s)ds is by Monte Carlo integration,

after obtaining a sample of locations over the B1, . . . , Bm. To this end,

suppose that a random sample of L points are obtained in each of sub-region
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5.2. The Bayesian Ensemble Melding Model

B1, . . . , Bm and thus for i = 1, . . . ,m

Z(Bi) =

∫
Bi

Z(s)ds (5.4)

≈ 1

L

L∑
k=1

Z(sk,Bi)ds. (5.5)

Originally, Liu (2007) assumed no overlap between these sampling lo-

cations and the monitoring sites within the sub-regions B1, . . . , Bm. We

represent the realizations for the j-th deterministic model output at all mL

sampling locations as the vector Z̃j . In the case where the deterministic

models were previously interpolated at the monitoring locations, Z̃j has the

same dimension as Ẑ.

Finally, in order to link the above processes, the “true” underlying pro-

cess is modeled as

Z(s) = µ(s) + ε(s), (5.6)

where µ(s) is a deterministic mean structure, usually a polynomial function

of s, representing large-scale variation. The mean parameters are denoted

as β. The errors ε(s) are assumed to be correlated with zero mean, and

variance denoted as σ2. Their correlation could be described by a parametric

correlation functions for stationary processes or a non-stationary structure

in a more general case. These correlation parameters are denoted as θ.

Realizations of the “true” underlying process at all locations are repre-

sented in the vector Z. Key to linking the measurement and deterministic

processes is that not only these realizations of the “true” underlying process

need be observed at the n monitoring stations, but also at the sampling

locations where the deterministic model processes are observed. In the case

where the p deterministic model processes are observed at L locations within

each sub-region B1, . . . , Bm, the vector Z has dimension (n+ pmL)× 1.

Due to the mismatched dimensions, the linking matrices A0 and Aj , for
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each j = 1, . . . , p are introduced such that

dim(A0Z) = dim(Ẑ) = (n× 1) (5.7)

dim(AjZ) = dim(Z̃j) = (m× 1). (5.8)

First, consider the following auxiliary block matrix, with as many blocks

as there are deterministic models

Ej =
[
0(1) . . .0(j−1)L(j)0(j+1) . . .0(p)

]
, (5.9)

and where each of the blocks corresponds to a (m×mL) and the j-th block

is given by the following

L(j) =


1
L . . . 1

L . . . 0 . . . 0
...

...
...

. . .
...

...
...

0 . . . 0 . . . 1
L . . . 1

L

 . (5.10)

The superscripts are used to differentiate the different blocks in the E ma-

trix. There are a total of p blocks, thus Ej has dimensions (m×pmL). Then

we can finally define the linking matrices as

A0 = [In|0(n×pmL)] (5.11)

Aj =
[
0(m×n)|Ej

]
, (5.12)

where In denotes a (n×n) identity matrix, and 0(i×j) a (i× j) zero matrix.

Hence, A0 has dimensions (n × (n + pmL)) and for each j = 1, . . . , p, Aj

has dimensions (m× (n+ pmL)).

In the following Section 5.3, we discuss the inference for the BEM model.
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5.3 Inference for the BEM

Let Ψ = (β,θ, σ2, a1, . . . , ap, b1, . . . , bp, σ
2
δ1
, . . . , σ2

δp
, σ2

e) denote all model

parameters. Summarizing the BEM, note that

Ẑ|Z,Ψ ∼ N (A0Z, σ
2
eIn)

Z̃j |Z,Ψ ∼ N (aj1m + bjAjZ, σ
2
δj

Im)

Z|Ψ ∼ N (µ,Σ),

for j = 1, . . . , p, where 1m denote a unit vector of size m. For model

completeness, prior assumptions must be made for Ψ.

Here, we consider calibration parameters aj , bj for j = 1, . . . , p are con-

stant in space. For particular applications, it might be of relevance to let

these parameters vary across space.

The posterior distribution of Ψ and the “true” spatial underlying process

is given by

p(Ψ,Z|Ẑ, Z̃1:p) ∝ p(Ẑ|Z, σ2
e)

p∏
j=1

[
p(Z̃j |Z, aj , bj , σ2

δj )
]
p(Z|β,θ)p(Ψ) (5.13)

∝ p(Ψ)|(σ2
eIn)|− 1

2 |Σ|− 1
2 [

p∏
j=1

|(σ2
δjIm)|− 1

2 ] (5.14)

exp

{
−1

2

[
(Ẑ−A0Z)>(σ2

eIn)−1(Ẑ−A0Z)

+(Z−Xβ)>Σ−1(Z−Xβ)

+

p∑
j=1

(Z̃j − 1aj − bjAjZ)>(σ2
δjIm)−1(Z̃j − 1aj − bjAjZ)


where Ẑ = (Ẑ(s1), . . . , Ẑ(sn))>, and Z̃1:p = (Z̃>1 , . . . , Z̃

>
p )ᵀ, where for each

j ∈ 1, . . . , p, Z̃j = (Z̃j(B1), . . . , Z̃j(Bm))>.

Liu et al. (2011) obtained samples from this posterior distribution by

using MCMC methods. In fact, this has been the most common way of

performing inference for such point-referenced spatial models. One of the

main drawbacks of this approach is the computational burden associated

with expensive matrix computations in each MCMC iteration, and the slow
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mixing of the chains.

In Section 5.4, we describe an application of the BEM model based on

INLA method for performing approximate Bayesian inference, as discussed

in Section 3.2. In particular, in Subsection 5.3.1, we follow up on the work

of Lindgren et al. (2011) and describe how to represent the BEM model in

such framework.

5.3.1 A Stochastic-Partial Differential Equation Model

Alternative

One of the main disadvantages of the BEM model is the computational

burden associated with factorizing dense covariance structures for estima-

tion and spatial prediction purposes. For large data sets, their use is im-

practical. Lindgren et al. (2011) proposed an alternative to this problem

by taking advantage of a Markov representation of the Matérn covariance

family, connecting ideas from between Gaussian Markov random fields (GM-

RFs) and stochastic partial differential equations (SPDEs) in a continuous

space. Examples of applications using the INLA-SPDE approach for geosta-

tistical models can be found in Simpson et al. (2012b,a) and Cameletti et al.

(2013).

In this section, we provide an overview of Lindgren et al. (2011), and

the discussion provided in Simpson et al. (2012b), later connecting the ideas

into the BEM model. The key step entails replacing the dense covariance

structure of a Gaussian field by a GMRF, thus allowing users to take ad-

vantage of sparse precision matrices. Ultimately, the INLA methodology

(Rue et al., 2009) described in Chapter 3 could then be used for the purpose

of inference. The INLA-SPDE approach can be implemented using the INLA

R package, available for download at r-inla.org (last accessed on June 15,

2016).

Instead of the usual definition through the covariance function, Lindgren

et al. (2011) suggest representing a Gaussian random field η with Matérn
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covariance function as a solution to the SPDE

(κ2 −∆)
α
2 η(s) =W(s), (5.15)

α = ν + d/2, κ > 0, ν > 0,

where ∆ =
∑d

i=1
∂2

∂η2i
is the Laplacian operator and W a spatial Gaussian

white noise with unit variance.

This is due to the fact that Gaussian random fields with Matérn covari-

ance function are stationary solutions to (5.15) for any α ≥ d/2 (Whittle,

1954, 1963). When α is an integer, the Matérn fields are Markovian (Lind-

gren et al., 2011). The Matérn covariances are parametrized as

Cov(s, s + h) =
σ2

2ν−1Γ(ν)
(κ||h||)νKν(κ||h||). (5.16)

Note that the two representations (5.15) and (5.16) are related, in such way

that the Matérn smoothness is ν = α− d/2 and the marginal variance σ2 is

given by

σ2 =
Γ(ν)

Γ(α)(4π)d/2κ2ν
. (5.17)

Moreover, an empirically derived spatial range can be obtained from ρ =√
8
κ , where the spatial correlation decays to approximately 13%.

For a finite set of suitable functions {ϕj(s), j = 1, . . . , N}, a solution of

(5.15) satisfies∫
ϕj(s)(κ2 −∆)

α
2 η(s)ds =

∫
ϕj(s)W(ds). (5.18)

For instance, consider the case where α = 2 on a two-dimensional domain

Ω ⊂ R2. Using Green’s first identity (A.1), and assuming a zero normal

derivative of η(s) on the boundary of Ω, we can then rewrite (5.18) as∫
Ω

[κ2ϕj(s)η(s) +∇ϕj(s) · ∇η(s)]ds =

∫
Ω
ϕj(s)W(ds). (5.19)
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Since the idea is based on using GMRFs to approximate a Gaussian ran-

dom field, Lindgren et al. (2011) then suggests that the Gaussian random

field be approximated by a finite element representation of the solution of

the SPDE based on a triangulation of the spatial domain. In R-INLA, a De-

launey triangulation (DT), which maximizes the minimum interior triangle

angle is used. Initial vertices are placed at the locations where observa-

tions are available. Then, additional vertices are added to cover the spatial

domain, and finally yielding an irregular grid representation of the origi-

nal (continuous) Gaussian process. The finite element representation of the

solution of the SPDE in (5.15) is as follows

η(s) =
N∑
k=1

ψk(s)wk, (5.20)

for Gaussian weights {wk} and some basis functions {ψk} which are piece-

wise linear in each triangle, defined such that ψk is 1 at vertex k and 0 at

the other vertices.

In the case where α = 2, we could obtain a set of N equations to solve

by substituting (5.20) into (5.19)

N∑
k=1

(∫
Ω

[κ2ϕj(s)ψk(s) +∇ϕj(s) · ∇ψk(s)]ds

)
wk =

∫
Ω
ϕj(s)W(ds), (5.21)

for j = 1, . . . , N . Assuming that the test functions are the same as the basis

functions, i.e. ϕj(s) = ψk(s), note that the right-hand size of (5.21) becomes∫
Ω ψj(s)W(ds), yielding a zero-mean normal distribution with covariances∫
Ω ψk(s)ψj(s)ds. Hence (5.21) can be rewritten as

w ∼ N (0,Kκ2C
−1Kκ2), (5.22)

where Kκ2 = κ2C + G. The above notation refers to a normal distribution

with mean and precision given by the above. The matrices Kκ2 , C and G
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have entries given by

(Kκ2)ij = κ2Cij + Gij (5.23)

Cij =

∫
Ω
ψi(s)ψj(s)ds (5.24)

Gij =

∫
Ω
∇ϕj(s) · ∇ψi(s)ds. (5.25)

Since C is dense, sparsity is imposed by replacing it with a diagonal

matrix C̃ with elements given by
∫

Ω ψi(s)ds, for i = 1, . . . , N . Therefore

w yields an approximate GMRF from the continuous Matérn field, which

has a sparse precision matrix and is more computationally efficient than the

typical dense Matérn one. In our applications, we assume α = 2, hence

our focus here in describing this case. For α equal to other integers, check

Lindgren et al. (2011).

5.3.2 Spatial Prediction

Typical spatial prediction techniques via kriging normally involve esti-

mating the parameters of the underlying covariance structure. Then these

parameters are assumed known for use in spatial prediction. In this section,

we describe a Bayesian approach to spatial prediction of the BEM which

takes into account the uncertainty about parameters on these predictions.

Conditionally on Ψ, the joint distribution of Ẑ and Z̃1:p is multivariate

normal, as follows:



Ẑ

Z̃1

Z̃2

...

Z̃p


∼ N





µ̂

a1 + b1µ̃

a2 + b2µ̃
...

aj + bjµ̃


,



ΣẐ ΣẐ,Z̃1
ΣẐ,Z̃2

. . . ΣẐ,Z̃p

ΣZ̃1
ΣZ̃1,Z̃2

. . . ΣZ̃1,Z̃p

. . .
...

. . . ΣZ̃p−1,Z̃p

ΣZ̃p




(5.26)

where µ̂ = (µ(s1), . . . , µ(sn))ᵀ and µ̃ = (
∫
B1
µ(s)ds, . . . ,

∫
Bm

µ(s)ds)ᵀ. In

the case that outputs have been previously interpolated to the observed
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locations, then µ̃ simplifies to µ̃ = (µ(s1), . . . , µ(sn))ᵀ.

Regarding the covariance structure, ΣẐ denotes the covariance matrix

for Ẑ, and for each j = 1, . . . , p, ΣZ̃j
denotes the covariance matrix for Z̃j .

The matrix ΣẐ,Z̃j
denotes the cross-covariance between the measurements

Ẑ and the j-th output Z̃j , while ΣZ̃i,Z̃j
, i 6= j, denotes the cross-covariance

between the i-th and j-th members of the ensemble. For j = 1, . . . , p, and

i 6= j, note that

ΣẐ = A0ΣA>0 + σ2
eIn (5.27)

ΣZ̃j
= b2jAjΣA

>
j + σ2

δj
Im (5.28)

ΣẐ,Z̃j
= bjA0ΣA

>
j (5.29)

ΣZ̃i,Z̃j
= bibjAjΣA>j , (5.30)

where the A0 and Aj matrices have been described in (5.11) and (5.12).

In the case that the deterministic models have been previously inter-

polated to the measurement locations, these matrices may not need to be

defined. In the context of prediction, however, we often predict temperature

measurements conditionally on the model outputs. In practice, this means

that over space, there are more sites where model outputs are available than

temperature measurements. In such cases, it might be useful to define a ma-

trix A0 responsible for extracting the part of the “true” underlying field that

relates to the locations where temperature measurements are available.

We denote µ̌ and Σ̌ as the mean vector and covariance matrix of the joint

distribution of Ž = (Ẑ>, Z̃>1 , . . . , Z̃
>
p )> conditionally on Ψ, as described in

(5.26). For the purposes of spatial prediction, the goal is to predict Ẑ at a

given set of m new locations x∗. This entails describing the predictive dis-

tribution of Ẑ(x∗). Recall from the model definition (5.6), conditionally on

Ψ, that the distribution of Ẑ(x∗) is normal with mean µ̂(x∗) and covariance

matrix A0ΣA>0 + σ2
eIm.

Now denote the cross-covariance between of Ẑ(x∗) and Ẑ, Z̃1:p condition-

ally on Ψ by

υ = (ΣẐ(x∗),Ẑ,ΣẐ(x∗),Z̃1
, . . . ,ΣẐ(x∗),Z̃p

). (5.31)
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Hence, the distribution of Ẑ(x∗) conditionally on the observed data

Ẑ, Z̃1:p and Ψ is normal with mean µ̂(x∗) + υ>Σ̌
−1

(Ž− µ̌) and covariance

ΣẐ(x∗) − υ>Σ̌
−1

υ.

The posterior predictive distribution of Ẑ(x∗) can be obtained as follows

p(Ẑ(x∗)|Ẑ, Z̃1:p) =

∫
p(Ẑ(x∗)|Ẑ, Z̃1:p,Ψ)p(Ψ|Ẑ, Z̃1:p)dΨ. (5.32)

After having obtained N simulations from the posterior distribution of

Ψ, it is then possible to approximate the integral in (5.32) by the following

Rao-Blackwellized estimator:

p(Ẑ(x∗)|Ẑ, Z̃1:p) ≈
1

N

N∑
l=1

p(Ẑ(x∗)|Ẑ, Z̃1:p,Ψ
(l)), (5.33)

where Ψ(l) denotes the l-th simulated value from the posterior distribution

of Ψ.

5.4 Ensemble Modelling of Temperatures in the

Pacific Northwest

5.4.1 Data Description

Recall the Probcast data introduced in Section 4.3.1. They include 48-

hour forecasts of surface level temperature data initialized at midnight Co-

ordinated Universal Time (UTC). The data come from the UW mesoscale

short-range ensemble system for the Pacific northwestern area and corre-

sponds to a five-member short-range ensemble consisting of different runs

of the MM5 model, namely AVN, GEM, ETA, NGM, and NOGAPS. In

these data, the grid-scaled deterministic model outputs had previously been

interpolated to the locations of the monitoring stations by the Probcast

group. The Figure 5.1 illustrates the locations of the 120 stations used in

this chapter for illustration of the BEM methodology.
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Figure 5.1: Map of the 120 stations used for illustration of the BEM method-
ology. Map created using R library ggmap with tiles by Stamen Design, under
CC BY 3.0, and data by OpenStreetMap, under CC BY SA.

5.4.2 Inference

In Appendix B, for validation of our approximate inference computation,

we discuss the application of the INLA-SPDE methodology for the BEM

model in an artificial data setting. In this section, we discuss our findings

for the Probcast Group data set.

Model Description

Since the deterministic model outputs had already been interpolated to

the locations of the monitoring stations by the Probcast group, the BEM

model can thus be simplified to

Ẑ|Z,Ψ ∼ N (Z, σ2
eIn) (5.34)

Z̃j |Z,Ψ ∼ N (aj1n + bjZ, σ
2
δj

In) (5.35)

Z|Ψ ∼ N (µ,Σ) (5.36)

Ψ ∼ p(Ψ), (5.37)
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5.4. Ensemble Modelling of Temperatures in the Pacific Northwest

for j = 1, . . . , p, and p(Ψ) denotes the prior distribution for Ψ. In the above,

N denotes a normal distribution with given mean vector and covariance

matrix.

Figure 5.2 illustrates the overall correlations between measurements and

model outputs. Note that the correlation is stronger within members of the

ensemble. Due to the high correlations, a model that links the measurements

with the model outputs via a common underlying field, such as the BEM

model, seems like a sensible choice.

Figure 5.2: Pearson’s correlation coefficients between measurements and
model outputs.

Mean Description

In a similar manner as described in Section 4.5.1 for a proxy data set cov-

ering the same time frame and similar spatial domain, we assume a spatial

mean that depends on the interaction between latitude (s1) and longitude

(s2), and includes elevation (h(s)). The mean function can thus be summa-

rized as

µ(s) = β0 + β1s1 + β2s2 + β3s1s2 + β4h(s). (5.38)
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Prior Specifications

For model completeness, in order to carry out the inference procedure

for the BEM for the Probcast data set, we describe our independent and

vague prior specifications below. For numerical stability, we specify priors

for precision parameters (inverse of the variance) in a logarithmic scale.

All notation used below for normal priors refer to mean and precision,

whereas we refer to a Log-gamma as simply the logarithm of a Gamma

distribution.

• For the mean parameters α, β1, β2, β3, β4, and calibration parameters

aj and bj , for j = 1, . . . , 5, we specified a N (0, 0.01) prior. This yields

fairly noninformative priors for these parameters.

• For log(σ−2
δj

), j = 1, . . . , 5, we specified a Log-gamma(0.01, 0.01) prior.

• For log(σ−2
e ), we specified a Log-gamma(1, 0.01) prior.

• For log(σ), we specify a N (0, 0.1) prior, for log(κ) a N (0, 1). We

heuristically specify the prior for the spatial range as a fifth of the

approximate domain diameter. This leads to a fairly vague prior spec-

ification for log(σ). As described in Lindgren and Rue (2015), for this

heuristic choice, the precision 1 for the prior of log(κ) gives an ap-

proximate 95% prior probability for the range being shorter than the

domain size.

BEM Implementation in R-INLA

In this section, we briefly discuss the computational implementation of

the BEM model using the INLA-SPDE framework. Our approach is similar

to Ruiz-Cárdenas et al. (2012), where we construct an artificial observa-

tional equation with “fake zero” data for the BEM model implementation.

This technique has become common while implementing advanced models

in INLA, as described in the Chapter 8 of Blangiardo and Cameletti (2015).

More recently, Rue et al. (2016) provide a review of Bayesian computing us-
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ing the R-INLA package, and Lindgren and Rue (2015) focus on the aspects

of the SPDE implementation.

Firstly, we construct the following linear predictors

ξ0(s) = µ(s) + P (s, s0)g(s0) (5.39)

ξj(s) = aj + bjξ0(s), (5.40)

for j = 1, . . . ,m, where g(s0) represent the SPDE triangulated mesh based

on a Matérn model, and P (s, s0) is a projector matrix. The projector ma-

trix is responsible for projecting the process from the mesh vertices to the

observed locations. Figure 5.3 illustrates the triangulation of the spatial

domain for Feb 20th, as described in Section 5.3.1. The triangulation was

performed similarly for the other days.

Using the R-INLA terminology (Rue et al., 2016), the ξ0 linear predictor,

is created so that it can be “copied” into the linear predictors ξj , associated

with the deterministic model outputs. The “copy” feature of R-INLA is key

in the BEM implementation, as it will allow us to link the underlying process

to both measurements and model outputs observational models.

The ξj(s) predictors are constructed in an independent and identically

distributed model with low arbitrary precision. This means that, in prac-

tice, ξj(s) are free to vary though essentially they will be restricted to the

linear functional described above. This is possible by assuming a Gaussian

likelihood with “fake zero” observations with a high fixed precision. Exam-

ples of this approach can be found in Ruiz-Cárdenas et al. (2012). More

specifically, we can describe the BEM observational model as

0(s) = ξ0(s) + ε0 − ẑ(s) (5.41)

z̃j(s) = ξj(s) + εj , (5.42)

for j = 1, . . . ,m, where 0(s) denotes the “fake zero” observations, ε0 repre-

sents an independent Normal random effect with zero mean and variance σ2
e

and, similarly, εj independent Normal random effects, each with zero mean

and variance σ2
δj

.
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Figure 5.3: Triangulation for the BEM data available on Feb 20th. The
mesh comprises of 591 edges and was constructed using triangles that have a
minimum angle of 25, maximum edge length of 1◦ within the spatial domain
and 2◦ in the extension domain. The maximum edges were chosen to be less
than the approximate range of the process. The spatial domain was extended
to avoid a boundary effect. The monitoring stations are highlighted in red.

Assessment of Calibration of the Model Outputs

An interesting feature of the BEM model is that by linking the deter-

ministic model outputs process with the measurement process, it is then

possible to quantify the uncertainty about these outputs. Of particular in-

terest is therefore the calibration parameters (aj and bj) and variances σ2
δj

associated to each member of the ensemble, here j = 1, . . . , 5.

Figure 5.5 illustrates the approximate marginal posterior distributions

for these parameters for three selected days. The calibration parameters (aj

and bj) are particularly useful to assess deviations from the assumed latent

process. Figure 5.4 illustrates their variation over time. For the additive
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5.4. Ensemble Modelling of Temperatures in the Pacific Northwest

calibration parameters (aj), note the slight decreasing trend during colder

periods followed by an increasing trend during warmer periods. On the

other hand, the multiplicative calibration parameters (bj) show a decreasing

trend during warmer periods preceded by a slight increasing trend in colder

periods.
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Figure 5.4: Posterior mean for the calibration parameters (aj and bj) for
each member of the ensemble j = 1, . . . , 5 across time (in days).
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Figure 5.5: Approximate marginal posterior distributions for calibration
parameters (aj and bj) and variances σ2

δj
for each member of the ensemble

j = 1, . . . , 5 for three selected days: February 20th, April 7th, and June 5th.

5.5 Discussion and Future Work

In this chapter, we introduced a scalable inference methodology alterna-

tive for the BEM using integrated nested Laplace approximations following

Rue et al. (2009); Lindgren et al. (2011). In Chapter 6, we introduce a

dynamic strategy that builds on the BEM model ability to accommodate

time, with the objective of performing forecasting. Essentially we will apply
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the BEM model sequentially over a set of training days. These posteriors

will then be part of a mixture that will eventually be used for obtaining the

predictive distributions for forecasting.

A limitation of the BEM model described in this Chapter is due to the

fact that we assumed a Matérn covariance structure for the “true” under-

lying random field. From Chapter 4, we noted that it is crucial to handle

non-stationarity when modelling temperatures in the Pacific Northwest. For

future work, we would like to accommodate this into the BEM inference

strategy.

As in Lindgren et al. (2011), this entails representing a Gaussian random

field η as a solution to a SPDE with covariance parameters varying over

space, and being written as

(κ2(s)−∆)
α
2 {τ(s)η(s)} =W(s), (5.43)

where τ models the variance of the process and is allowed to vary on space.
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Chapter 6

Ensemble Forecaster

6.1 Contributions

In this chapter, we introduce a dynamic Bayesian ensemble model fore-

caster (DBEM), which essentially builds on the ability of the BEM model

described Chapter 5 to accommodate time, with the objective of performing

forecasting.

This general idea was originally introduced in Liu (2007), but the method-

ology was not fully developed due computational challenges, and hence no

empirical assessment of the method was made. The main contribution of

this chapter is in its critical assessment of the DBEM, as well as providing

a detailed description of its strategy.

Following up on the inference for the BEM model based on an INLA

framework described in the previous chapter, we offer a way to solve the

computational challenges faced by Liu (2007) by making use of some ap-

proximations from the INLA framework. Moreover, we provide a compar-

ison of its forecasting strengths with a Bayesian Model Averaging (BMA)

alternative. The BMA is described in the following Section 6.2.

6.2 Bayesian Model Averaging

The main idea behind performing Bayesian model averaging (BMA)

comes from realizing the need to take into account the uncertainty over

the model choice in a particular setting. This idea flows quite naturally into

a Bayesian framework. Instead of using a single model, the BMA relies on

a mixing over multiple models, where the weights used for combining the

quantities of interest are based on posterior model probabilities.
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6.2. Bayesian Model Averaging

Consider ψ a quantity of interest, say, a predictive quantity, and let

M1, . . . ,Mp denote the set of the possible models considered. The posterior

probability for ψ is given by an average of the posterior distributions under

each of the models considered is defined as follows

p(ψ|D) =

p∑
j=1

p(ψ, |D,Mj)p(Mj |D)

where D denotes the data available.

Empirically, this approach has proved superior to simply choosing a sin-

gle “best” model based on some criteria. For instance, using a logarithmic

scoring rule, Raftery et al. (1997) noted that the BMA had optimum pre-

dictive performance. A comprehensive review of the BMA can be found in

Hoeting et al. (1999).

Consider now the situation where an ensemble of computer models out-

puts are available and there is interest in embedding them in a statisti-

cal model with the goal of obtaining probabilistic forecasts. The Bayesian

model averaging forecast idea was introduced in Raftery et al. (2005), and

it is based on a weighted average of individual deterministic outputs that

constitute the ensemble, where the weights represent the individual forecast

performance in a training period. The main idea is that there is a “best”

model output, and they attempt to quantify the uncertainty about which

member may be considered “best” using BMA.

Denoting by y as a weather quantity of interest and fk the forecast as-

sociated with the k-th deterministic model in the ensemble, k = 1, . . . , p,

Raftery et al. (2005) apprise that the conditional distribution gk(y|fk) can

be interpreted as a conditional distribution of the data given the k-th deter-

ministic model that has the best forecast performance in the ensemble. The

BMA predictive model can therefore be written as

p(y|f1, . . . , fk) =

p∑
k=1

wkgk(y|fk), (6.1)

where
∑p

k=1wk = 1 and wk = p(fk|D) is the posterior probability of forecast
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6.2. Bayesian Model Averaging

k being the best based on their predictive performance in a training period.

In particular, for the context of surface temperature forecasting, Raftery

et al. (2005) use a normal distribution to approximate the conditional dis-

tribution gk(y|fk), centred at linearly calibrated forecasts

Y |fk ∼ N (ak + bkfk, σ
2
0). (6.2)

In contrast to the BEM model described in Section 5.2, they assume that

the forecasts have been previously interpolated to the observation sites.

The BMA predictive mean is given by

E[Y |f1, . . . , fp] =

p∑
k=1

wk(ak + bkfk). (6.3)

Note that the BMA estimation is done for one location at a time. For

simplicity, we suppressed the spatial and temporal indexes in the equations

above. The procedure is as follows. Raftery et al. (2005) first estimate

separately the calibration parameters ak and bk for each member of the

ensemble via least squares regression using the training data. Then, they

proceed with the estimation of BMA weights wk and the BMA variability

σ2
0 simultaneously for the ensemble via the Expectation Maximization (EM)

algorithm for the training data. They optimize the estimation of σ0 so that it

optimizes the continuous ranked probability score (CRPS) for the training

data by performing a numerical search over possible values of σ0 centred

at the maximum likelihood estimates, and keeping the other parameters

fixed. The CRPS measures the difference between the predicted and true

cumulative distributions, as follows

CRPS(F, y∗) =

∫ ∞
−∞

[F (y∗)− 1y≥y∗ ]
2dy, (6.4)

where F is the cumulative distribution function of the forecast distribution,

y∗ is the true value and 1y≥y∗ is a step function that attains the value 1

when y ≥ y∗ and zero otherwise. The BMA is implemented in R in the

ensembleBMA package (Fraley et al., 2013).
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On the other hand, Berrocal et al. (2007) extend the BMA by taking into

account the possibility of spatial correlation, unlike the basic BMA. Their

spatial BMA strategy describes the predictive distribution for the whole

field as a weighted average of multivariate normal distributions centred at

linearly calibrated members of the ensemble. Similarly, Kleiber et al. (2011)

provide a spatially adaptive extension called geostatistical model averaging

by first estimating the parameters of the BMA model at each location and

then interpolating the estimates using a geostatistical model.

In the following Section 6.3, we introduce our alternative strategy, based

on applying the BEM of Chapter 5 for the purposes of forecasting.

6.3 Dynamic Bayesian Ensemble Forecaster

6.3.1 Decision Making Ideas

The motivation for introducing the dynamic Bayesian ensemble model

forecaster (DBEM) comes from accommodating time into the BEM model

described in Section 5.2 by borrowing ideas from a decision making model

proposed by Bayarri and DeGroot (1989) to combine opinions from different

experts.

Each of the k experts was assumed to have their own uncertainty about a

certain parameter W quantified by the individual prior distributions denoted

as πi(w) assigned by each expert i. In this decision making model, it was

assumed that an executive would form their opinion about W through a

weighted average of the experts’ opinions. The executive’s prior is

π(w) =

k∑
i=1

α
(0)
i πi(w), where

k∑
i=1

α
(0)
i = 1, α

(0)
i ≥ 0. (6.5)

Furthermore, the k experts and the executive were assumed to jointly

observe the value of a random variable X whose conditional distribution

when W = w is denoted as f(·|w). The posterior for expert i is

π∗i (w|x) =
πi(w)f(x|w)

pi(x)
, (6.6)
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6.3. Dynamic Bayesian Ensemble Forecaster

where pi(x) is the marginal distribution for expert i, that is,

pi(x) =

∫
f(x|w)πi(w)dw. (6.7)

The marginal distribution for the executive is given by

p(x) =
k∑
i=1

∫
α

(0)
i f(x|w)πi(w)dw. (6.8)

Hence, the posterior for the executive is

π∗(w|x) =
π(w)f(x|w)

p(x)

=
k∑
i=1

α
(0)
i pi(x)

p(x)

πi(w)f(x|w)

pi(x)

=

k∑
i=1

α
(1)
i π∗i (w|x). (6.9)

Therefore, the posterior for the executive is again a weighted average of

posteriors (π∗i (w|x), i = 1, . . . , k) for the k experts. The updated weight for

expert i after observing X = x is α
(1)
i = αipi(x)/p(x), which depends on

their marginal distribution of X. Note that the expert’s weight will increase

if his/her marginal distribution of x is large.

In the following subsection, we describe the dynamic Bayesian ensemble

melding forecaster, which borrows ideas from this decision making strat-

egy. Essentially, the measurements Ẑ and the members of the ensemble

Z̃1, . . . , Z̃p across space at a given time point are viewed as the X in this

decision-making process. The first k time point measurements and model

outputs are used to fit the BEM model described in Section 5.2, and thus

giving the posterior distribution of Ψ for each of these k time points.
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6.4 DBEM Forecaster

The dynamic Bayesian ensemble model forecaster borrows ideas from

the decision making strategy described in Section 6.3.1, with the purpose of

accommodating time in the BEM model, which is fundamentally a spatial

model.

In order to do so, a set of k time point measurements and model out-

puts are used as a training set. These data are used to fit the BEM model

described in Section 5.2, and obtain the posterior distribution of Ψ for each

of these k time points. Cross-validation techniques can be used for choosing

the number of time points. By combining these posterior distributions, an

“executive” posterior distribution is obtained with the purpose of represent-

ing the uncertainty about Ψ after having observed data across the training

days. This “executive” posterior can thus be viewed as a prior for the sub-

sequent day which could then be used to obtain the predictive distribution

for this future day.

6.4.1 A DBEM Forecaster Algorithm

In this section, we provide details about the DBEM forecasting strategy,

described in Algorithm 1, with the objective of obtaining forecasts.

Following up on Section 5.3.2, recall that we introduced the joint distri-

bution of Ẑ, Z̃1:p conditionally on the hyperparameters Ψ as a multivariate

normal. Hence, the conditional distribution Ẑk+1|Ψ(l), Z̃1:p,k+1, for each

sample l of Ψ required for Algorithm 1 can be obtained by using the prop-

erties of multivariate normal.

The main advantage of the DBEM is that it sidesteps the need to

build time series models to incorporate a temporal component and instead

smooths the sequence of posteriors by averaging them over time. It also

builds upon the Bayesian ensemble model’s ability to forecast temperatures

at future times. In contrast to the BMA approach described in Section

6.2, another very desirable feature of the DBEM is that it also allows the

calibration coefficients (ak, bk, for k = 1, . . . , p) to change over time.
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Algorithm 1 DBEM Forecaster

Let i = 1, . . . , k index a set of training days.

1. The first step is to initialize the weights. For instance, by setting

α
(0)
i = 1

k , for each i = 1, . . . , k, no preference is given to any time
point in the training set.

2. Obtain M samples from π
(0)
i (Ψ|Ẑi, Z̃1:p,i), i.e., the posterior for each

training day i, where Z̃1:p,i = (Z̃1,i, . . . , Z̃p,i), and Z̃p,i denotes the data
available for the p-th member of the ensemble at the i-th training day.

3. Update weights and get samples from the “executive” posterior de-
scribed as follows

π(1)(Ψ|Ẑk, Z̃1:p,k) =

k∑
i=1

α
(1)
i π

(0)
i (Ψ|Ẑi, Z̃1:p,i), (6.10)

where

α
(1)
i =

α
(0)
i pi(Ẑi, Z̃1:p,i)∑k

i=1 α
(0)
i pi(Ẑi, Z̃1:p,i)

. (6.11)

4. The “executive” posterior is used as a prior in order to obtain the
following predictive distribution:

f(Ẑk+1|Z̃1:p,k+1) (6.12)

=

∫
f(Ẑk+1|Ψ, Z̃1:p,k+1)π(2)(Ψ)dΨ (6.13)

≈ 1

L

L∑
l=1

f(Ẑk+1|Ψ(l), Z̃1:p,k+1), (6.14)

where Ψ
(l)
1 , l = 1, . . . ,M are samples from the executive posterior.

In addition, the DBEM is also able to accommodate spatial correlation

since the posterior distributions for the training days are obtained via the

Bayesian ensemble model, which is essentially a spatial model. In contrast,

the BMA model strategy is done for one location at a time, as described in

Section 6.2.
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The posteriors in item 2 of the DBEM algorithm can be approximated

efficiently using the INLA-SPDE approach described in Section 5.3.1, thus

avoiding the computational burden associated with MCMC strategies. More-

over, significant computational benefits come from efficiently obtaining the

marginal likelihoods pi(Ẑi, Z̃1:p,i) from R-INLA as described in (3.2).

A limitation of this methodology is due to the fact that the marginal log-

likelihood approximations may be difficult to compare in situations where

the number of stations vary significantly among the training days.

The marginal log-likelihoods will usually be very negative, which might

yield some difficulty in differentiating the weights that measure the contri-

bution of each training day in the mixture. This poor mixing will tend to

happen so long as at least one log-likelihood is significantly greater than the

rest, and will ultimately dominate the mixing weights. Moreover, another

limitation of the methodology described in Liu (2007) is that it does not

take into consideration the order of the observations. Instead, it heavily

relies on the quality of the data in each of the training days.

In order to overcome the poor mixing when obtaining the samples from

the “executive” posterior, we scale the marginal log-likelihoods by the aver-

age of the marginal log-likelihoods in the training set. The weights in part

3 of Algorithm 1 are now written as

α
(1)
i =

α
(0)
i exp{m−1 log pi(Ẑi, Z̃1:p,i)}∑k

i=1 α
(0)
i exp{m−1 log pi(Ẑi, Z̃1:p,i)}

, (6.15)

where m = |
∑k

i=1 log pi(Ẑi, Z̃1:p,i)/k| is the absolute value of the average of

all the marginal log-likelihoods in the training set. This strategy maintains

the order of influence of the marginal log-likelihood among the training days,

but deflates/inflates the weights to insure a better mixing.

In the following section, we describe an empirical assessment of the

DBEM methodology for obtaining forecasts. We compare it with the BMA

methodology described in Section 6.2.
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6.5 An Empirical Assessment of the DBEM

In this section, we again refer to Probcast data introduced in Section

4.3.1. To illustrate the DBEM methodology, Figure 5.1 contains the map

of the 120 stations considered in this study. Our goal is to perform an

empirical assessment of the DBEM methodology by comparing it with the

BMA approach described in Section 6.2. Recall that the number of available

stations varies across the different time points, as noted in Figure 4.2.

In Section 6.5.1, we discuss our findings based on sequentially fitting a

BEM (as illustrated in Section 5.4) among the training days, and using a

DBEM strategy to obtain forecasts one day ahead. Moreover, in Section

6.5.2 we use our knowledge of the behaviour of the temperature fields in the

Pacific Northwest described in Section 4.5.1 in an attempt to alleviate the

influence of localized weather.

6.5.1 Forecasting Temperature

The first required step for the application of both the DBEM and the

BMA entails specifying the number of training days. It would be advanta-

geous to use a shorter training period in order to adapt rapidly to the changes

in weather patterns. For the same data set used in this thesis, Raftery et al.

(2005) noted that the overall root mean squared forecast error (RMSFE)

and the mean absolute error (MAE) of the BMA decreased substantially as

the number of training days increases, up to 25 days, with little change in

performance beyond that. Because of this, we began with a training set of

25 days for both methods. We later perform cross-validation and investigate

the effect of varying the number of training days in the forecasts.

Table 6.2 contains the forecasting summaries for three selected days: Feb

20th, Apr 7th and June 5th. Note that while observing a smaller RMSFE

and MAE, and higher empirical coverages of the 95% credible intervals (CIs),

the average length of the CIs for the BMA are generally larger than those for

the DBEM. We believe this is due to the strength that the DBEM borrows

from neighbouring sites at which a forecast is being made. We intend to

explore this issue in future work. Possibly due to this, note in Figure 6.2
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that DBEM outperformed the BMA for some of the stations.

Table 6.1: Forecasting summaries for three selected days February 20th,
April 7th and June 5th, using a training set of 25 days. Summaries include
the root mean squared forecast error (RMSFE), mean absolute error (MAE),
the empirical coverage and the average length of the 95% credible intervals
(CI) for the different methods considered: the dynamic Bayesian ensemble
model and the Bayesian model averaging (BMA). There are a total of 109
available stations on Feb 20th, and a total of 105 on Apr 7th and June 5th.

Method
Selected

Days
RMSFE

(◦C)
MAE
(◦C)

Empirical
coverage

Average
length of
95% CI

(◦C)

DBEM
Feb 20th
Apr 7th
Jun 5th

2.757
3.260
4.524

2.291
2.752
3.675

0.954
0.895
0.848

10.826
10.657
12.331

BMA
Feb 20th
Apr 7th
Jun 5th

2.793
3.304
2.452

2.224
2.708
1.973

0.982
0.943
1.000

12.496
12.121
13.217

The overall forecasting summaries across all time points can be found

in Table 6.2. The average length of the CIs for the BMA are generally

larger than those for the DBEM, but the BMA outperformed the DBEM as

measured by its smaller RMSFE and MAE, and higher empirical coverages

of the 95% credible intervals.

In order to get a better understanding about the forecasting ability of the

different methods across time, in Figure 6.1 we illustrate the RMSFEs split

by month. We also describe the performance statistics in Table 6.3. Note

that the DBEM outperformed the BMA during the months of February and

March, but significantly underperformed it for the month of June.

For cross-validation purposes, we also varied k to guide us in the choice

of the number of training days. In Figure 6.3 we illustrate the RMSFEs

obtained for the month of June in particular. Note that there is a minor

improvement in performance for the BMA. For the DBEM, however, the

number of training days does not seem to be a significant factor for perfor-

mance improvement.
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6.5. An Empirical Assessment of the DBEM

In fact, from Algorithm 1, one may note that the forecasting performance

will be highly influenced by the quality of the posterior samples of the “ex-

ecutive” posterior. Thus, a limitation of the DBEM is that it will tend to

underperfom under high uncertainty a posteriori. In particular, from the

the 95% CIs in Figure 6.5, we note increases in uncertainty for the mean

parameters later in the study. This may explain the observed decrease in

performance of the DBEM for the month of June.

Recall that in Chapter 5 we mentioned a limitation of the BEM model

due to its assumed Matérn covariance structure. This may degrade the

DBEM’s performance over some time periods, since it limits the ways in

which strengths can be borrowed over space. The decrease in performance

is particularly exacerbated in June, when there is more discrepancy in tem-

peratures, as seen in Figure 6.4 and Table 6.4.

Table 6.2: Forecasting summaries across all available time points using a
training set of 25 days. There are a total of 77 time points. Summaries in-
clude the root mean squared forecast error (RMSFE), mean absolute error
(MAE), the empirical coverage and the average length of the 95% credi-
ble intervals for the different methods considered: the dynamic Bayesian
ensemble model (DBEM) and the Bayesian model averaging (BMA).

Method
RMSFE

(◦C)
MAE
(◦C)

Empirical
coverage

Average length
of 95% CI (◦C)

DBEM 4.003 3.347 0.823 11.240
BMA 3.023 2.381 0.942 12.051
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6.5. An Empirical Assessment of the DBEM

Table 6.3: Forecasting summaries across the different months, using a train-
ing set of 25 days. Summaries include the root mean squared forecast error
(RMSFE), mean absolute error (MAE), the empirical coverage and the av-
erage length of the 95% credible intervals (CI) for the different methods
considered: the dynamic Bayesian ensemble model and the Bayesian model
averaging (BMA).

Method
Selected

Days
RMSFE

(◦C)
MAE
(◦C)

Empirical
coverage

Average
length of
95% CI

(◦C)

DBEM

February
March
April
May
June

2.542
3.149
3.816
3.247
6.084

2.038
2.542
3.101
2.588
5.354

0.965
0.885
0.855
0.918
0.617

10.922
10.241
11.009
11.745
12.025

BMA

February
March
April
May
June

2.568
3.245
3.554
2.916
2.795

2.038
2.587
2.736
2.279
2.217

0.983
0.913
0.912
0.960
0.954

12.385
11.339
12.506
13.151
11.454
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6.5. An Empirical Assessment of the DBEM

Figure 6.1: Mean squared forecast error (MSFE) across space for forecasts
from February 20th to June 30th using the dynamic Bayesian ensemble
model (DBEM) and the Bayesian model averaging (BMA). Both methods
assumed a training set of 25 days.
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Figure 6.2: 95% credible intervals of the forecasts for days Feb 20th, Apr 7th and June 5th for the different
methods considered: the dynamic Bayesian ensemble model (DBEM) and the Bayesian model averaging (BMA).
The number of stations where the forecasts were obtained were 109, 105 and 105, respectively. The dots represent
the true measurement of temperature across the available stations for the selected days. To facilitate visualization,
we also coloured the dots based on the different methodologies. Note the overall larger error bars observed for the
BMA.
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6.5. An Empirical Assessment of the DBEM

Figure 6.3: Mean squared forecast error (◦C), MSFE, across space for fore-
casts across the month of June for different number of training days using
the dynamic Bayesian ensemble model (DBEM) and the Bayesian model
averaging (BMA).
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Figure 6.4: Monthly boxplots of observed temperatures over space.
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Table 6.4: Summary statistics for the temperature measurements (◦C) over
space.

Month Average (◦C) Std. Dev. (◦C)

January 2.581 4.369
February 5.531 3.982

March 8.433 5.187
April 14.992 5.858
May 16.778 5.642
June 22.374 7.111

6.5.2 Forecasting Temperature Anomalies

In this subsection, we use our knowledge of the behaviour of the temper-

ature fields in the Pacific Northwest described in Section 4.5.1 in an attempt

to alleviate the influence of localized weather, particularly in warmer peri-

ods as seen in the previous Section 6.5.1. Here, we obtain the temperature

anomalies by taking out the spatial mean fitted via least squares. We then

proceed with forecasting these anomalies, and adding the fitted spatial mean

back to obtain the forecasts in an observed temperature scale.

Table 6.5 contains the forecasting summaries for three selected days: Feb

20th, Apr 7th and June 5th. Comparing these results with those in Table

6.2, note the reduction in the RMSFE for the DBEM for June 5th. Figure

6.6 illustrates the 95% CIs of the forecasts for the selected days across the

different stations.

An overall assessment across all time points can be found in Table 6.6 as

well as split by month in Table 6.7. In Figure 6.7 we illustrate the RMSFEs

split by month. Note that the DBEM still portrays a significantly poorer

performance than the BMA for the month of June, though compared Section

6.5.1, we see an improvement in the RMSFE.

Since in Section 6.5.2 the mean parameters were estimated separately

for all the training days, these parameters are thus varying with time and

we are implicitly incorporating time there. This could help explain why this

new approach based on anomalies did not yield a substantial improvement

in the results.
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Figure 6.5: Posterior means (solid line) for the mean parameters of the
underlying random field over time. The gray shaded region represent the
95% credible intervals. Note the increase in uncertainty for later days in the
series.
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6.5. An Empirical Assessment of the DBEM

Table 6.5: Forecasting summaries for three selected days Feb 20th, Apr 7th
and Jun 5th, using a training set of 25 days. Summaries include the root
mean squared forecast error (RMSFE), mean absolute error (MAE), the
empirical coverage and the average length of the 95% credible intervals (CI)
for the different methods considered: the dynamic Bayesian ensemble model
and the Bayesian model averaging (BMA). There are a total of 109 available
stations on Feb 20th, and a total of 105 on Apr 7th and June 5th.

Method
Selected

Days
RMSFE

(◦C)
MAE
(◦C)

Empirical
coverage

Average length
of 95% CI (◦C)

DBEM
Feb 20th
Apr 7th
Jun 5th

2.612
3.045
3.520

2.063
2.430
2.701

0.954
0.895
0.867

10.896
10.476
11.404

BMA
Feb 20th
Apr 7th
Jun 5th

2.793
3.304
2.452

2.224
2.708
1.973

0.982
0.943
1.000

12.496
12.121
13.217
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Figure 6.6: 95% credible intervals of the forecasts for days Feb 20th, Apr 7th and June 5th for the different
methods considered: the dynamic Bayesian ensemble model (DBEM) and the Bayesian model averaging (BMA).
The number of stations where the forecasts were obtained were 109, 105 and 105, respectively. The dots represent
the true measurement of temperature across the available stations for the selected days. To facilitate visualization,
we also coloured the dots based on the different methodologies. Note the overall larger error bars observed for the
BMA.
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6.5. An Empirical Assessment of the DBEM

Table 6.6: Forecasting summaries across time using a training set of 25
days. Summaries include the root mean squared forecast error (RMSFE),
mean absolute error (MAE), the empirical coverage and the average length
of the 95% credible intervals for the different methods considered: the dy-
namic Bayesian ensemble model (DBEM) and the Bayesian model averaging
(BMA).

Method
RMSFE

(◦C)
MAE
(◦C)

Empirical
coverage

Average length
of 95% CI (◦C)

DBEM 3.647 2.995 0.842 10.812
BMA 3.023 2.381 0.942 12.051

Table 6.7: Forecasting summaries across the different months, using a train-
ing set of 25 days. Summaries include the root mean squared forecast error
(RMSFE), mean absolute error (MAE), the empirical coverage and the av-
erage length of the 95% credible intervals (CI) for the different methods
considered: the dynamic Bayesian ensemble model and the Bayesian model
averaging (BMA).

Method
Selected

Days
RMSFE

(◦C)
MAE
(◦C)

Empirical
coverage

Average length
of 95% CI (◦C)

DBEM

February
March
April
May
June

2.643
3.177
3.551
3.320
4.805

2.103
2.577
2.822
2.659
4.110

0.948
0.878
0.882
0.908
0.691

10.909
10.146
10.937
11.597
10.702

BMA

February
March
April
May
June

2.568
3.245
3.553
2.915
2.795

2.038
2.587
2.736
2.279
2.217

0.983
0.913
0.913
0.961
0.954

12.385
11.340
12.506
13.151
11.454
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6.6. Discussion and Future Work

Figure 6.7: Mean squared forecast error (◦C), MSFE, across space for fore-
casts from February 20th to June 30th using the dynamic Bayesian ensemble
model (DBEM) and the Bayesian model averaging (BMA). Both methods
assumed a training set of 25 days.

6.6 Discussion and Future Work

In this chapter, we introduced a dynamic alternative for the BEM which

allows us to obtain forecasts, despite the fact that the BEM is a spatial

model. The DBEM is a promising methodology as it outperformed the BMA

for some time periods. A limitation of this methodology carries over from the

previous chapter and is due to its assumed stationary covariance structure,

which ultimately contributed to the decrease in performance for the DBEM

particularly over warmer periods, where the discrepancy in temperature

measurements is larger. Following up on this would require handling non-

stationarity in the INLA-SPDE modelling.
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6.6. Discussion and Future Work

Additionally, we discussed that the DBEM methodology requires the

computation of mixing weights, which are based on normalized marginal

likelihoods across a training set. Difficulties were encountered in differenti-

ating amongst these weights when at least one log-likelihood is significantly

higher than the rest.

To deal with this issue, we propose an alternative methodology that is

the subject of current research. We describe the proposed methodology in

Algorithm 2. The main difference is in the added step of first mixing the

posteriors on the training set with equal weights, which is then viewed as a

prior for the subsequent day. As a consequence, the mixing weights used to

yield the “executive” posterior are based on individual marginal likelihoods

of each of the training days but considering the data at a future time. Sam-

ples from this “executive” posterior are used to obtain an approximation

of the predictive distribution at the subsequent time, and ultimately the

forecasts.
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6.6. Discussion and Future Work

Algorithm 2 Modified DBEM Forecaster

Let i = 1, . . . , k index a set of training days.

1. The first step is to initialize the weights, by setting α
(0)
i = 1

k , for each
i = 1, . . . , k. At this stage, no preference is given to any time point in
the training set.

2. Obtain samples from πi(Ψ|Ẑi, Z̃1:p,i), i.e., the posterior for each train-
ing day i, where Z̃1:p,i = (Z̃1,i, . . . , Z̃p,i), and Z̃p,i denotes the data
available for the p-th member of the ensemble at the i-th training day.
These will now represent “experts” posteriors.

3. A baseline “executive” prior for the subsequent day is based on a
weighted average of the “experts” posteriors among the training days

π(0)(Ψ|Ẑ1:k, Z̃1:p,1:k) =
k∑
i=1

α
(0)
i πi(Ψ|Ẑi, Z̃1:p,i). (6.16)

4. The next step will require samples from the “executive” posterior de-
scribed below.

π(1)(Ψ|Ẑk+1, Z̃1:p,k+1)

=
f(Ẑk+1, Z̃1:p,k+1|Ψ)π(0)(Ψ|Ẑ1:k, Z̃1:p,1:k)

p(Ẑk+1, Z̃1:p,k+1)

=
k∑
i=1

α
(0)
i pi(Ẑk+1, Z̃1:p,k+1)

p(Ẑk+1, Z̃1:p,k+1)

f(Ẑk+1, Z̃1:p,k+1|Ψ)πi(Ψ|Ẑi, Z̃1:p,i)

pi(Ẑk+1, Z̃1:p,k+1)

=

k∑
i=1

α
(1)
i πi(Ψ|Ẑk+1, Z̃1:p,k+1), (6.17)

where the updated weights are given by

α
(1)
i =

α
(0)
i pi(Ẑk+1, Z̃1:p,k+1)∑k

i=1 α
(0)
i pi(Ẑk+1, Z̃1:p,k+1)

. (6.18)

5. Finally, the forecasts are given by:

f(Ẑk+2|Z̃1:p,k+2)

=

∫
f(Zk+2|Ψ, Ẑk+1, Z̃1:p,k+1)π(1)(Ψ|Ẑk+1, Z̃1:p,k+1)dΨ (6.19)

≈ 1

L

L∑
l=1

f(Ẑk+2|Ψ(l), Ẑk+1, Z̃1:p,k+1),

where Ψ
(l)
1 , l = 1, . . . ,M correspond to samples from

π(1)(Ψ|Ẑk+1, Z̃1:p,k+1).
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Chapter 7

Determinantal Point

Processes

In this chapter, we provide an overview of determinantal point processes,

including definitions and sampling strategies. The main purpose of this

chapter is to motivate the potential use of these processes in the design of

monitoring networks, and ultimately provide a background for Chapter 8.

7.1 Motivation

Determinantal point processes (DPPs) are repulsion point processes and

very appealing in practice due to their exact inference properties. DPPs have

been explored in random matrix theory since the 1960s. In physics, the Pauli

exclusion principle states that two identical subatomic particles, referred to

as fermions, cannot occupy the same quantum state simultaneously. This

has motivated the use of DPPs to model fermions in thermal equilibrium,

but with the name of fermion processes (Macchi, 1975). A probabilistic

description of DPPs can be found in Hough et al. (2006) and Borodin (2009).

More recently, DPPs have attracted attention in the machine learning

and statistical communities. The work of Kulesza and Taskar (2012) pro-

vides a thorough and comprehensible introduction to DPPs. They focused

on applications most relevant to the machine learning community, such as

search results and document summarization.

An important characteristic of DPPs is that they assign higher proba-

bility to sets of items that are diverse. Its name is due to the fact that the

likelihood of a DPP depends on the determinant of a kernel matrix that

defines a global measure of similarity between pairs of items (Borodin and
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Olshanski, 2000).

There has been an increasing interest in DPPs in the machine learning

community. For instance, Kulesza and Taskar (2011b) focused on structured

DPPs when modelling distributions over sets of structures, such as sets of

sequences, trees, or graphs; Kulesza and Taskar (2011a) on a maximum a

posteriori inference-based strategy for learning parameters of a DPP, Af-

fandi et al. (2012) on Markov DPPs, which are advantageous when interest

is to sequentially select multiple diverse sets of items. Gillenwater et al.

(2012) proposed an approximate optimization solution algorithm for find-

ing the most likely configuration in the DPP modelling framework; Affandi

et al. (2013) used a Nyström approximation to project the kernel matrix

into a low-dimensional space and improve the feasibility of sampling DPPs

in high-dimensional settings. Finally, Affandi et al. (2014) focused on ap-

proximate inference for DPPs and the use of Bayesian methods to learn their

parameters.

In the statistical literature, Lavancier et al. (2015) focused on the prob-

abilistic properties of DPPs and developed parametric models for analyzing

DPPs. Inference was likelihood-based and their methodology was applied to

spatial point pattern data sets with the goal of modelling different degrees

of repulsiveness. Another recent work in the statistical literature is that

of Shirota and Gelfand (2016), which focused on inference in a Bayesian

framework via an approximate Bayesian computation approach.

Our motivation is the potential use of these processes in the design of

monitoring networks. It is reasonable to assume that if observations are

measured in one given location, a designer would not be interested in ob-

taining measurements at nearby locations of that site, unless there is special

interest in the smoothness of the process or in the measurement error. This

leads to the idea of spatial repulsion in the design context as it is expected

that the study region is to be well covered. We explore the idea that not only

a DPP design may be spatially-balanced, but it can also provide a flexible

way of imposing diversity in the selection of locations based on additional

variables that might be available. We develop these ideas in Chapter 8.

For the purposes of using DPPs in the design of monitoring network
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context, we restrict ourselves to introducing DPPs on a discrete finite set

Y = {1, . . . , N}, as in Kulesza and Taskar (2012). We believe it is more

appropriate for our application as, in practice, the domain in which we are

allowed to locate monitoring stations is often discretized, since we are usually

restricted by the accessibility for the potentially new sites. Moreover, it will

be more computationally efficient to deal with discretized spaces. For some

background material on more general DPPs defined on a Borel set B ⊆ Rd,
check Lavancier et al. (2015).

The rest of this chapter is as follows. In Section 7.2 we provide some def-

initions regarding DPPs on a discrete set, as well as an algorithm to sample

from it. Finally, in Section 7.3, we describe the notion of k-DPPS, which

will be essential for the monitoring of networks context seen in Chapter 8.

7.2 Definitions

A point process P on a discrete set Y = {1, . . . , N} is a probability

measure on 2Y , the set of all possible subsets Y ⊆ Y. Suppose that each

element i is included with, say, probability pi. In an independent point

process, the probability of each subset is then

P(Y ) =
∏
i∈Y

pi
∏
i/∈Y

(1− pi). (7.1)

A point process P is called a determinantal point process if, when Y is

a random subset drawn according to P, for every A ⊆ Y,

P(A ⊆ Y) = det(KA), (7.2)

where K is a real, symmetric N × N positive semidefinite matrix indexed

by the elements of Y, and KA ≡ [Kij ]i,j∈A, such that det(K∅) = 1, where ∅
denotes the empty set.

Note that equation (7.2) defines marginal probabilities of inclusion for

subsets A. In particular, if one is interested in the probability of a particular
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item i being selected, i.e, when A = {i}, then

P(i ∈ Y) = det(Kii) = Kii. (7.3)

Hence, the diagonal entries of K give the marginal probabilities of inclusion

for individual elements.

DPPs are parametrized by this marginal kernel matrix K which defines

a global measure of similarity between pairs of items, so that more similar

items are less likely to co-occur. Thus, a DPP assigns higher probability to

sets of items that are diverse. Note that in the case when A = {i, j},

P(i, j ∈ Y) = det

(
Kii Kij

Kji Kjj

)
= KiiKjj −KijKji

= P(i ∈ Y)P(j ∈ Y)−K2
ij , (7.4)

so large values of Kij imply that i and j tend not to co-occur.

In order to fully characterize a DPP, the eigenvalues of the marginal

kernel K need to be bounded above by one. Hence, in practice, it is more

convenient to characterize DPPs via L-ensembles (Borodin and Rains, 2005;

Kulesza and Taskar, 2012), which directly define the probability of observing

each subset of Y. An L-ensemble defines a DPP not through the marginal

kernel K, but via a real positive semidefinite matrix L, hereby referred to

as L-ensemble, indexed by the elements of Y, such that:

PL(Y = Y ) ∝ det(LY ). (7.5)

Any positive semidefinite matrix defines a DPP. The normalization con-

stant is available in closed form since∑
Y⊆Y

det(LY ) = det(L+ I), (7.6)
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where I is the N ×N identity matrix. Thus,

PL(Y ) = PL(Y = Y ) =
det(LY )

det(L+ I)
. (7.7)

In contrast to the previous marginal probabilities of inclusion for subsets

A, (7.5) directly considers the probability of exactly observing all possible

realizations of Y .

That being said, alternative representations of DPPs are done either

through the marginal kernel K or the L-ensemble. It is possible to translate

between them (Macchi, 1975) as follows

K = (L+ I)−1L. (7.8)

The algorithm to sample from a DPP is based on an orthonormal eigen-

decomposition of the marginal kernel, which can be obtained through the

eigendecomposition of the positive semidefinite matrix L:

L =
N∑
i=1

λnvnv
>
n (7.9)

and a rescaling of eigenvalues

K =

N∑
i=1

λn
1 + λn

vnv
>
n . (7.10)

In the above, {vn, λn} denote the eigenvectors and eigenvalues of L.

Algorithm 3 summarizes how to sample from a DPP, as originally de-

scribed in Kulesza and Taskar (2012). In the algorithm, the ei vector denotes

a zero vector with 1 in its i-th entry. Note that the DPP sampling algorithm

first entails sampling a subset of eigenvectors of the L-ensemble, where their

associated eigenvalues govern their probabilities of selection. Note that the

cardinality of the set of selected eigenvectors selected is unknown in advance,

which can simply be viewed as sum of N independent Bernoulli random vari-

ables.

93



7.2. Definitions

Algorithm 3 Sampling from a DPP

Input: {vn, λn} eigenvectors and eigenvalues of L
J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with probability λn

1+λn
end for
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select yi from Y with probability given by 1
|V |
∑

v∈V (v>ei)
2

Y ← Y ∪ yi
V ← V⊥, an orthonormal basis of the subspace of V orthogonal to ei

end while
Output: Y

An approximation to a Poisson process in a plane where points are sam-

pled independently seen in Figure 7.1 is contrasted with a simulation from

a DPP using a Gaussian kernel. The DPP simulation displays much less

clumping, providing a better coverage of that region.
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Independent Point Process

Figure 7.1: A set of points in the plane drawn from (left) a DPP character-
ized by an L-ensemble with Gaussian kernel and (right) the same number
of points sampled independently. Note the clumping associated to the ran-
domly sampled points in contrast to the more spatially balanced set of points
sampled from the DPP.
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Before we describe DPPs with fixed cardinality, we need to introduce

an important way of expressing a DPP as a mixture of elementary DPPs

(Kulesza and Taskar, 2012), also commonly known as determinantal projec-

tion processes. Elementary DPPs, denoted as PV , are a particular type of

DPP where every eigenvalue of its marginal kernel is either zero or one. Its

marginal kernel can thus be decomposed as

KV =
∑
v∈V

vv>, (7.11)

where V is a set of orthonormal vectors. From this decomposition, note

that elementary DPPs have their cardinality fixed as the cardinality of V .

Furthermore, denoting VJ as {vn}n∈J , the mixture is (Kulesza and Taskar,

2012)

PL(Y ) =
1

det(L+ I)

∑
J⊆{1,...,N}

PVj (Y )
∏
n∈J

λn. (7.12)

The notion of elementary DPPs will be particularly useful to define the

normalization constant under fixed cardinality DPPs, which is introduced

in the following Section 7.3.

7.3 k-DPPs

A k-DPP on a discrete set Y = {1, . . . , N} is simply a DPP with fixed

cardinality k. The modelling is thus restricted on which elements of size k

are part of a random subset of Y. This notion is essential for the monitoring

of networks context seen in Chapter 8. In practice, the number of monitoring

sites that one can afford to sample from is usually known in advance. On

the other hand, standard DPPs models may yield subsets of any size.

A k-DPP can be obtained by conditioning a standard DPP on the event

that the set Y has cardinality k, as follows
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7.3. k-DPPs

PkL(Y ) = P(Y = Y | |Y | = k) =
det(LY )∑

|Y ′|=k det(LY ′)
, (7.13)

where |Y | denotes the cardinality of Y and L is a positive semidefinite matrix

indexed by the elements of Y.

From the notion of elementary DPPs, note that the normalization con-

stant of the k-DPP is given by∑
|Y ′|=k

det(LY ′) = det(L+ I)
∑
|Y ′|=k

PL(Y ′) (7.14)

=
∑
|Y ′|=k

∑
J⊆{1,...,N}

PVj (Y ′)
∏
n∈J

λn (7.15)

=
∑

J⊆{1,...,N}
|J |=k

∏
n∈J

λn (7.16)

≡ ENk , (7.17)

which can be computed recursively noting that

ENk = EN−1
k + λNE

N−1
k−1 , (7.18)

where λ1, . . . , λN are the eigenvalues of the L-ensemble.

Algorithm 4 summarizes how to sample from a k-DPP. The main differ-

ence of the k-DPP algorithm is in its first step, where this time the subset

of eigenvectors is sampled with a fixed cardinality k.

96



7.3. k-DPPs

Algorithm 4 Sampling from a k-DPP

Input: size k and {vn, λn} eigenvectors and eigenvalues of L
J ← ∅
Compute En1 , . . . , E

n
k , for n = 0, . . . , N

for n = N, . . . , 1 do
Sample u ∼ U [0, 1]

if u <
λnE

n−1
k−1

Enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
end if

end if
end for
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select yi from Y with probability given by 1
|V |
∑

v∈V (v>ei)
2

Y ← Y ∪ {yi}
V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei

end while
Output: Y
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Chapter 8

Design of Monitoring

Networks

8.1 Importance of Designing Monitoring

Networks

From an environmental perspective, monitoring networks play an impor-

tant role in surveillance of environmental processes which may impact either

human health or nature. The measurements obtained from the monitoring

of temperature, precipitation, and pollutants within a region, for instance,

provide critical data for both scientists and governmental agencies that can

be used for many essential objectives, such as

• Are the measurements obtained above the regulatory limits?

• Is there a trend in a given health outcome that could potentially be

associated with an environmental hazard?

With the advances in geographic information systems (GIS) (Goodchild

and Haining, 2004; Murray, 2010), modern agriculture now relies on inter-

active tools that provide climate and soil information. Such information is

valuable not only to maximize yield but also for the development of more

environmentally friendly practices.

However, with important objectives come interesting challenges. Many

design strategies have been developed. The different strategies are based on

providing a good spatial coverage of the domain, by ensuring randomization

and selecting locations at random given a certain probability of inclusion;

or even depending on a model used to learn about a particular underlying
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phenomenon. A brief description of such methods can be found in Section

8.3.

Moreover, it is important to note that a monitoring network need not

be static. Not only may a network’s purpose change over time, regulatory

budgets may also allow new sites to be added or may impose a reduction in

the network.

Most importantly, we would like to advocate the need for “mobile friendly”

design strategies, i.e. approaches suitable for the design of dynamic or mobile

networks. In the agricultural context, weather conditions or other sudden

emerging risks may require a close surveillance of the agriculture fields, and

their design purpose may quickly and dramatically change over time. The

surveillance itself can be done by obtaining measurements at certain key

locations in the field using portable devices (Tothill, 2001; Rodriguez-Mozaz

et al., 2006), such as nutrient meters for obtaining soil macro-nutrient in-

formation. Depending on how these new conditions are expected to impact

their crop, there may be a need to dynamically choose new locations on

where to measure.

In practice, however, stations are often preferentially deployed, possibly

restricted to the accessibility of the potential new sites and budgetary con-

straints. Diggle et al. (2010) drew attention to inference under this scenario.

Preferential sampling occurs when the sampling locations are stochastically

dependent on the underlying process. A clear example is in air pollution

monitoring. Data are sometimes collected at locations where it is anticipated

that the outcome will have a large or small value (Guttorp and Sampson,

2010).

Diggle et al. (2010) pointed out that ignoring preferential sampling in

geostatistical models can lead to misleading inferences. In order to adjust

for potential biases, they proposed a shared latent process model for geosta-

tistical modelling with preferentially sampled data. This issue is similarly

discussed in the Bayesian framework by Pati et al. (2011). Gelfand et al.

(2012) suggested a simulation-based approach to assess the effects of pref-

erential sampling based on information about underlying process and other

factors known drive that process. Also, Zidek et al. (2014) suggested a bias

99



8.2. Contributions

correction approach that is able to accommodate changes to the network

due to preferential sampling over time. Ferreira and Gamerman (2015) use

an approach based on utility functions in order to analyze the influence of

preferential sampling in situations where the goal is to optimize an objective

function.

The cited recent works have taken a negative view towards preferential

sampling. Though it is clear that the effects of preferential sampling on both

estimation and prediction should not be disregarded, we explore how we can

obtain balanced designs yielding a high-quality yet diverse set of monitors.

We introduce a flexible design strategy based on k-DPPs (Section 7.3) that

is able to yield a spatially balanced design by imposing repulsion on the dis-

tances between the candidate locations and hence avoid spatial clumping,

but it also has the ability to assess similarity between the potential loca-

tions should there be extra sources of information related to the underlying

process of interest.

8.2 Contributions

In this chapter, our main contribution is the introduction of a novel

flexible monitoring network design strategy based on k-DPPs. This strategy

is able to handle both designing and redesigning a monitoring network. The

k-DPP design can yield spatially balanced designs by imposing repulsion on

the distances between the candidate locations. It is also possible to assess

similarity and impose repulsion between the potential locations based on

extra sources of information that might be related to the phenomenon of

interest.

Since its essence is that of a randomized design, we explore its potential

use as a randomized alternative to space-filling designs. An overview of

space-filling designs can be found in Section 8.3.1.

Additionally, the k-DPP optimal design objective is remarkably similar

to that of entropy design, which is reviewed in Section 8.3.2. Since the op-

timization for entropy designs is a NP-hard problem (Ko et al., 1995), we

explore a sampling design for approximating the entropy design optimal so-
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lution. This strategy explores the stochasticity of k-DPP and the simplicity

of obtaining samples from this process.

8.3 A Review of Design Strategies

Design strategies are often divided into the following groups (Zidek and

Zimmerman, 2010):

• Geometry-based designs: Designs of this type are based solely on

geometric considerations and, in general, their intent is to provide a

good coverage of the design region. An example is the space-filling

design (Cox et al., 1997; Nychka et al., 1997; Royle and Nychka, 1998;

Van Groenigen et al., 2000), which we describe in Section 8.3.1. These

designs are particularly useful for exploratory purposes (Müller, 2005).

However, as a non-randomized design strategy, it may be prone to

potential sampling biases.

• Probability-based designs: These designs are often based on ran-

domly sampling locations from the design region. Although they can

avoid potential sampling biases due to the randomization, the sampled

points may be clumped in some particular areas of the design region.

Considering that nearby locations tend to share similar characteris-

tics, sampling locations too close to each other may not bring valuable

information about the process of interest.

• Model-based designs: As pointed out by Zidek and Zimmerman

(2010), environmental monitoring networks are usually based on model-

based designs. These designs often optimize a certain characteristic

about the process of interest, such as the reduction of uncertainty

about model parameters or of the uncertainty about the prediction at

unmeasured locations.

In the following subsections, we briefly expand on the descriptions for

space-filling and entropy-based designs.
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8.3.1 Space-Filling Designs

Space-filling (SF) spatial designs aim at providing a good coverage of

the design region based on a criterion that is purely geometric-based. SF

designs thus make use of geometric measures to assess the coverage qual-

ity. Outside of the monitoring network context, SF designs have also been

quite extensively explored in computer experiments as a way of selecting

inputs (Sacks et al., 1989; Haaland et al., 1994). A survey of SF designs for

computer experiments can be found in Pronzato and Müller (2012).

Denote by C a set of candidate points, usually based on a fine discretiza-

tion of the design region, and let D ⊂ C denote the set of k design points.

A metric for the distance of any point s and a particular design D is given

by (Nychka et al., 1997; Royle and Nychka, 1998):

dp(s,D) =

(∑
u∈D
||s− u||p

)1/p

. (8.1)

This metric determines how well the design covers the point s. Their overall

coverage criterion is based on minimizing averages of the coverage metric

for every candidate point, given by

Cp,q(D) =

(∑
u∈C

dp(s,D)q

)1/q

, (8.2)

for all D ⊂ C. Royle and Nychka (1998) describe a suboptimal solution

based on a point swapping algorithm. The algorithm uses random starting

configurations and aim at decreasing the coverage criterion by swapping

candidate and design points until convergence.

An advantage of this method is its computational simplicity, which is

currently implemented in the R package fields (Nychka et al., 2015). Royle

and Nychka (1998) point out that the resulting designs are nearly optimal

for spatial prediction purposes.

A generalization of the space-filling design is that of Van Groenigen et al.

(2000) who propose a weighted means of shortest distances criterion based
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on minimizing ∫
A
d(s)w(s)ds, (8.3)

where A ⊆ R2, w(s) is a weight function, and the distance between s ∈ A
and its closest design points is given by

d(s) = min
i
||s− xi||. (8.4)

However, since these design strategies are geometry-based, they do not

allow inclusion of other sources of information, and are highly dependent on

the coverage criterion. As non-randomized design strategies, they may be

prone to potential sampling biases.

8.3.2 Entropy-Based Designs

The uncertainty about Y can be represented by the the entropy of its

distribution

H(Y) = EY

[
− log

(
f(Y)

h(Y)

)]
, (8.5)

where h(Y) denotes a reference density, which need not be integrable, al-

lowing the entropy to be invariant under one-to-one transformations of the

scale of Y (Jaynes, 1963).

In hierarchical models for environmental processes, Y is usually defined

conditionally on some hyperparameters, which we denote by Ψ. Considering

minimizing uncertainty about Ψ as another design objective (Caselton et al.,

1992), the total entropy can be defined as
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H(Y,Ψ) = E

[
− log

(
f(Y,Ψ)

hY,Ψ(Y,Ψ)

)]
(8.6)

= E
[
− log

(
f(Y|Ψ)f(Ψ)

hY(Y)hΨ(Ψ)

)]
(8.7)

= E
[
− log

(
f(Y|Ψ)

hY(Y)

)]
+ E

[
− log

(
f(Ψ)

hΨ(Ψ)

)]
(8.8)

= H(Y|Ψ) +H(Ψ). (8.9)

Similarly, we can define the total entropy in the context of the design

of monitoring networks by first augmenting the data into Y = (Y(u),Y(g)),

where Y(u) denotes the measurements at potential sites, currently ungauged,

and Y(g) relates to the existing sites, referred to as gauged locations. The

result is:

H(Y(u),Y(g),Ψ) = E

[
− log

(
f(Y(u),Y(g),Ψ)

hY(u),Y(g),Ψ(Y(u),Y(g),Ψ)

)]

= E
[
− log

(
f(Y(u)|Y(g),Ψ)× f(Ψ|Y(g))× f(Y(g))

hY(u)(Y(u))× hΨ(Ψ)× hY(g)(Y(g))

)]
= E

[
− log

(
f(Y(u)|Y(g),Ψ)

hY(u)(Y(u))

)]
+ E

[
− log

(
f(Ψ|Y(g))

hΨ(Ψ)

)]
+ E

[
− log

(
f(Y(g))

hY(g)(Y(g))

)]
= H(Y(u)|Y(g),Ψ) +H(Ψ|Y(g))︸ ︷︷ ︸

H(Y(u),Ψ|Y(g))

+H(Y(g)). (8.10)

The design criterion is based on minimizing H(Y(u),Ψ|Y(g)), which

measures the uncertainty about Y(u) and Ψ after Y(g) is observed. Since

the total entropy H(Y(u),Y(g),Ψ) is fixed, an equivalent criterion is to

maximize H(Y(g)). Moreover, the same criterion of maximizing H(Y(g))

would be similarly obtained had we decomposed H(Y(u),Y(g)) instead of

H(Y(u),Y(g),Ψ).
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Entropy of Multivariate Normal Distributions

Recall that the log-density of a p-dimensional multivariate normal dis-

tribution with mean µ and covariance Σ is given by

log f(Y|µ,Σ) = −p
2

log(2π)− 1

2
log det(Σ)− 1

2
(Y − µ)>Σ−1(Y − µ),

where det(·) denotes matrix determinant. Without loss of generality, assum-

ing a reference measure hY(Y) = 1, then

H(Y) = EY

[
p

2
log(2π) +

1

2
log det(Σ) +

1

2
(Y − µ)>Σ−1(Y − µ)

]
=

p

2
log(2π) +

1

2
log det(Σ) +

1

2
EY[(Y − µ)>Σ−1(Y − µ)]

=
p

2
log(2π) +

1

2
log det(Σ) +

p

2

=
p

2
[log(2π) + 1] +

1

2
log det(Σ). (8.11)

Now suppose that we can partition Y as (Y(u),Y(g)). Denoting the ma-

trices Σgg and Σuu as the covariance matrices of Y(g) and Y(u), respectively,

and Σug the cross-covariance, we can partition Σ as

Σ =

(
Σuu Σug

Σgu Σgg

)
. (8.12)

Recall from the properties of the multivariate normal that Y(u)|Y(g) ∼
N (µu|g,Σu|g), where Σu|g = Σuu −ΣugΣ

−1
gg Σgu. Hence, the entropy of Y

can be written as

H(Y(u),Y(g)) = H(Y(u)|Y(g)) +H(Y(g)) (8.13)

c∝ 1

2
log det(Σu|g) +

1

2
log det(Σgg), (8.14)

where
c∝ denotes proportionality up to additive constants. The entropy

criterion is thus to minimize log det(Σu|g), or equivalently, to maximize

log det(Σgg).

105



8.3. A Review of Design Strategies

In the context of monitoring networks, say, when the goal is to augment

the network, the objective is to find a subset of u+ sites among the u un-

gauged ones (also referred to as candidate sites, where C denote the set of

candidate points) to add to the existing network. We denote the remaining

sites that are not the selected as u−. The resulting network will then consist

of (Y(u+),Y(g)).

Note that Y(u) can be partitioned into (Y(u+),Y(u−)). Proceeding sim-

ilarly as above, note that

H(Y(u+),Y(u−),Y(g)) = H(Y(u+),Y(u−)|Y(g)) +H(Y(g))

= H(Y(u−)|Y(u+),Y(g)) +H(Y(u+),Y(g)).

Since the total entropy H(Y(u+),Y(u−),Y(g)) is fixed, it will be optimal to

augment the network with the u+ sites so as to maximize H(Y(u+),Y(g)).

Considering that

H(Y(u+),Y(g)) = H(Y(u+)|Y(g)) +H(Y(g)) (8.15)

c∝ 1

2
log det(Σu+|g) +

1

2
log det(Σgg), (8.16)

it will be optimal to maximize 1
2 log det(Σu+|g). The entropy criterion for

augmenting the network is thus

arg max
u+⊂C

1

2
log |Σu|g|. (8.17)

Entropy of Multivariate t-Distributions

The entropy of a multivariate t-distribution can be obtained as a scale

mixture of a multivariate normal and an inverted Wishart distribution (Casel-

ton et al., 1992; Guttorp et al., 1993). Let Y be a g-dimensional random

variable such as

Y|Σ ∼ N (µ,Σ) (8.18)

Σ|Ξ, δ ∼ W−1(Ξ, δ). (8.19)
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Hence,

Y ∼ t
(
µ,

Ξ

δ − g + 1
, δ − g + 1

)
. (8.20)

Conditionally on the hyperparameters Ξ and δ, note that the entropy of

Y is defined as

H(Y) = H(Y|Σ) +H(Σ)−H(Σ|Y), (8.21)

since the joint entropy H(Y,Σ) can be decomposed in the following two

different ways:

H(Y,Σ) = H(Y|Σ) +H(Σ) (8.22)

H(Y,Σ) = H(Σ|Y) +H(Y). (8.23)

Assuming the following reference measure h(Y,Σ) = |Σ|−(g+1)/2 as in

Caselton et al. (1992), we will now describe each component of the entropy

of Y.

Since Y|Σ is multivariate normal, using results from Section 8.3.2, and

since ΞΣ−1 ∼ W(I, δ), then

H(Y|Σ) =
1

2
[log(2π) + 1] +

1

2
E[log det(Σ) | Ξ]

=
1

2
[log(2π) + 1] +

1

2
E[log det(ΣΞ−1Ξ) | Ξ]

=
1

2
[log(2π) + 1] +

1

2
E[log det(ΣΞ−1) | Ξ] +

1

2
log det(Ξ)

c∝ 1

2
log det(Ξ). (8.24)
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Now notice that the other two components of the entropy of Y in (8.21)

are in fact constants. Recall that if Σ|Ξ, δ ∼ W−1(Ξ, δ) then its density can

be written as

f(Σ) ∝ det(Ξ)δ/2 det(Σ)−
δ+p+1

2 exp

{
−1

2
tr(ΞΣ−1)

}
. (8.25)

Due to our choice of reference measure, conditionally on the hyperpa-

rameters Ξ and δ, the entropy of Σ is

H(Σ) = E
[
− log

(
f(Σ)

h(Σ)

)]
c∝ −δ

2
log det(Ξ) +

δ

2
E(log det(Σ) | Ξ) +

1

2
E[tr(ΞΣ−1) | Ξ]

= −δ
2

log det(Ξ) +
δ

2
E[log det(ΣΞ−1Ξ) | Ξ] +

1

2
E[tr(ΞΣ−1) | Ξ]

= −δ
2

log det(Ξ) +
δ

2
E[log det(ΣΞ−1) | Ξ] +

δ

2
log det(Ξ)

+
1

2
E[tr(ΞΣ−1) | Ξ]

c∝ c1(p, δ), (8.26)

where c1(p, δ) denotes a constant that depends on p and δ. This is due to

the fact that ΞΣ−1 ∼ W(I, δ).

Similarly, conditionally on the hyperparameters Ξ and δ, we will derive

the entropy of Σ|Y. Firstly, note that the marginal posterior of Σ is given

by

Σ|Y ∼ W−1(Ξ + YY>, δ + 1). (8.27)

Recall that the reference measure we are using is h(Y,Σ) = h(Y)h(Σ) =

|Σ|−(g+1)/2. Hence, conditionally on the hyperparameters Ξ and δ, the
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entropy of Σ|Y is given by

H(Σ | Y) = E
[
− log

(
f(Σ|Y)

h(Σ)

)]
c∝ −δ + 1

2
E[log det(Ξ + YY>) | Ξ]

+
δ + 1

2
E[log det(Σ) | Ξ] +

1

2
E[tr((Ξ + YY>)Σ−1) | Ξ]

= −δ + 1

2
log det(Ξ)− δ + 1

2
E[log(Y>Ξ−1Y) | Ξ]

+
δ + 1

2
E[log det(ΣΞ−1) | Ξ] +

δ + 1

2
log det(Ξ)

+
1

2
E[tr((Ξ + YY>)Σ−1) | Ξ]

c∝ −δ + 1

2
E[log(Y>Ξ−1Y) | Ξ] +

δ + 1

2
E[log det(ΣΞ−1) | Ξ]

+
1

2
E[tr(ΞΣ−1) | Ξ] +

1

2
E[tr(Y>Σ−1Y) | Ξ]

c∝ c2(p, δ), (8.28)

where c2(p, δ) denotes a constant that depends on p and δ. This is due to

the fact that

det(Ξ + YY>) = det(Ξ)[Y>Ξ−1Y] (8.29)

tr((Ξ + YY>)Σ−1) = tr(ΞΣ−1) + tr(YΣ−1Y>), (8.30)

ΞΣ−1 ∼ W(I, δ), and that given Ξ, Y>Ξ−1Y follows a F -distribution with

degrees of freedom depending on p and δ.

Finally, combining (8.24), (8.26) and (8.28), we conclude that the entropy

for a t
(
µ, Ξ

δ−g+1 , δ − g + 1
)

is

H(Y)
c∝ 1

2
log det(Ξ). (8.31)
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8.4 k-DPP Design

We propose a flexible monitoring network design strategy based on a

k-DPP. We use the fact that not only could a k-DPP design be spatially-

balanced, but could also provide a flexible way of imposing diversity in the

selection of locations based on additional variables that might be available.

The methodology depends on the well-established theory of k-DPPs, though

here it is described in a design of monitoring network setting.

Definition 8.5. A k-DPP design is characterized by an L-ensemble, denoted

by L, i.e. any positive semidefinite matrix indexed by a set of n candidate

locations, such that n ≥ k. The design objective is based on the optimal

configuration under a cardinality constraint, as follows

arg max
Y⊆Y, |Y |=k

det(LY ), (8.32)

where Y = {1, . . . , n} and LY ≡ [Lij ]i,j∈Y .

Note that the methodology easily accommodates the objective of reduc-

ing the number of sites in a monitoring network. In this case, the elements

of L should be indexed by the n set of existing monitoring locations. If

the goal is to select k stations for reduction, then the cardinality constraint

in the design objective should be the cardinality of the complementary set,

n− k, as follows

arg max
Y⊆Y, |Y |=n−k

det(LY ), (8.33)

where Y = {1, . . . , n}. This allows for the selection of the optimum n − k
set of monitors that will remain in the network, while the other k will be

shut down.

Furthermore, the methodology can also be adapted for use when the goal

is to augment the network. Let C be the set of m potential new locations and

G the set of n existing monitors. Let Y index the elements of the monitoring

network which includes all the n existing monitors as well as the m candidate

monitors.
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Note that the probabilities of selection need to be described conditionally

on the existing monitors. We describe these conditional probabilities as

follows.

PL(Y = G ∪ C|G ⊆ Y) =
PL(Y = G ∪ C)
PL(G ⊆ Y)

(8.34)

∝ PL(Y = G ∪ C) (8.35)

∝ det(LGC ), (8.36)

where LG is an L-ensemble indexed by the elements of Y − G, and can be

obtained as follows (Borodin and Rains, 2005; Kulesza and Taskar, 2012)

LG = [(L+ IḠ)−1]Ḡ − I, (8.37)

where IḠ is the matrix with ones in the diagonal entries of the elements

of Y − G, and L is an L-ensemble indexed by the elements of Y. Recall

that the subscripts denote matrix restriction. For instance, LGC is simply

the restricted LG , i.e. selecting the rows and columns associated with the

elements of candidate set C. Denoting the set of u selected monitors as U,

the augmentation design objective can be then described as

arg max
U⊆C, |U|=m

det(LGU). (8.38)

One of the limitations of the k-DPP design is that the described opti-

mization problems are NP-hard (Ko et al., 1995; Kulesza and Taskar, 2012).

In the following Section 8.5.1, we describe a sampling strategy tool based

on the k-DPP design that can also be used to select a subset of points

among a candidate set of points, which could ultimately be used to obtain

a suboptimal approximation.

8.5.1 k-DPP Sampling Design Strategy

In order to handle the NP-hard optimization problem, we propose a sam-

pling design strategy based on k-DPPs. This sampling design strategy takes
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8.4. k-DPP Design

advantage of the ease of sampling from a k-DPP as described in Algorithm

4.

Definition 8.6. A k-DPP sampling design is a probability-based design that

entails sampling from a k-DPP characterized by an L-ensemble, denoted by

L, i.e. any positive semidefinite matrix indexed by a set of n candidate

locations. Every subset of k locations among the candidate points has the

opportunity to be sampled with probability

PkL(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)
.

A remarkable characteristic of a k-DPP sampling design is that its method-

ology is flexible. The design strategies described are governed by the choice

of the L-ensemble, which brings some flexibility for the scope of allowable

design strategies.

Spatially-balanced k-DPP Designs

A spatially-balanced k-DPP design can be easily constructed as an al-

ternative to space-filling designs when the only information available are the

locations of the potential new monitors.

Result 8.6.1. A spatially-balanced k-DPP design can be used as an alter-

native to space-filling designs when the only information available are the

locations of the potential new monitors. It suffices to construct a positive

semidefinite matrix L whose entries depend on a measure of distance between

the candidate locations.

A simple way to construct an L-ensemble of such type is by using a

Gaussian kernel, as described below. Note that the positivity of the kernel

guarantees that L is indeed a positive semidefinite matrix.

• Gaussian radial basis kernel: The (i, j) entries of the L are given

by Li,j = exp{−||si−sj ||2/2σ2}, where ||si−sj || denotes the Euclidean

distance between locations si and sj .
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In Section 8.7, we illustrate how spatially-balanced k-DPP designs can

be used as an alternative to space-filling designs.

Inclusion of Extra Sources of Information in a k-DPP Design

In the more general case, a k-DPP sampling design strategy could also

allow for the inclusion of other potential extra sources of information. In

the context of environmental monitoring networks, this could include to-

pographic or demographic features. For instance, if our goal is to design

a monitoring network for a given pollutant, we may consider demographic

features correlated with the outcome of interest, such as population size, to

diversify the location of the monitors. By using a k-DPP strategy, we would

be more likely to choose locations in highly populated areas as well as not

so populated ones.

Assuming that there exists p standardized features available about a

given location si, such that (f (1)(si), . . . , f
(p)(si)) is associated to si, then

Li,j = exp

{
−

p∑
l=1

||f (l)(si)− f (l)(sj)||2

2σ2

}
. (8.39)

We find this idea somewhat similar to Schmidt et al. (2011), where their

goal was to handle nonstationarity by including the effect of covariates in the

covariance structure of spatial processes. In this work, our aim is to select

a diverse set of sampled design points by also taking into consideration the

information available at the candidate points.

Furthermore, one may use an empirical description of the data available

and define L as a sample covariance matrix.

Approximation to the Entropy-based Design Objective using a

k-DPP Sampling Design Strategy

Another remarkable characteristic of a k-DPP design is its strong similar-

ity to the entropy-based design objective in the Gaussian case, as discussed

in the following result.

113



8.7. Comparing k-DPP and SF Sampling Designs

Result 8.6.2. A k-DPP sampling design characterized by an L-ensemble

given by the predictive covariance structure of the potential new monitors

given the existing monitors can be viewed as a randomized version of the

entropy design in the Gaussian case.

In Section 8.8, we illustrate how a k-DPP sampling design strategy can

be used as an approximation for the entropy-based designs for monitoring

temperature fields.

8.7 Comparing k-DPP and SF Sampling Designs

Example 1. Beilshmiedia pendula trees in Barro Island

Let us consider as an example, the locations of Beilshmiedia pendula

trees and elevation for a subset of an original survey plot in Barro Island.

The data set bei is available for download in the spatstat R package (Bad-

deley and Turner, 2005; Baddeley et al., 2015). Figure 8.1 illustrates a total

of 357 potential trees to be selected from. The objective is to select a subset

of 20 of them.

Figure 8.1: Tropical rainforest data. Locations of Beilshmiedia pendula trees
and elevation (metres above sea level) in the [700, 1000] × [0, 200] metres
window of a survey plot in Barro Island. Coloured background corresponds
to the variation of elevation in that window, as seen in the scale on the right
of the plot. Data available from spatstat R package.

Figure 8.2 illustrates the selected trees using the space-filling method
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8.7. Comparing k-DPP and SF Sampling Designs

described in Section 8.3.1 as well as one based on a 20-DPP design. The

20-DPP design was characterized by an L-ensemble using a Gaussian kernel

depended on both the locations and the elevation at all the potential trees,

as in (8.39). Hence the k-DPP diversity was quantified by both the locations

and the elevations. For illustrative purposes, we have assumed an arbitrary

variance σ2 = 0.5.

The space-filling design yielded a more spatially balanced design than

the 20-DPP, as indicated in Figure 8.3. Nevertheless, the DPP design is not

as spatially clustered as the candidate locations.

Note that even though our interest might be in a spatially-balanced

design in order to better represent the study region, the DPP design will

also “penalize” distant stations that are too much alike, hence also imposing

diversity with respect to elevation. Here, we use the “penalization” term to

reflect reduced probability of selection.

(a) Space-Filling (b) 20-DPP

Figure 8.2: Locations of 20 Beilshmiedia pendula trees selected via a space-
filling and a 20-DPP design strategies. Coloured background corresponds to
the variation of elevation (metres above sea level).
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(b) Space-Filling
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(c) 20-DPP

Figure 8.3: Empirical (solid line) and theoretical (dashed line) Ripley’s K.
Note that the SF design shows more spatial regularity than the DPP design.

Example 2. Estimation Assessment with Artificial Data

In this study, we simulate a realization of a Matérn random field with

mean zero, partial sill σ2 = 4, range φ = 1 and smoothness ν = 2, as

illustrated in Figure 8.4.
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0 2 4 6 8 10
0

2
4

6
8

10

−4

−2

0

2

Figure 8.4: Realization of a Matérn random field with mean zero, partial
sill σ2 = 4, range φ = 1 and smoothness ν = 2, in a [0, 10]× [0, 10] domain.
Coloured background corresponds to the observed values of the field (no
units associated to them), as seen in the scale on the right of the plot.

For the purposes of this simulation study, the realization was assumed

to be an artificial true underlying field. We then repeatedly selected 40

locations using three design strategies: 40-DPP, via random uniform selec-

tion, and via a space-filling design. The 40-DPP was characterized using a

Gaussian kernel with fixed variability of 0.5. No other source of information

but the locations of the potential sites was assumed for any of the strategies

considered. The potential sites consisted of a 40× 40 fine grid over the spa-

tial domain. Here, the objective is to compare the two spatially-balanced

design strategies.

Figure 8.5 illustrates an example of the sampling locations using the

different design strategies. Note that the space-filling design is not a ran-

domized design strategy, so the variation in sampling locations is due to

variation in variability in the start configuration points for the point swap

algorithm. Note that these sampling locations would then emulate the en-

vironmental monitors and the observed value of the Matérn random field at

those locations would reflect the data available.

In this study, we assumed no measurement error. The basic geostatistical

model assumed that for each location si was

Y (si) = µ+ η(si), (8.40)
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i = 1, . . . , 40, η(si) is a second-order stationary process with zero mean and

partial sill σ2, and Matérn correlation function with fixed smoothness ν = 2.

(a) 40-DPP (b) Random (c) Space-Filling

Figure 8.5: Example of sampling locations using a 40-DPP design, random
(uniform) selection, and a space-filling design.

We then proceeded with estimating the model parameters using the

INLA method, as described in Section 3.2. To complete model specification,

we assumed the following independent prior distributions for Ψ = (µ, σ2, φ):

µ ∼ N (0, 100) (8.41)

σ−2 ∼ Gamma(1, 0.01) (8.42)

φ ∼ Gamma(1, 0.01). (8.43)

These are fairly vague prior distributions. The notation above N denotes a

normal with given mean and variance parameters.

Figure 8.6 contains the box-plots of the posterior means for these param-

eters, with posterior variability described in Figure 8.7. We have observed

slightly more uncertainty a posteriori for the mean and partial sill param-

eters. On the other hand, it can be seen that for the vast majority of the

simulations, the SF underestimated the true mean. The estimation perfor-

mance of the DPP and SF design about the partial sill and range parameters

seem comparable. When the main interest is in spatial regularity, in terms

of estimation, we observe that the SF and 40-DPP design yield comparable

design strategies.
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Figure 8.6: Box-plots of posterior means for the model parameters Ψ =
(µ, σ2, φ) after repeatedly selecting 40 locations using three different strate-
gies: a 40-DPP with a Gaussian kernel, random uniform selection, and a
space-filling design. This process was repeated 100 times. The red horizon-
tal lines represent the true values of the parameters.
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(b) Partial sill
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Figure 8.7: Box-plots of posterior standard deviations for the model pa-
rameters Ψ = (µ, σ2, φ) after repeatedly selecting 40 locations using three
different strategies: a 40-DPP with a Gaussian kernel, random uniform se-
lection, and a space-filling design. This process was repeated 100 times.
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8.8 Comparing k-DPP and Entropy-Based

Designs for Monitoring Temperature Fields

As noted in Section 4.1, temperature is now seen as an environmental

hazard due to its potential negative effects in human health and nature.

That leads to a need to ensure that the temperature field is adequately

monitored. In this section, we compare through a brief case study, the

designs obtained by the entropy and DPP approaches.

For this study we turn to the data described in Section 4.3.2, consisting

of 97 stations spread over the Pacific Northwest where measurements of

maximum daily temperature were obtained for the January to June 2000

period. A subset of 64 stations are to be selected among the 97 stations to

constitute as a hypothetical monitoring network. An additional 33 stations

are designated as potential sites for new monitors. In this case study, the

goal is to select a subset of 10 stations from among the 33 to augment the

network based on some design criterion.

From Section 4.4, recall that we have partitioned the data as Yt ≡
(Y

(u)
t ,Y

(g)
t ), t = 1, . . . , n. Similarly, we can partition the data for a future

time f as Yf ≡ (Y
(u)
f ,Y

(g)
f ). Denoting y

(g)
1:n as all the data available at the

gauged sites across all times 1, . . . , n, then note that (Le and Zidek, 2006)

Y
(u)
f |y

(g)
f ,y

(g)
1:n,Z,B0 ∼ tu

(
µ(u),

d

δ − u+ 1
Ξu|g, δ − u+ 1

)
, (8.44)

where

µ(u) = zfB
(u)
0 + ΞugΞ

−1
gg (y

(g)
f − zfB

(g)
0 ) (8.45)

d = 1 + zfF
−1z>f + (y

(g)
f − zfB

(g)
0 )Ξ−1

gg (y
(g)
f − zfB

(g)
0 )> (8.46)

Ξu|g = Ξuu −ΞugΞ
−1
gg Ξgu. (8.47)

and that

Y
(g)
f |y

(g)
1:t ,Z,B0 ∼ tu

(
µ(g),

c

δ + n− u− g + 1
Ξ̂gg, l

)
, (8.48)
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where

µ(g) = (I−W)B̂(g) + WB
(g)
0 (8.49)

c = 1 + zf (A + F)−1z>f (8.50)

A =

n∑
t=1

z>t zt (8.51)

W = (A + F)−1F−1 (8.52)

Ξ̂gg = Ξgg + S + (B̂(g) −B
(g)
0 )>(A−1 + F−1)−1(B̂(g) −B

(g)
0 )(8.53)

S =

n∑
t=1

(y
(g)
t − ztB̂

(g))>(y
(g)
t − ztB̂

(g)) (8.54)

B̂(g) =

(
n∑
t=1

z>t zt

)−1( n∑
t=1

z>t y
(g)
t

)
. (8.55)

Using the results for the entropy of a multivariate t distribution described

in Section 8.3.2, and denoting the available data as D = (y
(g)
1:n,Z), condi-

tionally on the hyperparameters, the total entropy can thus be decomposed

as

H(Yf |D) = H(Y
(u)
f |Y

(g)
f ,D) +H(Y

(g)
f |D) (8.56)

Proceeding as in the end of Section 8.3.2, recall that in the context of

monitoring networks, when the goal is to augment the network, the objective

is to find a subset of u+ sites among the u ungauged ones (also referred to

as candidate sites, where C denote the set of candidate points) to add to the

existing network. We denote the remaining sites that are not the selected

as u−. The resulting network will then consist of (Y
(u+)
f ,Y

(g)
f ).

Note that Y
(u)
f can be partitioned into (Y

(u+)
f ,Y

(u−)
f ). Thus,

H(Y
(u+)
f ,Y

(u−)
f ,Y

(g)
f |D)

= H(Y
(u−)
f |Y(u+)

f ,Y
(g)
f ,D) +H(Y

(u+)
f ,Y

(g)
f |D) (8.57)

Notice that it will be optimal to augment the network with the u+ sites so
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as to maximize H(Y(u+),Y
(g)
f |D). Considering that

H(Y(u+),Y
(g)
f |D) = H(Y

(u+)
f |Y(g)

f ,D) +H(Y
(g)
f |D) (8.58)

c∝ 1

2
log |Ξu+|g|+

1

2
log det(Ξ̂gg), (8.59)

then an equivalent criterion is to maximize 1
2 log det(Ξu+|g).

In summary, the entropy criterion for augmenting the network is thus

arg max
u+⊂C

1

2
log det(Ξu|g). (8.60)

For the purposes of this case study, we considered an alternate 10-DPP

design strategy characterized by the same hypercovariance matrix, Ξu|g, in

order to yield comparable design objectives. Similarly as in Section 4.4, we

estimate it via the SG warping method based on the hypercovariance matrix

among the gauged sites.

We obtained a 10-DPP design based on a simulation strategy of repeat-

edly sampling from a 10-DPP. Figure 8.8 illustrates the locations for selected

stations for the two different methods. The entropy solution yielded a log-

determinant of 78.70 for the optimal set of locations. Note that the majority

of the new locations were selected in southern Oregon and northern Califor-

nia, west of the Cascade mountains. The k-DPP also selected a couple of

sites in Eastern Washington, east of the Cascades.

Figure 8.10 illustrates the distribution of the log-determinants for the

DPP samples considering different numbers of simulations. Moreover, from

Figure 8.9, note that 10-DPP is very close to but suboptimal compared with

the entropy design.

Though yielding a suboptimal solution, when the number of combina-

tions is prohibitive, the simulation results indicate that sampling from a

k-DPP could be used to obtain approximations to the entropy design. Fur-

ther assessment to verify the properties of this method of approximating the

entropy based design are needed, as the sampling complexity of the DPP

will also increase for a prohibitive number of combinations.
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Figure 8.8: Comparison of entropy-based and DPP design strategies. The
entropy solution yielded a log-determinant of 78.70 for the restricted condi-
tional hypercovariance matrix for the ungauged sites considering the optimal
set of locations. Here, we illustrate the solution of a 10-DPP sampling de-
sign strategy. Note the similarity in the choice of new locations across both
designs.

Ko et al. (1995) use a branch-and-bound algorithm for this optimization

problem, using a greedy strategy to obtain candidate sets of points. How-

ever, the algorithm is impractical for a large number of candidate points. On

the other hand, Li et al. (2015) suggests an approximate sampling strategy

for discrete k-DPPs that could be useful to alleviate the sampling complexity

for a prohibitivele large number of combinations.
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Figure 8.9: Current maximum log-determinants of the restricted conditional
hypercovariance matrix for the ungauged sites when increasing the number
of simulations of the 10-DPP.
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Figure 8.10: Log-determinants of the restricted conditional hypercovariance
matrix for the ungauged sites varying the number of simulations of a 10-
DPP. The gray line represents the log-determinant for the optimal entropy
solution.
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8.9 Discussion and Future Work

We introduced a novel sampling design strategy based on k-determinantal

point processes. The k-DPP design is a flexible design strategy that is able

to yield spatially-balanced designs, while imposing additional diversity in the

selection of locations based on additional features that might be available.

The methodology is able to handle designing and redesigning a monitoring

network. A summary of the important points discussed is as follows:

• The k-DPP design can be used as a spatially-balanced sampling design

alternative to the space-filling design.

• The k-DPP design objective can be constructed in such a way that is

strongly similar to the entropy-based design objective. It can thus be

viewed as a randomized version of an entropy design.

• A sampling design strategy based on a k-DPP characterized by the

same hypercovariance matrix of a entropy-based design optimal cri-

terion, i.e. Ξu|g, can be used as an approximation for the entropy-

based design when the number of combinations is prohibitively large.

Though suboptimal, this alternative could be particularly useful due

to the NP-hardness of the entropy-based design optimal criterion.

Another randomized spatially balanced design is the generalized random

tessellation stratified (GRTS) design (Stevens Jr and Olsen, 1999, 2003,

2004). For future work, we would like to investigate how the k-DPP design

compares to the GRTS.

Moreover, in our studies we did not address inference about k-DPP L-

ensemble parameters. Recent advances in a Bayesian framework include

Affandi et al. (2014), which can serve as a starting point for future explo-

ration. Our next step would be to investigate their methodology for learning

parameters, and how these ideas could be used in the redesigning a moni-

toring network.
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Chapter 9

Concluding Remarks

This thesis was motivated by the growing need for understanding the

changes in Earth’s climate as well as a increasing concerns due to their po-

tential impact in human health. The focus was mostly on different aspects of

temperature, particularly in the Pacific Northwestern region. Rapid changes

and localized weather are very common in this region and the terrain plays

an important role in separating often radically different climate and weather

regimes.

When the goal is to understand a region’s weather, we advocate perform-

ing exploratory analysis to better understand the localized changes in trend,

instead of just focusing on the modelling of the spatial covariance structure.

We argue that this is needed to better represent interesting smaller-scale

trends, especially for regions with a complex terrain like the Pacific North-

west, which may not be captured by global climate models. We also extended

the spatio-temporal model proposed in Le and Zidek (1992) and described

how one could accommodate features in the mean that vary over space.

In addition, we explored the data fusion problem in order to combine

information from multiple sources that might have been measured at dif-

ferent spatial scales. We saw that for environmental studies, data measure-

ments are often supplemented by information brought by computer model

outputs. We then introduced a scalable inference methodology using the

INLA-SPDE approach, and illustrated this methodology for combining an

ensemble of computer models output with measurements of temperature

across the Pacific Northwest.

Another critical topic tackled was in designing monitoring networks.

They play an important role in the surveillance of environmental processes.

We introduced a novel flexible monitoring network design strategy based on
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k-DPPs, and described how the methodology is able to handle both design-

ing and redesigning a monitoring network. We illustrated how the k-DPP

design is able to yield spatially-balanced designs, and could be used as a

randomized design alternative to space-filling designs. Moreover, we noted

that the k-DPP design objective is strongly similar to the entropy-based de-

sign one, and can be viewed as a randomized version of this design. Finally,

we discussed how a sampling strategy based on k-DPPs could be particu-

larly useful to approximate entropy-based design optimal solution when the

number of combinations is prohibitive.

9.1 Future Work

In this section, we address the limitations of the methodologies presented

in this thesis, and introduce potential alternatives, which are currently sub-

ject of future research.

9.1.1 Nonstationarity in INLA-SPDE: Inference for the BEM

In Chapter 5, we assumed a stationaty Matérn covariance structure for

the “true” underlying random field. This assumption is somewhat unreal-

istic due to the complex terrain of the Pacific Northwest and its localized

and abrupt changes in climate. We would therefore like to accommodate

nonstationarity in the INLA-SPDE inference strategy. This would entail rep-

resenting a Gaussian random field η as a solution to a SPDE with covariance

parameters varying over space, and writing it as

(κ2(s)−∆)
α
2 {τ(s)η(s)} =W(s), (9.1)

where τ models the variance of the process and is allowed to vary on space.

We then aim to investigate whether this leads to improvement in the

DBEM application of combining temperature measurements and an ensem-

ble of deterministic model outputs for stations spread over the Pacific North-

west, as introduced Chapter 6.
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9.1.2 Modified DBEM for Forecasting

In Chapter 6, we noted that the DBEM is based on a mixture of posterior

distributions based on a training set. The methodology thus requires the

computation of mixing weights, which are essentially based on normalized

marginal likelihoods across the training set. Difficulty in differentiating these

weights may be encountered when at least one log-likelihood is significantly

higher than the rest, and ultimately will dominate the mixing weights. We

introduced an alternative methodology described in Algorithm 2 that is the

subject of current research.

9.1.3 Comparison of k-DPP Design with the Generalized

Random Tessellation Stratified (GRTS) Design

In Chapter 8, we described how the k-DPP design can be used as a

spatially balanced sampling design alternative to the space-filling design.

Another randomized spatially balanced design is the generalized random

tessellation stratified (GRTS) design (Stevens Jr and Olsen, 1999, 2003,

2004). How well the k-DPP design compares with the GRTS is the subject

of future research.

9.1.4 Inference about k-DPP Design Parameters

In Chapter 8, we did not address inference about k-DPP L-ensemble

parameters. Inference for these parameters could ultimately be used when

redesigning a monitoring network, thus avoiding the need of an arbitrary

selection. A starting point for exploration could be the work of Affandi

et al. (2014). They proposed using MCMC methods, while focusing on

random-walk Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970)

and a slice sampler (Neal, 2003). Our next step would be to investigate their

methodology for learning parameters, and how these ideas could be used in

the redesigning a monitoring network, ultimately avoiding the need for an

arbitrary selection.
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Appendix A

Miscellaneous

Definition A.1. Green’s first identity (Chapter 7 of Strauss (2008))

Let u and v be scalar functions on some region Ω ⊂ Rd. Suppose that u

is twice continuously differentiable, and v once continuously differentiable.

Then, ∫
∂Ω
v
∂u

∂n
dS =

∫
Ω
∇v · ∇u dx +

∫
Ω
v∆u dx, (A.1)

where ∆ is the Laplacian operator, ∂Ω is the boundary region Ω, and ∂u
∂n is

the directional derivative in the outward normal direction.
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Appendix B

INLA-SPDE Example

In this appendix, we demonstrate the use of R-INLA for the implemen-

tation of the BEM model described in Chapter 5. We consider an artificial

ensemble of five deterministic model outputs. We randomly sampled 100

locations within a unit square, and simulated data based on the following

settings.

• Parameters of the “true” underlying process Z

– Mean parameters:

µ(s) = α+ β1lat + β2long,

where α = 1, β1 = 2, β2 = 1.

– Covariance parameters: Matérn with

smoothness κ = 10;

marginal variance σ2 = 1; and

range
√

8/κ = 0.28

• Parameters of measurement process Ẑ

σ2
e = 0.5.

• Parameters of ensemble members Z̃j

– Additive biases (a1, a2, a3, a4, a5) = (2.0, 3.5, 1.5, 2.5, 3.0).

– Multiplicative biases (b1, b2, b3, b4, b5) = (0.8, 1.2, 0.9, 1.1, 1.5).

– Variances (σ2
δ1
, σ2

δ2
, σ2

δ3
, σ2

δ4
, σ2

δ5
) = (2.0, 2.5, 1.5, 2.0, 3.0).
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Appendix B. INLA-SPDE Example

After simulating the data, the first step is to create a triangulation of

the continuous spatial domain, as it is described in Figure B.1. Note that

the spatial domain was extended to avoid a boundary effect.
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Figure B.1: Triangulation for the artificial data. The mesh comprises of 486
edges and was constructed using triangles that have a minimum angle of
25, maximum edge length of 0.1 within the spatial domain and 0.2 in the
extension domain. The 100 artificial monitoring locations are highlighted in
red.

For model completeness, in order to carry out the inference procedure,

we describe our independent prior specifications below. For numerical sta-

bility, we specify priors for precision parameters (inverse of the variance)

in a logarithmic scale. Notation used below for normal priors is mean and

precision, whereas we refer to a Log-gamma as simply the logarithm of a

Gamma distribution.

• For the mean parameters α, β1, β2, and calibration parameters aj and

bj , for j = 1, . . . , 5, we specified a N(0, 0.01) prior.

• For log(σ−2
δj

), j = 1, . . . , 5, we specified a Log-gamma(0.01, 0.01) prior.

• For log(σ−2
e ), we specified a Log-gamma(1, 0.01) prior.
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Appendix B. INLA-SPDE Example

• For log(σ), we specify a N(0, 0.1) prior, for log(κ) a N(0, 1). We

heuristically specify the prior for the spatial range as a fifth of the

approximate domain diameter. This leads to a fairly vague prior spec-

ification for log(σ). As described in Lindgren and Rue (2015), for this

heuristic choice, the precision 1 for the prior of log(κ) gives an ap-

proximate 95% prior probability for the range being shorter than the

domain size.

Table B.1 contains the posterior summaries for the parameters of the

BEM model for the artificial data, all parameters were reasonably well esti-

mated. Under a fairly weak prior specification, the measurement error pre-

cision was underestimated. The marginal posterior densities for all model

parameters can be found in Figures B.2, B.3, B.4, B.5, B.6, and B.7.
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Table B.1: Posterior summaries for the parameters of the BEM model for the
artificial data, including posterior mean and 95% credible intervals. Note
that all parameters were reasonably well estimated. Under a fairly weak
prior specification, the measurement error precision was underestimated.

Parameter True Value Post. Mean CI (95%)

α 1.00 0.87 (-0.78; 2.56)

β1 2.00 1.55 (-0.61; 3.60)

β2 1.00 2.36 (0.29; 4.62)

σ−2
e 2.00 3.38 (2.07; 5.27)

σ−2 1.00 1.40 (0.65; 2.56)

κ 10.0 8.76 (4.63; 13.52)

ρ 0.28 0.32 (0.18; 0.53)

a1 2.00 1.81 (1.15; 2.45)

a2 3.50 3.25 (2.49; 4.01)

a3 1.50 1.06 (0.44; 1.65)

a4 2.50 2.55 (1.85; 3.26)

a5 3.00 2.93 (2.03; 3.85)

b1 0.80 0.91 (0.71; 1.11)

b2 1.20 1.30 (1.07; 1.53)

b3 0.90 1.04 (0.85; 1.24)

b4 1.10 1.14 (0.92; 1.36)

b5 1.50 1.45 (1.17; 1.73)

σ−2
δ1

0.50 0.64 (0.47; 0.85)

σ−2
δ2

0.40 0.47 (0.34; 0.63)

σ−2
δ3

0.67 0.70 (0.51; 0.94)

σ−2
δ4

0.50 0.53 (0.39; 0.72)

σ−2
δ5

0.33 0.28 (0.21; 0.38)
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Figure B.2: Posterior distributions for the mean parameters of the underly-
ing random field. The gray line represents the true value.
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Figure B.3: Posterior distribution for the measurement error variance i.e,
σ2
e . The gray line represents the true value.
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Figure B.4: Posterior distributions for the additive calibration parameters
for each member of the ensemble i.e, aj , for j = 1, . . . , 5. The gray line
represents the true value.

151



Appendix B. INLA-SPDE Example

0.0 0.5 1.0 1.5

0
1

2
3

4

b1

D
en

si
ty

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

b2

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

b3

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

b4

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

b5

D
en

si
ty

Figure B.5: Posterior distributions for the multiplicative calibration param-
eters for each member of the ensemble i.e, bj , for j = 1, . . . , 5. The gray line
represents the true value.
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Figure B.6: Posterior distributions for the variance parameters for each
member of the ensemble i.e, σ2

δj
, for j = 1, . . . , 5. The gray line represents

the true value.
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Figure B.7: Posterior distributions for covariance parameters, namely,
smoothness, variance and range, respectively. The gray line represents the
true value.
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