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Abstract

Observing others is predicting others. Humans have a natural tendency to make
predictions about other people’s future behavior. This predisposition sits at the
basis of social cognition: others become accessible to us because we are able to
simulate their internal states, and in this way make predictions about their
future behavior (Blakemore & Decety, 2001). In this thesis, | examine prediction
in the social realm through three main contributions. The first contribution is of a
theoretical nature, the second is methodological, and the third contribution is
empirical. On the theoretical plane, | present a new framework for cooperative
social interactions — the predictive joint-action model, which extends previous
models of social interaction (Wolpert, Doya, & Kawato, 2003) to include the
higher level goals of joint action and planning (Vesper, Butterfill, Knoblich, &
Sebanz, 2010). Action prediction is central to joint-action. A recent theory
proposes that social awareness to someone else’s attentional states underlies
our ability to predict their future actions (Graziano, 2013). In the methodological
realm, | developed a procedure for investigating the role of sensitivity to other’s
attention control states in action prediction. This method offers a way to test the
hypothesis that humans are sensitive to whether someone’s spatial attention
was endogenously controlled (as in the case of choosing to attend towards a
particular event) or exogenously controlled (as in the case of attention being
prompted by an external event), independent of their sensitivity to the spatial
location of that person’s attentional focus. On the empirical front, | present new
evidence supporting the hypothesis that social cognition involves the predictive
modeling of other’s attentional states. In particular, a series of experiments

showed that observers are sensitive to someone else’s attention control and that



this sensitivity occurs through an implicit kinematic process linked to social
aptitude. In conclusion, | bring these contributions together. | do this by offering
an interpretation of the empirical findings through the lens of the theoretical
framework, by discussing several limitations of the present work, and by pointing
to several questions that emerge from the new findings, thereby outlining

avenues for future research on social cognition.



Preface

This thesis describes a novel theoretical framework for cooperative social
interactions and presents a new methodology utilized in seven experiments
testing sensitivity to attention control in action prediction. The theoretical
framework was developed by the author in collaboration with James T. Enns and
Robert Whitwell. The author of this thesis was the primary contributor to the
identification and design of the methodology supporting the experimental
research program in roughly equal collaboration with James T. Enns and Craig C.
Chapman. The experiments took place at the University of British Columbia
during 2013-16. Data analysis was performed in equal collaboration between the
author and James T. Enns. The author collected the data presented here in
collaboration with Emily Ryan, Jacob Shieh, Jessica Leung, Mallika Khanijon,
Nathan Wispinski, Nessa Bryson, Puneet Sandhu and Tracy Lam. Ulysses
Bernardet developed custom software for video recording. All of the writing in
this thesis is the author’s own, and incorporates suggestions given by James T.
Enns. A modified version of Chapter 3 authored by A. Pesquita, C.S. Chapman &
J.T. Enns is currently in press in the Proceedings of the National Academy of
Sciences journal. The same chapter was presented at the Interactive Social
Cognition: An Emerging Science” Symposium at the 25th Annual Meeting of the
Canadian Society for Brain, Behavior and Cognitive Science, Ottawa, Canada. This
research was approved by the University of British Columbia Behavioral Research

Ethics Board (Human Attention while reaching H11-00946).
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1 General introduction

We have only so much as to glance at another human being and we
at once begin to read beneath the surface.

-Nicholas Humphrey (2002)

Prediction is not just one of the things your brain does. It is (...) the
foundation of intelligence.

-Jeff Hawkins (2005)

Anthropologists have long considered that the evolution of larger, more
powerful and complex brains was triggered by the early hominids’ need to
venture into new lands (Martin, 1983). The brain adapted through natural
selection to match new survival needs, and practical skills such as tool-making,
fire-lighting, and spear-throwing, emerged as the key accomplishments of the

new impressive cognitive powers of early hominids’ brains (Brown et al., 2012).

More recent views suggest that the increasing complexity of the social
environment was also a pivotal evolutionary pressure contributing to the
development of modern brains. The emergence of social structures, with
individuals who were both able to play the role of peerless collaborators and
ruthless competitors, could have only occurred hand-in-hand with the evolution
of a powerful brain, able to process the intricate nuances of social relationships

(Marean, 2015).

This trend in anthropological science offers a critical insight to the modern study

of human cognition. If we are to understand human cognition, we must not only



consider how we process symbols and physical information but also understand
how we process other individuals (Blakemore & Decety, 2001; de Gelder, 2006).
This, undoubtedly, comes with a new set of challenges. A considerable part of
other individuals’ existence is inaccessible. Their thoughts, memories, intentions
and emotions all take place in an inner theater that is closed to us. And inside
which we can only peek in through the distorting window of language
communication and the ambiguous window of observable behavior. So, how are
we able to by-pass this inherent separation from one another and experience

the rich and diverse types of social interactions that animate our lives?

Current answers to this question propose that we rely on predictions about the
hidden dimensions of our social counterparts to sustain successful social
interactions (Manera, Schouten, Verfaillie, & Becchio, 2013; Ramnani & Miall,
2004; Sparenberg, Springer, & Prinz, 2012; Springer, Hamilton, & Cross, 2012).
The idea is that we use our own cognitive resources to build internal models of
other people’s cognitions. Simulations about someone else’s cognitive states
(e.g. about what they are feeling, thinking, and attending to) guide our
expectations about their future behavior, and in this way contribute to the

viability of social interactions.

From the many hidden cognitive processes that can support our predictions of
someone else’s behavior, one is considered to have a special revealing quality —
attention. Attention is the “data-handling method in the brain” (Graziano &
Kastner, 2011; Graziano, 2013; Webb & Graziano, 2015). Thus decoding
someone else’s focus of attention provides us with palpable clues about which

information is engaging their inner cognitive mechanisms. This largely



contributes to our ability to make predictions about someone else’s future

actions (Baron-cohen, 1995; Baron-Cohen, 2000; Calder et al., 2002).

In this thesis, | will address predictive mechanisms underlying social cognition
both at the theoretical and empirical level. On the theoretical side, | will present
a framework for cooperative social interactions termed the predictive joint-
action model (pJAM). On the empirical side, | will present new evidence
suggesting that human’s perceptual sensitivity to someone else’s internal

attentional states facilitates action prediction.

1.1 Social predictive processing

Historically, the idea of prediction as a central mechanism of human cognition
emerged conjointly with early elaborations about perception and motor control.
In the 19th century, William James suggested that “every mental representation
of a movement awakens to some degree the actual movement which is its
object” (James, 1890, pp.293). Key to this insight was the notion that by merely
imagining a future action one can anticipate its motor and sensory outcomes.
This insight was later formalized in what has come to be known as ideomotor
theory, which posits the existence of a common code linking action and

perception (Hommel, Misseler, Aschersleben, & Prinz, 2001; Prinz, 1990).

The idea that action and perception are coupled in this way releases
“information processing” from having to wait for an action or a sensory event to
actually occur, and brings them both into the realm of prediction, i.e., mental
simulations about future actions and sensations that are yet to occur.
Anticipation thus becomes the key to understanding how relatively slow neural

processes are able to coordinate perception and action with external events that



are happening in real time. It is important to note that although prediction
mechanisms such as these were already being contemplated in very early stages
of both psychology and neuroscience, it was not up until recently that these
ideas coalesced into wide acceptance. In the past, the majority of theoretical
models of cognition portrayed a serial succession of processes. This meant that
information processing started with the reception of sensory input, which was
then passed on to the “black-box” of higher cognitive functions, and ended with
the output of overt behavior. Such reasoning stemmed from original behaviorist
approaches and was passed on to early cognitivist theories (Bubic, von Cramon,

& Schubotz, 2010; Cisek, 1999).

Fast-forward to current times. The human brain is broadly accepted to be a
prediction machine (Clark, 2013; Hawkins & Blakeslee, 2007). Current research in
neuroscience and psychology indicates that prediction is a fundamental principle
of neural processing and cognition (Brown & Briine, 2012; Bubic et al., 2010).
The general consensus is that the way we perceive and act upon the world is not
only a result of incoming sensory information (i.e. bottom-up information), but
also integrates our internal biases, knowledge, and previous experiences (i.e.
top-down predictions). This feat is accomplished in the brain by a hierarchy of
computational events that sequentially try to reduce discrepancies between
bottom-up and top-down swipes of information (Clark, 2013). This kind of
predictive processing is central to both perception (Enns & Lleras, 2008) and

motor control (Wolpert & Flanagan, 2001).

Can the predictive principles underlying perception and action in individual
cognition be extended to explain social interactions? If so, to what extent, and

with which limitations? The answer to these questions is still in its infancy. One



positive consideration comes from theories suggesting that the human ability to
infer the goals and intentions of someone else’s actions can be explained by
predictive coding (Jacob & Jeannerod, 2005; Kilner, Friston, & Frith, 2007,
Wolpert et al., 2003). Understanding someone else’s actions via predictive
coding goes beyond merely asserting that we use our own motor substrate to
encode models of others peoples’ actions (a concept famously introduced by the
discovery of the mirror neuron system; Gallese & Goldman, 1998). In addition to
that, it proposes that we generate active predictions about the consequences of
observed actions, even before they occur so that these expectations can be
compared to how people’s intentions (generated in higher-levels of the
processing hierarchy) are translated into motor events when they do occur. It is
proposed that the most probable cause of the observed action will be inferred
by minimizing the prediction error at all levels of the hierarchy (Jacob &
Jeannerod, 2005; Kilner, Friston, & Frith, 2007; Wolpert et al., 2003). Additional
support for the prediction hypothesis is given by a wide range of empirical
observations of prediction during social perception (Kilner, Vargas, Duval,
Blakemore, & Sirigu, 2004), social interaction (Sebanz & Knoblich, 2009), and

social learning (Abernethy, Zawi, & Jackson, 2008).

In this thesis, | will propose that the well-established principles underlying
predictive individual cognition can help us better understand the inner-workings
of cooperative social interactions, i.e. joint-actions. Sebanz, Bekkering, &
Knoblich (2006) define joint-action as “a social interaction whereby two or more
individuals coordinate their actions in space and time to bring about change in
the environment.” | will propose a predictive framework that attempts to
account for the interlocking of partners’ intentions, actions, and perceptions

occurring during joint-actions.



1.2 Social attention in action prediction

Imagine you are sitting in a cafe. A girl enters. You both recognize each other as
the unflattering versions of your profile photographs. Your date has started. As
the first minutes pass you wonder: Will she leave or stay? Knowing the focus of
her attention will considerably narrow down your predictions about her future
behavior. If her eyes are fixed on you, there is some hope. If her eyes wander,
not so much. Alas, she glances languidly at her phone. You decide to beat her to

the punch, and politely announce how good it was to have met her.

As illustrated by this example, we track the focus of someone else’s attention to
predict their future behavior and adapt accordingly. Several studies indicate that
humans are remarkably sensitive to where someone is attending (Bayliss,
Schuch, & Tipper, 2010; Bayliss & Tipper, 2005, 2006; Friesen & Kingstone, 1998;
Langton & Bruce, 2000; Rogers et al., 2014). Furthermore, it has been suggested
that this ability contributes to rough representations of the others’ mental state
(Simon Baron-Cohen, 1995, 2000; Calder et al.,, 2002). But do these
representations only fill out the content of the other’s mind, or do they also hold

information on the control of that content?

Let’s get back to the example of the cafe encounter. Whether your date
intentionally decided to direct her attention away from you or merely turned to
the phone because it unexpectedly blinked tells you different things about her
mental state, and possibly about the success of your date. Thus, there is
important social information in knowing whether someone’s spatial attention
was endogenously controlled (as in the case of choosing to glance at the phone
in search for a distraction) or exogenously controlled (as in the case of reacting

to an unexpected phone blink). This leads to the question of whether humans



are able to distinguish between these two kinds of attention control in the

observed actions of others?

A positive answer to this question is expressed in a recent theory that social
awareness involves the predictive (forward) kinematic modeling of other
people’s attention (Graziano & Kastner, 2011; Graziano, 2013). According to this
proposal, humans constantly construct and update sophisticated models of
other people’s attentional states. As well as representing the perceived location
of someone else’s attention, these models are posited to comprise rich
representations of how attentional resources are deployed, including the spatial
and temporal consequences of attention on action. Thus, these models are
posited to include the nature of control so that the spatial and temporal
consequences of an attentional state can be predicted in the actions of others
before they occur. In this view, social attention modeling allows observers to
make conscious elaborations about someone else’s attentional states,
contributing to the ability to make sense of other’s actions, and predict what

they might do next (Graziano & Kastner, 2011; Graziano, 2013, 2015).

In close pursuit of Graziano's (2013) theoretical proposition, in this thesis, |
present an empirical study investigating human sensitivity to attention control.
The study is structured around the central question - Are observers sensitive to
someone else’s attention control? A positive answer to this question is then
followed up with branching questions aimed at characterizing human sensitivity
to attention control in terms of conscious processing, temporal and spatial

features, as well as its link to social skill.



1.3 Thesis overview

This thesis aims at making three contributions to the current understanding of
predictive mechanisms in social cognition. The first contribution is of a
theoretical nature, the second is methodological, and the third contribution is
empirical. The thesis comprises two main sections corresponding to Chapter 2
(presenting the theoretical framework) and Chapter 3 (reporting a new

methodological approach and the associated empirical research).

In Chapter 2 | present a new theoretical framework for human cooperative
action — the predictive joint-action model (pJAM). Chapter 2.1. introduces the
motivations behind the development of the framework. In recent years, there
has been a proliferation of research about human cooperative behavior. Yet, the
development of theoretical frameworks in this field has not kept pace with the
increasing number of research findings (Knoblich, Butterfill, & Sebanz, 2011). In
response to this identified need, Chapter 2.2 outlines a hierarchical predictive
framework for joint-action. In Chapter 2.3 | discuss pJAMs’ predictions in light of
evidence from the current literature on joint-action. Chapter 2.3 concludes the
theoretical section of the thesis. There | will discuss the overall success of
utilizing a hierarchical predictive approach to account for the implementation

challenges of joint-action.

Chapter 3 is dedicated to a series of empirical studies investigating human
sensitivity to social attention control. In Chapter 3.1, | start by describing the
general methodological approach | developed to generate new data in this area.
This methodology is composed of two stages. In the first stage, | developed and
tested stimuli sets composed of video clips of actors reaching for one of two

possible targets while either choosing (endogenous control) or being directed



(exogenous control) to one target. In the second stage, this stimulus set was

used in a series of experiments addressing the questions:

* Are observers sensitive to someone else’s attention control?

* Does sensitivity to attention control contribute to a reactive advantage in
social interactions?

* s sensitivity to attention control a conscious process?

* Where on the actors’ body is the attention control signal available?

* How early in the time-course of an observed action is the attention
control signal available?

* s sensitivity to attention control linked to social aptitude?

In Chapter 3.2, | describe one experiment designed to test observers’ sensitivity
to someone else’s attention control. In this experiment, we asked observers to
predict the development of chosen vs directed actions. The findings from this
experiment provided initial evidence indicating that observers are sensitive to
someone else’s attention control. Moreover, the results show that there is a
“choice advantage”, i.e. observers are faster at predicting the end-target of
chosen actions compared to directed ones. The following sub-chapters are

dedicated to characterizing the observed human sensitivity to attention control.

In Chapter 3.3, | report one experiment probing whether sensitivity to someone
else’s attention control can offer observers a motor advantage in social
interaction settings. In this experiment, observers are asked to compete with the
video recorded actors, by attempting to reach the end-target before the actors
do. The findings showed that observers could quickly harness their sensitivity to

attention control in other to generate an adaptive motor response.



In Chapter 3.4, | present two experiments to test whether sensitivity to the
attention control of a social other is or is not a conscious process. In these
experiments, participants were asked to guess whether each observed action
was chosen or directed. The two experiments differed in whether or not
participants received feedback about the accuracy of their responses. The
findings from both experiments indicated that sensitivity to attention control

was not accessible to the observer’s conscious awareness.

In Chapter 3.5, | report findings from an experiment investigating whether the
control signal is coming from the head or the body of the actors. The results
showed that observers’ sensitivity to attention control cues was robustly
resistant to the occlusion of actors’ body parts, suggesting that the cues to

attention control are distributed throughout the body.

In Chapter 3.6, | report the findings from one experiment examining the time
course of sensitivity to attention control. The findings revealed that sensitivity to
attention control was only observable in the early stages of movement

observation. This supports its value in action prediction mechanisms.

In Chapter 3.7, | present analyses indicating that observers with higher social
aptitude also exhibit stronger sensitivity to attention control states in their
responses. These analyses also address differences in the kinematic profiles of
sensitivity to attention control between individuals with higher and lower social
skills. These observations bolster the hypothesis that sensitivity to attention
control arises from the involuntarily tendency for humans to model the

attentional states of others.
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In Chapter 3.8, | review the findings from this research while discussing their
implications for the field of social cognition. The main conclusion discussed is the
observation that humans are sensitive to attention control through an implicit
kinematic process linked to empathy. An interpretation for the ‘choice
advantage’ is proposed based on the fluency of kinematic cues. At last, the
limitations of the research project are discussed, leading to proposals for future

work.

Finally, in the General Discussion (Chapter 4) | bring together the two streams of
this thesis. | will use theoretical concepts of predictive processing modeling,
described in Chapter 2, to frame the new evidence of sensitivity to attention
control, reported in Chapter 3. | note that the empirical part of this thesis was
not directly designed to test the joint-action theoretical model. However, the
task shares some core similarities with joint-action tasks (i.e. participants are
required to monitoring and predicting of someone else’s actions and the
subsequent execution of an appropriate motor response). Therefore, pJAM has
proven itself useful as a framework to interpret the findings, and identify

limitations of the empirical studies presented in this thesis.

These elaborations will offer some support to the hypothesis that social

cognition involves the predictive modeling of other’s attentional states.
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2 Predictive joint-action model (pJAM)

Research in a number of related fields has recently begun to focus on the social,
perceptual, cognitive, and motor workings of cooperative behavior. Indeed,
there now appears to be enough coherence in these efforts to refer to the study
of the mechanisms underlying human cooperative behavior as the field of joint-
action (Knoblich, Butterfill, & Sebanz, 2011; Sebanz, Bekkering, & Knoblich,
2006). Yet, the development of theoretical frameworks in this field has not kept
pace with the proliferation of research findings. In this chapter, | propose a
hierarchical predictive framework for the study of joint-action termed the
predictive joint-action model (pJAM). Afterward, | will derive predictions from
the model, and juxtapose these predictions with empirical evidence from the
current literature on joint-action. In the process, | will identify where new
empirical evidence is necessary to test the models’ predictions. Finally, | discuss
the overall success of the hierarchical predictive approach to account for the
implementation challenges of joint-actions. This is done with the larger goal of
uncovering the theoretical pieces that are still missing in a comprehensive

understanding of joint action.

2.1 Introduction

The ability of humans to cooperate with one another vastly increases the range
of their potential actions (Clark, 1996). It is through cooperation that we achieve
goals unattainable to the single individual, “whether it be carrying a log, or
building a skyscraper” (Stix, 2014). Hence, cooperation is seen to be of central
importance to our species’ evolutionary success (Tomasello, 2009). In recent

years, the field of cognitive science has turned its spotlight on cognition in the
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social milieu (Semin & Cacioppo, 2006). As a result of this increased interest, the
study of the cognitive processes underlying human cooperative behavior is now

a field of research in its own right (Knoblich, Butterfill, & Sebanz, 2011).

These new studies investigating the perceptual, cognitive, and motor
components of cooperation have also recently converged on a consensual
operational definition of “joint-action”. Sebanz, Bekkering, & Knoblich (2006)
define joint-action as “a social interaction whereby two or more individuals
coordinate their actions in space and time to bring about change in the
environment.” Every joint-action, therefore, requires an interlocking of two or
more individuals’ intentions, actions, and perceptions (Sebanz & Knoblich, 2009).
This attunement between partners is what enables ensemble musicians to
create a unified sound texture and tango dancers to move together so swiftly
that it seems difficult to imagine them apart. Effortless as it might seem on the
surface, however, even the simplest instances of joint action, such as playing
catch or carrying an object together, require a diverse ensemble of cognitive

processes to be coordinated.

The minimal requirements for a joint-action architecture have been defined by
Vesper and colleagues (2010) in the following way. An architecture for joint-
action must minimally support the capacity to (1) represent a shared goal and
corresponding individual tasks, (2) monitor and predict each partner’s actions,
and (3) allow for continuous coordination. Figure 1 illustrates the components of
the proposed minimal architecture for joint-action. Although instrumental for
mapping the requirements of a joint-action model, this proposal does not specify

in any detail how these requirements might be implemented.
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Monitoring

P — Prediction

Figure 1 Diagram from Vesper and colleagues (2010, p.999) representing the minimal
components for a joint-action architecture. The outer circle represents shared goals. Co-tasks
divide the inner circle. Monitoring and prediction processes act on representations of the

shared goal and partner’s co-tasks.

Closer to a computational solution for a theory of joint-action is Wolpert, Doya
and Kawato's (2003) proposal, which is premised on the possibility of close
parallels between individual and social motor control. In 1996 Wolpert & Miall
presented a model of sensorimotor computation with the aim of formalizing the
mechanisms behind skilled motor control. The goal was to explain how an
organism is able to act optimally towards a goal despite uncertain and changing
environmental circumstances (e.g., the unknown properties of objects that are
the targets of action in the face of continuously changing environmental
conditions). In 2003 Wolpert, Doya and Kawato (2003) were the first to suggest
that there might be a computational parallel between motor control and social
interaction. Specifically, they proposed that the sensorimotor computations
involved in acting on one’s own body during individual motor control are
comparable to the communicative signals involved in acting on other people’s
behavior during social interactions. Figure 2 illustrates the proposed parallelism
between individual motor control and social motor control. Wolpert et al.s'

(2003) proposal has received some notice in the joint-action research
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community, with the framework being often cited as a useful approximation of
the mechanisms sustaining joint-actions (e.g., Becchio, Sartori, & Castiello, 2010;
Doerrfeld, Sebanz, & Shiffrar, 2012; Haberle, Schiitz-Bosbach, Laboissiere, &
Prinz, 2008; Knoblich et al., 2011; Loehr, Kourtis, Vesper, Sebanz, & Knoblich,
2013; Pecenka & Keller, 2011; Ramenzoni, Sebanz, & Knoblich, 2014, Sartori,
Becchio, & Castiello, 2011; Sebanz & Shiffrar, 2009; Vesper, Butterfill, Knoblich,
& Sebanz, 2010; Vesper, van der Wel, Knoblich, & Sebanz, 2013).

motor control social interaction
(a) (h)
@ack
loop
P motor 1 sensory 4‘;1‘01
comman feedback ” Slgﬂal
4 1
control signal motor command communicative actions
e.g. speech, gesture
consequences change in my body’s state | change in your mental state
state configuration of my body | mental state of your mind

Figure 2. Comparison of sensorimotor and social interaction loops from Wolpert, Doya and

Kawato (2003, p.594).

However, in our view Wolpert et al.s' (2003) proposal has not garnered the full
attention it deserves, perhaps because it appeared prior to the most recent
surge of interest in the problem of joint-action. It is also perhaps for the same
reason — the theory appearing slightly ahead of its time — that several key
aspects of joint-action, such as goal sharing, task co-representation, and
interpersonal coordination, were not addressed by Wolpert et al. (2003). In
summary then, Wolpert et al.s' (2003) proposal does not meet the minimal

requirements for a joint-action framework as delineated by Vesper and
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colleagues (2010), just as in complementary fashion, Vesper et al. (2010) does
not match the computational rigor of Wolpert et al.’s (2003) model for joint
motor control. In the present review, | will seek to bridge these gaps by
presenting a hierarchical predictive framework for joint-action, the predictive
joint-action model (pJAM). This framework is fully compatible with Wolpert et
al.s' (2003) computational notions, but in addition it incorporates the necessary
higher-order organization to deal with the specifics of joint-action

implementation.

Joint-actions are a pervasive part of our daily lives (e.g. shaking hands, playing
soccer, washing dishes together) and seem to come about without much effort.
However, when examined more closely, the implementation of even the
simplest of joint-actions reveals itself to be a complex and dynamic process.
Joint-actions are marked by high degrees of freedom (i.e. at any given moment
each partner can act in a multitude of ways) and hidden states (i.e. partners
don’t have direct access to each other's internal states). | propose that a
hierarchical predictive processing approach might be appropriate to solve the

implementation challenges inherent to joint-actions.

One of the two core ideas underlying hierarchical prediction is that the brain is a
prediction machine, meaning it continuously tries to match sensory and motoric
information with predictions based on goals and intentions. As a result of this
bidirectional exchange of predictions from the top (goals and intentions) and
signals from the bottom (sensory and motor signals), the system is able to find
computational solutions to complex and underspecified problems, such as the
ones posed by joint-action (Clark, 2013; Hawkins & Blakeslee, 2007). The second

core idea is that this exchange of signals (predictions and sensorimotor signals) is
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hierarchical, meaning that it occurs at each of several levels in a multi-layered
system. This allows the architecture to respond appropriately to a much wider
range of conditions than would be possible if there were only two layers. For
example, while one’s own and others’ contributions to a joint action are
incorporated at the higher-level of goal representations, lower layers at the
motor level can flexibly simulate separately the expected actions pertaining to
self and other. In addition, the first levels of sensory processing can attribute the

convoluted sensory outcomes of a joint-action to each agent in the interaction.

In the following section, | will present the predictive joint-action model (pJAM). |
will start by introducing the general principles of hierarchical predictive
processing. | then use these notions to describe pJAM. Subsequently, | will
discuss the challenges that are specific to the implementation of joint-action and

describe how pJAM tackles each of these challenges.

Afterward, | will juxtapose predictions derived from pJAM with empirical
evidence from the current joint-action literature. In doing so, | aim to integrate
the various cognitive processes that sustain joint-action (e.g., goal setting and
sharing, action prediction, coordination strategies and interpersonal sensory
processing) into one overarching framework. In the conclusion, | will evaluate
the overall success of using the hierarchical predictive approach in capturing the
complexity of joint-action. My hope is that this evaluation will reveal the
theoretical pieces that are still missing for a comprehensive understanding of

joint action.
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2.2 Ahierarchical predictive approach to joint-action

| suggest that joint-action can be best understood within a hierarchical predictive
processing framework. Before presenting the proposed application of this
approach to joint-action, we will briefly summarize the general principles of the
hierarchical predictive processing approach, and highlight Wolpert's et al. (2003)

hierarchical approach to motor control and social processing.

2.2.1 Fundaments of hierarchical predictive processing

The core idea is that the brain is a predictive machine, which continuously tries
to match bottom-up information with top-down predictions. In perception the
main task of this predictive machine is to infer external causes from their bodily
effects (i.e. motor and sensory signals including proprioceptive information). This
is a complex and costly computational task, because many different causes can
result in similar effects, and moreover, a solution must be found in a very short
time. Hierarchical predictive processing in perception, also known as predictive
coding, offers insights about how the brain solves these computational problems

(Bar, 2009).

According to hierarchical prediction principles, processing is distributed in a
multi-level hierarchical cascade of events. The lowest layer in the hierarchy
corresponds to sensory input, and the higher levels correspond to internal
simulations of that input. Processing is marked by a bidirectional swipe of
information between hierarchical levels. Each level in the system both receives
ascending signals from the lower levels (or the external world, at the first layer),
while concurrently generating downward predictions about these same signals

arriving from lower-levels.
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Generative models, at each level of the hierarchy, output predictions about the
information on the level below. However, since many different potential causes
can be consistent with the incoming information from the subordinate level,
each layer maintains several parallel generative models. Each of the generative
models represents a state probability. The predictions outputted by these
probabilistic models are continuously compared against the flow of incoming
information from the subordinate level in the processing hierarchy, resulting in
prediction errors. In turn, prediction errors are sent back to the higher level, via
forward connections, which sharpen the fit of the probabilistic models,
approximating their next predictions to the information represented in the lower
level. Cycles of concurrent predictions and error-correction occur throughout the
hierarchy. As a result of this bidirectional exchange of predictions from above
and signals from below, errors are minimized at both lower and higher levels,
giving rise to a structure of activations that represents the most likely cause of

the sensorial input, “a kind of virtual version of the sensory data” (Clark, 2013).

In addition to offering a computational solution to the fast pace and robust
nature of human perception, the hierarchical predictive approach also offers an
account of perception and action interactions. The main task of motor control is
to process the events needed to take an organism from its current motor state
to the desired motor state by Wolpert & Miall (1996). Through the lens of
hierarchical predictive processing, the desired action goal is treated as an actual
state of affairs, causing a cascading downward prediction of what should be
experienced next in the layers below. Error signals from each layer are sent back
up and thus are used to adapt the movement output as it unfolds. These
adjustments, in turn, change the sensory input, thus continuously minimizing the

error throughout the hierarchy. In this fashion, hierarchical predictive
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mechanisms are proposed to iteratively lead to a solution that will take the
organism from its current motor state to the desired one (Hawkins & Blakeslee,
2007). This iterative account of the perception-action loop offers an elegant
solution to how organisms successfully act within complex and ever-changing
environments. The most important underlying idea is that cognitive systems can
infer solutions to the problem of how to get from motor state A to motor state
B, by minimizing internal predictive errors in resemblance to Bayesian inferential

processes (Friston, Mattout, & Kilner, 2011; Friston, 2003; Todorov, 2004).

Haruno, Wolpert, and Kawato's (2003) proposal of hierarchical modular selection
and identification for control (HMQOSAIC) overlap, at least in some fundamental
aspects, with the overarching principles of hierarchic predictive processing. The
HMOSAIC was originally put forward as a model of motor learning and
production. The HMOSAIC posits a multi-level hierarchical architecture for motor
control. Each vertical level of the HMOSAIC comprises parallel modules. These
modules correspond to processors for generating predictions (forward models)
and those for generating control signals (inverse models). Let’s consider the
example of reaching to grasp a coffee mug. Modules embedded in the upper
levels of the hierarchy represent information of a more abstract and symbolic
nature. In the example, these modules would correspond to a symbolic
representation of the task of reaching for a coffee mug and its associated object
semantics. Modules in the lower levels of the hierarchy represent low-level
dynamics, such as movement elements, and object sensory features. In the
example, these modules would represent e.g. information about limb position
and velocity. Modules in the middle-levels represent different ways to structure
and organize movement elements for a range of different purposes, such as e.g.

different movement trajectories for reaching towards the coffee mug.
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Modules within a given level of the hierarchy, operating in parallel, are dedicated
to different possible states. Within any given level, the modules are evaluated on
the basis of how well their predictions (termed priors) fit the signals arriving
from the level underneath (termed responsibilities). Possible abstract goals
represented by parallel modules at high-levels of the hierarchy (e.g. grasp the
sugar pot vs. grasp the coffee mug vs. grasp the spoon) output predictions to the
adjacent lower level, comprising its own parallel models including information
about the possible different trajectories of the limb while reaching for its end-
target. The different higher-level task-goal modules are activated according to
how well their predictions (priors) fit the information represented in modules at
the immediately lower level (responsibilities). In a similar fashion, these mid-
level module predictions of arm trajectory are evaluated against sensory
information arriving from the lower-levels, and the modules with the best fit are
activated. This bi-directional flow of information between levels permits the
reentrant and recursive processes that underlie module updating and selection

at different levels of the hierarchy.

The HMOSAIC proposal has several similarities with the general principles of
hierarchical predictive coding. Both approaches agree that: (1) Processing occurs
through a multi-level hierarchy ranging from abstract symbolic representations
(higher levels) to sensory input representations (lower levels); (2) Bidirectional
comparison of information occurs between vertical levels, allowing the system to
use Baseyan-like computations find a solution for the motor control problem of
transitioning from a current motor state to the desired one; (3) Parallel modules
at each level of the hierarchy represent different possible states, allowing the

system to cover a large level of possible realities and decrease processing times.
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Here, | will focus on the commonalities between the hierarchical predictive
approach as presented by Clark (2013) and the hierarchical approach to motor
control as presented by Wolpert et al. (2003). However, | note that these
approaches differ in their fined-grain implementation details. For example, the
approaches differ in their description of the parallel processing occurring within
each level. Whereas Wolpert et al. (2003) propose that pairs of inverse-forward
models are responsible for generating priors (predictions about the layer
bellow), Clark (2013) does not describe the computation details of the parallel
representations comprised in each level of the processing hierarchy. In this
paper, our focus is not to propose solutions to the computational
implementation of motor control. Our focus is to use the general principles of
hierarchical processing to motor control, which are mostly common to both

approaches, to address the specific case of joint-action.

2.2.2 Applying hierarchical processing to the social domain

Wolpert et al. (2003) were the first to suggest that there might be a
computational parallel between motor control and social interaction. The
authors posit the HMOSAIC as an overarching framework for both individual and
social motor control. They posit that HMOSAIC, initially devised to account for
individual motor control, can also sustain social operations. In particular, they
describe how this architecture can support social action recognition and social

mimicry.

Suppose now that you are watching someone else reach out to pick up a cup of
coffee. The HMOSAIC structure can be dedicated to the process of recognizing
the goal of someone else’s action (i.e. action recognition). The modules at

different levels of the hierarchy represent different levels of description of the
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observed action. The lower level modules in the sensory modalities represent
different observable action elements. The middle level modules represent
different sequences of those elements. The highest-level modules would
represent different goals and intentions. As the observation of the movement
unfolds, the predictions from lower and middle-level modules representing
“reaching out to pick up a cup of coffee” are born out in the observations over

Ill

those that signal “reaching out to move the cup of coffee away” and in so doing
strengthen their responsibility signals. These responsibility signals are
propagated to higher-level modules where they activate the modules that reflect
the goals and intentions (“take a sip of coffee” or “pass the coffee mug”) that are
structurally associated with generating the behavior “reaching out to pick up a
cup of coffee”. These authors further suggest that a similar process can sustain
social action mimicry. In this case, two HMOSAIC structures would be necessary.
One dedicated to planning and executing ones’ own actions, and another
dedicated to processing someone else actions would be involved. Mimicry could
occur through an attunement between both HMOSAICS at the lower and middle-
levels of the hierarchy in the absence of attunement at the goal or intention
levels. Wolpert et al. (2003) speculate that how well one comes to understand or
reproduce another’s actions will depend on the similarity of the HMOSAIC that
generated an actor’s behavior and the HMOSAIC of the observer that interprets
it. Consistent with Wolpert et al. (2003) proposal, Kilner, Friston, and Frith,
(2007) offer an account of “mind reading” as a predictive coding process. The
authors propose that brain areas involved in processing others’ intentions are
reciprocally connect in a hierarchical fashion, with the pre-supplementary motor
area receiving low-level inputs from visual areas, and parietal and pre-frontal

areas responsible for processing motor and symbolic processing. This proposal

23



offers further support to the idea of using hierarchical predictive processing to

study social processes.

However, Wolpert et al. (2003) aimed at more than proposing a model for action
recognition and mimicry. Their claim was that a wide spectrum of social
interactions obeys to the basic principles of hierarchical sensorimotor
computations. Yet, this is where the explanatory power of their framework finds
some challenges. Wolpert et al (2003) state that what makes social interactions
difficult to capture in a computational model is their open-ended nature. The
authors highlight two general difficulties: (1) Time delays between
communicative actions and their social consequences can range from seconds to
days; (2) The space of possible responses to a communicative action is very large,
and therefore responses are not easily predicted. This makes it difficult to
concretely relate the proposals of the model to a big section of real-world social
interactions, which are often open-ended and multifaceted. In sharp contrast to
this open-ended dilemma of many real-world interactions, the specific case of
joint-action is restricted by the existence of a shared goal. In particular, the
multitude of time delays and possible responses is capped by the assumption
that both partners behave towards the achievement of a mutually agreed upon
interaction goal. Therefore, if | reduce social interaction to the specific case of
joint-action, | reduce the complexity of the interaction to a level at which | can

usefully apply the principles of hierarchical processing.

| propose an architecture for joint-action that harnesses the principles of
hierarchical predictive processing, compatible with the computational notions
proposed by Wolpert et al. (2003), to match the requirements for joint-action

implementation delineated by Vesper et al. (2010) (i.e. represent a shared goal
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and corresponding individual tasks, monitor and predict each partner’s actions,
and allow for continuous coordination). Admittedly, using a framework intended
to organize research on motor control in an individual to better understand
joint-action between two or more individuals will likely be incomplete.
Nonetheless, this is still worth doing in our opinion, because it will help to reveal
in a very concrete way, where new theoretical ideas are needed to extend what

is currently known about individual actions to the newer domain of joint-action.

2.2.3 Predictive Joint-Action Model (pJAM)

How are two or more independent individuals able to infer and implement a
joint motor solution that will lead them to achieve their shared goal? To help
ground this problem, we will use the scenario of two young brothers trying to
carry a table down a set of stairs (Figure 3). The boys have agreed to move the
table from the terrace to the garden’s corner. But although the boys share the
same goal, each one must contribute differently to the task. The younger brother
lifts the back of the table, while the older one supports the weight at the front.
The boys must continuously adapt to each other’s movements while carrying the
table and navigating their way towards their desired destination. As we will see,
this seemingly simple task implies a complex interlocking of intentions, actions,
and perceptions between the two boys. In the following sections, we use this
example to delineate, layer-by-layer, pJAM’s hierarchical predictive framework

for joint-action.
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Figure 3 Joint-action of two young boys carrying a table down some stairs. Image by James

Aldridge retrieved from http://jamesaldridge-artist.co.uk/blog/?p=346

The predictive joint-action model (pJAM) is conceptualized minimally as three
hierarchical processing layers: goal representation, action-planning, and sensory
routing, as illustrated in Figure 4. The hierarchical organization allows the
architecture to represent and find solutions for the joint-action process at
different levels of abstraction, from high-level symbolic representations of the
goal to lower-level chunking of movement elements (e.g. musculoskeletal

dynamics).

The goal representation level is at the top of the hierarchy. It is responsible for
symbolic representations of shared goals. Parallel probable shared goals co-exist
at this level. In our example, each boy has the goal of cooperating with one
another to carry the table from the terrace to the yard. The processing hierarchy
treats the shared goal as an actual state of affairs, causing a cascading downward
prediction of what should be experienced next in the layers’ bellow. The goal

representation layer will output an abstract representation of the ‘desired joint-
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state’ to the layer bellow (e.g. a symbolic representation of moving the table
together), and receive as input information about the currently estimated joint-
state (e.g. abstract representation of the ongoing cooperation) provided by the
layer bellow. The continuous comparison between these two sources of
information will generate a signal indexing the deviation between the actual
state of the system and its desired state (i.e. joint-state error). This error signal is
fed-back into the goal representation layer, where it is used to update and prune
the shared goal models. Thus at each iteration, the output of the ‘shared goal
models’ will be more precise and specific, providing the layers bellow more
precise guidelines of what should be experienced next. It will be more effective

in allowing the brother to execute actions that will lead them closer to their goal.
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Figure 4 The diagram illustrates the predictive joint-action model (pJAM), which is minimally

composed of three layers: goal-representation, action-planning, and sensory routing. The
framework assumes that each partner in a joint-action maintains internal models of both
themselves and their co-partners. The goal-representation layer is responsible for maintaining
and updating the shared goals guiding the interaction. The action-planning layer outputs motor
commands that take into account both the desired states of oneself and one’s partners in the
interaction. The sensory routing layer receives the inflow of sensory input and compares it to
internal model predictions pertaining to each partner’s action outcomes within the interaction.
Each layer generates predictions of the information that it expects to observe in the layer
below. Continuous comparison between adjacent layers results in error signals that are sent up

to optimize subsequent predictions in the layer above.
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pJAM proposes a bifurcation between action partners at the action-planning
layer. This bifurcation accounts for the distribution of task load between the
individual partners in the interaction. The load of carrying the table can be
divided between the brothers in many different ways. For example, the older
brother can hold the front of the table and the younger brother the back or vice-
versa, the brothers can both face forward or face each other, etc. pJAM
proposes that sets of parallel self-other models represent possible individual
contributors to the joint action. In other words, at this level, the joint-state
models are broken down into models encoding each individual’s expected
contribution to the desired joint-state, i.e. co-task models. This bifurcation is
expressed both at the action-planning layer and sensory routing layer. This
means that parallel cascades of downward predictions about motor states and
upwards state estimations based on sensory information are maintained for

each partner in the interaction.

Parallel co-task models of one’s own contributions and the partner’s
contributions to the joint-action produce the desired motor state signals, which
are compared to the actual motor state estimates arriving from the subordinate
level in the hierarchy. These comparisons generate error signals indexing the
deviation between desired and estimated individual motor states. These errors
signals are fed back into the upper layer to help calibrate, prune and sharpen the
co-task generative models pertaining to each partner in the joint-action. The
continuous optimization of co-task models will allow for one to iteratively
compensate for deviations between the current state and the desired state of
the interaction. Thus, this continuous process of minimizing error at the action-

planning layer gives rise to compensatory coordination.
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The action-planning layer is also responsible for outputting a motor command
for action execution. The generation of this motor command is informed by our
internal predictions about our partner’s next motor states. The process of
integrating predictions about one’s partners in addition to one’s own motor
planning leads to anticipatory coordination. In this way, partners are able to
bypass the temporal delays that would otherwise arise from waiting to receive
information about each other’s actual motor states before being able to plan

and execute their own actions.

At the level of the sensory routing layer, the bulk of the incoming sensory
information reflecting the outcomes of the joint-action is compared to
independent sensory predictions referring to one’s own and partner’s expected
sensory action outcomes. This comparison will serve as a split gateway that
parses ‘own’ and ‘partner’ sensory information into their corresponding
predictive streams. Deviations between sensory input and sensory predictions
(i.e. sensory predictive errors) are fed-back to sensory predictive models and
continuously improve sensory parsing (i.e. the system’s ability to direct received
sensory information to their corresponding predictive cascades). This process
will allow the predictive system to attribute external consequences to each

individual’s actions.

2.2.4 Implementation challenges addressed by pJAM

Next, | will describe each layer of the pJAM in further detail by defining the
implementation challenge that the layer addresses, and positing how the

challenge is met by the pJAM.
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2.2.4.1 Goal representation layer

Implementation challenge It is commonly accepted that partners in a joint-
action have similar internal representations of the interaction goal and that this
shared goal representation guides each partners’ actions (Sebanz et al., 2006).
Here, already, we find the first challenge to joint-action implementation: How
can internal goal representations be shared with enough detail to guide the
unfolding of an interaction in space and time (with all the possible variations that
this entails)? Language is crucial for how people agree to pursue a goal together (
Clark, 1996). However, verbal exchanges are often too slow and too processing
heavy to guide the fast-paced adaptations necessary to accomplish most joint-
actions. Imagine, for example, how difficult it would be for tango dancers to
coordinate their movements if they would have to continuously verbally inform
each other about their upcoming movements. In contrast, action-perception
mechanisms offer a faster route to coordination (Sebanz & Knoblich, 2009).
Verbal communication, cultural conventions, and common sense knowledge are
all crucial elements that restrict variation in goal representation between
partners (Clark, 1996). However, it would be difficult to imagine that these
factors alone could lead to enough specification to account for the full unfolding
of a joint-action. But even if it would be possible for partners to a priori construct
very similar and detailed shared goal representations (i.e. each partner would
have a copy of the same step-by-step blueprint for the interaction), the shared
representation wouldn’t be of much help once confronted with the variability
that the actual joint-action execution entails. This can be simply illustrated
through our situational example. Let’s say that there is a rock in the place where
the brothers were initially aiming at positioning the table. Are the brothers

doomed to behave like mindless robots and lay down the table where they

31



initially intended, even if one table leg will be unstable on top of a rock? No.
They will adapt, and they will adapt together. To sharpen the question at hand:
How are goals shared with enough detail to guide joint-action, but also with

enough flexibility to allow for adaptation?

pJAM solution pJAM suggests that each partner keeps several parallel ‘shared
goal models’, a sort of halo of probable variations of the shared goal. These
‘shared goal models’ represent the desired joint-states as if existed and
discharge expectations (priors down the hierarchy). These discharged top-down
predictions are sent to the lower level of the processing hierarchy where they
are compared to estimations of the actual joint-action state. Continuous
comparison between these adjacent layers produces error signals pertaining to
the predictions of the ‘shared goal models’. These error signals are fed back to
the goal representation layer where they are used to prune the ‘shared goal
models’, and in this way sharpen the individual’s representation of the shared

goal.

The mechanism described above can account for the necessary goal flexibility in
joint-action. However, for this iterative flexibility to be useful in joint-action,
each partner’s individual ‘shared goal models’ have to converge into similar
states. How can this occur? Apart from the initial loose representations of the
shared goal informed by communication, social norms, etc., partners also share
the outcomes of their joint-actions. Thus, each individual partner is exposed to
similar streams of bottom-up sensory information as a consequence of their
combined actions. Thus through hierarchical predictive mechanisms, partner’s

individual systems have a good chance of continuously converging into a close-
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enough internal representation of the shared goal, leading to the ability to take

to term successful joint-actions.

2.2.4.2 Action planning layer

Implementation challenge  Successful joint-actions imply a continuous
counterbalance of each individual’s contributions to the goal. In the example,
imagine that one brother lost strength for a moment and let the table swing to
the left, in optimal coordination, the other brother will respond by compensating
for this deviation to bring the table back to the desired course. However, in
many cases, a posteriori compensation is not a viable option, due to the fast
temporal constraints of most joint-actions. Thus, partners must be able to
anticipate each other and accommodate for each other’s movement changes
even before they occur. In our example, imagine that one brother is about to
lose grip of the table. The other brother might be able to predict what is about to
happen, and quickly lift the table higher to regain control. The critical question
here is: How are the two young brothers able to plan their individual actions to
optimally compensate for and anticipate each other’s actions under changing

conditions?

pJAM solution PJAM accounts for both compensatory and anticipatory
coordination. Compensatory coordination comes about through continuous error
minimization at the action-planning layer. This is achieved by using error signals
(generated by the comparison of desired motor states and estimated motor
states) to improve one’s models of both one’s own and partner’s co-tasks. In
pJAM horizontal connections between ‘own’ and ‘partners’ models support

anticipatory coordination. One’s motor commands will be informed by one’s
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internal predictions about the partner’s desired next states leading to
anticipatory coordination (i.e., coordination that is based on a prediction of

partner’s next actions; Keller, 2013).

2.2.4.3 Sensory routing layer

Implementation challenge In the case of the two brothers carrying the table,
the sensory feedback combines information about the consequences of both
brothers’ actions. How is this combined sensory information parsed into the

individual outcomes of one’s own and partner’s actions?

pJAM solution In pJAM sensory input is routed into self or partner’s hierarchical
processing streams by comparing the prediction of the sensory outcomes of both
self and partner’s to the received sensory input. This comparison will allow the
system to attribute external consequences to each individual’s actions. In
addition, it will lead to the percolation through the system of prediction errors
that are specific to each partner in the joint-action, ultimately serving to train
internal models of both oneself and the other. Attributing sensory consequences
to oneself vs. others results in the sense of agency (Obhi, 2012; Schiiir &
Haggard, 2011), that might help joint-action adaptation by contributing to the
division of joint-tasks into individual co-tasks. In addition, it is also expectable
that the quality of the sensory feedback pertaining to one’s actions will be more
detailed, richer and accurate than the sensory feedback pertaining partner’s
actions. Thus, our internal predictive streams about ourselves will be more
accurate than our predictive streams about our partners. This is in line with the
observation that it is easier to coordinate with oneself than with others (Keller,

Knoblich, & Repp, 2007). Nonetheless, by continuously minimizing error across
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partner’s predictive streams, our internal models of others will improve, which is
expressed by the observation that coordination with others improves with

practice (van der Wel, Sebanz, & Knoblich, 2012).

2.3 Model predictions

pJAM’s architecture offers several predictions about the processes underlying
joint-action. Some of these predictions have been addressed in the current
empirical literature, while others remain to be tested. Next, | will juxtapose the
model predictions with evidence from joint-action literature, and identify the
areas where further empirical studies are necessary. This will serve to support

the usefulness of the proposed model.

2.3.1 Goal representation layer

The goal-representation layer in pJAM is posited to maintain probabilistic
shared-goal models, which output predictions about the desired joint-state. In
turn, these predictions are compared with estimations of the current joint-state
that come about by merging the estimates of each individual’s motor
contributions to the joint-action (supplied by the action-planning layer beneath).
Figure 5 shows a diagram of the goal representation layer in pJAM. This
organization implies the following: pJAM predicts that individuals in a joint-

action have the capacity to monitor both joint and individual goals.
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Goal representation

This prediction is supported by evidence arriving from musical ensemble studies.
When playing together musicians must simultaneously maintain a
representation of the desired unified sound of the ensemble as well as a
representation of their own musical contributions to the overall sound (Keller,
2014). This observation was put to the test by a recent experimental study. In
this study, EEG was recorded from pairs of pianists playing a previously
memorized duet. During the performances, some of the keystrokes were
programmed to originate altered pitches that did or did not change the joint
auditory outcome (i.e., the harmony of a chord resulting from the two pianists’
combined pitches). ERPs revealed that feedback-related negativity was elicited
during altered auditory outcomes when these affected one’s own, one’s
partner’s, and joint-action outcomes. Thus indicating that partners in musical
joint actions monitor not only the joint outcomes of their actions, but also their
own and their partner’s contributions to the joint-goal (Loehr, Kourtis, Vesper,

Sebanz, & Knoblich, 2013).
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The findings from Loehr and colleagues (2013) support pJAMs goal
representation layer features: (a) They support the prediction that partner’s in a
joint-action have the capacity to monitor both the shared and individual goals;
(b) They highlight the functional role of prediction error in joint-action, because
joint-action outcomes are indexed by feedback-related negativity ERPs, known
to encode unexpected events; (c) They support pJAMs proposed organization in
which the goal representation layer is distinct from the action planning layer.
This is because, in Loehr and colleagues (2013) task, the motor actions of the
participants are consistent between changed and unchanged pitches (i.e. the
pianists play the same key with the same finger) what changes is the sound
outcome (i.e. whether the pitch is key consistent or not). Thus, the study
supports that goal encoding and monitoring can be independent of motor

processes.

One aspect of the goal representation layer that misses empirical support is the
splitting of the shared goal representation (and corresponding desired joint-
states) into individual co-goals (and correspondent desired individual states in
the interaction). Although current findings show that partners in the interaction
maintain both shared and individual representations (Keller, 2013; Loehr,
Kourtis, Vesper, Sebanz, Glnther, et al., 2013), the processes that moderate

between shared and individual goals have been difficult to capture empirically.

2.3.2 Action planning layer

The action-planning layer is responsible for generating predictions about one’s
own and partner’s motor contributions to the joint-task. Information about
deviations between one’s own predicted and estimated states (i.e. prediction

errors) gives rise to compensatory coordination. In simultaneous, continuous
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information about one’s partners’ predicted next states allows for anticipatory
coordination. All these processes are supported by the action-planning layer in
pJAM, represented by the diagram in Figure 6. The following predictions can be

derived from the organization of pJAM’s action planning layer:

i.  We keep representations of our partner's expected contributions to the
task (i.e. co-task models).
ii. ~ We generate predictions about our partners’ future motor states.
iii. ~ We encode deviations between partners’ motor predictions and action
states, i.e. prediction errors.
iv.  The better our models of our partners are, the better we are able to
coordinate with them.

v.  We can both anticipate and compensate for partners’ actions.

Next, | will present evidence that corroborates some of these predictions, and

identify which predictions have not been tested empirically.
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Figure 6 Action-planning layer in pJAM.
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i. ~ We keep representations of our partners expected contributions to the

joint-task

pJAM predicts that we keep motor representations of our co-partners action
states. This prediction is derived from the proposed organization of the action-
planning layer, where parallel probabilistic models are posited to represent
one’s own and partner’s expected contributions to the joint-action (i.e.
probabilistic co-task models). There is extensive evidence in the joint-action

literature supporting this prediction. Next, | will highlight some of this literature.

It is now generally accepted that partners in a joint-action keep models of each
other’s expected roles in the interaction (Atmaca, Sebanz, Prinz, & Knoblich,
2008; Sebanz et al., 2006; Sebanz, Knoblich, & Prinz, 2003, 2005). The most
prominent methods used to address this process are adaptations of well-known
stimulus-response competition tasks to the social context. For example, the
“joint Simon task” (Sebanz, Knoblich, & Prinz, 2003) compares individuals’
performance in the Simon task when executed alone (Simon, 1969) with the
performance in collaboration with a partner (joint Simon task). Results from the
individual Simon task show that responses are faster when stimulus and
response are spatially compatible, whereas non-corresponding stimulus-
response pairs result in slower responses (Kornblum, Hasbroucqg, & Osman,
1990). Notably, if we eliminate the stimulus-response feature overlap, by
presenting a task with only one response location (i.e. a go/no-go task), the
effect disappears (Liepelt & Prinz, 2011). This pattern of results is known as the

Simon effect.
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In the joint Simon task, responses are distributed across two participants, so that
each individual is in control of pressing one of the two keys (right or left) in
response to their assigned stimulus (e.g., red or blue cue). It is important to
highlight that each participant is only responsible for half of the responses. This
transforms the Simon task in a go/no-go task at the individual level. Similarly to
the standard Simon task, red and blue cues are presented to the left or right side
of the participants, and stimuli location is irrelevant to response selection
(Sebanz et al.,, 2003). The critical question is, can the stimulus-response
competition effect be observed when two participants perform the task
together? In the social setting, the ideal strategy is for participants to ignore
each other’s part of the task. If individuals adhere to this ideal strategy, the
results from the Joint Simon task should resemble the results of an individual
go/no-go task. However, empirical evidence shows stimuli-response competition
in the joint-Simon task, suggesting that participants internally model both their
own and their partner’s expected contributions to the joint-action (Knoblich &

Sebanz, 2006; Sebanz et al., 2003).

Converging evidence suggesting that individuals keep internal models of both
their own and their partners expected contributions to a joint-action comes from
similar adaptations of other classical stimuli-response compatibility tasks to the
social realm. For example, the “joint flanker” effect demonstrates that co-
representation is not restricted to tasks initiating spatial interference, but
generalizes to tasks involving arbitrary stimulus-response associations (Atmaca,
Sebanz, & Knoblich, 2011). Additionally, the compatibility effect between
numerical and spatial stimuli termed SNARC effect, has also been observed in

the social transformation of this task - joint SNARC effect (Atmaca et al., 2008).
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It is, however, important to note that stimuli-response compatibility effects are
found both, when sharing a task with a social partner, and when in the presence
of salient non-social factors. For instance, Dolk, Hommel, Prinz and Liepelt (2013)
substituted the social partner in the Joint Simon task for a Chinese cat statue.
The authors showed that if the statue were made to be a sufficiently salient
event to provide a strong spatial reference, participants would start allocating
task co-representations to the inanimate object. This shows that although at
work during join-action, the mechanism underlying task co-presentations is not
specifically social. This conception is in line with the view that social and non-
social events are processed in similar ways, though social events often are more
salient, recruiting more cognitive resources (Friesen & Kingstone, 1998; Langton

& Bruce, 2000) .

Are co-task representations encoded at the motor level? A positive indication is
offered by Hollander, Jung, and Prinz (2011). The findings from this study
showed that lateralized readiness potential ERPs, not only when participants
prepared to act themselves but also when it was the partner’s turn to respond.
This observation suggests that each partner maintains covert motor activations
relating to the expected contributions their co-partners in the interaction. Given
that we represent others motor plans, what prevents us from executing these
plans? Following studies have shown that neural inhibition mechanisms are at
work to ensure that one does not execute other people’s expected contributions

to the task (Sebanz et al., 2006; Tsai, Kuo, Jing, Hung, & Tzeng, 2006).

Recent studies show that our internal models of partner’s expected roles in the
interaction are influenced by contextual and personal factors. Regarding

contextual factors, Kuhbandner, Pekrun, & Maier (2010) have shown that under
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negative mood induction the extent to which partners encoded each other
expected tasks in the interaction was diminished compared to when partners
underwent positive mood induction. This finding can offer insight on previous
observations that individuals in positive moods are more likely to like a stranger
(Baron, 1987), and show higher cooperative tendencies (Forgas, 1998). Similar
observations were made when asking participants to complete the joint-Simon

task under the cooperative and the competitive scenarios.

Regarding person-specific factors, de Bruijn, Miedl and Bekkering (2008) report
individual differences in the extent to which individuals tend to represent their
partner’s side of the task. These individual differences were nonetheless
sensitive to manipulation and training. Colzato, de Bruijn and Hommel (2012)
primed participants’ self-concept as individualistic or social before testing the
extent to which participants model their partner’s co-tasks using the joint-Simon
method. The results from this study showed that the joint Simon effect was
more pronounced in the group primed with social affiliation words. This finding
suggests that modeling other’s roles in an interaction can be manipulated by
increasing the relevancy of social factors. A finding that was substantiated by a
related study (Colzato et al., 2012) testing pairs of Buddhists and atheists in the
joint Simon task. Buddhist religion integrates a world-view in which compassion
is a central teaching. The results showed that Buddhist’s responses tended
towards stronger integration of the partner’s side of the task. Taken together,
these studies seem to suggest that the extent to which we model other’s
expected contributions to an interaction can be modulated by personal factors

such as self-construal and social beliefs.
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In sum, pJAM’s prediction of parallel representations of both one’s own and
one’s partners expected contributions to the task (i.e. co-task models) is well
grounded in current literature, which indicates that partners maintain co-task
representations of one another expressed at the motor preparation level, which

is modulated by social salience.

ii. ~ We generate predictions about our partners’ future motor states

pJAM proposes that co-task models (at the action-planning layer) output
predictions of the desired motor states for both oneself and one’s partners in
the joint-action. Thus, the model predicts that partners continuously update
predictions of each other’s next motor states during the interaction. Next, | will

highlight empirical findings that support this prediction.

Partners in a joint-action task must attend to one another while simultaneously
predicting each other’s next actions. That observing another person is not a
passive process was elegantly shown in a study measuring participants’ eye-gaze
patterns while they were performing a block-stacking task alone versus while
they were observing another person stacking blocks. Similar predictive eye-gaze
patterns were found in advance of critical hand grips, both in those grips that
were executed and in those that were only observed actions (Flanagan &
Johansson, 2003). This finding indicated that during action observations we

actively engage in action prediction.

Detailed predictions of kinematic features are believed to be implemented
through internal action simulations (Graf et al., 2007; Parkinson, Springer, &
Prinz, 2012; Sparenberg et al., 2012). In an especially ingenious study of this

phenomenon, Graf and colleagues (2007) asked participants to observe an action
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sequence of walkers rendered as point-light displays. At the end of each action
sequence, the point-light walker disappeared behind a screen. After a
determined interval of time, the walker reappeared on the other side of the
screen as a static image. Participants were then asked to decide whether the
static posture depicted a continuation of the walking cycle. Results showed that
people were better at correctly identifying a posture as part of the walking
sequence when the occlusion time matched the time that would take the walker
to reach the specific static position presented at the end. Thus suggesting that
predicting the unfolding of others actions is dependent on internal simulations

that integrate the temporal and spatial constraints of action execution.

It is currently accepted that knowledge about the natural statistics of human
action is used to predict the spatiotemporal unfolding of observed actions
(Sebanz & Knoblich, 2009). In agreement with this view, Neri, Luu, and Levi
(2006) hypothesized that expectations about the unfolding of social interactions
should facilitate action perception in social settings. To test this hypothesis, the
authors invited participants to observe point-light videos of pairs dancing or
fighting. Noise dots were scattered around the point-light displays affecting the
reliability of visual cues. Crucially, one of the point-display agents (target agent)
was either synchronized or desynchronized with its partner. Participants were
tasked with detecting the presence of the target agent in the interaction
(dancing or fighting). The results showed that visual detection performance was
better in interaction sequences where agents were acting synchronously
compared to acting asynchronously. The authors interpreted the better
detection rate for synchronous agents as resulting from the close match
between the observer’s internal simulation of the interaction and the actual

unfolding of the interaction.
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Manera, Schouten, Verfaillie and Becchio (2013) closely replicated this previous
study, but instead of dancing or fighting, the pairs of point-light agents executed
a communicative interaction. For example, one agent pointed to something on
the ground, prompting the other to pick it up. Similarly, to what was observed in
the initial study, participants were more successful at detecting agents when the
interaction maintained its natural temporal dynamics. Taken together the
studies above suggest that the human brain integrates previous expectations
about the spatiotemporal dynamics of action execution to generate precise

action predictions about the unfolding of social interactions.

There is strong evidence showing that internal predictions of others’ actions
borrow ones’” own motor system. For example, a study using Functional
Magnetic Resonance imaging (fMRI) reported increased BOLD responses in
premotor areas both when participants prepared to perform the actions
themselves and when participants anticipated that the confederate would
perform the action (Ramnani & Miall, 2004). Along the same lines,
electrophysiological markers of motor preparation, i.e. readiness potential, have
been found to precede the observation of movement onset Kilner, Vargas, Duval,
Blakemore and Sirigu (2004). These findings suggest that expectations about
what others will do next are coded, or at least available, at the motor system

level.

In the context of joint-action, motor involvement during action anticipation of
interaction partners (as measured by anticipatory ERPs) has been shown to be
higher than the activation relating to the motor involvement occurring when
anticipating bystanders’ actions (Kourtis, Sebanz, & Knoblich, 2010). Therefore,

suggesting that motor involvement in prediction is modulated by the social
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relevance of the other. Furthermore, recent evidence suggests that the success
of interpersonal coordination between partners in a joint-action is supported by
partner’s motor representations of each other’s actions. In this regard,
Novembre, Ticini, Schiitz-Bosbach and Keller (2012) showed that successful
temporal coordination during a musical duet was positively related to the extent
to which musicians internally encode each other’s actions (measured by
corticospinal activation after Transcranial Magnetic Stimulation). Additionally, in
this study, self-reported empathy was positively related to the extent to which
musicians encoded their partner’s actions. Therefore suggesting that the ability
to maintain rich motor representations of our partner’s actions improves

interpersonal coordination.

The studies described above suggest that (a) when passively observing or
interacting with another person we build internal models of their actions, which
are instrumental for generating predictions about their next motor states, and
(b) we use our own motor substrate to support these predictions. In particular,
some recent findings suggest that the richness of our motor encodings of others
is increased when we engage in social interactions (Kourtis et al., 2010) and is
related to our social aptitude traits (Novembre et al.,, 2012). This evidence is
coherent with the pJAMs prediction that joint-action is achieved by generating

continuous predictions about the actions of our cooperators.

iii. ~ We encode deviations between partners’ motor predictions and action

states, i.e. prediction errors.

In pJAM prediction errors are posited to be instrumental in approximating the

joint-state of the interaction to its desired goal. Thus, the model predicts that we
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monitor deviations between the expected and the estimated motor states of
both ourselves and our counterparts in the interaction. Next, | will highlight
recent insights into the functional role of prediction errors in social interactions

that offer support to pJAM’s prediction.

Research comparing the neural processing of mistakes made by oneself with
observed errors of other people, suggests that self and other error monitoring is
supported by overlapping neural resources (as measured by error-related
potentials on the medial frontal cortex and the motor cortices; van Schie, Mars,
Coles, & Bekkering, 2004). However, not all mistakes receive the same amount of
monitoring. Recent research indicates that error monitoring is influenced by the

social affiliation between the observer and the person that makes the mistake.

In a study carried out by Kang, Hirsh and Chasteen (2010), participants were
paired with strangers or friends and observed their partners performing a Stroop
task. The results from this experiment showed stronger amplitude of error-
related potentials for participants who were paired with a friend compared with
participants who were paired with a stranger. This suggests that social closeness
enhances the salience of other people’s errors. A related study suggests that the
impact that social closeness has on observed error monitoring is not specific to
the long-term bond that exists between friends. In particular, Carp, Halenar,
Quandt, Sklar and Compton (2009) artificially manipulated the closeness
between pairs of participants by deceiving pairs of participants about their
degree of world-view similarity. Error-related brain potentials, measured while
observing the partner perform the Flanker task (Atmaca et al. 2011), were
influenced by the perceived closeness to the partner. This study shows that

increased monitoring of another person’s mistakes is not specific to long-term
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social bonds, and can be successfully biased by temporary manipulations of
social closeness between individuals. The social context in which we observe
another person make a mistake has also been observed to influence error
monitoring. For instance, Koban, Pourtois, Vocat and Vuilleumier (2010)
investigated the processing of observed errors in cooperative and competitive
social interactions. The results revealed higher error-related negativity (ERN)
responses occurring when observing a cooperator’s mistakes compared to
observing a competitor’s mistakes. This supports the view that cooperators
mistakes are more salient. Thus, this observation is in line with the notion that

social error monitoring plays a functional role in cooperative behavior.

This empirical research indicates that humans are able to encode both ones’ own
and their partners’ errors. Most importantly, the literature suggests that this
process is extremely permeable to social factors. Taken together these
observations are in line with pJAM’s prediction of error minimization strategies

during cooperative social interactions.

However, one important prediction that follows from pJAMs action planning
layer has not been empirically observed. This prediction is that the computation
of prediction errors about co-partners is fundamental to interpersonal
coordination. Although current literature points to the computation of
prediction errors during joint-action, these have not been functionally linked to
optimal coordination. Therefore, future studies are necessary to test this
prediction. Such studies would have to manipulate prediction errors and
measure the effect that such manipulation would have on interpersonal
coordination during a joint-action. Prediction errors can be modulated either by

manipulating expectations (top-down manipulation) or manipulating the sensory
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input (bottom-up manipulation). Amplitude measurements of error-related ERPs
would allow checking these manipulations. PJAM predicts a link between
prediction errors and the ability to coordinate with a partner. Thus, it predicts
that the amplitude of prediction errors would have an effect on coordination

over time.

iv. The better our models of our partners are, the better we are able to

coordinate with them.

pJAM architecture is based on an error minimization strategy, in which
prediction errors are used as learning signals to improve predictions about action
outcomes. It is commonly observed that we get better at cooperating with
others the more we experience it. For example, in team sports, the ability to
predict the behavior of teammates greatly contributes to cooperative success
(Savelsbergh, Williams, Van der Kamp, & Ward, 2002), whereas in competitive
sports predicting the opponent can give competitors the extra edge (Jones &
Miles, 1978). Another striking example of specialized interpersonal prediction is
the case of ensemble music performances, where musicians need to predict
each other’s actions to generate a unified sound (Keller, 2014). Three
complementary pieces of evidence support the notion that expertise in action
coordination is supported by improving the internal models of one’s partners
(i.e. internal models of their future motor commands, and the sensory
consequences of these commands). Firstly, training improves prediction; experts
need less information to make accurate predictions and are proficient in
anticipating other’s errors and deception attempts (Mori & Shimada, 2013).The
second finding is that experts show higher levels of motor activation during

prediction compared to novices. This finding supports the idea that predictions
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are implemented by internal models encoded at the motor level (Aglioti, Cesari,
Romani, & Urgesi, 2008). The third finding is that it is easier to coordinate with
oneself than to coordinate with the another person. One possible interpretation
of this finding is that our models of ourselves are more accurate than our models
of others. In other words, our models of ourselves generate better predictions
about the sensory consequences of our actions, than our models of others are
able to predict the sensory outcomes of others actions (Keller et al., 2007). Taken
together these findings are in line with the idea that internal models of our co-
partners, which are continuously improved through experience, support

interaction.

pJAM offers a framework to encompass evidence of learning and acquired
expertise in action prediction. In specific, pJAM comprises a hierarchical
predictive stream dedicated to modeling one’s interaction partners. Through
successive error minimization (achieved by comparing downwards predicted
states with upwards estimated states) the theoretical framework is in line with

the empirically observed improvement of action prediction through practice.

V. Partners can both anticipate and compensate for each other’s actions.

pJAM encompasses the implementation of both compensatory and anticipatory
coordination strategies. Next, | will highlight studies from the joint-action

literature that reveal the implementation of such coordination strategies.

Compensatory coordination In pJAM this coordination strategy is proposed to
be the result of error minimization at the action-planning level. 1t is suggested
that continuous optimization of co-task models will iteratively contribute to

compensate for deviations between the current state and the desired state of
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the interaction. Behavioral evidence for the tendency to compensate for
someone else’s movements is found in a few experimental studies. Sebanz and
Shiffar (2007) asked participants to watch someone trying to balance on a
slippery surface. The authors measured participants’ spontaneous body tilt
during action observation. The results showed that participants made small
movements compensating for the actor’s imbalance. For example, participants
tilted to the left when the actor was about to fall to the right side. These findings
suggest that individuals involuntarily execute compensatory movements when
observing an action that does not match the desired goal, thus supporting the
possibility that partners in a joint-action compensate for each other’s deviations
from the shared goal. It should be noted, that this study doesn’t show that
compensatory strategies are used in join-action. Rather it shows that individuals
have the tendency to complete each other’s actions, thus giving preliminary
support to the idea that such compensatory tendencies could be harnessed to

cope with the interpersonal coordination demands of joint-actions.

Relevantly, a follow-up study shows that spontaneous compensatory
movements during action observation were modulated by whether observers
share the same goal as the observee (Haberle et al., 2008). Findings from this
study indicated that while observing a cooperator (i.e. a participant who shares
the same goal) tended to perform small movements congruent with goal
achievement. However, when observing a competitor (i.e. a participant who has
an opposite goal) the spontaneous compensatory movements were incongruent
with goal achievement. This evidence further supports the notion that partners
who share the same goal compensate for each other’s deviations from the
desired goal. Thus further supporting the potential value of compensatory

strategies in joint-action.
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Anticipatory coordination In many joint-action situations, one partner has to
prepare or even initiate a complementary movement before fully receiving
information about the co-partner’s behavior. This requires partners to integrate
into their motor planning predictions about what the other will do next (Keller,

2007). Thus leading to anticipatory coordination.

In pJAM, predictions about the partner’s desired next state (discharged by co-
task generative models) flow down the hierarchy for comparison with bottom-up
information, but importantly, these predictions are also relayed horizontally to
the models responsible for generating a motor command (i.e. self co-task
models). Thus, motor commands integrate predictions about the partner’s next
actions. This horizontal sharing of information, between ‘partner’ and ‘self’

predictive cascades, allows for anticipatory coordination.

Anticipatory coordination has been widely reported in joint-action studies (
Sebanz & Knoblich, 2009). For example, Pecenka & Keller (2011) observed that
when asked to tap in synchrony with auditory sequences, some participants
revealed a tendency to adapt their tempo to predicted auditory events
(anticipatory strategy), while other participants followed the strategy of tracking
past events (compensatory strategy). The authors subsequently tested how
these individual tendencies influence interpersonal coordination. They
hypothesized that if temporal prediction improves interpersonal coordination,
pairs of people that show predictive tendencies would coordinate better than
pairs of people that showed the tendency to track past events. The results
showed that pairs who tended to anticipate each other’s actions, instead of
tracking what each other do at each moment in time, have a better ability to

synchronize. This supports the notion that predicting is a better strategy than
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compensating when it comes to interpersonal coordination. In fact, studies
suggest that the best coordination partners capitalize on the relationship
between action predictability and interpersonal coordination by exaggerating
their behavior (Goebl & Palmer, 2009) and diminishing the variability in their
actions (Vesper, van der Wel, Knoblich, & Sebanz, 2011), thus making themselves

easier to predict.

pJAM proposes a theoretical framework for the implementation of anticipatory
and compensatory coordinative structures. These coordinative strategies are
endogenous to the overall functioning of the hierarchical predictive system.
Hence, pJAM offers a processing structure for the empirical evidence described

above.

2.3.3 Sensory routing layer

pJAM predicts that received sensory input is continuously compared with
sensory predictions about each partner’s action outcomes. The diagram in Figure
7 represents the sensory routing layer in pJAM. Support for the notion that
sensory predictions about oneself and one’s partners are compared in parallel to
the incoming sensory input comes from studies observing interpersonal sensory
cancellation. It is well known that the process of matching between received and
predicted sensory action outcomes is sometimes used to filter out the expected
sensory results of an action, a phenomenon known as sensory cancellation
(Blakemore, Frith, & Wolpert, 1999). One famous observation of the sensory
cancellation effect lies on the fact that it is hard, if not impossible, for one to

tickle oneself ( Blakemore, Wolpert, & Frith, 2000).
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Figure 7 Sensory routing layer in pJAM.

Sato (2008) investigated sensory cancellation in the social realm. The authors
presented participants with an auditory tone after themselves pressing a key,
after observing another person pressing the key, or unexpectedly. Participant’s
perceived the tone as being less intense both when they or the other person
pressed the key, compared to the unexpected condition. The authors interpreted
that this attenuation of sensation occurred because participants maintained
predictions about the outcomes of other people’s actions, which were used to

attenuate the sensation of sensory events.

Furthermore, binding sensory information to action outcomes is considered to
be the basis of the sense of agency (Obhi, 2012; Schiir & Haggard, 2011).
Studies of the sense of agency in joint-action settings suggest that partners in a
joint action can differentiate between their own and another person’s
contributions to the sensory outcomes of a joint-action (Loehr, 2013), and that
this effect is influenced by partner’s experience with the task (van der Wel et al.,

2012).
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These observations indicate that the sensory inflow of information during a
social situation is allocated to being an outcome of one’s or other’s actions. This
process is crucial for the pJAM proposal because the model relies on the upward
swipe of reliable sensory information to train one’s models and predictions
about oneself and one’s partners. In pJAM, the sense of agency might be
instrumental at the higher -level of goal representation where desired joint-
states are broken down into models representing different probabilistic options

through which the joint task can be shared across the partners.

However, these previous studies have not tested whether sensory routing (i.e.
linking sensory outcomes to individual actions) is necessary for optimal joint-
action implementation. One possible way of testing this would be to devise a
task that manipulates how easy or difficult it would be to allocate sensory
consequences to individual actions, and measure if this modulation would have

an effect on partner’s ability to achieve a shared goal.

2.4 Discussion

The main goal of this chapter was to capture the inner workings of joint-action
employing hierarchical predictive notions. The overall success of this endeavor
can be assessed by asking whether pJAM meets the minimum requirements for
an architecture of joint-action as proposed by Vesper and colleagues (2010).
Next, | will summarize how pJAM addresses each of the proposed minimal

requirements.

(1) The architecture must support shared goal and corresponding individual task
representations. pJAM proposes that shared goals are represented in a

probabilistic fashion at the higher-level layer of the hierarchy - goal
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representation layer. In the layer immediately bellow, the action-planning layer,
the framework comprises parallel probabilistic models of both one’s own and
partner’s motor contributions to the desired joint-state. Comparisons between
these adjacent layers lead to the continuous actualization of shared goal

representations.

(2) The architecture must support the processes of monitoring and predicting
each partner’s actions. pJAM comprises parallel predictive cascades for
each intervenient in the joint-action. The core cognitive process of this model is
prediction, which is posited to occur at different levels of abstraction (i.e. from
goal representation, to motor planning and sensory expectations) for each

intervenient in the interaction.

(3) The architecture must allow for continuous coordination. pJAM
supports the implementation of anticipatory and compensatory coordination
strategies in an endogenous way to the overall functioning of the hierarchical

predictive system.

Overall | consider that pJAM successfully matches the minimal requirements for
an architecture of joint-action as defined by Vesper and colleagues (2010). |
consider that pJAM extends previous sensorimotor accounts of motor control in
social situations (Wolpert et al., 2003), by proposing a framework that attempts
to address implementation challenges that are specific to joint-action situations

(e.g. shared goals, action prediction and coordination).

Furthermore pJAM offers a preliminary insight into one long-standing open
guestion identified in previous joint-action literature reviews: “One main

challenge for future work seems to be to understand how lower-level processes
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like action simulation and higher-level processes like verbal communication and
mental state attribution work in concert, and under which circumstances they
can overrule each other” (Natalie Sebanz & Knoblich, 2009; p. 365). This question
remains far from being fully answered. However, hierarchical predictive
mechanisms offer a promising solution that links processes occurring at different

levels of representation.

Another joint-action implementation challenge to which pJAM offers insight is
the question of how joint-actions are led to successful completion given that
shared goals and task divisions are initially underspecified. Hierarchical
predictive processing allows a system to reach a solution through Bayesian
inference (Friston et al., 2011; Friston, 2003; Todorov, 2004) and thus represents
a powerful way to deal with under-specified and mutable problems such as the
unfolding of a joint-action in space and time. It is important to note that the
proposed framework (pJAM) does not attempt to make illations about brain
organization, but rather to use knowledge about how the brain solves action-

perception computational problems to think about join-action.

Finally, the exercise of structuring current evidence according to the predictions
proposed by pJAMs organization has revealed that both contextual factors (e.g.
interaction goal, relationship between partners) and personal factors (e.g.
personality traits, beliefs) modulate the predictive hierarchy cascades (Colzato,
de Bruijn, et al., 2012; de Bruijn et al., 2008; lani, Anelli, Nicoletti, Arcuri, &
Rubichi, 2011; Kuhbandner et al., 2010). The current sensorimotor framework
does not offer an account of these factors interact with joint-action mechanisms.
The challenge of understanding the two-way influences between what are

commonly considered to be social phenomena (e.g. social relationships and
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personality) and what are considered to be cognitive phenomena (e.g. motor
control) goes well beyond the narrow domain of joint-action addressed here. In
fact, core fields of cognitive psychology research, such as attention (Ristic &
Enns, 2015), are in search for new theoretical ideas that can better capture

cognition in its personal and social environment.
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3 Sensitivity to attention control in action

prediction

A recent theory suggests that social cognition involves a predictive model of
other people’s attentional states (Webb & Graziano, 2015). In this
conceptualization attention is defined as a data-handling mechanism. Allocating
attention means prioritizing one information processing operation rather than
others. Graziano (2013) notes that the allocation of attention is inherently linked
to behavioral control. The author proposes that attention often has a quality of
control on behavior. He further extrapolates that this quality of attention is at
the root of social cognition. In this view, modeling other people’s attentional
states is one of the most important cognitive mechanisms we use to predict their
future behavior (which is crucial to maintaining social interactions). The idea is
that we continuously build and actualize sophisticated models of other people’s
attentional states. Graziano (2013) proposes that different sources of
information can contribute to social models of attention, such as contextual
information, facial expressions, gaze allocation, movement kinematics, etc.
According to this proposal, we continuously gather cues that allow us to
internally simulate someone else’s attentional states and in this way make

predictions about their future behavior.

Previous studies of social perception report acute human sensitivity to where
another’s attention is aimed. Here | present evidence that human social
understanding involves not only knowing where someone else is attending but
also sensitivity to how the other’s attention has been controlled. The control of

attention is among the most widely studied topics in all of cognitive science
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(Corbetta & Shulman, 2002; Posner & Rothbart, 2007; Posner, 1980). Attention is
endogenous when controlled voluntarily, such as the goal-directed intention to
attend to a particular event in the environment. Attention is exogenous when
controlled by environmental factors, such as a spatially local change in
appearance or sound. In this thesis, | will present a series of experiments
designed to probe third-person perception of attention control states. These
studies followed a two-stage methodology. In a first stage, presented in section
3.1, | created video-clips of actors performing actions under exogenous and
endogenous control. The exogenous control condition was created by externally
directing actor’s actions to a specific target (directed actions). The endogenous
control condition was created by letting actors choose the target of their actions
(chosen actions). This manipulation follows Graziano’s (2013) conceptualization
of attention as data prioritization. In directed actions, the external stimulus is
prioritized (exogenous attention control). In chosen actions, the internal
decision-making is prioritized (endogenous attention control). In the second
stage of this project, | used these two categories of video-clips to test observers’
sensitivity to actors’ attention control states as expressed through their reaching

actions.

A first experiment revealed that observers were faster at predicting the end-
target of someone else’s actions when the actor choose the action’s target
(endogenous attention control) compared to when the actor was directed to the
target (exogenous attention control). Thus suggesting that humans are able to
capitalize on subtle differences in bodily cues that occur when someone else’s
attention is controlled by an internal choice versus an external signal in order to
improve their predictions about someone else’s actions (presented in section

3.2). Follow-up experiments showed that (1) sensitivity to attention control gives
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observers a reactive advantage in social interactions (presented in section 3.3),
(2) sensitivity to attention control is not consciously accessible (presented in
section 3.4), (3) attention control signals were widely distributed over the actor’s
body, though stronger in the torso and limbs than in the head (presented in
section 3.5), (4) the signal was available early on in the movement (presented in
section 3.6), (5) and finally that sensitivity in the kinematic responses of
observers was correlated with observer’s social aptitude, as measured by the
Autism Quotient Scale (Baron-Cohen et al., 2001; Ruzich et al., 2015; presented
in section 3.7). Together these experiments suggest that social cognition involves
the predictive modeling of other’s attentional states. Next, | will detail the
methods and results of these experiments, and discuss the corresponding

findings in light of the current literature on social cognition.

3.1 Methodology

This research project probed whether observers were sensitive to someone
else’s attentional control states. My colleagues and | operationalized this
research question using a two-stage methodology. In the first stage — stimuli
construction stage - | recorded videos of actors reaching to one of two possible
targets while either choosing (endogenous attention control) or being directed
(exogenous attention control) to one target. For simplicity, from now on | will
refer to the endogenous attention control condition as the “chosen” condition
and the exogenous attention control condition as the “directed” condition. In
the second stage — experimental stage — | presented observers with videos of
both conditions (chosen and directed) in randomized order and measured their
responses. This was done with the goal of assessing observers’ sensitivity to

actors’ attentional states. The experimental stage will be addressed further on in
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Chapters 3.2 to 3.7. Next, | will focus on the stimuli construction stage. | will start
by describing the procedures followed during the stimuli recording. Afterward, |
will explain the process used to construct a stimuli set that was equated in
temporal cues between conditions. And finally, | will present a manipulation
check showing that the stimuli set portrays subtle kinematic differences between

conditions.

3.1.1 Stimuli recording

As shown in Figure 8, actors were filmed reaching to two possible targets after
choosing (endogenous control) or being directed (exogenous control) to a target.
To assist in the creation of the set of videos, actors were recruited from the
same population as observers. A total of 11 potential actors were filmed. Five
actors were excluded due to technical difficulties with the recordings. From the
remaining 6 actors, we selected 4 (2 females, ages 19-21) that followed
instructions in all respects and consented to have their reaches recorded for

presentation to other participants as stimulus materials.
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Figure 8 lllustration of the method from the actors’ perspective. Actors were filmed through
plexiglass reaching to two possible targets. On “chosen” trials both locations were lit and
actors had to choose (not shown), on “directed” trials only one location was lit and actors were

directed to reach to that location (as shown).

Actors were seated at a table facing a Plexiglas panel positioned 56 cm from the
table edge. Actors were filmed at 50 fps, 800x800 pixels, using a Flea3 camera
placed on the opposite of the Plexiglass frame. Two LED lights facing the actor
served as cues. The LED lights were positioned 20 cm to the right and the left
side of a central fixation point located at the average actor’s eye-level. The
videos start at cue presentation and end after the reach is completed. Actors
were instructed to begin each trial by fixating the central point. This was
followed by the simultaneous onset of an auditory beep and the visual cue(s). On
directed trials, one of the two LEDs was illuminated randomly, and actors were
instructed to reach and touch it as rapidly as possible; on chosen trials both LEDs
were lit and the instructions were to rapidly choose one LED to touch. Previous
studies have characterized how choices are expressed in reaching movements
(Gallivan & Chapman, 2014). Using reaching movements, as stimuli will allow us
to study observers’ sensitivity to action control. Actors were instructed to make
each choice in the moment and to try to select the left and right LEDs about
equally often, which they did (50.87% right overall). The inter-trial interval was
kept deliberately short (1000 ms following each response) in order to prevent
strategic choosing in advance of the cue. Each actor completed a total of 100
trials in both the chosen and directed conditions. Importantly, the LEDs were not

visible in the videos. Figure 9 shows an example of the video-clips framing.

63



Figure 9 An example of the video-clips framing. Critically, the LEDs are not visible in the stimuli.

3.1.2 Stimuli selection

Because our goal was to test for sensitivity to how the reaches were controlled,
not sensitivity to overt differences in the onsets or movement times of the
reaches, we first eliminated temporal cues that might distinguish chosen from
directed actions. From a pool of 800 video-clips (4 actors x 200 trials), we first
selected 100 videos at random from each actor and ranked them according to
their initiation and movement times. t-tests evaluated whether there were
significant differences in either initiation or movement times. If a test was
positive, the videos in the tails of the distribution were replaced by randomly

selected from the remaining videos until no differences remained.
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This resulted in 100 test clips for each actor (400 total), with an equal number of
chosen and directed reaches. Figure 10 shows the initiation time and movement
time for the four actors. Initiation time was not significantly different between
conditions, t(49)=-0.81; 1.49; 0.29; -0.95, nor was movement time, t(49)= 0.06; -
0.87; -0.78; 0.10, for actors 1 to 4 respectively. In specific, mean differences
between conditions in initiation time ranged from - 6.61 to 16.66 ms and were
not significant for any of the actors, t(49)=-0.81; 1.49; 0.29; -0.95, for actors 1 to
4 respectively. Mean differences in movement times between conditions ranged
from -11 to 1.3 ms and were also not significant, t(49)= 0.06; -0.87; -0.78; 0.10,
for actors 1 to 4 respectively. However, there were still naturally occurring
differences between actors, both in their overall initiation time, F(3,392)=75.09,
p <.001, n2 =.363 (means in rank order A3=302 ms, A2=299ms, A4=282 ms, and
A1=205 ms), and in their movement time, F(3,392)=771.23, p < .001, n2 = .855
(means in rank order A2=757 ms, A4=619 ms, A3 =589ms, and A1=387ms).
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Figure 10 (A) Overall means of the actors’ movement initiation times for “choice” and “direct”
actions. (B) Means of the movement initiation times for each of the 4 actors (Al to A4) for
“choice” and “direct” actions. (C) Overall means of the movement times for “choice” and
“direct” actions. (D) Means of the movement times for each of the 4 actors (Al to A4) for

“choice” and “direct” actions. Error bars correspond to one standard error of the mean.

3.1.3 Manipulation check

Attention is endogenous when controlled voluntarily, such as the goal-directed
intention to attend at a particular event in the environment. Such control is
relatively slow, effortful, and can be sustained. Attention is exogenous when
controlled by environmental factors, such as a spatially local change in

appearance or sound. By way of contrast, this mode of control is fast, effortless,
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and short-lived (Corbetta & Shulman, 2002; Posner & Rothbart, 2007; Posner,
1980).

In order to determine whether actors’ reaches were influenced by attention
control, we tested for subtle kinematic differences between conditions. Our
hypothesis was that chosen reaches would express the decision required on
those trials, with longer times to peak acceleration and curved trajectories
reflecting the process of choosing versus reacting (Gallivan & Chapman, 2014).
To test this hypothesis, we compared chosen and directed reaches on eight

kinematic measures as shown in Table 1.

The eight kinematic measures were the following: Peak velocity, indexing the
maximum velocity achieved during the reach; Time to peak velocity, indicating
the time elapsed from movement initiation (i.e. finger lift-off) until the peak
velocity was achieved. Horizontal trajectory curvature, this measurement
indexed the amount of inward curvature in the horizontal trajectory. Reaches
that followed a central path before committing to the end-side, had higher
horizontal trajectory curvature values, compared to movements that directly
followed a path to the end-side; Side-commitment angle indexes the angle
depicting the transition from neutrality (i.e. the most central point in the
trajectory) to side selection (i.e. the most outwards point to the end-side of the
trajectory). Thus, higher side-commitment angles correspond to more marked
transitions from neutrality to side-selection compared to movements with lower
side-commitment angles; Side-commitment distance corresponds to the length
of the side-commitment angle. Longer angles depict movements in which the
decision-making is distributed through the reach, whereas shorter angles depict

faster decision-making transitions; Vertical trajectory curvature indexes the
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amount of vertical curvature in the movement. High vertical trajectory
curvatures correspond to movements that deviate from the straight trajectory
from home to target by making an upwards curve in the vertical dimension;
Ascending angle corresponds to the angle between lift-off point and the utmost
point in the vertical trajectory, higher ascending angles correspond to more
abrupt vertical traveling reaches; Ascending distance corresponds to the length
of the ascending angle. Reaches that take more time to achieve their maximum

vertical location peak depict longer ascending distances.

Four of the eight kinematic measures were consistent with the hypothesis, and
none trended in the opposite direction. In comparison to directed reaches,
chosen reaches had a marginally larger time to peak velocity, a higher mean
vertical trajectory curvature, a larger mean ascending angle, and a longer mean
ascending distance. These findings support the hypothesis that longer times to
peak acceleration and curved trajectories reflect the process of choosing a target
location compared to simply being directed to the same location. This is because
choosing a target entails the added process of deciding which action plan to
implement (reach left vs. right). Previous studies show that in fast arm reaches,
directional decisions are expressed in the curvature of trajectories and their

velocity profiles (Gallivan & Chapman, 2014).
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Table 1. Means of eight kinematic measures taken on the distribution of reaches used as

stimulus materials in the Experiments.

ANOVA test

Chosen | Direct | F-test p n’

(Mean) | (Mean)
Peak velocity 2256 2200 3.471 .063 .001
Time to peak velocity 191.3 187.1 3.065 .081 .003
Horizontal trajectory curvature | 18390 | 18703 | 0.808 .369 .002
Side-commitment angle 60.26 59.55 0.927 .336 .002
Side-commitment distance 121.5 120.8 0.047 .829 .000
Vertical trajectory curvature 42138 | 41035 | 9.564 .002 .015
Ascending angle 62.57 62.34 3.396 .066 .007
Ascending distance 412.8 411.0 5.451 .020 .010

Notes. Peak velocity = maximum velocity achieved during the reach. Time to peak velocity =
time elapsed from movement initiation until peak velocity. Horizontal trajectory curvature =
index of the amount of inward curvature in the horizontal trajectory. Side-commitment angle =
angle depicting the transition from neutrality (most central point in the trajectory) to side
selection (most outwards point to the end-side of the trajectory). Side-commitment distance =
length of the side-commitment angle. Vertical trajectory curvature = index of the amount of
curvature in the vertical trajectory. Ascending angle = angle between lift-off point and the

utmost point in the vertical trajectory. Ascending distance = length of the ascending angle.

In addition to these kinematic differences between conditions, each of the eight
measures differed significantly between actors, as one might expect, given each
actor’s individual style of responding. However, with only one exception, these
differences in individual actor style did not interact significantly with the
reported main effects for chosen versus direct reaches. The exception was that
peak velocity was significantly higher for chosen than directed reaches for actor

1, t(49)= 3.15, p=.01, whereas the other actors did not differ on this measure.
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Two types of trade-offs are typically observed in reaching movements: trade-offs
between initiation and movement times, and trade-offs between movement
time and trajectory curvatures (Schmidt & Lee, 2011). Consistent with this
expectation, Table 2 shows several media to strong significant correlations
between temporal and kinematic measures. To help us understand whether
these relationships pointed to a common underlying factor, we submitted the
eight kinematic measures along with the temporal features for each reach in the
stimuli set to a principal component analysis (PCA). To further focus this analysis
on only those kinematic effects that distinguished chosen from direct reaches,
we performed the PCA after first computing z-scores for each measure. These z-
scores were computed by diving the difference between the measurement value
and the mean of that measurement for the correspondent actor per the
standard deviation of that measurement for that actor. This meant that there
were no longer any differences between actors in these measures, nor

interactions between actor and condition.

70



Table 2. Correlations between temporal and kinematic measurements.
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Note. Degrees of freedom were 498 for all correlations. ** corresponds to p-

values <.001; * corresponds to p-values <.05.

Visual inspection of a scree plot, showing the total variance accounted for by the

PCA as a function of an increasing number of potential components revealed a

plateau after the first component. The first component alone accounted for

21.98% of the kinematic variability. The measurement loadings on this

component were generally positive for chosen reaches and negative for directed
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reaches, leading to a significant difference overall, F(1,392)=5.20, p=.02, n2 = .01.
Thus showing that the first PCA component successfully distinguished between

chosen and directed reaches.

Table 3 shows the first component weights associated with each measure.
Inspection of these component loadings shows positive weights (>=.3) for
movement time, total time, side-selection angle, vertical area under the curve (v-
AUC), and ascending angle. No negative loadings were relevant (<=-.3). This
pattern supports the hypothesis that chosen reaches reflect endogenous
orienting by portraying a reaching pattern in which slower movements take
longer to achieve peak velocity, have marked transitions from center to end-side,
and display arched vertical trajectories. Whereas exogenous orienting has a
reactive nature, which is reflected by a relationship between faster reaches
which tend to quickly achieve peak velocity and have straighter trajectories from

home to target.
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Table 3. Principal component analysis, first component weights.

Weights
Initiation time -.108
Movement time .674
Total time .397
Peak velocity .032
Time to peak velocity -.010
Horizontal trajectory curvature .093
Side-commitment angle .389
Side-commitment distance .107
Vertical trajectory curvature .794
Ascending angle .745
Ascending distance 244

3.1.4 Summary

In this section, | presented a new methodological approach that allows for the
dissociation between observers’ sensitivity to an action end-location and
observers sensitivity to action control. | have described the procedures followed
in the stimuli construction stage. These resulted in a video-library consisting of
100 video-clips of 4 different actors. For each actor, the library has an equal
number of chosen and directed reaches. Importantly, whereas the temporal
differences were equated between conditions, the stimuli portrayed kinematic
differences between conditions, indicating greater decisional cues in chosen
reaches compared to direct reaches. In the next sections, | will describe a series
of experiments that used this stimulus set to test whether observers, blind to the
condition under which the actors were reaching, were nonetheless sensitive to

actors’ attention control states.
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3.2 Are humans’ sensitive to attention control in others?

In a series of experiments my colleagues and | set out to study third-person
perception of attention control. The first experiment tested observers’ sensitivity
to actors’ attentional states. Figure 11 illustrates the person perception task
from the observer’s perspective. | presented chosen and directed videos to
observers. Observers were asked to rapidly indicate the target of the actor’s
reach. Two alternative hypotheses were considered. If observers based their
predictions solely on the kinematic cues of the reaching actions, they should fare
better on directed trials since those reaches take less time to reach peak
acceleration and moved more directly through space to the target location. | call
this the physical signal hypothesis and contrast it with what | call the social
prediction hypothesis. In this later hypothesis, if observers can capitalize on
bodily cues reflecting the actors’ internal process of choosing a target, they
should be faster to predict chosen actions compared to directed ones. Thus, the

results would show a “choice advantage”.
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Figure 11 lllustration of the method from the observers’ perspective. Observers respond to
each video by pressing a spatially mapped key press as rapidly as possible to indicate where

the actor was reaching.

3.2.1 Method

Observers. Thirty participants (18 female, 4 left-handed) with a mean age of
21.9 (SD = 4.6) were recruited from the University of British Columbia Human
Subject Pool to serve as observers. The only exclusion criterion was failing to
report normal or corrected to normal vision. Observers received partial course
credit in exchange for one hour of time, as approved by the UBC Behavioral
Research Ethics Board. All participants read and signed a written informed
consent document prior to testing. The document described the procedures,
informed participants they would receive partial credit in a qualifying Psychology

course, and that they could withdraw from participation at any point without
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penalty. A power analysis indicated that with 30 observers there is a 76.35%

chance of detecting an effect size of 0.5 with a two-tailed t-test and alpha at .05.

Procedure. Figure 11 illustrates the experiment from the observer’s perspective.
Observers were simply asked to respond to each actor’s reach with a spatially
mapped speeded key press to indicate whether the actor was reaching to the
left or right as rapidly as possible. However, they were also told to minimize their
errors by making no more than 10-20%. Accuracy feedback was not provided to
the observers. Each trial began with the observer’s index fingers resting on these
keys and their eyes on a fixation cross for 1-1.5 seconds. This was followed by a
video-clip showing an actor reaching for a target, and the observer’s response.
Each video played to completion independently of the actors’ responses.
Critically, observers could not see the cues for action that were visible to the

actors.

The session began with 8 practice trials, involving an actor that was not used in
the main test. Observers were told that actors would reach left and right an
equal number of times and at random. The 100 trials for each actor were shown
in a single block, in counterbalanced order across observers, and observers were
given a short break between each of the four blocks of trials. At the conclusion
of the session, observers completed the 50-item Autism-Spectrum Quotient (AQ)

(Baron-Cohen, et al., 2001).

3.2.2 Results

Figure 12 shows the mean correct response time (RT) in the chosen and directed
conditions overall (panel A) and for each of the four actors ranked by the speed

with which observers could discriminate whether they were pointing left or right
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(panel B). Panels C and D show the data after each observer’s correct RT had
been converted to z-scores in order to control for the larger differences in the
mean speed and variance of the four actors’ reaches (panel B). Both of these
analyses make it clear that RT was faster in the chosen than in the directed
condition for each of the four actors (Al to A4). This conclusion was supported

by the following analyses.

Incorrect trials and responses more than 3 standard deviations from the mean
were excluded. Response accuracy, correct RT, and z-scores of correct RT were
each subjected to repeated-measures ANOVA examining the effect of condition
(chosen, directed) and actor (Al to A4). Z-scores were computed on the correct
RT values by subtracting each observer RTs from the mean RTs of that observer
to the corresponding actor, and dividing this by the standard deviation of the

observer’s RTs for this actor.

Observers responded correctly on 81% of trials (standard error of the mean

0.7%), with significant differences in accuracy between actor videos, F(3,87)
15.31, p <.001, r;z =.346 (in rank order A3 = 85%, A2 = 83%, A4 = 81%, and Al =
75%), but no differences between condition (p > .25), nor an interaction (p >
.09). The observation that observers have a rate of incorrect responses close to
20%, which is relatively high for a movement direction task, suggests that
participants were following the instructions by responding before the full
unfolding of the actors’ reach. Analysis of correct RT indicated significant main
effects of condition, with responses to chosen reaches made significantly faster
than responses to directed reaches, F(1,29) = 70.39, p < .001, r)z =.708, and actor
F(3,87) =31.48, p < .001, r)z =.521, and an interaction, F(3, 87) = 3.21, p < .03, r)z
=.100.
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Figure 12 (A) Mean correct response time (RT) in the experiment reported in Chapter 3.2.
Error bars are +/- 1 standard error. (B) Mean correct RT for each of the four actors. (C-D) The
data in A-B after each observer’s correct RT has been converted to z-scores in order to

standardize the distributions for individual differences in mean speed and variance.

To test whether the choice advantage was influenced by observer accuracy, we
included overall accuracy as a between-subjects factor, after dividing the
participants into more accurate (mean accuracy = 93% correct) and less accurate
(mean accuracy = 69% correct) halves. This indicated no interaction of condition
x accuracy, F(1,28) = 1.38, p < .25, n* = .012, with both groups showing a 19 ms

advantage in the chosen condition. This indicates that the difference between
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responses to chosen and directed actions is not due to a speed-accuracy trade-

off.

Z-scores were computed by subtracting the mean of observer correct responses
to each actor from observers’ raw scores and then dividing the difference by the
correspondent standard deviation. This allows me to consider the effect of
condition after controlling for the large variability in reaching behavior between
actors. In these analyses, the main effect of actor was no longer significant, but
there was a main effect of condition, F(1,29) = 80.51, p < .001, n2 =.735. In the
experiments that follow we undertake a similar analysis of accuracy, correct
response time, and z-scores, but for simplicity we will only present graphs
showing the mean z-scores and their standard errors. None of the conclusions

differed depending on whether an analysis was based on raw RT or on z-scores.

3.2.3 Discussion

The results showed that observers were faster to discriminate the location of an
actor’s reach when it was chosen than when it was directed. Thus indicating a
“choice advantage”: predicting a chosen action is easier than predicting a
directed action. This suggests that observers are sensitive to actors’ bodily cues
reflecting the internal process of intentionally choosing the end-target of the
action, thus, the results are in accordance with the social prediction hypothesis.
Overall, these findings are consistent with the claim that social awareness
involves a predictive model of the attentional state of others, and that modeling
others’ attention includes not only information about where the other is
attending, but whether the control of attention is endogenous or exogenous

(Graziano & Kastner, 2011; Graziano, 2013).
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The observation that humans are sensitive to social attentional states fits well
with a larger number of recent findings indicating that the perception of another
persons’ inner states goes far beyond the most obvious, widely investigated,
cues of facial expression, posture, paralinguistic movements and gestural
conventions (Johnson & Shiffrar, 2013). These new studies reveal that, on one
hand, seemingly neutral movements encode relevant social information, and on
the other hand, observers are sensitive to this information. For example, the way
one reaches for and grabs a Lego piece during a game has been shown to encode
an individual’s intention to cooperate or compete with a partner, changing the
way the partner moves when it’s their turn to play (Cristina Becchio, Sartori,
Bulgheroni, & Castiello, 2008; Manera, Becchio, Cavallo, Sartori, & Castiello,
2011); the kinematics of running gives away one’s intention to deceive a sports
opponent (Mori & Shimada, 2013); and that despite the conventional wisdom of
maintaining a neutral face while playing poker, the value of the poker hand is
unconsciously expressed in arm movement kinematics during the game and can
be picked up by observing players (Slepian, Young, Rutchick, & Ambady, 2013).
Each of these findings implies that when we execute actions, we are far less
opaque than we thought ourselves to be. Inner cognitive processes are
constantly being expressed and are thus available in the public realm as relevant
stimuli during action observation. And when we observe others’ actions, we are
remarkably sensitive to subtle body cues revealing their inner states. This raises
the question of how these cues are integrated with other information in making
a response to observed behavior during social interactions. Next, | will report an
experiment investigating whether social sensitivity to attention control offers

observer’s an advantage in a social interaction setting.
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3.3 Does sensitivity to attention control contributes to a

reactive advantage in social interactions?

The findings reported in Chapter 3.2 indicate that observers are sensitive to
someone else’s attentional states. But can this perceptual sensitivity be utilized
in social interaction settings? To investigate whether sensitivity to attention
control could be translated into a motor response advantage during social
interactions, my colleagues and | gathered inspiration from a series of
experiments investigating the ‘reactive advantage’ phenomenon. This
phenomenon implies that reacting to another person’s actions is faster than
initiating an action (La Delfa et al., 2013; Pinto, Otten, Cohen, Wolfe, & Horowitz,
2011; Welchman, Stanley, Schomers, Miall, & Bulthoff, 2010).

The history of research on the reactive advantage phenomenon offers an
interesting interlude. The Physics Nobel laureate Niels Bohr was a Western
movie aficionado. In his spare time, it is written, he mused that in Hollywood gun
duels, good cowboys always win in spite of the fact that the villains drew first.
Bohr’s acute intuition led him to suggest that this was something more than a
Hollywood plot twist. Indeed, it reflected a psychophysical principle — human
reactions to events are faster than human actions that are self-initiated (Cline,

1987).

The physicists’ insight was recently put to the test. Welchman and colleagues
(2010) devised a laboratory version of a gun-fight, where participants sat face to
face and competed against each other in being the first to finish a pre-defined
sequence of button presses. The authors observed that opponents who started

the movement last were faster in completing the full sequence, compared with
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the ones that first initiate the movement. Following Bohr, they referred to this as
a reactive advantage. This result was later replicated in several studies that
studied details of the kinematic characteristics of reactive actions (La Delfa et al.,
2013), and that found that the advantage was restricted to pre-programmed

ballistic movements (Pinto et al., 2011).

Current interpretations of the reactive advantage phenomenon give emphasis to
motor differences between reacting and acting. Whereas initiated actions
involve a considerable allocation of resources in motor planning and
preparation, reactive actions require less sophisticated planning. This is
consistent with Wolpert et al (2003) framework for social interactions. According
to this proposal, observing other’s actions activates one’s own action
representations, thus facilitating the execution of reactions to another person’s
action. The lighter processing cost of reactive actions is considered to be at the
root of the reactive advantage effect (La Delfa et al., 2013; Pinto et al., 2011;
Welchman et al., 2010). This behavioral finding converges with neuroscientific
evidence pointing to a differentiation in the neural processes underlying these
two types of movement. A striking illustration of the dissociation between
reactive and initiated movements comes from the observation that some
Parkinson patients experience severe difficulty in initiating an action themselves,
but can swiftly perform that action when it is in reaction to an external trigger

(Siegert, Harper, Cameron, & Abernethy, 2002).

My colleagues and | hypothesized that social aspects, such as the sensitivity to
the attention control of an opponent, may offer a contribution to the reactive
advantage over and above any benefits derived from differences in motor

preparation. Grounded on the findings from the previous experiment, we
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predicted that, opponents’ reactions to chosen actions would be faster than
reactions to directed actions. This would indicate that perceptual sensitivity to
attention control can be quickly transferred into a motor response, further
offering an advantage to the reactive opponent over the one that initiates the

movement.

3.3.1 Method

Observers. Thirty participants (20 female, 3 left-handed) with a mean age of 23.8
(SD = 4.1) were recruited from the University of British Columbia Human Subject
Pool to serve as observers. The only exclusion criterion was failing to report
normal or corrected to normal vision. Observers received partial course credit in
exchange for one hour of time, as approved by the UBC Behavioral Research
Ethics Board. All participants read and signed a written informed consent

document prior to testing.

Procedure. In this experiment, my colleagues and | aimed at creating a
competition scenario between actors and observers. Therefore, we asked
participants to perform similar actions as the actors, so that they could directly
try to be faster than the actors in reaching the end-target. We positioned our
participants in the same reaching apparatus used previously to record the actor
videos. We presented the actor’s videos on a large display monitor (83 cm x 67
cm), such that the actor videos were approximately life size. Figure 13 illustrates
the experiment from the observer’s perspective. The session began with 8
practice trials, involving an actor that was not used in the main test. During the
experiment, videos were presented in four blocks in randomized order. Each
block presented 100 trials of one actor in random order. Chosen and directed

trials were presented in equal proportion. Each trial began with the observer’s
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index fingers resting on these keys and their eyes on a fixation cross for 1-1.5
seconds. Observers were allowed to make small self-paced breaks in-between
blocks. Observers began each trial with the index finger of their right hand at a
center home position marked on the table. Observers responded to each video
by reaching as rapidly as possible to the target location they thought the actor
was reaching toward. We framed the task as a competitive scenario. Observers
were instructed to treat this as a game in which they could “beat the actor” by
reaching to the actor’s target location before the actor himself, without making
more than 10-20% errors. We recorded the observer’s reach initiation time and
movement time on each trial using Optotrack to sample the 3D position of the
right index finger at 200Hz. At the conclusion of the session, observers
completed the 50-item Autism-Spectrum Quotient (AQ) (Baron-Cohen, et al.,

2001).

Figure 13 lllustration of the method from the observers’ perspective. Observers attempt to

beat the actor to the target.
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3.3.2 Results

Observers responded correctly on 96% of trials (standard error of the mean =
0.03 %). Incorrect trials and movement time responses more than 3 standard
deviations from the mean were excluded before computing the analysis. The
reactive advantage was indexed as the proportion of trials in which the observer
beat the actor to the target. To do so we compared the total movement time
between observer and actor for each correct trial (i.e. the observer reached for
the same side as the actor). The results showed that there was a reactive
advantage, with observers beating the actors 59% of the times (standard error of
the mean = 0.014%), which is significantly above the 50% benchmark, t(29) =
4.25, p<0.001. This result was true also when considering each actor individually
(t(29)= t = -43.53, 21.15, 2.9732, 9.28, p<.001 with Bonferroni correction, for
actors 1 to 4 respectively). The observation of a reactive advantage is not
surprising in our set-up because the actors’ movements were previously
recorded giving observers an unnatural advantage. Despite this limitation, we
considered that any variations in reactive advantage between the chosen and
direct conditions would provide information regarding the main question: Does
sensitivity to attention control contributes to a reactive advantage in social

interactions?

Figure 14 shows the proportion of observer wins in both the chosen and the
direct condition. Competition proportions were subjected to repeated-measures
ANOVA examining the effect of condition (chosen, directed) and actor (Al to A4).
This analysis indicated significant main effects of condition, with observers
beating actors to the target more often when reacting to chosen reaches

compared directed reaches, F(1,29) = 4.732, p=.03, and actor F(3,203) = 1092, p
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<.001, with actor 2, 4, 3 and 1 in descending order of overall reactive advantage,

and no significant interaction between condition and actor.
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Figure 14 Proportion of times the observer reaches the correct target faster than the actor in
chosen and directed conditions, collapsed across the four actors. Error bars are one standard
error of the mean. Values above .50 indicate that the observer was faster than the actor more

often than the opposite.

3.3.3 Discussion

The results showed that observers were generally faster than actors,
documenting the reactive advantage in the boundaries of our specific
experimental setting. More importantly, the results also showed that observers
had a greater advantage when reacting to an opponent who was making a
choice than when their opponent’s action was directed by an unseen cue. This

finding supports the hypothesis that sensitivity to the attention control of others
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(a social signal) contributes to the reactive advantage over and above any
benefits derived from the slower initiation times of a decision-making actor

relative to a reacting observer (a physical head start).

Previous studies investigating whether social factors contributed to the reactive
advantage had concluded that the phenomenon is not inherently social. This was
demonstrated by observations of the reaction advantage in non-social settings
(i.e. participants opposed graphical computer stimuli; Pinto et al.,, 2011;
Welchman et al., 2010), and in social settings where the richness of social cues
had been considerably deteriorated (i.e. opponents didn’t have visual access to
one another; Welchman et al., 2010). The approach of these previous tests was
to remove the social dimension from the task and measure if the reactive
advantage would still subsist. Thus, their results successfully show that a social
dimension is not a necessary condition for the phenomenon. My approach was
quite the opposite, we modulated the social dimension in the task, and
measured whether the richness of the social signal contributed to the reactive
advantage. Taken together these observations suggest that, albeit not necessary,
social signals contribute the reactive advantage. However, this interpretation is
limited by the fact that our methodology does not allow us to compare self-
initiated actions from reactive actions. This is because observers always react to
a previously videotaped actor. Nonetheless, the study suggests that social

perception might be relevant to how individuals perform reactive actions.

In addition, the findings suggest that perceptual sensitivity to someone else’s
attention control can be swiftly transformed into an appropriate motor
response. Thus supporting the idea that the ease of social interactions is

sustained by our ability to use predictive models of our social counterparts to
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quickly guide our responses during social interactions (Graziano & Kastner, 2011;

Knoblich & Flach, 2001).

3.4 Is sensitivity to attention control consciously accessible

to observers?

Previous experiments (reported in Chapters 3.2 and 3.3) showed that observers’
speeded responses to actors’ reaches are faster when the target of the reach is
chosen rather than directed. But it is one thing for a social prediction model to
influence kinematic behavior (i.e., the observer’s spatially mapped response); it
is another to have this information accessible at a conscious level. In the
following experiment, my colleagues and | asked whether information about
other’s attention control is accessible at the conscious level or is used implicitly
by observers. According to Graziano (2013), observers consciously perceive the
attentional state of other individuals. This is illustrated by the author through a
scenario involving observer Abel and actor Bill. Abel sees that Bill's gaze is
directed toward a coffee mug. Abel then constructs a model of Bill that includes
not only the spatial target of Bill's attention (the mug) but a model of Bill’s
intention that “Bill wants to have a sip of coffee.” (Graziano & Kastner, 20113;
Graziano, 2013). Next, we will present a new experiment that replicated the
conditions of the previous experiment, but in addition probed whether
observers could discriminate the attentional state of actors after they had

responded to the target location of the actor’s reach.

3.4.1 Method

Observers. Thirty participants (10 female, 2 left-handed) with a mean age of

23.1 (SD = 4.3) were recruited from the University of British Columbia Human

88



Subject Pool. Participants received partial course credit in exchange for one hour
of their time. All participants reported normal or corrected to normal vision. The
UBC Behavioral Research Ethics Board approved student participation for credit

in this study.

Stimuli and Procedure. This experiment used the same pool of 400 videos
as the previous experiments. This experiment repeats the procedure of the
experiment reported in Chapter 3.2, with the added feature that after making
each location prediction response, participants judged whether the actor had
made the choice of which target to point to. Before commencing the
experiment, the experimenter informed the participants that they would be
watching videos in which actors pointed to one of two potential targets (left or
right). Participants were further informed that 50% of the trials corresponded to
movements in which the actor reached to a target of their own choosing
(endogenous orienting), and the remaining 50% trials corresponded to reaches
to an externally cued target (exogenous orienting). The experimenter told
participants that trials in each block would be presented in random order. At
each trial, after the participants indicated their prediction of the side to which
the actor was reaching (left or right), the following question appeared on screen
“Did the actor choose where to point?” Participants were instructed to respond
by pressing one of two specially marked keys indicating “yes” and “no.” Upon
completing the experiment, participants filled in the 50-item Autism-Spectrum

Quotient (Baron-Cohen, et al., 2001).

3.4.2 Results

Figure 15 shows the mean z-scores of correct RT in the chosen versus directed

conditions (panel A) and shows the proportion of hits and false alarms observers
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made in response to the question of whether the video they had just responded
to represented a chosen or directed trial (panel B), after rank ordering observers
in terms of their response biases from conservative (reluctant to respond
“chosen”) to liberal (reluctant to respond “direct”). These data show that the
main finding of the experiment reported in Chapter 3.2 replicated under these
conditions (i.e., correct responses were faster on chosen than directed trials) but
that observers were unable to report whether the actors they were responding

to were chosen or not. These conclusions were supported by the following

analyses.
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Figure 15 (A) Mean z-scores of correct RT in the experiment reported in Chapter 3.4. Error
bars are +/- 1 standard error. (B) The proportion of hits and false alarms of observers trying to
discriminate chosen from directed trials, after rank ordering observer’s response biases from

conservative (reluctant to respond “choice”) to liberal (reluctant to respond “direct”).

Observers responded correctly on 78% of trials (standard error of the mean

0.8%), with significant differences in accuracy between actor videos, F(3,87)
5.84, p <.001, nz =.169 (in rank order A3 = 79%, A2 = 79%, A4 = 78%, and Al =
73%), but no differences between condition or any interaction (p > .50). Analysis

of correct RT indicated significant main effects of condition, F(1,29) = 23.42, p <
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.001, n* = .447, and actor F(3,87) = 34.67, p < .001, n* = .545. Examination of the
relation between the choice advantage and accuracy indicated the mean choice
advantage was 21 ms for the 15 participants who were most accurate (mean
accuracy = 92% correct) and only 7 ms for the 15 participants who were least
accurate (mean accuracy = 64% correct), F(1, 28) = 7.24, p < .01, n° = .136.
Analysis of z-scores also indicated a main effect of condition, F(1, 29) = 14.74, p <

.001, n* = .337.

Analyses of the proportion of hits and false alarms in response to the question of
whether a video represented a chosen or directed trial revealed no significant
differences, either when the data were aggregated as a group or for any
observer individually (all p > .25). We also replicated this insensitivity in explicit
reports in a new sample of 30 observers, who were (1) not asked to predict the
target locations and (2) were given trial-by-trial accuracy feedback on their
guesses about whether the observer was choosing or reacting on each trial, so
that they could devote their full attention to the task. The results were the
same. Not a single one of the observers had a hit rate that differed significantly

from their false alarms rate.

3.4.3 Discussion

Contrary to the expectation based on Graziano (2013), we found no evidence,
either in the observers as a group, or among individual observers, that their
explicit attempts to discriminate chosen from directed actions exceeded the
chance level of guessing. This observation departs from the conceptualization
that social awareness arises from an attention modeling mechanism (Graziano &
Kastner, 2011; Graziano, 2013). According to which one of the consequences of

having a predictive model of someone else’s attention is that it allows us to
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become consciously aware of the other’s attentional state. The results of our
test of that claim, however, were not positive. Yet, the observers in the
experiment were able to distinguish these two types of reaches in their speeded
kinematic responses. This pattern of findings implies that sensitivity to attention
control influences an observer’s action, but that it is not accessible to the

observer’s conscious awareness.

Taken together this pattern of findings implies that sensitivity to attention
control measured in this study is signaled through implicit mechanisms (i.e., they
are not accessible to consciousness). As such, it is another example of a
dissociation consistent with dual processing streams (Goodale & Milner, 1992;
Goodale, 2011), this time between visually-guided action that is informed by
someone else’s control state and conscious awareness of that state. The dual
streams hypothesis proposes a general division of labor between visual
processing involved in action control (dorsal stream) and visual processing
leading to conscious perception (ventral stream). In the present context, we
speculate that visual cues reflecting action control are processed rapidly through
the dorsal stream in order to guide observer’ reactions. Such fast vision-for-
action processing is likely essential for the predictive aspect of social modeling,
which is time sensitive. That is, the predictions must by necessity be complete in
advance of both the modeled actions of an actor and any appropriate responses,
if required, by the observer. Nonetheless, it is important to consider that recent
studies suggest that the idea of two streams of visual perception that only
converge signals until they reach very late stages of cortical analysis (e.g.
superior temporal sulcus (STS), extrastriate and fusiform body areas (EBA and
FBA)) may be an oversimplification (Mather, Pavan, Bellacosa Marotti, Campana,

& Casco, 2013). Thus, it is probable that also in our task the ventral stream
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processing is involved, to some extent, however not reaching conscious

formulations.

3.5 Where on the actors’ body can the attention control

signal be seen?

The experiments described in previous chapters indicated that observers were
sensitive to actors’ attentional states expressed in the actors’ body postures and
movements. Next, | ask where can the attention control be seen in the body.
Extant theories of social cognition have focused on the eyes as the primary
source of information about social attention (Simon Baron-Cohen, 1995; Perrett
& Emery, 1994). More recent evidence suggests that head and body position also
play a role (Graziano, 2013; Langten, Watt, & Bruce, 2000). In this experiment,
we investigated where the control signal is coming from in the video-clips of the
actors. Specifically, we asked whether the signal differentiating chosen from
directed actions is signaled through the actor’s head and eye movements, the
kinematics of the body and limbs, or a combination of both. To do so we
selectively masked either the head (leaving the torso and limbs visible) or the
body of the actors (leaving only the head visible), as portrayed in Figure 16, while
again asking observers to make a speeded response to the target of the actor’s

reach.
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Figure 16 Representative drawings of the masked video-clips. (A) The actors’ head was masked
leaving the torso and limbs visible. (B) The actors’ body was masked leaving only the head and

neck visible.

3.5.1 Method

The method in this experiment was identical to the one described in Chapter 3.3

with the following exceptions:

(2) Thirty different observers (24 female, all right-handed) with a mean age of
21.1 years old (sd=2.17).

(2) The 400 videos were each shown twice, once showing only the actors’ head
(including face, neck, and eyes) and once showing only the actors’ body (torso
and arms). Head and body videos were randomly interspersed in each block if

trials.

94



3.5.2 Results

Figure 17 shows the mean z-scores of correct RT in the chosen versus directed
conditions, separately for trials in which only the body and limbs were visible
versus when only the head was visible. These data show that observers were
more sensitive to the difference between chosen and directed trials when the
body and limbs were visible than when the head was visible. These conclusions

were supported by the following analyses.

While the results showed that the head alone conveyed a weak signal
concerning the attentional state of the actor, consistent with the eyes as a
channel to another’s attentional state (Simon Baron-Cohen, 1995; Perrett &
Emery, 1994), the results revealed a stronger signal when only the torso and
limbs were visible, consistent with more widely distributed signals over the body
indicating the attentional state of actors (Graziano & Kastner, 2011a; Graziano,

2013; Langten et al., 2000).
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Figure 17 Mean z-scores of correct RT in the experiment reported in Chapter 3.5, separately
for trials in which the body and limbs were visible versus when only the head was visible.

Error bars are +/- 1 standard error.

Observers responded correctly on 78% of trials (standard error of the mean

0.6%), with significant differences in accuracy between actor videos F(3,87)
21.23, p <.001, r)2 =.423 (in rank order A4 = 81%, A3 = 81%, A2 = 74%, and Al =
74%), but not between conditions (p > .09). Response accuracy was also
significantly greater when the body was visible (mean = 82%) than when the

head was visible (mean = 73%), F(1,29) = 37.06, p < .001, nz =.561.

Analysis of correct RT indicated that chosen trials were faster by 11 ms than
direct trials, F(1, 29) = 12.76, p < .02, nz =.306, there were actor differences, F(3,
87) = 43.35, p < .001, n* = .599, and responses when the body was visible were
faster by 134 ms than when only the head was visible, F(1, 29) = 76.48, p < .001,
n* = .725. Responses to choice movements were faster than responses to direct

movements by 14 ms when the body was visible and 8 ms when the head was

96



visible, F(1,29) = 1.44, p < .25, r)z = .047, but the responses on head trials were
also slower (134 ms) and more variable (standard error of 12 ms versus only 6
ms for body trials). Analysis of z-scores, which controlled for these differences,
indicated a significant advantage on chosen over direct trials, F(1,29) = 18.89, p <
.001, n® = .394, with this effect being significantly larger when the body was
visible than when only the head was visible, F(1,29) = 5.84, p < .02, r;z = .168.
Examination of the relation between the choice advantage and accuracy
indicated the choice advantage was larger for the 15 participants who were most
accurate (mean accuracy = 86%, mean z-score difference = .134) than for the 15
participants who were least accurate (mean accuracy = 69%, mean z-score

difference = .050), F(1,28) = 4.50, p < .04, n* = .084.

3.5.3 Discussion

The results showed that actor’s heads alone conveyed only a weak signal
concerning actors’ attentional state. This is somewhat at odds with the
widespread view that the eyes are the most important channel to another’s
attentional state (Simon Baron-Cohen, 1995; Perrett & Emery, 1994). In contrast,
the results indicated a stronger signal when only the body was visible, consistent
with more widely distributed signals over the body indicating the attentional

state of actors (Graziano & Kastner, 2011a; Graziano, 2013; Langten et al., 2000).

This result is consistent with other recent research probing bodily kinematics for
clues about people’s intentions. For example, how one reaches for a Lego piece
predicts the intention to cooperate or compete with a partner during a game
(Manera et al., 2011). The kinematics of running reveals the intention to deceive
a sports opponent (Mori & Shimada, 2013). The value of the poker hand is

unconsciously expressed in arm kinematics that can be perceived by opponents
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(Slepian et al., 2013). The present results add to this literature by showing that
observers are sensitive to behavioral cues reflecting processes of attention
control. It will be important in future studies to record the body kinematics of
actors in greater detail, perhaps by using point-light-displays to isolate features

of bodily movements that carry the signal of attention control.

3.6 How early in the time-course of an observed action is the

attention control signal available?

In the previous chapters, | have presented evidence supporting human sensitivity
to attentional states in action prediction. Next, | will present an experiment
investigating the timeline of social sensitivity to attention control. Graziano
(2013) highlights the predictive kinematic function of modeling another’s
attentional state. Such a forward model allows an observer’s response to an
actor to begin even before the actor’s actions have been completed. Early
prediction is even essential in some situations of joint action, for example in
moving heavy furniture, where agents must coordinate their actions under strict
temporal constraints (Sebanz & Knoblich, 2009). In this experiment, we
examined the time course of sensitivity to attention control by using a temporal
occlusion task. Videos of the actors’ reaches were cut at 6 different lengths from
the onset of the cue. Observers were asked to indicate the likely end target of
the actor’s actions after watching each of these brief video segments in random

order.

3.6.1 Method

The method in this experiment was identical to the one described in Chapter 3.2

with the following exceptions:
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(1) Thirty different observers (17 female, 3 left-handed) with a mean age of

22.71 years old (sd= 3.43) served as observers.

(2) Using the same pool of videos as in previous experiments, we cut each video
at 6 different lengths from the onset of the cue (0-100 ms to 0-600 ms, in 100 ms

steps). Videos were randomly sampled from this pool on each trial.

(3) Observers reported the likely end target of the actor’s reach, and so
percentage correct became the dependent measure. Because this involved
guessing on many trials when the segments were short, the speed of responding

was not emphasized.

(4) Observers completed 2 blocks of 600 trials, separated by a short break. Each
block consisted of the presentation of 100 videos from a single actor, and the

two actors selected for each observer were counterbalanced across observers.

3.6.2 Results

Figure 18 shows the mean proportion correct responses in the chosen and
directed conditions as a function of the time from the onset of the actor’s cue.
These data show that observers can predict the target location more accurately
for the chosen than the directed condition at the shortest two video lengths.
This conclusion was supported by an ANOVA indicating significant main effects of
condition, F(1,29) = 23.90, p < .001, r;z = .452, and time, F(5,145) = 1149.99, p <
.001, n® = .975, and an interaction, F(5,145) = 27.54, p < .001, n* = .487. Simple
effects testing indicated that the chosen advantage in accuracy was significant at

100ms and 200ms (both p <.01) but not at the longer time bins (all p >.15).
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Figure 18 Mean proportion correct response in the temporal occlusion experiment reported

in Chapter 3.6. Error bars are +/- 1 standard error.

3.6.3 Discussion

Graziano (2012) emphasizes the predictive nature of modeling social attention.
As such, the sooner one can predict another’s action, the more time one will
have to consider and execute appropriate reactions (Konvalinka, Vuust,
Roepstorff, & Frith, 2010; Manera, Schouten, Verfaillie, & Becchio, 2013; Sebanz
et al., 2006; Sebanz & Knoblich, 2009). The results of this experiment showed
that the advantage in responding to a chosen versus directed reach of an actor is
already evident in the first 100 to 200 ms of processing following cue onset. This
implies that observers are able to use the preparatory movements that preceded
the actor’s reach to make a target location prediction, such as small shifts in

body balance supporting the arm motion.

The musculoskeletal constraints of the body require that moving one limb often

engages the activation of other body parts. For example, initiating an arm-
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reaching movement requires the engagement of the shoulders, torso, and even
the lower limbs in order to make the necessary postural adjustments to stabilize
the body (Hollerbach & Flash, 1982). Humans appear to have implicit knowledge
of these biomechanical principles, and use this knowledge to predict others
actions. For example, basketball experts are able to predict the end result of a
shot before the ball leaves the athletes hand (Aglioti et al., 2008). Observers of a
soccer player are able to predict the kick direction prior to the foot-to-ball
contact (Diaz, Fajen, & Phillips, 2012). Deception in sports is detected above
chance before the runner changes direction (Mori & Shimada, 2013). More
closely related to the present task, a competitive reaching study showed that
preparatory cues (i.e. movements and postural configurations preceding the lift-
off of the finger) give opponents an advantage (Cormiea, Vaziri-Pashkam, & K.,
2015). This is consistent with theories emphasizing the predictive nature of
modeling social attention (Graziano & Kastner, 2011b; Graziano, 2013; Webb &

Graziano, 2015).

3.7 Is sensitivity to attention control linked to social
aptitude?

In the previous sub-chapters, | have presented evidence indicating that social
perception involves sensitivity to someone else’s attentional states. If the
sensitivity of observers’ responses to the attentional state of actors reflects the
mental modeling of social attention, then individual differences in the strength
of this sensitivity may be related to social aptitude on a broad scale. To test this
hypothesis, my colleagues and | correlated individual differences in social
sensitivity to attention control with self-reported social aptitude, as measured by

the Autism Quotient (Baron-Cohen et al., 2001; Ruzich et al., 2015). Next, | will
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report two sets of analysis. The first one probes overall trends in the relationship
between social aptitude and social attention modeling. The second one hones in

on the kinematics of sensitivity to social attention control.

3.7.1 Social aptitude and sensitivity to attention control

In each of the previously reported experiments participants fill out the 50-item
Autism Quotient (AQ) (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley,
2001), which captures variation in the tendency toward autistic traits in the
general population. Individuals with a higher level of autistic-like traits show a
non-clinical propensity to empathize less strongly with others and to engage in
systemized thinking (e.g. great attention to detail, rigid interests), whereas
individuals with lower levels of autistic traits display the opposite cognitive
profile. To provide context, an AQ score of 32 or more points is suggested by
(Baron-Cohen et al., 2001) to be a useful cut-off for distinguishing individuals
with clinical levels of autistic traits. Almost all observers in this study were in the
range of 5-35 and it is important to caution that this scale is not intended for

exclusive use in clinical diagnoses.

To examine possible relations between observer’s social aptitude and their
sensitivity to the attentional state of actors, we assigned each observer a
sensitivity score based on their mean difference in z-scores between the directed
and chosen conditions. In experiments where observers made quick key presses
responses predicting the end-target of actors’ movements (reported in chapters
3.2 and 3.4), this was a mean difference score across all four actors. In the
reactive advantage experiment (reported in chapter 3.3) we used mean
difference score in movement initiation time across all four actors. In the

experiment the body-part occlusion experiment (reported in chapter 3.5) we
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used the mean difference score only for the Body condition, which provided a
stronger and more reliable signal than the Head condition. One observer in this
experiment did not complete the AQ questionnaire. In the temporal occlusion
experiment (reported in chapter 3.6) we used the mean difference score in the

100ms and 200ms time bins, where the signal was strongest.

Figure 19 shows a scatterplot of observer’s speeded sensitivity score in the
experiments of chapters 3.2 to 3.5 and their AQ scores. These experiments each
had a negative correlation between the measure of speeded response sensitivity
and the AQ, r(28) = -.284, p>.1, r(28) =-.4, p<.05, r(28) = -.478, p<.01, and r(27) =
-.387, p<.05, respectively. The correlation over all observers in these
experiments was r(117) = -.322, p <.001. However, there was almost no
correlation in Experiment 4, where response sensitivity was measured in
accuracy rather than speed, r(28) = -.004. This is consistent with observers with
greater social aptitude being able to respond more rapidly to an actor who is

selecting their reach with intention rather than being directed.
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Figure 19 Scatterplot of the relation between observer’s speeded sensitivity scores in the

experiments reported in chapter 3.2 to 3.5 and their Autism Quotient scores.

These results showed that for four independent groups of observers
(Experiments reported in chapters 3.2 to 3.5), sensitivity to actors’ attentional
states, as measured in speeded responses to the targets of the actors’ reaches,
were negatively correlated with scores on the Autism Quotient. This implies that
individuals with higher levels of empathy tended to also show the greatest

sensitivity to actor choice in their speeded responses.

3.7.2 The kinematics of human sensitivity to attention control

A commonly observed kinematic signature of rapid arm-reaches is the trade-off
between movement initiation time and movement duration. The distribution
between the duration of time passed before finger lift-off and the duration of
the reach itself reflect underlying cognitive strategies. Longer initiation times

followed by faster movement times reveal a tendency towards performing the
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bulk of processing before initiating the reach, whereas shorter initiation times
paired with longer movement times indicate a bias towards in-flight cognitive
processing (Schmidt & Lee, 2011). Is social sensitivity to attention control
regulated by these kinematic strategies? Next, | will report an analysis of
movement initiation vs. movement duration trade-offs in light of individual
differences in social aptitude. This analysis was performed on the data collected

in the reactive advantage experiment reported in chapter 3.3.

Figure 20 shows an overall tendency for reaching initiation time vs. reach
duration trade-offs in our sample. This is expressed by a strong negative
correlation between observers mean initiation and mean duration times (i.e.
participants who were fast to lift-off took longer to get to the end-target, and

vice-versa), r(28)= -.719, p<.001.
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Figure 20 Scatterplot of movement initiation vs. movement duration trade-off in reach

responses of participants reporting higher and lower social aptitude levels.

To examine whether the cognitive strategies underlying reach initiation vs.

duration time trade-offs were related to social aptitude, we mean-splitted our
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sample into higher and lower social aptitude and compared response times
between these two two-sub-groups. Visual inspection of Figure 19 suggests that
observers who reported higher social aptitude tended to take longer to initiate
the reach (mean=453 ms, s.e.=15.13) compared to observers with lower social
aptitude (mean= 424.13 ms, s.e.=18.47). In compensation, the same observers
with high social aptitude, who were slow at initiating their reaches, tended to be
faster at getting to the target (mean=396.13 ms, s.e.=12.26) than observers who
reported lower social aptitude counterparts (mean=405.6 ms, s.e.=15.96). This
observation offers preliminary support to the notion that kinematic trade-offs
are linked to individual differences in social aptitude. These analyses suggest that
more socially apt observers, who were slower to begin moving, had more time to
observe the unfolding action and form predictions before moving. This might
explain why, as a consequence, high social observers show higher sensitivity to
attention control in their response times (as indicated by the correlations
between AQ and speeded response times reported in the previous sub-section;

Figure 18).

To examine the relationship between sensitivity to social attentional states and
kinematic strategies, we independently computed initiation time sensitivity
scores and movement time sensitivity scores for each observer. These sensitivity
scores corresponded to mean differences between the directed and chosen
conditions. Figure 21 shows the relationship between observers’ sensitivity to
social attention at the movement initiation stage and at the movement duration
stage. A marked negative relationship indicates that social sensitivity tends to be
portrayed either at the reach initiation stage or at the movement duration stage,
r(28)= -.742, p<.001. The scatterplot also shows that all observers have some

degree of sensitivity to social attention control in their responses, what varies
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between individuals is when in the unfolding of the reaching response this

sensitivity is displayed.

Individuals with higher social aptitude tended to show more social sensitivity at
the reach initiation stage (mean=13.2 ms, s.e.=2.11) compared to individuals
with lower aptitude (mean=8 ms, s.e.=2.22). In compensation, the same
individuals who reported lower social aptitude showed more sensitivity later in
their movement times (mean=8.47 ms, s.e.=2.58) compared to the socially apt
(mean=2.53 ms, s.e.=1.54). This suggests that observers with higher social skills
are able to utilize their sensitivity to attention control earlier in their motor

responses than observers with lower social skills.
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Figure 21 Scatterplot of observers’ sensitivity to social attention at the reach initiation stage

against sensitivity at the reach duration stage.

Taken together these analyses indicated that observers with higher autistic traits
(i.e. lower social aptitude) initiate their movement responses before profiting
from the available social cues, and as a result, only integrate this information

later on in their responses. Observers with higher social aptitude, delay the
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initiation of their responses to early on gather relevant social cues, and
consequently are able to utilize this information more promptly in their
responses. This evidence suggests a kinematic pattern for social aptitude that is
consistent with recent research showing that persons with autistic behavioral
tendencies show lower response inhibition and error processing (Kana, Keller,
Minshew, & Just, 2007; Larson, Fair, Good, & Baldwin, 2010; Larson, South,
Krauskopf, Clawson, & Crowley, 2011). In addition, these findings add validity to
the proposal that observers were using predictive modeling of social attention
(Graziano & Kastner, 2011a; Graziano, 2013; Webb & Graziano, 2015). Although
the predictive modeling of social attention may be a core mechanism of human

observers, social experts appear to be more fluent in using it.

3.8 Summary and discussion of the empirical studies

The main goal of this study was to investigate human sensitivity to social
attention control. To do so my colleagues and | realized a series of experiments

that aimed at addressing the following questions:

* Are observers sensitive to someone else’s attention control?

* Does sensitivity to attention control contributes to a reactive advantage
in social interactions?

* Is sensitivity to attention control a conscious process?

* Where on the actors’ body is the attention control signal available?

* How early in the time-course of an observed action is the attention
control signal available?

* s sensitivity to attention control linked to social aptitude?
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Next, | will discuss the findings obtained while investigating each of these

guestions, and address how they relate to current literature.

Are observers sensitive to someone else’s attention control? Graziano

(2013) posits that social awareness is a predictive model of someone else’s
attention. This conceptualization implies that the attentional states underlying
observed actions should have some measurable effect on observers’ responses.
Offering empirical support to Graziano’s theoretical proposition (Graziano &
Kastner, 2011; Graziano, 2013), the experiment reported in chapter 3.2 showed
that observers were faster at correctly predicting the target of an action driven
by intentional attention allocation (endogenous orienting) compared to
predicting an externally guided action (exogenous orienting). These results
indicate that observers are particularly sensitive to whether attention orienting
is intentional or not. This observation is aligned with the well-accepted notion
that the social perception of attention is a relevant process contributing to the
human ability to infer someone else’s inner intentions, i.e. Theory of Mind
(Simon Baron-Cohen, 1995, 2000; Calder et al., 2002). Intention inference is
often considered as a high-level cognitive process (Jacob & Jeannerod, 2005),
our findings are evidence of what are likely early low-level inputs to Theory of

Mind processes.

Does sensitivity to attention control contributes to a reactive advantage in social
interactions? Findings reported in chapter 3.3 indicate that observers in a fast-
reaching competitive setting are better at beating their opponent to the end-
target when the opponent is choosing where to reach compared to when the
opponent is being directed. This suggests that observers are able to harness

perceptual cues reflecting attention control to generate fast behavioral
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responses. These findings revive the discussion on whether the reactive
advantage phenomenon (i.e, reacting to another person’s actions is faster than
initiating an action) is purely motor or whether it also has a social component.
Unlike previous studies that conclude that the reactive advantage is independent
of its social setting, the results from our study indicate that social cues about the
opponent’s attentional state contribute to the reactive advantage over and
above any motor benefits (La Delfa et al., 2013; Pinto et al., 2011; Welchman et
al., 2010).

Is sensitivity to attention control a conscious process? According to
Graziano’s (2013) theory, observers consciously perceive someone else’s
attentional state. Departing from this expectation, findings reported in chapter
3.4 showed that, although sensitivity to attention control guides behavioral
responses, this process is not reflected in verbal reports. This pattern of results
implies that human sensitivity to attention control is signaled through
mechanisms of implicit perception that are not accessible to consciousness. Our
findings make the case for the dissociation between the visual processing of
attentional states and its awareness. The dual-stream model of visual processing
offers a framework for the interpretation of such dissociation. This model
describes a division of labor between visual processing involved in action control
(dorsal stream), and visual processing leading to conscious perception (ventral
stream) (Goodale, 2011). We speculate that visual cues reflecting attention
control are quickly processed through the dorsal stream and are used to guide
observer’s reactions. This type of fast vision-for-action processing is essential for
the predictive aspect of social attention modeling, which must by necessity run
rapidly in advance of both actor’s actions and observer’s reactions, and cannot

afford the slower time constraints of conscious elaboration.
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Where on the actors’ body is the attention control signal available?

Whereas most research on the social perception of spatial attention has
focused on eye-gaze cues (Langten et al., 2000), recent evidence reveals that
other bodily cues might be just as important (Nummenmaa & Calder, 2009). Our
study shows that this is also the case for sensitivity to attention control. Findings
reported in chapter 3.5 revealed sensitivity to attention control both when
viewing head-cues only (including the neck, face, and eyes) and when viewing
body-cues only (including torso and arms). Thus indicating that the attention
control signal is widely distributed. Furthermore, observers’ response time
advantage at predicting the target of endogenous orienting actions compared to
exogenous orienting was greater when only the body was visible. This suggests
observers are particularly sensitive to body cues reflecting intentional attention

orienting.

Previous evidence indicates that human observers are well apt at reading other
people’s hidden intentions from observed bodily kinematics. For example, the
way one reaches for and grabs a Lego piece during a game has been shown to
reveal an individual’s hidden intention to cooperate or compete with a partner
(Manera et al.,, 2011); the kinematics of running portrays one’s intention to
deceive a sports opponent (Mori & Shimada, 2013); and that despite the
conventional wisdom of maintaining a neutral face while playing poker, the value
of the poker hand is unconsciously expressed in arm movement kinematics
during the game that can be perceived by opponents (Slepian et al., 2013). Each
of these previous findings supports the notion that inner intentions are
constantly being expressed through bodily behavior, and are thus available in the
public realm as relevant stimuli during action observation. Our study adds to the

previous literature by showing that observers are sensitive to behavioral cues
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reflecting inner cognitive processes of attention control. In future experiments,
the complete body kinematics of the actors could be recorded. This would allow
us to manipulate point-light-displays of the actors to probe in further detail

which features of the bodily movements carry the attention control signal.

How early in the time-course of an observed action is the attention control signal
available? The ability to quickly predict someone else’s actions is essential
for most social interactions. The sooner individuals can predict the actions of
their social counterparts, the more range they will have to generate appropriate
reactions (Sebanz et al., 2006; Sebanz & Knoblich, 2009). Findings reported in
chapter 3.6 showed that the advantage in responding to endogenous orienting
vs. exogenous orienting actions occurs promptly within the first 200 ms of
observing actor’s responses. Thus suggesting that observers are sensitive to
attention control during preparatory movements that precede the unfolding of
the reaching action. Action prediction based on preparatory movements has
been previously reported in competitive scenarios. For example, basketball
experts are able to predict the end result of shoot before the ball leaves the
athletes hand (Aglioti et al., 2008); observers in a goal-keeper scenario are able
to predict the kick direction prior to the foot-to-ball contact (Diaz et al., 2012);
deception in rugby runners is perceived above chance before the runner changes
direction (Mori & Shimada, 2013); and very closely related to our task, in a
competitive arm reaching scenario attackers’ preparatory movements give
opponents a reactive advantage (Cormiea et al., 2015). Our study converges with
this previous evidence by showing that observers can leverage information from
preparatory movements, and in addition, advances that preparatory motion is
more informative when intentional orienting underlies action execution. In

conclusion, the early availability of the attention control signal in preparatory
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movements substantiates the predictive aspect of social attention modeling

(Graziano & Kastner, 2011a; Graziano, 2013).

Is sensitivity to attention control linked to social aptitude? Individuals

with Autistic Disorders experience difficulties in attributing perceived spatial
attention orienting to an inner mental state, leading to a wide range of social
impairments (Baron-Cohen, 1994, 2000). Extrapolating from clinical knowledge,
it would be expected that autistic-like traits in normal population would relate to
the extent individuals are sensitive to other’s attentional states. Indeed, the
findings from the reported experiments showed that participants with higher
social aptitude, as measured by the Autism Quotient Scale (Baron-Cohen et al.,
2001), were more fluent at utilizing their social sensitivity to quickly predict the
end-target of endogenous orienting actions over exogenous orienting ones.
Therefore indicating that sensitivity to the attention control of a social other is
linked to one’s general level of social aptitude. This pattern of results is
consistent with the view that modeling someone else's attention is a core
mechanism supporting general social abilities in humans (Simon Baron-Cohen,
1995, 2000; Calder et al., 2002; Graziano & Kastner, 2011a; Graziano, 2013). As a
core faculty, sensitivity to attention control is available to all, but experts are

more fluent at it.

In conclusion, our study contributes to current knowledge about the perceptual
mechanisms underlying social cognition by showing that the social perception of
attention is more sophisticated than previously thought: More than perceiving
where others are attending to, we showed that humans are also implicitly
sensitivity to how attention is deployed to a spatial location. This observation

gives empirical support to current theoretical views that propose that human
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social cognition involves the predictive modeling of our social counterparts’

attentional states (Graziano & Kastner, 2011; Graziano, 2013).
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4 General discussion

In this concluding section, | bring together the theoretical and empirical streams
of this thesis, described in Chapters 2 and 3 respectively. | will start by
summarizing and discussing the outcomes of each chapter independently. Then |
will utilize the theoretical concepts of predictive processing to interpret new
evidence of human sensitivity to attention control. Finally, | will identify several
important new questions that have been raised by these findings and outline
avenues for future research on social cognition that will provide answers to

these questions.

4.1 Theoretical framework

Recently there has been a surge of interest in studying cognition in its social
milieu. As part of this trend, an increasing number of research findings on the
perceptual and motor workings of cooperative behavior have been reported,
constituting joint-action as a field of research in its own right (Knoblich, Butterfill,
& Sebanz, 2011; Sebanz, Bekkering, & Knoblich, 2006). Yet, the development of
theoretical frameworks for joint-action has not kept pace with the proliferation
of research findings. In this thesis, | proposed a hierarchical predictive approach
to joint-action implementation, the predictive joint-action model (pJAM).
Previous frameworks had either addressed the phenomenon by describing the
high-level cognitive processes involved in joint-action (Vesper et al., 2010) or by
focusing on the sensor-motor level of joint-action implementation (Wolpert et
al., 2003). pJAM is an improvement over these previous accounts of joint-action
because it addresses joint-action simultaneously at the symbolic and

sensorimotor level.
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pJAM assumes three layers of decreasing processing abstraction, from higher-

level processing to lower-level processing. In specific, the model assumes a

predictive cascade comprising a goal representation layer, an action-planning

layer, and a sensory routing layer. The general idea of the framework is that each

layer encodes parallel state probabilities about the information in the layer

below,

at several spatial and time scales. Continuous comparison between

adjacent layers, and subsequent error minimization, ultimately contributes to

the successful implementation of joint-actions.

This architecture offers concrete insights about three open questions previously

identified in joint-action literature reviews:

(1)

(2)

How are high-level (e.g. goal sharing and verbal agreements) and low-
level processing (e.g. interpersonal motor adaptation) integrated into
joint-actions (Knoblich et al., 2011)? The hierarchical organization of
pJAM offers a computational structure that accounts for processing at
different levels of abstraction. In specific, through its distributed
processing cascade, the framework binds symbolic representations with
motor plans and perceptual processing (Clark, 2013).

How are joint-actions successfully taken to term given the inherent under
specification of goals and tasks between partners (Vesper et al., 2010)?
The Bayesian-like functioning of the hierarchical predictive cascade offers
a solution to this problem. Partners share similar top-down and bottom-
up information streams. They share a rough representation of the joint-
goal and respective co-tasks (top-down). And they also receive similar
sensorial inputs (bottom-up). By relying on an iterative error-reduction

process between top-down expectations and bottom-up information, it is
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probable that partners’ internal models of the necessary joint-action
states to achieve the shared goal will increasingly converge into similar
representations (Vesper & Richardson, 2014).

(3) How are ‘self’ and ‘other’ representations managed in joint-actions? How
does agency emerge in joint-actions (Pacherie, 2007, 2012)? In pJAM
sensory routing, occurring at the first level of bottom-up processing
assigns sensory outcomes to parallel streams of information processing
pertaining to one's own and other’s actions. This allows the framework to
account for the emergence of a subjective experience of agency in joint-

actions (Stenzel et al., 2014).

Apart from advancing the current state-of-the-art in joint-action theoretical
frameworks and offering insight into long considered questions in the field, |
posit that pJAM also offers a structured way to think about empirical evidence.
Next, | will discuss the empirical findings reported in this thesis and consider how

they relate to the theoretical framework proposed.

4.2 Empirical findings

The human ability to make predictions about someone else’s actions is central to
our social lives. It has recently been proposed that attention is central to social
prediction. Knowing where and how someone else is directing their attention,
can provide us with valuable clues about what they intend to do next (Graziano
& Kastner, 2011; Graziano, 2013; Webb & Graziano, 2015). Previous studies of
social perception report acute human sensitivity to where another’s attention is
aimed. In Chapter 3 | start by presenting a new method to study social sensitivity
to attention control in action prediction. This method is divided into two stages —

stimuli recording stage and experimental stage. The two-stage design allowed
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me to isolate observers’ sensitivity to actors’ spatial orienting from observers’
sensitivity to actors’ attentional control. This represents an improvement of
previous methodologies in which actors and observers states were not
decoupled (Welchman et al., 2010). Experiments using the new methodology
showed that human social understanding involves not only knowing where
someone else is attending but also sensitivity to how the other’s attention has
been oriented to that location. When observers were given the opportunity to
predict the location of a videotaped actor’s reach, they were faster to do so
when the actor was deciding where to reach (endogenous attention control)
than when the actor was being directed by an external cue (exogenous attention
control). This was true despite our care in removing all temporal cues from the
sampling of the actor’s reaches and in randomizing the two types of reaches
shown to observers. This implies that the decision undertaken by the actor is
visible to the observer before it being executed by the actor. Yet tests of
whether the observer’s sensitivity to the actor’s choice was consciously
accessible were negative. Tests of where the signals about the actor’s choices
were coming from indicated that the signals were widely distributed over the
body, though stronger in the torso and limbs than in the head. Tests of when
the signal was available indicated it was influential even before the actor’s limb
started moving. Finally, sensitivity in the speeded decisions of observers was

correlated with a paper-and-pencil measure of social aptitude.

In sum, the main finding of this study is that action prediction is easier for most
observers when actors are choosing to act rather than being directed externally,
a finding | have termed as the “choice advantage”. The secondary findings were
(a) that sensitivity to choice in the kinematics of others is not consciously

accessible to observers, but (b) that it is correlated with an independent
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measure of social aptitude in everyday life. This bolsters the view that social
action observation is a fast and implicit kinematic process linked to empathy.
Taken together, these observations are consistent with recent theoretical
proposals claiming that social awareness involves the predictive (forward)
kinematic modeling of the action consequences of others’ attentional states

(Graziano & Kastner, 2011b; Graziano, 2013; Webb & Graziano, 2015).

However, | would like to highlight one specific limitation of these findings. The
results might be specific to the competitive nature of the task. Observers were
asked to guess the actor’s action goal (reach to the left vs. right target) as fast as
possible before the actor. Framing the task as a competition might motivate
observers to more closely process any intentional cues portrayed in the actor’s
behavior because observers need to predict the actor’s hidden action goal in
order to be successful competitors. It is possible, that in cooperation scenarios,
sensitivity to attentional control is not as relevant. Cooperation entails that both
partners share the same action goal (Knoblich, Butterfill, & Sebanz, 2011;
Sebanz, Bekkering, & Knoblich, 2006). Therefore, partners assume that they
share the same action goal. This may potentially decrease the relevance of

processing the control cues in observed actions.

Next, | will utilize the hierarchical predictive framework described in Chapter 2 to
discuss the observed empirical findings, further identify limitations in the
studies, and propose future research about the social perception of attentional

states.
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4.3 Bringing theory and findings together

In this section, | utilize the theoretical concepts introduced in Chapter 2 to
discuss the empirical findings reported in Chapter 3. But before that, | will
address an initial shortcoming of this endeavor. Whereas pJAM is directed at
joint-action phenomena, the empirical studies in this thesis do not fully qualify as
joint-actions. This is because actors and observers did not share the same goal,
and did not act together to exert a change in the environment (Knoblich &
Sebanz, 2006). Instead, the studies employed an action prediction task, where
observers attempted to predict the unfolding of actors’ actions. Nevertheless, |
propose that the empirical findings in this thesis fall within the hierarchical
predictive approach followed by pJAM. Several aspects of the studies support
the viability of this idea. Concretely, the experimental task required the
monitoring and predicting of someone else’s actions and the subsequent
execution of an appropriate motor response. All of these aspects are central to
joint-actions and are featured in the pJAM architecture. Figure 22 highlights the
parts of pJAM that will be used to discuss the empirical findings reported in this

thesis.
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Figure 22 Action prediction cycle in pJAM.

Now that we have identified the useful parts of the model for the task at hand,
let’s simulate how action prediction in the experimental task is supported by the
hierarchical architecture of pJAM. | will guide you through this simulation in
three stages. First, | will describe the expected state of the predictive hierarchy
before action observation (i.e. at the beginning of the trial, before observing the
actor). Afterward, | will give an account of how the system might function once
action observation commences. This will include the minimization of deviations
between the observer’s predictions about the actor’s actions and incoming

information from action observation. Finally, | will give an account of how
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observer’s responses are triggered. At each stage, | will juxtapose the observed

empirical evidence to the functioning of the predictive hierarchy.

4.3.1 Initial state of the predictive architecture

Figure 23 illustrates the starting state of the predictive architecture. At the
action-planning layer, probabilistic models encode parallel predictions about the
future unfolding of the actor’s action. At the start of each trial, before
commencing action observation, the state probabilities about the actor’s future
movement end-side are at chance-level, i.e. there is a 50%-50% split between

right and left predictions.
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up swipes of information, prediction is at chance level - 50% left and 50% right.
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4.3.2 Probabilistic predictions during action observation

As the video-clip of the actor starts playing, observers start gathering
information to continuously update their probabilistic models about the actor’s
biases towards each possible end-side (Clark, 2013; Graziano, 2013). Figure 24
represents the changes occurring in the predictive architecture as top-down (i.e.
predictions about the end-side of actors actions) and bottom-up information
(observed movement cues) start traveling through the processing hierarchy.
Once the video starts - revealing actors’ early movements - sensory information
starts traveling up the predictive cascade. Comparisons between incoming
sensory information and the corresponding predicted states are continuously
made. Errors between predicted and received information are used to improve
the probabilistic predictive models, at the action-planning layer. In this way,
early movement cues start shifting the probabilistic models to bias one side over
the other. In an effort to minimize deviations between predicted and observed
states, the initial 50%-50% distribution of end-side probabilities is shifted to

favor one side, e.g. 70% left and 30% right.
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predictions and bottom-up information.

Now let’s consider how the empirical findings relate to the described framework

states. The findings showed a “choice advantage”: Observers were faster at
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predicting chosen versus directed actions (as reported in Chapters 3.2-3.5). In
convergence, observers were also more accurate when predicting chosen actions
compared to directed actions, when only the initial parts of actors’ actions were
available (as reported in Chapter 3.6). Seen through the lens of the framework,
the “choice advantage” means that when the sensory input corresponded to
chosen actions the comparisons between action prediction states and sensory
information gave rise to a faster shift of the state probabilities in favor of one
side, leading to faster predictions. The framework offers two alternative
explanations for the “choice advantage”. One hypothetical explanation puts the
emphasis on the quality of the incoming information. | will call this the
preparatory cues hypothesis. Conversely, the other explanation puts the
emphasizes on the nature of the predictive models. This hypothesis is termed
the models of intentional control hypothesis. Next, | will consider each of these
hypothesis separately, and provide a description of future studies designed to

test them.

The preparatory cues hypothesis According to this hypothesis, the observed
choice advantage occurs because early kinematic cues in the execution of chosen
actions carry predictive information about the actor’s ultimate choice. This
conceptualization is consistent with evidence indicating that action components
are not independent of one another; at any moment in time, internal mental
biases and existing bodily states unconsciously influence the unfolding of the
subsequent movements in a sequence (Rosenbaum, Herbort, van der Wel, &
Weiss, 2014). It follows from this that choice actions should follow more
naturally and predictably from the pre-choice mental and postural states of the
actor than directed actions. Actions that are directed by an external signal — and

so are not chosen — are much less likely to follow smoothly from an actor’s
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recent mental and postural history. Thus, the kinematic cues available from an
actor have greater predictive value for subsequent action when the actor is
choosing the target of a reach than when the actor is responding to an
unpredictable external signal. Observing the stream of consistent kinematic cues
in an actor’s chosen behavior can explain observers’ ability to predict the

outcome of the reach earlier in time.

The models of intentional control hypothesis An alternative explanatory
hypothesis to the choice advantage is that our internal models of other’s
behavior assume the nature of intentional control (Jacob & Jeannerod, 2005).
The goal of social predictive models is to anticipate what others will do next
(Brown & Briine, 2012; Bubic, von Cramon, & Schubotz, 2010; Sebanz &
Knoblich, 2009). Therefore, it is not unreasonable to consider that these models
integrate the effects of intentional control on action execution. According to this
hypothesis, observers’ internal predictive models of actor’s actions are
inherently closer to chosen actions than to directed actions. Thus, when
matching actors incoming movements to observers internal predictions of these
movements, chosen actions will be a closer match, and will faster tip the
probabilistic predictions towards one end-side, ultimately leading to faster

predictions.

How might we disambiguate between these two possible interpretations? Both
hypothesis can be tested in future empirical studies. Testing the preparatory
cues hypothesis can be achieved by manipulating bottom-up information, i.e.
actor’s actions. To test the influence of preparatory cues on sensitivity to
attention control, actors could be filmed either when preparing their choice

ahead of time or not. This new stimuli set would support a 2x2 experimental
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design - preparation before cue (yes, no) x attentional control state (chosen,
directed). Analysis of observers’ responses would disambiguate sensitivity to
action preparation from sensitivity to attention control. One potential result
would be quite conclusive. If the choice advantage remains in trials where actors
prepared ahead of time, but disappears when actors avoided preparation ahead
of time, then the choice advantage is driven by observers’ sensitivity to actors’
strategic preparation during the recording task. However, if the choice
advantage is maintained in both conditions, then this indicates that sensitivity to

attention control is not fully driven by preparation cues.

Testing the models of intentional control hypothesis can be achieved by
manipulating top-down information, i.e. observers’ expectations. An
independent group design could be applied. Some observers would be informed
before the start of the experiment that the actions they will try to predict were
executed according to the actors own choice, while others would be told that
the actors were executed in response to an external signal. This manipulation
aims at biasing internal models to encode endogenous control or exogenous
control. If the manipulation is successful, then directed actions would be easier
to predict when observers expect the actor to be directed by an external
stimulus (exogenous control), and choice actions would be easier to predict
when the observers expected the actors be in control of their end-target side
(endogenous control). This pattern of results would indicate that a match
between attention control expectations and observed attention control is at the

basis of human sensitivity to someone else’s attentional states.
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4.3.3 Prompting observers’ prediction responses

Let us return to the description of the experiment using the hierarchical
predictive framework. At some point during action observation, the probabilistic
bias will be strong enough to prompt the observer to execute a motor response.
This can be conceptualized as a decisional threshold. The bias towards one side,
encoded by internal models of actors’ states, has to reach a certain threshold in
order to lead observers to respond. This is illustrated in Figure 25. The findings
reported in Chapter 3.7 indicate that individuals with lower social aptitude as
measured by the Autism Quotient Scale (Baron-Cohen et al.,, 2001), are more
impulsive in initiating their motor responses, compared to individuals with
higher social aptitude. Thus the threshold for response is lower for individuals
with lower social aptitude. Putting this observation in the context of the
hierarchical framework brings to clarity that, in these studies, observers with
lower social aptitude were at a disadvantage due to lower response inhibition
(Kana et al., 2007; Larson et al., 2010, 2011), rather than being impaired at the
sensory layer (Blake, Turner, Smoski, Pozdol, & Stone, 2003) or action modeling

layer (Natalie Sebanz, Knoblich, Stumpf, & Prinz, 2005).

In sum, looking at the empirical findings through the lens of the theoretical
framework showed where future studies are necessary to further our
understanding of human sensitivity to attention control, and allowed for the
integration of observed behavioral findings within a cognitive processing

structure.
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4.4 Conclusion

| started this thesis by suggesting that prediction is at the core of social
cognition. Human prediction abilities are a bridge between self and other: others
become accessible to us because we are able to internally model them and
predict their future behavior (Blakemore & Decety, 2001). This speaks to the
importance of understanding social predictive mechanisms in human cognition.
This thesis offers three contributions to this effect. First, it posits a new
theoretical approach to the study of social cooperative interactions. Second, it
develops a methodological framework in which an observer’s sensitivity to an
actor’s attentional control can be isolated from that observer’s sensitivity to the
target of the actor’s attention. Third, it presents new evidence in support of the
hypothesis that social cognition involves the predictive modeling of other’s
attentional states (Graziano & Kastner, 2011; Graziano, 2013; Webb & Graziano,
2015). | hope that these contributions represent stepping-stones to further our

understanding of the impressive human social abilities.
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