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Abstract 
 
Rensink & Baldridge (2010) first operationalized a methodology to study perceptual 

performance for single population scatterplots. Rensink (2014) emphasized that this 

methodology could be extended to understand the perception of more complex displays. 

In this paper, the original methodology is extended to examine the perception of two-

population scatterplots, containing target and distractor populations. In three experiments, 

we investigated the nature of performance for a discrimination task used to measure 

viewer precision (defined by parameter k in our analysis) and accuracy (defined by 

parameter b in our analysis). The results show that perception for two-population 

scatterplots is non-trivially different from the perception of single population scatterplots. 

Namely, there is a significant degree of interference for selecting and discriminating the 

target populations in each display. This interference occurs due when the target and 

distractor populations are featurally distinct from one another, violating assumptions 

from Feature Integration Theory and Guided Search. Discrimination performance also 

degrades as a function of the density of the distracting population. Findings from this 

work not only help solidify a methodology to study the mechanisms underlying ensemble 

selection and inhibition in the presence of multiple populations, but also guide design 

choices for the creation of more complex scatterplot displays. 
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1 INTRODUCTION 

1.1  Motivation 

 Rensink and Baldridge (2010) developed a rigorous methodology to study the 

perception of correlation in single population scatterplot displays. Their work drew from 

long-established experimental designs and procedures from vision science. The results 

yielded two measures: one for accuracy (b), and another for precision (k). The authors’ 

goals were not only to design better, more effective scatterplot displays, but also to have 

a means of evaluating observer low level visual performance on their tasks. This pattern 

of thinking was extended in Rensink (2014), where it was suggested that the foundational 

work should be extended to more features and correlation displays. Indeed, it appeared 

that viewer performance was invariant to many design manipulations (Rensink, 2016). 

Beyond the design evaluation implications, work extending this methodology can offer 

new insight into how populations of data are selected or inhibited in attention, during a 

relevant behavioral task.  

In these 3 experiments, we examine perceptual behavior for two-population 

scatterplots. The goal of this work was to extend and operationalize the original methods 

for this type of stimuli, as well as to investigate the perceptual processes and mechanisms 

underlying observer performance. In order to understand what implications exist in this 

realm, it is important to outline the pertinent research topics from vision science that are 

potentially involved with viewing scatterplots. 
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1.2       Connections with Visual Perception  
 
1.2.1 Ensemble perception 
 

Humans are capable of extracting a diverse range of information from groups of 

objects in visual scenes. This includes identifying, or segmenting targets from a 

background (Wolfe et al., 2002), understanding spatial relationships of objects in a scene 

(Franconeri et al., 2012; Zhao et al., 2013; Alvarez & Oliva, 2008), estimating 

numerosity (Dehaene et al., 2008; Ross & Burr, 2010), and averaging, or getting 

summary information from a set (Ariely, 2001; Haberman & Whitney, 2007). In order to 

form a perceptual understanding of complicated information, the visual system 

compresses environmental structure to aid accurate and efficient representations of 

observed stimuli.  Rensink (2016) suggested that scatterplots might be perceived via this 

type of coding. 

Previously, it was thought that objects needed to be serially attended to in order to 

make sense of a scene (Egeth & Yantis, 1997). However, research on the rapid perception 

of gist showed that in fact, explicit selection is not needed (Oliva & Torralba, 2006). 

Early research on ensembles, or populations defined by scene statistics, was motivated by 

findings showing that the visual system does an excellent job of capitalizing on 

regularities within scenes. Humans can rapidly glean a gist understanding, or simple 

categorization at a basic level (Larson & Loschky, 2009) of novel, and even blurry 

images (Potter, 1975, 1976; Potter et al., 2004; Schyns & Oliva, 1994). In these studies, 

participants could identify the semantic category of the entire scene, as well as attribute 

information for various objects in the scene as quickly as 100 milliseconds (ms) after they 

were presented. This work was seminal to the reconceptualization of how object selection 
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in attention contributes to the holistic perception, or in other words, simple categorical 

representation of visual information in a scene.  

More recently, ensemble research has focused on understanding what constitutes 

a scene statistic, and how these statistics are used in efficient encoding and representation 

of information. Based on the well-accepted information theory developed by Shannon 

(1948), it has been proposed that the visual system represents stimuli by calculating 

efficient codes based on the statistics of an image or scene ensemble. This coding is used 

to reduce both redundancy and noise without losing too much visual information 

(Simoncelli & Olshausen, 2001). It has been suggested that such codes can allow for 

sufficiently accurate representations, even when processing is capacity-limited (Alvarez 

& Oliva, 2009). Initially, researchers observed that groups of low-level visual features 

could serve as scene statistics for ensemble encoding. Features like size (Ariely, 2001; 

Chong & Treisman, 2003) and orientation (Parkes et al., 2001) were among the first to be 

identified. Ariely (2001) found that when participants viewed displays containing 

different numbers of spots in varying sizes, they could easily infer the mean size of each 

group of spots. Interestingly, despite showing remarkable accuracy for the average size in 

a set, viewers encoded very little information about the individual spots themselves (i.e., 

participants were unable to individuate members of a set based on size). Even when 

viewers were explicitly instructed to pay attention to individual spots in the display, 

results indicated that they encoded the scene summary. This work paved the way for 

recent ensemble research by uncovering two main points: 1) that visual encoding of size 

ensembles is a rapid, automatic process for sets of objects, and 2) that this summary 

representation is not reliant on the explicit selection or encoding of any information about 
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individual objects’ size (aside from the overall range in some cases). In summary, the 

representation of a set of objects does not appear to be a straightforward configuration of 

its individual items or objects. 

Chong and Treisman (2003) showed that ensembles could be encoded, 

irrespective of the distribution viewed. In their results, average size summary thresholds 

were the same for comparisons between samples drawn from the same distribution and 

samples drawn from different distributions. In addition to this, the authors found that 

sample means could be very accurately computed for different spatial locations (i.e., in 

the right versus left visual fields). In three discrimination task experiments, Chong and 

Treisman (2005) took these findings a step further. Participants viewed various displays 

and had to decide which sample of circles in the displays had the higher mean size. These 

samples varied by color, numerosity and density, and in the third experiment a cueing 

paradigm was used to examine how automatically ensembles could be formed and 

encoded by viewers. This work aimed to determine whether or not participants could 

perform averaging summaries over displays with various structural constraints such as 

variations in density, and distractor samples. The results confirmed previous findings that 

viewers do not rely on information from individual objects to form summary conclusions 

about the scene, and also confirmed that the summary statistic used was the mean and not 

the median or mode size in the display. Mean size judgments were also found to be 

invariant to changes in density or numerosity in the samples. The most surprising finding 

from this paper was that discrimination for mean size of sets of different colors was still 

highly accurate, and regardless of whether the cue preceded or followed the circle 

displays, performance was the same. The authors compared thresholds for mean size 
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judgments in this experiment with results from the third experiment in Chong and 

Treisman (2003), and found that these color discriminations yielded results just as 

accurate as the spatial location discriminations from Chong and Treisman (2003). This 

result was especially surprising with regards to feature integration models from Treisman 

and Gelade (1980), Treisman and Gormican (1988), and past research on binding from 

Treisman (1998), in the sense that participants did not appear to need to select and bind 

color or size to individual items to perform the necessary averaging computations. This 

suggested that the formation of ensembles in perception is a highly automatic and reliable 

process. Similarly, Parkes et al. (2001) showed that mean orientation is correctly 

identified for Gabor patches presented in the periphery, even when observers failed to 

individuate a central target patch. Again, this failure was not due to interference from 

object crowding near the target, or particular attentional deployment in the scene. 

Haberman and Whitney (2007, 2009) extended the conceptualization of scene statistics to 

higher-level stimuli in their studies, which showed that observers could precisely 

represent the mean emotion expressed over of a group of faces. All of the studies 

mentioned ruled out the possibility of serial processing and individuation, asserting that 

each of these summary behaviors is due to an explicit averaging process over the contents 

of the scene.  

1.2.2 Crowding 
 

Another perceptual phenomenon to consider in the context of ensemble statistics 

is visual crowding. This is defined as impairment in the recognition of objects or features 

presented away from the fovea due to the presence of neighboring objects. Crowding 

occurs when distracting objects or features closely flank a target object or feature. Older 
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work on crowding suggested that it is normally damaging to holistic scene perception, 

because crowding is detrimental to the encoding of individual object representations. This 

is the case because crowding is disruptive to serial attentional selection (Kahneman et al., 

1983; Stockdale, 1978). However, more recent findings suggest that object crowding may 

actually contribute to a visual “chunking” process that better enables ensemble 

representations (Haberman & Whitney, 2012). Research from Intriligator and Cavanagh 

(2001) suggested that crowded displays caused viewers to engage in summary statistical 

strategies to process information. Attentional selection of a specific target and/or specific 

distractor objects does not occur in this process. Nevertheless, these findings only 

addressed crowding by similar objects. 

As the study of crowding progressed, many of its nuances and definitions became 

better defined. For instance, a review by Whitney and Levi (2011) outlined several 

important advances in understanding how crowding both limits and increases spatial 

attentional selection. One important aspect of defining crowding is the degree of physical 

space between stimuli. Bouma’s “Law” (1970), which states that “at a given point and 

direction in the visual field, critical spacing, measured from the center of a target object 

to the center of a similar flanking object, is the same for all objects” (Rosen et al., 2014), 

helped clarify the combination of parameters necessary in critical spacing for determining 

targets and distractors in this context. This spacing varies depending on the similarity 

between target and flankers, the complexity of the scene, type of stimuli displayed, and 

their distance from the fovea. As mentioned above, in displays of crowded objects of 

similar types, feature information is pooled or averaged (Parkes et al., 2011), however if 

the nature of the flakers is dissimilar from the target, a “pop-out” effect will occur for the 



	 7	

target and distractor information is lost in attention. In this case, attentional selection of 

the target cannot be inhibited. This occurs for a wide range of dissimilarities, including 

shape, size, orientation, polarity, spatial frequency, depth, color, motion, and order 

(Whitney & Levi, 2011).  

What remains to be understood in this area of research is the effect of a small 

crowding occurrence (or multiple crowding occurrences) in a larger display. If crowding 

occurs in only a small region of the display, how exactly does it affect the overall 

averaging process? This is clearly dependent on whether information is lost due to the 

crowding (i.e., there is high dissimilarity between target and flankers; you could imagine 

this happening if a target-population dot is flanked by distractor-population dots in a two-

population scatterplot). However, even if information is successfully pooled in a crowded 

region, does that pooling occur at the same time as the overall ensemble formation? Is 

this process hierarchical? Does it occur automatically, pre-attentively, or does it require 

more a more active cognitive process?  

 Despite the well-established set of behaviors for ensemble encoding, a substantial 

number of questions remain surrounding its underlying perceptual mechanisms (for a 

review, see Haberman & Whitney, 2012). For instance, it is unknown whether statistical 

representations are a serial or parallel process in attention. Additionally, it is unclear 

whether spatial or featural information takes precedence during the encoding of 

ensembles. In order to speculate further on these questions, it is important to outline 

attentional behaviors across other perceptual contexts. One of the most prominent 

examples of visual information summary in attention occurs during a phenomenon 

known as visual search.  
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1.2.3    Feature selection in visual search 

Visual search is the act of identifying a target object among a set of distracting, or 

irrelevant stimuli. There has been an established connection between ensemble codes and 

visual search. In particular, controversies surrounding the nature and mechanisms 

underlying pop-out effects (Eckstein, 1998; Itti & Koch, 2000; Wolfe, 2003) may be 

addressed by understanding how the visual system capitalizes on its averaging abilities to 

detect dissimilarity. To further understand these discrepancies between perceptual 

successes and failures in attentional selection, it is necessary to examine the literature on 

illusory conjunctions and models of guided search.  

Treisman and Schmidt (1982) hypothesized that diversions in attention, or too-

high attentional loads would cause features to be incorrectly bound together in viewers’ 

perceptual representations. In other words, viewers would confuse object features in the 

scene when selection was distracted or inhibited. These mistaken reports occur for brief 

stimulus presentations (~200ms), even when the items are featurally distinct (Prinzmetal 

et al., 1995). Cohen and Ivry (1989) posited that attentional processing requires at least 

100-200ms to accurately define featural information and spatial positions for items 

spaced 1o or less from each other in foveal vision, otherwise incorrect bindings are likely 

to occur. Items in the periphery are subject to binding errors at even broader spatial 

separations and for slower presentation times. This visual phenomenon is known as 

“illusory conjunction”. The experimental stimuli were small (~3.5in x  ~1in), hand-drawn 

letters or shapes, and numeric digits on cards. Depending on the experiment, the letters 

and shapes could vary in size, “solidity” (or fill), color, and spatial location. The digits 

were always black, but the letters or shapes could be any of five different colors. These 
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cards were presented to the viewers in a tachistoscope, and participant responses were 

given verbally. All tasks were variations on a digit-recognition task (participants had to 

report the digit on the card) that was either followed by a working memory task, or 

occurred at the same time as an object recognition/visual search task (participants had to 

report whether a specific object was present in the scene). The major findings from this 

paper were 1) illusory conjunction, or a mis- combining of feature information occurred 

under high attentional load (although it is unclear whether the information was encoded 

improperly, or recombined improperly after encoding), 2) conjunction errors were not 

always conveyed via participants guessing due to a lack of information. Some 

conjunction errors were conveyed via confident reports of objects that were not actually 

in the display (e.g., reporting a pink X, when in fact there was only a pink O and a yellow 

X in the display), 3) illusory conjunctions did not occur due to problems with verbal 

encoding (or due to verbal encoding at all), 4) illusory conjunctions cannot be explained 

by failures in working memory recall, 5) physical distance/spatial location did not affect 

illusory conjunction, 6) features appeared to be coded independently, and illusory 

conjunctions were not related to true combinations of features within objects on the 

display. Put more simply, features were “exchanged” freely between objects when 

misbindings and illusory conjunction reports occurred, 7) the frequency of illusory 

conjunctions was not dependent on the frequency of errors related to individual features 

(i.e. mistaking one color for the other, or an X for an N). Although, illusory conjunctions 

occurred more frequently for color and shape, they were also present for solidity and size.  

In fact, the number of reported illusory conjunctions could increase as feature error 

reports decreased. This final result suggested that attention is actually used to recombine 
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separately/independently acquired feature information. Much of this work conflicts with 

models that tout global or holistic visual scene processing. In summary, Treisman and 

Schmidt (1982) demonstrated that the whole could not be considered greater the sum of 

its parts; object features and spatial locations are often muddled and confused in 

attention.  

Theeuwes (1992) showed that full top-down selectivity for a unique, salient target 

was not possible in visual search tasks when a salient distracting item, even with different 

features was present. For instance, in a search task for a green circle among green 

squares, when a red square appears as a distractor, observers’ search times were 

significantly slower. This occurred even when the distractor was identified and rehearsed 

prior to the task. Later, work from Wolfe (1994) re-examined a number of visual search 

and feature integration findings. Through a series of simulation studies with target and 

distractor objects, a new attentional selection, or “guided search” model was developed to 

explain novel search behavior differences due to additional nuances in the displays. 

Under the guided search model, feature searches appeared to be rapid and “parallel”, 

instead of serial, when displays contained high target/distractor discrepancies. However, 

the less featural difference between target and distractor, the less efficient the visual 

search performance. Additionally, if the targets were categorically unique enough, some 

feature similarities with distractors would not decrease search efficiency. Finally, 

efficiency of conjunctive search was better for more salient stimuli. It should be noted 

that the guided search model was not fully able to account for findings by Theeuwes 

(1992), leaving notably unresolved ambiguity in the feature selection literature. 

These findings helped lay the behavioral groundwork for ensemble research, as 
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new search performance variations begged an explanation for how target and distractor 

populations are encoded and grouped.  One of the main advantages from Wolfe’s (1994) 

guided search model was the consideration of a greater number of factors resulting in 

parallel versus serial processing of scenes. Still, this consideration yielded somewhat 

different conclusions from early feature integration models (Treisman & Gelade, 1980; 

Treisman & Schmidt, 1982) regarding the use of feature selection versus feature 

inhibition in attention. Under the guided search model, it appears that selection is indeed 

possible under high attentional load, so long as object features are salient or different 

enough.  

Visual search models offer further explanations for selecting and inhibiting visual 

stimuli in a scene. The relationship between ensemble work and search is clear, since 

both processes require a mental summary of visual information. It seems logical to argue 

that scene statistics help people understand populations of distractors and targets, via 

featural and spatial information. Although behavioral findings have undoubtedly 

conveyed humans’ limited attentional resources in search procedures (Pashler, 2016), 

summary mechanisms that aid distractor inhibition (or slow target identification) remain 

largely undefined and poorly understood. In this thesis, we build upon these conclusions 

and propose a new way to study task-driven ensemble perception.  

1.3 Connections with Information Visualization 

1.3.1  Information visualization 

Before we describe the methods for our work, it is important to detail the other 

side of our research motivation. In addition to addressing traditional topics in vision 

science, our work contributes equally to the increasingly important, but poorly 
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understood phenomenon of visualizing information and data. Humans process more of 

their environment through the visual system than by any other sensory means combined 

(Ware, 2012). Our visual cognition is capable of rapid, flexible pattern discovery, which 

is complimented by adaptive, automatic decision-making. Given this exquisite perceptual 

toolset, it should come as no surprise that we have developed complex, high-level 

strategies for synthesizing our environment in visual terms. Evidence of information 

visualization practices date back to the earliest records of human civilization (“How we 

did data visualization before computers”, 2016). A very early example comes from 

ancient Quechuan societies in South America, who translated their base-ten number 

values into a system of categorized rope lengths and knots, called “talking knots” (a bit of 

a misnomer- too bad they didn’t call them “seeing knots”). By physically representing 

abstract numerical information, these people could visually encode them, which 

facilitated communication and refined computational procedures.  

Mankind has come a long way since talking knots, from the advent of geographic 

maps to describe and navigate our vast and un-seeable world, all the way to modern 

visualization software tools and packages like the Javascript D3 library, R Studio®, and 

Tableau®. Current technology allows us to translate massive loads of digital information 

stored in incomprehensible tables of data, into digestible graphic summaries, which now 

facilitate interactive, exploratory visual displays. Over the past decade, scientists have 

recognized the tremendous potential that visual interfaces provide us: we can utilize 

successful visualizations to characterize, discover, abstract, and even generate task 

scenarios and form hypothesis from our data (Munzner, 2009). The advantages of 

studying and improving information visualization are obvious, especially with the 
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expansive prospects offered by big data collection (Keim et al., 2013). While 

contemporary tech companies like Google and Facebook are pushing the limits of 

computing and artificial intelligence with their user information, even classical sciences 

like physics are benefitting from previously impossible large-scale simulations of 

astronomic data. Today’s society has become, without a doubt, data-driven; and 

information visualization is a vital component of this paradigm shift. But this realization 

begs an important question: how can we comprehensively understand visualizations in 

order to optimize them? 

1.3.2 Towards a collaborative science of data visualization and evaluation 

Rensink (2014) proposed the need for a scientific methodology, or framework, to 

characterize and evaluate visualizations. In his proposal, he points out that designers have 

long-explored the many possible dimensions of data display, and historically, such 

designers have had good intuitions about what makes certain visualizations “work". 

However, simply basing design decisions around gut instincts or aesthetic preferences of 

an expert group is not enough. That isn’t to say these experts are wrong in their 

evaluations, but instead it is proposed that borrowing and refining methods from 

perceptual psychology and vision science can explain the reasons behind “good” 

visualizations’ success, empirically. Just as crucially, these scientific methods can be 

used to understand multifaceted visualizations, to explore increasingly large and complex 

datasets. 

As discussed previously, vision science experiments do not generally seek to 

explain complex and poorly defined perceptual experiences. Instead, vision science tends 

to focus on a well-defined instance of perception, such as selecting a target among 
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distractors (i.e. visual search), and designing controlled experiments to toggle and 

evaluate relevant variable components of this experience (i.e. number of distractors or 

feature salience of the target; Wolfe et al., 2002). Rensink (2014) suggests that the same 

kind of paradigm can be applied to the realm of information visualization, and advocates 

the characterization and study of well-defined aspects of performance (i.e. viewer 

accuracy of observed Pearson’s r correlation value) and components associated with data 

displays (i.e. the size of the axes or color of the dots in a scatterplot). Thoughtful 

development of this kind of paradigm could result in a research framework that is 

generalizable to a massive visualization and vision science audience. 

Recently, the prospect of using vision science techniques to understand 

information visualization was strongly echoed by Albers-Szafir et al. (2016), in their 

survey of ensemble encoding in various types of data displays. Although the authors’ 

proposal is much more focused on a two-way conversation between visualization experts 

and vision scientists: emphasizing that while vision science can help the evaluation and 

design of better displays, these displays can in turn motivate new directions in perceptual 

psychology research. For instance, ensemble encoding has previously been studied to 

understand how people can do things like estimate the number of books in a shelf, and 

how items (like books) are spatially encoded in vision. By the same principle, several 

researchers (see Albers-Szafir et al. 2016; Cleveland at al., 1982; Cleveland & McGill, 

1986) have proposed that vision researchers should look to visualizations, which also 

frequently use meaningful, spatially distributed items in a display (i.e., dots in a 

scatterplot) to investigate how ensemble encoding works. In a similar vein, work from 

Harrison et al. (2014) showed that traditional vision science methodologies could be 
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extended to empirically evaluate a number of visualizations. This bi-directionality of 

application feeding research, and vice versa, can be leveraged quite broadly to help fulfill 

some of the original aspirations from Rensink (2014): to clearly define perceptual 

experiences and isolate their fundamental variables of interest. Both of these papers offer 

promising approaches towards not only improving the nature of design in visualization, 

but also promoting a deeper understanding of perceptual mechanisms in the human visual 

attention. Using graphs as controlled visual stimuli yields experimental data with two 

clear outcomes: 1) an applied, prescriptive measure of design, and 2) evidence regarding 

how visual features in visualizations are perceived and understood.  

1.3.3 Scatterplots as visual stimuli 

Scatterplots have proven to be exemplary controlled visual stimuli. Past research 

on the perception of correlation largely focused on direct, numerical estimation tasks (for 

reviews, see Boynton, 2000; Doherty et al., 2007). In these experiments, participants 

were typically asked to simply report the magnitude of the correlation they perceived in 

the display. Much like direct estimation performance in approximate number research, 

these studies showed that viewers could rapidly extract correlation information, although 

viewers did typically underestimate physical correlation r (Bobko & Karren, 1979; 

Cleveland et al., 1982; Strahan & Hansen, 1978). Interestingly, viewer expertise did not 

seem to influence basic perceptual estimation performance, as results were largely 

independent of participants’ familiarity with statistics (Meyer & Shinar, 1992; Meyer et 

al., 1997). Despite drawing important conclusions about how the estimation of correlation 

behaves, these studies had some limitations. The most striking issue with past work was 
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that few studies have directly investigated the precision of scatterplot viewing behavior 

(for a review, see Rensink, 2016); instead, most research has focused solely on accuracy.  

 Rensink and Baldridge (2010) addressed this limitation in their two-part 

methodology. Their experiments used a controlled set of stimulus parameters: black dot 

clouds with 100 data points, each containing gaussian distributions with equal variance in 

both dimensions. They demonstrated robust and clean participant performance on two 

concrete scatterplot tasks: discrimination and direct estimation of Pearson’s r correlation. 

These methods were simply extensions of classic vision science approaches to assessing 

how well stimulus properties can be discriminated or directly perceived and estimated. In 

discrimination tasks, a just noticeable difference (JND) can be calculated to show when 

viewers are able to discriminate two side-by-side stimuli (e.g. squares of differing 

brightness) 75% of the time. For many low-level visual properties, plotting JNDs shows a 

simple linear behavior described by Weber’s Law: where if p denotes a physical property 

(again, e.g. brightness), JND(p) = dp = kp. Note that values of for Weber fraction (k) are 

generally between 0.02-0.08 (Coren et al., 2004). This method and JND calculation was 

easily applied to scatterplots and the discrimination of correlation values, generating 

results that measure viewer precision. Remarkably, JNDs for Pearson’s r correlation in 

scatterplots are a precise representation of Weber’s Law. Rensink & Baldridge (2010) 

showed that discrimination performance can be described simply: JNDs are proportional 

to the distance from r = 1. These results indicate that despite seeming complex, 

scatterplots are actually a very successful visualization of a simple property: correlation. 

Additionally, the perception of correlation behaves like the perception of other low-level 

visual quantities; further suggesting that correlation is in fact, likely to be a scene statistic 
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or ensemble property (Rensink, 2016). 

By using this behavioral foundation, we can take a “bottom-up” approach to 

studying the perception of correlation. Scatterplots are often stripped down to single 

population graphs, containing something like 100 black dots each.  But once perceptual 

behavior is established, the effect of feature manipulations (e.g., changing the color or 

number of dots, or adding more than one data population) can be studied. This building-

block approach is humbling, in so far as it highlights how challenging it will be to study 

complex, multi-dimensional visualizations. However, just as natural scene 

representations continue to be a major challenge for vision scientists to study, by accruing 

evidence about their components, we build a better understanding of the whole. The same 

logic applies to studying visualization displays: the more we understand about simple 

displays, the more we can learn about multifaceted visualizations.  

1.4  Approach 

In this thesis, we develop a new methodology to examine visual extraction of 

multiple correlation ensembles in a discrimination task. This work extends the approach 

of Rensink and Baldridge (2010) and Rensink (2016), to examine perceptual behavior for 

two populations of data. To our knowledge, this work is the first investigation of the 

visual system’s ability to select and inhibit ensembles simultaneously. Experiment 1 

examines perceptual interference in discrimination performance for “simple” two-

population scatterplots, using color (populations of red dots and black dots) as the 

featural marker of each correlation population. In order to glean a deeper understanding 

for spatial relevance in correlation discrimination, Experiment 2 investigates the effect of 

density on discrimination performance. Finally, Experiment 3 investigates the effect of a 
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using novel population feature: orientation, in order to determine whether color is unique 

in the case of perceptual interference during correlation discrimination. 
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2 EXPERIMENT 1. Discrimination For Two-Population Scatterplots: Color 

2.1  Introduction 

 The purpose of this experiment was to investigate performance for scatterplots 

containing two data populations, each of a different color. It is common practice to 

dichotomize a variable on a scatterplot, requiring viewers to process two sets of 

information on the same set of axes. Rensink (2014) suggested that once a foundational 

understanding of the perceptual processes behind viewing simple scatterplots was 

established, researchers could begin investigating various feature manipulations and 

design changes, to deliberately work towards a controlled study of more complex 

displays. We implemented a design similar to that of the discrimination task from 

Rensink and Baldridge (2010), with the addition of a second population of “irrelevant”, 

or “distracting” red dots on each scatterplot. This is the first extension of work by 

Rensink and Baldridge (2010) to address how multiple correlation populations are 

simultaneously represented and discriminated.  

 Importantly, the goal of this work was not only to measure perceptual 

performance, but also to identify behavioral markers for the underlying perceptual 

mechanisms. As mentioned in the introduction, Rensink (VSS 2015, 2016) suggested that 

scatterplots might be perceived via ensemble coding.  If so, this study can investigate 

how multiple ensembles are processed in parallel during a discrimination task. Past 

ensemble research focused solely on single ensembles (see review by Haberman & 

Whitney, 2012), but never looked at the case of one ensemble affecting another during a 

perceptual decision. Visual search research has investigated issues more relevant to this 

thesis, such as multiple targets (Chun & Potter, 1995), multi-focal attention (Cavanaugh 
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& Alvarez, 2005), selection for groups (Theeuwes, 1992), and search for sets of similar 

items (Cave & Wolfe, 1990). However, this is the first study to look explicitly at 

attentional deployment and selection for multiple, concurring scene statistics in a display.  

So what did we expect to happen? As a starting point, we looked to conflicts 

between Feature Integration Theory (Treisman, 1980) and Guided Search (Wolfe et al., 

1989). Using its most straightforward interpretation, Feature Integration Theory would 

posit that the distracting correlation population should be selected and inhibited 

successfully during the discrimination task, so that it would not interfere. A color 

difference should be salient enough to rapidly and pre-attentively identify a target among 

distractors. However, it is possible that the parsing of ensembles based on spatial 

information could conflict with selecting information based on color. Im and Chong 

(2009) showed observers are able to select ensembles based on color; however, they 

mention that in order to complete a mean size judgment and discrimination, it was 

necessary for participants to use both color and spatial information. This issue has not 

been explicitly addressed in either Feature Integration Theory or Guided Search models 

of attention. Both spatial and featural selectivity processes are hypothesized to occur 

extremely early in attention, and there is no clear proposition of which would take 

precedence in a task like this. Thus, it is not clear whether these processes would conflict 

to slow and worsen performance, or be used together, similar to guided search 

predictions, to produce fast and accurate performance. But based on the potential for this 

conflicted dual-process, we expected results to be non-trivial and unique compared to 

single population viewing; with the likelihood for some kind of perceptual interference to 

occur when selecting and discriminating the target correlations. 
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2.2  Methods 

2.2.1  Participants 

 Participants were recruited through the Reservax® online appointment sign up 

system, and were paid $10 for partaking in the study, which lasted 60 minutes or less. A 

total of 15 participants between the ages of 18-35 were recruited, with the average age 

being 22 years old. 12 of the participants had experience with scatterplots, while 3 

reported no familiarity with either scatterplots or the concept of correlation. Participants 

were screened via self-report for an understanding of instructions in English, and were 

required to have normal or corrected-to-normal vision. No participants were excluded 

from analysis.  

2.2.2  Apparatus 

Participants were each seated approximately 57 cm from a 17” Dell CRT monitor, 

which displayed the experimental task. Experiments were developed and run using the 

Visual Cognition Lab (VCL) Correlation Framework (see https://github.com/UBC-

VCL/VCLCorrelation). The VCL Framework is experimental vision science software, 

developed in the Visual Cognition Lab at The University of British Columbia. The VCL 

Framework is made up of three primary separable components: the graphic user interface 

(GUI), data input/output (IO), and experiment framework. These components were used 

together to create and execute the experiment. Experimenters simply configured the task 

parameters on the GUI (see Figure 2.1) before running the application. 
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Figure 2.1 VCL Framework Application GUI 

 
Displaying the configuration for Experiment 1. 
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2.2.3  Stimuli and experimental conditions 

 The stimuli used in this experiment are shown in Figure 2.2. The parameters and 

attributes of these displays were designed and developed to match the scatterplot displays 

from Rensink and Baldridge (2010). Stimuli were side-by-side, two-population 

scatterplots, each of 5° vertical extent x 5° horizontal extent. Both plots contained 100 

normally distributed black target dots, as well as 100 normally distributed red distractor 

dots. The means of both target and distractor populations were set to 0.5 of their extent, 

and the standard deviation of both target and distractor populations were 0.2 of this 

extent. Each scatterplot correlation contained less than .0001 error in correlation upon 

display generation. In other words, for any target correlation t, the scatterplot correlation 

r = t ± 0.001.  

 

 

 

 

 

 

 

 



	 24	

Figure 2.2 Side-By-Side Two-Population Scatterplots 
 
 

 
 
Displaying a target correlation population with Pearson’s r = .3, and a distractor 

correlation population with Pearson’s r = .9. 
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In order to generate both target and distractor correlation populations, the 

experimental framework drew pseudo-random numbers from a Gaussian distribution, 

which were generated and stored in a list before being drawn on the screen. First, an x-

coordinate was chosen, scaled, and translated to the axes on the screen. Second, a y-

coordinate was created and transformed to create a correlated pair (x, y’). The equation 

used for this process is shown in Figure 2.3. If the program generated a point greater than 

2 standard deviations from the mean of the existing points, that point was discarded and 

replaced with a new point that fell within the 2 standard deviation threshold. This 

constraint was implemented to prevent points from being drawn outside of the axes. Once 

the lists of correlation point coordinates were generated for target and distractor 

populations, the actual points were drawn in the display. A distractor point was always 

the first to be drawn, followed by a target point, and so on. This was to ensure an even 

chance of occlusion and overlap by both populations, to eliminate the possibility of a 

depth illusion or pop out effect for either population. (Note: the stimuli generation was 

perceptually instantaneous, occurring within a single screen refresh). Points were created 

using Java Graphics.2D library ellipses, with diameter set to 3 pixels. Axes were 1 pixel 

wide and always black in color. Finally, the VCL Framework also implemented a scaling 

algorithm to ensure uniform size of display across any monitor 15” or larger.  
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Figure 2.3 Equation to Generate Correlated Pairs of x and y Coordinates for 

Scatterplot Points 
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This experiment used a fully within-subjects design to test target correlation 

discriminations across three conditions of distractor population values. Target 

correlations of Pearson r = .3, .6, and .9 were tested in a 3 x 4 condition design with 

distractor correlations of Pearson r = .3, .6, .9, and a control condition with no distractors 

present. Each target correlation appeared once per distractor correlation, which was 

repeated in a bidirectional Latin Square balanced design, resulting in a total of 24 sub-

conditions per experiment. See Table 2.1 for an example of stimuli presentation in this 

design. 
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Table 2.1 Example Stimulus Presentation and Ordering for Experiment 1 

Sub-Condition 

Target Correlation 

Pearson r Value 

Distractor Correlation 

Pearson r Value 

1 .3 .3 

2 .6 .3 

3 .9 .3 

4 .3 .6 

5 .6 .6 

6 .9 .6 

7 .3 .9 

8 .6 .9 

9 .9 .9 

10 .3 N/A 

11 .6 N/A 

12 .9 N/A 

13 .9 N/A 

14 .6 N/A 

15 .3 N/A 

16 .9 .9 

17 .6 .9 

18 .3 .9 

19 .9 .6 

20 .6 .6 

21 .3 .6 

22 .9 .3 

23 .6 .3 

24 .3 .3 
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 Scatterplots appeared on every trial after a 300 ms delay following each response 

key press, and there was no time limit for the duration of stimulus presentation; the 

scatterplots remained on the screen until participants made their response. 

2.2.4  Procedure  

Participants were shown side-by-side scatterplots, each containing a target and 

distractor population. One of the scatterplots always showed a higher correlation value 

(the test plot, relative to the base plot). The participant’s task was the judge whether the 

right or left scatterplot was showing a higher Pearson’s r correlation of black target dots, 

while ignoring the populations of red distractor dots in the display. The experimenter 

explicitly told participants to “Ignore all red dots you see in the display, and only base 

your discriminations on the black dots”. If the participant believed that the graph on the 

left was showing a higher correlation of target dots, they were instructed to press the “Z” 

key. If the participant believed that the graph on the right was showing a higher 

correlation of target dots, they were instructed to press the “M” key. After each trial, 

participants received text feedback in the center of the screen, indicating whether they 

were “correct” or “incorrect” in their response. Following this feedback, participants had 

to press the space bar to continue to the next trial. Participants were allowed as much 

time as they wanted to complete each discrimination trial. The experimenter emphasized 

that accuracy was the most important part of the task, and that there was no pressure to 

respond in a given amount of time. Additionally, the experimenter informed participants 

that if they were completely unsure about a discrimination judgment, it was encouraged 

to simply make their best guess. Participants completed 18 practice trials with feedback, 

in order to become familiar with the experiment. The experimenter then elicited self-
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reported feedback from participants to ensure that they understood how to complete the 

task. 

This discrimination task was used to measure observer precision, as described by 

the sensitivity of observers to differences in target correlation values, while ignoring 

distractor correlation populations. Closely following the original procedure from Rensink 

and Baldridge (2010), we used a common staircase algorithm to adjust the target test plot 

correlation values after every participant response (on each trial). Test plots (containing 

the higher, adjustable correlation) and base plots were randomly drawn to the left or right 

of each other on every trial, to ensure that no perceptual learning could occur for which 

side the higher correlation appeared. Note that in our design, the test plots always 

converged towards the base plots from above, meaning they always contained the higher 

correlation value. Initial differences between target correlation values were always 0.1; 

when participants made a correct response, this difference was decreased by 0.01, thus 

increasing the difficulty of the task. When participants made an incorrect response, the 

difference between target correlation values was increased by 0.03, making the next trial 

easier. Scatterplot coordinates were generated and drawn independently, on each and 

every trial. This was to ensure that observers based their responses on general perceptual 

properties of correlation, and eliminated the possibility of observers being able to encode 

spatial locations of points for each correlation value. Participants continued to make 

discrimination judgments until a JND, defined as a 75% steady state accuracy, could be 

calculated. The VCL Framework used a convergence algorithm to determine JNDs. 

Observer performance was measured over a moving window of 24 trials, divided into 3 

sub-windows of 8 trials each (the original image describing this calculation, from 
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Rensink & Baldridge, 2010, is shown in Figure 2.4). After 24 trials, the average variance 

within each of the sub-windows was compared to the variance of the averaged of the sub-

windows. This test was repeated until the variance was equal to 0.25, at which point the 

algorithm was considered to converge on a JND. If the algorithm did not converge by 

trial number 52, the average of the sub windows from the last 24 trials was simply used to 

calculate the JND. As depicted in Table 2.1, the base correlations of the target 

populations tested were r = .3, .6, and .9. No manipulation was applied to the generation 

of distractor correlation values; they always contained the same Pearson’s r value on both 

the test and base scatterplot when present in the display. 
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Figure 2.4 Schematic of Threshold Algorithm  

  

Schematic obtained from Rensink and Baldridge (2010). The distance from base 

correlation is adjusted until the variance of the averages of the sub-windows is 0.25 of the 

average variance within the sub-windows.  In the experiments here, only variants above 

the base value were tested. 
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2.2.5  Analysis 

 JNDs were calculated and adjusted using the same methods from Rensink & 

Baldridge (2010), for each target correlation value, over each of the three distractor-

present conditions, as well as the no-distractor control condition. A least squares line was 

fit to the JND performance for each condition, across each participant, in order to obtain 

slopes and y-intercepts. From this, we determined a variability parameter, (k), and a bias 

offset parameter, defined as the reciprocal of the intersection of the JND line with the x-

axis, (b), were also calculated for each condition overall, according to the original 

analysis proposed by Rensink and Baldridge (2015). These values serve the same purpose 

in the current analysis, as descriptors of accuracy (b), and precision (k), for performance 

in the perception of correlation. 

2.3  Results 
 

JNDs were analyzed with a two-way within-subjects ANOVA using factors target 

correlation (r = .3, r = .6, r = .9) and distractor correlation condition (none, r = .3, r = .6, 

r = .9). Tests of between-subjects effects revealed a significant main effect of distractor 

base, F(3, 227) = 8.43, p = .00; a significant main effect of target base correlation, F(2, 

227) = 334.59, p = .00; and a significant interaction between the two, F(6, 227) = 02.43, 

p = .03. A post hoc Tukey test showed significant differences (p < .05) between each of 

the three distractor base conditions and the no distractor present condition at target 

correlation r = .3 and r = .6, though none of the three distractor base conditions were 

significantly different from one another at any target correlation value. A one-way 

ANOVA showed no significant difference in b values, which were transformed pre-

analysis using a probit function, as suggested in Rensink (2016), F(3, 76) = .794, p = 
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.501. However there was a significant difference in k values across distractor value 

conditions, as determined by a one-way ANOVA, F(3, 76) = 4.622, p = .005. Post hoc 

results from this analysis revealed the same significant differences as the Tukey test from 

the two-way ANOVA; only distractor versus no distractor conditions were significantly 

different at target r = .03. Results are visualized in Figure 2.5 below. 
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Figure 2.5 Mean JNDs At Target Correlations r = .3, r = .6, and r = .9 for 
Experiment 1 
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Correlations are displayed across four distractor conditions (r = .3, r = .6, r = .9, and no 

distractor present) as obtained in Experiment 1. Error bars reflect standard error. Mean 

JNDs for each condition are plotted along the y-axis and denoted by color, with the x-axis 

representing the target correlation value. 

2.4  Discussion  

 Much like the results from Rensink and Baldridge (2010), JNDs produced linear 

behavior across the target correlation values, and R2 values were high (m = .988). 

Performance in the no-distractor condition served as a successful replication of previous 

work, and showed a similar bias parameter (b = .92) and slope (k = -.19) to the 

foundational discrimination results. Although there was variability across participant 

results, no subject had to be excluded, based on a 2.5 standard deviation criteria from the 

mean JNDs. The overall consistency of the data yielded a promising conclusion that the 

foundational discrimination methodology can be extended and applied to two-population 

scatterplots.  

Loosely following our predictions, the data show an interesting pattern of 

perceptual inference when a distractor correlation population is present. It is evident that 

Feature Integration Theory assumptions about selection for color in attention do not hold 

in the context of these results: there was a significant degradation of discrimination 

ability in the presence of differently colored distractors. Furthermore, post-hoc analyses 

from the two-way ANOVA on JNDs, and the analysis of k values, showed this perceptual 

interference was most pronounced at target correlation r = .3. There was no evidence of 

interference at target correlation r = .9, due to expected ceiling effects for observer JNDs. 

It should be noted that the non-significant difference in b values indicates that there was 
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no change in accuracy for the task; only precision showed interference, suggesting that 

the process had become more noisy. 

These findings suggest that the decline in perceptual performance may be a 

function of spatial layout in the display. Although no strong conclusions can be drawn as 

to the nature of this viewing behavior, perhaps there were spatial-conjunctive failures at 

target correlation r = .3 and r = .6, due to the spread and proximity of both target and 

distractor dots. Treisman and Schmidt (1982) postulated that attentional overload could 

lead to mis-bindings and illusory conjunctions in the context of search, an idea that could 

account in part for the results of this experiment. This notion raises an important question 

to be addressed in future studies: will the number of dots in the distracting display affect 

viewers’ discrimination ability?  
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3 EXPERIMENT 2. Effect of Density on Two-Population Scatterplot 

Discrimination 

3.1  Introduction 

 In Experiment 1, we showed interference in the perception of two-population 

scatterplots. Discrimination performance significantly declined, in terms of precision, 

when distractor populations were present in the display. To further investigate the 

mechanisms underlying this behavior, we needed to test whether performance was 

degraded due to spatial mis-bindings. The interference effect from Experiment 1 could 

have occurred because of inefficient and inaccurate serial processing, as suggested by 

Treisman and Gormican (1988), but the issue of spatial proximity between the points 

must be addressed first. Results from this work could also help resolve conflicts in the 

crowding literature, i.e. the debate as to whether featurally dissimilar flankers help 

(promote a pop out effect) or hurt (cause a detrimental pooling effect) in attention for the 

target, depending on their spatial proximities (see Parkes et al., 2011; Whitney & Levi, 

2011).  

In Experiment 2, we used a design similar to Experiment 1, except we varied the 

density of the distractor population by increasing or decreasing the number of dots in 

each sub-condition. We hypothesized that when fewer distractor points were present, 

discrimination performance would be more precise, showing lower JNDs. Following this 

line of thinking, we hypothesized that the worst discrimination performance would occur 

when the number of distractor dots was greater than then number of target dots. 
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3.2  Methods 

3.2.1  Participants 

 Participants were again recruited through the Reservax® online appointment sign 

up system, and were this time paid $5 for partaking in the study, which lasted 30 minutes 

or less. A total of 24 participants between the ages of 18-35 were recruited, with the 

average age being 23.5 years old. All participants reported previous experience with 

scatterplots and the concept of correlation. Participants were again screened via self-

report for an understanding of instructions in English, and were required to have normal 

or corrected-to-normal vision. Data from two participants had to be excluded from the 

analysis due to program failures during testing, which resulted in incomplete responses. 

3.2.2  Apparatus 

Participants were each seated approximately 57 cm from a 27” iMac monitor, 

which displayed the experimental task. Despite the hardware changes from Experiment 1, 

nothing about the look or feel of the display was different from Experiment 1, since the 

VCL Framework implements a scaling algorithm to ensure stimuli consistency across all 

monitors. Experiments were developed and executed using the Visual Cognition Lab 

(VCL) Correlation Framework (see https://github.com/UBC-VCL/VCLCorrelation). 

Experiment 2 was configured and run using the same GUI shown in Experiment 1. 

3.2.3  Stimuli and experimental conditions 

 The stimuli used in Experiment 2 were identical to those used on Experiment 1, 

with the exception of the density manipulations and a fixed distractor correlation value at 

r = .3. Each of the 5 conditions had a different number of distractor population points: 0, 

25, 50, 100, and 200 points. For examples of stimuli, see Figures 3.1 and 3.2. As before, 
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target correlation populations always contained 100 points. Target dots were again 

represented by black dots, and distractors by red dots. The same VCL Framework 

methodology was used to generate and draw the points on the display. 
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Figure 3.1 Density Manipulations with 200 Distractors 

Example stimuli for conditions with 200 distractor dots present in the display. Correlation 

was always r = 0.3 for distractor dots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 42	

 

Figure 3.2 Density Manipulations with 25 Distractors 

 

Example stimuli for conditions with 25 distractor dots present in the display. Correlation 

was always r = 0.3 for distractor dots. 
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 This experiment used a within-subjects: target correlations of Pearson r = .3, .6, 

and .9 were tested in a 3 x 5 condition design with number of distractor points 25, 50, 

100, and 200, and an additional control condition with no distractors present. Crucially, 

the distractor correlation was always set to r = .3. Each target correlation appeared once 

per distractor population, which was balanced across observers using a Latin Square 

balanced design, resulting in a total of 15 sub-conditions per experiment. See Table 3.1 

for an example of stimuli presentation in this design. 
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Table 3.1 Example Stimulus Presentation and Ordering for Experiment 2 

Sub-Condition 

Target Correlation 

Pearson r Value Distractor Dot Density 

1 .3 0 

2 .6 0 

3 .9 0 

4 .3 25 

5 .6 25 

6 .9 25 

7 .3 50 

8 .6 50 

9 .9 50 

10 .3 100 

11 .6 100 

12 .9 100 

13 .3 200 

14 .6 200 

15 .9 200 

 

 

 

 

 

 

 

 

 



	 45	

 

 Just as in Experiment 1, scatterplots appeared on every trial after a 300 ms delay 

following each response key press; there was no time limit for the duration of stimulus 

presentation; the scatterplots remained on the screen until participants made their 

response. 

3.2.4 Procedure  

 The procedure was much the same as Experiment 1. Participants were told to 

discriminate correlation values based on the black target dots in the display, while always 

ignoring the red dots. Observers were not informed that the distractor population would 

stay at the same correlation value throughout the experiment, and no participant reported 

any unusual observations about the distractor population following their task completion. 

The same staircase algorithm was applied to the task, and the same convergence criteria 

were used to calculate JNDs. “Z” and “M” keys were used to indicate right or left 

scatterplots, and this time participants were exposed to 15 practice trials, in order to 

become familiar with the experiment. The experimenter again elicited self-reported 

feedback from participants, to ensure that they understood how to complete the task. 

3.2.5 Analysis  

JNDs were calculated and adjusted using the same methods from Rensink & 

Baldridge (2010), for each target correlation value, over each of the four distractor-

present conditions, as well as the no-distractor control condition. Variability parameter 

(k), describing precision, and bias offset parameter (b), describing accuracy, were also 

calculated for each condition. 

3.3  Results 
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JNDs were analyzed with a two-way within-subjects ANOVA using factors target 

correlation (r = .3, r = .6, r = .9) and distractor correlation condition (none, 25 dots, 50 

dots, 100 dots, 200 dots). Tests of between-subjects effects revealed a significant main 

effect of base correlation, F(2, 315) = 224.26, p = .00; a significant main effect of number 

of distractor points, F(4, 315) = 7.22, p = .00; and a non-significant interaction between 

the two, F(8, 315) = 1.82, p = .07. A post hoc Tukey test showed significant differences 

(p < .05) between performance at target r = .3 for 0 dots and 50, 100, and 200 dots; 25 

dots and 100 and 200 dots; 50 dots and 200 dots.  

A one-way ANOVA showed no significant difference in b values, which were 

transformed pre-analysis using a probit function, as suggested in Rensink (2016), F(4, 

105) = 1.120, p = .351. However there was a significant difference in k values across 

density conditions, as determined by a one-way ANOVA, F(4, 105) = 4.157, p = .004. 

Post hoc results from this analysis revealed the same significant differences as the Tukey 

test from the two-way ANOVA. Post hoc results from the two-way ANOVA are shown 

in Table 3.2. Results are visualized in Figures 3.3 and 3.4 below. 
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Table 3.2 Tukey Test Results at Target Correlation r = .3 for Experiment 2 

*p < .05. 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 
Distractor 

Points 0 Dots 25 Dots 50 Dots 100 Dots 200 Dots 
0 Dots -- -- * * * 

25 Dots -- -- -- * * 

50 Dots * -- -- -- * 

100 Dots * * -- -- -- 

200 Dots          *           *        *   --                       -- 



	 48	

Figure 3.3 Mean JNDs at Target Correlations r = .3, r = .6, and r = .9 for 

Experiment 2 

 

Correlations are displayed across five distractor conditions (25 dots, 50 dots, 100 dots, 
200 dots, and no distractor present) as obtained in Experiment 2. Error bars reflect 
standard error. Mean JNDs for each condition are plotted along the y-axis and denoted by 
color, with the x-axis representing the target correlation value. 
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Figure 3.4  Mean JNDs at Target Correlation r = .3 

 

Correlations are displayed across five distractor dot conditions (25 dots, 50 dots, 100 
dots, 200 dots, and no distractor present) as obtained in Experiment 2. Error bars reflect 
standard error. Mean JNDs for each condition are plotted along the y-axis, with the x-axis 
representing the number of distractor dots in the display.  
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3.4 Discussion  

 Experiment 2 showed further results similar to Rensink and Baldridge (2010). 

JNDs produced linear behavior across the target correlation values, and R2 values were 

high once more (m = .99). Performance in the no-distractor condition from this 

experiment served as a successful replication of previous work, and showed a very 

similar bias parameter (b = .86) and slope (k = -.16) to the foundational discrimination 

results. There were again no participant exclusions, based on a 2.5 standard deviation 

criteria from the mean JNDs. All of these findings suggested that the methodology could 

be successfully extended to investigate density manipulations of distractor populations 

for the perception of correlation in scatterplots.  

The main results from the two-way ANOVA, and the analysis of k’s and b’s, very 

closely followed our original predictions. The data showed a clear pattern of perceptual 

interference for target correlations, which occurs as a function of the number of distractor 

points in the display. The more red dots in the distractor population, the worst observers 

were at discriminating target correlation values. Consistent with the findings from 

Experiment 1, the worst performance occurred at target correlation r = .3. Additionally, 

the non-significant difference in b values suggests that this performance was not due to a 

change in accuracy (bias), and was instead attributable to an increase in noise, i.e., true 

interference. 

These findings provided a replication of the feature selection failures for color 

that were identified in Experiment 1. Results from this experiment provided a more 

granular view of how viewing behavior is affected by the density and spatial proximity of 

the distractors. Although the presence of any distractors in the display was enough to 
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cause significant perceptual interference, reducing the number to just 50 points or fewer 

yielded similar performance to interference for the 100 dot distractor populations of 

correlation value r = .9 from Experiment 1. This work falls mostly in line with 

assumptions from Treisman and Schmidt (1982), suggesting that an attentional overload 

resulting in mis-bindings is likely causing the degradation in performance as distractor 

dot populations increase in size. However, the 200-distractor dot results pose problems 

for Guided Search frameworks (see Wolfe et al., 1989), as viewers are unable to 

capitalize on two striking differences between the populations: color and density. This is 

somewhat surprising in the context of work by Im and Chong (2009), which showed that 

color and location information could be optimally combined by observers to aid ensemble 

discrimination tasks. It should be noted however, that these authors’ tasks involved single 

ensembles side by side, rather than two ensembles overlapping in the same display, like 

the studies in this thesis. Given these featural distinctions, it would have been reasonable 

to expect an advantageous pop-out effect to occur for the targets.  

Results from Experiments 1 and 2 provide significant evidence that parsing and 

judging ensembles in attention is perceptually unique from both visual search, as well as 

the observation of a single ensemble. Feature selection failures cause unexpected 

interference when discriminating target correlation populations- but is this just the case 

for color and density? In order to be certain that interference is not a phenomenon unique 

to color distinction, future studies should investigate what happens when additional low-

level visual features represent both distractor and target correlation populations. 
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4 EXPERIMENT 3. Discrimination for Two-Population Scatterplots: 
Orientation 

4.1  Introduction  

Based on the results from Experiments 1 and 2, two-population viewing behavior 

observed so far could be accounted for by models of crowding and spatial mis-binding 

for targets and flanking distractor dots (Treisman & Schmidt, 1989; Whitney & Levi, 

2011). However, it remains unclear whether or not color is a special feature. In 

Experiment 3, we addressed this question by using different orientations to distinguish 

target versus distractor correlation populations. Items with differing orientations have 

been shown to promote both texture segmentation (Landy & Bergen, 1991) and pop-out 

in visual search (Nothdurft, 1991; Wolfe, 1994); the effect is magnified further when 

opposing cardinal orientations (90o vertical versus 180o horizontal lines) are used. Thus, 

an interference result would confirm that color is not a unique case in the perceptual of 

two-population scatterplots, and that the visual system indeed treats correlation 

ensembles differently from other kinds of stimuli. 

In Experiment 3, we used a design similar to Experiment 1, except we changed 

the dots in target and distractor populations to vertically and horizontally oriented lines. 

We hypothesized that changing the featural representation of data points would not 

significantly improve discrimination performance for the target correlations. We expected 

the same pattern of behavior as in Experiment 1, and interference was expected to 

increase as a function of decreasing distractor correlation values. 
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4.2.  Methods 

4.2.1 Participants 

Participants were again recruited through the Reservax® online appointment sign 

up system, and were paid $5 for partaking in the study, which lasted 30 minutes or less 

on average. A total of 31 participants between the ages of 18-35 were recruited for this 

experiment, with the average age being 22.5 years old. 29 of the participants reported 

previous experience with scatterplots and the concept of correlation. Participants were 

again screened via self-report for an understanding of instructions in English, and were 

required to have normal or corrected-to-normal vision. Data from one participant had to 

be excluded from the analysis, again due to program failures during testing, which 

resulted in incomplete responses. 

4.2.2  Apparatus 

 Participants were each seated approximately 57 cm from a 27” iMac monitor, 

which displayed the experimental task. Experiments were developed and executed using 

the Visual Cognition Lab (VCL) Correlation Framework (see https://github.com/UBC-

VCL/VCLCorrelation). Experiment 3 was configured and run using the same GUI shown 

in Experiment 1. 

4.2.3 Stimuli and experimental conditions 

The stimuli used in Experiment 3 were similar to those used on Experiments 1 

and 2, but this time each population was represented by line orientation. Vertically 

oriented lines (8 pixels high x 1 pixel wide) represented target correlation populations, 

and horizontally oriented lines (1 pixel tall x 8 pixels wide) represented distractor 

correlation populations. Just as in Experiment 2, there were five conditions, but this time 
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four of them had a different distractor Pearson r correlation value: r = .3, r = .6, r = .9, r 

= .999, and one condition did not contain distractor populations. For an example of the 

stimuli, see Figure 4.1. Both the target correlation population and distractor correlation 

populations always contained 100 lines (points). The same exact methodology was used 

to generate and draw the oriented lines (points) on the display. 
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Figure 4.1 Side-By-Side Orientation Scatterplots 

Displaying a target correlation population with Pearson’s r = .9, and a distractor 

correlation population with Pearson’s r = .6. 
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This experiment again used a fully within-subjects design to test target correlation 

discrimination across three conditions of distractor values. Target correlations of Pearson 

r = .3, .6, and .9 were tested in a 3 x 5 condition design with distractor correlations of r = 

.3, .6, .9, .999, and a control condition with no distractors present. Each target correlation 

appeared once per distractor correlation, which was balanced across observers using a 

Latin Square balanced design, resulting in a total of 15 sub-conditions per experiment. 

See Table 4.1 for an example of stimuli presentation in this design. 
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Table 4.1 Example Stimulus Presentation and Ordering for Experiment 3 

Sub-Condition 

Target Correlation 

Pearson r Value 

Distractor Correlation 

Pearson r Value 

1 .3 N/A 

2 .6 N/A 

3 .9 N/A 

4 .3 .3 

5 .6 .3 

6 .9 .3 

7 .3 .6 

8 .6 .6 

9 .9 .6 

10 .3 .9 

11 .6 .9 

12 .9 .9 

13 .3 .999 

14 .6 .999 

15 .9 .999 
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4.2.4 Procedure  

4.2.5 Analysis 

JNDs were calculated and adjusted using the same methods from Rensink & 

Baldridge (2010), for each target correlation value, over each of the four distractor-

present conditions, as well as the no-distractor control condition. Variability parameters 

(k), describing precision, and bias offset parameters (b), describing accuracy, were also 

calculated for each condition. 

4.3 Results 

JNDs were analyzed in the same way as Experiments 1 and 2; with a two-way 

within-subjects ANOVA using factors target correlation (r = .3, r = .6, r = .9) and 

distractor correlation condition (none, r = .3, r = .6, r = .9, r = .999). Tests of between-

subjects effects revealed a significant main effect of distractor base, F(4, 435) = 4.82, p = 

.01; a significant main effect of target base correlation, F(2, 435) = 206.68, p = .00; and a 

non-significant interaction between the two, F(8, 435) = 1.316, p = .23. A post hoc Tukey 

test showed significant differences (p < .05) between the distractor r = .3 condition, and 

the no distractor present condition for target correlation r = .3, as well as a significant 

difference between distractor r = .3 condition, and distractor r = .9 condition, for target 

correlation r = .3. There were no other significant differences in distractor value 

manipulations in Experiment 3. A one-way ANOVA showed no significant difference in 

probit transformed b values, F(4, 145) = .180, p = .948. There was also no significant 

difference in k values across orientation conditions, as determined by a one-way 

ANOVA, F(4, 145) = 1.379, p = .244. Results are shown in Figure 4.3 below. 

 



	 59	

Figure 4.2 Mean JNDs at Target Correlations r = .3, r = .6, and r = .9 for 

Experiment 3 

 

Correlations are displayed across five distractor dot conditions (r = .3, r = .6, r = .9, r = 

.999, and no distractor present) as obtained in Experiment 3. Error bars reflect standard 

error. Mean JNDs for each condition are plotted along the y-axis and denoted by color, 

with the x-axis representing the target correlation value. 
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4.4 Discussion  

Results in Experiment 3 showed the most dramatic deviation from the original 

findings in Rensink and Baldridge (2010). JNDs produced linear behavior across target 

correlation values for four of the distractor correlation values, however, there was a clear 

non-linear variation in performance when distractor Pearson’s r = .6. The R2 value for this 

condition was noticeably low (R2 = .96) compared to the other 4 conditions (m = .99). 

No-distractor performance in Experiment 3 did serve as a successful replication of 

previous work (b = .94), (k = -.22), and were similar to foundational discrimination 

results, although b was slightly higher than expected. Neither b or k analyses yielded 

significant results, suggesting that accuracy and precision were not affected greatly. The 

perceptual interference is only apparent at the broader-level JND analysis. Curiously, 

there were no participant exclusions, based on a 2.5 standard deviation criteria from the 

mean JNDs. Despite some nonconformity to the original pattern of findings, these results 

were consistent enough to support this methodology successfully extending to our 

orientation manipulations. It is reasonable to assume that participants understood and 

could perform this task. 

Overall, this work shows that features in this task behave very differently than in 

the processing of multiple ensemble populations, where target populations must be 

extracted and distracting populations must be inhibited. Contrary to previous work 

detailing advantageous pop-out effects in attention and perceptual accuracy for 

discriminating cardinal orientations (Landy & Bergen, 1991; Wolfe, 1994), these findings 

indicate a clear failure in both processes. Moreover, spatial arguments (Parkes et al., 

2011; Treisman & Schmidt, 1989; Whitney & Levi, 2011) begin to unravel in the context 
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of these results, as the non-linearity of the distractor r = .6 and unexpectedly superior 

discrimination performance when distractor r = .9 cannot be parsimoniously accounted 

for by crowded flankers or mis-bindings.  

The issue of illusory conjunctions, or even novel object shapes does come into 

play in Experiment 3, given the nature of the orientation stimuli. Rather than a simple 

occlusion occurring, when horizontal and vertical lines overlap, they create a new cross-

shape in the scene. It may be that these instances are being parsed as another set of 

stimuli, which may account for the interference behavior. However, work by Wolfe and 

DiMase (2003) showed that search for the presence and absence of orientation 

intersections was slow and inefficient, and therefore concluded that these “cross-shapes” 

should not be considered salient features, nor do they promote efficient search. 

Nonetheless, it may be the case that these new features operate differently in the context 

of a scene statistic ensemble population, versus a simple group of objects or features. It 

could be argued that in some cases, these overlaps could be advantageous for extracting 

the target correlation values: for instance, if they occur in the periphery of the display and 

isolate or “knock-out” outliers. In other cases, if too much overlap occurs in the central 

area of the scatterplot, crucial visual information about the target population may be lost. 

This hypothesis could account in part for relatively poor performance in the distractor r = 

.999 condition. Future studies could investigate the impact of overlapping orientation 

stimuli, by recording their occurrence and spatial location in each trial, and correlating 

that information with JND performance.  

 

 



	 62	

5 CONCLUSIONS 

5.1  General Discussion 

In Experiments 1 and 2, we demonstrated that perceptual interference in the 

perception of correlation in two-population scatterplots occurs both as a function of 

increased density and decreased Pearson’s r in target and distractor populations. 

Although the mechanisms underlying the extraction (and inhibition) of correlation 

ensembles remain elusive, it appeared that observers were unable to use color differences 

to optimize task performance. Additionally, participants were unable to use differences in 

population numerosity to their advantage. The least optimal performance was observed 

when a greater number of differently colored distractors were present in the scatterplot 

display. Experiment 3 showed slightly conflicted results for orientation as a 

discriminating feature between target and distractor populations. While there was clear 

evidence for perceptual interference in the presence of distractors, this interference 

behavior was noisy and variable compared to Experiments 1 and 2. Additionally, it did 

not follow the same pattern of greater numbers of distractor points leading to worsened 

discrimination performance for targets. 

5.2  Implications for Visual Perception 

Work from Rensink (2014) showed that, much like other visual quantities, 

participants are able to rapidly infer and compare correlations in single population 

scatterplots. In fact, the correlation representations in these studies were largely complete 

by 100 ms, and discrimination task performance closely approximated Weber’s law, 

which is commonly associated with discrimination over many types of visual quantities. 

These results are highly consistent with the idea that some form of holistic processing, or 
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ensemble encoding is involved in the perception of correlation in scatterplots. In the 

studies here, no time constraint is put on participants, but participant response times 

appear relatively consistent with previous perception of correlation experiments. Guided 

search and subsequent hybrid serial/parallel feature selection search models (Wolfe et al., 

2011) suggest that attentional selection should be possible for the target dots in 

correlation displays, given their featural difference (color) from the distractor dots. 

However, the data suggested that a loss of target population information is occurring in 

the presence of distractor populations. For the most part, these results were more 

consistent with attentional overloading, which slows efficiency and accuracy in search 

tasks, as noted in early feature integration theory and conjunction literature (Treisman & 

Gelade, 1980; Treisman & Schmidt, 1982).  

Surprisingly, literature on guided search and newer feature selection models never 

fully addressed the nature of the attentional overloading from early feature integration 

models. As mentioned in the Introduction, neither guided search, nor Feature Integration 

Theory can account for salient, known distractors slowing search times for uniquely 

salient targets in Theeuwes (1992). Instead, vision researchers seemed to have focused on 

discovering and operationalizing conditions where selection is or is not possible. 

Furthermore, recent work on scene gist, ensembles, and crowding often fails to mention 

the possibility of attentional overloading; instead focusing on the perceptual successes of 

global processing. Here, we demonstrated an argument for attentional overload in 

ensemble extraction, which could be further perceptually complicated by the presence of 

novel populations, created by overlapping orientation points in the display. 
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There is still no universally accepted model detailing how exactly humans select 

and encode individual features and objects. Nor is there a clear answer to when 

information is lost during localized spatial and density encoding issues, feature 

binding/illusory conjunction, and crowding. Although the field of vision science is 

currently saturated with behavioral findings under these effects, the true nature of the 

results remains elusive.  

5.3  Implications for Information Visualization 

We were motivated by two primary goals in our work on distracting correlation 

ensembles. In the realm of vision science, our interest was in identifying new patterns of 

behavior that could guide insight into the perceptual mechanisms involved with 

extracting and inhibiting multiple ensembles in attention. And in the realm of data 

visualization, we were able to ascertain several clear recommendations for the creation of 

scatterplot displays: 1) single-population displays will always be perceived more 

accurately (as described by b) and precisely (as described by k) by viewers, and are 

particularly advantageous when observers are expected to compare data; indeed, they 

seem robust and invariant to many feature manipulations in the display 2) in a scenario 

where two populations are used, such as visualizing a dichotomized variable, precision 

and accuracy will suffer as a function of disparity in N data points between the two 

populations, 3) while we cannot yet offer an optimal recommendation for which features 

to use when differentiating data populations, using color appears to produce more 

predictable and systematic interference; this is important if designers want to be able to 

predict viewer performance deficits.  
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5.4  Future Directions 

 There are many important questions remaining, following results from this thesis. 

The first is whether viewers are losing spatial information about the target populations as 

a result of perceiving distractor populations simultaneously. Additionally, the distracting 

points could be interfering with viewers’ ability to discern the shape of the probability 

envelope of the target population, as described in Rensink (2016), which would lead to 

very noisy correlation estimates. This could be investigated using a timing manipulation, 

where one population is briefly displayed first, and then the other. This would give 

participants a chance to encode information about either the target or distractor 

populations, and potentially use it to select or inhibit that information. Successful 

encoding would yield better discrimination performance. Additionally, it will be 

important to look at the differences in colors (or more generally, features) between target 

and distractor populations, to ensure that black and red dots are not a unique perceptual 

case.  

 Finally, looking forward a bit further, this two-scatterplot methodology should 

eventually be extended to investigate more complex visualizations, as well as other 

features to define the populations. Displays like clustered network diagrams, 

multidimensional scaling planes, and non-linear scatterplot displays are all candidates for 

the relative near future. Once perceptual behavior for two populations is well understood, 

we can sequentially and deliberately extend these studies to increasingly complex graphs 

and data sets. As technologies like Tableau® continue to push the limits of visualization 

capabilities and design options, there will be an ever-increasing collection of data 

visualizations to investigate and study. 
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5.5  Conclusion 

 In section 1, I outlined several gaps and contradictions in vision scientists’ 

understanding of feature selection and ensemble processing. Additionally, I motivated 

this work with the applied nature of our findings, which are useful in the realm of data 

visualization. Experiment 1 solidified that our discrimination task methodology could be 

successfully applied to two-population scatterplots. Findings from this study 

demonstrated the occurrence of perceptual interference when a second, distracting 

population is present. Experiment 2 showed that this interference worsens as density of 

the distractors increases. Finally, Experiment 3 showed that the interference effect was 

not limited to a single feature: color.  

This study showed that representing the correlation data populations with 

differently oriented stimuli yields a more complex flavor of perceptual interference in our 

discrimination task. Overall, this work identified novel perceptual behaviors and 

presented brand new research potential for the investigation of multiple ensemble 

discrimination. These results suggest that ensemble selection is a unique process in 

attention, and does not conform to models of Guided search, Feature Integration Theory, 

or single ensemble processing. 
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