
Enhancing Interfaces for
Scholarly Peer Review

by

Derek M. Cormier

B.Sc., The University of Manitoba, 2013

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

The University of British Columbia

(Vancouver)

August 2016

© Derek M. Cormier, 2016

ii

Abstract

The academic peer review process is the primary means by which papers become a part of

established science. For such an important process, the technology we use today to conduct

peer review only partially supports the reviewing process and has stagnated behind advances

in collaborative document work. In this thesis, we present an overview of the current state of

Peer Review Management Software (PRMS) and outline areas where better user support is

needed. We then present our broad vision for interactive, web-based manuscript reviewing

tools that can be integrated into existing PRMS. Through a controlled study, we demonstrate

that providing reviewers with a simple annotation interface is sufficient for identifying 80%

of all low-level writing errors in a manuscript before the manuscript makes it through to

publication, without proofreading and with minimal additional effort on the part of reviewers.

Finally, we present prototypical and conceptual designs for a single-reviewer web interface

to address the current lack of manuscript reviewing support by improving the user experience

for and efficiency of reviewers.

iii

Preface

This dissertation is an original intellectual product of the author, Derek M. Cormier. The

research study described in Chapter 4 was conducted under the supervision of Dr. Kellogg

Booth (Department of Computer Science). The study received approval from the UBC

Research Ethics Board and is covered by certificate number H14-03428.

The research reported in this thesis was inspired in part by previous research on peer review

conducted by Dr. Syavash Nobarany. We have drawn on his overview of the history of peer

review for some of the material in Chapter 1, often with additional details provided to

provide further context for the new research that we conducted.

Funding for the research was generously provided by NSERC, the Natural Sciences and

Engineering Research Council of Canada, under the Discovery Grant Program, and by

GRAND, the Graphics, Animation and New Media Network of Centres of Excellence.

Facilities and research infrastructure administered by ICICS, the Institute for Computing,

Information and Cognitive Systems purchased with funds from the Canada Foundation for

Innovation were used for the research.

iv

Table of Contents

Abstract ... ii	

Preface .. iii	

Table of Contents ... iv	

List of Tables .. x	

List of Figures .. xi	

Glossary ... xiv	

Acknowledgements ... xv	

Dedication .. xvi	

 : The State of Peer Review Technology ... 1	

1.1 From Paper to PDF: A Brief History .. 2	

1.2 Peer Review Management Software ... 7	

1.2.1 Landing page and branding .. 8	

1.2.2 Manuscript submission .. 9	

1.2.3 Reviewer assignment ... 9	

1.2.4 Reviewing report .. 11	

1.2.5 Inter-reviewer discussion ... 12	

1.2.6 Author rebuttals ... 14	

1.2.7 Blindness policies .. 14	

v

1.2.8 Online publication .. 15	

1.2.9 Other support features .. 15	

1.3 Limitations of Peer Review Software ... 16	

1.3.1 Lack of enforcement for anonymity of authors ... 16	

1.3.2 The disconnect between the reviewers’ reports and the manuscript 17	

1.3.3 Exclusion of the manuscript as an auxiliary part of the review 18	

1.4 Summary ... 20	

 : Annotation-based Reviewing Interfaces .. 22	

2.1 Annotations for Collaborative Document Work ... 23	

2.1.1 Annotation as an aid to reading ... 23	

2.1.2 Annotations for collaborative work ... 24	

2.1.3 Annotation taxonomies .. 25	

2.2 A List of Features for Future Peer Review Systems ... 26	

2.2.1 Automated or semi-automated anonymization .. 27	

2.2.2 Hyperlinking from the report to the manuscript .. 28	

2.2.3 Specialized annotations for reviewing ... 29	

2.2.4 Auto-generating textual descriptions of writing errors .. 30	

2.2.5 Report outlining using annotation visualizations ... 31	

2.2.6 Sharing annotations with the author .. 32	

vi

2.2.7 In-document inter-reviewer discussion .. 33	

2.2.8 Filtering annotations .. 34	

2.3 The Need for Dedicated Reviewing Tools .. 35	

2.3.1 Choosing PDF as the standard reviewing medium .. 36	

2.3.2 The case for a web-based review tool .. 36	

2.3.3 Necessary extensions to PRMS ... 38	

2.3.4 Integration with authoring tools and a potential use case for ShareLaTeX 39	

2.4 Summary ... 40	

 : Low-level Writing Errors ... 42	

3.1 Writing Errors in Scholarly Publications .. 43	

3.1.1 What we know from the literature ... 43	

3.1.2 Why writing errors make it past peer review ... 44	

3.1.3 Barriers to asking reviewers to proofread .. 47	

3.2 A Practical Solution for Catching Errors during Review ... 48	

3.2.1 Asking reviewers to catch errors .. 48	

3.2.2 Error noticing: an alternative to proofreading ... 49	

3.2.3 A model of low-level writing error detection .. 50	

3.2.4 A mechanism for flagging errors ... 51	

3.3 Materials for Testing Error Detection Performance ... 53	

vii

3.3.1 Generating papers with errors .. 54	

3.3.2 A taxonomy of writing errors for academic papers ... 56	

3.4 A Simple Reviewing Tool with Error Flagging .. 58	

3.4.1 Document view .. 58	

3.4.2 Reviewing view ... 62	

3.4.3 Annotation storage and retrieval .. 63	

3.4.4 Related work in web annotations and highlighting mechanisms 64	

3.5 Summary ... 65	

 : A Study on Catching Writing Errors .. 66	

4.1 Method .. 66	

4.1.1 Participants ... 67	

4.1.2 Apparatus and materials ... 68	

4.1.3 Tasks .. 72	

4.1.4 Procedure ... 73	

4.1.5 Hypotheses ... 76	

4.2 Results ... 77	

4.2.1 Poisson model fit ... 77	

4.2.2 The effects of priming and error frequency ... 80	

4.2.3 Reliability of our error taxonomy .. 81	

viii

4.2.4 Subjective responses by participants ... 83	

4.3 Discussion ... 84	

4.3.1 Reviewer performance ... 84	

4.3.2 Overhead of the error noticing task ... 85	

4.3.3 Error taxonomy .. 87	

4.3.4 Limitations & future work ... 87	

4.4 Summary ... 89	

 : Designing an Interactive Reviewing Tool .. 90	

5.1 Highlighting .. 91	

5.2 Commenting .. 94	

5.3 Interactive Report Writing with Annotation Visualizations ... 95	

5.4 Future Work .. 97	

Bibliography ... 99	

Appendix A : Anonymization Tools for LaTeX .. 105	

A.1 AnonBib ... 105	

A.2 AnonTeX .. 106	

Appendix B : Highlighting the DOM ... 107	

B.1 HTML Structure ... 107	

B.2 Simple JavaScript Implementation ... 107	

ix

Appendix C : Supplementary Materials and Analysis .. 109	

C.1 Simplified Review Form .. 109	

C.2 Sample Paper with Low Error Frequency .. 110	

C.3 Sample Paper with High Error Frequency ... 115	

C.4 Error Classification Paper Post-categorization .. 120	

C.5 Post-test Questionnaire ... 125	

C.6 Supplementary Data ... 127	

C.6.1 Mixed-design ANOVA ... 127	

C.6.1 Miscellaneous descriptives .. 128	

x

List of Tables

Table 2.1: An overview of the various properties of annotations described in the literature. 26	

Table 3.1: The error taxonomy we designed for choosing errors to manually insert into

papers, and for providing a simple categorization scheme for reviewers. 57	

Table 4.1: Results of fitting the error-noticing data to our Poisson model. “L” indicates the

low-error frequency of a paper and “H” indicates the high-error frequency. Note that the

papers do not contain exactly 20 and 40 errors: this is because participants found

existing errors in the papers that we had not detected. These errors were included in the

analysis. ... 78	

Table 4.2: Heat map showing the level of disagreement within each error category. For

example, 60% of all “Sentence Structure” errors were classified as something else by

participants. Note: the error types are truncated for space—for the full category names

see Table 3.1. .. 81	

Table 4.3: Heat map of the distribution of disagreements by category. The left headings

represent our own classifications, and the top headings are how the participants

classified the errors. For example, of all the disagreements where we labelled the error

as “Misspelling,” 54.8% were labelled as a “Word Usage” error. 82	

xi

List of Figures

Figure 1.1: Automatic reviewer assignment by a program committee chair in OpenConf. The

program committee chair can select a number of options including the desired number

of reviews for each manuscript, the maximum number of reviews requested of any

reviewer, and the type of matching algorithm that will be used to suggest assignments of

reviewers to manuscripts. .. 10	

Figure 1.2: Example of an EasyConf web review form (some questions omitted for space). A

reviewer provides information about the manuscript and the reviewer’s opinion and

qualifications through a series of radio buttons and free-form text boxes. 11	

Figure 1.3: An example of the inter-reviewer discussion interface in OpenConf. Each entry

identifies the reviewer who posted the entry and the time and date of posting. 13	

Figure 3.1: The document view in our web-based prototype, where participants can highlight

arbitrary contiguous segments of text. The currently selected highlight is outlined in a

red border. ... 59	

Figure 3.2: In categorization mode, the classification box appears in the margins next to a

selected highlight. Choosing a category re-colours the highlight. Hovering over the “?”

icon reveals a description of the error type. .. 61	

Figure 3.3: The reviewing view provides a simplified review form with a set of radio buttons

for various levels of quality, along with a textbox for open comments at the end. 63	

Figure 4.1: Distribution of error types in each paper by percent. The high- and low-error

versions used the same distribution. ... 70	

xii

Figure 4.2: The average proportion of errors caught for every set of X reviewers (black and

white markers) compared to the fitted Poisson model (line), for each of the eight paper-

versions. .. 79	

Figure 4.3: The expected proportion of errors a group primed and unprimed reviewers can

expect to find in the average paper. The dashed lines use the adjusted single-reviewer

rate to account for overestimation. .. 80	

Figure 4.4: Subjective opinions on the process of highlighting and classification in peer

review. ... 83	

Figure 5.1: A selected highlight can be categorized by clicking the tab button and cycling

through a list of colour-coded categories in order to classify an annotation. 92	

Figure 5.2: Overlapping highlights (left) and a cursor hover effect (right) that darkens the

highlight’s colour and underlines the text to help disambiguate annotation boundaries. 93	

Figure 5.3:”Knobs” on the margins of the manuscript help disambiguate overlapping

annotations and provide the user with a high-level view of the different types and

frequencies of issues occurring on a page. Hovering over an annotation’s knob will grey

out any other annotations. ... 93	

Figure 5.4: A comment annotation in Pear Review, created by selecting text and clicking

Enter or pressing Enter on a highlight annotation. Knobs for comments are square.

Clicking outside the comment will minimize it. ... 94	

Figure 5.5: Conceptual design for the interactive report-writing feature in Pear Review. After

annotating a paper, a reviewer can directly manipulate the annotations into an outline to

help them form their written report. .. 95

xiii

Figure A.1: References section of a manuscript anonymized by AnonBib. Entries in a

separate .anon file determine which BibTeX entries are replaced with generic

placeholders. ……………………………………………………………………….… 105

Figure A.2: Anonymized author blocks generated by AnonTeX. The author names and

institutions are replaced with placeholder characters. The original number of lines in

each block along with the number of authors is preserved, but the content is

obscured. …………………………………………………………………………...… 106

xiv

Glossary

Annotation – Tacit or explicit markings, notes, or drawings overlaid onto a document for the

purpose of reading comprehension, knowledge acquisition for later writing tasks, or

collaboration during shared authoring or reviewing

Error noticing – The phenomenon where readers encounter writing errors while reading text

without explicitly intending to proofread

Error taxonomy – A categorization of types of writing errors, often accompanied by a

distribution of the frequency of each error type

Manuscript – A draft of an academic paper that has not yet been published

Paper – The final, published, and peer-reviewed version of a manuscript

Peer Review Management Software (PRMS) – Highly configurable web-based groupware

designed to facilitate the scholarly peer review process for conference and journal

publications by collecting author submissions, assigning manuscripts to reviewers, and

delivering acceptance recommendations

Report – A report that the reviewer generates after reviewing a manuscript, usually

comprising a set of measurements of quality on various dimensions, a plaintext written

component, and an acceptance recommendation; typically submitted via a web form

Scholarly Peer Review – The process by which a panel of expert reviewers review author-

submitted manuscripts and provide a report and recommendation to the editor regarding

whether the manuscript should be published in a conference or journal

xv

Acknowledgements

I thank my supervisor Kellogg Booth for his continual support and mentorship throughout

my master’s program. His extensive experience and endless supply of anecdotes provided

much clarity and context to each problem we tackled.

The MUX (Multimodal User Experience) helped me connect with the broader HCI

community and provided an avenue to share and present my work with other researchers. In

particular, I would like to thank my colleagues Oliver Schneider, Francisco Escalona,

Antoine Ponsard, and Syavash Nobarany for our frequent brainstorming sessions that

ultimately helped to shape the direction of my work. I would also like to thank Jessica

Dawson and Jung-Wook Kho for thoroughly piloting my user study and providing feedback,

which led to problem-free study.

I thank Giuseppe Carenini, who graciously accepted the role of second reader and provided

helpful and detailed feedback.

Finally, I am eternally grateful to my parents who always have supported me throughout my

education and encouraged me to follow my own path, and to my friends who made my years

at UBC all the more fun and rewarding.

xvi

Dedication

I would like to dedicate this thesis to my good friend and mentor Chi-Tai Cheng (���),

who was unfortunately taken from this world too soon. His love of life and devotion to his

students continue to inspire me each and every day.

1

: The State of Peer Review Technology

Scholarly peer review is the set of evaluation practices and policies used by the academic

community to determine which research manuscripts become published, and which do not.

Although by its nature peer review is an imperfect process [1–4], it continues to be widely

regarded as fundamental for scientific progress and communication [4]. The policies and

processes used by peer review to evaluate papers have evolved greatly over the past few

centuries. In its earliest days, peer review was left to the sole discretion of journal editors, but

with the seemingly exponential advances in scientific knowledge and publications in the

twentieth century, we now use panels of expert reviewers from highly specialized fields to

review papers, and adhere to policies such as (double) blindedness, openness, disclosing

conflicts of interests, and formal rebuttal procedures. Bornmann provides a comprehensive

overview of scholarly peer review that summarizes existing research on the process [4].

Peer review practices have evolved over the years; so too has the technology used to carry

out peer review. Advances in digital technology have drastically altered how we conduct peer

review by enabling a gradual transition away from paper as the primary medium for reviews

and correspondence. Instead of sending paper copies of manuscripts, reviews, and acceptance

notifications by post, today the stakeholders involved in peer review (authors, reviewers,

editors and editorial committees) rely heavily on sophisticated web-based groupware

applications to manage online manuscript submission, reviewer assignment, delivery of

decisions, and almost every other aspect of the peer review process. The rise over the past

two decades of peer review software, advanced authoring tools, and vast digital libraries has

gone a long way in making the jobs of each stakeholder more efficient and convenient.

2

However, while much progress has been made, there are still ways in which current software

does not fully support the reviewing process, especially when it comes to reviewing tasks

that take place at the level of the manuscript content. Our goal throughout this thesis is to

convince the reader that there is much design and innovation left to accomplish before we

can consider peer reviewing to be fully supported by computers.

In this chapter, we begin by briefly looking at the history of peer review from the perspective

of how it was accomplished using the technology available at the time. We then present an

overview of the type of web-based peer review software that is used by academic journals

and conferences today. Finally, we outline the areas where software and interface

improvements are greatly needed, and discuss the design challenges that remain for future

research and implementations to solve. We address some of these challenges directly through

prototypes and experimentation, which we describe in later chapters of this thesis.

Throughout this thesis, we refer to peer review as strictly for reviewing academic

manuscripts, and not in other contexts such as peer review for research grant funding or

promotion and tenure consideration. We also make the distinction between a manuscript, a

research paper that has yet to be accepted, and a paper, the final version of a manuscript that

has been reviewed and published.

1.1 From Paper to PDF: A Brief History

Today’s scholarly review practices date back to the first scientific journal, published in 1665,

titled Philosophical Transactions. At that time, Henry Oldenburg made editorial decisions

about which scientific works to include in the journal to make available for academic

discourse among peers in the scholarly community [5]. The first recorded instance where the

3

opinions of external experts were used to make editorial decisions is commonly believed to

have been in 1731, as prefaced in The Royal Society of Edinburgh’s journal Medical Essays

and Observations [6]:

Memoirs sent by correspondence are distributed according to the subject matter to

those members who are most versed in these matters. The report of their identity is

not known to the author. Nothing is printed in this review which is not stamped with

the mark of utility.

Despite the similarity to today’s practice of using external reviewers, this type of review

policy was not commonplace during the 18th and 19th centuries. Reviews and decisions about

publication were often handled internally at the discretion of the journal editor or the editorial

board. It was not until the middle of the twentieth century that the standardized refereeing

processes that we are familiar with today became the norm, in part due to the growing

specialization in scientific fields and increased competition for publication [5,7]. The lack of

standard reviewing procedures that included external reviews even in the early twentieth

century is exemplified by Albert Einstein’s rebuttal to a critical review regarding his

submission to the journal Physical Review in 1936 [8]:

Dear Sir,

We (Mr. Rosen and I) had sent you our manuscript for publication and had not

authorized you to show it to specialists before it is printed. I see no reason to address

the in any case erroneous comments of your anonymous expert. On the basis of this

incident I prefer to publish the paper elsewhere.

Respectfully,

P.S. Mr. Rosen, who has left for the Soviet Union, has authorized me to represent him

in this matter.

4

Until the end of the 19th century, manuscripts were largely written and illustrated by hand.

One of the major difficulties with handwritten drafts was that they often needed to be copied.

An author submitting a manuscript to a journal would presumably create a copy for

themselves as proof of their intellectual property, or in the case that it was lost during

delivery. Although little has been recorded about early peer review procedures and the need

for making copies [7], we presume that journals may have required that copies be made in

certain situations to distribute internally or externally depending on which (if any) sort of

review process was in place. This copying would have been completed either by the author or

on the editor’s behalf, possibly by employing scribes, and would have taken a considerable

amount of time. Transcribing manuscripts, especially those with illustrations, would have

been painstakingly slow and error-prone. Typesetting technology such as the printing press

or (depending on the period) the linotype, and image copying techniques like block printing

or lithography were widespread, but were reserved for publishing and distribution after

reviewing because they took considerable effort to prepare; they were certainly not used for

reproducing drafts.

As typewriters became ubiquitous at the turn of the 19th century, manuscripts and

correspondence with journal editors could be compiled far more quickly than by hand, and in

a standard and consistently legible document format. Scholars could dictate their work or

provide hand-written manuscripts to skilled typists who could produce copies relatively

quickly. Copying became even easier with the use of carbonic paper in typewriters, which

could produce up to five copies at a time [5], but was necessarily limited to outgoing

correspondence. Further technologies such as the mimeograph in 1886 were capable of

5

producing many more copies, but due to the relatively few number of individuals involved in

making editorial decisions few copies were needed, so carbonic paper was likely preferred.

It was not until the invention of the modern photocopier by Xerox in 1949 and its widespread

use in academic institutions beginning in the 1960s and 1970s that limitations on copying

manuscripts were no longer a limiting factor. The relative ease by which manuscripts could

then be written and copied was perhaps in part responsible for the rapid increase in scientific

publication within the past fifty years. The increased competition for space in journals led to

more comprehensive forms of review involving external reviewers in order to select only

papers with the highest scientific merit for publishing. In this sense, the development of

typewriters, photocopiers, and other document technology probably helped to bring about the

refereeing processes that we use today [9].

In the 1970s, efforts by Brian Kernighan and his team at Bell Laboratories led to the

development of phototypesetter software (e.g., the Linotron 202) and typesetting languages

such as troff—the precursors to modern desktop publishing. The engineers at Bell Labs

would use these typesetters to print their academic manuscripts, sometimes to the

bewilderment of reviewers who presumed that the papers had already been published [10].

Preparing manuscripts using early, digitized typesetting technology was mostly limited to

research institutions like Bell Labs, at least until personal computers with desktop publishing

software became commonplace in the 1980s, so much of academia continued to produce their

manuscripts using typewriters and to create copies with photocopiers.

Although the origins of what we consider word processing dates back at least to the 1964

IBM Magnetic Tape Selectric Typewriter, which could edit text stored on a magnetic card,

6

personal computers such as the IBM PC and Apple Macintosh finally brought flexible word

processing capabilities to educational institutions and the home user in the 1980s. Word

processors enabled authors to edit their manuscripts freely at any location, which was a

considerable advantage over typewriters where fixing mistakes or editing could amount to

retyping the entire manuscript. The 1980s also saw the development of more functional and

accessible typesetting languages such as LaTeX (which remains popular today among

scientists and mathematicians), and WYSIWYG word processors such as Apple’s MacWrite

(later marketed by Claris), Corel’s WordPerfect and Microsoft Word that allowed authors to

create professionally formatted manuscripts. These software packages provided useful

features such as spellchecking and bibliometric tools for managing references.

With the development of many new devices and operating systems, there arose a practical

need for a cross-platform document format that could consistently display formatted text on

all systems. In 1993, Adobe released the Portable Document Format (PDF) for displaying

fixed layout documents, which was built upon their earlier interpreted PostScript language

that in turn derived from prior work at Xerox PARC on the Interpress page description

language. To this day, PDF remains the de facto standard for sharing and distributing

academic manuscripts across all platforms.

It appears that changes in the way that scholarly peer review was conducted up until the

1990s were largely governed by the technologies used to communicate written information.

The typewriter (and later, the computer) made it easier to write manuscripts, and

photocopiers and printers made it easier to produce copies. However, one rather significant

inefficiency still remained: the problem of expediently delivering manuscripts around the

7

world. Despite the availability of the Internet and network protocols in the early 1990s, most

manuscripts and reviews were still being sent by post. Authors would typically send three or

four copies of their manuscript to the editor for a publication venue via their home

institution’s mail department. The editor would then mail the copies of the manuscript along

with reviewing instructions to external reviewers, who could choose to reject the request and

have it mailed back, or to complete a review and have that mailed back. It would take

roughly one week to travel from one hop to the next.

The widespread adoption of the World Wide Web in the late 1990s all but removed the

inefficiency of delivering manuscripts by post, enabling authors to upload their manuscripts

to web servers or send them as email attachments to the editor. The affordances offered by

The Web continued to have far-reaching effects. Since the turn of the 21st century, the

scientific world has used specialized web software to streamline the peer review process and

eliminate many of the administrative pain points for journal and conference editors. In the

next section, we summarize the key features and current state of this software.

1.2 Peer Review Management Software

Today, the academic world looks to computer support for managing peer review. We now

use web application groupware to manage the entire manuscript review process for authors,

reviewers, chairs, and review committees, from enforcing anonymity policies (e.g., double-

or single-blind reviews) to coordinating reviews, making editorial decisions, and delivering

those decisions to the author(s). These software packages are often highly configurable,

allowing for different types of reviews and a variety of access policies to be implemented.

We refer to this general category of web software that encompasses both conference and

8

journal workflows as Peer Review Management Software (PRMS), but in certain contexts

these systems have also been referred to in the literature as Journal Management Systems,

Conference Management Systems, or Abstract Management Systems.

Some PRMS systems, such as the Open Journal Systems [11], are free and open source,

while others such as OpenConf [12] and EasyChair [13] offer freeware versions but require

payment for advanced features and hosting services. The majority of these web applications

are reminiscent of fairly basic 1990s-era web applications, but some newer proprietary

software such as Scholastica [14] and Exordo [15] provide more modern web user

experiences. All PRMS tends to support a common set of key features. In the remainder of

this section, we provide an overview of these features and how they help solve user problems

that existed before the creation of groupware peer review software.

1.2.1 Landing page and branding

Conferences and journals often have a dedicated landing page on their websites containing

information (or links to other pages with information) about review policies, submission

deadlines, paper format, and event dates. These pages usually have a “call for papers” or

registration page that acts as an entry point into the actual PRMS application where authors

can register their identities and contact information. While the initial landing page is typically

separate from the PRMS, some software, such as the Open Conference Systems [16], has full

support for conference and journal homepages, allowing for custom content and consistent

styling (headers, footers, and stylesheets) to be used on all pages of the application. This is

useful for journals or conferences that want an all-in-one solution or wish to use their own

branding or to give their web pages a unique look and feel.

9

1.2.2 Manuscript submission

After registration, and possibly after an initial abstract submission to initiate the process, the

author obtains access to a web form for submitting a manuscript. There are fields to specify

each author’s contact information, with one author usually being designated as the primary

contact (corresponding author) for notifications. The author inputs the abstract (if not done

previously), keywords related to the work, and possibly checks a set of boxes to indicate

which categories the work falls into; these categories help with assigning reviewers and

managing multi-track conferences or journals with multiple areas each with its own associate

editor. Some PRMS allow authors to indicate potential conflicts of interest that should be

taken into account during the reviewing process.

The author can upload a manuscript file in one of the accepted formats—usually PDF, Word,

or LaTeX—and the document is normally required to follow a supplied style template

provided on the website (what used to be the work of publishers is now the responsibility of

the authors). Some systems accept supplementary files such as original datasets or videos that

present the research, the latter being quite common in HCI and computer graphics

publication venues. Allowing authors to submit manuscripts electronically removes much of

the overhead and inefficiency of sending manuscripts by mail and sorting them into review

committees for subsequent distribution to those who need to see them.

1.2.3 Reviewer assignment

Reviewers are assigned to manuscripts either manually or using automatic assignment

algorithms. In the latter case, reviews can be assigned based on reviewer bidding—where

reviewers can bid on how interested they are in reviewing a particular manuscript—or by

10

matching manuscripts to reviewers’ areas of expertise (reviewers usually indicate their

expertise upon signup). In addition to assignment schemes, some PRMS allows certain

constraints to be specified, for example, limiting the number of manuscripts per reviewer or

adding limits for particular reviewers. Figure 1.1 shows the automatic assignment options

that a review committee can select in OpenConf.

Once reviewers have been assigned, they are typically notified by email and then gain access

to the submissions they are reviewing through the PRMS, where they can accept or reject the

reviewing request. The use of automated assignment makes it far easier for committees to

assign manuscripts to reviewers when there is a high volume of submissions. There are often

mechanisms to override or augment automatic assignments, which is necessary for

unforeseen circumstances such as when there are undetected conflicts of interest or when a

Figure 1.1: Automatic reviewer assignment by a program committee chair in OpenConf. The
program committee chair can select a number of options including the desired number of reviews for
each manuscript, the maximum number of reviews requested of any reviewer, and the type of
matching algorithm that will be used to suggest assignments of reviewers to manuscripts.

11

reviewer is not able to complete a review or there is not a consensus among the reviewers, so

someone else needs to be brought into the reviewing process after it is underway.

1.2.4 Reviewing report

When reviewers accept a request to review a manuscript, they gain access to an electronic

review form to create their report (Figure 1.2). The reviewer answers the questions on the

form to determine whether they have any conflicts of interest in reviewing the manuscript, to

assess the overall quality, novelty, and impact of the paper, and to provide a final acceptance

recommendation. The reviewer also typically rates how qualified they feel they are to review

the manuscript. The review form contains one or more textboxes that make up the reviewer’s

Figure 1.2: Example of an EasyConf web review form (some questions omitted for space). A reviewer
provides information about the manuscript and the reviewer’s opinion and qualifications through a
series of radio buttons and free-form text boxes.

12

written portion of the report in addition to other entries such as numeric ratings or radio

button selections from a set of options. The textboxes may be divided into different

categories, for example, novelty, writing quality, or general comments for the author, or there

may be a single textbox for the entire written portion of the review. A separate textbox is

often reserved for private comments meant only for the review committee. The questions that

appear in the review form and their widget types (text input, radio button, checkbox, etc.) are

usually configurable by the editor or administrator.

1.2.5 Inter-reviewer discussion

PRMS often supports private discussion among reviewers assigned to a manuscript. The

discussion mechanisms become available after reviewers have completed their reviews in

order to prevent reviewer bias. The discussion provides an opportunity for reviewers to

explore potential points of interest or contention. Discussions are typically implemented as

simple, linear forum-post-style messages where each entry usually identifies the poster

(sometimes only by reviewer number, other times by name) and date of posting. Email

notifications are often used for new messages, which the reviewer may be able to respond to

by replying to the automated email. An example of a discussion interface can be seen in

Figure 1.3.

13

Figure 1.3: An example of the inter-reviewer discussion interface in OpenConf. Each entry identifies
the reviewer who posted the entry and the time and date of posting.

14

1.2.6 Author rebuttals

Once the reviews and initial acceptance decisions have been made available to the contact

author, the author is notified by email and can begin to respond to comments in the reviewer

report. The rebuttal is usually entered into a fixed length text box or uploaded as a separate

document. Authors are expected to address all of the review reports in aggregate. In a

conference, once the rebuttal is submitted the reviewers or the program committee chair

makes a final acceptance decision. Some systems (such as OpenConf) support follow-up

comments on the rebuttal by reviewers, but these comments are usually only visible to the

chair. Systems that support journal refereeing support multiple rounds of comments by both

authors and reviewers either within a single submission cycle or through resubmission cycles

that continue the refereeing process after authors have revised their manuscripts and

resubmitted them, perhaps with rebuttal comments that explicitly address comments from

reviewers or that direct reviewers to changes in the manuscript.

1.2.7 Blindness policies

Anonymity of one or more of the participants in the peer review process to others in the

process is a common situation. Most PRMS supports either single-blind reviews (authors do

not know the identity of reviewers) or double-blind reviews (reviewers also do not know the

identity of authors). Whether or not the reviewers can see each other’s identity is often a

configurable option. Recently, there has much debate and discussion surrounding open

review policies, where reviews are not anonymized and are possibly opened up for viewing

by a larger community. To our knowledge, mainstream PRMS generally does not provide

support for fully open reviewing models. One conference venue supported by the CHI

community, alt.chi [17], does support open reviewing but appears to use custom web

15

software rather than the usual Precision Conference Solutions (PCS) [18] system used by

most of the CHI-sponsored conferences. The public accessibility of alt.chi reviews enabled

Nobarany et al. to study how non-blinded review policies affect the way reviewers write their

reports [19]. They found that there was a need for more interactive communication in order

to balance between politeness and clarity in reviews.

1.2.8 Online publication

In addition to handling reviews, PRMS often also supports online publication of accepted

manuscripts. Software designed to support conferences allows the creation of a proceedings

website that opens up after the conference. It includes a list of the accepted papers, their

authors and abstracts, and either a direct link to a PDF or a link to the manuscript’s location

in a digital library (usually pay-walled). Some software, such as the Open Journal Systems,

are designed for the primary purpose of providing open access for the public to accepted

papers. Some systems such as PCS can provide a “camera ready” PDF for a full conference

proceedings (front matter, table of contents, accepted papers, and indices).

1.2.9 Other support features

Different PRMS packages offer support for a variety of other features that reduce

administrative overhead, but are not critical to the peer review process. Such features include

support for search engine indexing of the accepted papers, support for assigning papers to

conference tracks and scheduling presentations, payment of publication fees through services

like PayPal, helpdesk or technical support, and use of automatic plagiarism checking services.

OpenConf supports integration with publons [20], an online service for giving credit to

reviewers.

16

1.3 Limitations of Peer Review Software

Peer review software has been effective for organizing peer review for journals and

conferences; it reduces administrative overhead by making it easier to assign papers to

reviewers, collect reports, handle rebuttals, and deliver final acceptance recommendations.

Yet, there are still fundamental reviewing tasks involving all stakeholders that lack adequate

computer support and are not addressed by PRMS systems. For example, reviewers are

unable to directly link to the text in the manuscript that they refer to in their (plaintext) report,

and dialogue between reviewers about parts of a paper (e.g., a discussion about the

applicability of statistical methods used) takes place outside of the manuscript context where

the issue arises. This can make it difficult for an additional reviewer brought in to easily find

parts of the manuscript that relate to the problem and come up to speed in the discussion.

These examples highlight the major limitation of PRMS that we focus on in this thesis:

current software does not support interactive reviewing work at the level of the manuscript’s

content, but instead treats manuscripts only as immutable objects to be copied and passed

around to the various stakeholders. The ability to use manuscripts in richer and more

interactive ways, both before, during, and after the reviewing process, could help provide

better solutions for common reviewing tasks. In this section, we examine a few high-level

areas, where PRMS currently lacks support, to illustrate where future interactive reviewing

interfaces could be more helpful.

1.3.1 Lack of enforcement for anonymity of authors

In double-blind reviews, authors are instructed to follow a set of guidelines to anonymize

their identities. This is one method for promoting fairness in the peer review process

17

(although its effectiveness has been disputed [1,3]). The anonymity guidelines often include

hiding author information, limiting or obfuscating self-references (for example, by referring

to the authors’ work in the third person rather than the first person), and replacing

bibliographic citations of the authors’ work with anonymous placeholders. However, it is

common for authors to forget about or not fully implement the guidelines. This can result in

an unfair advantage or disadvantage for the authors and it compromises the integrity of the

process. In order to increase fairness, anonymization of authors should be automated as much

as possible and enforced upon submission. For each flagged instance where anonymity may

have been compromised, the author should have to manually sign off on each flagged

instance and this should be verified by the editorial committee before the manuscript is seen

by reviewers. However, this type of in-document flagging and verification is currently not

done by any PRMS we know of.

1.3.2 The disconnect between the reviewers’ reports and the manuscript

A review often comprises a plaintext report along with a set of quality ratings and the

reviewer’s opinion or recommendation about the disposition of the manuscript in terms of

acceptance or rejection. In contrast to other forms of writing that produce richly formatted

documents, the academic community seems to value function over form, and definitely

favours conciseness in reviews—written reports are typically no longer than a page, and little

advantage is seen in using formatted text. However, the use of plaintext precludes the use of

richer functionality such as in-text hyperlinks to connect reviewer’s comments with the parts

of a manuscript that are relevant to the comments.

18

Conceptually, a report is intertwined with the manuscript in the sense that the report refers to

and summarizes content in the manuscript. As summaries, reports are necessarily generalized,

but often there are instances where the reviewer wishes to refer to specific locations in the

paper, for example, citing the location of a poorly made argument or an unclear sentence.

The author reading the report must perform a manual lookup step in order to find the

referenced section of text to inspect or repair it.

The notion of creating anchors to other documents (also known as hypertext) has been

around since Vannevar Bush first introduced the concept of a memex [21]—a hypothetical

device for organizing collective knowledge—but hyperlinking between text in a manuscript

and the review has not been well explored in peer review, likely due to the use of plaintext

reports that do not afford bi-directional linking. Instead, “links” often take the form of textual

descriptions about where to find the corresponding location in the paper. This is usually done

by specifying one or more of the page number, the paragraph number, the line number, a

quotation from the paper, or a more general description of the location (e.g., “second

paragraph below the Figure 2 in the second column”).

The potential benefits of an explicit anchoring mechanism extend not only to pointing out

problematic areas, but could also be used by reviewers to clarify or cite evidence for their

arguments. It could similarly be used by authors to rebut reviewer arguments with evidence

from their paper, which could also free up space in fixed-length rebuttals.

1.3.3 Exclusion of the manuscript as an auxiliary part of the review

In traditional paper-based peer review, the act of reviewing takes place on the manuscript.

While reading, reviewers use various techniques to structure their knowledge or

19

understanding of the manuscript that later forms the content of their written report—this can

take the form of jotting notes in the margins, tacit markings to remind the reviewer to revisit

a section, or many other forms of annotation. This practice persists in the digital world. Some

reviewers still mark up paper copies of a manuscript, but more often they mark up the

electronic version, at least during the initial stage of their reviewing. While many of these

representations of thought and judgment are intended only for private use by the reviewer,

there are also certain communicative elements that, if made available, could serve to benefit

the author and other reviewers. In a typical conference PRMS, review submissions do not

have facilities for uploading annotated versions of the manuscript or for using the annotations

in a meaningful way.

Fixing low-level writing errors (typographical, grammatical, etc.) is a good example of how

the manuscript could be used as part of the review. If a reviewer sees a large number of

writing errors in the manuscript that should be fixed, but the science behind the work

reported in the manuscript is good and the reviewer thinks the paper should be accepted, the

reviewer could simply leave a remark that the author should proofread the paper more

carefully before preparing the final version for publication. However, errors are commonly

missed when an author rereads a manuscript and some may make it through to publication. In

order to point out the errors to the author, reviewers must write within their plaintext report

the location of each error, what the error is, and, if they feel generous, how to fix it, e.g.,

“Incorrect verb form on page 6, line 17, change [related] to [relates].”

This process of writing descriptions of erroneous locations is tedious and time-consuming,

which may discourage reviewers from pointing out all of the errors they find, or even doing

20

anything at all to show the author where the problems are. Worse yet, the detailed low-level

error information adds clutter to the main review and may not be necessary for making a

decision about acceptance of the manuscript. If instead the reviewers could simply highlight

each error they found in the manuscript, and leave the highlighting in the manuscript, this

could make it immediately clear to the author where the errors were without cluttering the

report and without requiring reviewers to do more than they do already, which is to note the

occurrence of low-level errors within the manuscript as they read it during their reviewing

process. We believe that the activity of pointing out writing errors belongs in the manuscript

—not in a separate review document.

Another area that could benefit from using the manuscript as a medium for review is the

inter-reviewer discussion that occurs after reviewers submit their initial reports. Usually this

is done via a forum-post discussion list on the website as we have previously described.

These discussions often revolve around disagreements about the seriousness of various

problems with a manuscript, yet are completely disparate from the manuscript itself and thus

ignore the surrounding context of the specific problem. Discussions centered in the

manuscript could provide context about where an issue occurs and thus could promote better

discussions surrounding the issue. Bi-directional links between the manuscript and the

threaded discussion could instead be along the lines of Churchill et al.’s anchored

conversations [22]. We will further explore this and other possibilities in later chapters.

1.4 Summary

Over the past two centuries, technology has helped move peer review from a hand-written

paper-based process to a fully digital process that involves little or no physical documents.

21

The standard web-based systems we use today excel at managing the overall processing and

distributing of reviews, but they lack rich interactions within the document during the various

reviewing stages. The report and the manuscript have always been treated as separate entities,

but there are ways we can leverage interconnecting both of them to provide more useful

reviews and to make the task of reviewing (and responding to reviews) more user-friendly

and (more importantly) more useful in terms of the ultimate goal, which is obtaining the best

possible evaluations of manuscripts that have been submitted for publication.

In the next chapter, we present our broad vision of how PRMS systems could be integrated

with interactive reviewing functionality to make peer review more efficient, fair, and user-

friendly, and we outline a set of features that developers and researchers might implement

and then fully explore to assess their utility.

22

: Annotation-based Reviewing Interfaces

Conferences and journals use Peer Review Management Software (PRMS) to manage

manuscript submission, distribution of manuscripts to reviewers, and collection of reviewing

reports. This software alleviates many of the administrative pain points involved in

organizing a publication venue. Until recently, PRMS has focused primarily on supporting

these high-level organizational aspects of peer review, and as such, there can be a lack of

support for the low-level tasks carried out by an individual reviewer. A reviewer conducting

a review of a manuscript and writing a summary report, the most fundamental activity that

drives all of peer review, is quite often under supported. This in part due to a lack of

dedicated and specialized reviewing tools and the inability of PRMS to interact directly with

the manuscript file at the content level, where most of the low-level reviewing tasks take

place.

Rather than treating manuscripts as immutable objects passed around to various actors, which

is what most PRMS does, in this chapter we explore the idea of overlaying reviewing

activities on the manuscript content itself. Our ideas involve extensive use of annotation, so

we begin by briefly discussing existing work on annotations and how they have been used in

collaborative document work settings. We then discuss how manuscripts might be used more

interactively during the review process by outlining a set of preliminary features for future

peer review tools. We conclude with a discussion of the need for (and current lack of)

specialized reviewing tools to support these proposed features, and how such tools could

work in concert with PRMS to provide a more sophisticated environment for interactive peer

reviewing.

23

2.1 Annotations for Collaborative Document Work

“I contend, quite bluntly, that marking up a book is not an act of mutilation but of love.”

– Alder Mortimer, How to Mark a Book [23]

In the Middle Ages, scholars recorded their musings and findings in the margins of scholarly

texts. These marginalia were considered highly valuable to subsequent scholars that they

were often transcribed into newer copies of the text [24]. To this day, people annotate

documents for a variety of reasons, including expressing new ideas, opinions, and critical

remarks, and posing questions about the text, clarifying meaning, and sharing comments with

others [25]. The practice of annotating persists in the digital world: we now have vast digital

libraries with annotation capabilities and authoring tools that mark up documents to be

shared between collaborators. In this section, we give a brief overview of existing research

on digital annotations for different use cases.

2.1.1 Annotation as an aid to reading

People often use annotations as an aid to comprehension when reading. Marshall performed

an ethnographic study on a large collection of used student textbooks to analyse the form and

function of student annotations [26]. The observed annotations took the form of highlights,

markings, underlining, notes, and doodling, and were used in anticipation of future attention,

place marking, aids to memory, problem solving, interpretive activity, and as a trace of the

reader’s attention. Other research by Neuwirth et al., Schilit et al., Wolfe, and O’Hara and

Sellen have shown that annotating while reading is beneficial to structuring and recalling

knowledge for later writing activities, it decreases the tendency to unnecessarily summarize,

it improves understanding, and it aids visual search and active reading [27–30]. Much of the

24

research alludes to the suggestion that digital libraries ought to support annotation tools to

encourage active reading and the sharing of ideas [26,29,31], with Kopak and Chiang

actually implementing a set of such features for use when reading papers in the Open Journal

Systems [31].

2.1.2 Annotations for collaborative work

Annotations have great value not only as a personal tool, but also as a medium for supporting

collaborative authoring and reviewing. Neuwirth et al. found that there was a need for in-

document support for social interaction among collaborators, the workflow of drafting ideas

into writing, and the inclusion of remote users. To address these needs, they introduced the

PREP editor for simultaneously planning, commenting, and displaying content [32]. To

address the need for effective communication among collaborators, many prototypes have

been developed that support in-document communication via threaded conversations in the

form of annotations, usually anchored in some way to the text itself [22,32–35].

In their study of a large corporate workgroup’s use of web annotations for document

collaboration, Cadiz et al. found that there was a need for prioritization and better notification

systems for large groups—people wanted more context in their email notifications in order to

understand what had changed in a document, and whether the change was relevant to them

[33]. Further, participants tended to focus less on low-level details such as grammar because

that type of annotation might be distracting to the larger group. Certainly, in larger systems

that support larger groups it does seem necessary to have the ability to hide less important

annotations. Glover et al. have written a comprehensive overview of other web-based

systems that support annotation [36].

25

Other work has taken collaboration features further, introducing explicit annotation roles and

access control, progress tracking, version control of annotations, one or more status settings

for individual annotations (resolved/unresolved, read/unread, etc.), annotation grouping,

increased group awareness, and support for meta-commentary and decision making within

the document context (as opposed to, for example, having discussion about issues through

email) [34,35,37]. There is also a relevant body of work on e-learning tools that uses

annotations to support collaborative learning, for example, in course materials or online

tutorials. In e-learning applications, annotation research focuses on ways to tag and organize

comments, along with novel ways of displaying the annotations alongside content.

2.1.3 Annotation taxonomies

With the many forms and functions of annotations that exist in different contexts, researchers

have attempted to formalize ways to describe them [25,35,37–41]. In Table 2.1 we present a

condensed and generalized overview of the various properties of annotations that others have

described or implemented.

26

2.2 A List of Features for Future Peer Review Systems

There has been little exploration into how manuscripts could be used more interactively as a

medium for bi-directional information exchange throughout the reviewing process. This

comes as no surprise—manuscripts are usually submitted as PDFs, and writing software that

parses or manipulates PDFs to add information in ways that were not originally intended is

difficult. Placing implementation considerations aside for the moment (with further

discussion in Section 2.3), software that can work with manuscripts on a deeper level has the

potential to improve fairness, efficiency, and the overall user experience of reviewing. We

have identified three broad areas where augmented manuscripts could be used to help

facilitate the reviewing process: automatic processing of manuscript content, using

annotations for interactive private report writing, and shifting collaborative reviewing

Table 2.1: An overview of the various properties of annotations described in the literature.

Property Description

privacy private annotations are meant only for the creator’s use, whereas public annotations
are meant to be shared with other people

scope the extent of the annotation’s audience, e.g., global, institutional, work group, or
personal

formality informal annotations refer to ones that involve tangibly manipulating a document,
e.g., highlighting or marginal comments, whereas formal annotations refer to those
that describe relations or grouping among other annotations or contain meta-data
about annotations

tacitness tacit annotations are highly personal or incomplete representations of work such as
markings or drawings that may be unintelligible to others; on the other hand, explicit
annotations have a clear and readily-understood interpretation

for writing vs.
for reading

some annotations intended for writing tasks, e.g., marking a sentence to quote it
later, while other annotations are meant for reading comprehension, such as
colourful highlighting or underlining in textbooks

transience the lifespan of an annotation; e.g., comments made by a co-author reviewing a draft
are later resolved

context the part of a document the annotation belongs to, e.g., a span of contiguous text, a
numbered section, a geometric region, an image, or the document itself

metadata data or attributes that belong to an annotation, e.g., creator, recipient, timestamp,
category, comment, rating, priority/urgency, resolved state, read status

27

activities onto the document context. With these in mind, we now outline a preliminary list of

features that future peer review systems or external reviewing tools should aim to support.

2.2.1 Automated or semi-automated anonymization

Where possible, submitted documents should be automatically anonymized upon submission.

Author information and bibliographic citations might either be removed or replaced with

anonymous placeholder text or blanked out with a solid overlay. Where possible, special

considerations should be taken to preserve the manuscript’s original spatial layout. Any

hidden metadata stored within the file, such as the name of the owner or their computer,

annotations, etc. should be automatically cleared. For more subtle compromises of anonymity

that are not easily searchable, such as self-references to an institution or previous work,

intelligent algorithms should be developed to detect possible issues and flag them, for

example, by looking for text where personal pronouns are in close proximity to citations. The

author and chair should be notified of these potential problem areas to ensure they are fixed

before the manuscript is seen by reviewers, possibly by ensuring that the authors manually

“sign off” on each detected instance. Only the final anonymized version of the manuscript

should be sent to reviewers.

Current Level of Support: Currently, there is no support for automatically anonymizing

document content. Microsoft Word has a Document Inspector feature that can strip a

document of metadata including personal information, annotations, and hidden content. In a

simple proof of concept, we implemented partial anonymization features for LaTeX

documents via scripts that intercepts the LaTeX chain of commands and generates

anonymous placeholders for bibliographic entries and author information (see Appendix A).

28

2.2.2 Hyperlinking from the report to the manuscript

Reviewers should able to include hypertext links in their reports that refer to specific

locations in the manuscript in order to guide readers of the report to that location. These in-

context links could be used by reviewers to provide backup for their assertions or to point the

author to areas that need to be improved. Similarly, authors could use links to help support

their rebuttal points. Currently, reviewers or authors must resort to tediously written textual

representations of document location such as “see page 4, paragraph 7.” Readers should be

able to click on a hyperlink in the report and be immediately brought to the corresponding

manuscript location. Hyperlinks should be capable of linking to different entities on the

manuscript such as words, sentences, paragraphs, heading, pages, or figures, and it should be

clear upon opening the manuscript to which entity the hyperlink it anchored to, perhaps using

visual effects such as animated glows or highlighting.

Current Level of Support: SyncTeX [42] is an add-on to the LaTeX compilation chain that

allows bi-directional linking between locations in a .tex source file and the corresponding

location in the output PDF, but requires support by the PDF reader and text editor to actually

perform the navigation; this support is not offered by mainstream software like Adobe

Reader. Bi-direction linking using SyncTeX is supported in ShareLaTeX [43], a web-based

LaTeX authoring environment for synchronous editing by multiple authors, and by

PDFTron’s Xodo [44], a web-based PDF viewer and annotator, that supports links to any

annotation in their Slack integration tool [45] (which is currently in beta testing).

29

2.2.3 Specialized annotations for reviewing

A future reviewing tool should support common annotations that people are familiar with,

such as highlighting or anchored notes, but should also support new annotations that are

specialized towards reviewing. For example, a “missing reference” annotation could provide

a direct link to a paper that the reviewer thinks should be included, and could be conveniently

inserted via a lookup from the reviewer’s own BibTeX file. A “checklist” annotation could

be used by reviewers to create a to-do list containing points the author must address in the

next draft (possibly with each point anchoring to a spot or other annotation in the manuscript);

the author would need to check off each point as an acknowledgement that the point has been

noted and addressed.

Reviewers should have the option of classifying annotations by the issue(s) they represent,

for example, a novelty, methodology, or writing issue. This classification could be useful for

providing insight into the frequency of various types of issues, which the reviewer could use

in the summary of their report. For example, if a reviewer notices that 75% of the annotations

they created were classified as methodological issues, they may want to spend a proportional

amount of their report discussing those issues.

For recurring issues in a manuscript, it may be useful to give annotations a formal structure

that relates them to one another (similar to Zheng et al.’s Structured Annotations [35]), or

allow single annotations to be anchored to multiple non-contiguous locations within the

manuscript to avoid repetition for reviewers and to provide a more compact list of comments

to authors. A reviewer should be able to choose which annotations are meant for private

30

reviewing activities (to be purged upon submitting the review), and those that are meant to be

shared either with the author, other reviewers, or the chair.

Current Level of Support: Most mainstream authoring software and PDF

readers/manipulators support only general annotations on documents such as highlights,

comments anchored on contiguous sections of text, or drawing on the document.

2.2.4 Auto-generating textual descriptions of writing errors

Some reviewers wish to help the author improve the writing quality of a manuscript,

especially if they intend to provide an acceptance recommendation and the work is otherwise

high quality except for some aspects of the writing. Often the only way the reviewer can

currently communicate instances of errors to the author is to write out textual descriptions in

the report, for example:

Spelling error on page 6, just below the figure; change “concent” -> “consent.”

The reviewer should be able to capture the error within an annotation (such as a highlight),

possibly indicating the type of writing issue, and the description of where the error occurs

should be auto-generated and appended at the bottom of the report. This feature assumes that

the review process in place only supports textual reports and does not permit an annotated

manuscript to be sent back to the author, which would be preferable, but short of that there

should be support for auto-generating most of the textual descriptions of suggested wording

changes.

Current Level of Support: There is currently no support for auto-generating the descriptions

of writing errors. Reviewers must type out the descriptions manually.

31

2.2.5 Report outlining using annotation visualizations

Acquiring knowledge about a source document and structuring that knowledge is key for the

writing process [27]. People often create annotations (comments, tacit marks, etc.) as an aid

for understanding and expressing their thoughts on the material [28]. This extends to peer

reviewing where a reviewer may mark up a manuscript with annotations to record their

thoughts and judgments that will later be expressed in the summarized report. However, the

way that annotations are scattered around a manuscript is often not conducive to organizing

the issues they represent into an outline. Neuwirth et al. found that it was important for

writers to be able to visualize their notes, perhaps in a graphical network, to facilitate writing

[27].

Reviewing tools should support reviewers in outlining their written report by allowing them

to further organize their annotations (which are anchored within the manuscript) outside of

the manuscript context. They should be able to sort and filter annotations by different

attributes such as the type of annotation or category of issue they represent, manually group

related annotations together and move them into ad-hoc or hierarchical structures or outlines,

and quickly jump between these structured views and a particular annotation’s context within

the document. Annotations containing written content (such as comment annotations) should

be directly insertable into written report (possibly with some massaging afterward to fit

within an existing paragraph). The written report should be augmented into these structured

annotation views so that the reviewer’s organization of their annotations can be viewed in

parallel with their report drafting.

32

Current Level of Support: Previous research has looked into how people can anchor their

thoughts into a set of searchable and classifiable notes for later lookup [27], or provide visual

overviews of the annotations in a document [46]. However, no work to our knowledge has

explored ways these annotations could be manipulated directly into an outline. No

mainstream editing tools support the transfer of in-document annotations into an outline

structure to facilitate report writing.

2.2.6 Sharing annotations with the author

While some annotations are meant for private report-writing activities, others are meant to be

shared with the author and do not necessarily need to be summarized in the written report nor

persist in a shared version of the manuscript that other reviewers can see. Such annotations

may include highlighted instances of writing errors, or notes containing suggestions on how

to better organize or frame the work. The reviewer should be able to designate that certain

annotations are intended for sharing with the author and are thus to be preserved within the

manuscript as part of the delivery of their review to the author, whereas other annotations

could be designated as being private to the original reviewer by default.

Current Level of Support: Most conference and journal PRMS does not allow the reviewer to

upload marked up manuscripts. This prevents reviewers from sharing annotations with the

author. In some journal processes, once a paper has been accepted there can be a back-and-

forth between the editor (or other reviewers or editorial staff) and author where they may

send marked up manuscripts between each other, but this is not the norm during the primary

reviewing process.

33

2.2.7 In-document inter-reviewer discussion

Reviewers should be able to engage with one another in threaded discussions within the

document context, similar to Churchill et al.’s anchored conversations [22]. The discussions

should be able to be anchored to different parts of the manuscript, including sentences,

paragraphs, headings, figures, or some arbitrary coordinates on a page. This could take place

on a centralized source document (similar to Google Docs [47]) or in an asynchronous

manner for offline reviewing. In-document commenting should be augmented with the out-

of-document commenting that already occurs in PRMS. For example, discussions occurring

in the document could still be represented in a list of discussions topics on a page within the

PRMS, but clicking on it might open up the manuscript to the discussion annotation’s anchor

point. For conferences or journals supporting more open reviewing policies, these

discussions could possibly be made public after the reviewing process has completed.

Current Level of Support: The idea of in-document discussions is not new [22,33–35,37,41],

but it has not yet made its way into academic peer review. Some peer review systems support

reviewer discussion through forum-post style discussions built into the web application,

separate from the document (see Section 1.2.5); others support discussion via anonymous

emails. Word supports discussions through single-threaded comment annotations, and LaTeX

has a series of packages (pdfcomment [48], todonotes [49], and TrackChanges [50]) that

allow creation of graphical, marginal, or in-line comments that appear in the outputted PDF.

For both Word and LaTeX, these comments are shared asynchronously, usually by emailing

the output file. Google Docs, Xodo, and PleaseReview [51] support synchronous comment

making on a source document, but are limited to single-threaded comments.

34

2.2.8 Filtering annotations

With a large set of annotations for a document, there should be ways to filter them,

depending on who is working on the manuscript and the context. Reviewers drafting their

report may want to filter their own annotations based on the type of issue (e.g., novelty of the

science, citations to the literature, grammar, etc.) for the current paragraph they are writing,

or filter them by private versus public status to double-check what the author will be able to

see if annotations are shared along with the report. Reviewers engaging in discussion on a

manuscript may want to apply a filter that shows only new comments they have not read or

follow-ups by other reviewers on earlier comments they themselves made. Authors may want

to filter annotations returned to them to separate writing errors from methodological issues

when revising their manuscript. Reviewing tools should provide support for these types of

context-based filters.

Current Level of Support: Word, Google Docs, and Adobe Acrobat Reader include

annotation meta-data indicating who created an annotation and what time is was created.

Word is able to filter annotations by their creator or by type (comments, insertions, deletions,

etc.), and Xodo can filter by the time created or the text written in comments (their beta Slack

integration tool can further filter by recent activity and new messages). However, to our

knowledge no mainstream tools support the classification of annotations and filtering by

semantic types, e.g., methodology issues or novelty, which is especially relevant for peer

review.

35

2.3 The Need for Dedicated Reviewing Tools

Advances in collaborative authoring have led to feature-rich word processors such as

Microsoft Word that have annotation capabilities, and web-based synchronous authoring

tools such as Google Docs and ShareLaTeX that allow collaborators to simultaneously work

on a centralized source document. Although authoring technology has continued to advance

so that tools such as these are used extensively by authors to collaborate on manuscripts prior

to submission, the tools are not especially useful to reviewers who receive only PDF versions

of manuscripts. Furthermore, the annotation capabilities of traditional PDF readers and

manipulators such as Adobe Reader, PDF Annotator [52] or Foxit Reader [53] only provide

general annotation capabilities that are not specialized for academic peer review and, worse

yet, different tools may use incompatible data schemes for storing annotations within the file.

Recently some software has been developed to support annotating and engaging in discussion

on PDFs over the web [44,51], but there is currently no support for integrating annotations

with report writing.

Some dedicated reviewing tools have been developed for very specialized domains. For

example, Mechanical TA was developed for and is used extensively by UBC’s Computers

and Society (CPSC 430) course to support teaching students how to become effective

reviewers by reviewing and grading their peers’ essays [54]. However, to our knowledge

there is no dedicated software for academic peer review of manuscripts that supports the full

set of features and interactions discussed in this chapter. Moving forward, we need to design

specialized reviewing tools for academic peer review to support rich annotations that may be

shared with the author or other reviewers, and that can integrate with existing PRMS systems.

36

2.3.1 Choosing PDF as the standard reviewing medium

From a practical standpoint, it makes sense to choose PDFs as a standard medium for

interactive reviewing because it would be difficult to develop and maintain consistent

annotation and reviewing features across different document preparation systems, especially

when many are proprietary and their plugin functionality may be limited. PDF is the standard

document presentation format that all mainstream document-authoring tools are capable of

exporting to, and as such, future reviewing tools should at the very least support PDF input.

2.3.2 The case for a web-based review tool

We argue that the web is the most suitable platform for developing an interactive peer

reviewing tool because (a) open source JavaScript projects enable rendering PDFs in an

HTML representation, allowing us to implement virtually any type of annotation supported

through DOM manipulation, and (b) a web-based solution could be seamlessly integrated

into PRMS, which are also web-based.

Initiatives for supporting viewing and manipulating PDFs in a browser have led to projects

such as Mozilla’s open source PDF.js [55] and PDFTron’s proprietary WebViewer [56] for

rendering PDF documents in HTML5. While WebViewer aims to support all PDF features

and uses a full-stack infrastructure to generate renderings for HTML5 canvases, PDF.js is a

frontend framework that uses JavaScript to render onto canvases, but does not yet support all

PDF features such as forms or certain methods of rendering. However, unlike WebViewer,

PDF.js uses transparent text overlays as DOM elements on top of the rendered canvas to

enable the user to natively select text in the browser. This access to selectable DOM elements

will be crucial for developing web-based reviewing tools because we can use these elements’

37

text nodes as anchors for annotations using methods similar to those described in Appendix B.

For now, access to text nodes is a good starting point. We hope that the PDF.js development

team and community contributors will continue to add more native HTML structural

representation of PDF documents, such as images or figures, in non-canvas HTML tags.

Developing a web application has a few key advantages over a desktop solution. First, we

can avoid dealing with the internal implementation details of PDFs, such as finding a way to

represent our custom annotation data within a PDF and creating a custom application to

render and create these annotations. Instead, we can store annotations on a web server based

on the necessary information needed to reconstruct the annotations into a rendered web PDF

(without necessarily needing to store the text content of the anchor [25]). Second, browsers

are already designed to support rich interfaces and interactions so all the tools needed to

create functional and visually appealing annotations are mostly already present. Finally, a

web-based solution that operates on DOM elements could be extended and specialized for

other collaborative document work applications that use a browser as a platform.

Embedding a web-based reviewing tool within a PRMS opens up further possibilities. The

tool could be loaded with specific subsets of functionality depending on the stage of review

and who is using it, and only with the annotations that are accessible to the user. For example,

a reviewer conducting an initial review could open the manuscript in “review mode” which

has the subset of annotations used for private reviewing activities, and these annotations

would be the only ones accessible. After initial reviews, reviewers could open up the

manuscript in a “discussion mode” that only supports basic anchored conversations and

makes the annotations visible to but not alterable by the other reviewers. Hyperlinks within

38

pages in the PRMS could act as entry-points into the tool. For example, reviewers could

possibly see a list of discussion topics occurring within the manuscript and clicking on it

could open the reviewing tool at the location of the discussion. Authors reading their

reviewer reports could click on hyperlinks left by the reviewers and be directed into the

reviewing tool, which opens the manuscript at the sentence, figure, or other object specified

by the hyperlink. Perhaps the author could open the tool to see annotations left by all

reviewers (with options for filtering), supplied by the backend of the PRMS being used.

2.3.3 Necessary extensions to PRMS

A number of extensions will be needed to PRMS to embed the reviewing tool, which could

still be developed as its own standalone component. The PRMS will need access control

mechanisms for annotations created on a manuscript. For example, public annotations

created by a reviewer should be visible to the author, but not the private annotations that

were created while reviewing and drafting the report. Similarly, group discussion annotations

created through inter-reviewer discussion may also need to be hidden from the author

depending on the openness of the review process.

Extensions will be needed to support automated anonymization and cycling through flagged

instances of problems. When an author uploads a manuscript and the content is scanned for

possible anonymity violations, the PRMS system will need to manage this extra state to keep

track of whether a paper has been uploaded but not signed off as being ready for reviewing.

The anonymity reviewing tool could be used by both the author and chair to double-check

flagged areas and the PRMS would not send the manuscript to reviewers until this check has

been completed.

39

It may be useful for PRMS to collect data about the frequency and types of annotations

created by reviewers using the review tool, for insight into papers that have significant

problems, or as data for studying the nature of errors or error-finding while reviewing

academic manuscripts. In the former case, if many writing errors are flagged by the different

reviewers, then the chair may want to bring in an additional reviewer or proofreader to help

the author with writing quality. In terms of research, collecting data about the types of

annotations that reviewers create could provide insight about how to improve the tool’s

design. This data collection should be done only with the express permission of authors and

reviewers.

2.3.4 Integration with authoring tools and a potential use case for ShareLaTeX

So far, we have worked under the assumption that the authoring process is completed before

submitting the manuscript to a PRMS. However, there is a case to be made that integrating

authoring tools earlier into the process could yield certain advantages. One such advantage is

access to the author’s source manuscript document. Source documents, such as LaTeX or

Microsoft Word files, contain structure that may not be preserved in the final PDF. For

example, a .tex file contains an author section and can link to a BibTeX file for populating

the bibliography. Easier access to this structural information could make tasks such as

automated anonymization easier and more precise. Rather than attempting to remove

identifying information from a PDF, certain information could be automatically removed

from the source upon submission and that version of the source could then be compiled into a

PDF for reviewing. The IEEE VGTC LaTeX template can already do this to some extent by

allowing the author to turn on a “review” flag that disables the copyright and suppresses the

authors, affiliation, and acknowledgements [57].

40

Integration with authoring tools may also be helpful for reviewers who want to make changes

directly to the manuscript while reviewing rather than creating annotations on an immutable

version. This would be more akin to collaborative co-authoring where a reviewer creates

tracked changes for the authors to accept or reject. This may be most useful for journal

submissions where refereeing is more of a back-and-forth exchange between the authors and

the referee than it is for conference reviewing. Collaborating on the source document in this

way would enable better change tracking and history than taking changes suggested in a PDF

manuscript and transferring them back to the source document. This possibility of integrating

web-based authoring and reviewing tools raises many complex implementation

considerations and questions that are beyond the scope of this thesis.

One environment that could be used for experimenting with integrating authoring tools into

PRMS is ShareLaTeX, a popular synchronous co-authoring web application that enables

authors to simultaneously work together on a LaTeX document. Similar to our proposed

interactive reviewing tool, ShareLaTeX uses PDF.js to output a browser-rendered PDF so

existing reviewing functionality could still take place there. ShareLaTeX has access to the

authors’ BibTeX file, so it could be used to produce automatically produce PDF manuscripts

with anonymized bibliographic entries. We explored some preliminary solutions for

automatically anonymizing PDF manuscripts with access to a source LaTeX document and

BibTeX file, which are documented in Appendix A.

2.4 Summary

Reviewing is an activity that conceptually takes place on the manuscript, yet reviewing work,

including report writing, is done using disparate and oftentimes unsuitable tools designed for

41

authoring or PDF manipulation. The next step for peer review technology is to design

interactive and annotation-capable reviewing tools that overlay directly onto or integrate with

manuscripts and that support reviewing for later report writing. In this chapter, we outlined a

list of features that designers and developers of future peer review systems should aim to

support or expand upon. These features point to the need for a web-based reviewing

application that uses DOM manipulation of manuscripts to support rich annotation

functionality. There may also be advantages to integrating collaborative authoring software,

such as ShareLaTeX, into the reviewing process.

42

: Low-level Writing Errors

The academic peer review process is often referred to as the gatekeeper of science [1,2,4]. Its

primary goal is to ensure that only high-quality research is included in the compendium of

scholarly knowledge and disseminated across the academic community. Not only should the

science described in a paper be good, so should the writing in the paper—after all, the

purpose of a paper is to communicate and share knowledge, and a well-crafted article aids the

reader’s understanding (and enjoyment) of the written work. However, clear explication is

not always a surety in academic writing. As language expert and experienced editor Steven

Pinker noted, “Too few academics have the ideal of clear, classic prose, where the writer and

reader are equals and the reader can see what the writer is seeing” [58].

One particular problem in academic writing is that low-level writing errors such as spelling,

grammar, and formatting errors have a knack for making their way into academic papers and,

much to the dismay of authors, they are often only discovered post-publication. In this

chapter, we discuss what the literature tells us about the types and prevalence of low-level

errors in academic writing, why the peer review process is not robust at catching them, and

some of the existing barriers to addressing this problem. We then propose a practical method

for catching writing errors early on, during the review process, by asking reviewers to catch

low-level errors while minimizing any added work on their part. This is accomplished using

a novel lightweight interface that we describe at the end of this chapter. In the next chapter,

we present a study of the effectiveness of the interface in which we measure error detection

performance.

43

3.1 Writing Errors in Scholarly Publications

Anyone who has been involved in scientific writing, whether as an author, a reviewer, or a

reader, has no doubt experienced the problem of low-level writing errors showing up in every

stage of the process. In this section, we identify the specific issues that we will later try to

address in a tool to support reviewers and authors in the task of identifying low-level errors.

3.1.1 What we know from the literature

There is a small body of work that looks at writing errors seen in scholarly works. Pollock

and Zamora used their automated SPEEDCOP algorithm to search for spelling errors in a

large collection of text from seven scholarly databases [59]. The algorithm detected

incidences of incorrectly spelled words by using dictionary lookups, so it could only account

for incorrectly spelled words but not correctly spelled words that were used incorrectly (often

referred to as malapropisms). They found that 0.2% of all text contained spelling errors, and

that this percentage was consistent across the databases. To put these findings in perspective,

a typical eight-page paper with 43,000 characters could be expected to have as many as 86

misspellings based on Pollock et al.’s estimates. It is important to note that Pollock et al.’s

study (and the materials used) came before the widespread use of spell-checking software,

and thus the findings may not be representative of the frequency of misspellings in today’s

scientific papers, although given our experience reviewing papers we suspect that things have

only marginally improved since their study.

Another highly problematic and prevalent source of writing errors in academia is

bibliographic entries. Lists of references at the end of a paper often include misspelled author

and journal names and incorrect dates, pages or volumes. Sweetland [60] found that in the

44

worst cases, authors have had their names misspelled (or left out), with the misattribution

taking years to resolve. Sweetland provides an extensive literature review on the topic of

incorrect bibliographic entries and reports that in studies of the medical literature, between 29%

and 54% of citations have been found to be erroneous [60]. Unlike spelling errors, which

tend to occur independently, it is very easy for bibliographic errors to be propagated from

source to source.

Beyond spelling and bibliographic errors, there is to our knowledge no prior work that

investigates the prevalence of other types of errors found exclusively in academic writing.

This comes as little surprise, because understanding the types of errors authors tend to make

requires large-scale studies of written materials—a time-consuming task that, at least until

recently, lacks obvious automated solutions. As a result, we are left with an incomplete

picture of how often grammar, formatting, or other types of errors actually occur in scholarly

publications.

3.1.2 Why writing errors make it past peer review

One possible reason that writing errors tend to not be fixed during peer review could be that

the way papers are written has changed during the half-century or so that computer science

has been a recognized discipline. Conferences (which, in some areas within computer science,

sometimes rival journals in prestige and reputation) are fast-paced and have strict and time-

constrained deadlines for submission, review, and final preparation of manuscripts. This

almost certainly leads to a large number of quickly written (and thus error-prone) papers

submitted just prior to the deadline. This is not to say that error-free writing is not

encouraged—in fact, many publication venues explicitly require careful proofreading by

45

authors and they even provide proofreading guidelines and tips [61]. However, unlike

journals, conferences usually lack a dedicated copyeditor for the final version of a paper (this

is due to economic reasons), and thus they do not conduct final quality checks on the writing

except on an ad hoc basis. Furthermore, once a paper has been accepted there may be little

incentive for authors to expend great effort to find and fix potential writing errors because the

written paper is perhaps seen as just an adjunct to the oral presentation that will be given at

the conference. Authors are under time pressure to submit the final version of their papers

and they are aware that little or no further review of the paper will take place. In some cases,

English as a Second Language (ESL) writers may not be capable of easily writing error-free

papers on their own. More importantly, some authors may also hold the false assumption that

any lingering errors in the manuscripts that they submitted will already have been found and

pointed out by reviewers by the time they receive acceptance notices.

Relying only on reviewers to catch low-level writing errors is at best questionable, especially

for conferences. The process for conferences is not only fast-paced and constraining for

authors, but also for reviewers, who usually provide one round of reviews and then perhaps

see rebuttals after which final decisions are made on acceptance or rejection with no middle

ground for paper that are “almost” ready for publication. Reviewers for journals and for

conferences are selected based on their technical expertise in their fields, and, as such, tend to

focus their efforts on issues of research methodology, novelty of the scientific findings, and

potential impact of the work under review. With copyeditors removed from the equation, the

only obvious replacements—the reviewers—often do not have time to perform extensive

proofreading, and are in fact usually not expected to help with improving writing quality

beyond global assessment of an acceptable level of writing quality. While a paper with an

46

egregious number of errors is likely to be rejected, we suspect that strong papers with a

moderate or lower number of errors are likely to make it through the reviewing process, and

that due to the expectations and time constraints of reviewers, not all of these errors are

caught until after publication, if then.

While time constraints are a concern in conferences and may exacerbate the frequency of

writing errors, journals usually spread the reviewing process over longer periods of time and

over multiple reviewing cycles. Having more rounds of reviews and editing should mean that

errors are more likely to be caught, yet even journal papers suffer from post-publication

blemishes. The crux of the issue is that there are fundamental limitations on human

proofreading capabilities, and there will always be some proportion of errors that even a

tenacious author will not find.

There is some tangentially related literature that looks into the performance of proofreaders,

but only to a limited extent and without being the central focus of the studies.

In their work looking at fatigue effects between reading on paper and on a CRT monitor,

Gould and Grischkowsky discovered that proofreaders could find between 67% and 70% of

typographical errors, respectively, with no significant differences between the paper-based

and monitor-based groups [62]. Rouet reports on multiple studies that compared errors

caught by annotating on paper versus using a stylus on an electronic document, and found

that there were no significant differences in proofreading ability between the stylus and

pencil groups nor the types of errors found [63]. In their Crowdproof tool, a Microsoft Word

plugin for crowdsourcing work to be done on a document, Bernstein et al. found that they

were able to catch 67% of spelling and grammar errors using the combined input from a large

47

number of Mechanical Turkers. When this was paired with Word’s built-in spell-checker, 82%

of the errors across five source documents were caught [64]. These results tell us that for an

average single proofreader, we might expect the proofreader to miss at least 30% of the

errors in a manuscript, and that even a group of proofreaders combined can still miss a

significant proportion of errors.

3.1.3 Barriers to asking reviewers to proofread

Despite limitations in proofreading ability, having more passes and more proofreaders ought

to significantly reduce the number of writing errors that persist into the final version of a

manuscript. One solution to reducing errors in academic papers is to ask reviewers to

proofread papers alongside their regular reviewing duties. However, whether writing quality

should be incorporated as a part of peer review is a divisive issue. Not everyone agrees that

reviewers should be responsible for finding writing errors—Nobarany et al. report that a lack

of time in general on the part of reviewers and a dislike for being asked to review a paper

with writing issues are major demotivators for accepting review requests [65]. This is

primarily because reviewers are busy people—often they are professors, graduate students, or

professional researchers who agree to review papers on their own time and typically without

monetary compensation [66]. Proofreading in addition to reviewing can take significantly

more time than simply reviewing a paper, which accounts for the demotivating effect.

There are also significant technological barriers that discourage reviewers from catching

errors while performing a review. Web submission systems such as OpenConf and EasyChair

require that reviews be entered into web forms with radio buttons (for quality-of-reviewer

expertise measures) and text boxes (for the written report). Pointing out low-level writing

48

errors using these interfaces is time consuming. If reviewers want to indicate to the author

that they have found an error, they must write a textual description including (a) what the

error is, (b) where to find the error (e.g., page and line number), and optionally (c) how to fix

the error. For example, a textual representation of a report of a typographical error might

look like this:

Typo on page 5, line 25; [recieved] -> [received]

Pointing out errors using textual descriptions is highly tedious, and a high number of errors in

a document could make many reviewers unwilling to put in the added effort.

3.2 A Practical Solution for Catching Errors during Review

Taking into account the issues just discussed, we can suggest a compromise that may at least

partially address the problem of low-level errors that can be implemented without

excessively burdening reviewers with additional work.

3.2.1 Asking reviewers to catch errors

As we have seen, writing errors do make it into published papers. This phenomenon is not

limited to ESL or inexperienced writers—even highly skilled authors are prone to making

mistakes. So absent professional copyeditors, the peer review process is really the last line of

defence for finding these errors before publication. Although we can continue to recommend

that authors carefully proofread their work or acquire outside assistance if they feel they are

not able to do a good enough job, we cannot rely on them to find all mistakes. If we do not

have dedicated copyeditors, then someone needs to do the work, but who? Some ESL writers

feel anxious about their writing ability and resort to using proofreading services, which can

49

incur a hefty fee [61] (an online search for proofreading services priced this thesis at $540

USD with a one-week turnaround). Another source of external assistance could come in the

form of crowdsourcing the error discovery process [64,67], but this work is in its infancy and

it is not clear that it will scale to the level that would be required for peer review. Instead, we

look at solutions that can be deployed within the existing peer review system and that are

likely to be scalable.

As a first step, it seems reasonable to keep things internal to the existing set of people

involved in peer review and ask reviewers to help ensure writing quality. The inclusion of

separate roles for reviewers, where one reviewer may focus primarily on writing quality, has

been proposed but not fully explored [65]. Any solution involving reviewers must carefully

consider the cost of reviewer time. While some reviewers have expressed a desire, or at least

a willingness, to help with detecting writing errors [67], it would seem that requiring

reviewers to proofread as a general rule is untenable due to time constraints, so if we can

discover ways to decrease the time or effort needed to help detect low-level writing errors,

perhaps we can provide a middle-ground solution that strikes a sensible balance between the

cost of extra reviewer time and the benefits of improvements to a paper. With this motivation,

we explored ways to divide the labour in a way that requires minimal work from reviewers,

yet still results in effective error detection. We identified one technique that capitalizes on a

common side effect of reading—a person’s perceptual ability to notice errors while reading.

3.2.2 Error noticing: an alternative to proofreading

While reading a paper, the reader occasionally comes across a spelling, grammatical, or

formatting error. Unless it is an amusing malapropism or something that seriously impairs

50

understanding, the reader moves on rather quickly. Unlike proofreading, where the reader

enters a cognitive mindset for finding errors, this error noticing activity occurs naturally

while visually consuming text. While we presume that proofreading is much more thorough

in locating errors, it not clear exactly how the two methods of error detection compare in

terms of overall performance if the metric is simple error detection rather than full error

correction. We can also ask how well a group of readers might perform. For example, could a

set of three readers (or reviewers) notice more errors while reading than a single dedicated

proofreader would while carefully scouring the text?

The notion of catching errors simply by noticing them is attractive for peer review because it

implies that only a little extra work might be required from already-busy reviewers, and that

reviewers might not need to alternate between critical reading and proofreading mindsets

because they are not asked to suggest corrections for errors, only to detect and report them.

Being asked beforehand to mark any noticed errors likely would incur some cognitive

overhead, but we speculate that it would be less demanding than actual proofreading if the

reporting mechanisms were very lightweight and did not involve much cognitive effort.

3.2.3 A model of low-level writing error detection

Similar to heuristic evaluations or usability testing [68], the noticing of low-level writing

errors appears to meet the assumptions of a Poisson process: the finding of any given error by

one reviewer is independent of whether it has been found by another reviewer because, in

most cases, reviews are completed independently, and errors tend to be noticed randomly

throughout a reading session. There are some complications with this model. For example,

finding one error may lead to finding similar errors nearby, but we postulate that for the most

51

part errors in a paper are independent and thus their discovery is also independent. Even

though each error may have a different probability of being found, we can still model the

finding of the set of all writing errors in a paper as a single process because Poisson

processes have an additive property—the rate of a combined process is the sum of the

original two processes.

Just as heuristic evaluations yield different usability problem detection rates for different

interfaces [68], we can expect that different proportions of errors will be found in different

papers due to the unique characteristics of each paper. If we have λ, the average proportion of

errors found by a single reviewer, we can use the following formula, adapted from Neilsen

and Landauer’s model for finding interface problems with heuristic evaluation [68], to

calculate the proportion of writing errors we can expect to find with " reviewers.

#$%&%$'"%()%*(+ " = 1 − (1 − λ)1

In traditional descriptions of Poisson processes, λ refers to a count of occurrences, however

here we use it as the proportion of total errors found, as did Neilsen and Landauer [68]. If we

analyse the error detection rates of different papers across a set of reviewers to determine

the	λ for each paper, we can estimate how many reviewers might be needed to find a certain

proportion of errors in a typical paper by using the formula and solving for	", the number of

reviewers.

3.2.4 A mechanism for flagging errors

If the task of error noticing is to be incorporated into peer review by asking readers to flag

errors they notice, then it is crucial to consider the flagging interaction. If the interaction

distracts reviewers from their critical reading task, or simply is not fast enough, then the

52

additional time added to the existing reviewing task could be unacceptable, and it could

reduce the quality of the reviews if too much cognitive effort is required for flagging.

Because of this, the method of flagging errors needs to be simple and fast and it must

minimize any interruptions to the flow of a reviewer’s reading. The flag marked in the

manuscript must also be expressive enough that an author can see where the error is and how

the error might be fixed. With these requirements in mind, a simple text highlighting system

seems like a suitable approach that could work with existing reviewing systems.

Highlighting text (digitally or on paper) is a common way of annotating documents. Picking

up a physical highlighter to directly mark a section of text on paper is natural and

straightforward; there is no confusion regarding the mapping from gestures to highlight

marks, or the nature of feedback to authors. Digital highlighting is not as natural. A user must

typically select a button to enter a highlight mode, which may be in a toolbar off of the

document, or right-click a selection of text to open up a context menu with an option for

creating a highlight. Without proper consideration for maintaining the reviewer’s flow of

reading, different interactions for creating digital highlights have the potential to be a major

distraction during reviewing. To be prudent, we opt for a “no-menu” approach [25] to

highlighting to minimize distractions. Our goal is to make digital highlighting as natural as

highlighting on paper with a physical highlighting pen. We thus adopt a “modeless” approach

in which the only action (gesture) a reviewer can take within the manuscript is to highlight

selected portions that contain low-level errors.

Highlights provide a tradeoff between simplicity and expressivity. Highlighting errors would

be simple for reviewers, but authors also need to understand what the errors are if this

53

flagging method is to be effective. Highlights are explicit in that they describe a precise

location or range in which authors can locate the error, but they are tacit in that they are

simply marks that are open to interpretation and may not immediately reveal the type or

nature of the error. This tradeoff between simplicity and expressivity takes the burden off

reviewers to describe flagged errors but transfers the responsibility of deciphering the nature

of the error onto authors. This seems to be fair: reviewers can offer assistance by pointing out

errors, but authors will be expected to identify and fix them. We postulate that for the most

part, a highlight containing erroneous text is enough information for an author to deduce the

nature of the error; for ambiguous annotations, an author could consult fellow authors or

colleagues for a second opinion.

Having selected a technique for finding errors (error noticing) and for flagging them

(highlighting) we explore in the next chapter whether this is a useful technique to include in

peer review, by studying how effective it is at finding errors, and determining whether

reviewers are likely to find it an acceptable amount of added work given the perceived

benefit it provides. In the next two sections, we describe the materials that we developed and

the prototype we implemented for use in the study.

3.3 Materials for Testing Error Detection Performance

Having more closely examined the problem of low-level writing errors in published

academic papers, and having devised a low-effort technique that could mitigate the amount

of errors that make it through to publication, the next logical step is to test whether our

noticing and flagging technique can be a viable alternative to proofreading. In any

experiment testing low-level writing error detection, we must first obtain a suitable set of

54

paper materials with errors to give the study participants. However, obtaining these materials

is not straightforward. In this section, we discuss considerations for preparing such materials

while attempting to preserve ecological validity.

3.3.1 Generating papers with errors

To test the error noticing capabilities of reviewers, it would be ideal to have a collection of

real manuscripts that have been submitted for review, but not yet reviewed, with detailed

knowledge of every writing error occurrence within the papers, for use as experimental

materials. Obtaining such a collection of manuscripts would require either a large number of

authors to supply earlier drafts of their papers, or some coordinated agreement between a

conference or journal venue and its submitters, perhaps by asking submitters to opt in to

share a copy of their originally submitted draft.

A secondary option for acquiring paper materials is to use already-published versions of

papers and search for errors. Regardless of how the papers are obtained, the proofreading

effort required to catalogue each error instance in each paper would be substantial.

Furthermore, attempting to find enough papers to satisfy certain control conditions for an

experiment (e.g., the count of errors in the paper or the frequency of certain types of errors)

seems untenable without longer-term and coordinated efforts. Automated approaches could

help with locating certain errors, but only if the experiment was predominantly concerned

with the types of errors that can be detected by these algorithms, which tend to be limited to

spelling and syntactical errors.

An alternative solution is to use existing published papers and manually insert errors into

them, allowing us to control for both the frequency and types of errors. This approach is

55

convenient, but there are complications. Artificially introducing errors into a paper requires

considerations for maintaining ecological validity—inserted errors should be representative

of the types and frequencies of errors that we see in real papers.

Unfortunately, the research literature on the types of errors seen in published academic

literature only provides us a limited picture: we know that misspellings [59] and errors in

bibliographic citations [60] are common, but there is no work to our knowledge that analyses

other types of errors in academic writing. There is a body of work, however, that looks at the

types of errors seen in ESL contexts. For example, some studies have examined errors

commonly made by Japanese or Cantonese speakers [69–71]. These analyses often result in

distributions of error types. How representative these distributions are of the distributions of

errors in published academic papers is unclear. We assume there are some significant

differences. But without further data, the best we can do for now is to take these distributions

and adjust them to what seems reasonable for academic papers, based on our own experience

reviewing (and writing) papers that have writing errors in them.

Once we have a set of types of errors (a taxonomy) along with a reasonable distribution for

the error types, we can begin inserting errors into papers. For each error type we draw from

the distribution, there are two main considerations: what form will the error take and where

will it appear in the paper. We chose the following approach: choose a random area of text

and try to “massage” the error into the sentence, heading, or figure text in a way that seems

as if it could reasonably have been an error, perhaps drawn or adapted from a set of real error

examples of the same type of error.

56

The particular taxonomy of errors we use for error generation largely depends on what kind

of writing we wish to simulate. For example, to be representative of the types of errors

commonly made by ESL writers, we could include categories of errors that this is

demographic prone to making, such as “Overuse of affixes,” “Duplicated comparatives or

superlatives,” “Incorrect order of adverbials or adverbs” etc. [70]. In the case of academic

writing, where little is known about the frequency of different types of errors, it is probably

best to start with a more general and encompassing taxonomy with categories such as

“Misspelling,” “Sentence Structure,” and “Punctuation” until more research and data

collection has been done on the errors that occur in academic papers. As an initial step, we

developed such a general-use taxonomy for generating errors.

3.3.2 A taxonomy of writing errors for academic papers

To insert errors into academic papers in a more ecologically valid way, we developed our

own taxonomy of errors from which to draw examples (Table 3.1). The taxonomy consists of

nine error types ranging for low-level misspellings to higher-level issues such as invalid

sentence structure. Some of the lower-level errors such as article and verb form errors were

adapted from a study on ESL errors [71], while the remaining categories were added to

provide more complete coverage of the error types we had previously seen in our own and

our colleagues’ papers.

57

We had two main requirements when designing this taxonomy: (1) it should provide broad

coverage of the types of errors seen in papers, and (2) it should be communicable to study

participants (reviewers). The first requirement was to ensure we encapsulated the full range

of errors that we might expect to see in an academic paper. In this sense, we took a top-down

approach, looking at high-level error types and organizing them into categories. This is in

contrast to in-depth taxonomies seen in the linguistics literature, which attempt to classify

errors from the bottom up [72]. The second requirement (simplicity) is important so that we

can elicit feedback on our taxonomy from participants. Most people are not familiar with the

Table 3.1: The error taxonomy we designed for choosing errors to manually insert into papers, and
for providing a simple categorization scheme for reviewers.

Error Type Description Example

Misspelling Spelling mistake or typographical slip, including
missing or added letters, or duplicate words

I had th cake we made
yesterday for breakfast.

Word misuse Homophone confusion, malapropism, or
incorrect usage of a word

There methodology is highly
sophisticated.

Article error Incorrect usage (or lack thereof) of the three
articles: a, an, or the

An banana is actually a type of
berry.

Verb tense or
pronoun error

An error with the form of verb, pronoun, or
agreement between the two

I have seen him yesterday.

Your selection of wines all
tastes excellent.

Possessive or
plural error

Errors related to the plural form of a word or the
use of apostrophes to show possession

The population of octopi in the
Pacific is steadily increasing.
[octopodes or octopuses]

Todays’ sushi is half-price!
Punctuation Missing or improper use of punctuation marks,

such as separating dependent clauses with a
semicolon

The door opened; because the
man pushed it. [2nd clause not
independent]

Sentence
structure

Incomplete or poorly structured sentences,
missing a verb, or sentence splicing

The humid air today in
Vancouver. [not a clause]

Overly
informal
Writing

Writing uses contractions, informal
abbreviations, colloquial phrases or clichés, is
written in the first person

These results can’t explain the
discrepancies.

Formatting Any issues related to the appearance or structure
of the paper: extraneous spacing, inconsistent
header fonts or sizes, mislabeled figures or
section numbers, etc.

There is no extraneous space in
this sentence.

58

multi-level and highly specific terminology used to describe errors in the linguistics literature.

Because our taxonomy is experimental, we wanted to able to have a dialogue about it with

potential study participants.

3.4 A Simple Reviewing Tool with Error Flagging

In order to test how well reviewers can detect errors in academic papers, we designed a web-

based prototype to support reading and flagging errors in papers using a highlight-based

annotation mechanism. We implemented the prototype using HTML/CSS/JavaScript because

of the relative ease of creating highlights using the <mark> tag and we used a simple web

server to provide HTML representations of papers. The interface is split into two main

components: the Document view, where the user can read and annotate a paper, and the

Reviewing view, where the user can rate a paper on various dimensions of quality. The user

can switch between the two views as often as desired before clicking a button to submit the

review.

3.4.1 Document view

The document view (Figure 3.1) provides a traditional vertical scrolling view of a paper. The

user can create, select, or delete highlights over any contiguous segments of text on a page.

An issue counter in the top-right counts the number of highlights (issues) in the document—

clicking the adjacent up or down arrows cycles through the created highlights and selects the

next or previous highlight, centering the viewport on that highlight’s coordinates. The up and

down keyboard keys perform the same cycling operation. A secondary feature allows

selected highlights to be classified and colour-coded into predefined categories (discussed

below). The review button in the top-right corner places the user in the reviewing view.

59

HTML offers no native support for paginated documents. To simulate the look and feel of

conference-style papers typically seen in computer science, we created an HTML/CSS

template with a double-column paper format. Due to the lack of pagination support, papers

imported into the reviewing tool had to be manually broken up into pages.

Converting papers from a PDF to our HTML takes a considerable amount of manual work:

copying and pasting text from PDFs often results in spacing and text artefacts that need to be

manually fixed. We could find no automated tools that were sufficient for converting PDF

papers to HTML, nor any that supported pagination.

Figure 3.1: The document view in our web-based prototype, where participants can highlight
arbitrary contiguous segments of text. The currently selected highlight is outlined in a red border.

60

In order to highlight a segment of text using our reviewing tool, the user clicks and drags the

mouse to create a text selection and presses the spacebar to create a highlight. Upon creation,

a highlight becomes selected—indicated by a red border along the top and bottom of each

row of text. Any highlight will become the selected highlight when clicked with the mouse

pointer, deselecting all other highlights. A highlight can be deleted by selecting it then

pressing the delete key. Highlights can be as small as a single character, or can span several

paragraphs or other DOM elements. We arbitrarily chose a light shade of green for the

highlights because we felt this was more pleasing to the eye than the default neon yellow

used by our browser.

Our choice of highlighting interaction (text drag to select plus spacebar to highlight) was

based on a couple of factors: we wanted a simple, no-menus approach [25] that did not

distract the reviewer from the reading task, and we wanted the interaction to be simple and

quick in order to reduce the perceived effort by busy reviewers. Discussions among our

colleagues led to two simple interactions: click-and-drag to highlight, versus the same

interaction plus an additional spacebar click to highlight. We noted that some people like to

“busy-select,” i.e., play with the cursor and select text while reading, and we reasoned that it

would be irritating if every selection resulted in a highlight, so we decided on the space bar

method to highlight the currently selected text instead of the simpler click-and-drag.

In addition to a basic highlighting mechanism, the tool also supports the categorization of

highlights. If categorization mode is enabled, a popup (Figure 3.2) appears on the margins of

the page whenever the user selects a highlight. This popup is vertically aligned with the

highlight and provides a number of colour-coded error categories from which to choose; the

61

categories correspond to the error taxonomy we previously described. Choosing a category

changes the highlight to the corresponding colour. Help text is accessible for each category

by hovering the mouse over a question mark icon—the hover text provides a description of

the error type along with examples. In addition to the issue counter and cycle buttons, when

categorization mode is enabled, a second counter appears in the top bar; it counts and cycles

through the highlights that have yet to be classified. All unclassified highlights use the

standard green colour by default.

At the DOM level, we used HTML5 <mark> elements that surround text nodes in order to

create highlights. JavaScript functions make it easy to acquire the DOM range object for a

user’s text selection and surround it with the mark element. However, when a text selection

spans the text from multiple HTML elements, for example, a selection starting in one

Figure 3.2: In categorization mode, the classification box appears in the margins next to a selected
highlight. Choosing a category re-colours the highlight. Hovering over the “?” icon reveals a
description of the error type.

62

paragraph element and ending in the following paragraph, creating the highlight is slightly

more complicated because surrounding the selection with a mark element will break the tree

structure of the DOM. To solve this problem, we generate a list of all the text nodes from

each element comprising the text selection and create mark elements around each of those

nodes. In this case, a single highlight will have multiple mark elements, but we treat them as

a single highlight by assigning an identification number in a custom data attribute in each

mark element. This way, when a user selects or deletes one of the marks, they are all selected

or deleted. For a quick overview of how DOM highlighting works, see Appendix B. The

described marking implementation also works for overlapping highlights, but it does not

directly provide a suitable visualization mechanism—a topic discussed further in Chapter 5.

3.4.2 Reviewing view

The reviewing view is where the user completes their subjective review of a paper (Figure

3.3). They can switch between this view and the document view at any time during the

review session by clicking the button in the upper-right corner. The review consists of 12

Likert items that gauge the user’s opinion on the potential impact of the research, the

methodology used in the research, the writing quality of the paper, and how qualified they

feel they are to review the paper. The bottom of the review contains a text-box for open-

ended general comments. A full list of the Likert items can be found in Appendix C.1. Once

the review is complete, the user can press the “Submit Review” button at the bottom of the

page.

63

3.4.3 Annotation storage and retrieval

In order to analyse the errors that participants find, we need the ability to store and reload

their highlight annotations. After a participant presses the submit button in the reviewing

view, the application generates a JSON file containing all of the highlights. More specifically,

the file stores a set of child element indices representing the starting and ending elements that

the highlight intersects, relative to the root DOM element. In addition to the element offsets,

we store two more indices that represent the textual offsets within the element for the start

and end of a highlight, along with extra meta-data such as timestamps, whether the highlight

has been deleted, and how it was categorized (if at all).

Figure 3.3: The reviewing view provides a simplified review form with a set of radio buttons for
various levels of quality, along with a textbox for open comments at the end.

64

Annotations can be loaded from a JSON file back onto the original paper by following the

child offsets from the root element and re-inserting marks at the appropriate text offsets. One

crucial implementation consideration is to ensure that element and text offsets are stored such

that they are independent of other highlights. This ensures that the child index offsets are not

dependent on existing highlight mark elements, allowing them to be reloaded in any order

and allowing for multiple sets of highlights to be loaded at the same time so that reviewers

and authors can view all of the errors detected in a paper, possibly by multiple reviewers.

3.4.4 Related work in web annotations and highlighting mechanisms

Using the browser to implement research prototypes involving web annotations is not new. A

number of other researchers have taken this approach [25,27,31,33,34,41,73,74]. A great deal

of work has been done not only on implementing annotations on a webpage within a browser,

but also on how annotations can be distributed or shared across the World Wide Web.

Nevertheless, there are still a lack of different standards and protocols for doing so [36].

Some organized efforts such as the W3C Web Annotation Working Group are underway to

standardize annotation representation, storage, and accessibility across the web [75]. The

central research focus here is on how annotations can be stored and retrieved separately from

the base document (which may contain copyrighted material) [25], how they can be

abstracted away from a specific document format [25,38], and how annotations should be

repositioned or orphaned in a changing document [33,73]. One application directly related to

peer review is the implementation of a set of reading tools for use in the Open Journal

Systems [31].

65

Highlighting is one of the most common and simple digital annotation features, but a number

of design and implementation considerations can arise: for example, how to create the

highlight, or how to disambiguate overlapping highlights [31]. To create highlights, most

document authoring and document reading software, including a number of research

prototypes, uses a simple click and drag interaction to select text with a separate button to

highlight the selection, sometimes via a right-click context menu. One method commonly

used to visualize overlapping highlights is to make overlapping regions a darker shade of

colour [74].

3.5 Summary

The error noticing and flagging tool we developed is a prototype. It is intended to be a

minimally intrusive interface that supports lightweight annotation of academic papers

through simple highlighting, with the additional option of assigning colour-coded categories

to highlighted text. In the next chapter, we describe a controlled laboratory experiment that

assesses the prototype in terms of our goals. The experiment also serves to partially validate

our Poisson distribution assumption about error detection and provides an estimate for the

number of reviewers that might be required to reliably detect a desired percentage of the

errors present in a document.

66

: A Study on Catching Writing Errors

In this chapter, we present a preliminary investigation into how we can use computer

interfaces to improve the quality of writing at the level of minor low-level writing errors

(correct spelling and grammar, and elimination of formatting errors) by augmenting existing

workflow in the peer review process to include support for flagging low-level writing errors.

Adopting the idea of “error noticing” from Chapter 3, we conducted a formal laboratory

study using prototype software to test whether simple “highlighting” of low-level errors

noticed during review would be useful (in terms of identifying significant percentages of

actual errors) and acceptable (in terms of it being likely that reviewers will be willing to use

the software). The results from the study are promising. Having three or more reviewers

seems to be adequate to detect 80% of the errors in the test documents if reviewers are

properly primed about the task, and participants in the study indicated a willingness to use

software that supports highlighting low-level errors during the reviewing process.

4.1 Method

We conducted a study that measured how effective reviewers are at noticing and flagging

low-level writing errors during a peer-reviewing task for papers chosen from the literature,

along with their subjective opinions on the usefulness and acceptability of including such

processes in real peer review sessions. A key variable in the experiment was whether

participants were primed with an initial error-classification task before completing their

reviews. In order to capture error noticing in an ecologically valid way without participants

resorting to proofreading, we included deceptive elements in the experiment to delude the

67

participants into believing that they were performing a legitimate peer reviewing task on the

test papers that they were given.

4.1.1 Participants

Our participant pool consisted mostly of graduate students in computer science, engineering,

and library sciences at the University of British Columbia. Participants were required to have

native English speaking ability, and to not be colour blind because our interface uses a range

of colours for highlighting text. We chose to recruit graduate students because they were

more likely to be at least familiar with the academic peer review process than undergraduates

or the general population. Faculty researchers were also invited to participate, but we were

unable to recruit any due to their busy schedules.

We required that participants be from fields related to Human Computer Interaction (HCI)—

computer science, engineering, and information science—so that the content of our chosen

set of test papers would be more accessible and familiar to them. Our experiment could have

been run with participants from any field of study, but the need to select a set of test papers

necessarily limited the pool of reviewers from which we could recruit. Although noticing

writing errors in a paper does not require expertise in any particular field, we had to convince

participants that they were actually performing a reviewing task; recruiting participants from

unrelated fields to review HCI papers would likely have aroused suspicion about the true

nature of the experiment.

We recruited 24 participants (9 female, 15 male) from the graduate student population in

engineering, computer science, and library sciences at UBC; they consisted of 23 graduate

students and 1 undergraduate (male) who had taken graduate-level courses. The participants

68

had relatively little experience reviewing papers for conferences or journals: 16 participants

had never formally reviewed a paper, 6 participants had reviewed one to five papers, and 2

participants had reviewed over sixteen papers. Each participants was compensated $20 CAD

for their time.

4.1.2 Apparatus and materials

We selected a set of published papers from the field of HCI and prepared them for the

reviewing task by converting them into a format readable by our annotation tool and inserting

errors into them. We created a simplified report form to be completed after the reviews,

along with a post-test questionnaire (Appendix C.1).

Papers

We chose four published short (4-5 page) HCI papers to use in the reviewing task in the

experiment, and one unpublished paper for the classification task. We specifically chose HCI

papers in order to widen our participant pool: HCI is a very multidisciplinary field so papers

tend to be more accessible to those with non-computer-science backgrounds. One of the

papers was published in the proceedings of The International Conference on Tangible,

Embedded, and Embodied Interaction (TEI), 2011. Two papers were published in the

proceedings of The SIGCHI Conference on Human Factors in Computing Systems (CHI),

2013. The fourth paper was published in the proceedings of The International Conference on

Human-Agent Interaction (iHAI), 2014.

We manually converted each paper into an HTML representation for viewing and annotating

in our web interface, preserving the look and pagination as closely as possible. Following

Gould and Grischkowsky [62], we carefully crafted and inserted a set of writing errors into

69

the papers according to the error generation methodology described in Section 3.3.1. We

selected error types from the taxonomy we developed and came up with examples that would

fit in various locations in the paper. In the cases where we discovered already existing errors

in the papers, we elected to use those instead of generated errors. We explicitly coded each

error along with its corrected version as HTML element pairs, one of which was always

hidden from view. Adding errors as HTML entities allowed us to generate papers with

different numbers of errors by either disabling or enabling a corrected version of each error

instead of the error itself. The error HTML elements also made it easier to identify when a

participant had found an error by enabling us to visually identify overlaps with the highlights

they created.

Each paper came in two versions: high-error and low-error. The high-error versions had 40

errors each, while the low-error versions had 20 errors each. The low-error versions

contained a subset of the errors from the high-error versions of a paper, but were chosen such

that the relative frequency of the error types remained the same. For example, if the high-

error paper contained 25% misspellings, the low-error version also contained roughly 25%

misspellings. We chose to use two different versions of each paper in order to test whether

the frequency of errors had an effect on error noticing performance. The low-error version of

a paper was simply the high-error version with the selected half of its errors disabled.

The four published papers we chose for the reviewing task were code-named AndroidFaces,

HapticDesign, Notifications, and Password. The paper for the classification task was code-

named Ephemeral; it was obtained from a colleague and was undergoing review at the time

of the study. Ephemeral, Notifications, and Password described user studies measuring

70

performance on various computer interfaces, AndroidFaces described a social human-robot

interaction study, and HapticDesign offered guidelines for designing haptic interfaces.

Because of the lack of literature on the distribution of error types in academic writing, and

because we know misspellings are common [59], we devised a custom error type distribution

that seemed reasonable to us for inserting errors. Figure 4.1 shows the distributions of

inserted error types in each paper. An example of one low-error paper with the inserted errors

highlighted is provided in Appendix C.2.

Figure 4.1: Distribution of error types in each paper by percent. The high- and low-error versions
used the same distribution.

0 5 10 15 20 25 30 35

Misspelling

Word misuse

Article error

Verb tense/pronoun error

Possessive/plural error

Punctuation

Sentence structure

Overly informal writing

Formatting

Percentage of error type in paper

Distribution of Inserted Errors

Password AndroidFaces HapticDesign Notifications Ephemeral

71

Review form

The review form consisted of twelve Likert items that probed participants’ subjective

opinions on a paper over various dimensions of quality, along with a textbox at the end for

additional comments. Although real reports used in peer review typically involve a series of

written components, we elected to use this more simplistic style of review for two key

reasons: having fewer written questions allowed participants to complete two reviews in the

allotted time, and having a simplified review played an important role in our deceptive

narrative. This deception and the reasons why it was necessary are described in detail in

Section 4.1.4. The full list of questions included in the review is provided in Appendix C.1.

Questionnaire

We designed a post-test questionnaire to elicit participants’ subjective opinions on their

willingness to perform error noticing while reviewing, its overall usefulness of the error

noticing idea, and their experiences using the annotation tool. The questionnaire consisted of

demographics questions, eight Likert items, and a single open-ended question for general

comments. The full questionnaire is provided in Appendix C.5.

Workstation

The tasks were performed on a desktop computer running Windows 8 with the annotation

interface running in Google Chrome. Participants viewed the interface through a widescreen

monitor (2560 x 1440 resolution) and the default zoom of the browser was such that they

could see approximately one full page of a paper at a time.

72

4.1.3 Tasks

Participants completed two tasks: a paper reviewing activity and a classification activity. The

participants were randomly assigned to one of two equal-size groups. Participants in the

primed group first performed the classification activity followed by the paper reviewing

activity. Unprimed participants completed the two tasks in the opposite order.

Reviewing Task

In the reviewing task, participants were given two papers to read and review using our

reviewing and annotation software prototype that was described in Section 3.4. They were

asked to highlight any low-level writing errors they encountered while reviewing and to

complete a review report using a form that was provided when they were ready. After the

first paper review was completed, the prototype enforced a one-minute break before loading

the second paper.

Classification Task

In the classification task, participants were given a paper with a set of pre-highlighted writing

errors. They were asked to look at each highlighted error and determine what type of error it

was. Classification was done by clicking on the highlight to show a classification popup

menu (Figure 3.2) and selecting a category corresponding to the error taxonomy discussed in

Section 3.3.2. Two additional categories were present: “Miscellaneous/Other” and “Not an

error,” in case participants felt that an error did not fall into any one of our pre-defined

categories or felt that it was not an error at all. Participants were not required to carefully

read the classification paper. Examining the surrounding context of each highlight was

73

intended to be enough to correctly classify the error. This was explained to the participants.

Each participant received the same paper for the classification activity.

The classification task served three purposes. First, for the primed group that performed the

classification task first, it allowed us to see whether an initial task in reasoning about how to

classify errors would have an effect on their error noticing performance in the reviewing task

that followed. We postulated that this task would set their expectations for what we

considered to be a low-level error and would thus increase the number of errors they found.

Second, the classification task allowed us to measure the reliability of our writing error

taxonomy by measuring agreement with our internal classifications (each highlight had meta-

data, hidden from the participants, indicating which category we believed it to be in).

Although the classification task would not have an effect on unprimed participants who

performed the classification task after the reviewing task, we still had them complete the task

in order to gather additional data on agreement between participants’ classification and our

internal classification.

Third, the classification task could give us a picture about how participants feel about the

classification interaction itself, and whether it might be useful (or overly tedious) to include

as a feature in future reviewing interfaces. We also wanted to test our assumption that adding

more work for reviewers—by having them classifying errors and highlighting errors—would

make them less willing to provide writing assistance during peer review.

4.1.4 Procedure

Each participant was randomly assigned to one of two experimental groups: primed or

unprimed. Each group contained 12 participants. Those in the primed group first performed

74

the classification task, followed by the reviewing task in which they reviewed two papers.

Conversely, participants in the unprimed group first reviewed two papers and then performed

classification. Each participant was given one high-error version of a paper, and one low-

error version of a different paper. In total we had eight paper-versions—four papers each

with high-error (40) version and a low-error (20) version—counterbalanced such that each

experimental group saw all twelve orderings of two papers chosen from four papers, but with

the opposite high-low patterns. After the experiment, participants were debriefed and asked

to complete the post-test questionnaire. The experiment took approximately 1 to 1.5 hours.

Participants received a $20 CAD honorarium for their time. The experiment was approved by

the UBC Behavioural Research Ethics Board and we received permission to use deception in

the experiment.

After participants arrived, they were seated in a room with a computer desk. The

experimenter told the participant the following story (a falsehood) about the purpose of the

experiment, explaining that the papers being reviewed would be used as materials in an

upcoming course for teaching graduate students how to do peer review. It was explained that

the reviews would help the course organizers filter a variety of weak and strong papers to be

included as course materials.

“We are currently designing a course that’s meant to teach new grad students in

computer science how to do effective peer review, but first we need decide on which

materials will be used for weekly readings and assignments. We have gathered a large

collection of candidate papers and we would like you to use our tool to rate them based

on how suitable you feel they are for the course, and give your subjective opinion on

various dimensions of quality. Once we have gathered enough responses from people,

we will be able to filter which papers we want to use more easily, with some strong in

75

some areas and weak in other areas, to facilitate learning. Another purpose of this

experiment is that we would like to test out the software we designed, since this rating

and filtering tool could be used for other fields as well.”

The experimenter then introduced the participant to the paper reviewing and annotation tool.

For participants in the primed group, the experimenter explained that he wanted to first test

out the classification “side feature,” and took care to downplay its relevance to the overall

task the participant was being asked to perform.

“Before we begin the main task, I would like you to run through one of the side-features

we are testing. Here you can see there is a paper with a bunch of highlights. Each

highlight indicates that there is some kind of low-level writing error. If you click on one,

you’ll see that this classification box pops up and you can choose which type of error

you think it is. If you are not sure where it belongs, you can hover over the question

mark to see examples of each type of error. I have also printed out the descriptions here

if you prefer that. I would like you go through each of these errors and classify them.

You do not need to really read the paper, just the context surrounding the errors.”

After the priming task for those in the primed group, and as the first step for those in the

unprimed group, the experimenter instructed the participant to review two papers chosen

randomly by the software. In an effort to further convince a participant that we were

primarily interested in the reviews (and not finding errors), the introduction to the task was

carried out with the review screen initially opened up and visible. The experimenter

reiterated that it was fine if a participant did not feel fully comfortable reviewing the paper,

and that the subjective opinions would be helpful to us. Our intention in doing so was to

reduce any discomfort (and suspicion) associated with a participant being asked to review a

paper the participant did not feel qualified to review.

76

After describing the reviewing view in the prototype, the experimenter showed the

participant the paper view. The experimenter explained that, because many of the papers we

had acquired were rough drafts or were even unpublished, the drafts might contain some low-

level writing errors such as spelling or grammar issues, and that we would like help in fixing

the errors before the course began, since we did not want the presence of writing errors to

skew future students’ perceptions of the papers. The experimenter then showed the

participant how to create highlights and asked the participant to mark any errors the

participant happened to come across while reviewing the paper, emphasizing that we did not

want the participant to spend time proofreading.

Participants were left alone in the room while they performed the classification and

reviewing tasks (in either order). The experimenter re-entered the room between tasks to

explain the second task. The tasks were performed using the desktop computer and software

described earlier. Once participants completed both tasks, the experimenter re-entered the

room and debriefed the participant about the real purpose of the experiment along with all

elements of deception. Participants were then paid the honorarium and were asked to

complete the post-test questionnaire. The questionnaire was administered after revealing the

deception because it contained questions related to the highlighting activity which we had

earlier deemphasized, and we wanted to get their opinions on the real error-finding task.

4.1.5 Hypotheses

We had five hypotheses about the outcome of the experiment. The numeric thresholds we

chose were based on our pilot testing and extrapolations from what we read in the literature.

77

H1. Three primed participants will be able to collectively catch at least 75% of writing

errors in a paper, surpassing Gould and Grischkowsky’s single proofreader performance of

70% [62].

H2. There will be no difference in error detection rates between the high-error and low-

error versions of the papers.

H3. Primed participants will detect more errors than unprimed participants.

H4. Reviewers will agree with our taxonomy at least 85% of the time.

H5. Reviewers will be willing to flag errors in real peer review sessions, but will be less

willing to classify them.

4.2 Results

We first examined whether the data supported our assumption that error noticing was a

Poisson process. We then examined whether priming, error frequency, or error type had an

effect on percentage of errors noticed, after which we looked at how well our taxonomy of

error types matched participants’ classifications. Finally, we looked at participants’ responses

to questions about their willingness to use the prototype for real reviewing sessions.

4.2.1 Poisson model fit

The Poisson model described in Section 3.2.3 appears to fit the error noticing data quite well.

Table 4.1 shows the average proportion of errors found by a single reviewer in each version of

each paper, along with the fitted proportion in the model.

78

The fitted proportion appears to consistently underestimate the actual single-reviewer

proportion by an average of about 3.5%. This may be because certain errors were more

difficult or impossible for participants to find, and thus once the easier problems were found

the rates of finding more errors dropped off. We conclude that for our purposes error noticing

is well approximated by a Poisson process model

Figure 4.2 shows the fitted models and the actual data points from the experiment. To

calculate each data point (the proportion of errors caught by X reiewers), we first calculated

the proportions of unique errors caught by every combination of X reviewers, then averaged

Table 4.1: Results of fitting the error-noticing data to our Poisson model. “L” indicates the low-error
frequency of a paper and “H” indicates the high-error frequency. Note that the papers do not contain
exactly 20 and 40 errors: this is because participants found existing errors in the papers that we had
not detected. These errors were included in the analysis.

Paper Subjects per
Paper

Total Known
Errors

% of Errors found by
one reviewer

Model

Best fit
λ R2

AndroidFaces (L) 6 26 0.25 0.22 0.970

AndroidFaces (H) 6 46 0.39 0.37 0.973

HapticDesign (L) 6 26 0.50 0.46 0.980

HapticDesign (H) 6 46 0.29 0.28 0.999

Notifications (L) 6 22 0.27 0.23 0.935

Notifications (H) 6 42 0.32 0.26 0.920

Password (L) 6 26 0.27 0.22 0.898

Password (H) 6 46 0.27 0.24 0.970

79

those proportions to obtain a single data point. As with finding bugs in different usability

problems, the λ value varied across the different papers, ranging from just over 0.25 to 0.50

for a single reviewer.

The average single-reviewer proportion of errors found across all papers for the primed

group (λ=0.454) was higher than the unprimed group (λ=0.186). When adjusted down by

0.035 to better fit the model, these rates become (λ=0.419) and (λ=0.151) respectively.

Plugging these values into our model shows that a group of three average reviewers

reviewing the average paper can be expected to find 80.4% of all writing errors, exceeding

our usefulness threshold of 75% and confirming H1 (see Figure 4.3).

Figure 4.2: The average proportion of errors caught for every set of X reviewers (black and white
markers) compared to the fitted Poisson model (line), for each of the eight paper-versions.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

M
ea

n
Pr

op
or

tio
n

of
 E

rr
or

s

Number of Reviewers

Proportion of errors caught across all paper-versions

80

The curve showing the primed participants’ performance appears to be much higher than the

per-paper curves in Figure 4.3, and similarly the curve for unprimed participants’

performance appears to be much lower—this is because the data for each paper contained a

mixture of primed and unprimed participants. As a result, the curve for each paper is likely in

the middle of where it would be had the participants all been primed or unprimed.

4.2.2 The effects of priming and error frequency

We ran a mixed-design analysis of variance (ANOVA) to measure the effect of priming and

of error frequency on error noticing performance. The dependent variable, performance, was

measured by calculating the proportion of errors found out of the total known errors in the

paper. All effects met the assumption of equality of variances as tested by Levene’s

procedure, and the within-subjects factor met the assumption of sphericity as tested by

Figure 4.3: The expected proportion of errors a group primed and unprimed reviewers can expect to
find in the average paper. The dashed lines use the adjusted single-reviewer rate to account for
overestimation.

0.837

0.461

0.804

0.388

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

M
ea

n
Pr

op
or

tio
n

of
 E

rr
or

s

Number of Reviewers

Expected proportion of errors caught for primed vs. unprimed

PrimedAverage UnprimedAverage
PrimedAdjusted UnprimedAdjusted

81

Mauchly’s procedure. There were no significant interaction effects between priming and

error frequency, nor was there a main effect of frequency (confirming H2). However, there

was a statistically significant effect of priming,) 1,22 = 18.98, & < .05, η< = .453

(confirming H3). See Appendix C.6.1 for the full SPSS ANOVA output.

4.2.3 Reliability of our error taxonomy

All 24 participants classified 40 errors in the Ephemeral paper using categories from our

error taxonomy. The agreement of classifications differed across participants, but on average

was moderately high (M=31.3[78.3%], SD=3.9[9.8%]). In total, there were 960

classifications, 208 of which disagreed with our own. The agreement rate of 78.3% did not

meet our expectation of 85% agreement (failing to confirm H4). Table 4.2 shows the

percentage of disagreement by category, and Table 4.3 shows how the disagreements were

distributed over the participants’ classifications. In the table, we use percentages for

comparison across categories, rather than counts, because each category had a different

number of errors.

Table 4.2: Heat map showing the level of disagreement within each error category. For example,
60% of all “Sentence Structure” errors were classified as something else by participants. Note: the
error types are truncated for space—for the full category names see Table 3.1.

 Spell	 Word	 Article	 VTP	 P/P	 Punc	 Struc	 Infor	 Form	

Disagreement	(%)	 15.9%	 23.6%	 12.5%	 13.5%	 22.2%	 20.8%	 60.0%	 2.1%	 9.4%	

82

Participants often misclassified errors that we placed in the “Sentence Structure” category: 60%

of these instances were given a different classification by participants. “Word usage,”

“Possessive or plural error,” and “Punctuation” were also often misclassified, with rates of

disagreement at 23.6%, 22.2%, and 20.8% respectively. The remaining categories were

misclassified less than 16% of the time, with “Informal Writing” being the least misclassified

(2.1%).

Among “Sentence Structure” errors, most disagreements resulted in an “Other” (33.3%),

“Punctuation” (25.0%), or “Informal” (15.3%) classification. Most “Word Usage” errors

were overwhelmingly classified as “Misspelling” (70.6%), and most “Misspelling” error

were classified as either “Word Usage” (54.8%) or “Formatting” (33.3%) errors. Most

“Possessive or plural” errors were misclassified as “Punctuation” (43.8%), “Word Usage”

(25.0%), or “Misspelling” (18.8%) issues, and “Punctuation” issues were overwhelmingly

misclassified as “Formatting” (80.0%).

Table 4.3: Heat map of the distribution of disagreements by category. The left headings represent our
own classifications, and the top headings are how the participants classified the errors. For example,
of all the disagreements where we labelled the error as “Misspelling,” 54.8% were labelled as a
“Word Usage” error.

 Spell	 Word	 Article	 VTP	 P/P	 Punc	 Struc	 Infor	 Form	 Other	 NotErr	
Spell	 		 54.8%	 0.0%	 2.4%	 2.4%	 0.0%	 2.4%	 0.0%	 33.3%	 4.8%	 0.0%	

Word	 70.6%	 		 0.0%	 2.9%	 14.7%	 2.9%	 2.9%	 0.0%	 0.0%	 0.0%	 5.9%	

Article	 0.0%	 0.0%	 		 0.0%	 0.0%	 0.0%	 50.0%	 0.0%	 16.7%	 33.3%	 0.0%	

VTP	 38.5%	 38.5%	 0.0%	 		 15.4%	 0.0%	 7.7%	 0.0%	 0.0%	 0.0%	 0.0%	

P/P	 18.8%	 25.0%	 0.0%	 0.0%	 		 43.8%	 0.0%	 12.5%	 0.0%	 0.0%	 0.0%	

Punc	 0.0%	 0.0%	 0.0%	 0.0%	 0.0%	 		 6.7%	 6.7%	 80.0%	 6.7%	 0.0%	

Struc	 1.4%	 0.0%	 1.4%	 5.6%	 0.0%	 25.0%	 		 15.3%	 8.3%	 33.3%	 9.7%	

Infor	 0.0%	 0.0%	 0.0%	 100.0%	 0.0%	 0.0%	 0.0%	 		 0.0%	 0.0%	 0.0%	

Form	 0.0%	 11.1%	 0.0%	 11.1%	 0.0%	 22.2%	 11.1%	 0.0%	 		 11.1%	 33.3%	

	

83

4.2.4 Subjective responses by participants

We gathered data from a set of eight Likert items asking participants about their subjective

experiences during the experiment (Figure 4.4). All 24 participants agreed that the

highlighting mechanism was easy to use. A minority of the participants (6) felt that error

noticing was more time consuming than regular reviewing, but the majority felt that the

highlighting mechanism was sufficient for pointing out writing errors (17). Most agreed that

the error noticing and highlighting method would be useful to include in real peer review

sessions (22), and they were willing to do it themselves (22). Fewer, but still a majority of

participants, felt that classifying along with highlighting errors would be useful in peer

review (15), and a similar amount were willing do so themselves (14), confirming H5. Just

over half the participants agreed that they had highlighted every error they came across (15).

Figure 4.4: Subjective opinions on the process of highlighting and classification in peer review.

41.67%

16.67%

37.50%

58.33%

83.33%

16.67%

8.33%

75.00%

20.83%

41.67%

25.00%

33.33%

8.33%

54.17%

16.67%

25.00%

20.83%

12.50%

25.00%

25.00%

12.50%

16.67%

12.50%

8.33%

20.83%

29.17%

12.50%

20.83%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HighlightedAll

WillingCatchAndClassify

HighlightAndClassifyUseful

WillingCatch

HighlightUseful

Sufficient

TimeConsuming

Easy

Responses to Questionnaire Likert Items

Strongly Agree Agree Neutral Disagree Strongly Disagree

84

Qualitative responses from the open-ended component of the questionnaire gave more insight

on how participants felt about the task and interface. A number of participants (6)

commented that marking errors was distracting or took more time than just reviewing;

however, 2 of those participants expressed positive opinions, claiming that the added time

was insignificant and would get faster with experience, and that “It is time consuming but

highly neglected. There should be more done in that aspect.” Despite only being asked to

point out low-level errors, participants left comments stating that highlighting was

insufficient for pointing out high-level errors such as structure or clarity (6); a few (3)

mentioned that they wanted the ability to leave notes on the document. Others commented

that highlighting was insufficient for pointing out even low-level errors (2), indicating

difficulties with highlighting space or errors of omission. Two participants wanted the ability

to classify as well as highlight comments during the review task, while another commented,

“doing so during the reading might be too distracting or annoying.” One participant

commented that our highlighting mechanism “makes life easy.”

4.3 Discussion

We can draw a number of conclusions from our study, despite it being only a preliminary

investigation of the tools and techniques we are developing.

4.3.1 Reviewer performance

Our results show that, after a short error-classification task, we can expect a single reviewer

to find about 42% of all low-level errors in a paper while performing their regular review,

and that three reviewers can be expected to collectively find roughly 80% of all errors. If the

highlighting mechanism were incorporated into peer review web software, along with a

85

classification task prior to review (which may only be necessary once, or perhaps

periodically as a “refresher”), our results suggest that the number of errors that make it

through to publication could be significantly reduced. Given that frequency of errors did not

have a significant effect on errors caught, we expect that this performance rate will generally

hold regardless of the number of errors in a paper. However, more tests are needed to

determine whether lower error frequencies (e.g., less than 10 errors) would continue to have

no effect.

The large discrepancy between primed and unprimed performance (42% versus 15%)

indicates that some form of training will be necessary when using this system in peer review.

This could take the form of labeling new reviewers as “apprentices” and requiring them to

perform a quick classification task before reviewing the paper, or perhaps by periodically

asking all reviewers to perform the task. We imagine that with experience, it will not be

necessary to perform training for each review.

An interesting result from our questionnaire is that about 40% of participants said they did

not highlight every error they saw, perhaps due to repetitiveness or perceiving less benefit for

each error they caught. This means that the current single-reviewer rate of 42% could

actually be an underestimate of the true proportion, and that a set of three (primed) reviewers

could be expected to find even more than 80% of all writing errors.

4.3.2 Overhead of the error noticing task

As we suspected, giving more work to reviewers (by asking them to classify as well as mark

errors) resulted in less willingness to perform the activity. However, it is worth noting that

over half of the participants said they were still willing to classify errors in real peer review

86

sessions. If a standard review includes three reviewers, this suggests that it is likely that at

least one of them would be willing to provide extra information about the types of errors that

were found.

Despite the fact that we designed the highlighting interaction to be minimalist in order to

reduce the necessary effort for reviewers to mark errors, our questionnaire results revealed

that some reviewers wanted the ability to give even more feedback to authors. This is in line

with Nobarany et al.’s findings, which showed that some reviewers are more receptive to

helping with writing quality [65]. Our participants wanted the ability to leave comments to

clarify their highlights or give higher-level structural advice, and in some cases, they wanted

to classify their highlighted errors using our taxonomy. When incorporating annotation into

reviewing interfaces, it will be important to support different levels of granularity and

expressiveness in annotation, while at the same time supporting minimalist interactions for

busy or less committed reviewers.

Although we notice errors naturally while reading, reviewing with the expectation of error

noticing, and the act of highlighting errors, is not without some cognitive cost: participants

reported that it was distracting at times and that it did take more time than reviewing without

paying attention to errors. However, despite these extra costs, the vast majority reported that

it was a useful and worthwhile process to include in peer review. By providing simple tools

such as a highlighting mechanism to make pointing out errors fast and easy, we may be able

to catch more writing errors before they make it through to publication without significantly

adding to reviewers’ cognitive workload, and perhaps we can convince more reviewers to

87

provide writing assistance by finding strong evidence that it improves the quality of the

scholarly literature.

4.3.3 Error taxonomy

After analyzing how participants classified errors in the priming task, it is clear that our

taxonomy needs some work. Participants only agreed with our classifications in about 80%

of the cases. In hindsight, it would have been useful to include an additional category for

preposition errors, as these make up a large portion of errors made by ESL writers [71]. The

most troublesome category was “Sentence Structure,” where participants often classified the

errors as a miscellaneous issue or a problem with punctuation. We had designed this category

as a general catch-all category for poorly-formed sentences, but it is clear we need to “go

back to the drawing board” not only with how we differentiate our categories but also how

we present them to the participants. For example, we did not explicitly require that

participants carefully read the descriptions of each category.

4.3.4 Limitations & future work

The expected single-reviewer primed proportion of 42% was based on the average

performance over all of our selected papers. The papers had significantly different writing

styles, so we believe the coverage was broad enough to allow us to achieve the 80%

benchmark for a fairly large range of papers in terms of length, style, and topic. However,

further tests should be conducted to confirm whether this rate varies with longer papers, or

with papers from different fields.

It would be interesting to know more about how well authors can interpret highlights and

identify their mistakes. Our intention in using the less expressive highlighting method was to

88

minimize reviewer work, meaning that the onus would be on the author to decipher and fix

the errors. We felt this was a fair tradeoff of labour. Even with more difficult errors, we

assume that co-authors working together could probably figure out the more ambiguous cases,

but further experiments could specifically test how well authors can identify and fix these

marked errors. Also of interest is how reviewer highlights in bulk should be presented to the

author. For example, should highlights from all reviewers be merged onto the same copy of a

document? An interface capable of filtering writing errors by their classification (if any), or

by the reviewer who flagged the error, might be useful.

It would be worthwhile to look into how crowdsourcing can help discover low-level errors

before publication, for example, by taking the approach of Bernstein et al. [64] and asking

Mechanical Turkers to proofread manuscripts that are under submission, with their highlights

being returned to the author. Such processes could be automated by web submission

interfaces, but careful considerations would need to be taken regarding distributing

unpublished work across the web if it may contain scientific errors (because it has yet been

reviewed for content) or it is subject to confidentiality restrictions.

Some participants were unsure of how to mark certain errors with highlights, citing errors of

omission and spacing errors. We had anticipated that the trickier errors would be marked by

highlighting the surrounding context. For example, extra spacing between two paragraphs

could be indicated by highlighting the end of the previous paragraph and beginning of the

next. We may need to re-think this. One benefit of using less-expressive annotation methods

such as highlighting is that it provides less work for the reviewer, and it assumes that the

author (perhaps with a bit of work) will be able to decipher what the error is, but at the cost

89

of potential ambiguities. Future iterations of the reviewing interface might be developed to

include equally simple annotation techniques that help to resolve ambiguities.

Participants in our study (graduate students) were relatively inexperienced with formal

reviewing for conference or journal papers. It would be interesting to see how well professors

and other veteran reviewers perform in comparison.

4.4 Summary

We conducted a study that asked reviewers to mark low-level writing errors they naturally

found while reviewing a paper (a phenomenon we have called “error noticing”), while

providing them with a simple highlighting mechanism to mark each error. Our results

showed that, after a short priming task, a group of three reviewers can be expected to find 80%

of all writing errors in a paper, and that reviewers found the act of highlighting writing errors

to be highly useful and they would be willing to do it in real peer review sessions. Based on

this, we believe that further effort should be made to design lightweight reviewing interfaces

for reviewers to mark and possibly even categorize errors they find while reviewing a paper.

90

: Designing an Interactive Reviewing Tool

The scholarly peer review process currently lacks interactive tools for assisting a reviewer in

performing a review of a manuscript. Although reviewing activities such as knowledge

acquisition and forming judgements often result in artifacts scattered around (marginal jotted

notes, underlines or other annotations), there is currently no tool which can help reviewers

organize their collection of thoughts represented as annotations into a report outline, for use

when drafting the final (usually plaintext) report.

In Chapter 2, we explored features and requirements for future reviewing tools and

concluded that these interfaces should be web-based and will need to work in tandem with

Peer Review Management Software (PRMS) to add support for pre-submission anonymity

checks, group reviewing activities such as inter-reviewer discussion, and rich annotation and

visualization schemes for assisting reviewers in writing their report. In Chapter 3, we

described our simple proof-of-concept reviewing tool, and in Chapter 4 we showed that our

tool helped reviewers in a controlled laboratory study to catch 80% of all writing errors in a

manuscript simply by including a basic highlighting mechanism.

In this chapter, we outline preliminary steps towards extending our earlier prototype to better

support the private reviewing activities of a single reviewer. We begin by describing a

flexible annotation model implemented using DOM manipulation that will serve as a basis

for later peer-review-specific annotations and workflows. Then, we provide a conceptual

design for a novel reviewing experience using annotations on a manuscript. The work

presented here is preliminary and still in progress and does not yet consider elements of

91

collaborative reviewing activities nor integration with PRMS systems, but we view it as a

first step towards creating interactive reviewing interfaces. We have (unofficially) given the

prototype the moniker “Pear Review” for its resemblance to “peer review” and our research

lab’s affinity for naming experimental prototypes after types of fruit.

5.1 Highlighting

Pear Review supports basic highlighting of contiguous sections of text in a manuscript. To

create a highlight, the user selects text in the browser and presses the spacebar to create the

highlight; we found this method to be simple and well liked in our experiment described in

Chapter 4. Highlights can be selected by clicking on them (the highlight darkens and text

becomes underlined) and deleted by pressing the delete key when a highlight is selected. Pear

Review extends basic highlighting in three ways: (a) it colour-codes highlights to the types of

issues they represent, (b) it provides support for disambiguating overlapping highlights using

visual markers that we call knobs, and (c) it uses these knobs to provide spatial awareness of

where and which types of issues are occurring on a page.

After creating a highlight, the user can press the tab key to open up a menu to choose from a

list of categories in which to classify the issue (Figure 5.1). Continuing to press the tab key

cycles through the options and updates the colour of the highlight. To finalize the category

selection, the user presses the enter key or clicks elsewhere on the page. Writing errors can

be highlighted and automatically classified as such by pressing the tilde (~) key shortcut,

although they can still be classified using the standard tab menu.

92

With highlighting annotations in general, it can be difficult to disambiguate between multiple

overlapping highlights. For example, a reviewer may find and highlight two writing errors in

the same sentence and also highlight the entire sentence due to an issue with its content. Pear

Review provides a number of ways to disambiguate between such overlaps. All highlights

contain a degree of transparency, so it is relatively obvious when one highlight is contained

within another because the inner one will appear darker if it is the same colour (different

colours overlapping are easier to disambiguate due to colour mixing). However, this

transparency technique quickly breaks down when there are many highlights that overlap in

different ways. To make the boundaries of different highlights more distinct, Pear Review

uses hover effects that slightly darken the colour of the highlight currently under the cursor

and underlines the associated anchor text (Figure 5.2).

Figure 5.1: A selected highlight can be categorized by clicking the tab button and cycling through
a list of colour-coded categories in order to classify an annotation.

93

Finally, Pear Review places small circular nodes (called knobs) in the margin where a

highlight’s text selection begins. These knobs are the same colour as the highlight and show

how many highlights (issues) exist on that line. Hovering over the knob greys out all other

highlights so the user can focus solely on the hovered annotation (Figure 5.3).

Figure 5.2: Overlapping highlights (left) and a cursor hover effect (right) that darkens the highlight’s
colour and underlines the text to help disambiguate annotation boundaries.

Figure 5.3:”Knobs” on the margins of the manuscript help disambiguate overlapping annotations and
provide the user with a high-level view of the different types and frequencies of issues occurring on a
page. Hovering over an annotation’s knob will grey out any other annotations.

94

5.2 Commenting

Creating comments in Pear Review is similar to creating highlights because comments are

simply an extension of highlights. To create a comment, the user selects a contiguous section

of text and presses the enter key (rather than the spacebar for a highlight). This creates a

highlight over the selected text and opens up a comment box right below it (Figure 5.4). The

user can type a comment then close the comment box by pressing the escape key or clicking

anywhere else on the manuscript. A highlight can be converted into a comment by first

selecting the highlight then pressing the enter key. Comment boxes reappear whenever their

highlight is selected and are hidden when the selection is lost. The marginal knobs for

highlights differentiated from comment knobs; highlight knobs are circular and comment

Figure 5.4: A comment annotation in Pear Review, created by selecting text and clicking Enter or
pressing Enter on a highlight annotation. Knobs for comments are square. Clicking outside the
comment will minimize it.

95

knobs are square (resembling he appearance of a sticky note).

5.3 Interactive Report Writing with Annotation Visualizations

A key feature in Pear Review will be enabling the reviewer to use annotations made on the

manuscript to help the reviewer consolidate and organize their thoughts and judgements

about a manuscript to facilitate writing the summarized report. We present an initial

conceptual design (Figure 5.5) for organizing annotations made on a manuscript into a form

of outline, and using this outline to help a reviewer write a plaintext report (assuming that

integration with a PRMS is not yet available and the submission requires a plaintext).

First, a reviewer conducts a reviewing session on a manuscript, using annotations to record

their thoughts about the manuscript as they read. After reading and annotating, the user

transitions into a view where they can see each annotation they have made, but in a

representation outside of the manuscript context. The user can easily jump between any

Figure 5.5: Conceptual design for the interactive report-writing feature in Pear Review. After
annotating a paper, a reviewer can directly manipulate the annotations into an outline to help them
form their written report.

ANNOTATE ORGANIZE SUMMARIZE

~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
~~ 
~~~~~~~~~~~~~~

?

96

annotation’s representation in this view and its anchored location in the paper by clicking on

it. Hovering over an annotation representation in this view shows a preview pane of the

annotation’s anchor within the manuscript along with its surrounding context.

The annotations in this organization view are filterable by type of issue, importance, type of

annotation, ordinal location in the paper, or other annotation metadata. The user has the

freedom to directly manipulate the annotations by organizing them into a hierarchical outline,

affinity diagram, or mind map. The main purpose of this organization view is to help the

reviewer visualize their annotations from a higher level, helping them to collect and organize

their main points to help them draft their summarized report. The reviewer can switch back

and forth between the manuscript and the annotation organization view at any time.

The area for writing the plaintext report is also displayed in the annotation organization view

so the reviewer does not need to go back and forth between the organization view and their

draft. Because comments created on the manuscript may contain well-written points that are

transferrable into the report, comments are directly insertable from the comment annotations

into the report draft, where they may then be further revised by the reviewer to match the

style of the surrounding writing.

The user is able to append a list of the writing errors that they discovered and flagged in the

manuscript (as described earlier) to the end of the report; the system automatically generates

textual descriptions the errors, the page and paragraph in which they occur, and possibly the

type of error if the reviewer felt like categorizing the error into a more granular types (e.g.

misspelling, formatting, malapropism, etc.).

97

Because some PRMS systems use multiple textboxes for different parts of a report, the

reviewer is able to customize the area containing the report draft to have multiple text entry

areas or checked options that correspond to their conference or journal’s report style (if not

already found in the existing library of conference and journal report templates). Once the

reviewer finishes writing a report, they copy and paste the text from the report area into the

report submission page of their PRMS (or submit it directly in the interface assuming

integration with a PRMS system).

5.4 Future Work

Pear Review is still in its early design phases and there is much development and design left

to do. A final version should include filtering capabilities on the manuscript view, for

example, to filter out low-level writing errors or other annotations the reviewer does not wish

to see while reviewing higher-level issues. More review-specific annotations should be

implemented such as those described in Chapter 2, for example, an annotation that indicates

missing relevant work, or more general annotations such as tacit marks or drawings.

Annotations should be more functional and should possibly support multiple text anchors per

annotation, anchoring to figures or tables, and meta-data indicating the relative importance of

some annotations over others. The semantic categories of manuscript issues and their colours

should be customizable. Special attention should be paid to the visual aesthetics and user

experience, and default colours should be used appropriately to avoid distraction; there

should be additional support for colour-blind reviewers. Most importantly, a full prototype

should be validated through usability studies and tested to see whether the novel annotation

98

organization view can improve reviewers’ efficiency and whether our interface provides a

better user experience for reviewing and drafting a report.

99

Bibliography

[1] M. Hojat, J. S. Gonnella, and A. S. Caelleigh, “Impartial judgment by the ‘gatekeepers’
of science: fallibility and accountability in the peer review process,” Adv. Health Sci.
Educ. Theory Pract., vol. 8, no. 1, pp. 75–96, 2003.

[2] J. M. Campanario, “Peer Review for Journals as it Stands Today--Part 1,” Sci.
Commun., vol. 19, no. 3, pp. 181–211, 1998.

[3] J. M. Campanario, “Peer Review for Journals as it Stands Today--Part 2,” Sci.
Commun., vol. 19, no. 4, pp. 277–306, 1998.

[4] L. Bornmann, “Scientific Peer Review,” Annu. Rev. Inf. Sci. Technol., vol. 45, no. 1,
pp. 197–245, 2011.

[5] R. Spier, “The history of the peer-review process.,” Trends Biotechnol., vol. 20, no. 8,
pp. 357–358, 2002.

[6] D. a Kronick, “Peer review in 18th-century scientific journalism.,” JAMA, vol. 263, no.
10, pp. 1321–1322, 1990.

[7] J. C. Burnham, “The evolution of editorial peer review,” JAMA J. Am. Med. Assoc.,
vol. 263, no. 10, pp. 1323–9, 1990.

[8] D. Kennefick, “Einstein versus the Physical Review,” Phys. Today, vol. 58, no. 9, pp.
43–48, 2005.

[9] M. Nielsen, “Three myths about scientific peer review,” 2009. [Online]. Available:
http://michaelnielsen.org/blog/three-myths-about-scientific-peer-review/. [Accessed:
12-Dec-2015].

[10] M. D. McIlroy, “A Research UNIX Reader: Annotated Excerpts from the
Programmer’s Manual, 1971-1986,” Pic.Plover.Com, pp. 1971–1986, 1986.

[11] “Open Journal Systems.” [Online]. Available: https://pkp.sfu.ca/ojs/. [Accessed: 01-
Jul-2016].

[12] “OpenConf.” [Online]. Available: https://www.openconf.com/. [Accessed: 01-Jul-
2016].

[13] “Easy Chair.” [Online]. Available: http://www.easychair.org/. [Accessed: 01-Jul-
2016].

100

[14] “Scholastica.” [Online]. Available: https://scholasticahq.com/. [Accessed: 01-Jul-
2016].

[15] “ExOrdo.” [Online]. Available: https://www.exordo.com/. [Accessed: 01-Jul-2016].

[16] P. K. Project, “Open Conference Systems.” [Online]. Available: https://pkp.sfu.ca/ocs/.

[17] “alt.chi 2016.” [Online]. Available: https://chi2016.acm.org/wp/alt-chi/. [Accessed:
01-Jul-2016].

[18] “Precision Conference Solutions.” [Online]. Available:
https://precisionconference.com/. [Accessed: 01-Jul-2016].

[19] S. Nobarany and K. S. Booth, “Use of Politeness Strategies in Signed Open Peer
Review,” J. Assoc. Inf. Sci. Technol., vol. 66, no. 5, pp. 1048–1064, 2015.

[20] “publons.” [Online]. Available: https://publons.com/. [Accessed: 01-Jul-2016].

[21] V. Bush, “As we may think,” SIGPC Note., vol. 1, no. 4, pp. 36–44, 1979.

[22] E. F. Churchill, J. Trevor, S. Bly, L. Nelson, and D. Cubranic, “Anchored
Conversations: Chatting in the Context of a Document,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2000, pp. 454–461.

[23] M. J. Adler, “How to mark a book,” Saturday Review of Literature 6, pp. 250–252,
1940.

[24] J. L. Wolfe and C. M. Neuwirth, “From the Margins to the Center: The Future of
Annotation,” J. Bus. Tech. Commun., vol. 15, no. 3, pp. 333–371, 2001.

[25] I. A. Ovsiannikov, M. A. Arbib, and T. H. McNeill, “Annotation technology,” Int. J.
Hum. Comput. Stud., vol. 50, no. 4, pp. 329–362, 1999.

[26] C. C. Marshall, “Annotation: from paper books to the digital library,” in Proceedings
of the second ACM international conference on Digital libraries - DL ’97, 1997, pp.
131–140.

[27] C. Neuwirth, D. Kaufer, R. Chimera, and T. Gillespie, “The Notes Program: A
Hypertext Application for Writing from Source Texts,” in Proc. Hypertext ’87,
November 13-15, 1987, Chapel Hill, North Carolina, USA, 1987, pp. 121–141.

[28] K. O’Hara and A. Sellen, “A Comparison of Reading Paper and On-Line Documents,”
in Proceedings of CHI’97, the ACM SIGCHI Conference on Human Factors in
Computing Systems, 1997, pp. 335–342.

101

[29] J. L. Wolfe, “Effects of Annotations on Student Readers and Writers,” in Proceedings
of the fifth ACM conference on Digital libraries - DL ’00, 2000, pp. 19–26.

[30] B. N. Schilit, G. Golovchimlq, and M. N. Price, “Beyond paper: Supporting active
reading with free form digital ink annotations,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’98), 1998, pp. 249–256.

[31] R. Kopak and C.-N. Chiang, “Annotating and linking in the Open Journal Systems,”
First Monday, vol. 12, no. 10, 2007.

[32] C. M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris, “Issues in the design of
computer support for co-authoring and commenting,” in Proceedings of the 1990 ACM
conference on Computersupported cooperative work, 1990, pp. 183–195.

[33] J. J. Cadiz, A. Gupta, and J. Grudin, “Using Web annotations for asynchronous
collaboration around documents,” in Proceedings of the 2000 ACM conference on
Computer supported cooperative work CSCW ’00, 2000, pp. 309–318.

[34] C. M. S. Weng, D. W. McDonald, and J. H. Gennari, “A Collaborative Clinical Trial
Protocol Writing System,” in Proceedings of MedInfo’2004, 2004.

[35] Q. Zheng, K. Booth, and J. McGrenere, “Co-Authoring with Structured Annotations,”
in Proceedings of the SIGCHI conference on Human Factors in computing systems,
2006, pp. 131–140.

[36] I. Glover, Z. Xu, and G. Hardaker, “Online annotation - Research and practices,”
Comput. Educ., vol. 49, no. 4, pp. 1308–1320, 2007.

[37] C. Weng and J. H. Gennari, “Asynchronous Collaborative Writing through
Annotations,” in Proceedings of the 2004 ACM conference on Computer supported
cooperative work - CSCW ’04, 2004, pp. 578–581.

[38] T. A. Phelps and R. Wilensky, “Multivalent Annotations,” in Research and Advanced
Technology for Digital Libraries, 1997, pp. 287–303.

[39] C. C. Marshall, “Toward an ecology of hypertext annotation,” in Proceedings of the
ninth ACM conference on Hypertext and hypermedia HYPERTEXT ’98, 1998, pp. 40–
49.

[40] R. Furuta and E. Urbina, “On the Characteristics of Scholarly Annotations,” in
Proceedings of the thirteenth ACM conference on Hypertext and hypermedia, 2002, pp.
78–79.

[41] C. C. Marshall and A. J. B. Brush, “From personal to shared annotations,” in CHI ’02
extended abstracts on Human factors in computing systems, 2002, pp. 812–813.

102

[42] J. Laurens, “Direct and reverse synchronization with SyncTEX,” TUGBoat, vol. 29,
pp. 365–371, 2008.

[43] “ShareLaTeX.” [Online]. Available: https://www.sharelatex.com/. [Accessed: 01-Jul-
2016].

[44] “Xodo.” [Online]. Available: https://www.xodo.com/. [Accessed: 16-Jul-2016].

[45] “Xodo (Slack integration beta).” [Online]. Available: https://app.xodo.com/.
[Accessed: 16-Jul-2016].

[46] S. Iga and M. Shinnishi, “SnapShoot: Integrating semantic analysis and visualization
techniques for web-based note taking system,” Conf. Res. Pract. Inf. Technol. Ser., vol.
60, pp. 161–167, 2006.

[47] “Google Docs.” [Online]. Available: https://www.google.com/docs/about/. [Accessed:
01-Jul-2016].

[48] “pdfcomment.” [Online]. Available: https://www.ctan.org/pkg/pdfcomment.
[Accessed: 01-Jul-2016].

[49] “todonotes.” [Online]. Available: https://github.com/henrikmidtiby/todonotes.
[Accessed: 01-Jul-2016].

[50] “TrackChanges.” [Online]. Available: http://trackchanges.sourceforge.net/.

[51] “PleaseReview.” [Online]. Available: http://www.pleasetech.com/.

[52] “PDF Annotator.” [Online]. Available: https://www.pdfannotator.com/. [Accessed:
01-Jul-2016].

[53] “Foxit Reader.” [Online]. Available: https://www.foxitsoftware.com/products/pdf-
reader/. [Accessed: 01-Jul-2016].

[54] J. R. Wright and K. Leyton-brown, “Mechanical TA: Partially automated high-stakes
peer grading,” Sigcse ’15, pp. 96–101, 2015.

[55] “PDF.js.” [Online]. Available: https://mozilla.github.io/pdf.js/. [Accessed: 01-Jul-
2016].

[56] “WebViewer.” [Online]. Available: https://www.pdftron.com/webviewer/. [Accessed:
16-Jul-2016].

[57] “IEEE VGTC Conference Proceedings.” [Online]. Available:
http://junctionpublishing.org/vgtc/. [Accessed: 09-Aug-2016].

103

[58] A. M. Tremonti, “The Current: Good writing in the 21st century needs clarity, says
Steven Pinker,” CBC Radio.

[59] J. J. Pollock and a Zamora, “Collection and Characterization of Spelling Errors in
Scientific and Scholarly Text,” J. Am. Soc. Inf. Sci., vol. 34, no. 1, pp. 51–58, 1983.

[60] J. H. Sweetland, “Errors in Bibliographic Citations: A Continuing Problem,” Libr. Q.
Information, Community, Policy, vol. 59, no. 4, pp. 291–304, 1989.

[61] M. Scott and J. Turner, “Problematising Proofreading,” Zeitschrift Schreiben, 2008.
[Online]. Available: http://www.zeitschrift-
schreiben.eu/Beitraege/scott_Proofreading.pdf.

[62] J. D. Gould and N. Grischkowsky, “Doing the same work with hard copy and with
Cathode-Ray Tube CRT computer terminals,” Hum. Factors J. Hum. Factors Ergon.
Soc., vol. 26, no. 3, pp. 323–337, 1984.

[63] J.-F. Rouet, Hypertext and Cognition. Psychology Press, 1996.

[64] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger,
D. Crowell, and K. Panovich, “Soylent: A Word Processor with a Crowd Inside,” in
Proceedings of the 23nd annual ACM symposium on User interface software and
technology, 2010, pp. 313–322.

[65] S. Nobarany, K. S. Booth, and G. Hsieh, “What Motivates People to Review Articles?
The Case of the Human-Computer Interaction Community,” J. Assoc. Inf. Sci.
Technol., 2015.

[66] J. G. Ruiz, C. Candler, and T. A. Teasdale, “Peer Reviewing E-Learning :
Opportunities , Challenges , and Solutions,” vol. 82, no. 5, pp. 503–507, 2007.

[67] S. Nobarany, “Policies, Practices, and Potentials For Computer Supported Scholarly
Peer Review,” 2015.

[68] J. Nielsen and T. K. Landauer, “A mathematical model of the finding of usability
problems,” in Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI ’93, 1993, pp. 206–213.

[69] W. H. Bryant, “Typical Errors in English Made by Japanese ESL Students,” Japan
Assoc. Lang. Teach. J., vol. 6, no. 1, pp. 1–18, 1984.

[70] A. Y. W. Chan, “Toward a Taxonomy of Written Errors: Investigation Into the
Written Errors of Hong Kong Cantonese ESL Learners,” TESOL Q., vol. 44, no. 2, pp.
295–319, 2010.

104

[71] A. Rozovskaya and D. Roth, “Annotating ESL errors: Challenges and rewards,” Proc.
NAACL HLT 2010 fifth …, no. June, pp. 28–36, 2010.

[72] C. James, Errors in Language Learning and Use: Exploring Error Analysis.
Routledge, 2013.

[73] A. J. B. Brush, D. Bargeron, A. Gupta, and J. J. Cadiz, “Robust annotation positioning
in digital documents,” in Proceedings of the SIGCHI conference on Human factors in
computing systems - CHI ’01, 2001, pp. 285–292.

[74] S. Bateman, R. Farzan, P. Brusilovsky, and G. McCalla, “OATS: The Open
Annotation and Tagging System,” in Proceedings of the Third Annual International
Scientific Conference of the Learning Object Repository Research Network, 2006.

[75] “W3C Web Annotation Working Group.” [Online]. Available:
https://www.w3.org/annotation/. [Accessed: 06-Jul-2016].

105

Appendix A: Anonymization Tools for LaTeX

As a proof of concept, we implemented two simple scripts in Python that wrap the LaTeX

chain of commands to help authors anonymize their manuscripts before submission.

A.1 AnonBib

AnonBib anonymizes bibliographic entries in a manuscript that need to be obscured to satisfy

anonymity constrains. For each BibTeX entry ID in a supplied “.anon” file, AnonBib

replaces each matching entry in the user’s BibTeX file with an anonymous placeholder

(Figure A.1). Authors would presumably maintain their own .anon file (as they typically do

with their .bib file) and keep it up to date with own published manuscripts. They would then

run AnonBib before generating the “camera ready” version of their manuscript. Although not

currently supported, a simple improvement would be accepting multiple .anon files so that

coauthors could anonymize each of their own citations in one pass.

AnonBib could be used more transparently if integrated into a cloud coauthoring system like

ShareLaTeX. ShareLaTeX co-authors could each have their own configured .anon file and

compiling the manuscript could automatically use both files to anonymize the bibliography.

Figure A.1: References section of a manuscript anonymized by AnonBib. Entries in a
separate .anon file determine which BibTeX entries are replaced with generic placeholders.

106

A.2 AnonTeX

AnonTeX is script that wraps the LaTeX chain of commands to produce a PDF manuscript

with an anonymous author blocks. It parses the supplied LaTeX file and replaces each

character of text within the author blocks with a configurable placeholder character such as

an asterisk (Figure A.2). The repeating character fills up each line of the author block and

fills spaces so that readers cannot deduce the author’s name or institution by the length of

words and spaces. We went with the approach of replacing existing characters in the LaTeX

file rather than arbitrary blocks of text that take up space in order to preserve the original

look and feel of the paper and avoid unintended layout changes.

Our approach has some limitations: it does not obscure the number of authors on a paper and

is not fully robust against non-standard author blocks in LaTeX markup. Future work should

explore how we can both preserve the spatial layout of the paper while totally obscuring all

author information, including the number of authors.

Figure A.2: Anonymized author blocks generated by AnonTeX. The author names and
institutions are replaced with placeholder characters. The original number of lines in each
block along with the number of authors is preserved, but the content is obscured.

107

Appendix B: Highlighting the DOM

B.1 HTML Structure

This is a highlight within a single paragraph element’s text node.

HTML

<p>This is a <mark data-hl-id=“1”>highlight within a single paragraph
element’s</mark> text node.</p>

This highlight spans two paragraphs elements.

It is represented by two marks with the same id.

HTML

<p>This highlight spans two <mark data-hl-id=“2”>paragraph elements.</mark></p>
<p><mark data-hl-id=“2”>It is represented by two marks</mark> with the same
id.</p>

B.2 Simple JavaScript Implementation

The following is a JavaScript snippet that creates a highlight over a continuous text selection.

JavaScript + jQuery

function highlight() {
var selection = window.getSelection().getRangeAt(0);
var nodes = getTextNodesInRange(selection);

nodes.forEach(function(node, i) {
 var range = document.createRange();
 range.setStart(node, i === 0 ? selection.startOffset : 0);
 range.setEnd(node, i === nodes.length – 1 ? selection.endOffset
 : node.length);
 range.surroundContents($(“<mark>”, {“data-hl-id”: nextId++})[0]);
});

 }

108

The highlight() method works by fetching all text nodes belonging to elements in the

current browser text selection and creating possibly multiple mark elements to represent a

single highlight, usually in response to some key press by the user. The algorithm by its

nature already has support overlapping highlights; creating a highlight over another will

simply nest mark tags so that they both wrap the same text node. However, the overlaps

cannot be visualized without additional styling considerations, for example, using transparent

background colours or borders for mark elements (we explored this in Section 5.1).

Certain considerations need to be made for more complex highlighting behaviors (the snippet

above is the most basic example). For instance, hiding and showing highlights requires

recalculating the start and end offsets of a highlight because the offsets are based on the raw

HTML content, and adding new highlights before existing ones can alter the offsets at which

the highlight should reappear. Furthermore, when deleting highlights it becomes necessary to

renormalize the text nodes’ parent elements (DOM elements have a normalize() method) to

reattach the fractured text nodes caused by deleting the marks.

109

Appendix C: Supplementary Materials and Analysis

C.1 Simplified Review Form

The review form consists of the following Likert questions with the scale: Strongly Agree,

Agree, Neutral, Disagree, Strongly Disagree.

1. The paper was interesting and engaging.

2. The paper is well organized, which contributed to my understanding of the content.

3. The abstract provided a concise and sufficient summary of the work.

4. The writing is clear, well-formatted, and high quality.

5. I have enough background knowledge to understand the content from a high level.

6. I have enough background knowledge to understand the low-level and technical details

in the paper.

7. The paper gives sufficient background information and relevant work.

8. The paper has a strong and clear methodology.

9. The arguments are cogent, and conclusions made are supported by evidence or data.

10. The paper makes clear conclusions and described avenues for future work.

11. I am convinced that this work is relevant and impactful.

12. In my opinion, I feel this paper is suitable for a course on peer review.

There was a single open question at the end labelled: “General comments (if any).”

110

C.2 Sample Paper with Low Error Frequency

111

112

113

114

115

C.3 Sample Paper with High Error Frequency

116

117

118

119

120

C.4 Error Classification Paper Post-categorization

121

122

123

124

125

C.5 Post-test Questionnaire

126

127

C.6 Supplementary Data

C.6.1 Mixed-design ANOVA

This section shows a walkthrough of the analysis of variance for the experiment described in

Chapter 4. Highlighted table cells indicate noteworthy results.

Mauchly’s test of sphericity
 Measure: ProportionFound
Within Subjects
Effect

Mauchly's
W

Approx. Chi-
Square

df Sig. Epsilonb
Greenhouse-

Geisser
Huynh-

Feldt
Lower-
bound

Version 1.000 .000 0 . 1.000 1.000 1.000

Mauchly’s test of sphericity indicates that the sphericity assumption is met for the repeated
measures factor.

Tests of within-subjects effects
 Measure: ProportionFound
Source Type III Sum

of Squares
df Mean Square F Sig.

Version

Sphericity Assumed .007 1 .007 .932 .345
Greenhouse-Geisser .007 1.000 .007 .932 .345
Huynh-Feldt .007 1.000 .007 .932 .345
Lower-bound .007 1.000 .007 .932 .345

Version *
Group

Sphericity Assumed 3.841E-005 1 3.841E-005 .005 .942
Greenhouse-Geisser 3.841E-005 1.000 3.841E-005 .005 .942
Huynh-Feldt 3.841E-005 1.000 3.841E-005 .005 .942
Lower-bound 3.841E-005 1.000 3.841E-005 .005 .942

Error(Version)

Sphericity Assumed .154 22 .007

Greenhouse-Geisser .154 22.000 .007

Huynh-Feldt .154 22.000 .007

Lower-bound .154 22.000 .007

The omnibus F-test for the within-subjects effects is not statistically significant for the
interaction effect nor the repeated measures factor.

128

C.6.1 Miscellaneous descriptives

This section provides some miscellaneous descriptive statistics related to the experiment.

Levene’s test of equal variance
Measure: Proportion

 Transformed Variable: Average
Source Type III Sum of Squares df Mean Square F Sig.
Intercept 4.927 1 4.927 108.169 .000
Group .864 1 .864 18.979 .000
Error 1.002 22 .046

Levene’s test shows homogeneity of variance for the between-groups factor, indicating that
an F-test for the between-groups factor is appropriate.

Tests of between-subjects effects

Measure: ProportionFound
Transformed Variable: Average
Source Type III

Sum of
Squares

df Mean
Square

F Sig. Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Intercept 4.927 1 4.927 108.169 .000 .831 108.169 1.000
Group .864 1 .864 18.979 .000 .463 18.979 .986
Error 1.002 22 .046

An omnibus F-test for the between-subjects effect shows that the difference between the two
groups is statistically significant and has a large effect size.

Mean proportion of errors found by group and paper version

 Group Mean Std. Deviation N

ProportionFoundLow
Unprimed .1754 .15832 12
Primed .4420 .17825 12
Total .3087 .21383 24

ProportionFoundHigh
Unprimed .1969 .16453 12
Primed .4671 .14561 12
Total .3320 .20526 24

129

Pre-existing errors discovered in papers during experiment

Average number of false positive errors per paper version

Paper Spell Word Article VTP P/P Punc Struc Infor Form Total

AndroidFaces 2 1 1 2 6

HapticDesign 1 1 2 2 6

Notifications 1 1 2

Password 5 1 6

Additional errors within each paper discovered and classified after users in the study found them.
These extra errors were included in the calculations for proportions of errors caught.

 AndroidFaces HapticDesign Notifications Password

Low Error 32.0 3.0 14.5 5.7

High Error 5.2 27.5 10.8 6.5

Participants often made quite a few highlights that we determined were not actually errors.

