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Abstract

This thesis comprises three chapters with applications of stochastic optimization
models to vascular access planning for patients with chronic kidney disease (CKD).
Hemodialysis (HD) is the most common treatment for patients with end-stage renal
disease, the last stage of CKD. There are two primary types of vascular accesses
used for HD, arteriovenous fistula (AVF), and central venous catheter (CVC). An
AVF, which is created via a surgical procedure, is often considered the gold standard
for delivering HD due to better patient survival and higher quality of life. However,
there exists a preparation lead-time for establishing a functional AVF since it takes
several months to know whether the surgery was successful, and a majority of AVF
surgeries end in failure.

In this thesis, we address the question of whether and when to perform AVF
surgery on patients with CKD with the aim of finding individualized policies that
optimize patient outcomes. In Chapter 2, we focus on vascular access planning
for HD dependent patients. Using a continuous-time dynamic programming model
and under data-driven assumptions, we establish structural properties of optimal
policies that maximize a patient’s probability of survival and quality-adjusted life
expectancy. We provide further insights for policy makers through our numerical
experiments.

In Chapter 3, we develop a Monte-Carlo simulation model to address the timing
of AVF preparation for progressive CKD patients who have not yet initiated HD. We
consider two types of strategies based on approaches suggested in recently published
guidelines. We evaluate these strategies over a range of values for each strategy,
compare them with respect to different performance metrics (e.g., percentage of
patients with an unnecessary AVF creation), and provide policy recommendations.
Our simulation results suggest that the timing of AVF referral should be guided by
the individual rate of CKD progression.

Motivated by our findings in Chapter 3, we develop a dynamic programming
model in Chapter 4 that incorporates patient heterogeneity in disease progression
when making clinical decisions. We then apply this modeling framework to the
case of the AVF preparation timing problem introduced in Chapter 3 and provide
recommendations that consider patient heterogeneity in CKD progression.
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Preface

A version of Chapter 2 has been published at Manufacturing & Service Operations
Management, 17(4): 608 - 619 (2015). A version of Chapter 3 has been published
at the American Journal of Kidney Diseases, 63(1): 95-10 (2014).

These two papers are co-authored with Prof. Steven Shechter and Dr. Nadia
Zalunardo. They were involved in the stages of problem formulation and analysis,
provided feedback during the course of both research projects, and contributed
to manuscript edits. I was responsible for writing the majority of these papers,
developing and implementing all the models, and preparing all the numerical results.
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Chapter 1

Introduction

There has been a growing interest in the application of mathematical models de-
veloped in the field of Operations Research (OR) to health-care problems. These
models can help policy makers and practitioners to deliver high quality care, at a
low cost, in a timely manner. Treatment planning, an active area in the field of
health-care analytics, deals with complex decisions a clinician faces on a daily basis;
decisions such as when to start a medication regiment, if/when to refer a patient for
surgery, and how often to monitor patients with a chronic disease.

Approximately 23 million American adults have chronic kidney disease (CKD) [1]
and 550,000 have end-stage renal disease (ESRD) [2]. Most ESRD patients are
treated with hemodialysis (HD) [3]. In order to perform HD, patients need to
have a vascular access. The preferred vascular access for HD is an arteriovenous
fistula (AVF) [3] due to greater longevity and lower complication rates; however,
it may take several months and more than one surgical procedure to establish a
usable AVF [4, 5]. If the AVF is created too late, it may not mature in time, and
a central venous catheter (CVC) may be used; however, CVCs are associated with
an increased risk of morbidity and mortality [6–9]. On the other hand, creating an
AVF too early is undesirable due to a small increase in risk of complications and
wasting the limited lifetime of an AVF before HD is needed [10].

Existing guidelines for whether/when to refer a patient for the AVF creation
surgery are inconsistent and based on expert opinion [10]. In my thesis, I investigate
the vascular access planning problem for patients with CKD. One of the key features
of this problem is that unlike other treatments where they can be administered
whenever desired, using an AVF as the vascular access for HD requires a stochastic
preparation lead-time (the time from the first AVF surgery until an functional AVF
becomes available). Heterogeneity of patients with respect to the rates at which
CKD progresses [11] is another feature of this problem. We develop three data-driven
analytical models that incorporate these features when designing patient-specific
treatment plans. In the remainder of this chapter, I briefly describe and motivate
each chapter, discuss the objectives, and outline main results of our models.
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1.1. Optimal Vascular Access Planning on Hemodialysis

1.1 Optimal Vascular Access Planning on
Hemodialysis

In Chapter 2, we investigate vascular access planning for CKD patients who have
started HD. Using AVF for HD is associated with better survival and quality of
life in comparison with HD using a CVC [7, 12]. Nevertheless, the process of AVF
creation has some disutility associated with it, which can be attributed to the surgery
and post-surgery inconveniences, complications or costs. Therefore, it is not clear
under what conditions an HD dependent patients should undergo the AVF creation
surgery.

The purpose of this chapter is to address the following questions: 1. Whether
new HD patients should undergo a surgery for AVF creation or not, and 2. Whether
an AVF surgery should be performed on existing HD patients if a previous AVF fails.
We develop a dynamic programming model to find individualized optimal policies
that maximize a patient’s probability of survival and remaining quality adjusted
life expectancy considering factors such as the patient’s age at the time of decision
and hemodialysis onset, probability of AVF surgery success, hemodialysis related
utilities, and the AVF creation disutility. We show structural properties of opti-
mal policies under certain modeling assumption. As an extension, we consider the
possibility of kidney transplant and how it affects optimal vascular access planning
decisions. We provide further insights for policy makers through our numerical
experiments.

1.2 Optimal Vascular Access Planning Prior to
Hemodialysis

In Chapter 3, we investigate vascular access planning for CKD patients who have not
yet started HD. Due to the AVF preparation lead-time (the time from the first AVF
surgery until a functional AVF becomes available), guidelines recommend starting
the AVF preparation process well in advance of HD need. If the AVF is created too
late, it may not be ready in time, and a CVC may be used until an AVF becomes
available. A late AVF is unfavorable since the risk of morbidity and mortality
increases when dialyzing with a CVC [6–9]. On the other hand, creating an AVF
too early is undesirable due to wasting the limited lifetime of an AVF before HD is
needed. To avoid the consequences of having a functional AVF earlier or later than
HD start time, it is ideal for the patient to have an AVF that becomes functional
right at the time of HD start. Nevertheless, due to intrinsic uncertainties in the
AVF preparation lead-time as well as the time of HD initiation, the ideal case is
hardly achievable.

Estimated glomerular filtration rate (eGFR) is often used as the primary measure
of kidney health. Nephrologists monitor eGFR progression periodically to decide

2



1.3. Patient Type Bayes-Adaptive Treatment Plans

when to initiate HD as well as when to start AVF preparation. In this chapter, we
develop a detailed data-driven Monte Carlo simulation model to determine the opti-
mal timing of the AVF preparation. We evaluated 2 strategies based on approaches
suggested in recently published guidelines [13–16]:

1. a “preparation window” strategy, where AVF preparation starts as soon as a
patient’s HD is anticipated to begin within a specific time window (e.g., the
next 12 months),

2. an “eGFR threshold” strategy, where AVF preparation starts as soon as a pa-
tient’s eGFR falls below a specific threshold (e.g., eGFR< 15 mL/min/1.73m2).

We evaluate these strategies over a range of values for each strategy (preparation
windows ranging between 3-18 months and eGFR thresholds ranging between 10-
30 mL/min/1.73m2) with respect to different performance metrics (e.g., a patient’s
life expectancy after HD initiation and percentage of patients with an unnecessary
AVF creation). We also discuss how different strategies might perform when applied
across a cohort of patients that vary in initial age, level of kidney function, and rate
of CKD progression.

1.3 Patient Type Bayes-Adaptive Treatment Plans

Heterogeneity of patients with respect to disease progression and response to medical
interventions is an important characteristic of clinical decision making problems. In
Chapter 4, we formulate and analyze the problem of designing patient type Bayes-
adaptive treatment plans defined as follows. We consider designing treatment plans
when treatment-dependent patient outcomes vary across the population in a way
that 1) we can categorize patients into distinct types, 2) we cannot perfectly identify
a patient’s type a priori, and 3) the patient type can be observed partially by
monitoring the patient health over time. We assume a Bayesian setting in which we
start with some prior belief about the patient type and update our belief by observing
the patient health over time using Bayes’ rule, hence the name “patient type Bayes-
adaptive treatment plans”. We formulate the problem as a partially observable
Markov decision process (POMDP) with a two-dimensional state-space, where the
state consists of the patient health and progression type. We first provide structural
properties of the value-function, as well as the optimal policy for the special case of
optimal stopping problems for a multi-dimensional state-space. Then, we provide
conditions under which these results can be applied to our POMDP model.

Using the framework developed for designing patient type Bayes-adaptive treat-
ment plans, we revisit the AVF preparation timing question posed in Chapter 3 by
considering two types of patients, patients with slow and fast eGFR progression. We
show that under data-driven assumptions, the optimal AVF preparation timing pol-
icy is monotone in a patient’s current eGFR as well as our belief that the patient is a

3



1.3. Patient Type Bayes-Adaptive Treatment Plans

slow progressor. Through numerical experiments we provide recommendations that
consider patient heterogeneity in chronic kidney disease progression when deciding
if/when to begin the AVF preparation process. We also discuss model outputs and
compare the resulting policies with existing guidelines and the policy implications.

4



Chapter 2

Optimal Vascular Access
Planning on Hemodialysis 1

2.1 Introduction

End-stage renal disease (ESRD), the final stage of chronic kidney disease (CKD),
occurs when the kidneys can no longer perform their essential task of removing waste
products from the blood. Patients with ESRD require one of two interventions to
stay alive: dialysis or kidney transplantation. Dialysis refers to the removal of waste
and excess water from the body by circulating blood through a filter surrounded by
clean fluid. While kidney transplantation yields better patient outcomes [17], the
demand for organs far outstrips the available supply, and nearly 100,000 patients
await a kidney transplant in the US [18]. Therefore, dialysis is the only realistic
treatment option for the majority of patients with ESRD.

Hemodialysis (HD) is the most common form of dialysis, accounting for 92% of
the incident dialysis cases in 2011 [19]. HD involves the circulation of blood from a
patient through a dialysis machine. The blood stream is typically accessed in one of
two ways: by creation of an arteriovenous fistula (AVF) or by insertion of a central
venous catheter (CVC). An AVF is created by a surgical procedure in which an
artery is connected to a vein in the lower or upper arm. In contrast, placing a CVC
is a minor procedure in which synthetic tubing is inserted directly into a large vein,
usually in the neck. The AVF is often considered the gold standard for vascular
access [14] because it is associated with lower infection and mortality rates [9] and
higher quality of life [7,12]. The preference for using AVFs for HD is underscored by
the Fistula First Breakthrough Initiative (FFBI), whose mission is “to improve the
survival and quality of life of hemodialysis patients by optimizing vascular access
selection - which for most patients will be an AV fistula . . . ” [20]. Current guidelines
reflect this by suggesting that patients on HD should be referred for an AVF surgery
when possible [14,16].

Although the benefits of an AVF over a CVC may seem clear, there are some
major differences between them that deserve careful consideration before recom-
mending one access versus the other. First, a CVC can be used immediately after
placement for HD, whereas an AVF requires a lead time of approximately 3 months

1A version of this chapter has been published at Manufacturing & Service Operations Manage-
ment, 17(4): 608 - 619 (2015).
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2.1. Introduction

from the time of surgical creation until it has matured for possible use in HD [21].
This is the time it takes for the vein used in the AVF to become thick and large
enough to support the insertion of needles necessary for each HD session. However,
a significant proportion of created AVFs (around 50%) do not mature to a point
they can be used for HD [22, 23]. In these cases, patients and their doctors may
decide to undergo a subsequent AVF surgery, provided there are still suitable vessels
located elsewhere on the arms to allow for this (typically two locations on each arm
may be considered). Furthermore, even if AVF creation is successful, a mature and
functional AVF has a limited lifetime, with a 15% annual failure probability [24,25].
Finally, while an AVF has quality of life and morbidity advantages relative to a CVC
once it is in use for HD, it still has several disadvantages associated with it prior
to that time. Since the procedure is more invasive than a CVC insertion, it brings
about the usual concerns with any surgery (e.g., patient anxiety, infection, post-
operative recovery). In some cases, an AVF creation might compromise the blood
supply to the hand, which can lead to permanent tissue and neurological damage.
Furthermore, AVFs impose physical limitations (e.g., heavy lifting with the AVF
arm is not advised), and some patients find AVFs disfiguring. In summary, an AVF
is superior to a CVC conditional on being available for immediate use in HD. How-
ever, that is not the decision faced by patients and their doctors. Instead, they
must decide whether or not to begin the AVF creation process, with the uncertain
outcomes, disutilities, and durations just described.

The renal community has recently begun debating the complexities of vascular
access choice [10], raising concerns about whether “fistula first” should continue to
be the treatment paradigm for all patients. [26] and [27] discuss opposing views
regarding whether or not AVF is the best vascular access for HD patients, and
[28] comments on this debate. The decision is especially germane for the elderly
population; [29] suggests considering factors such as an elderly patient’s remaining
life expectancy and personal preferences when making a recommendation of vascular
access. This relates to the growing momentum in the medical community to take
a personalized and shared approach (between clinicians and patients) to medical
decisions, rather than the one-size-fits-all approach of most clinical guidelines [30].
The need for individualized renal care has also been emphasized in [31].

The goal of this chapter is to bring a data-driven, analytical approach to inves-
tigate if and when HD patients should undergo an AVF surgery. In the spirit of
patient-centered care, we focus on the patient’s perspective and consider objectives
related to patient lifetime and quality-adjusted lifetime. Our study is also in line
with the recent emphasis in the US on the use of comparative effectiveness research
(CER) for guiding evidence-based decision making in medicine [32]. The importance
of CER for guiding renal disease treatments in particular is discussed in [33]. On
a similar note, [29] noted the importance of future quantitative studies evaluating
timing and type of vascular access to improve mortality and quality of life in el-
derly patients. Our work provides decision makers with both high level analytical

6



2.2. Literature Review

insights on AVF vs. CVC decisions as well as quantitative studies to guide decisions
specifically for different patient types (including the elderly).

2.2 Literature Review

In this section, we review existing literature related to our research in two categories:
1. Operations Research/Management Science (OR/MS) papers on the optimal tim-
ing of medical interventions, and 2. clinical papers describing decision-analytic
models of vascular access choice for renal disease patients.

2.2.1 Optimal Timing of Medical Interventions

Decisions regarding the optimal time to apply a medical treatment or screen patients
for some disease have received growing attention in the OR/MS community in the
past decade. For instance, [34] developed a Markov decision model to investigate
the optimal timing of a living-donor liver transplant to maximize a patient’s quality
adjusted life expectancy (QALE). [35] addressed the question of when to initiate
HIV treatment so as to maximize the expected lifetime or quality-adjusted life-
time of a patient. [36] and [37] applied partially observable Markov decision process
(POMDP) models related to breast cancer treatment. [38] used a simulation-based
approximate dynamic programming algorithm to derive near optimal strategies for
initiation and management of dialysis therapy. [39] investigated the problem of op-
timal prostate biopsy referral decisions and proved the existence of a control-limit
type policy that maximizes a patient’s QALE. [40] studied the effect of budgetary
restrictions on breast cancer diagnostic decisions by solving a mixed-integer program
that maximizes a patient’s total QALE under resource constraints.

2.2.2 Vascular Access Choice

A number of decision analytic models related to AVF decision making have ap-
peared in the recent clinical literature. [41] developed a Markov model to study
cost-effectiveness of different vascular access alternatives among incident HD pa-
tients. They found that the decision of whether to use AVFs or arteriovenous grafts
(AVGs), another type of vascular access used in HD, for patients with incident HD
depends highly on the AVF maturation failure probability, and they suggested taking
this into account for individualized access planning. [42] compared two AVF creation
timing policies for a 70-year-old patient with stage 4 CKD using a Markov model
and reported life expectancy and quality adjusted life expectancy as the outcomes.
They recommended further research on patient preference and cost implications
when making AVF creation recommendations. Using a data-driven Monte-Carlo
simulation model, [43] investigated policies of AVF surgery timing for CKD pa-
tients. They assessed two classes of AVF referral policies over a range of values in
terms of patient expected lifetime, proportion of AVF incident HD patients, and
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proportion of unused AVFs. A recent study by [44], using the framework of [41],
found that a patient’s characteristics such as diabetes status and gender also affect
the cost-effectiveness of a vascular access choice.

2.2.3 Contributions

The purpose of this chapter is to address the following questions: 1. Whether new
HD patients should undergo a surgery for AVF creation or not, and 2. Whether an
AVF surgery should be performed on existing HD patients if a previous AVF fails.
We aim to find individualized optimal policies that maximize a patient’s probability
of survival and remaining quality adjusted life expectancy, and we consider how
AVF timing policies depend on patient age.

Unlike existing papers on vascular access choice for HD patients whose recom-
mendations are simulation-based [41, 42, 44], we have tackled the problem analyti-
cally. For instance, we prove the form of optimal policy for both lifetime and QALE
metrics. Also, our work provides the optimal decision for vascular access choice for
the whole duration of a patient’s dependency on HD, whereas existing literature
only focuses on the vascular access decision at the time of HD initiation.

Existing recommendations for vascular access choice for HD-dependent patients
do not appear evidence-based, and are not patient-specific. We construct an ana-
lytical, data-driven model that incorporates several key factors when making AVF
surgery decisions. In particular, patient age, AVF success probabilities, hazard rate
functions for patient survival on an AVF vs. CVC, and patient quality of life mea-
sures are important drivers of our model-based recommendations.

One of the key model components in determining the optimal policy, the AVF
creation disutility, may be difficult to estimate and varies from patient to patient.
To circumvent this issue, we introduce a dual view of the optimal policy by us-
ing the notion of a critical disutility. We prove that at each decision point, the
nephrologist needs to know only if a patient’s AVF creation disutility is below or
above a critical factor, rather than its exact value, to make the optimal decision.
This involves engaging patients in the decision making process, by assessing their
individual tolerances for undergoing surgery.

Several unique features of our research contribute to the OR/MS literature on
medical decision making. We model a patient’s lifetime as a continuous random
variable, which facilitates our consideration of a patient’s treatment-based non-
stationary mortality rate. One key difference between our framework and other
clinical decision making papers in the literature is that we consider treatment op-
tions which require a stochastic lead-time before they are effective. Whereas the
previous models can assume a mammography, transplantation, or HIV treatment
can be administered whenever it is desired, an AVF cannot be created instanta-
neously. Moreover, there is uncertainty regarding if and when a successful AVF will
be attained. This brings an interesting dynamic to the decision, because the benefit
of the AVF may not be as substantial at the time it is ready, and moreover, the
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patient may die beforehand.

2.3 Modeling Framework

We consider an ESRD patient already on HD with at least one unused AVF oppor-
tunity. Note that our model will answer two types of AVF creation timing questions:
1. should patients who just begin HD on a CVC undergo an AVF surgery (assuming
no AVF is already in process), and 2. should patients who have an AVF fail during
the course of HD undergo an AVF surgery? We assume that the patient chooses
between two vascular access types: CVC, and AVF. We discuss the role of AVGs
in Section 2.6. In Figure 2.1, the decision making framework is illustrated. As the
decision flowchart suggests, we make the following assumption:

Assumption 2.1 (Decision points). A patient can undergo an AVF surgery at any
time, provided there are remaining AVF opportunities and an AVF is not under
preparation or being used.

Any remaining 
AVF Chance?

AVF Surgery?

Use AVF Use CVC

Death

AVF Fails

AVF based survival CVC based survival

YesAVF Maturation Yes
No

AVF 
Timing 
Policy

WhetherWhen

No

Start 
HD

Patient has 
AVF?

Yes

No

AVF Surgery

Figure 2.1: Modeling framework for vascular access dynamics (including decisions
and events) for an HD-dependent patient.

The dynamics and principles of the model can be summarized as follows. A
patient receives HD via an AVF as long as she has an established one. When there is
no functional AVF (either when one fails or at the beginning of HD when the patient
starts HD without a functional AVF) the patient dialyzes via a CVC as a bridge
access. During this time, the policy determines whether and when to perform AVF
surgery on the patient. If the policy recommends an AVF surgery, the patient goes
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through the AVF creation process and waits until possibly attaining a functional
AVF. If all AVF opportunities have been used up, or the policy recommends no
further AVF creation, the patient remains on HD with a CVC until death.

We discuss clinical factors impacting the decision of whether and when to use
AVF opportunities in the following sections.

2.3.1 Access-Based Patient Survival

Patient survival on HD depends on the vascular access being used [9,45]. Figure 2.2
(left), obtained from [9], shows that patients receiving HD via an AVF experience
stochastically better survival than those who receive it via a CVC. Nevertheless, the
survival benefit of AVF over CVC, measured by the failure rate difference, diminishes
as a patient continues using HD (see Figure 2.2 (right)). In addition, a patient’s
failure rate on either access types increases as the HD duration increases.
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Figure 2.2: Access-based survival probability and failure rate for a 67 year old HD
patient. Survival probability (left) is obtained from [9], and failure rate (right) is
estimated from survival probabilities.

We use these data-driven observations to justify further assumptions below.
First, we describe some notation:

� t: time since the patient started HD

� FX(t): survival probability function of a random variable X until time t
(FX(t) = P[X > t])

� fX(t): probability density function of a random variable X at time t

� rX(t): hazard rate function of a random variable X at time t

� Xt: residual lifetime of a random variable X at time t (a random variable de-
noting the remaining lifetime of X from time t onward conditional on survival
until time t)
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� µ(t) ∈ {a, c}: patient’s HD access type at time t (a if it is an AVF, and c, if
it is a CVC).

� C: random variable denoting patient’s lifetime when remaining on a CVC
from HD initiation time until death.

� A: random variable denoting patient’s lifetime when remaining on an AVF
from HD initiation time until death.

� L: random variable denoting patient’s lifetime

Note that the distributions of C and A are dependent on a patient’s age at the time
HD commences, but we do not denote this dependency for ease of notation.
Our next assumption describes how survival depends on HD duration and vascular
access type.

Assumption 2.2 (Survival distribution). A patient’s remaining survival only de-
pends on the length of time that the patient has been on HD and the ongoing mode
of HD access (an AVF or a CVC).

Mathematically, Assumption 2.2 implies

P
(
Lt ≥ x

∣∣µ(t′) for all t′ ≤ t, µ(s) = a for all t ≤ s ≤ x+ t
)

= FAt(x), (2.1)

P
(
Lt ≥ x

∣∣µ(t′) for all t′ ≤ t, µ(s) = c for all t ≤ s ≤ x+ t
)

= FCt(x). (2.2)

We can explain Equation 2.1 (and similarly Equation 2.2) as follows. If a patient
would remain on an AVF from t until t+x, her probability of surviving until t+x is
the same as a patient who has been on an AVF from HD start and has survived until
t. Note that this assumption has been applied in related clinical research papers as
well (see [41,44] for instance).
The following are the definitions for common types of stochastic orders for random
variables.

Definition 2.1 (Usual stochastic order). We say X ≤st Y , if and only if FX(t) ≤
FY(t) : ∀t.

Definition 2.2 (Hazard rate order). We say X ≤hr Y , if and only if rY(t) ≤ rX(t) :
∀t.

The following three assumptions formalize the data-driven observations of Figure
2.2 (right).

Assumption 2.3 (Relative performance). The hazard rate of C is higher than or
equal to the hazard rate of A, at all ages. Mathematically, we have rC(t) ≥ rA(t), ∀t.

Note that Assumption 2.3 corresponds to the CVC hazard rate curve lying above
the AVF hazard rate curve in Figure 2.2 (right), and is equivalent to C ≤hr A by
definition.
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Assumption 2.4 (Diminishing difference). The difference between hazard rates of
C and A decreases in time, i.e., rC(t)− rA(t) is decreasing in t.

Note that Assumption 2.4 corresponds to the diminishing gap between the CVC
hazard rate curve and the AVF hazard rate curve of Figure 2.2 (right). As we show
in the Appendix A, Lemma A.3, we have that rC(t)− rA(t) is decreasing in t if and

only if FC(t)

FA(t)
is log-convex in t.

Finally, the following assumption states that an HD patient’s mortality rate, on
either access type, increases with patient age (or rather, we should more precisely
say with “duration on HD”).

Assumption 2.5 (Diminishing performance). Random variables A and C have the
increasing failure rate (IFR) property, i.e., rA(t) and rC(t) are increasing in t.

Assumption 2.5 is demonstrated by the fact that both curves in Figure 2.2 (right)
are increasing.

We believe that assumptions posed on a patient’s survival (Assumptions 2.3-2.5)
are intuitive. For instance, that a patient’s failure rates increase by age, or that the
benefit of one intervention over another decreases with time can be justified by the
aging process and increasing presence of co-morbidities as a patient ages.

2.3.2 AVF Creation Process

After a patient and her clinician decide to use an AVF for HD, she visits a vascular
surgeon for AVF placement. After the surgery is performed, the AVF maturation,
a process by which a fistula becomes suitable to use for HD, begins (e.g., develops
adequate flow, wall thickness, and diameter). It takes approximately 3 months of
AVF maturation to learn whether the AVF is usable or not for HD. However, a
major issue for AVF placement is that around 50% of AVFs fail to mature [41,
46]. Furthermore, even if an AVF creation is successful, it has an annual failure
probability of 15% [24, 25]. These factors are critical to the decision of whether or
not a patient should undergo an AVF surgery.

We use the following notation for random variables describing the AVF creation
process:

� Mi: random variable denoting the maturation time of the ith AVF

� Bi: random variable denoting whether the creation of the ith AVF is successful
(Bi = 1 if successful, 0 otherwise)

� Zi: random variable denoting the total lifetime of the ith AVF given that it
matures

� NFt: number of failed AVFs creations up to time t
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Note that NF0 is not necessarily zero since the patient may have AVF creations
prior to HD initiation. We make the following assumption about the AVF creation
process.

Assumption 2.6 (AVF maturation and lifetime). All respective random variables
describing the AVF creation process are stationary. Furthermore, Mi, and Zi are
identically distributed (across subsequent creations) and independent of the history
of previous AVF creations.

The stationarity of AVF creation variables is justified by the relatively short life
expectancy of HD patients (average of 6.2 years [19]). To the best of our knowledge,
there is no evidence in the literature on the dependence of AVF maturation time
and lifetime on the history of previous creations. However, it is natural to think
that patients who fail to achieve a mature AVF on one attempt are more likely to
have a failed creation in future attempts, and that the failure probability increases
with the number of past AVF failures.

Assumption 2.7 (AVF creation success probability). The probability that an AVF
matures is a decreasing function of NF , the number of previous maturation failures,
i.e., Pt(Bi = 1|NFt) is decreasing in NFt for any i.

Henceforth, by “AVF surgery success”, we mean achieving a functional AVF
after the maturation period.

2.3.3 Objective Functions

Total Lifetime

A natural metric for comparing policies is the total lifetime of a patient. Thus, we
consider maximizing a patient’s total lifetime (in the usual stochastic order) as one
of the objective functions.

Quality Adjusted Life Expectancy (QALE)

Using AVF for HD not only brings better survival, but also has a slightly higher
quality of life for the patient, in comparison with HD using a CVC [7,12]. Neverthe-
less, the process of AVF creation has some disutility associated with it, which can be
attributed to the surgery and post-surgery inconveniences, complications or costs.
We define a patient’s quality adjusted life expectancy as the quality adjusted life-
time on each vascular access minus the AVF surgery disutility for each AVF surgery
performed (whether successful or not).

The following parameters are used in defining a patient’s QALE:

� qa, qc: utility of being an HD patient who receives HD via an AVF or a CVC,
respectively.
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� d: AVF creation disutility

Based on the estimates in the literature [7, 12], we make the following assumption
about the access-based quality of life coefficients.

Assumption 2.8 (Relative quality of life). Patients experience a better quality of
life dialyzing via an AVF than via a CVC, i.e., we assume qa ≥ qc.

2.3.4 Dynamic Programming Formulation

To explain the dynamics of the model to optimize a patient’s QALE and prove
our analytical results, we formalize the decision making process with a dynamic
programming model. The model components are as follows:

� States: The set of vectors (NF, n, t) consisting of NF , the number of previous
AVF maturation failures, n, the number of AVF chances left, and t, the time
since the patient started HD, corresponds to a living state, and the absorbing
state ∆ corresponds to the death state. Sufficiency of (NF, n, t) to represent
a living state is justified by our assumptions on patient survival (Assumption
2.2) and AVF variables (Assumption 2.6). The choice of these variables to
represent a patient’s state will become clear when we discuss state transitions.

� Actions: At each state (NF, n ≥ 1, t), one of two actions can be taken: either
to perform an AVF surgery at time t+y or to perform no more AVF surgeries
on the patient. Note that the no more AVF action is the case of AVF surgery
at y =∞. Nevertheless, we keep it in the action space for clarity. When n = 0,
the only option is to remain on CVC for the remainder of the patient’s lifetime
(the no more surgeries action). The choice of the next AVF surgery time to
represent actions in the modeling framework is justified by Assumption 2.1
about decision times.

� Transitions: Based on Assumption 2.1, we only need to consider transitions
between “decision states” (i.e., the subset of living states for which the pa-
tient does not have a functional or maturing AVF but has AVF opportunities
remaining), the first transition to state (NF, 0, t), and the transition to state
∆.

From decision state (NF, n ≥ 1, t) and planning for surgery at t+y, the patient
may transition to one of three possible states. If the AVF matures and the
patient survives until t1 = t + y + M + Z, she transitions to (NF, n − 1, t1).
If the AVF creation fails but the patient survives until t2 = t + y + M , she
transitions to (NF +1, n−1, t2). Otherwise, the patient does not survive until
the next decision state and transitions to ∆.

� Immediate reward: The immediate reward consists of a patient’s QALE
from time t until the next living state or death time. If the decision is to remain
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on CVC until death (either because the policy in use recommends this, or the
patient uses up her AVF chances), the patient receives an immediate reward
equal to her CVC utility weighted remaining lifetime (qcECt). Otherwise,
at state (NF, n, t) and when the surgery is planned at t + y, the patient’s
immediate reward includes her expected weighted lifetime from time t until t′

(the next decision time) or death time (sometime between t and t′), and may
include an AVF creation disutility (if she survives until t+ y). The value of t′

depends on whether AVF matures or not as it was discussed in the previous
section.

We discuss the value function and other components of our dynamic program-
ming model as needed in the proofs in Appendix A.

2.4 Analytical Results

In this section, we present analytical results. All of the proofs for the analytical
results are given in Appendix A.

2.4.1 Total Lifetime

Our main result concerning total lifetime is that in order to maximize an HD pa-
tient’s survival probability until any time t′ (and as a result to maximize expected
lifetime), she should undergo an AVF surgery as soon as an opportunity becomes
available. We prove this in a stochastic ordering sense: an identical patient who
undergoes an AVF surgery earlier than another patient lives stochastically longer
than that patient.

Theorem 2.1. Under Assumptions 2.1-2.6, delaying AVF surgery stochastically
decreases a patient’s lifetime.

Note that the stochastic ordering result means that the immediate surgery policy
maximizes the chance a patient may survive until a kidney transplant, either through
a deceased or living kidney donor (see Theorem 2.6).

We have the following general result regarding the difference in mean residual
lifetimes of variables A and C.

Theorem 2.2 (Mean residual lifetime difference). Let A and C be any arbitrary
random variables satisfying Assumptions 2.3-2.5. We have E[At]−E[Ct] is decreasing
in t.

We can explain Theorem 2.2 intuitively as follows. Assumptions 2.3 and 2.4
imply that the absolute difference of hazard rates of variables A and C is decreasing
in time. Also, using the definition of hazard rate function, we have rXt(s) = rX(t+s)
for any random variable X and t, s ≥ 0. Therefore, the difference of hazard rates of
random variables At′ and Ct′ at any arbitrary time is less than that of At and Ct
for any t′ ≥ t.
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2.4.2 QALE

In this section, we prove the optimality of a class of policies for the QALE metric
that we refer to as HD duration threshold polices. Let τ denote a policy that at
state (NF, n ≥ 1, t) recommends an AVF surgery immediately, if t < τ(NF ), and
recommends a CVC, otherwise. Then, we have:

Theorem 2.3 (Optimality of Threshold Policies). Under Assumptions 2.1-2.8, there
exists a threshold policy τ∗ that maximizes the QALE of the patient.

Corollary 2.1. The optimal HD duration threshold, τ∗, is decreasing in NF .

Note that the optimal policy is independent of the number of remaining AVF
chances. In the next proposition, we prove that the optimal threshold can be found
using a binary search.

Proposition 2.1 (Binary Search). An optimal threshold policy can be found using
a binary search for τ∗ over [0, tmax], where tmax is a reasonable upper bound for τ∗.

We can set tmax equal to the time at which the patient reaches the age of 100
years because patients never undergo AVF surgeries after that age.

2.4.3 Critical Disutility

The result of Theorem 2.3 assumes one already has an estimate of the patient’s
disutility for an AVF creation. However, this may be difficult to estimate precisely
in practice. Also, the optimal HD duration threshold needs to be calculated for
different values of NF . To circumvent these challenges, we introduce a dual view
of the HD duration threshold policy. We show that at any time, the decision of
whether to do an AVF surgery or not is determined by comparing the patient’s
AVF creation disutility with a critical value. Thus, in order to make a decision, we
only need to know whether the AVF creation disutility is above the critical value or
not, rather than require a precise estimate of the AVF disutility itself.

Theorem 2.4 (Critical Disutility). Under Assumptions 2.1-2.8, for any HD du-
ration t, there exists a non-negative critical AVF creation disutility, denoted by
dcr(NF, t), such that the optimal decision at time t is to perform an AVF surgery
immediately if the patient’s AVF creation disutility is less than the critical disutility
(i.e., if d < dcr(NF, t)), and is to use a CVC for the rest of patient’s life, otherwise.

The critical disutility at t is defined as the residual QALE difference between
immediate AVF surgery at t before subtracting the AVF creation disutility and
staying on a CVC until death for a patient with only one AVF chance. In Theorem
2.5, we show that the critical disutility is proportional to the success probability
of the current AVF creation. Therefore, one can calculate the critical disutility
for different values of NF by calculating it for some baseline AVF creation success
probability and then multiplying it by some factor (the ratio of the current AVF
success probability given NF previous failures to the baseline value).
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Theorem 2.5. Under Assumptions 2.1-2.8, the critical disutility is proportional to
the AVF creation success probability.

Based on the following corollary, we can use the critical disutility function to find
the critical HD duration for patients with different values of AVF creation disutility
d > 0.

Corollary 2.2 (Relationship between Critical Disutility and Critical Duration).
Suppose Assumptions 2.1-2.8. Then, τ∗(NF ) = inf

(
t : dcr(NF, t) ≤ d

)
.

Note that Theorem 2.4 provides an alternative way of comparing the optimal
policy for individual patients as follows: if the critical disutility for one patient
is always smaller than another, then the first patient has a smaller HD duration
threshold, given that both patients have the same AVF creation disutility.

2.4.4 Kidney Transplant

In this section, we investigate an extension to the basic model by considering kidney
transplant as a possible renal replacement therapy (RRT) for the patient. Since
kidney transplant provides the best long-term health outcomes for the patient [17],
we assume that a patient’s residual QALE on transplant is higher than on HD, and
the patient switches to kidney transplant as their RRT as soon as she is offered a
favorable donated kidney. In other words, we assume that the decision of whether
to accept a kidney donation is exogenous to our model.

Let Ψ be the (stochastic) time until a favorable kidney donation becomes avail-
able. We assume that once the patient receives the donated kidney, her future
survival is independent of her HD history. Then, we can easily show that Theorem
2.1 holds under the extended model as follows.

Theorem 2.6. Under Assumptions 2.1-2.6, delaying AVF surgery stochastically
decreases a patient’s lifetime, when the patient receives a donated kidney at time
Ψ.

For the QALE metric on the other hand, the result of the basic model (optimality
of threshold policies) does not necessarily extend even under a deterministic time
until transplant. We show in the following example that the optimal policy can
be neither immediate surgery, nor to stay on CVC forever (i.e., until transplant or
death).

Consider a patient whose access-dependent lifetime on HD follows exponential
distributions with means 3 and 1.5 months, for AVF and CVC access types, respec-
tively. Assume that the patient has a living donor who can donate a kidney after
6 months (the wait time can be due to medical tests the donor and patient should
undergo, the operating room and surgeon availability, etc.). If the patient survives
until transplant time, she receives 16 additional QALE months. Also assume that
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the maturation time is negligible, AVFs all mature and do not expire in the first 6
months, and qA = qC = 1.

In Figure 2.3, total QALE as a function of AVF surgery time for a patient with
AVF disutility of 3 months is depicted. In this case, the optimal decision is to wait
and perform surgery at t = 1.5 months. This demonstrates that the optimal policy
is not of the form “perform AVF now or never.”

We can explain the behavior observed in this example as follows. On the one
hand, using the AVF for HD can benefit the patient by giving her a better quality
of life as well as increasing her chances of survival until the transplant time. On
the other hand, because of the AVF creation disutility, the AVF should not be
used too early either since the patient may die well in advance of the transplant
time. Therefore, the patient should use up some survival time without the AVF, to
increase the chance that when the AVF is created, it bridges the patient’s survival
until the time of transplant (and therefore the AVF creation is not wasted).
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Figure 2.3: QALE plot for a patient with transplant option. Solid line depicts a
patient’s total QALE at t = 0 as a function of AVF surgery time. The dotted line
shows total QALE when the patient stays on CVC until death or transplant.

Although threshold policies may be suboptimal in general, we prove their opti-
mality under additional assumptions in the following theorem. For this result, we
assume the patient has a living donor, and thus, a deterministic time until trans-
plant seems reasonable. Also, we assume that time until transplant is short enough
that AVFs, if mature, do not expire before transplant time. Finally, we allow for
the possibility of transplant cancellation, for instance, if the donor changes his mind
or if the donated kidney is to be found incompatible as a result of the tests.

Theorem 2.7. Suppose that the time until transplant, if it is not canceled, is
deterministic, i.e., Ψ = ψ for some known ψ, FAt(ψ − t)−FCt(ψ − t) is decreasing
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in t, and an AVF’s lifetime, if it matures, is greater than the time until transplant
with probability one. Then under Assumptions 2.1-2.8, there exists a threshold
policy τ∗ that maximizes the QALE of the patient.

Note that FAt(ψ − t) (and similarly FCt(ψ − t)) can be interpreted as the
survival probability of a patient on an AVF (CVC) until the transplant time, given
her survival until t. The assumption that FAt(ψ − t) − FCt(ψ − t) is decreasing
in t is supported by the empirical data given in [9]. Also, Theorem 2.7 cannot be
applied to the aforementioned example, because FAt(ψ − t) − FCt(ψ − t) equals

e−
1
3
(6−t) − e−

1
1.5

(6−t), which is not a decreasing function.

2.5 Numerical Results

To demonstrate the results of Theorems 2.3 and 2.4, we performed a numerical
study. The baseline values for different model parameters and sources used are
given in Table 2.1.

Table 2.1: Baseline parameters used for calculating the critical disutility.

Variable Value Reference

On-HD survival (67 year old) — [9]
On-HD survival (82 year old) — [9,45]
AVF primary failure probability (67 year old) 50% [22,23]
AVF primary failure probability (82 year old) 75% [22,23]
Yearly failure probability for a functional AVF 15% [24,25]
Maturation time (months) Uniform(2,4) [21,22]
Utility of dialysis with AVF 0.81 [7, 12]
Utility of dialysis with CVC 0.77 [7, 12]

For patients’ HD survival, we used [9], which provides only the first five years of
survival outcomes for a cohort of 67 year old patients. To obtain complete survival
curves, we extrapolate the hazard rate functions so that Assumptions 2.3-2.5 are
satisfied. Specifically, we assume that the AVF and CVC hazard rates increase
linearly after the last observed hazard rate with slopes αA and αC , respectively.
We need to assume αA ≥ αC ≥ 0, so that Assumptions 2.4 and 2.5 are satisfied.
To have Assumption 2.3 met, we modify the hazard rates for CVC such that after
the point the hazard rate curves meet (if they ever meet, which is always the case
when αA > αC), we have that rC(t) = rA(t), with the slope of the line equal to
αA (see Figure 2.4 for an illustration). We calculated the average rate of increase
for the AVF and CVC hazard rate functions (that is the slope connecting first and
last observed hazard rates). Denoting these slopes with r̄A and r̄C respectively, we
assumed αA = r̄A and αC = r̄C (below, we perform one-way sensitivity analyses by
considering scenarios in which αA = (1± 25%)r̄A and αC = (1± 25%)r̄C).
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Figure 2.4: Base case hazard rate functions for a 67 year old patient’s lifetime on
HD.

Based on the hazard rate functions, a 67 year old patient’s entire survival curve
was calculated. We used the result of Theorem 2.4 to calculate the critical disutility
as a function of HD-duration using Monte-Carlo simulation (see the proof of The-
orem 2.4 in the online supplement). Figure 2.5 (left) shows the critical disutility
under the baseline assumption for survival extrapolation. For example, a 67 year old
patient who has been on HD for 2 (3) years should undergo AVF surgery provided
her AVF disutility is less than 85 (65) QALE days.

Note that we assume the same probability of AVF success, regardless of NF , as
the clinical literature does not yet provide this detail when discussing maturation
failure rates. Nevertheless, one can easily calculate the critical disutilities as a
function of NF by multiplying the function by a proper factor (see Theorem 2.5 for
more details).

Recall that the motivation for the critical disutility approach was for cases in
which it might be difficult to estimate precisely a patient’s disutility for the AVF
surgery. However, based on Corollary 2.2, Figure 2.5 (left) can also be inverted
to answer questions regarding a patient for whom a precise estimate of the AVF
disutility is obtained. For example, the figure also indicates that if a 67 year old
patient has a disutility of 85 (65) QALE days, then she should undergo an AVF
surgery as long has she has been on HD less than 2 (3) years.

To visualize the impact of age at HD initiation on the critical disutility, we have
plotted the critical disutility curves for patients who start HD at ages of 67 and 82
years in Figure 2.5 (right). As the plot shows, the critical disutility of the older
patient is always smaller. For instance for the time of HD initiation, a 67 year old
patient should undergo AVF surgery as long as her AVF creation disutility is below
130 QALE days, while for an 82 year old patient AVF surgery is advisable only
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Figure 2.5: Critical disutility and HD duration for 67 and 82 year old patients.On
the left, the critical HD duration for 67 year old patients with AVF creation disutility
of 65 and 85 QALE days is illustrated. It also shows the critical disutility for a 67
year old who just begins HD is 130 QALE days. On the right, the critical disutility
for 67 and 82 year old patients is illustrated.

when her AVF creation disutility is below 70 QALE days (Figure 2.5 (right)).
In Figure 2.6, we plot the % QALE increase from the non-optimal policy to the

optimal policy as a function of the AVF creation disutility for an 82 year old patient
with one AVF chance, i.e., for n = 1. We have compared the two policies of “no AVF
surgery” and “surgery at HD initiation”, as they represent two opposing opinions
in the literature [26, 27], and therefore the figure indicates what can be gained if a
decision maker adheres to a suboptimal policy on one side of the threshold or the
other. For d < dcr(0), the optimal policy is to perform AVF surgery on the patient
at the time of HD initiation, whereas for d ≥ dcr(0), the optimal policy is to remain
on a CVC.

2.5.1 Sensitivity Analysis

We also performed a sensitivity analysis to see how robust the results are to the
changes in the input parameters. The parameters and values tested for one-way
and two-way sensitivity analyses and the corresponding critical disutilities at the
time of HD initiation are given in Table 2.2. For instance, the critical disutilities
for patients with 60% and 20% chances of success in having a matured AVF are
223 and 76 QALE days, respectively. Since the first patient has a higher chance
of surgery success, she benefits from the surgery more than the other patient, and
as a result, she should be undergo AVF surgery at the time of HD initiation as
long as her surgery disutility is less than 223 QALE days, while the other patient
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Figure 2.6: % Remaining QALE increase from the non-optimal policy to the optimal
policy as a function of the AVF creation disutility. We have compared the two
policies of “no AVF surgery” and “surgery at HD initiation”for an 82 year old
patient with n = 1 (other parameters are given in Table 2.1), with the former being
optimal for d ≥ dcr(0) and the latter for d ≤ dcr(0).

benefits from AVF surgery only when the surgery disutility is less than 76 QALE
days. As the results in Table 2.2 suggest, the critical disutility is most sensitive to
the AVF surgery success probability. Based on Theorem 2.5, the critical disutility
is proportional to this parameter, and therefore, it can be easily adjusted by a
nephrologist based on her perception of a patient’s AVF surgery success probability
or existing statistics in the local practice.

2.6 Conclusion

In this chapter, we considered the problem of vascular access choice between a CVC
and an AVF for HD patients, with a goal of maximizing a patient’s total lifetime and
QALE. We analytically proved that delaying AVF surgery stochastically decreases
a patient’s lifetime. As a result, the policy of “use the next AVF (opportunity)
as soon as a patient starts HD or when the one being used fails” maximizes a
patient’s survival probability. We also proved that the optimal policy to maximize
a patient’s QALE is of a threshold type: there is an HD duration threshold before
which immediate surgery is the optimal choice, while after that time, CVC is the
optimal vascular access choice for the remainder of the patient’s lifetime. This
threshold depends on the number of past AVF maturation failures.

The AVF creation disutility plays an essential role in determining the critical
HD duration of the QALE optimal policy. Since patients may feel differently about
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Table 2.2: Sensitivity analysis for the critical disutility (QALE days) of a 67 year old
HD incident patient computed using Monte-Carlo simulation. The default values
for each parameter are given in Table 2.1.

Parameter Value Critical disutility

N/A Default 151

AVF Surgery Success Proba-
bility

0.2 76
0.6 223

Functional AVF Annual Fail-
ure Rate

0.1 172
0.2 134

Maturation Time (months)

Uniform [3,5] 150
Uniform [4,6] 149
Uniform [1,6] 150

QALE Coeff [CVC, AVF]

[0.73,0.81] 164
[0.75,0.81] 158
[0.81,0.81] 139

Patient’s survival projection
parameters [αA, αC ]

[̄rA,1.25 ∗ r̄C ] 151
[̄rA,0.75 ∗ r̄C ] 150
[1.25 ∗ r̄A ,̄rC ] 147
[0.75 ∗ r̄A ,̄rC ] 155

the disutility of AVF surgery, and also because it is not an easy parameter to elicit
from a patient, our model provides an alternative way to make the optimal AVF
timing decision. We showed that the decision of whether to perform an AVF surgery
or not can be determined solely by comparing the patient’s AVF creation disutility
with a boundary value reflecting the prospective additional quality lifetime for the
patient, which we refer to as the critical disutility. Thus, a nephrologist can inform
the patient of the benefits and inconveniences of undergoing the AVF surgery, and
then, they can collectively decide whether to do the surgery or not. Even if a rough
estimate of the patient’s disutility for AVF surgery indicates that it is clearly below
or above the critical disutility, then it will be clear that the patient should or should
not, respectively, undergo an AVF surgery. Estimates of a patient’s disutilities
can be obtained using standard elicitation methods in the medical decision making
community, such as the standard gamble, time trade-off, and visual analog scale [47].
This also facilitates getting patients involved in the decision making process, one of
the key recommendations of the Institute of Medicine’s report on patient-centered
care, which has been emphasized in the medical community in the past decade [48].

We also found that the possibility of receiving a kidney transplant adds new
complexities to the model and optimal policy structure. Although the optimal policy
under the total lifetime remains the same, the result on QALE metric (optimality
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of threshold policies) does not necessarily extend, even when the time of transplant
is known with certainty. Nevertheless, we provided a theorem which proves that
under additional assumptions (which are supported by data), threshold policies
remain optimal.

Our framework and analytical results may also be relevant to operational ques-
tions outside of health care, particularly in the area of machine maintenance and
equipment reliability. For example, consider a machine with a vital component. If
the component breaks down, it may be replaced with a cheap, available spare. Addi-
tionally, one may order a more expensive, higher-quality component, which involves
a lead time for delivery. This is analogous to deciding whether and when to refer a
patient for an AVF versus letting them continue to receive HD through a CVC. An
AVF provides higher quality HD outcomes compared to a CVC, but an AVF cannot
be created quickly, and it is more expensive in the sense of the surgical disutility it
imposes on patients.
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Chapter 3

Optimal Vascular Access
Planning Prior to Hemodialysis
2

3.1 Introduction

Approximately 23 million American adults have chronic kidney disease (CKD) [1]
and 550,000 have end-stage kidney disease [2]. Most of these patients are treated
with hemodialysis (HD) [3]. The preferred vascular access for HD is an arteriovenous
fistula (AVF) [3] due to greater longevity and lower complication rates; however,
it may take several months and more than one procedure to establish a usable
AVF [4, 5]. If the AVF is created too late, it may not mature in time, and a
central venous catheter (CVC) may be used; however, CVCs are associated with
an increased risk of morbidity and mortality [6–9]. On the other hand, creating an
AVF too early is undesirable due to a small increase in risk of complications and
wasting the limited lifetime of an AVF before HD is needed [10]. In 2008 over 80%
of incident HD patients in the United States used a CVC as their initial vascular
access [49]. Although there are multiple reasons for this, suboptimal timing of AVF
referral has contributed to low incident AVF rates [50].

Existing guidelines for AVF referral are inconsistent and based on expert opin-
ion [10]. Over the past decade, the Kidney Disease Outcomes Quality Initiative
(KDOQI) recommendations have varied from referral for AVF creation when HD is
anticipated within 12 months (2000) [13], within 6 months (2006) [14], or when esti-
mated glomerular filtration rate (eGFR) falls below 30 mL/min/1.73m2 (2002) [15].
In 2006, the Canadian Society of Nephrology (CSN) guidelines suggested referral at
an eGFR of 15-20 mL/min/1.73m2 in patients with progressive CKD [16].

Establishing clearer guidelines may improve incident AVF rates in HD patients
and thereby positively impact on patient outcomes. In this chapter, we develop
a data-driven, decision-analytic model to provide an objective approach to timing
AVF referral in CKD.

2A version of this chapter has been published at the American Journal of Kidney Diseases,
63(1): 95-10 (2014).
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3.2 Related Literature

The existing literature related to the optimal vascular access planning for incident
hemodialysis patient is discussed in Chapter 3. To my knowledge the only decision
model for vascular access planning prior to hemodialysis is the study by [42]. Hire-
math et al. [42] compared two AVF creation timing policies for a 70-year-old patient
with stage 4 CKD using a Markov model and reported life expectancy, quality ad-
justed life expectancy and costs as the outcomes. Our modeling perspective differs
from that of Hiremath et al. [42], who took a comparative effectiveness approach.
Rather than considering only two possible strategies, we considered a wide range
of possible referral policies and how they might perform when applied across a co-
hort of patients that vary in initial age, level of kidney function, and rate of CKD
progression.

3.3 Methods

3.3.1 Study Design

We developed a Monte Carlo computer simulation model in C++ to determine the
optimal timing of AVF referral in patients with CKD. We evaluated 2 AVF referral
strategies based on approaches suggested in recently published guidelines [13–16]:

1. a “preparation window” strategy, where referral occurs as soon as HD is an-
ticipated to begin within a specific time window (e.g., the next 12 months),

2. an “eGFR threshold” strategy, where patients are referred as soon as their
eGFR falls below a specific threshold (e.g., eGFR < 15 mL/min/1.73m2).

We examined both strategies over a wide range of values for their respective param-
eters (see Figures 3.3, 3.4).

Figure 3.1 provides an overview of the model. In each simulation replication
of a given referral strategy, patients from a sample cohort enter the model, and
their eGFR measurements are simulated at periodic intervals. After each eGFR
measurement, the Nephrologist decides whether to refer the patient for AVF creation
or not. For simulated patients who survive until HD commences, we simulate on-
dialysis survival according to whether HD is delivered via AVF or CVC. After a
simulated patient dies, the next patient in the cohort enters the model, and after all
the patients in the cohort have gone through the model, one simulation replication
is complete. For each AVF referral strategy, we run the same patient cohort through
100,000 independent replications.

Table 3.1 indicates the base-case parameters of our model, which were derived
from the literature and from primary data analysis (further described below). Expert
opinion was used in cases where literature-based estimates were unavailable.
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3.3.2 Modeling eGFR Progression

While standard time series models (e.g., autoregressive of order one, or AR-1) can
consider correlation from one observation to the next, they assume equally spaced
measurements [51]. This is unsuitable for our purposes, as the timing of patient
eGFR measurements is highly irregular (the average standard deviation of inter-test
times is approximately one month across patients). Therefore, we applied statistical
methods proposed by Erdogan et al. [52], which extend standard AR-1 models to
irregularly spaced time series. Consider the following OLS linear regression model
for eGFR progression:

eGFR(ti) = β0 + β1ti + εti

where ti is the time of the ith eGFR measurement. In the OLS model, it is assumed
that the residual terms εti are mutually independent across measurements. The
model proposed in [52] instead assumes a systematic correlation structure between
consecutive residuals as follows:

εti = εti−1θ
(ti−ti−1) + ωti

The term θ(ti−ti−1) (with θ between 0 and 1) represents the correlation between
consecutive residuals spaced ti − ti−1 time units apart, and the ωti are independent
white noise terms. This model captures commonly observed properties of residuals
in longitudinal data analysis [53]. They are positively correlated, with the degree of
correlation decreasing with longer separation between measurements.

We used Matlab to fit these regression models to each of the 860 patients in our
cohort of patients who were enrolled in a multi-disciplinary kidney clinic at Vancou-
ver General Hospital (VGH) between Jan 1, 1994 and Nov 9, 2010. As a validation
step, we compared the goodness of fit for these two models using the coefficient of
determination R2. For the proposed model the coefficient of determination is on
average 0.51, while for the OLS model it is 0.44.

Our simulation model simulates eGFR values for a given patient as follows: first
at the ith eGFR measurement time, ti, the mean value of the patient’s eGFR is
calculated β0 + β1ti. Then, a residual term is added, which is calculated by multi-
plying the previous residual by the correlation factor that depends on the elapsed
time since the last measurement (εti−1θ

(ti−ti−1)). Finally, a normally distributed
white noise term is added to this (ωti).

3.3.3 AVF Creation and Long-term Patency

Once an AVF referral is made, the patient first waits for a surgical creation date
and then waits for the AVF to (possibly) mature. The distribution of surgical wait
times was based on 209 HD patients who had AVFs created at Vancouver General
Hospital between 2005 and 2009. The median surgery wait time was 28 days, with
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a maximum of 65 days. Using the distribution fitting tool of the Arena simulation
software [54], we found that a Uniform (0,65) (days) distribution best represented
the variability observed for this duration.

In the base case analysis, the probability of an AVF failing to mature was 0.4
if a patient had no prior CVC [4, 22, 23, 55–57] and 0.6 if HD had already started
with a CVC [4, 41, 46, 55, 58]. We assumed the time it takes to determine whether
an AVF is functional for HD or not (with interventions if necessary) is uniformly
distributed between 2 and 4 months [21].

We assumed functional AVFs have annual failure probabilities of 0.15 or 0.075,
depending on whether the AVF is being used for HD or not, respectively [24, 25].
If the AVF fails to mature, or a mature AVF fails, the patient is again referred for
AVF creation. We assume a maximum of three attempts at AVF creation, with no
more than two attempts occurring in the predialysis period.
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Figure 3.1: An overview of the Monte Carlo simulation model. One replication
consists of all patients from the cohort going through the model one at a time, from
the time they are referred to a kidney clinic, until they die. Dashed lines indicate
events that can occur at any time. For example, dialysis may occur at any time
between eGFR measurements, while waiting for AVF surgery, or while waiting for
an AVF to mature.
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Table 3.1: Baseline model parameters.

Model parameter Value Reference

Patient-specific eGFR progression
parameters (β0, β1, σ, θ)

Varies by patient Primary data analysis*,
[59, 60]

Average rate of eGFR decline
(mL/min/1.73m2 per year)

5.29 Primary data analysis,
[59, 60]

eGFR level at which dialysis starts Normal(10, 2.5) distri-
bution

Primary data analysis

Survival for CKD predialysis Age and gender-
dependent

[61]

Survival for ESRD on dialysis Age, gender, and access
type-dependent Base-
line mortality relative
risk, CVC vs AVF: 1.53

[61,62]

Time from AVF referral to surgical
creation (in days)

Uniform (0, 65) Primary data analysis,
[21]

Maximum number of AVF attempts
in predialysis period

2 Expert opinion†

Maximum number of AVF creation
attempts in total

3 Expert opinion

Time from AVF creation to achieve
an AVF usable for HD (with inter-
ventions if necessary), or AVF aban-
donment due to failure (in months)

Uniform (2,4) [5, 21]

Probability patient is willing to have
more than one AVF attempt

1 Baseline assumption

Probability of AVF failing to mature
(without history of CVC use)

0.4 [22,23,55–57,63]

Probability of AVF failing to mature
(with history of CVC use)

0.6 [4, 41,55,58]

Probability of a functional AVF fail-
ing, per year (if used for HD)

0.15 [24,25]

Probability of a functional AVF fail-
ing, per year (if not used for HD)

0.075 Expert opinion

*indicates parameters obtained from analysis of patients treated at the multidisciplinary
kidney clinic at Vancouver General Hospital.
† indicates values provided by Dr. Nadia Zalunardo, Clinical Associate Professor at the
University of British Columbia, Division of Nephrology
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3.3.4 Patient Survival

Patient survival was simulated according to whether the patient is CKD not yet
on HD, on HD with an AVF, or on HD with a CVC. We used survival data from
the USRDS [64] to model predialysis survival, and data from the USRDS [62,64] to
model vascular access-specific survival for HD patients. To simulate survival times
beyond the time horizon of the survival curves in these studies, we used complete
statistical life tables [61] and estimated relative risk ratios [62] to extrapolate the
survival curves.

3.3.5 AVF Referral Decision Making

We assume a patient’s eGFR is measured every 3 months for Stage 3 CKD, every 2
months for Stage 4 CKD, and every month for Stage 5 CKD. After each simulated
eGFR measurement, a decision is made to refer the patient for AVF creation or to
wait and reevaluate after the next eGFR measurement.

The timing of AVF referral is specified by the strategy being tested. For the
eGFR threshold strategy, AVF referral occurs once the simulated eGFR falls below
the threshold value being tested. For the preparation window strategy, AVF referral
occurs once the anticipated HD start date is within the time window being tested.
In reality, a Nephrologist’s recommendation to start HD is based on eGFR combined
with other important factors such as uremic symptoms. However, these symptoms
generally appear closer to the HD start date, and are not awaited before AVF
referral. We therefore assume the Nephrologist estimates the HD start date by
fitting a regression line through the patient’s history of eGFR measurements, and
determining when this line would fall to 10 mL/min/1.73m2 (the mean eGFR at
HD start in our CKD cohort). We assume AVF referral occurs at the start of HD if
it did not occur before that.

3.3.6 Actual versus Estimated HD Start Date

The difference between the Nephrologist’s estimated HD start time and the actual
HD start time affects the degree to which an AVF will be ready before or after
HD commences. To account for the considerable inter-patient variability in the
actual eGFR at HD initiation in clinical practice, we used the Arena simulation
software [54] to fit a probability distribution to the eGFR values at the start of
HD for 204 HD patients in our cohort. The best fit was a Normal distribution,
with a mean of 10 and a standard deviation of 2.5 mL/min/1.73m2. We used this
distribution to simulate the actual eGFR at which HD would commence for each
patient.
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3.3. Methods

3.3.7 Model Outcomes

The outcomes of interest were: expected remaining lifetime (measured from dialysis
initiation until death), percentage of HD patients who begin dialysis with a CVC,
and percentage of patients who have an unnecessary AVF creation (patients who
have an AVF created and die before requiring HD, and patients who had at least one
functional AVF fail before HD start). We evaluated these outcomes in the overall
cohort and stratified by age (at the time of referral to the kidney clinic) in the
following groups: 50-60, 60-70, 70-80, and 80-90 years old.

3.3.8 Model Validation

We compared survival curves of simulated patients who enter the clinic in Stage 3
and Stage 4 CKD with the Kaplan Meier survival curves of our kidney clinic cohort
who entered in the same stages. The simulated survival curves were within the 95%
confidence intervals of the actual survival curves (See Figure 3.2).
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Figure 3.2: Comparison between the Kaplan-Meier survival curves of the actual
cohort (the solid step function, with the 95% confidence intervals shown by the
dashed step function), with the survival curves of the simulated cohort (smooth
solid lines). The plot on the left shows survival, from the time patients first enter
the clinic in Stage 3 CKD until their death. The plot on the right is similar, for
patients who enter the clinic with Stage 4 CKD.

3.3.9 Sensitivity Analyses

We performed a variety of one-and two- way sensitivity analyses as well as a prob-
abilistic sensitivity analyses (PSA) [65]. We compared policies based on the total
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HD lifetime outcome. The parameters and values tested for one-and two-way sen-
sitivity analyses are given in Tables 3.4 and 3.5. In each replication of the PSA,
we simultaneously sampled all the parameters of the model according to a proba-
bility distribution (parameters given in Table 3.6) and then compared the lifetime
obtained by applying the baseline optimal policy to the optimal policy under the
set of sampled parameters.

3.4 Results

3.4.1 Incident Vascular Access Type and Percent Having an
Unnecessary AVF Creation

Figure 3.3 and Tables 3.2 and 3.3 demonstrate the tradeoff that is observed for both
types of strategies: as AVF referral occurred earlier (larger preparation window or
higher eGFR threshold), the percentage starting HD with a CVC decreased but
the percentage with an unnecessary AVF increased. Overall, referral 15 months
before anticipated HD initiation resulted in 34% starting HD with a CVC and 14%
having an unnecessary AVF creation. Referral windows between 12 and 18 months
performed similarly.

Relative differences between referral strategies were more pronounced for thresh-
old policies, with respect to the unnecessary AVF creation outcome in particular.
For example, a referral threshold eGFR of 20 mL/min/1.73m2 compared to 15
mL/min/1.73m2 resulted in a doubling of the percent with an unnecessary AVF
creation from 10 to 20%.

3.4.2 Life Expectancy

Figure 3.4 and Tables 3.2 and 3.3 indicate life expectancy differences for a range
of strategies tested in the base case analysis. The optimal preparation window was
15 months before anticipated HD, which yielded an expected lifetime increase of 14
days over a preparation window of 6 months. However, any preparation window
between 9 and 18 months performed nearly optimally. The optimal eGFR threshold
strategy was 20 mL/min/1.73m2; however, thresholds of 15 mL/min/1.73m2 or
greater performed similarly.

Figure 3.4 displays the result of a strategy where AVF referral is delayed until
HD starts (with a CVC). This yields a shortened expected total lifetime of 73 days
compared to referral 15 months before anticipated HD start.

3.4.3 Effects of Age

Age-stratified results for selected AVF referral strategies are also shown in tables 3.2
and 3.3. For any given strategy, aging had a greater relative effect on the percentage
of patients with an unnecessary AVF creation (which increased with age mainly due
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Table 3.2: Various output measures from the simulation, for both the overall cohort
as well as by 10-year age ranges for preparation window policies. Age is determined
at the time of kidney clinic enrollment. For the total lifetime, the average reduction
from the best strategy (for preparation window and threshold strategies separately)
is reported. A zero indicates that policy was optimal for that cohort. All differences
reported are statistically significant at level = 0.05, using a t-test of equality of
means between two policies.

Cohort Output Measure
Preparation window (months)

3 6 9 12 15 18

Overall Cohort
Lifetime reduction (days) 37 13.8 3.8 0.3 0 1
% Starting HD with CVC 74% 52% 41% 36% 34% 34%
% with unnecessary AVF 3% 6% 9% 11% 14% 16%

50-60 year olds
Lifetime reduction (days) 41.9 16.5 3.4 0 0.3 1.4
% Starting HD with CVC 75% 53% 42% 37% 35% 35%
% with unnecessary AVF 1% 3% 5% 7% 9% 11%

60-70 year olds
Lifetime reduction (days) 36.2 13.5 3.4 0 0.2 0.9
% Starting HD with CVC 72% 50% 39% 35% 33% 33%
% with unnecessary AVF 3% 5% 8% 10% 13% 15%

70-80 year olds
Lifetime reduction (days) 30.5 11.7 3.2 0.4 0 0.2
% Starting HD with CVC 73% 50% 39% 35% 33% 33%
% with unnecessary AVF 4% 7% 11% 14% 16% 19%

80-90 year olds
Lifetime reduction (days) 27.3 10.4 3.1 0.6 0 0
% Starting HD with CVC 74% 52% 42% 38% 37% 36%
% with unnecessary AVF 5% 9% 13% 16% 19% 22%

to the competing risk of death before HD start) than on the percentage of HD
patients starting with a CVC, which changed little. For example, with the strategy
of AVF referral 15 months before anticipated HD start, the percentage of patients
with an unnecessary AVF creation increased from 9% to 19% as age increased from
50-60 to 80-90 years old, whereas the percent starting HD with a CVC remained
similar at 33 37%.

For the two oldest cohorts (70-80 and 80-90 years old), preparation widow strate-
gies of 15 18 months resulted in 16 22% with an unnecessary AVF creation; any
eGFR threshold strategy of 20 mL/min/1.73 m2 or higher resulted in unnecessary
AVF percentage consistently above 20%.

3.4.4 Sensitivity Analyses

Optimal policies from the base case analysis were robust across one-way sensitivity
analyses. A 15 month preparation window and eGFR threshold of 20 mL/min/1.73m2

were optimal or within 0.05% of optimal in each case. In the sensitivity analysis
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Table 3.3: Various output measures from the simulation, for both the overall cohort
as well as by 10-year age ranges for threshold policies. Age is determined at the
time of kidney clinic enrollment. For the total lifetime, the average reduction from
the best strategy (for preparation window and threshold strategies separately) is
reported. A zero indicates that policy was optimal for that cohort. All differences
reported are statistically significant at level = 0.05, using a t-test of equality of
means between two policies.

Cohort Output Measure
eGFR mL/min/1.73m2

10 15 20 25 30

Overall Cohort
Lifetime reduction (days) 37.4 8.1 0 1 2.6
% Starting HD with CVC 78% 51% 38% 36% 36%
% with unnecessary AVF 4% 10% 20% 30% 38%

50-60 year olds
Lifetime reduction (days) 34 5.5 0 4.6 7.9
% Starting HD with CVC 74% 49% 40% 39% 39%
% with unnecessary AVF 4% 9% 16% 23% 28%

60-70 year olds
Lifetime reduction (days) 37.8 8.1 0 2 3.6
% Starting HD with CVC 75% 47% 36% 35% 35%
% with unnecessary AVF 4% 10% 18% 28% 37%

70-80 year olds
Lifetime reduction (days) 36.6 9.7 0 0.2 1
% Starting HD with CVC 78% 49% 35% 33% 33%
% with unnecessary AVF 5% 12% 22% 33% 41%

80-90 year olds
Lifetime reduction (days) 36.7 10.9 1.8 0 0
% Starting HD with CVC 82% 54% 41% 37% 37%
% with unnecessary AVF 5% 12% 24% 38% 48%

where HD begins at a mean eGFR of 7 mL/min/1.73m2, the performance of prepara-
tion windows between 9 and 15 months was essentially identical (within 1 day of one
another) as was the performance of eGFR threshold policies of 15 mL/min/1.73m2

or greater.
Results were robust in two-way sensitivity analysis for AVF maturation failure

probabilities (Table 3.5). A preparation window of 12 months performed optimally
in many cases where AVF failure probabilities were lower than in the baseline case,
although the absolute lifetime differences between the 12 and 15 month preparation
window policies was small (less than 2 days). When the AVF maturation failure
probability was equivalent before and after CVC use, later referral strategies were
favored (preparation window 9 months, eGFR threshold 15 mL/min/1.73m2).

We assessed the performance of policies for the range of average cohort CKD
progression rates from 2.78 (average progression in our cohort) to 7 mL/min/1.73m2

per year (fast progressors). To achieve a similar incident CVC percentage as the
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Figure 3.3: Tradeoff curve between % of hemodialysis patients who start with
a CVC and % of patients who have an AVF created unnecessarily. Each point
represents the value of these two measures for a given AVF referral policy. The
preparation window (months) and eGFR threshold (mL/min/1.73m2) strategies are
shown by circles and squares, respectively.

9 month preparation window policy in the baseline case (about 40%), referral
15 18 months before anticipated HD start would be required for those progress-
ing at 7 mL/min/1.73m2 per year. For threshold policies, referral at eGFR 25
mL/min/1.73m2 for fast progressors yielded a similar incident CVC percentage
(about 40%) as referral at 20 mL/min/1.73m2 in the baseline case. In our (more
slowly progressing) cohort, similar results were achieved with referral at eGFR 15
mL/min/1.73m2.

The relative risk (RR) of mortality on HD with CVC versus AVF is a key de-
terminant of the absolute magnitude of the lifetime differences between policies.
The downside of a late AVF referral is magnified when the relative risk of mortality
is larger. For instance, the lifetime reduction of using a preparation window of 6
months instead of 15 months increases from 1 day for RR 1.05 versus 35 days for
RR 2.75 (the range of RRs reported by Ravani et al. [62]).
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Figure 3.4: Policy comparisons with respect to expected lifetime on hemodialysis.
The preparation window and eGFR threshold strategies are shown by circles and
squares, respectively. The figure also shows the result of a policy that waits until
dialysis begins to refer a patient for AVF (the diamond).

3.4.5 Probabilistic Sensitivity Analysis

To check the robustness of the optimal preparation window and threshold policies
obtained from the baseline model, we performed a probabilistic sensitivity analy-
sis (PSA) [65, 66]. In each replication of the PSA, we simultaneously sampled all
model parameters according to a probability distribution given in Table 3.6, and
then we compared the lifetime obtained by applying the baseline optimal policy, i.e.
the preparation window of 15 months and eGFR threshold of 20 mL/min/1.73m2

to the optimal policy under the set of sampled parameters. The PSA results (re-
ported in Table 3.7) show that the baseline optimal policies are quite robust; the
lifetime reduction of the optimal baseline policy from the optimal policy across all
PSA samples were on average 4.1 and 2.6 days for preparation window and eGFR
threshold strategies, respectively. Similar to the baseline results, any preparation
windows between 9 and 15 months performed similarly in this respect, and they
were optimal in 70% of all PSA samples. The eGFR threshold policies 15 to 25
also had a similar performance and they contributed to the 87% of optimal policies
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Table 3.4: One-way sensitivity analysis for a set of plausible values for model pa-
rameters.

Parameter(s) Value(s)

Time from AVF referral to surgical
creation (in days)

Uniform (0, 30)
Uniform (0, 120)

eGFR decline rate (mL/min/1.73m2

per year)

2.78
7

Time from AVF creation to achieve
an AVF usable for HD or AVF aban-
donment due to failure (in months)

Uniform (1,3)
Uniform (3,5)
Uniform (4,6)
Uniform (1,6)

Probability of AVF failing to mature
(Without, With) history of CVC use

(0.2, 0.3)
(0.3, 0.45)
(0.4, 0.4)
(0.4, 0.5)
(0.5, 0.75)

Maximum number of AVF creation
attempts in total

4

Probability patient is willing to have
more than one AVF attempt

0.7
0.5

Time between eGFR measurements
(in months)

stage 3: Uniform (2,4)
stage 4: Uniform (1,3)
stage 5: Uniform (0,2)

Probability of a functional AVF fail-
ing, per year (If not used, If used)
for HD

(0.15, 0.15)
(0.115, 0.15)
(0.05, 0.1)
(0.1, 0.2)

Hemodialysis mortality relative risk
with CVC vs. AVF

1.05
1.41
1.67
2

eGFR level at which dialysis starts Normal (7, 2.5)
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Table 3.5: Two-way sensitivity analysis results on probability of AVF failing to
mature with and without history of CVC use. The results in the parenthesis show
the best preparation window and threshold strategies, respectively.

Probability of AVF failing to mature
with history of CVC use

0.3 0.4 0.45 0.5 .6

Probability of AVF fail-
ing to mature without
history of CVC use

0.2 (12, 20) (12, 20) (15, 20) (12, 20) (15, 25)
0.3 (9, 15) (12, 20) (12, 20) (12, 20) (15, 20)
0.4 (9, 15) (12, 20) (12, 20) (15, 20)
0.5 (9, 15) (12, 20)

Table 3.6: Parameters and distributions used for probabilistic sensitivity analysis.

Parameter(s) Distributions

Time from AVF referral to surgical
creation (in days)

Uniform (0, max), max ∼ Uni-
form(30,120)

Maximum number of AVF creation
attempts in total

Sample from (1, 2, 3, 4) with prob-
ability (0.2,0. 3,0.4, 0.1)

Time from AVF creation to achieve
an AVF usable for HD or AVF aban-
donment due to failure (in months)

Equal probability selection from
Uniform (1,3), Uniform (3,5), Uni-
form (4,6), Uniform (1,6)

Probability of AVF failing to mature
(Without, With) history of CVC use

Equal probability selection from the
two way sensitivity table (see Table
3.5).

Probability of a functional AVF fail-
ing, per year (If not used, If used)
for HD

Equal probability selection from
{(0.05,0.1),(0.05,.015),(0.05,0.2),
(0.075,0.1),(0.075,0.15),(0.075,0.2),
(0.1,0.1),(0.1,0.15),(0.1,0.2),
(0.115,0.15),(0.115,0.2),
(0.15,0.15),(0.15,0.2)}

Time between eGFR measurements
(in months)

stage 3: Uniform (2,4), stage 4: Uni-
form (1,3), stage 5: Uniform (0,2),
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across all PSA samples.

3.5 Discussion and Conclusion

We used a simulation model to assess the performance of a range of AVF referral
strategies in individuals with CKD. Except in cases where AVF referral occurred
very late, the differences in expected HD lifetime between policies were modest. The
effects of different strategies on incident vascular access type and the likelihood of
creating an unnecessary AVF were clinically meaningful and useful as a guide to
optimizing the timing of AVF referral. The results for the overall cohort suggest
AVF referral about 12 months before HD is anticipated is appropriate; this supports
KDOQI guidelines published in 2000 [13, 14]. An eGFR threshold for referral of
15-20 mL/min/1.73m2, as suggested by the CSN guidelines, was also appropriate
overall [16]. However, the choice of strategy should also be guided by an assessment
of the individual’s rate of CKD progression to avoid excessively early or late referrals
in slow or rapid progressors, respectively.

Threshold strategies have the advantage of easier implementation since they do
not require forecasting the anticipated HD start date; however, they fail to consider
a patient’s rate of CKD progression. In contrast, preparation window strategies
consider the rate of CKD progression rather than just the most recent measure-
ment; however, accurately estimating the time to HD start is a major challenge for
clinicians in part because the decision to start HD is based on multiple factors in
addition to the eGFR.

The lowest incident CVC percentage we observed was about 35%. The combina-
tion of AVFs failing to mature and a limited number of AVF opportunities limits how
low this number can be; however, it can probably be further reduced by considering
AV grafts as an option. AV grafts have the advantage of near certain short-term
patency and no prolonged maturation time compared to AVFs. AV grafts can be
placed nearly immediately before HD is required and in certain patients may be the
preferred approach if AVF maturation is felt to be very unlikely, as suggested by
Rosas et al. [67] We did not consider AV grafts in our model since there is almost no
uncertainty regarding early patency. Finally, incident CVC rates are also likely to
be lower where AVF maturation failure probabilities are substantially less than the
0.4 we used in our baseline model, which was based primarily on North American
reports.

Dialysis planning in very elderly individuals (where the competing risk of death
is high) is a challenge receiving increasing attention [68–70]. With a 15 month prepa-
ration window, 19% of AVFs created for 80-90 year olds are unnecessary compared
to 9% for 50-60 year olds (age is determined at the start of kidney clinic follow-up).
The increased risk of creating an unnecessary AVF in the elderly is a potentially sig-
nificant source of morbidity and health care resource utilization with no benefit. A
tailored approach to AVF referral based on age is therefore indicated. In our model,
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referral for AVF creation 6 months before the anticipated HD start for 80-90 year
olds, and 9 months for 70-80 year olds yielded a similar percentage with unnecessary
AVF creations as a 12 to 15 month window for 50-60 year olds.

Our model focused on patient outcomes and did not consider system costs. While
cost-effectiveness analysis (CEA) is an important analysis for health policy evalu-
ation, we chose to perform a comparative effectiveness analysis (CER) instead. In
recent years, there has been significant interest in CER, which focus on how poli-
cies compare with respect to health outcomes, rather than costs. A recent article
underscored the importance and need for CER in evaluating treatments for kidney
disease [33].

The strengths of our simulation model include its mimicking of the dynamic
forecasting and AVF decision making process faced by Nephrologists. It explicitly
factors in forecast inaccuracies when evaluating the various preparation window-
based referral policies. Our model also considers a wide variety of patient types in
terms of their initial eGFR and rate of disease progression. We performed a variety
of sensitivity analyses, and the robustness of our results is reassuring and potentially
supports the generalizability of our findings to CKD populations elsewhere.

A number of assumptions pose limitations to our model. We did not account for
uncommon complications of AVF creation in our model (e.g. high output cardiac
failure and limb ischemia), we did not include AV grafts, and we did not include
a transition to kidney transplant. Further, there were few studies in the literature
from which to obtain maturation probabilities for second AVFs and AVFs created
after CVC use. However, we performed sensitivity analyses to determine the impact
of this limitation. Finally, it is regrettable that the literature on the impact of
vascular access and dialysis related interventions on quality of life is quite limited.
Our modeling framework can easily incorporate improved quality of life data (and
thereby also report on quality-adjusted life expectancy) whenever good estimates
become available.

We modeled eGFR decline using linear regression, an approach which is con-
sistent with other studies [60, 71, 72]. However, recent reports indicate that some
patients do not experience a linear decline in eGFR [11, 73]. In a study by O’Hare
et al. [11], 12% of patients experienced a nonlinear, rapid rate of eGFR decline in
the two years before the start of dialysis. Our model did not consider patients who
experience a sudden acceleration in eGFR decline, leading to a much earlier require-
ment for HD. Our simulated incident AVF percentage applies to a large proportion
of patients stably progressing to ESRD (and who are followed in a multidisciplinary
kidney clinic). Since a significant number of patients do not fall in this category,
the incident AVF results we report are optimistic if applied indiscriminately to all
CKD patients. Therefore, they should not be used as a specific target for incident
AVF percentages in all CKD patients.

In conclusion, our results suggest that the optimal policy for AVF referral is when
the estimated time to HD initiation is within about 12 months, or when eGFR falls
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below 15-20 mL/min/1.73m2. However, the choice of strategy should also be guided
by an assessment of the individual’s rate of CKD progression to avoid excessively
early or late referrals. Since elderly CKD patients have a greater risk of having an
unnecessary AVF creation due to the competing risk of death, later referral seems
appropriate in this group.

Table 3.7: Results for 10,000 PSA samples. For each AVF referral strategy
(preparation window and eGFR threshold) the average lifetime reduction from the
optimal policy (across each PSA setting) and the percentage of times when each
policy was found optimal is shown.

Policy
Preparation window (months)
3 6 9 12 15 18

Average lifetime reduction (day)† 25.3 9.6 3.7 3.1 4.1 5.5

Optimality percentage 3% 13% 26% 25% 19% 14%

Policy
eGFR threshold (mL/min/1.73m2)
At HD 10 15 20 25 30

Average lifetime reduction (day)‡ 45.6 25.1 5.9 2.6 5.4 7.5

Optimality percentage 1% 4% 29% 42% 17% 8%

† from the optimal preparation windows policy (15 months)
‡ from the optimal eGFR threshold policy (20 mL/min/1.73m2)
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Chapter 4

Patient Type Bayes-Adaptive
Treatment Plans

There has been a growing interest in the application of operations research methods
to treatment planning for different diseases. Due to the nature of chronic disease,
patients are frequently seen by their specialist doctors, and their health status is
measured periodically. The purpose of frequent follow-ups is three-fold: 1. to un-
derstand the patient’s current health status, 2. to know how fast the disease is
progressing, 3. to (possibly) revise the treatment plan (treatment type or intensity)
based on the information learned. The periodic follow-up, uncertainty in health pro-
gression, and sequential decision making make Markov Decision Processes (MDPs)
an important tool in clinical decision making of chronic diseases.

Heterogeneity of patients with respect to disease progression and response to
medical interventions is an important characteristic of clinical decision making prob-
lems. There is strong evidence in the clinical literature that patient characteristics
such as age, gender, race, ethnicity, and culture play an important role in deter-
mining patients’ responses to treatment and intervention outcomes including their
survivals. Therefore, patient-specific treatment plans are essential in achieving bet-
ter patient outcomes at a lower cost.

Patient heterogeneity is observed in several areas of clinical problems, for in-
stance, adherence to screening procedures (e.g., adherence to colorectal cancer screen-
ing [74, 75] and mammography screening [76]), adherence to medication (e.g., ad-
herence to HIV treatment [35]), response to interventions (e.g., response to multi-
ple sclerosis medications [77] and chemotherapy for prostate cancer patients [78]),
dependence on medical devices (e.g., weekly usage of implantable cardioverter de-
fibrillator devices [79]), and disease progression rate (e.g., chronic kidney disease
progression [11]).

Although patient characteristics may inform the decision maker about a certain
parameter of the clinical problem (e.g., whether the patient responds well to a certain
medication) and decrease uncertainty around that parameter, they provide partial
information, and variability among patients of the same sub-population still exists.
Due to the long treatment horizon for chronic diseases, the decision maker has the
chance to incorporate the information obtained during the course of the disease to
learn about the patient disease progression profile and adjust the patient’s treatment
based on the learned information.
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In this chapter, we develop a model that incorporates patient heterogeneity in
disease progression when making clinical decisions and study structural properties
of the model under certain modeling assumptions. Then, we apply this modeling
framework to the case of AVF preparation timing problem introduced in Chapter 3
and provide recommendations that consider patient heterogeneity in chronic kidney
disease progression when deciding if/when to begin the AVF preparation process.

4.1 Related Literature

In this section, we review existing literature related to our research in two categories:
1. methodological papers, 2. application papers.

4.1.1 Methodological Papers

We often face uncertainty in parameters that define a decision model. In MDPs,
parameter uncertainty can be present in different model components including re-
wards and transition probability matrices. In clinical decision making models where
patient heterogeneity is present, model parameters usually depend on the patient
type, e.g., the utility that a patient receives from a treatment or the efficacy of
treatments on slowing the progression of diseases may vary across the population.

The uncertainty in parameters that form an MDP problem can be addressed in
two major ways, by solving the problem as a 1. Bayesian MDP, or a 2. Robust
MDP. In the Bayesian setting, it is assumed that uncertain model parameters have
prior distributions. Using Bayes’ rule, a posterior distribution can be formed after
information is gained through the course of the sequential decision making process.
In the robust setting, model parameters are chosen by nature from an uncertainty
set. When nature is modeled as an adversary, the problem can be formulated as a
robust optimization problem [80].

Satia and Lave [81] considered a robust setting, where at each decision epoch,
the transition matrix row for each action is chosen from an uncertainty set by the
nature. They considered max-min (a robust optimization framework) and max-max
criteria in expected total reward maximization problems and presented ε-algorithms
that solve the problem in a finite number of iterations. Goh et al. [82] considered a
robust optimization framework in which the uncertainty set has a row-wise structure
and provide bounds on the performance of such uncertain MDPs. They provide
an iterative algorithm for solving the problem under the row-wise structure and
show that a slight relaxation of the structure makes the problem computationally
intractable (NP-hard). They also applied their model to assess the cost-effectiveness
of fecal immunochemical testing, a new screening method for colorectal cancer.

Martin wrote a seminal book on Bayesian MDPs [83] and formulated a problem
in which each row of the transition probability matrix for each action has some prior
distribution. Using Bayes’ rule, a posterior distribution is obtained after observing
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state transitions. Satia and Lave [81] considered conjugate beta distribution priors
and presented a decision tree solution algorithm that solved the problem for a given
prior distribution. Bayes-adaptive MDPs is an active research area in the computer
science community with a focus on solution algorithms, e.g., see [84–86].

Bayesian MDPs can be cast as a partially observable Markov decision process
(POMDP) [87–90]. Due to the high complexity of POMDP problems (see [91]
for a complexity analysis), proving structural properties of the value function or
the optimal policy of POMDPs can facilitate obtaining efficient solution algorithms
and also provide managerial insights to problems. Lovejoy [92] provided sufficient
conditions for monotonicity of POMDP value function in belief vectors. He also
provided conditions under which the set of beliefs where an action is optimal forms
a convex set [93].

4.1.2 Application Papers

Several research papers have incorporated patient heterogeneity in disease progres-
sion in their decision model. Lavieri et al. [78] studied the decision of when to
switch from chemotherapy to radiation therapy for prostate cancer patients based
on predictions of the time when the prostate specific antigen (PSA) level of a patient
reaches its lowest point. They identified clusters of patients with respect to PSA
progression parameters and formed a prior distribution on the cluster each patient
belongs to, which was then updated after observing PSA levels over time. Helm et
al. [94] considered the question of when to monitor a glaucoma patient and developed
a model to predict the likelihood of glaucoma progression, where using a Kalman
filter, a patient’s disease progression parameters are learned sequentially through
medical tests combined with population information. Negoescu et al. [95] addressed
treatment planning for patients with chronic diseases, where a patient was either a
responder or non-responder to some medication. They considered dosage between
0% and 100% as possible actions in each belief state. By continuously monitoring
the health of the patient as well as observing critical health events, the likelihood
of being a responder was then updated and the treatment plan revised accordingly.

POMDPs are also applicable where due to observation errors, the state of a sys-
tem is partially observed. For instance, a patient’s health (e.g., whether the patient
has cancer or not) may not be perfectly identifiable due to diagnostic errors. Here
we briefly survey such application of POMDPs in clinical decision making prob-
lems. Zhang et al. [39] addressed the prostate biopsy referral decision in a POMDP
framework. They used PSA levels to update the belief on whether a patient has
prostate cancer, based on which, prostate biopsy referral decision was made. Ayer
et al. [96] used a POMDP model to provide personalized mammography screening
policy based on a patient’s screening history, where the belief on whether the patient
has breast cancer was updated based on self-detection and mammography screening.
Ayer et al. [76] addressed the role of patient adherence to mammography recommen-
dations, and heterogeneity thereof, on optimal breast cancer screening policies in a
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POMDP framework. Unlike the above papers, we apply the POMDP framework
to incorporate the patient heterogeneity in disease progression in clinical decision
making problems and develop a model that learns the patient type partially through
observing health transitions.

4.1.3 Contributions & Chapter Structure

In this work, we formulate and analyze the problem of designing ongoing treatment
plans for a population whose patients’ response to treatments or disease progression
in the absence of treatment vary from patient to patient in a way that 1) we can rec-
ognize distinct types of patients, and 2) each patient’s type can be learned partially
by monitoring her health over time. We formulate the problem as a two-dimensional
state-space POMDP, where the state consists of the patient health and type. In our
model, we assume that the patient health is observed perfectly, whereas the patient
type is revealed only partially through observing health transitions.

In Section 4.2.2, we provide sufficient conditions under which the value function
of an MDP with state-space Rn is monotone in state. This result generalizes the
known result in the literature for one dimensional state spaces (e.g., see Proposition
4.7.3 in [97]). In Section 4.2.3, we provide conditions for having monotone optimal
policies for optimal stopping timing problems with state-space Rn. We then apply
these result to Bayes adaptive treatment plan design problems defined and analyzed
in Section 4.3. Finally, in Section 4.4, we apply the results of Section 4.3 to the
AVF preparation timing problem introduced in Chapter 3.

We contribute to the OR/MS literature by providing results on the structure
of multi-dimensional state-space MDPs. We also develop a framework for incor-
porating the heterogeneity of patient disease progression in an MDP and provide
structural properties of the associated POMDP. This framework enables clinicians
to dynamically adjust a patient’s ongoing treatment plan based on the patient health
and the belief about the patient’s disease progression type. We also contribute to
the clinical literature on vascular access planning for patients with chronic kidney
disease by finding optimal AVF preparation timing policies that consider a patient’s
rate of disease progression in addition to the kidney health state.

Our framework bears similarities and differences to [95]. The authors assumed
two types of patients, responders and non-responders, and used rewards gained un-
der a certain medication as well as critical life events to partially learn the patient
type. Our model differs from [95] since in our work, treatment decisions may de-
pend on a patient’s current health state in addition to our belief about the patient
type. Similar to [92], we provide structural properties for POMDP problems, with
a distinction that in our setting, the two-dimensional state-space consists of cor-
related observable (the health state) and partially observable (the patient type)
components.
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4.2 Monotonicity Results

In this section, we provide monotonicity results for MDPs with state-space Rn. We
first define notation that will be useful in the discussion that follows.

4.2.1 Notation

� T : planning horizon. Decisions are made for time periods t = 1, . . . , T .

� A: finite set of actions available in periods t = 1, . . . , T

� xt: random vector in Rn denoting the state of the system in period t

� x̃at (x): random vector denoting the state of the system in period t + 1 when
the system is at state x in period t and and action a is taken

� rat (x) : Rn → R: immediate reward received in period t ≤ T , when action a is
taken and the system is at state x

� R(x) : Rn → R: terminal reward received at t = T + 1 when the system is at
state x

4.2.2 Monotone Value Functions

We consider discounted expected total reward maximization MDPs characterized by
action space A, rewards rat (x) and R(x), and state transitions indicated by x̃at (x).
Let vt(x) : Rn → R be the period t value function. Then, by the principle of
optimality vt(x) satisfies:

vt(x) =

{
R(x), t = T + 1,

maxa∈A

{
rat (x) + βEvt+1(x̃

a(x))
}
, o.w. ,

where β is the discount factor.
We use the usual stochastic order of random vectors defined below (see [98]). In

the following definition, we use upper sets in Rn defined as follows. A set U ∈ Rn
is called upper if y ∈ U whenever y ≥ x and x ∈ U . Note that the we say x ≤ x′,
whenever xi ≤ x′i for all i, i.e., we compare vectors component-wise.

Definition 4.1 (Usual stochastic order). Let X and Y be random vectors. We say
X is smaller than Y in the usual stochastic order, denoted by X ≤st Y , whenever
we have P[X ∈ U ] ≤ P[Y ∈ U ] for all upper sets U .

Shaked and Shanthikumar [98] provide the following interpretation of the usual
stochastic order of random vectors: X is said to be smaller than Y in the usual
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stochastic order when X is less likely than Y to take on large values. Alterna-
tively, [98] shows that X ≤st Y whenever we have Ef(X) ≤ Ef(Y ) for all bounded
increasing functions f .

Puterman [97] (Proposition 4.7.3), provides sufficient condition for the mono-
tonicity of an MDP value function for one dimensional state spaces. We extend the
result to n-dimensional spaces in Proposition 4.1. All of the proofs for the analytical
results are given in Appendix B.

Proposition 4.1. (Monotonicity of Value Function)
vt(x) increases with x for all t, if we have:

(a) rat (x) increases with x for all a ∈ A for all t,
(b) R(x) increases with x,
(c) x̃at (x) ≤st x̃at (x′) for all x ≤ x′ and a ∈ A.

Assumptions (a,b) state that the immediate reward of all actions and the termi-
nal reward increase with x, respectively, and assumption (c) states that the system
is more likely to transitions to higher states in period t + 1, when the system is at
higher states in period t. The underlying transition probability structure, x̃a(x),
depends on the context. We discuss the transition probability structure for Bayes
adaptive treatment design problems in Section 4.3.

4.2.3 Monotone Optimal Policies

In finite horizon optimal stopping problems, for each t ≤ T we have a choice between
two actions, continue and stop. When stop is chosen, a state-dependent lump-sum
reward, Rt(x) is received. If on the other hand continue is chosen, a state-dependent
immediate reward rt(x) is received, the system evolves, and we face a similar decision
in the next period (the choice between stop and continue). At t = T + 1, a state-
dependent terminal reward RT+1(x) is received.

Since the system evolution matters only under the continue action, each optimal
stopping MDP can be characterized by the 3-tuple (rt(x), Rt(x), x̃(x)), where x̃(x)
is a random vector denoting the state of the system in period t+ 1 when the system
is at state x in period t, and action continue is taken.

Define the one-step benefit function δt(x) as the difference in the expected reward
between waiting in period t and stopping in period t + 1, and stopping in period t
when the state is x, i.e., let δt(x) := rt(x) + βERt+1(x̃t(x))−Rt(x). Oh (2012) [99]
showed that the optimal policy is monotone in x when δt(x) is monotone (increasing
or decreasing) in x and x̃t(x) ≤st x̃t(x′) for all x ≤ x′. Here we state Proposition
2.5. in [99].

Proposition 4.2.
If for all t we have:

(a) δt(x) increases with x,
(b) x̃t(x) increases with x in the usual stochastic order.
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then, it is optimal to stop at state x, whenever stopping is optimal at state x′, for
any x ≤ x′.

Consider two optimal stopping time problems indexed by i = 1, 2, and charac-
terized by the 3-tuple (rit(x), Rit(x), x̃it(x)). Also, let δit(x) be the one-step benefit
function for problem i. We show that if the one-step benefit function is always
smaller for problem 1 and the state dynamics is stochastically the same for both
problems, then it is optimal to stop in problem 1 whenever stopping is optimal in
problem 2. We use this result to provide comparative statics on the optimal policy
of an optimal stopping time problem defined in Section 4.4.

Proposition 4.3.
If for all t we have:

(a) δ1t (x) ≤ δ2t (x) for any x,
(b) x̃2t (x) has the same distribution as x̃1t (x) for any x.

Then, stopping is optimal in state x in problem 1 whenever it is optimal to stop in
state x in problem 2.

Similar to δt(x), define σt(x) as the difference between the immediate reward
of waiting and the lump-sum reward of stopping in period t, i.e., σt(x) := rt(x) −
Rt(x). In the following proposition, we show that if x̃(x) increases with xi, the ith

component of x, in the usual stochastic order, the value function is increasing in x,
and σt(x) is increasing in xi, then the optimal policy is monotone in xi. Let x−i
denote all components of vector x except for the ith component.

Proposition 4.4.
If for all t we have:

(a) x̃t(x) increases with xi in the usual stochastic order,
(b) vt+1(x) increases with x,
(c) σt(x) increases with xi.

Then, it is optimal to stop at x, whenever stopping is optimal at state x′, where
xi ≤ x′i, and x′−i = x−i.

Note that Proposition 4.1 provides sufficient conditions for assumption (b) to
hold.

4.3 Bayes-adaptive Treatment Plans

4.3.1 Problem Statement

In this section, we formulate and analyze the problem of designing patient type
Bayes-adaptive treatment plans defined as follows. We consider designing treatment
plans when treatment-dependent patient outcomes vary across the population in a
way that 1) we can categorize patients into distinct types, 2) we cannot perfectly
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identify a patient’s type a priori, and 3) the patient type can be observed partially
by monitoring the patient health over time. One example of such case is where
there are two types of patients in the population with respect to the response to a
certain medication, good and bad responders, and the type of the patient cannot
be identified a priori; nevertheless, whether the patient is a good responder to the
medication or not can be learned (partially) by monitoring the patient’s response
to the medication over time. Another example is where there are two different
types of “natural history” (i.e., disease progression in the absence of treatment),
and the decision on if/when to administer a certain treatment plan depends on the
true underlying disease progression process. We assume a Bayesian setting in which
we start with some prior belief about the patient type and update our belief by
observing the patient health over time using Bayes’ rule, hence the name “patient
type Bayes-adaptive treatment plans”.

In the following section, we formulate the problem as a MDP with a two-
dimensional state-space, where the state consists of the patient health and the belief
about the patient type (“better” or “worse” disease progression type).

4.3.2 Notation

We first define notation that will be useful in the discussion that follows. For ease
of notation, in this section we only consider stationary MDPs. The result can be
easily extended to non-stationary MDPs.

� C = {w, b}: set of two patient types. Types can represent differing stochas-
tic progressions of disease (fast or slow) or response to medical interventions
(responder or non-responder). Below, we will assume an ordering of the types
so that type b, the better type, represents slower disease progression or better
response to medical intervention, e.g., in terms of on-going rewards, compared
to type w, the worse type.

� γam: random-variable denoting the per-period decrement of the patient health
when patient type is m, and action a is taken. We let fam denote the pdf (pmf)
of γam.

� ram(e): immediate reward received in period t ≤ T , when action a is taken,
and patient health and type are e and m, respectively.

� Rm(e): terminal reward received at t = T + 1, when patient health state and
type are e and m, respectively.

4.3.3 MDP Formulation

� States: the state of the system at time t is comprised of the patient type, b
or w, and health state. We assume that the health state is observed perfectly
while patient type is observed only partially through health transitions, and

50



4.3. Bayes-adaptive Treatment Plans

we assume that the health state is one-dimensional (i.e., a scalar). We denote
the system state at t by xt = [et, pt], where et represents health state, and pt
represents our belief (i.e., the probability) that the patient is of type b. We
will assume an ordering of the states so that higher states represent better
health conditions.

� Transition dynamics: We assume that the health state of patient type m
evolves according to

et+1,m = et,m − γam.

Let x̃a(xt) denote the state in period t + 1 when in period t, action a is
chosen, and the state is xt. Then, we have et+1 = et − γapt , where γapt is
defined as a random variable with pdf (pmf) given by fpt = ptf

a
b + (1− pt)faw.

After observing et+1, we update our patient type belief using Bayes’ rule by
pt+1 := Ba(et+1 − et, pt), where Ba(d, p) is defined by:

Ba(d, p) :=
pfab (d)

pfab (d) + (1− p)faw(d)
=
pfab (d)

fp(d)
. (4.1)

Therefore, x̃ satisfies

x̃a(e, p) =
[
e− γap ,Ba(γap , p)

]
.

� Rewards: At t ≤ T , an immediate reward ram(e) is received when action a is
taken, and at t = T +1, a terminal reward Rm(e) is received, when the patient
health and type are m and e, respectively. Therefore, for state x = [e, p] we
have:

ra(e, p) = prab (e) + (1− p)raw(e),

R(e, p) = pRb(e) + (1− p)Rw(e).

� Optimality condition: let vt(s, p) be the period t value function. Then, the
value function satisfies:

vt(e, p) =

{
maxa∈A

{
ra(e, p) + βEvt+1(x̃

a(e, p))
}

t ≤ T
R(e, p) t = T + 1.

4.3.4 Monotone Value Functions

We use the monotone likelihood ratio (MLR) defined below (see [98]):
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Definition 4.2 (MLR Order). Let X and Y be random variables with pdf’s (pmf’s)
f and g, respectively. Then, we say X is smaller than Y in the monotone likelihood
ratio (MLR) order, denoted by X ≤r Y , whenever g(z)/f(z) increases in z (here
b/0 is taken to be equal to ∞ whenever b > 0).

Intuitively, X is said to be smaller than Y in the MLR order, when the likelihood
ratio of taking large values to small values is higher for Y than X. Note that the
MLR order implies the usual stochastic order of random variables [90].

In the following, we provide conditions under which the Bayesian update is
monotone. Since we assume disease progression is slower for patient type b, a small
decline of health can be a signal for slower disease progression, i.e., patient type
b. The lemma compares the posterior belief for different values of health-decline
and prior beliefs. More specifically, it states that when health decline is smaller for
patient type b in the MLR order, the posterior belief about the patient being of type
b is higher when our prior belief is higher, or when we observe smaller decline in the
the patient health.

Lemma 4.1 (Monotonicity of Bayesian Operator).
If γab ≤r γaw for action a, then Ba(d, p) increases with p and decreases with d.

Intuitively, γab ≤r γaw means that the likelihood ratio of observing higher health
declines to lower health declines is higher for patient type w (the worse progressor
type).

The following key result compares the random vector x̃a(x) for different values
of x. It states that when the health decline is smaller for patient type b in the MLR
order, transitions to higher health states and patient type beliefs are more likely
when current health state and patient type belief are higher.

Lemma 4.2.
If for action a we have γab ≤r γaw, then for any x ≤ x′ we have:

x̃a(x) ≤st x̃a(x′).

In the following proposition, we show that the total expected reward is higher
if the patient is healthier (i.e., health state is higher) or when our belief about the
patient being of the better type (type b) is higher. We use Proposition 4.1 and
Lemma 4.2 to prove the result. For ease of notation, we order patient types in set
C such that w < b.

Proposition 4.5. (Monotonicity of Value Function)
vt(e, p) increases with e and p for any t, if we have:

(a) For any a ∈ A, ram(e) increases with e and is higher for m = b,
(b) Rm(e) increases with e and is higher for m = b,
(c) γab ≤r γaw for any a ∈ A.
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Assumptions (a,b) state that the immediate reward for any action and the ter-
minal reward are higher when the patient health is higher or her type is better.
Assumption (c) states that the health decline is smaller for patient type b (com-
pared to patient type w) in the MLR order.

4.3.5 Monotone Policies in Optimal Stopping Problems

In clinical optimal stopping problems, the stop action can represent any medical
intervention such as performing surgery (e.g., organ transplant) or starting a medi-
cation regiment (e.g., HIV treatment). Below, we will apply our modeling framework
to the problem of timing AVF preparation for patient with progressive chronic kid-
ney disease (defined in Chapter 3), where in each period, we face the decision of
whether the patient should start the AVF preparation process, or we should wait
and reconsider the decision in the subsequent period.

We simplify our notation for optimal stopping problems as follow. For each t, let
rm(e), Rm(e) denote the immediate reward of continuing and the terminal reward of
stopping when patient health state and type are e and m, respectively. Also, since
the system evolution matters only under the continue action, we let γm represent
the health decline for patient type m under the continue action.

In what follows, define σm(e) := rm(e) − Rm(e). We can explain σm(e) as the
difference between the immediate reward of waiting for one period and the lump-
sum reward of the intervention, when patient health state and type are e and m,
respectively. In the following proposition, we show that if σm(e) increases with m
and e, i.e., when the incremental benefit of intervention is higher for sicker patients
(patients with lower health) and for patients with faster disease progression (pa-
tients type w), and conditions of Proposition 4.5 hold, then intervention is optimal
whenever it is optimal for healthier patients or when our belief that the patient is a
slow progressor is higher.

Proposition 4.6.
If we have:

(a) For any a ∈ A, ram(e) increases with e and is higher for m = b,
(b) Rm(e) increases with e and is higher for m = b,
(c) γb ≤r γw,
(d) σm(e) increases with e and is higher for m = b.

then, it is optimal to stop at (e, p), whenever stopping is optimal at state (e′, p′) for
any e ≤ e′ and p ≤ p′.

Note that assumptions (a-c) are the same as assumptions in Proposition 4.5 and
used to obtain the monotonicity of the value function. We use Propositions 4.4 and
4.5 to prove Proposition 4.6 (in Appendix B).

Next, define δm(e) := rm(e) + βERm(e− γm)−Rm(e). We can explain δm(e) as
the incremental benefit of waiting for one period and intervening in the subsequent
period over intervening in the current period, when patient health state and type are
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e and m, respectively. In the following proposition, we show that if δm(e) increases
with m and e, i.e., when the incremental benefit of waiting for one period and
intervening in the subsequent period over intervening in the current period is higher
for sicker patients (patients with lower health) and for patients with faster disease
progression (patients type w), and the health decline is smaller for patient type b
in the MLR order, then intervention is optimal whenever it is optimal for healthier
patients or when our belief that the patient is a slow progressor is higher. We use
Proposition 4.2 and Lemma 4.2 to prove Proposition 4.7.

Proposition 4.7.
If we have:

(a) δm(e) increases with e and is higher for m = b,
(b) γah ≤r γal for any a ∈ A.

Then, it is optimal to stop at (e, p), whenever stopping is optimal at state (e′, p′)
for any e ≤ e′ and p ≤ p′.

It is intuitive that δm(e) increases with e since sicker patients, in comparison
with healthier patients, gain more from medical interventions. For instance, the
benefit of taking pain relief drugs is more pronounced for patients with higher pain
levels. On the other hand, whether or not δm(e) increases with m is context-specific
and not something we expect to intuitively hold in all contexts and not something
we necessarily expect to hold. The following provides alternative conditions based
on model primitives, to check if we can expect δm(e) to increase with m. We show
that when patient types differ only in their disease progression rate (not in rewards
they receive at different states), the terminal reward increases in the patient health,
and the health decline is smaller for patient type b in the MLR order, then δm(e)
increases with m.

Proposition 4.8.
If we have:

(a) Rw(e) = Rb(e) and rw(e) = rb(e) for all e,
(b) Rb(e) increases with e,
(c) γb ≤st γw.

Then, we have δw(e) ≤ δb(e).

4.4 Optimal Timing of AVF Preparation

In this section, we revisit the AVF preparation timing question of Chapter 3. We
model the AVF preparation timing problem as an optimal stopping MDP problem.
We incorporate the heterogeneity of patient disease progression in our model using
the framework of Section 4.3.
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4.4.1 Timing of AVF Preparation

The preferred vascular access for HD is an AVF [3] due to greater longevity and
lower complication rates; however, it may take several months and more than one
procedure to establish a usable AVF [4,5]. If the AVF is created too late, it may not
mature in time, and a central venous catheter (CVC) may be used; however, CVCs
are associated with an increased risk of morbidity and mortality [6–9]. On the other
hand, creating an AVF too early is undesirable due to a small increase in risk of
complications and wasting the limited lifetime of an AVF before HD is needed [10].
To avoid the consequences of having a functional AVF earlier or later than HD start
time, it is ideal for the patient to have an AVF that becomes functional right at the
time of HD start. Nevertheless, due to intrinsic uncertainties in AVF preparation
lead-time (the time from the first AVF surgery until an functional AVF becomes
available) as well as the time of HD start, the ideal case is hardly achievable.

Figure 4.1 depicts the costs associated with deviating from the ideal case. More
specifically, it shows the differential in life-expectancy between the ideal case and
the case when AVF becomes ready earlier or later than HD start time. When AVF
becomes ready after HD starts (positive values on the x-axis), the patient loses an
average of 1.6 of expected life-month for each 6 months of lateness, whereas an
average of .88 of expected life-month is lost for each 6 months AVF is ready earlier
than HD start time (negative values on the x-axis). The loss of life-expectancy for
early AVFs are associated with the waste of AVF’s limited lifetime before HD starts.
The loss of life-expectancy for late AVFs is due to lower patient survival on a CVC
(until an AVF becomes functional).

Estimated glomerular filtration rate (eGFR) is often used as the primary measure
of kidney health. Nephrologists monitor eGFR progression periodically to decide
when to initiate HD as well as when to start AVF preparation. HD is often initiated
when a patient’s eGFR falls below 10 mL/min/1.73m2 [43]. Due to AVF prepara-
tion lead-time, CKD patients should start the AVF preparation in advance of HD
start time, i.e., when eGFR is well above the HD start threshold. The Canadian
Society of Nephrology (CSN) guidelines suggest starting the AVF preparation at an
eGFR of 15-20 mL/min/1.73m2 [16]. We develop a data-driven, dynamic program-
ming approach to provide recommendations regarding if/when to begin the AVF
preparation.

The eGFR value at which the AVF preparation starts as well as the rate at
which eGFR deteriorates over time determine (stochastically) how much earlier or
later than HD start time an AVF becomes available, and in turn, affect a patient’s
life-expectancy (Figure 4.1). The rates at which eGFR progresses over time varies
considerably across the population. For example, O’hare et al. [11] identified four
distinct types of patients with respect to eGFR progression rates (Table 4.1). There-
fore, it is important to take into account the progression heterogeneity when making
AVF preparation timing decisions. In Chapter 3, we used a Monte-Carlo simulation
model to find the best time to start the AVF preparation. In this section, we model
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the problem as an optimal stopping MDP, where in each period, we make a decision
whether to start the AVF preparation (the stop action) or wait another period and
reconsider the decision in the subsequent period. We use the framework of Section
4.3 to factor in the patient heterogeneity in disease progression.

Table 4.1: Heterogeneity of eGFR progression for chronic kidney disease patients.
Table includes mean eGFR decline for different types of eGFR progression as well
as their prevalence in the population [11].

EGFR progression type mean eGFR decline† Prevalence

Persistently low eGFR levels 7.7 63%
Progressive eGFR loss 16.3 25%
Accelerated eGFR loss 32.3 9%
Catastrophic eGFR loss 50.7 3%

†: mL/min/1.73 m2 per year.

4.4.2 MDP Formulation

� Patient Types: we associate type b with patients that have stochastically
slower decline of eGFR (compared to type w).

� States: the state of the system in period t is comprised of pt, our belief about
patient type, and et, the kidney health state measured by the eGFR value. We
assume that HD starts when the eGFR value falls below ed, a certain eGFR
threshold. The time at which patient transitions to a state below the HD
threshold is used as a proxy for HD start time.

� Transition dynamics: each month eGFR declines according to a random
variable γm, for patient type m, i.e., we have:

et+1,m = et,m − γm.

After observing a decline d in the eGFR, we update our belief about patient
type according to Eq. 4.1.

Note that the constant expected eGFR decline in our eGFR progression model
is consistent with other studies that model eGFR decline using linear regression
[43,60,71,72].

� Decision epochs and actions: each month, an eGFR reading is taken from
the patient, and a decision whether to start AVF preparation or wait until the
next period is made, provided that HD and AVF preparation processes have
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Figure 4.1: Earliness/lateness cost of AVF ready time. Plot shows a patient’s ex-
pected life month loss to imperfect AVF ready time. On the x-axis, we have the
difference between the time AVF is ready and HD start time. On the y-axis, we
calculated the differential in life-expectancy between the ideal case (when AVF is
ready at the time of HD start) and the case when AVF is ready earlier or later than
HD start time for different values of AVF Ready - Dialysis Start. Life-expectancy
for different scenarios are calculated using Monte-Carlo simulation with parameters
given in Table 3.1.

not started yet. When HD starts (i.e., when the eGFR falls below the HD
threshold), we start the AVF preparation if it has not already started.

� Costs: when we start the AVF preparation process at state (e, p), a lump-sum
cost d(e, p) is incurred, which is associated with AVF earliness/lateness. Let
td and ta denote time instants at which dialysis starts, and a functional AVF
becomes available, respectively. Then, we assume that the cost under this
scenario equals to c(ta − td) for a real-valued earliness/lateness cost function
c. We fit a piece-wise linear function to data-points in Figure 4.1 to create
function c. Let dm(e) be the expected earliness/lateness cost when the AVF
preparation starts at eGFR e and the patient type is m. Also, let Tme denote
the time until HD starts when eGFR is at e, and the patient type is m.
Note that Tme is endogenous to the problem parameters. Assume that at the
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beginning of month t, eGFR is at e. Then, Tme is defined by the following:

Tme := min{τ :

t+τ∑
i=t

γim ≥ e− ed}

where γim denotes the decline of eGFR in month i.

Let L denote the AVF preparation lead-time. We assume that the AVF prepa-
ration is independent of patient type. Then, we have:

dm(e) = EL,Tm
e

[c(L− Tme )].

Therefore, we have d(e, p) := pdb(e)+(1−p)dw(e). For e ≤ ed, we have Tme = 0
by definition. Therefore, dm(e) = Ec(L), and thus we have p(e, p) = Ec(L).

We assume no immediate cost is incurred when we take the wait action, and
actions do not affect the time of HD need (i.e., AVF preparation does not
affect progression of chronic kidney disease).

� Optimality condition: let v(e, p) be the value function. Then, the value
function satisfies:

v(e, p) =

{
Ec(L) e ≤ ed
min

[
d(e, p),Ev

(
e− γp,B(γp, p)

)]
o.w.

In the following proposition, we show that under certain conditions, the optimal
policy for starting the AVF preparation is of threshold type, i.e., it is optimal to
start the AVF preparation, whenever starting is optimal for higher eGFR values
(better kidney health) or for higher patient type beliefs.

Proposition 4.9. Optimal Timing of AVF Preparation
If we have:

(a) γb ≤r γw,
(b) Function c is convex.

then, it is optimal to start the AVF preparation at state (e, p), whenever starting is
optimal at state (e′, p′), for any e ≤ e′ and p ≤ p′.

Assumption (a) states that the likelihood ratio of observing a higher eGFR
decline to a lower eGFR decline is higher for patient type w. Note that the cost
function in Figure 4.1 is approximately linear on both sides of zero. Therefore, we
have c(x) = h[−x]+ + b[x]+, where [x]+ = max[0, x]. Note that c is convex for all
h, b ≥ 0, thus satisfying assumption (b) of Proposition 4.9 .

In the following proposition, we compare the optimal AVF preparation policy
under different AVF preparation lead-time. We show that when the conditions of
Proposition 4.9 are met, it is optimal to start the AVF preparation at any state,
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whenever starting the AVF preparation is optimal under longer preparation lead-
times (in the usual stochastic order).

Proposition 4.10. Comparative Statics
Consider two problem instances indexed by 1, 2, each satisfying assumptions (a)
and (b) of Proposition 4.9. Assume that problems only differ in AVF preparation
lead-time with L1 ≤st L2. Then, it is optimal to start the AVF preparation at any
state (s, p) in problem 1, whenever starting is optimal in problem 2.
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Figure 4.2: Empirical probability mass function of the AVF preparation time, gen-
erated using Monte-Carlo simulation. We considered a series of AVF surgeries per-
formed one after the other until one surgery is successful, with at most 4 of AVF
creations. The values for AVF surgery success probability and maturation times
and the sources used for each parameter are given in Table 3.1.

4.4.3 Numerical Results

To demonstrate the results of Proposition 4.9, we performed a numerical study. The
parameters used for the study are as follows. We used the earliness/lateness cost
function depicted in Figure 4.1 and chose c(x) = h[−x]++b[x]+. We set h = 26.5 and
b = 48 and assume c(x) and x are measured in days and months, respectively. We
used the patient types defined in [11] (see Table 4.1) and let types b and w represent
‘persistently low eGFR’ and ‘progressive eGFR loss’. These two types represented
88% of the CKD population in the study by [11]. Note that the two other patient
types (‘accelerated eGFR loss’ and ‘catastrophic eGFR loss’ patients) can be easily
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Figure 4.3: Optimal policy for AVF preparation timing. The optimal policy for
different values of eGFR as well as the belief that the patient is of type b, i.e., the
slow progressor, is shown. The states at which the optimal policy is ‘start the AVF
preparation’ and ‘wait’ are depreciated in black and yellow, respectively. As figure
suggest, the optimal policy is monotone in both state dimensions.

distinguished from the types we consider here since they have noticeably higher
eGFR decline rates. We modeled eGFR monthly decrement for patient types b and
w as normally distributed random variables, i.e., we assumed γm ∼ N (µm, σ

2
m).

We used the average monthly eGFR decline given for patient types b and w in [11]
and set [µw, µb] = [1.4, .64]. To calculate σm, we performed primary data analysis
on the eGFR trajectories of 1048 patients treated at the multidisciplinary kidney
clinic at Vancouver General Hospital. We found that [σw, σb] = [1.5, 1.4]. We
assumed that HD starts when eGFR falls below 10 mL/min/1.73m2, i.e., ed = 10
[43]. We calculated the probability mass function of AVF preparation lead-time
using parameters given in Table 3.1 (see Figure 4.4.2 for more details).

To solve the problem numerically, we discretize the state-space with a uniform
grid, in which eGFR values are grouped in buckets of 1 mL/min/1.73m2, and beliefs
are grouped in buckets of 0.01. We have N (µb, σ

2
b ) ≤r N (µw, σ

2
w) whenever σb = σw

and µb ≤ µw (see [100]). Although we have µb ≤ µw, the condition that σb = σw
does not hold; nevertheless, we can show that assumption (a) of Proposition 4.9 em-
pirically holds for our discretize state-space. Finally, assumption (b) of Proposition
4.9 holds since for all values of parameters h, b ≥ 0, function c(x) = h[−x]+ + b[x]+

is convex. Therefore by Proposition 4.9, the optimal policy for starting the AVF
preparation is of threshold type, i.e., it is optimal to start the AVF preparation,
whenever starting is optimal for higher eGFR values and higher beliefs (that the
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patient is a slow progressor).
Figure 4.3 depicts the optimal policy for AVF preparation timing for different

eGFR values and patient type beliefs. As we expect, the optimal policy is monotone
in both state dimensions. When the patient type is a slow progressor (fast progres-
sor) with certainty, the optimal eGFR threshold beyond which starting the AVF
preparation is optimal is 15 mL/min/1.73m2 (20 mL/min/1.73m2). This is consis-
tent with the Canadian Society of Nephrology (CSN) guidelines which suggests start-
ing the AVF preparation at an eGFR of between 15 and 20 mL/min/1.73m2 [16].
Our results sharpen the guidelines by matching the lower bound of 15 with pa-
tients classified as slow progressors (mean eGFR decline of .64 mL/min/1.73m2 per
month) and the upper bound of 20 with the fast progressors (mean eGFR decline
of 1.4 mL/min/1.73m2 per month).

4.5 Conclusion

In this chapter, we analyzed the problem of designing ongoing treatment plans for a
heterogeneous population with respect to disease progression and response to med-
ical interventions. We created a model that learns the patient type by monitoring
the patient health over time and updates a patient’s treatment plan according to
the gathered information. We formulated the problem as a two-dimensional state-
space POMDP and provided structural properties of the value-function, as well as
the optimal policy for the special case of optimal stopping timing problems. This
framework can be extended to other contexts where an MPD is applicable and
transition parameters can be learned by observing state transitions.

We also applied the framework to the AVF preparation timing question posed in
Chapter 3 by considering two types of patients, patients with slow and fast eGFR
progression. We showed that under data-driven assumptions, the optimal AVF
preparation timing policy is monotone in a patient’s current eGFR as well as our
belief that the patient is a slow progressor.

Although we considered two patient types, our results can be extended to cases
with multiple patient types. We also believe that the framework can be applied
to other chronic diseases where heterogeneity in disease progression is present. We
considered a special structure for the state dynamics of MDPs where random vari-
ables representing the difference between the states in periods t and t + 1 for each
action do not depend on the state in period t. It would be interesting to extend the
result to a more general setting for state transitions. Finally, we only investigated
the monotonicity of optimal policies for optimal stopping timing problems. As a
direction for future research, one might consider extending the results to the case
with a more general action space.
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Chapter 5

Conclusions, Extensions and
Further Applications

The research in this dissertation focused on the application of stochastic optimiza-
tion models to vascular access planning for patients with chronic kidney disease.
In this section, we provide a review of the problem, analytical models developed
to address the research questions, and the main results. Furthermore, we discuss
possible extensions and avenues for further research.

Hemodialysis is the most common form of renal replacement therapy. There are
two primary types of vascular accesses used for HD, arteriovenous fistula (AVF), and
central venous catheter (CVC). An AVF, which is created via a surgical procedure, is
often considered the gold standard for delivering HD due to better patient survival
and higher quality of life. However, it may take several months and more than
one procedure to establish a functional AVF, whereas a CVC can be inserted via a
simple procedure and used immediately after placement. In this thesis, we address
the question of whether and when to perform AVF surgery on patients with CKD
with the aim of finding individualized policies that optimize patient outcomes. This
question is relevant in two stages of the disease, before HD commences and after.

In Chapter 2, we focused on vascular access planing for patients already on HD.
Using AVF for HD not only brings better survival, but also has a slightly higher
quality of life for the patient, in comparison with HD using a CVC. Nevertheless,
the process of AVF creation has some disutility associated with it, which can be
attributed to the surgery and post-surgery inconveniences, complications or costs.
Therefore, it is not clear under what conditions an HD dependent patient should
undergo the AVF creation surgery. We developed a continuous-time dynamic pro-
gramming model to find optimal policies that maximize a patient’s life expectancy
and Quality-adjusted life expectancy (QALE).

We analytically proved that delaying AVF surgery stochastically decreases a
patient’s lifetime. As a result, the policy of “use the next AVF (opportunity) as
soon as a patient starts HD or when the one being used fails” maximizes a patient’s
survival probability. We also proved that the optimal policy to maximize a patient’s
QALE is of a threshold type: there is an HD duration threshold before which
immediate surgery is the optimal choice, while after that time, CVC is the optimal
vascular access choice for the remainder of the patient’s lifetime. This threshold
depends on the number of past AVF maturation failures.
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The AVF creation disutility plays an essential role in determining the optimal
policy when maximizing QALE. Since patients may feel differently about the disu-
tility of AVF surgery, and also because it is not an easy parameter to elicit from
a patient, our model provides an alternative way to make the optimal AVF timing
decision. We showed that the decision of whether to perform an AVF surgery or not
can be determined solely by comparing the patient’s AVF creation disutility with a
boundary value reflecting the prospective additional QALE for the patient, which
we refer to as the critical disutility. Thus, a nephrologist can inform the patient of
the benefits and inconveniences of undergoing the AVF surgery, and then, they can
collectively decide whether to do the surgery or not. Even if a rough estimate of
the patient’s disutility for AVF surgery indicates that it is clearly below or above
the critical disutility, then it will be clear that the patient should or should not,
respectively, undergo an AVF surgery.

We also found that the possibility of receiving a kidney transplant adds new
complexities to the model and optimal policy structure. Although the optimal policy
under the total lifetime remains the same, the result on QALE metric (optimality of
threshold policies) does not necessarily extend, even when the time of transplant is
known with certainty. Nevertheless, we provided a theorem which proves that under
additional assumptions (which are supported by data), threshold policies remain
optimal. It would be interesting to investigate how the possibility of cadaveric
donations and random wait times affect the vascular access planning for ESRD
patients under the QALE metric. We did not consider costs in our model and
focused on patient outcomes. It would be interesting to perform a cost-effectiveness
analysis and investigate whether suggested policies are cost-effective or not.

Our framework and analytical results may also be relevant to operational ques-
tions outside of health care, particularly in the area of machine maintenance and
equipment reliability. For example, consider a machine with a vital component. If
the component breaks down, it may be replaced with a cheap, available spare. Addi-
tionally, one may order a more expensive, higher-quality component, which involves
a lead time for delivery. This is analogous to deciding whether and when to refer a
patient for an AVF versus letting them continue to receive HD through a CVC. An
AVF provides higher quality HD outcomes compared to a CVC, but an AVF cannot
be created quickly, and it is more expensive in the sense of the surgical disutility it
imposes on patients.

In Chapter 3, we developed a Monte-Carlo simulation model to address the
timing of AVF preparation for progressive CKD patients who have not yet initiated
HD. We considered two types of strategies based on approaches suggested in recently
published guidelines: refer when hemodialysis is anticipated to begin within a certain
time frame or refer when eGFR drops below a certain threshold. We evaluated these
strategies over a range of values for each strategy, compared them with respect to
different performance metrics (e.g., a patient’s life expectancy after HD initiation
and percentage of patients with an unnecessary AVF creation), and provided policy
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recommendations.
Our simulation results shows that in general, AVF referral within about 12

months of the estimated time to dialysis performed best among time frame strate-
gies, and referral at eGFR between 15 and 20 mL/min/1.73m2 performed best among
threshold strategies. Elderly patients with CKD could be referred later to reduce
the risk of creating an AVF that is never used. Similar to Chapter 2, the focus in
this chapter was on patients outcomes rather than costs. A future cost-effectiveness
analysis can elaborate whether an early AVF referral is cost-effective, especially for
the elderly who benefit the least from hemodialysis, are more frail and have multi-
ple co-morbidities. We did not consider arteriovenous grafts (AVGs) as a vascular
access choice in our model. It would be interesting to investigate how considering
AVGs would affect the optimal policy structure, patient outcomes, and costs.

One of our results in Chapter 3 was that the timing of referral should be guided
by the individual rate of CKD progression. In Chapter 4, motivated by this finding,
we analyzed the problem of designing ongoing treatment plans for a heterogeneous
population with respect to disease progression and response to medical interventions.
We developed a dynamic programming model that incorporates patient heterogene-
ity in disease progression when making clinical decisions. The designed model learns
the patient type by monitoring the patient health over time and updates a patient’s
treatment plan according to the gathered information. We formulated the prob-
lem as a two-dimensional state-space partially observable Markov decision process
(POMDP) and provided structural properties of the value-function, as well as the
optimal policy for the special case of optimal stopping problems.

We applied this framework to the AVF preparation timing question posed in
Chapter 3 by considering two types of patients, patients with slow and fast eGFR
progression. We showed that under data-driven conditions, the optimal policy for
starting the AVF preparation is of a threshold type, i.e., it is optimal to start
the AVF preparation, whenever starting is optimal for higher eGFR values (better
kidney health) or when our belief that the patient is a slow processor is higher.

Our numerical results showed that when the patient type is a slow progressor
(fast progressor) with certainty, the optimal eGFR threshold beyond which starting
the AVF preparation is optimal is 15 mL/min/1.73m2 (20 mL/min/1.73m2). This is
consistent with the Canadian Society of Nephrology (CSN) guidelines which suggests
starting the AVF preparation at an eGFR of between 15 and 20 mL/min/1.73m2 [16].
Our results sharpens the guidelines by matching the lower bound of 15 with patients
classified as slow progressors (mean eGFR decline of .64 mL/min/1.73m2 per month)
and the upper bound of 20 with the fast progressors (mean eGFR decline of 1.4
mL/min/1.73m2 per month).

We believe that this framework can be extended to other contexts where a
Markov Decision Process (MPD) is applicable and transition parameters can be
learned by observing state transitions. Although we considered two patient types
in this chapter, our results can be extended to cases with multiple patient types.
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We also believe that the framework can be applied to other chronic diseases where
heterogeneity in disease progression is present. We considered a special structure
for the state dynamics of MDPs where random variables representing the difference
between the states in periods t and t+ 1 for each action do not depend on the state
in period t. It would be interesting to extend the result to a more general setting for
state transitions. Finally, we only investigated the monotonicity of optimal policies
for optimal stopping timing problems. As a direction for future research, one might
consider extending the results to the case with a more general action space.
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Appendix A

Chapter 2 Mathematical Proofs

Section A.1 provides some general results that are used in Section 2.4, which contains the proof
of the analytical results of chapter 2.

A.1 General Results

Lemma A.1. Each of the following are equivalent to X ≤hr Y :

1. Xt ≤st Yt,∀t

2.
FX(t)

FY(t)
is decreasing in t.

Proof. For (1) see Equation 1.B.7 in [98]. For (2), see Theorem 1.3.3 in [100]. �

Lemma A.2 (Closure of stochastic order under mixture). Let X, Y be two random variables
such that for all realizations of the random vector Z, we have [X|Z = z] ≤st [Y |Z = z]. Then,
X ≤st Y .

Proof. The proof directly follows Theorem 1.2.15 in [100]. �

Lemma A.3. Assumption 2.4 is equivalent to having that
FC(t)

FA(t)
is a log-convex function of

t.

Proof. Note that d
dt ln FX(t) = −rX(t). Since d

dt ln
FC(t)

FA(t)
= d

dt ln FC(t)− d
dt ln FC(t) = rA(t)−

rC(t), the result follows from Assumption 2.4 and the fact that a differentiable function is
convex if and only if its derivative is increasing. �

Lemma A.4. Assume that g is a differentiable and log-convex function. Then, g(x)
g(x+a) is

decreasing in x for any a ≥ 0.

Proof. It suffices to show that ln g(x)
g(x+a) = ln g(x) − ln g(x + a) is decreasing in x. Define

G := ln g, a convex function by assumption. Since d
dx ln g(x)

g(x+a) = d
dxG(x) − d

dxG(x + a) ≤ 0,

based on the fact that the derivative of a convex function is increasing, we have that ln g(x)
g(x+a)

is decreasing in x. �
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Lemma A.5. If the random variable X is IFR, then Xt is stochastically decreasing in t.

Proof. Choose t ≤ t′ and s ≥ 0, arbitrarily. We have rXt′ (s) = rX(t′ + s) and rXt(s) =
rX(t + s). Since X has the IFR property, we have ∀s, rXt(s) ≤ rXt′ (s). Thus, Xt′ ≤hr Xt by
definition which implies Xt′ ≤st Xt, because hazard rate order implies the stochastic order (see
Lemma A.1). �

Lemma A.6. If FX(t) is differentiable, then the mean residual lifetime of a random variable

X is differentiable. Moreover, we have:
d

dt
EXt = rX(t)EXt − 1.

Proof. See [101]. �

A.2 Analytical Results

We provide proofs in three sections. Proof of Theorem 2.1 is given in the first section. The
second section includes proofs for Theorems 2.2-2.5, Corollaries 2.1-2.2, and Proposition 2.1.
The final section provides proofs for Theorems 2.6 and 2.7.

A.2.1 Proof of Theorem 2.1:

We first prove a preliminary lemma that facilitates proving the main results.

Lemma A.7. Assumptions 2.3-2.5 apply to At and Ct as well. In other words, for all s, t ≥ 0,
we have Ct ≤hr At, rCt(s)− rAt(s) is decreasing in s, and rAt(s), rCt(s) are increasing in s.

Proof. The result follows by noting that rXt(s) = rX(t+ s) for any random variable X, and
t, s ≥ 0. �

In what follows, we let Ki denote the lifetime of the ith AVF, i.e., Ki = 0, if the ith AVF
does not mature and Ki = Zi, if otherwise.

Proof of Theorem 2.1. We prove Theorem 2.1 for all realization of Mi, and Ki for i =
1, . . . , N , where N is the total number of AVF chances. Since AVF creation variables are not
affected by the policy in use based on Assumption 2.6, the result generalizes using Lemma A.2
(closure of stochastic order under mixture).

Let L(t, n) denote a patient’s residual lifetime at t, given n remaining AVF chances, under
the optimal policy (one that maximizes a patient’s survival function probability for each time
t). Suppose one could set the AVF use time (rather than setting the surgery time) at t + u.
Let L(u) be a patient’s residual lifetime at time t when we plan to use current AVF at t + u
and follow the optimal policy for the subsequent n−1 AVF chances. We prove that FL(u)(a) is
decreasing in u (for any a). Since for y, the surgery time, we have y = u−mi, this is equivalent
to proving that the residual lifetime stochastically decreases in y.
→ Base case: n=1: Based on Assumption 2.2 on a patient’s survival, we can calculate
FL(u)(a) for different values of u, a, k as follows (see Figure A.1).
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t

CVC

u

CVCAVF

k

case 1 case 2 case 3 

Figure A.1: Possible cases for FL(u)(a).

� Case 1: a ≤ u: We have FL(u)(a)
(∗)

=== P[Ct > a] = FCt(a).

� Case 2: [a− k]+ ≤ u ≤ a: We have

FL(u)(a) = P[Ct > u,At+u > a− u] = P[Ct > u]P[At+u > a− u
∣∣Ct > u]

(∗)
=== P[Ct > a]P[At+u > a− u]

(∗)
=== P[Ct > u].P[At > a|At > u] = FCt(u)

FAt(a)

FAt(u)

� Case 3: 0 ≤ u ≤ [a− k]+: We have:

FL(u)(a) = P[Ct > u,At+u > a− u,Ct+u+k > a− (u+ k)]

= P[Ct > u].P[Au+t > k
∣∣Ct > u].P[Cu+k > a− (u+ k)

∣∣At+u > k,Ct > u]

(∗)
=== P[Ct > u].P[At > k + u

∣∣At > u].P[Ct > a
∣∣Ct > u+ k]

(∗)
=== FCt(u).

FAt(k + u)

FAt(u)

FCt(a)

FCt(u+ k)
= FCt(a).

FCt(u)

FAt(u)
/
FCt(u+ k)

FAt(u+ k)

in which (∗) represents implication by Assumption 2.2. Note that FL(u)(a) is continuous within
each range, and its value on the boundary points coincides. Therefore, it suffices to prove that in
each range, FL(u)(a) is decreasing. In Case 1, the function is constant and thus the result holds
trivially. In Case 2, since Ct ≤hr At according to Lemma A.7 (which requires Assumptions
2.3-2.5), the function is decreasing using Lemma A.1. In Case 3, Lemma A.7 and Lemma A.3

imply that
FCt

(u)

FAt
(u)

is log-convex in u. Using Lemma A.4, we have that FL(u)(a) is decreasing

in u.
Let L(t, n, u) be the patient’s residual lifetime at t when we use the current AVF chance

at t + u and follow the optimal policy for the subsequent AVF chances. We now present the
induction step:
→ Induction step: Assume L(t, n− 1, u2) ≤st L(t, n− 1, u1), for all u1 ≤ u2. We prove that
if u1 ≤ u2, then L(t, n, u2) ≤st L(t, n, u1).

To calculate the lifetime of the patient for the case of multiple AVF chances, we assume
that AVFs are created sequentially and never in parallel (supported by Assumption 2.1). Since
stochastic order is a partial order, using the transitivity property we can instead prove that
L(u2) ≤st L′ and L′ ≤st L(u1), in which L′ is the lifetime under a hypothetical situation similar
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to L(u1) with the difference that the decision to use the subsequent AVF is delayed until u2 +k
(see Figure A.2).

u1

CVC

t

u1

CVC

t

AVF

AVF

CVC

u1

CVC

t

AVF

k
L(t, n, u1)

L(t+u1+k, n-1)

L(t+u2+k, n-1)

L'

L(t, n, u2)

L(t+u1+k, n-1, u2-u1)≥st

≥st

u2-u1k

u2-u1 k

Figure A.2: Induction step and the hypothetical random variable L′.

� L(u2) ≤st L′: For x ≤ u2 + k, we have that FL(u2)(x) = FL(t,1,u2)(x) and FL′(x) =

FL(t,1,u1)(x). Thus the result follows from induction base. Otherwise, we have

FL(u2)(x) = FL(u2)(u2 + k).FL(u2+k,n−1)(x− [u2 + k]),

FL′(x) = FL′(u2 + k).FL(u2+k,n−1)(x− [u2 + k]).

Based on the previous result, we have FL(u2)(u2 + k) ≤ FL′(u2 + k), and thus we get the
result.

� L′ ≤st L(t, n, u1). For x ≤ u1 + k, we have that FL(u1)(x) = FL′(x) = FL(t,1,u1)(x). For
x ≥ u1 + k,

FL(u1)(x) = FL′(u1 + k).FL(u1+k,n−1,0)(x− [u1 + k]),

FL′(x) = FL′(u1 + k).FL(u1+k,n−1,u2−u1)(x− [u1 + k]).

Using the induction hypothesis, we have L(u1 + k, n− 1, u2 − u1) ≤st L(u1 + k, n− 1, 0),
and thus we have the desired result.

�

A.2.2 Proofs of Theorems 2.2, 2.3-2.5, Corollaries 2.1-2.2, and Proposition
2.1:

We prove the optimality of threshold policies (Theorem 2.3) in three steps. First in Proposition
A.1, we prove the existence of an optimal HD-duration threshold policy for the case n = 1.
Next, we prove Theorems 2.4-2.5 and Corollary 2.1 for the special case n = 1. Finally, using
these results, we prove that the same threshold policy formed in Proposition A.1 is optimal for
the case n > 1, as well.
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We use the following notations in what follows.

� vπ(NF, n, t): the value function (the remaining QALE of a patient) at state (NF, n, t)
under an arbitrary policy π

� v(NF, n, t, y): the value function of the policy consisting of surgery planned at t+ y for
the current AVF chance and then the optimal policy for the subsequent decisions.

� v(NF, n, t): the optimal value function at state (NF, n, t).

Note that we supposed Assumptions 2.1-2.2 and 2.6 in defining the dynamic programming
model (see Section 2.3.4). Let π0 denote the policy of using CVC for the rest of the patient’s
life (hereafter referred to as the “no-AVF” policy). Under this policy, the patient remains on a
CVC until she dies, and since her residual lifetime under this policy is Ct, her QALE is qcE[Ct],
i.e., we have ∀NF, n : vπ0(NF, n, t) = qcECt. Since vπ0(NF, n, t) = qcECt for any NF and n,
we use vπ0(., ., t) to denote this independence.

Let s denote a general patient state. Note that the value function of an arbitrary policy
π, i.e., vπ(s), is the expected quality adjusted lifetime of a patient under that policy. In what
follows, we let vπ(s|E) represent the value function of the policy π conditional on an event E . For
instance,

(
vπ1(s)− vπ2(s)

∣∣Ct ≤ y) denotes the QALE difference between two arbitrary policies
π1 and π2 conditional on the event Ct ≤ y. We use Lemmas A.8-A.10 to prove Proposition
A.1.

AVF

𝑡 𝑦 𝑀𝑛

𝑣(𝑁𝐹, 𝑛, 𝑡 + 𝑦, 0)

𝐾𝑛
𝑣(𝑁𝐹, 𝑛, 𝑡, 𝑦)

𝑣(𝑁𝐹′, 𝑡′, 𝑛 − 1)

CVC

𝑡 𝑦

𝑣𝜋0(𝑁𝐹, 𝑛, 𝑡) CVC

𝑣𝜋0(𝑁𝐹, 𝑛, 𝑡 + 𝑦)

𝑡′

Figure A.3: Linking v(NF, n, t, y), v(NF, n, t+ y, 0), and vπ0(NF, n, t+ y).

Lemma A.8. The following equality holds for v(NF, n, t, y).

v(NF, n, t, y) = FCt(y)

[
v(NF, n, t+ y, 0)− vπ0(., ., t+ y)

]
+ vπ0(., ., t)

Proof. Consider Figure A.3. We want to prove that the difference between the value functions
of the policy consisting of surgery planned at t + y for the current AVF chance and then
the optimal policy for the subsequent decisions and the no-AVF policy, i.e., v(NF, n, t, y) −
vπ0(., ., t), equals FCt(y)

[
v(NF, n, t+ y, 0)− vπ0(., ., t+ y)

]
.

If Ct ≤ y, then the patient dies before the AVF surgery, in which case there is no difference
between the two policies. If Ct > y, which happens with probability FCt(y), then the difference
between the two policies equals the difference between the value function at the state (NF, n, t+
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y) when we follow the policy consisting of immediate surgery for the current AVF chance and
then the optimal policy for the subsequent decisions and that of the same state but following
the no-AVF policy, i.e., v(NF, n, t+ y, 0)− vπ0(., ., t+ y). Therefore, we have v(NF, n, t, y)−
vπ0(., ., t) = FCt(y)

[
v(NF, n, t+ y, 0)− vπ0(., ., t+ y)

]
and thus the result. �

For Lemma A.9, let w(t,m, k) denote the residual HD utility adjusted lifetime expectancy
of a patient at time t (which is the patient’s QALE without subtracting the AVF creation
disutility) under a scenario in which the patient undergoes the surgery at t for her only AVF
chance and the AVF maturation time and AVF lifetime are deterministically set at m and k,
respectively.

Based on Assumption 2.2 on a patient’s survival, we can calculate w(t,m, k) as follows:

w(t,m, k) = qc

∫ m

0
xfCt(x)dx

+FCt(m)

[
qcm+qa

∫ k

0
xfAt+m(x)dx+ FAt+m(k)

[
qak + qcECt+m+k

]]
. (A.1)

We can express v(NF, 1, t, 0) and vπ0(., ., t) using w(t,m, k) as follows:

v(NF, 1, t, 0) = −d+ EM,K|NF [w(t,m, k)], (A.2)

vπ0(., ., t) = w(t,m, 0) : ∀m. (A.3)

We will use these equalities in later proofs.

Lemma A.9. Suppose Assumptions 2.2-2.5 and 2.8. We have ∂
∂kw(t,m, k) is non-negative and

decreasing in t and m.

Proof. To have differentiability of w in k, it suffices to assume that FA(x) and FC(x) are
differentiable at all values of x because they in turn imply that FAt(x) and FCt(x) (as a direct
result) and ECx (using Lemma A.6) are differentiable functions in x.

We have:

∂

∂k
w(t,m, k) =FCt(m)

[
d

dk
qa

∫ k

0
xfAt+m(x)dx+ FAt+m(k)

d

dk

[
qak + qcECt+m+k

]
+
[ d
dk

FAt+m(k)
][
qak + qcECt+m+k

]]
(A.4)

= FCt(m)

[
qakfAt+m(k) + FAt+m(k)

{
qa + qc

[
rCt+m(k)ECt+m+k − 1]

}
− fAt+m(k)[qak + qcECt+m+k]

]
(A.5)

= FCt(m)FAt+m(k)

[
qa − qc + qcECt+m+k

[
rCt(m+ k)− rAt(m+ k)

]]
(A.6)
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where Equation A.4 follows from Equation A.1 using the product rule in calculating the deriva-
tives of products of two functions, Equation A.5 follows from Equation A.4 by using Lemma
A.6, and finally Equation A.6 follows from Equation A.5 by rearranging terms.

We can prove that ∂
∂kw(t,m, k) is decreasing in t and non-negative by showing that it is a

product of the following three non-negative decreasing functions:

1. FCt(m): This is decreasing in t, since Ct is stochastically decreasing in t based on Lemma
A.5 and that C is IFR by Assumption 2.5.

2. FAt+m(k): This is decreasing in t, since At+m is stochastically decreasing in t based on
Lemma A.5 and that A is IFR by Assumption 2.5.

3. qa − qc + qcECt+m+k

[
rCt(m+ k)− rAt(m+ k)

]
:

� non-negative: We have that qa ≥ qc by Assumption 2.8. Also, rCt(m + k) ≥
rAt(m+ k) based on Lemma A.7 (which requires Assumptions 2.3-2.5).

� decreasing: ECt+m+k is decreasing in t, because Ct+m+k is stochastically decreasing
in t by Lemma A.5 and the fact that C is IFR by Assumption 2.5. Also, rCt(m +
k)− rAt(m+ k) is decreasing in t based on Lemma A.7.

Using the same logic, we can show that ∂
∂kw(t,m, k) is decreasing in m.

�

Lemma A.10. Suppose Assumptions 2.2-2.6 and 2.8. For any NF , we have v(NF, 1, t, 0) −
vπ0(., ., t) is decreasing in t.

Proof. Choose t1 ≤ t2, arbitrarily. We have that ∀m : ∂
∂k [w(t2,m, k)−w(t1,m, k)] ≤ 0 by the

linearity of the differential operator and Lemma A.9 (which requires Assumptions 2.2-2.5 and
2.8). This implies that

∀k,m : w(t2,m, k)− w(t1,m, k) ≤ w(t2,m, 0)− w(t1,m, 0).

But by Equation A.3 we have: ∀m, t : w(t,m, 0) = vπ0(., ., t). Thus,

∀k,m : w(t2,m, k)− w(t1,m, k) ≤ vπ0(., ., t2)− vπ0(., ., t1).

Taking expectation from both sides with respect to M,K|NF and Equation A.2 gives us:

v(NF, 1, t2, 0)− v(NF, 1, t1, 0) ≤ vπ0(., ., t2)− vπ0(., ., t1).

Note that taking expectation is justified based on Assumption 2.6. By rearranging the terms
in the above inequality, we obtain the desired result. �
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Proof of Theorem 2.2. This result is in fact a corollary to Lemma A.10. By assuming
d = 0, M = 0, and K = ∞ with probability 1, we obtain v(NF, 1, t, 0) = qAEAt. Since
vπ0(., ., t) = qCECt by definition, we have that qAE[At]− qCE[Ct] is decreasing in t. The result
then follows by assuming qA = qC = 1. �

Proposition A.1 (Existence of Threshold Policies for n = 1). Assume n = 1 and fix NF ,
arbitrarily. Under Assumptions 2.2-2.6 and 2.8, there exists a threshold policy τ∗(NF ) that
maximizes the QALE of the patient.

Proof. Fix t, and NF , arbitrarily. Assume that we plan the surgery at t+ y. By Lemma A.8,
we have:

v(NF, 1, t, y) = FCt(y)

[
v(NF, 1, t+ y, 0)− vπ0(., ., t+ y)

]
+ vπ0(., ., t)

For this decision to be an optimal action, it is necessary that surgery at t+ y is no worse than
the no-AVF policy, i.e., v(NF, 1, t+ y, 0) ≥ vπ0(., ., t+ y).
Since v(NF, 1, t + y, 0) − vπ0(., ., t + y) is decreasing in y by Lemma A.10 (which requires
Assumptions 2.2-2.6 and 2.8), and FCt(y) is decreasing in y, then v(NF, 1, t, y) is decreasing in
y for all y that satisfy the necessary condition. Thus, the optimal action is to perform surgery
at t if v(NF, 1, t, 0) ≥ vπ0(., ., t), and no surgeries, if otherwise.

Now, we form the policy τ∗ as follows based on whether v(NF, 1, 0, 0) ≤ vπ0(., ., 0) or not.

� v(NF, 1, 0, 0) ≤ vπ0(., ., 0): we have that for ∀t : v(NF, 1, 0, 0) ≤ vπ0(., ., 0), since
v(NF, 1, t, 0) − vπ0(., ., t) is decreasing in t by Lemma A.10. As a result, the no AVF
surgery (i.e., “CVC forever”) is optimal for all t. Choose τ∗(NF ) = 0 in this case.

� v(NF, 1, 0, 0) > vπ0(., ., 0): we have that ∃t′ ≤ ∞ such that for t < t′, we have v(NF, 1, 0, 0) >
vπ0(., ., 0), and v(NF, 1, 0, 0) ≤ vπ0(., ., 0) for t ≥ t′ because v(NF, 1, t, 0) − vπ0(., ., t) is
decreasing in t. For t < t′, surgery at t is optimal, and for t ≥ t′, the patient should
remain on a CVC, i.e., the no surgery policy is optimal. Choose τ∗(NF ) = t′ in this case.

The policy τ∗(NF ) is optimal for n = 1 by construction. �

Now that we have achieved the first step in proving the optimality of threshold policies,
we prove Theorems 2.4-2.5 and Corollary 2.1 for the special case n = 1. Once we prove the
optimality of τ∗(NF ) for all n in Theorem 2.3, which requires Assumptions 2.1-2.8, these results
also generalize.

Proof of Theorem 2.4 for n = 1. Based on the way we constructed τ∗(NF ; d) in Proposi-
tion A.1, we have:

t ≥ τ∗(NF ; d) ⇐⇒ v(NF, 1, t, 0; d) ≤ vπ0(., ., t). (A.7)
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Define dcr(NT, t) as follows:

dcr(NF, t) := EM,K|NF [w(t,m, k)]− vπ0(., ., t). (A.8)

Note that by Equation A.2, we have:

dcr(NF, t) = d+ v(NF, 1, t, 0)− vπ0(., ., t). (A.9)

By Equation A.7 and the above equality, we have:

t ≥ τ∗(NF ) ⇐⇒ dcr(NF, t) ≤ d (A.10)

Thus, dcr(NF, t) is indeed a critical value for AVF creation disutility in determining the optimal
decision. �

Proof of Theorem 2.5 for n = 1. We have:

dcr(NF, t) = P[K = 0|NF ]EM [w(t,m, 0)] + P[K > 0|NF ]EM,Z [w(t,m, z)]− vπ0(., ., t) (A.11)

= P[K = 0|NF ]vπ0(., ., t) + P[K > 0|NF ]EM,Z [w(t,m, z)]− vπ0(., ., t) (A.12)

= P[B = 1|NF ]
(
EM,Z [w(t,m, z)]− vπ0(., ., t)

)
, (A.13)

where Equation A.11 follows from the definition of dcr(NF, t) in Equation A.8, the law of total
probability and definitions of K and Z, Equation A.12 follows from Equation A.11 by using
the fact vπ0(., ., t) = w(t,m, 0) (see Equation A.3), and Equation A.13 follows from Equation
A.12 by rearranging terms. �

Note that we can use Equation A.13 to numerically calculate the critical disutility by
calculating EM,Z [w(t,m, z)], either by Monte-Carlo simulation or analytically, and vπ0(., ., t)
using the equality vπ0(., ., t) = qcECt.

Proof of Corollary 2.1 for n = 1.
By Equation A.13, we have dcr(NF, t) = P[B = 1|NF ]

(
EM,Z [w(t,m, z)] − vπ0(., ., t)

)
. By

Assumption 2.7, the AVF surgery success probability is decreasing in NF . Therefore, we have
that the critical disutility is decreasing in NF for any t.

Choose NF1 ≤ NF2, arbitrarily. Let ti = τ∗(NFi) for i = 1, 2. By Equation A.10, we
have dcr(NF1, t1) ≥ d (substitute t1 for t and NF1 for NF ). Since the critical disutility is
decreasing in NF for any t, we have dcr(NF2, t1) ≤ d, as well. By Equation A.10, we have
t2 ≤ t1 (substitute t2 for t and NF2 for NF ). �

Before proving Theorem 2.3, we show the following property for τ∗.

Proposition A.2. For τ∗, we have:

1. ∀n,NF, t : vτ∗(NF, n, t) ≥ vπ0(., ., t),
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2. ∀n,NF : vτ∗(NF, n, t)− vπ0(., ., t) is decreasing in t.

Proof. Fix NF , arbitrarily. We prove the result by induction on n as follows:

� n = 1: We have:

vτ∗(NF, 1, t)− vπ0(., ., t) =

{
v(NF, 1, t, 0)− vπ0(., ., t) : t < τ(NF )

0 : o.w.

The function is decreasing for t < τ(NF ) by Lemma A.10, and for t ≥ τ(NF ) trivially.
It suffices to have that vτ∗(NF, 1, t) ≥ vπ0(., ., t), which follows from the fact that τ∗ is
optimal for n = 1.

� Assume the result holds for n = 1, . . . , l. We prove that it holds for n = l + 1.

For t ≥ τ∗(NF ), we have vτ∗(NF, l + 1, t) = vπ0(., ., t), since the two policies coincide.
For t < τ∗(NF ), fix M = m, and K = k for the current AVF chance, arbitrarily. The
result generalizes by taking expectation. Let t′ = t+m+ k and NF ′ = NF + 1, if k = 0,
and NF ′ = NF , otherwise. We have:

vτ∗(NF, l + 1, t)− vτ∗(NF, 1, t) = S(t, t′)
[
vτ∗(NF ′, l, t′)− vπ0(., ., t′)

]
. (A.14)

where S(t, t′) represent the probability of survival of the patient until time t′. We can
explain Equation A.14 as follows. The difference, in terms of QALE, between the states
(NF, l + 1, t) and (NF, 1, t) under the policy τ∗ does not start until t′, which is realized
only if the patient survives until t′ with probability S(t, t′). At t′, the patient receives
vτ∗(NF ′, l, t′) for the case we start by l + 1 AVF chances, whereas for the case we start
by one AVF chance, the patient switches to a CVC forever at t′ and receives vπ0(., ., t′).
Therefore, we have

vτ∗(NF, l + 1, t) ≥ vτ∗(NF, 1, t) ≥ vπ0(., ., t),

where the first inequality results from Equation A.14 and that vτ∗(NF ′, l, t′) ≥ vπ0(., ., t′)
by induction assumption, and the second inequality results from induction basis. This
proves the first property.

Since vτ∗(NF, 1, t) − vπ0(., ., t) is decreasing in t, in order to prove the second property,
it suffices to prove that the right-hand side of Equation A.14 is decreasing in t. We prove
it by showing that it is the product of the following two non-negative and decreasing
functions:

1. S(t′, t): The probability is non-negative by definition. First we compute S(t′, t) as
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follows:

S(t, t′) =P[Ct > m,At+m > k] = P[Ct > m]P[At+m > k|Ct > m]

= FCt(m)FAt+m(k),

where the last equality follows from Assumption 2.2. Both FCt(m) and FAt+m(k)
are decreasing in t because At+x and Ct+x are stochastically decreasing in t, for any
x ≥ 0 by Lemmas A.5 and A.7.

2. vτ∗(NF ′, l, t′)− vπ0(., ., t′): This term is non-negative and decreasing in t using the
induction assumption.

�

Proof of Theorem 2.3. We prove the optimality of τ∗(NF ) formed in Proposition A.1 by
induction on n. Note that Proposition A.1 required Assumptions 2.2-2.6 and 2.8. The proof
additionally requires Assumption 2.7 to use Corollary 2.1 and Assumption 2.1 regarding decision
points in the model.

� n = 1: The policy is optimal for n = 1 by construction.

� Assume the optimality of τ∗(NF ) for n = 1, . . . , l. We prove it for n = l + 1.
Fix NF , arbitrarily. We prove the optimality of τ∗ based on whether t ≥ τ∗(NF ) or not
as follows.

→ t ≥ τ∗(NF ): The policy suggests no more surgeries. We argue its optimality as
follows.
We argue that the last l AVF chances will not be used. Note that these AVFs’
possible use time will be at some t′ ≥ t and for some NF ′ ≥ NF . Since τ∗ is
optimal for n ≤ l, τ∗(NF ′) ≥ τ∗(NF ) (by Corollary 2.1), and that t′ ≥ t ≥
τ∗(NF ) ≥ τ∗(NF ′), these AVF chances will not be used . Thus, we are left with
one AVF chance. Similarly, we should not use that chance, either. Thus, the no
surgery decision is optimal in this case.

→ t < τ∗(NF ): The policy suggests surgery at t. We argue that it is optimal as
follows.
Assume the surgery is planned at t′ := t + y. Note that no surgeries should be
performed later than τ∗(NF ) (using the logic explained in the first case). Thus, we
restrict our attention to t′ < τ∗(NF ). For all such t′, we have that v(NF, n, t′, 0) =
vτ∗(NF, n, t′), based on the induction assumption. By this equality and Lemma A.8,
we have

v(NF, n, t, y) = FCt(y)

[
vτ∗(NF, n, t+ y)− vπ0(., ., t+ y)

]
+ vπ0(., ., t)
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We conclude the proof by showing v(NF, n, t, y) is decreasing in y. Since FCt(y) is
decreasing in y and non-negative, it suffices to have that vτ∗(NF, n, t+y)−vπ0(., ., t+
y) is non-negative and decreasing in y which holds by Proposition A.2, respectively.

�

Proof of Proposition 2.1. Fix NF , arbitrarily. Based on the way the optimal policy is
formed in Proposition A.1, we have that for all t ∈ (0, τ∗(NF )), v(NF, 1, t, 0) > vπ0(., ., t) and
for all t ∈ [τ∗(NF ), tmax], we have v(NF, 1, t, 0) ≤ vπ0(., ., t). Since v(NF, 1, t, 0)− vπ0(., ., t) is
a decreasing continuous function, we can find τ∗(NF ) using a binary search over [0, tmax]. �

Proof of Corollary 2.2. By Equation A.9 and Lemma A.10, we have that dcr(NF, t) is de-
creasing in t. The result then directly follows Equation A.10. �

A.2.3 Proofs of Theorems 2.6, 2.7:

Proof of Theorem 2.6. Fix Ψ = ψ arbitrarily. The result generalizes using Lemma A.2. Let
LT (y) and L(y) be a patient’s residual lifetime at t when the AVF surgery is planned at y
with and without a potential transplant at t = ψ, respectively. We prove that FLT(y)(a) is
decreasing in y for any a. Let Tr(ψ) be the patient’s residual lifetime on transplant at ψ. We
have:

FLT(y)(a) =

{
FL(y)(a) : a ≤ ψ (A.15a)

FL(y)(ψ)FTr(ψ)(a− ψ) : o.w. (A.15b)

Equation A.15a follows from the fact that transplant benefits a patient’s survival after the
transplant, and Equation A.15b follows our assumption that the lifetime of a patient on trans-
plant does not depend on HD history. The result then follows by Theorem 2.1, which indicates
that FL(y)(x) is decreasing in y. �

We use Lemma A.11 to prove Theorem 2.7.

Lemma A.11. Consider the random variable Y , a function of the continuous random variable
X, defined for X = x as follows:

Y (x) =

{
g(x) : x ≤ θ;
g(θ) + U : x > θ.

where g is a linear function. Then, we have EY (X) = Eg(X) + FX(θ)[U − Eg(Xθ)]
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Proof. We have

E[Y (X)− g(X)] = FX(θ)E[Y (X)− g(X)
∣∣X > θ] = FX(θ)E[U + g(θ)− g(θ +Xθ)], (A.16)

= FX(θ)E[U + g(θ)− g(θ)− g(Xθ)] = FX(θ)E[U − g(Xθ)], (A.17)

where the first equality in Equation A.16 follows the total law of probability and the fact
that Y = g for X ≤ θ, the second equality follows using the definition of Y and the identity
X|X > θ = Xθ + θ, and finally the first equality in Equation A.17 follows by the linearity of
g. �

Proof of Theorem 2.7. In order to prove the theorem, we only show that Lemma A.10
holds under the extended model as well. The rest of the proof follows similar steps taken for
Proposition A.1 and Theorem 2.3, which require Assumptions 2.1-2.8.

Let ν(NF, 1, t, 0) and νπ0(., ., t) be the equivalents of v(NF, 1, t, 0) and vπ0(., ., t), respec-
tively, under the model with the transplant option. Since monotonicity preserves under expec-
tation, it suffices to prove the result under all possible scenarios (i.e., we use a sample path
argument). Under the scenario where the transplant is canceled, we have v(.) = ν(.) and thus
the result follows using Lemma A.10. Now we consider the case of no cancellation. If the AVF
does not mature, we have ν(NF, 1, t, 0) − νπ0(., ., t) = −d, as the only difference in QALE is
the AVF creation disutility. It remains to prove the result for the case of a successful AVF
creation.

Fix M = m arbitrarily. Let t′ := t+m be the time of switching to the matured AVF, and
U be the lump-sum QALE the patient receives from transplant. Using Lemma A.11 and by
considering g(x) = qAx, X = At′ , and θ = ψ− t′, we can show that the QALE residual at t′ for
a patient who is on an AVF from t′ until transplant equals qAEAt′ + FAt′ (ψ− t

′)(U − qAEAψ).
Similarly, we can show that the QALE residual at t′ for a patient on the CVC equals qCECt′ +
FCt′ (ψ − t

′)(U − qCECψ).
We can calculate ν(NF, 1, t, 0)− νπ0(., ., t) as follows:

ν(NF, 1, t, 0)− νπ0(., ., t) =FCt(m)

[{
qAEAt′ + FAt′ (ψ − t

′)(U − qAEAψ)
}
−{

qCECt′ + FCt′ (ψ − t
′)(U − qCECψ)

}]
− d (A.18)

Equation A.18 can be explained as follows. The patient experiences a QALE difference starting
from t′ (AVF maturation time), but only if she survives until then. Therefore the QALE
difference after t′ is discounted by FCt(m). Since FCt(m) is decreasing in t (see the proof of
Lemma A.9), it suffices to prove that the term in the brackets, henceforth denoted by ∆, is
non-negative and decreasing in t (or equivalently t′). By rearranging terms, we obtain :

∆ =
[
qAEAt′ − qCECt′

]
+
[
FCt′ (ψ − t

′)qCECψ − FAt′ (ψ − t
′)qAEAψ

]
+ U

[
FAt′ (ψ − t

′)− FCt′ (ψ − t
′)
]
.
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We have:

∆ ≥
[
qAEAt′ − qCECt′

]
+
[
FCt′ (ψ − t

′)qCECψ − FAt′ (ψ − t
′)qAEAψ

]
≥
[
qAEAt′ − qCECt′

]
+ FAt′ (ψ − t

′)
[
qCECψ − qAEAψ

]
≥ 0.

where the first inequality follows since U ≥ 0 and FAt′ (ψ− t
′) ≥ FCt′ (ψ− t

′) as a consequence

of Lemma A.7, and the second inequality follows because again FAt′ (ψ−t
′) ≥ FCt′ (ψ−t

′). We

have qAEAt′ − qCECt′ ≥ FAt′ (ψ − t
′)
[
qAEAψ − qCECψ

]
and thus the last inequality, because

based on Theorem 2.2, qAEAt − qCECt is decreasing in t, t′ ≤ ψ, and FAt′ (ψ − t
′) ≤ 1.

Finally, by rearranging terms in ∆, we can show that it equals the sum of the following
decreasing functions:

� qAEAt′ − qCECt′ : This term is decreasing based on Theorem 2.2.

� −FCt′ (ψ− t
′)
[
qAEAψ−qCECψ

]
: Since FC(t′) is decreasing and −FCt′ (ψ− t

′) = −FC(ψ)

FC(t′)

by definition, we have that −FCt′ (ψ−t
′) is decreasing. Since Cψ ≤st Aψ based on Lemma

A.7, then using Assumption 2.8 we can show that qAEAψ ≥ qCECψ. Therefore, the term

−FCt′ (ψ − t
′)
[
qAEAψ − qCECψ

]
is decreasing.

�
[
FAt′ (ψ − t

′) − FCt′ (ψ − t
′)
]
(U − qAEAψ): This term is decreasing because FAt′ (ψ −

t′)−FCt′ (ψ − t
′) is decreasing based on the theorem assumption, and U ≥ qAEAψ since

we assume that a patient’s residual QALE on transplant is higher than on HD.

�
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Chapter 4 Mathematical Proofs

B.1 General Results

Lemma B.1. If v(x) increases with x, we have Ev(X) ≤ Ev(Y ), for any X ≤st Y .

Proof. See Theorem 2.2.5. in [102]. �

Lemma B.2. Assume an increasing function f and independent random variables Xi, Yi with
Xi ≤st Yi. We have f(X1, . . . , Xn) ≤st f(Y1, . . . , Yn).

Lemma B.3. The random vectors X and Y satisfy X ≤st Y if, and only if, there exist two
random vectors X̂ and Ŷ , defined on the same probability space, such that X̂ =st X and
Ŷ =st Y , and we have X̂ ≤ Ŷ with probability 1.

Proof. See Theorem 6.B.1. in [98]. �

Lemma B.4. LetX1, X2, . . . , Xm be a set of independent random variables and let Y1, Y2, . . . , Ym
be another set of independent random variables. If Xi ≤st Yi for i = 1, . . . ,m, then for any
increasing function ψ : Rm → R, one has ψ(X1, . . . , Xm) ≤st ψ(Y1, . . . , Ym). In particular,∑
Xi ≤st

∑
Yi.

Proof. See Theorem 1.A.3. in [98]. �

Lemma B.5. Let X, Y be two random variables such that for all realizations of the random
variable Z, we have [X|Z = z] ≤st [Y |Z = z]. Then, X ≤st Y .

Proof. See Theorem 1.2.15 in [100]. �

Lemma B.6. Let Xa be a family of real-valued random variables parametrized by a ∈ R such
that Xa ≤st Xa′ whenever a ≤ a′. Then, we have XZ ≤st XY whenever Z ≤st Y .

Proof. By Lemma B.3, there exist random variables Ỹ and Z̃ defined on the same sample
space such that Ỹ =st Y , Z̃ =st Z, and Z̃ ≤ Ỹ with probability 1. We also have XZ̃ ≤st XỸ

since Xa increases in a in the usual stochastic order and Z̃ ≤ Ỹ with probability 1. Therefore,
we have XZ =st XZ̃ ≤st XỸ =st XY , and thus the result. �
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B.2 Analytical Results

B.2.1 Proofs of Results in Section 4.2:

Proof of Proposition 4.1.
We prove the result by induction on t. For t = T + 1, we have vt(x) = R(x). Therefore, the
induction basis holds by assumption (b). We now show that the result holds for t, if it hold for
t+ 1. Let a∗ be an optimal action under state x at t. Consider any state x′ ≥ x. We have:

vt(x) = ra∗t (x) + βEvt+1(x̃
a∗
t (x))

≤ ra∗t (x′) + βEvt+1(x̃
a∗
t (x))

≤ ra∗t (x′) + βEvt+1(x̃
a∗
t (x′))

≤ max
a∈A

{
rat (x′) + βEvt+1(x̃

a
t (x
′))
}

= vt(x
′),

where the first inequality follows by assumption (a), the second inequality follows since vt+1(x)
increases with x (by induction assumption) and x̃a

∗
t (x) ≤st x̃a

∗
t (x′) (assumption (c)). �

In what follows, define function ∆t(x) for any optimal stopping problem by

∆t(x) := rt(x) + βEvt+1(x̃t(x))−Rt(x).

Note that in period t stopping is optimal at x if and only if we have ∆t(x) ≤ 0 (for maximization
problems).

Proof of Proposition 4.3:
Let ∆i

t(x) be the ∆t(x) function for problem i, i.e., let

∆i
t(x) := rit(x) + βEvit+1(x̃

i
t(x))−Rit(x).

We can show that it suffices to prove that ∆1
t (x) ≤ ∆2

t (x) as follows. Assume that stopping
is optimal for problem 2 at x in period t, i.e., we have ∆2

t (x) ≤ 0. We then have ∆1
t (x) ≤

∆2
t (x) ≤ 0, and therefore, stopping is optimal for problem 1 as well.

We now show that ∆1
t (x) ≤ ∆2

t (x). For t = T , we have ∆i
t(x) = δit(x) by the definition of

one-step benefit function. Therefore, the induction basis holds by assumption (a). As shown
in [99], we can show that ∆t(x) = δt(x) + βEmax[0,∆t+1(x̃t(x))] as follows.

∆t(x) =rt(x) + Evt+1(x̃t(x))−Rt(x)

=rt(x)−Rt(x) + Emax[rt+1(x̃t(x)) + Evt+2(x̃t+1(x̃t(x))), Rt+1(x̃t(x))] (B.1)

=rt(x)−Rt(x) + Emax[Rt+1(x̃t(x)) + ∆t+1(x̃t(x)), Rt+1(x̃t(x))] (B.2)

=rt(x)−Rt(x) + ERt+1(x̃t(x)) + Emax[∆t+1(x̃t(x)), 0] (B.3)

=δt(x) + βEmax[0,∆t+1(x̃t(x))]. (B.4)
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where the Eq. B.1 follows the definition of vt+1(.), Eq. B.2 follows by the definition of ∆t+1(.),
Eq. B.3 follows by re-arranging terms, and Eq. B.4 follows by the definition of δt+1(.).

Therefore, we have:

∆1
t (x) = δ1t (x) + Emax[0,∆1

t+1(x̃
1
t (x))]

≤ δ2t (x) + Emax[∆1
t+1(x̃

1
t (x)), 0]

≤ δ2t (x) + Emax[∆2
t+1(x̃

2
t (x)), 0] = ∆2

t (x),

where the first inequality follows since δ1t (x) ≤ δ2t (x) (assumption (a)), and the second inequal-
ity follows since ∆1

t+1(x) ≤ ∆2
t+1(x) for any x (by induction assumption), and x̃1t (x) =st x̃

2
t (x)

for any x (assumption (b)). �

Proof of Proposition 4.4:
It suffices to show that ∆t(x) increases in xi. By the definitions of ∆t and σt we have:

∆t(x) = σt(x) + βEvt+1(x̃t(x)).

The first term is increasing in xi by assumption (c). The second term increases with xi by the
definition of stochastic order of random vectors since vt+1 increases with x (assumption (b))
and x̃t(x) increases with xi in the usual stochastic order (assumption (a)). �

B.2.2 Proof of Results in Section 4.3

Proof of Lemma 4.1. By re-arranging terms in Eq. 4.1, we obtain:

Ba(d, p) =
[
1 +

1− p
p

faw(d)

fab (d)

]−1
.

Since
1− p
p

decreases with p and
faw(d)

fab (d)
increases with d by the definition of the MLR order,

the result follows. �

We use the following lemma to prove Lemma 4.2.

Lemma B.7. Assume that we have γab ≤st γaw, for action a. Then, γap decreases in p in the
usual stochastic order.

Proof. We have fp = pfab + (1− p)faw. Therefore, P[γap ≤ x] = pP[γab ≤ x] + (1− p)P[γaw ≤ x].
Since by assumption P[γaw ≤ x] ≤ P[γab ≤ x], we have that P[γap ≤ x] increase with p, and
therefore, the result follows. �

Proof of Lemma 4.2. We show that x̃a(e, p) stochastically increases with e and p as follows.
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� x̃a(e, p) ≤st x̃a(e, p′) for p ≤ p′.
Since the MLR order implies the usual stochastic order, we have γab ≤st γaw. Therefore by
Lemma B.7, we have that γap decreases with p in the usual stochastic order. By Lemma
B.3, there exist random variables γ and γ′ defined on the same probability space such
that γ =st γ

a
p , γ′ =st γ

a
p′ , and γ′ ≤ γ with probability 1. Therefore, we have that the

following holds with probability 1:

[e− γ,Ba(γ, p)] ≤ [e− γ′,Ba(γ′, p)] ≤ [e− γ′,Ba(γ′, p′)], (B.5)

where the first and second inequalities hold since Ba(d, p) decreases with d and increases
with p by Lemma 4.1.

Since x̃a(e, p) =st [e − γ,Ba(γ, p)] and x̃a(e, p′) =st [e − γ′,Ba(γ′, p′)], the result follows
by Lemma B.3 and Eq. B.5.

� x̃a(e, p) ≤st x̃a(e′, p) for e ≤ e′.
We have the following:

x̃a(e, p) =st [e− γap ,Ba(γap , p)] ≤ [e′ − γap ,Ba(γap , p)] =st x̃
a(e′, p). (B.6)

where the inequality holds with probability 1. Therefore, the result follows by Lemma
B.3.

�

Proof of Proposition 4.5. We use Proposition 4.1 to show the result. By Lemma 4.2 and
assumption (c), we have x̃a(e, p) ≤st x̃a(e′, p′), and hence assumption (c) of Proposition 4.1
holds. We have ra(e, p) = prab (e)+(1−p)raw(e). Since rm(e) increases with m and e (assumption
(a)), we have ra(e, p) increases with (e, p), and hence assumption (a) of Proposition 4.1 holds.
Similarly using assumption (b), we can show that assumption (b) of Proposition 4.1 holds, and
the result follows. �

Proof of Proposition 4.6. We use Proposition 4.4 to prove the result. By Lemma 4.2 we
have x̃(e, p) increases with e and p in the usual stochastic order. Therefore, assumption (a)
of Proposition 4.4 holds. Also, by Proposition 4.5 and assumptions (a,b,c), the value function
increases with (e, p). Therefore, assumption (b) of Proposition 4.4 holds. We have:

σ(e, p) = pσb(e) + (1− p)σw(e)

Therefore, σ(e, p) increases with p and e by assumption (d), and thus, assumption (c) of
Proposition 4.4 holds. �

Proof of Proposition 4.7. We use Proposition 4.2 to prove the result. By Lemma 4.2 we
have x̃(e, p) increases with e and p in the usual stochastic order. Therefore, assumption (b) of
Proposition 4.2 holds.
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It remains to show that assumption (a) of Proposition 4.2 holds. To that end, it suffices
to show that δ(e, p) = pδb(e) + (1− p)δw(e), since then we have δ(e, p) increases with p and e
since δm(e) increases with m and e (assumption (a)).

Let [πw(d, p), πb(d, p)] = [1−B(d, p),B(d, p)] and [πw, πb] = [1− p, p] be posterior and prior
belief vectors. We have:

δ(e, p) = r(e, p) + Eγp [R(e− γp,B(γp, p))]−R(e, p) (B.7)

=
∑
m=w,b

πmrm(e) + Eγp
[ ∑
m=w,b

πm(γp, p)Rm(e− γp)
]
−
∑
m=w,b

πmRm(e) (B.8)

=
∑
m=w,b

πm[rm(e)−Rm(e)] + Eγp
[ ∑
m=w,b

πm(γp, p)Rm(e− γp)
]

(B.9)

=
∑
m=w,b

πm[rm(e)−Rm(e)] +

∫ [ ∑
m=w,b

πmfm(x)

fp(x)
Rm(e− x)fp(x)

]
dx (B.10)

=
∑
m=w,b

πm[rm(e)−Rm(e)] +

∫ [ ∑
m=w,b

πmfm(x)Rm(e− x)
]
dx (B.11)

=
∑
m=w,b

πm[rm(e)−Rm(e)] +
∑
m=w,b

πm

∫
fm(x)Rm(e− x)dx (B.12)

=
∑
m=w,b

πm[rm(e)−Rm(e)] +
∑
m=w,b

πmERm(e− γm) (B.13)

=
∑
m=w,b

πmδm(e), (B.14)

where Eq. B.7 and Eq. B.8 follow by the definition of δ(x), Eq. B.9 follows by re-arranging
terms, Eq. B.10 follows by the definition of the posterior belief, Eq. B.11 follows by re-
arranging terms, Eq. B.12 follows by exchanging the order of expectation and summation,
Eq. B.13 follows by the definition of expectation, and Eq. B.14 follows by the definition of
δm(s). �

Proof of Proposition 4.8. We have:

δw(e) = rw(e) + ERw(e− γw)−Rw(e) = rb(e) + ERb(e− γw)−Rb(e)
≤ rb(e) + ERb(e− γb)−Rb(e) = δb(e),

where the first and last equality follow the definition of δ, the second equality follows assumption
(a,b), and the inequality follows by Lemma B.1 since Rb(e) increases with e, and e−γw ≤st e−γb
(assumption (c)). �
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B.2.3 Proof of Results in Section 4.4:

In what follows let δm(e) be the one-step benefit function for patient type m at health state e,
i.e., let δm(e) := Edm(e− γm)− dm(e). In Lemma B.9, we show that under the assumptions of
Proposition 4.9, δm(e) decreases with e and m. We use Lemma B.8 to prove Lemma B.9.

Lemma B.8. Tme increases with e and m in the usual stochastic order, whenever γb ≤st γw.

Proof. We need to show that P[Tme ≤ t] decreases with e and m. Let γim be i.i.d. samples
from γm. By definition we have:

P[Tme ≤ t] = P
[ t∑
i=1

γim ≥ e− ed
]
.

It is trivial that P[Tme ≤ t] decreases with e. By Lemma B.4, we have that γb ≤st γw implies∑t
i=1 γ

i
b ≤st

∑t
i=1 γ

i
w. Therefore, P[Tme ≤ t] decreases with m, as well. �

Lemma B.9. Assume:
(a) γb ≤r γw,
(b) Function c is convex.

then, δm(e) decreases with e and m.

Proof. Let e′ be the eGFR value in the subsequent period when the eGFR is currently at e
and the decision is to continue, i.e., let e′ := e− γm. Also, define L′ as a random variable that
is smaller than L (the lead time until the AVF is ready) by one month, i.e., let L′ := L − 1.
Recall that L− Tme represents the difference between the time an AVF becomes available and
when HD commences. We have L − Tme =st L

′ − Tme′ , since after one month, the eGFR has
transitioned from e to e′, and thus we have Tme′ until HD starts, and one month of the AVF
preparation has passed. Therefore, we have dm(e) = Ec(L′− Tme′ ). Let g(x) := c(x)− c(x− 1).
We have:

δm(e) = Edm(e− γm)− dm(e) = Ec(L− Tme−γm)− Ec(L− 1− Tme−γm)

= Eg(L− Tme−γm), (B.15)

where the first follows by the definition of δ, the second equality follows by the definition of
dm(e) and the observation above that L − Tme =st L

′ − Tme′ , and the last equality follows by
the definition of g. Since the MLR order implies the usual stochastic order, by assumption
(a) we have γb ≤st γw, and therefore by Lemma B.8, Tme increases with e and m in the usual
stochastic order. Also, since c is convex (assumption (b)), g increases with x.

We now prove the claim:
→ Monotonicity in e:

Choose e ≤ e′ arbitrarily. Since Tme increases with e in the usual stochastic order, we
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have:

[Tme−γm |γm = d] ≤st [Tme′−γm |γm = d].

By Lemma B.5 , we have Tme−γm ≤st T
m
e′−γm . Therefore,

δm(e) = Eg(L− Tme−γm) ≥ Eg(L− Tme′−γm) = δm(e′),

where the inequality follows by Lemma B.1 since L−Tme−γm ≥st L−T
m
e′−γm , and g increases

with x.
→ Monotonicity in m:

We first show Twe−γw ≤st T
b
e−γb as follow. Since Tme increases with e in the usual stochastic

order, and γb ≤st γw, we obtain that T be−γw ≤st T
b
e−γb by Lemma B.6. Since for any e,

Twe ≤st T be , we have:

[Twe−γw |γw = d] ≤st [T be−γw |γw = d].

Therefore, by Lemma B.5, we have Twe−γw ≤st T
b
e−γw , and as a result, Twe−γw ≤st T

b
e−γb .

We have:

δb(e) = Eg(L− T be−γb) ≤ Eg(L− Twe−γw) = δw(e),

where the inequality follows by Lemma B.1 since L−Twe−γw ≥st L−T
b
e−γb , and g increases

with x.
�

We now prove Proposition 4.9.

Proof of Proposition 4.9.
By Lemma B.9 and assumptions (a,b), we have that δm(e) decreases with e and m. Therefore,
the result follows the infinite-horizon, cost minimization version of Proposition 4.7. �

Proof of Proposition 4.10.
We use the infinite horizon version of Proposition 4.3 to show the result. Let δi(e, p) be the
one-step benefit function for problem i. Since x̃1(e, p) = x̃2(e, p) by assumption, it suffices
to show that δ1(e, p) ≤ δ2(e, p). In the proof of proposition 4.7, we show that δi(e, p) =
pδib(e) + (1− p)δiw(e). Therefore, it suffices to show that δ1m(e) ≤ δ2m(e). By Eq. B.15, we have
δim(e) = Eg(Li − Tme−γm) for some increasing function g. We have:

δ1m(e) = Eg(L1 − Tme−γm) ≤ Eg(L2 − Tme−γm) = δ2m(e),

where the inequality follows by Lemma B.1 since g is increasing and L1 ≤st L2. �
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