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Abstract

In this thesis, I develop forward modeling and inversion methods for better characterizing viscous remanent mag-
netization (VRM) responses in the time-domain. Despite advances since the 1980s, aspects of modeling the VRM
response and its impact on time-domain electromagnetic sensors remain elusive. Using Néel relaxation models, I
parameterize the off-time viscous remanent magnetization in terms of an amalgamated magnetic property, which
I show can be directly obtained using dual-frequency susceptibility measurements. For a half-space model, I
derive empirical expressions for characterizing the relationship between the survey geometry and the cartesian
components of the VRM response. Final expressions are verified with a 1D forward modeling code and used to
determine the cross-over time at which the transient response within a large circular loop becomes dominated by
the VRM signal. In order to predict the VRM responses from 3D geological structures, I develop a linear forward
modeling code. This is accomplished by discretizing the Earth into a set of cells and implementing the parameter-
ization of the off-time viscous remanent magnetization. Convergence of the forward model as a function of cell
size is tested and the code is validated against a 1D code. Lastly, I develop an inversion approach for recovering
the distribution of magnetically viscous materials from a set of field observations. A multitude of survey geome-
tries are used to verify that our inversion is robust. A workflow is then presented for removing the VRM response
from a set of survey data.
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Chapter 1

Introduction

1.1 Research Motivation
Over past decades, geophysical research has generated a number of invaluable tools for answering questions about
the Earth’s structure. In more recent decades, significant efforts have been made in developing time-domain elec-
tromagnetic (TEM) methods. To apply these methods, data are first collected as part of a survey. During the
survey, a transmitter is used to generate a time-dependent electromagnetic field which induces a reaction within
the Earth. This reaction generates a secondary field, or TEM response, which is then measured by one or more
receivers. The distinct characteristics of the TEM response depend on the distribution of materials below the
surface and their associated physical properties. Through techniques such as geophysical inversion, data collected
during a TEM survey can be used to recover information about a buried target.

Two important applications of TEM methods include mineral exploration and unexploded ordnance (UXO)
remediation. In mineral exploration, TEM methods are used to characterize the subsurface distribution of ore-
bearing minerals and define other geological structures. This information can be used to infer the margins of
ore-bearing rock units, plan drilling programs and assess the economic potential of mineral deposits. As the dis-
covery of deeper and less conventional mineral deposits is needed to meet global demands, an increased emphasis
is being placed on further developing these TEM methods.

UXOs are defined as munitions that were armed, fired and remain unexploded through malfunction. Between
1964 and 1973, the United-States released 2.1 million tons of ordnance over Laos alone (Khamvongsa and Rus-
sell, 2009). It is estimated that roughly 78 million of the ordnance dropped during this time did not explode and
remain a hazard for civilians. Globally, the United Nations approximates that 15,000-25,000 people are killed or
maimed each year from land mines and unexploded ordnance. With TEM methods, we can recover the depth and
make assumption about the aspect ratios of compact buried objects from their TEM responses. This information
can then be used to distinguish potential UXOs from non-hazardous items during remediation efforts.

TEM methods become less effective when the observed response over a geophysical is contaminated by re-
sponses from other sources. This is the case in many tropical and sub-tropical regions where lateritic topsoils are
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Figure 1.1: Distribution and classification of tropical climate regions according to Köppen-Geiger. This is
used to illustrated regions where lateritic soils are most prominent. Adapted from Peel (et al., 2007).

prominent. Lateritic soils are defined has being highly weathered and rich in iron-oxide minerals. These soils
have been known to exhibit a distinct magnetic response, called the viscous remanent magnetization (VRM) re-
sponse, which masks the TEM anomalies from deeply buried conductors and unexploded ordnance items. Given
that upwards of 16 % of the Earth’s surface is covered by highly weathered iron-rich soils (C. P. B., 1977), the
contamination of TEM data by VRM responses represents a challenge in many parts of the world. The global
climatic regions in which lateritic soils are most prominent are illustrated in Figure 1.1.

To better understand the impact of lateritic soils on TEM sensors, let us consider an example wherein TEM
data are collected over a UXO upon removal of the transmitter’s primary field; this is typical of many TEM sys-
tems. A representation of non-contaminated and VRM contaminated data is illustrated in Figure 1.2. For data
which are not contaminated by the VRM response (left), conventional inversion and discrimination algorithms
can be used to infer information about the target from the entire response. For VRM contaminated data (right),
the late-time response is masked by the VRM signal. Therefore, only a portion of the observed response can be
used to infer information about the target.

Data collected by TEM systems depends on the survey geometry and the subsurface physical properties. Thus
it is possible to design a survey which minimizes the impact of lateritic soils on TEM sensors if these geometric re-
lationships are known. Over the past decades, studies have been done to characterize the relationship between the
VRM response and the survey geometry (Buselli, 1982; Barsukov and Fainberg, 2001; Pasion et al., 2002; Billings
et al., 2003; Pasion, 2007; Zadorozhnaya et al., 2012). Through experimental, analytical and numerical means,
researchers have shown that measured VRM responses can be diminished by: separating the receiver from the
transmitter, increasing the size of the transmitter loop, or elevating the sensor further above the ground (Buselli,
1982; Lee, 1984; Barsukov and Fainberg, 2001; Das, 2006; Kozhevnikov and Antonov, 2008; Zadorozhnaya et al.,
2012). Despite providing significant insight, some details regarding the VRM response and its computation ap-
pear elusive. Existing numerical and analytical methods (Lee, 1984; Barsukov and Fainberg, 2001; Billings et al.,
2003; Das, 2004, 2006; Kozhevnikov and Antonov, 2008; Pasion, 2007; Druyts et al., 2009) are both complicated
and lack sufficient insight regarding the quantitative dependence of the VRM response on the survey geometry.
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In addition, the current understanding of the VRM response is mainly drawn from the vertical component. Most
importantly, available methods for predicting the VRM response only consider a 1D layered Earth model, and
cannot be used to accurately predict the VRM response from 3D bodies.

If the impact of the VRM response cannot be reduced sufficiently by choosing an appropriate survey geometry,
then efforts must be made to remove the VRM signal from the data. For UXO application, Pasion (2007) proposed
a method based on recovering a best-fitting half-space for the background response. The recovered half-space was
then used to predict the background response at other times and locations throughout the survey region. It was
proposed that by subtracting the predicted response from the observed data, the response from UXOs could be
isolated, and conventional algorithms could be applied. Although successful in many instances, this approach is
unlikely to be effective in regions where the lateritic topsoils show large spatial inhomogeneities.

1.2 Thesis Structure and Goals
This thesis is organized as follows. In Chapter 2, a comprehensive review of viscous remanent magnetization is
presented. First, I discuss the mineralogy of lateritic soils and its importance to viscous remanent magnetization.
Next, mathematical models which describe magnetic viscosity in both time and frequency are presented according
to Néel relaxation theory. These are used to explain the nature of the VRM response exhibited by lateritic soils. I
define an amalgamated magnetic property for characterizing a soil’s magnetic viscosity. I show how the amalga-
mated magnetic property may be obtained for a given sample using dual-frequency susceptibility measurements.
Numerical modeling tools are then used to demonstrate the electromagnetic responses generated by a conductive
and magnetically viscous Earth.

Figure 1.2: Representation of the TEM response over an unexploded ordnance item. On the left, observed
TEM data are not contaminated by a VRM response. On the right, TEM data collected at late times are
contaminated by a VRM response.
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In Chapter 3, I attempt to fill gaps left by previous analytic expressions. I consider a circular transmitter loop
over a magnetically viscous half-space and derive simplified analytical expressions for the vertical and horizon-
tal components of the VRM response. Hankel-integral based expressions are approximated empirically so that
numerical integration of elementary integrals is not required. Final expressions are used to investigate the depen-
dence of the VRM response on the survey geometry; most notably, the size of the transmitter loop. In addition,
I investigate the critical time at which the transient response within a large circular loop becomes dominated by
the VRM signal. Analytical expressions derived in this chapter are intended to act as a preliminary survey design
tool in regions where lateritic soils are prominent. Ideally, they can be used to choose an appropriate transmitter
loop size and select an optimal range of observation times.

In Chapter 4, I present a three-dimensional forward model for predicting the off-time VRM response from a
viscously magnetized body. This is accomplished by discretizing the source region into a set of cubic cells and
parameterizing the off-time viscous remanent magnetization in each cell in terms of the amalgamated magnetic
property.

In Chapter 5, inversion is used to recover the amalgamated magnetic property for each cell from a synthetic
set of field observations. To test the versatility of the inversion, I consider data collected using several survey
configurations. Using inversion, I describe a workflow for removing the contaminating VRM response from a set
of TEM data.

Conclusions and future research are discussed in Chapter 6.
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Chapter 2

Geophysical Responses due to Viscous
Remanent Magnetization

2.1 Introduction
In this chapter, I examine the magnetic properties which characterize lateritic soils, as well as the distinct magnetic
response they exhibit. I begin by discussing the source of the soil’s magnetic response. Next, the fundamental
theory of viscous remanent magnetization (VRM) is presented according to Néel relaxation theory. This is used
to derive several mathematical models, capable of characterizing the time and frequency-dependent excitation of
magnetically viscous soils. Parameters which define these models represent a set of diagnostic magnetic properties
for the soil. The magnetostatic and frequency-dependent magnetic properties for iron-bearing soils are discussed.
I show how simple dual-frequency measurements can be used to obtain important information regarding a soil’s
magnetic viscosity. This information can be used to characterize the soil’s off-time magnetic response. Finally, the
geophysical response from a conductive and magnetically viscous Earth is examined by considering an inductive
source on the surface of a half-space. Both time and frequency-domain responses are modeled.

2.2 The Magnetization in Iron-Bearing Soils
The magnetic properties of soils are predominently attributed to the presence of iron-bearing minerals. These min-
erals can be both petrogenic or pedogenic in origin. Ferrimagnetic iron-oxides, namely magnetite, titanomagnetite
and maghemite, represent a primary contribution towards the soil’s magnetic characteristics (Igel et al., 2012). Of
these iron-oxide minerals, magnetite is the most magnetic as well as the most important when considering the
impact of magnetic soils on EM sensors (Pasion, 2007). If sufficiently abundant, paramagnetic silicate minerals
also influence the magnetic characteristics of the soil. Anti-ferrimagnetic minerals, most notably hematite, exhibit
weak magnetization. As a result, their contribution to the overall magnetic characteristics of the soil is frequently
negligible.

The majority of magnetic minerals are paramagnetic (Dunlop and Özdemir, 1997). In paramagnetic minerals,
individual electron magnetic moments will partially align themselves along the direction of an applied magnetic
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field; thus magnetizing the material. Magnetization is the vector sum of individual magnetic moments per unit
volume. Paramagnetic magnetization ~M is linearly proportional to the strength of the applied field ~H, provided
the field is not too strong (Griffiths, 2007):

~M = χ~H (2.1)

The constant of proportionality χ , is known as the magnetic susceptibility, and is used to characterize the
magnetic properties of a material. Magnetic field strength and magnetization are both expressed in units of
Ampères per metre [A/m]. Magnetic susceptibility is therefore defined in units of [A/m]/[A/m]; however, it is
usually expressed as a unitless quantity. The density of total magnetic flux within a material is denoted by ~B, and
is expressed in units of Teslas [T]. In susceptible materials, induced magnetization will generate a contribution
towards the total magnetic flux density. For most minerals, the relationship between ~B and the applied magnetic
field is linear (Griffiths, 2007):

~B = µ~H = µ0
[
1+χ

]
~H = µ0

[
~H + ~M

]
(2.2)

where µ is defined as the material’s magnetic permeability. Magnetic permeability is expressed in units of
Henrys per metre [H/m], or Tesla meters per Ampère [T ·m/A]. The permeability of free-space is denoted by
µ0 = 4π × 10−7 H/m. According to Eq. (2.2), µ = µ0

[
1+ χ

]
. Therefore, the magnetic permeability can be

considered a diagnostic magnetic property for susceptible materials.

Ferromagnetic minerals, as well as ferrimagnetic minerals, hold spontaneous magnetization below their Curie
temperature. There are volumes within magnetic minerals, where electron magnetic moments are roughly aligned
along a single direction. These volumes are known as magnetic domains. Magnetic domains are separated by
surfaces, roughly 100 nm in width, called domain walls. Grains containing more than one magnetic domain are
known as multi-domain grains (MD). MD grains are capable of holding permanent magnetic remanence. How-
ever, the migration of domain walls occurs under minimal stress, and the magnetization exhibited by MD grains is
relatively unstable. Grains which are too small to accommodate domain walls are known as single-domain (SD)
grains. The magnetization of SD grains is uniformly aligned throughout the entire grain. As a result, they are
typically stable carriers of strong permanent magnetic remanence. In very small ferromagnetic and ferrimagnetic
nanoparticles, thermal energy competes with magnetic anisotropy which attempt to maintain the coherent mag-
netization direction. As a result, these magnetizations are very unstable, and can experience random changes in
direction over the course of an observation. This property is known as superparamagnetism, and occurs in ferri-
magnetic iron-oxide minerals below 1 nm to some tens of nanometers in diameter, depending on mineral type,
grain shape and temperature (Thompson and Oldfield, 1986; Dearing et al., 1996; Igel et al., 2012). Superparam-
agnetic (SP) grains mimic the paramagnetism exhibited by most minerals, only much stronger. The magnetization
experienced by a collection of SP grains, in response to an applied field, can be referred to as superparamagnetic
magnetization. SP magnetization along the direction of an applied field occurs less rapidly than regular paramag-
netic magnetization. This property is known as viscous remanent magnetization, magnetic viscosity, or magnetic
after-effect, and is commonly described using relaxation models (Néel, 1949; Buselli, 1982; Moskowitz, 1985;
Dabas et al., 1992; Billings et al., 2003; Pasion, 2007). A comprehensive description of ferro, ferri, and super-
paramagnetism is covered in Dunlop and Ozdemir (1997).
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When exposed to an applied magnetic field, magnetic soils experience an instantaneous change in magnetiza-
tion (Dunlop and Özdemir, 1997). Some iron-bearing soils however, exhibit strong magnetic viscosity due to an
abundance of SP iron-oxide grains (Mullins and Tite, 1973; Dabas et al., 1992; Pasion, 2007). This is prominently
observed in highly weathered lateritic soils (Dabas et al., 1992; van Dam et al., 2008; Meglich et al., 2008; Igel
et al., 2012, 2013). As a result of their magnetic viscosity, iron-bearing soils are characterized by frequency de-
pendent magnetic susceptibilities (Lee, 1984; Dabas et al., 1992; Fannin and Charles, 1995; Meglich et al., 2008).
The magnetic susceptibility of an iron-bearing soil depends on its parent material, and the extent of physical,
chemical and biological weathering it has undergone (van Dam et al., 2008; Igel et al., 2012). Mature soils tend
to exhibit stronger magnetism, and a higher degree of frequency dependence. In rock magnetism, frequency de-
pendent magnetic susceptibilities are expressed using thermal relaxation models developed by Louis Néel (Néel,
1949; Buselli, 1982; Moskowitz, 1985; Dabas et al., 1992; Billings et al., 2003; Pasion, 2007). Néel modeled the
magnetic viscosity by considering a collection of non-interacting SP single-domain grains (Néel, 1949).

2.3 Mathematical Models for the Magnetization of Iron-Bearing Soils

2.3.1 Magnetic Susceptibility of Iron-Bearing Soils
Magnetic susceptibility defines the degree of induced magnetization experienced by a material, proportional to
the strength of an applied magnetic field. The magnetic susceptibility represents an important diagnostic property
for magnetic materials. In iron-bearing soils, the induced magnetization depends on the frequency of the applied
field (Lee, 1984; Dabas et al., 1992; Fannin and Charles, 1995; Meglich et al., 2008). As a result, these soils are
characterized by frequency dependent magnetic susceptibilities. For a theoretical sample, the frequency dependent
magnetic susceptibility can be described using a Debye model (Mullins and Tite, 1973; Dabas et al., 1992; Pasion,
2007; Meglich et al., 2008), which assumes all SP grains are identical:

χ(ω) = χ∞ +
∆χ

1+ iωτ
(2.3)

where ω is the angular frequency in rad/s, and τ is the time relaxation constant for the collection of SP grains. The
infinite frequency susceptibility χ∞, is used to represent any instantaneous magnetization exhibited by the sample.
Under the influence of a magnetostatic field, SP magnetization is at equilibrium, and χ(ω→ 0) = χ∞+∆χ . Thus,
∆χ represents the zero-frequency magnetic susceptibility of all SP grains. For non-viscous materials, ∆χ = 0.
For changing applied fields, SP magnetization cannot reach this equilibrium, and exhibits quadrature components
over the mid-frequency range. For smaller values of τ , SP magnetization will adjust more rapidly to changes in
the applied field. At high frequencies, SP grains are incapable of generating an induced magnetization along the
applied field before it changes, and χ(ω → ∞) = χ∞.

The time relaxation constant (τ) is given by the Néel relaxation time (Néel, 1949):

τ = τ0 exp

(
Eb

kBT

)
(2.4)
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where kb is the Boltzmann constant, T is the absolute temperature, and τ0 ∼ 10−9 s is the ”attempt time” (Dunlop
and Ozdemir, 1997). The energy barriers which maintain the current orientation of individual SP grains, are
represented by Eb. In natural soils, Eb is not the same for all SP grains. According to Eq. (2.4), this implies the
collection of SP grains within a soil is characterized by a distribution of time-relaxation constants. The distribution
is highly sensitive to the volumes of individual SP grains. This is discussed in Appendix A. The distribution of
time relaxation constants is represented using a weighting function f (τ). By applying the weighting function and
integrating over all Debye models, the magnetic susceptibility is expressed as (Mullins and Tite, 1973; Dabas
et al., 1992; Pasion, 2007; Meglich et al., 2008):

χ(ω) = χ∞ +∆χ

∫
∞

0

f (τ)
1+ iωτ

dτ (2.5)

The magnetic viscosity observed in iron-bearing soils is characterized by its weighting function. The majority
of soil samples can be adequately fit by assuming a log-uniform distribution of time relaxation constants between
a set of finite limits (Dabas et al., 1992; Worm, 1998; Igel et al., 2012). These limits correspond to ferrimagnetic
grains sizes in which superparamagnetic behaviour is no longer apparent over the duration of a measurement. The
weighting function for a log-uniform distribution of time relaxation constants is defined by (Mullins and Tite,
1973; Dabas et al., 1992; Billings et al., 2003; Das, 2006):

f (τ) =


1

τ ln(τ2/τ1)
for τ1 ≤ τ ≤ τ2

0 otherwise
(2.6)

The corresponding magnetic susceptibility is obtained by substituting Eq. (2.6) into Eq. (2.5), and solving the
resulting integral (Dabas et al., 1992; Pasion, 2007):

χ(ω) = χ∞ +
∆χ

ln(τ2/τ1)

∫
τ2

τ1

1
τ(1+ iωτ)

dτ (2.7)

= χ∞ +∆χ

[
1− 1

ln(τ2/τ1)
ln

(
1+ iωτ2

1+ iωτ1

)]
(2.8)

Eq. (2.8) has the same zero and infinite frequency limits as the Debye model in Eq. (2.3). For frequencies
1/τ2 � ω/2π � 1/τ1, in-phase magnetic susceptibility decreases linearly as function of ln(ω), whereas the
imaginary component will remain more or less constant (Mullins and Tite, 1973; Dabas et al., 1992):

∂Re[χ(ω)]

∂ ln(ω)
≈ 2

π
Im[χ(ω)]≈− ∆χ

ln(τ2/τ1)
(2.9)

According to Eq. (2.8), the magnetic permeability characterizing the majority of soil samples is:

µ(ω) = µ0
[
1+χ(ω)

]
= µ0

[
1+χ∞ +∆χ− ∆χ

ln(τ2/τ1)
ln

(
1+ iωτ2

1+ iωτ1

)]
(2.10)

where µ(ω) is the frequency dependent magnetic permeability, and µ0 = 4π × 10−7 N/A2 is the permeability
of free-space. Eq. (2.10) suggests that near the low and high frequency limits, the applied magnetic field and
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total magnetic flux density are approximately in phase. For frequencies 1/τ2� ω/2π � 1/τ1 however, the total
magnetic flux density lags the applied magnetic field.

Occasionally, the magnetic viscosity exhibited by iron-bearing soil samples cannot be fit accurately using
Eq. (2.8). In this case, a better fit may be obtained by choosing a weighting function which defines a log-normal
distribution of time-relaxation constants (Pasion, 2007). The weighting function g(τ) for a log-normal distribution
is:

g(τ) =
1

τβ
√

2π
e−(lnτ−lnτc)

2/2β 2
(2.11)

where β and τc are parameters which define the shape of the distribution. A more comprehensive definition of
β and τ can be found in Appendix A. Others have represented the frequency dependent magnetic susceptibility
using a Cole-Cole model (Olhoeft and Strangway, 1974; Dabas et al., 1992; Pasion, 2007), where:

χ(ω) = χ∞ +
∆χ

1+
(
iωτc

)α (2.12)

The distribution of time relaxation constants representing the Cole-Cole model, is centered at τc. α ∈ [0,1]
scales the distribution of time relaxation constants. For α = 1, Eq. (2.12) is identical to the Debye model. A
comparison between the Debye model, Cole-Cole model, log-normal distribution and log-uniform distribution is
shown in Figure 2.1.

Figure 2.1: In-phase and quadrature magnetic susceptibility for various models, with χ∞ = 0.001 and ∆χ =
0.005. Additional parameters: τ = 10−3 s for Debye model, τc = 10−3 s and α = 0.5 for the Cole-Cole
model, τc = 10−3 s and β = 3 for the log-normal distribution, and τ1 = 10−5 s and τ2 = 0.1 s for the
log-uniform distribution.
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2.3.2 Impulse Response Function for the Time-Dependent Magnetization of
Iron-Bearing Soils

When exposed to a time-varying magnetic field, iron-bearing soils experience a corresponding alteration in mag-
netization. For magnetically viscous soils, a portion of the induced magnetization does not adjust instantaneously
to changes in the applied field. This portion is attributed to the magnetization exhibited by SP iron-oxide grains.
In the frequency domain, magnetization ~M(ω) is the product of a material’s magnetic susceptibility χ(ω) and the
applied magnetic field ~H(ω):

~M(ω) = χ(ω) ~H(ω) (2.13)

In the time domain, this relationship becomes a convolution. The convolution can be obtained by performing
an inverse Fourier transform on Eq. (2.13):

~M(t) = χ(t)⊗~h(t) =
∫

∞

−∞

χ(ξ )~h(t−ξ )dξ (2.14)

where ~M(t) is the induced magnetization,~h(t) is the applied magnetic field, and χ(t) represents the magnetiza-
tion’s impulse response. A system’s impulse response is the inverse Fourier transform of its frequency response.
The frequency dependent magnetic susceptibility χ(ω) is therefore:

χ(t) =
1

2π

∫
∞

−∞

χ(ω)eiωtdω (2.15)

For a theoretical sample whose magnetic susceptibility is defined by the Debye model, χ(t) can be obtained
by substituting Eq. (2.3) into Eq. (2.15):

χ(t) = χ∞δ (t)+
∆χ

τ
e−t/τ u(t) (2.16)

where u(t) is the unit step function, and δ (t) is the Dirac delta function. In the case where SP grains within
the sample are characterized by a distribution of time-relaxation constants, I must introduce a weighting function
f (τ). By Multiplying the decaying term in Eq. (2.16) by the weighting function, and integrating over all time-
relaxation constants:

χ(t) = χ∞δ (t)+∆χu(t)
∫

∞

0
f (τ)

e−t/τ

τ
dτ (2.17)

For a log-uniform distribution of time-relaxation constants, f (τ) is defined according to Eq. (2.6). By substi-
tuting Eq. (2.6) into Eq. (2.17), and evaluating the resulting integral:

χ(t) = χ∞δ (t)+
∆χu(t)

ln(τ2/τ1)

∫
τ2

τ1

e−t/τ

τ2 dτ (2.18)

= χ∞δ (t)+
∆χ

ln(τ2/τ1)

[
e−t/τ2 − e−t/τ1

t

]
u(t) (2.19)
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According to Eq. (2.19), the impulse response function characterizing iron-bearing soils is comprised of two
terms: a delta function scaled by the infinite magnetic susceptibility (χ∞), and a positive, monotonic decreasing
function defined for t > 0. The general shape of the impulse response is shown in Figure 2.19. It should also be
noted that Eq. (2.19) can be obtained by substituting Eq. (2.8) directly into Eq. (2.15).

Figure 2.2: General shape of the impulse response defined by Eq. (2.19).

2.3.3 Response to Step Excitation
Consider the magnetization which results from a step-on excitation. In this case, the applied magnetic field~h(t)
takes the form:

h(t) = ~H0u(t) (2.20)

where ~H0 is the amplitude of an external magnetic field after it is applied, and u(t) is the unit step function.
For a sample which can be characterized using the Debye model, the magnetization ~M(t) can be determined by
substituting Eqs. (2.16) and (2.20) into Eq. (2.14):

~M(t) = ~H0

∫
∞

−∞

χ(ξ )u(t−ξ )dξ (2.21)

=

0 for t < 0

~H0

[
χ∞ +∆χ

(
1− e−t/τ

)]
for t ≥ 0

(2.22)

Eq. (2.22) states that before the field is applied, the magnetization is zero. Upon application of the external
field at t = 0, an instantaneous magnetization occurs within the sample. This magnetization is equal to χ∞

~H0. For
t > 0, the magnetic viscosity exhibited by SP grains results in a gradual increase in magnetization over time. The
final magnetization experienced by the sample as t→ ∞ is

(
χ∞ +∆χ

)
~H0, and represents a magnetic equilibrium.
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Similarly for step-off excitation:

~M(t) = ~H0

∫
∞

−∞

χ(ξ )u(ξ − t)dξ (2.23)

=


(
χ∞ +∆χ

)
~H0 for t < 0

∆χ~H0e−t/τ for t ≥ 0
(2.24)

In this case, the sample exhibits an initial magnetization of
(
χ∞+∆χ

)
~H0 for t < 0. At t = 0, the external mag-

netic field is removed and the sample experiences an instantaneous decrease in magnetization. This initial loss in
magnetization is equal to χ∞

~H0. For t > 0, the sample experiences an exponential decrease in magnetization. The
exponential rate of decay depends on the time relaxation constant for SP grains within the sample.

The magnetic viscosity in iron-bearing soils is commonly represented by an after-effect function F(t), which
decays as a function of time (Néel, 1949; Moskowitz, 1985; Dabas et al., 1992; Pasion, 2007). For a step-on
excitation, the magnetization of any sample can be expressed as:

~M(t) =

0 for t < 0

~H0

[
χ∞ +∆χ

(
1−F(t)

)]
for t ≥ 0

(2.25)

And for step-off excitation:

~M(t) =


(
χ∞ +∆χ

)
~H0 for t < 0

∆χ~H0F(t) for t ≥ 0
(2.26)

The distribution of time relaxation constants characterizing a soil sample, also defines its after-effect function.
Using a weighting function f (τ), the after-effect function can be expressed as (Néel, 1949; Pasion, 2007):

F(t) =
∫

∞

0
f (τ)e−t/τ dτ (2.27)

For a log-uniform distribution of time-relaxation constants, Eq. (2.6) may be substituted into Eq. (2.27) to
obtain an after-effect function of the form:

F(t) =
1

ln(τ2/τ1)

∫
τ2

τ1

1
τ

e−t/τ dτ

=
1

ln(τ2/τ1)

[
Ei

(
t
τ2

)
−Ei

(
t
τ1

)]
(2.28)

where Ei is the exponential integral function. For observations at time τ1� t� τ2, Ei(t/τ1)≈ 0 and Ei(t/τ2)≈
−γ − ln(t/τ2); where γ ≈ 0.5772 is the Euler constant (Pasion, 2007). Over this time period, the after-effect
function can be approximated by:

F(t)≈ F̄(t) =
1

ln(τ2/τ1)

[
− γ− ln(t)+ ln(τ2)

]
(2.29)
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(a) (b)

Figure 2.3: After-effect function for SP grains characterized by a log-uniform distribution of time-relaxation
constants between τ1 = 10−5 s and τ2 = 1 s. (a) After-effect function due unit step-off excitation. (b)
Rate of decay in response to step-off excitation.

Expression (2.29) shows that magnetization within a collection of SP grains, in response to a step-off excita-
tion, is proportional to ln(t) for τ1� t� τ2. A comparison between F(t) and F̄(t) for τ1 = 10−5 s and τ2 = 1 s can
be seen in Figure 2.3a. The rate of decay can be obtained by taking the time derivative of Eq. (2.28), and solving
the resulting integral:

dF(t)
dt

=
1

ln(τ2/τ1)

∫
τ2

τ1

− 1
τ2 e−t/τ dτ

=
1

ln(τ2/τ1)

[
e−t/τ1 − e−t/τ2

t

]
(2.30)

At time τ1� t� τ2, Eq. (2.30) can be approximated by the following expression:

dF(t)
dt
≈ dF̄(t)

dt
=− 1

ln(τ2/τ1)

1
t

(2.31)

Therefore, the rate of decay in response to a step-off excitation, is proportional to 1/t for τ1 � t � τ2. A
comparison between dF/dt and dF̄/dt for a unit step-off with τ1 = 10−5 s and τ2 = 1 s can be seen in Figure 2.3b.

Magnetization proportional to ln(t), and decay proportional to 1/t, have been observed in a variety of settings.
Field examples can be found in: Buselli (1982), Barsukov and Fainbert (2001), and Pasion (2007). Notable
laboratory experiments are summarized in Néel (1949), Dabas (et al., 1992), and Dabas and Skinner (1993).

2.3.4 Square-Pulse Response
For many time-domain EM systems, the primary field is generated by a square-pulse current waveform. Here,
I present a derivation for the time-dependent magnetization of iron-bearing soils, in response to square-pulse
excitation. I will assume the magnetic viscosity of the soil is characterized using a log-uniform distribution of
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time relaxation constants. For a square-pulse excitation initially applied at t =−∆t, and removed at t = 0 (giving
it a width of ∆t), the external magnetic field~hp(t) is given by:

~hp(t) = ~H0

[
u(t +∆t)−u(t)

]
(2.32)

where ~H0 is the applied field during the on-time. Using Eqs. (2.14), (2.19) and (2.32), the magnetization ~M(t) can
be expressed as:

~M(t) =
∫

∞

−∞

χ(ξ )~hp(t−ξ )dξ (2.33)

= χ∞
~hp(t)+

∆χ~H0

ln(τ2/τ1)

∫ t+∆t

t

e−ξ/τ2 − e−ξ/τ1

ξ
dξ (2.34)

= χ∞
~H0

[
u(t +∆t)−u(t)

]
+

∆χ~H0

ln(τ2/τ1)

[
Ei

(
t
τ2

)
−Ei

(
t
τ1

)
−Ei

(
t +∆t

τ2

)
+Ei

(
t +∆t

τ1

)]
(2.35)

where Ei(x) is the exponential integral function. I can see from Eq. (2.35), that as ∆t → 0, ~M(t) = 0 at all
times. I can also show that as ∆t→ ∞, Eq. (2.35) behaves according to a step-off excitation. The time-dependent
derivative of the magnetization can be obtained by taking the derivative of Eq. (2.33), and substituting Eqs. (2.19)
and (2.32):

d ~M(t)
dt

=
∫

∞

−∞

χ(ξ )
∂

∂ t
~hp(t−ξ )dξ (2.36)

= χ∞
~H0

[
δ (t +∆t)−δ (t)

]
+∆χ~H0

∫
∞

−∞

e−ξ/τ2 − e−ξ/τ1

ξ

[
δ (t +∆t−ξ )−δ (t−ξ )

]
dξ (2.37)

= χ∞
~H0

[
δ (t +∆t)−δ (t)

]
+

∆χ~H0

ln(τ2/τ1)

[
e−(t+∆t)/τ2 − e−(t+∆t)/τ1

t +∆t
− e−t/τ2 − e−t/τ1

t

]
(2.38)

We can see from Eq. (2.38), that as ∆t → 0, d ~M(t)/dt = 0 at all times; which makes sense given that no
magnetization is experienced by the sample. In addition, I can also show that as t→ ∞, Eq. (2.38) exhibits a rate
of decay which is identical to that of a step-off excitation.

For square-pulse excitation, we may choose to represent the magnetic relaxation at t > 0 using an after-effect
function. According Eq. (2.35):

F(t) =
1

ln(τ2/τ1)

[
Ei

(
t
τ2

)
−Ei

(
t
τ1

)
−Ei

(
t +∆t

τ2

)
+Ei

(
t +∆t

τ1

)]
(2.39)

where
~M(t > 0) = ∆χ ~H0 F(t) (2.40)

The magnetic relaxation process takes longer in SP grains characterized by larger time relaxation constants.
As a result, these grains cannot reach a magnetic equilibrium during the on-time if the pulse width is too short.
The magnetization of a sample for step-off excitation and for various pulse widths are shown in Figure 2.4a.
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For observations made at τ1� t� τ2, Ei(t/τ1)≈ 0 and Ei(t/τ2)≈−γ− ln(t/τ2); where γ ≈ 0.5772 is the Euler
constant. If the width of the pulse is sufficiently short (i.e. ∆t� τ2), then for τ1� t� τ2, the after-effect function
is approximately equal to:

F(t)≈ F̄(t) =
1

ln(τ2/τ1)
ln

(
1+

∆t
t

)
(2.41)

Using Eq. (2.38), the time-dependent derivative of the after-effect function can be expressed as:

dF(t)
dt

=
1

ln(τ2/τ1)

[
e−(t+∆t)/τ2 − e−(t+∆t)/τ1

t +∆t
− e−t/τ2 − e−t/τ1

t

]
(2.42)

At early times, SP grains characterized by small time-relaxation constants dominate the magnetic relaxation
of the sample. As a result, the rate of decay for both step-off excitation and a square-pulse waveform are approx-
imately identical over early times. After sufficient time however, the rate of decay in response to a square-pulse
waveform becomes steeper, eventually approaching a rate proportional to 1/t2 (Billings et al., 2003). dF/dt for
step-off excitation and for several pulse widths are compared in Figure 2.4b. For observations made at τ1� t� τ2,
e−t/τ1 ≈ 0 and e−t/τ2 ≈ 1. If the width of the pulse is sufficiently short (i.e. ∆t � τ2), then for τ1� t � τ2, Eq.
(2.42) is approximately equal to:

dF(t)
dt
≈ dF̄(t)

dt
=− 1

ln(τ2/τ1)

[
1
t
− 1

t +∆t

]
(2.43)

Ultimately, Eqs. (2.39), (2.41), (2.42) and (2.43) state that characteristic magnetic responses from iron-bearing
soils are dependent on: the physical properties of the soil, the width of the square-pulse, and the time of observa-
tion.

(a) (b)

Figure 2.4: After-effect function for SP grains characterized by a log-normal distribution of time-relaxation
constants between τ1 = 10−5 s and τ2 = 1 s. (a) Square-pulse after-effect functions for ∆t = 1 ms, 10 ms
and 100 ms, compared to a step-off excitation. (b) Square-pulse rate of decay for ∆t = 1 ms, 10 ms and
100 ms, compared to a step-off excitation.
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2.3.5 Arbitrary Waveform Response
For a given time-domain EM system, the primary field may be generated by an arbitrary current waveform. Here,
the inducing field is approximated by a finite set of square pulse excitations. Using this approximation, ana-
lytic expressions are derived for predicting the time-dependent magnetization induced in iron-bearing soils. Once
again, I will assume the soil’s magnetic viscosity is characterized by a log-uniform distribution of time-relaxation
constants.

Consider an inducing field~h(t), which is only non-zero over times −λ ≤ t ≤ 0. Using a finite set of square-
pulse functions with varying amplitudes, I approximate the inducing magnetic field as follows:

~h(t)≈~ha(t) =
L

∑
`=1

~h
([

1/2− `
]
∆t
)[

u
(

t + `∆t
)
−u
(

t +
[
`−1

]
∆t
)]

(2.44)

where~ha(t) represents the approximation, u(t) is the unit step function, L is the number of discrete square-pulses,
and ∆t = λ/L is the width of each square pulse. An example of this is illustrated in Figure 2.5. In addition, the
inducing field’s time-dependent derivative is approximated by:

∂~h(t)
∂ t
≈ ∂~ha(t)

∂ t
=

L

∑
`=1

~h
([

1/2− `
]
∆t
)[

δ

(
t + `∆t

)
−δ

(
t +
[
`−1

]
∆t
)]

(2.45)

where δ (t) is the Dirac delta function. Using Eq. (2.19) and the results from the convolution performed in Eq.
(2.35), the magnetization of the soil as a function of time may be approximated as:

~M(t)≈
∫

∞

−∞

χ(ξ )~ha(t−ξ )dξ (2.46)

≈ χ∞
~h(t)+

∆χ

ln(τ2/τ1)

L

∑
`=1

~h
([

1/2− `
]
∆t
)
... (2.47)[

Ei

(
t +(`−1)∆t

τ2

)
−Ei

(
t +(`−1)∆t

τ1

)
−Ei

(
t + `∆t

τ2

)
+Ei

(
t + `∆t

τ1

)]

where Ei(x) is the exponential integral function. Likewise, Eq. (2.19 and the convolution performed in Eq. (2.38)
can be used to approximate the time-dependent derivative of the induced magnetization:

d ~M(t)
dt

≈
∫

∞

−∞

χ(ξ )
∂

∂ t
~ha(t−ξ )dξ (2.48)

≈ χ∞

∂~ha(t)
∂ t

+
∆χ

ln(τ2/τ1)

L

∑
`=1

~h
([

1/2− `
]
∆t
)
... (2.49)[

e−(t+`∆t)/τ2 − e−(t+`∆t)/τ1

t + `∆t
− e−

(
(t+(`−1)∆t

)
/τ2 − e−

(
t+(`−1)∆t

)
/τ1

t +(`−1)∆t

]
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Figure 2.5: Approximation of the true inducing field using a finite set of square-pulse excitations. In this
case, λ = 0.02 s, L = 25, and ∆t = 8×10−4 s.

As previously shown in Sections 2.3.3 and 2.3.4, the viscous remanent magnetization at t > 0 can be expressed
using an after-effect function F(t), such that:

~M(t > 0) = ∆χ ~Hmax F(t) (2.50)

where ∆χ is the zero-frequency magnetic susceptibility of all SP grains, and ~Hmax is the value of the inducing
field at its maximum amplitude. Before presenting an expression for the after-effect function, I first define the
following function g(t), where:

g(t) =
h(t)
Hmax

=
I(t)
Imax

(2.51)

Thus, g(t) represents a ratio between the amplitude of the inducing field at time t, and the maximum amplitude
of the inducing field. However, if the inducing field is generated by an inductive source, the Biot-Savart law may be
used to represent g(t) as the ratio between the transmitter’s current at time t and the maximum current amplitude.
From Eqs. (2.47). (2.50) and (2.51), the after-effect function for an arbitrary inducing field is approximated by:

F(t)≈ 1
ln(τ2/τ1)

L

∑
`=1

g
([

1/2− `
]
∆t
)
...[

Ei

(
t +(`−1)∆t

τ2

)
−Ei

(
t +(`−1)∆t

τ1

)
−Ei

(
t + `∆t

τ2

)
+Ei

(
t + `∆t

τ1

)] (2.52)

For observations made at τ1� t � τ2, Ei(t/τ1) ≈ 0 and Ei(t/τ2) ≈ −γ − ln(t/τ2); where γ ≈ 0.5772 is the
Euler constant. If the total width of the waveform is sufficiently short (i.e. λ � τ2), and given that `∆t < λ ∀ `,
the after-effect function at τ1� t� τ2 is approximately equal to:

F(t)≈ F̄(t) =
1

ln(τ2/τ1)

L

∑
`=1

g
([

1/2− `
]
∆t
)

ln

(
1+

∆t
t +(`−1)∆t

)
(2.53)
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(a) (b)

Figure 2.6: Comparison between the discrete convolution, analytic approximation and τ1� t� τ2 approx-
imation for predicting the viscous remanent magnetization in iron-bearing soils. The inducing field is
illustrated in Figure 2.5. Physical properties were given by ∆χ = 0.05, τ1 = 10−6 s and τ2 = 10 s. (a)
Time-dependent induced magnetization. (b) Time-dependent rate of decay.

Similarly from Eqs. (2.49). (2.50) and (2.51), the time-dependent derivative for the after-effect function is
approximated by:

dF(t)
dt
≈ 1

ln(τ2/τ1)

L

∑
`=1

g
([

1/2− `
]
∆t
)
...[

e−(t+`∆t)/τ2 − e−(t+`∆t)/τ1

t + `∆t
− e−

(
(t+(`−1)∆t

)
/τ2 − e−

(
t+(`−1)∆t

)
/τ1

t +(`−1)∆t

] (2.54)

For observations made at τ1� t � τ2, Ei(t/τ1) ≈ 0 and Ei(t/τ2) ≈ −γ − ln(t/τ2); where γ ≈ 0.5772 is the
Euler constant. If the total width of the waveform is sufficiently short (i.e. λ � τ2), and given that `∆t < λ ∀ `,
the time-dependent derivative at τ1� t� τ2 is approximately equal to:

dF(t)
dt
≈ dF̄(t)

dt
=− 1

ln(τ2/τ1)

L

∑
`=1

g
([

1/2− `
]
∆t
)[ 1

t +(`−1)∆t
− 1

t + `∆t

]
(2.55)

To verify the approximation of the soil’s VRM response, I considered the inducing field shown in Figure
2.5. Physical properties for the soil were given by χ∞ = 0, ∆χ = 0.05, τ1 = 10−6 s and τ2 = 10 s. Discrete
convolutions were evaluated according to Eq. (2.14) and its derivative. The impulse response χ(t), analytic
inducing field h(t) and its time-dependent derivative ∂h(t)/∂ t were discretized using a time-spacing of 2×10−7

s. For L = 500 discrete square pulses, Eqs. (2.50), (2.51), (2.52) and (2.54) were used to approximate the induced
magnetization and its time-dependent derivative at t > 0. And for L = 500 discrete square pulses, Eqs. (2.50),
(2.51), (2.53) and (2.55) were used to approximate the induced magnetization and its time-dependent derivative
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at t > 0. Comparison between the convolution, analytic approximation, and approximation for τ1 � t � τ2 are
shown in Figure 2.6. Results indicate that the approximation of the induced magnetization is very accurate so long
as a sufficient number of square pulses are used. The number of square pulses required depends on how smooth
the true current waveform and its time-dependent derivative are with respect to time.

2.4 Obtaining the Magnetic Properties of Iron-Bearing Soils
Several models have been used to explain the frequency dependent magnetic susceptibilities which characterize
iron-bearing soils (Olhoeft and Strangway, 1974; Dabas et al., 1992; Pasion, 2007). The parameters defining each
model represent a distinct set of properties for the soil. These properties may be physical or purely mathematical.
The model parameters which fit a sample’s magnetic viscosity are diagnostic, as they depend on the sample’s min-
eralogy and weathering history. Here, I present a set of physical properties for iron-bearing soils. These physical
properties are then related to mathematical models which characterize the soil’s magnetic viscosity.

When exposed to a magnetostatic field, the magnetization of an iron-bearing soil is defined by its zero-
frequency magnetic susceptibility. According to Eq. (2.8), this is equivalent to χ(ω → 0) = χ∞ + ∆χ . The
zero-frequency magnetic susceptibilities for iron-bearing rock types are shown in Figure 2.7a. Values are given in
SI units; SI units are equivalent to units of [A/m]/[A/m]. The majority of laterites have zero-frequency magnetic
susceptibilities between 10−4 SI and 5× 10−2 SI, depending on the distinct mineralogy of each soil. Because
their zero-frequency magnetic susceptibilities are quite small (χ∞ +∆χ ≤ 0.05), the magnetic properties of lat-
eritic soils do not significantly impact the inductive response (van Dam et al., 2004, 2005; Druyts et al., 2009).

(a) (b)

Figure 2.7: (a) Zero-frequency magnetic susceptibilities for various rock types, including laterites (Adapted
from Clark and Emerson, 1991). Black and white boxes are used to denote ranges for rocks classified
by more detailed mineralogies. (b) Cross plot showing the absolute magnetic susceptibility at 958 Hz
(κ̄), versus the difference in dual-frequency susceptibility measurements between 465 Hz and 4,650 Hz
(∆κ). Figure taken from van Dam (et al., 2008). Black markers are used to denote samples collected
in the United States, Panama and Honduras. Coloured markers are used to represent samples collected
within the Sepon Mineral District, Laos.
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Category κ̄ [10−5 SI] ∆κ [10−5 SI]
(Billings et al., 2003) (958 Hz) (465 to 4,650 Hz)
Neutral <50 <1
Moderate 50-500 1-10
Severe 500-2000 10-40
Very Severe >2000 >40

Table 2.1: Impact of magnetic viscosity on inductive sensors, according to dual-frequency measurements
(Billings et al., 2003).

Furthermore, this implies that lateritic soils do not exhibit demagnetizing effects (Lelièvre and Oldenburg, 2006;
Krahenbuhl and Li, 2007; Austin et al., 2014).

Parameters defining the frequency-dependent magnetic susceptibility are not easily determined. Infinite fre-
quency susceptibilities cannot be directly measured, as EM induction will dominate the sample’s response. Dabas
(et al., 1992) measured the susceptibility over a range of frequencies, and fit the data using a Cole-Cole model.
However, this experiment is both time-consuming and expensive. Dual-frequency measurements are commonly
used to characterize the magnetic viscosity exhibited by lateritic soils. Using a Barington MS2B dual-frequency
sensor (Dearing et al., 1996; van Dam et al., 2008), the absolute magnetic susceptibility of a sample is measured
at two frequencies (465 Hz and 4,650 Hz). The absolute magnetic susceptibility is defined by:

κ(ω) =
∣∣χ(ω)

∣∣ (2.56)

Dual-frequency measurements at 465 Hz and 4,650 Hz can be used to calculate the sample’s absolute mag-
netic susceptibility at 958 Hz, using the method from Dearing (et al., 1996). The absolute magnetic susceptibility
at 958 Hz will be denoted by κ̄ . The absolute difference between high and low frequency measurements is de-
noted by ∆κ . A database containing dual-frequency measurements on a total of 1,027 samples, from tropical to
semi-arid regions, currently exists (van Dam et al., 2008). A cross-plot of κ̄ versus ∆κ for these soils is shown
in Figure 2.7b. According to the database: 1) κ̄ and ∆κ are positively correlated, 2) both κ̄ and ∆κ increase with
respect to soil maturity, and 3) ∆κ < 0.1κ̄ for nearly all samples. Dual-frequency measurements have been used
to classify a soil’s impact on inductive source transmitters (Billings et al., 2003). This classification scheme is
illustrated in Table 2.1. If characterized by sufficiently large values of κ̄ and ∆κ , iron-bearing soils are capable
of generating magnetic fields which can mask the responses from unexploded ordnance and buried conductors
(Buselli, 1982; Barsukov and Fainberg, 2001; Billings et al., 2003; Pasion, 2007; Zadorozhnaya et al., 2012).
Dual-frequency susceptibility measurements are therefore quite useful. However, they cannot be directly used to
recover parameters which define the magnetic susceptibility models I have presented.

Now consider a sample whose frequency-dependent magnetic susceptibility is defined by a log-uniform dis-
tribution of time-relaxation constants. According to Eq. (2.9), quadrature susceptibility is much smaller than
in-phase susceptibility if: 1) χ∞ is sufficiently large in comparison to ∆χ , or 2) the distribution of time-relaxation
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Figure 2.8: Real, quadrature and absolute magnetic susceptibility for a sample defined by Eq. (2.8), using
properties: χ∞ = 0.001, ∆χ = 0.005, τ1 = 10−5 s, and τ2 = 10−1 s.

constants is sufficiently broad. For the majority of soil samples, it is safe to assume these conditions are met, thus:

κ(ω)≈ Re[χ(ω)] (2.57)

An example comparing absolute susceptibility to in-phase susceptibility can be seen in Figure 2.8. At fre-
quencies 2π/τ2 � ω � 2π/τ1, the sample will behave according to Eq. (2.9) (Mullins and Tite, 1973; Dabas
et al., 1992). The slope of the absolute magnetic susceptibility is slightly shallower, however, it only differs by a
few % in comparison to the in-phase component. From this, I infer that:∣∣∣∣∣d Re[χ(ω)]

d ln(ω)

∣∣∣∣∣≈
∣∣∣∣∣d κ(ω)]

d ln(ω)

∣∣∣∣∣≈ ∆χ

ln(τ2/τ1)
(2.58)

The right-hand side of Eq. (2.58) represents an amalgamated magnetic property for the soil. This parameter
is of great interest, as it characterizes the time-dependent magnetic decay during the off-time. According to
expressions derived in Sections (2.3.3), (2.3.4) and (2.3.5), at τ1� t� τ2:

~M(t)≈ ∆χ~H0

ln(τ2/τ1)
ln

(
1+

∆t
t

)
for Square-Pulse Excitation (2.59)

~M(t)≈ ∆χ~Hmax

ln(τ2/τ1)

L

∑
`=1

g
([

1/2− `
]
∆t
)

ln

(
1+

∆t
t +(`−1)∆t

)
for Arbitrary Excitation (2.60)

d ~M(t)
dt

≈− ∆χ~H0

ln(τ2/τ1)

1
t

for Step-Off Excitation (2.61)

d ~M(t)
dt

≈− ∆χ~H0

ln(τ2/τ1)

[
1
t
− 1

t +∆t

]
for Square-Pulse Excitation (2.62)

d ~M(t)
dt

≈− ∆χ~Hmax

ln(τ2/τ1)

L

∑
`=1

g
([

1/2− `
]
∆t
)[ 1

t +(`−1)∆t
− 1

t + `∆t

]
for Arbitrary Excitation (2.63)
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where ~H0 is the on-time field for step-off and square-pulse excitation, ~Hmax is the applied magnetic field at its
maximum amplitude, ∆t sets the width for square pulse waveforms, and g(t) is defined by Eq. (2.51). The
amalgamated magnetic property can be recovered using dual-frequency measurements, if performed over the
soil’s mid-frequency range. This property can then be used to predict the soil’s characteristic off-time response.
For measurements acquired using a Barington MS2B dual-frequency sensor:

∆κ

ln(10)
≈ ∆χ

ln(τ2/τ1)
(2.64)

The database presented by van Dam (et al., 2008), can therefore be used to infer a range of typical values
for the amalgamated magnetic property. By examining ∆κ in Figure 2.7b, the majority of lateritic soils are
characterized by values:

10−6 ≤ ∆χ

ln(τ2/τ1)
≤ 2.5×10−3 (2.65)

2.5 Electromagnetic Response from a Conductive and Magnetically
Viscous Earth

Inductive source EM systems are frequently used for mineral exploration and the detection of unexploded ord-
nance. The viscous remanent magnetization exhibited by lateritic soils has been known to generate a distinct
response. This response, which I will call the VRM response, becomes problematic when it masks anomalies
generated by desired targets. The impact of iron-bearing soils on EM sensors can be examined by considering
the response from a conductive and magnetically viscous half-space (Das, 2006; Pasion, 2007; Kozhevnikov and
Antonov, 2008). Here, a half-space model is used to examine inductive and VRM responses in both the frequency
and time-domain.

2.5.1 Model for the Response from a Conductive and Magnetically Viscous Half-Space
Consider the case where a large circular loop is placed horizontally over the surface of a conductive and magneti-
cally viscous half-space. The geometry of the model is shown in Figure 2.9. In the frequency domain, the vertical
and radial electromagnetic responses can be expressed using the Hankel transform (Ward and Hohmann, 1988):

Hz(ρ,z,ω) =
Ia
2

∫
∞

0
rT Ee−λ (z+h)

λJ1(λa)J0(λρ)dλ (2.66)

and

Hρ(ρ,z,ω) =− Ia
2

∫
∞

0
rT Ee−λ (z+h)

λJ1(λa)J1(λρ)dλ (2.67)

where ρ is the radial distance from the loop’s center axis, z is the observation height, a is the radius of the
loop and h is the loop’s height off the ground. J0(·) and J1(·) are 0th and 1st order Bessel functions of the first
kind, respectively. The reflection coefficient rT E , for a homogeneous Earth with frequency-dependent physical
properties, is defined by:

rT E =
µλ −µ0k
µλ +µ0k

(2.68)
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where k =
√

λ 2− iωµσ , ω is the angular frequency, σ is the Earth’s conductivity, µ is the frequency-dependent
magnetic premeability defined by Eq. 2.10, and µ0 = 4π × 10−7 N/A2 is the permeability of free-space. For a
given frequency and measurement location, Eqs. (2.66) and (2.67) are solved using the IIPBF adaptive quadrature
package (Ratnanather et al., 2011).

The transient response to step-off excitation can be numerically computed using inverse sine and cosine trans-
forms (Newman et al., 1986):

h(t) =− 2
π

∫
∞

0

Im[H(ω)]

ω
cos(ωt)dω = h(0)− 2

π

∫
∞

0

Re[H(ω)]

ω
sin(ωt)dω (2.69)

and
∂h(t)

∂ t
=

2
π

∫
∞

0
Im[H(ω)]sin(ωt)dω =− 2

π

∫
∞

0
Re[H(ω)]cos(ωt)dω (2.70)

where h(0) represents the component of the field at t = 0. For my analysis, the UBC EM1DTM forward modeling
code will be used to predict TEM responses. For this code, the shape of the transmitter can be arbitrary, any
current waveform can be used to generate the primary field, and we can input a layered Earth model.

Figure 2.9: Schematic representing the geometry of the forward model.

2.5.2 Frequency Domain Response over a Conductive and Magnetically Viscous
Half-Space

The primary field from a controlled source induces regions of magnetization and EM induction within the Earth.
A qualitative representation of this is illustrated in Figure 2.10; where purple is used to show regions of magne-
tization, and red is used to show regions of EM induction. More saturated coloring is used to represent regions
where magnetization and EM induction is likely stronger. Near the resistive limit (ω → 0), Faraday’s law states
that EM induction within the Earth is negligible. As a result, the Earth’s response at low frequency is purely at-
tributed to the magnetization of susceptible materials (Figure 2.10a). The intensity of the magnetization depends
both on the strength of the inducing field and the magnetic susceptibility of the Earth. For a dipole source, the
field will fall off proportional to r−3. As the frequency of the primary field increases, so does the strength of EM
induction within the Earth. The primary field is also subject to frequency-dependent attenuation. According to
Griffiths (2007), the frequency-dependent attenuation of electromagnetic waves through a medium can be defined
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by the skin depth:

δ =

√
2

ωµσ
(2.71)

where δ is the skin depth, ω is the angular frequency of the field, σ is conductivity, and µ is the frequency-
dependent magnetic permeability from Eq. (2.10). Skin depth is defined as the distance at which the amplitude
of a propagating wave decreases by a factor of 1/e. Eq. (2.71) states that δ decreases proportional to ω−1/2. As
frequency increases, the primary field does not penetrate the Earth as deeply. As a result, magnetization and EM
induction begin to occur at shallower depths. The case where magnetic and inductive responses are competing
is illustrated in Figure 2.10b. Towards the inductive limit (ω → ∞), EM induction is very strong and the Earth’s
magnetic response is negligible. According to Eq. (2.71), EM induction only occurs near the surface at high
frequency. This case is illustrated in Figure 2.10c.

The vertical frequency domain response, for a circular transmitter loop on the surface of the Earth, is shown
in Figure 2.11. In keeping with common convention, negative real and imaginary values are plotted in the upper
right quadrant. I have chosen to plot only the secondary field. Eq. (2.8) is used to define the frequency-dependent
magnetic susceptibility for the half-space. The frequency domain response was predicted for several models, in-
cluding: a purely conductive Earth (σ = 0.1 S/m and χ = 0), a purely susceptible Earth (σ = 0 S/m, χ∞ = 0.1, ∆χ

= 0.2, τ1 = 10−5 s and τ2 = 1 s), and a conductive and magnetically susceptible Earth (σ = 0.1 S/m, χ∞ = 0.1, ∆χ

= 0.2, τ1 = 10−5 s and τ2 = 1 s).

(a) Resistive Limit (ω → 0) (b) Mid-Frequency (c) Inductive Limit (ω → ∞)

Figure 2.10: Qualitative illustration of the Earth’s frequency-domain response. More saturated colouring
indicates regions where magnetization and EM induction are likely stronger.

The response at low frequencies is equal to the response from a purely susceptible Earth, as EM induction is
negligible. Near the resistive limit, the secondary field is more or less in phase with the primary field. However,
Figure 2.11b indicates the response of a magnetically viscous Earth at low frequencies exhibits small quadrature
components. Because the frequency-dependent magnetic susceptibility decreases in magnitude with respect to ω ,
so does the Earth’s magnetic response, even in the absence of EM induction. At sufficiently high frequencies,
superparamagnetism is negligible, and only the infinite magnetic susceptible is capable of contributing towards
the Earth’s magnetic response. According to Ward and Hohmann (1988), the Earth’s inductive response should
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lag the primary field by π/2 radians at lower frequencies. This is observed for f < 104 Hz in Figure 2.11. As
ω → ∞, the Earth’s inductive response begins to lag the primary field by π radians; thus the inductive response
opposes the primary field at high frequencies. From Figure 2.11, we can also see that as ω → ∞, the Earth’s
response is equivalent to that of a purely conductive Earth; implying the Earth’s magnetic response is negligible.

(a) In-Phase (b) Quadrature

Figure 2.11: Vertical frequency-domain response at the center of a circular transmitter loop over a conduc-
tive and magnetically viscous half-space. Responses were predicted at (ρ,z) = (0 m, 0.5 m) for a loop
of radius a = 20 m using physical properties: purely conductive (σ = 0.1 S/m, χ = 0.1), purely sus-
ceptible (σ = 0 S/m, χ∞ = 0.1, ∆χ = 0.2, τ1 = 10−5 s and τ2 = 1 s), and conductive and magnetically
susceptible (σ = 0.1 S/m, χ∞ = 0.1, ∆χ = 0.2, τ1 = 10−5 s and τ2 = 1 s)

2.5.3 Step-Off Response over a Conductive and Magnetically Viscous Half-Space
Removal of the primary field from a controlled source induces regions of VRM and EM induction within the Earth.
A qualitative representation of this is illustrated in Figure 2.12; where purple is used to show regions of VRM, and
red is used to show regions of EM induction. The strength of the VRM at early, mid and late times is represented
by colour saturation of the purple region. According to field observation and numerical experimentation, the VRM
response and its time-dependent derivative decay proportional to ln(t) and 1/t, respectively (Colani and Aitken,
1966; Buselli, 1982; Billings et al., 2003; Das, 2006; Pasion, 2007). The time-dependent diffusion of inductive
eddy currents can be described using a downward propagating current filament, which maintains the geometry
of the transmitter (Nabighian, 1979). A red ring is used to represent the current filament, or ”smoke ring”. In
Figure 2.12, the concentration of inductive currents at early, mid and late times is represented by the thickness
of the ring. At early times, inductive currents are near the surface, and the inductive response is strong (Figure
2.12a). By late times, inductive currents have diffused outwards and downwards, resulting in a weaker inductive
response. (Figure 2.12c). Within a circular loop, the vertical step-off response from a conductive half-space will
decay according to (Nabighian, 1979):

bz(t)≈
Iσ3/2µ

5/2
0 a2

30
√

π
t−3/2 (2.72)
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and
∂bz(t)

∂ t
≈−

Iσ3/2µ
5/2
0 a2

20
√

π
t−5/2 (2.73)

where a is the radius of the loop, σ is the half-space conductivity, I is the steady-state current within the trans-
mitter, and µ0 = 4π × 10−7 N/A2 is the permeability of free-space. By comparing the characteristic decay of
inductive and VRM responses, I postulate that EM induction likely dominates the early time response, whereas
VRM likely dominates the late time response.

The vertical step-off response, for a circular transmitter loop on the surface of conductive and magnetically
viscous half-space, is shown in Figure 2.13. Eq. (2.8) is used to define the frequency dependent magnetic sus-
ceptibility for the half-space. The time domain response was predicted for several models, including: a purely
conductive Earth (σ = 0.1 S/m and χ = 0), a purely susceptible Earth (σ = 0 S/m, χ∞ = 0, ∆χ = 0.1, τ1 = 10−5 s
and τ2 = 1 s), and a conductive and susceptible Earth (σ = 0.1 S/m, χ∞ = 0, ∆χ = 0.1, τ1 = 10−5 s and τ2 = 1 s).
The step-off response for a conductive and magnetically viscous Earth experiences a decay which is steep at early
times, and more shallow at late times (reference). Early time responses to step-off excitation characteristically
contain a large quantity of high frequency content. Thus, they represent the Earth’s inductive response. In con-
trast, the late time response to step-off excitation is primarily comprised of low frequency content. This portion
of the signal represents the VRM response.

(a) Early Time Step-Off Response (b) Mid-Time Step-Off Response (c) Late Time Step-Off Response

Figure 2.12: Qualitative illustration of the Earth’s step-off response. More saturated colouring indicates
regions where VRM is stronger. The thickness of the current filament is used to represent the strength
of induced eddy currents.

To first order, the Earth’s inductive and VRM responses are separable, so long as the Earth’s magnetic sus-
ceptibility is sufficiently small (Druyts et al., 2009) (Figure 2.13). This was first postulated by Buselli (1982);
who used various SiroTEM configurations to perform field experiments. The approximation was later validated
numerically by Pasion (2007), among others. At early times, the response is equivalent to that of a purely conduc-
tive Earth (red); at late times, the response is equivalent to that of a purely viscous Earth (purple). By summing
the responses from these two models, I can approximate the response from a conductive and magnetically viscous
Earth.
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(a) (b)

Figure 2.13: Vertical time domain response at the center of a circular transmitter loop over a conductive and
magnetically viscous half-space. (a) bz(t) for unit step-off excitation (b) −∂bz/∂ t for unit step-off
excitation. Responses were predicted at (ρ,z) = (0 m, 0.5 m) for a loop of radius a = 20 m using
physical properties: purely conductive (σ = 0.1 S/m, χ = 0), purely susceptible (σ = 0 S/m, χ∞ = 0,
∆χ = 0.1, τ1 = 10−5 s and τ2 = 1 s), conductive and susceptible (σ = 0.1 S/m, χ∞ = 0, ∆χ = 0.1, τ1 =
10−5 s and τ2 = 1 s). Conductive + susceptible is the sum of the responses from a purely conductive
and a purely susceptible Earth.

2.6 Summary
In this chapter, I examined the magnetic properties which characterize iron-bearing soils, as well as the distinct
magnetic response they produce. Iron-bearing soils exhibit viscous remanent magnetization, due to the pres-
ence of superparamagnetic iron-oxide grains. The magnetic properties of viscous soils were represented using a
frequency-dependent magnetic susceptibility. A model for the magnetic susceptibility, defined by a log-uniform
distribution of time-relaxation constants, was derived according to Néel relaxation theory. Not only is this model
straightforward, but it can be used to adequately fit the magnetic viscosity in most soil samples. Over the mid-
frequency range, in-phase magnetic susceptibility has been shown to decrease linearly with respect to ln(ω). In
response to step-off excitation, the majority of viscous soils characteristically exhibit a magnetic decay propor-
tional to ln(t), with a time-dependent derivative proportional to 1/t.

The zero-frequency magnetic susceptibilities for common iron-bearing soils are less than 0.05 SI. As a result,
the effects of self-demagnetization are negligible. Mature soils tend to exhibit larger magnetic susceptibilities, as
well as an increase in frequency-dependence. I defined an amalgamated magnetic property for magnetic viscos-
ity, based on the susceptibility model; this model is characterized by a log-uniform distribution of time-relaxation
constants. Not only is the amalgamated magnetic property easily obtained using dual-frequency magnetic suscep-
tibility measurements, it also defines the soil’s transient magnetic response during the off-time.
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The response from a conductive and magnetically viscous Earth was examined by considering a large circular
transmitter loop on the surface of a half-space. At low frequencies, the Earth’s response is equivalent to that of a
purely susceptible Earth, whereas at high frequencies, the Earth’s response is equivalent to that of a purely con-
ductive Earth. To first order, the inductive and VRM responses to step-off excitation can be considered separable
if the Earth’s magnetic susceptibility is sufficiently small. At early times, the response is purely inductive. Within
the loop, the vertical inductive response is characterized by a decay proportional to t−3/2, and a time-dependent
derivative proportional to t−5/2. At late times, the observed response is entirely attributed to magnetic viscosity.
Thus at sufficiently late times, the response from a conductive and magnetically viscous Earth is equal to the
VRM response. The decay of the VRM response and its time-dependent derivative are proportional to ln(t) and
1/t, respectively. In Chapter 3, I investigate the dependence of the VRM response on survey geometry.

28



Chapter 3

Dependence of Transient Inductive and
VRM Responses on Survey Geometry

3.1 Introduction
In this chapter, I derive and test simplified expressions for the step-off VRM response, generated by a large circular
loop over a conductive and magnetically viscous half-space. This is accomplished by considering the inductive
and VRM responses as approximately separable. After sufficient time, EM induction is negligible and the VRM
response can be predicted using a purely viscous Earth. Vertical and horizontal components of the VRM response,
as well as its time-dependent rate of decay, are derived. Analytic expressions are used to determine relationships
which exist between the transmitter loop, the VRM response and the inductive response. Expressions for the
inductive response within the loop are provided by Nabighian (1979). Results are veried using the EM1DTM
forward modeling code; the background theory of this code was covered in Section 2.5. Although the derivation
in this chapter considers only the response to step-off excitation, analytic expressions may be easily adapted for
square-pulse or other waveforms.

3.2 Integral Solution for the VRM Response Over a Magnetically
Viscous Earth

Consider the step-off response from a conductive and magnetically viscous Earth. According to Section 2.5:
1) transient inductive and VRM responses are approximately separable, 2) inductive responses are negligible at
sufficiently late times, 3) the late time response is approximately equal to the VRM response, and 4) the VRM
response at late times can be approximated using a purely viscous Earth. From this, I may assume the late time
signal is attributed solely to the viscous remanent magnetization occurring below the Earth’s surface. According
to Blakely (1996), the anomalous magnetic field outside of a magnetized region is given by the following integral
equation:

~b(~r, t) =
µ0

4π

∫
V ′

∇∇
1

|~r−~r ′|
· ~M(~r ′, t)dV ′ (3.1)
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where~r is the measurement location,~r ′ are locations within the source region, and ~M(~r ′, t) is the viscous remanent
magnetization at time t. According to Eq. (2.26), the viscous remanent magnetization in response to step-off
excitation is given by:

~M(t) = ∆χ ~H0 F(t) (3.2)

where ∆χ is the zero-frequency magnetic susceptibility of all superparamagnetic (SP) grains, ~H0 represents the
primary field during the on-time, and F(t) is the after-effect function defined by Eq. (2.28). I assume that all
viscous materials within the source region exhibit the same characteristic decay upon removal of the primary
field. Under this assumption, F(t) may be taken outside the integral in Eq. (3.3), thus:

~b(~r, t) =
µ0

4π
F(t)

∫
V ′

∇∇
1

|~r−~r ′|
·∆χ(~r ′) ~H0(~r ′)dV ′

=~b(~r,0)F(t) (3.3)

where~b(~r,0) represents the steady-state magnetic response of all SP grains. Thus if~b(~r,0) is known, Eqs. (2.28)
and (3.3) can be used to predict the VRM response at t > 0.

Similarly for the rate of decay:

∂~b(~r, t)
∂ t

=
µ0

4π

dF(t)
dt

∫
V ′

∇∇
1

|~r−~r ′|
·∆χ(~r ′) ~H0(~r ′)dV ′

=~b(~r,0)
dF(t)

dt
(3.4)

where dF(t)/dt is defined by Eq. (2.30). Thus if~b(~r,0) is known, Eqs. (2.30) and (3.4) can be used to predict
∂B/∂ t at t > 0. Note that Eqs. (2.29) and (2.31) can be used instead of Eqs. (2.28) and (2.30) to approximate the
response over τ1� t� τ2. The necessary analytic expressions for~b(~r,0) are derived in Section 3.3.

3.3 Deriving the Steady-State Response Over a Superparamagnetic
Half-Space

Here, expressions for the steady-state magnetic response are derived for a circular transmitter loop over a SP half-
space. These expressions are used to replace~b(~r,0) in Eqs. (3.3) and (3.4). As only SP grains are considered, I
are assuming χ∞ = 0 in Eq. (2.8).

Vertical and radial components of~b(~r,0) can be obtained directly from Hankel transform solutions found in
Ward and Hohmann by taking their limits as ω → 0; Eqs. (4.87) and (4.88) in Ward and Hohmann (1988). For a
transmitter loop of radius a, at height h above the surface, with steady-state current I:

bz(ρ,z)=
µ0Ia

2

(
∆χ

2+∆χ

)∫
∞

0
λe−λ (z+h)J1(λa)J0(λρ)dλ (3.5)
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and

bρ(ρ,z)=−
µ0Ia

2

(
∆χ

2+∆χ

)∫
∞

0
λe−λ (z+h)J1(λa)J1(λρ)dλ (3.6)

where ∆χ is the steady-state magnetic susceptibility due to the SP effects of the half-space, µ0 = 4π×10−7 N/A2

is the permeability of free-space, ρ is the radial distance from the loop’s center axis, and z is the height above the
surface. J0(·) and J1(·) are 0th and 1st order Bessel functions of the first kind, respectively.

Thus in order to define the vertical and radial components of~b(~r,0), I require solutions to the integrals in Eqs.
(3.5) and (3.6). For the vertical component bz(ρ,z), analytic solutions for several cases are derived in section
3.3.1. For the radial component bρ(ρ,z), an approximate solution for special cases is proposed in section 3.3.2.

3.3.1 Vertical Steady-State Response for a Circular Loop over a Superparamagnetic
Half-Space

Here, I predict the vertical steady-state response from a circular transmitter loop over SP half-space. According
to Eq. (3.5), I require a solution to the integral:∫

∞

0
λe−λ (z+h)J1(λa)J0(λρ)dλ (3.7)

For α ≥ 0, η > −1/2, and where Γ(·) is the gamma function, I can use the following integral identity (Erdelyi
et al., 1954):

∫
∞

0
λ

η−ν e−λα Jη(λa)Jν(λρ)dλ =
aη ρν Γ(η + 1

2 )

2ν−η πΓ(ν + 1
2 )

∫
π

0
(sinφ)2ν

[
(α + iρcosφ)2 +a

]−η−1/2dφ (3.8)

Where α = z+h≥ 0, η = 1 and ν = 0:∫
∞

0
λe−λ (z+h)J1(λa)J0(λρ)dλ =

a
π

∫
π

0

[
(z+h+ iρcosφ)2 +a2]−3/2dφ (3.9)

A general non-integral solution to Eq. (3.9) is difficult to derive analytically. However, I can gain valuable insight
by considering several special cases.

Large Circular Loop on the Earth’s Surface (h = 0)

Consider a large circular transmitter loop of radius a. If the steady-state response is examined close to the Earth’s
surface (z→ 0), then according to Eq. (3.9):

lim
z→0

∫
∞

0
λe−λ zJ1(λa)J0(λρ)dλ =

a
π

∫
π

0

[
a2− (ρcosφ)2]−3/2dφ (3.10)

=
1

πa
1√

a2−ρ2
E

[
x
∣∣∣ ρ2

ρ2−a2

]∣∣∣∣∣
π

0

(3.11)

Eq. (3.11) was obtained from the right-hand side of Eq. (3.10) for h,z = 0 using Wolfram Mathematica’s
online integration tool (Mathematica, 2016). E[x|m] is the incomplete elliptic integral of the second kind, defined
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by:

E[x|m] =
∫ x

0
[1−msin2

θ ]1/2dθ (3.12)

The incomplete elliptic integral has a few convenient properties. First of all, E[π|m] = 2E[π/2|m] = 2E[m],
where E[m] = E[π/2|m] is the complete elliptic integral of the second kind. Given that E[0|m] = 0, Eq. (3.11)
simplifies to:

lim
z→0

∫
∞

0
λe−λ zJ1(λa)J0(λρ)dλ =

2
πa

1√
a2−ρ2

E

[
ρ2

ρ2−a2

]

=
2

πa2
1√

1−
(

ρ

a

)2
E

[ (
ρ

a

)2(
ρ

a

)2−1

]
(3.13)

Substituting Eq. (3.13) into Eq. (3.5), the vertical steady-state response on the Earth’s surface, at time t ≤ 0
and radial distance ρ from the loop’s center axis is:

bz(ρ,0) =
µ0I
πa

(
∆χ

2+∆χ

)
1√

1−
(

ρ

a

)2
E

[ (
ρ

a

)2(
ρ

a

)2−1

]
(3.14)

= bz(0,0)

(
2

π

√
1−
(

ρ

a

)2
E

[ (
ρ

a

)2(
ρ

a

)2−1

])
(3.15)

= bz(0,0)G
(

ρ

a

)
(3.16)

where bz(0,0) represents the stead-state magnetic response of the SP half-space at the loop’s center, and G is a
function which depends strictly on ρ/a.

For measurements inside the loop (ρ < a), I would like to find an approximate solution for G which does not
contain the elliptic integral. At the center of the loop, ρ/a = 0, E[0] = π/2, and Eq. (3.15) simplifies to bz(0,0)
as expected. As ρ → a, we see that the steady-state response will approach infinity. To preserve these properties,
I suggest an empirical function Q of the form:

G
(

ρ

a

)
≈ Q

(
ρ

a

)
= 1+

9
4π

( (
ρ

a

)2

1−
(

ρ

a

)2

)
f or ρ < a (3.17)

This approximation proved to be accurate to within 1% for values (ρ/a ≤ 0.8); at which point it began to
increasingly overestimate the function (Figure 3.1a).

Using expressions (3.16) and (3.17), the vertical steady-state response at any location (ρ < a,z = 0), for a
loop located on the Earth surface (h = 0), is approximately equal to:

bz(ρ,0)≈
µ0I
2a

(
∆χ

2+∆χ

)[
1+

9
4π

( (
ρ

a

)2

1−
(

ρ

a

)2

)]
(3.18)

32



Response Along the Transmitter’s Vertical Axis (ρ = 0)

Consider a circular transmitter loop of radius a at height h above the surface. Where z is the observation height
along the transmitters vertical axis of symmetry, the vertical steady-state response can be obtained by setting
ρ → 0 and integrating Eq. (3.9):

lim
ρ→0

∫
∞

0
λe−λ (z+h)J1(λa)J0(λρ)dλ =

a
π

∫
π

0

(
1

(z+h)2 +a2

)3/2

dφ = a

(
1

(z+h)2 +a2

)3/2

(3.19)

By substituting Eq. (3.19) into Eq. (3.5), the steady-state response is:

bz(0,z) =
µ0Ia2

2

(
∆χ

2+∆χ

)(
1

(z+h)2 +a2

)3/2

(3.20)

By expressing the dipole moment of the transmitter as m = πa2I, Eq. (3.20) becomes :

bz(0,z)≈
µ0m
2π

(
∆χ

2+∆χ

)(
1

(z+h)2 +a2

)3/2

(3.21)

3.3.2 Radial steady-state Response from a Large Circular Loop
Here, I predict the radial steady-state response from a circular transmitter loop over a SP half-space. According
to Eq. (3.6), I require a solution to the integral:∫

∞

0
λe−λ (z+h)J1(λa)J1(λρ)dλ (3.22)

Although analytic solutions of Eq. (3.22) exist, they are far too complicated to develop any straightforward re-
lationships with respect to the transmitter loop radius and observation locations. However, I can gain valuable
insight by considering empirical solutions for several cases.

For z+h> 0, Eq. (3.22) was evaluated numerically using the IIPBF adaptive quadrature package (Ratnanather
et al., 2011). I observed that for values of 0 < z+ h ≤ a/5, numerical solutions to Eq. (3.22) displayed the
characteristics of a Cauchy distribution centered around ρ = a. Using the probability density function for a
Cauchy distribution, I approximate Eq. (3.22) as:

∫
∞

0
λe−λ (z+h)J1(λa)J0(λρ)dλ ∼

[
πaγ

(
1+
(

ρ−a
γ

)2
)]−1

(3.23)

where an emprical function for γ is given by:

γ = 2(z+h)

(
2
π

)3/2

(3.24)
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(a) (b)

Figure 3.1: (a) Comparison between G(ρ/a) and its approximation Q(ρ/a) for various values of ρ/a< 1. A
% error for selected values is provided. (b) Comparison between computations of the Hankel transform
using IIPBF adaptive quadrature and using the empirical expression from Eq. (3.23). Comparisons are
done for various values of 0 < z+h≤ a/5, using a loop radius of a = 20 m.

A comparison between computations using IIPBF adaptive quadrature and Eq. (3.23) for a loop of radius
a = 20 m is shown in (Figure 3.1b) for several values of 0 < z+ h ≤ a/5. As z+ h decreased over the accepted
range, the Cauchy distribution became less broad. For z+ h→ 0, the weighted orthogonality property of the
Hankel transform can be used to show (Li and Wong, 2008):

lim
z+h→0

∫
∞

0
λe−λ (z+h)J1(λa)J1(λρ)dλ =

δ (a−ρ)

a
(3.25)

where δ (x) is the Dirac delta function. By substituting expression (3.23) into Eq. (3.6), the radial steady-state
response of the SP half-space for 0 < z+h≤ a/5 is approximated by:

Bρ(ρ,z)∼−
µ0I
2

(
∆χ

2+∆χ

)[
πaγ

(
1+
(

ρ−a
γ

)2
)]−1

(3.26)

It should be noted that although Eq. (3.26) provides a reasonable approximation over a certain range of
values, it cannot be used to show that Bρ(ρ → 0,z) = 0. This property can be obtained directly from Eq. (3.6)
since J1(0) = 0.

3.4 VRM Response from a Large Circular Transmitter Loop
In this section, Eqs. (3.3) and (3.4) are used to approximate the VRM response over a SP half-space for τ1� t�
τ2. Approximations for the after-effect function and its derivative for τ1� t� τ2 are provided by Eqs. (2.29) and
(2.31). Vertical and radial components of the steady-state response in each case were derived in section (3.3).
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3.4.1 Vertical VRM Response from a Large Circular Transmitter Loop

Large Circular Loop on the Earth’s Surface (h = 0)

Using expressions (2.29), (3.3), and (3.18), the vertical magnetic flux density at any location (ρ < a,z = 0) at
time τ1� t� τ2, is approximately equal to:

bz(ρ,0, t)≈
µ0I
2a

(
∆χ

2+∆χ

)[
1+

9
4π

( (
ρ

a

)2

1−
(

ρ

a

)2

)]
F̄(t) (3.27)

Similarly using expressions (2.31), (3.4) and (3.18):

∂bz(ρ,0, t)
∂ t

≈ µ0I
2a

(
∆χ

2+∆χ

)[
1+

9
4π

( (
ρ

a

)2

1−
(

ρ

a

)2

)]
dF̄(t)

dt
(3.28)

According to expressions (3.27) and (3.28), the vertical VRM response is relatively consistent near the center
of the loop (ρ/a ≤ 0.5), and is inversely proportional to the transmitter loop’s radius; matching results obtained
by others (Buselli, 1982; Lee, 1984; Barsukov and Fainberg, 2001). However, as one moves out towards the edges
of the loop, the VRM response can increase in magnitude rapidly with respect to ρ . The VRM response within
a loop of radius a = 20 m can be seen in Figure 3.2. In practice, measurements of the magnetic flux density
are not performed directly on the Earth’s surface. Instead, data are typically collected at heights less than 1 m
off the ground. However, for a sufficiently large loop, with a sufficiently larger than z, we should expect similar
behaviour to the case which was just derived.

(a) (b)

Figure 3.2: Vertical VRM response for a large circular loop of radius a = 20 m on the Earth’s surface, at
radial distance ρ from the loop’s center, using properties ∆χ = 0.01, τ1 = 10−8 s and τ2 = 10 s. This
plot compares expressions (3.27) and (3.28) to values obtained using the EM1DTM code.
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Response Along the Transmitter’s Vertical Axis (ρ = 0)

Using expressions (2.29), (3.3), and (3.21), the magnetic flux density observed at time τ1� t� τ2 is:

bz(0,z, t)≈
µ0m
2π

(
∆χ

2+∆χ

)(
1

(z+h)2 +a2

)3/2

F̄(t) (3.29)

Similarly, using expressions (2.31), (3.3), and (3.21), I obtain:

∂bz(0,z, t)
∂ t

≈ µ0m
2π

(
∆χ

2+∆χ

)(
1

(z+h)2 +a2

)3/2
dF̄(t)

dt
(3.30)

According to expressions (3.29) and (3.30), the VRM response is smaller in magnitude when the size of the loop
or the size of z+h is increased. This matches analytic results and field observations made by others (Buselli, 1982;
Lee, 1984; Barsukov and Fainberg, 2001). For a� z+ h, the magnitude of the VRM response is proportional
to (z+h)−3. For z+h = 0 and m = πa2I, expressions (3.29) and (3.30) are equivalent to expressions (3.27) and
(3.28) at ρ = 0. The VRM response observed for a loop of radius a = 0.2 m is shown in Figure 3.3a.

(a) (b)

Figure 3.3: Vertical VRM response along the transmitters vertical axis of symmetry, using a radius of a= 0.2
m. Responses were predicted for several values z+ h, using properties ∆χ = 0.01, τ1 = 10−8 s and
τ2 = 10 s. Plots compare Eqs. (3.29) and (3.30) to values obtained using the EM1DTM code.
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3.4.2 Radial VRM Response from a Large Circular Loop
Using Eqs. (2.29), (3.3), and (3.26), the radial VRM response for 0 < z + h ≤ a/5 at time τ1 � t � τ2 is
approximately equal to:

Bρ(ρ,z, t)∼−
µ0I
2

(
∆χ

2+∆χ

)[
πaγ

(
1+
(

ρ−a
γ

)2
)]−1

F̄(t) (3.31)

Similarly, using expressions (2.31), (3.3) and (3.26):

∂Bρ(ρ,z, t)
∂ t

∼−µ0I
2

(
∆χ

2+∆χ

)[
πaγ

(
1+
(

ρ−a
γ

)2
)]−1

dF̄
dt

(3.32)

Expressions (3.31) and (3.32) show that near the center of the loop, the radial component of the VRM re-
sponse is small, however, the radial component of the VRM response increases signicantly as observations are
made closer to the transmitter wire. The increase in magnitude as ρ → a is more gradual as z+h increases. This
effect was observed during field observations for various SiroTEM configurations (Buselli, 1982).

The radial VRM response for a loop of radius a = 20 m was forward modeled using the EM1DTM code. The
radial VRM response was also predicted using Eqs. (3.31) and (3.32). Results using EM1DTM and empirical
functions were compared for z+h = 1 for several values ρ < a (Figures. 3.4a and 3.4b). Both approaches show
the VRM response decays proportionally to ln(t) for Bρ(t), and decays proportionally to 1/t for ∂Bρ/∂ t.

(a) (b)

Figure 3.4: Comparison between EM1DTM and empirical functions (3.31) and (3.32) for the radial VRM
response with a loop of radius a = 20 m. The response was predicted for z+h = 20 m using physical
properties ∆χ = 0.01, τ1 = 10−8 s and τ2 = 10 s. (a) Bρ(t). (b) dBρ/dt.
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3.5 Comparing Inductive and VRM Responses over a Conductive and
Magnetically Viscous Half-Space

The magnetic susceptibilities of lateritic soils are generally low (χ < 0.01) (van Dam et al., 2004, 2005; Druyts
et al., 2009); as such, the magnetic properties of lateritic soils do not have a significant impact on the induc-
tive response. Research has indicated conductivity may be neglected when considering the soil’s VRM response
(Billings et al., 2003; Das, 2006; Druyts et al., 2009). Because of this, several publications have suggested the
inductive and VRM responses from lateritic soils are approximately separable (Buselli, 1982; Das, 2006; Pasion,
2007). Here, I use the work in previous sections to compute the vertical inductive and VRM responses within a
large circular transmitter loop and compare them as a function of the loop’s radius. I assume the inductive and
VRM responses are separable and that the inductive response is given by the late time approximation found in
Nabighian (1979).

Nabighian (1979) showed that for a step-function excitation, to first-order, the quasi-static transient response
from a transmitter loop on the Earth’s surface could be approximated by a downward and outward moving current
filament which maintained the geometry of the transmitter. Additionally, he showed that after sufficient time, the
inductive response observed at locations within the loop would asymptotically approach the following expression:

bz(t)≈
Iσ3/2µ

5/2
0 a2

30
√

π
t−3/2 (3.33)

And that:
∂bz

∂ t
≈−

Iσ3/2µ
5/2
0 a2

20
√

π
t−5/2 (3.34)

where a is the loop’s radius, σ is the Earth’s conductivity and µ0 is the permeability of free space. Note that the
magnetic field and its derivative decay according to t−3/2 and t−5/2 respectively. Furthermore, the strength of the
inductive response is proportional to a2.

The ratio between the vertical inductive response b(IND)
z and the vertical VRM response b(V RM)

z within the
loop at time τ1� t� τ2, can be obtained using expressions (3.17), (3.27) and (3.33):

Rb =
b(IND)

z

b(V RM)
z

≈ ln(τ2/τ1)

15Q(ρ/a)
√

π

(
2+∆χ

∆χ

)(
t−3/2

−γ− ln(t/τ2)

)
(µ0σ)3/2a3 (3.35)

Similarly for the derivative, using expressions (3.17), (3.28) and (3.34):

Rdb/dt =
dbz/dt(IND)

dbz/dt(V RM)

≈ ln(τ2/τ1)

10Q(ρ/a)
√

π

(
2+∆χ

∆χ

)
(µ0σ)3/2a3t−3/2 (3.36)
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Figure 3.5: Lower branch of the Lambert W function W [−1,x] for values −1/e≤ x≤ 0.

We would like to know the time at which magnetic viscosity begins to dominate the vertical observed response.
This can be accomplished by solving Rb = 1 and Rdb/dt = 1 in expressions (3.35) and (3.36), respectively. For
dbz/dt, this is straightforward:

tβ ≈

[
ln(τ2/τ1)

10Q(ρ/a)
√

π

(
2+∆χ

∆χ

)]2/3

µ0σa2 (3.37)

Expression (3.37) states that by increasingly the radius of a transmitter loop, the expected time tβ at which
dbz/dt becomes dominated by the VRM response, is pushed to a later time. At the center of any loop, Q = 1 and
tβ ∝ σa2. Because tβ ∝ Q−2/3, we expect tβ to decrease as we move towards the edge of the loop. For bz(t), the
VRM response begins to dominate at time:

tα ≈ tβ

(
−W

[
−1,−

( tβ
τ2

eγ

)3/2
])−2/3

≤ tβ (3.38)

where W [−1,x] is the lower branch of the Lambert W function (Corless et al., 1996), γ = 0.5772 is the Euler
constant, and tβ is given by expression (3.37). W [−1,x] for values −1/e ≤ x ≤ 0 is shown in Figure (3.5). A
detailed derivation of Eq. (3.38), beginning at expression (3.35), can be found in Appendix B.

Expression (3.38) is rather complicated, but it does provide an explicit expression for tα . In addition, tα is
a monotonic increasing function with respect to tβ . This implies that the relationships which exist between tβ ,
a and Q(ρ/a) apply qualitatively to tα as well. From expression (3.38), I can also state that TEM instruments
which measure bz(t) are much more affected by the magnetic viscosity than instruments which measure dbz/dt.
Expression (3.38) can also be used to show that tα � tβ for tβ � τ2eγ .
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The vertical transient responses at the center of several transmitter loops of varying radii are shown in Figure
3.6, and were calculated using the EM1DTM code. tα and its corresponding value bz(t) were calculated using
expressions (2.29), (3.27), (3.33) and (3.38). tβ and its corresponding value dbz/dt were calculated using expres-
sions (2.31), (3.28), (3.34) and (3.37). Figure 3.6 confirms that tα and tβ increase with respect to a, and that tα ≤ tβ .

Now consider a single transmitter loop with fixed radius a, located on the Earth’s surface. According to Eq.
(3.17), Q increases as ρ → a. As a result, the VRM response will begin to dominate the total observed tran-
sient response at increasingly early times. We expect to see this because magnetic viscosity is known to be most
problematic at locations near the edges of the transmitter loop (Lee, 1984; Buselli, 1982; Barsukov and Fainberg,
2001). The vertical transient responses at various radial locations ρ within a transmitter loop of radius a = 20
m are shown in Figure 3.7, and were calculated using the EM1DTM code. tα and its corresponding value bz(t)

were calculated using expressions (2.29), (3.27), (3.33) and (3.38). tβ and its corresponding value dbz/dt were
calculated using expressions (2.31), (3.28), (3.34) and (3.37). Figure 3.6 confirms that tα and tβ increase with
respect to ρ , and that tα ≤ tβ .

(a) (b)
Figure 3.6: Vertical transient response at the center of a set of transmitter loops with varying radii, located

on the Earth’s surface. EM1DTM was used to predict the responses for a half-space with physical
properties: σ = 10−2 S/m, ∆χ = 0.001, τ1 = 10−8 s and τ2 = 10 s.

(a) (b)
Figure 3.7: Vertical transient response at off axis locations ρ , for a loop of radius a = 20 m, located on the

Earth’s surface. EM1DTM was used to predict the responses for a half-space with physical properties:
σ = 10−2 S/m, ∆χ = 0.001, τ1 = 10−8 s and τ2 = 10 s.
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Figures 3.6 and 3.7 demonstrate how Eqs. (3.37) and (3.38) can be used to predict the critical times (dashed
lines) at which bz(t) and ∂bz/∂ t within the loop become dominated by the VRM response. Provided that a-priori
information is supplied regarding the Earth’s physical properties, Eqs. (3.35) through (3.38) have several practical
applications. For example, Eqs. (3.35) and (3.36) can be used to approximate the loop size which renders the
VRM response negligible over a specified range of time channels. This may assist in preliminary aspects of survey
design. Meanwhile, Eqs. (3.37) and (3.38) can be used to indicate whether an increasingly shallow rate of decay
during the late-time response may be attributed to a deeply buried conductor or viscous remanent magnetization.

3.6 Summary
In this chapter, I derived and tested simplified expressions for the transient VRM response, generated by a large
circular loop over a conductive and magnetically viscous half-space. This was accomplished by solving integral
equations representing the steady-state magnetic response, and using after-effect functions derived by Néel (1949)
for a collection of non-interacting SP grains. Analytic expressions were then verified using the UBC EM1DTM
forward modeling code.

According to the derivations performed in this chapter, both the vertical and radial components of the VRM
response vary minimally near the center of the loop; with the vertical component being proportional to 1/a. The
results conclude that observed VRM responses are larger near the transmitter wire, larger for smaller transmitter
loops, and lower when observations are made further above the ground; these conclusions are consistent with
various field observations and numerical modeling results (Buselli, 1982; Barsukov and Fainberg, 2001; Billings
et al., 2003; Pasion, 2007; Kozhevnikov and Antonov, 2008; Zadorozhnaya et al., 2012). By deriving expressions
for the radial component of the VRM response, we can better understand the impact of magnetic viscosity on
TEM instruments which collect 3-component data about a large transmitter loop. Analytic expressions show that
magnetic viscosity begins to affect the magnetic ux density b(t) at much earlier times than its time derivative
db/dt. For db/dt, the time at which the VRM response begins to dominate the response is ∝ a2; the equivalent
expression for b(t) is more complicated. As a first pass, expressions derived in this chapter provide an intuitive
understanding of the VRM response and how it depends on the survey geometry. Unfortunately, the derived
expressions are not applicable in geological environments where the soil’s magnetic properties show significant
spatial variation. As a result, I construct a model for predicting the VRM responses from three-dimensional bodies
in Chapter 4.
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Chapter 4

Modeling the VRM Response in 3D

4.1 Introduction
Models for predicting the anomalous field outside a magnetized body have been researched for over half a cen-
tury. Rapid computation of the anomalous field can be performed by discretizing the body into a finite set of
volumes (or cells), each with its own uniform magnetization. By assuming magnetizations within nearby cells do
not impact one another, the anomalous field can be expressed as the vector sum of all individual contributions;
which can be represented using a linear system (Sharma, 1966; Rao and Babu, 1993; Varga et al., 1996; Fournier,
2015).

In this chapter, I present a linear forward modeling scheme for predicting the off-time VRM response from
three-dimensional bodies. The Earth’s subsurface is discretized into a set of rectangular prisms with homogenous
physical properties. If the characteristic decay of the response is known, the forward model may be written com-
pactly, and the VRM response does not need to be predicted independently at each time. For viscous remanent
magnetization to be uniform within each cell, I assume the on-time inducing field throughout each cell is approx-
imately equal its value at the cell’s center. For cells which are close to the transmitter, I introduce an algorithm
for refining geometric sensitivities; thus providing an increase in numerical accuracy. Convergence of the forward
model as a function of the level of refinement is examined. The forward modeling code (called VRM3D) is val-
idated using EM1DTM. Given that the off-time inductive and VRM responses are approximately separable, the
output from the VRM3D code can be added to that of a 3D TEM code to predict the response from a conductive
and magnetically viscous Earth.

4.2 Forward Model for VRM Responses from 3D Objects

4.2.1 VRM Response from a Magnetized Body
In Section 2.5 I established that EM and VRM responses during the off-time are approximately separable, and
that VRM responses could be predicted using a purely viscous Earth. In Section 3.2, I presented an integral ex-
pression for predicting the anomalous magnetic field outside a region exhibiting viscous remanent magnetization.
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According to Eq. (3.3), the VRM response~b(P, t), at location P, due to viscous remanent magnetization at Q is
(Blakely, 1996):

~b(P, t) =
µ0

4π

∫
V

∇∇
1
r
· ~M(Q, t)dV (4.1)

where
r =

√(
xP− xQ

)2
+
(
yP− yQ

)2
+
(
zP− zQ

)2 (4.2)

and ~M(Q, t) represents the viscous remanent magnetization within the source region.

For a rectangular prism, Bhattacharyya (1964) was able to provide an analytic solution to the integral in Eq.
(4.1); provided the magnetization within the volume is homogeneous. A more pleasant form of this solution may
be found in Varga (1996). If this condition is satisfied, Eq. (4.1) can be expressed as a linear system:

~b(t) = G · ~M(t) (4.3)

where

~b(P, t) =

bx(P, t)

by(P, t)

bz(P, t)

 , ~M(t) =

Mx(t)

My(t)

Mz(t)

 and G =

gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

 (4.4)

G is a 3× 3 tensor representing a linear operator between the magnetization of the cell, and the anomalous
VRM response at location P. G is a symmetric matrix with gxx + gyy + gzz = 0. Therefore, G only has 5 unique
entries. From Eq. (4.3) the components of~b(P, t) may be expressed as:

bx(P, t) = gxxMx(t)+gxyMy(t)+gxzMz(t) (4.5)

by(P, t) = gyxMx(t)+gyyMy(t)+gyzMz(t) (4.6)

bz(P, t) = gzxMx(t)+gzyMy(t)+gzzMz(t) (4.7)

Now consider a discrete set of K uniformly magnetized rectangular volumes. By assuming magnetizations
within nearby cells do not impact one another, the total anomalous field can be expressed as a sum of the individual
contributions (Sharma, 1966):

~b(P, t) =
K

∑
k=1

Gk · ~Mk(t) (4.8)

From Eq. (4.8), the x̂ component bx(P, t) can be expressed as:

bx(P, t) =
[
g1

xx . . .g
K
xx g1

xy . . .g
K
xy g1

xz . . .g
K
xz

]Mx(t)

My(t)

Mz(t)

 (4.9)
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where

Mx(t) =


M1

x (t)
...

MK
x (t)

 , My(t) =


M1

y (t)
...

MK
y (t)

 and Mz(t) =


M1

z (t)
...

MK
z (t)

 (4.10)

Similar expressions can be shown for by(P, t) and bz(P, t). In practice, the anomalous magnetic field generated
by a magnetized body is measured at multiple locations. For N locations, the x̂, ŷ and ẑ components of the
anomalous field can be organized as:

bx(t) =


bx(P1, t)

...
bx(PN , t)

 , by(t) =


by(P1, t)

...
by(PN , t)

 and bz(t) =


bz(P1, t)

...
bz(PN , t)

 (4.11)

Each of the vectors in Eq. (4.11) are obtained by applying a linear operation to an identical vector. Therefore,
I can define the following compact system:

b(t) = G ~M(t) (4.12)

where

b(t) =

bx(t)

by(t)

bz(t)

 , ~M(t) =

Mx(t)

My(t)

Mz(t)

 and G =

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

 (4.13)

b(t) is a column vector of length 3N, ~M(t) is a column vector of length 3K, and G is a 3N×3K matrix whose
rows are created according to Eq. (4.9). Note that G is independent of time. If the anomalous ∂~b(t)/∂ t response
is being measured, I can simply take the derivative of Eq. (4.12).

∂

∂ t
b(t) = G

d ~M(t)
dt

(4.14)

where d ~M(t)/dt contains cartesian components of the time-dependent rate of decay for each cell.

4.2.2 Parameterizing the VRM Response Using the Amalgamated Magnetic Parameter
From Sections 2.3.3, 2.3.4 and 2.3.5, I showed that viscous remanent magnetization during the off-time could be
expressed in terms of an after-effect function:

~M(t) = ∆χ ~H F(t) (4.15)

where ∆χ is the zero-frequency magnetic susceptibility of all superparamagnetic grains and F(t) is the after-effect
function. ~H represents the primary field at its maximum amplitude during the on-time. ~H was defined in Chapter
2 as ~H0 for step-off and square-pulse excitations and defined as ~Hmax for an arbitrary waveform excitation. ~H can
be split into cartesian components such that:

~H =

Hx

Hy

Hz

 (4.16)
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In Section 2.4, I proposed an amalgamated magnetic property to represent the magnetic viscosity of a sample.
This property characterizes the time-dependent magnetic relaxation during the off-time. It can also be obtained
using dual-frequency magnetic susceptibility measurements. According to Eq. (2.58), the amalgamated magnetic
property for each cell is:

m =
∆χ

ln(τ2/τ1)
(4.17)

where τ1 and τ2 are finite limits for a log-uniform distribution of time-relaxation constants, which character-
ize a collection of superparamagnetic grains. According to expressions from Sections 2.3.3, 2.3.4 and 2.3.5, if
observations are made a τ1� t� τ2:

~M(t)≈−m ~H ln(t)+
∆χ ~H

ln(τ2/τ1)

[
− γ + ln(τ2)

]
for Step-Off Excitation (4.18)

~M(t)≈ m ~H ln

(
1+

∆t
t

)
for Square-Pulse Excitation (4.19)

~M(t)≈ m ~H
L

∑
`=1

g
([

1/2− `
]
∆t
)

ln

(
1+

∆t
t +(`−1)∆t

)
for an Arbitrary Waveform (4.20)

d ~M(t)
dt

≈−m ~H
1
t

for Step-Off Excitation (4.21)

d ~M(t)
dt

≈−m ~H

[
1
t
− 1

t +∆t

]
for Square-Pulse Excitation (4.22)

d ~M(t)
dt

≈−m ~H
L

∑
`=1

g
([

1/2− `
]
∆t
)[ 1

t +(`−1)∆t
− 1

t + `∆t

]
for an Arbitrary Waveform (4.23)

where γ ≈ 0.5772 is the Euler constant and ∆t is the square-pulse width. g(t) = I(t)/Imax was defined by Eq.
(2.51), and represents a function based on on-time current within the transmitter. For square-pulse excitation, I
also require that ∆t � τ2. And for an arbitrary inducing field, I require the total time-length of the waveform
λ � τ2. Unfortunately, the magnetization to step-off excitation cannot be parameterized solely in terms of the
amalgamated magnetic parameter, and requires an additional term. For the remaining expressions however, ~M(t)

or d ~M(t)/dt can be predicted at τ1� t� τ2 if m and the properties of the inducing field are known.

Now consider the off-time magnetization ~M(t) experienced by all cells at time τ1 � t � τ2. Because mag-
netization is parallel to the inducing field, each component of the magnetization is separable. For square-pulse
excitation, Eq. (4.19) can be adapted to show that:

Mx(t) = Hx ·m ln
(

1+∆t/t
)

(4.24)

My(t) = Hy ·m ln
(

1+∆t/t
)

(4.25)

Mz(t) = Hz ·m ln
(

1+∆t/t
)

(4.26)
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where

Hx =


H1

x
. . .

HK
x

 , Hy =


H1

y
. . .

HK
y

 , Hz =


H1

z
. . .

HK
z

 , and m =


m1
...

mK

 (4.27)

Vector m represents the amalgamated magnetic parameter for all cells. Hx, Hy, and Hz are diagonal K×K

matricies. They contain the x̂, ŷ and ẑ components of the maximum amplitude on-time field at the cell centers,
respectively. ~M(t) can be obtained using expressions (4.24) through (4.27):

~M(t) = Hm ln
(

1+∆t/t
)

(4.28)

where

H =

Hx

Hy

Hz

 (4.29)

Substituting Eq. (4.28) into Eq. (4.12), b(t) for square-pulse excitation is given by:

b(t) = GHm ln
(

1+∆t/t
)

(4.30)

By the same approach, the time-dependent rate of decay for square-pulse excitation is given by:

∂

∂ t
b(t) =−GHm

[
1
t
− 1

t +∆t

]
(4.31)

And for an arbitrary waveform, b(t) is given by:

b(t) = GHm

[
L

∑
`=1

g
([

1/2− `
]
∆t
)

ln

(
1+

∆t
t +(`−1)∆t

)]
(4.32)

Notice that Eqs. (4.30), (4.31) and (4.32) are obtained by scaling the product of GHm by a purely time-
dependent function. Regardless of whether b(t) or ∂b/∂ t are being predicted, the same approach may be applied
for any waveform. The time-dependent function which scales GHm in each case depends on the waveform.
This function, which I define using η(t), will be referred to as the characteristic decay function; for example,
η(t) = ln

(
1+∆t/t

)
in Eq. (4.30). As a result, the off-time VRM response for any waveform can be expressed as

follows:
d(t) = η(t)GHm (4.33)

where d(t) represents either b(t) or ∂b/∂ t at time τ2� t� τ2. Where N is the number of observation locations,
the product of GHm is a vector of length 3N.
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We may be interested in predicting data for multiple times. For M time channels, I define the following vector:

η =


η(t1)

...
η(tM)

 , (4.34)

where η contains evaluations of the characteristic decay function at discrete times. To predict the VRM response
at all location and at all times, I simply need to multiply each of the elements within vector GHm by the elements
within vector η ; resulting in 3MN values which must be organized appropriately into a final data vector. Thus,
only a single evaluation of GHm is required, regardless of the number of measurement times. By introducing a
linear operator T, the final predicted data vector may be expressed as:

d = TGHm (4.35)

where d is a vector of length 3MN which contains the predicted VRM response at all locations and at all times. T
is called the characteristic decay matrix and has dimensions 3MN×3N. T is sparse, and populated by elements
from vector η . The structure of T depends on the desired ordering of elements within d. I have chosen to organize
d as follows:

d =

dx

dy

dz

 , dx =


d1

x
...

dN
x

 , and d1
x =


d1

x (t1)
...

d1
x (tM)

 (4.36)

In this case, matrix T is formed by the following Kronecker product:

T = I3N⊗η (4.37)

where I3N is the 3N× 3N identity matrix, and η is defined by Eq. (4.34). The final expression for the forward
model is obtained by combining G and H into a single matrix A; which contains all geometric information related
to the forward problem. Thus:

d = TGHm = TAm (4.38)

A is called the geometric sensitivity matrix, and has dimension 3N×K; where N is the number of observation
locations and K is the number of cells. Because H is sparse, explicit generation of A is computationally fast.
According to Eq. (4.38), the final data vector is obtained by applying a sparse matrix T to the product of Am.
Although A is a dense matrix, its dimensions do not depend on the number of observation times. Therefore, the
computational expense and memory requirements for the forward model do not increase noticeably as the number
of observation times is increased.

4.3 Refinement of the Geometry Sensitivity Matrix
For sufficient numerical accuracy, the inducing field within each cell must be approximately equal to the value at
the cell’s center. For cells in proximity to a controlled source, this condition is violated. Numerical error can be
reduced by further discretizing the mesh near the transmitter. However, the forward problem becomes more com-
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putationally expensive by doing so. In this section, I propose an algorithm for improving the numerical accuracy
without increasing the size of the model space. This is accomplished by flagging cells which are sufficiently close
to the transmitter, then replacing their pre-existing geometric sensitivities by a better approximation.

4.3.1 Refinement of Geometric Sensitivities

Improved Approximation of Geometric Sensitivities using Subvolumes

Consider Eq. (4.1) for a single cubic cell with homogenous physical properties; this cell is denoted by k in Figure
4.1a. By using Eq. (4.15) to represent the off-time viscous remanent magnetization within the cell, the VRM
response at location P and time t is:

~b(P, t) =
µ0

4π

[∫
V

∇∇
1
r
· ~H(Q) dV

]
∆χF(t) (4.39)

where ∆χ is the zero-frequency magnetic susceptibility for all superparamagnetic grains, F(t) is the after-effect
function, and:

r =
√(

xP− xQ
)2

+
(
yP− yQ

)2
+
(
zP− zQ

)2 (4.40)

For this section, ~H(Q) is called the inducing field. For step-off or square-pulse excitation, ~H(Q) is the on-time
field. For an arbitrary waveform approximated by a discrete set of square pulses, ~H(Q) represents the inducing
field at its maximum amplitude.

In section 4.2.2, I assumed the inducing field throughout the cell was equal to the inducing field at the cell’s
center. This led to an approximation of the VRM response which was expressed as a linear system. According to
Eq. (4.3):

~b(P, t)≈
[
G · ~H

]
∆χF(t) =~a ∆χF(t) (4.41)

where

~b(P, t) =

bx(P, t)

by(P, t)

bz(P, t)

 , G =

gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

 , ~H =

Hx

Hy

Hz

 and ~a =

ax

ay

az

 (4.42)

Hx, Hy and Hz are cartesian components of the inducing field at the cell’s center, and G can be obtained from
Bhattacharyya (1964). The approximate geometric sensitivities relating the cell to observation location P are rep-
resented by elements ax, ay and az; true geometric sensitivities would require an analytic solution to the integral
in Eq. (4.39). For a collection of cells, and for multiple observation locations, ax, ay and az ultimately represent
three of the vectorial elements which comprise the geometric sensitivity matrix A.

Let us now consider what happens if I divide the cell into J = 23λ equivalent subvolumes (Figure 4.1b). I refer
to λ as the refinement factor; where λ = 0, 1, 2 ... has integer values. If the cubic cell is given a side length of h,
then each subvolume within the cell has a side length of h/2λ . From this, I may re-express Eq. (4.39) as a sum
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over all subvolumes:

~b(P, t) =
µ0

4π

[
J

∑
j=1

∫
V j

∇∇
1
r
· ~H(Q) dV

]
∆χF(t) (4.43)

where Vj is the volume of subvolume j. If I assume the inducing field is approximately homogeneous throughout
each subvolume, but not necessarily throughout the cell, then:

~b(P, t)≈

[
J

∑
j=1

G j · ~H j

]
∆χF(t) =

[
J

∑
j=1

~a j

]
∆χF(t) (4.44)

where ~H j contains cartesian components of the inducing field at the center of subvolume j, and G j can be con-
structed according in Bhattacharyya (1964). Elements within ~a j contain the approximate geometric sensitivities
associated with subvolume j. Eq. (4.44) is analogous to a mid-point Riemann sum for the integral in Eq. (4.39).
Therefore, I expect Eq. (4.44) to offer a better approximation of the cell’s geometric sensitivities than Eq. (4.41);
which only uses one point.

Now consider the forward model derived in section 4.2. According to Eq. (4.38), the forward model is
expressed as:

d = TAm (4.45)

where d is the final data vector, T is the characteristic decay matrix, m is the model, and A is known as the
geometric sensitivity matrix. For K cells and N observation locations, A has dimensions 3N×K. The approximate
geometric sensitivities for cell k comprise the kth column of A; which I will denote as ak. For cell k (Figure 4.1a),

(a) (b)

Figure 4.1: (a) Top view of survey geometry with cell k outlined. The geometric sensitivities of all data
to cell k are contained in the kth column of A; which is denoted by ak. (b) Subdivision of cell k into
J = 23λ equal subvolumes. Each subvolume Vj has a vector of geometric sensitivities ak,j which can be
summed to obtain a better approximation of ak.
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located near a controlled source, I may decide the approximate geometric sensitivities ak are insufficient. In that
case, cell k is divided into J = 23λ equivalent subvolumes. I let ak,j denote the approximate geometric sensitivities
for subvolume j within cell k. Vector ak,j can be generated in the exact same manner as ak; except now, a different
volume and on-time field are being used. To improve the approximation of the geometric sensitivities for cell k,
the kth column of A simply needs to be replaced by:

ak =
J

∑
j=1

ak,j (4.46)

Thus, to generate the final geometric sensitivity matrix for the forward problem, I propose the following
approach. First, an initial geometric sensitivity matrix A is constructed according to theory presented in section
4.2. Cells which are too close to the transmitter wire are each divided into J = 23λ subvolumes. A method for
locating these cells is discussed in the following section. For all cells which must be subdivided, and for all
subvolumes within these cells, vectors ak,j are generated. For each of these cells, Eq. (4.46) is used to generate an
improved approximation of the geometric sensitivities. The new approximate sensitivities are then used to replace
pre-existing columns within A. Although the approach does not increase the model space, additional memory is
required to store vectors ak,j for each subvolume.

Locating Cells Near the Transmitter

Consider a controlled source which may be constructed using a set of straight wire segments. For a single segment,
with end points (x1,y1,z1) and (x2,y2,z2), I define the following parametric equation for a line:x

y

z

=

x2− x1

y2− y1

z2− z1

s+

x1

y1

z1

 (4.47)

where s is defined over the entire real axis. Note that s ∈ [0,1] is used to represent locations lying along the wire
segment. Now consider a cell whose center lies at (xc,yc,zc). If the cell’s center is within distance D from the line
defined by Eq. (4.47), then there exists two points in which (Figure 4.2):

D2 =
(
sx2 +(1− s)x1− xc

)2
+
(
sy2 +(1− s)y1− yc

)2
+
(
sz2 +(1− s)z1− zc

)2 (4.48)

We can see from Figure 4.2, that one of the points which lies distance D from (xc,yc,zc) also lies along the
transmitter segment; with some locations along the transmitter segment lying closer than D. This corresponds to
a value of s ∈ [0,1]. Thus, the geometric sensitivities of this cell should be replaced. I can re-express Eq. (4.48)
as a quadratic equation in terms of s:

As2 +Bs+C = 0 (4.49)
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where

A = (x2− x1)
2 +(y2− y1)

2 +(z2− z1)
2 (4.50)

B = 2(x2− x1)(x1− xc)+2(y2− y1)(y1− yc)+2(z2− z1)(z1− zc) (4.51)

C = (x1− xc)
2 +(y1− yc)

2 +(z1− zc)
2−D2 (4.52)

The solution to Eq. (4.49) is:

s± =
−B±

√
B2−4AC

2A
(4.53)

which provides two values, s− and s+. Evaluation of Eq. (4.53) for a given cell can result in one of four cases:

Case 1: {s+,s−} ∈ R with s− or s+ ∈ [0,1]

Case 2: {s+,s−} ∈ R with s− < 0 and 1 < s+

Case 3: {s+,s−} ∈ R with s−,s+ < 0 or s−,s+ > 1

Case 4: {s+,s−} ∈ C

(4.54)

For case 1, there is at least one location along the wire segment which is distance D from (xc,yc,zc). This is
shown in Figure 4.2. For case 2, all locations along the transmitter segment (represented by s∈ [0,1]) are less than
distance D from (xc,yc,zc). This only occurs if the transmitter segment is shorter than D. For case 3, (xc,yc,zc)

is sufficiently close to the parametric line, but not the transmitter segment. And for case 4, there are no locations
along the parametric line that are distance D from (xc,yc,zc); implying there are no locations along the transmitter
segment. Therefore, if cases 1 or 2 are satisfied for a given cell, the sensitivities are replaced in matrix A.

Figure 4.2: Geometry for determining cell centers which lie within distance D of a given transmitter segment
(red region). These cell centers will have exactly 2 locations along the parametric line which are at
distance D.
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For each wire segment comprising the transmitter, Eq. (4.53) is used to identify cells which are in sufficiently
close proximity. Eq. (4.46) then computes a new set of geometric sensitivities for each cell. These geometric
sensitivities are then used to replace columns in A. To limit computer memory requirements, this three step
process is performed independently for each wire segment. However, book-keeping is done to ensure redundant
computations are not performed for cells which lie sufficiently close to multiple wire segments.

Geometric Sensitivity Refinement Algorithm

When predicting the VRM response for synthetic cases, I may want to apply decreasing levels of refinement
λ1 > λ2 > λ3 > ... at increasing distances D1 < D2 < D3 < ... from the transmitter. To accomplish this, the
algorithm performs a set of operations independently for each wire segment. Book-keeping is done to ensure
redundant calculations are not performed on cells whose sensitivities have already been replaced by a better
approximation. For a given wire segment, cells within distance D1 are found by computing s±. Each of these
cells are divided into 23λ1 subvolumes. Eq. (4.46) is then used to better approximate the geometric sensitivities
ak for these cells; which are used to replaced pre-existing columns within A. This process is then repeated for
D2, D3, and so forth, before moving on to the next wire segment. The algorithm for generating and refining A is
illustrated below.

Algorithm 1 Refinement of Geometric Sensitivities

Require: λ1 > λ2 > λ3 > ... and D1 < D2 < D3 < ...
- Generate initial A matrix
for all transmitter segments do

for n = 1,2,3, ... do
- Compute s± for all cells using distance Dn
for all cells satisfying cases 1 or 2 in Eq. (4.54) and not already refined using some factor λ ≥ λn do

- Approximate geometric sensitivities ak vectors using 23λn subvolumes
- Replace the appropriate columns within A

end for
end for

end for

4.3.2 Convergence of the Sensitivity Refinement Algorithm
For cells located near a controlled source, the sensitivity refinement algorithm presented in section 4.3.1 can be
used to minimize associated numerical errors. In this section, a homogeneous block is used to examine the conver-
gence of the VRM3D code as a function of the refinement factor. Results can be used to determine the refinement
needed to accurately predict VRM responses using synthetic models.

The sensitivity of predicted data to the geometry of the forward problem is contained in A; whereas the
characteristic decay of the response is contained in T. Thus for the off-time VRM response, convergence of the
forward model depends on convergence of the following vector:

v = Am (4.55)
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Figure 4.3: Illustration showing a magnetically viscous block located along the edge of a square transmitter
loop. For the test problem, the block has a side length of 2 m, and the transmitter loop is given a side
length of 40 m.

where A is the geometric sensitivity matrix and m is the model. Let vλ be the vector predicted using mesh
refinement p, and let vt represent an analytic solution to the problem. The errors ελ associated with vλ are
defined by:

vλ = vt + ε
λ (4.56)

Because an analytic solution does not exist for the test problem, I cannot directly show that vλ converges to vt

as λ → ∞. Instead, I define the following vector:

uλ = vλ −vλ−1 = ε
λ − ε

λ−1 (4.57)

where uλ is a relative difference in errors for the current refinement factor λ and the previous one λ − 1. From
Eq. (4.57), I assume that as λ → ∞, vλ approaches the analytic solution; or at the very least, ελ converges to
something sufficiently small. In either case:

lim
λ→∞

uλ =~0 (4.58)

where ~0 is a column vector of all zeros. Convergence of the numerical solution is therefore inferred when the
elements of u are sufficiently small. Another way to quantify this is by taking the various norms of u for increasing
values of λ . For refinement factor λ , I define the L1, L2 and L∞ norms of u as follows:

∥∥uλ
∥∥

1 =
∥∥vλ −vλ−1∥∥

1 =
N

∑
i=1

∣∣∣vλ
i − vλ−1

i

∣∣∣ (4.59)

∥∥uλ
∥∥

2 =
∥∥vλ −vλ−1∥∥

2 =

[
N

∑
i=1

∣∣∣vλ
i − vλ−1

i

∣∣∣2]1/2

(4.60)

∥∥uλ
∥∥

∞
=
∥∥vλ −vλ−1∥∥

∞
= max

i

{∣∣∣vλ
i − vλ−1

i

∣∣∣} (4.61)

where i refers to an element within vλ , and N is the total number of elements. From Eq. (4.59), the L1 norm
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represents the average amount in which elements within v are changing as λ is increased. And according to Eq.
(4.61), the L∞ norm represents the maximum change in any element.

The product of Am in Eq. (4.55) may split into 3 vectors:

v =

vx

vy

vz

 (4.62)

where vx, vy and vz are vectors associated with each cartesian component of the VRM response. For the analysis,
Eqs. (4.58), (4.59), (4.60) and (4.61) are used to observe the convergence of each component separately.

To test the convergence of the forward problem, a square transmitter loop of side length 40 m, centered at the
origin, was placed on the Earth’s surface. A magnetically viscous cube of side length 2 m, centered at (X,Y,Z) =
(-19 m, 1 m , -1 m), was then placed in proximity of the transmitter. This test problem represents a worst case
scenario, given that one of the edges of the cube is actually touching the transmitter wire (Figure 4.3). Magnetic
properties: ∆χ = 0.05, τ1 = 10−6 s and τ2 = 1 s were given to the cube. Using increasingly large refinement
factors, vx, vy and vz were predicted at N = 3721 locations near the cube, at a height 0.5 m above the ground.
The refinement factors and subsequent number of subvolumes within the block are shown in Table 4.1. The side
length of each subvolume is given by h/2λ .

λ h/2λ # Subvolumes
0 2 m 1
1 1 m 8
2 0.5 m 64
3 0.25 m 512
4 0.125 m 4,096
5 0.0625 m 32,768

Table 4.1: Table showing the refinement factors λ , subvolume widths, and the total number of subvolumes
for the convergence test.

For λ = 0, λ = 3 and λ = 5, vx, vy and vz are shown in Figure 4.4. As λ was increased from 0 (no refine-
ment) to 3, v began to generate a more compact anomaly. In addition, the maximum amplitudes of vx, vy and vz

increased. For vx, the region of maximum amplitude began to align itself along the path of the transmitter wire.
This makes sense given that magnetization should be strongest in proximity of the wire. Similar behaviours can be
seen for vy and vz. For λ > 3, the overall shape of the v anomaly did not change significantly as λ was increased;
however, differences were still measurable in certain locations. In Figure 4.5, ux, uy and uz are shown for λ =
4. Within 0.5 m of the transmitter wire, I see that elements within vx, vy and vz are changing as λ is increased;
whereas outside this area, changes are minimal. This implies that subvolumes adjacent to the wire are not small
enough to accurately characterize the inducing field within the block. However, because the anomaly at sufficient
distance from the wire is less impacted by these subvolumes, the associated error is reduced. The L1, L2 and L∞
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(a) vx for h/2λ = 2 m (b) vx for h/2λ = 0.25 m (c) vx for h/2λ = 0.0625 m

(d) vy for h/2λ = 2 m (e) vy for h/2λ = 0.25 m (f) vy for h/2λ = 0.0625 m

(g) vz for h/2λ = 2 m (h) vz for h/2λ = 0.25 m (i) vz for h/2λ = 0.0625 m

Figure 4.4: vx, vy and vz at height 0.5 m above the ground for λ = 0, λ = 3 and λ = 5. A dashed line is used
to outline the margins of a block with side length 2 m. A solid line is used to represent the path of the
transmitter wire. The subvolumes width is given by h/2λ .
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(a) ux for λ = 4 (b) uy for λ = 4 (c) uz for λ = 4

Figure 4.5: ux, uy and uz for λ = 4. A dashed line is used to outline the margins of a block with side length
2 m. A solid line is used to represent the path of the transmitter wire. This figure shows that v changes
most near the transmitter wire as λ is increased. Away from the transmitter, changes are minimal.

(a) (b) (c)

Figure 4.6: Convergence of u in L1, L2 and L∞ norms, as a function of the mesh refinement factor λ . For the
L1 and L2 norms, values were normalized by the total number of elements in ux, uy and uz, respectively.

norms of ux, uy and uz, as a function of λ , are shown in Figure 4.6. The L1 and L2 norms were normalized by the
total number of elements in ux, uy and uz, respectively. When the side length of subvolumes was decreased by a
factor of 2, ux, uy and uz decreased by a factor of 2 in all three norms; indicating convergences of order O(h).

By examining Figures 4.4 and 4.5, I determined that if observations were made at least 0.5 m from the wire,
using λ = 4 instead of λ = 3 would change the elements in v by at most 10 %. Improved accuracy can be obtained
by using a higher mesh refinement factor, however, the problem becomes much more computationally intensive
for λ ≥ 4; especially if the number of cells being refined is sufficiently large. As a result of the analysis, I suggest
a subvolume width of 0.25 m be used on all cells which are touching the transmitter wire. For cells with a side
width of 2 m, this is obtained using a mesh refinement factor of λ = 3.
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4.4 Validation of the Forward Modeling Scheme Against EM1DTM
Here, the VRM3D code is validated against the UBC EM1DTM code. For comparison, a square transmitter loop
of side length 30 m was placed on the Earth’s surface. The ∂~b(t)/∂ t response for step-off excitation was then
modeled using a magnetically viscous layer. This layer was extended from the surface to a maximum depth of 6
m and given physical properties: ∆χ = 0.05, τ1 = 10−6 s and τ2 = 1 s. A cell size of 2 m was used to discretize
the layer. Cells within 2 m of the transmitter wire were assigned a mesh refinement factor of λ = 3; resulting in
a subvolume width of 0.25 m. The adjacent layer of cells was given a mesh refinement factor of 2, followed by a
refinement factor of 1 for the 3rd layer of cells.

A comparison between responses predicted using each code can be seen in Figure 4.7a. For τ1� t� τ2, both
codes showed excellent agreement. As expected, the VRM3D code was unable to accurately predict the response
at very early or very late times, and overestimates the response. This is due to the approximation of the rate of
decay for the VRM response. Therefore, the VRM3D code is limited by the range of time relaxation constants
which characterize the magnetic viscosity.

(a)

(b)

Figure 4.7: (a) Comparison between EM1DTM and VRM3D for a magnetically viscous layer at X = -10 m,
Y = 10 m and Z = 1 m. The layer was extended 6 m below the Earth’s surface and was given physical
properties ∆χ = 0.05, τ1 = 10−6 s and τ2 = 1 s. Codes show good agreement for τ1� t� τ2. VRM3D
overestimates the response at very early and very late times. (b) Floor uncertainty value for comparison
at 1 ms. Plot shows the magnitude of the horizontal component of the response, sorted by size. ε f loor =
1.818 nT/s is the threshold value for the smallest 2%.
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(a) ∂bx/∂ t at t = 1 ms using EM1DTM (b) ∂bx/∂ t at t = 1 ms using VRM3D (c) Misfit for ∂bx/∂ t at t = 1 ms

(d) ∂by/∂ t at t = 1 ms using EM1DTM (e) ∂by/∂ t at t = 1 ms using VRM3D (f) Misfit for ∂by/∂ t at t = 1 ms

(g) ∂bz/∂ t at t = 1 ms using EM1DTM (h) ∂bz/∂ t at t = 1 ms using VRM3D (i) Misfit for ∂bz/∂ t at t = 1 ms

Figure 4.8: Components of ∂~b/∂ t at t = 1 ms, predicted by both the EM1DTM and VRM3D codes. Also
included are the relative data misfits for each component according to Eq. (4.63). Uncertainties were
determined by using a 2 % error on data predicted by the EM1DTM code, and a floor of ε f loor = 1.818
nT/s.
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To compare the relative data misfit between the VRM3D and EM1DTM codes, data were predicted at t = 1 ms,
1 m above the ground, using 0.5 m spacing within X ∈ [-25 m, 25 m] and Y ∈ [-25 m, 25 m]. For the numerical
experiment, the relative data misfit for datum i was defined by:

φi =
d(1D)

i − d(3D)
i

εi
(4.63)

where d(1D)
i represents a datum predicted by EM1DTM, d(3D)

i represents a datum predicted by VRM3D, and εi is
the uncertainty value for datum i. The uncertainty for datum i is defined by the following expression:

εi =C
∣∣d(1D)

i

∣∣+ ε f loor (4.64)

where 0≤C ≤ 1 is a fractional percent, and ε f loor is a floor uncertainty value. Using EM1DTM, the floor uncer-
tainty was obtained by calculating the magnitude of the total horizontal response

(
=
√
|∂Bx/∂ t|2 + |∂By/∂ t|2

)
.

ε f loor is the threshold value for the smallest 2%, and is equal to 1.818 nT/s (Figure 4.7b). C = 0.02 was used to
represent a percent error of 2%. Thus, if data predicted using the EM1DTM and VRM3D codes vary by 2%, I
expect the associated data misfit to provide values of φi = ±1. For misfit values which lie within φi ∈ (−1,1),
VRM3D was able to predicted the VRM response within a 2% error.

Figure 4.8 shows predicted data at 1 ms using each code, as well as the data misfits at all locations. When
compared to EM1DTM, the VRM3D code appears to underestimate the magnitude of the VRM response slightly.
For reasons demonstrated in Section 4.3.2, the areas of largest misfit are near the transmitter wire. However, as
long as the response is being predicted at least 2 m from the transmitter wire, the uncertainty will fall within± 0.5.
Therefore, the VRM3D code is capable of accurately predicting the VRM response at practically all locations.

4.5 Summary
In this chapter, I presented a linear forward modeling scheme for predicting the VRM response from three dimen-
sional bodies. This was accomplished by summing the contributions made by a discrete set of homogeneously
magnetized rectangular cells. By approximating the characteristic decay of the VRM response, I was able to pre-
dict the off-time VRM response using a compact linear system. I showed that an increase in numerical accuracy
could be obtained using a geometric sensitivity refinement strategy which does not increase the size of the model
space. Numerical tests showed excellent agreement between EM1DTM and VRM3D, so long as observations
are made over an appropriate interval of times. Now that I have constructed a forward model for predicting the
VRM response, I can turn my attention towards recovering the distribution of magnetically viscous bodies through
geophysical inversion.
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Chapter 5

Inverting VRM Data

5.1 Introduction
Inversion has becomes an important tool for solving many geophysical problems. Using this technique, the dis-
tribution of physical properties characterizing a geological region can be obtained from a set of TEM survey
measurements. If required, the recovered physical property distribution can then be used to predict the Earth’s
TEM response at other locations or time channels. In this thesis, I develop an inversion methodology for the off-
time VRM response for two reasons. First, I am interested in recovering the distribution of magnetically viscous
materials within a lateritic topsoil. More importantly however, I am interested in using the predicted data from a
recovered model to remove the contaminating VRM signal from a set of TEM data.

Following the work of Tikhonov and Arsenin (1977), I formulate the VRM inversion as a regularized least-
squares (RLSQ) optimization problem. The inversion methodology is then used to recover the amalgamated
magnetic property distribution for a viscous topsoil. Here, I assume that data being inverted are at sufficiently late
times, and that I may the neglect any contribution by the Earth’s inductive response. The inversion methodology
is tested for several transmitter-receiver configurations. Finally, I describe a workflow for removing the VRM
signal from a set of TEM data.

5.2 Least-Squares Inversion Approach

5.2.1 Introduction to Regularized Least-Squares Inversion
In Chapter 4, I presented a linear forward modeling operator for predicting the off-time VRM response from a
collection of remanently magnetized cubic volumes. More generally, the forward problem may be expressed as
follows:

d = F[m] (5.1)

where F defines an explicit relationship between the geophysical data d, and the set of model parameters m for a
physical system. When considering viscous remanent magnetization, elements of m represent the amalgamated
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magnetic property for each cell. Frequently, we are interested in solving the inverse problem:

m = F−1[d] (5.2)

wherein we attempt to recover the model parameters which are responsible for a set of field observations. Obtain-
ing a solution to the inverse problem is non-trivial, as the problem is frequently ill-posed. In most geophysical
applications, the number of model parameters far exceeds the number of field observations. This results in a solu-
tion which is highly non-unique. In addition, field data are generally impacted by random noise e from unknown
sources. Thus, it may be more appropriate to represent the forward problem as follows:

dobs = F[m]

dobs = d+ e
(5.3)

where dobs represents a set of field observations. Consider the case where F is a linear operator. Even if the ma-
trix is full-rank and invertible, the inverse problem may still be ill-conditioned. For many geophysical problems,
solutions to Eq. (5.2) are unstable. Thus, small changes in the noise may produce large changes in the values of
recovered model parameters.

Solutions to Eq. (5.2) are likely to produce an infinite set of models which are both geologically unrealistic,
and unstable with respect to the observed data. Following the method proposed by Tikhonov and Arsenin (1977),
the inverse problem may be formulated in terms of a regularized least-squares problem:

min
m

φ(m)

φ(m) = φd +βφm

φd =
∥∥Wd

(
F[m]−dobs)∥∥2

2

φm =
∥∥Rm

∥∥2
2

(5.4)

where the optimum solution minimizes a global object function φ(m). The data misfit φd quantifies a scaled
residual between the predicted data for a given model F[m] and the observed data dobs. By assuming the noise are
normally distributed and uncorrelated for each datum, Wd is defined as follows:

Wd =


1/σ1 0 . . . 0

0 1/σ2
...

...
. . . 0

0 . . . 0 1/σN

 (5.5)

where σi is an estimate of the standard deviation, or uncertainty, for datum i. The data misfit therefore follows a
chi-squared distribution with an expected value of N; where N is the number of data.

The model objective function φm stabilizes the inverse problem and constrains the solution. Constraints and
a-priori information may be implemented by adapting the regularization term R. The trade-off parameter β bal-
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ances the relative contributions made by the data misfit and the model objective function. Designing a model
objective function for the VRM problem is discussed in Section 5.2.3.

The solution to the least-squares problem occurs when all partial gradients of the global objective function are
zero:

∇φ(m) = 0 (5.6)

By taking the gradient of Eq. (5.4) with respect to the model parameters:

JTWT
d Wd

[
F[m]−dobs

]
+βRTRm = 0 (5.7)

where J is the Jacobian of the forward modeling operator:

J =
∂F[m]

∂m
(5.8)

The Jacobian represents the sensitivity of the data to changes in the model parameters. For unbounded, linear
least-squares problems, the solution to Eq. (5.4) may be obtained directly by solving Eq. (5.7). However, when
bound constraints are added to the model, the problem becomes non-linear. For a more general approach, second-
order methods can be used to obtain the solution iteratively. Newton’s method updates the set of model parameters
by solving the following linear system at each iteration j:

Hδm =−∇φ(m(j)) (5.9)

where H is the Hessian, or second order derivative, of the global objective function:

H =
∂ 2φ

∂m2 (5.10)

and δm defines the model update direction. The model is updated at each iterations as follows:

m(j+1) = m(j)+αδm (5.11)

where α is a step-length which scales the model perturbation δm. Using the linear forward modeling operator
given by Eq. (4.38), the model update direction corresponding to Eq. (5.4) is given by:

[
ATTTWT

d WdTA+βRTR
]
δm =−ATTTWT

d Wd(TAm−dobs)−βRTRm (5.12)

where superscript j has been suppressed. Iterative methods such as Newton’s method are typically carried out
until a stopping criteria is reached. Note that computation of the gradient and Hessian depend on the characteristic
decay matrix T; which was defined in Eq. (4.38). The number of rows in T increases linearly in proportion to the
number of time channels. Eq. (5.12) results directly from the definition of the data misfit. A more appropriate
measure of a model’s ability to fit the set of field observations is presented in Section 5.2.2. An approach for
computing the model update and step-length for a given β is presented in Section 5.2.4.
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5.2.2 Collapsed Data Misfit for the VRM Inverse Problem
The data misfit provides a measure of how well a particular model is able to reproduce a set of field observa-
tions. For RLSQ inverse problems, a widely accepted representation of the data misfit was proposed in Section
5.2 (Tikhonov and Arsenin, 1977). In this thesis however, I explore a misfit which is formulated by collapsing
the observed data vector into a more compact representation. By implementing a collapsed data misfit, I intend
to render the problem less over-determined and reduce memory requirements associated with the inverse problem.

According to Eqs. (4.33) and (4.38), the predicted VRM response at time t is given by:

d(t) = η(t)Am (5.13)

where η(t) is the characteristic decay function and d(t) represents predicted data at time t. Therefore, the VRM
response at time t is predicted by scaling the product of Am by the characteristic decay function. Over the range
of times in which η(t) accurately characterizes the decay of the VRM response:

d(t1)
η(t1)

=
d(t2)
η(t2)

= Am (5.14)

Eq. (5.14) implies that predicted data at t1 can be used directly to predict data at time t2, and visa versa.
Therefore, data at t1 and t2 provide identical information pertaining to the model I hope to recover. For M time
channels, I define the following vector:

q =
1
M

M

∑
m=1

d(tm)
η(tm)

= Am (5.15)

where q is a time-weighted average of the predicted data for all locations. As I mentioned in Section 5.2.1, field
observations are generally impacted by random noise from unknown sources. Where e(t) is a vector representing
the data errors for all locations at time t:

qobs =
1
M

M

∑
m=1

dobs(tm)
η(tm)

=
1
M

M

∑
m=1

d(tm)+ e(tm)
η(tm)

= q+
1
M

M

∑
m=1

e(tm)
η(tm)

(5.16)

where qobs is a time-weighted average of the observed data for all locations, and ẽ is the time-weighted average
of the data errors for all locations:

ẽ =
1
M

M

∑
m=1

e(tm)
η(tm)

(5.17)

In Section 5.2.1, I assumed the data errors associated with each individual datum di(tm) were uncorrelated and
normally distributed; where i refers to an observation location and m refers to a specific time channel. As a result,
the time-weighted average of data errors ẽi ∈ ẽ at location i must also belong to a normal distribution. Let σi(tm)

represents the standard deviation corresponding to the data error ei(tm) at location i and time tm. The standard
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deviation corresponding to time-weighting average error ẽi is given by:

σ̃i =
1
M

[
M

∑
m=1

(
σi(tm)
η(tm)

)2]1/2

(5.18)

where σ̃i is defined as the time-weighted standard deviation at location i. In examining Eq. (5.18), there are
several interesting cases:

• Case 1: The data errors at each time channel impact qobs to roughly the same degree; i.e. σi(tm)≈ η(tm)σ̄ , and:

σ̃i ≈
σ̄√
M

(5.19)

Therefore, the time-weighted standard deviation at each location decreases proportional to
√

M. This implies that
uncertainties on qobs can be reduced by using more time channels.

• Case 2: The data errors at each time channel have roughly the same standard deviation; i.e. σi(tm) ≈ σ̄ ∀ m,
and:

σ̃i ≈
σ̄

M

[
M

∑
m=1

(
1

η(tm)

)2]1/2

≤ σ̄√
M

max

(
1

η(tm)

)
(5.20)

In this case, the time-weighted standard deviation is most impacted by time channels in which 1/η(tm) is very
large. However, the time-weighted standard deviation is bounded by a value inversely proportional to

√
M. There-

fore, I expect to see a reduction in data uncertainty on qobs as the number of time channels is increased; provided
η(tm) are all within an acceptable range of values.

• Case 3: Errors corresponding to a single time channel impact qobs much more than any other time channel;
i.e. σi(tk)/η(tk)� σi(tm)/η(tm) for some k and all other m, and:

σ̃i ≈
σi(tk)

Mη(tk)
(5.21)

In this case, the standard deviation associated with vector qobs is strongly dependent on errors associated with a
specific time channel. In practice, I would suggest not using data at this time channel.

We can measure a model’s ability to fit a set of field observations by examining the misfit of vector q; resulting
in a less over-determined problem. For this, I define the collapsed data misfit:

φc =
∥∥Wc

(
Am−qobs)∥∥2

2 (5.22)
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Similarly to the data misfit, matrix Wc weights the residual between Am and qobs. Given that all data errors
are uncorrelated and normally distributed:

Wc =


1/σ̃1 0 . . . 0

0 1/σ̃2
...

...
. . . 0

0 . . . 0 1/σ̃N

 (5.23)

where σ̃i represents an estimate of the time-weighted standard deviation, or uncertainty, for location i. According
to Eq. (5.18), σ̃i may be computed using the estimates of the data standard deviations σi(tm). Similarly to the data
misfit in Eq. (5.4), the collapsed data misfit also follows a chi-squared distribution with an expected value of N;
where N is now the number of observation locations. It should be noted that if data are only collected at a single
time channel, η(t) may be factored out, and φc becomes equivalent to the data misfit φd .

5.2.3 Designing a Model Objective Function for the VRM Inversion
It is important to design a model objective function which stabilizes the inversion and recovers geologically
reasonable models. A robust and effective model objective function for magnetic problems was proposed by Li
and Oldenburg (1996):

φm = αs

∫
V

ws(r)
∣∣m(r)−mre f ∣∣2dV + ∑

i=x,y,z
αi

∫
V

wi(r)

∣∣∣∣∣∂m(r)
∂xi

∣∣∣∣∣
2

dV (5.24)

where αs, αx, αy and αz are adjustable parameters which balance contributing terms in the model objective func-
tion. Deviations between a given model m(r) and some reference model mre f are measured in the first integral.
The latter three integrals contain spatial gradients of the model along Cartesian directions x̂, ŷ and ẑ. Weighting
functions ws(r), wx(r), wy(r) and wz(r) are used to reflect additional characteristics I hope to retain in the recov-
ered model.

For certain problems, especially when dealing with potential fields, sensitivity weighting is used to compensate
for natural decays in the kernel function. This weighting may be applied directly to the sensitivity matrix (Li and
Oldenburg, 1996, 2000), or as part of the regularization (Fournier, 2015). When applied to the regularization,
weighting functions in Eq. (5.24) are expressed as:

ws(r) = w̃s(r)wr(r)

wi(r) = w̃i(r)wr(r) for i = x,y,z
(5.25)

where wr(r) is the sensitivity weighting function, and w̃s(r), w̃x(r), w̃y(r) and w̃z(r) represent customizable
weights based on a-priori information. When discretized onto a mesh, the model objective function takes the
following form:

φm = αs
∥∥W̃sWr(m−mref)

∥∥2
2 + ∑

i=x,y,z
αi
∥∥W̃iWr Gi m

∥∥2
2 (5.26)
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where Wr represents the application of cell-based sensitivity weighting at either the cell centers or cell faces. W̃s,
W̃x, W̃y and W̃z are diagonal matricies containing customizable cell-based weights. Gx, Gy and Gz are used to
represent sparse discretized gradient operators.

A general approach for obtaining cell-based sensitivity weighting has been proposed by Li and Oldenburg
(2000). Provided the problem has been discretized, the root mean squared sensitivity S j of cell j to the entire
dataset is defined by:

S j =

(
N

∑
i=1

A2
i j

)1/2

, j = 1, ...,K (5.27)

where Ai j are elements of the geometric sensitivity matrix, N is the number of data and K is the number of cells in
the discretized model. I expect S j to be small for cells which are far away from the receivers and larger for cells
which are close. The largest values correspond to cells which are very near one or more receivers. Using the root
mean squared sensitivity, a general form for the sensitivity weighting on each cell is given by:

w j =

(
N

∑
i=1

A2
i j

)γ/4

, 0.5≤ γ ≤ 1.5 (5.28)

where w j are the diagonal elements of Wr and γ adjusts the strength of the sensitivity weighting. Larger values
of γ correspond to stronger weightings and generally result in recovered models with deeper structures. For most
problems however, γ should be close to 1.

5.2.4 Iterative Solver
Here, I propose a method for computing the model update direction and step length for the VRM inverse problem.
Using the collapsed data misfit from Section 5.2.2 and the model objective function from Section 5.2.3, the
regularized least-squares problem is expressed as follows:

min
m

φ(m)

φ(m) = φc +βφm

φc =
∥∥Wc

(
Am−qobs)∥∥2

2

φm = αs
∥∥W̃s Wr(m−mref)

∥∥2
2 + ∑

i=x,y,z
αi
∥∥W̃i Wr Gi m

∥∥2
2

(5.29)

Written in compact form, the model objective function may be expressed as:

φm = ‖Wm(∆m)‖2
2 (5.30)

where
WT

mWm = αs WT
r W̃T

s W̃s Wr + ∑
i=x,y,z

αi GT
i WT

r W̃T
i W̃i Wr Gi (5.31)

and
∆m = m−mref (5.32)
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To obtain the step directions for Newton’s method, I require expressions for the gradient and Hessian of the
global objective function at each iteration. From Eq. (5.29), the gradient of the global objective function is given
by:

∇φ(m) = ATWT
c Wc(Am−qobs)+βWT

mWm(∆m) (5.33)

and the Hessian is given by:
H = ATWcWcA+βWT

mWm (5.34)

Note that expressions for the gradient and Hessian no longer depend on the number of time channels. By
suppressing superscript j in Eq. (5.9), the model perturbation δm is obtained by solving the following linear
system at each iteration:

[
ATWcWcA+βWT

mWm
]
δm =−ATWT

c Wc(Am−qobs)−βWT
mWm(∆m) (5.35)

For the VRM inverse problem, the Hessian may be considered symmetric positive-definite. Thus, Eq. (5.35)
produces a unique solution at every iteration. In general, construction of the Hessian is avoided when solving for
the Newton step. Because the geometric forward modeling operator is dense, temporary memory requirements
needed to store the Hessian are only possible for very small problems. In addition, the computational cost of
a direct solve for Eq. (5.35) requires O(K3) operations for dense matricies; where K is the number of model
parameters.

In this thesis, Eq. (5.35) at each Newton step is solved iteratively using the conjugate gradient method
(CG). The CG method employs a set of A-conjuate search directions to minimize the residual of a linear sys-
tem r = b−Mx; where r is the residual and M is symmetric positive definite. The CG algorithm is presented in
Table 5.1. For a comprehensive review of the conjugate gradient method, see Shewchuk (1994). Convergence for

Initialize: d(0) = r(0) = b−Mx(0)

while: ‖r‖> δ

α(i) =
rT
(i)r(i)

dT
(i)Md(i)

x(i+1) = x(i)+α(i)d(i)

r(i+1) = r(i)−α(i)Md(i)

β(i+1) =
rT
(i+1)r(i+1)

rT
(i)r(i)

d(i+1) = r(i+1)+β(i+1)d(i)

end

Table 5.1: Algorithm for the conjugate gradient method.
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Initialize: α = 1, m̂ = m(j)

while: φ(m̂)≥ φ(m(j))
α = α/2
m̂ = m(j)+αδm

end

m(j+1) = m̂

Table 5.2: Line-search algorithm for determining model update step-length

the CG method is generally faster than simpler gradient descent methods, as similar search directions are not re-
used at later iterations. Provided the system is symmetric positive definite, CG will obtain a unique solution after
at most K iterations. CG is rarely used to solve the linear system exactly. Instead, CG iterations are performed
until a stopping criteria is reached. For the VRM inversion, the Newton step direction δm is returned when the
L2-norm of the residual is less than δ = 10−4. Once the Newton step direction has been returned, a step-length
α is calculated using the line-search algorithm in Table 5.2. Newton updates are repeated until changes in the
model becomes sufficiently small (i.e. |αδm|< γ where γ is small). According to Fournier (2015), a fixed value
of γ = 10−4 offers a good compromise between computational cost and accuracy.

For the CG algorithm, M represents the Hessian of the global objective function. To avoid construction of the
Hessian, I factor Eq. (5.35) as follows:

(BTB)δm = BTy (5.36)

such that:

B =



WcA√
αsβ W̃sWr√

αsβ W̃xGxWr√
αsβ W̃yGyWr√
αsβ W̃zGzWr


and y =−



Wc
(
Am−qobs)√

αsβ W̃sWr(∆m)√
αsβ W̃xGxWr(∆m)√
αsβ W̃yGyWr(∆m)√
αsβ W̃zGzWr(∆m)


(5.37)

Therefore, matrix-vector products involving the Hessian can be replaced by matrix-vector products using B.
Had I not defined the collapsed data misfit in Section 5.2.2, A in Eq. (5.37) would be replaced by TA and Wc

by Wd; where T is the characteristic decay matrix and Wd contains the data uncertainties. Because A is dense,
memory requirements to store TA increase proportional to the number of time channels. For a small number of
time channels, this may not be problematic. However, for many time channels, the problem become prohibitively
large. Methods exist for performing the necessary matrix-vector products in parts, however, I will not cover
them here. Because the speed of the CG method depends on many rapid computations of matrix-vector products,
utilization of the collapsed data misfit ultimately leads to a more efficient approach.
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5.2.5 Preconditioner
Using the conjugate gradient method, I hope to solve a linear system of the form Mx = b at each Newton iteration;
where M is symmetric positive definite. For many iterative solvers, performance frequently depends on the
condition number κ:

κ =
λmax

λmin
(5.38)

where λmax and λmin are the largest and smallest eigenvalues of M. For the conjugate gradient method, the number
of steps required to obtain the analytic solution depends on the number of distinct eigenvalues. When solved to
within a small tolerance value however, the speed at which an approximate solution may be obtained depends
on how broadly the eigenvalues of matrix M are distributed (Shewchuk, 1994). When the eigenvalues form a
compact distribution, and the condition number close to 1, convergence to an approximate solution occurs quickly.
If the distribution of the eigenvalues is broad, efficiency of the conjugate gradient method can be improved by
multiplying the system by a preconditioner P:

PMx = Pb (5.39)

Preconditioners are designed such that PA has a much smaller condition number than M; thus guaranteeing
a more compact distribution of eigenvalues. A solution to the original linear system is obtained by applying the
CG method to Eq. (5.39). If M is invertible, the ideal preconditioner is its inverse M−1, since M−1M produces
the identity matrix. In this case however, implementation of the CG method would be redundant, as Eq. (5.39)
provides a direct solution if M−1 is available.

For the VRM inversion, a simple and effective choice for P is given by the Jacobi preconditioner. To obtain
the Jacobi preconditioner, I decompose M as follows:

M = L+D+LT (5.40)

where D is the diagonal of the Hessian in Eq. (5.36). L and LT are lower and upper triangular matricies, respec-
tively. The Jocobi preconditioner is given by P = D−1. Because the Hessian for the VRM problem is symmetric
positive definite, it follows that diagonal elements of P are strictly positive numbers. Since the preconditioner
does not depend on the model, it must only be generated once. Also, because P is very sparse, products involving
the preconditioner are computed very rapidly.

5.2.6 Bound Constraints
For many problems, it is common to expect elements within the true model m to lie within a specified range of
values. Where model parameters are used to represent physical properties, the recovered model must ultimately
contain values which are physically appropriate. According to the definition of the amalgamated magnetic prop-
erty in Section 2.4, elements within m are strictly positive. By introducing bound constraints, the least-squares
inverse problem becomes non-linear. This necessitated the implementation of Newton’s method.

In this thesis, bound constraints are enforced using the approach found in Fournier (2015). At each Newton
iteration, the step direction (δm1) is only computed for an active subset of the model parameters. The active
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set represents the model parameters which did not require a projection onto the bounded set after the previous
Newton update. The update direction (δm2) for the set of inactive cells is obtained by computing their gradient
descent direction (i.e. the right-hand side of Eq. 5.35), and scaling it if necessary. The model update direction
δm is the union of δm1 and δm2. While the model update is being performed, values outside the bounds are
projected inside and set as inactive for the following Newton step. By updating the set of inactive cells in this
fashion, I avoid reducing the active model space at each Newton iteration. This algorithm is shown in Table 5.3.

Initialize: m = m0

while: |αδm|> tol

Compute δm1 (active cells)
Compute the gradient descent direction for inactive cells and set as δm2

if: max(|δm1|)≤ max(|δm2|)

δm2 =C

[
max(|δm1|)
max(|δm2|)

]
δm2 where C ∼ 0.2

end

Get Newton step δm = δm1∪δm2
Set α = 1, m̂ = m(j)

while: φ(m̂)≥ φ(m)

α = α/2
m̂ = m+αδm
Obtain new inactive cells
Project onto bounding interval: m̂ = P(m̂)

end

m(j+1) = m̂

end

Table 5.3: Algorithm for upper and lower bound constraints.

5.3 Synthetic Example
Here, the inversion methodology presented in Section 5.2 is used to recover the viscous magnetic properties of
a lateritic topsoil. For this exercise, a synthetic model and synthetic data are used. The synthetic model consists
of a magnetically viscous topsoil which extends roughly 10 m below the Earth’s surface and displays significant
inhomogeneity (Figure 5.1). For this example, I will neglect the Earth’s inductive response by assuming the back-
ground is sufficiently resistive. Recovery of the model using several transmitter-receiver configurations are tested.
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Figure 5.1: True model for the synthetic topsoil layer. This figure shows the amalgamated magnetic property
at several depths.

For each transmitter-receiver configuration, the Earth’s VRM response is predicted using the forward modeling
scheme from Chapter 4. Synthetic data are generated by corrupting these values with Gaussian noise. The standard
deviation for the noise added to each individual datum is equal to 5% of that datum’s absolute value plus a small
floor value. For this exercise, I will only consider the ∂b/∂ t response to a unit step-off excitation. Data are
predicted for 11 logarithmically spaced time-channels between 0.1 ms and 10 ms. All time channels are used in
each inversion.

5.3.1 A Large Square Transmitter Loop
As a primary example, I show how data collected about a large square transmitter loop can be inverted to recover
the synthetic model. Here, the transmitter loop is given a side length of 80 m and placed on the Earth’s surface.
The synthetic data includes all three cartesian components of the ∂~b/∂ t response for a unit step-off excitation.
All field observations are made 1 m above the Earth’s surface using a horizontal spacing of 5 m. For this example,
no observations are made within 5 m of the transmitter wire. Locations for the transmitter and the receivers are il-
lustrated in Figure 5.2. The Earth’s true response and the Gaussian noise added at t = 1 ms are shown in Figure 5.3.

Figure 5.2: Transmitter and receiver locations for data collected about a large square transmitter loop. These
locations are layed over the true model to illustrate the data coverage.
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Figure 5.3: Data predicted by the VRM3D forward modeling code at t = 1 ms and the corresponding noise
added. Data and noise are represented using a bi-log plot in order to accentuate features in the x and y
components which would be difficult to see using conventional scaling. Data below a threshold value
of 5×10−11 T/s and noise below a threshold value of 2×10−13 T/s are plotted as zero.

Parameters used to invert for the magnetically viscous topsoil are summarized in Table 5.5. The data uncer-
tainties for each individual datum were obtained by taking 5% of their absolute value and adding it to a small
floor value; uncertainties were estimated based on approximating the standard deviation of Gaussian noise added
to generate the synthetic data. Parameters αs, αx, αy and αz were chosen such that the recovered model would
be horizontally smooth. As suggested by Li and Oldenburg (2002), a sensitivity weighting parameter γ = 1 was
used. The lower bound was chosen to assure the recovered model contains strictly positive values.

To recover a model for the topsoil, data were collapsed according to Eq. (5.16). Uncertainties for the col-
lapsed data vector were obtained from the assigned data uncertainties using Eq. (5.18). The collapsed data vector
and its associated uncertainties were used solve the regularized least-squares (RLSQ) problem according to Eq.
(5.29). A cooling schedule was used to determine an appropriate trade-off parameter β ; which balances the rel-
ative contributions of the regularization and the collapsed data misfit φc. For this approach, the RLSQ problem
is solved initially using a large β value. β is then reduced and the RLSQ problem is solved again. This process
is repeated until the collapsed data misfit is equal to the number of receivers; indicating a model which explains
the data but does not overfit the observations. Convergence towards a final model as a function of the trade-off
parameter β is shown in Figure 5.4. Experimental results indicate that models can be recovered which over-fit
the data. As a result, the Tikhonov curve in Figure 5.4 does not show convergence towards the target misfit. The
recovered model at several depths is shown in Figure 5.5. In general, the recovered model and the true model
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Domain Size 160 m × 160 m × 50 m

Cell Width 2 m × 2 m × 2 m

Total # Cells 160,000

Total # Receivers 1,683

Data Uncertainties 5 % + 10−12 T/s

αs, αx, αy, αz 0.0001, 4, 4, 0.4

w̃s, w̃x, w̃y, w̃z 1, 1, 1, 1

Sensitivity Weighting γ = 1

mlower, mupper 10−7, ∗None

Table 5.4: Parameters for the VRM inversion (Large Loop).

Figure 5.4: The collapsed data misfit φc and the model objective function φm as a function of the trade-off
parameter β . The recovered model m∗ is chosen when the collapsed data misfit reaches the expected
value φc. The target value represents a model which explains the data but does not fit the noise. As
β is reduced and models fit the data increasingly well, less structure is imposed on the model and φm
increases.

Figure 5.5: Recovered model for the topsoil layer. This figure shows the amalgamated magnetic property at
several depths.
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are very similar. However, the inversion does place a slight excess of magnetically viscous materials at depth.
Furthermore, a significant portion of magnetically viscous material is under-represented near (X = 20 m, Y = 20
m).

The data misfit defined in Section 5.2.1 can be used to measure a model’s ability to reproduce the observed
data. The data misfit should not be confused with the collapsed data misfit φc which is used to solve the RLSQ
problem. The data misfit was calculated according to the following expression:

φi =
dpre

i −dobs
i

εi
(5.41)

where φi represents the misfit for a specific datum, dpre
i are data predicted using the recovered model, dobs

i are
observed data, and εi are the corresponding data uncertainties. The observed data, predicted data and data misfit
at t = 1 ms are represented using a bi-log in Figure 5.6. Results indicate the recovered model is capable of repro-
ducing the observed data fairly well at all times. In addition, the inversion generally avoids over-fitting the data at
certain locations at the expense of others.

Figure 5.6: Observed data, predicted data, and data misfit a t = 1 ms. The data and misfit are represented
using a bi-log plot in order to accentuate features in the x and y components which would be difficult
to see using conventional scaling. Data below a threshold value of 5×10−11 T/s and data misfits below
a threshold value of 0.002 are plotted as zero.
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Figure 5.7: Model recovered using weighting parameters αs = 0.0001, αx = αy = 4 and αz = 0.4. No
sensitivity weighting was used in this inversion (γ = 0). Recovered model shows artifacts on the topmost
layer associated with the location of the transmitter.

Figure 5.8: Model recovered using weighting parameters αs = 0.0001 and αx = αy = αz = 4, and a sen-
sitivity weighting of γ = 1. Recovered model shows a significant placement of magnetically viscous
materials along the path of the transmitter.

Figure 5.9: Model recovered using weighting parameters αs = 0.0001, αx = αy = 4 and αz = 0.004, and a
sensitivity weighting of γ = 1. Recovered model shows significant smoothing in the x and y direction.
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The choice in inversion parameters is important when attempting to recover reasonable geological models.
By manipulating these parameters, characteristics of the recovered model can be altered. However, recovery of
the most prevalent geological structures should be relatively robust to changes in the inversion parameters. To
test this, parameters summarized in Table 5.5 were altered and subsequent inversions were run. To exemplify
the importance of the sensitivity weighting, an inversion was run with γ = 0. The recovered model is shown
in Figure 5.7. Unlike the previously recovered model, the majority of magnetically viscous material is placed
near the surface; which is to be expected as the data are more sensitive to these cells. In addition, the recovered
model shows distinct artifacts on the topmost layer of cells which correspond to the location of the transmitter.
Many of the characteristics of the recovered model are dictated by relative weighting parameters αs, αx, αy

and αz. In Figure 5.9, I show a recovered model where penalties on the gradient are the same (αs = 0.0001
and αx = αy = αz = 4). Using these parameters, I noticed that features in the recovered model are much more
compact in x and y. Despite showing no obvious artifacts, the recovered model placed magnetically viscous
materials along the transmitter wire’s path. A recovered model with significant gradient penalties in x and y

(αs = 0.0001, αx = αy = 4 and αz = 0.004) is shown in Figure 5.9. Here, the inversion has smoothed horizontally
over regions of high and low magnetic viscosity. As a result it places a significant portion of magnetically viscous
material at depth. Despite showing some minor variations, all of the models recovered in this section contain the
topsoil’s most prevalent geological structures; indicating the inversion is robust.

5.3.2 A Large Square Transmitter Loop (Random Locations)
Here, I alter the previous example. Instead of using a uniform receiver spacing, the observation locations are now
random (Figure 5.10); with receiver heights varying between 0.5 m and 1.5 m. I show the results of an inversion
which uses all three cartesian components of the ∂b/∂ t response. Then, to assess whether three component data
are always needed, an inversion is performed using only the vertical component. Parameters used in the inversion
are summarized in Table 5.5. For the vertical component, the target misfit is reduced by a factor of 3 to account
for the reduction in the number of receivers.

The recovered model at several depths using three-component data is shown in Figure 5.11. The recovered
model and the true model show excellent agreement. By avoiding gaps in the data near the transmitter loop, I have
recovered a better model. This is evident when examining the region near (X = 20 m, Y = 20 m). Furthermore, the
decrease in magnetically viscous materials with respect to depth is much more accurate. The recovered model at
several depths using only the vertical response is shown in Figure 5.12. The recovered model and the true model
show good agreement, however, it is evident that a better model may be recovered using three-component data.

5.3.3 4 Large Transmitter Loops
In sections 5.3.1 and 5.3.2, data collected about a single transmitter loop were inverted. Here, data are inverted for
a four transmitter array. If successful, this approach may be used to invert data collected as part of an UltraTEM
survey. The transmitter and receiver locations for this survey are shown in Figure 5.13. Like in Section 5.3.2,
observation locations are random; with observation heights being between 0.5 m and 1.5 m above the Earth’s
surface. The average horizontal spacing between observations is approximately 4 m. Parameters used in the in-
version are summarized in Table 5.5.
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Figure 5.10: Transmitter and receiver locations for data collected about a large square transmitter loop.
These locations are layed over the true model to demonstrate the data coverage.

Figure 5.11: Recovered model using three-component data with αs = 0.0001, αx = αy = 4, αz = 0.4 and
γ = 1. Recovered model and true model show excellent agreement.

Figure 5.12: Recovered model using the Earth’s vertical response with αs = 0.0001, αx = αy = 4, αz = 0.4
and γ = 1. Recovered model and true model show good agreement.

The recovered model at several depths using three-component data is shown in Figure 5.14. The recovered
model and the true model show excellent agreement. The inversion does place a significant portion of magnetically
viscous materials near the outside edges of the domain. However, this likely result from the choice in penalty
parameters on the gradient.

77



Figure 5.13: Transmitter and receiver locations for data collected about 4 large square transmitter loops.
The receivers corresponding to each transmitter are distinguished by colour. Observation locations are
layed over the true model to demonstrate the data coverage.

Figure 5.14: Recovered model using inversion parameters αs = 0.0001, αx = αy = 4, αz = 0.4 and γ = 1.
Recovered model and true model show excellent agreement.

5.3.4 A Mobile Transmitter-Receiver Pair
Here, I invert data collected by a mobile transmitter-receiver pair. For this exercise, the transmitter-receiver pair
was given a horizontal co-planar geometry. For all measurements, the transmitter and receiver were oriented East-
West, separated by 2 m, and held 1 m above the Earth’s surface; with the transmitter being located on the West.
The transmitter loop was square and had a side length of 0.40 m. Data were collected using a horizontal spacing
of 4 m. The location of the receiver at the time each measurement was made is shown in Figure 5.15.

Parameters used in the inversion are shown in Table 5.13. Here, weighting for the smallness component of the
model objective function was increased (αs = 0.01, αx = αy = 4 and αz = 0.4). The inversion was also constrained
using a small reference model. The reference model consisted of a half-space with physical property value 10−6.
Because the predicted data values were smaller for this survey configuration, a smaller floor value was used in
the standard deviation when adding Gaussian noise. Therefore, it follows that a smaller floor value is to be used
for the inversion. First, an inversion was run using conventional sensitivity weighting γ = 1. The results of this
inversion are shown in Figure 5.16. The inversion does a very good job of locating the horizontal distribution of
magnetically viscous materials. However, the inversion places a significant abundance of magnetically viscous
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Figure 5.15: Receiver location for each measurement using the mobile transmitter-receiver configuration.
Locations are layed over the true model to demonstrate the data coverage.

Figure 5.16: Recovered model using inversion parameters αs = 0.01, αx = αy = 4, αz = 0.4 and γ = 1.
A reference model consisting of a half-space with physical property value mre f = 10−6 was used to
constrain the inversion.

Figure 5.17: Observed data, predicted data and the data misfit at t = 1 ms. Predicted data matches the
observed anomaly fairly well; as indicated by the data misfit.

79



materials at depth. The inversion was run with a lower sensitivity weighting (γ = 0.5) and showed similar results.
This may indicate the need to have 3-component data when using a mobile source. Using Eq. (5.41), the corre-
sponding data misfit was calculated for the recovered model. Observed data, predicted data and the data misfit at
t = 1 ms are shown in Figure 5.17. Ultimately, the recovered model is able to accurately reproduce the observed
anomaly. The data misfit indicates that I do not over-fit data in certain regions at the expense of others. However,
sporadic locations did show elevated data misfits (|φd |> 1).

Domain Size 160 m × 160 m × 50 m

Cell Width 2 m × 2 m × 2 m

Total # Cells 160,000

Total # Receivers 961

Data Uncertainties 5 % + 10−14 T/s

αs, αx, αy, αz 0.01, 4, 4, 0.4

w̃s, w̃x, w̃y, w̃z 1, 1, 1, 1

Sensitivity Weighting γ = 1

mlower, mupper 10−7, ∗None

mre f 10−6

Table 5.5: Parameters for the VRM inversion (Mobile Transmitter-Receiver Pair).

5.4 A Workflow for Removing the VRM Response
When the TEM response from a geophysical target is contaminated by a VRM response, conventional analysis
and inversion algorithms may become ineffective. However, this problem can be resolved if adequate methods are
developed for removing the VRM signal and isolating the target’s response. Here, I propose a general workflow
for identifying and removing the VRM response from a set of TEM data. The application of the workflow to an
applied problem is not carried out in this thesis. However, it remains an important area of future research. A
diagram illustrating the proposed workflow is shown in Figure 5.18. Each step is summarized below:

1. Determine the Characteristic Decay Function η(t): As a first step, the characteristic decay function for
the transmitter waveform is determined according Section 4.2.2. For a step-off or square-pulse excitation, an-
alytic expressions for the characteristic decay function are available. For an arbitrary excitation however, the
transmitter waveform must be approximated by a set of square-pulses. The characteristic decay function is used
as a data analysis tool in the following step and is required for the VRM inversion.

2. Identifying the Characteristic Decay in the Observed TEM Data: Using the characteristic decay func-
tion, TEM data showing comparable decays are identified. This is done in order to isolate the set of TEM data
which can be attributed exclusively to the VRM response; implying these data can be reproduced using an amal-
gamated magnetic property model.
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3. Invert the Isolated VRM Response: For this step, data attributed exclusively to the VRM response are
inverted using the methodology presented in Section 5.2. In doing so, I recover an amalgamated magnetic prop-
erty model which is used in the following step.

4. Predict the VRM Response at Contaminated Times/Locations: Using the recovered amalgamated mag-
netic property model and the characteristic decay function, the VRM response is predicted at other times and
locations within the survey region. This includes times and locations where the observed TEM data are contami-
nated by the VRM response.

5. Subtract the Predicted VRM Response from the Observed TEM Data: The contaminating VRM sig-
nal is removed by subtracting the predicted VRM response from the set of TEM data. If successful, we are left
with an electromagnetic response which can be more effectively used to obtain information about a buried target.

6. Analyze and/or Invert the Remaining TEM Signal: This step is a placeholder for the host of data analysi
and inversion methods which can now be applied to the set decontaminated TEM data.

Figure 5.18: Proposed workflow for identifying and removing the contaminating VRM signal from a set of
TEM data.

5.5 Summary
In this chapter, I presented an inversion methodology for recovering the distribution of magnetically viscous ma-
terials within a topsoil. By assuming the inductive and VRM responses are separable, data predicted using the
recovered model can be used to remove the VRM response from contaminated TEM data. Results show that
the sensitivity weighting proposed by Li and Oldenburg (2000) is capable of counteracting natural decays in the
kernel function. In general, the inversion is robust to reasonable changes in the relative weighting parameters αs,
αx, αy and αz; as it easily recovers the most prominent geological features. In order to recover models which do
not place magnetically viscous materials along the transmitter wire, it is important to have sufficient data coverage
in proximity of the transmitter. Although 3-component data are preferred, reasonable geological models can be
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recovered using a single cartesian component of the Earth’s VRM response. Ultimately, the inversion method-
ology was shown to recover appropriate geological models for a variety of transmitter-receiver configurations.
These models were able to reproduce the observed data accurately and characterize the distribution of magneti-
cally viscous materials within the topsoil. To conclude this chapter, I presented a workflow for using geophysical
inversion to remove the contaminating VRM response from a set of TEM data. The application of the workflow
to a particular problem will not be presented in this thesis and will instead act as a gateway to future research.
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Chapter 6

Conclusion

Despite many advances since the 1980s, aspects of the viscous remanent magnetization (VRM) response and
its impact on TEM sensors have remained elusive. In this thesis, I developed forward modeling and inversion
methods for better characterizing VRM responses in the time-domain. I began in Chapter 2 by parameterizing the
off-time VRM response in terms of an amalgamated magnetic parameter. I showed how the amalgamated mag-
netic parameter could be obtained easily using dual-frequency susceptibility measurements. To fill gaps left by
previous analytical studies, a set of empirical expressions were derived in order to directly relate vertical and hor-
izontal components of the VRM response to the survey geometry (Chapter 3). In Chapter 4, a linear 3D forward
modeling operator was developed for predicting the off-time VRM response caused by an arbitrary excitation.
This was accomplished by discretizing the Earth into a set of voxel cells and implementing the parameterization
of the off-time viscous remanent magnetization. Finally in Chapter 5, I developed an inversion approach for
recovering the distribution of magnetically viscous materials from a set of TEM observations. The chapter was
concluded by presenting a workflow for removing the VRM response from a set of TEM data.

The amalgamated magnetic property defined in Chapter 2 is not a purely abstract quantity, as it can be mea-
sured for a given sample. Using a database of dual-frequency measurements on lateritic soil samples, I was able
to obtain upper and lower physical bounds for the amalgamated magnetic property. Thus, I was able to define
upper and lower bounds for the strength of the viscous remanent magnetization lateritic soils exhibit. The ability
to define a soil’s viscous remanent magnetization using simple laboratory measurements ultimately benefits the
inversion process. By measuring the amalgamated magnetic property for samples within a particular region, we
can constrain the VRM inversion via bound constraints and/or a reference model. This aids in the recovery of
models which are physically plausible, geologically accurate and fit the data more easily.

For a half-space model, I was successful in deriving analytic expressions which directly relate the VRM re-
sponse to the survey geometry (Chapter 3), most notably, the radius of a circular transmitter loop. Unlike the
final analytic results derived by others, expressions derived in this thesis do not require the numerical integration
of one or more elementary integrals. In addition, I consider both the vertical and horizontal components of the
VRM response and its time-derivative, whereas others generally do not. With continual development of tri-axial
sensors, a better understanding of the horizontal response is increasingly important. By considering the inductive
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and VRM responses as being separable, I was able to determine the cross-over time at which the observed TEM
response within a transmitter loop became dominated by the VRM signal. As a result, expressions derived in
this chapter can be used to choose the optimal loop size for a particular survey and determine the range of time
channels which are most impacted by the VRM response.

The 3D forward model constructed in Chapter 4 allows for rapid computation of the VRM response for an
arbitrary number of time channels. This was made possible by the parameterization of the off-time viscous re-
manent magnetization within each cell. Using a sensitivity refinement algorithm, we are now able to accurately
predict the VRM response near the transmitter without increasing the size of the forward modeling operator. By
constructing a 3D forward model, we are no longer limited to understanding the VRM response through layered
Earth models. Additionally, we have another tool for investigating the relationship between the survey geometry
and VRM response for an inductive source.

In Chapter 5, I demonstrated how geophysical inversion could be used to recover the distribution of magnetic
viscous materials from a set of TEM data. By using the amalgamated magnetic property to define the magnetic
viscosity within each cell, I was able to invert for a single model parameter for each cell. I was able to show
that the uncertainties corresponding to the collapsed data could be reduced by making observations at more time
channels. Examples were used to show that the inversion was robust and could be applied for a multitude of
survey geometries. Using recovered models, we can now start to answer questions regarding the depth and hori-
zontal distribution of magnetically viscous soils within a region. More importantly, these models can be used to
predict VRM responses at other times and locations within the survey region. Assuming the inductive and VRM
responses are separable, the predicted data from recovered models can be used to remove the VRM signal from a
set of field observations. The workflow for this process was presented at the end of Chapter 5.

Ultimately, the results presented in this thesis were able to address nearly all of the problems described in the
introduction. Using newly obtained forward modeling and inversion algorithms, we can answer more complex
questions about the impact of magnetically viscous soils on TEM instruments, consider the VRM responses exhib-
ited by 3D distributions of magnetically viscous materials, and have an approach for removing the contaminating
VRM signal from a set of TEM data.

6.1 Future Research
Despite providing a significant advancement in our understanding of the VRM response, there are several details
in the thesis work which may require additional attention. Here, I discuss these details in the context of future
research projects.

I ended Chapter 5 by proposing a workflow for removing the VRM response from a set of TEM data. In the
future, I intend to validate the workflow by applying it to a set of synthetic problems. Once validated, I can begin
to apply this approach to field acquired data.

84



The magnetic viscosity exhibited by most lateritic soils can be fit adequately by assuming a log-uniform distri-
bution of time-relaxation constants bounded by a set of finite limits. These limits determine the range of times in
which our parameterization of the soil’s off-time VRM is accurate, thus determining the times when our numerical
forward modeling and inversion codes are valid. For most practical cases, it can be assumed that the log-uniform
distribution of time-relaxation constants is sufficiently broad; thus, I expect the parameterization of the off-time
viscous remanent magnetization to be valid over a broad range of times. To verify this assumption however, upper
and lower bounds should be determined for a diverse set of soil samples by fitting full-spectrum magnetic suscep-
tibility measurements. Ultimately, this would allow us to define the typical range of time-channels in which our
current forward modeling and inversion codes are valid.

In this thesis, I assumed that inductive and VRM responses were approximately separable to first order. This
assumption was made according to field experiments, physical property measurements, and numerical model-
ing results found in the literature. Presently, the coupling between the inductive and VRM responses is poorly
understood, as numerical validation of their separation is done almost entirely with half-space or layered Earth
models. In the future, I may consider developing numerical modeling codes which do not rely on the separation
of the inductive and VRM responses. These codes could be used to better understand the coupling between both
responses and validate their separation for a more diverse set of geological scenarios.
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Néel, M. L., 1949, Théorie du traı̂nage magnétique des ferromagnétiques en grains fins avec application aux
terres cuites: Annales de Geophysique, 5, 99–136. → pages 6, 7, 12, 13, 41, 89

Newman, G. A., G. W. Hohmann, and W. L. Anderson, 1986, Transient electromagnetic response of a
threedimensional body in a layered earth: Geophysics, 51, 1608–1627. → pages 23

Olhoeft, G. R., and D. W. Strangway, 1974, Magnetic Relaxation and the Electromagnetic Response Parameter:
Geophyics, 39, 302–311. → pages 9, 19

Pasion, L., 2007, Inversion of time domain electromagnetic data for the detection of unexploded ordnance: PhD
thesis. → pages 2, 3, 5, 6, 7, 8, 9, 12, 13, 19, 20, 22, 25, 26, 38, 41, 90, 92

Pasion, L. R., S. D. Billings, and D. W. Oldenburg, 2002, Evaluating the effects of magnetic soils on TEM
measurements for UXO detection: Society of Exploration Geophysicists Annual Meeting, 2–5. → pages 2

Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007, Updated world map of the Koppen-Geiger climate
classification: Hydrology and Earth System Sciences, 11, 1633–1644. → pages viii, 2

87



Rao, D. B., and N. R. Babu, 1993, A Fortran-77 computer program for three-dimensional inversion of magnetic
anomalies resulting from multiple prismatic bodies: Computers & Geosciences, 19, 781–801. → pages 42

Ratnanather, J. T., J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas, 2011, IIPBF: a MATLAB toolbox for
infinite integrals of product of Bessel functions: ACM Trans. Math. Softw., 11. → pages 23, 33

Sharma, P., 1966, Rapid computation of magnetic anomalies and demagnetization effects caused by bodies of
arbitrary shape: Pure and Applied Geophysics PAGEOPH, 64, 89–109. → pages 42, 43

Shewchuk, J. R., 1994, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. →
pages 67, 69

Thompson, R., and F. Oldfield, 1986, Environmental Magnetism: Allen & Unwin. → pages 6
Tikhonov, A. N., and V. Y. Arsenin, 1977, Solution of Ill-Posed Problems: Winston & Sons. → pages 60, 61, 63
van Dam, R. L., J. B. J. Harrison, J. M. H. Hendrickx, D. A. Hirschfeld, R. E. North, J. E. Simms, and Y. Li,

2005, Mineralogy of Magnetic Soils at a UXO Remediation Site in Kaho’olawe Hawaii: Symposium on the
Application of Geophysics to Engineering and Environmental Problems, 666–677. → pages 19, 38

van Dam, R. L., J. M. H. Hendrickx, J. B. J. Harrison, B. Borchers, D. I. Norman, S. Ndur, C. Jasper, P.
Niemeyer, R. Nartey, D. Vega, L. Calvo, and J. E. Simms, 2004, Spatial variability of magnetic soil properties:
Detection and Remediation Technologies for Mines and Minelike Targets IX, 665–676. → pages 19, 38

van Dam, R. L., J. M. H. Hendrickx, J. B. J. Harrison, and R. S. Harmon, 2008, Towards a model for predicting
magnetic susceptibility of bedrock regolith and soils: Detection and Sensing of Mines, Explosive Objects, and
Obscured Targets XIII, 69530Z–69530Z–10. → pages ix, 7, 19, 20, 22

Varga, E., H. D. Storzer, and A. Beyer, 1996, A method for the calculation of the field of three-dimensional
bodies with a homogeneous magnetization: Electrical Engineering (Archiv fur Elektrotechnik), 80, 111–114.
→ pages 42, 43

Ward, S. H., and G. W. Hohmann, 1988, Electromagnetic theory for geophysical applications, in Electromagnetic
Methods in Applied Geophysics: Theory: Society of Exploration Geophysicists, 131–311. → pages 22, 30

Worm, H., 1998, On the superparamagnetic table single domain transition for magnetite , and frequency
dependence of susceptibility: Geophysical Journal International, 133, 201–206. → pages 8, 91

Zadorozhnaya, V. Y., N. O. Kozhevnikov, and P. Nyabeze, 2012, Superparamagnetic effect, effect provided by
red soil in Southern Africa: EM Induction Workshop, 1–4. → pages 2, 20, 41

88



Appendix A

Dependence of Magnetic Viscosity on the
Volume Distribution of SP Grains

Because of thermal fluctuations, superparamagnetic (SP) grains are exposed to a spectrum of thermal activation
energies. Spontaneous re-orientation of an SP grain’s remanent magnetic moment, occurs when the activation
energy is larger than the magnetization’s barrier energy Eb. The average time between spontaneous re-orientations
is given by the Néel relaxation time (Néel, 1949):

τ = τ0 exp

(
Eb

kbT

)
(A.1)

where kb is the Boltzmann constant, T is the temperature, and τ0 ∼ 10−9 s is the ”attempt time” (Dunlop and
Özdemir, 1997). For a collection of SP grains defined by Eb, τ can be used to represent the rate of magnetic
relaxation in response to an applied magnetic field. Néel (1949) modeled the magnetic viscosity by considering a
collection of non-interacting single-domain SP grains. If the magnetic anisotropy mechanism is identical for all
the SP grains, then (Dunlop and Özdemir, 1997):

Eb = KV (A.2)

where K is the constant of magnetic anisotropy for the material, and V is the volume of individual grains. There-
fore, if a collection of SP grains is defined over a spectrum of energy barriers, the resulting distribution of time-
relaxation constants corresponds to a distribution of SP grain volumes. The relationship between V and τ can be
obtained by combining Eqs. (A.1) and (A.2):

V =
kbT
K

ln(τ/τ0) (A.3)

Only a small portion of the ferrimagnetic grains within an iron-bearing soil are superparamagnetic; as il-
lustrated in Figure A.1. However, the distribution of SP grain volumes greatly impacts the magnetic relaxation
exhibited by the soil. This distribution can be defined using a density function ρ(V ). By definition, the density
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function integrated over all values, is equal to 1. Thus:∫
∞

0
ρ(V )dV ≡ 1 (A.4)

Because Eq. (A.3) provides a relationship between V and τ , Eq. (A.4) can be re-expressed in terms of τ by
using a change of variables: ∫

∞

0
ρ(τ)

(
dV
dτ

)
dτ =

∫
∞

0
f (τ)dτ = 1 (A.5)

where f (τ) is the density function for the distribution of time relaxation constants, commonly referred to as the
weighting function (Dabas et al., 1992; Billings et al., 2003; Pasion, 2007).

Consider a broad distribution of ferrimagnetic grain sizes, where SP grains have volumes between V1 and
V2 (Figure A.2). Ferrimagnetic grains with volumes less than V1 are still superparamagnetic, but we assume
their corresponding magnetic relaxation occurs too quickly and cannot be observed. The distribution of SP grain
volumes can be considered approximately uniform if: 1) the interval [V1,V2] is sufficiently small, and 2) the

Figure A.1: Grains size distribution for ferrimagnetic grains within a theoretical sample. Blue region shows
an arbitrary distribution for all ferrimagnetic grains. Red represents the portion of grains capable of
exhibiting superparamagnetism.

Figure A.2: Flat grain size distribution for ferrimagnetic grains. The distribution of SP grains (red) is ap-
proximately uniform between V1 and V2.
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interval sits within the tail of a broad distribution of ferrimagnetic grain sizes (reference). The density function
for a uniform distribution of SP grain size between V1 and V2 is given by:

ρ(V ) =


1

V2−V1
for V1 ≤V ≤V2

0 otherwise
(A.6)

Substituting Eqs. (A.4) and (A.6) into expression (A.5):∫
∞

0
f (τ)dτ =

∫
τ2

τ1

1
τ ln(τ2/τ1)

dτ = 1 (A.7)

According to the integrand of Eq. (A.7), the weighting function for the corresponding distribution of time-
relaxation constants is:

f (τ) =


1

τ ln(τ2/τ1)
for τ1 ≤ τ ≤ τ2

0 otherwise
(A.8)

Therefore, a uniform distribution of volumes between V1 and V2, corresponds to a log-uniform distribution
of time-relaxation constants between τ1 and τ2. This distribution can be used to model the magnetic viscosity
exhibited in most iron-bearing soil samples (Dabas et al., 1992; Worm, 1998; Igel et al., 2012).

(a) (b)

Figure A.3: (a) Theoretical representation of a uniform and a normal distribution for SP grain volumes. (b)
Theoretical representation of a log-uniform and a log-normal distribution for time-relaxation constants.

Now consider a collection of SP grains which are characterized by a normal distribution of volumes. In this
case, we assume that superparamagnetism occurs primarily in ferrimagnetic grains around a certain size. This
is represented by Vc, and marks the center of the volume distribution. Superparamagnetism is less frequently
observed in ferrimagnetic grains whose volumes are greater than or less than Vc. The span of SP grain volumes
is represented by the distribution’s standard deviation α . The density function for the normal distribution is given
by:

ρ(V ) =
1

α
√

2π
exp
(
−(V −Vc)

2

2α2

)
(A.9)
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Using the same method as before, the corresponding distribution of time-relaxation constants can be expressed
as:

f (τ) =
1

τβ
√

2π
exp
(
−(lnτ− lnτc)

2

2β 2

)
(A.10)

Eq. A.10 takes the form of a log-normal distribution. This distribution was proposed by Pasion (2007),
to explain iron-bearing soils which could not be fit by assuming a log-uniform distribution of time-relaxation
constants. The shape of the log-normal distribution is defined by parameters lnτc and β . τc is the Néel relaxation
time corresponding to SP grains of volume Vc. β is the standard deviation lnτ for all SP grains. The general shape
for both a uniform and a normal distribution of SP grain volumes can be seen in Figure A.3a. The corresponding
log-uniform and log-normal distributions for time-relaxation constants are shown in Figure A.3b.
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Appendix B

Deriving the Lower Branch of the
Lambert W Function

We wish to solve expression (3.35) for RB = 1 to obtain expression (3.38). This is equivalent to solving an
expression of the form:

At−3/2 + lnt ≈−γ + lnτ2 (B.1)

where:

A =
ln(τ2/τ1)

15Q(ρ/a)
√

π

(
2+∆χ

∆χ

)
(µ0σ)3/2a3 (B.2)

Using a change of variables, we let u = t−3/2. With some algebra, expression (B.1) can be rewritten as:

− 3
2

Aue−
3
2 Au ≈−3

2
Ae

3
2 (γ−lnτ2) (B.3)

Solutions to an expression of the form xex = C are defined as branches of the Lambert W function W [n,C],
where n are integer values (Corless et al., 1996). Therefore, the solutions un to expression (B.3) are:

un ≈−
2

3A
W
[
n,−3

2
Ae

3
2 (γ−lnτ2)

]
(B.4)

We can use expressions (3.37) and (B.2) to show A = 2
3 t3/2

β
. By replacing un = t−3/2

n :

t−3/2
n ≈−t−3/2

β
W
[
n,−t3/2

β
e

3
2 (γ−lnτ2)

]
=⇒ tn ≈ tβ

(
−W

[
n,−

( tβ
τ2

eγ

)3/2
])−2/3

(B.5)
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Real-valued solutions W [n,x] only exist for n =−1,0 (Corless et al., 1996). Additionally, for tn to occur after
the primary field has been removed (tn ≥ 0), W [n,x] requires −1/e≤ x≤ 0. Thus, by Eq. (B.5):

−1/e≤−
( tβ

τ2
eγ

)3/2
≤ 0

=⇒ e−
2
3−γ ≈ 0.288267≥

tβ
τ2
≥ 0 (B.6)

Recall that our choice in after-effect function (2.29) is only valid for τ1 � t � τ2. Therefore, the condition
defined in expression (B.6) is reasonable under the assumption that tβ � τ2. We evaluated Eq. (B.5) for n = 0
and noticed the solutions t0 6� τ2; which violates our conditions for the after-effect function. On the other hand,
solutions of Eq. (B.5) for n = −1 were both physical and did not violate conditions for the after-effect function.
Solutions obtained using W [−1,x] consistently showed tα ≤ tβ . As a result, the time tα which solves RB = 1 in
expression (3.35) is given by:

tα ≈ tβ

(
−W

[
−1,−

( tβ
τ2

eγ

)3/2
])−2/3

≤ tβ (2.51)
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