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Abstract

In this thesis I present my work on building a set of magnetic coils for the purpose of performing nuclear magnetic

resonance (NMR) on Boltzmann polarized protons in water, and on hyperpolarized 129Xe. The coils were designed

to be used as a method for testing the degree of polarization achieved in 129Xe, and for testing the capability of an

in-house developed continuous wave (CW) ultraviolet (UV) laser to drive a 2-photon transition in 129Xe. This laser

will be used to measure the precession frequency of 129Xe in a magnetic field, in order to precisely measure the

magnitude of that field.

This work is being done for the ultra-cold neutron (UCN) collaboration’s flagship experiment: to measure the

neutron electric dipole moment (EDM). Previous neutron EDM experiments have only found an upper limit, and have

been limited in precision largely because of systematic errors in the magnetic field strength measurement. These

experiments, such as the one performed at Institut Laue-Langevin (ILL), which has given us the current lowest limit,

used 199Hg as a co-magnetometer. The UCN EDM experiment will add 129Xe in addition to the 199Hg, to make a

dual co-magnetometer. By using multiple species of atoms in the measurement, systematic effects can be greatly

reduced.

I have characterized the coils that I built by performing NMR on protons in water. I measured the inhomogeneity

in the B0 field, across the sample container, to be 18.9±0.9 µT. It turns out that the homogeneity of the B0 field

can be improved significantly, and it will likely be necessary to do so in order to perform similar experiments on

hyperpolarized 129Xe. I also found the T1 time of water in this setup to be 2.7±0.2 s.
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Preface

This thesis covers some of the research I did for the ultra-cold neutron (UCN) collaboration’s flagship experiment,

which attempts to find a non-zero value for the neutron electric dipole moment (EDM). This work was done under

the supervision of Dr. David Jones and Dr. Kirk Madison at the University of British Columbia (UBC). In this

thesis, there are some brief descriptions of two laser systems that are being built by Emily Altiere, in Chapter 1. A

very similar system is described in detail in her thesis[1]. With permission from Emily, I have used and modified a

figure created by her for my Fig. 1.6. There are also some descriptions of a 129Xe polarizer that is being built by

Eric Miller, in Chapters 1 and 2.

The work described in this thesis focuses on the construction of magnetic coils that will be used to test the

effectiveness of the ultraviolet (UV) lasers, and the degree of 129Xe achieved. The simulations described in Chapter

3 were coded and run by myself, with advice from Dr. Chris Bidinosti and Dr. Jeff Martin from the University of

Winnipeg as to what coil geometries to pursue. The measurements in Chapter 4 were performed by myself.
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Chapter 1

Introduction

1.1 Neutron Electric Dipole Moment (EDM) Experiments

1.1.1 Neutron EDM

The neutron is an electrically neutral particle, but it is made up of three charged quarks (an up quark with charge

+2/3, and two down quarks, each with a charge of -1/3), so there is the possibility of a non-zero electric dipole

moment (EDM). The neutron is also known to have a magnetic dipole moment (MDM)[2], so a non-zero EDM

would result in a violation of both parity (P) and time reversal (T ) symmetry. This can be seen by analyzing the

Hamiltonian of a neutron in a magnetic and electric field.

H = µnB · S
|S|
−dnE · S

|S|
, (1.1)

where µn is the neutron MDM, B the magnetic field it sits in, S/|S| is the direction of the spin vector, dn the neutron

EDM, and E the electric field. Under P reversal, P(B · S) = B · S but P(E · S) = −E · S and under T reversal,

T (B ·S) = −B ·S but T (E ·S) = E ·S [3]. In both cases, the Hamiltonian is not invariant if the neutron has both

a non-zero MDM (µ), and a non-zero EDM (d). Since the neutron is already known to have a non-zero MDM, the

measurement of the neutron EDM is a useful test for fundamental symmetries in the universe. The T violation is of

Figure 1.1: A neutron is made up of 3 charged quarks, an up quark with charge +2/3, and two down quarks,
each with a charge of -1/3. Despite being electrically neutral, there is a possibility for the neutron to have
a non-zero electric dipole moment
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particular interest because under the CPT theorem, it also implies a CP violation. In the standard model, this CP

violation comes from the weak interaction, and it predicts a neutron EDM on the order of 10−32e cm[4]. Models

beyond the standard model, such as supersymmetry theories, have additional sources of CP violation, and predict a

larger neutron EDM. Thus, constraining this value is one test for the validity of these theories[3].

In principle, the method for measuring the neutron EDM is quite simple. A nucleus with nonzero spin, in an

electric and/or magnetic field will precess over time. That is, the direction of the angular momentum of that nucleus

will change. The frequency of this precession is determined by the strength of the electric and magnetic fields as

well as the electric and magnetic dipole moments of the nucleus. To determine the effect from the electric field

alone (and thus the EDM), the precession frequency can be measured with parallel electric and magnetic fields and

then anti-parallel fields. If the magnetic field stays constant, and the electric field is flipped, the change in precession

frequency can be used to calculate the EDM.

The challenge in performing this experiment comes from the scale of the neutron MDM and EDM. The neu-

tron MDM has been measured to be µn = −1.91304272(45)µN, where µN = 1.05155× 10−14e cm is the nuclear

magneton[5]. With the best constraint on the neutron EDM being |dn| < 2.9×10−26e cm[6], this is a difference of

at least 12 orders of magnitude. This massive difference makes the EDM measurement very challenging. It can be

mitigated somewhat by making the magnetic field as small as possible and the electric field as large as possible,

but there are practical constraints that limit this. For example, electric breakdown limits the possible strength of the

electric field, and the ability to shield the experiment from external magnetic fields limits how small the experimen-

tal magnetic field can be. The difference in magnitude between the two terms is still large enough that uncertainties

in the magnitude of the magnetic field term dominate over the entire value of the electric field term. For this reason,

one major goal with current neutron EDM experiments is to reduce uncertainties in the measurement of the magnetic

field strength. I will discuss the method the ultra-cold neutron (UCN) project is planning on using to do so in Section

1.2.

Chapters 1 and 2 will go over some of the theory of how the magnetic field measurement is performed, as

well as some details about the theory of several nuclear magnetic resonance (NMR) techniques and how sources are

polarized. Section 2.7.3 details which techniques are used specifically in the experiments I performed for this thesis.

The time constrained reader may wish to refer to that section to help inform themselves about which theory sections

to concentrate on.

1.1.2 Ramsey’s Method of Separated Oscillating Fields

The neutron EDM is measured using Ramsey’s method of separated oscillating fields. This method involves using a

source of spin polarized neutrons, placed initially in a strong, static magnetic field, B0. The method is shown in Fig.

1.2. The coordinate system is defined such that the z axis is along the B0 field. The spins of the polarized neutrons

are initially spin up, as shown in step a). An RF B1 field, at the frequency of the neutrons’ precession, is then applied

briefly in a π/2 pulse to shift the spin vector of the neutrons into the xy plane, step b). The pulse duration can be

given by the following equation:

tπ/2 =
π

2γB1
, (1.2)
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Figure 1.2: This is a representation of Ramsey’s Method of separated oscillating fields. The top row shows
a Bloch sphere representation of the particle’s spin, and the second the state of the B1 field. This field
provides the π/2 spin flips, and for the method to work, the two flips need to be exactly in phase. The
B1 field is on during the darkened portions of the sine wave, and the grey shows how the phase would
evolve if the field were on. A) Initially the particles are all spin up. B) An RF π/2 pulse, at the frequency
that the particles precess, is applied, flipping the spin into the xy plane. C) The particles’ spin precesses
freely in the static field. D) A second π/2 pulse is applied, in phase with the first. E) If the π/2 pulses
are exactly on resonance, the spin is now in the down state.

where γ is the nucleus’s gyromagnetic ratio, and B1 the strength of the RF field. This is simply the Larmor precession

equation, ω = γB, solved for the time it takes to complete 1/4 of a period. Ideally the B1 field would rotate with

the precessing neutrons, but such a field is very difficult to create. Instead a field oscillating on some axis in the

xy plane is used, with a correction to the field’s strength or duration, according to the rotating wave approximation,

explained in detail in Section 1.1.3.

After the initial π/2 pulse, the neutrons’ spin vectors are aligned on the xy plane, and will be precessing co-

herently around the B0 field, seen in step c) of Fig. 1.2. This coherence will be maintained as long as the field

is homogeneous over the population of the source neutrons. The effects of inhomogeneities will be discussed in

Section 2.4.2. The neutrons are allowed to precess freely for a duration tfp, and are then subject to another π/2

pulse, step d). At this point, if the π/2 pulses were exactly on resonance with the neutron spin precession due to the

B0 field, and were applied for the proper duration, then the entire population will be put into the opposite spin state

from the original, step e). This is because the two Ramsey pulses are in phase with each other, and at resonance,

will also be in phase with the neutron spin. The final spin state is then measured along the z axis. For an out of

resonance pair of Ramsey pulses, the final spin state will be some superposition of the original and opposite spin

state.

In order to precisely measure the resonant frequency, this experiment is done many times in succession, with

the frequency of the B1 field adjusted slightly for each data point. The result of these measurements is a pattern

of fringes, called Ramsey Fringes. A theoretical representation of these fringes is shown in Fig. 1.3. These occur

because there is a strong revival of the original spin state when the neutrons are exactly opposite in phase compared

3



to the second Ramsey pulse at the end of the free precession period. The second pulse then flips the spin back to the

original state, rather than driving it to the opposite state. There are also periodic dips when they are in phase at the

end of the free precession period. If the Ramsey pulse frequency is slightly off-resonant, a π/2 pulse will actually

shift the spin by less than π/2. The final state is then a superposition, with a small amplitude in the original spin

state. These dips get more and more shallow as one moves off resonance. At the resonant frequency, one measures

the strongest signal in spin in the opposite direction. This is the precession frequency of the neutrons in the electric

and magnetic field.

Figure 1.3: The Ramsey fringe pattern resulting from doing repeated measurements using Ramsey’s method
of separated oscillating fields, scanning the B1 frequency across the resonance. In theory, the central dip
will go to zero, and the full population of particles will always return to the original spin state if they are
exactly out of phase at the end of the free precession time.
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1.1.3 Rotating Wave Approximation

Since the spin vector of the neutrons is precessing around the B0 field as this π/2 B1 pulse is being applied, the B1

field cannot simply be a constant field. In the ideal case it would be rotating in the xy plane, at the same frequency

as the Larmor precession of the source atoms around the B0 field. However, it is simple to show, using the rotating

wave approximation, that a field oscillating along the x or y axis can also rotate the neutrons’ spin vectors in the

same way as a rotating field would, up to a shift in the effective field strength, called the Bloch-Siegert Shift.

Consider a B1 field oscillating along the x-axis, which can be defined like so:

B1 = Bcos(ωt)î. (1.3)

This field is shown in Fig. 1.4, panel a). Mathematically, it can also be represented as two counter-rotating waves

instead:

B1 =
B
2
(cos(ωt)î− sin(ωt) ĵ)+

B
2
(cos(ωt)î+ sin(ωt) ĵ), (1.4)

shown in panel b). The total field experienced by the neutrons also includes the B0 field, so the total field can be

written as

Btotal =
B
2
(cos(ωt)î− sin(ωt) ĵ)+

B
2
(cos(ωt)î+ sin(ωt) ĵ)+B0k̂. (1.5)

Now, convert this to a frame rotating at frequency ω ′ in the xy plane. In this frame, the frequencies of the counter-

rotating B1 fields are changed, increasing one and decreasing the other. There is also a correction that has to be

made to the total field when considering the effect of the total field on the neutrons,−ω ′/γ k̂. This correction comes

from how the time derivative of the angular momentum behaves in the rotating frame, see [7] for the mathematical

details.

Brot =
B
2
(cos((ω−ω

′)t)î− sin((ω−ω
′)t) ĵ)+

B
2
(cos((ω +ω

′)t)î+ sin((ω +ω
′)t) ĵ)+(B0−ω

′/γ)k̂. (1.6)

If the rotating frame is chosen to follow the precession of the neutrons, then ω = ω ′. In this frame, one of the

rotating B1 fields is stationary, while the other rotates at 2ω . Also, B0 = ω ′/γ , completely cancelling the field along

the k̂ direction. The total effective field experienced by the neutrons is

Beff =
B
2

î+
B
2
(cos(2ωt)î+ sin(2ωt) ĵ). (1.7)

These two fields are shown in the rotating frame, in Fig. 1.4, in panel c). In this rotating frame, the neutrons will

precess around Beff. This precession is much slower than 2ω , so the quickly rotating part of Beff has little effect.

The precession around Beff is almost entirely from the static part of the field.

The rapidly rotating field does have a small contribution to the neutron precession, called a Bloch-Siegert Shift.

This shift actually manifests itself as a change in precession frequency around the B0 field in the lab frame. The

correction is[8]
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ωBS =
(γB1)

2

2ω
. (1.8)

For the experiments performed in this thesis, this corresponds to a shift of less than one Hz, compared to the

precession frequency of tens of kHz, and so, is completely neglected. In general, this term becomes less and less

relevant as the magnitude of B1 is reduced compared to B0. A full derivation of this shift can be found in a 1955

paper by Ramsey[9], or for the even more general case of an elliptical B1 field, in the original 1940 paper on the

subject by Bloch and Siegert[10].

Figure 1.4: Shown is an oscillating field under the rotating wave approximation. The actual field in the lab
frame is shown in a). It is decomposed into the clockwise and counter-clockwise parts in b). The two
counter-rotating fields are shown in c), in a frame that rotates with one of the fields. That field is then
stationary, while the other rotates at twice the frequency as it does in the lab frame.

1.1.4 Past Neutron EDM Experiments

Early neutron EDM experiments used fast-moving beams of neutrons, so the experiments had to be performed in

very short time scales. The very first experiment was performed by J. H. Smith, E. M. Purcell and N. F. Ramsey, and

used a beam of neutrons at a temperature of about 500 K. They found a neutron EDM of -0.1±2.4×10−20 e cm[11].

At the time, a non-zero neutron EDM was not expected, since there was no reason to believe that time reversal

invariance was violated in the universe. However, CP invariance was found to be violated in 1964, so making more

precise measurements of the neutron EDM became very interesting[12].

There were a number of further experiments done using a hot beam of neutrons until techniques were discovered

to cool neutrons further. Ultra-cold neutrons (UCNs) were used starting in the early 80s[13]. The first result from

an experiment using UCNs was performed at the Leningrad Nuclear Physics Institute, obtaining a result of |dn| <
1.6×10−24 e cm[14]. The neutrons are cooled to about 6 m/s, cold enough to undergo total internal reflection with

the chamber walls. The paper predicts that the neutron EDM measurement can be brought down to about 10−27 e

cm with this technique, by increasing the neutron storage time (the storage time in their experiment was about 5 s).
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There is a limit to this time, however, because neutrons are known to have a mean lifetime of only 880.7±1.3±1.2

s[15].

The current upper limit on the neutron EDM is |dn| < 2.9× 10−26, from a measurement performed at Insti-

tut Laue-Langevin (ILL)[6]. Modern neutron EDM experiments measure the exact magnetic field strength in the

experiment by performing spectroscopy on a co-habitating atomic species, called a co-magnetometer.

1.1.5 Ultracold Neutrons

It was speculated, in the 40s and 50s, that neutrons which were cold enough, would undergo total internal reflec-

tion at any angle of incidence, off of certain types of surfaces, and so could be stored in bottles for their entire

lifetime[16]. This speculation came from the scattering formula deduced and experimentally confirmed, by Enrico

Fermi:

sin(θ)≤
√

V/E (1.9)

where θ is the angle of incidence at which the neutrons undergo total internal reflection, E is the neutron’s energy,

and V ≈ 10−7 eV for many relevant materials, is now known as the material’s ”Fermi potential.”[16] At energies

below V , all angles θ satisfy the inequality. This also corresponds to the neutrons’ de Broglie wavelengths becoming

large compared to the inter-atomic spacing of the material of the walls.

The first neutron EDM experiment to use UCNs was performed in 1980, in the Leningrad Nuclear Physics In-

stitute. There, a Beryllium converter, kept cold by flowing 20 K Helium through it, was used to cool the neutrons

to about a velocity of 6.8 m/s. Despite a neutron flux density of about an order of magnitude lower than previous

experiments done at ILL with a warm neutron beam, at LNPI they were able to significantly reduce the upper limit

on the neutron EDM measurement, to |dn|< 1.6×10−24[14].

1.1.6 Co-Magnetometer

Noise and drifts in the magnetic field strength will be seen in the measurement of the neutron precession frequency,

so to correct for these, it is necessary to carefully monitor the magnetic field during the EDM experiment. In early

experiments, this was done by placing magnetometers around the experimental chamber. Precision was improved by

introducing a magnetometer that co-habitates with the neutrons, a “co-magnetometer”. This has generally been done

using 199Hg, since it interacts little with neutrons and has a well known EDM and MDM. Such a co-magnetometer

(with modifications that will be described in the next section, 1.1.7) will be used in the UCN EDM experiment.

The Ramsey method described in Section 1.1.2 will be used to measure the EDM of the neutron, but a simi-

lar method will also be used to precisely measure the magnetic field the neutrons occupy. The atoms in the co-

magnometer will be polarized along the same axis as the neutrons, and a π/2 flip will also be applied to them.

After this flip, the atoms are allowed to precess freely, and unlike for the neutrons, their precession frequency can

be monitored constantly rather than only at the end of their free precession time, by optical detection, described in

Section 1.2. By using atoms with a well-known EDM and MDM, the magnetic field strength can be calculated from

the measured precession frequency of these atoms. This field measurement is then used to apply corrections to the

neutron precession frequency that was measured.
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1.1.7 Future Experiments

One major constraint on the precision of previous neutron EDM experiments comes from systematic effects from

using 199Hg as a co-magnetometer, such as the ~v× ~E effect. This effect comes about when the 199Hg is moving

in a strong electric field. In its own frame of reference, it also experiences an associated magnetic field. Under

completely random motion, this effect should average out, but if there is even a slight overall rotation of the 199Hg,

then the precession frequency will systematically be measured as too high or too low. Since the direction of the

electric field changes during the experiment, the shift from the~v×~E effect changes as well. This looks exactly like

the effect expected from a non-zero neutron EDM, so it is absolutely critical that this effect is well understood and

reduced as much as possible in the experiment.

There is also inevitably a small gradient in the uniform magnetic field, and thus some field inhomogeneity. So,

for the UCN experiment, any 199Hg nuclei that spend more time along the edges of the experimental cell will expe-

rience a different field, and different precession frequency than those that do not, introducing additional uncertainty

in the field measurement.

Both of these effects can be mitigated by introducing a second type of atom to the magnetometer. This second

atom would be affected differently by these systematic effects, since it would have a different gyromagnetic ratio,

as well as a different average velocity at room temperature (and so, experience a different strength of~v×~E effect).

This gives us additional data points that can be used to reduce uncertainty in the magnetic field measurement. The

atom chosen needs to interact as weakly as possible with the neutrons themselves, however. 129Xe is an atom that

fits all of these criteria.

1.2 Xenon
Xenon is a noble gas, atomic number 54 on the periodic table. One reason 129Xe is ideal as a co-magnetometer in

neutron EDM experiments is that it interacts very little with neutrons. This means that a higher density of 129Xe can

be used, which improves the signal to noise ratio (SNR) for the magnetic field strength measurement. Unfortunately,

other aspects of the experiment still constrain the pressure of 129Xe that can be used. The major one being that

at the strength of electric fields produced in the experimental chamber, too high of a pressure results in electrical

breakdown.

1.2.1 Xe-129 Energy Levels

The precession frequency of the 129Xe is measured by driving a σ+ transition with an ultraviolet (UV) laser. Two

photons of 252.4 nm will drive the transition[17], and due to the two units of angular momentum added by the

2-photon absorption, the spin +1/2 ground state has no available excited state. The relevant transition, as well as the

available decay channels after absorption are shown in Fig. 1.5. As a 129Xe atom precesses, it moves in and out of

the this “dark” state, so the absorption rate varies sinusoidally. Since it is a two photon transition, this absorption

rate is very small, so rather than trying to measure it directly, it is much easier to measure the resulting infrared (IR)

fluorescence after absorption. Eventually, the 129Xe decays back down to the ground state.

A note on the energy level designations and terminology. The angular momenta of various parts of the atom (the

nucleus, the electron cloud, the spin, etc.) are each designated by their own quantum number, listed and described

in table 1.1. In this format of writing down the states, we are interested the F, I, and J quantum numbers. The
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Figure 1.5: An energy level diagram of the relevant 129Xe transition. The diagram on the left is shown without
absorption or decay channels for clarity. Light with wavelength of 252.4 nm drives the transition shown
on the right, in a 2-photon process. When measuring the 129Xe precession frequency, σ+ polarized light
is shined on the atoms. Under 2-photon absorption, this adds two units of angular momentum to the
atom, meaning that the spin +1/2 ground state has no available excited state. This is called a “dark” state.
As the atom’s precession brings it in and out of this dark state, a sinusoidally varying absorption rate is
observed.

Letter description
S spin angular momentum
L orbital angular momentum
J = L + S total electron angular momentum
I total nucleus angular momentum
F = I + J total atomic angular momentum

Table 1.1: The various angular momentum quantum numbers and what they represent.

ground state is designated as 5p6(1S0). The term before the parentheses, 5p6, is the term that describes all of the

“core” electrons, with all but the outermost layer of electrons truncated. For the ground state, this means that all of

the orbitals, up to and including the 5p state, are filled. In this case, the total angular momentum of the electrons

adds up to 0. Since the electrons must each occupy a different state by the Pauli exclusion principle, the spin and

orbital angular momenta of electrons in a filled orbital must add up to 0, and in a ground state noble gas, there are

no partially filled orbitals. Because the electrons have no total angular momentum, there is no hyperfine splitting

for ground state 129Xe.

The nucleus for 129Xe has angular momentum I = 1/2, so for the ground state, F = 1/2 and mf =−1/2 or +1/2.

In the excited state, 5p5(2P3/2)6p, one 5p electron has been excited to the 6p state. The core has one less electron

(so, 5p5) and the excited electron is now considered a valence electron, and appears in the term at the end. In this

case, the total electron angular momentum adds up to J = 2. The nucleus’ angular momentum has not changed, so
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I = 1/2 still. Combining J and I, F can take on the values F = 3/2 or 5/2, the antisymmetric and symmetric states,

respectively. These F states are only split by about 2 GHz, due to hyperfine splitting. In general, pulsed lasers

are too broad, spectrally, to resolve these states, which is unfortunate since they are better suited for detecting a

2-photon transition, having much higher peak intensities than continuous wave (CW) lasers. Table 1.2 shows the

state equations for each of the F states and their projections, mf. The coefficients for each state in the superpositions

are found by using Clebsch-Gordan coefficients, which are used when adding up angular momenta in quantum

mechanical systems.

Electrons at the same principle quantum number, n have their degeneracy lifted by various means. Due to the

electron’s spin and charge, it has an MDM. It is moving in an electric field generated by the nucleus and other

electrons around it, and so, in its own frame, experiences a magnetic field. The energy of the electron is shifted by

the interactions between its MDM and this magnetic field. This is known as spin-orbit coupling, and is responsible, in

part, for fine splitting, the splitting of the energy of different orbital types within a principle energy level. Hyperfine

splitting is due to a similar effect for the proton, where its magnetic dipole moment interacts with the magnetic field

created by the moving electron. This effect is several orders of magnitude weaker, and is responsible for splitting

the F states.

Energy levels of the individual mf states are also split via Zeeman splitting in a magnetic field. The shift in

frequency for a given mf state is:

∆ν =−γmfB0

2π
(1.10)

This shift, and splitting between mf states, is very weak for the fields used in this experiment, however, and can be

ignored. For the mf = 5/2 state, ∆ν = 4.22 kHz, compared to the hyperfine splitting of the F states, about 2 GHz,

and the line-width of the CW UV laser being developed, which is hundreds of MHz.

F state mf state mj and mi states

F = 5
2

mf =±5
2 |52 ,±

5
2〉= |±2〉|± 1

2〉

mf =±3
2 |52 ,±

3
2〉=

√
1
5 |±2〉|∓ 1

2〉+
√

4
5 |±1〉|± 1

2〉

mf =±1
2 |52 ,±

1
2〉=

√
2
5 |±1〉|∓ 1

2〉+
√

3
5 |0〉|±

1
2〉

F = 3
2

mf =±3
2 |32 ,±

3
2〉=

√
4
5 |±2〉|∓ 1

2〉−
√

1
5 |±1〉|± 1

2〉

mf =±1
2 |32 ,±

1
2〉=

√
3
5 |±1〉|∓ 1

2〉−
√

2
5 |0〉|±

1
2〉

Table 1.2: Here are the state equations for all of the possible F and mf states of interest in 129Xe. The F =
5/2 states are all symmetric and F = 3/2 states are anti-symmetric. For each F and mf state, the possible
combinations of mj and mi are shown.

1.3 UCN collaboration
The UCN collaboration’s flagship experiment is to measure the neutron EDM at TRIUMF. One of the major improve-

ments over previous neutron EDM experiments will be to reduce uncertainty due to systematic errors in the magnetic

field strength measurement. This will be done by introducing 129Xe as a co-magnetometer in addition to the 199Hg
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used in previous experiments. The precession frequency is measured by driving a two-photon UV transition, where

the 129Xe precesses in and out of a dark state.

1.3.1 High Power CW UV Laser

Figure 1.6: A schematic of the UV laser that will be used for 129Xe spectroscopy. This diagram shows work
done by a fellow graduate student, Emily Altiere. The 1009 nm optically pumped semiconductor laser
(OPSL) is frequency doubled twice in two optical cavities, using non-linear crystals. The total conversion
efficiency is about 10%. Light from this laser will be sent to an enhancement cavity surrounding the
129Xe cell. This figure was modified and printed with permission from Emily Altiere. [1]

This laser is an IR OPSL that we generate the 4th harmonic from. Figure 1.6 is a schematic of the design. The

laser itself operates at about 1009 nm, and has a free running line-width of about 100 MHz. Light from the laser

is directed into an enhancement cavity, which has a lithium triborate (LBO) crystal in the optical path. This crystal

converts a portion of the light into its second harmonic, which is green light at about 505 nm. The reason for using

an enhancement cavity is that the conversion efficiency of the crystal depends on the intensity of the light going
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through it. Outside of the cavity, a single pass of 3W of IR would result in microwatts of green light. With the

cavity, we are able to approach 50% conversion efficiency. The output from that cavity is then directed into another

enhancement cavity, which generates the second harmonic of the green light, or fourth harmonic of the IR, at 252.4

nm. The type of crystal used in this cavity, barium borate (BBO), is quite sensitive to damage due, in part, to how

easily it absorbs moisture from the air, so the cavity is sealed and dry air is flowed through it during operation.

One of the major challenges in developing this laser is mode matching the light into the cavities. Light coupling

into the cavities must match the size and shape of the beam that can circulate in the cavity. A system of lenses

is used to ensure this. Mode matching into the LBO cavity is relatively simple, since the beam is roughly circular

already. It is far more challenging to mode match into the BBO cavity. The green light generated in the LBO cavity

is not circular at all, and due to astigmatism from curved mirrors and from the crystal, the vertical and transverse

modes of the BBO cavity require a slightly ovular input beam. Cylindrical lenses are used to shape each axis of the

input light’s profile properly.

The output we get from these enhancement cavities is about 300 mW of 252.4 nm UV light. This light is then

collimated so that it is circular in profile and mode matched into the experimental cavity.

1.3.2 Testing the UV Laser

To test the UV laser’s ability to drive this transition and detect the precession frequency of 129Xe in a magnetic field,

I have built a set of magnetic coils that are used to perform NMR. Building and characterizing these coils, and using

them to perform NMR on protons in water is the work that I will present in the rest of this thesis. The coils are set up

to be like a simple version of the co-magnetometer that will be used in the actual neutron EDM measurement. There

is a cell, containing only 129Xe, placed in the middle of a magnetic field, and after a π/2 pulse, the 129Xe nuclei will

precess around that magnetic field. Detection can be done with a pickup coil, or with the UV laser, for comparison,

and to make sure that there is a signal present when the laser is being tested. Figure 1.7 shows the laser and the test

coils. In Chapter 2 I will go over some NMR theory, and in Chapter 3 I will discuss how to create the magnetic fields

that are required for these experiments. The results of my work are shown in Chapter 4.
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Figure 1.7: Here is a schematic of the test coils, the UV enhancement cavity, and the 129Xe cell. The actual
measurement is the intensity of the IR light emitted as the 129Xe decays back down to the ground state,
and we can choose to measure either the 895.5 nm or 823.4 nm emission. The back mirror of the UV

enhancement cavity is transparent to IR, but the emission is in all directions, so the detector could be
placed elsewhere if needed.
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Chapter 2

NMR and Free Induction Decay

2.1 Introduction
Nuclear magnetic resonance (NMR) is a technique that many people are familiar with through magnetic resonance

imaging (MRI), in which NMR is used to non-invasively image organs and other parts of the body. There are

numerous other applications for NMR, such as determining the purity of a sample. This can be done by comparing

the expected signal, given that the sample were 100% pure, to the actual NMR signal obtained, for example. For the

ultra-cold neutron (UCN) neutron electric dipole moment (EDM) experiment, we are interested in using NMR to very

precisely determine the strength of a magnetic field.

In general, NMR experiments take advantage of the fact that the spin vector of a nucleus precesses around a

magnetic field, usually called B0, if the spins are not aligned with that field. The angular frequency of this precession

is given by the gyromagnetic ratio, γ , of the nucleus, which is simply the ratio of the frequency over the magnetic

field strength. That is,

ωprecession = γB0. (2.1)

Precession is described in detail in Section 2.2.1

Conventionally, the z axis is taken to be along the B0 field, a convention I will keep in this thesis. The x and y

axes are chosen such that they make a right handed coordinate system. The nuclei are initially polarized along the

B0 direction, either due to Boltzmann polarization, or by hyperpolarizing them by external means. These concepts

will be described in Section 2.3. The nuclei’s spins need to be rotated off of the B0 axis in the experiment, which is

usually done using a radio frequency (RF), field. Depending on the experiment, this field may only be on for a short

duration, with the goal being a specific rotation of the spin. These are usually called π/2 or π pulses, depending on

the desired rotation. These pulses are described in Section 2.7, on free induction decay (FID). Other experiments

may leave the RF field on for the entire measurement run.

There are two types of NMR that are of interest to us. The first is a technique called adiabatic fast passage (AFP).

Using this technique, it is relatively easy to obtain a signal, making it a useful tool when trying to find evidence of

hyperpolarization in a sample, as well as to quantify improvements of that hyperpolarization. The other technique

is free induction decay (FID). This technique can be used to precisely determine strength and homogeneity of a
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magnetic field, and also most closely resembles the technique that will be used in the UCN neutron EDM experiment,

making it the ideal method for testing the capability of our ultraviolet (UV) laser. Detection in an FID experiment is

traditionally done with a pickup coil. This is the method that I use to determine what signal we should expect from

the optical detection method that will be used later to test the UV laser. AFP and FID are described in Sections 2.6

and 2.7, respectively.

2.2 Particles in a Magnetic Field

2.2.1 Precession

Precession is a rotation of the angular momentum vector around some axis over time. A simple example is a

spinning top in a gravitational field. If you start it spinning, and the spin axis isn’t aligned perfectly with the

direction of gravity, the top wobbles around this axis. A similar effect happens to magnetic dipoles with angular

momentum in magnetic fields.

Consider a particle with spin angular momentum ~S in a magnetic field. It has a gyromagnetic ratio, γ , a dipole

moment ~µ = γ~S, and experiences a torque, ~τ = ~µ ×~B. This torque is perpendicular to both the direction of the

magnetic dipole (which is axis of angular momentum for a non-zero spin nucleus), and the magnetic field. The

result is that the particle’s spin vector ~S rotates around the magnetic field.

Torque is defined as the change in angular momentum over time, or

~τ =
d~S
dt

. (2.2)

But, as before, we also have
~µ = γ~S, (2.3)

which can be combined to get
d~S
dt

= γ
(
~S×~B

)
. (2.4)

If ~B is along the z axis, as B0 is usually defined in NMR experiments, the form that the solution to equation 2.4

will take is

~S(t) = (Sxy cos(γBt +φ),Sxy sin(γBt +φ),Sz). (2.5)

The tip of ~S traces out a circle at height Sz on the Bloch Sphere, over time. Equation 2.1 is easily taken from 2.5; the

precession frequency is ω = γB, or f = γB/2π . The direction of the precession can be determined by the right hand

rule (or by working out the cross product). It is important to note, however, that if γ is negative, such as for 129Xe,

the precession will be in the opposite direction. Figure 2.1 shows precession of the spin of a particle with positive γ

in a magnetic field pointing along the z axis.
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Figure 2.1: The spin vector of a particle precesses in a magnetic field, around the field axis. The right hand
rule is useful to determine the precession direction, given by ~S×~B. It is important to note, however, that
particles with negative gyromagnetic ratio, γ , will precess in the opposite direction. The figure shows
precession for a particle with positive γ .

2.2.2 Projective Measurements of Spin Angular Momentum

Part of any NMR experiment is a measurement of the nuclei’s spins along a particular axis. In some methods, this

measurement results in a projection of the spin state onto that axis. In the case of a spin-1/2 particle, this projection

then determines the probability of each possible state, +1/2 or -1/2, being measured.

I will follow the derivation in Sakurai’s “Modern Quantum Mechanics” [18], with details changed to best fit my

work. I will take the x axis to be the axis that the spin is measured along, and the z axis to be the axis the static

magnetic field, B0 is along. This is the axis the spins will be precessing around. The y axis direction is such that the

coordinate system is right handed.

First, take the case where a single particle’s spin is precessing in the xy plane at angular frequency ω . In a

magnetic field, with no electric field, the Hamiltonian of this system is

H =−µ ·B. (2.6)

The energy eigenstates of a spin 1/2 system are then

E± =∓h̄µB. (2.7)

The precession frequency is ω = µB. When H is time independent, like in the case of a static magnetic field, the

time evolution operator is given by

U (t, t0) = exp
(
−iH

h̄

)
, (2.8)

and as long as this operator acts on an energy eigenstate, the Hamiltonian in the exponential can be replaced by the

energy of the state being acted on. In this case, there are two eigenstates, spin up and spin down, with energies given
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by equation 2.7. Note that the energies of these states depend on B; in the absence of a magnetic field, the two spin

states are degenerate.

Equations 2.6, 2.7, and 2.8 can be combined to rewrite the time evolution operator, in a static magnetic field, in

terms of the frequency of precession:

U (t,0) = exp
(
−iωSzt

h̄

)
(2.9)

In general, the initial state is superposition of spin up and spin down.

|Ψ, t = 0〉= c+|Sz+〉+ c−|Sz−〉. (2.10)

If, at some point the particle is measured to be in the |Sx+〉 state, there is an equal chance of subsequently measuring

spin up or spin down along the z axis, so the initial state in that case is

|Sx+, t = 0〉= 1√
2
|Sz+〉+

1√
2
|Sz−〉 (2.11)

Now, add the time dependence to see how this state evolves in time as the particle’s spin precesses around the

magnetic field along z.

|Ψ(t)〉= 1√
2

exp
(
−iωt

2

)
|Sz+〉+

1√
2

exp
(

iωt
2

)
|Sz−〉 (2.12)

The probability, then, to measure spin up along the x axis, Sx+, over time is

P
(
|Sx+〉, t

)
= |〈Sx + |Ψ(t)〉|2 =

∣∣∣∣∣
[

c+〈Sz + |+ c−〈Sz−|
]
·
[

1√
2

exp
(
−iωt

2

)
|Sz+〉+

1√
2

exp
(

iωt
2

)
|Sz−〉

]∣∣∣∣∣
2

(2.13)

When multiplying this through, it is useful to remember the following properties:

〈Sz + |Sz+〉= 〈Sz−|Sz−〉= 1 (2.14)

〈Sz + |Sz−〉= 〈Sz−|Sz+〉= 0 (2.15)

The result is the following probability:

P
(
|Sx+〉, t

)
=

∣∣∣∣12exp
(
−iωt

2

)
+

1
2

exp
(

iωt
2

)∣∣∣∣2 = cos2
(

ωt
2

)
=

1
2
+

1
2

cos(ωt) (2.16)

So, the probability of measuring positive spin along the x axis from a particle that is precessing in the xy plane over

time is sinusoidal with frequency equal to the precession frequency. This result should not be surprising, as one can

simply think of how the projection of the spin onto the x axis changes as it precesses around the z axis on the Bloch

sphere.

It is also useful to look at a more general case. In actual experiments, there is always the possibility that the spin

flip is not exactly the correct magnitude or duration. That is, the flip may cause the spin of the particle to over- or
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Figure 2.2: A particle with a spin state that is a superposition of spin up and spin down along z, with the am-
plitudes of each state given by the angle θ . The arrow is only there to more easily define θ . In a quantum
mechanical spin system, the “coordinates” on the Bloch Sphere cannot all be known simultaneously, so
the state is more accurately represented as a ring at some height.

undershoot the xy plane on the Bloch Sphere. Furthermore, as will be discussed in Section 2.4.1, the particles’ spins

will relax toward thermal equilibrium in the magnetic field over time, which is a rotation of the spin vector toward

the z axis on the Bloch Sphere.

Take angle θ to be the polar angle in spherical coordinates (shown in Fig. 2.2), that is, 0◦ is up along the z axis,

90◦ in the xy plane and 180◦ down along the z axis. The initial state is described quantum mechanically by choosing

c+ and c− appropriately. Using the Bloch Sphere makes this easy, by looking at the projection of the spin vector

onto the xy plane, c+ = cos(θ/2) and c− = sin(θ/2). Plug that into equations 2.10 and 2.13, to get:

P
(
|Sx+〉, t;θ

)
=

(
1
2
+ cos(θ/2)sin(θ/2)

)
cos2

(
ωt
2

)
+

(
1
2
− cos(θ/2)sin(θ/2)

)
sin2

(
ωt
2

)
(2.17)

This is the probability of measuring spin + in x for a particle whose initial z spin state is arbitrary, defined by θ ,

and then precesses in a magnetic field along the z axis. Notice, the probability becomes 50% when θ = 0◦ or 180◦,

as expected, and equation 2.16 is recovered when θ = 90◦. Measuring the spin along the y axis instead simply

corresponds to a phase shift in the probability to measure spin up or spin down.

2.3 Spin Polarization

2.3.1 Boltzmann Polarization

A sample that is polarized according to thermal equilibrium is said to be “Boltzmann polarized.” In the absence of

an electric or magnetic field, the spin states in a given orbital have the same energy (although it turns out that even
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the electric and magnetic fields from the proton(s) in the nucleus are enough to measurably break this degeneracy).

A magnetic field will break the degeneracy between spin states along the direction of the field. Since there is a

difference in energy, atoms will not necessarily occupy those states in the same proportion. Instead, the distribution

of states in the sample will depend on its temperature and the energy difference between states. In a spin 1/2 system

this results in an imbalance between the two spin states. That is, the system will polarize to some degree.

Take a proton in a magnetic field, B, for example. This is a spin 1/2 particle, so there are two spin states, which

are not degenerate in this field. The energy difference between the two states is ∆E = 2µpB. When the system is in

thermal equilibrium, the protons will follow the Boltzmann distribution:

Figure 2.3: These are the energy levels of interest for optically pumping Rubidium. Initially, the ground spin
states are populated according to the Boltzmann distribution. Atoms in the dark state cannot absorb the
circularly polarized 795 nm light [19], and stay in that spin state. Atoms in the bright state will absorb
a photon and eventually decay randomly back to either the bright or dark ground state. Any atom that
decays into the dark state (the +1/2 state) will stay there, so over time the dark state becomes more
populated and the sample becomes hyperpolarized.

f (E) = 1− 1
Aexp

( E
kT

) (2.18)

where f is the probability of a given particle being in the state with energy E, k is the Boltzmann constant, T the

temperature, and A is a normalization constant. The degree of polarization, N+/N−, can be determined from the

difference in probabilities for each state:
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N+

N−
= exp

(
−∆E

kT

)
. (2.19)

For a room temperature sample of protons, this corresponds to a polarization of about 4.4 parts per million (PPM)[20].

If such a sample is subject to a π/2 pulse, this polarization remains, and there will be a measurable signal from

the spin precession, unlike in the case of a completely unpolarized sample. Even though the polarization is small,

a Boltzmann polarized sample of liquid water can be used to generate a measurable NMR signal from protons (by

applying the proper fields to the hydrogen atoms in the water molecules).

2.3.2 Hyperpolarization

A sample that has been polarized beyond its Boltzmann polarization is said to be “hyperpolarized.” A hyperpolarized

sample can generate much larger signals than a Boltzmann polarized sample, or generate a signal of similar strength

with far fewer particles. This makes it possible to perform NMR on a thin gas. There are several ways to achieve

hyperpolarization, but a commonly used one is optical pumping.

To perform optical pumping, circularly polarized light is shined on the atoms, such that for a given spin state,

there is no available excited state due to the angular momentum that would be added by absorbing that photo. Atoms

in the other spin state, the “bright” state, are able to absorb a photon, however. After absorption, the excited atoms

will eventually decay back to the ground state, and end up in a random spin state again. Those that end up back in

the bright state will absorb another photon, but those in the dark state will remain there. Over time, the dark state

gets filled up, and the entire population is transferred to that state.

Figure 2.4: A schematic for doing optical pumping of Rubidium. The half wave plate and polarizer are used
to ensure that the light is polarized (light reflected from the polarizer is dumped or can be used as a
way to measure the power of the laser if the degree of polarization from the laser is known and does not
change over time). A quarter wave plate then circularly polarizes the light. A pair of lenses acts as a
telescope to blow up the beam to about the size of the Rubidium cell and collimate it. After the cell,
light is focused onto a spectrum analyzer. In general, some method of attenuating the light is necessary
to avoid damaging the analyzer, which is not shown in this diagram. Methods include reflecting the light
off of a piece of glass, or using a neutral density filter. Figure 2.5 shows the change in signal expected
when shining linearly polarized light versus circularly polarized light into the cell.

Rubidium is often hyperpolarized using this technique. Light from a 795 nm laser [19] is circularly polarized

using a quarter wave plate. The relevant states are shown in Fig. 2.3. This beam is expanded to fill the entirety of

the cell containing Rb. With the circularly polarized light, the cell quickly becomes transparent as the dark state is

filled. If the quarter wave plate is rotated so that it passes the linearly polarized light through, unchanged, the cell

is no longer transparent to the light. By focusing the light onto a spectrum analyzer, it is possible to check for this
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Figure 2.5: Shown are the expected signals from a spectrally broad laser being shined on a Rubidium cell
under linear polarization (left plot), and circular polarization (right plot), after sufficient time for optical
pumping to occur. When shining linearly polarized light, such as the schematic shown in Fig. 2.4 with
the quarter wave plate removed or set such that it does not alter the linear polarization, the Rubidium is
able to absorb all of the light within the transition’s bandwidth. However, when the light is circularly
polarized, one of the spin states in the ground state does not have a corresponding excited state with
the correct angular momentum to transition to. Atoms in this “dark state” do not absorb photons. After
several decay periods, all of the atoms are driven into this dark state as they absorb a photon and then
decay randomly back into the bright state (where they can absorb another photon) or the dark state (where
they remain and are transparent to the light). Once all of the atoms are in the dark state, the entire cell is
transparent and the dip in the spectrum disappears.

change in absorption. Figure 2.4 shows a typical optical pumping setup, and Fig. 2.5 shows the difference in the

spectrum between sending linearly polarized light vs. circularly polarized light through the Rubidium cell.

To polarize the 129Xe in our experiments, we use a process called spin exchange to transfer spin polarization

from a sample of optically pumped Rubidium to the 129Xe through van der Waals interactions. Nitrogen is used as

a mediator in these interactions. This technique overall is called spin exchange optical pumping (SEOP) [21]. The

setup involves flowing the 129Xe mixture through the Rubidium cell, and directly from there to the experimental

chamber.

2.4 Spin Relaxation
A sample that is in a static magnetic field aligned along the z axis, but polarized along some axis in the xy plane will

lose that polarization over time. There are several of these relaxation mechanisms, and they are generally described

by their time scales, called T1, T2, and T∗2.

2.4.1 T1

The T1 lifetime is defined by how quickly the magnetization of the atoms in the direction of the B0 field reaches

thermodynamic equilibrium, or Boltzmann polarization. This necessarily results in a de-magnetization of the atoms

in the xy plane. This effect is shown in Fig. 2.6. If the sample is initially polarized along x or y, the magnetization

along the z axis over time is
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Figure 2.6: Shown is the effect of T1 relaxation. The spin moves toward thermodynamic equlibrium along the
z axis (specifically, along the direction of B0). This causes the projection in the xy plane to decrease in
amplitude, and a loss of signal strength in NMR experiments.

Mz(t) = Mz,eq(1− e−t/T1). (2.20)

In this case, the T1 time is the time it takes for the sample to recover 1−1/e or about 63% of its magnetization at

thermal equilibrium.

Historically, this is also known as the spin-lattice relaxation time, since this relaxation depends on interactions

with the sample’s surroundings. This time becomes very short when the rotation rate of the molecules or atoms is

similar to that of the Larmor precession frequency. In general, stronger magnetic fields are associated with longer

T1 times, since the rotation rate is generally smaller than the precession frequency, even with the B0 field at around a

tenth of a mT in strength. Stronger magnetic fields bring the precession frequency even further from this resonance.

2.4.2 T2 and T∗2
The T2 lifetimes are determined by local field inhomogeneities, which cause atoms to precess at different frequen-

cies, resulting in dephasing over time. This effect is split into two types, the T2 lifetime, caused by time-varying

inhomogeneities, and T∗2, caused by inhomogeneities that are constant or slowly varying over the lifetime of the

experiment. It is not strictly correct to call T∗2 a “relaxation” process, since it is not random, and in fact, as will be

described in this section, the dephasing caused by these effects can be reversed, and a signal can be recovered in a

spin echo experiment.

The T2 lifetime describes how the component of the magnetization perpendicular to B0 relaxes:

M⊥(t) = M⊥(0)exp
(
−t
T2
− γ∆B0

)
, (2.21)

Where ∆B0 is the difference between the maximum and minimum field strength in the region of interest. This is
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also called spin-spin relaxation, since one possible source of a rapidly time-varying inhomogeneity occurs when two

atoms move past each other. The field one atom generates can perturb the total field, and the precession frequency,

of the other. Whenever two atoms interact in this way, they are dephased from the rest of the sample. The T2 lifetime

also includes other rapidly varying inhomogeneities such as atoms moving across spatially small regions of constant

inhomogeneity, or random fluctuations in the field to current noise, and so on. Any process that causes atoms to

experience a non-uniform field that changes on the time scale of the experiment is included in the T2 lifetime.

The T∗2 lifetime is caused by a gradient in the B0 field. Two atoms that are spatially separated experience a

different, but constant in time, magnetic field, so they have different precession frequencies. The T∗2 lifetime is

defined as

1
T∗2

=
1

T2
+ γ∆B0. (2.22)

Because this inhomogeneity is invariant in time, it does not cause a random dephasing process and it is theoretically

possible to recover a signal from a sample that has dephased this way. Note that in general as you increase the

strength of B0, its gradient will also increase, making the T∗2 time faster. In fact, it is the number of periods of

precession it takes for the sample to dephase that will stay constant (ignoring non-linear effects), rather than the

time.

2.4.3 Spin Echo

Figure 2.7: A spin echo experiment. The atoms begin with spin aligned with the B0 field. A) They are given a
π/2 pulse. B) They precess freely in the static field. Atoms in a stronger part of the field precess faster,
colored red here. Those in a weaker field precess more slowly, colored blue. Since the field strength
varies smoothly, there will be a distribution of phases, shown as a gradient here. C) After some time,
a π pulse flips the spins around the x axis. The more slowly precessing atoms are now ahead in phase
compared to the more rapidly precessing atoms. D) After a time equal to the time between pulses, the
atoms are all in phase again.

T∗2 and T2 can be determined by performing a spin echo experiment. In such an experiment, a sample that is

polarized along the B0 direction is first subject to a π/2 pulse. The spins precess around the B0 field, but due to
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Figure 2.8: Here is what a demodulated signal from a spin echo experiment should look like. Multiple echoes
are shown, but only the first is annotated. The numbers correspond to the stages of the spin flip experiment
described in Fig. 2.7. The signal is recovered after each π pulse, but is weaker each time. The peak
envelope can be fit exponentially, with a decay constant due to the T1 and T2 times. T∗2 is given by how
quickly the signal is lost after each peak.

the field’s gradient, the individual nuclei precess at slightly different frequencies. This results in dephasing and

eventually the signal is lost. This decay in signal will be exponential, with T∗2 as the time constant. A π pulse then

rotates all of the spins about some axis in the xy plane. This effectively swaps the phases of all of the atoms. The

slower precessing atoms are now ahead in phase compared to the faster precessing atoms, and vice versa. After an

amount of time equal to the time between the π/2 and π pulses, the atoms are briefly back in phase, and a signal

is seen again. This is called a spin echo. The echo is always weaker than the initial signal because the polarization

(and thus, magnetization) is never completely recovered. All of the factors that contribute to weakening the echo,

such as noise in the field, nuclei interacting with each other, and so on, determine the T2 lifetime.

This experiment can be repeated, changing the delay between pulses, and by tracing the envelope of peak

heights, one should see an exponential decay. The time constant of this decay is T2. A spin echo experiment is

detailed and diagrammed in Figs. 2.7 and 2.8.

2.5 Detection

2.5.1 Detection Via Pickup Coil

A common method for measuring the precession frequency is to measure the electromotive force (EMF) induced by

Faraday induction from the changing magnetic field generated by the spin of the particles. Faraday induction on a

single loop of wire is given by:

ε =−dφ

dt
(2.23)

where ε is the EMF and φ = BA is the magnetic flux through the coil; the field strength times the area enclosed by

the loop. For N loops, the signal is simply multiplied by N, so
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εtot =−N
dφ

dt
(2.24)

The negative sign is due to Lenz’s law. The EMF generated drives a current that creates a magnetic field which

opposes the change in the field due to the precession of the nucleus.

In a stronger magnetic field, the nucleus precesses more rapidly, which means that the magnetic field generated

by the its spin changes more rapidly, and generates a larger EMF in the pickup coils. However, as discussed in

Section 2.4 and Chapter 3, a stronger field also results in a signal that decays more rapidly, unless the B0 field is

made more homogeneous.

The signal detected in the pickup coil will be sinusoidal, as dφ/dt will change based on the angle made between

the pickup coil axis and the polarization axis. The frequency of the signal will be exactly the precession frequency

of the nuclei, and since that should be well known, one can use a lock-in amplifier to amplify the signal and filter

out noise at other frequencies.

2.5.2 Optical Detection

Figure 2.9: 129Xe has a dark state when driving the 252.4 nm two photon transition from the ground state using
circularly polarized light. When using σ+ light, the +1/2 state cannot absorb the UV light, since there is
no excited state with the proper amount of angular momentum. The atoms in this state are transparent to
this light.

Detection in the UCN experiment will be done optically, instead of using a pickup coil. Circularly polarized

light will be shined on the 129Xe. For one spin state in the 129Xe ground state there is no excited state available due

to the additional angular momentum from the absorbed light, creating what is called a dark state, shown in Fig. 2.9.

Atoms in the dark state will not absorb this light, so the absorption is dependent on the spin state of the 129Xe. As
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the atom precesses, the probability of absorption varies sinusoidally, at the precession frequency of the 129Xe.

This type of measurement results in a projection of the atom’s spin along the axis of absorption, so the behaviour

of the signal should look like it is described in Section 2.2.2. An atom that absorbs a photon also ends up dephased,

since the decay back to the ground state is completely independent of the phase of precession in the atoms around

it. This can be an issue when there is a high rate of absorption, but in the case of 129Xe, we are driving a two photon

transition, so the absorption rate is very low, and dephasing from this is negligible.

The amplitude of the signal from this method depends entirely on the absorption rate of the UV light, and is

independent of the rate of precession. This is useful for the UCN EDM measurement, since the magnetic field will

be made as weak as possible. Unfortunately this absorption rate is very low, so it is much easier to detect the

infrared (IR) emission as the 129Xe decays back to the ground state rather than try to detect the actual absorption.

The relevant 129Xe energy levels, and wavelengths of the light used and measured are shown in Fig. 2.9. There are

two IR decay channels from the excited state, and we will decide on which one to measure based on calculations of

the branching ratio between the two channels.

2.6 Adiabatic Fast Passage (AFP)

2.6.1 Overview

In an AFP 1 experiment, nuclei are first polarized along the B0 field direction. This field is also called the static field,

although it is actually ramped slowly. The RF field, B1, is left on for the duration of the experiment. For most of

the B0 ramp, the B1 field is out of resonance with the nuclei’s spin precession. In this case, it has little effect on

the spin of the nuclei. However, as the ramp scans through the field strength at which the B1 field is resonant with

the nuclear spin precession, this spin gets flipped. The B0 field then ramps back out of resonance and the spin axis

remains stationary again until the next ramp.

To understand how the spin flip works in detail, it is useful to look at a rotating reference frame, that rotates

at the B1 frequency. Figure 2.10 shows the spin flip process. In this rotating frame, the nuclei and fields behave

somewhat differently. B1 is a static field, and the precession frequency of the nuclei around B0 is ω ′ = ω −ωB1 .

This also means that the B0 field strength is effectively reduced, so B′0 =B0−ω/γ .

Starting at the peak of a ramp of B0, the nuclei are precessing slightly faster than the B1 frequency. That is, in

this rotating frame, ω ′ is small and positive. The strength of B′0 is then also small and positive, and the total effective

field felt by the nuclei is Beff =B′0+B1. At the peak of a ramp, Beff is dominated by B′0, and the field points mostly

along the z axis, which is the axis of the B0 field and of the nuclei’s initial polarization. As the B0 field ramps down,

however, B′0 approaches 0, and Beff tilts towards the xy plane, as can be seen in the first two plots in Fig. 2.10. If the

ramp is slow enough to be adiabatic, the spin of the nuclei will follow Beff as it tilts.

The ramp down continues, and B′0 becomes negative, so Beff tilts below the xy plane, until B′0 once again

dominates over B1, this time in the negative direction. The polarization has been transferred to the spin down state.

This process is shown in the last plot in Fig. 2.10. This figure also shows how the spin vector rotates on the Bloch

sphere during the spin flip.

1The name “adiabatic fast passage” may sound odd, but it is called fast to differentiate it from adiabatic slow passage, where the ramp is
slow compared to the relaxation times. A detailed description is found in Bloch’s 1946 paper on nuclear induction[22].
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Due to this new polarization direction, the nuclei are not in thermal equilibrium anymore, however, so over time,

determined by the T1 lifetime, they will relax back to a thermal polarization. The B0 ramp needs to be quick enough

that this relaxation takes a long time compared to the spin flip.

2.6.2 Speed of the B0 ramp

There are some constraints on how quickly or slowly B0 can be ramped in a successful AFP experiment. For

obvious reasons, the B0 field must ramp through the spin flip faster than the time constant for any relaxation process

(relaxation effects are discussed in a previous section, 2.4). That is,

B1

T1
,
B1

T∗2
<<

dB0

dt
. (2.25)

B0 must also ramp slowly enough, though, for the spin to follow adiabatically. The spins of the nuclei will “lock”

to the local direction of the magnetic field as long as that field does not change too rapidly. The condition for

adiabaticity in this case is[23]:

dB0

dt
<< γB2

1. (2.26)

In general, these constraints on the ramp speed are actually rather forgiving, since the relaxation times and the

adiabatic condition tend to be quite far apart.

2.6.3 Detection and Signal

Detection is usually done via pickup coil, which is the method we use in our setup for AFP. The signal is a voltage,

generated by Faraday induction from the precessing spins, in the pickup coil. Since the B0 field is ramped repeat-

edly, a signal is produced every time the precession frequency scans through the B1 frequency. For hyperpolarized

samples, the signal decays over time as the sample returns to the Boltzmann polarization, but for Boltzmann polar-

ized samples, this repetition is seen indefinitely with no loss. This is a tremendous advantage, since such samples

can be used to average a signal over many ramps, to greatly improve signal to noise ratio (SNR). This is invaluable

especially when working with a newly constructed setup, where the noise characteristics are not yet well known.

A well tuned and noise controlled AFP experiment should produce an easily recognizable signal without averaging,

however.

The signal itself is a sin wave, which increases in amplitude as the ramp approaches resonance. Each ramp up

or down produces a peak in the envelope of the wave. The height of this peak, as well as the phase of the sin wave

itself within this envelope, depends on how quickly the ramp is repeated compared to the T1 lifetime. Because of

this, it is possible to use AFP to measure the T1 time of the sample used, by varying how quickly the ramp through

resonance is repeated.
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Figure 2.10: Adiabatic fast passage in a frame rotating at the B1 frequency. B1 is static in this frame, and
the total effective magnetic field, Beff is the sum of the fields B0, B1 and ω/γ . Beff tilts from pointing
up along the z axis to down along the z axis as B0 ramps through the B1 resonance. At the top, the
directions and strengths of the fields are shown at various points on the B0 ramp. During the ramp, the
magnitude of B0 crosses over the magnitude of ω/γ . At the bottom a Bloch Sphere representation of
the direction of polarization through this process is shown.
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2.7 Free Induction Decay

2.7.1 Overview

Free induction decay is, in principle, a very simple NMR experiment. Nuclei are spin polarized and placed in a

magnetic field, B0, and are allowed to precess freely after a π/2 pulse is applied. Over time, the nuclei de-polarize

due to various relaxation processes that were described in Section 2.4.

A π/2 pulse is an RF pulse that is applied for exactly the duration necessary to rotate the spin vector by π/2

radians. It is driven by the B1 field. Since the pulse needs to be applied for a precise period of time, effects from

the rotating wave approximation need to be taken into account. The approximation is explained in detail in Section

1.1.3, but I will repeat the basic principle here. The nuclei are precessing, and their spin vectors trace out a circle on

the xy plane. The π/2 pulse would ideally be driven by a field that follows the spin vector precisely, but such a field

is difficult to create. A field that oscillates along some axis in the xy plane is equivalent to two counter-rotating fields

on that plane. The field following the precession drives the π/2 flip, and the field rotating in the opposite direction

does so quickly enough to have a negligible effect on the spin flip (this small effect is called the Bloch-Siegert shift

and is small enough to ignore for FID). The main thing to note is that such a field has only half the effect on the

nuclei’s spins than a field that only rotates along with the spin vectors, so twice the duration than one might expect is

needed to drive the π/2 pulse. To determine the pulse duration needed, one can simply calculate how long a fourth

of a period of precession is for a given B1 field strength:

ω = γB1 (2.27)

T =
2π

γB1
(2.28)

The duration of the pulse is a fourth of this period, but with half of the strength of B1, so

Tπ/2, RWA =
π

γB1
. (2.29)

with B1 being the actual amplitude of the RF pulse.

After the π/2 pulse, the polarization is measured as it diminishes over time due to relaxation effects. FID is

an excellent way to measure the homogeneity of a magnetic field, as long as the T1 and T2 times are already well

known, or are at least known to be much longer than T∗2, since inhomogeneities have a clear and easily measured

effect on the decay rate of the FID signal.

2.7.2 Detection and Signal

In essence, FID is a method for determining how quickly a non-equilibrium spin magnetization returns to equilibrium

in a sample of atoms, and so, a potentially very accurate way to measure the B0 field’s homogeneity. Unlike AFP,

which is quite resilient to relaxation processes, the signal in an FID experiment decays on the T∗2 time scale. With a

Boltzmann polarized sample, FID can be repeated if the sample has been given enough time (several T1 periods) to

return to its Boltzmann polarization. If the experiment is repeated before this T1 relaxation, the amplitude of the FID

signal will be diminished. With a hyperpolarized sample, the sample needs to be replaced to repeat the experiment.
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This makes it very difficult to average many FID runs, potentially limiting the SNR that can be achieved.

Detection can be done with a pickup coil, just like AFP, where Faraday induction generates an EMF in the coil

as the spins precess. The signal is sinusoidal, with frequency equal to the precession frequency of the sample in the

B0 field, with an exponentially decaying envelope. Unless the π/2 flip is repeated after the sample relaxes back to

Boltzmann polarization, that is the entirety of the experiment. A spin echo can also be performed, by applying a π

pulse after T∗2 relaxation is over, but not T1. The details are explained in Section 2.4.2. The result is a brief revival

of polarization, but weaker than the initial signal.

2.7.3 FID in the Context of UCN

FID is the technique that will be used to measure the magnetic field in the neutron EDM experiment. Detection

will be done optically, with two atomic sources used simultaneously to independently measure the field and reduce

systematic effects that occur when only one source is present. It is somewhat of a misnomer to call this method free

induction decay, since there is no induction being measured, however, the technique differs only by the detection

method. A continuous wave (CW) UV laser has been developed by another graduate student in our group, Emily

Altiere, which will be used for detecting the precession frequency of 129Xe.

To demonstrate that this laser is capable of measuring the precession frequency of the 129Xe, I am constructing

a set of coils to generate the necessary fields for FID. The first test is to perform AFP on Boltzmann polarized water

(protons), with a pickup coil. This has several benefits. One is that detection with a pickup coil depends on fewer

variables than with the laser. We do not need to ensure a precise wavelength, and we do not need to worry about

alignment between many optical components, cavities and detectors. Using water as a source also eliminates the

uncertainty in how well polarized 129Xe we have, as well as allowing us to see a baseline to compare the eventual
129Xe signal to. The signal from water can also be repeated and averaged over many runs, since its polarization is

based on thermal equilibrium. After AFP, FID is performed on the water sample as well, in order to more precisely

characterize the magnetic field generated by the coils. These two experiments are the scope of this thesis.

In the future, the coils can be adjusted and optimized based on the results of these experiments, and then the

same experiments can be performed on hyperpolarized 129Xe, to determine the degree of polarization achieved, and

to determine what signal to expect from the optical detection. The 129Xe itself is externally polarized via SEOP and

then transported to the measurement cell.

On the optical side of the experiment, the first step is to see successful 129Xe spectroscopy. Simply, we will

shine UV light on the 129Xe atoms and look for the IR emission. This will be done in a UV enhancement cavity.

After that, we will look for a precession signal.

Once it has been determined that the laser is capable of measuring the magnetic field, it will first be used to

measure the 129Xe EDM. This value is not yet known to enough precision to achieve the precision goal of the UCN

neutron EDM measurement.
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Chapter 3

Coils and Fields

3.1 Introduction
The experiments described in this thesis require several different magnetic fields, with different constraints on

each of them. There is a strong, static magnetic field, B0, and a weaker, radio frequency (RF) field that oscillates

at the source particle’s precession frequency in the B0 field, the B1 field, which must be perpendicular to B0.

There also needs to be a way to measure the precessing nuclei’s spins, one method being to use a pickup coil and

measure the Faraday induction as the magnetic field generated by the polarized particles changes direction during

precession. Such a coil needs to be perpendicular to B0 as well, and as will be described in Section 3.7, should also

be perpendicular to B1.

These experiments rely on a large number of in phase nuclei to make measurements. The precession frequency

of the nuclei depends on the B0 field, and since nuclei with even slightly different precession frequencies within a

source will rapidly go out of phase, the magnitude of B0 needs to be very uniform. The exact requirement depends

on experimental factors, such as the actual precession frequency of the nuclei, and the in phase time needed to make

a reasonable measurement. The bulk of this chapter will discuss the generation of a homogeneous B0 field under

the conditions imposed by the optical measurement with our ultraviolet (UV) laser.

The fields themselves are generated by an electrical current, and there are several potentially useful coil geome-

tries for creating a uniform field. In Sections 3.2 and 3.3 I will go over the two geometries I considered for the B0

coils, the Helmholtz configuration, and the saddle configuration. To determine their usefulness in these experiments,

I coded some simulations, and took advantage of some known analytic solutions to compare my results along the

axes where the analytic solution is easily solvable. The goal is to make as homogeneous as possible a B0 field,

across the experimental region, which is a glass cell, 200 mm long and with a diameter of 25.4 mm, filled with
129Xe. One challenge is that the B0 field needs to be directly above a steel optical table. As will be discussed in

Section 3.4, the steel distorts the magnetic field, potentially increasing the field’s inhomogeneity.

Figure 3.1 shows the coils that are used in this experiment (in this case with saddle coils for the B0 field), and

the cell, above the steel optical table. B0 points straight up out of the table, and defines the z axis in this thesis.

The x axis is down the long axis of the 129Xe cell, and the y axis is oriented such that the coordinate system is right

handed. The center of the cell defines the origin.

All of the Matlab code used in the simulations described in this chapter is reproduced in the Appendix.
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Figure 3.1: This is a schematic of the coils needed to perform NMR experiments, shown with Saddle shaped
coils, as well as the 129Xe cell that will be used. The entire setup is suspended above a steel optical table.
The cell is a 25.4 mm diameter cylinder, 200 mm long, and placed in the center of the setup. A pickup
coil is wrapped around it (red). The B0 (orange) and B1 (blue) coils are also shown.

3.2 Helmholtz Configuration
The Helmholtz configuration is named after the German physicist Hermann von Helmholtz. It is a very simple

geometry for creating a uniform magnetic field in a small space between the coils. This configuration, shown in Fig.

3.2, consists of two loops of wire of equal radius. There is an equal current, running in the same direction, through

each loop, and they are separated by their radius. The geometry can be adjusted by changing their separation if

Figure 3.2: (a) A pair of current loops in the Helmholtz configuration. The distance between them is equal to
the radius of each loop, and the field generated points straight up. The field is relatively homogeneous
near the center of the coils. (b) The anti-Helmholtz geometry, where the current in each loop runs in
opposite directions. The magnetic field generated from these is a gradient, which is linear near the center
of the coils. The field strength at the center is 0.
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certain effects are desired. For example, by moving them farther from each other, there is a local minimum in

the field at the center. The current in one loop can also be reversed, to produce an anti-Helmholtz geometry. The

resulting field is a linear gradient.

Calculating the field along the z axis for the Helmholtz configuration is simple, since all of the field components

other than the z component cancel out. A loop of wire in the xy plane generates a field on the z axis that is given

by[24]:

Bz(z) =
µ0I
2

R2

(R2 + z2)3/2 . (3.1)

Modifying the equation to get the field of a Helmholtz pair is simply a matter of moving the coordinates a bit so that

the origin is at the center of the pair, and adding the contributions of both coils.

Bz(z) =
µoI
2

R2

(R2 +(z+R/2)2)3/2 +
µoI
2

R2

(R2 +(z−R/2)2)3/2 . (3.2)

The field elsewhere does not have a simple analytic solution, and to calculate it, I used a finite differences

simulation instead. In such a simulation, a differential equation is split into many discrete parts, and the contribution

of each part is added together. In this case, the equation is the Biot-Savart Law:

d~B =
µ0Id~l×~r

4π|r|3
, (3.3)

where, µ0 = 4π × 10−7 is the permeability of free space, I is the current going through the piece of wire and~r is

the vector pointing from the piece of wire, d~l, to the point you are calculating the field for. The integral form of this

equation leads to equation 3.1.

To calculate the field at a given point with a computer, d~l cannot be infinitely small, like when using the analytic

solution. First, a size for d~l is chosen, and the Biot-Savart law is used to calculate the field generated by the piece

of wire with length d~l. This is then iterated over the entire loop, and all of the contributions from the pieces of wire

are added up. However, these pieces of wire are necessarily approximated as straight, so the simulation actually

generates the result for a field from a polygon. This approximation gets more accurate for smaller d~l, but at the

cost of computing time since there are more iterations to go through and sum up. Thus, there is a trade-off between

accuracy and speed in the simulation. Fortunately, the simulation can be compared to the analytic result along the z

axis, so there is a means to determine what size d~l is necessary for the desired precision.

It is also useful to test that the simulation really does get more accurate for smaller d~l. The simulation is run

repeatedly over the region where the analytic solution is known, for smaller and smaller d~l. Since a small region is

calculated, it is possible to go to higher precision than would be practical for the entire simulation. The results are

analyzed to look for convergence (the simulation should converge on a value rather than, for example, oscillating)

and to see what size d~l is necessary to achieve the desired precision. This is known as a convergence test.

The result of testing my simulation for a Helmholtz pair is show in Fig. 3.3. The simulation was tested both at

the center (top plot) and at the edge of the 129Xe cell (bottom plot). The value at the center does not require much

resolution at all in the simulation, and the field at the edge of the cell converges very rapidly. It is accurate to 5

decimal places, even at only 16 pieces per loop. Since this simulation does not take long to run, I divided up the

loops into 50 pieces.
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Figure 3.3: This is the convergence test for the Helmholtz pair simulation. The y axis shows the value of the
magnetic field at the center and edge of the 129Xe cell calculated at the resolution given by the x axis. The
resolution is the number of straight line pieces the coils are divided into when performing the simulation.
At the center of the cell, the simulation is accurate even at very low resolutions. The field calculated at
the edge of the cell benefits from a higher resolution, but converges rapidly.

Figure 3.4 shows the results of the analytic and the simulated results, for the magnitude of the B0 field along the

z axis. These plots are for coils with radius R = 300 mm, 100 windings and a current of 4.04 A, generating a field

at the center of about 1.2 mT. There is good agreement for both methods, suggesting that the simulation should be

accurate over the entire experimental region.

3.3 Saddle Coil Configuration
Another possible configuration to create a homogeneous magnetic field is called the saddle coil. This geometry also

consists of two coils, but rather than than two loops, each coil consists of two straight pieces, or “rungs,” and two

curved sections, “arcs,” connecting the rungs. Figure 3.5 shows the geometry needed to create a vertical magnetic

field.

3.3.1 Simulation

The field generated by the rungs has a simple analytic expression, which can be derived directly from the integral

form of the Biot-Savart law, and using some quantities defined in Fig. 3.6.

∫ B

A

µ0I
4π

~r×d~l
|r|3

(3.4)

It is simplest in this case to calculate the magnetic field’s magnitude, and determine the direction by other methods

such as the right hand rule, rather than by carrying through the vector properties of the cross product, so:
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Figure 3.4: Simulated and analytic results for the magnetic field in the z direction, along the z axis, for a
Helmholtz pair of coils, with total current of 404 A, and a coil radius and separation of 300 mm.

|~r×d~l|= rdlsin(θ +90) = rdlcos(θ). (3.5)

Both r and dl can also be written in terms of θ :

r =
s

cos(θ)
(3.6)

rdθ = dlcos(θ) (3.7)

As shown in Fig. 3.6, s is the distance from the wire to the measurement point and θ the angle made by s and r.

Equations 3.4, 3.6 and 3.7 can be put together, and after canceling some terms, and changing the limits of integration

to the initial and final angles:
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B =
∫

θ2

θ1

µ0Icos(θ)
4πs

dθ =
µ0I
4πs

[sin(θ2)− sin(θ1)] . (3.8)

Equation 3.8 only gives the magnitude of the magnetic field, but the direction is then easily determined by the right

hand rule. For example, in Fig. 3.6, the field comes out of the page at the point shown.

The contributions to the field by the arcs of the saddle coil must be calculated with a finite difference simulation

again, like the calculation for the Helmholtz configuration. Figure 3.7 shows the convergence test on the number of

pieces to divide the coil into. In this test, the exact result was used for the rungs, which was added to the simulated

result for the arcs. The x axis of these plots is the number of pieces the arcs were divided into for the simulation.

The plots show the result for the field at the center, as well as for the inhomogeneity along the x axis. In my

simulations for the saddle coils I divided up the arcs into 200 pieces. This slightly overestimates the field strength

and inhomogeneity, but the computation time becomes prohibitive for higher resolutions.

The final results of these simulations are shown at the end of the next section, in Fig. 3.8, along with the analytic

results to compare them to.

3.3.2 Analytic Formulae

There are also analytic formulae that can be used to check the simulation results. They are actually valid for all

space, but are computationally very expensive except near the axes. Because of this, it is actually more efficient to

use a simulation to determine the field, and compare it to the analytic results along the axes.

The field generated by a saddle shaped coil can be found to be[25]:

Figure 3.5: The saddle coil geometry. Shown are common ratios for parameters: the half-length l is twice the
radius a of the arcs, which have a half-span ϕ of 60◦. For consistency with the Helmholtz configuration,
B at the center points along the z axis, and the coil axis is in the x direction. The current flows in the same
direction in each coil.
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Bρ

Bφ

Bx

=
µ0

2π

∞

∑
m=−∞

eimφ

∫
∞

−∞

dk eikx×


k2

im a2Pm(a)Fm
x (k)

k
ρ

a2Qm(a)Fm
x (k)

k2

m a2Qm(a)Fm
x (k)

 (3.9)

where

Pm(a) =

I′m(kρ)K′m(ka) when ρ < a

I′m(ka)K′m(kρ) when ρ > a
(3.10)

Qm(a) =

Im(kρ)K′m(ka) when ρ < a

I′m(ka)Km(kρ) when ρ > a
(3.11)

and

Fm
x (k) =

−i4I
πka

sin(kl)sin(mϕ)δm,odd. (3.12)

Here, ρ , φ and x are cylindrical coordinates (I use x rather than z to maintain consistency with the z direction being

the direction of the generated magnetic field), µ0 = 4π × 10−7 is the permeability of free space, a is the radius, ϕ

half of the span, and l half of the length of the coils, I and K are the modified Bessel functions and I′ and K′ are

their derivatives.

The region of interest is the field inside the coils, so ρ < a. The result is given in Bidinosti 2005 [25], but I will

Figure 3.6: Calculating the magnetic field generated by a straight wire. (a) Shows the variables used in the
integral in equation 3.4. (b) Shows the relevant variables that are used to directly calculate the field for
the whole length of wire, equation 3.8. Note that θ1 is negative when taken directly from s as shown.
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(a) Convergence test for the magnitude of the field at the center
of a saddle coil configuration. The field strength converges to a bit
below 1.488 mT.

(b) Convergence test for the inhomogeneity of the field along the
x axis. The inhomogeneity converges to about 15 parts per million.

Figure 3.7

briefly show the derivation for Bρ . The first step is to combine the equations 3.9, 3.10, and 3.12 (equation 3.11 is

used for Bφ and Bx, but not Bρ ). Constants can be pulled out to the front and combined, leaving:

Bρ =
−2µ0aI

π2

∞

∑
m=−∞

[cos(mφ)+ isin(mφ)]δm,odd

∫
∞

−∞

dk [cos(kx)+ isin(kx)]
k
m

I′m(kρ)K′m(ka)sin(kl)sin(mϕ), (3.13)

where I have also used eix = cos(x)+ isin(x). This can be simplified by considering the symmetry in m→−m and

k→−k. These identities for the modified Bessel functions and their derivatives are also useful[26]:

I′m(x) =
1
2
[Im−1(x)+ Im+1(x)] , (3.14)

K′m(x) =−
1
2
[Km−1(x)+Km+1(x)] , (3.15)

I−m(x) = Im(x), (3.16)

K−m(x) = Km(x). (3.17)

Putting them together, I′ and K′ are symmetric functions, as is cos. Sin and k/m, however are antisymmetric for each

transformation, so out of the four terms that come out of multiplying out the exponential, only the cos(mφ)cos(kx)

term is symmetric overall. The rest are all antisymmetric and cancel out when the whole sum or integral is computed,

as they both run from −∞ to ∞. For the surviving term, the limits of integration and the sum can both be changed to

be completely positive. The term then needs to be multiplied by four, since each change in the limit of integration
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or sum removes half of the contribution to the total field. The result is:

Bρ =
−8µ0Ia

π2

∞

∑
m=1,3,5,...

cos(mφ)
∫

∞

0
dk

k
m

cos(kz)I′m(kρ)K′m(ka)sin(kl)sin(mϕ). (3.18)

The equations for Bφ and Bx can be obtained in a similar fashion and after some rearranging of terms for

compactness, are[25]:Bρ

Bφ

Bx

=
8µ0Ia

π2

∞

∑
m=1,3,5,...

sin(mϕ)
∫

∞

0
dk sin(kl)K′m(ka)×


−k
m cos(mφ)cos(kx)I′m(kρ)
1
ρ

sin(mφ)cos(kx)Im(kρ)
k
m cos(mφ)sin(kx)Im(kρ)

 . (3.19)

This equation can be further manipulated to put it into a more useful form to compare simulations to. The z

component (which is vertical out of the table, transverse to the saddle coil, see Fig. 3.1) of the field can be calculated

along the x, y and z axes. The x axis is fairly simple, since for ρ = 0, only the m = 1 term contributes to the field in

the z direction. This is because as ρ → 0,

Im(kρ)→
(

kρ

2

)m

/m! (3.20)

and

I′m(kρ)→ 1
2

(
kρ

2

)m−1

/(m−1)!. (3.21)

For m > 1 these both go to 0, but for m = 1, I′1(kρ)→ 1/2. So, to get the field in the z direction, along the x axis,

the Bρ equation for ρ = 0 and φ = 0, and equation 3.15 can be used, to obtain:

Bz(x) =
2µ0a
π2 sin(ϕ)

∫
∞

0
dk ksin(kl)cos(kx) [K2(ka)+K0(ka)] . (3.22)

The z axis goes up out of the table, so φ = 0. The field in the z direction along this axis is just Bρ with ρ = z,

again making use of equations 3.14 and 3.15:

Bz(z) =
2µ0Ia

π2

∞

∑
m=1,3,5,...

sin(mϕ)
∫

∞

0
dk

k
m

sin(kl)cos(kx) [Km−1(ka)+Km+1(ka)] [Im−1(kz)+ Im+1(kz)] . (3.23)

And finally, the y axis is parallel to the table, at φ = π/2, and with the field in the z direction being Bφ , and

ρ = y.

Bz(y) =
4µ0Ia

π2

∞

∑
m=1,3,5,...

sin(mϕ)sin(m
π

2
)
∫

∞

0
dk

sin(kl)
y

[Km−1(ka)+Km+1(ka)] Im(ky). (3.24)

Equation 3.22 can be calculated for good precision in the magnetic field calculation, even when truncating the

integration for computation time. Equations 3.23 and 3.24 involve an infinite sum, so these need to be approximated

by also truncating the sum in addition to truncating the integration. Fortunately, I found them to converge very

rapidly, and including just the first three terms (m = 1,3,5) is sufficient for accuracy to about 10 parts in 109.
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Number of terms in sum limit of integration value for B0 (T) normalized B0
(m = 1, 3, 5...) at cell edge
2 100 0.001487225401 1.000015150589
2 1000 0.001487225399 1.000015149245
2 10000 0.001487225399 1.000015149245
3 100 0.001487202871 1.000000001345
3 1000 0.001487202869 1
3 10000 0.001487202869 1
4 100 0.001487202961 1.000000061861
4 1000 0.001487202960 1.000000061189
4 10000 0.001487202960 1.000000061189

Table 3.1: Test for precision for the calculation of the magnetic field of a pair of saddle coils. I chose to include
3 terms in the sum and use k = 1000 as the limit of integration. This should be accurate to 10 parts in 109.

Truncating the integration to k = 1000 for calculating the field along each axis is acceptable for similar precision.

This is easily enough precision to be useful as a check for the accuracy of the Biot-Savart simulation. The test for

precision of the analytic calculation is shown in table 3.1. Higher values of m are required for an accurate calculation

as one goes further from the origin, so this precision test was done at the edge of the cell containing the polarized
129Xe, or about 12.7 mm from the center of the coils, rather than at the center.

Shown in Fig. 3.8 is the results of running these analytic formulae in Maple, as well as the results from the

simulation described in Section 3.3.1. For the y and z axes, the calculation is run over the cell’s radius in each

direction, which is half an inch, or about 12.7 mm. For the x axis, which is the long axis of the coil and cell, it is run

over the length of the cell, which is about 100 mm in each direction.

For both the Helmholtz configuration, and the saddle configuration, the cell region has very small inhomo-

geneity, small enough for either to be useful without modification to perform adiabatic fast passage (AFP) and free

induction decay (FID). However the magnetic field can be distorted by external fields, or by nearby magnetic met-

als. This becomes a serious issue due to the constraints imposed on our setup by the requirements to do the optical

detection, specifically the requirement that these coils are placed just above our steel optical table. This is described

in Section 3.4. The saddle geometry has the benefit that it can be extended along the x direction, meaning that the

region of good homogeneity can easily be made larger along that axis without increasing the size of the coils in

other directions. This is useful since the 129Xe cell being used is quite long and thin.

3.4 Image Fields
Due to the nature of the 129Xe spectroscopy experiment, these coils need to be placed just above the same optical

table that the UV laser is built on. This is mainly due to the enhancement cavity for the UV light that will surround

the 129Xe cell. The optical components in this cavity must be mechanically very stable, so that the feedback and

locking electronics can reduce fluctuations in the cavity length to sub-wavelength amplitudes. There is a significant

drawback for this in terms of the homogeneity of the magnetic fields, though. The optical table is made of steel,

which will deform nearby fields significantly due to its relatively high µr.

Fortunately, these effects can be approximated and simulated, using the method of images. The idea is similar

to using image charges in electrostatics, where an imaginary “image charge” can be placed on the other side of a
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(a)

(b)

(c)

Figure 3.8: A comparison of the analytic and simulated results for the magnetic field in the z direction, created
by saddle coils. Plot (a) shows the field along the x axis, plot (b) the y axis and plot (c) the z axis. The
results agree very closely.
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Figure 3.9: The image current of a piece of straight wire above a high permeability material such as steel. The
current of the image (i) goes the same direction as the actual current (I).

planar conductor from a test charge, to create a plane of zero potential. In the magnetostatic case, one can use an

“image current” instead. Assuming an infinite, flat plane boundary, the image current is simple to calculate[27]:

i =
µr−1
µr +1

I, (3.25)

where µr = µ/µ0 is the relative permeability of the material creating the boundary, I is the actual current, and i is

the image current. The image current sits on the opposite side of the boundary, the same distance away as the actual

current. There are two limiting cases in which calculating the image current is trivial. One case is when µr = 0, such

as in the case of a superconducting boundary, in which i =−I. The other case is when µr� 1, so i≈ I. Steels tend

to have µr on the order of 1000 or more, so I use i = I in my image field calculations. A straight piece of current

above a high-µ material and its image are shown in Fig. 3.9.

Once the image current has been calculated, the field generated by this current can be calculated using the same

techniques as for the field from the actual current. The only change is that the position of the image current is

different; it is below the table rather than around the origin. In the case for geometries where the coils don’t have

current running in the same direction (the anti-Helmholtz configuration, for example), care must be taken to ensure

that the image currents are chosen to be going in the correct direction for the top and bottom coils. The image is a

mirror of the actual coils.

Equation 3.9 can also be used to find the field outside of the coils in a saddle coil geometry, analytically, which

is useful to calculate the image field. The relevant formulae can be obtained in the same way as equation 3.19, but

choosing the appropriate Pm and Qm for ρ > a. The result is very similar to the field inside the coils:Bρ

Bφ

Bx

=
8µ0Ia

π2

∞

∑
m=1,3,5,...

sin(mϕ)
∫

∞

0
dk sin(kl)I′m(ka)×


−k
m cos(mφ)cos(kx)K′m(kρ)
1
ρ

sin(mφ)cos(kx)Km(kρ)
k
m cos(mφ)sin(kx)Km(kρ)

 , (3.26)

and the corresponding field in the z direction along the z axis is

Bz(z) =
2µ0aI

π2

∞

∑
m=1,3,5,...

sin(mϕ)
∫

∞

0
dk sin(kl)

[
I′m(ka)K′m(kz)

]
. (3.27)

I ran this calculation in Maple along the z direction to have something to compare the simulation to. The

calculation off axis was prohibitive in terms of the time required (and in this case, the x and y axes are not “on axis”
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Figure 3.10: A calculation of the field along the z axis due to the image current from a saddle coil.

Number of terms in sum value for B0 (T) normalized B0
(m = 1, 3, 5...) at center
2 0.00013643552773 1.0062202016
3 0.00013551496688 0.9994310101
4 0.00013559262322 1.0000037302
5 0.00013559262322 1.0000037302
6 0.00013559207121 0.9999996591
7 0.00013559211775 1.0000000024
8 0.00013559211775 1.0000000024
9 0.00013559211743 1

Table 3.2: Precision test for the image field produced at the center of a pair of saddle coils by a steel optical
table, with the integration limits being k = 0 to k = 1000. Seven terms in the sum is sufficient for 10 parts
in 109 precision.

for the image field), but just calculating the exact field on the z axis is still a good check. Figure 3.10 shows the

result of this calculation across the diameter of the cell.

Even on axis, the integral and the sum in equation 3.26 need to be truncated to calculate within a reasonable

time frame. Table 3.2 shows the results of adjusting the limits of the sum. To get to 10 parts in 109 precision, 7

terms are needed. Figure 3.11 shows the analytic and simulated results for the B0 field in the z direction for a saddle

coil with radius a = 180 mm, half-length l = 500 mm and half-span ϕ = 60◦, sitting 310 mm above a steel table. The

effects of the table are very obvious (compare Fig. 3.11 to Fig. 3.8); there is a strong gradient along the z direction

that will need to be compensated for. Methods for doing so are described in Section 3.8.
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Figure 3.11: This is the magnetic field in the z direction, along the z axis, generated by saddle coils with
dimensions radius a = 180 mm, half-length l = 500 mm and half-span ϕ = 60◦ with a high-µr steel table
310 mm away in the -z direction. The plots are calculated using the analytic formula (in red), and using
the simulation (in blue). There is strong agreement.

3.5 External Fields
The final contribution to the total magnetic field in the experimental region is from all of the other magnetic fields

present due to external sources. In most environments, this will be dominated by the earth’s own local magnetic

field. The strength of this field varies somewhat over the surface, but is generally about 0.25 to 0.65 Gauss, or 25-65

µT. In particular, around Vancouver, Canada where these experiments took place, it is about 54 µT[28].

Other contributions can include currents from nearby electronics, and nearby permanent magnets. These tend to

contribute very little to the static field, though. The currents used to generate the fields I am using are on the order

of hundreds of amps, and are close to the experimental region. There is no reason to have permanent magnets in

the experimental region in this experiment, so those are not a concern either, although it is important to make sure

that there aren’t any placed nearby accidentally. For example, some optical mounts and bases have magnets built in,

and these are frequently placed right next to these coils to perform measurements on the UV laser. These must be

removed before performing NMR experiments with the coils.

Finally, there is the possibility of nearby magnetic materials, which will distort the field, like the optical table

does. This is best mitigated by simply going over all of the components with a weak magnet and determining which

ones are attracted to it. If possible, all such components are replaced with non-magnetic ones, such as those made

of aluminum or brass. In our lab the biggest offenders are our precision translation stages.

3.6 B1

So far, this chapter has focused on the generation of a uniform, static B0 field. NMR experiments also require an RF

field to perform the necessary spin flips, however. This B1 field oscillates at the resonant frequency of the nuclei in
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Source γ (MHz/T) Frequency at 1.5 mT (kHz)

129Xe -11.777 17.666

H2O (proton) 42.577 63.866

Table 3.3: Gyromagnetic ratios γ and precession frequencies for some sources in a 1.5 mT magnetic field.

the B0 field, and so is at a different frequency for different sources. The purpose of this field is to rotate the spin axis

of the source nuclei. In general, NMR experiments begin with a π/2 pulse to put the spins into the xy plane, from

the initial polarization along z.

The reason this field needs to be oscillating, rather than direct current (DC) like the B0 field is that the nuclei’s

spins will be precessing around B0 during the flip. An additional DC field would simply rotate the axis of precession.

Instead, the oscillating B1 field follows the source nuclei around the z axis, to provide a constant torque towards the

xy axis. When doing FID, B1 is turned off after the spin has been rotated by π/2. The details of this spin flip and the

rotating wave approximation have been explained in Section 1.1.3, but I will give a brief summary here.

The nuclei are precessing, and their spin vectors trace out a circle on the xy plane. The π/2 pulse would ideally

be driven by a field that follows the spin vector precisely, but such a field is difficult to create. A field that oscillates

along some axis in the xy plane is equivalent to two counter-rotating fields on that plane. The field following the

precession drives the π/2 flip, and the field rotating in the opposite direction does so quickly enough to have a

negligible effect on the spin flip (this small effect is called the Bloch-Siegert shift and is small enough to ignore for

FID). It is important to note, however, that half of the B1 field’s strength is lost to the counter-rotating portion, so the

duration of the pulse needs to be double than it would be if B1 were to rotate in the plane with the precessing nuclei.

Fortunately, the homogeneity of the B1 field is far less critical than the B0 homogeneity. The effect of an

inhomogeneous B1 field on an FID experiment is minor. Source nuclei at different locations in the RF field will

experience a slightly different field strength. The result is a spin flip that does not rotate the nuclei’s spins by exactly

π/2. This nucleus will then precess around the z axis, with the spin vector slightly above or slightly below the xy

plane on the Bloch sphere. This means that when the time variation of the projection of its spin along the x or y

axis is measured, contrast is lost. The particle will never be fully aligned with the measurement axis, so there will

always be a probability of finding it in the opposite spin state. However, unlike inhomogeneities in the B0 field, this

effect is not cumulative over time. In fact, the loss of contrast is also not a particularly strong effect to begin with,

since the projection onto the x axis will not change significantly.

Table 3.3 has the gyromagnetic ratios, γ , and precession frequencies for 129Xe and for H2O (proton) in a 1.5 mT

magnetic field. The frequencies are of the order of 10s of kHz.

3.7 Pickup Coils
The usual method for detecting an NMR signal is through Faraday induction in a pickup coil, as the magnetic flux

through the pickup coil, from the precessing nuclei changes. This method is described in Section 2.5.1. This

signal is very small, however, making the dampening of noise in the pickup coils and amplification of the signal

very important. The signal can be increased by making the pickup coil circuit into a resonant circuit, by adding a

capacitor, which is chosen such that the circuit is resonant at the frequency of interest. This turns the pickup coil
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Figure 3.12: Here is a typical pickup coil circuit. The coil itself is at the left, and the leads go to a capacitor
that tunes the circuit. The voltage across the coil is measured by a lock-in amplifier (LIA), through a
pre-amp. The capacitor is usually placed in a small box to protect it from being short circuited by metal
objects in the environment. A bucking coil can also be placed in this box to help cancel any cross-talk
left from imperfect mechanical decoupling between the pickup and B1 coils.

circuit into an LRC circuit, whose impedance will depend on the frequency of any alternating current (AC) signal

driven in the pickup coil. There is a resonance ω0 at

ω0 =
1√
LC

(3.28)

where L is the inductance in the circuit and C the capacitance. The resonant frequency does not depend on the

resistance in the circuit. Tuning the circuit in this way will make any signal at the resonant frequency build up over

several cycles, the same way an optical cavity builds up power circulating within it. Unwanted signals or noise at

other frequencies will not build up this way, so this improves signal to noise ratio (SNR). A lock-in amplifier is

also usually used to amplify the signal, which amplifies only in a narrow frequency band, and actually damps any

noise at frequencies outside of this band. Such amplifiers are typically used when the signal is weak, but of a known

frequency. Figure 3.12 shows a typical circuit for detecting an NMR signal.

One significant challenge comes from the fact that the B1 field itself oscillates at the same frequency of the

signal that is being measured. This can potentially generate an unwanted signal that is orders of magnitude stronger

than the signal from the precessing particles, called cross-talk. The best way to combat this issue is to make the

B1 and pickup coils perpendicular to one another. This decouples the pickup coil from the B1 field, since there

is no field from the B1 field along the pickup coil axis. Perfect alignment is never quite possible, and a leftover

signal from slight misalignment must still be significant. One way this can be compensated for is by introducing

a “bucking” coil to the pickup circuit that drives an electromotive force (EMF) that opposes the leftover cross-talk,

which is described in more detail in Section 4.2.1.

3.8 Shielding and Improving Homogeneities
Externally generated RF fields at the same frequency of the precessing nuclei can be a significant source of noise in

NMR experiments. If these are constant, they can theoretically be cancelled with the bucking coil, but changes in
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direction or amplitude of the externally generated fields cannot be easily dealt with this way. Shielding of some sort

is required to improve the SNR. It is also possible to shape the DC (B0) field using a shield made out of a high-µ

material, with the right geometry, potentially improving the field’s homogeneity.

Other techniques can also be used to improve the homogeneity of the B0 field. I will describe two in this section:

using shim coils and adjusting the current ratio in the main coils. In brief, shim coils are weaker sources of magnetic

field that are placed strategically around the main coils to compensate for the inhomogeneities present. Adjusting

the current ratio is simply a matter of having a different current go through each coil in a pair. In both cases, the

magnetic field generated by the B0 coils and their image fields are modified, and other external static fields can also

be compensated for.

3.8.1 AC Shielding

One method for shielding the pickup coil from external AC fields is the use of a second coil, with fewer turns but a

larger radius, or area. This can be set up in such a way that the ratio

NinnerAinner = NouterAouter (3.29)

holds, but with the coils wired in opposing directions. For an externally generated field, the magnetic field gradient

will be small across the coils, and so the flux through both of these coils will be very similar. Since they are counter-

wound, the resulting EMF will mostly cancel. This is not the case for a magnetic field generated by a small source

inside the coils, such as the spin signal we are trying to measure. This field will decay on a length scale given

by the source dimensions, and so the induced EMF will be weaker for the outer coil. The result is that the signal

is only diminished slightly, while noise from externally generated fields is almost completely removed, improving

the SNR. Increasing the radius of the outer coil compared to the inner coil (and reducing the number of windings

appropriately) results in a less diminished signal, but also is less effective in canceling externally generated fields.

It is more effective, however, if the external fields can be shielded away without reducing the signal at all. This

can be done with an RF shield. A shell of conductive material is placed around the coils so that external RF fields

generate a current on this shell, but do not penetrate it. This works as long as the cage is sufficiently thick. The

required thickness depends on the skin depth for the particular frequency of field and the material used, and also

depends on the shield geometry itself. For a cylindrical shield, at a frequency and material such that the skin depth

is δ , and for radius R, the required thickness d0 is[29]

d0 = δ
2/R. (3.30)

At tens of kHz, this is significantly thinner than just the skin depth alone. This is due to Faraday induction. The

shield is, effectively, a current loop, and the oscillating RF field causes a changing magnetic flux, inducing an EMF

around the shield. This current generates a field that opposes the RF field, diminishing it inside the shield.

Using a shield like this has the advantage that the signal from the precessing spins is not reduced, but it can use

up a lot of room in the experiment, and can make it difficult to access parts of the experiment to make adjustments.
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3.8.2 DC Shielding

A shield made out of magnetic material, whose permeability, µ , is much different than the permeability of free space,

µ0, will also distort DC fields, in addition to blocking AC fields. A useful way to analyze this distortion is to expand

the field in terms of a uniform field and multipoles. The effect of the shield on each multipole can be described in

terms of its “reaction factor,” or, the proportional change in field strength. For a saddle coil configuration, if the

material is high µ , such as steel or mu-metal, the reaction factor will be greater than 1, since the image currents

generated are in the same direction as the actual currents. For a low µ material, such as a superconductor, the

reaction factor will be less than 1, due to the negative image currents[25]. This means that the overall strength of

the field is intensified with a shield made of high µ material, and diminished if made of low µ material. With the

right geometry, the homogeneity of static fields inside the shield can also be improved[30].

In theory, for an infinitely long, cylindrical high-µ shield, if the coil’s radius is 0.7784× the shield’s inner radius,

the reaction factor for the uniform part of the field is maximized compared to other orders. The shield distorts the

field inside, just like the optical table distorts nearby fields, but it does so in a way that is beneficial, rather than

harmful to the homogeneity of the static B0 field. Since the shield also reduces the strength of the field due to the B0

coils outside of it, it also mitigates or eliminates the effects from nearby magnetic metals, such as the steel optical

table.

The analytic results for the magnetic field generated by saddle coils can be modified to include a cylindrical

shield [31].

Rm(k) =−
I′m(ka)Km(kb)

Im(kb)
(3.31)

if the coil radius is smaller than the inner diameter of the shield. To calculate the total resulting field, in equation

3.19, K′m(ka) is replaced with (K′m(ka)+Rm(k)).

Unfortunately, for a finite length shield, with or without end caps, it is not clear exactly what the effect on the

B0 field would be. To avoid potentially worsening the homogeneity, it was decided not to make a high-µ shield for

our setup. Instead, we used aluminum, which will block AC fields but have little effect on DC fields, having µr ≈ 1.

3.8.3 Shimming the Field

Shimming a magnetic field refers to the addition of weaker currents placed around the primary source of the mag-

netic field, or an adjustment of the current ratio between the field’s primary source coils. Either method can be

used to cancel a gradient in the magnetic field. This gradient can come from externally generated fields, such as the

earth’s magnetic field, or from field distortions of the B0 field.

A simple way to shim a linear gradient in a field is to use an anti-Helmholtz pair of coils. This geometry was

described in Section 3.2, and generates a linear gradient of its own. By creating a gradient that opposes the existing

gradient that needs to be compensated for, a much more uniform field is generated. This method of shimming makes

it easy to adjust the field gradient while having a minimal effect on the field’s strength at the center, which is very

useful for NMR experiments.

In the case of a saddle coil, adjusting the current ratio also generates a linear gradient. The adjustment can be

made several ways. One is to build it into the coils by wrapping fewer windings on one of the coils, but there is no

simple way to make further adjustments in that case. Another method is to simply run a different amount of current
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through each coil. This can be achieved with a variable current shunt, or by simply driving each coil with separate

power supplies. This method is simpler than building a separate set of anti-Helmholtz coils, but the field’s strength

changes along with the homogeneity. Initially, I will use a current ratio to shim the B0 field, but it may be necessary

to add anti-Helmholtz coils in the future.
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Chapter 4

Measurements and Results

In this chapter I will describe the final design of the magnetic coils that I constructed, and I will go over the results

from doing nuclear magnetic resonance (NMR) experiments on protons in water, which was done to characterize the

fields generated by the coils, as well as to provide a baseline for later comparisons to similar experiments on 129Xe.

The data from these experiments were taken under time constraint, and so were analyzed later. From this analysis, it

has become clear that there are several straightforward improvements that can be made to obtain stronger or longer

lasting signals in the future.

4.1 Final Coil Design
The final design is shown in Fig. 4.1, which includes the AC shield, the B0 and B1 coils, and the 129Xe cell. The

supports, mounts and optics needed for the UV enhancement cavity are also shown. The UV laser itself is behind

the shield, towards the left side of the assembly, in this drawing’s perspective. The NMR experiments in this chapter

are performed on protons in water molecules, so the 129Xe cell is replaced with a water bottle, with a pickup coil

wrapped around it. This bottle is about the same width, but shorter than the 129Xe cell. A photo of the bottom half

of the AC shield and B0 coil, the B1 coil, and an older version of the pickup coil, meant for a wider water bottle than

the one used is shown in Fig. 4.2.

4.1.1 AC Shield

Since the signal generated in the pickup coil is passed through a lock-in amplifier, noise at frequencies other than

the precession frequency is eliminated, but noise near that frequency is amplified along with the signal. I designed

an AC shield made out of aluminum to shield the pickup coil from externally generated noise sources.

This shield is 2 m long, and has a radius of 220 mm. The aluminum itself is about an eighth of an inch thick,

and was rolled into a cylinder by the the University of British Columbia (UBC) machine shop. Our shop is only

able to roll pieces that are up to about 3 feet wide, due to the size of the rollers, so the shield was made in 4 parts,

which were riveted together. Since we are doing NMR at low magnetic field strengths, the frequencies that we are

interested in are quite low, only tens of kilohertz, which correspond to wavelengths in the tens of kilometers. This

means that holes in the shield should not diminish its effectiveness. Some holes in the shield are needed to pass

wiring to the coils and UV cavity electronics, and to let the UV laser light in. The shield is also cut in half down the
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Figure 4.1: The full assembly of coils and the 129Xe cell, and cavity optics. The cell has a pickup coil wrapped
around it. The water bottle used to make the measurements in this chapter is about the same width, but is
shorter than the 129Xe cell. The AC shield is also shown, as well as the mounts used to hold that shield in
place. The B0 coils are mounted to a wooden frame that attaches to the shield, and the B1 coil is mounted
on an acrylic frame. Holes are cut in the shield to accommodate the aluminum pillars that hold up the
slab for mounting the B1 coil, cell, and cavity optics. The UV laser’s output is behind the shield towards
the left side of this assembly. As shown, the z axis points up in this figure, and the x axis down the shield.
The y axis is also in the transverse plane, such that the coordinate system is right handed. The origin is
taken to be the center of the 129Xe cell.

long axis, so that the top half can be easily removed for access to the UV cavity, the B1 coil, and the pickup coil.

The top half mounts to the bottom half with brass screws and a strip of aluminum.

Mechanical stability is extremely important for the UV cavity to function, but the cavity needs to be at the center

of the magnetic fields, so it needs to be raised above the optical table. A heavy, nonmagnetic platform, with threaded

brass inserts is raised up on aluminum columns and glued into place with epoxy to use as a platform for the cavity

as well as the B1 and pickup coils. The lower half of the shield has holes drilled to accommodate these columns,

and is mounted on wooden mounts before the platform is epoxied. The columns are secured to the optical table with

aluminum clamps.

4.1.2 B0 Coil

The B0 coil design was motivated by the need for a very homogeneous magnetic field, and like described in Chapter

3, a saddle coil geometry is ideal for creating a uniform field across the size and shape of the 129Xe cell. The exact

coil parameters also need to take into account the distorting effects from the high-µr steel optical table. The final B0

coil design has 20 windings of 14 gauge wire wrapped in a saddle shape with rungs 1 m long, and arcs with a radius
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Figure 4.2: A photo of the shield, the bottom of the B0 coil, the B1 coil, and an older version of the pickup
coil, meant for a wider water bottle than the one used. On the left side there is a mirror that is used to
guide the UV laser light to the UV enhancement cavity, which is removed in this photo. The top half of
the shield also holds the top half of the B0 coil.

of 180 mm and a span of 120◦ that generate a field along the z axis. The B0 coils were wrapped around a purpose

built wooden frame, then lifted off and mounted to the inside of the AC shield. Part of the bottom half can be seen

in Fig. 4.2.

The strength of the field that the coils can generate is limited by the heating of the wire as the current through

them is increased. In principle, the current can be increased until either the insulation breaks down and the wire

shorts, or until the copper itself melts, but there are other potential problems as the wire temperature increases. The

resistance in the wire is dependent on its temperature, so when using a voltage source, such as the power supply

we used, the current drifts as the wire approaches the equilibrium temperature. With the AC shield, this heat gets

trapped, warming the pickup and B1 coils as well. It is also sometimes necessary to reach into the shield, so there

are safety concerns with the wires getting too hot. This coil starts becoming painful to the touch at about 10 A.

For these experiments, this limit is not of consequence, since the power supply being used to drive the B0 coil
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Figure 4.3: This is a plot of the B0 field homogeneity measurement along the z axis. The field strength is
normalized to 0 at the top of the water bottle. The vertical extent of the water bottle is shown by the
black lines, at about -17 mm and +17 mm. The height is zeroed at the cell center. The blue plot is what
the experiments in this chapter were performed under, with about 0.42 A taken from the top coil. The
variation of the magnetic field strength along the z axis is about 0.1 Gauss (10µT), or about 1.5% of the
magnitude of the magnetic field. Removing the potentiometer, or moving it to the lower coil improves
the field homogeneity.

cannot drive more than 8A. It is usually set to about 7 A for the experiments in this chapter, since the adiabatic fast

passage (AFP) experiments require ramping this current up and down around its set point. It takes about an hour for

the temperature inside the shield to stabilize after turning on the B0 coil.

The field generated by the B0 coils in the cell region was measured with a flux gate. The direct current (DC)

field generated by these coils, when placed above the steel optical table, with no compensation for the gradient it

creates in the field, was measured to be 0.943 G/A (94.3 µT/A) at their center. The field gradient along the z axis

was also measured, which can be compensated for by adjusting the current ratio between the top and bottom coils.

This adjustment is currently done by connecting a potentiometer in parallel with one of the coils, to divert some

current away from that coil. Since the flux gate was borrowed from another group, I ended up having to make these

measurements after the experiments in this thesis had already been performed, so the current ratio was set based on

the simulations described in Chapter 3. However, I mistakenly connected the potentiometer to the top coil rather

than the bottom coil, and actually made the gradient worse. Figure 4.3 shows the field gradient in the z direction

for various current ratios. The black vertical lines are at the water bottle’s walls, so the field inhomogeneity for the

experiments in this chapter should be about 0.1 G, or 10 µT.
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The B0 coil circuit consists of a power supply, the coils, and a current stealer circuit attached in parallel to one

of the coils. The power supply also has a control input, where a ramped signal is sent for AFP, which is controlled

by a function generator.

4.1.3 B1 Coil

The B1 coil generates the radio frequency (RF) field that flips the nuclei’s spins. This field is generated by another

saddle coil, and points perpendicular to the B0 field, along the y axis. The homogeneity of the B1 field is not nearly

as critical as the B0 field, so it can be made much smaller, physically. This B1 coil is made of 10 windings of 26

gauge wire in a saddle shape with rungs 400 mm long, and arcs with a 75 mm radius, and a span of 135◦, wrapped

around an acrylic frame. The coil can be seen in the photograph, Fig. 4.2.

For a DC field, the B1 coils produce about 1 G/A, measured with a gaussmeter. In principle, for AC fields, this

might be attenuated somewhat by the presence of the aluminum shielding. This attenuation should be weak, since the

shield radius is considerably larger than the coil radius. Measuring the AC field is not possible with the measurement

devices we had in the lab, unfortunately. This matters the most when doing free induction decay (FID), since the

field strength determines how long the π/2 pulse needs to be on. It will also affect the adiabaticity condition for

AFP. The best test available to us is to simply do FID repeatedly with different currents or pulse durations, to find

the maximum signal amplitude from FID.

The B1 coil circuit consists of a function generator which drives the AC current, the coil itself, and a 1 Ω power

resistor that is used to monitor the current in the coil.

4.1.4 Pickup Coil

The pickup coil measures the changing magnetic flux from precessing spins. By Faraday induction, an electromotive

force (EMF) is induced, the current from which generates a magnetic field that tries to oppose an external change

in magnetic field. This coil can be easily replaced with a different one in the setup, and is usually matched to the

sample container. For example, for the proton NMR experiments done in this section, the coil is wrapped directly

around the water bottle used to hold the sample. This maximizes the signal from precession, while minimizing noise

from other oscillating fields. The EMF generated in the pickup coil is very small (on the order of a µV or less in

these experiments), so the current in the wires is tiny, and they can be quite thin without worrying about thermal

damage. The pickup coil used was wound from 26 gauge wire, and has 190 windings, in a solenoid configuration.

The pickup coil is inductive, of course, so rather than connecting it directly to the amplification circuit, a resonant

circuit can be made by adding a capacitor. This is done in an external box (the “tuning box”), so that it is easy to

change the tuning capacitor if the pickup coil is changed. The capacitor needs to be chosen appropriately to create

a resonant circuit at the correct frequency. The resonant frequency of the circuit is given by

ω =
1√
LC

, (4.1)

where L is the inductance of the pickup coil and C the capacitance of the tuning capacitor.

The pickup coil used will depend on the sample, so its inductance L needs to be measured, and then a tuning box

with the correct capacitor needs to be made for each pickup coil. The desired precession frequency also needs to

be known, so that the circuit’s resonant frequency, ω can be made to match. After a capacitor has been chosen, the
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Figure 4.4: This is a closeup photo of the pickup coil, wrapped around the water bottle used for these experi-
ments. Rotating the plastic rod at the bottom of the photo changes the alignment between the pickup and
B1 coils, to mechanically decouple them and reduce cross-talk. The B1 coil can also be seen, mounted to
an acrylic frame. In the back left, there is a hole in the shield to allow the UV laser light in. It is wrapped
in black tape to protect wires from sharp edges, since the insulation on the wires used to make the coils
is very thin.

actual resonant frequency needs to be measured since tolerances on components, and other inductive and capacitive

circuit elements can shift this frequency. The easiest way to measure the resonance of the pickup coil circuit is

simply to measure the cross-talk from the B1 coil with the lock-in amplifier. Since this amplifier also drives the B1

coil, changing the frequency on the amplifier changes both the signal in the pickup coil, and the frequency that is

measured by the amplifier. The resonant frequency is the frequency where the cross-talk is maximized. For these

experiments, the pickup coil’s inductance was measured to be 454 µH. We wanted a precession frequency of around

27 kHz for the protons in our NMR experiment, since that corresponds to about 7 A on the B0 coils, so a capacitor

of 76 nF would tune the circuit. The measured resonance with such a capacitor was at 27.07 kHz, so this is the

frequency that is used for all of the experiments in this chapter.

For the actual NMR measurements, cross-talk is not desirable, so the pickup coil’s angle to the B1 coil can be

55



adjusted. The corner of one of the mounts can be moved around to change the horizontal angle of the container

compared to the B1 coil by rotating a threaded rod. This is usually good enough to bring the cross-talk down to

about 15 mV before the lock-in amplifier (but after the pre-amp), which has been sufficient for these experiments.

Figure 4.4 shows a closeup view of the pickup coil, water bottle, B1 coil and the decoupling mechanism.

The pickup coil circuit consists of the pickup coil and a tuning capacitor. The output is sent to a 100x pre-amp

and then into the lock-in amplifier.

4.1.5 Lock-in Amplifier

All of the NMR measurements taken in this chapter were done through a lock-in amplifier, which is commonly used

when a signal is of a constant, known frequency. They are somewhat different than traditional amplifiers in that

they amplify a signal from a specific frequency, while damping any signal or noise at other frequencies. This is

done by multiplying the signal by the reference sine wave, and integrating over some time. If the signal being sent

to the lock-in amplifier is Asin(ωt), and the amplifier’s reference frequency is ωlia, then the output depends on the

integration time, and the phase between the signal and reference, φlia:

Vout(t ′) =
t ′∫

0

Vin(t)sin(ωt)sin(ωliat +φlia)dt. (4.2)

The output’s amplitude diminishes as ω gets further from ωlia, and does so more rapidly when t ′ is longer. In

the limit where one integrates over all time, so t ′ → ∞, then the only contribution to the signal is from sources

at exactly the reference frequency. For finite integration times, this multiplication creates a bandpass filter, with

the width increasing for shorter integrations. That means that there is potentially more noise left in the amplified

signal when set to a shorter time constant. However, if the signal changes quickly in amplitude, like FID does when

the field inhomogeneity is too high, a short time constant is required so that this signal does not get averaged out.

This averaging can also make measurements slightly inaccurate. For example, the height of a peak during AFP will

become smaller due to this averaging when going to long integration times. The positions of features will also be

delayed a bit, which needs to be taken into account when comparing to other simultaneous measurements. These

inaccuracies increase as the integration time increases. To compensate for the lost signal to noise ratio (SNR) by

going to short integration times, many data runs can be taken and averaged together.

The amplified signal’s amplitude also depends on the phase between the raw signal and the reference sine wave

used by the lock-in amplifier, φlia. When they are out of phase, the strength of the output signal will be diminished,

going to 0 when the two sine waves are 90◦ out of phase. The lock-in amplifier I used has two outputs, with

the reference frequency for each being out of phase with each other by 90◦, called “x” and “y.” The y output is

determined by equation 4.2, but with φlia replaced with φlia + 90◦. With the outputs phased in this way, the true

amplitude of the amplified signal can be obtained by adding them in quadrature.

The lock-in amplifier also has a variable setting for the amount of amplification. This is labeled as “sensitivity,”

since it sets the input range. The output is always -10 V to +10 V, so if the sensitivity is set to 5 mV, for example,

there is 2000x amplification. There is also a pre-amp which has a frequency independent amplification of 100x. The

output from the lock-in amplifier is sent to an oscilloscope to read and save the measurement data.
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4.2 Adiabatic Fast Passage (AFP)
The first experiments performed with these coils was AFP on protons in water molecules. Since the experiment is

run on a Boltzmann polarized1 sample, there is a known and repeatable polarization. This is convenient because this

way a lack of signal cannot be due to insufficient polarization, and indeed, it was quite simple to find an AFP signal

by scanning the B0 field, and so the precession frequency, over a large range. Having such a repeatable polarization

also makes it easy to average many runs to improve SNR. This allows us to dramatically reduce the integration time

on the lock-in amplifier to get a more accurate signal. By varying the parameters used in the AFP experiments, it is

possible to begin characterizing the coils and the fields they produce. This characterization is continued with FID in

Section 4.3.

AFP was described in detail in Section 2.6, but I will go over it again briefly here. The oscillating B1 field is left

on constantly, and the B0 field is ramped slowly. As the B0 field is ramped, the precession frequency of the nuclei

changes. As the precession frequency ramps through the B1 frequency, the spins of the nuclei are adiabatically

transferred to the opposite z state as they were originally. As they are transferred, they spiral through the transverse

plane and induce an EMF in the pickup coils. Figure 4.5 shows an example of what signals are monitored on the

oscilloscope during an AFP measurement. The resonant frequency of the pickup coil circuit is 27.07 kHz, and for

protons to precess at that frequency, a B0 field of 0.636 mT (6.36 G) is required. A current of just under 7 A

generates this field strength, using these coils.

The power supply being used has a tuning input, so to ramp the field, a ramped input from a function generator

can be used. The lock-in amplifier and the B1 frequency need to be exactly the same, which is accomplished most

easily by using the lock-in amplifier’s reference sin wave itself as a source for the B1 current. One additional

function generator needs to be used to drive the bucking coil that cancels residual cross-talk, the details of which are

described in Section 4.2.1. The entire circuitry and the equipment used is shown in Fig. 4.6. For the pickup coil, the

tuning capacitor is placed in a tuning box to make it easy to swap out for a different one. Conveniently, the bucking

coil can also be placed in this box. The pre-amp amplifies the signal by 100x and outputs the amplified difference in

voltage between the two leads of the pickup coil circuit. This signal is passed to the lock-in amplifier. The current

through the B1 coil is measured by measuring the voltage across a 1 Ω power resistor on the grounded side of the

circuit.

4.2.1 Cross-talk

Cross-talk is a significant spurious signal that prevents us from being able to go to lower sensitivity on the lock-in

amplifier. In this case, it refers to any signal that is generated in the pickup coil by the oscillation B1 field. So, to

maximize SNR, it is important to minimize cross-talk. Other than the mechanical decoupling described in Section

4.1.4, a “bucking” coil is used to drive a current in the pickup coil circuit that is exactly out of phase with the

cross-talk when doing AFP. The resulting destructive interference can reduce the cross-talk by several orders of

magnitude. Empirically, we did notice that the noise in the signal increases if the bucking coil needs to do more

work, however, so the mechanical decoupling still needs to be as good as possible. A good goal for the mechanical

decoupling is to get under 15 mV after the pre-amp.

After mechanically decoupling the coils as well as possible, the voltage of the remaining cross-talk is noted

1see Section 2.3.1 for a description of Boltzmann polarization
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Figure 4.5: Here is a sample screenshot of the oscilloscope while performing AFP. The green plot measures
signal sent to the power supply for the B0 ramp. The noisy magenta plot is the EMF generated in the
pickup coil, de-modulated and amplified by the lock-in amplifier. The light pink plot above that is an
average of 115 sweeps of the magenta plot. The blue plot is the current through the B1 coil, and oscillates
at 27.07 kHz. At longer time constants, the SNR straight out of the lock-in amplifier is similar to the
averaged signal here. The magenta plot was taken with a time constant of 1 ms, and at a time constant of
100 ms, the data look similar to the light pink plot.

and then the B1 coil is turned off. The bucking coil is then turned on and its amplitude is adjusted until the signal

through the lock-in amplifier matches that of the cross-talk. Then, the B1 coil is turned back on, and the phase on

the bucking coil is adjusted until the cross-talk is minimized. The amplitude and phase of the current through the

bucking coil often needs to be adjusted again after the B0 coil has reached thermal equilibrium.

4.2.2 AFP results

Most of these AFP experiments were performed with the lock-in amplifier at a 5mV sensitivity (which corresponds

to a 2000x amplification, plus an additional 100x from the pre-amp), 1 ms time constant, and 24 dB slope2. I

performed AFP on protons in water while varying a number of parameters. The goal was to determine the T1 time

constant and to confirm the adiabaticity conditions for water for these coils, and so also confirm the B1 field strength.

From the width of the AFP signals, it would also be theoretically possible to determine the B0 field gradient, and

2The slope here refers to how steep the edges of the bandpass filter are in frequency space. A 24 dB slope is the steepest setting on this
lock-in amplifier.
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Figure 4.6: Here is a schematic of how the function generators and circuits are hooked up for AFP. On the left
is the pickup coil circuit. FG1, the first function generator, drives the bucking coil, which is placed inside
the tuning box (shown as the dashed box around the tuning capacitor and bucking coil). The coil needs
to maintain phase with the B1 coil, but since they are driven by separate devices, this is not guaranteed.
To ensure phase, FG1 is actually run in burst mode, triggered by the lock-in amplifier. The voltage across
the pickup coil is measured by the LIA, after a 100x pre-amp. The amplifier demodulates the signal, and
also drives the B1 coil at the same frequency as this demodulation. A 1 Ohm power resistor is placed in
the B1 circuit, and is used to measure the current through this circuit. A second function generator, FG2,
drives the ramp on the power supply, PS, which drives the necessary current through the B0 coil. This
circuit is completely separate from the pickup and B1 circuits.

from there the T∗2 time, although FID is better suited for that measurement, since there are a lot of factors that can

affect the width of the AFP signal that would all need to be carefully accounted for.

When performing AFP, it is important to make sure that the ramp rate is not too fast, or the spins will not follow

the field adiabatically, reducing the amplitude of the AFP peak. The condition for adiabaticity is

dB0

dt
<< γB2

1. (4.3)

With the B0 ramp rate at 4.1 µT/s, B1 should be much greater than 0.3 µT. This can be confirmed by repeating

AFP measurements for varying strengths of B1. As the B1 field becomes weaker, the chance that a given nucleus

transfers to the new spin state decreases.
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The probability that a nucleus’ spin is not transferred to the new spin state is[32]:

Plost = e−
π

2
Ω2

∂δ/∂ t , (4.4)

where Ω is the precession frequency of the nucleus, in rad/s, around the B1 field (not the B0 field), and ∂δ/∂ t is the

ramp rate of the precession frequency around the B0 field, in rad/s2.

By varying the strength of B1, Ω is varied:

Ω(B) = γB1(I) = 2π ∗42.576∗106 ∗B1(I), (4.5)

where B1(I) = c ∗ I, some constant times the current. Based on measurements performed with a gaussmeter, c =

97±4 µT/A.

The B0 ramp rate for this experiment was kept constant at 4.1 µT/s, so

∂δ

∂ t
= 4.1∗10−6 ∗2π ∗42.576∗106 = 1096.8 rad/s2 (4.6)

is the ramp rate in the proper units for equation 4.4.

The data that is obtained by varying the B1 field strength does not give the probability of losing polarization,

though, it is the polarization that remains. So, the equation that I fit to is

Premaining = A∗ (1− e−
π

2
(2π∗42.576∗106∗c∗I)2

1096.8 ). (4.7)

Here, I multiply the whole equation by a scaling factor, A, since the data are not normalized. The fit parameter is c,

the field strength per amp through the B1 coils.

The result from the fit is shown in Fig. 4.7, and was found to be c = 10.9± 0.3 µT/A, almost a full order

of magnitude lower than what was measured with the gaussmeter at DC, c = 97± 4 µT/A. It is possible that the

attenuation from the shield is greater than expected, but more likely that one of the measurements, either the DC

field per amp, or the data and its fit, are incorrect. Since the shield’s diameter is about 3x that of the B1 coils, the

expected attenuation is approximately 1/32, so the reduction should be by about 11%, rather than the 89% difference

found here, between the DC measurement and the result from the fit. [30] Looking back at the adiabaticity condition

as well, equation 4.3, for this ramp rate, B1 needs to be much greater than 0.3 µT. According to the fit, with c = 10.9

µT/A, this condition would correspond to a B1 current of much greater than 27 mA. The gaussmeter measurement,

with c = 97 µT/A, would put the condition on the current at much greater than 3 mA for adiabaticity. From Fig.

4.7, it can be seen that at a B1 current of 27 mA, AFP appears to already be adiabatic since the peak heights have

reached their maximum. So, it seems likely that the gaussmeter measurement is more accurate. This inconsistency

has potential implications for FID experiments as well, since the strength of the B1 field needs to be known so that

the duration can be set properly. A method for directly measuring the field strength per amp at 27.07 kHz may be

required.

The other parameter I varied was the time between AFP peaks. After each AFP peak, the sample will return to

Boltzmann polarization on the T1 time scale, but if another AFP ramp happens before this relaxation is complete, a

spin flip still occurs. However, the signal from this flip will be somewhat out of phase with the lock-in amplifier’s

reference sin wave. Figure 4.8 shows an example of two AFP spin flips that begin with a sample polarized in the
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Figure 4.7: This is the data obtained by varying the B1 field strength. The data in blue is the height of the AFP

peak at that field strength, and the red line is a fit to the Landau-Zener model. This model states that the

probability of a spin not transferring to new spin state is given by P = e
π

2
Ω2

∂δ/∂ t , where∂δ/∂ t is the rate
at which the precession frequency of the protons is ramped, and Ω = 2πγcI, with γ = 42.576 MHz/T, I
being the current through the coils, and c being the fit parameter; the strength of the B1 field per amp of
current through it. The fit found c = 10.9±0.3 µT/A, almost a full order of magnitude lower than what
was found by measuring the DC field produced by a known current with a gaussmeter.

Figure 4.8: The phase of the signal from AFP depends on the direction of initial polarization of the sample.
Shown here is a portion of the spin flip during AFP, in the rotating frame for simplicity. In panel a), the
spin is initially up along the z axis, and halfway through the spin flip, points in the positive y direction.
In panel b), the spin is initially down along the z axis, and points in the negative y direction during the
spin flip. The two examples are 180◦ out of phase with each other, and so is the signal they generate in
the pickup coils.
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up state in z, panel a), and a sample polarized in the down state, panel b). In this example, the signals generated by

each of the spin flips are out of phase with each other by 180 ◦. For this experiment, the lock-in amplifier’s phase is

set to maximize the signal amplitude out of the “x” output for one of the AFP peaks. As long as the time before the

next AFP peak is not large compared to the T1 time of the sample, the AFP signal from the next ramp through the

resonance will be out of phase with the first, which will result in a smaller peak, or even a negative peak in the “x”

output.

Figure 4.9: This is a plot of the heights of the second AFP peaks (the first data point is the initial peak), when
the time between peaks is scanned. An exponential decay is fit to these points, where the polarization is
A(1−2e−t/T1). T1 is found to be 2.7±0.2 seconds.

The experiment is repeated, for varying times between AFP peaks, and the height of the second peak is recorded

each time. These peak heights can be fit to an exponential decay. The fit equation is found by examining exactly

how the polarization behaves after the initial AFP spin flip.

After the first AFP ramp, the nuclei end up polarized in the opposite spin state from Boltzmann equilibrium. The

z polarization (or, magnetization) then changes like:

Mz(t) = Mz, eq(1−2e−t/T1), (4.8)

where Mz, eq is the Boltzmann polarization. In this case, Mz(0) is the polarization at the end of the first spin flip.

Over time, the polarization returns to equilibrium (Boltzmann polarization), until the second AFP spin flip is applied,

at time t = t2. The phase of the signal generated during this second spin flip compared to the phase of the first flip is

φ = acos
(

Mz(t2)
Mz, eq

)
. (4.9)
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The relative amplitude of the signal in the “x” output of the lock-in amplifier will depend on this phase:

V2

V1
= cosφ , (4.10)

where V1 is the amplitude of the signal from the first AFP peak, and V2 the amplitude from the second. The three

equations 4.8, 4.9, and 4.10 can be combined to arrive at the equation the data should be fit to:

V2 =V1(1−2e−t/T1). (4.11)

This equation is fit to the peak heights (including also the initial peak height, where t=0, as the first data point),

which is shown in Fig. 4.9. The result of the fit is a T1 time of 2.7±0.2 seconds.

4.3 Free Induction Decay (FID)
FID was described in detail in Section 2.7, but I will briefly go over it again here. The spins of a sample that is

initially polarized along the B0 field direction are tipped into the transverse plane by a π/2 pulse from the B1 coils.

The sample is then allowed to precess freely around the B0 field. The transverse polarization will disappear over

time due to relaxation effects and the B0 field gradient, so the EMF induced in the pickup coil decays exponentially.

For a number of reasons, finding an FID signal is usually more challenging than performing AFP. In principle,

the initial signal strength should be the same as the amplitude of the AFP peaks, since in both cases the spins are at

their maximum transverse polarization. However, if the FID experiment’s B1 pulse is not well tuned, it will not tip

the spins by exactly π/2. In that case, the transverse polarization will not be as strong as it could be, diminishing

the initial signal. Measuring the B1 field at its operating frequency is not possible with the equipment in our lab,

so it must be estimated. I measured the field strength per amp for a DC field, and found it to be 0.97±0.04 G/A.

For the first attempts at FID, I assumed that there would be a negligible difference to the field strength at 27.07 kHz.

The presence of the aluminum shield could introduce a frequency dependent attenuation, however. To determine

the optimum B1 pulse duration, FID can be repeated while varying the duration or strength of the B1 pulse, looking

for the maximum FID signal strength. Cross-talk poses a larger problem than for AFP, since even with a bucking

coil, the ring down in the resonant pickup coil circuit of the B1 coil’s cross-talk after the B1 pulse turns off is an

exponentially decaying signal, just like the FID signal we are looking for. It is mitigated by using a Q-killing resistor,

instead, described in detail in Section 4.3.1.

The B0 field needs to be precisely calibrated such that the nuclei precess at the same frequency as the B1

frequency. One of the easiest ways to do so is to perform AFP first, and adjust the center of the B0 ramp such that

the AFP peaks are precisely centered. When the ramp is turned off, the field should be sitting exactly on resonance.

Care must be taken, however, since the lock-in amplifier’s time constant results in a slight time delay of the AFP

peaks, due to the averaging it does. This manifests itself as an error in the exact current that resonance occurs, and

is seen as an asymmetric positioning of the peaks on the up and down ramps. The time constant should be reduced

until this shift is negligible compared to the width of the AFP peaks. Generally, a time constant of a few ms has

worked for this purpose in these experiments.

Cross-talk is not completely eliminated, so to make sure that any signal I find is actually from FID, I first took

data with the nuclei precession on resonance with the B1 field, and then again with them far off resonance. These

63



Figure 4.10: Shown is the effect of adding a Q-killing resistor to the pickup coil on how much cross-talk is
seen from the B1 coil. The top plot is the signal in the pickup coil without the analog switch (or with
the switch turned off). For the bottom plot, the B1 coil is at the same strength, and the mechanical
decoupling has not changed, but the analog switch is turned on. This way, a large amount of the current
generated in the pickup coil is dumped through the switch, damping the cross-talk significantly. The
most significant effect is that the ring-down is reduced to almost nothing, so data can be taken as soon
as possible after the B1 pulse is turned off. The ring-down in each case is circled in the plots.

data sets are then subtracted from each other, and I look for evidence of FID in the data after the B1 pulse has turned

off.

4.3.1 Cross-talk

Cross-talk poses some issues for FID experiments, even though the B1 field is off during the actual signal collecting.

Since the pickup coil is connected to a resonant circuit, any resonant signal induced in it will build up over several

cycles, and also ring down when the source is turned off. Cross-talk generates a resonant signal, and the ring down

looks qualitatively identical to an FID signal; it is an exponentially decaying signal that starts just when the π/2

pulse is turned off.

Cross-talk during the B1 pulse could be mitigated with the bucking coil, just like during AFP, but that requires

additional function generators, and setting the phase correctly for the bucking coil would be more difficult than

for AFP. There is a more elegant solution. For FID, the ideal configuration would be to have a high-Q resonant

circuit during the data gathering part of the experiment, but a damped, low-Q circuit during the π/2 pulse. This

can be achieved by adding a switching resistor to the tuning box. I built the circuit on an external printed circuit
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board (PCB), which connects to the tuning box via a short BNC cable. This way, the box can be easily used for both

FID, with the switching resistor attached and AFP without it. A 5 V signal is sent to the switch during the π/2 pulse,

which turns on the resistor, damping the circuit significantly. The resistor turns off after the pulse is over, restoring

the high Q-factor, so the signal from the precessing nuclei is maximized. The resistor is a CD4066BE integrated

circuit (IC), with a resistance of about 75 Ω when on (and effectively infinite resistance when off), and is controlled

by a function generator, set to “pulsed” output, to +5 V when B1 is on, and 0 V otherwise.

Figure 4.10 shows the results of testing this method. These plots were taken without the use of the lock-in

amplifier (although the pre-amp, which amplifies the signal by a factor of 100, was used), so they are not demodu-

lated, leaving the underlying sine wave in the signal intact. The pickup and B1 coils were intentionally left slightly

coupled, so that the effect of the resistor could be seen more clearly. The damping is significant, enough to reduce

the cross-talk almost down to the noise floor under these conditions.

Figure 4.11 is a schematic of how the coils and electronics are connected, including the Q-killing resistor in the

pickup coil circuit. With the switch open (0 V), the resistor has no effect on the circuit, so it maintains a high Q

factor. With it closed, I measured about 75 Ω of resistance. Some of the power generated in the pickup coil due to

the cross-talk is dissipated in this resistor. The lower the resistance, the more effective this method is. Finding an IC

with lower resistance would be potentially beneficial.

4.3.2 FID results

When performing FID on protons in water, the experiment can be done repeatedly on the same sample, since the

protons return to their Boltzmann polarization on their T1 time scale. For the FID experiments in this section, I

repeated the B1 pulse every 1.5 seconds, and averaged many runs together, to increase SNR.

For the first FID attempt, the lock-in amplifier was set to a sensitivity of 5 mV, a time constant of 1 ms and a

slope of 24 dB. In this initial run, a very short T∗2 time was expected. Based on the simulations described in Chapter

3, and the center field strength measured from the actual coils, it was expected that the inhomogeneity would be

around 2-3 µT, corresponding to a T∗2 time of around 10-15 ms. Figure 4.12 shows the results of this experiment,

including a baseline that was subtracted out to get the FID signal itself, in green on this plot.

The result was encouraging since the T∗2 time looked about right. However, since the potentiometer was mis-

takenly connected to the wrong coil, the T∗2 time should actually be considerable shorter. Like described in Section

4.1.2, the inhomogeneity is actually closer to about 10 µT, corresponding to a T∗2 time of around 2 ms.

Figure 4.13 shows the results of repeating the experiment with a shorter time constant on the lock-in amplifier.

Due to increased noise, more averages needed to be taken to get adequate SNR. In this case, about 3000 FID runs were

averaged together, over a period of about an hour and a half, with a 1.5 second delay between π/2 pulses. Figures

4.14 and 4.15 show the signals from the two FID measurements, with the data taken during cross-talk truncated, and

an exponential fit through the remaining data. The T∗2 time was measured by these fits to be 1.287±0.015 ms, and

1.203±0.016 ms by the two runs, close to the expected 2 ms. Based on these results, the inhomogeneity across the

water bottle is 18.9±0.9 µT.

Despite the averaging, there is still considerable noise, which is clearly sinusoidal, at about 700 Hz, which is

particularly noticeable in the baseline measurement, shown in red in Fig. 4.13. Because of this noise, the baseline

was not subtracted from the data for the fit. The lock-in amplifier demodulates the signal it receives, so this noise

should actually be found at either 27.77 kHz, or 26.37 kHz (700 Hz above or below the amplifier’s setting of 27.07
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Figure 4.11: Here is a schematic of how the circuits and function generators are hooked up for doing FID.
Channel 1 on the dual output function generator is used to drive the π/2 pulse on the B1 coil. To
make sure that phase is maintained between the pickup coil circuit’s signal and the lock-in amplifiers
demodulation, channel 2 of the same function generator is a long burst at the same frequency that is fed
into the LIA’s reference input. When doing FID on protons in water, the experiment can be repeated.
In this case, both channels are run in burst mode, with the reference channel’s burst lasting almost the
entire burst period, skipping only one cycle. The function generator’s burst also triggers a single output
function generator, FG1. This is set to send a 5V pulse to the resistor in the pickup coil circuit for the
duration of the π/2 pulse. The pickup coil’s signal is sent to the LIA input through a 100x pre-amp.

kHz). To investigate this, I measured the pickup coil’s output through the lock-in amplifier, while scanning the

reference frequency and with no known sources driving a signal in the pickup coil. This way, any EMF generated in

the pickup coil is from a source of noise. I found that there was clearly stronger noise at 27.77 kHz than other nearby

frequencies. The frequency or phase of this noise does seem to drift slowly over time, which is why averaging the

signal reduces it. It can be filtered out by increasing the time constant, as can be seen from the first FID attempt,

with a time constant of 1 ms, but that is not an option unless the B0 field gradient is improved significantly so that

the actual FID signal lasts longer. The source of this noise is still unknown.
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Figure 4.12: The results from the initial FID attempt. This experiment was performed with a time constant of
the lock-in amplifier set to 1 ms . Data were gathered twice, once with the sample on resonance (blue
plot), and once with the sample off resonance by adjusting the B0 field strength (red plot). This way the
cross-talk from the B1 coil can be subtracted out. The result of this subtraction is the green plot here.
There is some evidence of an FID signal.
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Figure 4.13: Another FID attempt, this time with a time constant of 100 µs. This plot was generated by taking
the x and y channel inputs, and adding them in quadrature for each run. Shown are two data sets with
the nuclei near resonance with the B1 coil, at 6.95 A and 6.98 A through the B0 coil, as well as a data set
with the nuclei far off resonance, as a baseline (the current was about 6 A). In the baseline measurement,
the nuclei would be unaffected by the π/2 pulse, and there would be no precession, and no EMF in the
pickup coil. The FID runs look very similar, and there is a noticeable signal above the baseline just after
the B1 coil is turned off. The subtracted signals are shown in Figs. 4.14 and 4.15, with an exponential
fit of each.
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Figure 4.14: This is the FID signal at B0 = 6.95 A (blue) and an exponential fit through the data (red). The
data before the 5 ms point is removed, since it is contaminated by the remaining cross-talk from the B1
pulse. T∗2 is measured to be 1.287±0.015 ms.

Figure 4.15: This is the FID signal at B0 = 6.98 A (blue) and an exponential fit through the data (red). The
data before the 5 ms point is removed, since it is contaminated by the remaining cross-talk from the B1
pulse. T∗2 is measured to be 1.203±0.016 ms.
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4.3.3 Spin Echo

The T2 time can be found by doing a spin echo experiment, like described in Section 2.4.3. Figure 4.16 shows how

the function generators and other electronics are set up to generate the needed pulses. This can be simplified a great

deal by using programmable function generators or switching circuits, but we did this experiment with little time,

and with equipment we could find in our lab. We combined the outputs from two function generators to generate

the two pulses for the B1 coil, and the outputs from two other function generators to provide the transistor-transistor

logic (TTL) signal for the Q-killing switch. These function generators are all triggered on each other so that the

pulses and TTL signals are active at the same times. The delay between the π/2 and the π pulses is adjustable on

one of the function generators.

This experiment is very similar to FID, but with an added π pulse that comes after the sample has depolarized

due to an inhomogeneity in the B0 field. After the pulse, the spins will briefly be in phase again, generating a peak

in the signal after the π pulse. This ”revival peak” will come at a time after the π pulse exactly equal to the time

between the π/2 pulse and the π pulse.

Figure 4.17 shows the initial attempt I made at finding a spin echo. This experiment was a partial success; there

appears to be a small signal where it is expected to be, but the original FID signal is missing, potentially drowned out

by leftover ringdown from cross-talk with the B1 coil. It seems very likely that the peak is indeed a spin echo since

it would be difficult to explain the existence of a signal there in the data otherwise. Unfortunately, without being

able to measure the height of the original FID peak, this data is not useful for determining the T2 time of the sample.

Once better data can be taken, the experiment can be repeated, adjusting the delay time between the pulses each

time, and recording the height of the revival peak. The heights of these peaks can be fit to an exponential decay,

with the time constant of the decay being the T2 time.
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Figure 4.16: The spin echo experiment’s schematic is quite similar to the FID’s. There are two additional
function generators used to generate the second pulse. FG2’s output is added to FG1’s, to supply the
two 5V pulses to the Q-killing resistor. FG3 adds a delayed π pulse to the π/2 pulse already generated
by CH1 of the dual output FG.
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Figure 4.17: The signal from a spin echo experiment. The green is the subtracted signal, and there is evidence
of a spin echo seen after the second pulse, the π pulse. However, the original FID signal is not seen.
This experiment should be repeated for confirmation, and if it is successful, repeated for various time
delays so that the spin echo peak height can be fit to an exponential decay to determine the T2 lifetime.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion
I have designed and built a set of magnetic coils to use in nuclear magnetic resonance (NMR) experiments, and used

them to perform adiabatic fast passage (AFP) and free induction decay (FID) on protons in water. I have shown that

they should be useful in their current configuration for measuring the degree of polarization of 129Xe.

I have characterized the coils, measuring the field they generate, per Amp, as well as the B0 field’s homogeneity,

especially along the z axis. The B0 coils generate a field of 94.3 µT/A at their center, when placed above the steel

optical table, and with no compensation for the gradient it produces. The B0 field’s inhomogeneity along the vertical

axis of the water bottle, for the experiments in Chapter 4 was measured with a flux gate to be about 10 µT The T∗2
time of water was measured twice, with the results T∗2 = 1.287± 0.015 ms and T∗2 = 1.203± 0.016 ms. The total B0

field gradient across the entire water bottle, calculated from these times is 18.9 ± 0.9 µT. This means that a large

portion of the inhomogeneity is still from the gradient along the z direction due to the steel table’s distorting effects

on the B0 field. There was an attempt made to do a spin echo experiment, but it was inconclusive.

There is disagreement in the B1 coil’s field measurement at 27.07 kHz. When measuring the field strength at

direct current (DC) and then using theory to predict the damping effect of the alternating current (AC) shield for the

field at 27.07 kHz, the strength should be about (97 ± 4)∗(1− rcoils/rshield), or about 87.3 ± 3.6 µT/A. However,

fitting the AFP peak heights to a Landau-Zener model gives the result of 10.9± 0.3 µT/A. Looking at the adiabaticity

condition and the peak heights, it seems more likely that the DC field measurement is more accurate.

5.2 Possible Improvements
The next milestone for this project is to successfully perform 129Xe FID. To do so, it would be very helpful, and

possibly necessary, to improve the signal to noise ratio (SNR) to the point that we do not need to average 100s

or 1000s of runs to find an FID signal. Improvements to the AC shield may help in this regard, depending on the

actual source of the noise, especially the strong noise at about 27.77 kHz can be damped. A higher SNR can also

be achieved by improving the B0 field homogeneity, to maximize the T∗2 time. If the FID signal lasts longer, we can

use longer integration times on the lock-in amplifier, improving the signal amplitude, and narrowing the frequency

band of the amplifier.
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Because all of the data for the results described in Chapter 4 were taken before analyzing them, there are a

number of improvements that can be made to the setup which are now clear to us, that were not implemented for

this thesis.

5.2.1 AC Shield

The effectiveness of the AC shield was never tested rigorously, but there is still a significant noise source at about

27.77 kHz that is seen clearly in the FID data. This noise is either generated somehow inside the shield, is related

to the electronics in the pickup coil circuit, or is externally generated noise that is not sufficiently damped by the

shield. The easiest way to test the shield, if the noise source is external to it, is to remove the upper B0 coil from the

shield, and do NMR without the top half of the shield present. If the noise is no worse than with the shield attached,

then the shield is likely not being very effective.

5.2.2 B0 Coil Homogeneity

Since the B0 field measurements were done after the NMR experiments, it was not discovered, until too late, that

the compensating potentiometer was connected to the wrong coil. The field homogeneity can be easily improved by

attaching it to the correct coil. However, fine-tuning this potentiometer is challenging, since the best way to see if

the homogeneity overall has improved is to do FID and find the T∗2 time of the sample in that field. By compensating

for the field gradient this way, the center field strength is also changed, meaning the resonance frequency needs to

be found again each time FID is performed after adjusting the gradient. A more time efficient method is to use an

anti-Helmholtz pair of coils as the compensation method. The field of such a pair of coils is 0 at the center, so when

adjusting their strength, the gradient is changed, but not the center field strength. This method was initially rejected

due to concerns about having the space for such coils, but it would be worth the time and effort to look for ways to

make it work.

5.2.3 B1 Pulse for FID

In analyzing the AFP data taken while varying the B1 strength, there is strong disagreement between the expected B1

field per amp of current, and that found by using the Landau-Zener model. This means that when performing FID,

the π/2 pulse may not have actually tipped the spins by π/2. The best way to truly measure the B1 field strength

per Amp might be to adjust the duration or amplitude of the π/2 pulse until the FID signal strength is maximized.

5.2.4 FID Repetition Rate

When I performed FID, I repeated the experiment every 1.5 s and averaged the results to improve SNR. However, if

the experiment is repeated too quickly, the spins have not had time to return to Boltzmann polarization. The result

is that the amplitude of the FID signal is diminished. The T1 time of water is about 1.7 s under most conditions[33],

but the measurement I made suggests a longer time, of almost 3 s. The repetition rate for FID should be decreased

significantly. Despite the longer repetition time, the increased SNR will make it so fewer runs need to be averaged,

which will hopefully result in a quicker, more accurate FID measurement. This makes improving the B0 homogeneity

and optimizing the π/2 pulse quicker, since both improvements require repeated FID experiments.
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5.3 Next Steps
The next milestone for this project is to successfully perform 129Xe FID. To do so, it would be very helpful, and

possibly necessary, to improve the SNR to the point that we do not need to average 100s or 1000s of runs to find

an FID signal. The improvements described in Section 5.2 are all intended to work towards this goal. The B0 coil

homogeneity, and the B1 field strength per amp of current are the most important improvements, since they will also

improve the signal seen when testing the ultraviolet (UV) laser using this setup.

By performing AFP on 129Xe, its polarization can be estimated by comparing the amplitude of the signal to

that of water, which has a known polarization. There are a number of factors to keep in mind when doing so,

however. The precession frequency of 129Xe is smaller than that of a proton, so each 129Xe nucleus will contribute

less to the electromotive force (EMF) generated in a pickup coil than each proton. Since the precession frequencies

are different, a separate tuning box needs to be made for each of the samples. These boxes will inevitably have

a different Q-factor. The Q-factor for each tuned circuit needs to be measured so this can be corrected for. The

comparison is made the most difficult by the fact that the pickup coil and container are also different between the

water and the 129Xe sample. The signal amplitude depends on factors such as how many windings are in the pickup

coil, its diameter, and how much of the space inside the coil is filled with the sample. Despite these challenges, a

careful comparison the signal from a water sample is the best way to estimate the 129Xe polarization.

After finding evidence of sufficiently hyperpolarized 129Xe, and having successfully performed FID on it, the

UV laser can be tested for its ability to measure the B0 magnetic field strength. The laser will be circularly polarized

before being shined on the precessing 129Xe. Due to the additional angular momentum imparted on the 129Xe atoms

when absorbing a photon of this light, only atoms with a particular spin state will be able to absorb the light and be

transferred to an excited state. This absorption will be sinusoidal due to the spin precession. Emission from these

atoms as they decay back to the ground state is detected, and the frequency of that emission is used to calculate the

magnetic field strength from the 129Xe gyromagnetic ratio.
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Appendix A

Matlab Code

This appendix lists holds the simulations that I coded to obtain the data for Chapter 3.

A.1 Helmholtz Coils
This simulation calculates the magnetic field created by a Helmholtz pair of coils. It is all contained in one file.

1 % Created by Joshua Wienands

2

3 % This i s a Program to c a l c u l a t e the magnetic f i e l d o f a p a i r o f c o i l s i n

4 % Helmholtz con f i gu ra t i on , or a t some other separa t ion d is tance .

5 % I t i s assumed t h a t the atoms are i n a c y l i n d r i c a l c e l l .

6

7 % The f i e l d i s ca l cu la ted using the f i n i t e d i f f e r e n c e s technique . The

8 % Biot−Savart Law i s a d i f f e r e n t i a l equat ion t h a t t e l l s us the s t reng th o f

9 % magnetic f i e l d produced by an i n f i n i t e l y sho r t p iece of s t r a i g h t wi re .

10 % The exact s o l u t i o n would be to i n t e g r a t e t h i s over the e n t i r e wi re ( which

11 % i s a c o i l i n t h i s case ) . The approx imat ion comes from ins tead tak ing a

12 % f i n i t e leng th and summing r a t h e r than i n t e g r a t i n g . This i s equ iva len t to

13 % the c o i l s being made up of shor t , s t r a i g h t pieces o f wire , r a t h e r than

14 % being ac tua l c i r c l e s .

15

16 % You can def ine the f o l l o w i n g constants :

17

18 % FOR THE MAGNETIC FIELD :

19 % c o i l s i ze

20 % c o i l separa t ion

21 % cur ren t

22 % number o f windings

23 % length and rad ius o f c e l l ( which i s c y l i n d r i c a l , cannot e a s i l y be changed )

24 %

25 % r e s o l u t i o n i n r and d is tance to go i n r

26 % r e s o l u t i o n i n z and d is tance to go i n z

27 % r e s o l u t i o n i n dL f o r the Biot−Savart c a l c u l a t i o n

28

29

30 % NOTE:

31 % For vec to rs con ta in ing data such as pos i t i on , v e l o c i t y , magnetic f i e l d ,

32 % the f i r s t en t ry i s the x d i r e c t i o n , second the y d i r e c t i o n , and t h i r d the z

33 % d i r e c t i o n .

34
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35 % The ax is going through the center o f the two c o i l s i s the z ax is .

36 % The program assumes a c y l i n d r i c a l c e l l , w i th i t s long ax is p o i n t i n g i n

37 % the r ( or equ i va len t l y , x or y ) d i r e c t i o n

38

39 % Values def ined i n a l l caps are e i t h e r phys i ca l constants or constant

40 % parameters t h a t can be chosen . The i r value should not be a l t e r e d by the code

41 % l a t e r i n the program .

42

43 % 10A, 100 windings r e s u l t s i n 30G f i e l d a t center f o r he lmhol tz con f i g .

44

45 clear a l l ;

46 format long ;

47

48 %Constants :

49 MM = 10ˆ−3;

50 K = 10ˆ−7; % k = 0 /4∗ p i = 10ˆ−7 N/Aˆ2

51

52 % simu la t i on r e s o l u t i o n

53 Z STEPS = 100; % The number o f data po in t s i n z d i r e c t i o n . Inc reas ing t h i s increases s imu la t i on t ime l i n e a r l y

54 MAX D = 20∗MM; % Max d is tance from the center o f the c o i l p a i r along z to c a l c u l a t e f i e l d

55 % Make sure to inc lude the s ize o f the c e l l ’ s rad ius i n t h i s

56 R STEPS = 1; % number o f data po in t s i n R d i r e c t i o n , Inc reas ing t h i s increases the s imu la t i on t ime most ly l i n e a r l y

57 MAX R = 120∗MM; % Max r a d i a l d is tance from center o f the c o i l p a i r to c a l c u l a t e f i e l d

58 % Make sure to inc lude the e n t i r e center to corner Ce l l l eng th w i t h i n t h i s

59 L STEPS = 50; % r e s o l u t i o n o f the leng th element dL of the wi re i n c o i l s

60 % 100 or so steps here looks to be enough to a t l e a s t 1% accuracy

61 % inc reas ing t h i s increases s imu la t i on t ime l i n e a r l y

62

63 %Coi l Parameters :

64 SEPARATION = 300∗MM; % separa t ion between the c o i l s i n meters , along z ax is

65 RADIUS = 300∗MM; % Radius o f the c o i l s i n meters

66 CURRENT = 4.04 ; % cu r ren t i n Amps

67 NUM WINDINGS = 100; % number o f windings

68

69 % Cel l parameters

70 CELL RADIUS = 12.7∗MM; % rad ius o f the c e l l i n meters

71 CELL LENGTH = 200∗MM; % leng th o f the c e l l i n meters

72

73 B0 = zeros ( [ 2∗R STEPS+1 , 2∗Z STEPS+1 , 4 ] ) ; % i n i t i a l i z e the B0 mat r i x

74 % I t i s s u f f i c i e n t to c a l c u l a t e 1 quadrant

75 % the r e s t i s symmetric

76

77 z s t e p s i z e = MAX D/ Z STEPS ; % c a l c u l a t e the z step s ize i n m

78 r s t e p s i z e = MAX R/ R STEPS ; % c a l c u l a t e the r step s ize i n m

79 l s t e p s i z e = 2∗pi∗RADIUS/ L STEPS ; % c a l c u l a t e the leng th o f dL i n m

80

81

82 % Calcu la te the f i e l d from the two c o i l s using f i n i t e d i f f e r e n c e s technique

83 % and the Biot−Savart Law . This step can probably s t i l l be opt imized

84 % s i g n i f i c a n t l y by e l i m i n a t i n g nested loops i n favo r o f v e c t o r i z a t i o n . Most

85 % of the commented out code here i s from attempts to do so .

86

87 t he ta = 0:2∗ pi / L STEPS: (2∗ pi−l s t e p s i z e ) ;

88 dL = [−1.0∗RADIUS∗2∗pi∗sin ( the ta ) / L STEPS ;RADIUS∗2∗pi∗cos ( the ta ) / L STEPS ; zeros (1 ,L STEPS ) ] ;

89 for i = 0 :Z STEPS

90 i %#ok<NOPTS> % p r i n t the i t e r a t i o n the program i s on

91 z = z s t e p s i z e∗ i ; % s t a r t the z steps a t z = 0
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92 for i i = 0 :R STEPS

93 r = r s t e p s i z e∗ i i ; % s t a r t the r steps a t r = 0

94

95 for i i i = 1 :L STEPS

96

97 % c o n t r i b u t i o n from lower c o i l

98 % vecto r p o i n t i n g from wire to measurement po in t

99 x = [ r , 0 , z + SEPARATION/2]− [RADIUS∗cos ( the ta ( i i i ) ) , RADIUS∗sin ( the ta ( i i i ) ) , 0 ] ;

100 xmag = sqrt ( ( x ( 1 ) ˆ 2 + x ( 2 ) ˆ 2 + x ( 3 ) ˆ 2 ) ) ; % magnitude of t h i s vec to r

101 dB0 = K∗CURRENT∗NUM WINDINGS∗cross ( dL ( : , i i i ) , x ) / ( xmag ˆ 3 ) ;

102

103 % c o n t r i b u t i o n from upper c o i l

104 % vecto r p o i n t i n g from wire to measurement po in t

105 x = [ r , 0 , z − SEPARATION/2]− [RADIUS∗cos ( the ta ( i i i ) ) , RADIUS∗sin ( the ta ( i i i ) ) , 0 ] ;

106 xmag = sqrt ( ( x ( 1 ) ˆ 2 + x ( 2 ) ˆ 2 + x ( 3 ) ˆ 2 ) ) ; % magnitude of t h i s vec to r

107 % This i s the change i n B f i e l d i n Tesla , add i t to the change from other c o i l

108 dB0 = dB0 + K∗CURRENT∗NUM WINDINGS∗cross ( dL ( : , i i i ) , x ) / ( xmag ˆ 3 ) ;

109

110

111

112 % add up the f i e l d c o n t r i b u t i o n .

113 % c u r r e n t l y j u s t the magnitude , d i r e c t i o n i s commented out

114 % above , and only f o r one quadrant .

115 % Ca lcu la t i on only needs to be done f o r one quadrant , but need

116 % to populate the whole matr ix , so add a p p r o p r i a t e l y to each of

117 % the 4 quadrants by cen te r ing around R STEPS and Z STEPS

118 % Also , be c a r e f u l to avoid over lap and avoid t r y i n g to w r i t e

119 % to the 0 th index of a mat r i x

120

121

122 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) + i , 1) = B0 ( ( R STEPS + 1) + i i , . . .

123 (Z STEPS + 1) + i , 1) + dB0 ( 1 ) ;

124 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) + i , 2) = B0 ( ( R STEPS + 1) + i i , . . .

125 (Z STEPS + 1) + i , 2) + dB0 ( 2 ) ;

126 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) + i , 3) = B0 ( ( R STEPS + 1) + i i , . . .

127 (Z STEPS + 1) + i , 3) + dB0 ( 3 ) ;% Lower r i g h t quadrant

128

129 i f ( i ˜= 0)

130 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) − i , 1) = . . .

131 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) − i , 1) + dB0 ( 1 ) ;

132 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) − i , 2) = . . .

133 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) − i , 2) + dB0 ( 2 ) ;

134 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) − i , 3) = . . .

135 B0 ( ( R STEPS + 1) + i i , (Z STEPS + 1) − i , 3) + dB0 ( 3 ) ;% Lower l e f t

136 i f ( i i ˜= 0)

137 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) − i , 1) = . . .

138 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) − i , 1) + dB0 ( 1 ) ;

139 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) − i , 2) = . . .

140 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) − i , 2) + dB0 ( 2 ) ;

141 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) − i , 3) = . . .

142 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) − i , 3) + dB0 ( 3 ) ;% Upper l e f t

143 end
144 end
145

146 i f ( i i ˜= 0)

147 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) + i , 1) = . . .

148 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) + i , 1) + dB0 ( 1 ) ;
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149 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) + i , 2) = . . .

150 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) + i , 2) + dB0 ( 2 ) ;

151 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) + i , 3) = . . .

152 B0 ( ( R STEPS + 1) − i i , (Z STEPS + 1) + i , 3) + dB0 ( 3 ) ;% Upper r i g h t

153 end
154

155 end
156

157 B0 ( ( R STEPS+1)+ i i , ( Z STEPS+1)+ i , 4 ) = sqrt (B0 ( ( R STEPS+1)+ i i , . . .

158 (Z STEPS+1)+ i , 1 ) ˆ 2+B0 ( ( R STEPS+1)+ i i , ( Z STEPS+1)+ i , 2 ) ˆ 2+ . . .

159 B0 ( ( R STEPS+1)+ i i , ( Z STEPS+1)+ i , 3 ) ˆ 2 ) ;

160 B0 ( ( R STEPS+1)− i i , ( Z STEPS+1)+ i , 4 ) = sqrt (B0 ( ( R STEPS+1)− i i , . . .

161 (Z STEPS+1)+ i , 1 ) ˆ 2+B0 ( ( R STEPS+1)− i i , ( Z STEPS+1)+ i , 2 ) ˆ 2+ . . .

162 B0 ( ( R STEPS+1)− i i , ( Z STEPS+1)+ i , 3 ) ˆ 2 ) ;

163 B0 ( ( R STEPS+1)+ i i , ( Z STEPS+1)− i , 4 ) = sqrt (B0 ( ( R STEPS+1)+ i i , . . .

164 (Z STEPS+1)− i , 1 ) ˆ 2+B0 ( ( R STEPS+1)+ i i , ( Z STEPS+1)− i , 2 ) ˆ 2+ . . .

165 B0 ( ( R STEPS+1)+ i i , ( Z STEPS+1)− i , 3 ) ˆ 2 ) ;

166 B0 ( ( R STEPS+1)− i i , ( Z STEPS+1)− i , 4 ) = sqrt (B0 ( ( R STEPS+1)− i i , . . .

167 (Z STEPS+1)− i , 1 ) ˆ 2+B0 ( ( R STEPS+1)− i i , ( Z STEPS+1)− i , 2 ) ˆ 2+ . . .

168 B0 ( ( R STEPS+1)− i i , ( Z STEPS+1)− i , 3 ) ˆ 2 ) ;

169

170

171 end
172 end
173

174

175 % Plo t a s l i c e i n the xz plane , w i th the c e l l edges drawn i n

176

177 % draw the c e l l edges

178 for i = 1 : f loor (1+CELL RADIUS / z s t e p s i z e )

179 r i nd e x = f loor (1+ sqrt (CELL RADIUSˆ2 − ( ( i −1)∗ z s t e p s i z e ) ˆ 2 ) / r s t e p s i z e ) ;

180 B0(R STEPS + r index , Z STEPS + i , 4 ) = 0 ;

181 B0(R STEPS − ( r index −1) ,Z STEPS + i , 4 ) = 0 ;

182 B0(R STEPS + r index , Z STEPS − ( i −1) ,4) = 0 ;

183 B0(R STEPS − ( r index −1) ,Z STEPS − ( i −1) ,4) = 0 ;

184 end
185

186 % p l o t the magnitude as a heat map.

187 % t h i s i s a s l i c e i n the xz plane , going through the o r i g i n

188 imagesc (B0 ( : , : , 4 ) ) ;

189 colorbar ;

190 caxis ( [ 0 B0(R STEPS, Z STEPS , 4 )∗1 . 5 ] ) % cons t ra in the co lo r ax is because f i e l d gets huge near c o i l s

191 % c o n s t r a i n t i s based on the mag. o f

192 % f i e l d a t the center .

193

194 % r e t u r n ; % end here unless you want the next p l o t a lso

195

196 % Can also p l o t a s l i c e on the xy plane :

197

198 B0 xy = zeros ( [ 2∗R STEPS, 2∗R STEPS, 2∗Z STEPS ] ) ; % I n i t i a l i z e B0 mat r i x i n xy plane

199

200 % Due to symmetry , the magnitude of the f i e l d i s i d e n t i c a l f o r a l l t he ta a t

201 % a given r and z . B0 i s a mat r i x w i th the magnitude of the f i e l d as a

202 % f u n c t i o n o f r and z . To p l o t t h i s i n a heat map, we need to create a

203 % mat r i x o f the f i e l d magnitude as a f u n c t i o n o f x and y f o r a given z

204 % do t h i s by loop ing over a l l x and y pos i t i ons , and choose the magnetic

205 % f i e l d s t reng th by look ing up i t s value from r = s q r t ( x ˆ2 + y ˆ 2 ) , t ak ing a
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206 % weighted average i n cases where the index wouldn ’ t be an i n t e g e r .

207 % since we loop over a l l x and y up to R MAX, there are many spots where we

208 % have not ca l cu la ted the magnetic f i e l d . Just leave those as 0. I d e a l l y

209 % these would be l e f t b lank i n the p lo t , I ’m not sure how to accomplish

210 % t h a t .

211

212 for i = 1 :Z STEPS % can create a s l i c e f o r every z

213 for i i = 1 :R STEPS

214 for i i i = 1 :R STEPS % these two loops loop over x and y

215 r = sqrt ( i i i ˆ2 + i i ˆ 2 ) ; %f i n d index f o r the value o f r f o r t h a t x and y

216 i f ( r +1)<=R STEPS % don ’ t have any i n f o f o r x ˆ2 + y ˆ2 > R MAXˆ2 , so leave them as 0

217 %look f o r c l oses t r ava i l ab le , rounded down , get f i e l d there

218 B0 up = B0(R STEPS + f loor ( r +1) , Z STEPS + i , 4 ) ;

219 B0 down = B0(R STEPS + f loor ( r ) , Z STEPS + i , 4 ) ; %same th ing , rounded up

220 % take a weighted average of the f i e l d s , t h i s i s the f i e l d

221 % at t h a t x and y to good approx imat ion

222 % Bet te r approx imat ion can be made by cons ider ing the

223 % actua l form of the f i e l d vs . r , r a t h e r than j u s t assuming

224 % i t ’ s l i n e a r

225 B i n t e r = (1−mod( r , 1 ) )∗B0 down + mod( r , 1)∗B0 up ;

226

227 % Ca lcu la t i on only needs to be done f o r one quadrant , but need

228 % to populate the whole matr ix , so add a p p r o p r i a t e l y to each of

229 % the 4 quadrants by cen te r ing around R STEPS

230 % Also , be c a r e f u l to avoid over lap and avoid t r y i n g to w r i t e

231 % to the 0 th index of a mat r i x

232 B0 xy (R STEPS+( i i i −1) , R STEPS+( i i −1) , Z STEPS + ( i −1)) = B i n t e r ; % Lower r i g h t quadrant

233 B0 xy (R STEPS−( i i i −1) , R STEPS+( i i −1) , Z STEPS + ( i −1)) = B i n t e r ; % Upper r i g h t

234 B0 xy (R STEPS+( i i i −1) , R STEPS−( i i −1) , Z STEPS + ( i −1)) = B i n t e r ; % Lower l e f t

235 B0 xy (R STEPS−( i i i −1) , R STEPS−( i i −1) , Z STEPS + ( i −1)) = B i n t e r ; % Upper l e f t

236

237 B0 xy (R STEPS+( i i i −1) , R STEPS+( i i −1) , Z STEPS − ( i −1)) = B i n t e r ; % Lower r i g h t quadrant

238 B0 xy (R STEPS−( i i i −1) , R STEPS+( i i −1) , Z STEPS − ( i −1)) = B i n t e r ; % Upper r i g h t

239 B0 xy (R STEPS+( i i i −1) , R STEPS−( i i −1) , Z STEPS − ( i −1)) = B i n t e r ; % Lower l e f t

240 B0 xy (R STEPS−( i i i −1) , R STEPS−( i i −1) , Z STEPS − ( i −1)) = B i n t e r ; % Upper l e f t

241

242 % Draw the c e l l edges by s e t t i n g the f i e l d to be 0 there .

243 % long edge f i r s t

244

245 i f i i == round (CELL RADIUS / r s t e p s i z e )

246 i f i i i < round (CELL LENGTH/ (2∗ r s t e p s i z e ) )

247 B0 xy (R STEPS+( i i i −1) , R STEPS+( i i −1) , Z STEPS) = 0; % Lower r i g h t quadrant

248 B0 xy (R STEPS−( i i i −1) , R STEPS+( i i −1) , Z STEPS) = 0; % Upper r i g h t

249 B0 xy (R STEPS+( i i i −1) , R STEPS−( i i −1) , Z STEPS) = 0; % Lower l e f t

250 B0 xy (R STEPS−( i i i −1) , R STEPS−( i i −1) , Z STEPS) = 0; % Upper l e f t

251

252

253 end
254 end
255

256 % shor t edge next

257 i f i i i == round (CELL LENGTH/ (2∗ r s t e p s i z e ) )

258 i f i i < round (CELL RADIUS / r s t e p s i z e )

259

260 B0 xy (R STEPS+( i i i −1) , R STEPS+( i i −1) , Z STEPS) = 0; % Lower r i g h t quadrant

261 B0 xy (R STEPS−( i i i −1) , R STEPS+( i i −1) , Z STEPS) = 0; % Upper r i g h t

262 B0 xy (R STEPS+( i i i −1) , R STEPS−( i i −1) , Z STEPS) = 0; % Lower l e f t
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263 B0 xy (R STEPS−( i i i −1) , R STEPS−( i i −1) , Z STEPS) = 0; % Upper l e f t

264 end
265 end
266

267

268 end
269 end
270 end
271 end
272

273

274

275 % p l o t the magnitude as a heat map

276 % t h i s i s f o r a s l i c e i n the xy plane

277

278 imagesc ( ( 10 ˆ4 )∗ B0 xy ( : , : , 1 ) ) ; % the l a s t index determines z p o s i t i o n . 1 i s the center

279 colorbar ;

280

281 % no need to re−scale co lo r ax is as long as we are not near the c o i l s

282 % can s t i l l be use fu l to increase f i e l d magnitude r e s o l u t i o n around the c e l l i t s e l f

283

284 caxis ( [ ( 1 0 ˆ 4 )∗ B0 xy (R STEPS, R STEPS)∗0.99 (10ˆ4)∗B0 xy (R STEPS, R STEPS ) ] ) ;

A.2 Saddle Coils
This simulation calculates the magnetic field created by a pair of coils in the saddle geometry. The simulation calls

on two functions which calculate the contribution from a small piece of a curved part of the wire, or the length of

one of the rungs, respectively. There is also a function I wrote to read the file generated by this simulation.

A.2.1 Saddle Coil Simulation

1 MM = 10ˆ(−3); % conver t from mm to m by ∗MM

2

3 TABLE POS = 310∗MM; % dis tance from the center o f the c e l l to the tab l e

4 TABLE ORIENT = 1; % How the tab l e and c o i l s are o r i en ted .

5 % 1: c o i l s produce f i e l d perpend icu la r to t ab l e

6 % 2: c o i l s produce f i e l d p a r a l l e l to t ab l e

7 % other value : don ’ t c a l c u l a t e image f i e l d

8 USE FUNC = 1;

9 C RATIO = 1;

10

11 SHIFT = 0∗MM;

12 DEFORM = 0∗MM;

13

14 ALPHA = 135∗pi / 180 ; %span of each c o i l i n rad ians

15 RADIUS = 75∗MM; %rad ius o f the c o i l s i n meters

16 LENGTH = 400∗MM; %leng th o f the c o i l s i n meters

17 K = 10ˆ(−7); % k = 0 /4

18 CURRENT = 1; %cu r ren t i n amps

19 WINDINGS = 10; %number o f windings o f the c o i l

20

21 num dL curves = 200;

22

23 xy s teps = 1; % number o f po in t s i n the x and y d i r e c t i o n s
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24 B STEPS Z = 200; %number o f po in t s the z d i r e c t i o n

25

26 CELL RADIUS = 12.7∗MM; %rad ius o f the Xenon c e l l i n meters

27 CELL LENGTH = 200∗MM; %leng th o f the Xenon c e l l i n meters

28

29 dL curves mag = ALPHA∗RADIUS/ num dL curves ;

30

31 d the ta = ALPHA/ num dL curves ; % How much the ta changes over dL

32

33 b s tep s i ze = CELL LENGTH/ B STEPS Z ; % step s ize i n the z d i r e c t i o n

34

35 xy s t ep s i ze = CELL RADIUS∗2/ xy s teps ; % step s ize i n the x or y d i r e c t i o n

36

37 B f i e l d = zeros ( xy steps , xy steps , B STEPS Z , 4 ) ; % i n i t i a l i z e the magnetic f i e l d

38 dBrods = [ 0 ; 0 ; 0 ] ;

39 dBcurved = [ 0 ; 0 ; 0 ] ;

40 dBr image = [ 0 ; 0 ; 0 ] ;

41 dBc image = [ 0 ; 0 ; 0 ] ;

42 deform array = 2∗DEFORM∗rand (40 ,1 ) − DEFORM;

43 deform angle = 2∗pi∗rand ( 4 0 , 1 ) ;

44 d ar ray = zeros ( num dL curves , 1 ) ;

45 d angle = zeros ( num dL curves , 1 ) ;

46

47

48 for i = 1 : num dL curves

49 index = c e i l ( i ∗10/ num dL curves ) ;

50 d ar ray ( i ) = deform array ( index ) ;

51 d angle ( i ) = deform array ( index ) ;

52 end
53

54 deformat ion = [ d ar ray d angle ] ;

55

56

57 for bx = 1: xy s teps

58 for by = 1: xy s teps

59 bx

60 by

61 for bz = 1:B STEPS Z

62

63 i f B STEPS Z == 1 && xy steps == 1

64 b pos = [0

65 0

66 0 ] ;

67

68 e l s e i f B STEPS Z == 1

69

70 b pos = [ ( x y s t ep s i ze∗bx − CELL RADIUS)

71 ( x y s t ep s i ze∗by − CELL RADIUS)

72 0 ] ;

73

74 e l s e i f xy s teps == 1

75

76 b pos = [0

77 0

78 ( b s tep s i ze∗bz − 0.5∗CELL LENGTH ) ] ;

79

80 else
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81 b pos = [ ( x y s t ep s i ze∗bx − CELL RADIUS)

82 ( x y s t ep s i ze∗by − CELL RADIUS)

83 ( b s tep s i ze∗bz − 0.5∗CELL LENGTH ) ] ; %p o s i t i o n the f i e l d i s being measured at

84 end
85

86

87 dBrods = r o d s B i o t S a v a r t f i e l d (ALPHA,LENGTH,RADIUS, b pos ,CURRENT∗WINDINGS, C RATIO , . . .

88 0 , SHIFT ) ;

89 dBcurved = c u r v e d B i o t S a v a r t f i e l d (ALPHA,LENGTH,RADIUS, dL curves mag , b pos , . . .

90 CURRENT∗WINDINGS, d theta , C RATIO , 0 , SHIFT , deform array ) ;

91

92 i f TABLE ORIENT == 1

93 d i s t = [−2∗TABLE POS; 0 ; 0 ] ;

94 image pos = b pos − d i s t ;

95 dBr image = r o d s B i o t S a v a r t f i e l d (ALPHA,LENGTH,RADIUS, image pos ,CURRENT∗WINDINGS, . . .

96 C RATIO , 1 , SHIFT ) ;

97 dBc image = c u r v e d B i o t S a v a r t f i e l d (ALPHA,LENGTH,RADIUS, dL curves mag , image pos , . . .

98 CURRENT∗WINDINGS, d theta , C RATIO , 1 , SHIFT , deform array ) ;

99

100 else
101 dBr image = [ 0 ; 0 ; 0 ] ;

102 dBc image = [ 0 ; 0 ; 0 ] ;

103 end
104

105

106 B f i e l d ( bx , by , bz , 1) = B f i e l d ( bx , by , bz , 1 ) + dBrods ( 1 ) + dBcurved ( 1 ) + . . .

107 dBr image ( 1 ) + dBc image ( 1 ) ;

108 B f i e l d ( bx , by , bz , 2) = B f i e l d ( bx , by , bz , 2 ) + dBrods ( 2 ) + dBcurved ( 2 ) + . . .

109 dBr image ( 2 ) + dBc image ( 2 ) ;

110 B f i e l d ( bx , by , bz , 3) = B f i e l d ( bx , by , bz , 3 ) + dBrods ( 3 ) + dBcurved ( 3 ) + . . .

111 dBr image ( 3 ) + dBc image ( 3 ) ;

112

113 B f i e l d ( bx , by , bz , 4) = sqrt ( B f i e l d ( bx , by , bz , 1 ) ˆ 2 + . . .

114 B f i e l d ( bx , by , bz , 2 ) ˆ 2 + . . .

115 B f i e l d ( bx , by , bz , 3 ) ˆ 2 ) ;

116 end
117

118 end
119 end
120

121

122

123 %prepare every th ing to record to t e x t f i l e

124 bsize = size ( B f i e l d ) ; %s ize o f the magnetic f i e l d mat r i x

125 xs ize = bsize ( 1 ) ; %s p l i t i n t o x , y and z s izes

126 ys ize = bsize ( 2 ) ;

127 zs ize = bsize ( 3 ) ;

128 %open a f i l e to w r i t e to , add some d e s c r i p t i o n to the f i l e name

129 %number o f dL steps and c o i l s i ze a t l e a s t

130

131 % b u i l d the f i l e name

132 alphadeg = ALPHA∗180/ pi ;

133 i f CELL LENGTH > 0.3 | | CELL RADIUS > 0.02

134 reg ion = ’ b ig ’ ;

135 else
136 reg ion = ’ c e l l ’ ;

137 end
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138

139 i f B STEPS Z > xy s teps

140 axes = ’ z ’ ;

141 e l s e i f B STEPS Z < xy s teps

142 axes = ’ xy ’ ;

143 else
144 axes = ’ xyz ’ ;

145 end
146

147 i f USE FUNC == 1

148 func = ’ wfunc ’ ;

149 else
150 func = ’ ’ ;

151 end
152

153 i f TABLE ORIENT == 1

154 img = ’ ximage ’ ;

155 e l s e i f TABLE ORIENT == 2

156 img = ’ yimage ’ ;

157 else
158 img = ’ ’ ;

159 end
160

161

162 leng = LENGTH/MM;

163 r a d i = RADIUS/MM;

164

165 f i lename = spr in t f ( ’%ddLsteps %ddeg %dmmx%dmm coi l %dA %s r e g i o n %s%s%s%1.3 f I r a t i o %1.3 f y s h i f t ’ , . . .

166 i n t 16 ( num dL curves ) , i n t 16 ( alphadeg ) , i n t 16 ( leng ) , i n t 16 ( r a d i ) , i n t 16 (CURRENT∗WINDINGS ) , . . .

167 region , axes , func , img , C RATIO , SHIFT ) ;

168 i = 2 ;

169

170 %i f the f i l e a l ready ex i s t s , add a number to the end of i t .

171 i f ex is t ( spr in t f ( ’%s . t x t ’ , f i lename ) , ’ f i l e ’ )

172 while exist ( spr in t f ( ’%s%d . t x t ’ , f i lename , i ) , ’ f i l e ’ )

173 i = i +1;

174 end
175 f i lename = spr in t f ( ’%s%d ’ , f i lename , i ) ;

176 end
177 f i lename = spr in t f ( ’%s . t x t ’ , f i lename ) ;

178 f i l e i d = fopen ( f i lename , ’w ’ ) ;

179

180 %p r i n t a header ; the length , rad ius o f c o i l , cur ren t , span of the c o i l i n

181 %degrees , as we l l as step s izes and number o f steps i n each d i r e c t i o n

182 %Matlab gets upset when reading i f there are any non−numeric characters ,

183 %also there should be 4 values per l i n e

184 f p r i n t f ( f i l e i d , ’%f\ t%f\ t%f\ t%f\ t0\ t0\ t0\n ’ , LENGTH, RADIUS, CURRENT∗WINDINGS, 180∗ALPHA/ pi ) ;

185 f p r i n t f ( f i l e i d , ’%d\ t%d\ t%d\ t%d\ t%d\ t%f\ t0\n ’ , xy steps , xy s tep s i ze , xy steps , xy s tep s i ze , . . .

186 B STEPS Z , b s tep s i ze ) ;

187

188 % w r i t e the magnitude of the magnetic f i e l d to a t e x t f i l e

189 for i = 1 : xs ize

190 for j = 1 : ys ize

191 for k = 1: zs ize

192 xcoord = i ∗ xy s t ep s i ze ;

193 ycoord = j ∗ xy s t ep s i ze ;

194 zcoord = k∗b s tep s i ze ;
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195 %p r i n t i n s c i e n t i f i c no ta t i on (%e )

196 f p r i n t f ( f i l e i d , ’%e\ t%e\ t%e\ t %1.10e\ t %1.10e\ t %1.10e\ t %1.10e\n ’ , xcoord , ycoord , zcoord , . . .

197 B f i e l d ( i , j , k , 4 ) , B f i e l d ( i , j , k , 1 ) , B f i e l d ( i , j , k , 2 ) , B f i e l d ( i , j , k , 3 ) ) ;

198 end
199 end
200 end
201

202

203 fclose ( ’ a l l ’ ) ; %close the f i l e

A.2.2 Magnetic Field From a Curved Section of Wire

1 function dBc = c u r v e d B i o t S a v a r t f i e l d ( alpha , len , radius , dLmag , bpos , cur ren t , . . .

2 d theta , c u r r e n t r a t i o , image , s h i f t )

3

4 % Calcu la te the magnetic f i e l d due to the 4 curved po r t i ons o f

5

6 i f image == 1

7 c o i l s h i f t = [0 s h i f t ] ;

8 else
9

10 c o i l s h i f t = [ s h i f t 0 ] ;

11 end
12 K = 1e−7;

13 zr = 0.5∗ l en ; % z pos stays constant

14 dBc = [ 0 ; 0 ; 0 ] ;

15 i = 1 ;

16

17 for a = 0.5∗ d the ta : d the ta : alpha

18

19 % Find the x and y components f o r a po in t on a curved pa r t

20 % of the c o i l , get the d is tance to the measurement po in t ,

21 % use Biot−Savart law to get the c o n t r i b u t i o n to the f i e l d

22

23 the ta1 = alpha /2 − a ; %angle f o r the f i r s t curved pa r t

24 xr = rad ius∗cos ( the ta1 ) ;

25 yr = rad ius∗sin ( the ta1 ) ; %x and y components f o r the po in t

26

27

28 r1 = bpos − [ x r ; y r ; z r ] + [ c o i l s h i f t ( 1 ) ; c o i l s h i f t ( 2 ) ; 0 ] ; %get d is tance

29 r1mag = sqrt ( r1 ( 1 ) ˆ 2 + r1 ( 2 ) ˆ 2 + r1 ( 3 ) ˆ 2 ) ; %dis tance squared

30

31 %get dL d i r e c t i o n , magnitude was obta ined before

32 dLx = dLmag∗sin ( the ta1 ) ;

33 dLy = −1.0∗dLmag∗cos ( the ta1 ) ;

34 dLr1 = [ dLx ; dLy ; 0 ] ;

35

36 %c o n t r i b u t i o n from t h a t curved piece

37

38

39 %do the same th i ng again f o r the next piece

40 % same c o i l , but o ther side , so f l i p z

41 r2 = bpos − [ x r ; y r ; −1.0∗zr ] + [ c o i l s h i f t ( 1 ) ; c o i l s h i f t ( 2 ) ; 0 ] ;

42 r2mag = sqrt ( r2 ( 1 ) ˆ 2 + r2 ( 2 ) ˆ 2 + r2 ( 3 ) ˆ 2 ) ;

43 dLr2 = −1.0∗dLr1 ;

44

87



45

46

47 %again , f o r curved piece 3

48 %f l i p x , y pos i t i on , +z again though

49 r3 = bpos − [−1.0∗ xr ; −1.0∗yr ; z r ] + [ c o i l s h i f t ( 2 ) ; c o i l s h i f t ( 1 ) ; 0 ] ;

50 r3mag = sqrt ( r3 ( 1 ) ˆ 2 + r3 ( 2 ) ˆ 2 + r3 ( 3 ) ˆ 2 ) ;

51 dLr3 = dLr1 ;

52

53

54

55 %f i n a l l y , the 4 th curved piece

56 %f l i p x , y , z ( or add r a t h e r than sub t rac t )

57 r4 = bpos + [ x r ; y r ; z r ] + [ c o i l s h i f t ( 2 ) ; c o i l s h i f t ( 1 ) ; 0 ] ;

58 r4mag = sqrt ( r4 ( 1 ) ˆ 2 + r4 ( 2 ) ˆ 2 + r4 ( 3 ) ˆ 2 ) ;

59 dLr4 = −1.0∗dLr1 ;

60

61 i f image == 1

62 dB1 = K∗cu r ren t ∗( cross ( dLr1 , r1 ) / r1mag ˆ 3 ) ;

63 dB2 = K∗cu r ren t ∗( cross ( dLr2 , r2 ) / r2mag ˆ 3 ) ;

64 dB3 = K∗cu r ren t∗ c u r r e n t r a t i o ∗( cross ( dLr3 , r3 ) / r3mag ˆ 3 ) ;

65 dB4 = K∗cu r ren t∗ c u r r e n t r a t i o ∗( cross ( dLr4 , r4 ) / r4mag ˆ 3 ) ;

66

67

68 else
69 dB1 = K∗cu r ren t∗ c u r r e n t r a t i o ∗( cross ( dLr1 , r1 ) / r1mag ˆ 3 ) ;

70 dB2 = K∗cu r ren t∗ c u r r e n t r a t i o ∗( cross ( dLr2 , r2 ) / r2mag ˆ 3 ) ;

71 dB3 = K∗cu r ren t ∗( cross ( dLr3 , r3 ) / r3mag ˆ 3 ) ;

72 dB4 = K∗cu r ren t ∗( cross ( dLr4 , r4 ) / r4mag ˆ 3 ) ;

73 end
74

75 dBc = dBc + dB1 + dB2 + dB3 + dB4 ;

76 i = i +1;

77

78 end
79

80 end

A.2.3 Magnetic Field From a Straight Rod

1 function dBr = r o d s B i o t S a v a r t f i e l d ( alpha , len , radius , b pos , cur ren t , c u r r e n t r a t i o , image , s h i f t )

2

3

4 % Calcu la te the exact f i e l d a t b pos due to the 4 rod po r t i ons o f the

5 % saddle c o i l p a i r . No f i n i t e d i f f e r e n c e s needed , the general formula

6 % f o r the magnitude i s :

7 %

8 % B = (K∗ I / s )∗ [ s i n ( the ta2 ) − s in ( the ta1 ) ]

9 %

10 % K i s a constant , I i s the cur ren t , s i s the d is tance between b pos

11 % and the rod , the ta1 i s the angle between s and the vec to r p o i n t i n g

12 % from the beginning o f the rod to b pos , and theta2 i s the angle

13 % between s and the vec to r p o i n t i n g from the end of the rod to b pos .

14

15 K = 1e−7; % constant

16

17 % x and y p o s i t i o n s o f the rods . X ax is goes through the c o i l s , y ax is
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18 % goes between them . Z ax is goes down the c o i l ax is . Rods are centered

19 % around the o r i g i n .

20

21 i f image == 1

22 x = [ rad ius∗cos ( alpha / 2 )

23 rad ius∗cos ( pi − alpha / 2 )

24 rad ius∗cos ( pi + alpha / 2 )

25 rad ius∗cos(−1.0∗alpha / 2 ) ] ; % x p o s i t i o n s o f the 4 rods

26

27 y = [ rad ius∗sin ( alpha / 2 )

28 rad ius∗sin ( pi − alpha / 2 ) + s h i f t

29 rad ius∗sin ( pi + alpha / 2 ) + s h i f t

30 rad ius∗sin (−1.0∗alpha / 2 ) ] ; % y p o s i t i o n s o f the 4 rods

31

32 else
33

34 x = [ rad ius∗cos ( alpha / 2 )

35 rad ius∗cos ( pi − alpha / 2 )

36 rad ius∗cos ( pi + alpha / 2 )

37 rad ius∗cos(−1.0∗alpha / 2 ) ] ; % x p o s i t i o n s o f the 4 rods

38

39 y = [ rad ius∗sin ( alpha / 2 ) + s h i f t

40 rad ius∗sin ( pi − alpha / 2 )

41 rad ius∗sin ( pi + alpha / 2 )

42 rad ius∗sin (−1.0∗alpha / 2 ) + s h i f t ] ; % y p o s i t i o n s o f the 4 rods

43 end
44

45 % dis tance between the rod and the po in t . I f the po in t i s past the edge

46 % of the rod along the z axis , then t h i s i s the d is tance to where the

47 % rod would be i f i t were longer .

48 d i s t = [ sqrt ( ( b pos (1)−x ( 1 ) ) ˆ 2 + ( b pos (2)−y ( 1 ) ) ˆ 2 )

49 sqrt ( ( b pos (1)−x ( 2 ) ) ˆ 2 + ( b pos (2)−y ( 2 ) ) ˆ 2 )

50 sqrt ( ( b pos (1)−x ( 3 ) ) ˆ 2 + ( b pos (2)−y ( 3 ) ) ˆ 2 )

51 sqrt ( ( b pos (1)−x ( 4 ) ) ˆ 2 + ( b pos (2)−y ( 4 ) ) ˆ 2 ) ] ;

52

53 % get the angle made by the x ax is and the vec to r p o i n t i n g from the rod

54 % to b pos .

55 ph i = asin ( ( b pos ( 1 ) − x ) . / d i s t ) ;

56

57 % angle between s and the l i n e connect ing the beginning o f the rod to

58 % b pos

59 the ta1 = [ atan ((−0.5∗ len − b pos ( 3 ) ) / d i s t ( 1 ) )

60 atan ((−0.5∗ len − b pos ( 3 ) ) / d i s t ( 2 ) )

61 atan ((−0.5∗ len − b pos ( 3 ) ) / d i s t ( 3 ) )

62 atan ((−0.5∗ len − b pos ( 3 ) ) / d i s t ( 4 ) ) ] ;

63

64 % angle between s and the l i n e connect ing the end of the rod to b pos

65 the ta2 = [ atan ( ( 0 . 5∗ l en − b pos ( 3 ) ) / d i s t ( 1 ) )

66 atan ( ( 0 . 5∗ l en − b pos ( 3 ) ) / d i s t ( 2 ) )

67 atan ( ( 0 . 5∗ l en − b pos ( 3 ) ) / d i s t ( 3 ) )

68 atan ( ( 0 . 5∗ l en − b pos ( 3 ) ) / d i s t ( 4 ) ) ] ;

69

70

71 i f image == 1

72 % f i e l d c o n t r i b u t i o n to the x d i r e c t i o n i s the magnitude∗cos ( ph i ) . Phi

73 % was ca l cu la ted above .

74 dBrx = (K∗cu r ren t / d i s t ( 1 ) )∗ ( sin ( the ta2 ( 1 ) ) − sin ( the ta1 ( 1 ) ) )∗ cos ( ph i ( 1 ) ) + . . .
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75 (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 2 ) )∗ ( sin ( the ta2 ( 2 ) ) − sin ( the ta1 ( 2 ) ) )∗ cos ( ph i ( 2 ) ) + . . .

76 (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 3 ) )∗ ( sin ( the ta2 ( 3 ) ) − sin ( the ta1 ( 3 ) ) )∗ cos ( ph i ( 3 ) ) + . . .

77 (K∗cu r ren t / d i s t ( 4 ) )∗ ( sin ( the ta2 ( 4 ) ) − sin ( the ta1 ( 4 ) ) )∗ cos ( ph i ( 4 ) ) ;

78

79 % f i e l d c o n t r i b u t i o n to the x d i r e c t i o n i s the magnitude∗s in ( ph i ) . Phi

80 % was ca l cu la ted above .

81 dBry = (K∗cu r ren t / d i s t ( 1 ) )∗ ( sin ( the ta2 ( 1 ) ) − sin ( the ta1 ( 1 ) ) )∗ sin ( ph i ( 1 ) ) + . . .

82 (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 2 ) )∗ ( sin ( the ta2 ( 2 ) ) − sin ( the ta1 ( 2 ) ) )∗ sin ( ph i ( 2 ) ) + . . .

83 (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 3 ) )∗ ( sin ( the ta2 ( 3 ) ) − sin ( the ta1 ( 3 ) ) )∗ sin ( ph i ( 3 ) ) + . . .

84 (K∗cu r ren t / d i s t ( 4 ) )∗ ( sin ( the ta2 ( 4 ) ) − sin ( the ta1 ( 4 ) ) )∗ sin ( ph i ( 4 ) ) ;

85

86 else
87 % f i e l d c o n t r i b u t i o n to the x d i r e c t i o n i s the magnitude∗cos ( ph i ) . Phi

88 % was ca l cu la ted above .

89 dBrx = (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 1 ) )∗ ( sin ( the ta2 ( 1 ) ) − sin ( the ta1 ( 1 ) ) )∗ cos ( ph i ( 1 ) ) + . . .

90 (K∗cu r ren t / d i s t ( 2 ) )∗ ( sin ( the ta2 ( 2 ) ) − sin ( the ta1 ( 2 ) ) )∗ cos ( ph i ( 2 ) ) + . . .

91 (K∗cu r ren t / d i s t ( 3 ) )∗ ( sin ( the ta2 ( 3 ) ) − sin ( the ta1 ( 3 ) ) )∗ cos ( ph i ( 3 ) ) + . . .

92 (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 4 ) )∗ ( sin ( the ta2 ( 4 ) ) − sin ( the ta1 ( 4 ) ) )∗ cos ( ph i ( 4 ) ) ;

93

94 % f i e l d c o n t r i b u t i o n to the x d i r e c t i o n i s the magnitude∗s in ( ph i ) . Phi

95 % was ca l cu la ted above .

96 dBry = (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 1 ) )∗ ( sin ( the ta2 ( 1 ) ) − sin ( the ta1 ( 1 ) ) )∗ sin ( ph i ( 1 ) ) + . . .

97 (K∗cu r ren t / d i s t ( 2 ) )∗ ( sin ( the ta2 ( 2 ) ) − sin ( the ta1 ( 2 ) ) )∗ sin ( ph i ( 2 ) ) + . . .

98 (K∗cu r ren t / d i s t ( 3 ) )∗ ( sin ( the ta2 ( 3 ) ) − sin ( the ta1 ( 3 ) ) )∗ sin ( ph i ( 3 ) ) + . . .

99 (K∗cu r ren t∗ c u r r e n t r a t i o / d i s t ( 4 ) )∗ ( sin ( the ta2 ( 4 ) ) − sin ( the ta1 ( 4 ) ) )∗ sin ( ph i ( 4 ) ) ;

100 end
101

102 % make a vec to r from the components . There i s no f i e l d i n the z

103 % d i r e c t i o n a t any po in t due to the rods .

104 dBr = [ dBrx ; dBry ; 0 ] ;

105 end

A.2.4 A Function to Read the Simulation Output File

1 % header r e f e r s to how many l i n e s make up the header i n the t e x t f i l e

2 % before the B1 data s t a r t s .

3

4 function [ B1 B1x B1y B1z ] = read B1 data3 ( i n p u t F i l e )

5

6 formatSpec = ’%e %e %e %e %e %e %e ’ ;

7 sizeA = [7 I n f ] ; % 7 columns of data

8

9 f i l e i d = fopen ( i n p u t F i l e )

10

11 A = fscanf ( f i l e i d , formatSpec , sizeA ) ; % read the data i n

12

13 fclose ( ’ a l l ’ ) ;

14

15 A = transpose (A ) ; % transpose the data to make ana lys i s eas ie r

16

17 length = A(1 ,1 ) % f i r s t row conta ins c o i l data

18 rad ius = A(1 ,2 )

19 cu r ren t = A(1 ,3 )

20 alpha = A(1 ,4 )

21

22 xsteps = A(2 ,1 ) % second row conta ins s imu la t i on data
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23 x s t e p s i z e = A(2 ,2 )

24 ysteps = A(2 ,3 )

25 y s t e p s i z e = A(2 ,4 )

26 zsteps = A(2 ,5 )

27 z s t e p s i z e = A(2 ,6 )

28 i = 3 ;

29

30 B1 = zeros ( xsteps , ysteps , zsteps ) ; % the r e s t i s the magnetic f i e l d

31 B1x = zeros ( xsteps , ysteps , zsteps ) ; % at each po in t

32 B1y = zeros ( xsteps , ysteps , zsteps ) ; % i n i t i a l i z e the output data

33 B1z = zeros ( xsteps , ysteps , zsteps ) ;

34

35

36 % d i v i d e the data i n t o the magnitude of the magnetic f i e l d

37 % and the f i e l d i n each of the c a r d i n a l d i r e c t i o n s

38 for x = 1: xsteps

39 for y = 1: ysteps

40 for z = 1: zsteps

41 B1( x , y , z ) = A( i , 4 ) ;

42 B1x ( x , y , z ) = A( i , 5 ) ;

43 B1y ( x , y , z ) = A( i , 6 ) ;

44 B1z ( x , y , z ) = A( i , 7 ) ;

45

46 i = i +1;

47 end
48 end
49 end
50

51

52 end
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