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Abstract 

 

 A new tridentate, dianionic ligand containing two amido donors and a central 

iminophosphorane, [NNN]H2, was synthesized as an adaptation from the [
tolyl

NPN*]H2 ligand 

framework.  The [NNN] system was designed as an extension to the ortho-phenylene bridged 

[NPN*] frameworks, which have been studied extensively with zirconium and tantalum. 

 Zirconium amido and chloride complexes stabilized by [NNN] were synthesized via 

protonolysis routes, and the zirconium dibenzyl complex was synthesized from the halide 

precursor.  Reduction of the zirconium dichloride species with alkali metal reagents led to 

cleavage of the iminophosphorane P=N bond.  The LUMO of [NNN]ZrCl2(THF) showed 

antibonding character of the iminophosphorane P=N, by DFT analysis.  Steric calculations of 

[NNN]ZrX 2 complexes (G Value, %Vbur) showed increased steric hindrance of [NNN] relative to 

[NPN*] ligands.  A neutral donor substitution competition experiment corroborated the steric 

calculations. 

 Tantalum alkyl and alkyne complexes [NNN]TaMe3 and [NNN]Ta(BTA)Cl were 

synthesized via salt metathesis reactions with the dipotassium salt of [NNN].  Treatment of 

[NNN]TaMe3 with dihydrogen at elevated temperature led to cleavage of the iminophosphorane 

P=N bond, likely through reduced tantalum intermediate species.  Treatment of 

[NNN]Ta(BTA)(benzyl) with dihydrogen did not generate tantalum-hydride species or 

hydrogenate the alkyne ligand.  Addition of 4-isopropylphenylazide to [NNN]Ta(BTA)Cl led to 

the tantalum-imido compound [NNN]Ta=N(4-
i
PrPh)Cl via displacement of the alkyne ligand, 

BTA. 
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 Alternative ligand systems were also examined.  A tetradentate ligand [PNNP]H2 with 

ortho-phenylene linkers and an ethylene tether was synthesized, and installed on zirconium 

amido and chloride precursors.  Reduction of [PNNP]ZrCl2 with potassium graphite was 

unsuccessful in attempt to activate dinitrogen.  A redesigned ligand with a propylene tether could 

not be synthesized, through several routes.  A tridentate, monoanionic ligand with ortho-

phenylene linkers and silylamide functionality was designed based on the [NPN*] and silylamide 

[PNP] ligands.  The tridentate framework could not be synthesized through several routes, 

however, a new bidentate ligand with a secondary silylamide ortho to a phosphine group, a first 

of its class, was synthesized. 
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1 Introduction  

1.1 Dinitrogen Activation by Transition Metal Complexes 

 The binding and further reactivity of dinitrogen via transition metal complexes is a major 

research focus of the Fryzuk group.
1-5

  While ligand design is the central topic of this document, 

a brief background on dinitrogen activation brings context to the challenge of binding and 

functionalizing N2, a challenge that has guided several iterations of ligand design. 

 Dinitrogen is an abundant substance, composing 78% of Earth's atmosphere, yet its inert 

nature causes difficulty for conversion to nitrogen-containing products.
1
  The only successful 

commercial process for dinitrogen fixation is the heterogeneous Haber-Bosch process, which 

requires high temperatures and pressures, and consumes about 1% of the world's annual energy 

supply.
1,6

  Biologically, the iron-molybdenum cofactor of nitrogenase enzymes is able to 

catalytically convert dinitrogen to ammonia, although this system is complex and further 

complicated by the protein framework.
7
  The activation and functionalization of dinitrogen to 

ammonia or nitrogen-containing materials via transition metal complexes is a long-standing goal 

in chemistry.
3
 

 Dinitrogen is a poor ligand for transition metal complexes due to its large HOMO-LUMO 

gap and non-polar nature.
1
  Compared to the isoelectronic molecule carbon monoxide, dinitrogen 

is both a weaker ů-donor and ́-acceptor; carbon monoxide undergoes a variety of chemical 

reactions while dinitrogen is often used as an inert working gas for sensitive experiments.  The 

first dinitrogen complex, the ruthenium compound [Ru(NH3)5N2]
2+

 with dinitrogen bound in an 

end-on fashion, was reported by Allen and Senoff in 1965.
8
  From this initial dinitrogen 

complex, an entire field of inorganic chemistry has developed.
1,2,4,9,10
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 Upon coordination, strongly reducing metal complexes can have the ability to reduce the 

dinitrogen moiety to a formal double bond (N=N)
2-
 or single bond (N-N)

4-
 as determined by X-

ray crystallography or RAMAN spectroscopy, which is often referred to as the degree of 

activation of the N2 unit.  Typically more than one metal centre is involved in early metal 

dinitrogen complexes for the purpose of multielectron reduction; examples of dinuclear 

dinitrogen complexes are shown in Figure 1.1.
11-14

  These examples also illustrate the binding 

modes of dinitrogen:  terminal and bridging end-on (B), side-on (C), and side-on end-on (A). 

 

Figure 1.1:  Examples of dinuclear dinitrogen complexes of transition metals.
11,13,14

  

 A variety of ligand types have shown ability to stabilize dinitrogen complexes, such as 

the ammine ligands of the Allen and Senoff complex, cyclopentadienyl derivatives as in 

compound C of Figure 1.1, and mixed-donor multidentate ligands.  The multidentate ligand 

design strategies used by the Fryzuk group are discussed in the next section.  Often alkali metal 

reagents such as KC8, Mg, and sodium amalgam (Na(Hg)) are employed for reduction of the 

metal complex prior to dinitrogen activation; thus, the ligands must be capable of stabilizing the 
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reduced metal species as well as the subsequent dinitrogen complexes.  Additionally, some 

metal-hydride complexes are capable of activating dinitrogen;
2
 the side-on end-on dinitrogen 

compound A in Figure 1.1 is generated via the elimination of H2 from a dinuclear Ta(IV) 

complex.
11,12

  Regarding these two methods of dinitrogen activation, Chapter 3 of this thesis 

investigates the reduction of zirconium complexes, while Chapter 4 reports attempted syntheses 

of dinuclear tantalum hydride complexes. 

 Some transition metal complexes with an activated dinitrogen ligand enable the 

functionalization of dinitrogen, to form element-nitrogen bonds.
10,15-18

  Additionally, there are 

homogenous systems that are able to catalyze ammonia production from dinitrogen, in modest 

turnover, such as compound B of Figure 1.1.
14,19

  The conversion of dinitrogen to higher-valued 

nitrogen-containing products, especially in a catalytic manner, is a major goal in the field.  

However, fundamental studies of activated dinitrogen complexes and stoichiometric reactivity 

investigations provide important insight into the development of new catalysts. 

1.2 Ligand Design in the Fryzuk Group 

 Multidentate ligand systems containing both hard and soft donors have been a mainstay 

of the Fryzuk group research program since the first publication of the amidophosphine [PNP] 

ligand in 1981.
20,21

  A family of structurally related amidophosphine ligands has been developed 

in the Fryzuk group, as shown in Figure 1.2, and their subsequent chemistry has been studied 

across the periodic table.
12,20,22

  The work reported in this document involves the development of 

a multidentate amido-iminophosphorane framework and its subsequent coordination chemistry 

with the early metals zirconium and tantalum.  This chapter provides the context for the design 

of this new ligand system relative to our other ligand frameworks. 
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Figure 1.2:  Examples of multidentate silylamidophosphine ligand sets studied by the Fryzuk 

group, with the silylamide ("classic") linker. 

 The initial tridentate, monoanionic [PNP] ligand was used as the basis for design of a 

macrocyclic dianionic ligand, [P2N2]; the [PNP] framework within [P2N2] is highlighted in blue 

in Figure 1.2.
22

  Similarly, design of the dianionic [NPN
classic

] ligand (red highlighting in Figure 

1.2) was derived from the other "half" of [P2N2].
12

  This family of so-called "classic" silylamide-

linked phosphine frameworks of Figure 1.2 has enabled impactful chemistry of early metal 

complexes, including the activation of dinitrogen and its subsequent reactivity.
11,12,15-18,23-31

  

However, the silylamide functionality within the ligand has also been prone to unwanted 

reactivity.
15,16,23,26,31

  An example of ligand rearrangement is shown in Scheme 1.1, where an 
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activated dinitrogen ditantalum complex reacts with 9-borabicyclo[3.3.1]nonane (9-BBN), 

followed by migration of a silyl group to a bridging nitrogen atom.
16

 

 

Scheme 1.1:  Reaction of [NPN
classic

] tantalum side-on end-on dinitrogen complex with 9-BBN, 

and subsequent ligand rearrangement at the silylamide linker.
16

 

 A more robust o-phenylene bridged framework was developed to facilitate analogous 

reactivity to the silylamide "classic" systems, but with increased resistance toward ligand 

decomposition.
32

  The o-phenylene based framework, shown in Figure 1.3, will be referred to as 

the [NPN*] family of ligands in this document, with superscript prefixes denoting N-Ar 

substitutions.  The [
mes

NPN*] ligand stabilized the activation of dinitrogen in a side-on fashion 
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with zirconium, in a similar manner to the [NPN
classic

] ligand.  These two zirconium dinitrogen 

complexes are shown in Figure 1.4.
24,33

 

 

Figure 1.3:  [NPN
classic

] ligand type with silylamide linker and o-phenylene bridged [NPN*] 

framework studied by the Fryzuk group. 

 

Figure 1.4:  Side-on dinitrogen complexes of zirconium stabilized by the [NPN
classic

] and 

[
mes

NPN*] ligands.
24,33

 

 While the [NPN*] framework allowed for the study of group 4 dinitrogen complexes akin 

to those of the [NPN
classic

] ligand, differences between the two frameworks caused subsequent 

tantalum complexes to exhibit unique reactivity towards dinitrogen.
11,34,35

  As shown in Scheme 

1.2, the [NPN
classic

]-stabilized tantalum trimethyl complex undergoes hydrogenolysis to form a 

dinuclear tetrahydride species in a trans orientation.
11

  This tetrahydride compound 
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spontaneously reacts with dinitrogen to form a side-on end-on bridging complex.
11

  Similarly, 

the complex [
mes

NPN*]TaMe3 undergoes hydrogenolysis to form a ditantalum tetrahydride 

species, however this compound exists in the cis orientation in the solid-state.
34,35

  This [NPN*]-

stabilized tetrahydride complex is inert towards dinitrogen.
34,35

  Our group is currently 

investigating why these two amidophosphine ligand frameworks lead to similar ditantalum 

tetrahydride complexes, yet display different reactivity with respect to dinitrogen coordination.  

There are several literature examples of bridging polyhydride group 5 transition metal 

complexes, yet few of these show interaction with dinitrogen.
36-44
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Scheme 1.2:  Hydrogenolysis of [NPN
classic

] and [
mes

NPN*] stabilized tantalum trimethyl 

complexes, and further reactivity towards dinitrogen.
11,34,35

 

 As small changes to ligand composition can lead to considerably different reactivity of 

subsequent complexes, it was our goal to modify the [NPN*] system at the internal neutral 

phosphine donor and study the impact of the change through comparison to previously 

investigated [NPN]-stabilized compounds.
45

  Modification of the phosphine to an 

iminophosphorane allows the same o-phenylene scaffold to stabilize the tridentate, dianionic 

ligand, yet alters the ligand geometry.  Figure 1.5 compares the [NPN*] framework to the 
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iminophosphorane-containing [NNN] system.  Note that the [NPN*] ligand forms 5-membered 

chelate rings, while the [NNN] ligand has an additional N-atom, leading to 6-membered rings.   

 

Figure 1.5:  [NPN*] ligand system with o-phenylene linker compared to [NNN] ligand with 

iminophosphorane functionality. 

1.3 Ligand Designs Incorporating Iminophosphoranes 

 Iminophosphoranes, R3P=NR', consist of a phosphorane P-atom and an approximately 

sp
2
-hybridized N-atom with a highly polarized P=N bond.

46
  Iminophosphoranes coordinate to 

metals through the nitrogen lone pair with similar ů-donor capacity to imine (R2C=NR') ligands, 

but only minor ́ -acceptor properties.
47

  There are many examples of metals across the periodic 

table stabilized by iminophosphorane-containing ligands, including zirconium and tantalum.
46,48-

56
 

 The incorporation of iminophosphorane functionality into multidentate ligands has been 

employed for different design strategies.  Iminophosphoranes can be substituted for other 

functional groups, for example, analogues of ɓ-diketiminato (NacNac) ligands with 

iminophosphorane rather than imine functionality have been studied by the groups of Piers, 

Liang, and Fryzuk, as shown in Figure 1.6.
54,57-62

  Iminophosphoranes have been used in ligand 
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design for their steric properties, such as the tridentate ligands employed by the Stephan group, 

shown in Figure 1.7, where the terminal PPh3 groups provide bulk.
63-66

  Novel ligands have also 

been designed to incorporate the phosphorane into the ligand backbone, such as the tridentate 

ligands studied by the Hayes group with terminal iminophosphorane functionality, examples of 

which are shown in Figure 1.8.
52,67-72

  Additionally, a ligand developed by Cavell and co-workers 

incorporates iminophosphorane groups to stabilize a carbene functionality on a variety of 

transition metals.
73-75

 

 

Figure 1.6:  Iminophosphorane ligand designs based on the NacNac ligand.
54,57,60

 

  




























































































































































































































































































































































