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Abstract

A new tridentate, dianionic ligand containing two amido donors and a central
iminophosphorane, [NNNj,, was synthesized as an adaptation ftben[*”'NPN*]H, ligand
framework. The [NNN] system was designed as an extension to the-phéwylene bridged

[NPN*] frameworks, which have been studied extensively with zirconium and tantalum.

Zirconium amido and chloride complexes stabilized by [NNN] were synthesized via
protonolysis routesand the zirconium dibenzyl complex was synthesfemch the halide
precursor.Reduction of the zirconium dichloride species with alkali metal reageai® |
cleavage of the iminophosphorane P=N bomftle LUMO of [NNN]ZrCk(THF) showed
antibonding character of the iminophosphorane P=N, by DFT analyssic calculations of
[NNN]ZrX, complexes (G Valu€oVy,) showed increased steric hindrance of [NN&lative to
[NPN*] ligands. A neutral donor substituti@empetitionexperiment corroborated the steric

calculations.

Tantalum alkyl and alkyne complexes [NNN]TaMed [NNN]Ta(BTA)Cl were
synthesized via salt metathesis reactions with the dipotasaitiof fNNN]. Treatment of
[NNN]TaMe; with dihydrogenrat elevated temperature led ¢eavage of the iminophosphorane
P=N bond, likely through reduced tantalum intermediate spediesatmenbf
[NNN]Ta(BTA)(benzyl)with dihydrogen did not generatantdum-hydride speciesr
hydrogenatehe alkyne ligand. Addition of-fsopropylphenylazide to [NNN]Ta(BTA)CI led to
the tantalurrimido compound [NNN]Ta=N(4PrPh)Cl via displacement of the alkyne ligand,

BTA.



Alternative ligand systems were also examin@detradentate ligand [PNNPHvith
ortho-phenylene linkers and an ethylene tether was synthesized, and installed on zirconium
amido and chloride precursors. Reduction of [PNNP]Zwith potassium graphite was
unsuccessful in attempt to activate dingen. A redesigned ligand with a propylene tether could
not be synthesized, through several routesridentate, monoanionic ligand with ortho
phenylene linkers and silylamide functionality was designed based on the [NPN*] and silylamide
[PNP] ligands. The tridentate framework could not be synthesized threeghral routes,
however, a nevbidentate ligand with a secondary silylamide ortho to a phosphine group, a first

of its class, was synthesized.
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1 Introduction

1.1 Dinitrogen Activation by Transition Metal Complexes

The binding and furthaeactivity of dinitrogen via transition metal complexes is a major
research focus of the Fryzuk grotib.While ligand design is the central topic of this document,
a brief background on dinitrogen activation lggncontext to the challenge of binding and

functionalizing N, a challenge that has guided several iterations of ligand design.

Dinitrogenis an abundant substancemposing/8% of Earth's atmosphere, yetiitert
nature causes difficulty for conversitmnitrogencontaining product$. The onlysuccessful
commerciaprocess for dinitrogen fixation is tieterogeneoudaberBosch process, which
requires high tempatures and pressures, and consumes about 1% of the world's annual energy
supply’® Biologically, theiron-molybdenum cofactor afitrogenase enzyrsés able to
catalytically convert dinitrogen to ammongthowgh this system is complex afather
complicated by the protein framewotkThe activation and functionalization of dinitrogen
ammonia or nitrogegontaining materialgia transition metal complexes is a leatanding goal

in chemistry®

Dinitrogen is a poor ligand for transition metal complexes due to its large HOMIO
gap and nospolar naturé. Compared to the isoelectronic molecule carbon monoxide, dinitrogen
is both a weakeli-donor and -acceptor; carbon monoxide undergoes a variety of chemical
reactions while dinitrogen is often used as an inert working gas for sensitive experiments. The
first dinitrogen complex, the ruthenium compound [RughN,]** with dinitrogen boundri an
endon fashion, was reported by Allen and Senoff in 196%0om this initial dinitrogen

complex, an entire field of inorganic chemistry has develdgéd:*



Upon coordination, strongly reducing metal complexes can have the ability to reduce the
dinitrogen moiety to a formal double bond (N2ZNr single bond (NN)* as determined by X
ray crystallography or RAMAN spectroscopyhich is often referred to as the degree of
activation of the Munit. Typically more than one metal centre is involved in early metal
dinitrogen complexes for the purpose of multielectron reduction; examples of dinuclear
dinitrogen complexes are shownRigure1.1.'*'* These eamples also illustrate thending
modes of dinitrogenterminal and bridgingndon (B), sideon (C), and sid®n endon (A).

Ph Ph
by "

P
Me,Si—— ‘ \ /H\Ta/
L /\\ 7 \N ‘N—|-SiMe
\ N/ /T‘SIMeg
pf Ph

Figure 1.1: Examples of dinuclear dimbgen complexes dfansition metalg**3**

A variety of ligand types have shown ability to stabilize dinitrogen complexes, such as
the ammine ligandsfahe Allen and Senoff complex, cyclopentadienyl derivatives as in
compund Cof Figurel.1, and mixeddonor multidentate ligands. The multidentate ligand
design strategies used by the Fryzuk group are discussed in the next. s€dten alkali metal
reagents such as KVig, and sodium amalgam (Na(Hg)) are employed for reduction of the

metal complex prior to dinitrogen activation; thus, the ligands must be capable of stabilizing the
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reduced metal species as well as the subsegligitrogen complexes. Additionally, some
metathydride complexes are capable of activating dinitrotie; sideon endon dinitrogen
compound A irFigurel.1is generated via the elimination of om a dinuclear Ta(lV)

complexi'*? Regarding these two methods of dinitrogen activat@imgpter 3 of this thesis
investigates the reduction of zirconium complexes, while Chapter 4 reports attempted syntheses

of dinuclear tantalum hydride complexes.

Some transition metal complexes with an activated dinitrogen ligand enable the
functionalizaion of dinitrogen, to form elememtitrogen bonds$®*>*® Additionally, there are
homogenous systerisat areable to catalyze ammonia production from dinitrogen, in modest
turnover such as compound B Bfgure1.1.**° The conversion of dinitrogen to highealued
nitrogencontaining productgspecially in a catalytic manner, is a major goal in the field.
However, fundamental studies of aetied dinitrogen complexes and stoichiometric reactivity

investigations provide important insight into the developmenkewf catalysts.

1.2 Ligand Design in the Fryzuk Group

Multidentate ligand systems containing both hard and soft donors have been aymainsta
of the Fryzuk group research program since the first publication of the amidophosphine [PNP]
ligand in 1981%°%* A family of structurally related amidophosphine ligands has been developed
in the Fryzuk groupas shown irFigure 1.2, and their subsequent chemistry has been studied
across the periodic tabté?%?? The work reported in this document involves the development of
a multidentate mido-iminophosphorane framework and its subsequent coordination chemistry
with the early metals zirconium and tantalum. This chapter provides the context for the design

of this new ligand system relative to our other ligand frameworks.
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M92 M92
/ [P2N2] \
M.ez
Me; Me; R, ~Si
Si_ _-Si N
N |
I\|/I—P—R'
wesP—M—F....,,,
R/ 'R N
R R R Si
Meg
[PNP] [NPNclassic]

Figure 1.2: Examples of multidentate silylamidophosphine ligand sets studied by the Fryzuk

group, with the silylamide ("classic”) linker.

The initial tridentate, monoanionic [PNP] ligand was used as the basis for deaign of
macrocyclic dianionic ligand, pR;]; the [PNP] framework within [fN5] is highlighted in blue
in Figure1.2.%*> Similarly, design of the dianionic [NPRF®q ligand (red highlijhting inFigure
1.2) was derived from the other "half" ofJR,].*? This family of sacalled "classic" silylamide
linked phosphine frameworks Bfgurel.2 has enabled impactful chemistry of early metal
complexes, including ghactivation of dinitrogen and its subsequent reactivity*'8%33
However, the silylamide functionality within the ligand has also been prone to unwanted

reactivity*>¢?3231 An example of ligand rearrangement is showSdhemel.1, where an



activated dinitrogen ditantalum complex reacts wiho@abicyclo[3.3.1]nonane {BBN),

followed by migration of a silyl group to a bridgingnoigen atont?

. Me;
yMeSi—y P, si/Spn P Ph\P._ﬂ__m
il N\"-Té-"'/H\"'-Ta/ ‘ 9-BBN /NN H, / \
P/ \N/ \NN— -SiMe; \Ta/H\ L N//SiMez
\ N/ / ~] —SiMes /P \N/ \N"l\/’SiMez
Ph Ph Ph H N/ | Ph
/ Ph
B
-H,
Ph Ph
Phy ™. . Phy*, .
/\ /\S|Mez \ L /\ /\SIMez \ Lt
Mezsi\ P\ \ P= Mezsi\ P\ \ P3
N N
/N .......... / \ /\,SIMGQ - /N‘“"rn..,.__ / \ / /SIMez
Ph Ta Tag N7, -C:H Ph Ta Tag
/ \N/ \N/I‘/S|Me2 6116 /" \N/ \N/SIMe2
AN | Ph AN H, v | Ph

Schemel.1: Reaction of [NPN?**{ tantalum sideon endon dinitrogen complex with-8BN,

and subsequent ligand rearrangement at the silylamide fifiker.

A more robusb-phenylene bridged framework was developed to facilitate analogous
reactivity to the silydmide "classic" systems, but with increased resistance toward ligand
decompositiorf? The o-phenylene based framework, showrFigure1.3, will be referred to as
the [NPN*] family of ligands in thislocument, with superscript prefixes denotingAN

substitutions.The ["*NPN*] ligand stabilized the activation of dinitrogen in a safefashion



with zirconium, in a similar manner to the [NERFq ligand. These two zirconium dinitrogen

complexes @& shown irFigure1.4.24%

[N PNC|855iC] [NPN*]

Figure 1.3: [NPN®** ligand type with silylamide linker ano-phenylene bridged [NPN*]

framework studiedby the Fryzuk group.

Me,Si

N\ o
\/P\Ph Q Ph

[[NPN®2851°)Zr THF],N, [[M**NPN*]ZrTHF]2N

Figure 1.4: Sideon dinitrogen complexes of zirconium stabilized by the [K¥N] and

[M*NPN*] ligands?*33

While the [NPN*] frameworlallowed for the study of group 4 dinitrogen complexes akin
to those of the [NPRF*q ligand, differences between the two frameworks caused subsequent
tantalum complexes to exhibit unique reactivity towards dinitrdgét®> As shown inScheme
1.2, the [NPN"®**{-stabilized tantalum trimethyl complex undergoes hydrogenolysis to form a

dinuclear tetrahydride species in a trans orientdfioRhis tetrdnydride compound



spontaneously reacts with dinitrogen to form a-gideendon bridging complex! Similarly,

the complex T*NPN*]TaMe; undergoes hydrogenolysis to form a ditantalum tetrahydride
species, however this compud exists in the cis orientation in the sedigte>** This [NPN*]-
stabilized tetrahydride complex is inert towards dinitrodfén.Our group is currently
investigating why these two amidophosphine ligand frameworks lead to similar ditantalum
tetrahydride complexes, yet display different reactiwitth respect to dinitrogen coordination.
There are several literature examples of bridging polyhydride group 5 transition metal

complexes, yet few of these show interaction with dinitrot§éh.



Ph

Me,Si /h/
2O/
MQQSI ! CH3
| \ /CHS Ha
—b_
\ -3 CHy
Ph
[NPNe@ss°ITaMe;

[meSNPN*]

[MeSNPN*]TaMeg

Schemel.2: Hydrogenolysis of [NPRP**] and ["*NPN*] stabilized tantalum trimethyl

complexes, and further reactivity towards dinitroget{:*

As small changes to ligan@mposition can lead to considerably different reactivity of
subsequent complexes, it was our goal to modify the [NPN*] system at the internal neutral
phosphine donor and study the impact of the change through comparison to previously
investigated [NPNEtabilized compound§®> Modification of the phosphine to an
iminophosphorane allows the sam@henylene scaffold to stabilize the tridentate, dianionic

ligand, yet alters the ligand geomettyigure1.5 compares the [NPN*] framework to the



iminophosphoraneontaining [NNN] system. Note thdte [NPN*] ligand forms Smembered

chelate rings, while the [NNN] ligand has an additionadtiim, leading to-6nembered rings.

[NPN*] [NNN]

Figure 1.5: [NPN*] ligand system witlo-phenylene linker compared to [NNhNgand with

iminophosphorane functionality.

1.3 Ligand Designs Incorporating Iminophosphoranes

Iminophosphoranes,sR=NR’, consist of a phosphoranat®m and an approximately
spf-hybridized Natom with a highly polarized P=N bofi.iIminophosphoranes coordinate to
metals through the nitrogen lone pair with similadonor capacity timine (RC=NR") ligands,
but only minor” -acceptor propertie¥. There are many examples of metals across the periodic

table stabilized by iminophosphoraecentaining ligands, including zirconiuamd tantalunf®#®

56

The incorporation of iminophosphorane functionality into multidentate ligands has been
employed for different design strategies. Iminophosphoranes can be substituted for other
functional goups, for example, analoguestafliketiminato (NacNac) ligands with
iminophosphorane rather than imine functionality have been studied by the groups of Piers,

Liang, and Fryzuk, as shown fiigure1.6.>*°*®? Iminophasphoranes have been used in ligand



design for their steric properties, such as the tridentate ligands employed by the Stephan group,
shown inFigure1.7, where the terminal PRigroups provide bulk*®® Novel ligands have also

been designed to incorporate the phosphorane into the ligand backbone, such as the tridentate
ligands studied by the Hayes group with terminal iminophosphorane functionality, examples of
which are shown iffigure1.8.>2°*2 Additionally, a ligand developed by Cavell andworkers
incorporates iminophosphorane groups to stabilize a carbene functionality on a variety of

transition metalé®’®

Figure 1.6: Iminophosphorane ligand designs based on the NacNac figand.
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