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Abstract

Pointing is a fundamental task within many interactions in current computer ap-

plications. It is incorporated into everything from selecting buttons to dragging

files or positioning objects in a virtual environment. Thus, understanding, mod-

eling and predicting pointing performance is crucial to the design and evaluation

of many computer interfaces. Fitts’s Law (1954) is the basis for modeling human

pointing performance in the international standard on pointing device evaluation

(ISO 9241-400:2007). However, while it is extremely robust for many standard

desktop applications, previous work by Shoemaker et al. (2012) has suggested that

Fitts’s Law may not be robust enough to accurately model pointing at more ex-

treme levels of gain and has proposed alternatives to Fitts’s Law based on earlier

work by Welford (1968). This thesis extends preliminary research by Rajendran

(2012) that further examined these alternatives to Fitts’s Law for distal pointing.

Distal pointing is common in virtual and augmented reality interfaces. We first

reänalyze results reported by Rajendran using a variety of Welford-style models to

explore the relationship between target depth and a parameter k that was first sug-

gested by Kopper et al. (2010) but is inherent in Welford’s model. We then present

a new experiment that removes the confound of system latency from Rajendran’s

approach. Our analyses provide evidence that k varies monotonically (possibly

linearly) with target depth, which further supports the claim by Shoemaker et al.

that Welford-style two-part models are preferable to Fitts-style one-part models in

some situations. Our analyses also challenge Kopper et al.’s suggestion that angu-

lar measures of task difficulty are superior to linear measures for pointing models.

We close with a discussion of how our findings about the variation of k with target

depth might be used in calibration procedures for virtual environments.
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Preface

Much of this thesis builds upon previous research. This project was pitched to me

by my adviser, Kellogg Booth, as a continuation of these projects and a chance

to investigate some of the questions brought up in their “future work” recommen-

dations. The questions included whether angular measures account for the defi-

ciencies in Fitts’s Law, whether latency was causing the variance observed in the k

parameter, and whether the variance in k was linear with target depth or something

more complex. I was given leeway to decide which of these questions to tackle and

how to do that, but many of the project goals came from Kelly.

Most of the code developed as part of my research was for administering point-

ing experiments or analyzing the data recorded from them. This thesis reports on

two main experiments. They are presented in Chapter 3 and Chapter 5. Chapter 3

provides re-analysis and interpretation of an experiment conducted by Vasanth Ra-

jendran in 2012 for his master’s thesis. Garth Shoemaker’s experimental software

was used as the basis for Vasanth Rajendran’s original experiment but was modified

by Vasanth to better support VR. However, much of Vasanth’s code and analysis

was lost when a hard drive was corrupted. Therefore, starting from the code written

by Garth Shoemaker, I independently modified the code base to create an applica-

tion that would duplicate Vasanth’s experimental software as closely as possible.

After replicating Vasanth’s experimental results in a small pilot study, I continued

to modify the code base to conduct a second experiment. Chapter 5 reports on

my study to investigate whether the trends observed in Vasanth’s original exper-

iment are simply an artifact of system latency. I did most of the writing for this

chapter. Aside from modifications to the experimental software, I developed com-

puter vision software to process video captured during the experiment in order to
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obtain pointing performance data without relying on computer logs that are poten-

tially latency-plagued because they rely on real-time sensing. Documentation and

a primer about how the computer vision software works is provided in Chapter 4,

all of which I wrote.

Data analysis for both experiments was performed through R-Scripts written

independently by me. My adviser, Kellogg Booth, helped me interpret the graphs

and results from the experiments. After performing the small pilot study that repli-

cated the general trends in Vasanth’s data, I was able to reänalyze Vasanth’s original

data files using my R-Scripts (he had used SPSS). Through trial and error, I was

able to reverse engineer the analysis that was reported in Vasanth’s thesis. During

this process, I discovered a number of problems with how the original analysis was

done, particularly with the method for filtering outliers that affected some of the

results described in the text of Vasanth’s thesis. Because of this, I independently

reänalyzed the data using methods that are more consistent with previous research.

My reänalysis of Vasanth’s data was reported in the paper “Modeling the Im-

pact of Depth on Pointing Performance” that was presented at the CHI 2016 con-

ference [16]. Much of the text from the paper was re-used in Chapter 3, although

it has been edited and reörganized. Kelly and I had roughly similar levels of con-

tribution to the paper writing process, with me focusing more on the results and

analysis sections while Kelly focused more on the framing and related work. Vas-

anth and Kelly designed the initial experiment and Vasanth did the data collection.

His initial analysis was used as the basic structure for the paper. The introduction

and literature review from that paper were expanded and fleshed out to become the

basis for Chapter 1 and Chapter 2 in this thesis.

Ethics approval for the experiments reported in this thesis was provided by

the UBC Behavioral Research Ethics Board under certificate number H11-01756

“Interacting With Large Displays V.”

Funding for the research was generously provided by NSERC, the Natural Sci-

ences and Engineering Research Council of Canada, under the Discovery Grant

Program, and by GRAND, the Graphics, Animation and New Media Network

of Centres of Excellence. Facilities and research infrastructure administered by

ICICS, the Institute for Computing, Information and Cognitive Systems purchased

with funds from the Canada Foundation for Innovation were used for the research.
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Chapter 1

Introduction

Pointing is the act of touching or selecting an object by positioning one’s hand, or

some intermediary tool, over top of a desired object or in the general direction of

the object if it is not close by. In human computer interaction pointing is incor-

porated as a sub-component of many basic tasks. These can vary from selecting

buttons, highlighting text and moving files within a desktop to positioning boxes

within a virtual world or game. Due to its ubiquity, it is important that we under-

stand and can predict the behavior of the sensorimotor systems involved in pointing

when we evaluate new pointing devices and techniques. Even small improvements

and refinements to a pointing device or technique could add up to save a significant

amount of time when interacting with the system as a whole.

Pointing devices such as the computer mouse are robust, ubiquitous and highly

effective for desktop applications. However, these often break down when used

in virtual environments or with screens that get very large. This often occurs in

virtual reality systems or classroom interaction. This style of interaction is often

called distal pointing, where users stand a good distance away from the screen

and position the cursor with their hand as if using a laser pointer. While numer-

ous pointing tools have been and are currently being developed for distal pointing,

some researchers have noted problems properly evaluating and modeling the tools’

performance using standard procedures [43]. This has led to attempts to expand

and refine our models of human pointing performance to better evaluate these tech-

niques [23]. This is a fundamental concern that we explore in this thesis. If we do
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not have an accurate and robust measure of how a device performs, how can we

say if it was effective or not?

We focus our work on investigating the impact of target depth on mid-air point-

ing techniques (also known as distal pointing) in which a person’s hand moves

freely, unconstrained by contact with any surface or object. This is a very common

task in many training, simulation and entertainment activities where interaction

with real or virtual objects is required. It is also a task performed every day in the

real world, often with 2-D information displays such as in classrooms or lecture

halls. Some virtual environments employ “virtual hand” techniques to grasp and

manipulate targets at a distance, but we restricted our attention to pointing because

it mimics the physical world. We sought to learn more about the fundamental act

of pointing, both when targets are at a depth in the real world, and when targets

appear to be at a depth in a virtual world. Target depth is either the physical depth

or the virtual depth, depending on the situation.

Fitts’s Law [10] is often used to measure pointing performance by modeling

movement time as a function of target size and distance moved. Kopper at al. [23]

recommended a variant of Fitts’s Law that uses angular measures of target size and

movement distance instead of the classic linear measures normally used with Fitts’s

Law. Shoemaker et al. [40] showed that a classic measures version of Kopper et

al.’s model is just a special case of Welford’s two-part model of pointing [53]. The

constant k that Kopper et al. introduced is actually the ratio of two coefficients in

the much earlier Welford model. Welford’s model is similar to Fitts’s Law, with

the change that it separates amplitude and width into their own terms with separate

impacts. Shoemaker et al. also showed that k varies monotonically and possibly

linearly with gain.

In two experiments, we looked at how k varies with target depth (distance to the

target) and we reëxamined Kopper et al.’s claim that angular measures are better

than linear measures for assessing mid-air pointing performance. Furthermore, we

tested a variety of different possible models for pointing and suggested ways to

make the most common models more robust for different pointing techniques and

gain.

The first experiment had previously been conducted to investigate whether vir-

tual depth and physical depth to the screen have similar impacts. Reänalyzing the
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data from that experiment, we showed that for normal viewing with real-world

physical depth cues, target depth affects pointing performance. In binocular stereo,

where perceived or virtual target depth can differ from physical target depth, we

found that both virtual and physical target depths may affect pointing performance.

We did not find evidence that angular measures are better than linear measures, but

we did find that two-part models are better than one-part models in some but not

all conditions. The Kopper-Shoemaker k factor appeared to vary monotonically

with gain, but we couldn’t conclude much about the exact type of relationship (e.g.

linear versus logarithmic) from the limited dataset we had.

Our second experiment investigated whether or not the effects observed for

target depth were merely an artifact of latency from the computer mediation in

the experimental apparatus. Latency is the delay between physical movement and

output being displayed on the screen and has been shown to reduce pointing per-

formance [31]. We were concerned that much of the effect of target depth might

be simply latency becoming more problematic as a user moves further from the

screen. This experiment provided further evidence that two-part models outper-

form one-part models in conditions where k deviates from one (which are common

in distal pointing). We reinforced our conclusions that angular measures do not

really improve our models of pointing performance. We also showed that even af-

ter removing computer mediation from the task, k still grew larger as target depth

increased. Overall, k was smaller and had slower increases than in our first experi-

ment, which we argue is likely caused by task differences or sampling biases. Our

models of target depth’s impact on k were refined from previous studies to rein-

force that a linear approximation is robust and explanatory. We also noted there is

some possible merit to a logarithmic model, though many conditions produced less

favorable statistics than linear. This has implications on ideas we’ve presented to

calibrate VR systems through the use of a ground truth k variation.

In the chapters that follow we present a review of relevant literature in the field

(Chapter 2) and then present the results of the first experiment (Chapter 3). After

that we describe a method for performing latency-free pointing evaluation using

computer vision tchniques (Chapter 4), which can be read as a succinct primer on

a number of the basic tools and techniques for incorporating computer vision into

experimental designs, a practice that seems unfortunately to be underused. Lastly,
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we present the methods, results and conclusions of a new experiment that replicates

the first experiment without latency artifacts (Chapter 5). Further discussion of our

results, potential impact on the field, and key avenues for further research are then

discussed (Chapter 6).
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Chapter 2

Related Work

Modeling pointing performance is an extremely common and classic research topic

in HCI that has been studied since the dawn of the field in the 1960’s [29]. Experi-

ments to quantify and compare the pointing performance of different input methods

were critical to the introduction of the first graphical user interfaces and computer

mice [5, 6]. Given this massive breadth of research it would be entirely impractical

to discuss all the papers and work that have been done on the subject. Therefore,

this chapter provides a selective discussion of key work that is particularly rele-

vant to distal pointing and the questions we investigate. We focus mainly on the

last decade of research, which follows the pivotal work by Scott Mackenzie’s lab

in the 1990’s and the early 2000’s, which led to the current standard methods for

evaluating pointing performance [3, 26–28, 41].

2.1 Fitts and Welford Models of Pointing Performance
The best known model of pointing performance is Fitts’s Law (Eq. 2.1), formulated

by Paul Fitts [10]. It was originally used to model “reciprocal tapping” where the

time to move between successive taps was related to the distance moved (ampli-

tude) and the size of the area being tapped (target width).

MT = a+b log
(

A
W

)
(2.1)

5



MT = a+b log
(

A
W

+1
)

(2.2)

Movement time (MT ) depends only on the ratio of movement amplitude (A) and

target width (W ), but not their individual values. The logarithmic term is often

called the index of difficulty (ID). Soukoreff and MacKenzie [41] argue for an

information-theoretic interpretation, the Shannon-Fitts formulation (Eq. 2.2), with

an additive constant in the ID term. This often produces better R2 values than does

the simpler version of Fitts’s Law.

Welford later introduced a two-part model of pointing performance (Eq. 2.3)

in which the one-part ID term is replaced by a linear combination of two logarith-

mic terms [53]. Shoemaker et al. [40] introduced a variation on Welford’s model

analogous to the Shannon-Fitts formulation that they called the Shannon-Welford

model (Eq. 2.4).

MT = a+b1 log(A)−b2 log(W ) (2.3)

MT = a+b1 log(A+W )−b2 log(W ) (2.4)

The Fitts formulations are special cases of the Welford formulations. A parameter

k can be defined (Eq. 2.5) that measures how closely the Welford models match the

Fitts models.

k = b2/b1 (2.5)

Eqs. 2.1 and 2.3 are nested models because setting b = b1 = b2 (k = 1) turns the

3-DOF (degree-of-freedom) Welford model into the 2-DOF Fitts model; similarly,

the two Shannon models Eqs. 2.2 and 2.4 are also nested.

Throughout our discussion, we follow the authoritative and venerable advice of

Strunk and White [42] and use Fitts’s as the possessive case of the singular proper

noun Fitts.

2.2 Effective Width We and Effective Amplitude Ae

Target width W is the physical size of the target being pointed at (or tapped on, in

the original studies by Fitts). Crossman and Welford [53] compute the effective
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width (We) of a target using the observed distribution of tap positions and then

adjust the width of a target in their calculations to reflect what participants actually

do, rather than what participants are expected to do. This post-hoc adjustment to

target width maintains the information-theoretic analogy for Fitts and other models,

which are for rapid, aimed movements (such as reciprocal tapping or pointing in 2-

D or 3-D). It assumes a nominal and consistent error rate (traditionally 4%). When

this condition is not met, further adjustment to the target width is introduced such

that the error rate becomes 4%.

Figure 2.1: Computing effective width We using the standard deviation sigma
of the observed pointing or tapping accuracy (after MacKenzie [26]).

Assuming a normal distribution with standard deviation σ of the taps, P[Z ≥
2.066] = 0.02, a width of 2× 2.066 in z-units (4.133σ ) around the mean has a

probability of 96%. The probability of error (tapping outside this area) is 4%, so

We can be calculated using Eq. 2.6.

We = 4.133σ (2.6)

Whenever We is used, we also use effective amplitude, Ae, which is simply the

mean of the observed amplitudes. Further background on the four pointing models,

effective width, and the F-test used to compare nested models, is provided by

Shoemaker et al. [40], an essential reference for the work discussed in this thesis.

2.3 Throughput and Cross Study Comparisons
One of the great benefits of Fitts’s Law is the introduction of the Index of Perfor-

mance (IP), more commonly called throughput (TP), which is the term we will use.
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Throughput is operationally defined by “The average rate of information generated

by a series of movements is the average information per movement divided by the

time per movement” [9]. Mathematically, throughput is defined as the average

index of difficulty divided by the average movement time.

T P = (ID/MT ) (2.7)

After correcting for participant strategy by using effective width, throughput

is often used to compare different pointing devices across studies. It has become

the de facto standard metric of pointing performance and has been adopted by

many research groups [41]. We note that it is often used to make broad general

statements such as “device A performs 30 percent better than device B” because it

incorporates estimates of both accuracy and speed into a single value.

Unfortunately, no standard alternative to throughput exists for two-part models

of pointing performance. Perhaps because using a two-part model itself is not

standard practice, no concerted effort has been made to define what should be

used to compare studies done with them. However, we argue that the research

community could quickly adapt if a strong effort was made to switch over to two-

part models. One could easily define two separate throughputs, one for ballistic

movements and one for precision adjustments with the two ID coefficients in a

two part model. This would allow us to make more nuaced comparisons such as

“device A performs 20 percent better for precision tasks than device B, so it should

be used for interaction with small screens”. Perhaps the sum of these two indexes

of difficulty over movement time could be used in place of the general throughput

parameter so we could still make general effectiveness conclusions about overall

device effectiveness. The results may even be mathematically similar to one-part

throughput if amplitude and width had similar impacts to start with.

We discuss these ideas and provide our ideas of what the standard should be

in Chapter 6. While providing this standard is not a key focus of this thesis, we

do wish to further motivate the pointing research community to address this is-

sue. This will hopefully lead to more nuaced interpretations of costs and benefits

of input devices and allow the deployment of more effective models of pointing

performance.
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2.4 The Relationship Between Gain and Depth

Figure 2.2: A simple diagram of the effect of depth on distal pointing. Note
that the same physical movement intersects further horizontally away
from screen center when depth is far. This creates an effect similar to
gain with target depth.

Gain is the reciprocal of the control-to-display ratio, which is the relative move-

ment of the pointing device to the movement of the cursor that is being used as

visual feedback for the pointing. Depth is the distance from an observer to an ob-

ject that is being viewed. There is an obvious relationship between the distance

at which pointing is done and induced gain: the farther one is from objects being

pointed at, the less hand movement is required to point to different objects. In a

real-world environment, target depth is the physical distance to a target. In a virtual

stereoscopic 3-D environment, target depth is the perceived or virtual distance to a

target. Depth perception uses many cues. In a virtual environment an important cue

is the binocular disparity between the images seen by the left and right eyes. One

of our primary interests was to better understand how target depth affects pointing

performance in the real world, but we also looked at virtual environments where

binocular depth may not be the same as the physical depth to the left and right

images.
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2.5 Distal Pointing Interactions

Figure 2.3: Basic distal pointing interaction implemented with Nintendo Wii
Remote to select buttons in a user interface.

Figure 2.4: Shadow reaching is a proposed distal pointing interaction using
the shadow as a metaphor for changing pointing gain by moving back
and forth through the room.

Distal pointing interaction has become increasingly common in the last decade.

In particular, numerous distal pointing interfaces have been employed in recent

gaming technology. Various industrial input products including Microsoft Kinect,

Playstation Move, Nintendo Wii Remote, and Leap motion have provided support

for distal pointing. Many of these have been picked up by the research community

in order to evaluate which are the most effective for specific applications [34, 37,

56]. Many of these are provided by and for gaming applications and traversing

3D virtual environments. However, this is far from the only application for distal

pointing. Further improvements and refinements such as shadow reaching have
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been suggested to allow variable precision [39]. Classroom interaction has also

been highlighted as a key opportunity for applying distal pointing [11]. Given

the glut of new distal pointing devices hitting the market, ensuring that we can

consistently and effectively evaluate their strengths and weaknesses is an arguably

important and timely research area.

2.6 The Kopper Model for Mid-air Pointing
Kopper et al. [23] investigated ways to revise Fitts’s Law specifically for mid-air

pointing by incorporating target depth into their model (Eq. 2.8) through the use of

an angular index of difficulty based on angular amplitude α and angular width ω .

MT = a+b
[
log
(

α

ωk +1
)]2

(2.8)

While Kopper et al.’s techniques show some promise, they unnecessarily narrow

the scope of their model by fixing the exponent of ω as k = 3, which might pre-

vent its applicability in contexts other than the particular physical set up they

used. Moreover, Shoemaker et al. noted that Eq. 2.8 is mathematically similar

to Welford’s two-part formulation if we ignore the squaring of the logarithmic

term and replace k = 3 with b2/b1, and they showed experimentally that Welford’s

formulation seems to capture the impact of different gains on pointing perfor-

mance [40]. In a way, the target depth for mid-air pointing is very similar to gain.

Moving farther away from targets increases the effect of small hand movements and

vice versa. Thus we suspect that any improvement in modeling seen by Kopper et

al. was likely due to their model being similar to Welford’s, not to the incorporation

of angular ID measurement.

2.7 Statistically Comparing Nested Pointing Models
Soukeroff and MacKenzie [41] and others have observed that two-part models in-

evitably perform better than their one-part counterparts because of additional de-

grees of freedom (DOF). However, there are statistical tests to determine whether

nested models such as Fitts’s Law and Welford’s formulation are actually better

at describing the data beyond just the benefit of the increase in degrees of free-
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dom. Following Shoemaker et al. [40], we use the F-test in Eq. 2.9 to determine

whether a two-part Welford-type model is statistically better than a one-part Fitts-

type model: p2 = 3 is the number of parameters in the greater-DOF Welford model,

p1 = 2 is the number of parameters in the smaller-DOF Fitts model, and n = 9 is

the number of sample points in our data. A p-value of .05 or less is considered

significant.

F(p2− p1,n− p2) =

RSS1−RSS2
p2−p1
RSS2
n−p2

(2.9)

2.8 Impact of Latency on Pointing Performance
By necessity, no computer can react or display feedback to user input instante-

nously. There is always some amount of time between a button being clicked and

the electrical signal travelling down a wire to be interpreted by the CPU. Thus, any

computer mediated pointing system must be robust enough to work in the pres-

ence of this latency without becoming cumbersome to use. There has been a large

amount of work in literature characterizing the relative impact of this effect on

many input techniques, but pointing is particularly well studied.

Generally speaking most pointing research has found that the effect of latency

gets more severe as latency is increased and that 100ms of latency degrades perfor-

mance by around 10-15 percent [18, 31, 32, 49]. Cursor jitter imposed by tradeoffs

in hardware had an impact as well, but was less than latency [31]. However, others

have noted that a similar amount of latency impacts pointing performance much

more when targets are moving, as in a virtual environment [16].

It is entirely possible that other factors could cause latency to become more

problematic than expected by previous studies. By convention studies use consis-

tent, reasonable input gains and turn off mouse acceleration. This enables greater

internal consistency and easily reproducible experimental conditions. The effect

of latency is also usually evaluated by adding latency into the system, rather than

comparing to a “natural” baseline. Shoemaker further raised the concern that these

gains were unintentionally cherry picked to maintain the effectiveness of one part

models of pointing [40]. We felt the objections raised by Shoemaker were rea-

sonable and were concerned that latency might become more problematic in distal
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pointing as you moved further from the screen. This naturally lead to our second

experiment to evaluate natural human baseline performance without the presence

of system latency.

2.9 Virtual Reality (VR)

Figure 2.5: Oculus rift and other VR systems have commonly been applied
to gaming and other methods of exploring VR systems. In this example
a treadmill is placed under the user to allow them to traverse by running
in place.

Figure 2.6: A secondary example of a VR system in practice allows flying
and exploration like a bird. A specially designed apparatus helps aide
this effect.

Virtual Reality (VR) Ellis [4] defines virtualization as “The process by which a

human viewer interprets a patterned sensory impression to be an extended object in
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an environment other than that in which it physically exists.” Virtual Reality (VR)

often consists of headcoupled stereoscopic displays, with means of interaction and

input to generate a coordinated sensory experience. Some systems include audi-

tory and tactile information. VR environments are used in entertainment (gaming,

movies, virtual experiences, etc.), training and simulation (military training, driv-

ing and flight simulators, etc.), and medical and scientific visualizations.

Recently, popular interest in virtual reality HMDs (head mounted displays)

has been reinvigorated by the announcement and success of the oculus rift [30].

Oculus is a consumer grade VR headset that’s been touted as a cheap and easy

way to bring VR to the masses [36]. Unsurprisingly, this has helped reinvigorate

the HCI community’s interest in virtual reality and applications of head mounted

displays. Of particular note is incorporating haptic sensations to VR experiences,

as well as augmenting and improving VR hardware to improve peripheral vision

and reduce motion sickness [1, 21, 22, 54].

Depending on the application, the requirements for a VR system might differ.

In training applications, it is often desirable that the VR system evoke responses

and task performance nearly identical to that in the real world. Stereoscopic 3-D

systems may be unable to completely live up to the ideal of perfect simulation.

There are depth cues aside from binocular disparity. The physical screen distance

in a VR system is often fixed, and thus rarely the same as the binocular depth of

objects being viewed. Our next section discusses attempts to calibrate VR systems

and reduce the impact of these disparities.

2.10 Calibrating Virtual Environments
There has been much previous work on VR calibration. Jones, Lee, Holliman and

Ezra describe calibrating the camera space against a user space based on user-

reported depth values [17]. Yuan, Pan and Daly perform depth tuning of stereo-

scopic 3-D content based on models of human visual comfort [55]. Iyer, Chari and

Kannan describe a method for determining parallax values for stereoscopic view-

ing that minimize visual artifacts in 3-D television [15]. Since the introduction of

the Oculus Rift, this trend has continued. Kulshreshth et al. provide a method to

improve depth estimation by dynamic stereo parameter adjustment [24]. Fernandes
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Figure 2.7: Image displaying an application using dynamic adjustment of 3D
parameters. On the left, a farther object has its stereo parameters made
more extreme to highlight the depth effect and improve depth estima-
tion.

et al. suggest subtly modifying field of view to reduce motion sickness [7]. Lastly

Finnegan et al. tackle the problem of calibrating audio feedback timing in such a

virtual environment [8].

These approaches are all based on stereoscopic perception models either de-

rived from the literature, or from user-reported values. They attempt to reduce

distortions associated with binocular viewing. If we want to produce task perfor-

mance identical to that in real-life tasks, not simply to reduce perceived distortion,

we may have to take task performance explicitly into account during calibration.

To our knowledge however, no other work currently has attempted to validate pre-

vious calibration methods to a performance task, or hit on the idea of calibrating a

VR system based on performance metrics.
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Chapter 3

Target Depth and k in
Computer-Mediated Pointing

The analysis I present in this chapter was done on data collected by Vasanth Rajen-

dran. Previous work in our lab by Shoemaker et al. had investigated the variance

of k with respect to gain. They had found that k varies quite linearly and monoton-

ically with different gain settings and thus could be used as a predictor of relative

gain settings [40]. However, we’d had one important observation; in distal point-

ing environments, target depth may play a role similar to gain. With laser pointer

style interaction, if you are standing far away it may be easier to cross large gaps

and harder to make fine adjustments. This effect is similar to increasing the gain

settings of the device, and thus might be predicted by k. If we could use pointing

performance to tell how far away the screen is, can we use it as a more reliable indi-

cator of VR calibration than self report data? Therefore in this chapter we present

an experiment to test and verify if the k factor also captures target depth, as well as

whether that variation is the same for virtual and physical depths.

3.1 Method
We examined the effect of physical target depth DS (the depth to the display screen)

and binocular depth DV (the depth at which objects are intended to be perceived) on

pointing performance (movement time) in a VR environment. Our primary analysis
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is for the conditions in which DV = DS, a real-world physical environment with no

virtual binocular disparity (the images for the left and right eyes are identical on

the screen), but we also examined the cases where DV 6= DS, virtual environments

that had virtual binocular disparity (the images for the left and right eyes were not

identical on the screen). The design was based on an experiment by Shoemaker

et al. [40] that evaluated physical 2-D pointing on a large display for varying gain

values. In our experiment, we evaluated 3-D pointing for different binocular depths

and for different target depths with system gain held at one.

3.1.1 Participants

We recruited 21 participants at our university through on-campus advertising. As

a requirement, all were right-handed with normal or corrected-to-normal vision.

One participant’s data had to be discarded due to equipment malfunction. Of the

remaining 20, 8 were female and 12 male. Age ranged from 20 to 28 years (mean

23.3). All participants were regular computer users (9+ hours per week). The study

was approved by the behavioral Research Ethics Board at our university. Partici-

pants signed a consent form prior to the start of the study. Each was compensated

with $10.

3.1.2 Apparatus & Materials

The hardware and software used for this experiment were based on previous exper-

iments investigating the impact of gain on distal pointing by Shoemaker et al. One

of the main additions was the supporting of VR and different virtual depths.

Hardware

The wall display was a 5.16m×2.85m (width× height) glass screen rear-projected

by a 4×3 array of 800px×600px stereo projectors. The images of adjacent projec-

tors overlapped by 160px with a blending function to minimize the appearance

of discontinuities. The overall resolution of the display was 2720px×1480px.

Viewing was binocular frame-sequential stereo at 60Hz. Users viewed the dis-

play through shutter glasses synchronized with the projectors. We calibrated the

binocular disparity based on an initial estimate followed by visual inspection and
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Figure 3.1: Apparatus: (a) Large screen stereoscopic display, (b) Hand-held
pointer, (c) Head-tracking gear, and (d) Wii Remote for click events.

adjustment to reduce visual distortions. The display was driven by an 8-core In-

tel Processor with 6GB of RAM and dual NVIDIA GeForce GTX 260 graphics

processors, running Windows 7.

Five Vicon cameras (a high speed infrared-based motion capture system) tracked

participants using head gear and a hand-held pointer each fitted with reflective

balls (Figure 3.1) after using Vicon’s standard wand wave calibration procedure.

We tracked participants’ heads and the pointer positions and orientations to com-

pute and project a virtual cursor on the screen. Participants stood at one of three

depths DS from the screen with targets displayed at one of three depths DV (Figure

3.2). The display was not head-coupled; it was “movie theatre stereo” with a fixed

viewer position assumed because we wanted no virtual binocular disparity when

the target was in the plane of the physical screen (i.e. when DV = DS binocular

depth would be the same as physical depth and the images for the left and the right

eyes would thus be identical, and this would not change with head movement).

‘Tapping’ on targets was performed using the thumb (A) button on a hand-

held Nintendo Wii Remote. Participants held the remote with the left hand (the

non-pointing hand) to minimize any disturbance caused by clicking.
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Figure 3.2: Placement of the targets and the participant in an experimental
trial. The virtual plane of the targets is green; the physical plane of the
screen is black.

Software

The experimental software was written in C# using the Microsoft XNA Game Stu-

dio 4.1 library. The WiimoteLib library [33] was used to communicate with the

remote and to detect click events. The Vicon motion tracking system managed by

Vicon IQ software provided the positions of the user’s head and the pointer. Our

software recorded all click events and the timing for each trial condition. Raw

tracking data was captured 60 times a second.

Interaction-plane pointing was used to compute the cursor position on the

screen. An imaginary vertical plane containing the user’s eye and hand was ex-

trapolated to intersect with the virtual screen, corresponding to the binocular depth

DV for a trial condition. The cursor was rendered on the physical screen with ap-

propriate binocular disparity for this depth (Figure 3.3). The imaginary plane was

used only by the software: participants did not sight along the hand but instead

watched the cursor on the screen much as they would use a mouse by watching

only the cursor not their hand. The plane of the cursor was always the plane of the

target, in keeping with our desire to mimic physical pointing such as might be done

with a laser pointer in a classroom.
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Figure 3.3: Computing the cursor position from the head and hand-held
pointer positions.

Layout, Task, and stimuli

The experimental task was a serial 1-D tapping task between two target pairs, mod-

eled closely after Shoemaker et al. [40] and the original Fitts experiments [10]. ISO

9241-9 [3] defines a 2-D task for pointing performance; we used a 1-D task because

we were concerned with the fundamental applicability of Fitts’s Law. Although the

task was 1-D, it is still an example of 3-D pointing because targets were perceived

at different depths in a 3-D stereoscopic environment.

Targets were two identical vertical bars of variable width W and fixed height,

spaced apart by variable amplitude A. The cursor was a thin (0.5 cm) vertical line

of the same height as the targets. Lighting in the room was fairly dim to reduce any

depth cues other than binocular disparity.

Each trial condition was defined by four independent variables: movement am-

plitude A, target width W , binocular depth of the targets DV , and physical depth DS

of the participant from the screen. If DV = DS, there was no virtual binocular dis-

parity from VR (targets were intended to be perceived as in the plane of the physical

screen so the images on the screen for the left and right eyes were identical, which

we refer to as having no virtual binocular disparity). If DV > DS, targets were per-

ceived behind the physical screen (positive parallax) but if DV < DS, targets were

perceived in front of the physical screen (negative parallax). The DV = DS and

Dv < DS cases are shown in Figures 3.4 and 3.5, respectively.
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Figure 3.4: An illustration of the participant performing the pointing task for
DV = DS. Targets are in the plane of the screen.

For each target pair, a participant first tapped the start target and then performed

a sequence of eight back-and-forth taps between the two targets. The destination

target for a tap was highlighted blue and the starting target was grey. The partic-

ipant was required to correctly tap the first starting target to initiate a trial. After

each tap the destination target turned grey and the former starting target turned blue

and became the new destination target.

Times and locations of all nine taps were recorded. When tapped, the active

target briefly flashed green to indicate success, or red to indicate an incorrect tap.

Participants were not required to correct errors. One target was always directly

in front of the participant, the other was to the right, at a distance defined by the

current amplitude (A) condition. This was done to avoid a cross-lateral inhibition

effect (CIE) [19, 38], the observation that hand movements that cross the midline

of the body are more complex than those that do not.

3.1.3 Procedure

Each participant performed the experiment in a single session of approximately

45 minutes. After filling out a consent form and a pre-questionnaire that gathered

demographic information, participants were introduced to the apparatus and the

pointing task. They were instructed to complete the task as quickly as possible

with a goal of ∼95% accuracy. Each completed a practice session of at least five
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Figure 3.5: An illustration of the participant performing the pointing task for
DS > DV . Targets are perceived in front of the screen.

randomly chosen (DV , DS, A, W ) combinations (without duplicates) that included

all DV and DS values. They were invited to practice until comfortable with the

system.

At the beginning of the block of trials for each DV and DS pair, a practice trial

with one A and W pair was presented to familiarize participants to the new depth

condition. These trials were presented in the regular flow of the experiment; a

participant was not informed these were only practice trials. Between each block of

the experiment representing a DS value, participants were required to take a break

for at least three minutes. They were encouraged to take more time if desired, but

very few did.

After all blocks were completed, participants filled out a post-questionnaire of

feedback and comments on the experiment. We do not report on this here.

Measures

Pointing performance was measured as the time taken to execute each individual

tap action. A trial began when the participant successfully tapped on the start target,

and ended with the eighth tap on a destination target. For each tap, the software

recorded movement time MT , and position of the cursor when the click was made.

The position ∆tap was an offset from the center of the destination target. There

were a total of 12,960 observations. As is common practice in pointing evaluation,
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mistrials and outliers were removed. Any click landing more than half the trial

amplitude away from the target (likely to be caused by an accidental click) was

ignored and any tap whose movement time was more than three standard deviations

from the mean was removed. In total 312 taps were removed from the dataset.

Experimental Design

The within-participants design had independent variables binocular depth of targets

DV (110cm, 220cm, 330cm), screen depth from the participant DS (110cm, 220cm,

330cm), target width W (5cm, 10cm, 20cm), and movement amplitude A (25cm,

50cm, 75cm). All the variables were fully crossed.

20 participants (N) ×

3 binocular depths (DV ) × 3 screen depths (DS) ×

3 movement amplitudes (A) × 3 target widths (W ) ×

8 taps = 20 participants × 648 taps = 12,960 total taps

For a given DS, all three DV conditions were presented consecutively; for a

given DV -DS pair, a participant performed trials for all combinations of A and W

before switching to another DV -DS condition. We decided against completely mix-

ing up DS and DV to avoid participants having to move back and forth between

different locations in the room. Condition order was partially counterbalanced

across participants.

Hypotheses

We had five hypotheses, the fourth of which has both a weak and a strong variant.

Four of the hypotheses are similar to those of Shoemaker et al. [40], who con-

ducted studies of mid-air pointing where gain was varied. They found that Welford

models were better than Fitts models and that experimentally measured k ratios

varied linearly with gain. Our hypotheses replace “gain” with “target depth” but

are otherwise the same as those of Shoemaker et al.

H1 One-part formulations (Fitts’s Law and the “Shannon” version of Fitts’s Law)

will not accurately model pointing performance at all target depths.
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H2 Two-part formulations (Welford’s formulation and the “Shannon” version of

Welford’s formulation) will accurately model pointing performance at all

target depths.

H3 Physical target depth has no significant effect on pointing performance, only

binocular depth matters.

H4 (weak) The ratio k = b2/b1 of coefficients in a Welford formulation varies

monotonically with target depth.

H4 (strong) The ratio k = b2/b1 of coefficients in a Welford formulation varies

linearly with target depth.

H5 Using an angular index of difficulty will not improve the strength of our mod-

els of pointing performance.

3.2 Results
Analyzing data from individual trials or from individual participants is rare in the

literature on pointing performance. We performed both ANOVA and a linear re-

gression analysis using data averaged over all participants [10, 41]. For each A and

W pair in each DV -DS pair condition, we first averaged within a trial and then the

trial averages were averaged over all trials and all participants, resulting in nine

values for each of the nine A-W pairs in each of the nine DV -DS conditions (81 val-

ues in total). A Shapiro-Wilks test for normality was conducted on the participant

average movement times, which showed a violation of the normalcy assumption

(P < 0.01) which could be due to outliers that we attempted to remove through

filtering. Overall average movement times and 95 percent confidence intervals for

each condition are included in Appendix A.

3.2.1 ANOVA for Movement Time

Significant main effects of DV , DS, A and W were found. Significant interactions of

DV ×DS, DV ×W ,DV ×A, DS×A, DS×W , and A×W , and three-way interactions

of DV ×DS×W and DV ×DS×A were also found. No other interactions were

found. This is summarized in Table 3.1. The fact that movement amplitude A
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Factor ε d fe f f ect d ferror F p Partial η2

DV 1.292 24.557 14.830 .000 0.438

DS 1.606 30.516 10.695 .001 0.360

A 1.276 24.248 406.567 .000 0.955

W 1.099 20.887 162.062 .000 0.895

DV ×DS 2.727 51.814 39.463 .000 0.675

DV ×A 3.164 60.108 10.786 .000 0.362

DV ×W 2.131 40.482 16.494 .000 0.465

DS×A 3.357 63.790 4.183 .007 0.180

DS×W 2.311 43.914 8.321 .001 0.305

A×W 3.138 59.617 11.152 .000 0.370

DV ×DS×A 4.240 80.563 5.113 .001 0.212

DV ×DS×W 3.840 72.959 6.464 .000 0.254

Table 3.1: Significant ANOVA main effects and interactions for movement
time (MT ). No other interactions were found. All tests were adjusted
with Greenhouse-Geisser.

and target width W affect pointing performance is fundamental to any discussion

of pointing performance so effects of A, W and the A×W interaction were not

surprising.

We anticipated an effect of DV because varying DV is a factor that is similar to

changing gain for 2-D pointing, and other researchers [2, 20, 28, 40] report gain

affects pointing. The interactions of DV ×W and DV ×A were not anticipated,

but perhaps not surprising in retrospect. The role of DV in influencing MT is not

entirely understood. If it affects pointing performance in a manner similar to gain it

is easy to imagine that increasing gain might cause target amplitude to have less of

an effect than width because it would be easier to cross large distances but harder to

make small corrections. Thus the impact of A and W might depend on DV through

a change in perceived gain, which could lead to the interactions we observed.

The effect of DS on MT and its interactions with other factors were not antic-

ipated. In an ideal VR setting, the virtual scene perceived by a user should not be

affected by the position of the physical screen. Viewed binocularly, the destination
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Figure 3.6: R2 values for each target depth using W (top) and We (bottom).

target should be perceived to be on the virtual plane at DV , which is independent

of DS. However, there are other depth queues at work that may have had enough

influence to effect pointing performance.

3.2.2 Regressions for One-Part and Two-Part Models

Regressions for the Fitts and Welford models and for the two Shannon variants

were performed only for the nine real-world DV = DS conditions. The regression

parameters are shown in Table 3.2. To adjust for bias due to accuracy, we per-

formed the regressions using both target width W and effective target width We
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[57]. We computed We by the recommended approach using standard deviations of

tap positions as in Eq. 2.6.

Width DV = DS

Fitts Welford F-test

a b R2 RSS a b1 b2 k R2 RSS F-ratio p sig?

W

110 542.10 301.72 0.98 11436 535.76 302.54 301.18 0.996 0.98 11432 0.002 .966 no

220 565.91 324.56 0.97 29057 698.49 307.20 335.70 1.093 0.97 27150 0.421 .540 no

330 526.50 392.04 0.94 86862 1173.19 307.39 446.42 1.452 0.96 41501 6.558 .043 yes

all 544.84 339.44 0.91 321031 802.48 305.71 361.10 1.181 0.91 299432 1.731 .201 no

We

110 332.27 456.23 0.87 105935 −7.83 491.62 416.33 0.847 0.87 90976 0.987 .359 no

220 424.70 448.92 0.90 89424 1242.19 384.77 575.75 1.496 0.96 32101 10.714 .017 yes

330 423.09 555.58 0.80 277761 1902.41 459.28 804.89 1.753 0.92 94268 11.679 .014 yes

all 427.43 467.06 0.76 844546 758.11 439.32 515.15 1.173 0.76 810745 1.001 .327 no

Width DV = DS

Shannon-Fitts Shannon-Welford F-test

a b R2 RSS a b1 b2 k R2 RSS F-ratio p sig?

W

110 244.00 378.57 0.99 3417 204.88 384.26 376.80 0.981 0.99 3288 0.235 .645 no

220 241.40 408.75 0.98 11931 341.73 394.17 413.28 1.048 0.99 11083 0.459 .523 no

330 134.74 493.65 0.95 86862 811.84 395.25 524.20 1.326 0.98 23785 15.912 .007 yes

all 206.72 426.99 0.92 272932 452.82 391.23 438.10 1.120 0.93 257626 1.426 .244 no

We

110 -149.50 594.66 0.88 105935 −525.55 640.22 564.96 0.882 0.88 80741 1.872 .220 no

220 -41.84 580.31 0.92 76474 800.28 500.56 681.98 1.362 0.98 25437 12.038 .013 yes

330 -157 720.76 0.80 280066 1404.69 595.20 935.75 1.572 0.91 103397 10.252 .019 yes

all -61.31 606.07 0.77 822633 277.49 572.04 643.38 1.125 0.77 792872 0.901 .352 no

Width DV = DS

Shannon-Fitts Angular A and W Shannon-Welford Angular A and W F-test

a b R2 RSS a b1 b2 k R2 RSS F-ratio p sig?

W

110 403.49 438.58 0.99 11070 426.04 434.30 438.86 1.010 0.99 3292 14.176 .009 yes

220 412.88 478.99 0.99 26666 509.97 456.79 613.00 1.705 0.99 7175 16.298 .007 yes

330 341.72 580.28 0.96 40996 793.11 460.31 788.33 1.632 0.98 18396 7.371 .035 yes

all 389.25 497.20 0.92 289693 795.79 407.10 506.67 1.245 0.96 127298 30.617 .000 yes

Table 3.2: Modeling movement time (ms) using Fitts and Welford formula-
tions (top) and Shannon-Fitts and Shannon-Welford formulations (mid-
dle) for actual width W and effective width We for each DV = DS condi-
tion (no added virtual binocular disparity) and for all DV = DS conditions
combined. Fitts and Welford models computed using Angular A and W
are also reported (bottom). The coefficients and adjusted R2 for each
model with the F-ratios, p-values and significance from an F(1,9)-test
(Eq. 2.9 with p1 = 2, p2 = 3, and n = 9) in the last three columns com-
pare nested Fitts and Welford (or Shannon-Fitts and Shannon-Welford)
models.
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We performed F-tests as in Eq. 2.9 to compare pairs of nested models to de-

termine if the two-part models actually explained the data better. Two-part models

were found to characterize the data significantly better than one-part models for tar-

get depth 330cm in regular width, and both 220cm and 330cm for effective width.

There was no signficant difference between one-part and two-part models for the

other condtions. The R2 values for effective width were generally lower than for

regular width, but greater than 0.8. This is somewhat abnormal, but not especially

worrisome as the models are still reasonable, as will be commented on in the Dis-

cussion. The variation of the R2 values for DV = DS is shown in Figure 3.6.

We also performed regressions for the Fitts and Welford models using A and

W measured in angular space in a manner similar to Kopper et al. [23]. Targets

were directly in front of and offset to the right of a participant, so angular width

was slightly different for the two targets positions. To account for this we averaged

the two values. Regression coefficients changed in many cases, but trends of re-

duced R2 values at higher target depths were replicated and the R2 values obtained

from the angular models were similar to those for the corresponding classic mod-

els. Two-part models were again sometimes significantly better than one-part mod-

els. Table 3.2 (bottom) shows regressions for just the Shannon-Fitts and Shannon-

Welford models using angular W where two-part models were always better than

one-part models.

3.2.3 The Ratio k as a Function of DV

Model Width Used Intercept Slope Adjusted R2

Welford W 0.7728 1.728×10−1 0.901

Shannon-Welford W 0.7234 2.284×10−1 0.890

Welford We 0.4596 4.528×10−1 0.941

Shannon-Welford We 0.5826 3.449×10−1 0.951

Table 3.3: Linear regression indicating how k varies as binocular depth DV

(cm) changes for each of the four models.

To test the hypothesis that k values varied at least monotonically and perhaps

linearly with target depth, we performed a linear regression analysis on k computed

by the Welford and Shannon-Welford models using both actual target width W and
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Figure 3.7: k values calculated using the Welford formulation (a) for A and
W (b) for A and We.

effective target width We. The results are presented in Table 3.3 and plotted in

Figure 3.7. The k values vary linearly (R2 > 0.85) with target depth DV using width

W . Using effective width We, the linear model for k is somewhat more pronounced

(R2 > 0.90).

3.3 Discussion
We summarize the results according to our hypotheses, and then discuss each in

more depth.
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H1 One-part formulations (Fitts’s Law and the “Shannon” version of Fitts’s Law)

will not accurately model pointing performance at all target depths. Consis-

tent with data.

H2 Two-part formulations (Welford’s formulation and the “Shannon” version of

Welford’s formulation) will accurately model pointing performance at all

target depths. Somewhat consistent with data.

H3 Physical target depth has no effect on performance, only binocular depth mat-

ters. Not consistent with data.

H4a The ratio k = b2/b1 between the two linear coefficients in a Welford formu-

lation varies monotonically with target depth. Consistent with data.

H4b The ratio k = b2/b1 between the two linear coefficients in a Welford formu-

lation varies linearly with target depth. Somewhat consistent with data.

H5 Using angular index of difficulty will not improve the strength of our models

of pointing performance. Consistent with data.

3.3.1 A Closer Look at the Data

Movement time data is shown in Figure 3.8. The graphs in the first column present

a scatterplot for different binocular depths DV , with lines connecting points of the

same movement amplitude A. The graphs in the second column present exactly the

same data, but with lines connecting points of the same target width W .

Figure 3.8 reveals a pattern similar to one shown by Welford (Figure 5.8, page

158 [53]). Movement time increases roughly linearly with ID within either a fixed

A value or a W value, but not across changes in both. This separable effect of A

and W grows with increases in DV . A similar effect has been found by Shoemaker

et al. [40] in a reänalysis of other researchers’ data [2, 12] and of their own data.

Both Graham and Shoemaker et al. concluded that Welford’s two-part formulation

is necessary to account for this pattern and to accurately model movement time

when gain varies. The applicability of a two-part formulation is further supported

by Graham’s analysis of hand velocity and acceleration profiles during pointing,
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which revealed separable effects of A and W during different temporal segments of

target acquisition.

Looking at our data, we see that one-part models perform poorly at modeling

the movement time data for DV = 330cm and DV = 220cm, but two-part models do

better. The k values from Eq. 2.5 serve to quantify the separability of contributions

of A and W to movement time. From Figure 3.8, we expect k to be close to unity

for a binocular depth DV of 110cm and to increase as DV increases, as borne out

by Figure 3.7.

3.3.2 One-Part and Two-Part Models for Pointing

There is no universally accepted threshold for a “good” R2 value to determine if

a formulation accurately models pointing performance. MacKenzie’s suggestion

[27] of R2 ≥ 0.90 as a guideline when evaluating Fitts’s Law results has been used

in the literature, and we employ this as our threshold.

Hypothesis H1 was consistent with out data. One-part models (Fitts and Shannon-

Fitts) were successful in characterizing movement time using actual target width

W . The Fitts formulation produced fits ranging from R2 = 0.94 to R2 = 0.98 at

different target depths. The Shannon-Fitts formulation was slightly better at mod-

eling the data, with fits ranging from R2 = 0.95 to R2 = 0.99. These R2 values beat

MacKenzie’s 0.90 threshold. However, for both formulations, it is clear that R2

values decreased as DV increased (Figure 3.6).

Using effective width We, the one-part models were less successful. For the

Fitts formulation, the fit ranged from R2 = 0.80 to R2 = 0.90. Using MacKenzie’s

0.90 threshold, the Fitts formulation only produced one barely acceptable model for

one target depth and was worst for the largest DV . The Shannon-Fitts formulation

fared slightly better, with the fit ranging from R2 = 0.80 to R2 = 0.92. Again,

Shannon-Fitts only produced an acceptable fit for one target depth, and the DV =

330 condition was the worst.

Effective width is sometimes more relevant because We can be a more accurate

representation of the task [41]. One reason for the poorer fit for one-part models

using effective width We is apparent: examining the k values from the two-part

models (Figure 3.7) shows that k deviated more from a value of one when using We
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than it did using W . The more k deviates from unity, the worse a one-part model

will be at describing the data. R2 values were lower in general using effective

width. We argue that this is likely due to noise and outliers in the data that are

particularly common with mid-air pointing. Hand tremors and input noise happen

more frequently than with other pointing techniques (such as a mouse, where the

hand rests securely on a desk). We saw a few cases where movement time was

normal (so the point was not removed by outlier filtering), but the selection was

made very inaccurately. This would have no impact on regular width models which

do not care about accuracy, but would degrade effective width models.

For both W and We the quality of fit decreases with increasing DV . Using We,

the one-part models had unacceptable R2 values for all but one DV . Both two-part

models (Welford and Shannon-Welford) produced a consistently good fit at every

target depth DV using actual target width W . Regression fits for Welford ranged

from R2 = 0.96 to R2 = 0.98. For Shannon-Welford they ranged from R2 = 0.98

to R2 = 0.99. Using effective width We, the regression fits ranged from R2 = 0.87

to R2 = 0.96 for Welford and from R2 = 0.88 to R2 = 0.98 for Shannon-Welford.

Hypothesis H2 was consistent with our data. An F-test determined that two-

part models described the data significantly better than the corresponding one-part

models for DV = 330cm using both W and We. They also outperformed one-part

models for DV = 220cm using We (Table 3.2). For two-part models, only the DV =

110 using We condition did not meet the 0.9 threshold, and that was by but a small

margin.

3.3.3 The k Parameter and Target Depth

Hypothesis H3 was not consistent with our data. Most of our analysis was done

only on the real-world DV = DS conditions. When we analyzed all DV -DS con-

ditions, including those with DV 6= DS, as shown in Figure 3.9, the variation of k

depended both on physical depth and on binocular or perceived depth. It may be

that this happens when the VR environment is not well calibrated or it may be a

fundamental flaw in stereoscopic 3-D. Although we did a rather careful calibration

to reduce the visual distortion of our system, perhaps it was not good enough; in a

perfectly calibrated system target depth might not matter. We explain later how to
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use the k-lines in Figure 3.9 to possibly improve calibration.

Hypotheses H4a and H4b were somewhat consistent with our data. Using ac-

tual target width W , the k values fit a linear model with R2 = 0.901 for the Welford

formulation and R2 = 0.890 for the Shannon-Welford formulation. Using effec-

tive target width We, the k values were more accurately modeled, R2 = 0.941 for

the Welford formulation and R2 = 0.951 for the Shannon-Welford formulation.

However, given that we only have three data points it is hard to make strong con-

clusions about the linearity of the data. Looking at Figure 3.7 we notice the data

seems somewhat curved using width, but using effective width it is much closer to

linear. Future studies should further investigate this issue.

3.3.4 Angular Amplitude and Angular Width

Hypothesis H5 was consistent with our data. Using angular amplitude α and an-

gular width ω did not show consistent real improvement over the classic one- and

two-part formulations. Simply substituting α and ω for A and W into the four

models made little difference (Table 3.2). All trends, including the improvement

of Welford over Fitts and k increasing as depth increases remained the same. Us-

ing the angular model proposed by Kopper et al. (Eq. 2.8), R2 was less than 0.70

for both ω and ωe in every condition. Using k = 1.47 (an average obtained from

our analyses) instead of k = 3 in Eq. 2.8, R2 values were closer to those for our

angular Welford model, but were uniformly not as good. Angular measures in-

corporate DV in the model, so Table 3.2 presents models for the “all“ condition

(exactly the DV = DS conditions). This best case test shows a minor 0.04 R2 im-

provement for two-part models, but none for one-part models. This suggests that

any improvement Kopper et al. saw for their model may be due mostly to its math-

ematical similarity to Welford’s formulation. At least for small angles, measuring

amplitude and width as angles acts like a simple scaling operation; it keeps the

fundamental model the same, but changes some of the constants, which, as Shoe-

maker et al. [40] discuss at length, does not help explain the behaviors shown in

Figure 3.8. Kopper et al.’s choice of k = 3 seems arbitrary. Shoemaker et al. [40]

report values as low as k = 0.3.
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3.4 Conclusions and Future Work
In this chapter we examined pointing performance using stereoscopic 3-D when

perceived depth to the target (binocular depth) and actual target depth varied. Four

research contributions were reported: (1) Welford-like two-part models outper-

formed Fitts-like one-part models by more robustly characterizing pointing perfor-

mance across varying target depths; (2) angular measures for movement amplitude

and target width did not improve model strength for our data; (3) pointing perfor-

mance was affected by binocular depth and the k-ratio of b2/b1 that characterizes

this appeared to vary linearly with binocular depth but there was a confound with

target depth that is unexplained; and (4) task-specific calibration for VR environ-

ments could be based on Welford-like pointing models.

3.4.1 Welford Models vs. Fitts Models

Traditionally, Fitts’s Law has been the model of choice for pointing performance.

Similar to findings by Welford [53], Graham and MacKenzie [13], and Shoemaker

et al. [40], our data show that contributions to movement time of movement am-

plitude A and target width W are separable and two-part models such as Eq. 2.3

and Eq. 2.4 are better than one-part models such as Eq. 2.1 and Eq. 2.2 for some

target depths and are always at least as good at any target depth. Using F-tests,

we found in some cases there were significant differences between the two types

of models. Two-part models cannot be simplified to one-part models by introduc-

ing scale factors for A and W (Shoemaker et al. [40] provide a detailed discussion

of this). Our data suggest that simply measuring movement amplitude and target

width as angles does not improve modeling strength. These findings add to an un-

derstanding of how to best model pointing in VR environments and they provide

further support for the use of Welford-like models when Fitts-like models do not

provide adequate power.

3.4.2 Lack of Improvement Using Angular Models

Our opinion is that classic two-part models are superior to Kopper et al.’s one-part

angular model, but if such a model is used, k should be variable, which makes it

a two-part model. We see no justification for squaring the logarithmic term, espe-
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cially because it goes against the information-theoretic interpretation that is fun-

damental to all variants of Fitts’s Law. Our experiment used a fairly large screen,

such as might be in a classroom, and the depths we chose were typical of where a

lecturer might stand relative to a screen, so the conditions were fair representations

of at least some types of real-world usage. Nevertheless, we cannot rule out that

for large movement amplitudes angular models might be better.

3.4.3 Calibrating VR Systems Using k-values

Ellis [4] defines virtualization as “The process by which a human viewer interprets

a patterned sensory impression to be an extended object in an environment other

than that in which it physically exists.” Depending on the application, the require-

ments for a VR system might differ. In training applications, it is often desirable

that the VR system evoke responses and task performance nearly identical to that

in the real world.

There are depth cues other from binocular disparity. Physical target depth in

a VR system is often fixed, and rarely the same as the binocular depth of ob-

jects being viewed. Research by Teather and various co-authors investigated how

stereoscopic 3-D impacts pointing performance for a variety of interaction tech-

niques [44–48, 50]. They noted problems modeling pointing performance with

accepted Fitts’s Law methods specifically for “ray casting” techniques similar to

the mid-air pointing techniques we investigated [43]. Hypothesis H3 explored

whether this might affect pointing performance in VR. Our data, though prelim-

inary, suggests it does. Our findings might lead to calibration techniques that could

ameliorate this.

Jones, Lee, Holliman and Ezra describe calibrating the camera space against a

user space based on user-reported depth values [17]. Yuan, Pan and Daly perform

depth tuning of stereoscopic 3-D content based on models of human visual com-

fort [55]. Iyer, Chari and Kannan describe a method for determining parallax val-

ues for stereoscopic viewing that minimize visual artifacts in 3-D television [15].

These approaches are all based on stereoscopic perception models – either derived

from the literature, or from user-reported values. They attempt to reduce distor-

tions associated with binocular viewing. If we want to produce task performance
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identical to that in real-world tasks, not simply reduce perceived distortion, we may

have to take task performance explicitly into account during calibration.

Our finding that pointing performance is not independent of physical target

depth DS suggests that for a given target depth we might need to adjust binocular

depth if we want to induce pointing performance that matches real-world pointing.

Figure 3.9 shows measured k-values for different target depths. It also shows the k-

line for the conditions where DV = DS, which has a distinctive slope different from

two of the others. We can treat the viewing parameters for VR as a “black box”

and use measured k-values as a compensation table. If DV is the desired binocular

depth, the DV = DS line gives the k-value expected for real-world pointing perfor-

mance. Using the k-line for the target depth of the VR environment we can find that

k-value and determine the D′V corresponding to it and then use that binocular depth

(instead of the intended binocular depth) to invoke the performance we want. An

optimization algorithm could thus “tune” its parameters so that measured pointing

performance is close to measured performance in a physical environment. This no

doubt requires additional pointing performance data. Our first experiment had only

nine points, but with sufficient data, intermediate target depths could be interpo-

lated to achieve the desired corrections at a suitable granularity. This is definitely

an area for further investigation.

3.4.4 The Effect of Binocular Depth on Pointing Performance

Our data revealed the relative magnitudes of contributions of A and W can be cap-

tured by a single parameter k that seems to vary with target depth. This extends

earlier findings by Shoemaker et al. [40] who found that k varied linearly with

gain for similar mid-air pointing in non-VR environments. We offer a possible

explanation for why target depth matters by appealing to the information-theoretic

interpretation of Fitts-like pointing models in which the coeffcient of the index of

difficulty is the rate at which the sensorimotor system processes information. Two-

part models such as Eq. 2.3 and Eq. 2.4 have coefficients for the A-term and for

the W -term. These might be interpreted as the rate at which different components

of the sensorimotor system process information, the first for the ballistic stage of

movement and the second for the homing stage. However, they might also sim-
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ply reflect an information-theoretic measure of uncertainty in the initial and final

positions. Our data, and previous findings by Welford [53], Graham and MacKen-

zie [13], and Shoemaker et al. [40], all show that the two rates differ in some

circumstances. For target depth, we might imagine that the perceived depth to the

target has a different influence on the homing stage than on the ballistic movement

stage. This is definitely a question to be examined in future research.

There is also an important point to be investigated in future work. We’ve shown

that k varies linearly with target depth in a computer mediated application (where

the computer processes and provides feedback to the user) but can we use this to

conclude that this k variation is a true aspect of human senorimotor performance?

One possible explanation for this effect (or at least its extremity) is system latency.

In any computer system there is going to be a small lag between when users per-

form a physical action and when the computer can react and respond to it. This

has been shown to reduce pointing performance and become more problematic the

larger this gap [31]. It seems possible that such latency would make fine adjust-

ments in the homing stage much more difficult, but provide little impact on rough

ballistic motion. Perhaps the variation of k is made more extreme by the presence

of latency than we would normally see in natural pointing. We investigate this

Chapter 5.
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Figure 3.8: Scatterplot of MT vs. effective ID. Points are identical in the right
and left plots. Points are connected in two different ways to illustrate the
separability of A and W : Lines on the left connect points representing
tasks with the same movement amplitude A; lines on the right connect
points representing tasks with the same target width W .

38



Figure 3.9: The three k-lines for DS = 110 (red / squares), 220 (green / tri-
angles) and 330 (purple / circles), along with the k-line for the non-VR
DV = DS conditions (blue / diamonds). To calibrate binocular depth us-
ing k values, the desired binocular depth (A) determines a k-value (B)
on the blue DV = DS line. That same k-value on the red DS = 110 line
(C) determines D′V to be the corresponding binocular depth (D) that the
software should use to insure the desired pointing performance if the
screen is 110cm from the viewer.
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Chapter 4

Incorporating Computer Vision
for Latency Free Analysis of
Pointing Data

4.1 Introduction
One of the potential concerns with much of our work has been the effect of la-

tency on human pointing performance. By necessity, any computer based pointing

system has a delay between when a physical movement is completed and when

the system finishes processing and is able to render a response to the display. A

number of papers have investigated this relationship between latency and pointing

performance and shown it has a performance cost that increases as latency gets

larger [31, 49].

One possible explanation for the variance of k as gain or depth is changed is

the impact of latency becoming increasingly problematic as you move further back

from the screen or make gain higher. We do not agree with this conclusion and

hypothesize that k is reflective of the underlying physical sensorimotor processes.

We therefore decided to investigate if this k variation remains clear when there

is no significant latency between physical movement and response. Latency free

evaluations of human motor performance are rare in HCI (where a computer is
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expected to be in the loop), but more common in psychology and kinesielogy.

In particular, Fitts’ original study employed metal plates and conductive pens for

pointing on a desktop, but to our knowledge no such test has been extended to

distal pointing [9].

We think this is likely because performing such a test in a cost effective manner

has only recently become feasible through computer vision techniques. The metal

plates in Fitts’ experiment could be easily connected to a circuit that records when

it was tapped (and a circuit closed through the conductive pen). However, distal

pointing requires some form of laser pointer and visual analysis. Video taken from

participant interactions can be analyzed by the experimenter in post to obtain rough

movement time results. However, this would require demanding frame by frame

analysis for potentially dozens of hours of video. Furthermore, accurate physical

measurements in the same units as the target sizes would be impossible, since all

you can tell is the final pixel distances. These are always subject to noise and

distortion. This naturally leads to the results from such analysis being biased and

less trustworthy than intended.

We decided to tackle this problem and developed a computer vision system to

process participant video in post and obtain cost effective accurate real world mea-

surements of pointing performance. The next chapter describes the actual proce-

dure and results of this experiment. However, we believe that the computer vision

tools and techniques we employed can be broadly useful to other HCI practitioners

for cost-effective supplementary analysis. This chapter is intended both as doc-

umentation of our technique and a primer to employing simple computer vision

techniques that we believe can and should be employed in future HCI lab studies.

The actual sub-steps and operations employed are all implemented by the stan-

dard computer vision library, OpenCV. OpenCV is licenced for free academic and

commercial use, and we highly recommend it for research use. http://opencv.org/

4.2 Room Setup and Camera Placement
One of the key concerns in computer vision is of course, what can the camera see?

The camera aperture can only capture so much of what is in front of them, so it is

important that the entirety of the interactable area is within view. Furthermore, par-
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ticipants can move and it is possible for them to occlude an interaction. No matter

how complex a computer vision algorithm, it can not accurately recover data that

was occluded and therefore not recorded. Triangulation from multiple viewpoints

can be used to overcome occlusion, but that at least triples the data recorded, and

requires a complex system to combine the results from multiple cameras. These

are fundamental limitations to computer vision, and are still being researched in

the field.

It is therefore not likely that any solitary HCI researcher will have the expertise

and skills to solve these problems. They can also become major stumbling blocks

to computer vision techniques being employed in field work or in-context user stud-

ies. However, lab studies are uniquely poised to take advantage of computer vision

techniques because they are by design a highly controlled environment. It is com-

mon practice for lighting conditions to be tightly controlled, participant positions

to be somewhat constrained and the range of interaction space limited. Further-

more you also have control over the display technology used and the room setup

used to perform the study.

In our study, we specifically took advantage of the fact that the experiment

was conducted on a rear-projected large screen display. An example of the camera

placement is shown in Figure 4.1. This allows us to entirely eliminate the problem

of participant occlusion. Simply put, participants stood on one side of the display

and pointed the laser pointer at the screen. This scatters when it hits the translucent

glass and appears as a bright red dot to cameras situated in the projection room

behind the screen. Regardless of where participants move in the experiment space,

the camera can always see the position of the targets and laser pointer. Targets

would also be presented at fixed positions with fixed sizes set out before hand. A

stable, high quality tripod was positioned behind the screen and used to adjust the

camera placement until it could see a good area around the largest target positioned

as far away from each other as possible.

4.2.1 Synchronizing Video with Experiment Conditions

Assuming you’ve solved the problem with camera placement and created a com-

puter vision system that records pointing data, you still need to relate that to your

42



Figure 4.1: Example view of what is seen by the camera placed behind the
screen. The green bars are the targets used in the pointing experiment.
The blue box is used for camera calibration.

experiment. Video timesteps are usually only recorded with reference to the start of

the video. It is therefore actually a non-trivial problem to decide which experiment

condition your actually recording data for.

Theoretically the most reliable way would be to position some shape (e.g. a

condition identifier) in some out of the way place on the screen. As you read in

each frame of data, you have the vision system find and identify that shape and

use it to decide which condition that data is for. However, while this is an easy

task for a human, it is computationally complex. Likely it will involve implement-

ing some fairly complex shape analysis such as scale invariant feature analysis.

(for an introduction to such a technique, see http://docs.opencv.org/3.1.0/da/df5/

tutorial py sift intro.html#gsc.tab=0) This will greatly slow down the analysis and

may also be subject to noise and mistakes. Such algorithms at best produce ma-

chine learning estimates which is undesirable for a tightly controlled lab study.

Furthermore, a visible condition identifier may be something participants can de-

code to understand what conditions they are performing. This may be undesirable
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in experiments where participant knowledge could skew results.

We found that the most effective and simple method was to have the exper-

iment application and vision systems synchronize. The experiment application

would display a text box with a welcome message before the experiment started.

When a button was clicked to start the experiment, internal logging registered the

timestamp of that click as the start of the experiment and removes the welcome

message. The system then recorded a simple text file of the timestamps each in-

dividual condition was started relative to that text disappearing. When processing

the video we would manually review the start of the video to find when the wel-

come text disappeared. That frame was used as timestep 0 for the analysis and then

the relative timestamps from the text file were used to decide what condition each

additional frame of data was for. This method may be subject to some amount of

drift, but this was not noticeably problematic for a short 30 minute to one hour lab

study.

4.3 Designing a Vision System to Record Pointing Data
Now we come to actually implementing our computer vision system. At a high

level, the pointing experiment we want to analyze requires the time each movement

takes and how far off center the selection was. Thus, the data our vision system

needs to provide us with is as follows:

• The position of the cursor in any frame

• The shape and central position of the targets

• The time between the cursor “selecting” each target

• The offset (distance) between the cursor and the center of the target to be

selected in centimeters (the scale used to model effective width)

The rest of the sections in this chapter will discuss some of the relevant theo-

retical reasons for using the approach we used, and provide key samples of code

for implementing similar systems yourself.
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4.3.1 Finding Moving Objects - Cursor Position

Finding a small moving target like the laser pointer is at once both the simplest op-

eration of computer vision and one we found required the most fine tuning. Most

edge detection or object recognition algorithms are designed to minimize the ef-

fect of camera noise. Noise can come from many sources but essentially makes

the image look grainy with lots of small bright or dark spots. Even in a high res-

olution image the laser dot is by definition a small bright spot a few pixels across.

These efforts to remove noise often remove the object you want to find entirely!

Furthermore, feature detection algorithms often rely on smooth shading/texturing

that comes from natural light interacting with a real object. Somewhat counterin-

tuitively, we found a very simple “thresholding” operation was more applicable for

our needs.

The high level idea behind thresholding is very straightforward, you decide

what it is you are looking for (e.g. “find the bright red dot”) and then decide what

minimum and maximum colors would fit that criteria (through inspection with a

color meter). OpenCV will go through each pixel and return whether or not that

pixel meets the criterion. Then some relatively simple measures of central ten-

dency tell you the X,Y position of the centre of mass for pixels that pass your

threshold. There are however a number of complications to be aware of if imple-

menting something similar.

Images read in from a video file by OpenCV are treated as two dimensional ma-

trices of BGR (amount of blue, green and red light) pixel values. This is extremely

difficult to threshold, since end color is a complex combination of the three chan-

nels. You might set a threshold looking for something with high red, but a dull red

might not go through. Furthermore, the laser pointer color will also blend with the

target color as it passes over the targets, which causes the color to shift and BGR

thresholds to fail. Thus it is standard practice to perform thresholding operations

after converting the image to HSV (hue - the color of the pixel, saturation - how

much of the color there is, value - how bright that color is) format. HSV is much

more robust to changes in lighting conditions and shading, and easier to formulate

thresholds for. The following line of openCV code takes the image in the variable

frame, and puts an HSV version of it in to the variable hsvFrame.
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Figure 4.2: Starting image for finding the pointer and targets.

cv tCo lo r ( frame , hsvFrame , COLOR BGR2HSV) ;

Next we perform the actual thresholding operation. We have predefined the

array hsvPointer with the target threshold for this operation. The first and second

elements are the minimum and maximum hues (color) the second and third are

the min/max of saturation and so on. Thresholded frame will contain a two di-

mensional array of booleans where each cell represents whether the corresponding

pixel passes the threshold.

inRange ( hsvFrame , Scalar ( hsvPoin ter [ 0 ] , hsvPoin ter [ 2 ] , hsvPoin ter [ 4 ] ) ,

Scalar ( hsvPoin ter [ 1 ] , hsvPoin ter [ 3 ] , hsvPoin ter [ 5 ] ) , thresholdedFrame ) ;

We also found that occasionally noise became a problem, and we’d have ran-

dom pixels pass the threshold and throw off the estimate of position. A median

filter of size 3 was used to remove noise. In laymans terms, the following code

replaces each pixel with the median of its immediate neighbors. If a noise spike

causes one or two pixels to pass they will be completely removed from the result.

Median filters are fantastic ways to remove noise, but you have to be careful to

use a small filter size (three is the smallest possible size). Bigger filters will cause

the image to blur. This will remove larger passed areas and cause the laser dot to

disappear very quickly.
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Figure 4.3: Example Result of the output from thresholding for the pointer.
White spots are within the threshold and thus likely within the pointer.

Figure 4.4: Example of a median filter operation. Image taken from http:
//tinyurl.com/j26e7cf

medianBlur ( thresholdedFrame , pointerFrame , 3 ) ;

The last step in finding the laser dot is to find the central tendency. This is

implemented by the moments library of openCV and the code snippet is shown

below.
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Moments oMoments = moments ( pointerFrame ) ;

double dM01 = oMoments .m01;

double dM10 = oMoments .m10;

double dArea = oMoments .m00;

i n t posX =dM10 / dArea ;

i n t posY =dM01 / dArea ;

PosX and posY should now contain the position of the cursor.

4.3.2 Finding Stationary Objects - Target Position

The next task in our vision system is finding the position and extent of the targets

to select. In order to know whether the laser position is inside the target we need to

know where the edges and center of the targets are. At its heart this is accomplished

by a similar thresholding operation to the laser pointer selection. However there

are a number of complications and further processing we need to accomplish.

The first interesting thing to note is that unlike the laser pointer, the targets

are produced by computer projectors refreshing at 60 Hz. There tends to be some

flicker and blank space between projector refreshes. The exact edges of the targets

can be a little blurry and noisy. Also, we note that the camera and targets are sta-

tionary within a condition. This leads to the conclusion that we do not necessarily

have to find the targets every frame. If we can get a robust estimate of their position

in the first few frames, we can save a huge amount of computation for the rest of

the condition.

We employ an averaging method for solving both of these problems. Essen-

tially, at the start of every condition we threshold the image through the same

process as the laser pointer. We maintain a count of how many times each pixel

has passed the threshold successfully.

After a sufficient number of frames, we perform an additional threshold to get

rid of pixels that only passed the threshold a few times. This lets pixels around the

edge that are slightly noisy, but often still passing the threshold to be considered

part of the target itself. The edge of these targets are still very jagged, so some

image processing is used to smooth them out. A series of erosions (which cut out

the jaggies on the edges) and dilations (which extend the edges back out to keep
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Figure 4.5: View of the average thresholded result, edges are noisy, but the
rough shape is there.

object size consistent) are used for that purpose.

erode ( targetFrame , targetFrame , ge tS t ruc tu r ingE lement (MORPH ELLIPSE, Size ( 5 , 5 ) ) ) ;

d i l a t e ( targetFrame , targetFrame , ge tS t ruc tu r ingE lement (MORPH ELLIPSE, Size ( 5 , 5 ) ) ) ;

d i l a t e ( targetFrame , targetFrame , ge tS t ruc tu r ingE lement (MORPH ELLIPSE, Size ( 5 , 5 ) ) ) ;

erode ( targetFrame , targetFrame , ge tS t ruc tu r ingE lement (MORPH ELLIPSE, Size ( 5 , 5 ) ) ) ;

Now that we have a smooth greyscale image of what pixels contain the targets,

we need to decide where the edges and center of the targets exactly are. This is

implemented by the OpenCV function, findContours. The following snippet puts

a list of every contour into the variable contours. Most of the parameters can be

handwaved, but note the parameter CV CHAIN APPROX NONE which makes the

system store every point in the contour rather than compressing them.

f indContours ( ∗imageFrame , contours , h ierarchy , CV RETR LIST ,

CV CHAIN APPROX NONE, Po in t (0 , 0) ) ;

The last step is to iterate through the points within each contour and do some

processing to find the maximum/minimum X and Y values to get the corners of

the targets. The center is simply the average of their position. Also note that it is

important to sort the contours by size in order to get rid of any noisy small contours.

f o r ( i n t i = 0 ; i< contour Ind . s ize ( ) ; i ++ )
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Figure 4.6: Example result for the target position after thresholding and pro-
cessing the averaged passing pixels.

Figure 4.7: Example contours of the targets overlayed over top of the original
example image. Circles are positioned at the corners.
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{
f o r ( i n t j = 0 ; j +1 < contours [ c i ] . s i ze ( ) ; j ++)

{
Poin t temp = contours [ c i ] [ j ] ;

minX = min ( temp . x , minX ) ;

maxX = max( temp . x , maxX ) ;

minY = min ( temp . y , minY ) ;

maxY = max( temp . y , maxY ) ;

}
}

4.3.3 Moving From Pixels to Real World - Offset

The last major piece of information the vision system needs to provide us with is

the offset of the cursor from the center of the target. At this point it would be triv-

ial to simply subtract the two pixel positions, but that would only give us results

in camera pixel coordinates. The target sizes are all recorded in centimeters, so

comparing a pixel offset to physical target sizes will be an unfair comparison at

best. Pixel coordinates are also subject to perspective and intrinsic camera distor-

tion, and thus cannot be trivially converted to the physical coordiantes required for

accurate modeling. This is a well-understood problem in computer vision, and this

section provides a brief description of our method to solve it.

The first step in this process is commonly called “camera calibration”. Cam-

eras, especially cheap ones are subject to mechanical inconsistencies, lens distor-

tions and perspective projection. We can mathematically categorize these into two

matrices which can be inverted to correct these errors [58]. The “intrinsic” param-

eters of the camera refer to the internal properties of the camera that are consistent

for the same camera regardless of where it is positioned or what it is looking at.

For example, this would include radial distortion from a fish-eye lens. There are

also “extrinsic” parameters that refer to the cameras positional properties relative

to objects in the scene (e.g. rotation, translation away ect). Put together, these two

matrices form a camera “homography” which allows you to convert from a pixel

location into physical positions relative to an object of known size and orientation

[58].

Finding the intrinsics and extrinsics of a camera is a common problem usu-

ally completed by waving a grid of known size in front of the camera. We will
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Figure 4.8: Example of the calibration procedure through grid wave. A regu-
lar grid of known size is pictured from various angles, machine learning
finds the intrinsic distortions of the camera.

refer readers to the standard openCV tutorial for this procedure. Find this explana-

tion and full code listing of calibrating a camera at http://docs.opencv.org/2.4/doc/

tutorials/calib3d/camera calibration/camera calibration.html.

We used this as the basis for our camera calibration procedure, but made some

additions and changes. For one, this process is extremely computationally expen-

sive, (solving a linear system minimization over dozens of images) and would be

infeasible to run on every frame of our video. We decided to do a robust camera

calibration (Figure 4.8 showcases a picture from the calibration procedure) ahead

of time to find good estimates of the intrinsics of the camera. These will be consis-

tent for the camera regardless of position, so can be reused over and over without

re-computing the homography. The following line of code corrects the intrinsic

errors in the image. CameraMat and distortionCoeff come directly from the output

file of the openCV camera calibration.

u n d i s t o r t ( rawFrame , frame , cameraMat , d i s t o r t i o n C o e f f ) ;

Once we have corrected for intrinisic distortion we need to correct for per-

spective/extrinsic properites and compute the physical distances in the plane of the
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screen. To do this, we need a reference object of known physical size in the plane

that we want to measure. In Figure 4.7 of the back of the screen you may have

noticed the blue box beside the green targets. This is the reference object we use,

and is of a clearly different and easy to find color from the rest of the scene. Be-

fore running the experiment we measured its final physical size in CM which was

29.3cm high and 15cm wide. We used the same averaging and thresholding pro-

cess for finding this calibration object as the green targets. The following line of

code takes the pixel X,Y values and compares them to the real world distances in

centimeters to get the perspective matrix that converts between them.

img2World = getPerspect iveTransform ( cornerPixelXY , cornerInCM ) ;

Then it is a relatively trival operation to take the pixel location of any given

object in the plane of the calibrator and multiply it through a matrix that inverts

the projection to get X,Y relative to the bottom left corner of the calibrator. The

following line of code tells openCV to populate worldPts with the physical position

of the input imgPts.

perspect iveTransform ( imgPts , worldPts , img2World ) ;

4.4 Conclusions and Recommendations
Most experiments record data using internal software logging in their experimen-

tal software. While this is quick to implement and useful, Software logging can

only capture the specific moments of interaction with the technology and entirely

loses data about the preparatory phase. Video recordings of the interaction context

are often employed for post-hoc data analysis and identification of key usability

issues. However, manual video analysis is extremely time consuming and often

reliant on inaccurate relative positions to landmarks (e.g. the person chose to move

away from the group to check an incoming text message). We would argue that

the vision techniques presented here could reduce analysis workload through au-

tomation while also providing more accurate real world measurements of distance.

These can enrich our understanding of video data and can provide additional in-

sight to standard machine logging. Future work should investigate creating a more

general package for vision analysis of experiment context syncronized to software

logs.
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We are still a good distance away from having a generalizable tool that could

be immediately applied to other research areas. By having a few main objects of

clearly distinct primary colors we were able to easily identify them from the back-

ground and process their shape with just simple thresholding operations. While

this works well after some parameter adjustment (while being extremely efficient),

more complex visual scenes and experiments are going to require more than just

simple thresholding operations, particularly when you are looking to find an object

within a cluttered desktop interface.

For broader implementation that could be applied to more complex interac-

tions we direct the user to the SIFT algorithm http://docs.opencv.org/3.1.0/da/df5/

tutorial py sift intro.html#gsc.tab=0. SIFT techniques (scale invariant feature trans-

formations) are often used in combination with machine learning techniques in

order to detect and identify known groups of objects of varying orientations and

sizes. These techniques have been shown to be robust and helpful for identifying

key features within a image that can be used to uniquely identify objects. Ideally, a

standard set of these objects could be identified (cursors, buttons, mice, keyboards,

subjects) and then combined into a software package that can identify relative real

world positions over time. Some work has already been done in similar prob-

lems, but we know of no current tools that easily package this up for application in

research yet. We consider this a strong project area for future research and appli-

cation of vision technology.
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Chapter 5

Real-World Pointing, Target
Depth, and k

In this chapter we describe an experiment, similar to the one described earlier in

Chapter 3, in which we further explore the variation of k in Welford models. The

new experiment examines “real-world” pointing rather than computer-mediated

pointing. The primary difference is that the new experiment involves no computer

intervention: there is no feedback loop involving computer control. A secondary

difference is that experiment 2 examines a larger set of target depths and it does not

use binocular stereo to display the targets at virtual target depths: all target depths

are physical (in the terminology of Chapter 3, DV = DS), which is why we consider

the pointing in this experiment to be “real world” compared to the more synthetic

pointing in the earlier experiment.

A computer was used in the both experiments to display targets, but the com-

puter in the new experiment does this entirely independently of a human partic-

ipant’s movements and thus it is not “in the loop” with the human. A computer

also recorded a participant’s movements in both experiments, but in the new ex-

periment the software described in Chapter 4 was used to capture movement data

with a camera for subsequent analysis off-line. The computer’s role in the new

experiment is thus entirely passive: it presents stimuli independent of the human

participant who is performing pointing actions, and it collects data about the hu-

man’s actions but only for later analysis without providing any accuracy feedback
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during the experiment. This constrasts with the earlier experiment where the com-

puter actively tracked the human participant in order to determine where the human

was pointing. This allowed it to flash the targets different colors to provide feed-

back about selection accuracy. Limiting the computer to a passive role removes any

latencies or other artifacts that might have been introduced into the earlier exper-

iment through a feedback loop between the human participant doing the pointing

and the computer system mediating the experiment.

Experiment 1 investigated the impact of target depth on pointing performance

and showed that Kopper’s k-factor (the ratio of the impact of target width and

movement amplitude on pointing performance) varies with target depth (the dis-

tance from a user to the targets). Evidence was found that increasing target depth

increases k, which means that the width of targets has a larger effect on movement

time relative to the distance between the targets (movement amplitude) as target

depth increases. This is similar to the effect reported by Shoemaker et al. [40] that

increasing gain also changes the relative importance of target width compared to

movement amplitude for predicting movement time. For high gain, a pointer is

more responsive to hand motion and thus can cross large gaps between targets eas-

ily, but it may have difficulty making sensitive fine adjustments once it gets reaches

a target. As the depth of targets increases, the apparent speed of the pointer in the

plane of the target increases relative to target planes that are closer. So even though

there is no actual change in gain in terms of C:D ratio, there could be an apparent

change in gain.

We focus our attention on three likely models for the impact of depth on k. A

linear model has been suggested by our previous work and is consistent with the

information theoretic interpretation proposed by Mackenzie et al. A logarithmic

model may also be appropriate to capture a slow tail off, as increasing depth may

have diminishing returns on k. A polynomial model adds another degree of free-

dom to the linear model and may also capture a trail off over depth. We feel that

any more complex models will likely not be worth investigating as more degrees

of freedom will come closer and closer to purely interpolating our six data points

rather than predictively modeling it.

It is possible that the observed increased impact of width on pointing perfor-

mance as target depth increases is an artifact of system latency rather than being
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purely due to target depth. Latency is the delay between physical movement and

the resulting feedback being displayed on the screen. Latency has been shown to

have a performance cost of around 10-15 percent per 100ms of latency [31, 49]. It

is possible reasonable that a delay between input and visual feedback in the form

of a cursor displayed on the screen (which is how the experiment in Chapter 3

was conducted) might be more problematic when trying to do fine adjustments for

small targets rather than a rough ballistic trajectory.

Testing whether the k variation is an artifact of the computer mediation or is

instead a true sensorimotor pattern was one of the goals experiment 2. Examining

a larger range of target depths is another goal. The experiment in Chapter 3 used

a limited set of target depths and saw a trend of increasing k with target depth.

We would like to determine if it is a steady linear increase, or if it has some other

pattern. The design of the experiment presented in this chapter uses a larger set

of target depths in order better tease apart the relationship between target depth

and k for a more nuanced understanding that might lead to practical calibration

procedures for virtual environments based on measuring k at various depths (this

will be explored further in Chapter 6.

5.1 Method
We investigate the effect of physical target depth D on pointing performance (move-

ment time MT ) in a distal pointing task. We examine the same physical target

depths as did the experiment previously described in Chapter 3 plus additional

depths intermediate between those previously used and also depths further away

to extend the range of our earlier results. A more important difference is that this

experiment did not have active computer processing within the feedback loop. In-

stead, stimuli were presented on a fixed timeline, independent of pointing activity

by a participant. The only visual or other feedback is that produced by a hand-held

laser pointer that is not connected in any way to the computer that displays the

stimuli. This approach was adopted to remove the possibility of feedback latency

or other temporal artifacts being introduced by the hardware and software used

to control the experiment. Taking these two differences into account (the larger

number of target depths and the elimination of computer-mediation that might in-
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troduce latency artifacts), the experiment is otherwise very similar to experiment 1.

In particular, the experimental task was again a Fitts-style one degree-of-freedom

reciprocal tapping task between two target pairs, modeled closely after Shoemaker

et al. [40] and the original experiments by Fitts [10]. ISO 9241-9 [3] defines

a two degrees-of-freedom task for pointing performance; we used a one degree-

of-freedom task because we were concerned with the fundamental applicability of

Fitts’s Law. Although the task was one degree-of-freedom, it is still an example

of three-dimensional pointing because the interaction setup is identical to distal

pointing which is common on stereoscopic 3D.

5.1.1 Participants

We recruited 20 participants at our university through on-campus advertising. As

a requirement of participation, all were right-handed with normal or corrected-to-

normal vision. Two participants’ data had to be discarded due to equipment mal-

function (the batteries on a laser pointer ran out). Of the remaining 18 participants,

14 were female, 3 male and one indicated “other” for gender when completing a

pre-experiment questionnaire. Age ranged from 19 to 29 years (mean 23.9 years).

All participants were regular computer users (9+ hours per week). The experiment

was approved by the Behavioural Research Ethics Board at our university (cer-

tificate H11-01756). Participants signed a consent form prior to the start of the

experiment. Each was compensated with $10.

5.1.2 Apparatus & Materials

The hardware and software used for the experiment were similar to that used in ex-

periment 1 except that a laser pointer was used instead of a software-based pointer

and a camera subsystem captured continuous video of the screen that was subse-

quently analyzed to provide movement data instead of computing the movement

data in real-time during the experiment using Vicon motion capture sensors.

Hardware

A 5.16m×2.85m (width× height) wall display with a glass screen was rear-projected

by two side-by-side 1024×768px projectors, giving a total resolution of 2048×768px.
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Figure 5.1: Apparatus: Pointer used for interaction and camera used for data
recording.

The display was driven by an 8-core Intel Processor with 6GB of RAM and dual

NVIDIA GeForce GTX 260 graphics processors, running Windows 7. The pro-

jectors were carefully aligned to reduce visual discontinuities between projectors.

Unlike the experiment in Chapter 3, no stereo projection was used and thus the

two projectors were driven directly from the computer rather than through a video

processor. A standard frame rate of 60Hz was employed.

Figure 5.2: Image of the projection room behind the screen. Camera is placed
on tripod at fixed location to record experimental data. Two projectors
were used to display the experimental stimulus.

A GoPro Hero 4 Black Edition camera was mounted on a stable tripod behind

the screen of the wall display and positioned so the entire interaction area on the
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screen was within view. The camera was chosen because it could serve as a rela-

tively low-cost, high-frame-rate data recorder. Video was recorded during trials at

240 frames per second with a resolution of 1280×720px. The narrow lens setting

on the camera was used to reduce possible distortion due to the normal fish-eye ef-

fect of the GoPro lens (distortion was further corrected in post-processing software

through camera calibration).

Software

There were two programs used for the experiment. One program, the experimental

software, was a modification of the experimental software used for experiment 1.

It was run during the experiment to display stimuli for the trials and to capture

time-stamped data for subsequent analysis. Data comprised log files describing

the stimuli and video files of the screen on the wall display that captured both the

stimuli and the image of the laser pointer that was being used for pointing. The

second program was post-processing software that used low-level computer vision

techniques to produce time-stamped coordinate data on the position of the center

of the image of the laser pointer relative to the targets in the stimuli being displayed

by the software.

The experimental software displayed to a participant the stimuli for the various

conditions in the experiment. It was written in C# using the Microsoft XNA Game

Studio 4.1 library. The stimuli were two green bars to represent a pair of equal-

width targets in a one degree-of-freedom Fitts-style reciprocal tapping task. Target

width depended on the trial. The left target was always directly in front of a partic-

ipant. The distance to the right target was determined by the movement amplitude

for the trial. A 29.3cm by 15cm blue rectangle was displayed at a constant posi-

tion just to the left of the left target to give the vision system a calibration object.

Experiment 1 had rendered similar stimuli using non-headtracked stereo VR. The

virtual camera would render the targets at different sizes (according to projection)

depending on how far the participant was away from the screen. Since we were

concerned with the fundamental sensorimotor processes, the targets presented by

the software in this task were always rendered from a consistent viewpoint and

thus at consistent size and position regardless of where the participant stood. Any
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apparent change in size of targets was thus due solely to the participant standing

further away from the display. The software recorded timestamps for the start of

each trial (the end of a trial was the start of the next trial).

Pointing data was produced by post-processing the video images acquired dur-

ing the experiment by the experimental software. The timestamps for each trial

were fed into the post-processing computer vision software to synchronize the vi-

sual images captured of the laser pointer and the target stimuli with the move-

ment amplitude, target width, and target depth parameters for the trial. The post-

processing software calculated the movement time and amplitude (horizontal loca-

tion) of all tapping events (defined as the peak distance before a direction change in

the movement) and recorded them into a log file. The computer vision techniques

used in the post-processing software are described in detail in Chapter 4.

Physical Layout, Task, and Stimuli

Figure 5.3: Experimental stimuli. Participant stands at a fixed target depth
along the orange line. Specific conditions are marked with crosses. The
experimental software displays two green targets on the screen. The
user smoothly moves the laser pointer between the two targets.

Participants stood at one of six target depths D (110cm, 165cm, 220cm, 275cm,

330cm, and 365cm) from the wall display screen for a block of trials. 365cm was

chosen instead of 385cm (which would have followed the 55cm increase pattern)

because we were running out of space in the room. All participant locations were

along a straight line perpendicular to the plane of the wall display and were marked
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on the floor with tape beforehand. Every trial within a block had a pair of identical

vertical bars (targets) displayed on the screeen separated by one of three movement

amplitudes A (25cm, 50cm, 75cm), both targets having the same widths chosen

from one of three target widths W (5cm, 10cm, and 20cm). Targets were 90cm

high, roughly centered at a typical participant’s elbow level. The left target was

always directly ahead of the participant and the right target was to the participant’s

right. This was done to avoid a participant having to move an arm across the body

midline while pointing because the cross-lateral inhibition effect (CIE) [19, 38]

predicts that hand movements that cross the midline of the body are more complex

than those that do not. Participants held down the button on a standard laser pointer

to point at the targets. The distance between the centers of the two targets was

the movement amplitude for that trial. Lighting in the room was kept consistent

across trials by making sure that all sources of natural light (windows, doors) were

blocked off, and that the same artificial lights were always turned on.

5.1.3 Procedure

Each participant performed the experiment in a single session of approximately

30 minutes. After filling out a consent form and a pre-questionnaire that gathered

demographic information, a participant was introduced to the apparatus and the

pointing task. Participants were instructed to complete the task as quickly as pos-

sible while being as accurate as possible. At the start of each block of trials, a

participant was instructed to stand at the location marked on the floor that corre-

sponded to the target depth D that was used for all trials in the block. Participants

were then invited to complete a practice trial by tapping between the first two tar-

gets before data recording began. They were allowed to practice until comfortable

with the system. Most participants quickly indicated they were ready to begin the

experiment trials. Data collection was begun by the experimenter once the partici-

pant had completed the practice trial.

Each experimental trial was defined by three independent variables: movement

amplitude A, target width W , and target depth D, the distance at which the par-

ticipant had been placed relative to the screen for a block of trials. For the first

target pair in a block, a participant tapped the left target that was directly ahead
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and then performed a sequence of reciprocal back-and-forth taps between the right

and left targets. Participants were instructed to keep the laser pointer smoothly

moving between targets and continually tap between them. Subsequent trials were

run continuously, without any break between trials. Every ten seconds a new trial

began and the next target condition (A and W ) was displayed, regardless of how

many taps had been performed in the previous trial. The first tap in a trial was

discarded because it was assumed that participants would have to adjust to the

new condition while in the middle of a movement and thus that tap might not be

representative of the participant’s sensorimotor performance as it is assumed for a

Fitts-style reciprocal tapping task.

Between each block of the experiment participants were required to take a

break of at least three minutes. They were encouraged to take more time if de-

sired, but very few did. The participant was then repositioned to the target depth D

for the upcoming block and a practice trial followed by the experimental trials for

the block commenced.

Timestamps and locations on the screen for all taps were recorded for subse-

quent post-processing. No accuracy feedback was provided during the experiment

other than the image that the laser pointer made on the screen. Participants were

not required to correct errors. They were told to keep smoothly moving between

targets.

Measures

Pointing performance was measured by the time taken to execute each individual

tap action. Participants tapped as many times as possible within the 10 seconds

given for each trial. For each tap, the post-processing software recorded movement

time MT , and the offset of the cursor from the center of the target when the tap

(reversal of direction) was made.

Experimental Design

The within-participants design had independent variables of target depth (distance

of the screen from the participant) D (110cm, 165cm, 220cm,275cm, 330cm, 365cm),

target width W (5cm, 10cm, 20cm), and movement amplitude A (25cm, 50cm,
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75cm). All three variables were fully crossed.

18 participants (N) × 6 target depths (D) ×

3 movement amplitudes (A) × 3 target widths (W )

For a given D a participant performed all trials for every combination of A and

W before switching to another D condition. We decided against intermixing the D

conditions to avoid participants having to repeatedly move back and forth between

different locations in the room. The presentation of target depths D was counter-

balanced across participants according to a balanced latin square. The presentation

of movement amplitude and target width pairs A-W conditions was randomized

within every block corresponding to a fixed target depth D.

Hypotheses

The hypotheses for this experiment are based on previous studies. Most directly,

they are drawn from the previous experiment that was described in Chapter 3.

H1a (weak) the parameter k will increase monotonically with greater target depth

H1b (strong) the parameter k will increase linearly with greater target depth

H2 One-part models of pointing performance will not accurately model all target

depths

H3 Two-part models of pointing performance will perform better than one-part

models in conditions where k diverges from 1.

H4 Angular measures of target difficulty will not improve our models of pointing

performance.

The first hypothesis is again split into weak and strong variants, as it was for

experiment 1. We expected to find further support that k varies monotonically with

target depth, but also felt that there might be evidence that it varies linearly because

of the additional target depths that could provide a better picture of how k behaves
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as target depth varies. By removing latency as a confound we hoped to support

both variants of the hypothesis better than in the previous experiment.

The second and third hypotheses are based on our conclusions in the previous

experiment about one-part and two-part models of pointing performance, which

were that a Welford-style two-part formulation is more robust and will, at least

for some conditions, better predict movement time than will a Fitts-style one-part

models.

The fourth hypothesis arose from the post-hoc analysis in the previous experi-

ment that indicated that using angular measures instead of classic linear measures

for A and W does not improve modeling strength.

5.2 Results
Our analysis proceeded in four steps after removing outliers from the data. We con-

ducted an ANOVA on movement time for the three independent variables. We then

compared two Fitts-style and two Welford-style models using a regression analysis

for each of the four model types for each target depth D using both target width

W and effective target width We. An F-test was conducted on four sets of pairs of

these models (each a Fitts-style model and the corresponding Welford-style model)

to determine whether the additional degree of freedom in the Welford-style models

was justified by our data. The model comparison was repeated using the angular

measures corresponding to A and W to determine whether the classic linear mea-

sures or the angular measures advocated by Kopper et al. [23] are most appropriate

for analyzing pointing performance. We then examined the behavior of the param-

eter k in the Welford-style models as a function of target depth D. A Shapiro-Wilk

test for normality was conducted on the participant average movement times and

showed that data was unlikely to be normally distributed (p < 0.001) which may

have been caused by outliers and may degrade the effectiveness of our models.

We thus attempted to remove outliers before begining our analysis. Overall av-

erage movement times and 95 percent confidence intervals for each condition are

included in the Appendix A.
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5.2.1 Removal of Outliers

There were a total of 38,307 observations across the 18 participants whose data was

analyzed. As is common practice in pointing evaluation, mistrials and outliers were

removed from the data before analysis. Any tap more than half the trial amplitude

away from the target (likely to be caused by a premature reversal of movement

direction) was ignored and any tap whose movement time was more than three

standard deviations from the mean for the participant’s performance in that A and

W condition was also ignored.

It was discovered that for two conditions (movement amplitude A being 75cm

and target width W being either 10cm or 20cm) the recording of taps for the left

target was less accurate than for taps in other conditions. Consequently, all of these

trials were removed to avoid skewing the results. Taps on the right target in these

two conditions were recorded accurately, so were included in the analysis.

In total, 3881 taps (10.1%) were removed from the data. The remaining taps

were used in all of the analyses, except when calculating the models discussed in

Section 5.2.5 where additional points were excluded for reasons that are discussed

in that section.

5.2.2 ANOVA for Movement Time MT

The results of an ANOVA for movement time MT with independent variables

movement amplitude A, target width W , and target depth D are presented in Ta-

ble 5.1. We used the R Library’s ez package [25], which utilizes Type-two sum of

squares error. This sometimes differs slightly from SPSS and other packages that

use Type-three sum of squares error for ANOVA.

As expected, movement amplitude (F2,34= 114.729, p < 0.001) and target

width (F2,34= 116.62, p < 0.001) had strong effects. That target size and posi-

tion effects pointing performance is fundamental to any study of pointing and thus

is not surprising. There was also an interaction between amplitude and width

(F4,68= 7.443, p < 0.001). The non-linear relationship between these variables

and movement time in both Fitts-style and Welford-style models predicts this.

What is surprising is that target depth D did not have a effect (F5,85= 1.553,

p > 0.05). This conflicts with the findings of experiment 1 showing that target
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Factor ε d fe f f ect d ferror F p Partial η2

A 2 34 114.729 .000 0.871

W 2 34 116.62 .000 0.873

D 5 85 1.553 .182 0.084

A×W 4 68 7.443 .000 0.305

A×D 10 170 0.688 .734 0.039

W ×D 10 170 2.009 .035 0.105

A×W ×D 20 340 1.011 .448 0.056

Table 5.1: ANOVA results for the impact of depth (D), amplitude (A) and
width (W) on movement time (MT ). Statistically significant factors are
bolded.

depth had an effect, which was the basis for identifying a trend of k increasing with

target depth. There was, however, an interaction between target width and target

depth (F10,170= 2.009, p < 0.05). The impact of target width thus depends in part

on target depth.

5.2.3 Comparing Pointing Models

To assess the relative ability of one-part and two-part models to predict pointing

performance, we performed many of the same model comparisons described in

Chapter 3. We conducted regression tests for a set of pointing models at each

of the six target depths (110cm, 165cm, 220cm, 275cm, 330cm, 365cm) and one

global model that aggregated data for all target depths. The results of the regression

tests are summarized in Table 5.2.

Overall, our models of pointing performance seem quite strong. All but one

of the pointing models reached or exceeded Mackenzie’s 0.9 R-squared threshold

for a good model. The only case that failed was at 110cm from the screen with

regular width. Most of the time, one-part and two-part models performed compa-

rably, but for regular width at target depth 165cm, a Welford two-part formulation

was statistically better than Fitts one-part model and at both target depth 110cm

and target depth 165cm a Shannon-Welford two-part model was statistically better
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Width D

Fitts Welford F-test

a b R2 RSS a b1 b2 k R2 RSS F-ratio p sig?

W

110 58.39 147.33 0.94 12282.57 -132.81 172.35 131.25 0.76 0.95 8317.43 2.86 0.12 no

165 126.96 128.97 0.92 11903.79 -143.19 164.33 106.25 0.65 0.97 3987.97 11.91 0.007 yes

220 131.89 137.09 0.94 10884.38 -16.06 156.46 124.65 0.8 0.94 8509.91 1.67 0.227 no

275 115.65 130.75 0.94 8836.39 1.85 145.65 121.18 0.83 0.94 7431.56 1.13 0.315 no

330 79.9 138.22 0.97 5508.86 -40.12 153.93 128.12 0.83 0.97 3946.38 2.37 0.157 no

365 73.63 148.51 0.97 5767.75 -53.18 165.11 137.85 0.83 0.98 4023.48 2.6 0.141 no

all 97.74 138.48 0.94 74522.95 -63.92 159.64 124.88 0.78 0.95 57515.69 15.08 0.0002 yes

We

110 -3.87 184.22 0.87 24966.37 -168.02 201.67 164.32 0.81 0.87 22097.87 0.78 0.400 no

165 59.97 168.89 0.9 15223.05 -177.38 193.71 139.6 0.72 0.93 9068.54 4.07 0.07 no

220 56 179.12 0.9 17110.21 22.29 182.38 -174.51 0.96 0.88 16994.53 0.041 0.844 no

275 54.33 169.41 0.91 13466.63 -39.47 179.33 158.1 0.88 0.91 12486.13 0.47 0.509 no

330 7.94 186.03 0.96 7364.14 30.58 183.93 189.19 1.03 0.95 7311.93 0.042 0.841 no

365 20.77 182.7 0.94 10762.11 52.79 179.45 186.79 1.04 0.94 10662.13 0.056 0.818 no

all 20.77 182.7 0.94 10762.11 52.79 179.45 186.79 1.04 0.94 10662.13 2.22 0.141 no

Width D

Shannon-Fitts Shannon-Welford F-test

a b R2 RSS a b1 b2 k R2 RSS F-ratio p sig?

W

110 -88.55 185.4 0.95 9090.23 -328.18 220.23 174.59 0.79 0.97 4253.28 6.82 0.028 yes

165 4.6 159.82 0.91 14501.23 -295.39 203.41 146.28 0.72 0.95 6920.78 6.57 0.031 yes

220 -2.52 171.61 0.94 10117.21 -181.32 197.59 163.54 0.83 0.95 7424.31 2.17 0.174 no

275 -12.88 163.8 0.95 7859.08 -153.73 184.27 157.45 0.85 0.95 6187.94 1.62 0.234 no

330 -55.53 172.98 0.97 4798.7 -202.2 194.29 166.36 0.86 0.98 2986.68 3.64 0.088 no

365 -69.76 185.02 0.96 6916.3 -215.75 206.24 178.44 0.87 0.97 5121.14 2.10 0.181 no

all -37.44 173.1 0.94 72886.91 -229.43 201.01 164.44 0.82 0.95 54258.17 17.5 0.0001 yes

We

110 -207.44 242.07 0.91 18094.92 -401.61 265.95 226.15 0.85 0.91 14812.89 1.32 0.278 no

165 -113.14 216.6 0.9 15365.83 -367.71 247.32 194.83 0.79 0.93 9535.44 3.66 0.088 no

220 -135.69 232.99 0.93 12708.29 -169.39 236.76 229.58 0.97 0.91 12610.51 0.046 0.834 no

275 -117.94 216.73 0.93 11385.81 -229.69 230.33 207.46 -0.9 0.92 10249.86 0.66 0.435 no

330 -188.53 241.26 0.97 4329.47 -169.09 239.15 243.28 1.02 0.97 4297.3 0.044 0.837 no

365 -157.28 230.16 0.94 10912.82 -121.72 226.03 233.45 1.03 0.94 10810.64 0.057 0.817 no

all -157.28 230.16 0.94 10912.82 -121.72 226.03 233.45 1.03 0.94 10810.64 2.81 0.100 no

Table 5.2: Modeling movement time (ms) using Fitts and Welford formula-
tions (top) and Shannon-Fitts and Shannon-Welford formulations (mid-
dle) for actual width W and effective width We. For each D condition and
for all D conditions combined. The coefficients and adjusted R2 for each
model with the F-ratios, p-values and significance from an F(1,9)-test
(Eq. 2.9 with p1 = 2, p2 = 3, and n = 9) in the last three columns com-
pare nested Fitts and Welford (or Shannon-Fitts and Shannon-Welford)
models.

68



than a Shannon-Fitts one-part model. No differences were found using effective

width, although there was a potential trend (p < 0.1) at target depth 165cm. The

global model that aggregated all target depths showed significant improvements

over a Fitts-style model for both Welford and Shannon-Welford using width, but

no differences were found for effective width.

5.2.4 Testing Angular Measures of Target Difficulty

DS Width Type Classic
Fitts

Ang Fitts Classic
Welford

Ang Welford Classic
Shannon

Ang Shannon
Classic
Shannon-
Welford

Ang
Shannon-
Welford

110 W 0.938 0.943 0.951 0.951 0.954 0.962 0.975 0.9788
165 W 0.923 0.928 0.969 0.969 0.905 0.895 0.947 0.923

220 W 0.936 0.939 0.942 0.942 0.941 0.939 0.949 0.943

275 W 0.943 0.944 0.944 0.944 0.949 0.948 0.953 0.950

330 W 0.967 0.968 0.972 0.972 0.971 0.967 0.979 0.972

365 W 0.970 0.971 0.975 0.975 0.964 0.954 0.969 0.955

all W 0.937 0.938 0.951 0.941 0.938 0.935 0.953 0.93

110 WE 0.874 0.879 0.870 0.869 0.908 0.929 0.913 0.930
165 WE 0.901 0.908 0.931 0.931 0.900 0.901 0.928 0.917

220 WE 0.900 0.901 0.884 0.885 0.926 0.937 0.914 0.926
275 WE 0.913 0.915 0.906 0.907 0.927 0.931 0.923 0.926
330 WE 0.956 0.956 0.949 0.950 0.974 0.980 0.970 0.977
365 WE 0.945 0.945 0.936 0.937 0.944 0.939 0.935 0.929

all WE 0.913 0.913 0.915 0.912 0.926 0.929 0.929 0.928

Table 5.3: Quality of fit for regression analyses as determined by the R-
squared values is shown for angular and classic linear measures of move-
ment amplitude A and target width W , and for movement amplitude A
and effective target width We. Bold cells show which model in a pair of
columns has a better R2. The left columns are for classic and right for
angular.

We examined whether one-part pointing models are improved if A and W are

determined by angular measurements. Kopper et al. [23] suggest that this is a more

accurate way to model pointing. We recalculated the regression coefficients for all

of the models after replacing A and W with there angular equivalents, α and ω .

Table 5.3 shows this comparison for each target depth and for the “global” model

that does not treat target depth as a parameter but instead aggregates the data for
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all target depths. W

We see mixed results in terms of improvements using angular measures for in-

dividual target depth models using width W . One-part Fitts models were slightly

improved by angular measures, whereas the Shannon-Welford and Shannon one-

part performed better with classic measures. The Welford models had almost iden-

cical R-squared values. The patterns are less clear in effective width We where

some models were improved by angular and others were made worse even for the

same type of model. If we look more carefully at the magnitude of these differences

for various target depths, we see they are fairly minor. The biggest improvement

was for the one-part Shannon at target depth 110cm with effective width. Classic

linear measures produced an R-squared of 0.908 but angular measures produced

an R-squared of 0.929. The angular model accounted for two percent more of the

variation in the data, which is arguably a relatively minor difference given that both

models were above Mackenzie’s 0.9 threshold for a “good” model.

The best case scenario for angular measures is for the global model shown in

the final “all” row in Table 5.3 for both the width-based models (upper rows in the

table) and the effective width models (lower rows in the table). In this case we see

very little difference for one-part models, but for two-part models angular measures

are worse in this condition. Regular width Shannon-Welford had an R-squared of

0.953 with classic linear measures compared to an R-squared of 0.938 for angular

measures. This loss was similar in magnitude to the best case angular improvement

achieved in the individual target-depth models (0.024 for target depth 165 versus

0.020 for the aggregated depth).

5.2.5 Modeling k as a Function of Target Depth

A fundamental goal of this experiment was developing a robust interpretation of

how k varies with target depth. We examined three potential models of k as a

function of target depth. The first is a simple linear function of target depth, which

we expect to be a reasonable estimation that may not fully capture the trend. We

think it likely there might be some point at which increasing target depth no longer

increases k, or at least not as much as a linear model would predict. Thus we

also looked at logarithmic and quadratic polynomial models as alternatives that
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might better capture the relationship between k and target depth. We felt these

were the most reasonable models to consider because our experiment only has six

data points from which to verify a model. Higher order polynomials will quickly

approach pure interpolation of the data rather than predictively modeling it. We

looked at models of k for both regular and effective width. These results are shown

in Table 5.4. For a visual comparison of these models refer to Figure 5.4 for regular

width and Figure 5.5 for effective width.

Pointing Model Width Type k Model k Equation R2

Welford W Linear k = 0.0005D+0.6543 0.503

Shannon-Welford W Linear k = 0.0004D+0.7115 0.600

Welford We Linear k = 0.0011D+0.6428 0.710

Shannon-Welford We Linear y = 0.0008D+0.7220 0.711

Welford W Logarithmic k = 0.1080ln(D)+0.1988 0.448

Shannon-Welford W Logarithmic k = 0.0906ln(D)+0.3285 0.544

Welford We Logarithmic k = 0.2223ln(D)−0.2973 0.643

Shannon-Welford We Logarithmic y = 0.1725ln(D)−0.0081 0.650

Welford W Polynomial k = 0.0000006D2 +0.0002381D+0.6844 0.506

Shannon-Welford W Polynomial k = 0.0000004D2 +0.0002501D+0.7311 0.602

Welford We Polynomial k = 0.0000022D2 +0.0000002D+0.7540 0.725

Shannon-Welford We Polynomial k = 0.0000016D2 +0.0000553D+0.8023 0.725

Table 5.4: Regression modeling of how k varies as target depth D (cm)
changes for each of the four pointing models.

Overall the results of our modeling are mixed. The values obtained for k are

lower than in our previous studies. There is also more variance in the data. Using

regular width, a simple linear model is more effective than a logarithmic model,

with an R2 around 0.503 compared to 0.448. The polynomial model is slightly

better than linear at 0.506. Looking at the equation (y = 0.0000006x2 +0.0002x+

0.6844), the polynomial model assigns much less weight to the quadratic term

and thus is actually approaching linearity. All of these are worse fits than in the

previous experiment where a linear model using width had an R2 upwards of 0.9.

Using effective width is often considered a truer reflection of user performance,

and our models of k also seem to improve using effective width. A polynomial

trend is the best model, but still only reaches an R2 of 0.725. Overall, these models

seem much less effective than our previous experiment, which showed k varying

linearly with target depth with an R2 between 0.89 and 0.95.

Taking a closer look at the specific points being modeled, we see that the 165
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Figure 5.4: Visual comparison of different models for the relationship be-
tween k and D. Data presented for regular width models of pointing
performance.

target depth condition has a lower k than the 110 target depth condition (0.64 com-

pared to 0.76), whereas the rest of the points roughly produce similar or higher k

values as target depth increases. This runs counter to the trend in the rest of our

data, and is likely pulling the model away from the trend of the other points. For

the sake of argument, we highlighted this as a potential outlier and attempted the

same models on the rest of the points. Table 5.5 shows the modeling results on the

set of points without the 165cm outlier, while Figure 5.6 and Figure 5.7 show this

trend visually.

After dropping this one point, the modeling results are uniformly improved in

all conditions. This is not surprising. The overall variance should decrease when

an outlier is removed. However, especially with regular width we see dramatic
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Figure 5.5: Visual comparison of different models for the relationship be-
tween k and D. Data presented for effective width models of pointing
performance.

improvements in the modeling. Welford’s regular width was very effectively mod-

eled by a linear estimation of k (R2 = 0.91) but was further improved using both

logrithmic (R2 = 0.94) and polynomial models (0.97). These models account for

over ninety percent of the variation in k, compared to only fifty to sixty percent

before the one outlier is removed, and they align nicely with behavior of k in our

previous experiment. The existence of such dramatic outliers does cause concern.

How confident are we of the monotonic (or even linear) relationship? We do not

know how often will outliers become a problem because we do not know what

caused this one. We discuss the implication of this and other aspects of our results

in the next section.
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Pointing Model Width Type k Model k Equation R2

Welford W Linear y = 0.0003x+0.7319 0.915

Shannon-Welford W Linear y = 0.0003x+0.7645 0.955

Welford We Linear y = 0.0008x+0.7248 0.771

Shannon-Welford We Linear y = 0.0007x+0.7809 0.744

Welford W Logarithmic y = 0.0653ln(x)+0.4536 0.943

Shannon-Welford W Logarithmic y = 0.061ln(x)+0.5049 0.973

Welford We Logarithmic y = 0.1741ln(x)−0.0096 0.741

Shannon-Welford We Logarithmic y = 0.1376ln(x)+0.2001 0.717

Welford W Polynomial y =−0.0000008x2 +0.0007x+0.694 0.952

Shannon-Welford W Polynomial y =−0.0000006x2 +0.0006x+0.7376 0.977

Welford We Polynomial y = 0.0000008x2 +0.0005x+0.8093 0.777

Shannon-Welford We Polynomial y = 0.0000006x2 +0.0004x+0.8093 0.746

Table 5.5: Regression modeling of how k varies as distance from the screen
D (cm) changes for each of the four pointing models. The 165 condition
has been removed as a potential outlier.

5.3 Discussion
We begin by summarizing the results according to our hypotheses, after which we

discuss some of the more nuanced aspects of our results. For each hypothesis we

indicate how consistent it was with the data we found.

H1a (weak) The parameter k will increase monotonically with greater target depth

Somewhat consistent with data.

H1b (strong) The parameter k will increase linearly with greater target depth.

Somewhat consistent with data.

H2 One-part models of pointing performance will not accurately model all target

depths. Not consistent with data.

H3 Two-part models of pointing performance will perform better than one-part

models in conditions where k diverges from 1. Consistent with data.

H4 Angular measures of target difficulty will not improve our models of pointing

performance. Consistent with data.

All of the pointing models produced fairly good results. Both one- and two-part

models successfully modeled the data in all but one condition. One-part models did

not pass Mackenzie’s threshold in one condition, but were still fairly close even
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Figure 5.6: Visual comparison of different models for the relationship be-
tween k and D. Data presented for regular width models of pointing
performance. The 165 condition has been removed as a potential out-
lier.

then. Therefore, we argue that hypothesis H2 (that one-part models will not accu-

rately model all depths) was not consistent with our data. Two-part models were

statistically more accurate in two conditions using regular width, and had a poten-

tial trend of improvement using effective width. These conditions had the smallest

k values, which were the k values that diverged the most from unity, therefore hy-

pothesis H3 (two-part models will outperform one-part models when k diverges

from 1.0) was consistent with our data.

Angular measures improved some models but degraded others to a similar ex-

tent. Absolute differences between models based on angular and classic linear

measures of A and W (or We) were relatively minor and could be caused by varia-

tion of outliers pulling or pushing the model slightly away from the optimal value.
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Figure 5.7: Visual comparison of different models for the relationship be-
tween k and D. Data presented for effective width models of pointing
performance. The 165 condition has been removed as a potential outlier.

Furthermore, two-part models in the global condition got worse when using an-

gular measures of target difficulty. The global condition, which tries to model

pointing performance independent of target depth, is precisely the case that advo-

cates of an angular model propose as being its strength. We therefore argue that

hypothesis H4 (that angular measures of difficulty will not improve our models)

was consistent with our data. We found that subject to outliers, as target depth

got larger k got bigger, and at least roughly corrleated along a linear model in all

conditions. Logarithmic models were somewhat better at modeling the data when

outliers were removed. Due to the problems with outliers we consider hypotheses

76



H1a and H1B to be somewhat consistent with our data.

5.3.1 One-Part Versus Two-Part Models of Pointing Performance

We found that one-part models were sufficient to model our data in almost all con-

ditions, but they were statistically worse than two-part models in some conditions

close to the screen. These results run somewhat counter to our previous experiment

where we noticed that as you got further from the screen two-part models outper-

form one-part. Instead when you are very close to the screen we see a difference

in modeling.

One needs to understand these trends in the presence of the k variable, which

captures the relative impact of A and W on pointing performance. If k is exactly

equal to one then one- and two-part models are mathematically identical [40]. In

our previous experiment, k values started around 1.0 and got progressively larger as

target depth increased, up to a maximum of about 1.7. It was therefore unsurprising

that the models started out similar but two-part models became necessary as k

diverged from one.

In this experiment, k values start around 0.7 and get larger, but rarely surpassed

1.0 by any large margin. Therefore, in this new experiment, where k was much

closer to one all the time, one would expect fewer differences between the models

and for one-part models to fail less often. Moreover, when two-part were statisti-

cally better, k diverges more from one than in other conditions, but this was still

less divergence than in the previous experiment, which saw values of k that were

1.7 larger than unity whereas this experiment had a ratio of only 1.4, which was

less, as was the absolute difference (0.7 in the first experiment but only 0.3 in the

second). This is consistent with our claim that the improvement is only seen when

k is not approximately one. We therefore argue that this reinforces and supports

our previous conclusions about modeling distal pointing performance.

Two-part models are not inherently necessary to describe all pointing tasks.

Many common tasks coincidentally give amplitude and width similar impact. How-

ever, specific experiemental conditions and different input techniques may cause

this to change somewhat unpredictably and produce scenarios in which two-part

models become necessary. Devices that could be useful but that produce non-
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standard k values (ones that are not close to unity) quite possibly have been re-

jected by the research community because they failed to be accurately described

by a one-part Fitts model. Two-part models seem more robust to changes in gain

or target depth, or any other factor that might make k diverge from unity. We there-

fore advocate that they be the default models, at least until it has been verified that

the range of k values is never far from 1.0 for the task.

5.3.2 Angular Versus Classic Measures of Target Difficulty

Angular measures were intended to help the model be robust to changes in depth,

but hadn’t been tested in isolation before these two experiments. Studies in litera-

ture had compared one-part models using classic measures of difficulty to their new

proposed model. While their proposed model used angular measures of difficulty

it was also very similar to a two-part Welford’s model. Our previous experiment

provided data that suggested the improvements of this model may be coming more

from the Welford’s similarity than swapping to angles.

As we noted in our results section, the differences between angular and classic

measures in this experiment were fairly minor and inconsistent. Some models were

slightly improved (usually within 5 percent R2) while others actually got worse

when swapping to angular measures. Even the best case scenario of the global

multiple depth condition only saw improvements in some conditions, and got worse

in others. It seems reasonable to argue that the differences between angular and

classic are relatively minor and perhaps a form of random variation after changing

units under the effect of perspective projection. While perspective will cause the

units to be scaled differently at different depths, we were not able to show in either

experiment that this provided any real improvement in modeling.

5.3.3 The Relationship Between k and Target Depth

One thing we were very surprised by in this experiment was the low value of k and

its shallow growth with increasing target depth. For example, using regular width

the lowest k was 0.67 at 165cm and then raised to 0.832 by 275cm. However,

between 275cm and 365cm we see shallow growth in k between 0.832 and 0.835.

This corresponds to less than a percent of absolute difference between half of the
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target depths tested. Effective width saw k grow more sharply in this range, where

it varied from 0.88 to 1.04. However, both variations are still smaller than the

variation we saw in the original experiment which went from 1.4 to 1.7 in a similar

area. It is plausible that there might be some sort of diminishing returns as you get

further and further from the screen. Similar increases in depth may have less and

less of an impact an impact on k as target depth becomes more extreme.

We noted in our results that target depth had an interaction with target width

in this experiment, rather than an omnibus effect. This is key, as rather than tar-

get depth making the task inherently more difficult, it may simply exacerbate the

problems with small widths, while not hampering more reasonable targets much.

This may be compounded with the changes in absolute target size due to not us-

ing stereo projection in this experiment. Perhaps using a slightly different set of

absolute widths gave us a different k?

This would make intuitive sense as visual depth discriminations are less precise

at farther target depths where binocular disparity plays less of a role [51]. Similar

changes in absolute target depth will also have smaller relative changes in total

target depth. It could also be caused by hitting the limit of sensorimotor process-

ing. As k gets larger, width has more and more of an impact on accuracy because

the task needs to be more and more precise. This will make hand jitter start to

become increasingly problematic for selecting smaller targets. It may well be that

we are hitting some fundamental sensorimotor limit on fine motor precision and

participants can only be so accurate on the targets we are asking them to select.

Given these and the modeling results we presented earlier, we would consider

the two most likely models for our k trend as logarithmic and linear. Linear ap-

pears to be a somewhat naive but explanatory approximation of the variation in k.

By definition it assumes variation is the same at all points. Theoretically a linear

trend would imply that the same increase in target depth will always have the same

impact on k. Using a linear approximation will throw out the pattern of smaller

differences as you get further away, but does capture the positive correlation in our

data. Furthermore once outliers were removed the regression software was able

to find a reasonable linear compromise between the variation and produced a R2

higher than 0.9.

We note that second order polynomial models gave us the highest R2 values in
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all conditions, but also introduced additional degrees of freedom that would natu-

rally improve fit. Looking at the absolute values of the parameters, the quadratic

term was given much smaller co-efficients than the linear (0.0000006 comapred to

0.0002). This implies that the solved solution was really much more close to linear

but slightly improved by a small amount of curve. This is reinforced by a nested

model anova that we carried out to compare it to a linear model. No statistically

significant differences were found for regular width (F1,6= 0.355, p > 0.05) or

effective width (F1,6= 0.282, p > 0.05). Furthermore, the actual curve of the reg-

ular width polynomial models had increasing slope as target depth increased. This

would go completely counter to the visual trend in the data, and may be a product

of outliers. For a model to be useful it must consistently describe the trend in the

data. While we might be able to see slightly higher R2 using a polynomial model,

it does not actually improve our model visually or statistically and we reject it as

an accurate model of k.

A logarithmic model may provide an explanation for the sloping off trend we

are seeing in the regular width data. Large increases early on, but smaller as target

depth got larger. However, it was statistically the worst model before removing the

outlier points (R2 of 0.44 compared to 0.503 and 0.506). The specific outlier was

much lower than the the surrounding points. The logarithmic model has to pull

up higher than linear above this point and diverges from it dramatically. We think

the logarithmic regression was in a way rejecting this point as an outlier. It main-

tained the visual trend in the data but jettisoned consideration for the absolute best

R2. Once the outlier was removed, logarithmic models surpassed linear in pure R2

while more closely reflecting the visual trend in the data than polynomial models.

It is important to note however, that this sloping off trend was much less apparent

when using effective width, which is a truer representation of performance. Fur-

thermore, even after removing the outlier a logarithmic model of effective width k

never surpassed linear in R2. While it has its appeal, it seems hard to argue con-

clusively that a logarithmic model provides a consistently better explanation of our

data than a simple linear estimation.

It is important to note that while having a high R2 is important for mathematical

consistency, the point of such models is to reflect the relationship of the variables

and help us understand their effects. Having a high R2 is nice, but is no substitute
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for a robust explanation of the phenomena involved. Furthermore, there is no uni-

versal threshold for what constitues a “good” model of k. While the results were

much lower before removing the outlier point, one might reasonably argue that

accounting for 45 to 50 percent of all variation in the data is actually reasonably

predictive. Especially for a variable like k that might be impacted by dozens of

other potential nuisance factors (e.g. gender balance, coffee consumed, participant

strategy variation ect.). It is not quite the direct massive correlation of target dif-

ficulty with movement time, but that doesn’t mean it isn’t explanatory or helpful

for us understanding the relationship. Further investigation would be useful to nail

down what might be causing these outliers, but the rough trend of sloping off in-

crease appears to be there. Given all this, we would argue that k is probably best

modeled with a simple linear estimation.

5.3.4 Differences in Task and k

We noted in our results that the absolute values of k were much lower in this ex-

periment than the last. In fact, the largest k values in this experiment, were around

1.07, when the smallest in the last experiment were only slightly smaller than 1

(e.g. 0.87 for effective width Welfords).

We would consider the most likely explanation for this as differences in the ex-

perimental task and feedback. Targets were not displayed with dynamic stereo pro-

jection, so would appear at different real world sizes than experiment one, which

could have effected the results. In this task participants also had no feedback of se-

lection accuracy (laser pointer position is a form of feedback) and were instructed

to keep the laser smoothly moving between the two targets at all times. For dis-

ambiguation we considered all selections to occur at the peak movement acheived

before changing directions. Simply put, participants couldn’t really do post selec-

tion adjustment. If participants overshot their target they would not take the time to

carefully line it back up as wherever they stopped originally is where the selection

was placed. Thus any precise adjustment due to the impact of width was done in

the deceleration motion.

After cutting out the correction phase one would expect participants to spend

less overall effort on being precisely accurate. This would cause the width co-
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efficient (which captures precision adjusments) to have a smaller impact on move-

ment time and lead to smaller k values. However, the relative impact of amplitude

probably wouldn’t be very different between the two experiments. The ballistic

phase of crossing a large distance should theoretically be pretty similar even when

not trying to be precise. These would combine to make k smaller overall in our

experiment. We note directions for nailing down these complications in our future

work section.

Another possible explanation is the task differences between the two experi-

ments, especially those related to explicit visual feedback about accuracy. Barry

Po notes in his PhD dissertation [35] that their are two human visual systems (or

streams): the ventral system that has a more cognitive response when some types

of feedback are present, and the dorsal system that has more of a pure sensorimo-

tor response when little feedback is present. The two visual systems often have

different performance and different error patterns. Participants may be engaging a

different visual system in each experiment. It is not clear that the observed trend in

k should be similar in both visual systems. More research needs to be done to dis-

cern to what extent each experiment engaged each system, perhaps by examining

the exact co-efficient values as opposed to just relative k values.

5.4 Future Work
In this section we consider two main avenues for future work. Further investigating

and reinforcing our understanding of the k parameter and attempting to utilize this

new understanding to implement a VR calibration system.

5.4.1 Isolating Factors That Affect k

We’ve already noted that the different experimental task may have resulted in a

lower k than previous studies. However, we had to remove one outlier point from

the data in order to model k as well as in the last experiment. This new experi-

ment was intended to provide a fundamental human baseline for expected pointing

performance performance without computer mediation. Given that participant in-

structions were the same for all conditions and they were partially counterbalanced,

what could cause such a dramatic outlier? Resolving this issue will be important
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before going forward with any calibration systems relying on an accurate model of

k.

One plausible avenue to investigate is our sample being biased. Our average

participant age was similar to the previous experiment, but through random sam-

pling we had quite a good deal more women than men (14 compared to 3). Our

previous experiment was biased in favor of more men than women (12 compared

to 8). Gender variation in motor skills is highly studied and produces significant

differences in a variety of tasks. Women tend to perform slightly better at preci-

sion motor tasks, while men better at spatial reasoning [14, 52]. Perhaps gender

variation might account for some of why k was lower in the second experiment,

as women might be able to make precise adjustments more quickly. This could

lower the impact of width on pointing performance and lead to a lower k, such as

in our outlier point. It therefore seems plausible that perhaps the different biasing

of the sample caused k to be lower in our experiment than the last. However, this

would not explain why specific depths were impacted so much more than others.

Theoretically this should have been accounted for by our counterbalanced within-

participants design. We leave post-hoc testing for this to future work, as the sample

sizes in this experiment (3 men vs 14 women) are not appropriate for such a be-

tween subjects comparison.

Perhaps more likely to cause individual variations in conditions is changes in

participants strategy. Of course there is a tradeoff between speed and accuracy

in motor tasks like pointing. Depending on the instructions given, participants

might emphasize selecting quickly or precisely which creates a tradeoff between

movement time and success rate. Thus it is common practice in pointing studies

to use effective width to model pointing performance. This adjusts the predicted

size of the targets according to what participants actually did in post. Effectively,

this makes our analysis consider modeled targets larger if participants sacrificed

accuracy. However, an open question remains; Does the speed accuracy tradeoff

also effect k. Since k captures the relative impact of amplitude and width on point-

ing performance, could participants choosing the sacrifice accuracy for a condition

cause the impact of width to lessen and k to fall? If so, does modeling k with ef-

fective width also account for this tradeoff? Do we need to develop an adjustment

similar to effective width for the k parameter itself? Through random chance could
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participants have chosen to change their strategy in one condition?

Future studies should look to isolate some of these factors potentially impacting

k so we are more sure of what causes the outliers. The same experiment could be

run with computer mediation to validate our assertions that task differences caused

the lower k values in this experiment. More careful sampling could address gender

balance issues, or test whether this effected our results through a between partici-

pants design. More careful analysis should be done to tease apart the relationship

between strategy and k values. Perhaps a future experiment should try a between

participants design where some participants are instructed to be accurate and some

are instructed to be fast. We think it is reasonable that at least a few of these stud-

ies could be run to hopefully discover how we can make sure such outliers do not

happen in the future.

5.4.2 Addressing VR Calibration

Lets assume for now that we’ve investigated the factors causing k to vary in the

different target depths and can come up with a model that is both effective and

robust to noise/outliers. Assuming that this model is still linear, what can we prac-

tically accomplish? We had suggested in our previous experiment an idea where

the virtual target depth we render the targets at could be adjusted to reflect the hu-

man baseline k curve determined experimentally. This idea has promise but has

a few problems. Does adjusting the actual target depth of the object (and thus its

size) change people’s perceived target depths and is that a valid way of adjusting

performance in a simulation? Given the multitude of potential factors effecting the

absolute values of k is it plausible to come up with a single human baseline and say

what k “should” be at a given target depth? If individual strategy plays a role, how

much can we trust the k values from our participants? Furthermore, our naive idea

proposed in our last experiment had some edge cases whereby the corrected target

depth wouldn’t make sense around the corner cases (e.g. producing a negative tar-

get depth extremely close). There seems to be a fair amount of work to be done to

integrate this knowledge into a working VR calibration system.

We propose that for any VR calibration system to work it is going to be depen-

dent upon an model from a small set of participants that crossed real and virtual
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depth. Furthermore, such a system must ignore the absolute values of k and simply

strive to make the VR and real k curves more similar through relative differences.

We think its impossible to make the curves exactly match up. However, one could

run a quick pointing task crossing physical and virtual depth. If one then observed

that k variation is steeper with virtual target depth than real, one could then change

stereo parameters to play down the depth effect at far target depths and make the

target seem closer while keeping size consistent. Such dynamic stereo parameter

adjustment has already been applied to enhance depth estimation in literature be-

fore. We argue that it would be valuable to connect this technique to actual task

performance and validate the results it gives from a simulation perspective. Per-

haps an experiment could be designed to test multiple methods of calibrating a VR

system and arrive at a unified system the provides more accurate and comfortable

VR experiences.

5.5 Conclusion
This experiment has investigated the variation of Shoemaker’s k-factor with depth

while removing the confounding factors of virtual reality and computer mediated

pointing. We provided further evidence that two-part models outperform one-part

models in conditions where k deviates from one. We reinforced our conclusions

that angular measures do not really improve our models of pointing performance.

We also showed that even after removing computer mediation from the task, k

still got bigger as target depth increased. Overall, k was smaller and had slower

increases than our previous experiment, which we argue is likely caused by task

differences or sampling biases. Our models of target depths impact on k were

refined from previous studies to show that a linear approximation still provides the

most reliable and effective modeling. Future work should investigate a number of

factors, such as the speed-accuracy tradeoff that could explain the noise we noticed

in the k-factor. We also argued that dynamic stereo parameter adjustment may be

employed as a means of making the virtual and real k curves line up more closely.

Future work will investigate these factors, attempt to create a unified model of k

and apply it to VR calibration.
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Chapter 6

Where Are We? The Path Ahead

This thesis has investigated the research communities methods for evaluating point-

ing performance in distal pointing tasks. In particular, we tested a variety of com-

mon models of pointing and specific improvements and modifications that have

been suggested in the literature. These included Fitts’s one-part models versus

Welford’s style formulations, as well as angular versus classic measures of target

difficulty. We also investigated the natural human baseline of distal pointing per-

formance without computer mediation.

6.1 One-Part and Two-Part Models of Pointing
Through repeated experiments we have shown that amplitude and width have sepa-

rable impacts on pointing performance. In many common devices and interactions

their impact happens to be similar by happenstance. In such situations standard

one-part models of pointing, such as Fitts’s Law and the Shannon formulation were

shown to be as effective as more complex two-part models. However, we have

demonstrated that the relative impact of amplitude and width, as characterized by

Shoemaker’s k parameter, varies with target depth in distal pointing. When k im-

plies equal impact, Fitts’s and Welford’s style models are mathematically identical

and produce similar results. However, when k implies divergence, Welford’s out-

performs Fitts’s Law in a statistically significant way. This causes one-part models

to be less robust to modeling distal pointing interactions, which are particularly
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common in virtual reality interactions and a popular research area at the moment.

Thus we recommend the two-part Welford’s formulation, or its Shannon equivalent

as a valid and effective alternative to Fitts’s Law.

We note that one-part Fitts’s Law allows use of the throughput parameter to

compare aggregate pointing performance across studies. Mathematically defined

as the average index of difficulty over average movement time, it provides us with

a rough metric of how effective the device is. Two-part models of pointing per-

formance separate index of difficulty out into two terms and thus it is non-obvious

how they should be incorporated into the throughput metric. Lacking this standard

metric of device quality has arguably been one of the main stumbling blocks to us-

ing two-part models in practice. Given our data showing that two-part models will

become more necessary while modeling the distal interactions that are common in

VR, we feel this is a common problem that needs to be addressed. However, the

solution is perhaps much simpler than imagined. In fact, why does throughput even

need to change at all?

Of course, Fitts’s Law is formalized as the logarithm of the ratio of amplitude

and width, with throughput dividing the logarithm by average movement time.

MT = a+b log
(

Ae

We

)
(2.1)

T P = (log
(

Ae

We

)
/MT ) (2.7)

A key observation here is that the standard definition of throughput removes

any consideration of the magnitude of the b coefficient. Instead, it just focuses on

the magnitude of the ID logarithm (adjusted for consistent accuracy by effective

width) compared to ultimate movement time. Welford’s formulation splits index

of difficulty into amplitude and width terms that are subtracted. This allows a

linear regression to apply two separate coefficients to each ID term that reflect

their separable impacts.

MT = a+b1 log(Ae)−b2 log(We) (2.3)

One could, if they were inclined to do so, follow the same logic as Fitts through-
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put and create separate throughput terms for both logarithms in the Welford’s

model. This would naturally lead to Equation 6.1 and Equation 6.2 which rep-

resent the throughput impacts of A and W. These could be added together to form

the final throughput of a Welford’s model. However, higher widths make the task

easier, so a final throughput would arguably subtract the two as in Equation 6.3.

T Pa =
log(Ae)

MT
=

IDa

MT
(6.1)

T Pb =
log(We)

MT
=

IDb

MT
(6.2)

T P2 = T Pa−T Pb (6.3)

Alternatively, one could consider the whole of Welfords as its index of diffi-

culty and formulate the new throughput quite simply as Equation 6.4. Like one-part

models we drop consideration of the actual model coefficients and just compare ef-

fective target difficulty to movement time.

T Pw =
log(Ae)− log(We)

MT
=

IDw

MT
(6.4)

This would create a metric of throughput for the Welford’s formulation that is

philosophically analogous to the standard Fitts’s Law throughput equation. How-

ever, mathematically the results of all of these formulations of throughput are ac-

tually identical. By the logarithm quotient rule (see Equation 6.5) we can imme-

diately simplify one-part throughput to T Pw. Simply applying some basic fraction

rules ((A−B)/W = (A/W −B/W )) farther simplifies T Pw to T P2. This is simi-

lar to our observation that when the coefficents of a Welfords model are the same

(or as here, not considered) Fitts’s Law and Welfords produce the same model of

pointing.

log(
x
y
) = log(x)− log(y) (6.5)

Therefore, because our classical definition of throughput does not consider

model coefficients, there is no need to change our mathematical definition of through-
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put. It is simply a matter of notation as mathematically they produce the same

value. However, since we have split throughput into two terms we could assign

weights to each term in Welford’s throughput (Equation 6.3). This would let us

specify whether throughput cares more about accuracy or speed but it is not clear

what benefit we gain by considering this. Throughput is intended as a rough met-

ric of overall quality considering both accuracy and speed that can be consistently

compared across studies. Deciding whether we care more about ballistic speed or

precision accuracy is a more nuanced analysis than throughput was intended for.

Rather than getting rid of or radically changing the useful metric of throughput, we

argue that it should be kept in its original form or merely changed in notation to

reflect the use of two-part models. In addition, future studies should also report on

the value of the k parameter their models produced. This would allow us to have

the general throughput classifier (“x is ultimately more efficient than y”) as well as

a more nuanced understanding of its strengths (“because k is positive this device is

better at rough ballistic movements”). This may be helpful in tailoring our pointing

devices to specific interactions or display configurations.

6.2 Measuring Target Difficulty
There has long been the question in pointing research of how should we measure

and quantify how difficult a target is to select. More specifically, what sort of units

should we use and where should they be measured? In fact, this was partly the

motivation for the one-part formulation of Fitts’s Law. By dividing amplitude by

width, the units cancel out and we are left with unitless metrics of target diffi-

culty [41]. Most studies simply measure the size in centimeters on the screen, but

other options have been suggested. In particular, distal interactions have attempted

to measure the difficulty in “hand space” by measuring it in terms of angles the

arm has to move. In repeated experiments we have demonstrated that angular mea-

sures of target difficulty do not provide any consistent, regular modeling strength

improvement over classic measures in centimeters. In some cases, we saw minor

improvements but in other cases minor deterioration. We consider this an indica-

tion of some natural random variation due to scale change under perspective pro-

jection as opposed to any coherent improvement. On a more global level, we have
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argued that the units with which one measures pointing performance largely acts

as a scaling factor. While using consistent units is important to keep mathemati-

cal comparability for throughput, it does not seem to truly change the underlying

model.

6.3 Variation of Shoemaker’s k Parameter with Target
Depth

Shoemaker’s k factor is defined as the ratio of the amplitude and width coefficients

in a Welford’s model of pointing. It captures the relative impact of amplitude

and width on pointing performance and previous work had already shown that this

varies linearly with gain [40]. In this thesis, we have extended this line of enquiry

and demonstrated through repeated experiments that target depth has a similar im-

pact on distal pointing. This relationship is at least roughly monotonic. While there

is some appeal to modeling it with a logarithmic model, we argue that it is approxi-

mated by a linear trend. This is a very simple and explanatory model that produces

consistently high R2 while more complex models do not add any statistical power.

Furthermore, we have shown that while latency may exacerbate the magnitude of

k variation, this relationship still occurs when latency is removed. Thus we argue

that k variation with target depth is reflective of a true sensorimotor trend, and not

unique to computer mediated interaction. This has impact on calibration of virtual

environments which will be discussed in the next section.

While we have shown evidence to suggest that k varies logarithmically with

target depth, there is still much work to be done in making our understanding of

the trend more nuanced. There remains an issue with outliers where specific points

seem to vary out of step with the rest. We feel tighter experimental controls should

be developed to more closely understand and minimize this variation. We therefore

suggest three follow-up investigations.

• Post-hoc analysis or between subjects comparison to determine if the skewed

gender balance in our second experiment could have affected our trend in k.

• Computer mediated experiment performing the same task as our latency free

experiment to confirm how much of the reduction in k is attributed to task
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versus latency.

• Post-hoc analysis or between subjects comparison to determine how much

of an impact user strategy has upon K.

We feel these are the most likely explanations for why the outliers may have

occurred in our second experiment. Hopefully, by investigating these impacts we

could devise some metric for the deviation of k that either accounts for these nui-

sance factors or corrects them in post. Creating a robust human baseline for how

k varies with target depth would be important and interesting for calibrating VR

pointing tasks for lifelike performance.

6.4 Impact on Virtual Reality Calibration
Given the recent spate of new ideas and work being done in virtual reality, an im-

portant and pertinent research topic is ensuring these devices are simulating reality

effectively. In this work we have provided some preliminary ideation towards im-

plementing a performance based method for VR calibration. This would insure

that participants are not just self-reporting that the objects look correct, but that

they are actually interacting with them in a similar manner to real life. In our ini-

tial experiment, we suggested simply adjusting the target depth at which virtual

objects are rendered to match the k curve of the ground truth condition. Theo-

retically this would line up each VR condition with the ground truth condition of

equivalent performance. A diagram for this is presented in Figure 3.9

While the simplicity of this idea is useful and intuitive, after seeing the potential

for outliers in our next experiment we have decided to move away from it. There

is simply too great a chance for an outlier to cause the curves to diverge from

truth and give us nonsense depths. This is particularly problematic towards the

ends of the interaction zone where the corrected depth may not even make sense.

Instead, we now believe that dynamic stereo parameter adjustment may provide

a more promising avenue. It has already been shown in literature that changing

the stereo parameters can be used to make depth estimation more accurate [24].

We hypothesize that this method can be augmented with an understanding of the

real and virtual curves of k. One could note where k in virtual space exceeds the
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Figure 6.1: The three k-lines for DS = 110 (red / squares), 220 (green / tri-
angles) and 330 (purple / circles), along with the k-line for the non-VR
DV = DS conditions (blue / diamonds). To calibrate binocular depth us-
ing k values, the desired binocular depth (A) determines a k-value (B)
on the blue DV = DS line. That same k-value on the red DS = 110 line
(C) determines D′V to be the corresponding binocular depth (D) that the
software should use to ensure the desired pointing performance if the
screen is 110cm from the viewer.

intended physical result and subtly adjust the stereo parameters to play down the

depth effect. The exact amount of shift would need to be decided and the results

of this calibration would need to be validated for simulation effectiveness. Does

it appear reasonable, and how does it effect simulation sickness? While still very

much preliminary, it seems a promising extension to accepted and relevant work in

the field.

6.5 Final Words
Distal interaction is a fundamental sub-component to exploring and working with

many virtual environments. This work has gone back to the fundamentals of the hu-

man sensorimotor systems and re-evaluated how we choose our models of pointing

performance. We have demonstrated situations where current experimental prac-

tice fails unpredictably. This may cause devices and tasks with non-standard gain

and or depth parameters to not be accepted by the pointing community. Welford’s
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two-part model of pointing performance has been shown to be a more robust and

effective model of pointing. We have futher explained how we can extend two-

part models to include an equivalent metric of throughput to one-part models. In

our opinion, this removes the last major objection to using two-part models over

one-part. Enhancements such as angular measures of target difficulty did not con-

sistently improve our models. We’ve also argued there is a logarithmic relationship

between k (the relative impact of amplitude and width on pointing performance)

and target depth. However, this relationship can be reasonably approximated by a

more rough linear trend. This work has impact upon and provides new avenues for

work in VR calibration while pushing forward our methods for pointing evaluation.

Hopefully, it provides a strong theoretical basis for how we evaluate new pointing

techniques in VR interaction.
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Appendix A

Supporting Materials

This appendix primarily contains the annonymized raw data from our different

experiments. As the total amount of data would be unmanageable to report on, we

provide aggreate statistics including average movement time and effective width.

Study instruments including our demographics questionaire are also reported on.

A.1 Study Materials

A.2 Raw Data

DS DV A W WE AE MT LowCI HighCI

110 110 25 5 6.70 25.45 1229.85 1138.89 1320.82

110 110 25 10 8.65 25.46 911.54 820.57 1002.50

110 110 25 20 16.43 25.92 688.41 597.44 779.37

110 110 50 5 7.67 50.14 1551.79 1460.82 1642.75

110 110 50 10 12.10 50.35 1205.60 1114.64 1296.57

110 110 50 20 17.31 51.00 965.46 874.49 1056.42

110 110 75 5 11.31 75.62 1798.58 1707.62 1889.55

110 110 75 10 12.86 75.42 1385.95 1294.99 1476.92

110 110 75 20 29.25 75.07 1099.31 1008.35 1190.28

110 220 25 5 6.63 25.29 1887.37 1796.41 1978.34

110 220 25 10 6.67 25.40 1192.47 1101.50 1283.43
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DS DV A W WE AE MT LowCI HighCI

110 220 25 20 10.46 25.35 852.15 761.19 943.12

110 220 50 5 7.43 50.28 1972.32 1881.36 2063.29

110 220 50 10 9.06 50.24 1385.73 1294.77 1476.69

110 220 50 20 11.47 49.73 1109.63 1018.66 1200.59

110 220 75 5 6.33 75.44 2317.52 2226.56 2408.49

110 220 75 10 14.78 75.33 1656.73 1565.77 1747.69

110 220 75 20 17.61 74.55 1221.71 1130.75 1312.68

110 330 25 5 9.44 25.02 2174.89 2083.93 2265.86

110 330 25 10 8.70 25.39 1713.43 1622.46 1804.39

110 330 25 20 9.95 25.18 963.01 872.04 1053.97

110 330 50 5 10.71 50.37 2492.41 2401.44 2583.37

110 330 50 10 9.48 49.78 1948.03 1857.07 2039.00

110 330 50 20 12.06 49.84 1268.31 1177.35 1359.27

110 330 75 5 9.22 75.51 2949.67 2858.70 3040.63

110 330 75 10 8.31 75.11 2069.95 1978.99 2160.92

110 330 75 20 13.79 75.11 1495.17 1404.21 1586.13

220 110 25 5 11.18 25.54 1351.85 1260.89 1442.82

220 110 25 10 23.86 25.93 1003.88 912.92 1094.85

220 110 25 20 25.19 26.92 828.98 738.01 919.94

220 110 50 5 11.90 50.10 1623.27 1532.31 1714.23

220 110 50 10 16.81 50.49 1321.52 1230.56 1412.49

220 110 50 20 30.67 50.15 1038.77 947.80 1129.73

220 110 75 5 15.85 76.29 1991.38 1900.41 2082.34

220 110 75 10 26.39 76.53 1569.39 1478.43 1660.36

220 110 75 20 31.66 77.61 1320.33 1229.36 1411.29

220 220 25 5 8.08 25.79 1332.75 1241.79 1423.72

220 220 25 10 12.61 25.61 973.90 882.94 1064.87

220 220 25 20 16.22 26.20 776.36 685.40 867.33

220 220 50 5 7.46 50.57 1698.42 1607.46 1789.39

220 220 50 10 12.36 50.91 1228.03 1137.07 1319.00

220 220 50 20 19.22 51.29 949.56 858.60 1040.53

220 220 75 5 9.36 75.51 1906.07 1815.10 1997.03
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DS DV A W WE AE MT LowCI HighCI

220 220 75 10 13.72 75.62 1515.02 1424.06 1605.99

220 220 75 20 19.89 76.24 1159.64 1068.67 1250.60

220 330 25 5 6.79 25.38 1663.40 1572.44 1754.37

220 330 25 10 10.16 25.26 1234.16 1143.19 1325.12

220 330 25 20 12.37 25.88 817.61 726.65 908.58

220 330 50 5 9.39 50.51 1998.51 1907.55 2089.48

220 330 50 10 10.57 50.65 1447.49 1356.53 1538.45

220 330 50 20 14.70 50.57 1087.13 996.17 1178.10

220 330 75 5 19.13 74.84 2142.74 2051.77 2233.70

220 330 75 10 20.99 74.92 1608.96 1518.00 1699.93

220 330 75 20 23.59 74.81 1192.52 1101.56 1283.49

330 110 25 5 29.92 24.68 1392.45 1301.49 1483.42

330 110 25 10 38.96 22.56 1075.40 984.44 1166.37

330 110 25 20 43.36 22.71 819.65 728.69 910.62

330 110 50 5 16.94 50.58 1971.15 1880.19 2062.12

330 110 50 10 36.52 48.10 1537.05 1446.09 1628.02

330 110 50 20 56.41 45.86 1137.21 1046.25 1228.18

330 110 75 5 78.31 74.66 2392.42 2301.45 2483.38

330 110 75 10 29.19 76.91 1936.15 1845.18 2027.11

330 110 75 20 85.21 74.40 1546.01 1455.04 1636.97

330 220 25 5 10.93 25.88 1348.55 1257.58 1439.51

330 220 25 10 19.95 25.80 1011.31 920.35 1102.28

330 220 25 20 21.92 26.42 767.65 676.69 858.62

330 220 50 5 11.80 50.46 1586.63 1495.67 1677.60

330 220 50 10 15.39 50.51 1296.33 1205.36 1387.29

330 220 50 20 35.53 50.91 947.00 856.03 1037.96

330 220 75 5 11.06 75.46 1908.90 1817.94 1999.87

330 220 75 10 37.28 75.07 1421.08 1330.11 1512.04

330 220 75 20 26.73 75.22 1139.59 1048.63 1230.56

330 330 25 5 8.81 25.73 1585.54 1494.57 1676.50

330 330 25 10 11.80 25.35 1053.63 962.66 1144.59

330 330 25 20 16.84 25.12 772.66 681.70 863.63
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DS DV A W WE AE MT LowCI HighCI

330 330 50 5 11.71 50.52 1851.61 1760.65 1942.58

330 330 50 10 15.25 50.85 1306.28 1215.32 1397.25

330 330 50 20 21.30 50.27 1012.67 921.71 1103.64

330 330 75 5 9.73 75.71 2161.65 2070.68 2252.61

330 330 75 10 12.93 75.48 1629.48 1538.52 1720.45

330 330 75 20 23.46 75.05 1118.22 1027.26 1209.19

Table A.1: Processed raw data from experiment one. Outliers have already
been filtered out and we present effective widths, amplitudes, average
movement times and 95 percent confidence intervals for all conditions.

DS A W WE AE MT LowCI HighCI

110 25 5 6.12 25.13 386.57 345.63 427.51

110 25 10 8.66 25.18 319.44 278.50 360.38

110 25 20 18.98 25.27 264.70 223.76 305.64

110 50 5 6.09 50.15 580.21 539.27 621.15

110 50 10 9.60 50.19 427.55 386.61 468.49

110 50 20 17.89 50.40 353.82 312.88 394.76

110 75 5 8.46 75.35 685.88 644.94 726.82

110 75 10 11.71 74.08 595.95 555.01 636.89

110 75 20 17.96 73.28 394.91 353.97 435.85

165 25 5 6.36 25.10 419.56 378.62 460.50

165 25 10 8.20 25.07 337.50 296.56 378.44

165 25 20 18.33 25.19 256.94 216.00 297.88

165 50 5 7.15 50.15 579.63 538.69 620.57

165 50 10 9.38 50.18 445.14 404.20 486.08

165 50 20 17.38 50.28 362.62 321.68 403.56

165 75 5 7.49 75.26 695.37 654.43 736.31

165 75 10 12.62 74.23 610.42 569.48 651.36

165 75 20 19.83 72.85 409.95 369.01 450.89

220 25 5 6.16 25.21 451.97 411.03 492.91

220 25 10 8.54 25.10 332.64 291.70 373.58
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DS A W WE AE MT LowCI HighCI

220 25 20 18.02 25.16 265.62 224.69 306.56

220 50 5 7.86 50.23 606.37 565.43 647.31

220 50 10 9.40 50.17 454.98 414.04 495.92

220 50 20 16.92 50.40 378.36 337.42 419.30

220 75 5 8.31 75.18 735.65 694.71 776.59

220 75 10 9.46 74.61 647.69 606.75 688.62

220 75 20 19.00 73.95 423.50 382.56 464.44

275 25 5 6.47 25.27 463.19 422.25 504.13

275 25 10 8.87 25.12 325.69 284.75 366.63

275 25 20 17.59 25.04 241.32 200.38 282.26

275 50 5 7.22 50.30 569.21 528.27 610.15

275 50 10 9.51 50.15 471.30 430.36 512.24

275 50 20 16.35 50.18 351.50 310.57 392.44

275 75 5 7.16 75.26 707.29 666.35 748.23

275 75 10 12.88 74.57 548.03 507.09 588.97

275 75 20 22.79 74.38 393.52 352.58 434.46

330 25 5 7.11 25.14 468.17 427.23 509.11

330 25 10 9.37 25.17 328.94 288.00 369.87

330 25 20 17.66 25.08 239.47 198.53 280.41

330 50 5 7.15 50.19 650.81 609.87 691.75

330 50 10 9.84 50.02 472.34 431.40 513.28

330 50 20 17.85 50.21 346.88 305.94 387.81

330 75 5 8.55 75.18 746.30 705.36 787.24

330 75 10 11.82 75.27 579.51 538.57 620.45

330 75 20 20.45 74.98 422.92 381.98 463.86

365 25 5 7.57 25.21 515.28 474.34 556.22

365 25 10 9.01 25.20 340.05 299.11 380.99

365 25 20 17.31 25.11 267.13 226.19 308.07

365 50 5 7.32 50.25 656.25 615.31 697.19

365 50 10 9.51 50.16 524.42 483.48 565.36

365 50 20 17.34 50.22 361.11 320.17 402.05

365 75 5 7.09 75.15 736.34 695.40 777.28
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DS A W WE AE MT LowCI HighCI

365 75 10 9.76 75.38 616.20 575.26 657.14

365 75 20 22.36 75.47 432.06 391.12 473.00

Table A.2: Processed movement time data from experiment two. Outliers
have already been filtered out and we present effective widths, ampli-
tudes, average movement times with low and high 95 percent confidence
intervals for all conditions.
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Interacting With Large Displays II 
 
UBC Department of Computer Science 
ICICS/CS Building 
201-2366 Main Mall 
Vancouver, B.C., V6T 1Z4 

 
Consent Form 
 
Principal Investigator 
Kellogg S. Booth, Professor, Department of Computer Science, (604) 822-8193 
 
Co-Investigators 
Vasanth Rajendran, M.Sc. Student, Department of Computer Science, (778) 991-2616 
Garth Shoemaker, Postdoctoral Fellow, Department of Computer Science, (604) 827-3993 
Tao Su, M.Sc. Student, Department of Computer Science, (778) 318-8499 
Julia Rose Freedman, B.Sc. Student, Department of Computer Science, (604) 603-9200 
 
Project Purpose and Procedures 
The purpose of this study is to evaluate different methods for interacting with different sized 
electronic displays. Because of the properties of some displays, and how they are used, 
standard devices such as mice and keyboards are ill suited. You will be asked to point at 
targets on the display, and press a button to select the targets. 
 
Confidentiality 
Your identity will remain anonymous and will be kept confidential. A computer will record 
performance and motion data as you perform the tasks, but no identifying information (such 
as your name) will be stored with this data, nor will it be associated with the data after it has 
been analyzed. 
 
The results will be made public through publications; however, no identifying information 
will be included in any published disclosure of the research. 
 
No audio recordings or photographs will be made of your participation. 
 
Risks/Remuneration/Compensation 
There are no anticipated risks to you participating in this research. Use of stereoscopic 
glasses may cause slight discomfort or fatigue in some subjects. You are free to take a break 
or withdraw from the study. 
 
You will receive an honorarium of $10 for your participation. You will be eligible for the 
honorarium even if you withdraw from the study. 
  

Figure A.1: Consent forms for experiment one which investigated the impact
of depth on pointing performance. Data gathered and performed by
Vasanth Rajendran.
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Interacting With Large Displays V 
 
UBC Department of Computer Science 
ICICS/CS Building 
201-2366 Main Mall 
Vancouver, B.C., V6T 1Z4 

 
Consent Form 
 
Principal Investigator 
Kellogg S. Booth, Professor, Department of Computer Science, 604-822-8193 
 
Co-Investigator 
Izabelle F. Janzen, M.Sc. Student, Department of Computer Science, 604-345-4263 
 
Project Purpose and Procedures 
The purpose of this study is to evaluate different methods for interacting with different sized 
electronic displays. Because of the properties of some displays, and how they are used, 
standard devices such as mice and keyboards are ill suited. You will be asked to point at 
targets on the display, and select the targets. 
 
Confidentiality 
Your identity will remain anonymous and will be kept confidential. A computer will record 
performance and motion data as you perform the tasks, but no identifying information (such 
as your name) will be stored with this data, nor will it be associated with the data after it has 
been analyzed. 
 
The results will be made public through publications; however, no identifying information 
will be included in any published disclosure of the research. 
 
No audio recordings or photographs will be made of your participation. 
 
Risks/Remuneration/Compensation 
There are no anticipated risks to you participating in this research. You are free to take a 
break or withdraw from the study. 
 
You will receive an honorarium of $10 for your participation. You will be eligible for the 
honorarium even if you withdraw from the study. 
 

Figure A.2: Consent forms for experiment two which investigated the impact
whether the impact of depth on pointing performance is an artifact of
system latency.
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Interaction With Large Displays III Phase 1 
Pre-Experiment Questionnaire 

Participant # c c c 

 
1. How old are you? 

c c years 
 

 
2. What is your gender? (tick one) 

 
¡ Male 

¡ Female 

¡ Other 

 
3. How much time do you spend per week using a computer? (tick one) 

 

¡ Less than 1 hour 

¡ 1 to 3 hours 

¡ 4 to 8 hours 

 ¡ More than 8 hours 

  
4. Do you normally wear glasses or contact lenses? (tick one) 

 
¡ Yes 

If yes, what is your prescription? 
¡ __________________  
¡ I don’t know 

 
¡ No 
 
[Some questions not relevant to the current experiment have been deleted from earlier 
versions of the questionnaire] 

Figure A.3: Demographics questionaire used to gather qualitative data in
both studies presented in this thesis.
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