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ABSTRACT 

The objective of the experimental program in this thesis is to investigate the durability 

performance of Eco-friendly ductile cementitious composite (EDCC), a newly developed repair 

material for seismic retrofitting.  

Several aspects of the durability performance of EDCC were investigated in this work, in terms 

of restrained shrinkage resistance, freeze and thaw resistance and bond strength degradation 

before and after environmental exposure. All the tests focused on repair overlay and substrate 

composite assembly. Six different EDCC fiber mixes were involved in the testing to discover the 

best mix in terms of performance and economical aspects. The substrate of the composite 

assembly includes concrete, masonry blocks and clay blocks. EDCC can be applied on different 

substrates by hand casting and spraying. EDCC application on concrete substrates employing the 

hand casting process is used to explore the durability performance of EDCC. Clay and masonry 

substrates, along with the spray application process, are only used to compare the influence of 

different application methods on the bond strength based on the bond strength data obtained in 

Yuan Yan‟s thesis.  

After the whole experimental program, regarding hand applied process, both 2% PVA and 1% 

PVA and 1% PET hybrid mix yields to the best durability performance. In spray process, clay 

substrate specimens give better bond strength than the specimens prepared through hand applied 

process, however, masonry specimens show lower bond strength than hand applied specimens. 

Overall 1% PVA and 1% PET will be recommended for future seismic retrofitting application 

due to lower cost compared to 2% PVA EDCC.  

It is noted that the performance of EDCC depends greatly on good material mixing for different 

application processes. In order to obtain a good EDCC mix, a rigorous mixing procedure should 

be followed. Hence, future in-situ applications should guarantee a proper mixing procedure for 

good quality control.  

The spray process was found to be very successful with very little rebound and nearly no 

material sloughing off. The results of the experiments done in this study indicated that the spray 

process increases the material application speed to further reduce potential high labor cost.  

  



iii 
 

PREFACE 

This thesis is an original, unpublished, independent work by the author, Yang Du, under the 

supervision of Professor Nemkumar Banthia. This research program is part of the collaborative 

project: Development of Sustainable Masonry Rehabilitation Technology (SMART) using 

EDCC.  

  



iv 
 

TABLE OF CONTENTS 

Abstract ........................................................................................................................................... ii 

Preface............................................................................................................................................ iii 

Table of Contents ........................................................................................................................... iv 

List of Tables ............................................................................................................................... viii 

List of Figures ................................................................................................................................ ix 

Acknowledgements ....................................................................................................................... xii 

1. Introduction ........................................................................................................................... 1 

1.1. Study background ............................................................................................................. 1 

1.2. Thesis outline ................................................................................................................... 2 

2. Literature review .................................................................................................................. 4 

2.1. Shrinkage performance of fiber reinforced cementitious composite ............................... 4 

2.1.1. Shrinkage of cementitious materials ......................................................................... 4 

2.1.2. Shrinkage resistance of fiber reinforced cementitious composite ............................ 5 

2.1.3. Restrained shrinkage test methods ............................................................................ 6 

2.2. Freeze and thaw resistance of high strength concrete ...................................................... 8 

2.2.1. Freeze and thaw resistance of high strength concrete ............................................... 8 

2.2.2. Freeze and thaw resistance quantification methods .................................................. 9 

2.3. ECC and durability ......................................................................................................... 10 

2.3.1. Engineered cementitious composite properties ...................................................... 10 

2.3.2. Engineered cementitious composite shrinkage resistance ...................................... 11 

2.3.3. Engineered cementitious composite freeze and thaw resistance ............................ 13 

2.3.4. Green Engineered cementitious composite ............................................................. 14 

2.3.5. From green ECC to EDCC ..................................................................................... 14 

2.3.6. Sprayable ECC for shotcreting ............................................................................... 15 

2.4. Bond test techniques and bond performance.................................................................. 16 

2.4.1. Bond test methods ................................................................................................... 16 

2.4.2. Bond strength affecting parameters ........................................................................ 17 

2.4.3. Bond durability ....................................................................................................... 18 

2.5. Surface roughness .......................................................................................................... 19 

2.5.1. Surface roughness quantification techniques .......................................................... 19 

2.5.2. Surface roughness impacts on bond strength .......................................................... 20 

3. Materials properties............................................................................................................ 22 



v 
 

3.1 Substrate materials ......................................................................................................... 22 

3.1.1. High strength concrete ............................................................................................ 22 

3.1.2. Clay and concrete masonry blocks ......................................................................... 24 

3.2. Overlay materials ........................................................................................................... 25 

3.2.1. Fibers....................................................................................................................... 25 

3.2.2. Mix proportion ........................................................................................................ 25 

3.2.3. Mixing procedure .................................................................................................... 26 

3.3. Other materials ............................................................................................................... 27 

3.3.1. Mold ........................................................................................................................ 27 

3.3.2. Spacers .................................................................................................................... 27 

3.3.3. Epoxy ...................................................................................................................... 28 

3.3.4. Release agent .......................................................................................................... 28 

4. Restrained Plastic Shrinkage Performance of EDCC ..................................................... 29 

4.1 Introduction .................................................................................................................... 29 

4.2 Shrinkage test base development ................................................................................... 30 

4.2.1 Compressive strength of concrete bases ................................................................. 30 

4.2.2 Base high strength concrete air content trials ......................................................... 30 

4.2.3 High strength concrete substrate dimension ........................................................... 32 

4.3 Surface sandblasting treatment....................................................................................... 33 

4.3.1 Preliminary studies.................................................................................................. 33 

4.3.2 Sandblasting system upgrade .................................................................................. 34 

4.3.3 Sandblasting operation ............................................................................................ 34 

4.4 Surface roughness choice and quantification ................................................................. 35 

4.4.1 Preliminary studies.................................................................................................. 35 

4.4.2 Roughness quantification ........................................................................................ 36 

4.5 Shrinkage testing execution ........................................................................................... 41 

4.6 Crack measurements ...................................................................................................... 43 

4.7 Shrinkage test results and discussion ............................................................................. 44 

5. Freeze and thaw resistance of EDCC ................................................................................ 45 

5.1 Introduction .................................................................................................................... 45 

5.2 Test set-up ...................................................................................................................... 45 

5.3 EDCC characterization ................................................................................................... 46 

5.3.1 Air content .............................................................................................................. 46 

5.3.2 Workability ............................................................................................................. 46 



vi 
 

5.3.3 Compressive strength .............................................................................................. 47 

5.4 EDCC overlay dimension control .................................................................................. 47 

5.5 Freeze and thaw test execution....................................................................................... 48 

5.6 Freeze and thaw test results ............................................................................................ 49 

5.6.1 1% PVA freeze and thaw resistance ....................................................................... 49 

5.6.2 1% PVA (with shrinkage exposure) freeze and thaw resistance ............................ 51 

5.6.3 1% PET freeze and thaw resistance ........................................................................ 52 

5.6.4 1% PET (with shrinkage exposure) freeze and thaw resistance ............................. 53 

5.6.5 2% PVA freeze and thaw resistance ....................................................................... 54 

5.6.6 2% PVA (with shrinkage exposure) freeze and thaw resistance ............................ 55 

5.6.7 2% PET freeze and thaw resistance ........................................................................ 56 

5.6.8 2% PET (with shrinkage exposure) freeze and thaw resistance ............................. 57 

5.6.9 1% PVA&1% PET freeze and thaw resistance ....................................................... 58 

5.6.10 1% PVA&1% PET (with shrinkage exposure) freeze and thaw resistance ............ 59 

5.6.11 Plain mortar freeze and thaw resistance.................................................................. 60 

5.6.12 Plain mortar (with shrinkage exposure) freeze and thaw resistance ....................... 60 

5.7 Freeze and thaw test results discussion .......................................................................... 61 

6. Bond durability of EDCC ................................................................................................... 62 

6.1 Introduction .................................................................................................................... 62 

6.2 Bond test design ............................................................................................................. 62 

6.3 Pull-off test preparation and set-up ................................................................................ 63 

6.3.1 Bond test preparation .............................................................................................. 63 

6.3.2 Bond test set-up....................................................................................................... 64 

6.4 Pull-off test bond strength results................................................................................... 65 

6.4.1 1% PVA bond strength ........................................................................................... 65 

6.4.2 1% PET bond strength ............................................................................................ 66 

6.4.3 2% PET bond strength ............................................................................................ 67 

6.4.4 2% PVA bond strength ........................................................................................... 68 

6.4.5 1% PVA&1% PET bond strength ........................................................................... 69 

6.4.6 Plain mortar bond strength ...................................................................................... 70 

6.5 Pull-off test bond strength results discussion ................................................................. 70 

7. Bond performance of sprayed EDCC ............................................................................... 72 

7.1 Introduction .................................................................................................................... 72 

7.2 Spray procedures ............................................................................................................ 72 



vii 
 

7.3 Testing set-up ................................................................................................................. 72 

7.4 Specimen coring ............................................................................................................. 73 

7.5 Spray process and quality control .................................................................................. 74 

7.6 Bond strength results ...................................................................................................... 75 

7.7 Bond strength results comparison with hand applied data ............................................. 76 

8. Conclusions and recommendations for future work ....................................................... 78 

References .................................................................................................................................... 80 

 

  



viii 
 

 

LIST OF TABLES 

Table 1 Testing scheme .................................................................................................................. 2 

Table 2 High strength concrete base mix design .......................................................................... 23 

Table 3 Properties of PVA and PET fibers ................................................................................... 25 

Table 4 Base concrete and EDCC mix design (Unit:Kg/m3) ....................................................... 26 

Table 5 Base concrete compressive strength ................................................................................ 30 

Table 6 Air entrained and non-air entrained compressive strength comparison .......................... 31 

Table 7 Target Industrial sand properties (from Target Products Ltd.) ........................................ 33 

Table 8 EDCC air content ............................................................................................................. 46 

Table 9 Superplasticizer dosage and slump of EDCC .................................................................. 46 

Table 10 EDCC compressive strength .......................................................................................... 47 

Table 11 Tensile strength of EDCC [30] ...................................................................................... 63 

Table 12 1% PVA bond strength value (Unit: MPa) .................................................................... 65 

Table 13 1% PET bond strength value (Unit: MPa) ..................................................................... 66 

Table 14 2% PET bond strength value (Unit: MPa) ..................................................................... 67 

Table 15 2% PVA bond strength value (Unit: MPa) .................................................................... 68 

Table 16 1% PVA&1% PET bond strength value (Unit: MPa).................................................... 69 

Table 17 Plain mortar bond strength value (Unit: MPa)............................................................... 70 

Table 18 Concrete specimen bond strength .................................................................................. 75 

Table 19 Brick specimen bond strength........................................................................................ 75 

 

  



ix 
 

LIST OF FIGURES 

Figure 1 ACI evaporation nomograph [6] ...................................................................................... 5 

Figure 2 Steel ring mold and concrete ring specimen [11] ............................................................. 6 

Figure 3 Steel ring stress versus specimen age [11] ....................................................................... 6 

Figure 4 Different substrate surface finishes [3]............................................................................. 7 

Figure 5 Improved restrained shrinkage test method [13] .............................................................. 7 

Figure 6 Freeze and thaw durability of non-entrained concrete without silica fume [16] .............. 8 

Figure 7 Freeze-thaw durability of non-air-entrained concrete with varying silica fume contents 

[17] .................................................................................................................................................. 9 

Figure 8 Pulse velocity and resonant frequency method comparison (left [18]) pulse velocity test 

schematic (right) [44] .................................................................................................................... 10 

Figure 9 ECC strain-hardening behaviour [19] [20] ..................................................................... 10 

Figure 10 hysteresis loops of column members under fully reversed cyclic loading [21] ........... 11 

Figure 11 Layered repaired system for ECC [22] ......................................................................... 12 

Figure 12 Shrinkage strain comparison between LSECC and traditional ECC [23] .................... 12 

Figure 13 ECC pore distribution [25] ........................................................................................... 13 

Figure 14 Relative pulse velocity and mass loss with number of freeze and thaw cycles [27] .... 14 

Figure 15 Tensile behavior of different EDCC fiber mixtures [30] ............................................. 15 

Figure 16 Different bond test methods [32] .................................................................................. 16 

Figure 17 Pull-off test method schematic and different failure modes [4] ................................... 17 

Figure 18 Mohr circle [35] ............................................................................................................ 18 

Figure 19 Bond strength change in different repair systems under cyclic freeze and thaw and 

temperature change [36] ............................................................................................................... 19 

Figure 20 2D and 3D laser scanner [38] ....................................................................................... 20 

Figure 21 10mm and 20mm coarse aggregate .............................................................................. 22 

Figure 22 Sand gradation curve .................................................................................................... 23 

Figure 23 Dimensions of CMU building blocks ........................................................................... 24 

Figure 24 CMU substrate before and after spray .......................................................................... 24 

Figure 25 Clay substrates before and after spray .......................................................................... 25 

Figure 26 Substrate for shrinkage test (Rishi, 2008) .................................................................... 29 

Figure 27 Properties of 10mm rebar (Harrris Rebar Inc) ............................................................. 32 

Figure 28 High strength concrete substrate with rebars and rebar layout during casting ............. 32 

Figure 29 Repair overlay detached from substrate ....................................................................... 33                                                                    

Figure 30 Substrate overlap design ............................................................................................... 33 



x 
 

Figure 31 Industrial sand gradation curve (data from Target is redrawn here) ............................ 33 

Figure 32 BE pressure washer, wet sandblasting kit and system set up ....................................... 34 

Figure 33 Sandblasting operation schematic [41] ......................................................................... 35 

Figure 34 Sandblasted surface and shrinkage preliminary test ..................................................... 36 

Figure 35 Replicable cracks in samples with similar roughness .................................................. 36 

Figure 36 Concrete surface profiles and Sand Patch Test ............................................................ 37 

Figure 37 Average roughness    [33] .......................................................................................... 38 

Figure 38 Laser scan set up ........................................................................................................... 38 

Figure 39 Form removed curve..................................................................................................... 39 

Figure 40 Roughness and waviness profile after filtering ............................................................ 39 

Figure 41 Roughness and waviness parameter comparison of the two samples .......................... 40 

Figure 42 Abbot Curve comparison of two samples .................................................................... 40 

Figure 43 Single channel environmental chamber schematic [13] ............................................... 41 

Figure 44 Single channel shrinkage chamber set-up .................................................................... 41 

Figure 45 Pre-moisturized surface ................................................................................................ 42 

Figure 46 Cracks in plain mix ....................................................................................................... 43 

Figure 47 Crack measurements under optical magnifier and under microscope with image 

analysis software ........................................................................................................................... 43 

Figure 48 Measurements with image analysis software ............................................................... 44 

Figure 49 Plain mortar spacers to fix the substrate ....................................................................... 48 

Figure 50 Freeze and thaw cabinet ............................................................................................... 48 

Figure 51 Ultrasonic pulse velocity tester .................................................................................... 49 

Figure 52 1% PVA Mass loss curve (FT only) ............................................................................. 50 

Figure 53 1% PVA pulse velocity curve (FT only) ...................................................................... 50 

Figure 54 1% PVA mass loss curve after shrinkage exposure ..................................................... 51 

Figure 55 1% PVA pulse velocity curve after shrinkage exposure .............................................. 51 

Figure 56 1% PET Mass loss curve (FT only) .............................................................................. 52 

Figure 57 1% PET pulse velocity curve (FT only) ....................................................................... 52 

Figure 58 1% PET Mass loss curve with shrinkage exposure ...................................................... 53 

Figure 59 1% PET pulse velocity curve after shrinkage exposure ............................................... 53 

Figure 60 2% PVA Mass loss curve (FT only) ............................................................................. 54 

Figure 61 2% PVA pulse velocity curve (FT only) ...................................................................... 54 

Figure 62 2% PVA Mass loss curve with shrinkage exposure ..................................................... 55 

Figure 63 2% PVA pulse velocity curve after shrinkage exposure .............................................. 55 



xi 
 

Figure 64 2% PET Mass loss curve (FT only) .............................................................................. 56 

Figure 65 2% PET pulse velocity curve (FT only) ....................................................................... 56 

Figure 66 2% PET Mass loss curve with shrinkage exposure ...................................................... 57 

Figure 67 2% PET pulse velocity curve after shrinkage exposure ............................................... 57 

Figure 68 1% PVA&1% PET Mass loss curve (FT only) ............................................................ 58 

Figure 69 1% PVA&1% PET pulse velocity curve (FT only)...................................................... 58 

Figure 70 1% PVA&1% PET Mass loss curve with shrinkage exposure..................................... 59 

Figure 71 1% PVA&1%PET pulse velocity curve after shrinkage exposure ............................... 59 

Figure 72 Plain mortar after 30 freeze and thaw cycles ................................................................ 60 

Figure 73 Plain mortar with shrinkage exposure after 60 freeze and thaw cycles ....................... 60 

Figure 74 Bond test coring preparation ........................................................................................ 64 

Figure 75 Pull-off bond test set-up ............................................................................................... 65 

Figure 76 1% PVA bond strength degradation curve ................................................................... 66 

Figure 77 1% PET bond strength degradation curve .................................................................... 67 

Figure 78 2% PET bond strength degradation curve .................................................................... 68 

Figure 79 2% PVA bond strength degradation curve ................................................................... 69 

Figure 80 1% PVA&1% PET bond strength degradation curve................................................... 70 

Figure 81 Residual bond strength ................................................................................................. 71 

Figure 82 Spray set-up .................................................................................................................. 73 

Figure 83 Brick substrate coring layout (right figure source from reference [1]) ........................ 74 

Figure 84 Concrete substrate specimen coring layout (right figure source from reference [1]) ... 74 

Figure 85 Spray process ................................................................................................................ 75 

Figure 86 Pulled cores .................................................................................................................. 76 

Figure 87 Bond strength comparison with reference [1] .............................................................. 76 

 

 

 

 

 



xii 
 

ACKNOWLEDGEMENTS 

I would like to thank all the people who helped and encouraged me during my graduate studies at 

the Department of Civil Engineering, Faculty of Applied Science of the University of British 

Columbia.  

Personally, I want to express thanks to my supervisor, Nemkumar Banthia for his great support, 

invaluable advice and great dedication to better research through the whole master study. It is a 

great honor to work with him. 

I also want to express my gratitude to Mr. Harald Schrempp and Bill Leung for helping me with 

technical challenges that I faced in the lab. Special thanks go to Ms. Wu for helping me 

overcome many difficulties throughout the course of my research and life in this lab.  

My deepest gratitude goes to my parents and my girlfriend (future wife) for their continuous 

support and selfless love at every stage of my life.  

  



1 
 

1. Introduction 

 

1.1. Study background  

British Columbia, located in one of the world most active seismic Cascadia Subduction zones, 

undoubtedly, is one of the most earthquake-prone regions across the whole country. A 

megathrust of 9.2 magnitude earthquake shook the southern coast of British Columbia 316 years 

ago, in 1700, and it is estimated that there is still a 10 to 15 percent chance of the so-called “Big 

One” that is yet to come, sometime over the next 50 years, along the fault line from Vancouver 

Island to Northern California. It is estimated that this big earthquake will reach a magnitude of at 

least 9.0. Based on that estimate, in 2004, the Ministry of Education (MOE) engaged the 

APEGBC and UBC to implement the School Seismic Upgrade Program to ensure the safety of 

British Columbian BC students, safety with the goal of strengthening 342 schools built before 

1992. Quite a few of these high-risk schools were built as unreinforced masonry structures, 

without provision for seismic design making them highly vulnerable to earthquakes and very 

likely to collapse in the event of an earthquake.  

However, complete replacement of these deficient structures is neither financially feasible nor 

culturally acceptable. Thus, devising better rehabilitation and repair techniques is crucial, to 

increase the structural integrity and seismic resistance of such vulnerable structures, and have 

them comply with modern building codes. A new sprayable eco-friendly ductile cementitious 

composite (EDCC) repair material has been developed at the UBC Civil Engineering Materials 

Lab to help strengthen the aforementioned vulnerable masonry structures. Unlike normal 

engineered cementitious composite [19] which contains a large amount of cement for better 

workability and interfacial bond between fibers and matrix), EDCC, on the other hand consists of 

70% industrial by-products from cementitious materials, replacing over 2/3 of the cement with 

fly ash and silica fume [30]. As we know, global warming is becoming a serious and urgent 

problem that the entire human race is faced with. One of the major sources of global greenhouse 

gas emission, CO2, is from cement production which takes up to 9% of the total amount of the 

global emission. Instead of phasing out the use of traditional cement production, replacing 

cement with industrial by-products is one of the most effective and feasible ways to tackle this 

problem.   



2 
 

Although many high strength repair materials have been developed over the past decade, repair 

systems usually fail under service conditions due to poor durability. For example, the failure of 

debonding between repair and substrate systems indicates poor durability rather than strength 

failure in the repair material itself. EDCC is a strain-hardening fiber-reinforced mortar, with a 

large amount of fly ash content which can be sprayed to facilitate the repair application. The 

durability performance of this material, however, is poorly known. This master‟s thesis will 

focus on three aspects of durability: shrinkage of EDCC, freeze and thaw resistance of this 

material, and the examination of how bond performance with concrete is affected by these 

environmental factors. This study also includes a comparative study with Ms. Yan‟s thesis [1], 

perceiving how the spray process influences the bond strength between EDCC and the concrete 

masonry and clay substrates.  

1.2. Thesis outline  

The objective of this thesis is to explore the durability performance of different EDCC mixtures 

in terms of shrinkage resistance, freeze and thaw resistance and the bond strength. By comparing 

different EDCC fiber combinations, based on performance and economics, an optimal option is 

sought for future application.  

Sixty beam specimens were cast following ASTM C1609 [2] freeze and thaw test, restrained 

shrinkage test [3], and ASTM C1583 [4] pull-off bond test. A pull-off test on 4 clay beams and 6 

masonry beams sprayed with EDCC was also carried out for comparative study and for 

providing guidance for the large-scale wall test. For clarity, a table capturing different test series 

performed on two repair application processes is given below.  

Table 1 Testing scheme 

Series 

Hand applied Spray 

1% 

PVA 

1% 

PET 

2% 

PVA 

2% 

PET 
1%PVA&1%PET 

W/O 

Fiber 
1%PVA&1%PET 

1 Shrinkage test  Bond test 

2 Freeze and thaw test    

3 Shrinkage and freeze and thaw test    

4 Bond test after test series 1-3   

The thesis comprises eight chapters as presented below.  

Chapter 1 Introduction 

Chapter 2 Literature review  

Chapter 3 Materials properties  
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Chapter 4 Shrinkage performance 

Chapter 5 Freeze and thaw resistance of EDCC 

Chapter 6 Bond performance of EDCC 

Chapter 7 Comparative study of bond strength between sprayed and hand applied EDCC 

Chapter 8 Conclusions and recommendations  

Chapter 1 provides the background information and objectives of this project, as well as the 

outline of the thesis with short discussions.  

Chapter 2 includes related, recent literature reviews about different properties of engineered 

cementitious composite (ECC), shrinkage resistance of fiber-reinforced concrete and shrinkage 

testing methods, freeze and thaw resistance of high strength concrete and the durability of bond 

for cementitious repair systems, plus corresponding methods to evaluate bond strength for 

composite repair assemblies. Surface roughness characterization methodologies are also 

reviewed.  

Chapter 3 presents the basic properties of all the materials, details of the clay and masonry 

blocks, as well as mix designs for substrate and different EDCC mixtures used in this project.  

Chapter 4 covers shrinkage test composite assembly base development, surface sandblasting 

treatment, interface roughness laser scan characterization, preliminary shrinkage test results and 

crack measurements after shrinkage exposure.  

Chapter 5 presents the freeze and thaw resistance of different EDCC repair mixes according to 

ASTM C666 and bond performance after shrinkage exposure, freeze and thaw exposure and 

under both environmental attacks. Related UPV loss and mass loss curves are also presented for 

freeze and thaw damage quantification.  

Chapter 6 discusses the bond performance of different EDCC mixes after different 

environmental attacks, to further evaluate the durability performance of EDCC. Bond strength 

degradation curves with the increase of freeze and thaw cycle and bond strength comparison 

between different mixes and environmental conditions are also discussed in Chapter 6 to 

characterize the bond performance of EDCC repair.  

Chapter 7 shows how the spray process of EDCC works and compares the bond strength of the 

spray process with the hand-applied process from Ms. Yan‟s thesis [1]. 

Chapter 8 summarizes the conclusions of this research project and proposes recommendations 

for further study of this repair material.  
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2. Literature review 
 

As cement-based materials become some of the most widely used repair materials, nowadays, 

their durability challenges also arise, due to poor shrinkage resistance, freeze and thaw resistance 

and bond performance. A significant amount of research has been carried out to better 

understand the durability of cementitious composite repair materials. In this chapter, a review of 

past research findings in this area are presented. 

2.1.  Shrinkage performance of fiber reinforced cementitious composite 

2.1.1. Shrinkage of cementitious materials  

Generally, there are three main types of shrinkage: autogenous shrinkage, plastic shrinkage and 

drying shrinkage.  

Autogenous shrinkage is also called chemical shrinkage or self-desiccation, and is caused by 

cement hydration. This process develops with macroscopic volume change and surface cracks 

without moisture exchange with the environment. It is of great importance when new concrete is 

placed over old concrete.  

Plastic shrinkage happens when the mix is plastic and flowable, before it has hardened. 

Cementitious materials will undergo macroscopic volume change and cause cracks on the 

surface because of loss of water in evaporation and cement hydration. It is found that the volume 

reduction of cement paste goes up to 1% of the volume of dry cement (Banthia & Nandakumar 

2001) [5]. This becomes a very serious issue in repair applications due to strong restraints from 

the substrate.  

Drying shrinkage continues for a long time even after concrete has hardened. This is caused by 

moisture loss from evaporation. Drying shrinkage can also create cracks and deflection on 

specimens without external loading.  

In terms of external factors, moisture loss due to evaporation is the most critical one. As shown 

in the ACI evaporation nomograph in the ACI Manual of Concrete Practice, Section 305R, “Hot 

Weather Concreting,” (ACI 305R-96, 1996) in Figure 1 [6], four main key external factors (air 

temperature, relative humidity, concrete temperature and wind velocity) affect the evaporation 

rate of moisture.  
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Figure 1 ACI evaporation nomograph [6] 

2.1.2. Shrinkage resistance of fiber reinforced cementitious composite 

Usually in repair applications, if the cementitious repair is free from any internal or external 

restraint and is free to expand, contract and deflect, no cracks are expected to develop in the 

repair materials. However, the repair materials are always restrained by the old concrete 

specimens being repaired or by internal steel reinforcements. These restraints will create tensile 

stresses internally and cracks will develop when that tensile stresses exceed the tensile strength 

of the repair material. Much research has shown that different fiber additions to the cementitious 

materials can effectively prevent shrinkage cracking.  

For example, according to Miroslaw et al. [7], 0.25% polypropylene fibers can reduce drying 

shrinkage cracks from 1mm (plain mortar) to 0.5mm. Steel fibers are more effective, and can 

further reduce the crack width to 0.2mm with 0.25% fiber volume addition.  

Wang et al. [8] also find that adding fibers will likely introduce groups of large pores which can 

help reduce the capillary pressure in the paste to relieve shrinkage stresses, and he further proved 

this by adding 0.1% PVA, cellulose and polypropylene fibrillated fibers, showing that the crack 

areas could be reduced by 30-40%.  

Wu et al. [9] also used a ring test to show that recycled tire fabric can improve the performance 

of restrained plastic shrinkage performance.  
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2.1.3. Restrained shrinkage test methods 

In this thesis, only restrained plastic shrinkage resistance of EDCC is considered and tested, so 

only test methods for restrained shrinkage are presented here.  

(1) Ring type tests  

This test was employed by Grzybowski et al. [10] and is based on the principle that shrinkage is 

developed in concrete ring specimens in the mold (Figure 2) which is restrained by a steel ring 

mold at the center. Tensile stresses developed which can be then monitored and recorded over 

the course of time to help evaluate the performance. Now this method has been introduced to 

ASTM standard C1581 [11] to determine the age at cracking and induced tensile stress 

characteristics of mortar and concrete under restrained shrinkage as shown in Figure 3.  

 

Figure 2 Steel ring mold and concrete ring specimen [11] 

 

Figure 3 Steel ring stress versus specimen age [11] 
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(2) Bonded overlay technique (developed by Dr. Banthia and Rishi Gupta at UBC) 

Although ring tests are widely recognized as a standard method used to test restrained shrinkage, 

this method itself is not actually simulating the restrained stress condition in reality. A unique 

technique, first developed by Banthia and co-workers [12,13,14] has the advantage of producing 

a more realistic restrained shrinkage stress condition especially for repair applications.  

A very stiff, hardened base with protrusions was first made and a thin coat of the fresh repair 

material is placed on the substrate. Then, the entire bonded overlay composite assembly is 

transferred to a linear environmental chamber at a high temperature and at a very low humidity 

for some time. Cracks occur on the surface of the overlay repair material with time.  

The protrusions on the base are used to provide full restraint of the overlay, originally achieved 

by different methods, such as aggregate finish and concrete protrusions, as shown in Figure 4.  

 

Figure 4 Different substrate surface finishes [3] 

At the beginning, the aggregate finish was used. But due to poor uniformity and difficulty in 

making these substrates, Gupta [13] improved the method by using protrusion shown in Figure 5.  

 

Figure 5 Improved restrained shrinkage test method [13] 
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2.2. Freeze and thaw resistance of high strength concrete 

The composite assembly with high strength concrete substrate and EDCC repair overlay is 

further conditioned by exposing it to freeze and thaw cycles. It is very important to make sure 

that the high strength concrete substrate remains intact, without further damage, after a certain 

number of freeze and thaw cycles. Related review of research concerning the freeze and thaw 

resistance of high strength concrete are presented here.  

Resistance to freeze and thaw cycles depends on various factors including permeability, degree 

of saturation of the cement paste, the amount of freezable water and the average maximum 

distance from any point in the paste to a free surface where ice can form safely. So it is essential 

to keep a good air void system with a certain level of air content and average spacing factor by 

incorporating an air-entraining agent. Of course, the concrete itself should maintain a certain 

strength to withstand freeze and thaw damage. [15] 

2.2.1. Freeze and thaw resistance of high strength concrete 

Theoretically, when the water cement ratio drops below 0.36, an air-entraining agent will would 

not be needed because the amount of freezable water is would be insufficient to cause frost 

damage [15]. Experimentally, it is shown that an air entraining agent is not needed when the 

water cement ratio drops under 0.24 as given in Figure 6. [16] 

 

Figure 6 Freeze and thaw durability of non-entrained concrete without silica fume [16] 
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Other research also suggests that it is possible to obtain non-air-entrained, high strength concrete 

with good freeze and thaw resistance if the w/cm is low enough, for example, 0.24, 0.25 and 0.29. 

[17] 

Usually, a relatively high amount of silica fume is found in high strength concrete giving it its 

high strength, as shown in Figure 7. It is has also been found by Y. Li et al. [17] that the amount 

of silica fume also has an impact on the frost resistance of high strength concrete. A mix with 10% 

silica fume exhibits an over 20% drop in frost resistance after 1000 cycles, compared to mix 

without any silica fume. Therefore, it is also suggested that it is preferable to keep the silica 

content under 10%.  

 

Figure 7 Freeze-thaw durability of non-air-entrained concrete with varying silica fume contents [17] 

Based on the above, the water cement ratio of base high strength concrete in this experimental 

program is 0.27, so the author of this study is quite confident that very little damage will be 

developed in the concrete substrate within 90 cycles.  

2.2.2. Freeze and thaw resistance quantification methods 

According to ASTM C666 [2], the way to quantify and evaluate the damage caused by freeze 

and thaw cycles is by testing the resonant frequency of the standard sample.  

However, Menashi et al. [18] also propose that pulse velocity could be an alternative way to 

evaluate the deterioration. Although the pulse velocity calculated modulus might be a bit higher 
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than the resonant frequency calculated modulus, the overall trend is still reliable, as shown in 

Figure 8 on the left.  

In this experimental program, due to a machine issue, the pulse velocity testing method (Figure 8 

right) was used as a way to quantify the freeze and thaw deterioration.  

 

Figure 8 Pulse velocity and resonant frequency method comparison (left [18]) pulse velocity test schematic (right) [44] 

2.3. ECC and durability  

2.3.1. Engineered cementitious composite properties  

Engineered cementitious composite was first developed by Victor Li [19]. He incorporated 2 vol% 

of PVA-REC oil-coated fiber into cement paste. With the help of the fiber bridging properties of 

the PVA fibers, ECC can exhibit tension strain-hardening behavior, to have tensile strain 

capacity in excess of 4%, as shown in Figure 9 [19] [20]. The strain-hardening behavior of ECC 

has led to tremendous improvement in ductility and toughness, compared to normal concrete a 

very brittle behavior in tension.  

 

Figure 9 ECC strain-hardening behaviour [19] [20]  
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ECC shows great potential in structural applications with its unique strain-hardening behaviour 

and high ductility. Figure 10 [21] shows a comparison of hysteresis loops of column members, 

under fully reversed cyclic loading for steel reinforced concrete specimens with stirrups and 

steel-reinforced ECC specimens without stirrups. Note that the reinforced ECC columns exhibit 

better energy absorption and better resilience under seismic reverse cyclic loading.  

 
Figure 10 hysteresis loops of column members under fully reversed cyclic loading [21] 

2.3.2. Engineered cementitious composite shrinkage resistance 

Apart from the excellent mechanical properties, such as its strain-hardening behaviour, the 

durability performance of ECC is especially important in repair applications. Particularly, when 

the ECC repair is restrained by concrete structures to be repaired, the tensile stress developed in 

the repair overlay due to shrinkage will cause cracks and delamination leading to serious 

durability problems.  

In terms of the shrinkage resistance of ECC, Li et al. [22] developed a layered repair system 

shown in Figure 11 to measure the delamination and crack width of 3 repair overlay materials – 

concrete, SFRC (steel fiber reinforced concrete) and normal ECC, by exposing the system to a 

dry environment after a 28-day moisture cure. It was found that the ECC repair exhibited 53 µm 

interface delamination at the end of 50 days, as compared to 65 µm to the concrete repair and 

275 µm as compared with the SFRC repair overlay. As for cracks, 76 micro-cracks were found 

on the surface with a maximum crack width of around 60 µm as compared to SFRC with 3 

visible 270 µm wide localized fractures, and 4 visible 140 µm wide localized fractures on the 
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concrete specimens. It is also worth mentioning that this testing method is very similar and 

comparable to the one used in this thesis.  

 

Figure 11 Layered repaired system for ECC [22] 

Based on normal ECC, Low Shrinkage ECC (LSECC) and ECC with internal curing have been 

developed and tested to further improve the shrinkage resistance of normal ECC. Zhang et al. [23] 

experimentally evaluate the shrinkage induced cracking performance of LSECC, through 

standard ring tests, by changing ordinary Portland cement with the newly developed low dry 

shrinkage composite cement. The results in Figure 12 show a significant reduction in shrinkage 

tensile strain on the steel ring, without compromising the anti-cracking advantage and strain-

hardening behaviour.  

 

Figure 12 Shrinkage strain comparison between LSECC and traditional ECC [23] 

Mustafa et al. [24] incorporates the concept of internal curing into traditional ECC by replacing 

10% and 20% silica sand with light weight aggregate (LWA). Up to 67% reduction in 

autogenous shrinkage and 37% in drying shrinkage was noted, compared to normal ECC without 
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internal curing, although the strain capacity also reduced by 20% maintaining around 2% 

ultimate tensile strain which is acceptable compared to conventional concrete and FRC.   

2.3.3. Engineered cementitious composite freeze and thaw resistance 

When evaluating the durability of ECC, especially in the harsh environment of the Canadian 

winter, freeze and thaw resistance is another important property. Li et al. [25] carried out 

mercury intrusion and porosimetry of the standard ECC mix, and found a large porosity of 21.6% 

small pores discovered because of fibers. It is expected that ECC should possess a very good 

freeze and thaw resistance based on current pore distribution (Figure 13) even without the help 

of an air entraining agent.  

 

Figure 13 ECC pore distribution [25] 

This assumption has been further validated by research at Purdue University [26]. Their findings 

show that ECC specimens survive 300 freeze and thaw cycles, while normal concrete fails after 

110 cycles. After freeze and thaw tests, the specimen could still maintain a 2% ultimate strain 

capacity and a minimum of 31MPa compressive strength.  

Mustafa et al. [27] also assessed the frost resistance of ECC containing fly ash and found that fly 

ash replaced ECC also has great durability in terms of freeze and thaw resistance. ECC in their 

case survived 300 cycles and maintained good residual flexural strength compared to plain ECC 

matrix without PVA fibers. This is shown in Figure 14. The addition of PVA fibers should be 

responsible for this excellent frost resistance improvement.  
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Figure 14 Relative pulse velocity and mass loss with number of freeze and thaw cycles [27] 

2.3.4. Green Engineered cementitious composite 

Normal ECC contains a large amount of cement which is typically two to three times greater 

than normal concrete mix for better fiber dispersion and rheology control. Global yearly cement 

production is responsible for 9% of the world‟s annual greenhouse gas emissions. In order to 

make traditional ECC more sustainable and greener, a myriad of research has been done to find a 

substitute for cement with industrial by-products, such as fly ash and bottom ash.  

Wang et al. [28] find that by replacing 2/3 of the cement with fly ash and bottom ash, an 

acceptable 3 to 4% tensile strain capacity and over 4.5% tensile strength are still maintained.  

Similar findings are reported by Yang [29] et al. High fly ash content also tends to reduce the 

crack width and free drying shrinkage, which is good for the application of green ECC, although 

28-day compressive strength were reduced down to only 35MPa; this was still good for regular 

concrete applications.  

2.3.5. From green ECC to EDCC 

Although ECC has excellent mechanical properties as well as durability performance, its 

application is still very limited. One of the main reasons for this is its high cost compared to 

normal concrete. In order to further reduce the material cost and sustainability, environmental-

friendly ductile cementitious composite (EDCC) has been developed here at UBC. By replacing 

2/3 cement with fly ash, silica sand with ordinary sand and the 2% oiled-coated PVA fiber with a 

hybrid of 1% non-oiled coated PVA fiber and 1% polyethylene terephthalate (PET) fiber, it is 

aimed to reduce cost while maintaining a desirable, strain-hardening property.  

Wang [30] performed uniaxial tensile strength tests on different EDCC fiber mixtures. In Figure 

15, 4 different mixtures (M4: 2% PVA, M5: 2% PET, M6: 1% PVA and M7 1% PVA&1% PET) 
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are shown tested under uniaxial tensile load. M4 and M7 are found to exhibit strain-hardening 

behaviour with tensile strain capacity of 3.89% and 1.67% respectively, while M6 fails at a very 

low strain level and M5 shows strain softening behaviour.  

The entire experimental program in this thesis is based on these EDCC mixes that have been 

developed here at UBC to further evaluate the durability performance.  

 

Figure 15 Tensile behavior of different EDCC fiber mixtures [30] 

2.3.6. Sprayable ECC for shotcreting 

The advent of the shotcrete technique opens a whole new approach of rapid placement of repair 

materials. Shotcrete is a way of conveying fresh materials through the hose and projecting them 

pneumatically with high velocity from the nozzle, onto structures, such as bridge decks. Because 

of the special way of material transportation and pneumatic compaction, the material usually 

requires a desirable workability for ease of transportation (pumpability) and increased viscosity 

after the material is sprayed out of the nozzle for better adhesion onto the substrate (sprayability 

and buildability).  

Kim [31] at el. designed an ECC mix, suitable for wet-mixture shotcreting. The pumpbility is 

evaluated through pump-out tests and the sprayability is assessed by filled-up tests and spray-on 

tests. Kim‟s study shows the potential of spraying ECC for repair applications. 

The spray process of EDCC has also been successfully developed and applied on beams and wall 

specimens. Sprayable EDCC will also be discussed in Chapter 7in more detail.     
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2.4. Bond test techniques and bond performance 

In most repair applications, the interfacial bond is always the weakest link between repair and the 

substrate. The bond strength and bond durability plays an important role in the success of a 

repair.  

2.4.1. Bond test methods  

There are three main categories of bond test methods: bond under tensile stress, bond under shear 

stress and bond under a combination of shear and compression, as shown in Figure 16. The 

dominant method for bond under tension is the pull-off test (a) which is adopted in this thesis 

and the splitting test (b). Shear bond test methods mainly include the direct shear test (c). The 

third category of both shear and compression is the slant shear test. [32] 

 

Figure 16 Different bond test methods [32] 

The pull-off test is used in this experimental program according to ASTM C1583. The principle 

of this test method is fairly simple. By attaching a steel disk to a pre-drilled circular cut, a pulling 

force is applied to the steel disk until the core is pulled off under a constant loading rate. The 

force/pressure is recorded as the bond strength between the overlay and substrate. There are 

generally four failure modes, as shown in Figure 17:  failure in the substrate, failure at 

concrete/overlay interface, failure in the overlay and bond failure at epoxy/overlay interface. One 

of the disadvantages of this test method is that the bond strength value is always the lower bound 

of the real interfacial bond strength because it cannot be guaranteed that the failure occurs 

precisely at the interface every time.  
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Figure 17 Pull-off test method schematic and different failure modes [4] 

2.4.2. Bond strength affecting parameters  

The worst scenario designed for the ultimate limit state (ULS) for concrete to concrete bond is 

subject to both tension perpendicular to the interface and shear parallel to the interface. In fib 

Model Code 2010 [33], a formula is given, as follows interpreting different factors affecting the 

bond strength.  

                     

where:  

                          

                       

                                                             

                                         

                                                                                        

                                                              ⁄   

This formula is actually from the Coulomb theory shown in Figure 18 [34] [35]. And    is 

contributed by adhesion, which is from chemical bonding and mechanical interlocking which 

requires appropriate surface roughness.  
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Figure 18 Mohr circle [35] 

2.4.3. Bond durability  

Long-term bond performance is very critical in ascertaining the durability of the repair 

system, so it will be of significance to evaluate the durability of the interfacial bond between 

repair and substrate. However, few research studies cover this aspect. Naderi [36] studied the 

effect of cyclic freeze and thaw cycles and cyclic temperature changes on shear bond strength 

of concrete repair systems through friction transfer method and the results are given in Figure 

19.  
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Figure 19 Bond strength change in different repair systems under cyclic freeze and thaw and temperature change [36] 

2.5. Surface roughness  

As previously mentioned, the surface roughness plays an important role in determining    in the 

interfacial bond strength. In practice, a certain level of surface treatment needs to be carried out 

before applying the repair material to the substrate in order to guarantee adequate bond strength.  

2.5.1. Surface roughness quantification techniques 

Although surface roughness of the substrate affects the reliability, strength and durability of the 

bond performance, when assessing the roughness, usually a very qualitative and empirical visual 

inspection is adopted which is based on personal subjective opinions. In order to overcome this 

disadvantage, the International Concrete Repair Institute (ICRI) [37] issued a set of concrete 

surface profile chips with different roughness profiles for visual and touch comparisons.  

With the development of modern technologies, such as laser profilometry, more and more 

quantitative methods have been proposed for better surface roughness quantification. For the first 

time, the new fib Model Code 2010 also put forward Average Roughness (  ) as a roughness 

parameter for surface roughness quantification.  

Repair material

Number 

of cycles

Changes in shear bond 

strength (%)

Epoxy resin mortar 0 0

33 -6.58

100 -11.56

200 -21.09

300 +32.88

Polyester resin mortar 0 0

33 -13.73

100 -26.33

200 -49.86

300 -62.73

Styrene butadiene rubber 0 0

modified cementitious mortar 33 +17.73

100 -32.27

200 -48.56

300 -62.73

Fiber reinforced acrylic 0 0

modified cementitious mortar 33 +14.62

100 +10.53

200 -3.80

300 -25.15

Sand/cement mortar + 0 0

epoxy bonding agent 33 -4.06

100 -27.25

200 -21.74

300 -32.75

Sand/cement mortar + 0 0

cement bonding grout 33 +23.67

100 +33.22

200 +10.60

300 +30.39

Repair material

Number 

of cycles

Changes in shear 

bond strength (%)

Epoxy resin mortar 0 0

33 +17.23

100 -0.45

200 -0.23

300 -21.09

Polyester resin mortar 0 3.57

33 -26.05

100 -27.09

200 -30.53

300 -37.25

Styrene butadiene rubber 0 0

modified cementitious mortar 33 +13.15

100 +34.25

200 -8.49

300 -3.29

Fiber reinforced acrylic 0 0

modified cementitious mortar 33 +28.65

100 +13.74

200 +0.88

300 -2.54

Sand/cement mortar + 0 0

epoxy bonding agent 33 +31.30

100 +6.67

200 +9.56

300 +7.54

Sand/cement mortar + 0 0

cement bonding grout 33 +40.28

100 -4.88

200 -60.42

300 -89.05
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Overall, the roughness quantification methods are classified as contact and non-contact 

techniques. The contact methods are, for example, the sand patch tests and mechanical contact 

profilometer and the non-contact methods are, for example, laser triangulation and digital 

imaging techniques. Due to the complexity of these advanced methods, their use has been mostly 

limited to laboratory investigations.  

Laser profilometry analysis is a relatively mature technique to obtain a very precise surface 

profile compared to other advanced methods. There are two different laser scanning processes 

available – 2D and 3D laser scanning in Figure 20 [38].  

For 2D laser scanning, firstly, several typical and representative lines on the surface are scanned 

with a 2D laser scanner. Then the data obtained is processed with a professional commercial 

software. Finally, related surface roughness parameters and curves are plotted using the software.  

With the advent of the 3D laser scanner, a full surface profile can be re-established on a 

computer and more detailed surface parameters derived from the scanned surface profile [38].  

Obviously, 2D laser scanning is much more easily implemented than 3D laser scanning and 

many researchers build portable 2D laser roughness analyzer for in-situ purposes.  

 

Figure 20 2D and 3D laser scanner [38] 

2.5.2. Surface roughness impacts on bond strength 

There are several different types of surface treatment techniques that condition the surface with a 

certain degree of roughness such as grinding, wire-brushing, chipping, milling, shot blasting, 

sandblasting and water jetting. According to many research studies [39, 40, 41], water jetting and 

sandblasting are the most reliable surface preparation methods.   
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In Eduardo et al [39], the pull-off and slant shear test were carried out for different surface 

preparation methods such as brushing, chipping and sandblasting, sandblasting show the best 

bond strength value in both tension and shear.  

Pedro et al. [40] correlated the bond strength gained from the pull-off and slant shear tests with 

surface roughness, characterized by several roughness parameters and showed that it is possible 

to establish correlation between some roughness parameters and bond strength in shear and 

tension.  

Garbacz et al. [41] investigated the effect of several different surface treatments including 

grinding, sandblasting, milling and shot-blasting on adhesion with and without bonding agent 

and found that the roughness of a surface affects adhesion when no bond coating is used. 

Sandblasting and shot blasting yield the highest pull-off bond strength compared to other 

methods without coating.  
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3. Materials properties 
 

3.1  Substrate materials 

Three kinds of substrates were used: high strength concrete, clay and concrete masonry. High 

strength concrete substrates were adopted for all shrinkage and freeze and thaw testing. Clay and 

concrete masonry substrates were chosen for both the spray process and the hand-applied process. 

3.1.1. High strength concrete  

(1) Cement, fly ash and silica fume 

Type 10 (CSA GU) cement and Type F fly ash from Lafarge, Canada, as well as densified silica 

fume from Basalite Concrete Products were used in all mixes.  

(2) Coarse aggregate  

Two kinds of coarse aggregate were used in the mix, 20mm and 10mm, as shown in Figure 21. 

20mm aggregate was initially used in the preliminary shrinkage test, however, in order to further 

increase the strength, stiffness and freeze and thaw resistance, 10mm aggregate was chosen to be 

used in all the high strength concrete mixes. Further details will be given in Chapter 3. Water 

absorption of approximately 0.65% was tested following ASTM C127 [43]; this was also duly 

considered in the mix design.  

 

Figure 21 10mm and 20mm coarse aggregate 

(3) Fine aggregate 

Sand with a fineness modulus of 2.55 provided by Lafarge was used. The moisture content of the 

sand was also strictly monitored and calculated before every mix and the moisture content 

ranged from 2.1% to 4.9% due to different sand batches. The gradation curve for sand is shown 

in Figure 22.  
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                         Figure 22 Sand gradation curve 

(4) Admixtures  

AVDA 195 high-range water reducing admixture with a density of 1.1 kg/L and 32% solids 

content was used in all high strength concrete and EDCC mixes. A stronger AVDA CAST 575 

high-range water reducing admixture with the same density but 40% solid content was used in 

EDCC spray process. Both superplasticizers came from Grace, Inc.  

DAREX II AEA air-entraining agent with a density of 1.04 kg/L was also added at the maximum 

recommended dosage by the manufacturer at 320ml/100kg of cement to acquire the proper air 

entrainment. More details will be discussed in the following chapters.  

(5) Mix proportion 

The mix proportion of base concrete is shown in Table 1. The sand and water content needed to 

be adjusted each time before mixing.  

Table 2 High strength concrete base mix design 

Base Mix Design Notes 

Cement (kg) 535.50   

Water (w/c=0.31) (kg) 166.60 Adjusted as per sand moisture  

C. Agg (10mm) (kg) 809.20   

F. Agg (kg) 809.20 Test moisture every mix 

Silica Fume (kg) 59.50   

Air Entraining Agent 320ml/100kg cement  density=1.04kg/L 

Superplasticizer (L) 3.22 density=1.1kg/L (AVDA 195) 

(6) Slump and air content 

A slump test was performed according to ASTM C143 [45]. A 45mm slump indicated a good 

compaction. An air content test was also conducted according to AMST C143 to confirm that 
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there was no damage in the substrate during freeze and thaw test and a 3.5% entrained air content 

was guaranteed for all substrates.  

3.1.2. Clay and concrete masonry blocks 

In the spray process, two substrates were used which were made of regular weight 10cm 

Concrete Masonry Units (CMU) and normal weight standard clay bricks, both produced by 

Gracom, Inc.  

For the CMU block with nominal dimensions of 400×100×200mm (L×W×H), the exact 

dimensions are specified below in Figure 23. In order to better understand the bond strength 

between EDCC and CMU blocks at mortar joint, some substrates consisting of two building 

blocks joined by 10mm mortar joints were used, as shown in Figure 24. CMU specimens after 

spraying are also shown in Figure 24.  

 
Figure 23 Dimensions of CMU building blocks 

 

Figure 24 CMU substrate before and after spray 

In terms of clay brick specimens, each single building block was 194mm×92mm×57mm 

(L×W×H). Also to evaluate the bond at specific brick joints, each clay beam specimen had 7 clay 
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blocks connected by 10mm standard Type S mortar joints with 28-day compressive strength of 

approximately 12.4 MPa.  Clay substrates before and after spraying are presented in Figure 25.  

 

Figure 25 Clay substrates before and after spray 

3.2. Overlay materials 

Six different EDCC mixes were tested as overlay repair materials for shrinkage and freeze and 

thaw tests and were applied using hand application; only one EDCC mix was applied using the 

spray process. 

3.2.1. Fibers 

Two different fibers were investigated, Recs 15×8 PVA fiber from Kuraray Co., Ltd. Japan and 

PET fiber from Reliance Industries Ltd. India. The basic properties of these two fibers are shown 

in Table 2. It is also worthwhile to mention, that unlike normal engineered cementitious 

composite (ECC), EDCC uses much less expensive, non-oiled PVA fiber instead of oil-coated 

PVA fiber, to reduce the cost of the material itself.  

Table 3 Properties of PVA and PET fibers 

Type of 

fiber 

Length, 

mm 
Diameter, µm 

Tensile strength, 

MPa 

Elastic modulus, 

GPa 

PVA 8 40 1560 40 

PET 6 33-36 400-600 9-10 

3.2.2. Mix proportion 

Five EDCC and one control plain mix proportions are listed in Table 3. It is noted that the water 

and sand contents here don‟t consider the moisture content from the sand. The sand moisture 

content was determined and the mix water was adjusted accordingly.  
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Table 4 Base concrete and EDCC mix design (Unit:Kg/m3) 

Cement  Fly ash  
Silica 

fume  
Sand  Water  PVA  PET Superplasticizer  

385.63  771.27 77.13 462.76 333.19 13.00 10.00 2.00 
 

Mixture 

ID 
C FA SF 

S/CM  

ratio
a
 

W/CM  

ratio
b
 

PET fiber 

(by 

volume) 

PVA fiber 

(by volume) 

M1 1 2 0.2 0.375 0.27 0% 0% 

M2 1 2 0.2 0.375 0.27 0% 1% 

M3 1 2 0.2 0.375 0.27 0% 2% 

M4 1 2 0.2 0.375 0.27 1% 0% 

M5 1 2 0.2 0.375 0.27 1% 1% 

M6 1 2 0.2 0.375 0.27 2% 0% 
a 
S/CM: sand/cementitious materials 

b 
W/CM: water/cementitious materials  

Because two different types of SP are used, a different dosage was used for each one. For hand-

applied batches, AVDA 195 (4 kg/m
3
) was used; for spray batches, AVDA CAST 575 (2kg/m

3
) 

was used.  

3.2.3. Mixing procedure  

EDCC is a very tough and cohesive material which is optimized for spray applications. A Hobart 

mixer was used for the small hand-applied 5 liter batches and a high shear Omni Mixer was used 

for large 35 liter batches.  

The following procedures were followed for hand-applied EDCC: For the 1% PET and 1% PVA 

mix, the PVA fibers were added first in step 3. For the 2% PET fiber mix, roughly ¼ of the 

amount of PET fibers was added in procedure 3, because of the difficulty to disperse.  

(1) All cement, fly ash and silica fume were premixed for 2 minutes at a low speed.  

(2) The AVDA 195 superplasticizer was diluted with 40-60ml of water and 1/3 of the water 

was added into the dry mix. 

(3) Nearly ½ the amount of fiber was added into the mix and all the sand was added to help 

break the fibers into a dampened condition. 

(4) A small amount of superplasticizer and another 1/3 of the water were added to the mix to 

maintain the cohesiveness. 
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(5) The rest of the fibers were added to the mix gradually, and at the same time, the rest of 

the water and superplasticizer were also slowly added until all the fibers were added. 

(6) The combination was mixed for another 3 to 5 minutes, to get a well-dispersed mix with 

desirable workability.  

When it comes to large batches of sprayed EDCC with 1% PET & 1% PVA mix, the mixing 

procedure needed to be adjusted accordingly. Instead of adding fiber before all the sand was 

added, fibers were added until a very cohesive and tough mixture was obtained. The following 

procedure needed to be followed strictly to avoid fiber balls and make sure of best fiber 

dispersion was obtained for spray, otherwise, it is very likely to get the spray gun clogged.  

(1) The cement, fly ash and sand were premixed for 3 minutes. 

(2) AVDA CAST 575 superplasticizer was diluted with 100ml water and 1/3 of the rest of 

water was added to the dry mix and mixed for 5 minutes. 

(3) Silica fume and the other 1/3 of water were added at the same time and mixed for 5 

minutes to make sure of a very cohesive mixture. 

(4) Slowly add fibers, water and a small amount of superplasticizer to keep the cohesiveness 

until all the fiber, water and superplasticizer were added.  

This whole process might take more than 20 minutes to get good fiber dispersion and desirable 

workability for the spray.  

3.3.  Other materials 

3.3.1. Mold  

PVC mold with dimensions of 400×75×100 (L×W×H) were used for hand-applied samples. Self-

made plywood frames were used in sprayed samples to help control repair material thickness and 

avoid size effect. More details will be described in Chapter 7.  

3.3.2. Spacers 

Plywood spacers and mortar spacers were used in this project to help adjust desirable thickness. 

More detailed information will be presented in the following chapters.  
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3.3.3. Epoxy 

Using a good epoxy is actually very important for execution of the pull-off bond test, and poor 

quality epoxy will lead to undesirable results, failure at epoxy and trouble with cleaning. As 

recommended by the manufacturer, Devcon 2 Ton Epoxy was used throughout the testing 

program.  

3.3.4. Release agent 

Organic, biodegradable, canola-based, reactive form release agent manipulated by Green Release 

was used to coat the molds prior to casting the EDCC and the concrete specimens. 
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4. Restrained Plastic Shrinkage Performance of EDCC 
 

4.1  Introduction 

Plastic shrinkage occurs when the mix is still in a fluid state before hardening, which causes 

volumetric contraction because of the difference between the surface moisture evaporation loss 

and water bleeding out onto the surface [15]. Sometimes due to weather conditions, surface 

moisture evaporation speed exceeds the water bleeding rate and this causes surface plastic 

shrinkage cracking [15]. If this problem is not addressed properly, it will cause serious durability 

concerns. Shrinkage cracking not only creates easy access routes for deleterious agents to enter 

the overlay-substrate interface but also allows for an early saturation of the overlay material 

resulting in freeze-thaw damage, swelling, scaling, discoloration and eventual debonding. 

Especially in repair applications, when patching the repair material onto the structure being 

repaired, due to the restraints from the substrate, cracks tend to become more significant 

compared to free plastic shrinkage in new cast structures. Much research has confirmed the 

effectiveness of fibers in preventing early plastic shrinkage cracks and many different testing 

methods are available. This chapter will use the technique developed at UBC [12] to evaluate the 

restrained shrinkage performance of EDCC.  

In order to simulate the real stress conditions in repair and substrate assembly, a novel and 

effective testing method has been developed to simulate extreme plastic shrinkage conditions. A 

very stiff base, reinforced with rebars and high strength concrete with compressive strength 

around 85MPa can provide extreme restraints with protuberances for overlay repair materials 

during early plastic shrinkage. In Figure 27 the dimension, mold and cast substrate are shown.  

 

Figure 26 Substrate for shrinkage test (Rishi, 2008) 
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4.2  Shrinkage test base development 

One of the main purposes of this project is to evaluate the bond performance after both shrinkage 

and freeze and thaw environmental damage has occurred. Although the freeze and thaw ASTM 

C666 standard allows for various dimensions, the freeze and thaw chamber specifies the standard 

sample size as 405×105×76 (L×W×H). In order to continue the freeze and thaw test after the 

shrinkage test, the same dimension as 405×105×76 (L×W×H) is needed in the shrinkage test. So 

new bases conforming to new dimension requirements with sandblasting treatment on the surface 

were used here.  

4.2.1 Compressive strength of concrete bases 

The mix design was shown in Chapter 3, Table 3 and because high strength is required, a 

standard compressive test according to ASTM C39 [42] was performed here to obtain the 

strength development of this mix. Results are given in Table 4. The samples were all 100×200 

(D×L) cylinders.  

Table 5 Base concrete compressive strength 

Sample No. Age/day Compressive Strength 

/MPa 
Average /MPa COV  

1 3 80.8 

81.23 0.45% 2 3 81.2 

3 3 81.7 

4 7 100.2 

101.47 1.01% 5 7 101.5 

6 7 102.7 

7 28 114.5 

114.73 0.55% 8 28 114.1 

9 28 115.6 

4.2.2 Base high strength concrete air content trials 

In order to ensure the integrity of the substrate under freeze and thaw cycles, a proper air void 

system should be established. So, an air-entraining agent is used to incorporate air into the mix. 

Things become complicated when trying to increase the air content from 1.8% to 5%. Therefore, 

different trials had to be conducted in order to get 5% air.  
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Trial 1: Dry materials were added and mixed for 3 minutes (because related research has found 

that longer mixing time will possibly break the bubbles prematurely), and diluted AVDA 195 

superplasticizer was added. 

Although we added the recommended maximum amount, only 3.2% percent is got. Doubled or 

even tripled dosages of air entraining agent was added but the air content still stayed around 3%. 

A potential conflict between superplasticizer and air entraining agent is doubted, so another 

AVDA CAST 575 was tried.  

Trial 2: Dry materials were added and mixed for 3 minutes; diluted AVDA cast 575 

superplasticizer and water were added into the mix gradually. Finally, an air entraining agent was 

added to the mix, and mixing continued for 2 more minutes. 

Unfortunately, the air content did not increase beyond 3.5%. A different mixing sequence was 

tried, by adding the air entraining agent before the superplasticizer was added but no increase in 

air content was found.  

To more thoroughly arrest whether the air entraining agent was really working in the mix, two 

groups of cylinder samples, Group 1 single recommended maximum dosage added and group 2 

without adding AEA were cast for comparison. The compressive strength is shown in Table 5.  

Table 6 Air entrained and non-air entrained compressive strength comparison 

Group No. Age/day 
Compressive 

Strength /MPa 

AEA Content 

/ml/m
3
(cement) 

1 3 78.8 320 

2 3 81.2 0 

1 7 97.4 320 

2 7 100.2 0 

It was seen that the air entraining agent did have an effect on the mix, which caused a 3 percent 

strength loss. It is still unknown why further increasing the AEA did not increase the air content 

and that investigation is beyond the scope of this project. Much of the previous research has 

shown that for high strength concrete, the freeze and thaw resistance is not usually a problem. 

This is true also for this project, because only 100 freeze and thaw cycles were imposed.  

Rebar is also added approximately halfway through the thickness of the base (see Figure 28) to 

increase the stiffness and integrity of the substrate and it is expected that the freeze and thaw 

resistance could be increased, as well, to ensure that the damage that might be found in 

succeeding tests is not from degradation of the substrate.  
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The properties of rebar are shown in Figure 27. In each mix, 2×365mm 10mm rebars are 

embedded in the substrate, as shown in Figure 28. Before making the substrate, a marked center 

line is drawn on the wood spacer to help identify the moment to put rebar into the mold after 

casting half of the base.  

 

Figure 27 Properties of 10mm rebar (Harrris Rebar Inc) 

.   

Figure 28 High strength concrete substrate with rebars and rebar layout during casting 

4.2.3 High strength concrete substrate dimension 

In the beginning of the experiment, the dimension of the base is designed as 405×75×75 

(L×W×H) without leaving any space around the sample. Trial shrinkage testing was performed 

and it was found that after 24 hours the repair became detached from the substrate. This is 

because the mold was removed 2 hours after the fresh mix was cast and the condition of the 

interface at that time is very delicate so that any external movement will jeopardize the interface, 

causing it to debond, as shown in Figure 29. So, an overlap design was adopted to make sure the 

repair material had a full overlap around the base to diminish the edge effect. Finally, the base 

was confirmed with dimension at 385×65×75 and the repair was designed with a 25mm 

thickness, as shown in Figure 30.  

C S P Si Mn Cr Ni Cu V Nb Mo Ceq

Yield Point 

(Mpa)

Ultimate Tensile 

Strength(Mpa)

Elongation

(%)

Cold 

Bend

0.20 0.029 0.016 0.41 1.06 0.06 0.04 0.14 0.017 0.032 0.005 0.39 490 620 19 OK

Chemical Composition (%) Mechanical Properties
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               Figure 29 Repair overlay detached from substrate                                           Figure 30 Substrate overlap design 

4.3  Surface sandblasting treatment 

In repair applications, the substrate-repair interface always needs to have a certain amount of 

roughness to make sure that a good bond will be developed afterwards. Among all different 

surface treatment techniques, sandblasting is believed to be one of the most reliable and effective 

methods [39, 40, 41].  

4.3.1 Preliminary studies 

A Karcher Honda GC190 Gas-Powered 3000 psi pressure washer with Karcher sandblasting Kit 

was used. Very dry and fine (see gradation curve in Figure 31) industrial sandblasting sand from 

Target was used and the properties of which are listed below in Table 6.  

Table 7 Target Industrial sand properties (from Target Products Ltd.) 

Color Grain shape Bulk density Harness, Moh Specific gravity 

Grey Sub-rounded to sub-

angular 

1442-1603 kg/m
3 

6-6.5 2.65 

 

Figure 31 Industrial sand gradation curve (data from Target is redrawn here) 
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Twenty-eight day sandblasting was planned at the beginning of the study. This was performed on 

5 specimens and unfortunately found to be extremely difficult in terms of achieving the desired 

roughness, because the base is made of very high strength concrete (over 110MPa) and the 

pressure that the machine provided was not sufficient. Considering that the 3-day strength of 

base concrete reached over 80MPa, a 3-day sandblasting was performed. Unfortunately, it was 

still very problematic to get desirable roughness within reasonable time and sand consumption.  

4.3.2 Sandblasting system upgrade 

Due to very low efficiency and high cost of sand consumed in the preliminary set-up, a new 

389cc Honda GX390 4000 PSI BE pressure washer, an industrial heavy duty wet sandblasting 

kit from ATPRO Powerclean Equipment, sandblasting tank with plywood cover and an industrial 

floor lamp were equipped in the sandblasting system (Figure 32).  

 

Figure 32 BE pressure washer, wet sandblasting kit and system set up 

4.3.3 Sandblasting operation 

Because of the upgrade of the sandblasting system, a desirable surface roughness after 28 days 

was likely to be obtained. However, due to time frame limitations of this project, 7-day curing 

was considered adequate. In order to try to minimize the roughness variability among the 

different samples, an operational procedure was followed to ensure uniformity. The total 

sandblasting time for each sample ranged from 15 to 20 minutes at full pressure and at a distance 

from the gun between 10cm during the first 10 minutes to 15cm until the end of the process. The 

angle that the gun swiped at was roughly between -30 degrees to 30 degrees, as shown in Figure 
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33 below. A 20-minute sandblasting will consumed about half bag of sand. Although the 

roughness of each sample surface was not able to be fully controlled at the same level, the 

difference was maintained within an acceptable range. 

 
Figure 33 Sandblasting operation schematic [41] 

4.4  Surface roughness choice and quantification 

With good sandblasting techniques, a certain roughness should be decided upon to ensure that 

sufficient restraint could be developed at the interface for shrinkage testing. The main principle 

of restrained shrinkage testing, as per the work of Gupta [13, 14], is to provide an extremely 

restrained condition at the interface so that the overlay may crack easily when it shrinks. As 

explained in previous chapters, due to limitations of the dimension, the standard substrate with 

protuberances was not able to be used. Thus, a preliminary study was performed to explore what 

degree of roughness would have full fixity and could be replicated easily. After a certain 

roughness was decided upon, the level of roughness was quantified using laser profilometer was 

conducted.  

4.4.1 Preliminary studies 

As plain mortar mix provides the best visibility to see cracks during shrinkage tests, the 

preliminary study used plain mortar as the overlay material. Three samples with different 

roughness were prepared by sandblasting and the plain mortar overlay was cast on top of all 

three samples in the same batch. Then, all three samples were transferred into the environmental 

chamber to be subjected to hot air at 50C for 2 hours. Samples were demolded and the chamber 

continued to run for another 22 hours.  

Surprisingly, within these three samples, no cracks were found in the one which was lightly 

sandblasted (right), but both the moderately (middle) and strongly sandblasted (left) samples had 
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cracks on their surfaces, as shown in Figure 34. But the strongly sandblasted sample had bigger 

cracks (approximately 0.31mm), than the moderately sandblasted sample, which was 

approximately 0.14mm. Also, in consideration of the ease with which a replicable roughened 

surface could be obtained, the roughness of the strongly sandblasted (left) sample was chosen. 

As seen in Figure 34, on the right, the surface roughness is visually consistent.  

 

Figure 34 Sandblasted surface and shrinkage preliminary test 

In order to further prove the shrinkage results, more samples with similar roughness were cast 

and very similar and replicable cracks with close crack width, at around 0.29mm were obtained, 

as shown in Figure 35.   

 

Figure 35 Replicable cracks in samples with similar roughness 

4.4.2 Roughness quantification 

A detailed roughness quantification is presented here to help better understand the extent of the 

sandblasting treatment. In practical applications, there is still no standardized method to quantify 
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the surface roughness. The most acceptable way of quantification is to use the concrete surface 

profiles proposed by the International Concrete Repair Institute (ICRI), shown in Figure 36. This 

method is, to some extent, somewhat based on empirical visual inspection.  

Another common way to assess the surface roughness is through the so-called Sand Patch Test, 

as shown in Figure 36 [42], by spreading a certain amount of normal size sand on the surface and 

measuring the total area covered by the sand. The mean texture depth is determined by  

    
  

   
 

where V is the volume of the sand and D is the diameter of spread sand.  

 

Figure 36 Concrete surface profiles and Sand Patch Test 

However, in terms of accuracy, advanced methods such as the non-contact laser profilometer are 

available which can allow getting exact measurements of the roughness profile and topography. 

The fib Model Code 2010specifies a mean roughness    as a roughness quantification indicator 

defined as the average deviation of the profile from a mean line    , shown in Figure 37 [33].  

   
 

 
 ∫|      ̅|

 

 

    
 

 
∑|    ̅|

 

   

 

 ̅  
 

 
∫       

 

 

 
 

 
∑  

 

   

 

where:  

                             



38 
 

                                           

 

Figure 37 Average roughness    [33] 

In the testing program shown in Figure 38, a Microtrak II Laser Triangulation Sensor LTC 120-

20 was used as the main laser scanning instrument, with a 10mm measurement range and 120mm 

standoff distance. A dogbone machine carried the laser head to move horizontally with a 

constant velocity of around 0.085mm/s controlled by a Dayton DC speed controller. MT2 remote 

control software was used to collect distance data from the laser head to the specimen surface. In 

each sample, 4 lines (85mm) along the length of the specimen and 4 lines (47mm) along the 

width of the specimen were scanned several times to guarantee that there was no out-of-range 

value in each scanned line. There is an indicating LED light on the laser head to help see whether 

or not the measurement was out of range. Each line was scanned a few times to make sure all 

data remained within range, by repeatedly and slightly changing the position and orientation of 

the specimen. The velocity of the moving laser head could be accurately monitored by the speed 

controller from DasyLab 9 software communicating with it. The set-up is shown in Figure 38. 

Constrained by the time frame of this testing program, 3 specimens were chosen to be tested to 

represent the roughness of all specimens.  

 

Figure 38 Laser scan set up 
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Once the data was gathered for each specimen, Excel and MountainsMap 7 was used to process 

the data. MountainsMap 7 is a professional surface imaging & metrology software, developed by 

Digital Surf that is used to analyze data, automatically and accurately, from all 2D profilometers, 

according to ISO 4287 and other related standards. According to ISO 3274, with the surface 

profile raw data, the form of the profile needs to be removed first, and based on proper filter 

method and cut-off values, the roughness and waviness profile can be extracted automatically 

from the software.  

Following the procedures specified in ISO 3274, first the form of raw data was removed and the 

curve was given, as below in Figure 39.  

 

Figure 39 Form removed curve 

After the form was removed, a Gaussian filter with cut-off distance at 5mm was applied to filter 

the roughness and waviness curves, shown in Figure 40. 

 

Figure 40 Roughness and waviness profile after filtering 

With the help of MountainsMap, all related roughness and waviness parameters from ISO 4287 

were then easily obtained.    and    are known to be the most simple and distinct parameter to 
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depict the roughness and waviness of a profile. It was found that                   for 

Sample 1 and                     for Sample 2, as shown in Figure 41. All other factors 

were also found to be close in measurement based on such accuracy. The findings were 

conclusive enough to say that the roughness of different samples was quite consistent and within 

acceptable range.  

 

Figure 41 Roughness and waviness parameter comparison of the two samples 

The Abbott-Firestone curve in Figure 42 is a commonly used method to describe surface texture. 

It is defined as the cumulative probability density function of the height of the surface profile. 

The curves that were established were similar using this measure.  

 

Figure 42 Abbot Curve comparison of two samples 



41 
 

4.5  Shrinkage testing execution  

Based on previous preliminary tests, a proper base with a consistent roughness was confirmed. 

Following UBC testing technique [3], five different EDCC fiber mixes and one plain control mix 

were tested one by one, in the single channel environmental chamber, each time three specimens 

were put at the exact marked position to keep the testing consistent. The mixing was completed 

within 10 minutes and the casting and finishing were done very quickly within 5 minutes. Then 3 

specimens with the mold were straightaway transferred to the chamber and exposed to hot air for 

2 hours. Then the specimens were demolded and kept in the chamber for another 22 hours. The 

chamber maintained a temperature of 50 degrees and 5% relative humidity was controlled by a 

temperature and humidity sensor. The chamber configuration is shown in Figure 43 and 44.  

 

Figure 43 Single channel environmental chamber schematic [13]  

 

Figure 44 Single channel shrinkage chamber set-up 

It needs to be noted that before the overlay was cast on top of the substrate, the interface was 

carefully pre-moisturized to make sure of as little water exchange as possible. If the interface 

were too dry, water from the overlay near the interface would have moved out and changed the 

local water cement ratio to create a weak link along the interface. On the other hand, if the 

interface were too wet, water would have moved to the repair mix and changed the water-cement 
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ratio, thus once again creating a weak interface. This measure though essential  is also difficult to 

control and needs to be handled very cautiously. Usually, a saturated surface dry condition is 

ideal to minimize the moisture transportation. As suggested by people from the repair industry, a 

surface which is damp without standing water could be regarded as SSD condition, as in Figure 

45. A paper towel could be used to dry and check if standing water exists.   

 

Figure 45 Pre-moisturized surface 

Going back to our experiment, after 24 hours, a visual inspection was conducted for all 6 

different mixes, to see if cracks had developed on their surfaces, as shown in Figure 46. If cracks 

were observed, further crack measurements were performed, if not, specimens were moved to the 

curing room for moisture curing, until they matured.  

 

As expected, only plain mix cracks and no cracks were found in all fiber mixes. One percent 

fiber should be more than enough to bridge any shrinkage cracks. All fiber mixes were cured to 

maturity and freeze and thaw tests and bond tests for each mix were performed to further 

evaluate the durability performance of this material.  
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Figure 46 Cracks in plain mix 

4.6  Crack measurements  

As no fiber mix acquired cracks, only cracks on the plain mix were measured. Two methods 

were used to do the measurements: portable magnifier and image analysis software. Each 

specimen was marked with 13 points and the crack widths were measured at each point, as 

shown in Figure 25. After the crack widths were measured, total crack area [      ] was 

subsequently calculated with the following simple formula:  

       ∑    

 

   

 

where, 

                                        

                            

                                      

Figure 47 shows how the crack width was measured under a portable magnifier using scaling 

measurement and under a microscope using image analysis software. A 0.297mm average crack 

width and a 26.864 mm
2
 total crack area for one crack were measured from image analysis for 

better accuracy, as shown in Figure 48.  

 

Figure 47 Crack measurements under optical magnifier and under microscope with image analysis software 
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Figure 48 Measurements with image analysis software 

4.7  Shrinkage test results and discussion 

All EDCC mixes with fibers showed very good shrinkage resistance without any visual cracks. 

For the plain mix without fibers, cracks with up to 0.3mm width were identified after 24-hour hot 

air exposure. And this is found to be much smaller compared to the data from Gupta [3] and it is 

because the restraints here produced by sandblasting are lower than the restraints produced by 

the protrusions. It can be concluded that all 5 EDCC fiber mixes exhibited very good shrinkage 

resistance by taking advantage of fiber bridging effect, but the bond strength after the shrinkage 

exposure attack needs to be further investigated. Although no cracks were observed, some micro-

delamination may have occurred at the non-visible interface which may cause a loss of bond and 

this will be further validated in the bond chapter.  
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5. Freeze and thaw resistance of EDCC 
 

5.1  Introduction 

In Canada, freeze and thaw resistance is essential from the durability perspectives of concrete 

structures because freeze and thaw cycles occur seasonally in all parts of Canada. Hence, before 

any new material can be applied in the industry, the freeze and thaw resistance of this material 

must be well understood. This chapter will show the research done with all six different EDCC 

mixes having been subjected to up to 90 freeze and thaw cycles to evaluate their freeze and thaw 

resistance.  

5.2  Test set-up 

Basically, this test follows ASTM C666, although some differences do exist due to testing 

instruments, testing plan, testing variables, etc. Quantification of the freeze and thaw damage 

was accomplished through measurements of ultra-sonic pulse velocity and loss of mass at every 

10 cycles. For each mix, 3 samples were cast, and then, in order to see how freeze and thaw 

cycles would impact the bond strength, the 3 samples were subjected to 30, 60 and 90 cycles 

respectively. The few differences from ASTM C666 standard are listed below, 

(1) Samples‟ curing period: The standard requires 14 days of moisture curing before running 

the freeze and thaw cycles, but so as to evaluate the bond more realistically in field 

applications, a 28-day full curing period was applied in our case, because, within 14 days, 

the bond was not fully developed.  

(2) Cycle duration: Due to the inefficiency of this rapid freeze and thaw cabinet, many trials 

and adjustments were conducted to make sure that samples were properly frozen and 

thawed. A 6-hour cycle was chosen, although this is beyond the requirement of the 2 to 5 

hours requirement of the standard.  

(3) Number of cycles: According to the standard, 300 cycles or cycles at which the dynamic 

modulus is reduced to 60% should be done. However, considering the time frame of this 

project and the bond strength assessment after the freeze and thaw cycles were completed, 

a maximum 90-cycle testing was chosen. On the other hand, there would be no point for 

successive bond strength evaluation if the bond strength drops too much after certain 

cycles.  
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(4) Damage quantification method: In this testing, instead of using the standard 

recommended parameter of dynamic modulus, pulse velocity was used for damage 

quantification because of a machine issue in the dynamic modulus testing apparatus.  

5.3  EDCC characterization 

5.3.1 Air content 

A proper air void system can effectively protect cementitious materials from freeze and thaw 

attack. Hence, before continuing the freeze and thaw tests, the air content of fresh EDCC mortar 

was characterized following ASTM C143 [46] and the results are shown in the table below. As 

we can see in Table 7, all fiber mixes contain more than 6.8% air in the fresh state, which should 

be more than enough to guarantee integrity during the freeze and thaw cycles. It should be noted 

that no air-entraining agent was incorporated into any of the fiber mixes for consistency sake and 

the plain mix was decided not to be air entrained as well, although only 3% air content was 

detected, which is less than the normal frost resistance requirement.  

Table 8 EDCC air content 

EDCC Air Content 

1% PET 6.80% 

1% PET+1%PVA 7.80% 

1% PVA 7.50% 

2% PET 8.50% 

2% PVA 10.50% 

Plain mortar 3.00% 

5.3.2 Workability 

Proper workability was sought to facilitate casting and better compaction to guarantee good 

quality. So, based on the EDCC original mix, the superplasticizer dosage was adjusted for each 

mix with different fiber content, as shown in Table 8.  

Table 9 Superplasticizer dosage and slump of EDCC 

Mix Superplasticizer dosage Slump 

1% PET 3kg/m3  80 

1% PET+1%PVA 4kg/m3 70 

1%PVA 3kg/m3  75 

2% PET  4.5kg/m3  70 

2% PVA 4kg/m3  80 

Plain mortar 2kg/m3  100 
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5.3.3 Compressive strength 

Compressive strength is a good technique for quality control, so for each mix, three 75×150mm 

(D×H) cylinders were are cast and tested after the 28-day standard moisture curing.  All the 

samples of the same mixes showed similar strength; this indicates good quality control within the 

mixes (see Table 9). It was found that by increasing the fiber addition, the compressive strength 

increased as well, which is a unique material property compared to normal fiber reinforced 

concrete, which often displays the opposite trend.  

Table 10 EDCC compressive strength 

Sample No. Age/day 
Compresssive Strength /MPa 

Average /Mpa COV  

1% PET_1 28 47.80 

47.86 0.89% 1% PET_2 28 47.39 

1% PET_3 28 48.38 

1% PVA_1 28 45.68 

45.33 0.59% 1% PVA_2 28 45.04 

1% PVA_3 28 45.26 

2% PET _1 28 59.77 

59.33 0.61% 2% PET_2 28 59.32 

2% PET_3 28 58.89 

2% PVA _1 28 54.99 

54.58 1.41% 2% PVA_2 28 55.25 

2% PVA_3 28 53.50 

1% PET&1% PVA_1 28 58.82 

60.15 1.59% 1% PET&1% PVA_2 28 61.04 

1% PET&1% PVA_3 28 60.58 

Plain mix_1 28 40.36 

40.80 0.85% Plain mix_2 28 41.21 

Plain mix_3 28 40.82 

5.4 EDCC overlay dimension control  

As explained in previous chapters, because of the composite assembly overlap design, the 

substrate is smaller than the mold and if the base is not properly fixed, the base will move during 

vibration and cause quality problems for future testing. So, as shown in Figure 49, small mortar 

spacers were placed in the gap between the molds and the base, to help stabilize the base in place. 

Because the spacers will eventually be cast into the composite beam, in order not to let the 
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spacers exert any impact on the succeeding tests, the spacers are made from exactly the same 

mix design as the plain mortar.  

 

Figure 49 Plain mortar spacers to fix the substrate 

5.5  Freeze and thaw test execution 

 The rapid freeze and thaw cabinet is manufactured by Humboldt construction materials testing 

equipment provider. This cabinet can fit 18 standard 405×76×105 samples at the same time. A 

freeze and thaw control specimen was used to control cycling temperature in the chamber, so 

only 17 specimens can be tested at the same time, as shown in Figure 50. Two thermocouples 

were embedded inside the control specimen sealed with playing putty and its location was 

changed every 20 cycles. Water needed to be added to all trays to keep all specimens submerged 

in 1/8 inch water on each side due to moisture evaporation taking place with the cycles going on. 

Two cut 1/8 inch wires were placed at the bottom of each tray, as well, to keep the specimen 

from directly touching the tray.  

 

Figure 50 Freeze and thaw cabinet  

After every 10 cycles, the cabinet temperature maintained at around 4C and all specimens were 

taken out to test for pulse velocity at the pre-marked location from both sides along the length 
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direction with the Proceq TICO ultrasonic velocity tester, shown in Figure 51. Two transducers 

covered the top half of the side surface and each time, three readings were taken from the tester 

and recorded.  

 

Figure 51 Ultrasonic pulse velocity tester 

5.6  Freeze and thaw test results 

As discussed in previous chapters, the first two groups of specimens subject to shrinkage 

exposure and moisture curing immediately after casting the repair overlay are exposed to 30, 60 

and 90 freeze and thaw cycles. Below are the results of all the different EDCC mixes based on 

pulse velocity curves and mass loss curves. All the values given in the vertical Y axis are the 

ratio of the pulse velocity or mass after certain freeze and thaw cycles and the initial pulse 

velocity and mass without any freeze and thaw exposure. Values for the X axis are number of 

freeze and thaw cycles.  

5.6.1 1% PVA freeze and thaw resistance  

As we can see from Figure 52 and 53 pulse velocity curve, within 90 cycles no obvious drop or 

even a sudden increase around of 15% in the pulse velocity occurred. This indicates that no 

damage occurred during the EDCC repair, and also according to the mass loss curve, nearly no 

mass loss occurred. It could be concluded that based on ASTM C666, the freeze and thaw 

resistance of 1% PVA mix is adequate for at least 90 cycles. However, the bond strength 

between the repair and substrate, after a certain amount of freeze and thaw cycles, still remained 

unknown and will be discussed in next chapter.  Also, no damage, such as scaling, was identified 

visually.  
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Figure 52 1% PVA Mass loss curve (FT only) 

 

Figure 53 1% PVA pulse velocity curve (FT only) 
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5.6.2 1% PVA (with shrinkage exposure) freeze and thaw resistance  

Figure 54 and 55 show that no damage was found from mass and pulse velocity loss curve 

(change within 5-10%). The mass and pulse velocity even increased due to water saturation after 

10 cycles. Also, there was no damage, such as scaling as identified visually.   

 

Figure 54 1% PVA mass loss curve after shrinkage exposure 

 

Figure 55 1% PVA pulse velocity curve after shrinkage exposure 
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5.6.3 1% PET freeze and thaw resistance  

No damage was found from mass and pulse velocity loss curve (change within 2-6%), as seen in 

Figures 56 and 57. Little damage, such as scaling, was identified.  

 

Figure 56 1% PET Mass loss curve (FT only) 

 

Figure 57 1% PET pulse velocity curve (FT only) 
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5.6.4 1% PET (with shrinkage exposure) freeze and thaw resistance  

No damage within 60 cycles was found from mass and pulse velocity loss curve (change within 

3%) as shown in Figures 58 and 59. A sudden drop occurred at 90 cycles in pulse velocity and 

this will be further validated in the bond test. Little damage, such as scaling, was identified 

visually.   

 

Figure 58 1% PET Mass loss curve with shrinkage exposure 

 
Figure 59 1% PET pulse velocity curve after shrinkage exposure 
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5.6.5 2% PVA freeze and thaw resistance  

No damage was found to have occurred over the course of 90 cycles from mass (change within 

1%) and pulse velocity loss curve (even depicted an increase from 10% to 15%), as seen in 

Figures 60 and 61. Nearly no damage was visually identified.  

 

Figure 60 2% PVA Mass loss curve (FT only) 

 

Figure 61 2% PVA pulse velocity curve (FT only) 

0.99

1.00

1.00

1.00

1.00

1.00

1.01

1.01

1.01

1.01

1.01

0 10 20 30 40 50 60 70 80 90 100

2% PVA Mass 

Series1 Series2 Series3

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0 10 20 30 40 50 60 80 90 100

2% PVA  

Series1 Series2 Series3



55 
 

5.6.6 2% PVA (with shrinkage exposure) freeze and thaw resistance  

Figure 62 and 63 showed that no damage was found from mass (change within 5%) and pulse 

velocity loss curve (change within 5-7%) within 90 cycles. Nearly no damage was visually 

identified.  

 

Figure 62 2% PVA Mass loss curve with shrinkage exposure 

 

Figure 63 2% PVA pulse velocity curve after shrinkage exposure 
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5.6.7 2% PET freeze and thaw resistance  

No damage was found within 60 cycles from mass (change within 2%) and pulse velocity loss 

curve (change within 5-10%) as shown in Figure 64 and 65. But when running into 90 cycles, 

however, the pulse velocity dropped over 15% and some damage was seen around the surface.  

 

Figure 64 2% PET Mass loss curve (FT only) 

 
Figure 65 2% PET pulse velocity curve (FT only) 
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5.6.8 2% PET (with shrinkage exposure) freeze and thaw resistance  

No damage was can be found from mass (change within 2%) and pulse velocity loss curve 

(change within 5-10%) within 60 cycles, as shown in Figure 66 and 67. However, at 90 cycles, 

the pulse velocity dropped over 15% and some damage on the surface was visually identified.  

 

Figure 66 2% PET Mass loss curve with shrinkage exposure 

 

Figure 67 2% PET pulse velocity curve after shrinkage exposure 
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5.6.9 1% PVA&1% PET freeze and thaw resistance  

No damage was found from mass (change within 1%) and pulse velocity loss curve (change 

within 2%) as shown in Figure 68 and 69 within 90 cycles. Nearly no damage was visually 

identified.  

 
Figure 68 1% PVA&1% PET Mass loss curve (FT only) 

 
Figure 69 1% PVA&1% PET pulse velocity curve (FT only) 
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5.6.10 1% PVA&1% PET (with shrinkage exposure) freeze and thaw resistance  

No damage was can be found from mass (change within 2%) and pulse velocity loss curve 

(change within 6%) from as seen in Figure 70 and 71 within 90 cycles. Little damage was 

visually identified. 

 
Figure 70 1% PVA&1% PET Mass loss curve with shrinkage exposure 

 
Figure 71 1% PVA&1%PET pulse velocity curve after shrinkage exposure 
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5.6.11 Plain mortar freeze and thaw resistance  

Plain mortar specimens are also tested as control specimens, but unfortunately, after 20 to 25 

cycles, all specimens had to be removed from the freeze and thaw chamber because of serious 

damage and the bond dropped to zero. The whole specimen became crumbly and broke into 

pieces, as shown in Figure 72. Simply compared with all other fiber mixes, plain mortar mix had 

a poor freeze and thaw resistance.  

 

Figure 72 Plain mortar after 30 freeze and thaw cycles 

5.6.12 Plain mortar (with shrinkage exposure) freeze and thaw resistance  

Compared to plain mortar without previous shrinkage exposure, specimens after shrinkage 

exposure could resist more cycles, even though some cracks had developed on the surface as 

shown in Figure 73. After 50 cycles, however, all three specimens had to be removed as well due 

to serious damage of much wider crack width and materials peeling off. The detachment 

appeared after 50 cycles and the bond strength was expected to drop to zero. The bond strength 

needed to be tested at 30 cycles, to see if it performed better than the specimens without 

shrinkage exposure.  

 

Figure 73 Plain mortar with shrinkage exposure after 60 freeze and thaw cycles  
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5.7 Freeze and thaw test results discussion 

One of the major limitations in these six series of tests is that only up to 90 freeze and thaw 

cycles were executed as compared to 300 cycles required by the standard arguably it would be of 

little significance to test the bond strength after all specimens are seriously damaged. Still, it 

would be unsafe to simply suppose that all fiber mixes would have good freeze and thaw 

resistance and durability after 300 cycles dictated by ASTM C666, without performing the test to 

that point.   

However, judging from all freeze and thaw tests done so far, from simply observing the UPV and 

mass loss data, little or nearly no damage was noted on all EDCC fiber mixes but severe damage 

was observed in the plain mix. It can be concluded that fiber addition does greatly increase the 

freeze and thaw resistance, but the impact of freeze and thaw cycles on the bond between the 

overlay and substrate remains unknown until the bond test is done. The damage caused by freeze 

and thaw cycles was essentially due to internal cracks induced by the freezing of ice. The fibers 

appear to help bridge and tighten the cracks and stop crack propagation and augment freeze and 

thaw resistance. However there is no experimental evidence of such mechanism. The reason 

could be due to the high air content of EDCC mixes over plain concrete.  
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6. Bond durability of EDCC 

6.1  Introduction 

The bond between the repair system and the substrate is reported to be the weakest link, creating 

many durability problems. When evaluating the durability performance of repair material, one of 

the most important aspects is the durability of the bond. The bond of this EDCC material is still 

unknown. As one of the main components of this project, bond performance of EDCC and 

concrete substrate, after a certain amount of environmental deterioration, is investigated in this 

chapter.  

The widely used bond test is the direct pull-off bond test which is easy and fast to conduct 

although some limitations do exist. One is due to different failure modes, such as substrate 

failure and repair failure. Therefore, it is very difficult to ascertain the real interfacial bond 

strength value through this test. However, by reasonably changing the design of the assembly, 

the likelihood of ascertaining interfacial failure can be greatly increased. This will be further 

discussed in this chapter. Based on aforementioned reasons, the pull-off bond test, following the 

ASTM C1583 was chosen in this testing scheme.  

Five EDCC fiber mix repair materials and one plain mix control repair mortar were used for this 

test. For each mix, four series of bond tests were conducted as: bond without applying 

environmental deterioration, bond after shrinkage exposure, bond after freeze and thaw exposure 

and bond after both shrinkage and freeze and thaw exposure. A development curve indicating the 

relationship between bond strength and freeze and thaw cycles was drawn to determine the bond 

performance of each mix and by comparing the residual bond strength after deterioration.  

6.2 Bond test design 

One of the main disadvantages of this pull-off test is that it is very difficult to ascertain the 

interfacial bond strength because the failure mode cannot be controlled. But in this composite 

assembly design with a high strength concrete base and an EDCC repair overlay, with a tensile 

strength exceeding 3MPa, it is expected that most of the failure will occur at the interface. 

Previous research that was done in this lab by Wang [30] showed that the tensile strength of 

different EDCC fiber mixes is over 3MPa, as shown in Table 10. In her research, closed-loop 

pure uniaxial tensile tests were performed on 4 different EDCC fiber mixes.  
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Table 11 Tensile strength of EDCC [30] 

Mixture ID 
First-crack 

strength, MPa 

Ultimate tensile 

strength, MPa 

Tensile strain 

capacity, % 

2% PVA 3.22 4.43 3.89 

2% PET 1.42 1.57 0.45 

1% PVA 2.54 3.32 0.57 

1% PVA&1% 

PET 
3.12 3.78 1.67 

As discussed in Chapter 5, nearly no damage was identified by the UPV test after up to 90 freeze 

and thaw cycles, so it is reasonable to assume that the overlay EDCC would retain a certain 

tensile strength depicted in Table 10.  

Based on these arguments, we can be quite confident to expect most of the failure to occur at the 

interface instead of in the substrate on repair overlay. Actually over 80% of the specimens fail in 

the interface which is a good indicator of the real bond strength of EDCC and concrete substrate.  

6.3  Pull-off test preparation and set-up 

6.3.1 Bond test preparation 

Each specimen was drilled (with a diamond impregnated bit) with a 40mm deep circular cut, 

located 10 to 15mm below the interface, as shown in Figure 75. For each specimen, three cores 

were drilled. The drilling process was carried out in automatic mode, with a very low drilling 

speed to minimize damage to the interface. It is worthwhile to mention that when the bits were 

drilled into the substrate, external manual force was needed to help accelerate the process. This is 

because the drill cannot penetrate into the high strength concrete substrate in automatic mode.  

After the cores were drilled, the standing water was removed with a rag, the surface was cleaned 

of any debris with sandpaper and sample was left to dry. After the surface was cleaned and dried, 

a 50mm in diameter steel disk was attached to the circular cut with Epoxy (Devcon 2 Ton) and 

the epoxy was allowed to cure for 24 hours for full strength development. 

Some limitations should be noted here, one being that the standard requires the center of the 

cores to more than one diameter away from the free side of the specimen, unfortunately due to 

the narrow width of the specimens, there was only a 37.5mm distance from the center to the free 

side. But the limitation here is not expected to affect the results much. 
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Figure 74 Bond test coring preparation 

6.3.2 Bond test set-up  

There were also some other challenges and limitations while conducting the bond strength test on 

small composite beam specimens. As the beam is only 100mm wide, three legs of the pull-off 

tester are not able to sit on the beam surface. The test set-up was therefore changed by putting 

two steel bases on either side of the specimen to extend the surface area so that the pull-off tester 

was able to sit on the surface in some way. Another challenge was to make sure the tester was 

leveled before and during the testing until failure. Two clamps were used in this case, to make 

sure that the surface that the tester was sitting on was leveled, as shown in Figure 76. At the 

beginning only one clamp was used to stabilize the base on the desk. Two steel bases were just 

put beside the specimen without clamping them with the specimen. It was found that the tester 

was always tilting during the testing. By adding the second clamp, the tester could remain 

leveled during the entire loading process.  

The pull-off tester has a circular level on top of the machine itself and another level was used 

before and during the whole testing process to ensure the machine would remain leveled. Also, 

some copper shims were cut and inserted between the leg and the specimen to make sure of the 

levelness.  
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Figure 75 Pull-off bond test set-up 

6.4  Pull-off test bond strength results 

A Proceq made DY-216 automated pull-off tester was used. Right after the specimens were are 

properly prepared, as described in 6.3, the draw bolt of the tester was secured to the test disc and 

he draw bolt was fitted to the coupling and the test was started. The loading rate was 

automatically controlled at constant 0.2MPa/s. After each core was tested to failure, the peak 

load and failure mode was recorded. In each EDCC fiber mix, specimens with and without 

shrinkage exposure after 30, 60 and 90 cycles were tested and specimens only subject to 

shrinkage and without any freeze and thaw exposure were then tested and compared. In all 

curves, series 1 refers to samples after shrinkage exposure and series 2 refers to samples without 

shrinkage exposure.  

6.4.1 1% PVA bond strength 

Table 12 1% PVA bond strength value (Unit: MPa) 

Mix Cycle 1 2 3 Average STDV COV 

1% PVA 0 1.70 1.58 1.83 1.70 0.10 5.99% 

1% PVA FT_30 30 1.54 1.13 1.32 1.33 0.17 12.60% 

1% PVA FT_60 60 1.19 1.38 1.15 1.24 0.10 8.09% 

1% PVA  FT_90 90 0.83 0.99 1.08 0.97 0.10 10.70% 

1% PVA SHK_1 0 2.11 1.51 1.77 1.80 0.25 13.67% 

1% PVA SHK FT_30 30 1.70 1.50 1.25 1.48 0.18 12.41% 
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1% PVA SHK FT_60 60 1.76 1.73 1.62 1.70 0.06 3.53% 

1% PVA SHK FT_90 90 1.02 1.28 1.81 1.37 0.33 24.00% 

 

Figure 76 1% PVA bond strength degradation curve 

6.4.2 1% PET bond strength 

Table 13 1% PET bond strength value (Unit: MPa) 

Mix Cycle 1 2 3 Average STDV COV 

1% PET 0 1.31 1.22 1.88 1.47 0.29 19.88% 

1% PET FT_30 30 0.49 0.39 0.44 0.44 0.04 9.28% 

1% PET FT_60 60 0.40 0.37 0.35 0.37 0.02 5.50% 

1% PET  FT_90 90 0.39 0.39 0.26 0.35 0.06 17.68% 

1% PET SHK_1 0 1.83 1.60 1.14 1.72 0.29 16.73% 

1% PET SHK FT_30 30 0.98 1.38 1.27 1.21 0.17 13.94% 

1% PET SHK FT_60 60 0.60 0.64 0.34 0.53 0.13 25.25% 

1% PET_SHK_FT_90 90 0.21 0.21 0.21 0.21 0.00 0.00% 
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Figure 77 1% PET bond strength degradation curve 

6.4.3 2% PET bond strength 

Table 14 2% PET bond strength value (Unit: MPa) 

Mix Cycle 1 2 3 Average STDV COV 

2% PET  0 1.48 1.62 1.18 1.55 0.18 11.84% 

2% PET FT_30 30 0.88 0.77 0.69 0.78 0.08 9.99% 

2% PET FT_60 60 0.62 0.61 0.51 0.58 0.05 8.56% 

2% PET FT_90 90 0.67 0.54 0.60 0.60 0.05 8.81% 

2% PET_SHK_1 0 2.02 2.21 2.10 2.11 0.08 3.69% 

2% PET SHK FT_30 30 1.52 1.51 1.91 1.65 0.19 11.31% 

2% PET SHK FT_60 60 0.68 0.59 0.38 0.55 0.13 22.85% 

2% PET SHK_FT_90 90 0.28 0.39 0.28 0.32 0.05 16.38% 
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Figure 78 2% PET bond strength degradation curve 

6.4.4 2% PVA bond strength 

Table 15 2% PVA bond strength value (Unit: MPa) 

Mix Cycle 1 2 3 Average STDV COV 

2% PVA  0 2.06 2.02 2.11 2.06 0.04 1.78% 

2% PVA FT_30 30 1.84 1.78 1.08 1.57 0.34 22.02% 

2% PVA FT_60 60 1.48 1.32 1.42 1.41 0.07 4.69% 

2% PVA FT_90 90 1.33 1.37 1.06 1.25 0.14 10.99% 

2% PVA FT_SHK_1 0 2.12 1.90 2.10 2.11 0.10 4.71% 

2% PVA SHK FT_30 30 2.50 1.44 2.03 2.27 0.43 19.15% 

2% PVA SHK_FT_60 60 2.23 1.56 2.37 2.05 0.35 17.22% 

2% PVA SHK_FT_90 90 1.64 1.47 1.25 1.45 0.16 10.99% 
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Figure 79 2% PVA bond strength degradation curve 

6.4.5 1% PVA&1% PET bond strength 

Table 16 1% PVA&1% PET bond strength value (Unit: MPa) 

Mix Cycle 1 2 3 Average STDV COV 

1+1 0 1.60 1.53 1.70 1.61 0.07 4.33% 

1+1 FT_30 30 1.76 1.46 1.44 1.55 0.15 9.42% 

1+1 FT_60 60 1.73 1.72 2.04 1.83 0.15 8.12% 

1+1 FT_90 90 1.29 1.17 1.13 1.20 0.07 5.68% 

1+1_SHK_1 0 2.26 1.41 1.10 1.84 0.49 26.72% 

1+1 SHK_FT_30 30 2.07 1.51 0.88 1.79 0.28 15.64% 

1+1 SHK FT_60 60 1.52 1.49 1.56 1.52 0.03 1.88% 

1+1 SHK_FT_90 90 1.19 1.11 1.17 1.16 0.03 2.94% 
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Figure 80 1% PVA&1% PET bond strength degradation curve 

6.4.6 Plain mortar bond strength 

Table 17 Plain mortar bond strength value (Unit: MPa) 

Mix Cycle 1 2 3 Average STDV COV 

0.00 0 1.96 2.10 1.21 2.03 0.07 3.45% 

0%_SHK_1 0 1.70 1.47 1.40 1.52 0.13 8.41% 

0%_SHK_1_30 0 1.02 0.99 0.67 0.89 0.16 17.73% 

6.5 Pull-off test bond strength results discussion 

As mentioned before, over 80% of the failures occur at the interface, which makes the results 

more convincing. It was easily found that the PET fiber EDCC mix had poor bond durability. 

Although the bond strength was very high before freeze and thaw cycles, it experienced a sudden 

drop after a certain amount of freeze and thaw cycles. However, for the PVA mixes, even though 

the bond strength was reduced after a certain amount of freeze and thaw cycles, it still 

maintained a certain level of bond strength, which indicates better bond durability as compared 

to the PET fiber mix, as shown in Figure 81 (Series 1: residual bond strength after 90 FT cycles, 

Series 2: residual bond strength after both shrinkage and 90 FT cycles). As for plain mortar mix 

after 20 to 50 cycles, specimens did not keep integrity and had to be removed from the chamber. 

The bond strength dropped to nearly zero, so it has not been drawn in the figure.  
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Figure 81 Residual bond strength 

Interestingly, in all five EDCC fiber mixes, specimens with shrinkage exposure exhibit slightly 

higher bond strength after freeze and thaw cycles. This is contrary to intuition that specimens 

with both shrinkage and freeze and thaw exposure would end up with lower bond strength than 

those only subject to freeze and thaw cycles. Instead of introducing more damage to the bond, 

the heat applied during shrinkage tests appears to increase the bond. Because shrinkage cracks 

appeared in the plain mortar mix after shrinkage exposure, the bond strength was much lower 

than that without shrinkage exposure.  

Also, we can appreciate the data of both the plain mix and the fiber mix. Without any shrinkage 

exposure, actually the plain mix showed very good bond strength of up to 2.03MPa. However, 

from the durability perspective, the fiber mix was much more durable than the plain mix, 

especially after the freeze and thaw cycles. 

By comparing different EDCC mixes, it was found without a doubt that 2% PVA was the best 

option, especially in terms of bond durability and 1% PVA&1% PET also performed very close 

to 2% PVA. When considering the cost of fiber, 1% PVA&1% PET is the best option.  
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7. Bond performance of sprayed EDCC 

7.1  Introduction 

EDCC is also designed and optimized for a faster repair placement using the spray process. Due 

to the high speed of spraying out the materials from the nozzle, EDCC is sprayed and attached to 

the substrate through pneumatic compaction, unlike normal vibration compaction through hand 

application. Due to a different compaction method, the bond quality between EDCC and 

substrate needs to be tested and confirmed. From the cost perspective, the faster process is more 

economical because it can reduce the labor cost incurred in the process. In this chapter, an 

experimental test program was conducted by spraying EDCC with 1% PET and 1% PVA fiber 

onto brick and concrete masonry substrate. The bond was tested after the specimen was cured 5 

days in the field and then moisture-cured in the curing room for 51 days. This test also served as 

a comparative study of the differences between hand application and spraying. 

7.2   Spray procedures 

Trials were performed before the spray process was finally working. At the beginning, the 

materials got clogged at the tip of the gun, due to the design of the gun itself. Other factors, such 

as fresh properties of the EDCC are also important in spray as reflected in the cohesiveness and 

workability of the material. If the material is too dry, it is unlikely that it will be sprayed from the 

tip of the gun, but if the material is too flowable, the material will experience a serious sloughing 

off. So, the workability should be controlled very carefully. The cohesiveness really affects the 

fiber dispersion, which will have a significant impact on the spray processand prevent the fiber 

from balling and clogging the gun tip.  

After many trials, the spray process was developed and achieved through two different set-ups. 

One was through the spray machine with the spray gun which was suitable for larger batches and 

for long trips for material transportation. The other set-up was by using the hopper and the gun 

itself, which is better for relatively small batches as shown in the photos below.  

7.3   Testing set-up 

Two different substrates were chosen to be tested - concrete and clay masonry blocks. Due to the 

high speed of the spray process, when the materials first arrive at the edge of the substrate, an 

edge effect will influence the quality of the materials in the local area around the edges. So a 

wood frame was built to eliminate this edge effect, as shown below in Figure 82. Due to higher 
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efficiency and easier clean-up, the hopper spray method was adopted. The mixing procedure for 

the large batch was adopted, as well, to ensure that there would be no clogging during the spray 

process. The surface was pre-moisturized in a similar fashion to the hand application.  

 

Figure 82 Spray set-up  

After the specimens were are sprayed and with advance knowledge of the limitations of the bond 

testing that would occur afterwards, which would require the surface to be leveled, the surface 

was slightly flattened manually. With the aim of simulating actual field conditions, the 

specimens were then placed vertically in the lab for another 5 days. After that, the specimens 

were transferred to the curing room for another 51 days, before the bond tests were conducted. 

The long curing time is required because of the high volume of fly ash in the EDCC mix gain is 

slower.  

7.4   Specimen coring  

After all the specimens were fully cured, the drilling and coring process was performed 

according to ASTM C1583 standard, in Figure 83. In the brick specimens, all coring was carried 

out covering the relatively weak mortar joints, as shown in Figure 83. In the concrete specimens, 

three middle cores were covering weak mortar joints, as shown in Figure 84.  
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Figure 83 Brick substrate coring layout (right figure source from reference [1]) 

  

Figure 84 Concrete substrate specimen coring layout (right figure source from reference [1]) 

7.5   Spray process and quality control  

The spray process was conducted with the hopper and the redesigned spray gun, Figure 85. The 

amount of materials spraying from the gun could be controlled by the operator himself.  

The quality of the spray is mainly determined by two aspects, rebound and sloughing off. In this 

spray process, very little sloughing off was observed because of the better cohesiveness of the 

EDCC mix. A reasonable amount of rebound was observed because of the high speed and 

pressure. It was found that the main component of the rebound was fiber, which may be bad for 

bond performance and long term durability. A fan was also operating during the whole procedure 

to help blow away the rebound materials. 
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Figure 85 Spray process 

7.6   Bond strength results  

Following the same procedures as in previous bond tests, pull-off tests were carried out in a total 

of 24 cores drilled within 4 concrete specimens and 18 cores in 3 brick specimens. However, 

because all EDCC was sprayed onto the substrate, it was fairly difficult to make the surface flat 

and some of the cores had to be discarded due to the poor surface flatness and difficult to level 

the machine.  

In the concrete specimens, 2 specimens were drilled with 9 cores on each and 2 specimens were 

drilled with 4 cores on each. For the brick specimens, 3 specimens were drilled with 6 cores on 

each. Bond strength results are shown in Table 17 and 18. The thickness of the sprayed EDCC 

was roughly controlled at 30mm to 35mm. 

Table 18 Concrete specimen bond strength 

Masonry 1 2 3 4 

Bond 

strength 

(MPa) 

1.01 1.24 0.98 1.12 1.28 1.13 

1.16 1.04 1.25 1.08 0.87 1.1 

0.85 1.33 1.09 1.2     

0.99 0.91 1.1       

Average  1.09 

Table 19 Brick specimen bond strength 

Brick 1 2 3 

Bond strength 

(MPa) 

1.5 1.7 1.68 1.77 1.75 1.65 

1.37 1.88 1.65 1.85 1.44 1.72 

1.47   1.74   1.32   

Average 1.63 



76 
 

For failure mode, it is found that most of the cores fail in the substrate for brick specimens but 

fail at the interface for most concrete specimens, as shown below in Figure 86.  

 

Figure 86 Pulled cores 

7.7   Bond strength results comparison with hand applied data 

As reported in reference [1], the bond strength for hand-applied concrete specimen was 1.52 

MPa compared with the findings of 1.06 MPa for sprayed specimens. However, for brick 

specimens, the hand-applied bond strength was measured at 1.36 MPa, as compared with 1.63 

MPa for sprayed specimens. So, a 30% drop happened for concrete specimens but a 20% 

increase for brick specimens, as shown in Figure 87.  

 

Figure 87 Bond strength comparison with reference [1] 

1.52 

1.36 

1.09 

1.63 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Concrete Brick

Hand applied Spray



77 
 

From these data, it can be concluded that the spray process functions better for brick specimens 

than the concrete specimens. This is further supported by different failure modes for the two 

substrates.  

Possible reasons are listed below: 

(1) The thickness of EDCC on top of the concrete specimens was approximately 5mm 

thicker than were the brick specimens, which may lead to poorer bond performance. It 

was also found by Yan [1] thesis that with the increase of the repair thickness, a decrease 

of bond strength occurred between the repair and substrate.  

(2) Because specimens were sprayed one at a time from brick to concrete specimens, 

moisture on the masonry surface may have evaporated before it was sprayed which may 

cause a poorer bond strength.  
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8. Conclusions and recommendations for future work 

This study aims to investigate the durability performance of EDCC as a repair material and to 

ensure the long-term durability of EDCC in seismic retrofitting applications. Based on the 

overlay substrate composite assembly to simulate a real in-situ repair scenario, three main 

durability factors were taken into consideration. These factors were: restrained shrinkage 

resistance, freeze and thaw resistance and bond strength durability. The author is hopeful that the 

conclusions drawn from the test results will be helpful for future application of this repair 

material.  

From a strength perspective, unlike traditional fiber reinforced concrete, incorporation of fibers 

from 1% to 2% by volume in this application, the compressive strength increased by more than 

10% and up to at least 45MPa, which suffices for most applications. It is worthwhile mentioning 

that very rigorous control of the quality of the mix is needed by proper mixing procedures to 

guarantee the strength.  

In terms of restrained shrinkage resistance, as expected, all 5 EDCC fiber mixes survived the 

harsh and hot extreme exposure for 24 hours and no cracks were observed visually or even under 

the microscope. However, for the plain mortar without fiber, up to 0.3mm cracks were identified 

on the surface. It could be concluded that the fiber addition to the matrix really helps increase the 

shrinkage resistance.  

In terms of freeze and thaw resistance, constrained by the limited number of freeze and thaw 

cycles as compared to the 300 cycles required by the standard and little significance to test the 

bond strength after all the specimens had been seriously damaged, only 90 cycles were executed 

on all five different fiber mixes and one plain mix. Even with these limitations, within 90 freeze 

and thaw cycles, it became quite evident that all fiber mixes showed much better performance 

than the plain mix. The plain mix specimens had to be removed from the chamber after only 50 

cycles, due to very serious deterioration, while all the fiber mixes kept very good integrity after 

90 cycles. Also, it was learned from the mass loss curve and pulse velocity degradation curve, 

that very little degradation and loss were found in all five fiber mixes.  

Although all EDCC fiber mixes showed good shrinkage resistance and freeze and thaw 

resistance within 90 freeze and thaw cycles, the residual bond strength after these environmental 

exposures remains of interest. The residual bond strength is crucial to ensure the long-term 

durability of the repair itself. So the pull off bond test was conducted on specimens after the 
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environmental exposures of shrinkage and freeze and thaw cycles; and on specimens that did not 

undergo any of these exposures. By comparing the residual bond strength within different fiber 

mixes and the bond strength degradation with the increase of the number of cycles, the best 

EDCC mix could be determined. It was found that 2% PVA and 1% PVA & 1% PET hybrid mix 

showed the highest residual bond strength and it can be said with confidence that both mixes 

have very good bond durability. But considering the cost differential between the two, the 1% 

PVA & 1% PET hybrid mix is the best option.  

When it comes to the spray process, it was very successful with very little rebound and nearly no 

material sloughing off. By comparing the bond strength between the hand-applied process and 

the spray process, it was found that the brick specimen has higher bond strength in the spray 

process, while the concrete specimen shows a higher strength in the hand-applied process. More 

experiments need to be performed to further verify this conclusion. Meanwhile, the spray process 

is expected to increase the material application speed to further reduce potential high labor cost.  

For future recommendations, more specimens should be tested to 300 freeze and thaw cycles to 

investigate the real freeze and thaw resistance of different EDCC fiber mixes. In the spray 

process, a better thickness control of the overlay needs to be found. This study found that the 

thickness affects the bond strength between the overlay and substrate because of the poor 

compaction in thick overlays. More durability indicating properties, such as chloride diffusion, 

permeability, soptivity etc. should be assessed to further validate the good durability 

performance in full manners.  
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