
A TRIP-BASED APPROACH TO MODELLING URBAN TRANSPORTATION 

GREENHOUSE GAS EMISSIONS FOR MUNICIPALITIES  

 

by 

 

Md. Nobinur Rahman 

 

B.Sc., Rajshahi University of Engineering & Technology, 2010 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

in 

THE COLLEGE OF GRADUATE STUDIES 

(Civil Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Okanagan) 

 

September 2016 

 

© Md. Nobinur Rahman, 2016 



ii 

The undersigned certify that they have read, and recommend to the College of Graduate Studies 

for acceptance, a thesis entitled:  

 

A Trip-based Approach to Modelling Urban Transportation Greenhouse Gas Emissions for 

Municipalities  

 

Submitted by               Md. Nobinur Rahman            in partial fulfillment of the requirements of 

the degree of          Master of Applied Science            . 

 

 

Dr. Ahmed O. Idris, Faculty of Applied Science/School of Engineering  

Supervisor, Professor (please print name and faculty/school above the line) 

 

Dr. Gordon Lovegrove, Faculty of Applied Science/School of Engineering 

Supervisory Committee Member, Professor (please print name and faculty/school above the line) 

 

Dr. Cigdem Eskicioglu, Faculty of Applied Science/School of Engineering  

Supervisory Committee Member, Professor (please print name and faculty/school above the line) 

 

Dr. Alex Bigazzi, Faculty of Applied Science/Department of Civil Engineering 

University Examiner, Professor (please print name and faculty/school above the line) 

 

 

 

September 07, 2016 

(Date submitted to Grad Studies) 



iii 

Abstract 

Transportation has always been a major source of Greenhouse Gas (GHG) emissions all over the 

world. The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC) 

has reported that the transportation sector was responsible for 14% of the total emissions in 2010. 

In Canada, transportation has been the second largest source of GHG emissions in 2012. 

Therefore, cutting transportation-related GHG emissions has become a top priority on the 

international agenda. Many international governments have announced aggressive GHG 

emissions reduction targets. In response, numerous research efforts have looked at developing 

tools to model the effect of various transportation and land use policies on GHG emissions 

reduction. However, most of the developed models are context specific and vary greatly in 

complexity (e.g. network-wide, corridor-wide, etc.) and level of detail (i.e. macro, meso, and 

micro). Thus, they cannot be used in other settings. In addition, little has been reported on 

monitoring progress towards meeting municipal GHG emissions reduction targets.  

 

To contribute to this issue, this research presents a TRIp-Based Urban Transportation Emissions 

(TRIBUTE) model for municipalities. TRIBUTE integrates two main components: a discrete 

mode choice/shift model and an emissions forecasting model. Given personal, modal, and land 

use information, the mode choice/shift model calculates the proportion of trips made by different 

travel options (e.g. car, bus, walk, etc.). The total Vehicle Kilometres Travelled (VKT) by each 

mode is then calculated by multiplying the proportion of trips made by each mode by respective 

average VKT. Finally, total GHG emissions are calculated by multiplying the total VKT by each 

mode by respective average emissions factors. TRIBUTE is intended to assist municipalities 

(especially those with no detailed transportation network model) explore the impacts of various 

transportation and land use planning policies on changing travel behavior, and subsequently 

GHG emissions from passenger transportation. The City of Kelowna, BC, Canada is selected as 

a case study. The model validation results show a difference of only 0.3% in GHG emissions 

between the model prediction and the historical data.  
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Chapter 1: Introduction 

1.1 Outline 

This chapter starts with a discussion of the problem statement and research motivation in Section 

1.2, followed by research goal and objectives in Section 1.3. Finally, Section 1.4 demonstrates 

the structure of the thesis. 

 

1.2 Problem Statement and Research Motivation 

Transportation has always been a major source of Greenhouse Gas (GHG) emissions all over the 

world. From 1990 to 2007, GHG emissions from the transportation sector increased 

substantially, reaching around 15% of the overall GHG emissions in 2010 (International 

Transportation Forum, 2010). This global trend is further exceeded in North America. In 2008, 

transportation accounted for 27% of the total GHG emissions in the United States (Mahendra et 

al., 2012). In Canada, transportation was the second largest source of GHG emissions in 2012, 

accounting for 24% of the total emissions nationwide (Environment Canada, 2014). At the 

provincial level, 37.9% of British Columbia’s GHG emissions came from the transportation 

sector (Ministry of Environment, 2012). Such high levels of GHG emissions can be attributed to 

the large expansion of the urban road network and automobile dependency in many North 

American cities. For example, GHG emissions from private automobiles in Canada in 2007 were 

14% higher than that of 1990 levels (Terefe, 2010).  

 

In light of the above, cutting transportation-related GHG emissions has become a top priority on 

the international agenda. Many international governments announced aggressive, sometimes 

optimistic, GHG emissions reduction targets. For example, the United Kingdom government set 

a target to reduce transportation-related GHG emissions by 60% by 2030 (Hickman and Banister, 

2007). The Australian government intended to reduce GHG emissions by 20% below 2000 levels 

by 2020, and ultimately reach a 50% reduction by 2050 (Stanley et al., 2011). The Government 

of Canada has also committed to reduce Canada’s GHG emissions by 17% below 2005 levels by 

2020 under the Copenhagen Accord (Environment Canada, 2013). At the provincial level, 

British Columbia went further beyond the Canadian threshold and intended to reduce its 

emissions below 2007 levels by a minimum of 33% by 2020 and 80% by 2050 (Ministry of 

Environment, 2014c). 
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In response to these international governments’ commitments, GHG emissions have become a 

major concern within the international scientific community. Numerous research efforts have 

looked at developing tools to model and forecast GHG emissions from the transportation sector. 

While useful, the developed tools are context specific and constrained by the availability of data 

and/or expertise, being of little or no use outside that context. In addition, the available tools for 

GHG emissions modelling and forecasting vary greatly in complexity (e.g. network-wide, 

corridor-wide, etc.), level of details (i.e. macro, meso, and micro), and sensitivity to 

transportation attributes (e.g. travel speed, fuel consumption, etc.) and land use factors (e.g. 

density, diversity, design, etc.). 

 

It is apparent that there is no universal tool for GHG emissions modelling and forecasting. 

Unfortunately, most of the developed tools are suitable for estimating GHG emissions in large 

urban centres where traffic congestion and emissions are major concerns, being of little use in 

small municipalities where the required data and/or expertise are unavailable. Other tools require 

a detailed transportation network model to estimate emissions at the link level (i.e. link-based 

models), being useless in cases where such network model is unavailable. Therefore, more 

research is still needed to develop GHG emissions modelling and forecasting tools suitable for 

the context of small and mid-sized municipalities with appropriate complexity, level of details, 

and sensitivity to transportation attributes and land use factors.  

 

1.3 Research Goal and Objectives 

This research aims at developing modelling and scenario-comparison tools to explore the 

impacts of various transportation and land use planning policies on changing travel behavior, and 

subsequently GHG emissions. The developed tools are intended for estimating GHG emissions 

from passenger transportation in the absence of a detailed transportation network model. Such 

goal is achieved through the completion of the following objectives: 

 

 Develop discrete mode choice model to estimate mode shift (i.e. switching modes from 

cars to public transit and active transportation) in response to changes in density and land 

use mix 
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 Develop Passenger Kilometre Travelled (PKT) model to capture the reduction in trip 

length due to changes in land use attributes 

 

 Develop GHG emissions forecasting model to assist municipalities evaluate alternative 

policy scenarios and eventually select the scenario(s) that help them to meet their future 

GHG emissions targets 

 

 Assess the impacts of urban densities and land use policies on the City of Kelowna’s 

GHG emissions targets as a case study 

 

1.4 Structure of the Thesis 

This thesis consists of six chapters. Chapter 1 introduces the problem statement along with the 

research goal and objectives, and thesis outline. Chapter 2 reviews the literature on Greenhouse 

Gas (GHG) emissions and their sources, the controlling factors that affect GHG emissions, and 

the effects of land use and built environment on travel behavior and GHG emissions reduction. 

Chapter 3  proposes a TRIp-Based Urban Transportation Emissions (TRIBUTE) model and 

describes the research methodology and the framework of the developed model. Chapter 4 

presents the study area, datasets, and modelling efforts. Chapter 5 applies TRIBUTE to evaluate 

the impact of alternative land use and transportation policy scenarios on Kelowna’s GHG 

emissions targets. Finally, Chapter 6 concludes the thesis and discusses limitations and future 

research.  
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Chapter 2: Literature Review 

2.1 Outline 

This chapter starts with an overview of Greenhouse Gases (GHGs) in Section 2.2, followed by 

the sources of GHG emissions in Section 2.3. The factors that affect GHG emissions are 

presented in Section 2.4. In Section 2.5, the effects of land use and built environment on travel 

behavior and GHG emissions reduction are discussed. The traditional travel demand modelling 

approach is presented in Section 2.6.  

 

2.2 Greenhouse Gases 

Greenhouse gases (GHG) generally act as a global insulator that absorbs surface energy and 

slows down energy escapes, thus warms the earth’s surface and makes it hospitable to life 

(IPCC, 1996). This phenomenon, warming the earth’s surface, is known as the greenhouse effect 

(Murphy, 2000). The most important natural GHGs associated with the greenhouse effect are 

water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and ozone (O3). 

However, the increase in concentration of GHGs in the earth’s atmosphere has resulted in higher 

absorption rates of surface energy and subsequently, global temperature rising, leading to a rise 

in mean sea level (Murphy, 2000). 

 

Human activities such as burning fossil fuels and deforestation can contribute to the increase of 

GHGs in the earth’s atmosphere. Besides the natural GHGs, the Kyoto protocol has dealt with 

the greenhouse gases sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs) and 

perfluorocarbons (PFCs) (UNFCCC, 2008). The components of GHGs can be divided into two 

broad categories: long-lived gases and short-lived gases (IPCC, 2007). The long-lived gases 

persist a long time in the atmosphere and are chemically more stable. Carbon dioxide, methane, 

and nitrogen dioxide lies within this category. On the other hand, the short-lived gases are 

chemically more active and are washed out in the form of precipitation. Short-lived gases include 

sulphur dioxide and carbon monoxide (IPCC, 2007).  

 

Greenhouse gas emissions for each gas are normally stated and/or measured in terms of their 

global warming potential (GWP), a measure that allows their impact to be stated in terms of one 

comparable gas (USEPA, 2016). GWP is an indicator of energy absorption of a particular gas 
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over a given period relative to carbon dioxide over the same period. Usually, the given time is 

100 years. The unit of GWP is carbon dioxide equivalent (CO2 eq.), since all GHGs are 

measured in terms of carbon dioxide. The GWP of major GHGs is given in Table 2-1.  

 

Table 2-1 Global Warming Potential of GHGs (IPCC, 1995; IPCC, 2007; IPCC, 2014) 

GHG 100-Year GWP1 100-Year GWP2 100-Year GWP3 

Carbon Dioxide 

(CO2) 
1 1 1 

Methane  

(CH4) 
21 25 28 

Nitrous Oxide  

(N2O) 
310 298 265 

Nitrogen 

Trifluoride (NF3) 
- 17,200 16,100 

Sulphur 

Hexafluoride (SF6) 
23,900 22,800 23,500 

Hydrofluorocarbon 

- 23 (CHF3) 
11,700 14,800 12,400 

Hydrofluorocarbon 

- 32 (CH2F2) 
650 675 677 

Perfluorocarbons – 

116 (C2F6) 
9,200 12,200 11,100 

 

As shown in Table 2-1, the GWP is not the same in all annual reports. The GWP is influenced by 

many factors, such as the new lifetime of GHGs, change in CO2 impacts, the strength of indirect 

effects on concentration of GHGs, and change of GHGs over time (Trottier, 2015). Based on the 

100-year global warming potential values from the Fifth Assessment Report (5AR), 62% of 

global emissions come from CO2 fossil fuel and industrial processes (IPCC, 2014). Figure 2-1 

illustrates the components of GHGs based on the Fifth Assessment Report (5AR). 

                                                 

1 IPCC. (1996). Climate change 1995: Economic and social dimensions of climate change. Cambridge University 

Press. 
2 IPCC. (2007). Climate change 2007: The physical science basis. Intergovernmental Panel on Climate Change.  
3 IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth 

assessment report of the Intergovernmental Panel on Climate Change.  
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Figure 2-1 Proportion of Different Components of GHGs (IPCC, 2014) 

 

2.3 Sources of GHG Emissions 

According to the IPCC (2014), the sources of GHG emissions can be broadly categorized as 

direct emissions and indirect emissions from different economic sectors. Direct emissions come 

from five economic sectors: AFOLU1, buildings, transport, industry, and other energy sources. 

Indirect emissions come from electricity and heat production. Indirect emissions are further 

classified as follows: energy, industry, transport, buildings, and AFOLU (IPCC, 2014). Figure 

2-2 illustrates the sources of GHG emissions from different economic sectors in 2010. 

 

                                                 

1 Agriculture, forestry, and other land use (AFOLU) 
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Figure 2-2 Sources of GHG Emissions1  

 

In Canada, the transportation sector was responsible for 24% of total GHG emissions in 2012, 

coming second after oil and gas, as shown in Figure 2-3 (Environment Canada, 2014).  Within 

the transportation sector, road transportation came first with 65% of all transportation-related 

emissions, as shown in Figure 2-4 (Environment Canada, 2014). 

 

According to the Copenhagen Accord, Canada has committed to reduce its GHG emissions by 

17% below the 2005 levels by 2020 (Environment Canada, 2013). At the provincial level, British 

Columbia went further than the Canadian threshold and intended to reduce its emissions below 

2007 levels by a minimum of 33% by 2020 and 80% by 2050 (Ministry of Environment, 2014c). 

In British Columbia, 37.9% of GHG emissions come from the transportation sector (Ministry of 

Environment, 2012).  

 

                                                 

1 Modified from Figure 1.7, page 47 from IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of 

Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change [Core Writing Team, Pachauri, R.K. and Meyer, L. (eds.)]. IPCC, Geneva, Switzerland 
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Figure 2-3 Sources of GHG Emissions in Canada in 20121  

 

 

Figure 2-4 Transportation-related Emissions in Canada (Environment Canada, 2014) 

 

                                                 

1 © Her Majesty The Queen in Right of Canada, Environment and Climate Change Canada, 2014, by permission 
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2.4 Driving Factors of Transportation GHG Emissions 

Understanding the factors influencing global GHG emissions is key to developing appropriate 

mitigation strategies. Many previous studies have reported on the environmental impact of global 

GHG emissions and their intensity (Bongaarts, 1992; Bristow et al., 2008; York et al., 2003; 

Davis and Caldeira, 2010; Jung et al., 2012; Kawase et al., 2006; Kwon, 2005; Myers, 1993; 

Raskin, 1995; Rosa and Dietz, 1998; Xiangzhao and Ji, 2008). According to the framework for 

sustainability, introduced by Ehrlich and Holdren (1971), the environmental impact (I) consists 

of population (P), affluence (A), and technology (T), which is known as IPAT. IPAT establishes 

a relationship between human activity and its impact on the environment, but it can be used on 

particular environmental issues (Kwon, 2005). IPAT measures population, affluence, and 

technology in terms of per capita, per capita consumption, and per unit of consumption, 

respectively. The first algebraic formulation and the application of IPAT to data analysis was 

introduced by Commoner et al. (1971): 

 

 Impact (I) = Population(P) × Affluence (A) × Technology (T), (2-1) 

 

However, IPAT is unable to use intensity in calculating the impact of environmental issues such 

as GHG emissions. To resolve this issue, IPAT was further modified by Waggoner and Ausubel 

(2002) by disaggregating technology (T) into intensity of use (C) and efficiency (T). The 

modified equation of IPAT is known as ImPACT: 

 

 Impact (I) = Population(P) × Affluence (A) × Intensity (C) × Efficiency (T), (2-2) 

 

In ImPACT, if the impact (I) is considered as emissions then the other components can be 

written as population (P), GDP per capita (A), and emissions per GDP (C × T). Many researchers 

have used IPAT and ImPACT to assess the environmental impact based on different driving 

factors (Bongaarts, 1992; Holdren, 1991; Myers, 1993; Raskin, 1995; Smil, 1990). The strength 

of both IPAT and ImPACT is in capturing the factors that have direct impact on the 

environment.  
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In addition, Raskin (1995) used quantitative analysis techniques to study the effect of population 

on environmental changes. In his study, another iteration of IPAT equation was used to find out 

the explicit role of population in environmental changes. The study concluded that change in 

population growth is a significant contributing factor to GHG emissions. This finding was further 

supported by York et al. (2003) who proposed a new stochastic model based on IPAT to study 

the driving forces of GHG emissions. The new model is known as stochastic impacts by 

regression on population, affluence, and technology (STIRPAT). The main strength of STIRPAT 

over IPAT and ImPACT is its ability to test hypotheses without relying on proportionality 

assumptions. STIRPAT has been used by several researchers in analyzing the effects of driving 

forces on environmental impacts (Rosa and Dietz, 1998; York et al., 2003). According to York et 

al. (2003), population has a proportional relationship to emissions, and affluence increases the 

emissions monotonically. In addition, the authors claimed that urbanization and industrialization 

have greater impacts on CO2 emissions. 

 

Further, the application of the IPAT with energy and emissions has led to the Kaya framework 

(Ramanathan, 2006). According to the Kaya framework, global GHG emissions are influenced 

by the following four driving factors: global population, gross world product, global energy 

consumption, and carbon intensity of energy (Kaya, 1990), mathematically expressed as follows 

(Girod et al., 2009): 

 

 
CO2 emissions = Population × 

GDP

Population
× 

Energy use

GDP
× 

CO2 emissions

Energy use
,  (2-3) 

 

Many researchers relies upon the Kaya equation to estimate global as well as national emissions 

(Albrecht et al., 2002; Kawase et al., 2006; Mahony, 2013; Ramanathan, 2006; Raupach et al., 

2007; Timilsina and Shrestha, 2009; Xiangzhao and Ji, 2008). Raupach et al. (2007) used the 

Kaya equation to estimate GHG emissions from fossil fuel combustion and industrial processes. 

The authors claimed that rapidly developing economics have the highest emissions growth rates. 

This claim was further supported by Xiangzhao and Ji (2008), who found that economic 

development is the major driving factor of CO2 emissions along with an increase in population. 

In their study, the authors used a revised version of the Kaya framework to analyze GHG 
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emissions. Improvement in energy efficiency can reduce global CO2 emissions (Xiangzhao and 

Ji, 2008). In addition, Kawase et al. (2006) studied long-term emissions scenarios in France, 

Germany, and the UK, as well as medium-term scenarios in Japan by analyzing emissions using 

an extended form of the Kaya equation to support Japan’s long-term emissions scenario 

development. In their study, the authors claimed that energy intensity and carbon intensity have 

an enormous effect on reaching emissions reduction targets. In addition, affluence and 

population growth play important role in global emissions increase. According to Mahony 

(2013), the extended Kaya equation suggests that energy intensity and fossil fuel also play a role 

in increasing global emissions. By introducing renewable energy, energy intensity can be 

significantly reduced and subsequently, emissions can be reduced (Mahony, 2013).  

 

Transportation systems are the lifelines of nations’ economies and the preconditions for progress 

and development. Starting from this interdependent relationship between transportation and 

economy, Lu et al. (2007) and Wang et al. (2015) studied the driving factors of transportation 

emissions. The authors claimed that rapid economic growth and development are the most 

important factors for increasing transportation-related GHG emissions. Further, Timilsina and 

Shrestha (2009) considered several factors that contribute to transportation-related emissions, 

such as fuel mix, modal shift, per capita gross domestic product (GDP), population, emissions 

coefficient, and transportation energy intensity. Based on their study, the per capita GDP, 

population, and transportation energy intensity are the dominant factors in increasing emission 

growth rates in the transportation sector.  

 

Furthermore, Mohareb and Kennedy (2012) developed the Pathways to Urban Reductions in 

Greenhouse Gas Emissions (PURGE) model to estimate emissions considering four sectors, 

namely, electricity, building, transportation, and waste by utilizing the Kaya framework. 

According to this PURGE, transportation emissions are a function of fuel consumption and 

emissions intensity. In a more recent study, Wang et al. (2015)  showed that vehicle stock, fuel 

consumption, and distance travelled by each vehicle are also considered of the factors controlling 

GHG emissions from the transportation sector.  

 



12 

Unlike global GHG emissions, which are mainly dependent on Gross Domestic Product (GDP), 

transportation GHG emissions are dependent on passengers’ activities across space and time. 

Over the years, researchers have used passengers’ activities as determinants of GHG emissions 

from the transportation sector. Yang et al. (2009) examined the GHG emissions target in 

California from the transportation sector. The authors used an updated form of the Kaya equation 

to calculate GHG emissions. The updated Kaya equation directly included transportation 

intensity into the equation instead of GDP. Accordingly, GHG emissions from the transportation 

sector were estimated by multiplying transportation intensity by the total population. 

 

Scholl et al. (1996) studied passenger transportation emissions in nine different countries from 

1973 to 1992. In their study, the authors illustrated the impact of changes in activity, modal 

composition, and energy intensity on increase in emissions from passenger transportation. 

Further, the authors concluded that the increase in activity, in terms of passenger kilometres 

travelled, has a great effect on passenger transportation emissions. In addition, Schipper et al. 

(2011) analyzed the long-term emissions from the transportation sector in the USA by 

considering population growth, modal shift, fuel intensity, emissions intensity, and economic 

growth as the driving factors in increasing emissions. The results suggested that due to changes 

in transportation activity, emissions have tripled since 1960. The results also showed that 

transportation activity was a function of economic activity and car ownership.  

 

Lakshmanan and Han (1997) analyzed the factors that affect passenger transportation emissions 

in the USA. According to their study, the most affecting factors were people’s tendency to travel, 

population growth, and GDP. The results showed that people’s tendency to travel can affect 

more than 50% of total emissions from the passenger transportation sector if other factor remains 

fixed (Lakshmanan and Han, 1997). Kwon (2005) studied factors affecting car emissions from 

1970 to 2000 in Great Britain. The author used the IPAT equation to break down the driving 

factors associated with car emissions. The results showed that car-driving distance per person 

(affluence) is the dominant factor in increasing car emissions.  

 

However, mode shift from single occupancy vehicles to high occupancy vehicles (e.g. carpool, 

public transit, etc.) and non-motorized transportation (e.g. cycle, walk, etc.) results in a reduction 
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in GHG emissions. Schipper and Marie-Lilliu (1999) proposed a different framework to break 

down emissions from transportation. According to their framework, GHG emissions can be 

attributed to the total distance travelled by passenger (A), modal share among different 

transportation modes (S), energy intensity of each transportation mode (I), and fuel used by 

different modes (F). Energy intensity (I) in turn is a function of three different criteria: 

efficiency, vehicle characteristics, and inverse of capacity utilization for each mode of 

transportation. Their framework can be mathematically written as follows (Tiwari et al., 2011): 

 

 Emissions = A × S × I × F,             (2-4) 

    

On the other hand, ASIF has evolved into a new descriptive framework that elaborately describes 

the components related to transportation emissions and emissions reduction (Tiwari et al., 2011). 

The new framework encompasses four descriptive components of CO2 emissions: Avoid, Shift, 

Improve, and Finance, and the new framework is called the ASIF2 paradigm. According to 

Tiwari et al. (2011), ‘avoid’ refers to avoiding emissions by introducing better urban and 

transportation planning, ‘shift’ refers to the modal shift to public and non-motorized 

transportation to reduce emissions, ‘improve’ refers to operation and efficiency of urban 

transportation, and finance refers to investment in sustainable transportation to reduce emissions 

from the transportation sector. The descriptive ASIF2 framework refers to the changes in urban 

form including the modal shift to public transportation and non-motorized modes.  

 

Furthermore, Yang et al. (2015) studied CO2 emissions from the transportation sector in China. 

In their study, the authors showed that socio-economic factors, urban form, and transportation 

development are the three major driving forces of GHG emissions from the transportation sector. 

The socio-economic development and subsequently, higher residential income causes an 

increasing trend in total as well as per capita emissions from the transportation sector. 

Poumanyvong et al. (2012) has categorized different countries into three different types based on 

their income level to illustrate the impacts of urbanization on on-road emissions. In their 

analysis, they used the STIRPAT equation to develop a relationship between urbanization and 

energy use in road transportation. Their study found that the change in urbanization has a greater 

impact on transportation energy consumption and subsequently, GHG emissions. In addition, 
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Papagiannaki and Diakoulaki (2009) studied emissions from passenger cars in Greece and 

Denmark form 1990 to 2005. They decomposed CO2 emissions into five categories: vehicle 

ownership, vehicle kilometres travelled (annual mileage), fuel mix, engine capacity of the 

passenger cars, and technology of the available cars. The results concluded that for both 

countries, vehicle ownership is the most influential factor in terms of increasing emissions from 

passenger cars. Loo and Li (2012) studied emissions from passenger transportation in China that 

have been measured since 1949. According to their findings, income growth is the dominant 

factor in increasing emissions from passenger transportation in China, followed by transportation 

intensity and modal shift. 

 

As summarized above, numerous tools have been developed by researchers to analyze the factors 

that influence GHG emissions from the transportation sector. Most of the previous studies have 

looked at global and/or national GHG emissions. However, it is essential to estimate emissions 

from the transportation sector at the municipal level to suggest planning policies to reduce 

municipal GHG emissions. To assess the effects of sustainable transportation and land use 

policies on municipal GHG emissions, it is necessary to integrate those policies into municipal-

level GHG emissions models.  

 

Research has shown that various policies that promote public transit and active transportation 

have substantial effects on urban transportation GHG emissions reduction (Derrible et al., 2010; 

Ewing and Cervero, 2001; Mahendra et al., 2012; Rodier, 2009; Sugar and Kennedy, 2013; 

Tiwari et al., 2011; Walsh et al., 2008; Washbrook et al., 2006; Zahabi et al., 2012). Studies have 

also shown that increasing population density and balancing land use diversity (i.e. mix of 

activities such as residential and commercial uses) can reduce trip rates and promote non-

motorized travel (Cervero and Kockelman, 1997). Further, compact density in urban core areas 

leads to reduction in the distances between trip origins and destinations, which in turn results in a 

reduction in GHG emissions (Ewing and Cervero, 2010). Conversely, low residential density 

increases the distance driven by vehicles, fuel consumption, and emissions (Brownstone and 

Golob, 2009).  
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In a more recent study, Derrible et al. (2010) developed a conceptual framework for a model 

called MUNTAG to help municipalities estimate their GHG emissions. The developed 

framework was used by Sugar and Kennedy (2013) to calculate GHG emissions from private 

automobiles, buses, streetcar, light rail transit, and subway. In their model, passenger kilometres 

travelled were converted into vehicle kilometre travelled (VKT) and then multiplied by GHG 

emissions factors to get the total GHG emissions for each mode of travel. However, the 

developed model comprised several empirical equations in capturing the effect of land use on 

active transportation and travel distance. While insightful, the developed model is not able to 

capture the impacts on GHG emissions of single land use changes (density or diversity) in the 

calculation of GHG emissions from the transportation sector. 

 

On a small scale study, Mathez et al. (2013) studied GHG emissions for the trips generated by 

commuters to McGill University. In their study, the authors used an EMME/3 traffic assignment 

model to measure the travel distance from an origin-destination (OD) matrix and used emissions 

factors from the U.S. Environmental Protection Agency’s (EPA’s) Motor Vehicle Emissions 

Simulator (MOVES) model to estimate emissions. In addition, by using the Trip Reduction 

Impacts for Mobility Management Strategies (TRIMMS) planning tool, developed at the 

University of Florida, and the MOVES model, Mahendra et al. (2012) calculated GHG emissions 

under various transportation control measures (TCM). However, working with computer related 

software like MOVES, EMME/3, and/or MOBILE6 requires an explicit amount of information 

about road networks and vehicle types as well as a substantial amount of data on travel behavior 

(Derrible et al., 2010). 

 

Household travel surveys (HHTS) are one of the most reliable sources of transportation data 

(Travel Forecasting Resource, 2016). From such surveys, emissions forecasting models can be 

developed using various parameters including socio-economic and demographic characteristics 

of passengers. Ko et al. (2011) used household travel survey data to calculate GHG emissions in 

the Seoul Metropolitan Area. The household travel survey consisted of socio-demographic 

information, household data, and transportation service attributes. The authors found that GHG 

emissions from the transportation sector are dependent on various socioeconomic characteristics 
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of passengers. However, a major drawback of this study was that land use policies were not 

taken into consideration. 

 

2.5 Land Use and Transportation Interactions 

Various transportation and land use policies, such as parking management, promoting public 

transit and active transportation, and increasing land use density and diversity, have shown 

substantial effect on reducing on-road transportation GHG emissions (Derrible et al., 2010; 

Ewing and Cervero, 2010; Mahendra et al., 2012; Rodier, 2009; Sugar and Kennedy, 2013; 

Tiwari et al., 2011; Walsh et al., 2008; Washbrook et al., 2006; Zahabi et al., 2012; Zhang, 

2004). Bristow et al. (2008) showed that changes in travel behaviour are more important in 

reducing emissions than technological development. Cervero and Kockelman (1997) studied the 

effect of land use and built environment on travel demand in terms of trip rates and mode choices 

in the San Francisco Bay area. The authors categorized the built environment and land use 

parameters into three influential categories: density, diversity, and design, also known as the 

DDD or 3Ds model. In addition, accessibility to transit and distance to destination were also 

considered among the land use parameters (Cervero and Murakami, 2008). The following 

subsections discuss the impact of the 3Ds on travel behaviour as well as reducing transportation 

emissions. 

 

2.5.1 Density Indicators 

Density can be measured in terms of per unit area of population, employment, dwelling units, 

etc. The density of the overall activity per unit area can also be measured by adding population 

and employment (Ewing and Cervero, 2010). Numerous studies have shown that higher densities 

can reduce trip lengths and promote non-motorized travel (Brownstone and Golob, 2009; 

Cervero and Kockelman, 1997; Chatman, 2003; Ewing and Cervero, 2010). According to 

Cervero and Kockelman (1997), high population density reduces trip rates and promotes non-

motorized travel. Further, compact density in urban core areas leads to a reduction in the 

distances between trip origins and destinations, which in turn results in a reduction in GHG 

emissions (Ewing and Cervero, 2010). Conversely, low residential density increases the distance 

driven by vehicles, fuel consumption, and emissions (Brownstone and Golob, 2009). Residential 

density is a function of vehicle ownership, income, and accessibility (Badoe and Miller, 2000). 
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Holtzclaw et al. (2002) studied the relationship between car ownership and distance travelled by 

vehicles in response to urban form in the Chicago, Los Angeles, and San Francisco areas. The 

results concluded that a 33% ~ 40% decrease in car ownership and a 32% ~ 43% decrease in 

vehicle kilometres travelled can be achieved by doubling residential density.  

 

Furthermore, employment density showed a strong correlation to a modal shift towards active 

transportation and public transit (Zhang, 2004). Zhang (2004) studied the effects of various land 

use parameters on travel mode choice in Boston and Hong Kong. In his study, he claims that 

with an increase in employment density, the active transportation and public transit modal share 

will increase, further decreasing private vehicle use. In addition, he concludes that a 100% 

increase in job density will result in an increase of 9% and 0.4% in transit share for work trips 

and non-work trips respectively. 

 

In addition, Zhang et al. (2012) studied the effects of built environment on distance travelled by 

vehicles in Seattle, Virginia, Washington DC, and Baltimore. The authors suggested that the 

population density and employment density are highly correlated with the Vehicle Mile 

Travelled (VMT) per vehicle. For instance, a 123% increase in residential density in Washington 

DC resulted in a 19.91% reduction in VMT. Also, a 110% increase in residential density resulted 

in a 15.80% VMT reduction in Baltimore. Employment density is also responsible for VMT 

reductions, but to a lesser extent. Population density is much more important in reducing VMT 

than employment density (Zhang et al., 2012). 

 

Higher population density and employment density have also been associated with higher non-

work walk trips (Greenwald and Boarnet, 2001). According to Greenwald and Boarnet (2001), 

both population and employment densities show a positive influences on walk trips. For 

example, a 1% increase in population density was found to result in a 0.34% increase in non-

work walk trips. The impact of population density on increased walk trips is much higher than 

employment density. 
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2.5.2 Diversity Indicators 

Land use diversity has a strong relationship with the reduction of distance travelled by each 

vehicle and modal shift towards public transit and active transportation (Cervero and 

Kockelman, 1997; Chatman, 2003; Ewing and Cervero, 2010; Tiwari et al., 2011; Zhang, 2004). 

The diversity of land use can be measured in terms of entropy that measures the degree to which 

different land uses are evenly distributed (Lavoie, 2012). The entropy value ranges from 0 to 1, 

where the perfect mix use of land is indicated by 1 in a given area. Ewing and Cervero (2010) 

quantify the effects of land use mix (entropy index) to the walking mode and transit use. 

According to their study, 1% increase in mixed land use parameters could result in a 0.15% 

increase in walking trips, and a 0.12% increase in transit use. Moreover, their research concluded 

that the influence of job-housing balance could be even greater, with an increase of 0.19% in 

walking trips predicted associated with a 1% increase in mixed land use (Ewing and Cervero, 

2010). This finding has been further supported by Zhang (2004) who showed that land use 

balance at both trip ends is strongly correlated with an increase in transit share as well as a 

decrease in car modal share. 

 

In addition, mean entropy of mixed land use is highly correlated with the reduction in vehicle 

miles travelled (VMT) per household (Kockelman, 1996). Kockelman (1996) studied the effect 

of land use on travel behaviour in the San Francisco Bay area. The author concluded that mean 

entropy is highly correlated with VMT. Further, mean entropy at both origin and destination has 

almost the same positive effects on the choice of active transportation, and the parameter values 

are higher than the other variables. According to Zhang et al. (2012), mixed land use measured in 

terms of entropy can reduce 7.18%, 0.15%, 3.63%, and 9.29% VMT in response to 44%, 27%, 

45%, and 0.54% increase in entropy in Seattle, Virginia, Baltimore, and Washington DC, 

respectively. 

 

Further, Ewing and Cervero (2010) conducted a meta-analysis of the built environment and land 

use variables based on the literature until 2009. Based on the analysis, the authors found that the 

elasticity of mixed land use (measure in terms of entropy index) over VMT is negative 0.09, 

which means that a 1% increase in mixed land use entropy can reduce VMT by 0.09%. This 

finding was more pronounced in walk and transit trips that were associated with elasticities of 
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0.15 and 0.12, respectively. These elasticities imply that a 100% increase in mixed land use 

entropy can increase walk and transit trips by 15% and 12%, respectively. Since elasticity is less 

than one, therefore the observed elasticity is considered inelastic.   

 

2.5.3 Design Indicators 

Design indicators include the built environment and road network characteristics in a given area. 

Accessibility to bus stops, availability of active transportation facilities, and intersection density 

are examples of design indicators. Several studies have shown that design indicators are highly 

correlated with reduced vehicle kilometres travelled and increased transit and walk/bike mode 

choice (Cervero and Kockelman, 1997; Ewing and Cervero, 2010; Kockelman, 1996). Among all 

density indicators, the proportion of 4-way intersections – linked to redundancy of walking 

routes - has a high elasticity with walk trips (Cervero and Kockelman, 1997; Ewing and Cervero, 

2010; Zhang, 2004). However, more recent studies have cautioned that it is not road intersection 

density but walking (and bicycling) route intersection density that is the key factor and that 

promotes a safer, more sustainable, built environment for all users (Masoud et al., 2015; Sun and 

Lovegrove, 2013). 

 

Distance to transit stops can play an important role in reducing vehicle kilometre travelled and in 

increasing walk/bike and transit modal shares (Bento et al., 2005; Ewing and Cervero, 2010; 

Naess, 2006). Ewing and Cervero (2010) showed that distance to transit stops is a dominant 

factor in increasing transit share as well as walk trips. The authors claimed that the elasticity1 

between distance to the transit stop and transit ridership is 0.29, which means that a 1% decrease 

in distance to the transit stop could increase transit ridership by 0.29%. On the other hand, better 

accessibility to transit could increase walking trips by 0.15%. Design indicators demonstrate an 

inelastic correspondence to the transit share, walk trips, and VMT. 

 

                                                 

1 Elasticity estimation formulas (Ewing and Cervero, 2010):  

For linear regression: Elaticity = β ×
x̅

y̅
 

For logistic regression: Elaticity = β × x̅ [1 − (
y̅

n
)], 

β is the regression coefficient, y̅ is the mean value of the travel parameter, and x̅ is the mean value of the built 

environment variable. (
y̅

n
) is the mean estimated probability. 
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2.6 Travel Demand Modelling 

Travel demand modelling is at the heart of the urban transportation planning process. For many 

years, the four-step model has been considered as the building block of travel demand modelling. 

The four-step model consists of the following four steps: trip generation, trip distribution, mode 

choice, and trip assignment, as shown in Figure 2-5. Trip generation is concerned with 

estimating the total number of trips produced in and attracted to a specific zone. Trip distribution 

deals with the distribution of trips between zones. Mode choice estimates the proportion of trips 

choosing each mode of travel. Finally, trip assignment focuses on the circulation of trips on the 

transportation network (McNally, 2007). 

 

 

Figure 2-5 Four-Step Transportation Planning Model1  

 

The main unit of analysis in traditional demand models is the individual trip. Trips are usually 

classified according to their purposes. Trip purposes refer to the type of activity taking place at 

trip destination. In general, trips can be classified, according to trip purpose, into commuting 

                                                 

1 Republished with permission of Emerald Group Publishing Limited from The four step model, McNally, M. G., , 

Handbook of transport modelling Volume 1, Hensher, D. A. & Button, K. J. (Eds.), (pp. 35-53); permission 

conveyed through Copyright Clearance Center, Inc. 
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trips (e.g. work trips, school trips, etc.) and non-commuting or discretionary trips (e.g. shopping, 

entertainment, etc.), as shown in Figure 2-6. Commuting trips are defined as trips related to work 

activities (i.e. trips to work or school) (Day et al., 2010; Habib et al., 2009). Therefore, going to 

work/school from home, and the reverse trips (i.e. coming back to home from work/school), are 

considered as commuting trips (Habib et al., 2009). In addition, going to work after dropping off 

children at school is also considered as commuting trips (Acker and Witlox, 2011). However, the 

first trip of the previous example (i.e. going from home to school) is considered as a non-

commuting trip (Acker and Witlox, 2011). On the other hand, non-commuting trips are related to 

non-work activities such as discretionary trips from home and the reverse trips. Trips can also be 

categorized into home-based trips and non-home based trips. Home-based trips are defined as 

trips that start or end at home (National Cooperative Highway Research Program, 2012). Non-

home based trips are trips that neither start nor end at home, as shown in Figure 2-7.  

 

 

Figure 2-6 Classification of Trips (Commuting vs. Non-Commuting) 
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Figure 2-7 Classification of Trips (Home-Based vs. Non-Home Based) 

 

2.6.1 Mode Choice Modelling 

Mode choice modelling is the third step in the traditional four-step model. Mode choice can be 

conceptualized, according to the Random Utility Maximization (RUM) Theory, such that 

passengers assign weights to the different attributes characterizing each mode of travel and 

finally select the travel option that maximizes their utilities (Banister, 1978; Ben-Akiva and 

Boccara, 1995; McFadden, 1974). Under the RUM Theory, random refers to the modeller’s lack 

of knowledge (i.e. individual travellers know their choices but the analyst does not). If analysts 

thoroughly understood all aspects of the internal decision-making process of individual travellers 

as well as their perception of alternatives, they would be able to describe that process and predict 

mode choice using deterministic utility models. Further, utility is a measure of individual 

travellers’ satisfaction. Being rational, individual travellers seek to maximize their utilities by 

choosing certain modes of travel. According to the RUM framework, utilities are comprised of 

two parts: a deterministic component that considers observed characteristics of the decision-

makers as well as the alternative modes (e.g. socioeconomic and demographic attributes, level of 

service attributes, etc.) and a stochastic error term (Ben-Akiva and Lerman, 1985; Idris, 2013; 
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Koppelman and Bhat, 2006). The utility function of a particular mode of travel can be expressed 

mathematically as follows (Koppelman and Bhat, 2006): 

 

 Uit  =  Vit  + εit , (2-5) 

 

where, Uit is the utility of alternative i to individual t, Vit is the observable component of utility, 

and εit is the random error term.  

 

The random error term is included in the utility function to account for the fact that the analyst is 

unable to completely and correctly measure or specify all attributes that determine travelers’ 

mode utility assessment. This includes imperfect information, measurement errors, omission of 

modal attributes, omission of the characteristics of the individual that influence his/her choice 

decision, and/or other errors in the utility function. By definition, error terms are unobservable 

and unmeasurable (Koppelman and Bhat, 2006). Utility is the function of attributes of the 

alternatives, characteristics of individual, and the interaction between alternatives and individual. 

This can be represented by the following equation (Koppelman and Bhat, 2006): 

 

 Vt,i  =  V (St)  +  V (Xi)  +  V (St, Xi), (2-6) 

 

where, V (St) is the portion of utility of individual t, V (Xi)  represents the portion of utility of 

alternative i, and V (St, Xi) is the portion of the utility from interactions between alternative I and 

individual t (Koppelman and Bhat, 2006). 

 

Different assumptions with regard to the distribution of the error term lead to different types of 

mode choice models. Normally distributed error terms lead to the Multinomial Probit model 

(MNP), which can only be calculated using multi-dimensional integration that makes it difficult 

to use in mode choice analysis (Koppelman and Bhat, 2006). On the other hand, Multinomial 

Logit (MNL) is the most widely used mathematical model for making probabilistic predictions 

of mode choices as a function of the systematic portion of the utility of each alternative. 

Identically  and independently distributed (IID) error terms with Type I Extreme Value (Gumbel) 

distribution lead to the MNL model (Koppelman and Bhat, 2006). However, identically and 
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independently distributed error term fails to capture taste variation (i.e. unexplained variation in 

travel behaviour; for example, two identical individuals making different choices). Furthermore, 

MNL models suffer from the Independence from Irrelevant Alternatives (IIA) property. The 

MNL model can be mathematically expressed as follows (Koppelman and Bhat, 2006): 

 

 

 
P(𝑖) =

exp( 𝑉𝑖)

∑ exp( 𝑉𝑗)
𝐽
𝑗=1  

 , (2-7) 

 

where, P(i) is the probability of choosing alternative i and Vit is the systematic component of 

alternative j.  

 

2.6.1.1 Model Validation and Forecasting Performance 

Ideally, mode choice model validation should be performed using a different dataset that was not 

involved in the model estimation process. In some cases, where a small sample size is available, 

the entire dataset is desirable for model estimation (i.e. no independent dataset will be available 

for model validation). In such cases, the limited disaggregate validation technique can be 

performed by using market segments of the same dataset used for model estimation (Travel 

Forecasting Resource, 2016). The market segmentation variables can be categorized as follows: 

 

 Socioeconomic and demographic variables (e.g. income level, vehicle ownership, gender, 

age, etc.) 

 Geographic stratification (i.e. counties, neighborhoods, traffic analysis zones, etc.) 

 Level-of-service variables (i.e. trip length, trip time, etc.) 

 

To quantify the forecasting performance of a mode choice model, the developed model can be 

used to predict known modal shares of an independent subset or the same dataset used for model 

estimation after market segmentation. The forecasting performance can be quantified using the 

following formula (Idris et al., 2015): 

 

 

 
Forecasting Performance Measure (FPM) =  ∑ [(Pm

m
− Om)/Om , (2-8) 
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where, Pm is predicted trips, Om is observed trips for each mode (m) 

 

Smaller value of FPM represents lesser forecasting errors with better forecasting performance of 

the developed model (Habib et al., 2012). 

 

2.6.2 Distance Travelled Modelling 

The distance travelled by a vehicle is referred to as vehicle kilometres travelled (or vehicle miles 

traveled), whereas the distance travelled by a person is referred to as passenger kilometres 

travelled. Researchers have used regression techniques to estimate vehicle kilometres travelled 

(VKT) and passenger kilometres travelled (PKT) considering various explanatory variables such 

as socio-economic and demographic attributes, land use and built environment data, etc. 

(Cervero and Kockelman, 1997; Fan, 2007; Kockelman, 1996; Zegras, 2010; Zhou and 

Kockelman, 2008).   

 

2.6.2.1 Simple Linear Regression 

Relationship between a dependent variable y and a single independent variable x can be 

estimated by using simple linear regression models. Mathematically, a simple linear regression 

model can be expressed as follows (Mendenhall and Sincich, 2007): 

 

 y = β0 + β1x + ε, (2-9) 

 

where, y is the dependent variable, x is the independent variable, ε is the random error 

component, β0 is the y-intercept of the line and β1 is the slope of the line. 

 

Furthermore, the least squares method can be used to estimate unknown parameters (β0 and β1). 

The line of means of Equation (2-9) is shown in Equation (2-10) and the fitted line is shown in 

Equation (2-11), respectively (Mendenhall and Sincich, 2007).  

 

 E(y) = β0 + β1x, (2-10) 

 

 ŷ = β̂0 + β̂1x, (2-11) 
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where, ŷ is an estimator of mean value, and β̂ and β̂1 are estimators of β0 and β1, respectively. 

 

For a given data point (xi, yi), the observed value of y is yi and the predicted value of y would be 

obtained from the prediction equation (Mendenhall and Sincich, 2007).  

 

 yî = β̂0 + β̂1xi, (2-12) 

 

The deviation of the ith value of y from its predicted value is 

 

 (yi − yî) = [yi − (β̂0 + β̂1xi)], (2-13) 

 

The sum squares of the deviation of y values with respect to their predicted values is  

 

 
SSE = ∑[yi − (β̂0 + β̂1xi)]

2

n

i=1

, (2-14) 

 

Formulas for the least-squares estimates are as follows (Mendenhall and Sincich, 2007): 

 

 
Slope: β̂1 =

SSxy

SSxx
 , (2-15) 

   

 y − intercept: β̂0 = y̅ − β̂1x̅, (2-16) 

 

where,  

 
SSxy = ∑(xi − x̅)(yi − y̅)

n

i=1

, (2-17) 

   

 
SSxx = ∑(xi − x̅ )2

n

i=1

, (2-18) 
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The goodness of fit of the least square equation, as shown in Equation (2-19), can be measured 

by estimating coefficient of determination. Coefficient of determination can be mathematically 

expressed as follows (Mendenhall and Sincich, 2007): 

 

 
R2 =

SSyy − SSE

SSyy
= 1 −

SSE

SSyy
 , (2-19) 

 

where,  

 
SSyy = ∑(yi − y̅ )2

n

i=1

, (2-20) 

 

A (1-α)100% prediction interval for y is as follows (Mendenhall and Sincich, 2007): 

 

 ŷ ± tα/2[Estimated standard deviation of (y − ŷ)] , (2-21) 

 

or,  

 

ŷ ± tα/2s√1 +
1

n
+

(xp − x̅)2

SSxx
, (2-22) 

 

where, tα/2 is based on (n -2) degrees of freedom and n represents the sample size. 

 

2.6.2.2 Multiple Regression Analysis 

A general linear regression or multiple regression analysis represents relationship between a 

dependent variable y and two or more independent variables. Mathematically, the general linear 

model can be expressed as follows (Mendenhall and Sincich, 2007): 

 

 y = β0 + β1x1 + β2x2 + …+ βkxk + ε, (2-23) 

where, y is the dependent variable, x1, x2, ..., xk are the independent variables, and ε is the 

random error term. 
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Equation (2-23) can be written in a matrix form as follows (Mendenhall and Sincich, 2007): 

 

𝐘 =

[
 
 
 
 
y1

y2

y3

⋮
yn]

 
 
 
 

 𝐗 =

[
 
 
 
 
1
1

𝑥11

𝑥21

𝑥12

𝑥22

1
⋮

𝑥31

⋮
𝑥32

⋮
1 𝑥𝑛1 𝑥𝑛2

    

⋯ …
 … 
…

   

𝑥1𝑘

𝑥2𝑘
𝑥3𝑘

⋮
𝑥𝑛𝑘]

 
 
 
 

  �̂� =

[
 
 
 
 
 
β̂1

β̂2

β̂3

⋮
β̂n]

 
 
 
 
 

 𝛆 =

[
 
 
 
 
ε1

ε2

ε3

⋮
εn]

 
 
 
 

 

 

The least-squares matrix equation and solution are shown in Equation (2-24) and Equation (2-25) 

respectively (Mendenhall and Sincich, 2007). 

 

 (𝑿′𝐗)�̂� = 𝑿′𝒀, (2-24) 

   

 �̂� = (𝑿′𝐗)−1𝑿′𝒀, (2-25) 

 

The multiple coefficient of determination can be defined as (Mendenhall and Sincich, 2007):  

 

 
𝑅2 = 1 −

𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
, (2-26) 

 

where,  

 
SSE = ∑(yi − ŷ𝑖  )

2

n

i=1

, 

 

(2-27) 

 
SSyy = ∑(yi − y̅ )2

n

i=1

, (2-28) 
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A (1-α)100% prediction interval for y is as follows(Mendenhall and Sincich, 2007): 

 

 ŷ ± tα/2s√1 + 𝐚′(𝑿′𝐗)−𝟏𝐚, 

 
(2-29) 

where, 𝐚 =

[
 
 
 
 
1
𝑥1

x2

⋮
xk]

 
 
 
 

 

 

2.6.2.3 Violation of Assumptions 

To use linear regression models, the following assumptions should hold (Corpuz et al., 2005; 

Montgomery, 2009; Nau, 2016; Neter et al., 1996, Rawlings et al., 2001): 

 

 Linearity – The predicted value of the dependent variable is a straight-line function of 

each independent variable. 

 Normality – The error term is normally distributed with non-negative values 

 Statistical independence – No correlation between consecutive errors 

 Homoscedasticity – The errors have a constant variance in terms of time, prediction, and 

other independent variables. 

 

The normality assumption does not affect estimating variances among all linear estimators; 

however, it does affect the significant test and confidence interval of the parameters. Normality 

assumptions can be checked by plotting observed residuals, and skewness and kurtosis 

coefficients (Rawlings et al. 2001). Furthermore, non-normal distributions can be eliminated by 

introducing transformations of the dependent variables, such as the arcsin, the square root, the 

logarithmic, and the logistic transformations. 

 

Due to the violation of statistical independence assumption of the linear regression models, the 

estimates loses precision. As a result, estimates become biased and it nullifies the significant 

tests (Rawlings et al., 2001). However, residual plotting according to the order may reveal 

patterns of residuals, which represents correlated errors.  
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The constant variance (homoscedasticity) plays a significant role in ordinary least squares 

(Rawlings et al., 2001). The violation of this assumption causes similar effects to the estimator as 

correlated errors. Due to the heterogeneous variances, least square estimators become inefficient. 

This issue can be handled by two approaches, such as transformation of the dependent variables 

and weighted least squares (Rawlings et al., 2001).  

 

Outliers, inconsistent observations with the rest of the observations in the data set, can affect the 

least square estimators and, subsequently, goodness of fit of the model.  Outliers can be detected 

by plotting observed residuals; however, to have a common variance it is recommended that the 

residuals first be standardized (Rawlings et al., 2001). If all the assumptions are satisfied then the 

expected plot of the residuals with respect to the fitted values of the dependent variables should 

look like the following Figure 2-8 (Rawlings et al., 2001). 

 

 

Figure 2-8 Expected pattern for a plot of residuals versus predicted1  

 

 

                                                 

1 © 1998 Springer-Verlag New York, Inc, from Applied regression analysis: A research tool, Rawlings, J. O., 

Pantula, S. G., & Dickey, D. A., 2001, with permission of Springer 
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2.7 Summary 

GHGs are responsible for warming the earth’s surface to make it livable. However, the increase 

of GHGs beyond the natural absorption capacity of the earth cause climate change. Human 

activities (e.g. fossil fuels burning) cause an increase of GHGs in the earth’s atmosphere. In 

addition, different economic sectors are responsible for increasing GHG concentrations. Among 

them, transportation is one of the major sources of GHG emissions. Further, road transportation 

is the dominant contributing factor in the transportation sector. Different driving forces are 

associated with on-road GHG emissions. However, proper use of built environment and land use, 

such as density, diversity, and design factors have a strong correlation with the travel behaviour 

and subsequently, reduction in GHG emissions from on-road transportation. 
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Chapter 3: TRIBUTE: A TRIp-Based Urban Transportation Emissions 

Model for Municipalities 

3.1 Outline 

This chapter proposes a TRIp-Based Urban Transportation Emissions (TRIBUTE) model. The 

developed model is trip-based, i.e. it considers the individual trip as the unit of analysis. 

TRIBUTE is intended to help municipalities estimate road transportation GHG emissions due to 

changes in various land use and transportation attributes by capturing the relationship between 

travel behavior and Vehicle Kilometres Travelled (VKT). This chapter presents the methodology 

of the developed model including model building, linking passenger trips to vehicle trips, and 

model application.  

 

3.2 Methodology 

This research introduces a TRIp-Based Urban Transportation Emissions (TRIBUTE) model. 

TRIBUTE is intended to assist municipalities evaluate the impacts of various transportation and 

land use planning policies on GHG emissions from passengers transportation at the macroscopic 

level. The fundamental unit of analysis in TRIBUTE is the individual trip. Data required for 

model building comes from household travel surveys and emissions inventories. Importantly, 

TRIBUTE does not need a detailed transportation network model, which is a major advantage 

for small municipalities where a detailed network model is unavailable.  

 

GHG emissions from on-road transportation are directly proportional to the total Vehicle 

Kilometres Travelled (VKT). VKT in turn is affected by the built environment. In specific, 

increasing land use density, balancing diversity (i.e. land use mix), and improving design can 

significantly decrease VKT, reduce per capita energy use, and lower GHG emissions 

(Brownstone and Golob, 2009; Cervero, 2010; Cervero and Kockelman, 1997; Chatman, 2003; 

Ewing and Cervero, 2010; Kockelman, 1996; Taylor, 2001; Tiwari et al., 2011; Zhang, 2004). 

 

In general, VKT reduction can be attributed to two main factors: mode shift (i.e. passengers 

switching from single occupancy vehicles to high occupancy vehicles or non-motorized options) 

and trip length reduction (i.e. driving less), as shown in Figure 3-1.  
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Figure 3-1 Interaction among Trip Length Reduction, Mode Shift, and VKT Reduction 

 

Bringing trip ends closer to each other through effective land use policies (e.g. increasing 

density, diversity, bike paths, sidewalks, etc.) leads to VKT reduction both indirectly (through 

mode shift) and directly (through driving for shorter distances). For example, if trip origins and 

destinations get closer to each other after increasing land use diversity, passengers will be more 

likely to choose active transportation instead of private automobile use. Further, for those 

passengers who will keep driving, VKT will be less due to driving for shorter distances. While 

trip length reduction is a function of the built environment, mode shift depends on several 

variables including personal attributes (e.g. age, income, car ownership, etc.), modal attributes 

(e.g. travel time, travel cost, travel distance, etc.), and land use attributes (e.g. density, diversity, 

etc.). As shown in Figure 3-1, trip length has a dual effect on VKT reduction (i.e. an indirect 

effect being one of the determinants of mode shift and a direct effect through driving less).  

 

Figure 3-2 depicts the conceptual framework of TRIBUTE, with model building (base case 

scenario) displayed in the upper part, and model application (future scenario) displayed in the 

lower part. TRIBUTE is composed of two main components: a mode choice/shift model and an 

emissions forecasting model. The first component accounts for the determinants of VKT 

reduction (i.e. mode shift and trip length reduction). The second component translates the results 

in terms of VKT reduction and subsequently GHG emissions. The following subsections 

describe the components of TRIBUTE in more details. 
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Figure 3-2 TRIp-Based Urban Transportation Emissions Model
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3.2.1 Model Building (Base Case Scenario) 

To capture the effect of land use on mode shift, a discrete mode choice model was developed 

using Biogeme software (Bierlaire, 2003).  The developed mode choice model calculates the 

proportion of trips made by each mode of travel (e.g. car driver, car passenger, transit rider, and 

active transportation) in response to changes in personal, modal, and land use attributes. 

Biogeme’s user interface, sample code, and sample output results are presented in Appendix A, 

Appendix B, and Appendix C, respectively. Equations (3-1) through (3-6) show the general 

structure of the utility functions of the mode choice model.  

 

 VCar = ASCCar + Beta1_Car × x1 + Beta2_Car × x2 + ⋯+ Betan_Car × xn,  (3-1) 

   

 VCar pass = ASCCar pass + Beta1_Car pass × x1 + Beta2_Car pass × x2 + ⋯

+ BetanCarpass × xn, 
(3-2) 

   

 VTransit = ASCTransit + Beta1_Transit × x1 + Beta2_Transit × x2 + ⋯

+ BetanTransit
× xn, 

(3-3) 

   

 VSchool bus = ASCSchool bus + Beta1_School bus × x1 + Beta2_School bus × x2 + ⋯

+ BetanSchoolbus × xn, 
(3-4) 

   

 VWalk = ASCWalk + Beta1_Walk × x1 + Beta2_Walk × x2 + ⋯+ Betan_Walk × xn, (3-5) 

 

 VCycle = ASCCycle + Beta1_Cycle × x1 + Beta2_Cycle × x2 + ⋯+ Betan_Cycle × xn, (3-6) 

 

Where, V is the utility function, ASC is the alternative specific constant, Beta is the parameter 

value, and x is the explanatory variable. 
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Further, the proportion of trips made by each mode of travel can be determined using the 

Multinomial Logit (MNL) model, as shown in Equations (3-7) through (3-12). 

 

 
PCar =

exp(𝑉𝐶𝑎𝑟)

∑ exp(𝑉𝑗)
𝐽
𝑗=1  

 (3-7) 

   

 
PCar pass =

exp(𝑉𝐶𝑎𝑟 𝑝𝑎𝑠𝑠)

∑ exp( 𝑉𝑗)
𝐽
𝑗=1  

, (3-8) 

   

 
PTransit =

exp(𝑉𝑇𝑟𝑎𝑛𝑠𝑖𝑡)

∑ exp( 𝑉𝑗)
𝐽
𝑗=1  

, (3-9) 

   

 
PSchool bus =

exp(𝑉𝑆𝑐ℎ𝑜𝑜𝑙 𝑏𝑢𝑠)

∑ exp( 𝑉𝑗)
𝐽
𝑗=1  

, (3-10) 

   

 
PWalk =

exp(𝑉𝑊𝑎𝑙𝑘)

∑ exp( 𝑉𝑗)
𝐽
𝑗=1  

, (3-11) 

   

 
PCycle =

exp(𝑉𝐶𝑦𝑐𝑙𝑒)

∑ exp( 𝑉𝑗)
𝐽
𝑗=1  

, (3-12) 

 

After calculating the proportion of trips made by each mode of travel, the total PKT by each 

mode can be calculated given respective average modal PKT (calculated from emissions 

inventories). Total PKT can then be converted to VKT using respective average vehicle 

occupancy for each mode, as shown in Equation (3-13) (the details of linking PKT to VKT are 

discussed in Section 3.2.2.). Average vehicle occupancies were calculated from the household 

travel survey by analyzing the survey question: “when travelling by automobile, how many 

people travelled with you?” 

 

 
VKT =

Average PKT (km per person) ×  Modal share(%) ×  Population

Vehicle occupancy
, (3-13) 
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Finally, total GHG emissions from passenger transportation for the base case scenario can be 

calculated through multiplying the total VKT by each mode by respective average emissions 

factors (calculated from emissions inventories for different vehicle and fuel types).  

 

 Total GHG Emissions (𝐶𝑂2 eq. )

= Total VKT(km) × Average emissions factors (𝐶𝑂2 eq. per km), 
(3-14) 

 

As previously discussed and presented in Figure 3-1, VKT reduction can be attributed to two 

main factors: mode shift and trip length reduction. To capture the effect of land use attributes on 

trip length reduction, a Passenger Kilometres Travelled (PKT) estimation model was developed.  

Separate PKT estimation models were developed for each mode of travel (car, transit, walk, and 

cycle) using multiple linear regression analysis. The structure of the developed models is shown 

in Equations (3-15) through (3-18). Various land use attributes such as density and diversity 

were considered as explanatory variables in the PKT estimation models.  

 

 PKTCar = InterceptCar + Beta1_Car × x1 + Beta2_Car × x2 + ⋯+ Betan_Car × xn, (3-15) 

   

 PKTTrasnit = InterceptTransit + Beta1_Transit × x1 + Beta2_Transit × x2 + ⋯

+ Betan_Transit × xn, 
(3-16) 

   

 PKTWalk = InterceptWalk + Beta1_Walk × x1 + Beta2_Walk × x2 + ⋯

+ Betan_Walk × xn, 
(3-17) 

   

 PKTCycle = InterceptCycle + Beta1_Cycle × x1 + Beta2_Cycle × x2 + ⋯

+ BetanCycle
× xn, 

(3-18) 

 

3.2.2 Linking Passenger Trips to Vehicle Trips 

As presented earlier, data required for developing TRIBUTE comes from two main sources: 

household travel surveys and emissions inventories (described in Section 3.2). Household travel 

surveys are reliable sources for socioeconomic, demographic, modal share, and average vehicle 

occupancy data. Data on average VKT, number of registered vehicles, and total GHG emissions 
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were extracted from emissions inventories. Linking household travel survey data to information 

from emissions inventories was not a straightforward task given that the first reports on 

passenger trips while the latter reports on vehicle trips. Figure 3-3 depicts the process used for 

linking passenger trips to vehicle trips and eventually feeding TRIBUTE. 

 

Emissions inventories are considered reliable sources for calculating average PKT and average 

emissions factors, especially when they utilize the resident-based methodology using vehicle 

registration data for reporting on emissions (as opposed to other methodologies that rely on fuel 

sales or modelling). Given that BC’s emissions inventories are resident-based (Ministry of 

Environment, 2014c), they were used to calculate average PKT and average GHG emissions 

factors for each mode from information on total GHG emissions and total VKT, as shown in 

Figure 3.3. To differentiate between car drivers’ average PKT and car passengers’ average PKT, 

the PKT split was extracted from the household travel survey knowing the origins and 

destinations of each trip. 
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Figure 3-3 Linking Passenger Trips to Vehicle Trips
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3.2.3 Model Application (Future Scenarios) 

Upon completion of model building, TRIBUTE can be used to forecast GHG emissions from the 

transportation sector in response to future transportation and land use policy scenarios by 

running its joint mode shift and emissions forecasting models. Future estimates are required to 

account for population growth, new emissions factors for new vehicle technologies, as well as 

changes in personal, modal, and land use attributes. The following bullets describe the steps 

required for forecasting future GHG using TRIBUTE: 

 

 Trip length reduction in response to changes in land use attributes (e.g. density, diversity, 

and design) can be captured by running the PKT estimation model developed in Section 

3.2.1. 

 

 Mode shift in response to changes in land use attributes can be captured by running the 

mode choice model, as shown in Section 3.2.1. Importantly, the trip length reduction 

model (previous step) is expected to feed in the mode shift model to account for the effect 

of trip length reduction on mode shift.   

 

 Total VKT by each mode in the future scenario can then be calculated using Equation (3-

19) as follows: 

 

 Future VKT (km)

=
 Change in  PKT (km) ×  Modal shift (%) ×  Expected population

Vehicle occupancy
, 

(3-19) 

 

 Next, future GHG emissions can be estimated using Equation (3-20). 

 

 Emissions in future scenario (𝐶𝑂2 eq. )

= Future VKT (km)

× Average emissions factors (𝐶𝑂2 eq. per km),  

(3-20) 
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 Finally, the change in passenger transportation GHG emissions from base case can be 

calculated by Equation (3-21). This process can be repeated for different future scenarios 

and/or land use policies and subsequently, the policy/scenario combination that best 

meets GHG emissions reduction targets can be selected. 

 

Change(%) =
Emissions in future scenario −  Emissions in base case

Emissions in base case
× 100, (3-21) 

 

3.3 Summary 

This chapter proposed a TRIp-Based Urban Transportation Emissions (TRIBUTE) model for 

estimating and forecasting GHG emissions from passenger transportation. TRIBUTE is a trip-

based approach given that it uses the individual trip as its fundamental unit of analysis. 

TRIBUTE can capture the relationship between travel behavior and VKT in estimating as well as 

in forecasting emissions. As such, it can be used to assist municipalities evaluate alternative 

transportation and land use policy scenarios and eventually select the one(s) that help them meet 

their future GHG emissions targets.  
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Chapter 4: Case Study 

4.1 Outline 

As described in Chapter 3, the developed emissions forecasting model (TRIBUTE) relies mainly 

on household travel survey and emissions inventory data. This represents a major advantage of 

TRIBUTE as it can be used in small municipalities where a detailed transportation network 

model is unavailable. This chapter presents the application of TRIBUTE to estimate GHG 

emissions from passenger transportation in the City of Kelowna, British Columbia as a case 

study. This chapter is comprised of two main parts. In section 4.2, detailed information on the 

study area is presented including location, demographics, transportation network, and emissions 

reduction target. In Section 4.3, an overview of the data used and its sources is presented.  

 

4.2 Study Area 

The City of Kelowna lies in the Okanagan Valley located in the Southern Interior of British 

Columbia, Canada. With a total area of 211.8 square kilometres and population of 117,312 in 

2011, Kelowna is considered the largest city in British Columbia’s Okanagan Valley (Statistics 

Canada, 2016). Similar to many North American cities, the City of Kelowna faces severe 

suburbanization and urban sprawl promoted by the popularity of low-density car-oriented 

developments.  As comparison, Kelowna’s average population density (117,312 residents/211.8 

km2 = 554 residents/km2) is approximately one tenth (1/10) of Vancouver’s, which has a much 

higher active transportation modal share.  The City of Kelowna is comprised of 10 sectors with 

191 traffic analysis zones. Figure 4-1 shows the distribution of population density among the 

city’s 10 sectors and 191 traffic analysis zones (TAZs). 
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Figure 4-1 Distribution of Population Density in the City of Kelowna
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4.2.1 Kelowna’s Growth Projections 

The City of Kelowna is expected to accommodate additional 63,070 people by the end of 2040, 

on top of its 117,312 people, which will result in a total population of 180,382. Among all age 

groups, the senior population is expected to increase substantially. The average household size is 

expected to be 2.11 persons per unit by 2030 (City of Kelowna, 2013). Table 4-1 outlines 

Kelowna’s population growth projections (Rahman et al., 2016). In 2013, the City of Kelowna’s 

total population was 119,801, which was calculated by taking the same growth rates between 

2011 and 2014.  

 

Table 4-1 Kelowna’s Projected Growth Rates (Rahman et al., 2016) 

Time Period 
Average Annual Growth 

Rate 
Population at End of Period 

2014  - 121,045 

2015 - 2019 1.7% 131,690 

2020 - 2024 1.6% 142,708 

2025 - 2029 1.5% 153,889 

2030 - 2034 1.5% 165,782 

2035 - 2039 1.4% 177,891 

2040 1.3% 180,382 

 

4.2.2 Kelowna’s Transportation Network 

Over the past few years, the City of Kelowna has pursued several measures in constructing 

infrastructure for active transportation and public transit. For example, to promote walking in the 

City of Kelowna, different walking facilities such as sidewalks, crosswalks, and shared pathways 

have been developed (City of Kelowna, 2016). To promote bicycling, the City of Kelowna has 

installed one of the most widespread bicycle networks in Canada (City of Kelowna, 2016). The 

city has nearly 300 km on-street bicycle lanes. Moreover, during 2012-2014, the City of 

Kelowna has also carried out various transit infrastructure and service projects (e.g. improving 

transit facilities, increasing frequency of the transit service, and improving transit route 

coverage) (City of Kelowna, 2016). The road network, active transportation network, and public 

transit network of the City of Kelowna are illustrated in Figure 4-2, Figure 4-3, and Figure 4-4, 

respectively. 
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Figure 4-2 Road Network in the City of Kelowna 
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Figure 4-3 Active Transportation Network in the City of Kelowna 
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Figure 4-4 Public Transit Network in the City of Kelowna 
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4.2.3 Kelowna’s GHG Emissions 

Much of the motivation for active transportation improvements in the city has arisen from 

Kelowna’s traditionally high car dependency. The high car dependency in Kelowna has 

produced the second highest per-capita road transportation carbon footprint in British Columbia, 

coming after Prince George (City of Kelowna, 2009). According to the 2007 Community Energy 

and Emissions Inventory (CEEI), on-road transportation contributed 506,640 CO2 eq. ton, 

representing about 65% of Kelowna’s community GHG emissions in 2007 (City of Kelowna, 

2012).  Figure 4-5 depicts the three major sources of GHG emissions in the City of Kelowna.  

 

 

Figure 4-5 Sources of GHG Emissions in the City of Kelowna (City of Kelowna, 2012)  

 

Kelowna residents depend highly on personal vehicles (mainly light trucks, vans, and SUVs) as a 

mode of travel. As a result, personal vehicles were responsible for almost two thirds of the on-

road emissions produced in 2007 (Figure 4-6). If the city continues business-as-usual, on-road 

transportation GHG emissions are expected to escalate to unprecedented levels by 2040, putting 

citizens’ health and quality of life in question. In response, the City of Kelowna has committed to 

finding ways to tackle the challenges posed by climate change and pledged to reducing its GHG 

emissions by 33% from 2007 levels by 2040 (City of Kelowna, 2012). 
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Figure 4-6 On-Road Emissions from Different Vehicle Types (City of Kelowna, 2009) 

 

4.3 Dataset Description 

The data used in this analysis came from two main sources: a household travel survey and 

emissions inventories. Socioeconomic, demographic, modal shares, and average vehicle 

occupancy data was acquired from the 2013 Okanagan Household Travel Survey (HHTS). The 

Okanagan HHTS is a household-based survey conducted in fall 2013 and includes detailed 

socioeconomic and demographic information about residents of the Central Okanagan and the 

City of Vernon along with their travel choices.  

 

A sample of 13,633 trips, which represents a total of 429,559 trips that originate in the City of 

Kelowna on a typical week day, is recorded in the Okanagan HHTS. Among these trips, 89.64% 

stayed in Kelowna and 10.36% crossed the city boundaries to different destinations in the 

Okanagan Valley including Vernon, Lake Country, West Kelowna, West Bank First Nation 

(WFN), Peachland, Central Okanagan East, Central Okanagan West, North Okanagan, and South 

Okanagan. For each trip, the trip purpose and mode of travel are reported. The descriptive 

statistics of the 2013 Okanagan HHTS are shown in Table 4-2. Among the cross boundary trips, 
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the highest number of trips (4.28%) ends in West Kelowna, and the second and third highest end 

in Lake Country (1.80%) and Westbank (1.36%), respectively, as shown in Figure 4-7.  

 

Table 4-2 Descriptive Statistics of 2013 Okanagan HHTS 

Variable Value Sample Size Percentage 

Destinations 

Vernon 
146  

(4,145)* 

1.07% 

(0.97%)* 

Lake Country 
292  

(7,715)* 

2.14% 

(1.80%)* 

Kelowna 
12,057  

(385,055)* 

88.44% 

(89.64%)* 

West Kelowna 
613  

(18,400)* 

4.50% 

(4.28%)* 

WFN 
207  

(5,851)* 

1.52% 

(1.36%)* 

Peachland 
71  

(1,564)* 

0.52% 

(0.36%)* 

Central Okanagan East 
141  

(3,987)* 

1.03% 

(0.93%)* 

Central Okanagan 

West 

23  

(648)* 

0.17% 

(0.15%)* 

North Okanagan CMA 

(minus Vernon) 

18  

(538)* 

0.13% 

(0.13%)* 

South Okanagan CMA 
7  

(161)* 

0.05% 

(0.04%)* 

External 
57  

(1,494)* 

0.42% 

(0.35%)* 

Trip Purposes 

To Work 
2,127 

(64,987)* 

15.66% 

(15.17%)* 

To grade school 
484 

(17,828)* 

3.56% 

(4.16%)* 

To post-secondary 

school 

382 

(12,225)* 

2.81% 

(2.85%)* 

To Restaurant 
397 

(11,944)* 

2.92% 

(2.79%)* 

For Recreation 
627 

(19,811)* 

4.62% 

(4.62%)* 

*Values between parentheses represent the expanded sample size  
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Table 4-2 Descriptive Statistics of 2013 Okanagan HHTS (Continued) 

Variable Value Sample Size Percentage 

Trip Purposes 

For a Social outing 
496 

(15,193)* 

3.65% 

(3.55%)* 

For Shopping 
1,496 

(45,499)* 

11.01% 

(10.62%)* 

For Personal business 
897 

(27,199)* 

6.60% 

(6.35%)* 

To Home 
4,980 

(158,023)* 

36.66% 

(36.89%)* 

To drive or pick-up 

someone 

1,062 

(35,277)* 

7.82% 

(8.24%)* 

Other 
638 

(20,383)* 

4.70% 

(4.76%)* 

Mode of Transportation 

Car Driver 
9,194 

(284,122)* 

67.57% 

(66.35%)* 

Car Passenger 
2,041 

(66,691)* 

15.00% 

(15.57%)* 

Transit 
600 

(20,577)* 

4.41% 

(4.81%)* 

Walk 
1,087 

(33,530)* 

7.99% 

(7.83%)* 

Cycle 
166 

(6,122)* 

1.22% 

(1.43%)* 

School Bus 
426 

(14,156)* 

3.13% 

(3.31%)* 

Other 
93 

(3,015)* 

0.68% 

(0.70%)* 

*Values between parentheses represent the expanded sample size 
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Figure 4-7 Distribution of Trips Originated in Kelowna 

 

The most frequent trip purpose recorded in the Okanagan HHTS is “to home”. The trip purpose 

“to home” indicates that going back home may either come from work/school or other locations. 

The work trips, going to work regardless of origin locations, are the second highest trips at 

15.17% of total trips, which is followed by shopping trips (10.62%), as illustrated in Figure 4-8. 

 

According to the HHTS, there is a very high percentage (81.92%) of car users in the study area 

(66.35% car drivers and 15.57% car passengers), as shown in Figure 4-9. On the other hand, 

active transportation accounts for 9.26% (7.83% walk and 1.43% cycle), public transit represents 

4.81%, and only 3.31% of all trips are made by school bus.  
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Figure 4-8 Trips Purposes 

 

 

Figure 4-9 Modal Share  
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This research focused on trips that originated and ended within Kelowna (i.e. cross-boundary 

trips were outside the scope of this study). A subset of the trips originated in Kelowna (described 

in the Table 4-2) was extracted to include only trips that both originated and ended in Kelowna. 

The extracted subset included a sample of 12,057 trips which represents a total of 385,055 trips 

that stay within the boundaries of the City of Kelowna on a typical week day. Further, the trips 

within Kelowna (a sample of 12,057 trips) were divided into two broad categories based on the 

trip purposes, namely, commuting trips, and non-commuting trips. The following section 

describes the descriptive statistics of the commuting and non-commuting trips separately.  

 

4.3.1 Commuting Trips 

Commuting trips refer to trips associated with work-related activities. The HHTS includes a total 

number of 4,299 commuting trips (i.e. home to work/school, work/school to home, and other 

than home locations to work/school). There are 3,533 home-based commuting trips, i.e. home to 

work/school and the reverse trips, in the 2013 HHTS. In addition, there are various complex 

tours that consist of a numbers of linked trips in the HHTS. For example, the tour “dropping 

children off at school from home before going to work” consists of two trips: going from home 

to school and from school to work. In such tour, only the second trip (i.e. school to work) is 

considered as a commuting trip (Acker and Witlox, 2011). There are 766 commuting trips 

starting at locations other than home and ending at the work place. The descriptive statistics of 

commuting trips are shown in Table 4-3. 

 

Table 4-3 Descriptive Statistics of Commuting Trips 

Variable Value Sample Size Percentage 

Gender 

Male 
2,055 

(66,765)* 

47.80% 

(47.95%)* 

Female 
2,244 

(72,482)* 

52.20% 

(52.05%)* 

Age 
(In years) 

05-14 
616 

(23,261)* 

14.33% 

(16.70%)* 

15-24 
719 

(24,428)* 

16.72% 

(17.54%)* 

25-34 
753 

(22,375)* 

17.52% 

(16.07%)* 

*Values between parentheses represent the expanded sample size 
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Table 4-3 Descriptive Statistics of Commuting Trips (Continued) 

Variable Value Sample Size Percentage 

Age 
(In years) 

35-44 
729 

(23,815)* 

16.96% 

(17.10%)* 

45-54 
779 

(25,393)* 

18.12% 

(18.24%)* 

55-64 
612 

(17,361)* 

14.24% 

(12.47%)* 

65 and over 
91 

(2,616)* 

2.12% 

(1.88%)* 

Household Size 

1 
353 

(14,804)* 

8.21% 

(10.63%)* 

2 
1,642 

(39,429)* 

38.19% 

(28.32%)* 

3 
802 

(27,459)* 

18.66% 

(19.72%)* 

4+ 
1,502 

(57,557)* 

34.94% 

(41.33%)* 

Number of Vehicles 

0 
121 

(4,134)* 

2.81% 

(2.97%)* 

1 
1,169 

(36,991)* 

27.19% 

(26.56%)* 

2 
1,851 

(58,036)* 

43.06% 

(41.68%)* 

3+ 
1,158 

(40,087)* 

26.94% 

(28.79%)* 

Transit Pass Holding 

Yes 
534 

(18,019)* 

12.42% 

(12.94%)* 

No 
3,765 

(121,229)* 

87.58% 

(87.06%)* 

Driver's License Holding 

Yes 
3,405 

(106,732)* 

79.20% 

(76.65%)* 

No 
894 

(32,516)* 

20.80% 

(23.35%)* 

Dwelling Type 

Single Detached House 
2,922 

(96,691)* 

67.97% 

(69.44%)* 

Apartment or Condo 
676 

(20,451)* 

15.72% 

(14.69%)* 

Townhouse or Row House 
477 

(14,422)* 

11.10% 

(10.36%)* 

Duplex 
187 

(6,338)* 

4.35% 

(4.55%)* 

*Values between parentheses represent the expanded sample size 
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Table 4-3 Descriptive Statistics of Commuting Trips (Continued) 

Variable Value Sample Size Percentage 

Occupation 

Professional 
1,291 

(40,736)* 

43.67% 

(44.32%)* 

Business 
292 

(8,642)* 

9.88% 

(9.40%)* 

Skilled Technical Worker 
208 

(6,493)* 

7.04% 

(7.06%)* 

Sales 
148 

(4,678)* 

5.01% 

(5.09%)* 

Clerical 
226 

(6,835)* 

7.65% 

(7.44%)* 

Trades 
215 

(6,407)* 

7.27% 

(6.97%)* 

Commercial Driver 
22 

(711)* 

0.74% 

(0.77%)* 

Other 
554 

(17,412)* 

18.74% 

(18.94%)* 

Household Income 

Less than $25,000 
300 

(9,936)* 

6.98% 

(7.14%)* 

$25,000 to Less than $45,000 
514 

(17,119)* 

11.96% 

(12.29%)* 

$45,000 to Less than $65,000 
675 

(21,187)* 

15.70% 

(15.22%)* 

$65,000 to Less than $100,000 
1,252 

(39,766)* 

29.12% 

(28.56%)* 

$100,000 or more 
1,558 

(51,241)* 

36.24% 

(36.80%)* 

Modes of Transportation 

Car Driver 
2,547 

(79,418)* 

59.25% 

(57.03%)* 

Car Passenger 
562 

(19,629)* 

13.07% 

(14.10%)* 

Transit 
348 

(11,701)* 

8.09% 

(8.40%)* 

Walk 
443 

(14,499)* 

10.30% 

(10.41%)* 

Cycle 
235 

(7,853)* 

5.47% 

(5.64%)* 

School Bus 
142 

(5,425)* 

3.30% 

(3.90%)* 

Other 
22 

(724)* 

0.51% 

(0.52%)* 

*Values between parentheses represent the expanded sample size  
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In the HHTS, it is reported that females make slightly more commuting trips (52.05%) than 

males in the City of Kelowna, as shown in Figure 4-10. The highest percentage of commuting 

trips is made by people in the 45 to 54 years age category, followed by 15 to 24 years, and then 

35 to 44 years, as shown in Figure 4-11. 

 

It is also seen from the HHTS that four or more people living in a single household are 

responsible for more commuting trips (41.33%) than the lower number of people in a household, 

as illustrated in Figure 4-12. The second highest trip making percentage (28.32%) is made by 

households having two people, followed by households having three people, and then single 

occupant households. On the other hand, two vehicles households are recorded as making the 

highest percentage of commuting trips in the 2013 Okanagan HHTS, as shown in Figure 4-13. 

 

 

Figure 4-10 Gender Distribution (Commuting Trips) 
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Figure 4-11 Age Distribution (Commuting Trips) 

 

 

Figure 4-12 Household Size (Commuting Trips) 
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Figure 4-13 Vehicle Ownership (Commuting Trips) 

 

In addition, 76.65% of people are recorded in the HHTS as having their driver’s license, while 

12.94% have a transit pass, as shown in Figure 4-14 and Figure 4-15, respectively. Higher 

numbers of people having a driver’s licence and a lower percentage of people without a transit 

pass indicates higher auto dependency and lower transit ridership for commuting trips. 
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Figure 4-14 Driver License (Commuting Trips) 

 

  

Figure 4-15 Transit Pass (Commuting Trips) 
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Different types of dwellings and occupancies give an idea about the standard of living. The 

HHTS shows that the dominant dwelling type is a single detached house, and that includes 

69.44% of the total different dwelling types, as shown in Figure 4-16. This is followed by 

apartments then townhouses. On the other hand, the dominant occupation in the HHTS is 

professional, consisting of 44.32% of all commuting trips, as illustrated in Figure 4-17. In 

addition, more than 35% of people have an income level more than $100,000, which is almost 

equal to the people having salaries less than $65,000, as depicted in Figure 4-18. A person with a 

professional occupation, living in a single detached house, and having a higher income exhibits 

higher tendency to auto dependency.  

 

 

Figure 4-16 Dwelling Types (Commuting Trips) 
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Figure 4-17 Occupation Distribution (Commuting Trips) 

 

 

Figure 4-18 Income Distribution (Commuting Trips) 
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The City of Kelowna consists of over 71% of commuting trips using cars, including 57.03% car 

drivers and 14.10% car passengers, as shown in Figure 4-19. On the other hand, over 16% of 

commuting trips are made by active transportation that includes 10.41% of walking. In addition, 

transit ridership is 8.40% in 2013 for commuting trips. 

 

 

Figure 4-19 Modal Share (Commuting Trips) 

 

4.3.2 Non-commuting Trips 

Non-work-related activities were considered as non-commuting trips in this research. Non-

commuting trips are comprised of home-based discretionary trips (e.g. shopping, entertainment, 

etc.), non-home-based discretionary trips, and work to discretionary trips. Home-based 

discretionary trips are those trips that either start or end at home (National Cooperative Highway 

Research Program, 2012). The total number of home-based discretionary trips are 5,046, as 

recorded in the HHTS. In addition, there are 1,933 trips categorized as non-commuting trips as 

their origins and destinations are neither home nor work or school. Furthermore, there are 779 

trips originating at work or school and with destination at discretionary locations. By combining 

different types of non-commuting trips, there are a total of 7,758 non-commuting trips recorded 

in the HHTS. The descriptive statistics of non-commuting trips are shown in Table 4-4. 
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Table 4-4 Descriptive Statistics of Non-Commuting Trips 

Variable Value Sample Size Percentage 

Gender 

Male 
3,054 

(95,284)* 

39.37% 

(38.76%)* 

Female 
4,704 

(150,559)* 

60.63% 

(61.24%)* 

Age 
(In years) 

05-14 
547 

(19,835)* 

7.05% 

(8.07%)* 

15-24 
589 

(20,473)* 

7.59% 

(8.33%)* 

25-34 
1,015 

(29,826)* 

13.08% 

(12.13%)* 

35-44 
1,338 

(45,564)* 

17.25% 

(18.53%)* 

45-54 
1,309 

(44,561)* 

16.87% 

(18.13%)* 

55-64 
1,474 

(42,569)* 

19.00% 

(17.32%)* 

65 and over 
1,486 

(43,017)* 

19.15% 

(17.50%)* 

Household Size 

1 
900 

(38,133)* 

11.60% 

(15.51%)* 

2 
3,554 

(85,363)* 

45.81% 

(34.72%)* 

3 
1,270 

(43,455)* 

16.37% 

(17.68%)* 

4+ 
2,034 

(78,893)* 

26.22% 

(32.09%)* 

Number of Vehicles 

0 
294 

(10,014)* 

3.79% 

(4.07%)* 

1 
2,430 

(77,073)* 

31.32% 

(31.35%)* 

2 
3,312 

(100,019)* 

42.69% 

(40.68%)* 

3+ 
1,722 

(58,736)* 

22.20% 

(23.89%)* 

Transit Pass Holding 

Yes 
526 

(17,222)* 

6.78% 

(7.01%)* 

No 
7,232 

(228,621)* 

93.22% 

(92.99%)* 

*Values between parentheses represent the expanded sample size 
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Table 4-4 Descriptive Statistics of Non-Commuting Trips (Continued) 

Variable Value Sample Size Percentage 

Driver's License Holding 

Yes 
6,842 

(214,025)* 

88.19% 

(87.06%)* 

No 
916 

(31,818)* 

11.81% 

(12.94%)* 

Dwelling Type 

Single Detached House 
5,367 

(172,602)* 

69.18% 

(70.21%)* 

Apartment or Condo 
1,195 

(37,277)* 

15.40% 

(15.16%)* 

Townhouse or Row House 
882 

(26,542)* 

11.37% 

(10.80%)* 

Duplex 
234 

(6,993)* 

3.02% 

(2.84%)* 

Mobile Home 
80 

(2,431)* 

1.03% 

(0.99%)* 

Occupation 

Professional 
1,703 

(55,040)* 

52.50% 

(53.20%)* 

Business 
385 

(11,608)* 

11.87% 

(11.22%)* 

Skilled Technical Worker 
232 

(7,145)* 

7.15% 

(6.91%)* 

Sales 
171 

(5,229)* 

5.27% 

(5.05%)* 

Clerical 
331 

(10,204)* 

10.20% 

(9.86%)* 

Trades 
229 

(7,082)* 

7.06% 

(6.85%)* 

Commercial Driver 
25 

(812)* 

0.77% 

(0.78%)* 

Other 
168 

(6,340)* 

5.18% 

(6.13%)* 

Household Income 

Less than $25,000 
1,060 

(35,462)* 

13.66% 

(14.42%)* 

$25,000 to Less than 

$45,000 

1,139 

(37,162)* 

14.68% 

(15.12%)* 

$45,000 to Less than 

$65,000 

1,316 

(39,151)* 

16.96% 

(15.93%)* 

$65,000 to Less than 

$100,000 

2,180 

(66,079)* 

28.10% 

(26.88%)* 

$100,000 or more 
2,063 

(67,990)* 

26.59% 

(27.66%)* 

*Values between parentheses represent the expanded sample size 
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Table 4-4 Descriptive Statistics of Non-Commuting Trips (Continued) 

Variable Value Sample Size Percentage 

Mode of Transportation 

Car Driver 
5,439 

(170,971)* 

70.11% 

(69.54%)* 

Car Passenger 
1,258 

(40,791)* 

16.22% 

(16.59%)* 

Transit 
192 

(6,780)* 

2.47% 

(2.76%)* 

Walk 
651 

(19,773)* 

8.39% 

(8.04%)* 

Cycle 
180 

(6,170)* 

2.32% 

(2.51%)* 

Other 
38 

(1,360)* 

0.49% 

(0.55%)* 

*Values between parentheses represent the expanded sample size 

 

Females are responsible for more non-commuting trips than males, as shown in Figure 4-20. In 

particular, females are responsible for 61.24% of non-commuting trips, which is even higher than 

their share of commuting trips. Males generated 38.76% of non-commuting trips as recorded in 

the HHTS. On the other hand, those aged 35 years and over generates over than 70% of non-

commuting trips, as illustrated in Figure 4-21. 

 

 

Figure 4-20 Gender Distribution (Non-Commuting Trips) 
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Figure 4-21 Age Distribution (Non-Commuting Trips) 

 

From the HHTS, it is seen that the majority (34.72%) of non-commuting trips are coming from 

households having two persons living together, as shown in Figure 4-22, followed by those 

having four or more persons in a single household, and then three people in a single household. 

However, 40.68% of non-commuting trip makers have two vehicles in their household, while 

only 4.07% have no vehicles, as shown in Figure 4-23. In addition, 31.35% household have one 

vehicle, while 23.89% have three or more vehicles in their household. 

 

A very high percentage of people (92.99%) does not have a transit pass of their own and 87.06% 

of people does have a driver’s license, as depicted in Figure 4-24 and Figure 4-25, respectively, 

which indicates a higher auto dependency for non-commuting trips in the City of Kelowna. 
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Figure 4-22 Household Size (Non-Commuting Trips) 

 

 

Figure 4-23 Vehicle Ownership (Non-Commuting Trips) 
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Figure 4-24 Transit Pass (Non-Commuting Trips) 

 

 

Figure 4-25 Driver License (Non-Commuting Trips) 
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The majority of non-commuting trip makers are living in a single detached house (70.21%), as 

shown in Figure 4-26, followed by those living in an apartment (15.16%), and then those living 

in a townhouse (10.80%). In terms of occupation, the majority of non-commuting trips are made 

by professionals (53.20%), as illustrated in Figure 4-27, while 11.22% of non-commuting trips 

were made by businesspersons. In addition, over 50% of people are involved in generating non-

commuting trips have salaries over $65,000, as depicted in Figure 4-28. This indicates that 

professional people living in single detached houses and having comparatively higher salaries are 

making a higher percentage of non-commuting trips.  

 

 

Figure 4-26 Dwelling Type Distribution (Non-Commuting Trips) 
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Figure 4-27 Occupation Distribution (Non-Commuting Trips) 

 

 

Figure 4-28 Income Distribution (Non-Commuting Trips) 
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The majority of non-commuting trips (86.13%) are made by using cars where car drivers are 

responsible for 69.54% of non-commuting trips, as shown in Figure 4-29. However, slightly 

more than 10% of people take active transportation in making non-commuting trips. 

Furthermore, transit ridership is very low (2.76%) in non-commuting trips. The school bus 

option is absent in non-commuting trips. 

 

 

Figure 4-29 Modal Share (Non-Commuting Trips) 

 

4.3.3 Vehicle Occupancy 

Average car occupancies were estimated from the 2013 HHTS by analyzing the answer of the 

survey question: “When travelling by automobile, how many people travelled with you?” By 

summing up the number of passengers (i.e. people who rode with the driver) in a specific 

vehicle, average vehicle occupancies were calculated. If the driver drove alone then the 

occupancy of the vehicle was taken as 1. Average transit bus and school bus occupancies were 

acquired from the Sustainable Transportation Partnership of the Central Okanagan (STPCO) and 

School District (SD) No. 23 respectively. STPCO is a partnership of four local governments, a 

first nation, and the regional district of Central Okanagan. The average vehicle occupancies for 

different travel modes are shown in Table 4-5. 
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Table 4-5 Average Vehicle Occupancy 

Travel Mode Car Driver Car Passenger Transit Bus School Bus 

Vehicle Occupancy 1.39 2.69 10 50 

 

4.3.4 GHG Emissions Factors 

Data on average vehicle kilometres travelled (VKT), number of registered vehicles, and total 

GHG emissions was extracted from the Community Energy and Emissions Inventory (CEEI) 

(Ministry of Environment, 2014b). Different vehicle types, fuel types, fuel consumption, and 

corresponding emissions were recorded in the CEEI report. The previous data was used to 

calculate weighted average emissions factors for the car and transit options. Emissions factors, 

however, have changed between 2007 and 2010 due to the changes in fuel content as well as the 

imposed legislation to use renewable fuel (Ministry of Environment, 2014a). The most updated 

emissions factors obtained from the CEEI report are shown in Table 4-6. 

 

Table 4-6 GHG Emission Factors (Ministry of Environment, 2014b) 

  

Total 

Consumptions 

(Litres) 

No. of 

Vehicles 

Average 

VKT 

(km/veh) 

GHG 

(CO2 

eq. ton) 

EF1 

(kg/km) 

Ave. 

EF2 

(kg/km) 

Small 

Passenger 

Cars 

Hybrid 64,366 58 21,100 144 0.118 

0.278 

Gasoline 40,006,983 25,125 16,600 89,728 0.215 

Diesel 1,098,410 682 23,900 2,913 0.179 

Large 

Passenger 

Cars 

Hybrid 348,611 243 25,300 776 0.126 

Gasoline 23,244,105 12,350 16,500 52,202 0.256 

Diesel 166,165 123 14,500 440 0.247 

Light 

trucks, 

Vans, 

SUVs 

Hybrid 271,452 118 26,400 612 0.196 

Gasoline 93,983,001 32,497 20,100 212,846 0.326 

Diesel 3,096,191 970 19,800 8,190 0.426 

Other 238,570 120 11,700 365 0.260 

Buses 
Gasoline 302,518 113 17,500 677 0.342 

0.543 
Diesel 604,612 115 18,900 1,579 0.726 

                                                 

1 Emission Factors 
2 Weighted Average Emission Factors 
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4.3.5 Land Use Data 

Land use data was quantified at the Traffic Analysis Zone (TAZ)’s level by combining 

information from census, BC Assessment, Canada Business Points, and enrolment counts from 

Central Okanagan School District (SD23), among other sources. Density, diversity, and design 

indicators (also known as Cervero’s 3D) were considered as the land use variables in this 

research. The variables corresponding to each indicator are as follows: 

 

 Density indicators included activity density and school job density in each neighborhood 

of the City of Kelowna. Activity density was measured by combining the density of 

population and jobs within a specific neighborhood. The descriptive statistics of density 

indicators are shown in Table 4-7. 

 

 Diversity indicators indicate the mixed use of land within a specific area. Mixed land use 

was measured in terms of entropy (a measure of the homogeneity of an area). Entropy for 

diversity indicators was calculated according to Equation (4-1)  (Zhang et al., 2012; 

Zhang, 2004). The value of entropy lies between zero and one, with higher values 

indicating a better balance of mixed land use. Different entropies were calculated to 

capture the effect of mixed land use (residential/non-residential) and mixed employment 

(retail/non-retail) at both trip origins and destinations. The descriptive statistics of 

diversity parameters are shown in Table 4-7. 

 

 
Entropy = −

∑ [ Pj × ln Pj  ]j

ln J
 

(4-1) 

 

Where, Pj is the proportion of land development of the jth type and J is the number of 

different land use types.  

 

 Design indicators included availability of bus stops, sidewalks, and bike paths within 

suitable proximity (400 m) from trip origins and destinations. These indicators provide an 

idea about the transit bus availability and the infrastructure availability for active 

transportation. 
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Table 4-7 Characteristics of Built Environment and Land Use Variables 

Variables 

Commuting 

Trips 

Non-commuting 

Trips 

Mean Median 
Standard 

Deviation 
Mean Median 

Standard 

Deviation 

Population density at origin 

(person/hectare) 
10.26 9.37 4.71 11.31 14.12 4.65 

Population density at destination 

(person/hectare) 
10.42 9.37 4.70 11.23 14.11 4.67 

Employment density at origin 

(person/hectare) 
12.06 6.87 11.29 14.66 6.86 11.86 

Employment density at 

destination (person/hectare) 
12.60 6.87 11.28 14.38 6.87 11.90 

Activity density at origin 

(person/hectare) 
25.97 20.99 15.93 25.97 20.99 15.93 

Activity density at destination 

(person/hectare) 
25.61 20.99 16.00 25.61 20.99 16.00 

School job density at origin 

(person/hectare) 
0.18 0.13 0.10 0.18 0.13 0.10 

School job density at destination 

(person/hectare) 
0.18 0.13 0.10 0.18 0.13 0.10 

Mixed land use at origin 

(entropy: residential, and jobs) 
0.90 0.94 0.11 0.90 0.94 0.11 

Mixed land use at destination 

(entropy: residential, and jobs) 
0.90 0.94 0.11 0.90 0.94 0.11 

Mixed employment at origin 

(entropy: retail, non-retail, and 

school jobs) 

0.57 0.52 0.10 0.57 0.52 0.09 

Mixed employment at 

destination 

 (entropy: retail, non-retail, and 

school jobs) 

0.57 0.52 0.1 0.57 0.52 0.09 
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4.4 Summary 

This chapter described the study area and the different sources of data used in this research. The 

City of Kelowna was selected as the study area for this investigation. This chapter also described 

population growth projection of the city and its transportation networks including road, active 

transportation, and public transportation networks. Further, this chapter thoroughly described the 

data from household travel survey and emissions inventories. In addition, land use data was 

quantified at the Traffic Analysis Zone (TAZ)’s level by combining different sources, such as 

census, BC Assessment, Canada Business Points, and enrolment counts from Central Okanagan 

School District (SD23).  
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Chapter 5: Modelling Results 

5.1 Outline 

This chapter presents the methodology to apply, and results of applying, TRIBUTE to explore 

the impacts of land use on passenger transportation GHG emissions in the City of Kelowna as a 

case study. The following sections of this chapter are arranged as follows: generating level-of-

service attributes for the individual trips recorded in the HHTS is presented in Section 5.2. The 

relationship between travel time and travel distance is modelled in Section 5.3. Modelling the 

base case scenario using existing land use and built environment attributes is presented in 

Section 5.4. Different future scenarios are modelled in Section 5.5. After applying TRIBUTE, 

expected GHG emissions from future scenarios are presented in Section 5.6.  

 

5.2 Generating Level-of-Service Attributes 

To develop the mode choice component of TRIBUTE, it was necessary to generate the Level-of-

Service (LOS) attributes (i.e. travel time and travel distance) for each mode of travel for each 

trip, regardless of the actual chosen mode. In this study, LOS attributes were generated for car, 

transit, walk, and cycle options using the Google Directions API with the help of origin and 

destination postal codes collected from HHTS (Idris, 2013).  

 

5.3 Relationship between Travel Distance and Travel Time  

Link travel time is a function of traffic volume on that link (Spiess, 1990). Mathematically, link 

travel time can be estimated using a volume-delay function. A volume-delay function reflects the 

congested link travel time by taking into account the ratio of the total traffic volume to the 

maximum capacity of that link.  The most commonly used volume-delay function is the Bureau 

of Public Roads (BPR) function, as shown in Equation (5-1) (Spiess, 1990):  

 

 𝑡𝐵𝑃𝑅(𝑣) = 𝑡𝑜[1 + (
𝑣

𝑐
)
𝛼

], (5-1) 

 

where, to is free flow travel time, v is traffic volume, c is the capacity of the road. The higher 

value of α represents congestion effects.  
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A volume-delay function is applicable where a detailed network data is available. The developed 

emissions model (TRIBUTE, as described in Chapter 3) does not deal with link volumes and 

does not require a transportation network model as it mainly relies on HHTS data. As such, it 

was necessary to translate the reduction in VKT (i.e. travel distance), in response to land use 

policies, in terms of travel time to feed in the mode choice model. 

 

Modelling the relationship between travel distance and travel time using linear regression is not 

uncommon in the literature. Harmel and Janda (2015) studied the correlation between straight-

line travel distance and travel time in upstate New York. The developed models showed a linear 

relationship between straight-line travel distance and travel time with a goodness of fit (R-

squared) range of 0.685 to 0.973. 

 

In this research, the relationship between travel distance and travel time was modelled using 

linear regression, described in Section 2.6.2.1. Different functional forms (linear and non-linear) 

for the relationship between travel distance and travel time were examined before selecting the 

linear functional form as the best fit. Figure 5-1 and Figure 5-2 show the scatter plot of the 

relationship between travel distance and travel time along with the developed models for car and 

transit, respectively. The detailed models are shown in Table 5-1. To check the constant 

variance, residual plots of the developed regression models are shown in Appendix D. 
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Figure 5-1 Relationships between Travel Distance and Travel Time for Car 

 

 

Figure 5-2 Relationships between Travel Distance and Travel Time for Transit 
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Table 5-1 Relationships between Travel Distance and Travel Time  

  
Travel Time (Minutes) 

Car Transit  

R2 0.96 0.75 

Standard Error 0.87 5.81 

Variable Parameter Parameter 

Intercept 
1.42 

(84.37)* 

8.95 

(17.40)* 

Travel Distance (Km) 
1.21 

(472.01)* 

2.33 

(36.58)* 

*Values between parentheses shows the t-statistics value 

 

5.3.1 Error Analysis 

To assess the predictability of the developed models, the standard error of the regression analysis 

was used to generate a prediction interval (PI) based on 95% confidence level. This indicates that 

the predicted value (travel time) of 95% of the sample (travel distance) falls within the interval 

around the linear regression (shown in Table 5-1). The prediction interval for the developed 

model was calculated by using Equation (2-21). The ranges of the prediction intervals were 

±25% and ±45% for the developed linear regression models for car and transit, respectively. The 

estimated error envelope for the developed models for car and transit (shown in Table 5-1) are 

shown in Figure 5-3 and Figure 5-4, respectively.  

 

(𝑇�̂�Car − 𝑇�̂�Car × 25%)  ≤ PI of 𝑇�̂�Car ≤ (𝑇�̂�Car + 𝑇�̂�Car × 25%), (5-2) 

  

(𝑇�̂�Transit − 𝑇�̂�Transit × 45%)  ≤ PI of 𝑃𝐾�̂�Transit ≤ (𝑇�̂�Transit + 𝑇�̂�Transit × 45%), (5-3) 
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Figure 5-3 Error Envelope of Travel Time and Travel Distance Estimation for Car 

 

 

Figure 5-4 Error Envelope of Travel Time and Travel Distance Estimation for Transit 
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5.4 Passenger Kilometre Travelled (PKT) Estimation Model 

As discussed earlier, VKT reduction can be attributed to two main factors: mode shift and trip 

length reduction (as shown in Figure 3-1). As such, PKT estimation models were developed for 

four travel options: car, transit, walk, and cycle to capture trip length reduction in response to 

policy changes. Existing land use and built environment attributes were used to develop PKT 

models to demonstrate their effect on distance travelled by each passenger. SPSS computer 

software was used in developing PKT estimation models. 

 

5.4.1 Dependent Variables 

PKT was the only dependent variable of the developed models to estimate distance travelled by 

different travel options. Actual PKT values were used in model development. However, the 

actual values did not satisfy homoscedasticity, i.e. the constant variance assumption. Therefore, 

to fix this problem, different transformations were tried and finally, the square root 

transformation satisfied homoscedasticity. Furthermore, it was kept in mind that the PKT output 

of the model needed to be squared to get actual predicted PKT values. 

 

5.4.2 Explanatory Variables 

Different land use and built environment attributes such as, density and diversity were 

considered as explanatory variables in the models. Activity density, sum of population density 

and employment density, was included in the model as the density indicators. On the other hand, 

mixed use of land and balanced employment types (as described in Section 4.3.5) were 

considered as the diversity indicators.  

 

The explanatory variables were chosen in such a way to minimize the effect of multicollinearity. 

Multicollinearity assumption was verified by using Pearson’s correlation coefficient on SPSS 

software. According to Gerstman (2016), the correlation coefficient can be classified as weak, 

moderate, and strong based on the range of less than 0.3, 0.3 to 0.7, and greater than 0.7, 

respectively. In this research, the threshold for the Pearson’s correlation coefficient was taken as 

less than 0.3. 
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5.4.3 Empirical Analysis 

Using ordinary least square analysis, PKT estimation models were developed by incorporating 

existing built environment and land use variables, as shown in Table 5-2. Although the models 

showed low goodness of fit, it is not uncommon to attain such R2 value given the inherently high 

amount of unexplainable variability in the dataset (Cervero and Kockelman, 1997; Kockelman, 

1995; Kockelman, 1996). For example, Kockelman (1997) studied the influence of various land 

use parameters, namely, accessibility, mixed land use, and land use balance on household VKT 

in the San Francisco Bay area. The author developed a household-based VKT model using 

multiple regressions analysis. The goodness of fit of the developed regression models were very 

low (R2= 0.04 ~ 0.15) because of the large number of unexplained variability in the data.  

 

Table 5-2 PKT Estimation Models (Square Root of PKT) 

  Car Transit Walk Cycle 

R2 0.137 0.178 0.119 0.104 

Standard Error 0.79 0.80 0.83 0.87 

Variable Parameter Parameter Parameter Parameter 

Intercept 
6.13 

(42.35)* 

7.99 

(9.90)* 

5.79 

(42.34)* 

5.77 

(40.27)* 

Density Indicators 

Activity density at origin (Sum 

of population and job density) 

-0.012 

(-20.34)* 

-0.014 

(-5.46)* 

-0.011 

(-20.75)* 

-0.011 

(-19.51)* 

Activity density at destination 

(Sum of population and job 

density) 

-0.011 

(-18.55)* 

-0.018 

(-7.23)* 

-0.011 

(-19.11)* 

-0.011 

(-17.82)* 

*Values within parentheses shows the t-statistics value 
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Table 5-2 PKT Estimation Models (Square Root of PKT) (Continued) 

  Car Transit Walk Cycle 

R2 0.137 0.178 0.119 0.104 

Standard Error 0.79 0.80 0.83 0.87 

Variable Parameter Parameter Parameter Parameter 

Intercept 
6.13 

(42.35)* 

7.99 

(9.90)* 

5.79 

(42.34)* 

5.77 

(40.27)* 

Diversity Indicators 

Mixed land use at origin 

(Entropy: residential, and jobs) 

-0.879 

(-10.03)* 

-1.547 

(-3.59)* 

-0.791 

(-9.28)* 

-0.71 

(-7.94)* 

Mixed land use at destination 

(Entropy: residential, and jobs) 

-1.060 

(-12.09)* 

-0.553 

(-13.33)* 

-0.898 

(-10.53)* 

-0.836 

(-9.35)* 

Mixed employment at origin 

(Entropy: retail, non-retail, and 

school jobs) 

-1.430 

(-14.62)* 

-2.073 

(-4.76)* 

-1.507 

(-15.85)* 

-1.577 

(-15.84)* 

Mixed employment at 

destination (Entropy: retail, 

non-retail, and school jobs) 

-1.386 

(-14.19)* 

-2.220 

(-5.08)* 

-1.440 

(-15.15)* 

-1.431 

(-14.37)* 

*Values within parentheses shows the t-statistics value 

 

The modeling results, as shown in Table 5-2, indicated that the PKT has an inverse relationship 

with the built environment and land use indicators. The bullets below presents a detailed 

discussion on the developed models. 

 

 Activity density demonstrated negative influence on PKT for all travel options. In 

particular, the parameter value of activity density at trip origin (-0.012) was higher than 

that at the destination (-0.011) for the car option. Although the effect was very small, 

density at the origin was more important than at the destination. However, the transit 

option showed the opposite result of the car. For the transit option, density at the 

destination was more dominant than that at the origin. On the other hand, density showed 

the same effect for active transportation (i.e. walk/cycle) users at both origin and 

destination.  
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 From the Table 5-2, it can also be said that the diversity indicators have a dominant effect 

on the PKT over density. The parameter values of the model for all travel modes were 

much higher than density. In particular, mixed use of land has a negative parameter value 

both at origin (-0.879) and destination (-1.060) for car travel modes. In addition, mixed 

use of land was more influential for transit, which has a parameter value -1.547 at origin. 

Furthermore, the PKT was greatly influenced by the balanced use of employment among 

different job categories. In general, diversity indicators showed higher PKT reduction for 

transit than that of other modes of travel.  

 

The summary of the impacts of land use and built environment indicators on PKT is showing in 

Table 5-3. In general, land use indicators showed a negative impact on PKT. This also indicated 

that the increase in activity density, mixed use of land, and balanced use of different job 

categories would reduce the distance travelled by each passenger, and subsequently reduce VKT. 

 

Table 5-3 Resultant Impacts of Land Use and Built Environment on PKT 

Variables 
Resultant Impacts on PKT for All Modes of 

Transportation (e.g. car, transit, walk, cycle)  

Activity density (person/acre) Negative 

Mixed land use (Entropy: residential, and 

jobs) 
Negative 

Mixed employment (Entropy: retail, non-

retail, and school jobs) 
Negative 

 

5.4.4 Model Prediction Error 

To generate the prediction error envelope for the developed PKT estimation models, the same 

procedure was followed as described in Section 5.3.1. The range of the prediction error was 18% 

to 38% based on the different PKT estimation models for different travel modes. In particular, 

the PKT model for the transit travel option showed a smaller interval (±18%), while the PKT 

model for walk and cycle demonstrated larger prediction intervals (±38% and ±37%, 

respectively). Due to the disperse PKT values of walk and cycle options, the prediction interval 

was larger for walk and cycle. However, the prediction interval for the car fell between -24% and 
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+24%. The error envelopes for the developed PKT models are shown in equations (5-5) through 

(5-8): 

 

 (𝑃𝐾�̂�Car − 𝑃𝐾�̂�Car × 24%)  ≤ PI of 𝑃𝐾�̂�Car ≤ (𝑃𝐾�̂�Car + 𝑃𝐾�̂�Car × 24%),  (5-4) 

   

   (𝑃𝐾�̂�Transit − 𝑃𝐾�̂�Transit × 18%)  ≤ PI of 𝑃𝐾�̂�Transit

≤ (𝑃𝐾�̂�Transit + 𝑃𝐾�̂�Transit × 18%), 
(5-5) 

   

 (𝑃𝐾�̂�Walk − 𝑃𝐾�̂�Walk × 38%)  ≤ PI of 𝑃𝐾�̂�walk ≤ (𝑃𝐾�̂�Walk + 𝑃𝐾�̂�Walk × 38%), (5-6) 

   

 (𝑃𝐾�̂�Cycle − 𝑃𝐾�̂�Cycle × 37%)  ≤ PI of 𝑃𝐾�̂�Cycle ≤ (𝑃𝐾�̂�Cycle + 𝑃𝐾�̂�Cycle × 37%), (5-7) 

 

where, 𝑃𝐾�̂� indicates the predicted PKT value of the model. 

 

5.5 Base Case Estimates 

5.5.1 Mode Choice Modelling 

To calculate the base case estimates, the development of the mode choice model (as described in 

Section 3.2.1) was imperative. Separate mode choice models were developed for both 

commuting and non-commuting trips given the different choice behaviour associated with each 

of these trip purposes. The models were developed using land use and built environment 

indicators and transportation level-of-service attributes (e.g. travel time, travel distance, etc.), as 

discussed below.  

 

5.5.1.1 Modes of Travel 

As mentioned earlier, two types of trip purposes were considered in this investigation, 

commuting and non-commuting trips. For commuting trips, a choice set of seven modes was 

used, including (1) car driver, (2) car passenger, (3) transit bus, (4) school bus, (5) walking, (6) 

cycling, and (7) others. For non-commuting trips, the school bus was excluded from the choice 

set given its irrelevance. The choice sets for the developed mode choice models are shown in 

Figure 5-5. 
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(a) Choice Set for Commuting Trips 

 

 

 

 

 

 

(b) Choice Set for Non-commuting Trips 

Figure 5-5 Choice Set for Mode Choice Models 

 

The availability of the car driver option in the choice set was assumed based on driver’s license 

holding and car ownership. If a person has a car as well as a driver’s licence, then car was added 

to the model as an available option. However, missing either a car or a licence removed the car 

as an option from the choice set. On the other hand, car passenger and public transit were 

assumed available to all travelers.  

 

The mode choice models also dealt with active transportation. From the HHTS and generated 

LOS attributes (as described in Section 5.2), the cumulative percentage of commuting and non-

commuting trips were plotted with respect to the walk distance and cycle distance, as shown in 

Figure 5-6 and Figure 5-7, respectively. To get the available active transportation options, trip 

distance for 95% of trips was taken as a threshold. From Figure 5-6, it is seen that 95% of 

commuting walk trips were within 3 km, while 95% of commuting cycle trips were within 7 km. 

In the development of the mode choice model for commuting trips, trip distances of up to 3 km 

and 7 km were considered as having potential to attract walk and cycle trips, respectively.  

 

Choice Set 

Car 

Driver 
Car 

Passenger 
Transit 

School 

Bus 
Walk Cycle Other 

Choice Set 

Car 

Driver 
Car 

Passenger 
Transit Walk Cycle Other 
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In addition, the same threshold was applied for non-commuting trips to identify the travel 

distance for walk and cycle. For non-commuting trips, 95% of the walking trips were less than 3 

km, while 95% of cycle trips were within 9 km. Therefore, the availability of walk and cycle as 

travel options in the mode choice model for non-commuting trips was determined based on 3 km 

and 9 km thresholds, respectively.  

 

 

Figure 5-6 Non-Motorized Trip Distance in Commuting Trips 
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Figure 5-7 Non-Motorized Trip Distance in Non-Commuting Trips  

 

5.5.1.2 Empirical Analysis 

The inclusion of parameters in the developed MNL models was determined based on the 

following three criteria (Koppelman and Bhat, 2006): a) informal tests, b) goodness of fit 

measures, and c) statistical tests. The informal tests consist of the sign of the parameters to 

evaluate reasonableness of the implications. The overall goodness of the fit measures were 

calculated based on the following equation (Ben-Akiva and Lerman, 1985): 

 

 
Goodness of fit = 1 − 

Final loglikelihood

Null loglikelihood
 

(5-8) 

 

where, the null likelihood of the model shows a model with no parameter value considering all 

alternatives as being equally likely to be chosen. The range of the goodness of the fit varies 

between 0 to 1, and the closer to the value of 1, the better the fit of the model (Day et al., 2010). 
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An open source software (BIOGEME), which was developed by Bierlaire (2003), was used to 

developed the MNL models. In terms of statistical significant, the critical value (1.96) of the t-

statistic with a 95% confidence limit was considered as the threshold value of considering 

variables in the model. A series of specifications was tested and final specifications were reached 

based on the accommodation of variables with proper signs, overall goodness of fit, and 

statistical significance, at a 95% level of confidence test. However, some parameters with t-stat 

values lower than 1.96 were retained in the model because the corresponding variables provide 

considerable insight into the behavioural process, shown in Table 5-4. According to (Koppelman 

and Bhat, 2006), a low t-statistic value does not require removing a variable from the model if 

the variable has a strong reason to be included and the sign of its parameter is correct.  Moreover, 

the inclusion of the insignificant parameters may improve the overall predictability of the model 

(Cervero, 2002). According to McFadden, Rho-squared values between 0.2 and 0.4 indicate 

excellent fit for discrete mode choice models (McFadden, 1977). Given the Rho-squared values 

of 0.443 and 0.524 for commuting and non-commuting trips, respectively, shown in Table 5-4, 

the developed models have acceptable goodness of fit and explanatory power. In addition, 

significance test of the model was tested by calculating confidence interval for parameters 

(Hosmer and Lemeshow, 2000), shown in Equation (5-9) and Equation (5-10).  

 

A 100(1-α)% confidence interval for the slope coefficients: 

 

 β1̂ ± z1−α/2 SÊ(β1̂), (5-9) 

 

And for the intercept: 

 

 β0̂ ± z1−α/2 SÊ(β0̂), (5-10) 

 

where is the upper 100(1- α/2)% point from the standard normal distribution and SÊ(∙) denotes 

standard error of the respective parameter estimator. 
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Table 5-4 Mode Choice Models 

   
Commuting Trips Non-Commuting Trips 

Null Log-Likelihood -8,299.307 -13,785.797 

Final Log-Likelihood -4,624.26 -6,565.491 

Rho-Squared 0.443 0.524 

Variable Mode Parameter 
Std. 

Error 
t-Stat Parameter 

Std. 

Error 
t-Stat 

Alternative 

Specific 

Constant 

Auto 5.910 0.392 15.31 7.000 0.471 14.87 

Auto 

Passenger 
7.710 0.560 14.72 5.170 0.512 10.04 

Transit 

Bus 
-4.660 1.240 -4.48 -0.303 1.180 -0.26 

School 

Bus 
1.860 0.229 8.14 No school bus 

Walk 5.890 0.749 7.91 5.680 0.502 11.30 

Bike 3.040 0.854 4.98 3.110 0.326 9.53 

Other Fixed Fixed 

Density Indicators 

Activity density 

at origin 

(Person/Acre) 

Auto 

Passenger 
-0.0115 0.00395 -2.39 -0.004 0.002 -1.75 

Activity density 

at destination 

(Person/Acre) 

Auto 

Passenger 
-0.0236 0.00386 -6.05 -0.00316 0.0022 -1.44 

Transit 

Bus 
- 

 
- 0.00865 0.00564 1.53 

School job 

density at origin 

(Job/Acre) 

Auto -0.926 0.365 -2.53 - 
 

- 

Auto 

Passenger 
- 

 
- -0.894 0.401 -2.23 

Walk 0.019 1.000 0.02 0.110 0.685 0.16 

Bike 0.167 0.690 0.24 0.371 0.807 0.46 

School job 

density at 

destination 

(Job/Acre) 

Auto -0.470 0.559 -0.86 - 
 

- 

Auto 

Passenger 
- 

 
- -0.374 0.428 -0.87 

Walk - 
 

- 0.256 0.722 0.35 

Bike - 
 

- 0.652 0.833 0.78 

Bold text indicates statistically significant values at the 95% confidence level (p<0.05) 
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Table 5-4 Mode Choice Models (Continued) 

   
Commuting Trips Non-Commuting Trips 

Null Log-Likelihood -8,299.307 -13,785.797 

Final Log-Likelihood -4,624.26 -6,565.491 

Rho-Squared 0.443 0.524 

Variable Mode Parameter 
Std. 

Error 
t-Stat Parameter 

Std. 

Error 
t-Stat 

Diversity Indicators 

Mixed land use 

at origin 

(Entropy: 

residential, and 

jobs) 

Auto 

Passenger 
-1.100 0.454 -2.08 - 

 
- 

Transit 

Bus 
4.360 0.888 4.98 1.210 0.941 1.28 

Mixed land use 

at destination 

(Entropy: 

residential, and 

jobs) 

Auto 

Passenger 
-1.530 0.536 -2.67 - 

 
- 

Transit 

Bus 
3.320 0.881 5.00 0.186 0.904 0.21 

Bike 1.810 0.867 2.39 - 
 

- 

Mixed 

employment at 

origin (Entropy: 

retail, non-retail, 

and school jobs) 

Auto - 
 

- -0.764 0.400 -1.91 

Walk 0.270 1.600 0.17 - 
 

- 

Mixed 

employment at 

destination 

(Entropy: retail, 

non-retail, and 

school jobs) 

Auto -0.482 0.658 -0.75 -0.828 0.611 -1.36 

Auto 

Passenger 
- 

 
- -0.651 0.717 -0.91 

Walk 0.848 1.250 0.68 - 
 

- 

Bold text indicates statistically significant values at the 95% confidence level (p<0.05) 
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Table 5-4 Mode Choice Models (Continued) 

  
Commuting Trips Non-Commuting Trips 

Null Log-Likelihood -8,299.307 -13,785.797 

Final Log-Likelihood -4,624.26 -6,565.491 

Rho-Squared 0.443 0.524 

Variable Mode Parameter 
Std. 

Error 
t-Stat Parameter 

Std. 

Error 
t-Stat 

Design Indicators 

Bus stop 

availability at 

origin (Yes) 

Auto - 
 

- -0.297 0.129 -2.30 

Auto 

Passenger 
-0.116 0.120 -0.97 -0.178 0.147 -1.21 

Transit Bus 0.668 0.194 3.42 0.415 0.291 1.43 

Bus stop 

availability at 

destination (Yes) 

Auto - 
 

- -0.075 0.073 -1.03 

Transit Bus 1.010 0.215 4.67 0.862 0.304 2.84 

Sidewalk 

availability at 

origin (Yes) 

Walk 0.607 0.427 1.42 0.120 0.373 0.32 

Sidewalk 

availability at 

destination (Yes) 

Walk - 
 

- 0.006 0.360 0.02 

Level-of-Service Attributes 

Travel Time 

(min) 

Auto -0.063 0.012 -5.20 -0.091 0.020 -4.56 

Auto 

Passenger 
-0.194 0.016 -12.32 -0.078 0.021 -3.78 

Transit Bus -0.005 0.004 -1.24 -0.022 0.006 -3.53 

Travel Distance 

(km) 

Walk -1.640 0.079 -20.71 -1.170 0.056 -21.02 

Bike -0.351 0.031 -11.51 -0.385 0.042 -9.08 

Bold text indicates statistically significant values at the 95% confidence level (p<0.05) 

 

The developed mode choice models are sensitive to land use variables such as, density, diversity, 

and design indicators in addition to LOS attributes. The effects of land use variables are 

discussed in the following bullets.  

 

 Activity density, sum of population density and job density, was considered as one of the 

density indicators in the mode choice models. Overall, activity density showed a positive 

impact on transit, but a negative impact on car users. In particular, activity density has a 
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stronger reciprocal relationship with car use for commuting trips than non-commuting 

trips. In addition, lower parameter values for activity density in non-commuting trips 

indicates lower effects of density on choosing travel modes. On the other hand, school 

jobs density showed strong negative impacts on car use for both commuting and non-

commuting trips. In addition, school jobs density has a positive sign for active 

transportation, which indicates that an increase in school jobs density leads to an increase 

in active transportation modal shares. Furthermore, activity at trip destination was more 

important than that at its origin, whereas school job density showed more influence on 

promoting active transportation at trip origin than at trip destination. 

 

 Diversity indicators were measured in terms of mix use of land (entropy) calculation. The 

developed mode choice model was sensitive to two types of diversity indicators: mixed 

use of land in terms of population and employment, and mixed use of jobs in terms of 

retail, non-retail, and school jobs. The parameter values associated with the diversity 

indicators were very high for the transit options. On the other hand, diversity indicators 

showed a negative sign for car users and the parameter values were higher than the 

density indicators. From  

 Table 5-4 5-4 it can be seen that the mixed use of land was more important in terms of 

increasing public transit and active transportation than that of density indicators. 

Furthermore, diverse use of land at origin was more important than at destination for 

commuting trips. However, non-commuting trips showed mixed use of land at destination 

was more important than at origin.  

 

 In this investigation, the availability of bus stops and sidewalks at both origin and 

destination were considered as design indicators. The availability of bus stops 

demonstrated positive parameter value for transit and negative parameter value for car 

use indicating that the availability of bus stops is important to promote public transit. 

However, the lower parameter value for availability of bus stops at origin indicated the 

bus stop at destination was more important than bus stop at origin. On the other hand, 
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availability of sidewalks was associated with the positive parameter value for the walk 

option, and has higher parameter value at origin than destination. 

 The fourth explanatory variable of the mode choice model was modal attributes that 

include travel time for motorized travel modes and travel distances for non-motorized 

travel modes. The developed mode choice models showed a negative parameter value for 

modal attributes. In addition, the walking option was affected more by the increase in 

travel distance between origins and destinations. 

 

The summary of the impacts of land use and built environment indicators on choosing travel 

modes is shown in Table 5-5. In general, there was a negative influence of land use indicators on 

using the car option. Conversely, a positive relationship was observed for transit and active 

transportation. This indicates that the increase in density and better mix of land use would 

promote transit and active transportation at the expense of car use.  

 

Table 5-5 Resultant Impacts of Land Use and Built Environment on Mode Choice 

Variables 
Resultant Impact on Different Modes 

Cars Transit Active Transportation 

Activity density 

(person/acre) 
Negative Positive Positive 

School job density 

(job/acre) 
Negative Positive Positive 

Mixed land use (Entropy: 

residential, and jobs) 
Negative Positive Positive 

Mixed employment 

(Entropy: retail, non-

retail, and school jobs) 

Negative Positive Positive 

Bus stop availability 

(yes/no) 
Negative Positive Positive 

Sidewalk availability 

(yes/no) 
Negative Positive Positive 
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5.5.1.3 Forecasting Performance 

In this study, the entire dataset was used for model estimation. As such, market segmented 

subsets were used to validate the developed mode choice models and measure their forecasting 

performance. In particular, two subsets were created based on vehicle ownership (including 0 

vehicle, 1 vehicle, 2 vehicles, and 3+ vehicles) and geographic location (including trips 

originated in central city and trips originated outside central city), as shown in Table 5-6 and 

Table 5-7, respectively.  

 

The Forecasting Performance Measure (FPM) was quantified for both subsets. For vehicle 

ownership segmentation, FPM values were between 0.566 and 1.617 (Shown in Table 5-6). The 

aggregate forecasting error of the developed models was smaller (0.566) for single vehicle 

availability than multi vehicles availability (1.617 and 1.314). On the other hand, the geographic 

location segmentation showed even smaller (0.029 and 0.186) FPM value than the market 

segment subset of vehicle ownership. Idris et al. (2015) studied the mode shift model forecasting 

performance of five different developed mode choice models, where the FPM values were 

between 0.003 and 1.974. Given the FPM values between 0.566 and 1.617 for vehicle ownership 

segment, and between 0.029 and 0.186 for geographic location segment, it can be concluded that 

the developed models have acceptable forecasting power. 
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Table 5-6 FPM of the Developed Mode Choice Models based on Vehicle Ownership 

Segmentation 

Mode Alternative 
Observed 

Mode Choice 

Predicted 

Mode Choice 

Mode choice difference 

(Predicted - Observed) 
FPM 

0 Vehicle 

Car Driver 6.99% 12.62% 5.63% 

1.346 

Car Passenger 12.05% 10.37% -1.68% 

Transit Bus 38.80% 35.78% -3.02% 

School Bus 0.00% 0.00% 0.00% 

Walk 35.18% 36.33% 1.15% 

Cycle 4.82% 4.50% -0.32% 

Other 2.17% 0.40% -1.77% 

1 Vehicle 

Car Driver 59.56% 65.21% 5.65% 

0.566 

Car Passenger 17.14% 14.56% -2.58% 

Transit Bus 5.01% 4.45% -0.56% 

School Bus 0.76% 0.96% 0.20% 

Walk 12.21% 10.73% -1.48% 

Cycle 5.04% 3.64% -1.40% 

Other 0.28% 0.45% 0.17% 

2 Vehicles 

Car Driver 71.30% 66.70% -4.60% 

1.617 

Car Passenger 15.12% 15.49% 0.37% 

Transit Bus 2.32% 4.26% 1.93% 

School Bus 1.56% 1.23% -0.33% 

Walk 6.75% 8.49% 1.74% 

Cycle 2.67% 3.33% 0.66% 

Other 0.27% 0.51% 0.24% 

3+ Vehicles 

Car Driver 74.95% 68.03% -6.92% 

1.314 

Car Passenger 12.84% 15.22% 2.38% 

Transit Bus 2.35% 4.53% 2.18% 

School Bus 1.26% 1.50% 0.23% 

Walk 5.26% 7.03% 1.77% 

Cycle 2.42% 3.17% 0.74% 

Other 0.91% 0.53% -0.38% 
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Table 5-7 FPM of the Developed Models based on Geographic Location Segmentation 

Mode Alternative 
Observed 

Mode Choice 

Predicted 

Mode Choice 

Mode choice difference 

(Predicted - Observed) 
FPM 

Trips Originated in Central City (Sector 3) 

Car Driver 66.36% 65.72% -0.64% 

0.029 

Car Passenger 13.91% 13.80% -0.11% 

Transit Bus 4.06% 4.65% 0.59% 

School Bus 0.52% 0.95% 0.43% 

Walk 10.82% 10.72% -0.10% 

Cycle 3.85% 3.72% -0.13% 

Other 0.49% 0.45% -0.04% 

Trips Originated Outside Central City 

Car Driver 66.58% 67.76% 1.18% 

0.186 

Car Passenger 17.22% 17.42% 0.20% 

Transit Bus 5.02% 3.94% -1.08% 

School Bus 2.42% 1.62% -0.79% 

Walk 5.71% 5.89% 0.18% 

Cycle 2.56% 2.80% 0.24% 

Other 0.50% 0.57% 0.07% 

 

5.5.2 Estimation and Validation 

TRIBUTE was utilized by jointly running its mode choice and emissions forecasting models. 

Community Energy and Emissions Inventory (CEEI) reports were used for estimating and 

validating the TRIBUTE model. In the CEEI report, the total GHG emissions in 2007 and 2010 

were calculated based on fuel consumption and number of vehicles in Kelowna, BC (Ministry of 

Environment, 2014b). 

 

The mode choice component of TRIBUTE was first used to estimate the proportion of trips made 

by each mode. Next, the emissions forecasting component of TRIBUTE was used to calculate 

the total PKT by each mode given respective average modal PKT (calculated from CEEI 

reports). The total PKT was converted to total VKT. For this task, respective average vehicle 

occupancy was used (described in Section 4.3.3). Finally, the total GHG emissions from the 

transportation sector were calculated by multiplying the total VKT by each mode by respective 
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average emissions factors. For model estimation, respective emissions factors were calculated 

from the CEEI report (described in Section 4.3.4).  

 

For model validation, TRIBUTE was utilized to forecast the 2010 GHG emissions. The 

forecasted results were then compared to the total emissions reported in the 2010 CEEI report. 

Table 5-8 shows a comparison between the GHG emissions calculated using TRIBUTE and 

those reported in the CEEI reports. The validation results showed a very small difference (-0.3%) 

between the forecasted emissions using TRIBUTE and the reported emissions in 2010 CEEI 

report. 

 

Table 5-8 TRIBUTE Validation Results 

 TRIBUTE 
CEEI Report (Ministry of 

Environment, 2014b) 

Year 2007 2010 2007 2010 

Car Emissions (CO2e ton) 370,229 362,307 370,229 368,250 

Buses Emissions (CO2e ton) 3,224 7,588 3,224 2,280 

Other Emissions (CO2e ton) 891 644 891 1,185 

Total Emissions (CO2e ton) 374,344 370,539 374,344 371,715 

Difference -0.3% 

 

From Table 5-8, it is seen that the difference in total emissions calculation between TRIBUTE 

and CEEI report was very small (0.3%); emissions from individual modes (car, bus, and other), 

however, showed higher differences. In particular, TRIBUTE over-predicted bus emissions and 

under-predicted emissions from cars. This discrepancy was because of changes in the emissions 

factor in 2010. The emissions factor for buses became higher in 2010 than that of 2007. On the 

other hand, the car emissions factor went down in 2010 due to the introduction of hybrid cars as 

well as higher fuel efficiency. In addition to the emissions factor, modal share played an 

associating role for the discrepancy. Since TRIBUTE considered individual trips in estimating 

emissions, and transit share was higher in 2010 than 2007, TRIBUTE estimated higher emissions 

from buses in 2010. In general, TRIBUTE looks promising at estimating total emissions. 

However, estimated emissions from individual modes involved a higher degree of error. 
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5.6 Future Scenario Development 

It is worth mentioning that TRIBUTE was used to help the City of Kelowna evaluate and select 

the best future density scenario to reduce GHG emissions in 2040 (Rahman et al., 2016). 

However, such real-world exercise is not included in this thesis due to the confidential nature of 

the project. For illustration, a hypothetical scenario was developed and tested using TRIBUTE 

considering a better land use mix in comparison to the business-as-usual (BAU) scenario. The 

assumptions behind the developed scenarios are described below. 

 

 Existing Scenario (2013) – The existing scenario was developed based on the existing 

land use and built environment in the City of Kelowna in 2013. In this scenario, 

population density, job density, and mixed land use were calculated based on the present 

conditions. 

 

 Business-as-Usual (BAU) Scenario – In the BAU case, population was altered to account 

for the expected total growth in population from 2013 to 2040. It was also assumed that 

the total number of jobs will follow the same growth rate as population. All other factors 

(e.g. distribution of population, land use types, locations, design indicators, etc.) were 

fixed across the city. This change has resulted in the same land use diversity in the BAU 

scenario as in the existing scenario. 

 

 Hypothetical scenario – Similar to the BAU scenario, population and jobs were altered to 

account for the expected total growth in population and jobs from 2013 to 2040 in the 

hypothetical scenario, but with different distribution. In particular, population density 

was doubled in the urban core of the city and the remaining growth was distributed to the 

remaining sectors in a similar manner to the BAU. Moreover, employment density was 

re-allocated to balance the increase in population and maintain higher entropy (i.e. higher 

mix of land use) in all ten sectors. In addition, different types of jobs (retail, non-retail, 

and school jobs) were also re-allocated to attain the maximum mix of employment among 

different sectors in Kelowna. This hypothetical scenario can also be referred to as the 

Most Aggressive Scenario (MASc).  
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The developed scenarios were designed based on altering land use attributes (i.e. density and  

diversity). However, the developed emissions forecasting model, TRIBUTE, is also sensitive to  

changes in the transportation network, such as inclusion of high-bike-infrastructure, new transit 

route, etc. For simplicity, it was assumed that the public transit and active transportation 

infrastructure would be the same as the existing scenario in all future scenarios. This means that 

the number of bus stops, sidewalk coverage, bike paths coverage, road network, and transit route 

coverage of the City of Kelowna will be the same in 2040 as in 2013. This would control for 

confounding factors, and allow the developed MASc models to be focused on land use planning 

policies. Mixed land use and mixed employment in the BAU and hypothetical scenarios are 

shown in Figure 5-8 and Figure 5-9, respectively. 
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Figure 5-8 Mixed Land Use Entropy in BAU and Hypothetical Scenario 
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Figure 5-9 Mixed Employment Entropy in BAU and Hypothetical Scenario
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5.7 Scenario Estimates 

After validating the model (as described in Section 5.5.2), TRIBUTE was then used to forecast 

GHG emissions from the transportation sector in 2040 for three scenarios: the existing scenario, 

the business-as-usual (BAU), and a hypothetical future scenario (described in 5.6). The 

emissions forecasting steps for the future scenarios are discussed below.  

 

5.7.1 Reduction in PKT 

To calculate the reduction in PKT, the developed PKT estimation models were used for each 

scenario (as described in Section 5.4). From Figure 5-10, it is seen that the hypothetical scenario 

was responsible for a higher reduction in PKT for all modes of travel. The hypothetical scenario 

has been developed based on the higher density and higher mix of land use, and the effect of 

them on PKT reduction was higher (Figure 5-10). On the other hand, the unbalanced distribution 

of population and employment densities in the BAU scenario led to a lower reduction in PKT 

(Figure 5-10). The only contributing factor to PKT reduction in the latter case was diversity in 

terms of both population and job mix as well as a proper mix of different types of jobs. The 

calculated reduction in PKT was applied to the level-of-service attributes (i.e. travel time for 

motorized modes and travel distance for non-motorized modes) before running TRIBUTE’s 

mode shift component. Based on the error analysis discussed in Section 5.5.1.3, the prediction 

range of PKT is given in Table 5-9.  
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Figure 5-10 Estimated PKT Reduction 

 

Table 5-9 Reduction Interval in PKT 

  Car Transit Walk Cycle 

Business as 

Usual 

Highest 

Reduction 
-23.64% -23.97% -26.49% -25.38% 

Estimated 

Reduction 
-19.04% -20.28% -19.23% -18.54% 

Lowest 

Reduction 
-14.44% -16.59% -11.97% -11.70% 

Hypothetical 

Scenario 

Highest 

Reduction 
-62.22% -62.69% -71.28% -68.63% 

Estimated 

Reduction 
-50.11% -53.04% -51.75% -50.14% 

Lowest 

Reduction 
-38.00% -43.39% -32.21% -31.65% 
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5.7.2 Modal Shift 

The mode shift component of TRIBUTE was used to calculate modal shift in the BAU and 

hypothetical scenarios, as shown in Figure 5-11 and Table 5-10, respectively. The results showed 

that the modal share of car in the BAU scenario was lower and walk share was higher than that 

of the existing scenario, given the increase in population density and job density in the BAU 

scenario. In addition, car share was further reduced in the hypothetical scenario because of the 

proper distribution of population and job densities. Walking, in the hypothetical scenario, was 

also increased by almost three times compared to the existing scenario due to the shorter 

distances between trip origins and destinations, because of better density and diversity. In 

addition, transit share was slightly increased in the BAU scenario as the population and job 

density increase regardless of their proper distribution. Furthermore, due to the balanced 

distribution of population and jobs in the hypothetical scenario, the transit share was also 

increased by almost one and half times compared to that of the existing scenario. Since the 

design indicators were unaltered in both future scenarios, the transit share was only affected by 

density and diversity. The modal shares in 2007 and 2013 were extracted from the 2007 and 

2013 Okanagan HHTS, respectively. 
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Figure 5-11 Modal Shift (Estimated) 

 

Table 5-10 Modal share Interval in Different Scenarios 

  
Car 

Driver 

Car 

Passenger 
Transit 

School 

Bus 
Walk Cycle Others 

Business as 

Usual 

Highest 

Shift 
64.5% 10.0% 7.4% 1.1% 11.4% 5.1% 0.4% 

Estimated 

Shift 
66.1% 12.8% 4.9% 1.3% 10.2% 4.1% 0.6% 

Lowest 

Shift 
67.7% 15.5% 2.4% 1.5% 8.9% 3.1% 0.8% 

Hypothetical 

Scenario 

Highest 

Shift 
51.8% 5.5% 8.8% 1.0% 23.1% 9.4% 0.3% 

Estimated 

Shift 
53.4% 8.3% 6.3% 1.2% 21.8% 8.3% 0.6% 

Lowest 

Shift 
55.1% 11.0% 3.9% 1.4% 20.6% 7.3% 0.8% 
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5.7.3 Forecasting GHG Emissions 

With the observed reduction in PKT and modal shift, the GHG emissions were forecast for all 

future density scenarios based on the methodology described in Section 3.2. Figure 5-12 shows 

the forecast GHG emissions from urban transportation in the City of Kelowna in the existing 

scenario (2013), as well as the two future scenarios for 2040; one for the BAU case and the other 

for the hypothetical scenario. Figure 5-12 also shows 2007 and 2010 GHG emissions that were 

used for model estimation and validation, respectively. By using the existing PKT values 

(generated in Section 5.4) and the observed mode share (from HHTS), the emissions from road 

transportation were calculated in 2013 (existing scenario). The difference between the estimated 

emissions by TRIBUTE and from inventories (shown in Table 5-8) was used to calculate the 

emissions estimation envelope for 2013. After 2010, there was an increasing trend in total GHG 

emissions because of population growth. Although population growth and car share were higher 

in 2013 than in 2010, total car users were higher in 2013 than in 2010. Since cars were primarily 

responsible for the majority of emissions, the total emissions in 2013 increased again from 2010. 

However, it is worth mentioning that the emissions factors were kept constant for forecasting 

emissions in 2040, but it can be changed to respond to new fuel technology, new travel modes 

(electric vehicle, telecommunication, etc.).  Most importantly, TRIBUTE can capture those 

changes in forecasting emissions by looking new emission factors and proportion of switched 

trips towards new travel options. By combining error envelopes in PKT reduction (described in 

Section 5.4.4) and modal shift (described in Section 5.7.2), the prediction error was calculated in 

estimating GHG emissions in future scenarios, as shown in Table 5-11. The BAU scenario 

resulted in 11.1% to 30.8% increase in emissions above the 2007 levels. However, the 

hypothetical scenario showed a 22.8% to 55.6% reduction in emissions below the 2007 levels.  
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Figure 5-12 Forecasted GHG Emissions in the City of Kelowna 

 

Table 5-11 Emissions Estimation Window in Different Scenarios 

  
Emissions (CO2 

eq. ton) 

Difference from 

Base Level (%) 

Emissions Per 

Capita 

2013 (Existing 

Scenario) 

Upper Limit 379,715 1.4% 3.17 

Estimated 378,521 1.1% 3.16 

Lower Limit 377,327 0.8% 3.15 

Business as 

Usual 

Upper Limit 489,460 30.8% 2.71 

Estimated 452,145 20.8% 2.51 

Lower Limit 415,914 11.1% 2.31 

Hypothetical 

Scenario 

Upper Limit 288,836 -22.8% 1.60 

Estimated 225,695 -39.7% 1.25 

Lower Limit 166,191 -55.6% 0.92 
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In particular, there was a 39.7% reduction in emissions below 2007 levels in the hypothetical 

scenario, while there was a 20.8% increase in emissions above 2007 levels in the BAU scenario 

(Figure 5-132). Although the BAU scenario was projected to achieve a 20.8% increase in total 

GHG emissions by 2040, the per capita emissions were expected to be lower than the 2007 

levels. Figure 5-13 shows the per capita GHG emissions for all scenarios. The hypothetical 

scenario showed the lower per capita emissions in 2040 and the ranges of per capita emissions 

were between 1.60 and 0.92 CO2 eq. ton per person. On the other hand, per capita emissions in 

BAU were between 2.71 and 2.31 CO2 eq. ton per person. 

 

 

Figure 5-13 Per Capita GHG Emissions 

 

5.8 Summary 

This chapter demonstrated the applicability of TRIBUTE in estimating and forecasting GHG 

emissions under different land use policy scenarios. The validation results showed a very small 

difference between TRIBUTE forecasts and the emissions inventories which gave more 

confidence in using TRIBUTE for estimating emissions for future scenarios. The business-as-

usual, do-nothing scenario, shows higher emissions from on-road transportation than the 
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hypothetical scenario. Since the hypothetical scenario is developed considering proper mix of 

land use and high density, it shows a higher modal shift to public transportation and active 

transportation at the expense of car than BAU. In addition, there is a higher reduction in trip 

length, due to the shorter trip distance between origin and destination, than BAU. Therefore, the 

combined effect of trip length reduction and modal shift further reduced the emissions in the 

hypothetical scenario. In light of the above, TRIBUTE can help transportation planners make 

decisions regarding the implementation of land use and transportation policies that aim to reduce 

GHG emissions from passenger transportation.   
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Chapter 6: Conclusions and Future Research 

6.1 Outline 

This chapter is organized as follows: summary of the presented research is demonstrated in 

Section 6.2, followed by the recommendations to the City of Kelowna to reduce emissions from 

passenger transportation in Section 6.3. Finally, limitation of the presented research and ideas for 

future continuation of this research are discussed in Section 6.4. 

 

6.2 Conclusions 

This research introduced a novel TRIp-Based Urban Transportation Emissions (TRIBUTE) 

model for municipalities. The developed model is comprised of two main components: a discrete 

mode choice model and an emissions forecasting model. The mode choice model considers 

personal, modal, and land use information as its input, and the output of this model is the 

proportion of trips made by each mode. The emissions forecasting model, on the other hand,  

estimates and predicts emissions under various land use policies. TRIBUTE can be applied to 

those areas where extensive transportation network data is not available. TRIBUTE relies mainly 

on household travel survey and emissions inventories to estimate and validate passenger 

transportation emissions.  

 

TRIBUTE was applied to the City of Kelowna to find the best alternative  scenario among four 

different future density scenarios to reduce GHG emissions from the transportation sector, and to 

assist the city in meeting its emissions reduction target. The City’s actual future density 

scenarios, however, could not be included in this thesis for confidentiality reasons. Therefore, a 

hypothetical and a business-as-usual scenario (BAU) were developed to show the applicability of 

TRIBUTE in estimating and predicting GHG emissions. The different scenarios were designed 

considering different land use policies, such as density and diversity along with population 

growth rates. The hypothetical scenario was developed by relocating people and jobs to achieve 

higher density and a better mix of land uses within a neighborhood. The BAU scenario 

represented the "do-nothing” scenario, in which the growth of population and job, and their 

locations will be the same as exists in Kelowna today.  
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TRIBUTE was then validated by using available emissions inventories for the City of Kelowna. 

The validation results showed that there was a very little difference (0.3%) between the 

estimated emissions using TRIBUTE and emissions inventories. This result suggests that 

TRIBUTE is a reliable tool for predicting emissions in future scenarios.  

 

Trip length reduction is directly related to reducing GHG emissions. Therefore, a series of 

passenger kilometres travelled (PKT) estimation models were developed for car, transit, walk, 

and cycle options to capture trip length reduction by implementing transportation and land use 

policies. The results suggested that the distance travelled by each passenger would reduce due to  

increased density and balanced mixed use of land. Density parameters showed negative influence 

in all PKT models for different travel options. Moreover, diversity and mixed use of land were 

the dominating factors in reducing PKT for transit mode as it has higher parameter values. The 

goodness of fit of the models, however, were between 0.10 and 0.17 indicating high unexplained 

variability within the dataset. Therefore, the prediction interval was measured for the developed 

models and the interval was comprised of 95% of predicted values for given observations. Using 

the developed PKT models, the reduction in length was measured for both hypothetical MASc 

and BAU scenarios. Due to the higher density and proper mix of land, the hypothetical scenario 

showed higher reduction (~50%) in PKT for all travel options (with ±24% to ±37% forecast 

error). The organic growth of the population reduced the trip length in the BAU scenario as well, 

which was smaller than in the hypothetical scenario.   

 

Mode shift, switching modes from motorized vehicle to non-motorized vehicles, can also reduce 

GHG emissions from passenger transportation. Therefore, a discrete mode choice model was 

developed to estimate modal shift by introducing land use policies. The developed mode choice 

models showed that density, diversity, and design indicators have negative parameter values for 

transit and active transportation options. However, the car option was associated with positive 

parameter values in the utility functions. This indicates that the increase in density and proper 

mixed use of land will increase transit rider, and walk and cycle trips at the expense of the car 

option. In addition, improved design indicators, such as availability of bus stops within proximity 

of a trip maker, will increase transit riders. Further, availability of sidewalks will increase walk 

trips. The estimated modal share from the developed mode choice model was then compared 
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with the actual modal share from HHTS to calibrate the developed mode choice models. After 

calibrating and validating, the developed models were further applied to the future scenarios 

(hypothetical scenario and BAU) to capture the changes in land use parameters on modal share. 

The results showed that the hypothetical scenario had higher shift towards transit and active 

transportation than BAU. 

 

By running the PKT estimation model and the mode shift model, TRIBUTE was used to forecast 

emissions from passenger transportation for both hypothetical and BAU scenarios. The results 

showed that the hypothetical scenario would be associated with a 22.8% ~ 55.6% reduction in 

GHG emissions below 2007 levels. On the other hand, the BAU scenario would realize a 11.1% 

~ 30.8% increase in GHG emissions from 2007 levels.  

 

Therefore, TRIBUTE was able to test different scenarios and estimate emissions from passenger 

transport. TRIBUTE can capture the influence of different built environment and land use 

indicators on reducing emissions. The main advantage of TRIBUTE is the relatively moderate 

data requirement and ease with which it can be applied. It can be effectively used where 

extensive data/expertise/transportation models are not available. TRIBUTE can assist 

municipalities in evaluating alternative policy scenarios and eventually selecting the one(s) that 

will help them meet future GHG emission targets. 

 

6.3 Recommendations to the City of Kelowna 

TRIBUTE was applied to the future density scenarios of the City of Kelowna and the best 

alternative scenario was chosen to meet future GHG emissions targets. Based on the result of the 

investigation, the following recommendations are made for the City of Kelowna to reduce GHG 

emissions from passenger transportation.  

 

6.3.1 Increase Mixed Land Use Diversity 

Mixed land use diversity refers to the proper balance among residential, commercial, and 

industrial activities within a neighbourhood. The mode choice model component of the 

developed TRIBUTE model has demonstrated that the proper mix of residential population and 

employment has a strong effect on transit and non-motorized transportation modal shares. In 
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addition, increasing land use diversity reduces the trip length between origins and destinations 

and subsequently, reduces the need to travel long distances. Furthermore, it would cause a modal 

shift towards public transit and active transportation as well as a reduction in trip length, both of 

which results in reducing GHG emissions from passenger road transportation. Due to these 

findings, it is recommended that the City of Kelowna should pay proper attention to mixed uses 

of land in developing future scenarios. The mixed use of land can be achieved by relocating 

residential locations and employment locations among ten sectors in the City of Kelowna, as 

well as compacting the urban cores (downtown area) considering both population and 

employment. 

 

6.3.2 Improve Public Transit 

Mode shift from single occupancy vehicles to public transit is another way to lower GHG 

emissions. Public transit can compete with the automobile for intermediate and long trips if 

appropriate funding and service planning are provided. It is evident in the developed mode 

choice models that several transit design indicators, such as bus stop availability and travel time, 

have a strong influence on increasing mode shift to transit at the expense of automobile use. 

Accordingly, the City of Kelowna should explore opportunities to improve its transit service by 

providing better infrastructure, increasing frequency, improving access, etc. as part of all future 

scenarios. This should be complemented by adopting different Transportation Demand 

Management (TDM) policies to incentivize (disincentivize) transit (car) use.  

 

6.3.3 Promote Active Transportation 

As per the developed mode choice models, the availability of sidewalks is the most important 

factor that influences walking modal shares. Walk and cycle can compete with the automobile 

for short and intermediate trips if better active transportation infrastructure and end-of-trip 

facilities are provided. In addition, public education about the benefits of switching to transit and 

active transportation is imperative. 

 

6.4 Limitations and Future Research 

This section describes limitations and the possible future research that have been identified 

during this research as follows: 
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 Since community energy and emissions inventory 2010 is the most updated inventory in 

BC until now, it was applied to the validation of TRIBUTE. In addition, the 2013 

household travel survey was used in developing TRIBUTE. Therefore, it is necessary to 

validate TRIBUTE again by integrating BC’s next updated emissions inventories with the 

most recent HHTS in future research. 

 

 This research considered individual trips as a fundamental unit of analysis. However, 

activity based analysis can be taken into consideration in developing mode choice model 

in future studies. 

 

 The mode choice component of TRIBUTE consists of commuting and non-commuting 

trips separately. However, a series of mode choice model can be developed by 

considering other trip purposes such as home-based trips, non-home based trips etc. in 

future research. 

 

 This research mainly focused on the effect of land use parameters, such as density, 

diversity, and design indicators in reducing emissions. However, socio-economic and 

demographic variables were not included in the mode choice model and PKT estimation 

model. Therefore, socio-economic and demographic variables can be added to increase 

the predictability of the models in future studies. 

 

 This research considered various transportation and land use policies in the development 

of future scenarios. However, safety issues were not included to the scenario 

development. Therefore, in future research, various safety issues can be analyzed for the 

developed future scenarios.  

 

 TRIBUTE does not (yet) incorporate economic metrics in its scenario development and 

output measures; adding in economic metrics would provide a tangible means for the 

City of Kelowna to reflect on and make decisions related to its infrastructure investments 

and supporting policies in addition to more detailed scenario impact costs and benefits. 
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Appendix A  : Biogeme Software User Interface 

 

Figure A-1 User Interface of Biogeme Software 
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Appendix B  : Sample Model on Biogeme Software 

 

[Choice] 

// Column representing mode choice 

choice 

 

[Beta] 

// Model parameters (Betas) 

// Name   Value   LowerBound UpperBound status (0=variable, 1=fixed) 

ASC_CAR  0.0  -100.0  100.0         0 

ASC_RAIL      0.0    -100.0  100.0         1 

BETA_COST     0.0    -100.0    100.0  0 

BETA_TIME     0.0    -100.0      100.0          0 

 

[Utilities] 

// Systematic utility specifications 

// Id  Name Avail   linear-in-parameter expression (beta1*x1 + beta2*x2 + ... ) 

0 Car one ASC_CAR * one + BETA_COST * car_cost + BETA_TIME * car_ivtt 

1 Rail one ASC_RAIL * one + BETA_COST * rail_cost + BETA_TIME * rail_ivtt 

     

[Expressions]  

// Define here arithmetic expressions for name that are not directly  

// available from the data 

one =1 

 

[Model] 

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CNL 

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords 

// 

$MNL 
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Appendix C  : Sample Output Results from Biogeme 

 

Figure C-1 Output Results from Biogeme 
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Appendix D  : Residual Plots of the Developed Regression Models 

 

Figure D-1 Residual Plot of the Travel Distance and Travel Time for Car 

 

Figure D-2 Residual Plot of the Travel Distance and Travel Time for Transit 


