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Abstract

Diffusion-weighted magnetic resonance imaging (dwMRI) provides unique
capabilities for non-invasive imaging of neural fiber pathways in the brain.
dwMRI is an increasingly popular imaging method and has promising di-
agnostic and surgical applications for Alzheimer’s disease, brain tumors,
and epilepsy, to name a few.

However, one limitation of dwMRI (specifically, the more common dif-
fusion tensor imaging scheme, DTI) is that it suffers from a relatively low
resolution. This often leads to ambiguity in determining location and orien-
tation of neural fibers, and therefore reduces the reliability of information
gained from dwMRI.

Several approaches have been suggested to address this issue. One ap-
proach is to have a finer sampling grid, as in diffusion spectrum imaging
(DSI) and high-angular resolution imaging (HARDI). While this did result
in a resolution improvement, it has the side effects of lowering the qual-
ity of image signal-to-noise ratio (SNR) or prolonging imaging time, which
hinders its use in routine clinical practice.

Subsequently, an alternative approach has been proposed based on super-
resolution methods, where multiple low resolution images are fused into
a higher resolution one. While this managed to improve resolution with-
out reducing SNR, the multiple acquisitions required still resulted in a pro-
longed imaging time.

In this thesis, we propose a processing pipeline that uses a super res-
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Abstract

olution approach based on dictionary learning for alleviating the dwMRI
low resolution problem. Unlike the majority of existing dwMRI resolution
enhancement approaches, our proposed framework does not require modi-
fying the dwMRI acquisition. This makes it applicable to legacy data. More-
over, this approach does not require using a specific diffusion model.

Motivated by how functional connectivity (FC) reflects the underlying
structural connectivity (SC), we use the Human Connectome Project and
Kirby multimodal dataset to quantitatively validate our results by investi-
gating the consistency between SC and FC before and after super-resolving
the data. Based on this scheme, we show that our method outperforms in-
terpolation and the only existing single image super-resolution method for
dMRI that is not dependent on a specific diffusion model. Qualitatively,
we illustrate the improved resolution in diffusion images and illustrate the
revealed details beyond what is achievable with the original data.
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Preface

The work performed in this thesis has resulted in the following publications:

• (In progress) Bajammal, M. and Ng, B. and Abugharbieh, R. ”High
Resolution Diffusion MRI Data without Acquisition Modifications”

This paper was based on a collaboration between Bajammal and BiSICL
alumni Dr. Ng under the supervision and guidance of Prof. Abughar-
bieh. Dr. Ng. contributed the ideas of: using online dictionary to en-
able method scalability, using two different databases for building
the dictionary and testing to show generalizability, and using affinity
propagation to find prototype gradient volumes to reduce computa-
tional load. Bajammal contributed the code implementations, gener-
ated the results, and the idea of using a clustering approach on multi-
shell data. The paper manuscript is still in its early stages and will be
edited by all co-authors.

• Bajammal, M. and Yoldemir, B. and Abugharbieh, R. ”Comparison of
Structural Connectivity Metrics for Multimodal Brain Image Analy-
sis”, International Symposium on Biomedical Imaging (ISBI), Brooklyn-
USA, Pages: 934–937, April 2015.

This paper was based on a collaboration between Bajammal and BiSICL
PhD candidate Yoldemir under the supervision and guidance of Prof.
Abugharbieh. Yoldemir contributed the paper idea, preprocessing of
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the data and parcellation, and implementation of the tractography
method and three of the four anatomical connectivity metrics. Bajam-
mal contributed the implementation of the fourth anatomical connec-
tivity metric and the validation code as well as generated the results.
In terms of paper writing, both students contributed equally. The pa-
per was edited by the supervisor. Parts of this paper are included in
Chapter 4.

• Yoldemir, B. and Bajammal, M. and Abugharbieh, R. ”Dictionary Based
Super-Resolution for Diffusion MRI”, MICCAI Workshop on Com-
putational Diffusion MRI (CDMRI), Cambridge-USA, Pages: 194–204,
September 2014.

This paper was based on a collaboration between Bajammal and BiSICL
PhD candidate Yoldemir under the supervision and guidance of Prof.
Abugharbieh. Bajammal contributed the algorithmic idea conception,
implementation of the method and validation scheme, as well as gen-
eration of the results. Yoldemir contributed the application idea con-
ception, preprocessing of the data and parcellation, and the validation
scheme. In terms of manuscript writing, Yoldemir contributed the ma-
jority of the effort. The paper was edited by the supervisor. Parts of this
paper are included in Chapter 3.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Diffusion-weighted magnetic resonance imaging (dwMRI) is an increas-
ingly common approach of performing brain imaging, with many appli-
cations in both research and clinical practice. For instance, dwMRI has
been utilized in the assessment and therapy planning of brain tumors [30,
58], in the neurological analysis and modeling of schizophrenia [6, 23] and
Alzheimer’s disease [56, 77], for the prognosis and treatment monitoring
of multiple sclerosis [25, 40], the diagnosis and abnormalities detection in
traumatic brain injuries [18, 53], as well as the assessment and planning of
surgical interventions in epilepsy [33, 96], among many other applications.

A major motivation behind the increasingly common utilization of dwMRI
is that it provides powerful capabilities for non-invasive imaging of neural
structures in the brain. The accurate estimation of these structures enables
a more precise understanding of the structural connectivity in the brain.

However, the accuracy of estimating these neural structures is often ham-
pered by the inherently low resolution of dwMRI. A single pixel (or voxel,
for 3D data) can therefore contain many distinct fibers with differing orien-
tations, especially in the commonly used diffusion tensor imaging scheme
(DTI). At such locations, the orientation typically becomes ambiguous, which
leads to erroneous information about brain structure.

Therefore, increasing the resolution of dwMRI data holds great promise
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1.2. Magnetic Resonance Imaging of the Brain

towards more accurate delineation of fibers. Accordingly, there has been a
number of modified dwMRI imaging approaches aiming for increased res-
olution, which will be explored in the next chapter. However, they tend to
have practical limitations such as reduced image quality and a long imaging
time. Such limitations motivate the search for another approach for increas-
ing resolution. This work will present an alternative approach of achieving
this goal.

1.2 Magnetic Resonance Imaging of the Brain

Diffusion-weighted magnetic resonance imaging (dwMRI) is one of the sub-
categories of magnetic resonance imaging (MRI). It is an imaging technique
that uses water diffusion strength as a contrast in MRI images. As such,
a research investigation involving dwMRI imaging would benefit from an
overview of the underlying principles of MRI imaging.

MRI is an imaging method for creating an image of magnetic properties
of the nuclei of objects being imaged. More specifically, MRI is based on
the physical phenomenon of nuclear magnetic resonance (NMR), which de-
scribes the interaction of external electromagnetic radiation with nuclei in
a magnetic field. It is this phenomenon that makes MRI imaging possible,
via external electromagnetic radiation probing of the nuclei of an imaged
object.

The interaction of a nucleus with external fields depends on the spin of
the nucleus. The spin is a quantum mechanical measure of angular momen-
tum. The value of a quantum mechanical spin depends on the number of
protons and neutrons in the nucleus. Accordingly, each atom and isotope
(atom variants having different number of neutrons) has a particular spin
value.

The quantum mechanical spin of a nucleus is a major determinant of
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1.2. Magnetic Resonance Imaging of the Brain

whether or not a material composed of that nucleus can be imaged using
MRI. A nucleus that has a spin value of zero is not affected by magnetic
fields and can not be imaged in MRI. This is illustrated in Figure 1.1. A
nucleus has a zero spin when the number of protons and neutrons are both
even numbers.

In order to be able to detect a nucleus using MRI, it should have a non-
zero integer or half-integer quantum mechanical spin, which is the case for
odd values of number of protons or neutrons. Fortunately, a large number of
biological tissues are composed of materials whose spin values are integer
or half-integer. In practice, almost all medical MRI imaging is based on the
hydrogen nucleus because of the large proportion of water in body tissues
and the fact that hydrogen’s spin value is half-integer.

Another property of the nucleus that affects its interaction with external
fields is its magnetic moment µ. Like the quantum spin, the magnetic moment
also depends on the number of protons and neutrons in the nucleus. As
such, each atom or isotope has a magnetic moment value. For the commonly
used hydrogen nucleus, the magnetic moment is µ = 2.79N-m/T. The value
of the moment indicates the amount of torque a nucleus will experience
when a force is exerted on it by an external field.

The magnetic moment is not a scalar value, but rather a vector quan-
tity. The orientation of the vector is aligned with the axis of rotation of the
nucleus. Most objects of medical interest are relatively large and macro-
scale, containing billions of nuclei. Therefore, it is more practical to define
the net magnetization vector as the combination of the individual magnetic
moments in the nuclei.

In a tissue in its normal state (i.e. without any external excitations), the
individual magnetic moments are randomly distributed due to the random
locations and orientations of nuclei. Therefore, the net magnetization vector
is practically zero. On the other hand, when a tissue is placed in an exter-
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Figure 1.1: An illustration of the basic elements of an NMR experiment, and
the required properties of the imaged object.
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1.2. Magnetic Resonance Imaging of the Brain

nal magnetic field, a much more interesting behavior arises. The magnetic
moments of the nuclei start to align with the external magnetic field. This
is illustrated in Figure 1.2.

However, the alignment of a given nucleus occurs in one of two oppo-
site directions: alignment that is parallel to the external field, and another
that is anti-parallel to the field. That is, the magnetic moment can be either
one of two opposite vectors. The number of nuclei which are oriented in
each of the two opposite directions is not equal. The parallel direction is in
a lower energy state compared to the anti-parallel direction. As such, there
are slightly more nuclei assuming the parallel direction. Fortunately, even
this slight difference results in a detectable net magnetic moment, especially
considering the fact that the scale of interest in imaged tissues contains hun-
dreds of billions of nuclei.

When the magnetic moments of the nuclei begin to align with the exter-
nal field, a rotational force is at work during this alignment. Due to angular
momentum, this rotational force causes the magnetic moment to resonate
back and forth around the new external field axis. The angular frequency
of this periodic rotation is given by Larmor’s equation, one of the cornerstone
equations in magnetic resonance imaging

ω = γB0 (1.1)

where ω is the Larmor frequency: the angular frequency of resonance (also
referred to as frequency of precession) in units of radians, B0 is the strength
of the external magnetic field in units of Tesla (T), and γ is a material prop-
erty constant referred to as the gyromagnetic ratio. For hydrogen, γ = 42.57
MHz/T.

As long as the external B0 field is on, the precession continues with-
out dampening as there are no frictional forces. Accordingly, the external
field B0 results in a steady state condition where the magnetic moments
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Object under external static magnetic �eld B0

Object without any external excitations

some
anti-parallel
nuclei

Net
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 =     Magnetic moment of an individual nucleus

Figure 1.2: Alignment of magnetic moments under an external static mag-
netic filed B0. Parallel nuclei are more common and favorable due to lower
energy state compared to anti-parallel.
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1.2. Magnetic Resonance Imaging of the Brain

are of known precession frequency. Even though the individual moments
are steadily rotating about the z-axis (the axis of B0), the net magnetization
vector has a steady orientation parallel to the z-axis, and we writeMz =M0.
However, because the individual precessing moments are not in-phase, the
transverse component Mx,y is zero.

Therefore, the net magnetization vector M when B0 is applied is given
by the steady time-invariant expression

M =M0ẑ (1.2)

However, in order to induce a signal in a detector coil, a time-varying mag-
netic field is necessary (based on Faraday’s induction). Accordingly, the
individual magnetic moments need to be perturbed and the resultant per-
turbed net magnetization creates a signal in the detector.

The perturbation of the magnetic moments is achieved through an ad-
ditional external field that is time-varying, referred to as the B1 or RF pulse.
Because the magnetic moments are precessing at a frequency of ω, the ap-
plied B1 pulse also needs to have a frequency of ω in order to magnetically
couple (i.e. to resonate) with the precessing moments. The direction of the
B1 pulse is perpendicular to B0. Assuming that B0 is oriented along the z-
axis and B1 along the x-axis, the result of applying the pulse is to tip the
orientation of the net magnetization from the longitudinal z-axis towards
the transverse x,y-plane. The net change in orientation is referred to as the
tip angle.

The tip angle depends on the magnitude and duration of the RF pulse.
Longer and more intense pulses yield larger tip angles. The intensity is typ-
ically much smaller than the staticB0, because magnetic resonance coupling
allows for cumulative perturbation, and therefore a small pulse applied for
a given amount of time can accumulate and yield sufficient perturbation.

Under this process of tipping the net magnetization vector, if a detector
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1.2. Magnetic Resonance Imaging of the Brain

coil is positioned such that its axis lies in the transverse (x,y) plane, an AC
voltage signal oscillating at the Larmor frequency is generated in the coil
based on Faraday’s induction. This detected signal is the MR signal. This
detection provides an external readout of the changes in net magnetization
occurring within tissue.

However, the detected MR signal corresponds to all precessing nuclei.
In other words, the detected signal is a combination of all magnetic mo-
ments from all nuclei regardless of their location. So far, the process does
not specify the location from which the detected signal is generated. This
issue must be addressed because, after all, the association of an MR signal
with a location is a necessary information in order to form an image.

The main approach of establishing spatial information in an MR signal
is the use of magnetic field gradients. Such field gradients have spatially
varying intensities within the region of interest in the imaged object. The
gradient is typically linear with relatively small intensity variation in units
of milliTesla per meter.

Applying a gradient to a region of interest results in having a linearly
varying B0 within the region. The result of a linearly varying B0 is a lin-
early varying precession frequency ω. That is, each location is now associ-
ated with a particular frequency. This is in contrast to the initial case with-
out gradients, where all locations had the same frequency and therefore no
spatial information was available.

However, it is important to note that, so far, the applied gradient only
encodes spatial information along one direction only. That is, if we are to
imagine the region of interest to be an image slice, the applied gradient
so far only provides information about which image column the signal is
coming from. Therefore, an additional gradient is required in order to fully
encode the spatial information in an image slice.

While the first spatial direction was determined using frequency-encoding,

8
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information about the second direction is defined through phase-encoding
direction. This is exactly similar to frequency-encoding, in the sense that it
is also based on a spatially varying field. However, it is applied in a second
direction that is perpendicular to the frequency-encoding direction. The re-
sult of applying the phase-encoding gradient is that the precession phases
are now linearly varying along the new direction. The effect of the gradient
is to encode the phase information in the detected signal, hence the name
“phase-encoding gradient”.

With the frequency-encoding direction dividing the image into columns
and the phase-encoding direction dividing the image into rows, the spa-
tial unit at the intersection of both gradients is referred to as a voxel. The
x-dimension of the voxel is specified from the frequency information and
its y-dimension is specified from the phase information. The intensity of
the voxel is determined through Fourier transform. After the application
of both gradients, the detected MR signal in the coil is composed of dif-
ferent frequencies at different phases. An image is then formed by taking
the Fourier transform of the detected MR signal, which result in phase and
magnitude information of the various frequency components in the signal.

So far, the applied sequence of gradients can provide information about
an image slice. However, no aspect of the process determines which slice
should be imaged within a region of interest. This part of the imaging pro-
cess, which enables the acquisition of different slices that can span a 3D
volume, is referred to as the slice-select direction encoding.

A common method of encoding the slice-select direction involves a two
step process that applies an RF pulse on top of a linear gradient. First, a
linear gradient is created along the slice-select direction (i.e. the direction
perpendicular to the slices). Then, instead of applying an RF pulse that res-
onates with the precessing moments produced by B0 as before, the RF pulse
is designed to have frequency components that correspond to only a small
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1.3. Diffusion Modeling

range that lies within the applied gradient. The center frequency of the RF
pulse and the bandwidth of the frequency range it contains determine the
position and thickness of the selected slice, respectively.

Therefore, the creation of an MRI volume involves the application of all
three gradient directions. The sequence in which the gradients and pulses
are applied is referred to as the pulse sequence, and the process and steps
that have been described in this section represent the main parts of a pulse
sequence.

1.3 Diffusion Modeling

The purpose of diffusion modeling is to fit the DW-MRI dataset into a model
that enables extraction of various useful information about the microstruc-
ture of the brain. The diffusivity information in a DW-MRI dataset is mea-
sured using the pulse sequence described in the previous section.

One of the earliest and most common approaches of modeling diffusion
information is diffusion tensor imaging (DTI) [9]. DTI uses at least six dif-
fusion weighted volumes to create a tensor that describes the diffusion of
water within each voxel.

Accordingly, the cornerstone element in DTI is the diffusion tensor. This
can be expressed in a matrix form as follows

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.3)

which, due to the symmetry of diffusion (i.e. equality between both sides
the diagonal; Dxy = Dyx, etc), can be fully determined using only six of the
quantities in the matrix. The diagonal elements represent the diffusivities of
the three axes. The off-diagonal elements are the correlation (or covariance)
between any two axes.

10



1.3. Diffusion Modeling

Thus, D represents a diffusion covariance matrix. The eigenvectors of D
represent the axes of an ellipsoid representing diffusion in the voxel. The
eigenvalues (λ1, λ2, λ3) ofD represent the three diffusivities along the three
axes of the ellipsoid. The diffusion tensor orientation is taken to be the ori-
entation of the principal eigenvector, which is the eigenvector that corre-
sponds to the largest eigenvalue.

Another important property of the diffusion tensor that is based on eigen-
values is the fractional anisotropy (FA) [19], defined as follows

FA =

√
3
2

(
(λ1 −ADC)2 + (λ2 −ADC)2 + (λ3 −ADC)2

λ21 +λ
2
2 +λ

2
3

)
(1.4)

where ADC is the apparent diffusion coefficient (also referred to as mean dif-
fusivity), and is proportial to the tensor trace: ADC = (Dxx +Dyy +Dzz)/3,
which is equivalent to the average of eigenvalues. ADC is also sometimes
used to refer to each direction separately, in which case the ADCs corre-
spond to the eigenvalues.

FA is a normalized quantitative indicator of the degree of anisotropy in a
voxel. A near-zero FA value indicates an isotropic diffusion within the voxel.
That is, the diffusivities along all three orthogonal axes are similar. This
provides an indication that water is diffusing equally along all directions,
and therefore the local tissue structure is unrestrictive and non-directional.
On the other hand, FA values closer to one indicate a highly anisotropic
diffusion. This is a diffusion that is very large along one direction only,
and very small in the other two directions. As such, high FA results from
a voxel which has a local tissue structure that is restricting water diffusion
along one direction.

11



1.4. Limitations and Alternative Imaging Schemes

1.4 Limitations and Alternative Imaging Schemes

While DTI offers useful insight into brain structure through the use of ten-
sors, it has a number of limitations. The accurate construction of fiber tracts
is important in gaining insights into brain function since fiber tracts act
as the infrastructure enabling communication between brain regions [39].
However, accuracy of the reconstructed fiber tracts is often hampered by
the often low resolution of DTI data. A voxel can thus comprise several dis-
tinct fiber bundles with differing orientations, leading to partial volume effect
[4]. At such locations, diffusion information typically becomes ambiguous,
and tractography is often falsely terminated.

Fortunately, the dwMRI acquisition process has a multitude of param-
eters that affect the quality of the final volume data. These include factors
such as magnetic field strength, voxel size, diffusion orientations, among
other factors. This has resulted in a significant body of research devoted
to optimizing such factors with the aim of achieving more accurate fiber
estimation.

The following sections will review some of the key alternative imaging
schemes (mainly Diffusion Spectrum Imaging - DSI, and High Angular Res-
olution Imaging - HARDI) that are addressing the limitations of DTI.

1.4.1 Diffusion Spectrum Imaging

One approach that has been proposed to capture more detailed diffusion
information is diffusion spectrum imaging (DSI) [93]. DSI acquires full dif-
fusion information in a substantial region of the q-space, which is the 3D
space representing the extent and orientation of spin diffusions along the
three axes of motion (x,y,z). This is in contrast with the more common DTI
imaging scheme, which does not aim to fully sample the q-space.

Accordingly, in order to sample a large region of the q-space, the im-
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age acquisition in DSI is different from DTI. A major difference between the
two techniques is that DSI adds additional gradients during imaging. That
is, in addition to the typical slice selection, frequency-encoding, and phase-
encoding gradients, three new gradients are added to fully encode diffusion
in a 3D Cartesian grid comprising many diffusion magnitudes and orienta-
tions. In other words, DSI is essentially a fully 6D imaging modality, which
samples both the k-space (spatial position sampling) and q-space (spin dis-
placement sampling) simultaneously.

As a result of the additional three dimensions of q-space, DSI provides
an explicit representation of diffusion. In other words, DSI does not require
diffusion modeling. This is because at each voxel, the q-space volume has
been shown [93] to be a direct representation (through a Fourier transform)
of the spin-displacement PDF (probability density function) at each voxel.
This is in contrast with DTI, which can not be performed without modeling
diffusion using tensors.

Experimental studies comparing DSI relative to DTI have shown im-
proved detection of fiber crossings in human and rat brains [55, 94]. In a
number of ROIs, the fibers reconstructed from DSI have shown better re-
semblance to known anatomical pathways in the brain.

Despite the improvement in fiber crossing detection, DSI has a signifi-
cant drawback. The sampling of q-space requires a significant amount of
data, with typically a 3D grid of 500 q-values used in scanning, represent-
ing DW gradients over a multitude of orientations and magnitudes. This
results in a much longer acquisition time. While a typical DTI acquisition
takes about 3-5 minutes, DSI acquisition time is usually around 40 minutes
[16, 57], and is typically performed with a smaller number of repetitions
compared to DTI in order to reduce scan time, and therefore the SNR is
generally lower. Accordingly, this is a significant drawback that prevents
DSI from being a practical imaging scheme.
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1.4.2 High Angular Resolution Diffusion Imaging

In an effort to reduce the significant burden of sampling a 3D q-space grid in
DSI, an alternative approach that uses only angular samples was proposed
[5, 27, 88]. This approach, which came to be known as high angular resolution
diffusion-weighted imaging (HARDI), only samples a spherical subset of the
diffusion space, which is referred to as a diffusion shell. That is, the acqui-
sition is simplified to a single (or, sometimes, a few [1, 21]) diffusion shells
instead of fully sampling the entire 3D diffusion space as in DSI.

By restricting the acquisition to a high-resolution spherical shell instead
of a full Cartesian grid, HARDI simplifies the acquisition while maintaining
some of the information provided by DSI. This simplification is further sup-
ported by the fact that the typical subsequent processing pipeline is based
on tracking the locally estimated orientations. Accordingly, HARDI’s sim-
plification strategy of focusing more on angular diffusion data relative to
radial data can be argued to be an efficient strategy.

The choice of the magnitude(s) of shells is a trade off between the ben-
efits of HARDI (few shells and orientations) and DSI (full Cartesian grid).
However, it is known that higher magnitudes and more orientations yield
better performance [74].

However, because full information on the q-space is no longer available,
HARDI requires a diffusion modeling step, which was not required in the
case of DSI. Several modeling approaches have been proposed in literature.
However, one of the most common approaches of reconstructing diffusion
ODF from HARDI data is Q-ball Imaging (QBI) [87]. An attractive feature
of QBI is that it is a model-free method. In QBI, the measured spherical
diffusion signal is directly used to reconstruct the diffusion ODF. This is
performed through the Funk-Radon transform, which extends the planar
Radon transform to spherical tomographic reconstruction. QBI has been
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shown to yield better reconstruction of fiber crossings compared to DTI [87,
89].

Despite the improved reconstruction afforded by QBI, the technique has
some drawbacks. QBI has been shown to require high diffusion-weighting
factors (b-values) in order to be able to resolve fiber crossings [48, 86], with
suggested values of about b = 3000 − 4000smm−2. In comparison, typical
DTI values are around b ∼ 1000smm−2. Due to the higher b-values in QBI
and the denser gradient directions sampling, the resultant SNR can be very
low [62]. Furthermore, the higher number of gradient orientations (∼ 60
to few hundreds) results in a significant acquisition time of around ∼ 30
minutes to a few hours [48], which hampers practical clinical use.

1.5 Thesis Objectives and Proposed Approach

The aim of this thesis is to propose an approach for increasing the spa-
tial resolution of brain dwMRI data. Increasing the resolution will help
in enabling more detailed extraction of information from dwMRI data, and
therefore help improve the estimation of brain fiber structures. In this sec-
tion, we describe the main objectives that this work is aiming to address.

Recently, a powerful approach of enhancing the resolution of images us-
ing dictionary learning has been shown to yield good performance in nat-
ural images [46, 97]. Dictionary learning is a process in which a signal or
image is represented using as few learned basis functions as possible. The
details of this process are discussed at length in Chapter 3.

In the dictionary learning based super-resolution process, two dictio-
naries are created: a high-resolution dictionary and a corresponding low-
resolution dictionary. Through these joint dictionaries, a high-resolution
image can be generated from a new unseen low-resolution image.

In a similar fashion, we propose a processing pipeline in this thesis that
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is built on top of the same joint-dictionary learning approach and extend it
to multi-shell dwMRI data. We chose to create a pipeline that adopts this
approach in order to be able to create a resolution enhancement of dwMRI
without resorting to acquisition modifications. The details of the proposed
processing pipeline are described in Chapter 3.

An objective of the proposed approach is to not require modifications to
the acquisition scheme. This stems from the fact that most of the proposed
alternatives to DTI require acquisition methods which require a very long
imaging time to obtain acceptable image quality, hampering its utilization
in routine clinical use as explained earlier in section 1.4.

To this end, we aim to propose an approach that should not require mod-
ifications to the dwMRI acquisition process. This ensures that the proposed
processing pipeline maintains its applicability in a wide variety of clinical
and research settings. This also allows the proposed approach to be used
on legacy data in pre-existing clinical or research data sets. These objectives
can not be attained using other approaches that are based on acquisition
modifications

Another objective of the proposed approach is to be independent from
the choice of diffusion modeling. In other words, the proposed approach is
not attempting to change or improve the diffusion model. This ensures that
the proposed approach can be used with whatever diffusion model used in
various acquisitions. It is also not a tractography method, but rather can be
used as an input to tractography. This makes it suitable for use with any
tractography method preferred by the end user.

Furthermore, as a result of the preceding features, the proposed ap-
proach should be modular and flexible. In other words, it can be used with
any other method that aims to enhance structural information. For instance,
it can be used as an additional step after other approaches that use acquisi-
tion modifications.
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1.6 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we examine key
related literature aiming to achieve similar objectives of increasing dwMRI
data resolution. We categorize them into main categories and explore the
advantages and disadvantages of each category.

In Chapter 3, the proposed framework is described. We examine in de-
tails the rationale and design of each block in the proposed framework, and
determine the various parameters of the methods in order to yield good
performance. We begin by describing the preconditioning steps employed
to improve the condition of the coding matrix, after which we determine the
parameters of the preconditioning process, followed by determining the pa-
rameters of dictionary learning.

In Chapter 4, we describe the proposed validation methodology. Chap-
ter 5 presents quantitative and qualitative results examining the performance
of the proposed framework, and also examines the dependency of perfor-
mance on variations in datasets, as well as comparisons against other meth-
ods.

1.7 Thesis Contributions

The following is a brief overview of the contributions of this thesis. This
will be explained in detail in the following chapters.

We propose a dwMRI data processing pipeline (built on a dictionary
learning approach) that enhances the resolution of dwMRI after the data
has been acquired. The pipeline does not require modifications to the dwMRI
acquisition process, and therefore is more practical in clinical conditions
where simple acquisition methods are typically used.

Due to the absence of acquisition requirements, the pipeline can be read-
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ily used with existing legacy databases of dwMRI data. This can be useful
when trying to utilize or reuse datasets which has been acquired with older
acquisition technologies. Absence of acquisition requirements also makes
it usable with different imaging schemes, such as DTI or HARDI (single,
and multiple-shell). Some of the existing super-resolution approaches are
specific to HARDI or DTI.

We also note that the proposed pipeline does not require repeated dwMRI
acquisitions, unlike classical shifting-based super-resolution methods. An-
other contribution is that the pipeline performs a resolution enhancement
directly on raw dwMRI data, resulting in a model-free pipeline.

This lack of required modeling is useful because it does not restrict the
end user to a particular model, which gives the freedom of using differ-
ent diffusion models in different research or clinical situations, depend-
ing on the specific research conditions or objectives. Finally, we note that
the model-independence also allows for cumulative enhancements, in which
any other diffusion-specific or tractography-specific enhancements can be
readily applied on top of the pipeline.
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Chapter 2

Related Literature

2.1 Overview

Obtaining structural information about the brain in a non-invasive fashion
is one of the major applications of brain dwMRI, among other applications
such as using diffusion anisotropy to diagnose brain infarction [95] as well
as brain development and aging [72].

This structural information takes the form of a set of connected fiber
segments (referred to as tracts) that are reconstructed from dwMRI. The
fiber tracts in turn give raise to a network of inter-connected spatial regions
in the brain.

The cornerstone of obtaining structural reconstruction is to perform a
tractography on the dwMRI data. In its most common form, tractography
generates a set of fiber tracts by connecting the largest eigenvectors of the
diffusion tensor at each voxel, starting from multiple seed points. This ap-
proach is referred to as deterministic streamline tractography. Many other trac-
tography approaches have been proposed, such as methods based on globally-
consistent reconstructions as well as probabilistic reconstructions.

The accurate construction of fiber tracts is important in gaining insights
into brain function since fiber tracts act as the infrastructure enabling com-
munication between brain regions [39]. However, accuracy of the recon-
structed fiber tracts is often hampered by the inherently low resolution of
dwMRI data. Currently achievable spatial dwMRI resolution is around 2
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mm3, while the actual neuronal fiber diameter is on the order of 1 µm. A
voxel can thus comprise several distinct fiber bundles with differing orien-
tations, leading to partial volume effect [4]. At such locations, diffusion in-
formation typically becomes ambiguous, and tractography is often falsely
terminated.

Several methods have been explored in literature to address the partial-
volume effect. The common goal of these methods is to reduce the ambigu-
ity present in the imaged voxels. While there is a wide variety of approaches
and strategies proposed in literature, we grouped them into two major cat-
egories: shifting-based dwMRI super-resolution, and model-based dwMRI
super-resolution.

At this point it is important to note that the enhancement of structural
reconstruction can also be achieved via improvements in tractography al-
gorithms. While research in this field is very active, the goal of the current
investigation is to explore structural enhancement approaches that are in-
dependent of tractography. The rationale is that such approaches are bene-
ficial because any structural enhancements they offer may then be accumu-
lated in addition to improvements in tractography algorithms.

2.2 Shifting-based dwMRI Super-resolution

One of the earlier attempts to improve resolution of dwMRI was through
the use of multiple shifted acquisition, in which the imaging process ac-
quires multiple volumes, each representing a slightly shifted region of phys-
ical space. This is followed by a subsequent super-resolution reconstruction
method [10, 41]. The main difference between this approach and more tradi-
tional Q-space imaging enhancements is that the latter aims to resolve more
details through a modified imaging acquisition, while super-resolution en-
tails a post-imaging processing approach.
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2.2. Shifting-based dwMRI Super-resolution

As implied by the name, super-resolution is a method of increasing the
resolution of an image. The central concept of super-resolution is the re-
construction of high-resolution details from multiple lower-resolution im-
age acquisitions. The main benefit of super-resolution is providing a higher
resolution image without requiring modifications to the imaging hardware
or optics. This can be beneficial in situations where such hardware modifi-
cations may be difficult or impractical.

The rationale for super-resolution is based on an information fusion pro-
cess. The super-resolution process assumes that, if multiple low-resolution
images of a scene are available, and if such images were related to each other
by relatively small shifts, then a higher resolution image can be obtained by
fusing the information from the set of shifted low resolution images into a
single high resolution image [90].

2.2.1 Translational Field of View Shifting

One of the first of investigations in translational-shifting super-resolution of
dwMRI was by Peled and Yeshurun [71]. In this work, super-resolution re-
construction was directly applied to multiple acquisitions of dwMRI data.
Specifically, each slice was acquired eight times, with each acquisition at a
subvoxel spatial shift relative to the first acquisition. This was achieved by
changing the FOV (field of view) in the frequency-encoding and the phase-
encoding directions (i.e. within the in-plane directions in a multi-slice ac-
quisition).

However, this approach has been proven later to have a fundamental
problem [75]. This is because spatial sub-voxel shifts in the FOV in the in-
plane directions simply correspond to linear phase modulations in the k-
space. This means that, the multiple acquisitions correspond to the same
k-space points, and no new points or new information is acquired. Any
observable improvement may therefore be attributed to increased SNR be-
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cause of the use of more averaging acquisitions, which is already a standard
practice in most acquisitions.

Accordingly, subsequent research efforts have focused on super-resolving
the through-plane (i.e. the slice-select) direction of the acquisition. One
approach [32] performs sub-voxel shifts in the FOV along the slice-select
direction.

2.2.2 Orientational Field of View Shifting

An alternative approach to translational sub-voxel shifting has been pro-
posed based on orientational FOV shifting [76, 79]. For each low resolution
acquisition, the FOV was rotated around the frequency-encoding direction,
resulting in a series of rotations (a total of six equidistant orientations were
acquired, 30o apart).

The orientational FOV shifting approach has been shown to yield better
resolution enhancement relative to the sub-voxel spatial shift [80] for the
same number of low-resolution acquisitions. The methods adopting this
approach are motivated by the rationale that orientational shifting would
arguably result in a more efficient sampling of the k-space for the same num-
ber of shifting. This has not been explored quantitatively in literature. The
difference between the two FOV shifting approaches is illustrated in Figure
2.1.

Despite the reported resolution enhancements using shift-based super-
resolution, the process has a number of limitations. First of all, it is very im-
portant to note that the vast majority of super-resolution literature in MRI
have focused on standard (non-diffusion weighted) images. Its use in DTI
(or other Q-space based modalities for that matter) received little attention.
In most super-resolution studies, a total of around 6-8 FOV shifts were ac-
quired (whether spatial or rotational), which were based on empirical ex-
amination and no theoretical limit has been investigated. Strictly speaking,

22



2.2. Shifting-based dwMRI Super-resolution

Figure 2.1: Illustration of the spatial sub-voxel FOV shifting super-
resolution in comparison to the orientational shifting super-resolution.
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these shifted acquisitions are in-addition to the few additional repeated ac-
quisitions performed to average the signal and boost the SNR. Accordingly,
around 10 acquisitions can be expected to be performed for each gradient
direction in a DTI acquisition. And with the recommended optimal num-
ber of gradients being around 30 [43], this results in the requirement of hav-
ing around 300 acquisitions for super-resolution. Recently, one of the first
DTI studies [73] used only 12 gradients (total acquisition time of around 9
minutes) with no repetitions, which is much lower than the recommended
number of gradients. More research needs to be done in investigating the
use of shift-based super-resolution for DTI.

Another limitation of shifting-based super-resolution approaches is that
it is not possible to super-resolve information within the between-planes di-
rection, thus limiting any possible resolution enhancement to the two other
dimensions only, due to limitations imposed by the encoding scheme [75].

2.3 Model-based dwMRI Super-resolution

An alternative class of super-resolution approaches may be identified as in-
volving the construction of more complex models of dwMRI data. Specifi-
cally, methods belonging to this approach focus on increasing the resolved
details in various diffusion models. This then enables exploring the recon-
structed neural structures at a greater resolution.

This approach is different from the methods described in the previous
section in the sense that it does not require multiple shifted acquisitions.
However, due to the often mutual dependency between model and acqui-
sition, some of these methods may also include certain acquisition require-
ments. This section presents a review of key literature adopting this model-
based super-resolution approach.
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2.3.1 Super-resolved Diffusion Tensor

A model-based approach aiming to super-resolve diffusion tensors has been
proposed [35, 66]. This approach essentially proposes an alternative diffu-
sion tensor reconstruction method such that the diffusion tensors are con-
structed at a higher resolution grid.

The basic framework is based on expressing the diffusion signal in terms
of a diffusion tensor at a higher resolution. This is in contrast with the stan-
dard method of diffusion tensor construction, where the diffusion signal is
expressed in terms of a diffusion tensor at the same resolution (i.e. same
grid as dwMRI data). This can be expressed in a generic form as follows

SLR
(
xLRi

)
= f

(
DHR

(
xHR
j

))
(2.1)

where SLR is the original (low-resolution) diffusion signal, xLRi represents
the original (low-resolution) grid, f indicates a function of DHR, which is
the diffusion tensor at the higher resolution grid xHR

j . Further details on
equation parameters can be found in [35].

Accordingly, a relation is established between the low (original) resolu-
tion dwMRI data and high-resolution tensors. These tensors are then con-
structed using an inverse problem approach. An energy function is there-
fore created, and then minimized to generate the tensors.

While better tensor resolution has been demonstrated [35], a major lim-
itation of this approach is that it is inherently restricted to using diffusion
tensors as the model, which has been shown to be suboptimal in modeling
diffusion in complex neural fiber structures [8]. Therefore, this approach
can not be used with other diffusion models such as ODF (orientational
density function), for instance. Its applicability is limited due to the require-
ment of a tensor model.
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2.3.2 Super-resolved Spherical Deconvolution

Another modeling method has been proposed which aims to construct a
high resolution orientational probability density function (ODF) based on a
spherical deconvolution of the diffusion-weighted data [84, 85]. As implied
by the name, the ODF assigns a probability for the existence of a fiber at
various orientations on a sphere.

In this model, the diffusion-weighted signals (as measured on a diffu-
sion shell sphere) are modeled as the convolution of a certain transfer func-
tion with an ODF

S (θ,φ) = F (θ,φ) ∗R (θ) (2.2)

where θ,φ are the elevation and azimuthal angles in a sphere and S (θ,φ) is
the measured diffusion signal at a voxel at the orientation (θ,φ). F (θ,φ) is
the desired unknown ODF, and R (θ) is the transfer function. The transfer
function would typically be determined from regions in the data where the
ODF is anatomically known to be a single coherent orientation of fibers.

Therefore, given a diffusion-weighted signal S (θ,φ) and the transfer
function R (θ), a deconvolution process would then enable the estimation of
the ODF F (θ,φ). Since the functions involved in the convolution are spher-
ical, the deconvolution is also performed over a sphere [38].

The super-resolution approach used by these methods is based on per-
forming a spherical deconvolution to estimate the ODF at resolutions higher
than what is present in the measured data S (θ,φ) [84]. This is achieved by
introducing non-negativity constraints on the ODF, which stems from the
anatomical impossibility of having negative fiber density. This has the dual
benefit of reducing background noise which may cause the ODF to take
negative values, and subsequently allows a finer estimation of the ODF due
to the reduced background noise.

While this approach has demonstrated higher resolution in the gener-
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ated ODFs [84], it is specifically restricted to choosing ODFs as a model.
This makes it unusable with the wide variety of other modeling methods.
Furthermore, the proposed method requires the use of HARDI data. As
such, this super-resolution approach can not be used with the more com-
mon DTI data, which is also often the type of data of many legacy dwMRI
databases.
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Chapter 3

Proposed Framework

3.1 Overview

The proposed framework for enhancing the resolution of dwMRI differs
from the existing shifting-based and model-based dwMRI super-resolution
approaches discussed in Chapter 2. In the proposed framework, there is no
requirement for a modified acquisition sequence, nor a choice of a particular
diffusion model. The proposed framework makes no assumptions about
acquisition or modeling.

In this chapter, we will describe the framework in detail. The frame-
work has two components: a processing pipeline and a validation method-
ology. The processing pipeline is described in section 3.2, and the validation
methodology is described in Chapter 4.

3.2 Processing Pipeline

Recently, a powerful approach of super-resolving data using a dictionary
learning approach has been shown to yield good performance in super-
resolving natural images [46, 97]. Dictionary learning is a process in which a
signal or image is represented using as few basis functions as possible. The
key concept of dictionary learning is that the basis functions are learned
from the data, rather than being constructed from a generating function.

In the process of super-resolution via dictionary learning, two dictionar-
ies are typically created: a high-resolution dictionary and a corresponding
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Figure 3.1: An overview of the proposed processing pipeline.

29



3.2. Processing Pipeline

low-resolution dictionary. Through these joint dictionaries, a high-resolution
image can be generated from a new, previously unseen, low-resolution im-
age.

In a similar fashion, we propose a processing pipeline in this thesis that
is built on top of the same joint-dictionary learning approach and extend it
to multi-shell dwMRI data. We chose to create a pipeline that adopts this
approach in order to be able to create a resolution enhancement of dwMRI
without resorting to acquisition modifications, which was the case in the
alternative super-resolution methods described earlier in Chapter 2.

The proposed processing pipeline is shown in Figure 3.1. The process
starts with selecting a dwMRI training dataset. The data is then clustered
into a single diffusion shell. We recall from Chapter 1 that a diffusion shell
is simply a spherical subset of the diffusion space instead of the entire 3D
diffusion space. This will be discussed in more details in section 3.2.1.

The clustering is then followed by a preconditioning process that aims
to improve the condition number of a coding matrix. Finally, the process
terminates with a dictionary learning step applied on the dwMRI data.

3.2.1 Diffusion Shell Clustering

In general, dwMRI volumes may be described as residing on diffusion shells.
Each diffusion shell describes a certain strength of diffusion weighting. Sub-
sequently, each acquired diffusion direction represents a sample on the cor-
responding diffusion shell. At the limit, as more directions are acquired
in each shell and as inter-shell gaps are reduced, the acquired data set ap-
proaches that of a DSI acquisition. Figure 3.2 shows an illustration of the
shell structure in a typical dwMRI dataset.

Historically, most acquisitions were typically limited to single shells.
This was due to practical limitations in the acquisition hardware and cor-
responding software pipeline algorithms. Increasingly, this is being gradu-
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ally replaced by multi-shell acquisitions. This form of acquisition allows for
higher angular contrast between the various diffusion directions [13, 17, 45]
and also enables the use of richer diffusion modeling [2, 22, 47].

However, the benefits afforded by multiple-shells are offset by the more
elaborate sampling scheme and the resulting substantial increase in the size
of the dataset. While the design of multi-shell acquisitions is still an active
field of research, some studies [12, 81] have provided suggestions that an
optimal acquisition can be achieved using 3 shells and around 160 - 280
total measurements (across all shells).

Such multi-shell acquisitions posit a number of difficulties for the pro-
posed resolution enhancement framework. First, there is a practicality issue
of loading and learning on the large number of volumes in a multi-shell ac-
quisition, as can be noted by observing the large number of dots in Figure
3.2. For instance, a typical acquisition following the aforementioned scheme
(for example, a typical subject data in the Human Connectome Project –
HCP) requires around ∼ 8 GB of memory space, not including any other
software or system resources requirements. While this is gradually becom-
ing a non-issue on some modern computers with ample resources, it may
still present a practical limitation on processing multi-shell acquisitions for
a large majority of users (which was the case on the machines used to con-
duct this research).

Another, more fundamental, issue of training on multi-shell acquisitions
is the increased ill-conditioning of the training matrix. This is due to finer
angular sampling in typical multi-shell acquisitions which increases the
odds of having highly-similar patches. The resulting ill-conditioned matrix
prevents the creation of a joint hi-res/low-res dictionary, which is necessary
for the proposed resolution enhancement framework, as will be described
in more details in section 3.2.2.

We propose to address these issues through a clustering approach. More
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Figure 3.2: Illustration of the diffusion shells structure in a typical dwMRI
data. Each shell represents a certain strength of diffusion weighting. Each
dot represents a 3D diffusion volume.
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specifically, we propose to cluster the measurements across all acquired
shells into a set of representative dwMRI volumes. By design, this proposed
diffusion shell clustering should be able to condense a multi-shell acquisition
into a relatively smaller and heterogeneous single shell that would still cap-
ture the bulk of information present in the multi-shell dataset. While such
a clustering approach, by design, reduces the amount of information, we
adopt this approach to reduce the computational load and the ill-condition-
ing of the training matrix as explained earlier.

There are a number of existing clustering methods that are widely used
to cluster many types of data. Common methods include K-means cluster-
ing, K-medoids, and Gaussian mixture models, to name a few. However,
most of these clustering methods require identifying the number of clus-
ters before hand. Identifying the correct number of clusters remains a chal-
lenge, and may be different for different acquisitions. This is especially true
for multi-shell data, where there can be great variability between one acqui-
sition and another.

At this point, we recall that one of the main objectives of this work is
to propose a framework that is independent of the acquisition scheme. As
such, we aim for the processing pipeline to be able to handle older and com-
mon DTI data, as well as various forms of the richer and more recent multi-
shell HARDI data.

In order to achieve this goal, we propose to utilize affinity propagation
(AP) [28] to perform diffusion shell clustering. In AP, the dataset is iter-
atively analyzed to generate a set of exemplars: data points that are most
representative of their respective clusters. The affinity propagation process
begins with a similarity matrix, which indicates how well a certain point
serves as an exemplar to other points. The exemplars then minimize the
pairwise error or distance between themselves and potential cluster mem-
bers. We refer the reader to [28] for more details.
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Most importantly, the final number of clusters is determined automat-
ically. In addition, there is no initial set of clusters. Instead, all points are
candidate exemplars. All points are represented as nodes on a network, and
messages are passed between nodes depending on the degree of similarity
between the pair, denoted by s(i, j). The iterative propagation of such affin-
ity messages throughout the network results in a final set of clusters and
exemplars. Briefly, the iterations initialize and subsequently update two
matrices: responsibility matrix r(i, j) indicates suitability of j to be an ex-
emplar for i, and availability matrix a(i, j) indicates how suitable it is for i
to choose j as an exemplar. We refer the reader to [28] for algorithm details.

We now show how we will utilize the AP method to implement diffu-
sion shell clustering. We begin by constructing a feature vector φm for each
dwMRI volume (regardless of overall shell structure) to be the standard de-
viation of DW volumetric patches, as follows:

pl,n,m = vec(Pi,j,kVm) (3.1)

φm =


√√√

1
N

N∑
i=1

(
pi,1,m − pi,1,m

)2
, . . . ,

√√√
1
N

N∑
i=1

(
pi,n,m − pi,n,m

)2 (3.2)

where P is defined as an operator extracting isotropic volumetric patches
centered at the voxel (i, j,k), Vm is them-th volume in the acquired data, and
pl,n,m is the vectorization of the n-th volumetric patch of them-th volume at
the l-th index.

We then build a DW measurements correlation matrix Ψ from the fea-
ture vectors, as follows:

Σi,j = cov(φi ,φj ) (3.3)

Ψ = diag(Σ)−
1
2 Σdiag(Σ)−

1
2 (3.4)
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after which we utilize Ψ to provide similarity measurements for use during
affinity propagation:

r(i, j)|t=t0 = Ψi,j −max
j∗,j

{
Ψi,j∗

}
(3.5)

which is then propagated across the nodes of the network as explained ear-
lier in this section. All of the resultant cluster exemplars (regardless of their
count, i.e. no thresholding is performed) are then used for the remainder
of the learning process.

We recall that the goal of using a clustering approach was to provide a
reduction in the computational load and to reduce the occurrence of highly
similar atoms. The training matrix preconditioning step of section 3.2.2 per-
forms the rest of this reduction, and hence we opted for a simpler and easier
to adjust feature vector. Accordingly, our feature vector φm has a single pa-
rameter: the isotropic patch dimension, d. The choice of this parameter’s
value is expected to change the correlation matrix Ψ. As such, we need to
determine an optimal value of d.

In our case, the optimality condition would be a matrix Ψ that is as
discriminative as possible between different diffusion clusters, while still
maintaining high correlation within the same cluster. Accordingly, an opti-
mal value of d should try to maintain as much dispersion as possible in the
correlation values inΨ. In Figures 3.3 to 3.5 we show examples of the result-
ing Ψ for different values of d. These example figures were generated from
a randomly selected subject in the HCP dataset (the dataset is described in
section 5.1).

The results of the effect of d on Ψ are summarized in Figure 3.6. The
figure shows the range of the resultant Ψ for various values of d for 10 ran-
dom subjects from the HCP data. We note that the range is monotonically
decreasing, and that its maximum occurs at a value of d = 3. This gives the
largest discriminative power for our chosen feature vector. Accordingly, the
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value of d = 3 will be used for the remainder of this work. An example of
the result of clustering is shown in Figure 3.7. Note how the correlation ma-
trix after clustering clearly shows a clustered grouping of diffusion indices.
Each block or group of diffusion indices can now be represented using any
index within that cluster.

3.2.2 Training Matrix Preconditioning

Dictionary learning methods are typically highly non convex [3, 59]. Strictly
speaking, the optimizations involved in these methods are generally com-
binatorial in nature:

min
α
||α||0 subjectto y =Dα (3.6)

for a full-rank D ∈ R
n×m (n < m). This has been shown to be an NP-hard

problem [65]. An approach that has been used to address this issue is to
perform a relaxation from an l0 to an l1 norm, which results in a convexifi-
cation of the problem that yields a result that approximates the true sparse
coding vector [15]. However, when the sparse coding is combined with a
dictionary update (which is a required combination in dictionary learning
methods [3, 59]),

min
D,{αi }Mi=1

M∑
i=1

||yi −Dαi ||22 subjectto ||αi ||1 ≤ k (3.7)

the problem becomes a nested optimization, in which the first optimizes
the sparsity of each coding vector αi for a given D, and the second opti-
mizes over D. The nested nature of the optimization has naturally resulted
in algorithms that solve the problem by also alternating between two opti-
mizations [3, 24]. Most of the variations between the algorithms lie in the
choice of heuristic for each of the two steps.

However, due to their high non-convexity, such approaches will often
fall into local minima or saddle points [3]. In fact, even when assuming a
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Figure 3.3: An illustration of the resultant correlation matrix Ψ obtained
with a feature-vector volumetric patch dimension d = 19.
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Figure 3.4: An illustration of the resultant correlation matrix Ψ obtained
with a feature-vector volumetric patch dimension d = 11.
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Figure 3.5: An illustration of the resultant correlation matrix Ψ obtained
with a feature-vector volumetric patch dimension d = 3.
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Figure 3.6: The effect of the feature-vector volumetric patch dimension, d,
on the range of the resultant correlation matrix Ψ. Larger values are better.
Vertical bars show standard deviation across 10 HCP volumes.
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Figure 3.7: An example result of diffusion shell clustering. The upper figure
shows the Ψ matrix before clustering, and bottom figure shows the matrix
after clustering. Note how the bottom figure clusters the data, therefore
provides information on which gradient indices are relatively identical and
therefore replaceable by any index within a given cluster. 41
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perfect sparse coding step, only a convergence to a local minimum is guaran-
teed. This guarantee does not hold when approximate sparse coding meth-
ods are used, which is often the case due to the combinatorial nature of
solving an exact sparse coding as explained earlier.

As a result, the choice of training matrix initialization will have an effect
on the convergence of the training. Different initializations will converge
to different local minima. In previous works utilizing dictionary learning
methods in image processing, the training matrix was typically initialized
to include all patches from the supplied training set [54, 69, 78]. The re-
sults obtained from this initialization approach provided acceptable perfor-
mance in different applications, such as face recognition, image denoising,
and remote sensing.

However, this approach presents a challenge when used with dwMRI
data. Volumetric patches constructed from dwMRI data have a greater de-
gree of similarity compared to natural images. This can be attributed to a
couple of reasons. First, most existing applications work with 2D data while
dwMRI is a 4D dataset. The increased dimensionality allows for greater
overlap between patches, hence increasing possibility of similarity between
patches. This increased similarity results in a higher chance of generating
multicollinear atoms when a coding matrix is constructed. In addition, nat-
ural training images often represent a much larger variety of choices for
patches compared to the more monotonous dwMRI data. Furthermore, es-
pecially in the increasingly more common HARDI imaging schemes, the
angular resolution of acquisition is very high. At a given physical location,
this results in very similar volumetric patches across acquisition orienta-
tions, which further increases the chances of having multicollinear atoms.

To illustrate the aforementioned points, we show an example compar-
ing the condition number of a dictionary coding matrix from both natu-
ral images and dwMRI data. This is illustrated in Figure 3.8. We observe
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that, for the same dictionary size, dwMRI data yield significantly more ill-
conditioned coding matrices compared to natural images. As such, this
makes it impossible to use the dictionary learning framework to perform
super-resolution since the coding matrix becomes singular, preventing in-
version operations. This is explained in section 3.2.3 in more detail.

However, we propose to solve the problem using a preconditioning ap-
proach. We perform an alternative construction of the training matrix in
order to improve the condition number. In this alternative construction, we
seek to populate the training matrix with initial atoms that have reduced
overlap and thus reduced collinearity. We propose to achieve this by popu-
lating the initial atoms along salient 3D structures in a dwMRI volume. Our
motivation for following this approach is that including more salient struc-
tures as initial training atoms would be expected to reduce overlap com-
pared to allowing smooth, non-structured, patches into the training matrix.
An overview of the proposed preconditioning approach is shown in Figure
3.9.

We propose to detect the salient local structures using a shearlet decompo-
sition [50]. This method decomposes a volume into a set of coefficients that
represent 3D surface-like discontinuities at various locations, scales, and
orientations. Each coefficient is associated with a particular combination of
scaling, shearing, and translation of a generating function. By capturing the
spatial structure of high dimensional discontinuities (instead of capturing a
1D discontinuity in each direction), this system provides a better represen-
tation of high dimensional structures.

The shearlet system has been shown to yield optimally sparse represen-
tations compared to similar frameworks, such as curvelets and contourlets
[34, 49]. In this work, we use the implementation provided by the authors
[50]. As for the filter parameters, we used the parameters that has been
shown in a previous study [70] to yield good reconstruction in MRI, which
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Figure 3.8: An example comparison of the condition number of the coding
matrix in both natural and dwMRI data. The coding matrix of dwMRI data
exhibit orders of magnitude higher condition number compared to natu-
ral images, which presents a challenge in using the matrix in the necessary
inversion operations.
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Figure 3.9: The proposed training matrix preconditioning process.
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were diamond flat filters, with 4 scalings and 4 shear levels in the first two
scales and 8 shear levels in remaining two scales.

We are now at a stage of being able to decompose the dwMRI volume
into a multi-scale geometrical representation system. What we need to do
is to determine a method for extracting the salient local structures in order
to populate the initial training matrix.

We perform this task by a non-linear thresholding of the decomposed
shearlet coefficients. Using this approach, by selecting only the highest M
coefficients, we extract the most 3D-surface-like structures in the dwMRI
volume. We also note that since the thresholding is done non-linearly, the
selectedM coefficients out of all N coefficients have no specific scale or ori-
entation, and therefore the structures that are extracted are not at a prede-
termined location, scale, or orientation.

Accordingly, we run a non-linear thresholding experiment to determine
the most suitable threshold for detecting structures. The result is shown in
Figure 3.10. We begin by observing that, as expected, the curve starts with
a large error due to the absence of most coefficients. Then there is a large
drop in error, after which the approximation gradually plateaus.

We emphasize that our goal is not to faithfully reconstruct the volume,
and hence large M/N is not desirable. Instead, we are looking for only the
most geometrically salient structures. A good point to look for structures
would be at the onset when we barely include any coefficients but the ap-
proximation error drops sharply. This indicates that, at this point, the vol-
ume has now gained strong salient structures. In Figure 3.10, this occurs
around the value 0.03. As such, this will be our choice for non-linearly
thresholding the coefficients. Figure 3.11 shows an example of the result
obtained from using this thresholding value.

Finally, we binary threshold the reconstructed volume at different val-
ues. We then assign all resulting voxels of this operation as center points of
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the atoms to be initialized into the training matrix. The dictionary is then
learned on the training matrix, and the condition number of the resulting
coding matrix is plotted. The result of this experiment is shown in Figure
3.12. We can clearly observe a minimum point around 2%, which is then
monotonically increasing afterwards. As such, we choose the thresholding
value of 2%.

Using the above parameters, we now examine the end result of the pre-
conditioning process by observing the new condition numbers. This is shown
in Figure 3.13. The figure confirms that we have achieved a low condition
number for the coding matrix.

3.2.3 Joint-dictionary Learning

In this section, we describe details pertaining to construction of the joint-
dictionaries, and the process of using the dictionaries to super-resolve data.
We begin by generating a training set using the approach proposed in sec-
tion 3.2.2. Let the training set be denoted by Ω, and defined as follows

Ω = { (ρiL,ρ
i
H ) | ρL ∈R

d ,ρH ∈R8d} (3.8)

where ρL indicates a low-resolution patch, ρH indicates a high-resolution
patch, i is the patch index within the training set, and d is the dimension
of the low-resolution patch. Next, the low-resolution dictionary is created
using the same minimization as in [46, 97]:

DL, {αi} = argmin
DL, {αi }

∑
i

||ρiL −DLα
i ||22 + λ||αi ||1 (3.9)

where DL ∈Rn×m, with m atoms of size n, and αi ∈Rm is the sparse coding
vector of the i-th patch, and λ is an optimization weight controlling the
sparsity of the coding vector.

The existing dictionary-based super-resolution methods [46, 97] typi-
cally use the K-SVD (K-singular value decomposition) algorithm [3] to im-
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Figure 3.10: The M-term approximation of a shearlet decomposition of a
dwMRI data. Note the onset of a drop in approximation error occurring
around 0.03, which gradually plateaus afterwards. This indicates that, at
this point, the volume has now gained strong salient structures. This will
therefore be the M/N ratio used to detect structures. Vertical bars show
standard deviation across 10 random HCP volumes.
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Figure 3.11: Example result of non-linearly thresholding the shearlet coeffi-
cients. The threshold is set to the point 0.03 in Figure 3.10. The intensities
in the upper figure reflect diffusion signal, while intensities in the bottom
figure reflects salient shearlet locations.
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Figure 3.12: The condition number of the resulting coding matrix for vari-
ous levels of binary thresholding of the shearlet reconstructed volume. Ver-
tical bars show standard deviation across 10 random HCP volumes.
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plement the joint-dictionary construction. While K-SVD has demonstrated
good performance, it posits a challenge for implementing the super resolu-
tion method for dwMRI data.

This is due to the batch-based nature of the algorithm, which requires
access to the entire training set. For dwMRI data (especially the increas-
ingly common multi-shell acquisitions), the training set can be in the range
of tens of millions of samples, which represents a computational burden if
required to be loaded at once. Furthermore, it has been shown that batch-
based methods such as K-SVD can not effectively handle large training sets
[60].

At this point, we recall that one of the objectives of this thesis is to pro-
vide an acquisition-independent framework. With the above limitations of
K-SVD regarding large training sets (which hinders the use of newer acqui-
sitions like multi-shell), it is no longer a good choice for implementing the
joint-dictionary dwMRI super-resolution.

In contrast, in this work we propose to implement the joint-dictionary
super resolution process via an online learning approach using the SPAMS
(SPArse Modeling Software) algorithm [60]. Using this algorithm, the train-
ing set is only minimally loaded (one or a few training samples at a time),
which makes the learning online. Our choice of this implementation stems
from the fact that dwMRI data is orders of magnitude larger in size com-
pared to natural images that have been the target of existing dictionary-
based super-resolution methods [46, 97]. As such, we use an online learning
approach in order to gradually construct the dictionaries from a sequence of
portions of the dwMRI training set.

After computing the sparse coding vector αi in (3.9), the high-resolution
dictionary DH is constructed as in [46, 97]

DH = argmin
DH

∑
i

||ρiH −DHα
i ||22 (3.10)
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which can be solved as in [97] using pseudo-inversion:

DH = PHA
+ = PHA

T (AAT )−1 (3.11)

where PH is a matrix of the patch set ρiH and A is a matrix of the coding
coefficient vectors αi .

For dwMRI data, this is presents a problem due to the spatial and an-
gular overlap between patches as described in sections 3.2.1 and 3.2.2, lead-
ing to multicollinearity and ill-conditioning of A which hinders the stabil-
ity of the inversion in (3.11). The approach we propose to solve this is-
sue is described in section 3.2.2, which preforms a preconditioning on the
dwMRI training matrix in order to improve the condition number of the
resultant coding matrix A. This enables the successful computation of the
high-resolution dictionary DH for dwMRI data.

After the two dictionariesDL andDH are constructed, the training phase
is concluded. At this stage, a new un-seen dwMRI dataset can now be super-
resolved. We now describe the super-resolution process utilizing the two
learned dictionaries, which follows the same approach as [46, 97].

First, the input volume is converted into a patch set that matches the size
of low resolution dictionary DL. Next, each patch in the set is sparse coded
against the low resolution dictionary. After that, the resultant coding vector
is multiplied against the high resolution dictionary, which finally generates
the high resolution patch set. The patch set is then finally assembled back
into a high-resolution volume, averaging overlapping areas.

We now turn to the problem of determining the set of dictionary learn-
ing parameters for super-resolving dwMRI. We start by examining the ef-
fect of the dictionary learning optimization weight λ on the reconstruction
quality. That is, the reconstruction of a given volume from its downsampled
version. The quality of this reconstruction is shown in Figure 3.14.

From the figure, we make a number of observations. First, we note that
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decreasing the weight λ increases the reconstruction quality. This plateaus
at around λ = 10−3. We also note that, for a given value of λ, larger dic-
tionaries result in better reconstruction. This holds until around 700 - 1100
atoms, where performance plateaus. This behavior is reasonable since a
larger dictionary of atoms allows for learning more example atoms. Ac-
cordingly, we choose λ = 10−3 with a dictionary of 900 atoms as parameters
for the rest of this paper. The effect of the choice of images used in train-
ing, and whether performance depends on the type of image used, will be
explored in great detail in Chapter 5.

Next, we determine the atom size parameter. In this analysis, we ex-
amine the reconstruction quality at different isotropic length dimensions
of the atom. The performance is shown in Figure 3.15. The figure shows
that better performance is achieved with smaller atom sizes, and that the
best atom size is 3 voxels (isotropic). This performance is reasonable since a
training matrix with smaller atoms would provide more consistency to the
dictionary learning method.
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Figure 3.14: The effect of dictionary optimization weight λ, at different dic-
tionary sizes, on reconstruction performance. Note the plateau occurring
around 700 - 1100 atoms.
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Figure 3.15: The effect of dictionary atom size (isotropic) on reconstruc-
tion performance. Vertical bars show standard deviation across 10 HCP
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Chapter 4

Validation Methodology

4.1 Overview

Increasing the resolution of a dwMRI volume beyond what is available in
the original data presents a challenge in terms of validation. This is because
of the lack of ground truth information at the higher resolution. dwMRI re-
mains the only technique for obtaining non-invasive in vivo information
about fiber tracts in the brain. As such, we have no other high resolu-
tion source of information to directly validate the generated high resolution
dwMRI volumes against.

In order to address this issue, we propose to use a validation approach
that builds on the existence of a strong dependence between structure and
function in the brain [39, 52]. Accordingly, brain regions that have strong
structural connections also have a strong functional connection [92, 99].

Motivated by this relationship between how functional connectivity (FC)
reflects the underlying structural connectivity (SC), we quantitatively vali-
date our results by investigating the consistency between SC and FC before
and after super-resolving the data. In other words, a greater SC-FC consis-
tency indicates a better reconstruction quality, compared to a low SC-FC.

This validation approach is beneficial for a number of reasons. First,
fMRI data is typically readily included with many dwMRI acquisitions, re-
flecting the same subject at the same point of time. This has the benefit
of having an independent modality (fMRI, in this case) used to validate an-
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other modality (dwMRI) of the same subject. Furthermore, fMRI is typically
not resolution limited. In fact, fMRI voxels are rarely meaningful individ-
ually without being parcellated into a larger group. For these reasons, im-
provements in dwMRI reconstructions would translate into greater SC-FC
consistency.

In the next sections, we start by describing the process of obtaining FC
from fMRI data. We then proceed to estimate SC from dwMRI. After the
two estimates are obtained, we finally calculate the SC-FC correlation as a
quantitative metric for dwMRI resolution enhancement.

4.2 Functional Connectivity Estimation

Functional information on the brain is estimated from functional-MRI data
(fMRI). For each voxel, the intensity of the data represents the level of neu-
ral activity, as measured through oxygen-level changes (referred to as the
blood-oxygen-level dependent contrast, BOLD). In addition, due to the dy-
namic nature of brain function, the data is continuously recorded for a pe-
riod of time. The result is a functional time course per voxel.

We begin the estimation of functional connectivity by parcellating the
brain voxels into regions. Parcellation is commonly performed on fMRI data
because functional information is rarely specific to a certain voxel, but rather
occur synchronously with a larger group of voxels.

We parcellate the brain into 200 regions using Ward clustering [63], which
has been shown to perform better than other fMRI parcellation approaches
[82]. The number of parcellation regions was set based on the results of a
previous study [83] which recommended the use of 200 or more parcels.

Accordingly, let Z be a t × d matrix of fMRI time courses, where t is
the number of time points and d is the number of brain regions. We then
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estimate the functional connectivity (FC) using Pearson’s correlation:

FC = ZTZ/(t − 1) (4.1)

which, in a comparative study with other common FC metrics, has been
shown to yield better performance [26].

4.3 Structural Connectivity Estimation

While the neuroimaging research community has largely settled on Pear-
son’s correlation for FC connectivity measurement [26], investigations of
structural connectivity (SC) metrics have received less attention. An orig-
inal contribution of this thesis includes presenting a comparison of struc-
tural connectivity metrics assessed from the perspective of the largely ac-
cepted inherent relationship between brain structure and function [7].

Quantifying structural connectivity in the brain is most commonly based
on quantifying one or more aspects of the streamlines reconstructed using
deterministic tractography, though computationally expensive approaches
based on probabilistic tractography techniques were also explored [11]. The
choice of which streamline property to measure and of how to map it into
a structural connectivity metric are key aspects affecting the structural con-
nectivity estimates.

Arguably the most common SC metric is the number of reconstructed
streamlines between pairs of brain regions, commonly referred to as fiber
count. A variant of this approach involves a normalization of the fiber count
by the total volume of the region pairs they connect to account for the vari-
able size of the brain regions [36]. Besides metrics based on fiber count, use
of the total length of reconstructed streamlines has also been suggested as
a measure of structural connectivity [61] aiming to correct for the fact that
longer tracts have larger accumulated error, leading to lower fiber counts.
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Another metric, the average fractional anisotropy (FA) along streamlines
connecting regions, has also been proposed as a proxy for structural con-
nectivity strength [14].

It is important to acknowledge that all of the aforementioned SC met-
rics are confounded by several factors, limiting their interpretability. First,
tractography can only delineate bundles of fibers in the brain, and not in-
dividual fibers. The term fiber count can thus be misleading. Indeed, us-
ing the term streamline count has been recently proposed as an alternative
[44]. Nonetheless, we use the term fiber count for easier interpretation and
to conform to the jargon used in existing literature, with the understand-
ing that it is the streamlines that are actually being counted. Moreover, we
note that the number of fibers is dependent on the number of seeds used
for tracking the fibers, the tractography method used, and several features
of the pathway such as curvature, length and width [44]. Additionally, we
highlight that FA not only depends on the reliability of local diffusion in-
formation, but also on a large number of modulating factors such as axonal
ordering, axonal density, amount of myelination, and increase in extracel-
lular or intracellular water [44]. Such confounding factors did not impede
the adoption of a variety of SC metrics, driven by a practical need for quan-
tifying the degree of connection between brain regions.

We propose that reconciling the presence of confounding factors with
the practical need for connectivity estimation calls for a detailed analysis,
in a quantitative comparison, to determine which SC metric has the high-
est potential of being of practical use in multimodal brain image analysis
efforts. To this end, we compare four commonly used SC metrics in terms
of their impact on the relationship between estimates of SC and FC. On 38
subjects from the Human Connectome Project (HCP) database [91] (which
is described in detail in the datasets section – section 5.1), we show that re-
gion volume-normalized fiber count best correlates with FC. We also show
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that total fiber length has the least bias towards distance between brain re-
gions. We further demonstrate that these results hold across seven different
tasks and resting-state data.

We now describe the calculation of the four SC metrics. Let rki,j be the kth

reconstructed fiber between a pair of structurally connected regions Pi and
Pj . We consider four widely used structural connectivity measures in this
work: fiber count (fi,j), fiber count normalized by the total volume of the
connected regions (Ni,j), total length of fibers connecting region pairs (Li,j),
and average FA along the fibers. For each subject, we compute the Pearson’s
correlation between the FC and SC estimates to quantify the SC-FC rela-
tionship for each SC metric. More formally, the metrics can be expressed as
follows:

Ni,j =
fi,j

V (Pi) +V (Pj )
(4.2)

Li,j =
∑
k

l(rki,j ) (4.3)

whereV (·) is the volume of the corresponding region, and l(rki,j ) is the length
of rki,j .

Prior to the computation of SC metrics, we reconstruct the fibers via
global tractography on constant solid angle orientation distribution func-
tion (ODF) using MITK [68]. Global tractography was chosen over the more
common streamline tractography since it was recently shown to facilitate
higher SC-FC consistency [98]. In global tractography, short fiber segments
are connected together to generate the set of fiber tracts that best explains
the measured dMRI data. As such, at regions with unreliable local diffusion
information, the geometry of the surrounding fibers drives the tracking pro-
cess to prevent premature termination of fibers as is commonly observed in
streamline tractography.

The results of the SC-FC correlation for resting-state and task fMRI are
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shown in Figures 4.1 and 4.2, respectively. As observed from these figures,
average FA has lower correlation with FC compared to the rest of the exam-
ined SC metrics (fiber count, volume-normalized fiber count, and total fiber
length). This is true for both resting-state and task fMRI. We speculate that
the reason for the observed low average FA correlation can be attributed to
the large number of factors affecting local diffusion anisotropy [44].

Figure 4.1 also shows that the volume-normalized fiber count has the
highest correlation with FC compared to the rest of the examined SC metrics
for both resting-state and task fMRI. The pairwise differences between SC-
FC correlation assessed using normalized fiber count and other SC metrics
were found to be statistically significant at p < 0.001 based on the Wilcoxon
signed rank test. Our results thus imply that the compensation (due to nor-
malized fiber count) for the differences in number of fibers due to the vari-
able size of brain regions yields better depiction of structural networks.

We also note that the relatively consistent SC-FC correlation levels across
a variety of tasks and resting-state data support the notion that SC forms the
backbone of the brain connectivity around which functional reorganization
occurs to respond to different tasks. A diverse repertoire of functional brain
connectivity patterns can thus arise constrained by the same structural sub-
strate.

Figure 4.3 shows a qualitative comparison between functional and struc-
tural connectivity patterns. We averaged subject-specific connectivity ma-
trices to compute group results. Specifically, the top 10 parcels having strongest
connectivity to posterior cingulate cortex (PCC) are overlaid onto the brain
using these group-level connectivity matrices. PCC was selected as the seed
as it is known to be a structural and functional hub facilitating efficient com-
munication in the brain [37]. This figure shows that SC patterns estimated
using normalized fiber count resemble FC patterns more than those esti-
mated using average FA.
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Figure 4.1: Comparison of four common SC metrics in terms of SC-FC (rest-
ing state fMRI) correlation for 38 subjects from the Human Connectome
Project.

63



4.3. Structural Connectivity Estimation

5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Subject

S
C

−
F

C
 C

or
re

la
tio

n

 

 fiber count
normalized fiber count
average FA
total fiber length

Figure 4.2: Comparison of four common SC metrics in terms of SC-FC (task-
fMRI) correlation for 38 subjects from the Human Connectome Project. The
shaded bands represent the standard deviation of SC-FC across 7 different
tasks.
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4.3. Structural Connectivity Estimation

Figure 4.3: Parcels with highest connectivity to posterior cingulate cortex as
obtained from: (a) Functional connectivity (FC), (b) normalized fiber count,
and (c) average FA. Note how the arrangement of connected parcels ob-
tained by normalized fiber count has a better resemblance to the parcels
obtained by FC, compared to average FA.

65



Chapter 5

Results

5.1 Datasets

Two different publicly available datasets were used for the experiments in
this chapter. The first dataset consists of dwMRI data from 38 subjects (17
males and 21 females, ages ranging from 22 to 35 years) from the Human
Connectome Project (HCP) Q2-13 dataset [91]. This release of the dataset
has 40 subjects for which dwMRI data was available. We excluded two
subjects from the dataset (subjects #209733 and #528446) as per HCP’s rec-
ommendation, due to reported structural brain abnormalities. The dwMRI
data had a voxel size of 1.25 mm (isotropic), 3 diffusion shells (at b = 1000,
2000 and 3000 s/mm2) and a total of 288 gradient indecies. The HCP dwMRI
data used in this chapter includes the suggested minimal preprocessing
pipeline already applied by the HCP team, including corrections for EPI
distortion, eddy current, gradient nonlinearity and motion artifacts [31].
Further details on the dwMRI acquisition can be found in [91].

The second set of data is the Kirby 21 dataset [51]. This dataset com-
prises scans of 21 subjects (11 males and 10 females, 32 ± 9.4 years old). We
used two modalities from this dataset: rs-fMRI data and dwMRI data. The
rs-fMRI data consisted of a 7-minute acquisition with a TR of 2 s and a voxel
size of 3 mm (isotropic). We then preprocessed the data for motion correc-
tion and bandpass filtered from 0.01 and 0.1 Hz using an in-house MATLAB
code. We then divide the brain into 150 parcels using Ward clustering [64]
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applied on the voxel time courses. The dwMRI data consisted of 32 diffusion
gradients with a b-value of 700 s/mm2, in addition to a single b0 image. The
voxel size was 0.83×0.83×2.2 mm3. However, since anisotropic voxels were
previously shown to be suboptimal for further processing of dwMRI data
in the sense that fiber branching is less detectable [67], we resampled the
data to 2 mm isotropic voxels prior to any subsequent analysis and process-
ing. Finally, we then warped the functionally derived group parcellation
map to the b0 volume of each subject using FSL [42] in order to facilitate
comparisons of structural and functional metrics.

5.2 Quantitative Performance

We perform quantitative assessments in three categories of tests: tests on
the HCP data, tests on the Kirby data, and tests that combine both datasets
(i.e. training on one and testing on the other). In order to quantify the qual-
ity of the constructed volumes at higher resolutions, we performed two
sets of experiments. The first experiment measures the similarity between
a ground truth volume and a reconstructed volume from its downsam-
pled version. The quality is quantified using a reconstruction error metric
η =MSRSR/MSEInterp., which are theMSE from the super-resolved recon-
struction and spline interpolation, respectively.

The second experiment aims to quantify the quality of the constructed
volumes at a higher resolution than that of the ground truth. The quantifica-
tion metric of this experiment follows the SC-FC correlation measurements
described earlier in Chapter 4.

Multi-shell results

Figure 5.1 shows the reconstruction error η for a number of HCP test sub-
jects. These results were generated from training the dictionaries on 30 ran-
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Figure 5.1: Relative reconstruction error η for HCP dataset [91] test subjects.
The vertical bars show the standard deviation of error across diffusion di-
rections at each shell. The vertical bars for the b0 volume show the standard
deviation of error across repeated b0 acquisitions.
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dom subjects from the HCP data, and then testing the reconstruction qual-
ity on the remaining 8 subjects from the same dataset. We observe that
the figure shows η values in the range of ∼ 0.4 for b0 volumes, indicating
an improvement of around 60%. We also observe a highly consistent recon-
struction quality of b0 volumes as indicated by the small standard deviation
of error.

The figure also shows the reconstruction quality of the diffusion shells.
We observe that the quality of diffusion shell reconstruction is lower than
that of the b0 volumes. This performance is not unexpected and we attribute
it to the lower SNR of the diffusion shell acquisitions compared to the b0
volumes and also the lower number of repetitions compared to b0 volumes.
This is further supported by the observation that, within the diffusion shell
results, higher shells show lower reconstruction quality compared to lower
shells, recalling that higher shells have lower SNR compared to lower shells.
For the same reasons, we also observe that the consistency of reconstruction
quality for diffusion shells is generally lower than that of the b0 volumes.

Next, the results of Figure 5.2 use the same dictionary trained for Figure
5.1, but examines the generalization ability of the dictionary by testing it
on unseen data from the Kirby dataset. That is, the results of this figure
are based on training the dictionary on the HCP dataset and testing on the
Kirby dataset, thereby assessing generalization performance of the learned
dictionary to a different acquisition type.

Accordingly, we make a number of observations on Figure 5.2. First, we
observe that the range of reconstruction quality values are relatively within
the same range as that of Figure 5.1. This shows a good generalization per-
formance of the learned dictionaries. However, we still note that there is a
slight reduction in the reconstruction quality of b0 volumes between Fig-
ures 5.1 and 5.2. We emphasize that this reduction is only partially related
to the generalizability of the dictionary. The reason for this is that the HCP

69



5.2. Quantitative Performance

b0 volumes were acquired 18 times and averaged in order to improve SNR,
while Kirby b0 volumes were only acquired once. Hence, the reconstruc-
tion quality of HCP b0 volumes is expectedly better than Kirby b0 volumes,
regardless of generalizability of the dictionary. Nonetheless, the quality of
Kirby b0 volumes constructed from the dictionary is still relatively similar
to that of HCP b0 volumes.

In addition, we also note that the gap between the b0 and diffusion vol-
umes is smaller in Figure 5.2 compared to Figure 5.1. We suggest that this
may be attributed to the fact the difference between b0 and diffusion vol-
umes is smaller for Kirby data compared to HCP. For Kirby data, this is 700
s/mm2 while for HCP data the difference is 1000 s/mm2 and higher.

Single-shell results

Next, we examine the effect of changing training data on the quality of re-
constructions. This is shown in Figure 5.3. As in the previous figure, this
experiment also uses the Kirby dataset for test subjects. However, the train-
ing data is changed from Kirby to HCP. The previous experiment used HCP
data for training and Kirby data for testing, while this experiment in Figure
5.3 uses Kirby data for both training and testing. The difference between
the two experiments is the choice of training dataset.

The training data is constructed from a randomly selected list of 11 sub-
jects from the Kirby dataset. The testing dataset is then chosen to be the
remaining 10 subjects in the dataset. The results are shown in Figure 5.3.

We make a number of observations regarding this experiment. First,
we note that the overall range of reconstruction error is relatively similar
to that of Figure 5.2. This shows that, for the same test dataset, the perfor-
mance is not highly sensitive to training data. Nonetheless, given that the
training and test subjects now belong to the same dataset, we do observe an
improvement in the consistency of reconstruction. More specifically, while
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Figure 5.2: Relative reconstruction error η for Kirby dataset [51] test subjects
using dictionaries trained on HCP dataset [91]. The vertical bars show the
standard deviation of error across diffusion directions.
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the reconstruction error ranged between 0.5 to 0.6 in Figure 5.2, the error
range in Figure 5.3 is more consistent at around 0.5. We also note that the
gap between b0 and diffusion volumes is now considerably smaller. This
may be attributed to the fact that the dictionary is now learning from a sin-
gle diffusion shell compared to learning from a cluster of shells in the HCP
data. Therefore, there is now expectedly less ambiguity in reconstructing
diffusion volumes, which helps improve reconstruction quality. This also is
expected to result in more consistent reconstruction quality across diffusion
volumes for the same shell, which is indeed the case in Figure 5.3.

Next, we perform another experiment on the sensitivity to the choice of
training data. In this experiment, we reverse the roles of the training and
testing data used in the previous experiment. The test data of Figure 5.3
are now used as training data, and the training data of that figure are now
used as test data. The result of this experiment is shown in Figure 5.4. We
observe that the results of both experiments are clearly very similar. The
aforementioned observations about the range of error and reconstruction
consistency in the previous experiment also clearly hold in this experiment.
This shows that, for a given dataset, the results do not exhibit a sensitivity
to the choice of training subjects.

SC-FC correlation We then proceed to the next set of experiments where
we compare SC-FC correlations in order to assess the improvement in ex-
tending the resolution beyond ground truth.

To the best of our knowledge, the only previous work that tackled the
problem of super-resolving dMRI data from a single acquisition indepen-
dent of the diffusion model was by Coupe et al [20] (referred to as CLASR
– collaborative and locally adaptive super-resolution). Specifically, the au-
thors showed that super-resolving b0 image using a locally adaptive patch-
based strategy, and using this high-resolution b0 image to drive the recon-
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Figure 5.3: Relative reconstruction error η for Kirby dataset [51] test subjects
using dictionaries trained on the remaining subjects in the same dataset.
The vertical bars show the standard deviation of error across diffusion di-
rections.
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Figure 5.4: Relative reconstruction error η for Kirby dataset [51] test sub-
jects, trained on the remaining subjects in the dataset. The selection of test
versus training subjects in this figure is the opposite of Figure 5.3.
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struction of diffusion images, outperforms interpolation methods. To the
best of our knowledge, CLASR is the only existing super-resolution method
developed for dwMRI that is independent of acquisition and the diffusion
model employed, which are objectives of this thesis.

To quantify the improvement, we analyzed the consistency between mea-
sures of intra-subject SC and FC. We estimated SC using the fiber counts be-
tween brain region pairs, and FC using Pearson’s correlation between par-
cel time courses. We chose to employ deterministic streamline tractography
with the diffusion tensor model, which is by far the most popular tractogra-
phy approach to date. However, we highlight that our super-resolution ap-
proach can be used with any diffusion model and any tractography method.
Tractography was carried out using Dipy [29], with 750,000 seed points for
all examined volumes.

For each subject, SC and FC are vectors of size d(d−1)/2 comprising the
corresponding connectivity estimates between each region pair, where d is
the number of brain regions. We then calculated Pearson’s correlation be-
tween intra-subject SC and FC to quantify the consistency between the two
connectivity estimates. Using this correlation measure, we compared the
proposed super-resolution approach with trilinear and spline interpolation
in addition to a CLASR.

Figure 5.5 shows the SC-FC correlation for each subject tested. Taking
the average SC-FC correlation across the group when using the original data
as a baseline, the improvement was 5.7% with spline interpolation, 13.6%
with CLASR, and 27.1% with our proposed method. On the other hand,
there was a 6.3% decrease in the correlation when trilinear interpolation
was used. The difference in the performance of our method and every other
method tested was found to be statistically significant at p < 0.01 based on
the Wilcoxon signed-rank test, showing its potential for enhanced structural
connectivity assessment. Our results thus suggest that low spatial resolu-
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tion of dMRI data can partially account for the low SC-FC correlation, and
statistically significant improvements can be achieved using super-resolved
dwMRI data.

To investigate why trilinear interpolation resulted in a lower SC-FC cor-
relation compared to the original data, we calculated the number of tracts
reconstructed with each method. The local intra-parcel connections were
excluded since they have no effect on SC-FC correlation. Figure 5.6 shows
the number of inter-parcel tracts averaged across the group along with the
corresponding standard deviations. As observed from this figure, perform-
ing tractography on volumes upsampled with trilinear interpolation resulted
in a lower number of tracts compared to the original volumes, even though
the same number of seed points were used to initiate tracking for all of the
methods we compared. We speculate that the reason of this phenomenon
is the additional partial volume effects introduced by the blurring of the
data during trilinear interpolation, which hamper the tractography quality.
Spline interpolation, however, is known to cause less blurring compared
to trilinear interpolation, and our results suggest that upsampling dMRI
data using spline interpolation can be beneficial for tractography. The over-
all trend of inter-parcel tract counts closely resembles to that of the SC-FC
correlation, with our proposed method outperforming all other methods
tested. This shows that dictionary based super-resolution is a viable post-
processing solution for dwMRI that can help in mapping the white matter
brain architecture more accurately.

5.3 Qualitative Results

We now present a qualitative comparison between the fiber tracts recon-
structed from the original (2 mm) and super resolved (1 mm) dwMRI data.
We employ the same tractography approach as in the SC-FC comparisons
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Figure 5.5: SC-FC correlation for 10 subjects with SC estimated from the
data at its original resolution (2 mm isotropic), and high-resolution data
(1 mm isotropic) obtained using trilinear interpolation, spline interpola-
tion, CLASR, and the proposed method. Our method outperforms all
other methods tested for eight of the subjects, and performs comparable
to CLASR for two subjects (subjects 4 and 10).
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Figure 5.6: Number of inter-parcel tracts reconstructed from the data
at its original resolution (2 mm isotropic), and high-resolution data (1
mm isotropic) obtained using trilinear interpolation, spline interpolation,
CLASR and the proposed method. Intra-parcel tracts are not included here
since they do not contribute to SC-FC correlation. We emphasize that trac-
tography is initiated with the same number of seeds for each method.
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(deterministic streamline tractography using the diffusion tensor model with
750,000 seed points). We generated the tract-density maps by calculating
the total number of fiber tracts present in each voxel. Figure 5.7 (a),(c) and
(b),(d) show sample tract-density maps with the original and super-resolved
dMRI data, respectively. As observed from these figures, the tract-density
maps generated from the super-resolution data clearly show more spatial
information. Figure 5.7 (e),(f) and (g),(h) show the corticospinal tracts ex-
tracted using a region of interest (ROI) placed on the brain stem for two
representative subjects. It can be observed that fiber tracts reconstructed
from the super-resolution data can capture the fan-shape configuration of
the corticospinal tract more fully.

Next, we present a qualitative comparison between the raw dwMRI im-
ages obtained from original (2mm) and super resolved (1 mm) data. Fig-
ure 5.8 shows an example comparison. As observed from the figure, the
proposed method has better resemblance to ground truth. The structural
features in the image are also more pronounced, while appearing blurred
for spline interpolation. This provides an example of the type of details
obtained by super-resolving the dwMRI data.
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Figure 5.7: Qualitative comparison between the tract-density maps and fiber tracts re-
constructed from the original (left) and super-resolved (right) dwMRI data. Original data
from the Kirby set has 2 mm isotropic resolution which is super-resolved to 1 mm isotropic
resolution. Each row corresponds to a different test subject. Tract-density maps of super-
resolved data ((b) and (d)) show markedly improved spatial detail compared to those of
original data ((a) and (c)). Corticospinal tracts reconstructed from super-resolved data ((f)
and (h)) can capture the fan-shape configuration more accurately than those generated from
original data ((e) and (g)) 80
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Figure 5.8: Qualitative of comparison of raw diffusion images from the HCP
dataset [91]. Note the closer resemblance between the proposed method
and ground truth.
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Chapter 6

Conclusions

6.1 Discussion

Low spatial resolution is a known limitation of dwMRI, which often hinders
the performance of subsequent analysis and determination of structural in-
formation. We proposed the use of a simple yet effective super-resolution
processing pipeline on dwMRI to capture a more accurate portrayal of the
white matter architecture. This approach does not require multiple dwMRI
acquisitions and is applicable to legacy data. Quantitatively, we demon-
strated that SC-FC consistency can be markedly increased with the use of
our approach in estimating SC. We also qualitatively illustrated that the gain
in spatial resolution remarkably improves the fiber tracts and tract-density
maps generated. Taken collectively, our results suggest a super-resolution
based framework holds great promise in enhancing the spatial resolution
in dwMRI, without requiring additional scans or any modifications of the
acquisition protocol.

We also presented a closer investigation of the validation strategy and
presented a comparison of four SC metrics computed from tractography
results with respect to their relationship to FC. Among the metrics consid-
ered, we showed that volume normalized fiber count has the highest cor-
relation with FC for both resting-state and task data. On the other hand,
our results showed that average FA has the lowest correlation with FC. We
speculate that the reason of this low correlation is the non-specificity of FA,
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with several inadvertent factors (such as axonal density, axonal ordering,
and amount of myelination) modulating it along with the reliability of lo-
cal diffusion information. In addition, we also demonstrated that total fiber
length metric reduces the fiber length bias associated with shorter fibers.
Our results therefore suggest that average FA may not be the best metric to
quantify SC, and that the choice among other SC metrics warrants special
attention depending on the question being addressed and the scale of the
problem (e.g. whole-brain or local regional analysis).

6.2 Thesis Contributions and Future Work

We now describe the major contributions of this thesis. We proposed a
dwMRI data processing pipeline (built on a dictionary learning approach)
that enhances the resolution of dwMRI after the data has been acquired.
The pipeline does not require modifications to the dwMRI acquisition pro-
cess, and therefore is more practical in clinical conditions where simple ac-
quisition methods are typically used

Due to the absence of acquisition requirements, the pipeline can be read-
ily used with existing legacy databases of dwMRI data. This can be useful
when trying to utilize or reuse datasets which has been acquired with older
acquisition technologies. Absence of acquisition requirements also makes
it usable with common types of dwMRI, such as DTI or HARDI (single,
and multiple-shell). Some of the existing super-resolution approaches are
specific to HARDI.

We also note that the proposed pipeline does not require repeated dwMRI
acquisitions, unlike classical shifting-based super-resolution methods. An-
other contribution is that the pipeline performs a resolution enhancement
directly on raw dwMRI data, resulting in a model-free pipeline.

This lack of required modeling is useful because it does not restrict the
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end user to a particular model, which gives the freedom of using differ-
ent diffusion models in different research or clinical situations, depend-
ing on the specific research conditions or objectives. Finally, we note that
the model-independence also allows for cumulative enhancements, in which
any other diffusion-specific or tractography-specific enhancements can be
readily applied on top of the pipeline.

While we demonstrated the benefits of the described pipeline, it is im-
portant to acknowledge that the performance of the proposed method in-
herently depends on the training dataset, as in any machine learning method
that involves training or prior information. The age span of the subjects we
used in our experiments was 23-61, showing that the method can generalize
to a large range of ages. However, how well abnormalities such as tumor
and edema can be modeled with dictionary learning is currently unclear
and warrants further research in future work.
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