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Abstract

We study a testable dark matter (DM) model outside of the standard WIMP
paradigm in which the observed ratio Ωdark ' Ωvisible for visible and dark
matter densities finds its natural explanation as a result of their common
QCD origin when both types of matter (DM and visible) are formed at
the QCD phase transition and both are proportional to ΛQCD. Instead of
the conventional “baryogenesis” mechanism we advocate a paradigm when
the “baryogenesis” is actually a charge separation process which occur in
the presence of the CP odd axion field a(x). In this scenario the global
baryon number of the Universe remains zero, while the unobserved an-
tibaryon charge is hidden in form of heavy nuggets, similar to Witten’s
strangelets and compromise the DM of the Universe.

In the present work we study in great detail a possible formation mecha-
nism of such macroscopically large heavy objects. We argue that the nuggets
will be inevitably produced during the QCD phase transition as a result of
Kibble-Zurek mechanism on formation of the topological defects during a
phase transition. Relevant topological defects in our scenario are the closed
bubbles made of the NDW = 1 axion domain walls. These bubbles, in gen-
eral, accrete the baryon (or antibaryon) charge, which eventually result in
formation of the nuggets and anti-nuggets carrying a huge baryon (anti-
baryon) charge. A typical size and the baryon charge of these macroscopi-
cally large objects is mainly determined by the axion mass ma. However, the
main consequence of the model, Ωdark ≈ Ωvisible is insensitive to the axion
mass which may assume any value within the observationally allowed win-
dow 10−6eV . ma . 10−3eV. We also estimate the baryon to entropy ratio
η ≡ nB/nγ ∼ 10−10 within this scenario. Finally, we comment on implica-
tions of these results to the axion search experiments, including microwave
cavity and the Orpheus experiments.
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The results of this thesis has been published on arXiv as Xunyu Liang and
Ariel Zhitnitsky, arXiv:1606.00435 [hep-ph].
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Chapter 1

Introduction

Very recently, at the time of the thesis is being written, the world’s most
sensitive dark matter (DM) detector – LUX (the Large Underground Xenon
DM experiment) completes its nearly 2-year search. However, similar to
other long-term searches, it hardly provides evidence [1] to support the ex-
istence of WIMPs (Weakly Interacting Massive Particles), a prevailing DM
model. The lack of signals may hint an alternative DM model could be
favorable.

As one of the motivations, this thesis presents a simple composite object,
namely quark nugget, that can be served as an alternative DM candidate.
Even better, these little compact nuggets may solve another unsolved fun-
damental problem – the baryon asymmetry.

1.1 Two sides of the same coin

The origin of the observed asymmetry between matter and antimatter is one
of the largest open questions in cosmology. The nature of the dark matter is
another open question in cosmology. In this thesis we advocate an idea that
these two, apparently unrelated, problems are in fact two sides of the same
coin. Furthermore, both mysterious effects are originated at one and the
same cosmological epoch from one and the same QCD physics. Normally,
it is assumed that the majority of dark matter is represented by a new
fundamental field coupled only weakly to the standard model particles, these
models may then be tuned to match the observed dark matter properties.
We take a different perspective and consider the possibility that the dark
matter is in fact composed of well known quarks and antiquarks but in a new
high density phase, similar to the Witten’s strangelets, see original work [2]
and some related studies [3].

There are few new crucial elements in proposal [4, 5], in comparison
with previous studies [2, 3]. First of all, the nuggets could be made of
matter as well as antimatter in our framework as a result of separation of
charges, see few comments below. Secondly, the stability of the DM nuggets
is provided by the axion domain walls with extra pressure, in contrast with
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1.1. Two sides of the same coin

original studies when stability is assumed to be achieved even in vacuum, at
zero external pressure. Finally, an overall coherent baryon asymmetry in the
entire Universe is a result of the strong CP violation due to the fundamental
θ parameter in QCD which is assumed to be nonzero at the beginning of
the QCD phase transition. This source of strong CP violation is no longer
available at the present epoch as a result of the axion dynamics, see original
papers [6–8] and recent reviews [9–16] on the subject. We highlight the basics
ideas of this framework in the present Introduction, while we elaborate on
these new crucial elements in details in section 2.1.

It is generally assumed that the universe began in a symmetric state
with zero global baryonic charge and later (through some baryon number
violating process) evolved into a state with a net positive baryon number. As
an alternative to this scenario we advocate a model in which “baryogenesis”
is actually a charge separation process in which the global baryon number
of the universe remains zero. In this model the unobserved antibaryons
come to comprise the dark matter. A connection between dark matter and
baryogenesis is made particularly compelling by the similar energy densities
of the visible and dark matter with Ωdark ' 5 ·Ωvisible. If these processes are
not fundamentally related the two components could exist at vastly different
scales.

In the model [4, 5] baryogenesis occurs at the QCD phase transition.
Both quarks and antiquarks are thermally abundant in the primordial plasma
but, in addition to forming conventional baryons, some fraction of them are
bound into heavy nuggets of quark matter in a colour superconducting phase
(an analogous phase to superconductors in condensed matter). Nuggets of
both matter and antimatter are formed as a result of the dynamics of the
axion domain walls as originally proposed in refs.[4, 5]. A number of very
hard dynamical questions in strongly coupled QCD which are related to the
nuggets’s formation have not been studied in any details in the original pa-
pers. The main goal of the present work is to make the first step in the
direction to address these hard questions.

If the fundamental θ parameter were identically zero at the QCD phase
transition in early universe, an equal number of nuggets made of matter
and antimatter would be formed. It would result in vanishing of the visible
baryon density at the present epoch. However, the fundamental CP violat-
ing processes associated with the θ term in QCD (which is assumed to be
small, but still non-zero at the very beginning of the QCD phase transition)
results in the preferential formation of anti-nuggets over the nuggets. This
preference is essentially determined by the dynamics of coherent axion field
θ(x) at the initial stage of the nugget’s formation. The resulting asymmetry
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1.1. Two sides of the same coin

is not sensitive to a small magnitude of the axion field θ(x) at the QCD
phase transition as long as it remains coherent on the scale of the Universe,
see chapter 3 for the details.

The remaining antibaryons in the plasma then annihilate away leaving
only the baryons whose antimatter counterparts are bound in the excess
of anti-nuggets and thus unavailable to annihilate. All asymmetry effects
are order of one, irrespectively to the magnitude of θ(x) at the moment of
formation. This is precisely the main reason of why the visible and dark
matter densities must be the same order of magnitude

Ωdark ≈ Ωvisible (1.1)

as they both proportional to the same fundamental ΛQCD scale, and they
both are originated at the same QCD epoch. In particular, if one assumes
that the nuggets and anti-nuggets saturate the dark matter density than
the observed matter to dark matter ratio Ωdark ' 5 · Ωvisible corresponds
to a specific proportion when number of anti-nuggets is larger than number
of nuggets by a factor of ∼ 3/2 at the end of nugget’s formation. This
would result in a matter content with baryons, quark nuggets and antiquark
nuggets in an approximate ratio

|Bvisible| : |Bnuggets| : |Bantinuggets| ' 1 : 2 : 3, (1.2)

with no net baryonic charge. If these processes are not fundamentally related
the two components Ωdark and Ωvisible could easily exist at vastly different
scales.

Though the QCD phase diagram at θ 6= 0 as a function of T and µ
is basically unknown, it is well understood that θ is in fact the angular
variable, and therefore supports various types of the domain walls, including
the so-called NDW = 1 domain walls1 when θ interpolates between one and
the same physical vacuum state θ → θ + 2π. Furthermore, it is expected
that the closed bubbles made of these NDW = 1 axion domain walls are
also produced during the QCD phase transition with a typical wall tension
σa ∼ m−1

a where ma is the axion mass. Precisely this scale determines the
size and the baryon charge of the nuggets, see equations (1.3), (1.4) below.

The collapse of these close bubbles is halted due to the Fermi pressure
acting inside of the bubbles. The crucial element which stops the collapse
of the bubbles from complete annihilation is the presence of the QCD sub-
structure inside the axion domain wall. This substructure forms immediately

1NDW represents the phase difference between the two side of the end of a domain wall
θ → θ + 2πNDW .
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1.1. Two sides of the same coin

after the QCD phase transition as discussed in [4]. The equilibrium of the ob-
tained nugget system has been analyzed in [4] for a specific axion domain wall
tension within the observationally allowed window 10−6eV ≤ ma ≤ 10−3eV
consistent with the recent constraints [9–16]. It has been also argued in [4]
that the equilibrium is typically achieved when the Fermi pressure inside
the nuggets falls into the region when the colour superconductivity (CS)
sets in2.

The size and the baryon charge of the nuggets scale with the axion mass
as follows

σa ∼ m−1
a , R ∼ σa, B ∼ σ3

a. (1.3)

Therefore, when the axion mass ma varies within the observationally allowed
window 10−6eV . ma . 10−3eV the nuggets parameters also vary as follows

10−6cm . R . 10−3cm, 1023 . B . 1032, (1.4)

where the lowest axion mass ma ' 10−6eV approximately3 corresponds to
the largest possible nuggets with 〈B〉 ' 1032. Variation of the axion mass by
three orders of magnitude results in variation of the nugget’s baryon charge
by nine orders of magnitude according to relation (1.3). The correspond-
ing allowed region is essentially unconstrained by present experiments, see
details in section 1.2 below.

The fact that the CS may be realized in nature in the cores of neutron
stars has been known for sometime [17, 18]. A new element which was advo-
cated in proposal [4] is that a similar dense environment can be realized in
nature due to the axion domain wall pressure playing a role of a “squeezer”,
similar to the gravity pressure in the neutron star physics.

Another fundamental ratio (along with Ωdark ≈ Ωvisible discussed above)
is the baryon to entropy ratio at present time

η ≡ nB − nB̄
nγ

' nB
nγ
∼ 10−10. (1.5)

2There is no requirement for a first order phase transition (in contrast with original
proposal [2]) for the bubble formation in this framework because the NDW = 1 axion
domain walls are formed irrespectively to the order of the phase transition. Needless to
say that the phase diagram in general and the order of the phase transition in particular
at θ 6= 0 are still unknown because of the longstanding “sign problem” in the QCD lattice
simulations at θ 6= 0, see few comments and related references in chapter 5.

3There is no one-to-one correspondence between the axion mass ma and the baryon
charge of the nuggets B because for each given ma there is an extended window of stable
solutions describing different nugget’s sizes [4].
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1.1. Two sides of the same coin

If the nuggets were not present after the phase transition the conventional
baryons and antibaryons would continue to annihilate each other until the
temperature reaches T ' 22 MeV when the baryon density would be 9 orders
of magnitude smaller than observed (1.5). This annihilation catastrophe,
normally thought to be resolved as a result of “baryogenesis” was formulated
by Sakharov[19], see also review [20]. In the framework of conventional
baryogenesis, the ratio (1.5) is highly sensitive to many specific details of
the models (for example, the general spectrum of the system, the coupling
constants, and the particular strength of CP violation), see e.g. review[20].

In our proposal (in contrast with conventional frameworks on baryoge-
nesis) this ratio is determined by a single parameter with a typical QCD
scale, the formation temperature Tform. This temperature is defined by a
moment in evolution of the Universe when the nuggets and anti-nuggets
basically have completed their formation and not much annihilation would
occur at lower temperatures T ≤ Tform. The exact magnitude of tempera-
ture Tform ∼ ΛQCD in our proposal is determined by many factors: trans-
mission/reflection coefficients, evolution of the nuggets, expansion of the
universe, cooling rates, evaporation rates, viscosity of the environment, the
dynamics of the axion domain wall network, etc. All these effects are, in
general, equally contribute to Tform at the QCD scale. Technically, the cor-
responding effects are hard to compute from the first principles as even basic
properties of the QCD phase diagram at nonzero θ 6= 0 are still unknown4.
We plot three different conjectured cooling paths on Fig. 1.1.

However, the estimate of Tform up to factor 2 is quite a simple exercise
as Tform must be proportional to the gap ∆ ∼ 100 MeV when CS phase sets
in inside the nuggets. The observed ratio (1.5) corresponds to Tform ' 40
MeV, see [5] for the details. This temperature indeed represents a typical
QCD scale, slightly below the critical temperature TCS ' 0.6∆ ' 60 MeV,
according to standard estimates on colour superconductivity, see reviews
[17, 18].

4The basic consequence (1.1) as well as (1.5) of this proposal are largely insensitive
to the absolute value of the initial magnitude of the θ parameter. In other words, a fine
tuning of the initial θ parameter is not required in this mechanism. The same comment (on
“insensitivity” of the initial conditions) also applies to efficiency of the nugget’s formation.
This is because the baryon density at the present time is 10 orders of magnitude lower
than the particle density at the QCD phase transition epoch according to the observations
(1.5). Therefore, even a sufficiently low efficiency of the nugget’s formation (still larger
than 10−7, see estimates in section 3.3) cannot drastically modify the generic relations
(1.1), (1.5) due to a long evolution which eventually washes out any sensitivity to the
initial conditions. The only crucial parameter which determines the final outcome (1.1),
(1.5) is the formation temperature Tform as estimated below.
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≈ 170MeV

θ

T

µ

QGP

CS
Hadron

1 2

3

Tform ≈ 41MeV

Tc

(Phase Unknown)

Figure 1.1: The conjectured phase diagram. Possible cooling paths are
denoted as path 1, 2 or 3. The phase diagram is in fact much more compli-
cated as the dependence on the third essential parameter, the θ is not shown
as it is largely unknown. Therefore, the paths should be thought as lines
in three dimensional parametrical space, not as lines on two-dimensional
(µ, T ) slice at θ = 0 as shown on the present plot. It is assumed that the
final destination after the nuggets are formed is the region with Tform ≈ 41
MeV, µ > µc and θ ≈ 0, corresponding to the presently observed ratio (1.5),
see text for the details.
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1.1. Two sides of the same coin

Unlike conventional dark matter candidates, such as WIMPs the dark-
matter/antimatter nuggets are strongly interacting but macroscopically large.
They do not contradict any of the many known observational constraints on
dark matter or antimatter for three main reasons [21]:

• They carry a huge (anti)baryon charge |B| & 1025, and so have an
extremely tiny number density;

• The nuggets have nuclear densities, so their effective interaction is
small σ/M ∼ 10−10 cm2/g, well below the typical astrophysical and
cosmological limits which are on the order of σ/M < 1 cm2/g;

• They have a large binding energy ∼ ∆, such that baryon charge in
the nuggets is not available to participate in big bang nucleosynthesis
(bbn) at T ≈ 1 MeV.

To reiterate: the weakness of the visible-dark matter interaction is achieved
in this model due to the small geometrical parameter σ/M ∼ B−1/3 rather
than due to a weak coupling of a new fundamental field with standard model
particles. In other words, this small effective interaction ∼ σ/M ∼ B−1/3

replaces a conventional requirement of sufficiently weak interactions of the
visible matter with WIMPs.

As we already mentioned, this model when DM is represented by quark
and antiquark nuggets is consistent with fundamental astrophysical con-
straints. Furthermore, there are a number of frequency bands where some
excess of emission was observed, but not explained by conventional astro-
physical sources. Our comment here is that this model may explain some
portion, or even entire excess of the observed radiation in these frequency
bands. This phenomenological part of the proposal is the key ingredient
in our advocacy of the model, and may play very important role for in-
terpretation of the present and future observations. Therefore, we devote
next section 1.2 to review the original results [22–31] where predictions of
the model have been confronted with the observations in specific frequency
bands covering more than eleven orders of magnitude, from radio frequency
with ω ∼ 10−4 eV to γ rays with ω ∼ 10 MeV. We also mention in section
1.2 some interesting results [32–36] which are presently perfectly consistent
with the model. However, in future, similar studies with modest improve-
ments will provide a powerful test of the viability of the quark nugget dark
matter model.

One should emphasize here that the corresponding analysis [22–31] is de-
termined by conventional physics, and as such all effects are calculable from
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1.1. Two sides of the same coin

the first principles. In other words, the model contains no tuneable fun-
damental parameters, except for a single mean baryon number of a nugget
〈B〉 ∼ 1025 which enters all the computations [22–31] as a single normaliza-
tion factor. At the same time, the crucial assumptions of the model, such as
specific mechanisms on the baryon charge separation and dynamics of the
nugget formation, etc, have never been explored in our previous studies.

We believe that the phenomenological success [22–31] of the model war-
rants further theoretical studies of this framework, in spite of its naively
counter-intuitive nature. Therefore, the present work should be considered
as the first step in this direction where we attempt to develop the theoretical
framework to address (and hopefully answer) some of the hardest questions
about a possible mechanism for the nuggets’ formation during the QCD
phase transition in strongly coupled regime when even the phase diagram
at θ 6= 0 as a function of the chemical potential µ and temperature T is still
unknown, see footnote 2.

The structure of this work is as follows. In section 1.2 we briefly review
the observational constraints on the model. In section 2.1 we highlight the
basic assumptions and ingredients of this framework, while in sections 2.2
and 2.3 we present some analytical estimates which strongly substantiate
the idea that such heavy objects indeed can be formed and survive until the
present epoch during the QCD phase transition in early Universe. Section
2.4 as well as Appendices A and B are devoted to a number of technical
details which support our basic claim.

In chapter 3 we argue that there will be the preferential formation of
one species of nuggets over another. This preference is determined by the
dynamics of the axion field θ(x) which itself is correlated on the scales of the
Universe at the beginning of the nuggets’ formation. Finally, in chapter 4 we
comment on implications of our studies to direct axion search experiments.

To conclude this long introduction: the nuggets in our framework play
a dual role: they serve as the DM candidates and they also explain the
observed asymmetry between matter and antimatter. These two crucial el-
ements of the proposal lead to very generic consequence of the entire frame-
work expressed by eq. (1.1). This basic generic result is not very sensitive
to any specific details of the model, but rather, entirely determined by two
fundamental ingredients of the framework:
• the contribution to the present day density of both types of matter (visible
and dark) are proportional to one and the same fundamental scale ∼ ΛQCD;
• the preferential formation of one species of nuggets over another is cor-
related on huge cosmological scales where CP violating axion phase θ(x)
remains coherent just a moment before the QCD phase transition.

8



1.2. Quark (anti) nugget DM confronting the observations

The readers interested in the cosmological consequences, rather than in
technical computational details may directly jump to section 2.1 where we
formulate the basics ingredients of the proposal, to section 3.2 where we
explain the main model-independent consequence (1.1) of this framework,
and to chapter 4 where we make few comments on implications to other
axion search experiments, including microwave cavity [9–11, 14] and the
Orpheus experiments [15].

1.2 Quark (anti) nugget DM confronting the
observations

While the observable consequences of this model are on average strongly
suppressed by the low number density of the quark nuggets ∼ B−1/3 as
explained above, the interaction of these objects with the visible matter
of the galaxy will necessarily produce observable effects. Any such conse-
quences will be largest where the densities of both visible and dark matter
are largest such as in the core of the galaxy or the early universe. In other
words, the nuggets behave as a conventional cold DM in the environment
where density of the visible matter is small, while they become interacting
and emitting radiation objects (i.e. effectively become visible matter) when
they are placed in the environment with sufficiently large density.

The relevant phenomenological features of the resulting nuggets are de-
termined by properties of the so-called electro-sphere as discussed in original
refs. [22–31]. These properties are in principle, calculable from first princi-
ples using only the well established and known properties of QCD and QED.
As such the model contains no tunable fundamental parameters, except for
a single mean baryon number 〈B〉 which itself is determined by the axion
mass ma as we already mentioned.

A comparison between emissions with drastically different frequencies
from the centre of galaxy is possible because the rate of annihilation events
(between visible matter and antimatter DM nuggets) is proportional to the
product of the local visible and DM distributions at the annihilation site.
The observed fluxes for different emissions thus depend through one and the
same line-of-sight integral

Φ ∼ R2

∫
dΩdl[nvisible(l) · nDM (l)], (1.6)

where R ∼ B1/3 is a typical size of the nugget which determines the effective
cross section of interaction between DM and visible matter. As nDM ∼ B−1

9



1.2. Quark (anti) nugget DM confronting the observations

the effective interaction is strongly suppressed ∼ B−1/3 as we already men-
tioned in the Introduction. The parameter 〈B〉 ∼ 1025 was fixed in this pro-
posal by assuming that this mechanism saturates the observed 511 keV line
from the galactic centre [22, 23], which resulted from annihilation of the elec-
trons from visible matter and positrons from anti-nuggets. It has been also
assumed that the observed dark matter density is saturated by the nuggets
and anti-nuggets. Such assumptions would correspond to an average baryon
charge 〈B〉 ∼ 1025 for typical density distributions nvisible(r), nDM (r) enter-
ing (1.6). Other emissions from different bands are expressed in terms of
the same integral (1.6), and therefore, the relative intensities are completely
determined by internal structure of the nuggets which is described by con-
ventional nuclear physics and basic QED. We present a short overview of
these results below.

Some galactic electrons are able to penetrate to a sufficiently close to
the surface of the anti-nuggets. These events no longer produce the char-
acteristic positronium decay spectrum (511 keV line with a typical width
of order ∼ few keV accompanied by the conventional continuum due to 3γ
decay) but a direct non-resonance e−e+ → 2γ emission spectrum. The tran-
sition between the resonance positronium decays and non-resonance regime
is determined by conventional QED physics and allows us to compute the
strength and spectrum of the MeV scale emissions relative to that of the
511 keV line [24, 25]. Observations by the Comptel satellite indeed show
some excess above the galactic background consistent with our estimates.

Galactic protons incident on the anti-nugget will penetrate some distance
into the quark matter before annihilating into hadronic jets. This process
results in the emission of Bremsstrahlung photons at x-ray energies [26].
Observations by the Chandra observatory apparently indicate an excess in
x-ray emissions from the galactic centre.

Hadronic jets produced deeper in the nugget or emitted in the down-
ward direction will be completely absorbed. They eventually emit thermal
photons with radio frequencies [27, 28]. Again the relative scales of these
emissions may be estimated and is found to be in agreement with observa-
tions.

These apparent excess emission sources have been cited as possible sup-
port for a number of dark matter models as well as other exotic astrophysical
phenomenon. At present however they remain open matters for investigation
and, given the uncertainties in the galactic spectrum and the wide variety
of proposed explanations are unlikely to provide clear evidence in the near
future. Therefore, it would be highly desirable if some direct detection of
such objects is found, similar to direct searches of the WIMPs.
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1.2. Quark (anti) nugget DM confronting the observations

While direct searches for WIMPs require large sensitivity, a search for
very massive dark matter nuggets requires large area detectors. If the dark
matter consists of quark nuggets, they will have a flux of

dN

dA dt
= nv ≈

(
1025

B

)
km−2yr−1. (1.7)

Though this flux is far below the sensitivity of conventional dark matter
searches it is similar to the flux of cosmic rays near the Greisen-Zatsepin-
Kuzmin (GZK) limit. As such present and future experiments investigating
ultrahigh energy cosmic rays may also serve as search platforms for dark
matter of this type.

It has been suggested that large scale cosmic ray detectors may be ca-
pable of observing quark (anti-) nuggets passing through the earth’s atmo-
sphere either through the extensive air shower such an event would trigger
[29] or through the geosynchrotron emission generated by the large number
of secondary particles [30], see also [31] for review.

It has also been estimated in [32] that, based on Apollo data, nuggets of
mass from ∼ 10 kg to 1 ton (corresponding to B ∼ 1028-30) must account
for less than an order of magnitude of the local dark matter. While our
preferred range of B ∼ 1025 is somewhat smaller and is not excluded by
[32], we still believe that B ≥ 1028 is not completely excluded by the Apollo
data, as the corresponding constraints are based on specific model dependent
assumptions about the nugget mass-distribution.

It has also been suggested that the anita experiment may be sensitive
to the radio band thermal emission generated by these objects as they pass
through the antarctic ice [33]. These experiments may thus be capable of
adding direct detection capability to the indirect evidence discussed above,
see Fig.1.2 taken from [33] which reviews these constarints.

It has been also suggested recently [34] that the interactions of these
(anti-) nuggets with normal matter in the Earth and Sun will lead to anni-
hilation and an associated neutrino flux. Furthermore, it has been claimed
[34] that the antiquark nuggets cannot account for more than 20% of the
dark matter flux based on constraints for the neutrino flux in 20-50 MeV
range where sensitivity of the underground neutrino detectors such as Su-
perK have their highest signal-to-noise ratio.

However, the claim [34] was based on assumption that the annihilation
of visible baryons with antiquark nuggets generate the neutrino spectrum
similar to conventional baryon- antibaryon annihilation spectrum when the
large number of produced pions eventually decay to muons and consequently
to highly energetic neutrinos in the 20-50 MeV energy range. Precisely these
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1.2. Quark (anti) nugget DM confronting the observations

Figure 1.2: Limits on quark nugget mass and fluxes based on current (and
future) constraints, taken from [33]. Our preferable value 〈B〉 ∼ 1025 is
translated to the axion mass ma ' 10−4 eV according to the scaling rela-
tion (1.3). The corresponding constraints expressed in terms of ma have
important implication for the direct axion search experiments as discussed
in chapter 4. Orpheus experiment “B” is designed to be sensitive exactly to
this value of the axion mass ma ' 10−4 eV, see Fig.4.1.

12



1.2. Quark (anti) nugget DM confronting the observations

highly energetic neutrinos play the crucial role in analysis [34]. However,
in most CS phases the lightest pseudo Goldstone mesons (the pions and
Kaons) have masses in the 5-20 MeV range [17, 18] in huge contrast with
hadronic confined phase where mπ ∼ 140 MeV. Therefore, such light pseudo
Goldstone mesons in CS phase cannot produce highly energetic neutrinos
in the 20-50 MeV energy range and thus are not subject to the SuperK
constraints [36].

We conclude this brief overview on observational constraints of the model
with the following remark. This model which has a single fundamental
parameter (the mean baryon number of a nugget 〈B〉 ∼ 1025, corresponding
to the axion mass ma ' 10−4 eV), and which enters all the computations is
consistent with all known astrophysical, cosmological, satellite and ground
based constraints as highlighted above. Furthermore, in a number of cases
the predictions of the model are very close to the presently available limits,
and very modest improving of those constraints may lead to a discovery
of the nuggets. Even more than that: there are a number of frequency
bands where some excess of emission was observed, and this model may
explain some portion, or even entire excess of the observed radiation in
these frequency bands.

In the light of this (quite optimistic) assessment of the observational
constraints of this model it is quite obvious that further and deeper studies
of this model are worthwhile to pursue. The relevant developments may
include, but are not limited, to such hard problems as formation mechanisms
during the QCD phase transition in early Universe, even though many key
elements for proper addressing those questions at θ 6= 0, µ 6= 0, T 6= 0 are
still largely unknown in strongly coupled QCD as shown on Fig.1.1. This
work is the first step in the direction to explore a possible mechanism of
formation of the nuggets.
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Chapter 2

Formation of the Nuggets

As mentioned in the preceding chapter, the observational consequence of the
nuggets have been studied for a long time. However, the formation aspect is
previously just a conjecture. Taken as another motivation, this chapter (and
this thesis) is dedicated to investigating the local formation of a nugget.

2.1 The crucial ingredients of the proposal

1. First important element of this proposal is the presence5 of the topological
objects, the axion domain walls [37]. As usual, it is assumed that the Peccei-
Quinn symmetry6 is broken after inflation. As we already mentioned the
θ parameter is an angular variable, and therefore supports various types
of domain walls, including the so-called NDW = 1 domain walls when θ
interpolates between one and the same physical vacuum state with the same
energy θ → θ+2πn. The axion domain walls may form at the same moment
when the axion potential get tilted, i.e. at the moment Ta when the axion
field starts to roll due to the misalignment mechanism. The tilt becomes
much more pronounced at the phase transition when the chiral condensate
forms at Tc. In general one should expect that the NDW = 1 domain walls
form once the axion potential is sufficiently tilted to track (anti)quarks, i.e.
anywhere between Ta and Tc. In the conventional models, Ta and Tc are
usually considered as about 1 GeV and 170 MeV respectively.

Much later it has been realized that the axion (along with η′) domain
walls in general, demonstrate a sandwich-like substructure on the QCD scale
Λ−1
QCD ' fm. The arguments supporting the QCD scale substructure inside

5To be specific, here mainly refers to the time after the QCD phase transition Tc when
the domain walls are sufficiently tilted. Also see the the detailed explanation in this
paragraph.

6Peccei-Quinn symmetry, is a proposed U(1) symmetry in order to resolve the puz-
zling strong CP problem. Such symmetry predicts the existence of axion, a neutral and
ultralight psuedoscalar particle. Especially, axion may roll to a near potential minimum
when the symmetry is spontaneously broken. This is also known as the misalignment
mechanism.
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the axion domain walls are based on analysis [38] of QCD in the large N
limit with inclusion of the η′ field7 and independent analysis [39] of super-
symmetric models where a similar θ vacuum structure occurs.

One should remark here that the described structure is a classically stable
configuration. In particular, the η′ field cannot decay to 2γ simply due to
the kinematical reasons when a single η′ field is off-shell (if not annihilated
with another off-shell anti-field), and cannot be expressed as a superposition
of on-shell free particles. It can only decay through the tunneling, and
therefore, such NDW = 1 domain walls are formally metastable rather than
absolutely stable configurations.

2. Second important element is that in addition to these known QCD
substructures [38–40] of the axion domain walls expressed in terms of the η′

fields, there is another substructure (the baryonic fields, see below) with a
similar QCD scale which carries the baryon charge. Precisely this novel fea-
ture of the domain walls which was not explored previously in the literature
will play a key role in our proposal because exactly this new effect will be
eventually responsible for the accretion of the baryon charge by the nuggets.
Depending on the sign of the baryon charge, either quarks or anti-quarks
are favoured to accrete on a given closed domain wall making eventually
the quark nuggets or anti-nuggets. The sign is chosen randomly such that
equal number of quark and antiquark nuggets are formed if the external
environment is CP even, which is the case when fundamental θ = 0. One
can interpret this phenomenon as a local spontaneous symmetry breaking
effect, when on the scales of order the correlation length of the axion field
ξ the nuggets may acquire a positive or negative baryon charge with equal
probability, as discussed in great details in next section 2.2.

3. Next important ingredient of the proposal is the Kibble-Zurek mech-
anism 8 which gives a generic picture of formation of the topological defects
during a phase transition, see original papers [41], review [42] and the text-
book [43]. In our context the Kibble-Zurek mechanism suggests that once
the axion potential is sufficiently tilted the NDW = 1 domain walls form.
The potential becomes much more pronounced when the chiral condensate
forms at Tc. After some time after Ta the system is dominated by a single,

7The η′ field has the special property that it enters the effective Lagrangian in unique
combination [θ− η′(x)] where the θ parameter in the present context plays the role of the
axion dynamical field θ(x). A similar structure is known to occur in CS phase as well.
The corresponding domain walls in CS phase have been also constructed [40].

8When topological objects, such as domain walls, kinks, and strings, form from sponta-
neous symmetry breaking. Kibble-Zurek mechanism describes their dynamical properties
like correlation length, tension, and energy density.
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percolated, highly folded and crumpled domain wall of very complicated
topology of scale of the cosmic event horizon dH . In addition, there will be
a finite portion of the closed walls (bubbles) with typical size of order corre-
lation length ξ(T ), which is defined 9 as an average distance between folded
domain walls at temperature T . It is known that the probability of finding
closed walls with very large size R� ξ is exponentially small. Furthermore,
numerical simulations suggest [43] that approximately 87% of the total wall
area belong to the percolated large cluster, while the rest is represented by
relatively small closed bubbles with sizes R ∼ ξ.

The key point for our proposal is the existence of these finite closed
bubbles made of the axion domain walls10. One should remark here that
these closed bubbles had been formed sometime after Ta when original θ
parameter has not settled yet to its minim value. It implies that the do-
main wall evolution starts at the time when θ parameter is not yet zero11.
Normally it is assumed that these closed bubbles collapse as a result of the
domain wall pressure, and do not play any significant role in dynamics of
the system. However, as we already mentioned in Introduction the collapse
of these closed bubbles is halted due to the Fermi pressure acting inside
of the bubbles. Therefore, they may survive and serve as the dark matter
candidates.

The percolated network of the domain walls will decay to the axions
in conventional way as discussed in [44–46]. Those axions (along with the
axions produced by the conventional misalignment mechanism [45, 47]) will
contribute to the dark matter density today. The corresponding contribution
to dark matter density is highly sensitive to the axion mass as Ωdark ∼ m−1

a .
Axion may saturate the observed dark matter density if ma ' 10−6 eV [9–
16], while it may contribute very little to Ωdark if the axion mass is slightly

9The definition of ξ here refers to the average distance between any two domain walls,
disregard closed or open. For axion field, ξ ∼ m−1

a is generic from the Kibble-Zurek
mechanism and therefore QCD insensitive.

10The presence of such closed bubbles in numerical simulations in context of the axion
domain wall has been mentioned in [11], where it was argued that these bubbles would
oscillate and emit the gravitational waves. However, we could not find any further details
on the fate of these closed bubbles in the literature.

11This θ parameter in our work is defined as the value of θ at the moment when the
domain walls form. It is not exactly the same value as the misalignment angle which
normally enters all the computations due to the conventional misalignment mechanism
[45, 47]. This is because the temperature when the domain walls form and the temperature
Ta when the axion field starts to roll do not exactly coincide though both effects are due
to the same axion tilted potential. The crucial point is that the θ parameter, as defined
above, could be numerically small, nevertheless, it preserves its coherence over entire
Universe, see chapter 3 for the details.
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heavier than ma ' 10−6 eV. In contrast, in our framework an approximate
relation Ωdark ≈ Ωvisible holds irrespectively to the axion mass ma.

We shall not elaborate on the production and spectral properties of these
axions in the present work. Instead, the focus of the present thesis is the
dynamics of the closed bubbles, which is normally ignored in computations
of the axion production. Precisely these closed bubbles, according to this
proposal, will eventually become the stable nuggets and may serve as the
dark matter candidates.

As we already mentioned the nugget’s contribution to Ωdark is not very
sensitive to the axion mass, but rather, is determined by the formation
temperature Tform as explained in Introduction, see also footnote 4 with few
important comments on this. The time evolution of these nuggets after their
formation is the subject of section 2.3.

4. The existence of CS phase in QCD represents the next crucial element
of our scenario. The CS has been an active area of research for quite some
time, see review papers [17, 18] on the subject. The CS phase is realized
when quarks are squeezed to the density which is few times nuclear density.
It has been known that this regime may be realized in nature in neutron
stars interiors and in the violent events associated with collapse of massive
stars or collisions of neutron stars, so it is important for astrophysics.

The force which squeezes quarks in neutron stars is gravity; the force
which does an analogous job in early universe during the QCD phase transi-
tion is a violent collapse of a bubble of size R ∼ ξ(T ) formed from the axion
domain wall as described in item 3 above. If the number density of quarks
trapped inside of the bubble (in the bulk) is sufficiently large, the collapse
stops due to the internal Fermi pressure. In this case the system in the bulk
may reach the equilibrium with the ground state being in a CS phase. As
we advocate in section 2.3 this is very plausible fate of a relatively large
size bubbles of size R ∼ ξ(T ) made of the axion domain walls which were
produced after the QCD phase transition.

5. If θ vanishes, then an equal number of nuggets and anti-nuggets
would form. However, the CP violating θ parameter (the axion field), which
is defined as value of θ at the moment of domain wall formation generically
is not zero, though it might be numerically quite small. Precisely the dy-
namics of the coherent axion field θ(x) leads to preferences in formation of
one species of nuggets, as discussed in chapter 3. This sign-preference is
correlated on the scales where the axion field θ(x) is coherent, i.e. on the
scale of the entire Universe at the moment of the domain wall formation.
As we already mentioned, the generic consequence of this framework (1.1)
is not very sensitive to an absolute value of θ at the moment of the domain
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wall formation, see comment in footnote 4 on this matter. One can say
that the coherent axion filed θ(x) 6= 0, being numerically small, plays the
role of the CP violating catalyst which determines a preferred direction for
separation of the baryon charges on the Universe scale. This role of CP vio-
lation in our proposal is quite different from the role it plays in conventional
“baryogenesis” mechanisms.

2.2 Accretion of the baryon charge

From now on and until chapter 3 we focus on the dynamics of a single closed
bubble produced during the domain wall formation as described in item 3
in section 2.1. The correlation length ξ(T ) is defined as an average distance
between folded domain walls at temperature T . We assume12 that initial
size of the bubble ξ(T ) is sufficiently large., few times larger than the axion
domain wall width ∼ m−1

a , such that one can locally treat the surface of the
closed bubble being flat.

The main goal of this section is to demonstrate that such a bubble will
generically acquire a baryon (or antibaryon) charge in very much the same
way as the η′ field was dynamically accreted as originally discussed in [38]
and briefly explained above as item 2 in section 2.1. In other words, we shall
argue in this section that the bubbles with baryon or antibaryon charge will
be copiously produced during the phase transition as they are very generic
configurations of the system. In both cases the effect emerges as a result
of the nontrivial boundary conditions formulated far away from the domain
wall core when the field assumes physically the same but topologically dis-
tinct vacuum states on opposite sides of the axion domain wall.

The technique we shall adopt in this section has been previously used to
study the generation of the galactic magnetic field in the domain wall back-
ground [48]. This method makes the approximation that the domain wall
is flat and that translational and rotational symmetries are preserved in the
plane of the wall (which we take to be the x–y plane). These approximations
are marginally justified in our case because the initial curvature R ∼ ξ(T )
is assumed to be few times larger that the width of the wall ∼ m−1

a .
Once this approximation is made, we can reformulate the problem in

1 + 1 dimensions (z and t) and calculate the density of the bulk (of baryonic
accumulation) properties along the domain wall. To regain the full four-
dimensional bulk properties, we shall estimate the density of the particles

12This is a marginal assumption, but can be justified as in the later section 2.4.
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2.2. Accretion of the baryon charge

in the x–y plane to obtain the appropriate density and degeneracy factors
for the bulk density.

We proceed to demonstrate this technique by computing the accumu-
lation of baryon charge along the wall. We take the standard form for the
interaction between the pseudo-scalar fields and the fermions (quarks) which
respect all relevant symmetries:

L4 = Ψ̄
(
i6∂ −mei[θ(z)−φ(z)]γ5 − µγ0

)
Ψ. (2.1)

The subscript of “4” under the Lagrangian stands for dimensions, because it
comes from the standard 4-dimensional Dirac equation after chiral rotation
of (θ−φ), where the anomaly term is neglected for the moment, but will be
discussed in the next chapter 3. Here θ(z) and φ(z) are the dimensionless
axion and η′ domain wall solution. Parameter m is the the typical QCD
scale of the problem, while µ is the typical chemical potential at a specific
time in evolution of the system, see below with more precise explanations.
We also simplify the problem by ignoring all flavour and colour indices, as
well as an effective 4-fermi interactions, as our main goal is to explain the
basic idea with simplified setting.

Parameter m in eq.(2.1) should not be literally identified with the quark
mass, nor with the nucleon mass. Instead, this dimensional parameter
m ∼ ΛQCD should be thought as an effective coupling in our model when
parameter m effectively describes the interaction with fermi field Ψ in all
phases during the formation time, including the quark gluon plasma as well
as hadronic and CS phases13. The same comment also applies to a numer-
ical value of the chemical potential µ: it vanishes during initial time and
becomes very large when CS phase sets in inside the nugget.

The strategy is to break (2.1) into two 1 + 1 dimensional components
by setting ∂x = ∂y = 0 (this is the approximation that the physics in the z
direction decouples from the physics in the x–y plane) and then by manip-
ulating the system of equations that result.

13In quark gluon phase the colour singlet η′ field does not exist. However, the singlet
phase which accompanied the quark field is still present in the system. The coefficient m in
this phase can be computed using the instanton liquid model. At very high temperature
the parameter m is proportional to the quark masses and indeed very small. When
temperature decreases the instanton contribution grows very fast. At this point parameter
m is proportional to the vacuum expectation value of the ’t Hooft determinant. When
temperature further decreases the parameter m is proportional to the diquark condensate
in CS phase or the chiral condensate in the hadronic phase, see Fig.1.1. We shall not
elaborate along this line by assuming m ∼ ΛQCD for all our estimates which follow.
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First, we introduce the following chiral components of the Dirac spinors14

:

Ψ+ =
1√
S

(
χ1

χ2

)
, Ψ− =

1√
S

(
ξ1

ξ2

)
, (2.2)

Ψ =
1√
2S


χ1 + ξ1

χ2 + ξ2

χ1 − ξ1

χ2 − ξ2

 =
1√
2

(
Ψ+ + Ψ−
Ψ+ −Ψ−

)
, (2.3)

where S is the area of the wall. This normalization factor cancels the de-
generacy factor proportional to S added in the text below.

The associated Dirac equation is(
−mei(φ−θ) i(∂t + ∂z)− µ

i(∂t − ∂z)− µ −me−i(φ−θ)
)(

χ1

ξ1

)
= 0, (2.4a)(

−mei(φ−θ) i(∂t − ∂z)− µ
i(∂t + ∂z)− µ −me−i(φ−θ)

)(
χ2

ξ2

)
= 0. (2.4b)

where we decouple the z coordinates from x and y by setting ∂x = ∂y = 0.
Remember that we are looking for a two-dimensional Dirac equation, thus
we want the kinetic terms to look the same. For this reason we should flip
the rows and columns of the second equation. Doing this and defining the
two two-dimensional spinors

Ψ(1) =

(
χ1

ξ1

)
, Ψ(2) =

(
ξ2

χ2

)
, (2.5)

the equations have the following structure:

(iγ̂ν∂ν −me+i(θ−φ)γ̂5 − µγ̂0)Ψ(1) = 0 (2.6a)

(iγ̂ν∂ν −me−i(θ−φ)γ̂5 − µγ̂0)Ψ(2) = 0 (2.6b)

14We are using the standard representation here:

γ0 =

(
I 0
0 −I

)
, γj =

(
0 σj
−σj 0

)
, γ5 =

(
0 I
I 0

)
,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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where the index ν ∈ {t, z}, the Lorentz signature is (1,−1) and we define
the following two-dimensional version of the gamma matrices:

γ̂t = σ1, γ̂z = −iσ2, γ̂5 = σ3.

These satisfy the proper two-dimensional relationships γ̂5 = γ̂tγ̂z and γ̂µγ̂ν =
gµν + εµν γ̂5. We can reproduce equation (2.6) from the following effective
two-dimensional Lagrangian density,

L2 =Ψ̄(1)

(
iγ̂µ∂µ −me+i(θ−φ)γ̂5 − µγ̂0

)
Ψ(1)+

+Ψ̄(2)

(
iγ̂µ∂µ −me−i(θ−φ)γ̂5 − µγ̂0

)
Ψ(2), (2.7)

where two different species of fermion with opposite chiral charge interact
with the axion domain wall background determined by θ(z) and φ(z) fields.
Note that, due to the normalization factor 1/

√
S we introduced above, the

two-dimensional fields Ψ(i) have the correct canonical dimension 1/2.
We have thus successfully reduced our problem to a two-dimensional

fermionic system. It is known that for systems that are constructed by
components of (2.8) in 1 + 1 dimensions, the fermionic representation is
equivalent to a 1 + 1 dimensional bosonic system through the following
equivalences[49, 50]:

Ψ̄(j)iγ̂
µ∂µΨ(j) →

1

2
(∂µθj)

2, (2.8a)

Ψ̄(j)γ̂µΨ(j) →
1√
π
εµν∂

νθj , (2.8b)

Ψ̄(j)Ψ(j) → −m0 cos(2
√
πθj), (2.8c)

Ψ̄(j)iγ̂5Ψ(j) → −m0 sin(2
√
πθj). (2.8d)

The constant m0 in the last two equations is a dimensional parameter of
order m0 ∼ m ∼ ΛQCD. The exact coefficient of this factor depends on
renormalization procedure and is only known for few exactly solvable sys-
tems but in all cases, is of order unity.

After making these replacements, we are left with the following two-
dimensional bosonic effective Lagrangian density describing the two fields
θ1 and θ2 in the domain wall background determined by φ(z) and θ(z):

L2 =
1

2
(∂µθ1)2 +

1

2
(∂µθ2)2 − U(θ1, θ2) +

µ√
π

∂(θ2 + θ1)

∂z
(2.9)
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where the effective potential is

U(θ1, θ2) = − mm0

[
cos(2

√
πθ1 − φ+ θ)

]
− mm0

[
cos(2

√
πθ2 + φ− θ)

]
. (2.10)

The conventional procedure to study the system (2.9) is to add the kinetic
terms for the axion θ and the η′ field φ into (2.9) and study a resulting solu-
tion depending on four dynamical fields by specifying all possible boundary
conditions when the potential energy (2.10) assumes its minimal value15. In
other words, one should take into account the dynamics of the θ and φ fields
together with θ1, θ2 because the typical scales for φ, θ1, θ2 are roughly the
same order of magnitude and of order of ΛQCD. Recapitulate it: one cannot
study the dynamics of θ1, θ2 field by neglecting their back reaction on the
background axion and φ fields.

For our present purposes, however, we do not really need an explicit
profile functions for the large number of different domain walls determined
by various boundary conditions controlled by (2.10). The only important
element relevant for our future discussions is the observation that some of
the domain walls may carry the baryon (antibaryon) charge. Indeed, the
domain walls which satisfy the boundary conditions

2
√
πθ1(z = +∞)− 2

√
πθ1(z = −∞) = 2πn1 (2.11)

2
√
πθ2(z = +∞)− 2

√
πθ2(z = −∞) = 2πn2

carry the following baryon charge N defined for one particle Dirac equation

N =

∫
d3xΨ̄γ0Ψ =

∫
dz
(
Ψ̄1γ̂0Ψ1 + Ψ̄2γ̂0Ψ2

)
= − 1√

π

∫ +∞

−∞
dz

∂

∂z
(θ1 + θ2) = −(n1 + n2), (2.12)

where we express the final formula in terms of the auxiliary two-dimensional
fields θ1 and θ2 and corresponding boundary conditions given by eq. (2.11).
Factor S also cancels with our normalization for four dimensional Ψ field.

To complete the computations for four dimensional baryon charge B ac-
cumulated on the domain wall we need to multiply (2.12) by the degeneracy
factor in vicinity of the domain wall which can be estimated as follows

B = N · g ·
∫
d2x⊥d

2k⊥
(2π)2

1

exp( ε−µT ) + 1
, (2.13)

15In fact it was precisely the procedure which has been adopted in [38] for a similar
problem of computing of the profile functions of the axion, π- meson and η′-domain wall
described by θ − π − η′ fields.
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where g is the appropriate degeneracy factor, e.g. g ' NcNf in CS phase.
We note that an additional degeneracy factor 2 due to the spin is already
accounted for by parameter N defined in eq. (2.12). For high chemical
potential µ� T corresponding to CS phase the baryon charge per unit area
accreted in vicinity of the domain wall can be approximated as

B

S
' N · gµ

2

4π
. (2.14)

In the opposite limit of high temperature µ � T which corresponds to the
quark gluon plasma phase, the corresponding magnitude can be estimated
as follows

B

S
' N · gπT

2

24
. (2.15)

It is instructive to compare the estimate (2.15) with number densityN/V
of all degrees of freedom in vicinity of the domain wall. Assuming that the
baryon charge in the domain wall background is mainly concentrated on
distances of order m−1 from the center of the domain wall we arrive to the
following estimate for the ratio of the baryon number density bound to the
wall in comparison with the total number density of all degrees of freedom
responsible for the thermodynamical equilibrium in this phase

r ∼ (B/S) ·m
N/V ∼ N

(m
T

)( π3g

18ξ(3)g∗

)
, (2.16)

where the effective degeneracy factor g∗ for a quark gluon plasma is g∗ '[
3
44NcNf + 2(N2

c − 1)
]

and ξ(3) ' 1.2 is the Riemann zeta function. Ratio
(2.16) shows that the accreted quark density bounded to the domain wall at
high temperature represents parametrically small contribution to all ther-
modynamical observables mainly because of a small parameter m/T � 1 in
this phase. The situation drastically changes as we discuss in next section
2.3 when the temperature slowly decreases due to expansion of the Universe
and the system enters the hadronic or CS phase, as shown on Fig. 1.1. At
this point the baryon charge accumulation in the domain wall background
becomes the major player of the system, which eventually leads to the forma-
tion of the CS nuggets or anti-nuggets when quarks (anti-quarks) fill entire
volume of the nuggets (anti-nuggets).

We conclude this section with the following important comments. First,
we argued that the domain walls in general accrete the baryon (or an-
tibaryon) charge in vicinity of the centre of the domain wall. The effect in
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many respects is similar to fractional charge localization on domain walls,
while the rest of the charge is de-localized in the rest of volume of the sys-
tem as discussed in original paper [51]. The effect is also very similar to
previously discussed phenomenon on dynamical generation of the η′ field
in the domain wall background. The key point is that at sufficiently high
temperature the NDW = 1 domain walls form by the usual Kibble-Zurek
mechanism as explained in section 2.1. The periodic fields θ, φ, θ1, θ2 may
assume physically identical but topologically distinct vacuum values (2.12)
on opposite sides of the walls. When the system cools down the correspond-
ing fields inevitably form the domain wall structure, similar to analysis in
hadronic [38] and CS phases [40].

We advocate the picture that the closed bubbles will be also inevitably
formed as discussed in section 2.1. The collapse of these bubbles halts as
a result of Fermi pressure due to the quarks accumulated inside the nugget
during the evolution of the domain wall network. Next section 2.3 is devoted
precisely the question on time evolution of these closed bubbles made of
NDW = 1 domain wall.
• The most important lesson of this section is that there is a variety

of acceptable boundary conditions determined by potential (2.10) when the
energy assumes its vacuum values. Some of the domain walls will cary zero
baryon charge when the combination (n1 +n2) vanishes according to (2.12).
However, generically the domain walls will acquire the baryon or antibaryon
charge. This is because the domain wall tension is mainly determined by
the axion field while corrections due to QCD substructure will lead to a
small correction of order ∼ m/fa � 1, similar to studies of the (axion -η′-π)
domain wall [38]. Therefore, the presence of the QCD substructure with non
vanishing (n1 + n2) 6= 0 increases the domain wall tension only slightly. In
other words, accumulation of the baryon charge in vicinity of the wall does
not lead to any suppression during the formation stage. Consequently, this
implies that the domain closed bubbles carrying the baryon or antibaryon
charge will be copiously produced during the phase transition as they are
very generic configurations of the system. Furthermore, the baryon charge
cannot leave the system during the evolution as it is strongly bound to the
wall due to the topological reasons. The corresponding binding energy per
quark is order of µ and increases with time as we discuss in the next section.

This phenomenon of “separation of the baryon charge” can be inter-
preted as a local version of spontaneous symmetry breaking of the baryon
charge. This symmetry breaking occurs not in the entire volume in the
ground state determined by the potential (2.10). Instead, the symmetry
breaking occurs on scale ξ(T ) in vicinity of the field configurations which
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2.3. Radius versus pressure in time evolution

describe the interpolation between physically identical but topologically dis-
tinct vacuum states (2.11). One should add that a similar phenomenon oc-
curs with accumulation of the η′ field in vicinity of the axion domain wall as
described in [38]. However, one could not term that effect as a “local spon-
taneous violation” of the U(1)A symmetry because the U(1)A symmetry is
explicitly broken by anomaly, in contrast with our present studies when the
baryon charge is an exact symmetry of QCD. Nevertheless, the physics is
the same in a sense that the closed bubble configurations generically acquire
the axial as well as the baryon charge. This phenomenon as generic as for-
mation of the topological domain walls themselves when the periodic fields
φ, θ1, θ2 may randomly assume physically identical but topologically distinct
vacuum values on the correlation lengths of order ξ.

Finally, one should also mention here that very similar effect of the “local
CP violation” can be experimentally tested in heavy ion collisions in event by
event basis where the so-called induced θind- domain with a specific sign in
each given event can be formed. This leads to the “charge separation effect”
which can be experimentally observed in relativistic heavy ion collisions
[52]. This “charge separation effect” in all respects is very similar to the
phenomenon discussed in the present section. As an additional fact, the
author’s supervisor, Ariel Zhitnitsky, also involves in the studies [52] for a
possibility to test the ideas advocated in this work by performing a specific
analysis in the controllable “little Bang” heavy ion collision experiments, in
contrast with “Big Bang” which happened billion of years ago. This field
of research initiated in [52] became a hot topic in recent years as a result of
many interesting theoretical and experimental advances, see recent review
papers [53–55] on the subject.

2.3 Radius versus pressure in time evolution

We assume that a closed NDW = 1 domain wall has been formed as discussed
in previous section 2.1. Furthermore, we also assume that this domain wall is
classified by non-vanishing baryon number (n1 + n2) according to eq.(2.12).
Our goal now is to study the time evolution of the obtained configuration. As
we argue below the contraction of the bubbles halts as a result of the Fermi
pressure due to baryon charge accreted during the evolution. As a result,
the system comes to the equilibrium at some temperature Tform when the
nuggets complete their formation. We want to see precisely how it happens,
and what are the typical time scales relevant for these processes.

We start with the following effective Lagrangian describing the time
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2.3. Radius versus pressure in time evolution

evolution of the closed spatially symmetric domain wall of radius R(t),

L =
4πσR2(t)

2
Ṙ2(t)− 4πσR2(t) (2.17)

+
4πR3(t)

3
[Pin(µ)− Pout(t)] + [other terms] ,

where the “other terms” represents the effects that are not able to account in
our simplified model, but are believed to be only minor corrections 16. Here
σ is the key dimensional parameter, the domain wall tension σ ∼ fπmπfa ∼
m−1
a as reviewed in Introduction, see eq.(1.3). The tension σ, in principle,

is also time-dependent parameter because the axion mass depends on time,
but for qualitative analysis of this section we ignore this time dependence for
now. We return to this question later in the text. Parameters Pin[µ(t)] and
Pout(t) represent the pressure inside and outside the bubble. The outside
pressure in QGP phase at high temperature can be estimated as

Pout '
π2gout

90
T 4

out, Tout ' T0

(
t0
t

)1/2

,

gout '
(

7

8
4NcNf + 2(N2

c − 1)

)
(2.18)

where gout is the degeneracy factor, while T0 ' 100 MeV and t0 ∼ 10−4s rep-
resents initial temperature and time determined by the cosmological expan-
sion. We also assume that the thermodynamical equilibrium is maintained at
all times between inside and outside regions such that the temperature inside
the bubble approximately follows the outside temperature Tout(t) ' Tin(t).
Very quick equilibration indeed is known to take place even in much faster
processes such as heavy ion collisions. The fast equilibration in our case
can be justified because the heat transport between the phases is mostly
due to the light NG bosons which can easily penetrate the domain wall with
little on no interaction, in contrast with quarks and baryons discussed in the
previous section. This assumption will be justified a posteriori, see (2.47)
on flux exchange rate between interior and exterior regions. Therefore, we
believe our approximation Tout(t) ' Tin(t) is sufficiently good, at least for
qualitative estimates which is the main goal of this work.

The expression for the pressure inside the bubble Pin(t) depends on a
number of quite nontrivial features of QCD such as the bag vacuum energy,

16Some neglected effects could be, for example, the realization of non-constancy of σ,
which is nonetheless considered in the numerical computation, see Appendix B.
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2.3. Radius versus pressure in time evolution

corrections due to the gap in CS phase and many other phenomena, to be
discussed later in the text.

The equation of motion which follows from (2.17) is

σR̈(t) = − 2σ

R(t)
− σṘ2(t)

R(t)
+ ∆P (µ)− 4η

Ṙ(t)

R(t)
, (2.19)

where ∆P [µ(t)] ≡ [Pin(µ)− Pout(t)]. We also inserted an additional term
(which cannot be expressed in the Lagrangian formulation (2.17)), the shear
viscosity η to the right hand side of the equation, which effectively describes
the “friction” of the system when the domain wall bubble moves in “un-
friendly” environment17. On the microscopical level this term effectively
accounts for a large number of different effects which do occur during the
time evolution. Such processes include, but are not limited to different scat-
tering process by quarks, gluons or Nambu Goldstone Bosons in different
phases. All these particles and quasiparticles interact between themselves
and also with a moving domain wall. Furthermore, the annihilation pro-
cesses which take place inside the bubble and which result in production of
a large number of strongly interacting quasi-particles also contribute to η.

Having discussed an expression for Pout(T ) and viscous term ∼ η we now
wish to discuss the structure of the internal pressure Pin(µ) which enters
(2.19). It has a number of contributions which are originated from very
different physics. We represent Pin(µ) as as a combination of three terms to
be discussed one by one in order,

Pin(µ) ' P (Fermi)
in (µ) + P

(bag const)
in (µ) + P

(others)
in . (2.20)

In this formula P
(Fermi)
in can be represented as follows

P
(Fermi)
in (µ) =

E

3V
=

gin

6π2

∫ ∞
0

k3dk[
exp( ε(k)−µ

T ) + 1
] , (2.21)

17We use conventional normalization factor of 4ηṘ(t)/R(t) for the viscous term. This
normalization factor is the same which appears in the Rayleigh-Plesset equation in the
classical hydrodynamics when the viscous term, the surface tension term 2σ/R(t) and the
pressure term ∆P enter the equation in a specific combination as presented in (2.19).
One should emphasize that our equation (2.19) describes the dynamics of the 2d surface
characterized by the same surface tension σ in contrast with classical equation of the
Rayleigh-Plesset equation describing a 3d spherical bubble in a liquid of infinite volume.
This difference explains some distinctions between the kinetic terms proportional to factor
∼ σ in our case (2.19) in contrast with the classical Rayleigh-Plesset equation.
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2.3. Radius versus pressure in time evolution

where we assume that quarks are massless and the chemical potential µ(t)
implicitly depends on time as a result of the bubble’s evolution (shrinking).
The degeneracy factor in this formula is

gin ' 2NcNf , (2.22)

where we keep only the quark contribution by neglecting the antiquarks. In
other words, we simplify the problem by ignoring the time dependence of the
degeneracy factor gin(t) which effectively varies as a result of µ(t) variation.

Now we are in position to discuss P
(bag constant)
in from (2.20) which can

be represented as follows

P
(bag const)
in (µ) ' −EB · θ [µ− µ1]

[
1− µ2

1

µ2

]
, (2.23)

where positive parameter EB ∼ (150 MeV)4 is the famous “bag constant”
from MIT bag model, see [4] for references and numerical estimates for this
parameter in the given context of the nugget structure. The bag constant
can be expressed in terms of the gluon and quark condensates in QCD. We
shall not elaborate on this problem in the present work by referring to [4]
with relevant studies in the given context.

The bag “constant” EB describes the differences of vacuum energies
(and therefore, vacuum pressure) in the interior and exterior regions of the
nuggets. This difference occurs in our context because the phases realized
outside and inside of the nugget are drastically distinct. For example, at the
end of formation the outside region of the nugget is in cold hadronic phase,
while inside region is in CS phase. The vacuum energies in these two phases
are known to be drastically different. This term works as a “squeezer”,
similar to the role it plays in the MIT bag model, when the vacuum energy
outside of the nugget is lower than the vacuum energy inside the nugget.
Therefore it enters with the same sign minus as the domain wall pressure.

A specific µ- dependence used in (2.23) is an attempt to model a known
feature of QCD that the absolute value of the vacuum energy decreases
when the chemical potential increases. This feature is well established and
tested in conventional nuclear matter physics, and it was analytically de-
rived in simplified version of QCD with number of colours Nc = 2, see [4]
for references and details. Our parametrization (2.23) corresponds to the

behaviour when P
(bag constant)
in (µ) = 0 for small chemical potentials µ ≤ µ1

when the vacuum energy inside and outside of the nuggets approximately
equal. This term becomes very important “squeezer” at large chemical po-
tential at µ ≥ µ1 when the system outside is in the hadronic vacuum state
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2.3. Radius versus pressure in time evolution

while inside it is in a CS phase. The numerical value for parameter µ1 can
be estimated as µ1 ∼ 330 MeV [4] when the baryon density is close to the
nuclear matter density.

The last term entering (2.20) and coined as P
(others)
in (µ) is due to a large

number of other effects which we ignore in present work. In particular, there
is a conventional contribution due to the boson degrees of freedom which
cancels the corresponding portion of gout from (2.18) at high temperature,
T � µ. It does not play any important role in our analysis because we are
mainly concerned with analysis of fermion degrees of freedom and building
the chemical potential inside the bubble. Another effect which is worth to
be mentioned is the formation of the gap in CS phase due to the quark
pairing, similar to formation of the gap in conventional superconductors.
The generation of the gap obviously decreases the energy of the system.
There are many other phenomena which are known to occur in CS phase [17].
However, we expect that these effects are less important in comparison with
the dominating contributions which are explicitly written down in equations
(2.21) and (2.23).

The equation (2.19) can be numerically solved for R(t) if time varia-
tion of the chemical potential µ(t) entering (2.21) and (2.23) is known. To
study the corresponding time evolution for the chemical potential µ(t) we
use expression (2.13) for the baryon charge bounded to the domain wall.
We assume that the thermodynamical equilibrium is maintained between
internal and external parts of the nugget such that Tin(t) ' Tout(t). This
assumption will be justified a posteriori, see discussions after eq.(2.47). At
the same time the chemical potential is quickly increasing with time inside
the nugget due to decreasing of the nugget’s size. We also assume a fast equi-
libration for the chemical potential within the nugget in its entire volume.
In other words, we describe the system using one and the same chemical
potential in vicinity of the wall and deep inside the bubble. Justification for
this assumption will be given later in the text.

With this picture in mind, we proceed by differentiating eq.(2.13) with
respect to time to arrive to the following implicit equation relating µ(t) and
R(t) at fixed temperature T ,

Ḃ =
Ng

4π2
Ṡ(t)

∫
d2k⊥[

exp( ε−µ(t)
T ) + 1

] (2.24)

+
NgS

4π2

µ̇(t)

T

∫ d2k⊥

[
exp( ε−µ(t)

T )
]

[
exp( ε−µ(t)

T ) + 1
]2 + (fluxes) = 0,
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2.3. Radius versus pressure in time evolution

where term “fluxes” in (2.24) describes the loss of baryonic matter due to
annihilation and other processes describing incoming and outgoing fluxes,
to be discussed later in the text. The relation (2.24) gives an implicit rela-
tion between µ(t) and R(t) which can be used for numerical studies of our
equation (2.19) describing the time evolution of the system.

We shall discuss the physics related to incoming and outgoing fluxes in
Appendix A. If we neglect this term which describes the loss of baryonic
matter we can analytically solve (2.24) for small µ � T when one can use
the Taylor expansion of the integrals entering (2.24). The result is

(µ(t)− µ0) ' π2T

6 ln 2
ln

(
R0

R(t)

)
, (2.25)

where R0 is initial size of the system at t = t0 while µ0 ' 0 is initial chemical
potential. One can explicitly see that the chemical potential builds in very
fast when the nugget reduces its size only slightly. This formula (2.25) is
only justified for very small µ(t). For larger values of µ one should use exact
formula (2.24).

Finally, one should note that at the end of formation at time t → ∞
when temperature T � µ the evolution stops, in which case all derivatives
vanish, R̈form = Ṙform = µ̇form = 0. At this point the nugget assumes its
final configuration with size R ' Rform, and the equation (2.19) assumes the
form

2σ

Rform
= Pin =

ginµ4

24π2
− EB

(
1− µ2

1

µ2

)
, µ ≥ µ1. (2.26)

This condition is precisely the equilibrium condition studied in [4] with few
neglected contributions (such as the quark-quark interaction leading to the
gap). This is of course the expected result as the time evolution, which is
the subject of the present work, must lead to the equilibrium configuration
when the free energy assumes its minimum determined by (2.26).

One should recall that analysis of the equilibrium presented in ref. [4]
with typical QCD parameters strongly suggests that the system indeed falls
into CS phase when the axion domain wall pressure σ assumes its conven-
tional value. At the same time, the equilibrium is not likely to emerge with
the same typical QCD parameters without an additional external pressure
related to the axion domain wall. In this sense the axion domain wall with
extra pressure due to σ 6= 0 plays the role of an additional “squeezer” sta-
bilizing the nuggets.

The key element of this section is equation (2.24) which is the direct
consequence of a spontaneous accretion of the baryon (or antibaryon) charge
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in the domain wall background as discussed in section 2.2. Precisely this
equation explicitly shows that the chemical potential µ(t) grows very fast
when the domain wall shrinks as a result of the domain wall pressure σ.
The presence of a non-vanishing chemical potential in the vicinity of the
domain wall obviously implies the generation of the binding forces between
the fermions and the domain wall, such that a typical bound energy of a
single fermion to the domain wall is of order of µ.

A generic solution of equations (2.19) and (2.24), as we discuss in the next
section, shows an oscillatory behaviour of R(t) with a slow damping of the
amplitude such that the system eventually settles down at the equilibrium
point (2.26). However, even the very first oscillation with initial µ0 ≈ 0
leads to very fast growth of the chemical potential µ(t) ≈ T as analytical
estimates represented by eq.(2.25) shows. In the next section we develop a
quantitative framework which allows us to analyze our basic equation (2.19)
for R(t) where time dependence µ(t) is implicitly expressed in terms of the
same variable R(t) as determined by (2.24).

2.4 Qualitative analysis

Our goal in this section is to solve for R(t) and therefore µ(t) by solving
(2.19) and (2.24), which implicitly relate both variables. We shall observe
that a nugget experiences a large number of oscillations during its evolution
with slow damping rate, and eventually settles down at the equilibrium point
(2.26). This behaviour of the system will be coined as “underdamped oscil-
lations”. In next section 2.4.1 we formulate some assumptions and present
the technical details, while the interpretation of the obtained results will be
presented in section 2.4.2. We want to make a number of simplifications
in our analysis in the present section to demonstrate the generic features
of these oscillations. The numerical studies presented in Appendices A, B
and C support our basic picture of oscillatory behaviour advocated in this
section.

2.4.1 Assumptions, approximations, simplifications

Exact analytical analysis of either (2.19) or (2.24) can be obtained only
during the first moment of the initial stage of evolution of the system when
µ is sufficiently small (2.25). We need to understand the behaviour of the
system for a much longer period of time. Thus, we make two important
technical simplifications to proceed with our qualitative analysis. The first
one is to neglect the term in (2.24) describing the fluxes. This assumption
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2.4. Qualitative analysis

will be supported by some estimates presented in Appendix A which show
that incoming and outgoing fluxes cancel each other with very high accuracy,
such that net flux is indeed quite small. Hence, (2.24) is now simplified to:

Ḃ =
d

dt

{
Ng

4π2
S

∫
d2k⊥

exp( ε−µT ) + 1

}
= 0 (2.27)

which means in this approximation, the baryonic charge is roughly conserved
in the domain wall background at all times during the evolution of the
system.

As our second simplification we neglect the mass of the fermions in com-
parison with temperature T and the chemical potential µ, i.e. we use the

following dispersion relation ε =
√
k2
⊥ +m2 ' k⊥ in vicinity of the domain

wall. This approximation is somewhat justified in QGP and CS phases, and
therefore along the path 3 as shown on Fig. 1.1. It is not literally justified
for paths 1 and 2 as in the hadronic phase where the quark mass m should be
identified with the so-called “constituent” quark mass which is proportional
to the chiral condensate. Nevertheless, to simplify the problem we neglect
the mass m(T ) for all paths in our qualitative analysis of the time evolution
as we do not expect any drastic changes in our final outcome as a result of
this technical simplification. With these assumptions we can approximate
the integral entering eq. (2.27) as follows,∫ ∞

0

dk⊥ · k⊥
e
ε(k⊥)−µ

T + 1
= T 2 · I(

µ

T
) (2.28)

I(
µ

T
) ' π2

6
+

1

2

(µ
T

)2
− π2

12
e−µ/T +O(

µ

T
e−µ/T )

where the omitted terms ∼ µ
T e
−µ/T will be neglected thereafter, as they

will never dominate in neither small nor large limit of µ. One can numer-
ically check that approximation (2.28) describes the relevant integral I( µT )
sufficiently well in the entire parametrical space of µ/T , see Appendix C
with corresponding analysis. As a quick test of this approximation one can
check that approximate expression (2.28) reproduces an exact (in the small
µ limit) expression (2.25) with accuracy of order 15%, which is more than
sufficient for our qualitative studies of this section.

As mentioned above, if flux term (2.24) is neglected, the curly-bracket
term in (2.27) is a conserved quantity. Equating it to its initial values where
S(t = 0) = 4πR2

0, µ(t = 0) = µ0 ' 0 one arrives to

T 2R2

[
π2

6
+

1

2

(µ
T

)2
− π2

12
e−µ/T

]
=
π2

12
T 2

0R
2
0. (2.29)
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In what follows we assume that the thermodynamical equilibration is estab-
lished very quickly such that one can approximate T ' T0 during the time
evolution as we already discussed in the previous section 2.3. To simplify
further the system we wish to represent the equation relating R and µ/T in
the following form

f(R) ≡ π2

6

[
1

2

(
R0

R

)2

− 1

]
=

1

2

(µ
T

)2
− π2

12
e−µ/T , (2.30)

where we introduced function f(R) for convenience of the analysis which
follows. Essentially, the idea here is to simplify the basic equation (2.19) as
much as possible to express the µ(t)− dependent terms entering through the
pressure (2.20) in terms of R(t) such that the equation (2.19) would assume
a conventional differential equation form for a single variable R(t).

Our next step is to simplify the expression for the Fermi pressure (2.21)
entering (2.20) using the same procedure we used to approximate formula
(2.28), i.e.

P
(Fermi)
in =

gin

6π2

∫ ∞
0

k3dk

exp
(
ε(k)−µ
T

)
+ 1

(2.31)

' ginT 4

6π2

{
7π4

60
+
π2

2

(µ
T

)2
− 7π4

120
e−µ/T +

1

4

(µ
T

)4

+O(
µ

T
e−µ/T )

}
' ginT 4

6

{
7π2

60
+

[
1

2

(µ
T

)2
− π2

12
e−µ/T

]
+

1

4π2

(µ
T

)4
}

+
ginT 4

6

{
π2

40
e−µ/T +O(

µ

T
e−µ/T )

}
.

In what follows we neglect the last line in eq. (2.31). The justification
for this procedure is the same as before: it produces a small contribution
in entire region of µ in comparison with accounted terms. The technical
advantage for this procedure is the possibility to rewrite (2.31) in terms of
function of R(t), rather than µ(t) using our relation (2.30).

The formula in the square bracket in (2.31) is just f(R) defined by (2.30).

The remaining
( µ
T

)4
term can be also expressed in terms of R by taking
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square of (2.30):

f2(R) =

[
1

2

(µ
T

)2
− π2

12
e−µ/T

]2

' 1

4

(µ
T

)4
+

(
π2

12

)2

+O
(µ
T
e−µ/T

) (2.32)

where the correction term ∼ O(µe−µ/T ) will be dropped in what follows, as

before. Thus, we approximate P
(Fermi)
in in terms of R(t) as follows

P
(Fermi)
in ' ginT 4

6

[
7π2

60
+ f(R) +

f2(R)

π2
− π2

144

]
. (2.33)

The expression for the Fermi pressure P
(Fermi)
in (R) now is expressed in terms

of R rather than in terms of µ as in the original expression (2.21).

We wish to simplify the expression for P
(bag const)
in (µ) entering (2.20) in

a similar manner to express P
(bag const)
in in terms of R. This contribution

becomes important as discussed after eq. (2.23) only for sufficiently large µ.
In this region f(R) can be well approximated as

f(R) ' 1

2

(µ
T

)2
, µ� T (2.34)

so that we have

P bag
in ' −EB · θ

(√
2f(R)− µ1

T

)(
1− µ2

1

2T 2f(R)

)
. (2.35)

As a result of these simplifications and approximations the pressure term
which enters the basic equation (2.19), ∆P (µ) ≡ [Pin(µ)−Pout(t)] which was
initially formulated in terms of the chemical potential µ inside the bubble
can be now written entirely in terms of a single variable, the size of the
bubble R(t):

∆P [f(R)] ' ginπ2

6
T 4

[
79

720
− gout

15gin
+
f(R)

π2
+
f2(R)

π4

]
−EB · θ

(√
2f(R)− µ1

T

)(
1− µ2

1

2T 2f(R)

)
, (2.36)

where f(R) is defined by eq. (2.30). With these technical simplifications
the basic equation (2.19) can now be written as a second order differential
equation entirely in terms of R(t) rather than µ:

σR̈(t) = −2σ

R
− σṘ2

R
+ ∆P [f(R)]− 4η

Ṙ

R
, (2.37)
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with ∆P [f(R)] determined by eq. (2.36).
This equation can be solved numerically. In fact, it is precisely the

subject of Appendix B. However, the most important quantitative features of
the obtained solution can be understood without any numerical studies, but
rather using a simplified analytical analysis, which is precisely the subject
of the next section.

2.4.2 Time evolution

As we already mentioned a nugget assumes its final form at t → ∞ when
all time derivatives vanish and the equation for the equilibrium is given
by (2.26) at T = 0. In this section we generalize this equation for the
equilibrium by defining Rform(T ) as the solution of eq.(2.38), see below, at
T 6= 0. In other words, the starting point of the present analysis at T 6= 0 is
the equilibrium condition when the “potential” energy assumes its minimal
value. The corresponding minimum condition is determined by equation

2σ

Rform
= ∆P (Rform), (2.38)

where ∆P (Rform) is defined by eq.(2.36). This condition obviously reduces
to eq. (2.26) at t→∞ when µ� T .

We follow the conventional technique and expand (2.37) around the equi-
librium value Rform(T ) to arrive to an equation for a simple damping oscil-
lator:

d2(δR)

dt2
+

2

τ

d(δR)

dt
+ ω2(δR) = 0, (2.39)

where δR ≡ [R(t) − Rform] describes the deviation from the equilibrium
position, while new parameters τ and ω describe the effective damping coef-
ficient and frequency of the oscillations. Both new coefficients are expressed
in terms of the original parameters entering (2.37) and are given by

τ =
σ

2η
Rform (2.40a)

ω2 = − 1

σ

d∆P (R)

dR

∣∣∣∣
Rform

− 2

R2
form

. (2.40b)

The expansion (2.39) is justified, of course, only for small oscillations about
the minimum determined by eq.(2.38), while the oscillations determined
by original equation (2.37) are obviously not small. However, our simple
analytical treatment (2.39) is quite instructive and gives a good qualitative
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understanding of the system. Our numerical studies presented in Appendix
B fully support the qualitative picture presented below.

We start our qualitative analysis with estimates of the parameter ω which
depends on d∆P (R)

dR computed at R = Rform according to (2.40b). First of all,

in this qualitative analysis we neglect the bag constant term P
(bag constant)
in

because it only starts to play a role for sufficiently large µ ≥ µ1 ∼ 330 MeV,
when formation is almost completed. This term obviously cannot change the
qualitative behaviour of the system discussed below. Our numerical studies
presented in Appendix B (where the bag constant term ∼ EB is included in
the analysis) support this claim.

The key element for our simplified analysis is the observation that the
ratio (R0/Rform)2 ≥ 14 is expected to be numerically large number. This
expectation will be soon confirmed a posteriori. This observation consid-
erably simplifies our qualitative analysis because in this case ∆P (Rform)
defined by (2.36) can be approximated by a single term ∼ f2(R) in square
brackets in (2.36) as this term essentially saturates ∆P (Rform). This is be-
cause the function f(R)/π2 becomes numerically large in the relevant region
f(R)/π2 ∼ (R0/Rform)2 according to (2.30).

With these simplifications we can now estimate ω2 as follows

ω2 ≈
(
ginπ2

216

)
·
(

T 4

σRform

)
·
(

R0

Rform

)4

−
(

2

R2
form

)
. (2.41)

To simplify analysis further one can represent the last term as(
2

R2
form

)
=

(
1

Rform

)
·
(

∆P (Rform)

σ

)
, (2.42)

and keep the leading term ∼ f2(R) in expression for ∆P (Rform). One can
easily convince yourself that ω2 > 0 is always positive in this approximation
such that the condition for a desired underdamped oscillations assumes a
simple form

f(Rform)

π2
& 1 ⇒

(
R0

Rform

)
&
√

14 (2.43)

when ∆P (Rform) defined by (2.36) is dominated by a single term ∼ ( f
π2 )2,

which itself can be approximated by the leading quadratic term ∼
(
R0
R

)2
according to (2.30). Our numerical studies presented in Appendix B support
the numerical estimate (2.43).
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One can also check that if condition (2.43) is not satisfied than system
shows an “over-damped” behaviour when very few oscillations occur before
complete collapse of the system, in which case the nuggets obviously do not
form. These short-lived bubbles will never get to a stage when the tempera-
ture drops below the critical value TCS . Therefore, a CS phase cannot form
in these “short-lived” bubbles. It should be contrasted with “long-lived”
bubbles with much longer formation-time of order τ , see comments below.

The condition (2.43) is extremely important for our analysis. It es-
sentially states that the initial size of a closed bubble R0 must be suffi-
ciently large for a successful formation of a nugget of size Rform. On the
other hand, a formation of very large closed bubbles is strongly suppressed
∼ exp[−(R0/ξ)

2] by the KZ mechanism as reviewed in section 2.1. This
constraint will be important in our estimation of a suppression factor in
section 3.3 due to necessity to form a sufficiently large bubble (2.43) during
the initial stage of formation.

Assuming that condition (2.43) is satisfied we estimate a typical oscilla-
tion frequency as follows

ω ∼ 1

Rform
∼ ma, tosc ' ω−1 ' m−1

a (2.44)

where we used the scaling properties (1.3) to relate the nugget’s size Rform

with the axion mass ma. One should emphasize that the estimate (2.44)
is not sensitive to any approximations and simplifications we have made
in our qualitative treatment of the time evolution in this section. In fact,
all parameters entering relation (2.44) are expressible in terms of the QCD
scale ΛQCD and a single “external” parameter, the axion mass ma, which
we keep unspecified at this point. Of course we always assume that the
axion mass may take any value from the observationally allowed window
10−6eV . ma . 10−3eV.

We now turn our attention to the damping coefficient defined in terms
of the original parameters by eq. (2.40a). It is convenient to estimate the
dimensionless combination ωτ as follows

ωτ ' 1

Rform
·
(
σ

2η
Rform

)
' σ

2η
∼ mπ

ma
∼ 1011, (2.45)

where we substituted ω ∼ R−1
form according to (2.44) and assumed that η ∼

m3
π has conventional QCD scale of order fm−3 while the wall tension σ can

be approximated with high accuracy as σ ' m4
π/ma. This relation implies

that the damping is extremely slow on the QCD scales. Therefore, the

37



2.4. Qualitative analysis

solution describing the time evolution of a “long-lived” bubble can be well
approximated as follows

R(t) = Rform + (R0 −Rform)e−t/τ cosωt (2.46)

which is obviously a solution of the approximate equation (2.39). This so-
lution represents an “under-damped” oscillating R(t) with frequency ω ∼

1
Rform

and damping time τ ∼ σ
2ηRform. Precisely these “long-lived” bubbles

will eventually form the DM nuggets.
The time scale (2.45) is very suggestive and implies that the damping

term starts to play a role on very large scales when the cosmological expan-
sion of the Universe with the typical scale t0 ' 10−4s must be taken into
account. We have not included the corresponding temperature variation in
our studies because on the QCD scales (which is the subject of the present
studies) the corresponding variations are negligible. However, the estimate
(2.45) shows that for a proper analysis of the time scales τ the expansion of
the Universe (and related to the expansion the temperature variation) must
be included. The corresponding studies are beyond the scope of the present
work. However, the important comment we would like to make here is that
the emergent large time scale (2.45) is fully consistent with our anticipation
that the temperature of the Universe drops approximately by a factor of ∼ 3
or so when a CS phase forms in interior of the nugget during the formation
period. It is quite obvious that if the time scale (2.45) were considerably
shorter than the cosmological time scale t0 ' 10−4s than the temperature
T ∼ t−1/2 inside the nugget could not drop sufficiently deep into the region
where CS sets in as plotted on Fig.1.1. Fortunately, the timescale (2.45) is
long enough and automatically satisfies this requirement.

Now we want to elaborate on one more element of the dynamics which is
also important for a successful formation of the nuggets. To be more specific,
we want to discuss the flux of particle exchange, which was ignored in our
qualitative analysis in this section and which is estimated in Appendix A.
This flux describes the rate of number of particle flowing between inside and
outside the system, which can be appreciably large even if the net baryonic
flux is negligibly small. To be more precise, there are two kinds of fluxes,
both investigated in Appendix A, that we are discussing in this thesis: the
net flux of baryonic charge ∆Φ ≡ Φ⇒−Φ⇐, and the average flux of particle
number 〈Φ〉 ≡ 1

2(Φ⇒ + Φ⇐). The first one corresponds to the flux term
entering eq. (2.24); while the latter is important in understanding what is
the typical time scale for a complete “refill” of the particles during the time
evolution. The last question is important for understanding of the time scale
for thermal equilibration.
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2.4. Qualitative analysis

We start our analysis with discussions of an average flux 〈Φ〉 at small
chemical potential. It is estimated to be 〈Φ〉 ' 1 fm−3 according to Ap-
pendix A. The magnitude of this flux can be fully appreciated by computing
the total number of particle exchange per one cycle of the oscillation

2π

ω
· 4πR2

form · 〈Φ〉 ∼ R3
formfm−3 ∼ |B| , (2.47)

where ω is a typical frequency oscillation estimated in (2.44) while |B| is the
total number of particles (quarks and antiquark) stored in the nugget. The
physical meaning of this estimate is that a nugget can in principle entirely
refill its interior with “fresh” particles within a few cycles of exchange. Sim-
ilar estimate for the net baryon flux which includes ∆Φ is suppressed, see
Appendix A.

The main reason for emergence of this large scale in expression (2.47)
is a long time scale of a single cycle (2.44) which is determined by the
axion mass ma rather than by QCD physics. Nevertheless, estimate (2.47)
is quite remarkable and shows that even very low rate of chemical potential
accretion of (anti)quarks being tracked per oscillation, the high exchange
rate (2.47) is still sufficient enough to turn a baryonically neutral nugget into
one completely filled with (anti)quarks. When the quarks become effectively
massive as it happens in hadronic and CS phases, the flux for the exchange
of the baryon charge is drastically decreased by a factor ∼ exp(−m/T ).

The same estimate (2.47) essentially holds for exchange of almost mass-
less Nambu-Goldstone bosons for sufficiently high temperature. In fact, the
lightest degrees of freedom play the crucial role in cooling processes of the
interior of the nugget as these particles can easily penetrate the sharp do-
main wall structure. Therefore, the high exchange rate between exterior
and interior of a nugget essentially implies that the thermal equilibrium is
maintained in our system with very high precision due to a huge rate per
cycle (2.47) when large number of degrees of freedom ∼ B have a chance of
order one to interact with “fresh” particles from the exterior during a single
cycle. Therefore, our assumption on thermal equilibrium between interior
and exterior is justified a posteriori.

We conclude this section with few important comments. The most im-
portant result of this section is that the nuggets can be formed during the
QCD phase transition provided the initial size of the nuggets is sufficiently
large as stated in eq.(2.43), in which case they survive the evolution. The
key role in this successful formation plays, of course, the effect of “local
spontaneous violation” of the baryon symmetry as discussed in section 2.2
and explicitly expressed by eqs.(2.11) and (2.12). One should emphasize
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2.4. Qualitative analysis

that our qualitative analyses in this section are fully supported by numeri-
cal studies presented in Appendices A and B. Therefore, we do not expect
that any numerical simplifications in our analysis may drastically change
the basic qualitative results presented in this section.

Another important point is the observation (2.44) that a typical time
scale for the oscillations is of order tosc ' ω−1 ' m−1

a . Both these estimates
will be crucial elements in our analysis presented in next chapter 3: equation
(2.43) will be important in estimate for efficiency of a bubble formation with
a large size ∼ R0, while equation (2.44) will play a key role in our arguments
suggesting a coherent preferential formation of one type of nuggets (baryonic
or antibaryonic) on largest possible scale of the visible Universe.
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Chapter 3

Baryon Charge Separation.
Correlation on Cosmological
Scales.

Until this section we mostly concentrated on the time evolution of a single
nugget (or anti-nugget). The main lesson of our previous discussions is that
such nuggets can be formed, remain stable configurations, and therefore,
can serve as the dark matter candidates. In other words, the focus of our
previous studies was a problem of a local separation of charges on small scales
of order nugget’s size. The key element of that separation of charges is eq.
(2.11) which can be thought as a local version of spontaneous symmetry
breaking of the baryon charge as explained in section 2.2. However, on a
larger scale it is quite obvious that equal number of nuggets and anti-nuggets
will be formed as a result of an exact symmetry as we discuss below.

This symmetry, however, does not hold anymore on large scales if the ax-
ion CP -odd coupling is included into consideration, which eventually leads
to very generic, essentially insensitive to most parameters, consequence of
this framework represented by eq.(1.1), which is the subject of next sub-
sections 3.1 , 3.2. The subsection 3.3 is devoted to some more specific and
model-dependent consequences of this framework. In particular, we want to
estimate a suppression factor related to the necessary to form a large size
bubble (2.43) in KZ mechanism.

3.1 Coherent axion field as the source of CP
violation

First of all, let us show that the baryon charge hidden in nuggets on average
is equal to the baryon charge hidden in anti-nuggets, of course with sign
minus. Indeed, the analysis of the anti-nuggets can be achieved by flipping
the sign of the chemical potential in eq. (2.9), i.e. µ → −µ. One can
restore the original form of the µ term in Lagrangian (2.9) by replacing

41



3.1. Coherent axion field as the source of CP violation

θ1 → −θ1 and θ2 → −θ2. Finally, one should change the signs for the
axion θ and the pseudo-scalar singlet η′ meson represented by φ field in the
interaction term (2.10) to restore the original form of the Lagrangian. These
symmetry arguments imply that as long as the pseudo-scalar axion field
fluctuates around zero as conventional pseudo-scalar fields (as π, η′ mesons,
for example), the theory remains invariant under P and CP symmetries.
Without this symmetry the number density and size distribution of the
nuggets and anti-nuggets could be drastically different18.

Therefore, the symmetry arguments suggest that on average an equal
number of nuggets and anti-nuggets would form if the axion field is repre-
sented by a conventional quantum fluctuating field oscillating around zero
point. If it were the case, the baryons and antibaryons would continue to an-
nihilate each other as well as annihilate with the nuggets and anti-nuggets in
our framework. Eventually it would lead to the Universe with large amount
of dark matter in form of nuggets and anti-nuggets (they are far away from
each other, therefore they do not annihilate each other) and no visible mat-
ter. However, the axion dynamics which is determined by the axion field
correlated on the scale of the entire Universe leads to a preferential forma-
tion of a specific type of nuggets on the same large scales where the axion
field is correlated as we argue below.

First of all we want to argue that the time dependent axion field implies
that there is an additional coupling to fermions (3.1). Indeed, by making
the time-dependent U(1)A chiral transformation in the path integral one can
always represent the conventional θ term in the following form

∆L4 = µ5(t)Ψ̄γ0γ5Ψ µ5 ≡ θ̇. (3.1)

In this formula µ5 ≡ θ̇ can be thought as the chiral chemical potential. Many
interesting properties emerge in the systems if µ5 is generated. In fact, it
has been an active area of research in recent years, mostly due to very
interesting experimental data suggesting that the µ5 term can be generated
in heavy ion collisions, see original paper [52] and recent reviews [53–55]
for the details. In the present context the µ5 term is generated as a result
of the axion dynamics. As a matter of fact, the original studies [52] were
motivated by the proposal that the separation of the baryon charges which
may occur in early Universe, as advocated in this thesis, could be tested in
laboratory experiments with heavy ion collisions.

18If π meson condensation were occur in nuclear matter it would unambiguously imply
that the CP invariance is broken in such a phase. Some of the phases in CS systems indeed
break the CP invariance as a result of condensation of a pseudo-scalar Nambu-Goldstone
bosons.
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3.1. Coherent axion field as the source of CP violation

Now we are prepared to formulate the main claim of this section which
can be stated as follows. When interaction (2.10), (3.1) is introduced into
the system there will be a preferential evolution in the system of the nuggets
versus anti-nuggets provided that nuggets and anti-nuggets had been already
formed and chemical potential µ had been already generated locally inside
the nuggets as described in the previous section 2.4. As we already explained
earlier, the generation of µ can be interpreted as a “local violation” of C
invariance in the system.

This preferential evolution is correlated with the CP-odd parameter on
the scales where the axion field θ(x) is coherent. In our arguments presented
below we make a standard assumption that the initial value of θ(x) and its
time derivative θ̇(x) are correlated on the entire observable Universe, such
that µ5 ≡ θ̇ is also correlated on the same large scale. This is the standard
assumption in most studies on axion physics when one computes the present
density of axions due to the misalignment mechanism and/or the domain
wall network decay, see recent papers [9–16, 37].

For our present studies the key element is that the dynamics of the axion
field until the QCD phase transition is determined by the coherent state of
axions at rest such that [9–16]:

θ(t) ∼ C

t3/4
cos

∫ t

dt′ωa(t
′), ω2

a(t) = m2
a(t) +

3

16t2
, (3.2)

where C is a constant, and t = 1
2H is the cosmic time. This formula suggests

that for ma(t)t � 1 when the axion potential is sufficiently strongly tilted
the chiral chemical potential is essentially determined by the axion mass at
time t

µ5(t) = θ̇(t) ∼ ωa(t) ' ma(t). (3.3)

The crucial point is that θ(t) is one and the same in the entire Universe
as it is correlated on the Universe size scale. Another important remark is
that the axion field θ(t) continues to oscillate with frequency (3.3) until the
QCD phase transition at Tc, though its absolute value |θ/θ0| ∼ 0.01 might
be few orders of magnitude lower at Tc ' 170 MeV than its original value
θ0 at T ' 1 GeV when the axion field only started to roll, see e.g. [45]. As
we discuss below, the relevant physics is not very sensitive to an absolute
value of |θ(t)| in this regime, and therefore, we do not elaborate further on
this rather technical and computational element of the axion dynamics, see
footnote 19 below with comments on this matter.

In the context of the nugget’s evolution (accretion of the baryon charge)
this claim implies that on the entire Universe size scale with one and the
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3.1. Coherent axion field as the source of CP violation

same sign of θ(t) a specific single type of nuggets will prevail in terms of
the number density and sizes. Indeed, one can present the same arguments
(see the beginning of this section) with flipping the sign µ → −µ with the
only difference is that the interaction (2.10) prevents us from making the
variable change θ(i) ↔ −θ(i) for a given θ(t) because it changes its form
under θ(i) ↔ −θ(i). In other words, slow varying (on the QCD scale) CP
violating terms (2.10), (3.1) lead to a preferential evolution of the system
for a specific species of the nuggets with a given sign of µ.

Indeed, it has been known for quite some time, see e.g. [56, 57] that in the
presence of θ 6= 0 a large number of different CP violating effects take place.
In particular, the Nambu-Goldstone bosons become a mixture of pseudo-
scalar and scalar fields, their masses are drastically different from θ = 0
values. Furthermore, the quark chiral 〈ψ̄ψ〉 and the gluon 〈G2〉 condensates
become the superposition with their pseudo-scalar counterparts 〈ψ̄γ5ψ〉 and
〈GG̃〉 such that entire hadron spectrum and their interactions modify in the
presence of θ 6= 0. All these strong effects, of course, are proportional to θ,
and therefore numerically suppressed in case under consideration (3.2) by a
factor |θ/θ0| ∼ 10−2 in the vicinity of the QCD phase transition. Naively,
this small numerical factor |θ/θ0| ∼ 10−2 may lead only to minor effects
∼ 10−2. However, the crucial point is that while the coupling (2.10) of the
axion background field with quarks is indeed relatively small on the QCD
scales, it is nevertheless effectively long-ranged and long-lasting in contrast
with conventional QCD interactions. As a result, this coherent CP odd
coupling may produce large effects of order of one as we argue below.

Indeed, as we discussed in previous section 2.4 a typical oscillation time
tosc when the baryon charge accretes on the wall is of order tosc ∼ m−1

a

according to eq. (2.44). But this time scale tosc ∼ m−1
a is precisely the

time scale when θ̇ = ma(t) varies according to (3.3). Therefore, while the
dynamical fermi fields θ1, θ2 defined by (2.8) fluctuate with a typical scale
of order ΛQCD � ma, the coherent variation of these fields will occur during
a long (on the QCD scales) coherent process when a nugget makes a single
cycle. These coherent corrections are expected to be different for nuggets
(positive µ) and anti-nuggets (negative µ) as a result of many C and CP
violating effects such as scattering, transmission, reflection, annihilation,
evaporation, mixing of the scalar and pseudo-scalar condensates, etc which
are all responsible for the accretion of the baryon charge on a nugget during
its long evolution.

Important comment here is that each quark experiences a small difference
in interacting with the domain wall surrounding nuggets or anti-nuggets
during every single QCD event (mentioned above) with typical QCD time
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scale Λ−1
QCD. However, the number of the coherent QCD events ncoherent

during a long single cycle is very large

ncoherent ∼ ΛQCDtosc ∼
ΛQCD

ma
∼ 1010 � 1. (3.4)

Therefore, a net effect during every single cycle will be order of one, in spite
of the fact that each given QCD event is proportional to the axion field θ(t)
and could be quite small.

The argument presented above holds as long as the axion field remains
coherent, see also a comment at the very end of this subsection. In other
words, a small but non vanishing coherent CP violating parameter θ(t) plays
the role of catalyst which determines a preferred direction for separation of
the baryon charges on the Universe scale. This role of CP violation in our
framework is very different from conventional “baryogenesis” mechanisms
when CP violating parameter explicitly enters the final expression for the
baryon charge production.

The corresponding large coherent corrections during a single cycle tosc

imply that the fast fluctuating fields θ1, θ2 (which effectively describe the
dynamics of the fermions living on the wall according to (2.8)) receive large
corrections during every single cycle

∆θ1(t) ∼ ∆θ2(t) ∼ 1. (3.5)

These changes of order one of the strongly interacting θ1, θ2- fields lead to
modification of the accreted baryon charge per single cycle per single degree
of freedom

∆N ∼ (∆θ1 + ∆θ2) ∼ 1 (3.6)

on the nuggets according to (2.12). One should emphasize that the correc-
tions (3.6) are expected to be different for nuggets and anti-nuggets because
the interaction (3.1), (2.10) which is responsible for these corrections (3.6)
breaks the symmetry between nuggets and anti-nuggets when µ → −µ as
discussed above.

Precise computations of these coherent CP violating effects are hard to
carry out explicitly as it requires a solution of many-body problem of the
coherent wall fermions with surrounding environment in the background of
axion field (3.2) when a large number of C and CP violating effects take place
and drastically modify evolution of nuggets versus anti-nuggets. A large
number of cycles of every individual nugget (anti-nugget) also introduces a
huge uncertainty in computations of ∆N during the time evolution when a
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single cycle leads to the effect of order one, with possible opposite sign for a
consequent cycle. In other words, it is very hard to predict what would be the
final outcome of the system after a large number of cycles when each cycle
produces the effect of order 1. We expect that the final result would be again
of order one. Such a computation is beyond the scope of the present work.
Therefore, in what follows we introduce a phenomenological parameter c(T )
of order one to account for these effects. All the observables will be expressed
in terms of this single phenomenological parameter c(T ) ∼ 1, see eq. (3.7).

Our final comment in this subsection is as follows. The charge separation
effect on largest possible scales is only possible when the axion field (3.2) is
coherent on the scales of the Universe. This coherence is known to occur
in conventional studies on the dynamics of the axion field in the vicinity
of the QCD phase transition [9–14, 16, 45]. At the same time, soon after
the QCD phase transition the dominant part of the axion field transfers
its energy to the free propagating on-shell axions (which is the subject of
axion search experiments [9–14, 16]). These randomly distributed free axions
are not in coherent state anymore. Therefore, the coherent accumulation
effect which leads to a preferential formation of one species of nuggets, as
discussed above, ceases to be operational at the moment of decoherence
tdec when the description in terms of the coherent axion field (3.2) breaks
down19. The baryon asymmetry we observe today in this framework is a
result of accumulation of the charge separation effect from the beginning of
the nugget’s formation until this very last “freeze-out” moment determined
by tdec.

3.2 Nuggets vs anti-nuggets on the large scale.
Generic consequences.

As we already mentioned to make any precise dynamical computations of
∆N ∼ 1 due to the coherent axion field (3.2) is a hard problem of strongly
coupled QCD at θ 6= 0. In order to effectively account for these coherent
effects one can introduce an unknown coefficient c(T ) of order one as follows

Bantinuggets = c(T ) ·Bnuggets, where |c(T )| ∼ 1, (3.7)

19The decoherence time tdec is not entirely determined by absolute value of amplitude
of the axion field (3.2). In fact, the amplitude could be quite small, but the field remains
coherent on large scales. The computation of the decoherence time tdec is a hard problem
of QFT, similar to a problem in quantum optics when initially coherent light becomes
de-coherent superposition of uncorrelated photons.
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where c(T ) is obviously a negative constant of order one. We emphasize that
the main claim of this section represented by eq. (3.7) is not very sensitive
to the axion mass ma(T ) nor to the magnitude of θ(T ) at the QCD phase
transition when the bubbles start to oscillate and slowly accrete the baryon
charge. The only crucial factor in our arguments is that the typical variation
of θ(t) is determined by the axion mass (3.3), which is the same order of
magnitude as t−1

osc, and furthermore, this variation is correlated on the scale
where the axion field (3.2) can be represented by the coherent superposition
of the axions at rest.

The key relation of this framework (3.7) unambiguously implies that the
baryon charge in form of the visible matter can be also expressed in terms
of the same coefficient c(T ) ∼ 1 as follows

Bvisible = −Bantinuggets −Bnuggets. (3.8)

Using eq. (3.7) it can be rewritten as

Bvisible ≡ (Bbaryons +Bantibaryons) (3.9)

= − [1 + c(T )]Bnuggets = −
[
1 +

1

c(T )

]
Bantinuggets.

The same relation can be also represented in terms of the measured ob-
servables Ωvisible and Ωdark at later times when only the baryons (and not
antibaryons) contribute to the visible component20

Ωdark '
(

1 + |c(T )|
|1 + c(T )|

)
· Ωvisible at T ≤ Tform. (3.10)

One should emphasize that the relation (3.9) holds as long as the thermal
equilibrium is maintained, which we assume to be the case. Another impor-
tant comment is that each individual contribution |Bbaryons| ∼ |Bantibaryons|
entering (3.9) is many orders of magnitude greater than the baryon charge
hidden in the form of the nuggets and anti-nuggets at earlier times when
Tc > T > Tform. It is just their total baryon charge which is labeled as
Bvisible and representing the net baryon charge of the visible matter is the

20In eq. (3.10) we neglect the differences (due to different gaps) between the energy
per baryon charge in hadronic and CS phases to simplify notations. The corresponding
corrections in energy per baryon charge in hadronic and CS phases, in principle, can
be explicitly computed from the first principles. However, we ignore these modifications
in the present work. This correction obviously does not change the main claim of this
proposal stating that Ωvisible ≈ Ωdark.
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same order of magnitude (at all times) as the net baryon charge hidden in
the form of the nuggets and anti-nuggets according to (3.8).

The baryons continue to annihilate each other (as well as baryon charge
hidden in the nuggets) until the temperature reaches Tform when all vis-
ible antibaryons get annihilated, while visible baryons remain in the sys-
tem and represent the visible matter we observe today. It corresponds to
c(Tform) ' −1.5 as estimated below if one neglects the differences in gaps
in CS and hadronic phases, see footnote 20. After this temperature the
nuggets essentially assume their final form, and do not loose or gain much
of the baryon charge from outside. The rare events of the annihilation
between anti-nuggets and visible baryons continue to occur. In fact, the
observational excess of radiation in different frequency bands, reviewed in
section 1.2, is a result of these rare annihilation events at present time.

The generic consequence of this framework represented by eqs. (3.7),
(3.9), (3.10) takes the following form at this time Tform for c(Tform) ' −1.5
which corresponds to the case when the nuggets saturate entire dark matter
density:

Bvisible ' 1

2
Bnuggets ' −

1

3
Bantinuggets,

Ωdark ' 5 · Ωvisible (3.11)

which is identically the same relation (1.2) presented in Introduction. The
relation (3.11) emerges due to the fact that all components of matter, visi-
ble and dark, are proportional to one and the same dimensional parameter
ΛQCD, see footnote 20 with a comment on this approximation. In formula
(3.11) Bnuggets and Bantinuggets contribute to Ωdark, while Bvisible obviously
contributes to Ωvisible. The coefficient ∼ 5 in relation Ωdark ' 5 · Ωvisible

is obviously not universal, but relation (1.1) is universal, and very generic
consequence of the entire framework, which was the main motivation for the
proposal [4, 5].

For example, if c(Tform) ' −2 then the corresponding relation (3.10)
between the dark matter and the visible matter would assume the form
Ωdark ' 3 · Ωvisible. Such a relation implies that there is a plenty of room
for other types of dark matter to saturate the observed ratio Ωobserved

dark '
5 · Ωobserved

visible . This comment will be quite important in our discussions in
chapter 4 where we comment on implications of this framework for other
axion search experiments.

One should emphasize once again that the generic consequences of the
framework represented by (1.1), (3.10) are not sensitive to any specific pa-
rameters such as efficiency of the domain wall production or the magnitude
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of θ at the QCD phase transition, which could be quite small, see footnote
19 with few comments on that. Nevertheless, precisely the coupling with the
coherent CP odd axion field plays a crucial role in generation of |c(T )| 6= 1,
i.e. the axion plays the role of catalyst in the baryon charge separation effect
on the largest possible scales. Some other observables which are sensitive to
the dynamical characteristics (e.g. efficiency of the domain wall production)
will be discussed below.

3.3 nB/nγ ratio. Model dependent estimates.

The time evolution of the dark matter within this framework is amazingly
simple. The relations (3.7), (3.8), (3.9) hold at all times. The baryon
charges of the nuggets and anti-nuggets vary until its radiusR(T ) assumes its
equilibrium value as described in sections 2.3, 2.4. It happens approximately
at time when the CS phase forms in interior of the nuggets, which can be
estimated as TCS ' 0.6∆ ' 60 MeV, where ∆ ' 100 MeV is the gap of the
CS phase. After this temperature the nuggets essentially assume their final
form, with very little variation in size (and baryon charge). The rare events
of the annihilation of course continue to occur even for lower tempearures.
In fact, the observational consequences reviewed in section 1.2 is a result of
these annihilation events at present time.

The variation of the visible matter Bvisible demonstrates much more dras-
tic changes after the QCD phase transition at Tc because the corresponding
number density is proportional to exp(−mN/T ) such that at the moment of
formation Tform ≈ 40 MeV the baryon to entropy ratio assumes its present
value (1.5) which we express as follows

η ≡ nB
nγ
' Bvisible/V

nγ
∼ 10−10, nB ≡

Bvisible

V
. (3.12)

If the nuggets and anti-nuggets were not present at this temperature the
conventional baryons and antibaryons would continue to annihilate each
other until the density would be 9 orders of magnitude smaller than observed
(3.12) when the temperature will be around T ' 22 MeV. Conventional
baryogenesis resolves this “annihilation catastrophe” by producing extra
baryons in early times, see e.g. review [20], while in our framework extra
baryons and antibaryons are hidden in form of the macroscopically large
nuggets.

In our framework the ratio (3.12) can be rewritten in terms of the
nugget’s density as the baryon charge in form of the visible matter and
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in form of the nuggets are related to each other according to (3.9). This
relation allows us to infer what efficiency is required for the bubbles to be
formed and survive until the present time when the observed ratio is mea-
sured (3.12).

One should emphasize that any small factors which normally enter the
computations in conventional baryogenesis (such as C and CP violating pa-
rameters) do not enter in the estimates presented below in our framework
as a result of two effects. First, the C violation enters the computation as a
result of generation of the chemical potential µ as described in section 2.2.
It is expressed in terms of spontaneous accretion of the baryon charge on the
surface of the nuggets as given by eq. (2.12) which effectively generates the
chemical potential (2.25), which can be thought as the local violation of the
symmetry on the scale of a single nugget. Secondly, the CP violation enters
the computation in form of the coupling with the coherent axion field (3.1).
Precisely this coupling as we argued above leads to removing of the degen-
eracy between nuggets and anti-nuggets formally expressed as c(T ) ∼ 1 in
eq. (3.7). Therefore, the only small parameter we anticipate in our esti-
mates below is due to some suppression of the closed bubbles which must
be formed with sufficiently large sizes during the QCD phase transition.

We cannot compute the probability for the bubble formation as it obvi-
ously requires the numerical simulations, which is beyond the scope of the
present work. Instead, we go backward and ask the question: What should
be the efficiency of the bubble formation at the QCD phase transition in
order to accommodate the observed ratio (3.12)?

With these comments in mind we proceed with our estimates as follows.
First, from (3.9), (3.11) we infer that the baryon charge hidden in the nuggets
and anti-nuggets is the same order of magnitude as the baryon charge of the
visible baryons at Tform at the end of the formation, i.e.

Bnuggets/V

nγ
& 10−10, (3.13)

where we use sign & instead of ≈ used in eq (3.12) to emphasize that there
is long time for equilibration between the moment TCS ' 0.6∆ ' 60 MeV
when CS phase forms in interior of the nuggets and Tform ' 40 MeV when
all antibaryons of the visible matter get annihilated, corresponding to the
present observed value (3.12). During this period the equilibrium between
the visible matter and the baryons from nuggets is maintained, and some
portion of the nugget’s baryon charge might be annihilated by the visible
matter. It explains our sign & used in eq. (3.13).
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The relation (3.13) implies that the number density of nuggets and anti-
nuggets can be estimated as

〈B〉nnuggets

nγ
& 10−10, 〈B〉nnuggets ≡

Bnuggets

V
, (3.14)

where 〈B〉 is the average baryon charge of a single nugget at Tform.
Now we want to estimate the same ratio (3.14) using the Kibble-Zurek

(KZ) mechanism[41–43] reviewed in section 2.1. The basic idea of the KZ
mechanism is that the total area of the crumpled, twisted and folded domain
wall is proportional to the volume of the system, and can be estimated as
follows:

S(total DW) =
V

ξ(T )
, (3.15)

where ξ(T ) is the correlation length which is defined as an average distance
between crumpled domain walls at temperature T . Largest part of the
wall belongs to the percolated large cluster. It is known that some closed
walls (bubbles) with typical size ξ(T ) will be also formed. These bubbles
with sufficiently large size R ∼ ξ(T ) will eventually become nuggets. We
introduce parameter γ to account for the suppression related to the closed
bubble formation. In other words, we define

Snuggets = γS(total DW) =
γV

ξ(T )
, γ � 1. (3.16)

At the same time total area of the nuggets Snuggets can be estimated as

Snuggets = 4πR2
0(T ) [V · nnuggets] , (3.17)

where R0 is the size of a nuggets at initial time, while [V · nnuggets] repre-
sents the total number of nuggets in volume V . Comparison of (3.16) with
(3.17) gives the following estimate for the nugget’s density when bubbles
just formed,

nnuggets '
γ

4πR2
0ξ
. (3.18)

The last step in our estimates is the computation of the average baryon
charge of a nugget at TCS when CS sets in inside the nugget. The cor-
responding estimates have been worked out long ago [4] and reproduced
in section 2.3 in the course of the time evolution by taking t → ∞, see
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(2.26). The baryon number density inside the nuggets depends on a model
being used [4], but typically it is few times the nuclear saturation density
n0 ' (108 MeV)3 which is consistent with conventional computations for
the baryon density in CS phases. Therefore, we arrive to

〈B〉 ' (2− 6)n0 ·
4πR3

form

3
, (3.19)

where Rform is the final size of the nuggets. By substituting (3.19) and
(3.18) to (3.14) we arrive to the following constraint on efficiency of the
bubble formation represented by parameter γ

(2− 6) · γ
3

(
Rform

ξ(T )

)(
Rform

R0

)2(n0

nγ

)
& 10−10, (3.20)

where expression for nγ(T ) should be taken at the formation time

nγ =
2ξ(3)

π2
T 3

form, ξ(3) ' 1.2, (3.21)

while the correlation length ξ(T ) should be evaluated at much earlier times,
close to Tc when domain wall network only started to form. Typically bub-
bles form with R0 ∼ ξ. However, the bubbles shrink approximately 3-5 times
according to (2.43) before they reach equilibrium during the time evolution
as discussed in section 2.4. Therefore, to be on a safe side, we make very
conservative assumption that

Rform

R0
∼ 0.1, R0 ' ξ. (3.22)

To proceed with numerical estimates, it is convenient to factor γ on two
pieces,

γ ≡ γformation · γevolution, γformation ∼ 0.1, (3.23)

where the first part, γformation ∼ 0.1 has been estimated using numerical
simulations, see textbook [43] for review. The second suppression factor
γevolution is unknown, and includes a large number of different effects. In
particular, many small closed bubbles with R0 ≤ ξ are very likely to be
formed but may not survive the evolution as we discussed in section 2.4.
Furthermore, there are many effects such as evaporation, annihilation in-
side the nuggets which may also lead to collapse of relatively small nuggets.
Furthermore, the formation probability of large closed bubbles with R0 � ξ
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(which are most likely to survive) is highly suppressed ∼ exp(−R2
0/ξ

2). All
these effects are included in the unknown parameter γevolution. Our con-
straint (from observations on nB/nγ within our mechanism) can be inferred
from (3.20)

γevolution(Tform) & 10−7. (3.24)

One suppression factor which obviously contributes to suppression (3.24) is
related to necessity to produce a sufficiently large initial bubble for successful
nugget formation as given by eq. (2.43). We do not know a numerical
value for the correlation length ξ in our system at the initial moment of
formation21. However, even in the worst case scenario when R0 ∼ 3ξ instead
of R0 ∼ ξ, which is normally assumed in KZ simulations, the corresponding
suppression factor

exp

(
−R

2
0

ξ2

)
∼ 10−4 (3.25)

is still perfectly consistent with the observational constraint (3.24).
We emphasize that there is no fine tuning in this estimate and overshoot-

ing the estimate (3.24) is perfectly consistent with constraint (3.24). This
is because the equilibration of the baryon charge from the nuggets with the
visible baryons always lead to the result (1.1), (3.9) when all contributions
are the same order of magnitude. The precise ratio (3.12), as we already
mentioned, is determined by the moment in evolution of the Universe when
all visible baryons get completely annihilated which is the formation tem-
perature Tform ∼ ΛQCD, which is again, perfectly consistent with the main
paradigm of the entire framework that all dimensional parameters are order
of ΛQCD.

How one can understand the result (3.24) which essentially states that
even very tiny probability of the formation of the closed bubbles is still
sufficient to saturate the observed ratio (3.12)? The answer lies in the ob-
servation that the baryon density nB ' nB̄ was 10 orders of magnitude
larger at the moment of the bubble formation. Therefore, even a tiny prob-
ability at the moment of formation of a closed bubble with sufficiently large
size will lead to effects of order one at the moment when the baryon num-
ber density drops 10 order in magnitude. Another reason why very tiny

21One should emphasize that the correlation length ξ should not be identified with
Rform when the nugget’s formation is almost completed. Rather the correlation length ξ,
defined by (3.15), characterizes the system at the very beginning of the formation when
the domain wall network starts to emerge. It is normally assumed that ξ ' R0. Most
likely R0 should be slightly greater than ξ for successful formation.
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probability of the formation of the closed bubbles nevertheless is sufficient
to saturate the observed ratio (3.12) is that typical “small factors” which
normally accompany the conventional baryogenesis mechanisms such as CP
and C odd couplings do not appear in estimate (3.24) due to the reasons
already explained after eq (3.12).
• We conclude this section with the following comment: The basic con-

sequences of this framework represented by eqs. (1.1), (3.9), (3.10) are very
generic. These features are not very sensitive to efficiency of the closed do-
main wall formation (as long as it is greater than (3.24)) nor to the absolute
value of θ as long as coherence is maintained, see footnote 19. These generic
features hold for arbitrary value of the axion mass 10−6eV ≤ ma ≤ 10−3eV,
in contrast with conventional treatment of the axion as the dark matter can-
didate, when ΩDM can be saturated by the axions only when the axion mass
assumes a very specific and definite value ma ' 10−6 eV, see next section
with details.

The derivation of the observed ratio (3.12) from the first principles
(which is entirely determined by Tform) is a hard computational problem
of strongly coupled QCD when all elements such as cooling rate, annihila-
tion rate, charge separation rate, damping rate, evaporation rate and many
other effects are equally contribute to Tform. However, it is important that
the “observational” value Tform lies precisely in the region where it should be:
Tform < TCS, i.e. slightly below the temperature where CS sets in. There-
fore, any fine-tuning procedures have never been required in this framework
(in contrast with conventional baryogenesis computations) to accommodate
the observed ratios presented by eqs. (1.1), (3.12).
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Chapter 4

Implications for the Axion
Search Experiments

The goal of this section is to comment on relation of our framework and the
direct axion search experiments [9–16]. We start with the following com-
ment we made in section 1.2: this model which has a single fundamental
parameters (a mean baryon number of a nugget 〈B〉 ∼ 1025 entering all
the computations) is consistent with all known astrophysical, cosmological,
satellite and ground based constraints as reviewed in section 1.2. For dis-
cussions of this section it is convenient to express this single normalization
parameter 〈B〉 ∼ 1025 in terms of the axion mass ma ∼ 10−4 eV as these
two parameters are directly related according to the scaling relations (1.3).
The corresponding relation between these two parameters occur because
the axion mass ma determines the wall tension σ ∼ m−1

a which itself enters
the expression for the equilibrium value of the size of the nuggets, Rform at
the end of the formation. One should emphasize that it is quite nontrivial
that the cosmological constraints on the nuggets as shown on Fig. 1.2 and
formulated in terms of 〈B〉 are compatible with known upper limit on the
axion mass ma < 10−3eV within our framework. One could regard this
compatibility as a nontrivial consistency check for this proposal.

The lower limit on the axion mass, as it is well known, is determined
by the requirement that the axion contribution to the dark matter density
does not exceed the observed value Ωdark ≈ 0.23. There is a number of un-
certainties in the corresponding estimates. We shall not comment on these
subtleties by referring to the review papers[9–16]. The corresponding un-
certainties are mostly due to the remaining discrepancies between different
groups on the computations of the axion production rates due to the differ-
ent mechanisms such as misalignment mechanism versus domain wall/string
decays. In what follows to be more concrete in our estimates we shall use
the following expression for the dark matter density in terms of the axion
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mass resulted from the misalignment mechanism [16]:

Ω(DM axion) '
(

6 · 10−6eV

ma

) 7
6

(4.1)

This formula essentially states that the axion of mass ma ' 2 · 10−5 eV
saturates the dark matter density observed today, while the axion mass in
the range of ma ≥ 10−4 eV contributes very little to the dark matter density.
This claim, of course, is entirely based on estimate (4.1) which accounts only
for the axions directly produced by the misalignment mechanism suggested
originally in [47].

There is another mechanism of the axion production when the Peccei-
Quinn symmetry is broken after inflation. In this case the string-domain
wall network produces a large number of axions such that the axion mass
ma ' 10−4 eV may saturate the dark matter density, see relatively recent
estimates [45, 46] with some comments and references on previous papers.
The corresponding formula from refs.[45, 46] is also highly sensitive to the
axion mass with ma- dependence being very similar to eq. (4.1).

The main lesson to be learnt from the present work is that in addi-
tion to these well established mechanisms previously discussed in the lit-
erature there is an additional contribution to the dark matter density also
related to the axion field. However, the mechanism which is advocated in
the present work contributes to the dark matter density through formation
of the nuggets, rather than through the direct axion production. The cor-
responding mechanism as argued in section 3.2 always satisfies the relation
Ωdark ≈ Ωvisible, and, in principle is capable to saturate the dark matter
density Ωdark ≈ 5Ωvisible by itself for arbitrary magnitude of the axion mass
ma as the corresponding contribution is not sensitive to the axion mass in
contrast with conventional mechanisms mentioned above. A precise coeffi-
cient in ratio Ωdark ≈ Ωvisible is determined by a parameter of order one,
|c(T )| ∼ 1, which unfortunately is very hard to compute from the first prin-
ciples, as discussed in section 3.2.

Our choice for ma ' 10−4 eV which corresponds to 〈B〉 ∼ 1025 is entirely
motivated by our previous analysis of astrophysical, cosmological, satellite
and ground based constraints as reviewed in Section 1.2. As we mentioned
in Section 1.2 there is a number of frequency bands where some excess
of emission was observed, and this model may explain some portion, or
even entire excess of the observed radiation in these frequency bands. Our
normalization 〈B〉 ∼ 1025 was fixed by eq.(1.6) with assumption that the
observed dark matter is saturated by the nuggets. The relaxing of this
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Figure 4.1: Cavity / ADMX experimental constraints on the axion mass
shown in green. The expected sensitivity for the Orpheus axion search
experiment [15] is shown by blue regions “A”, “B”, “C” and “D”. In partic-
ular, experiment “B”, covers the most interesting region of the parametrical
space with ma ' 10−4 eV corresponding to the nuggets with mean baryon
charge 〈B〉 ' 1025 which itself satisfies all known astrophysical, cosmolog-
ical, satellite and ground based constraints, see Fig.1.2. The plot is taken
from [15].
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assumption obviously modifies the coefficient c(T ) as well as 〈B〉.
Interestingly enough, this range of the axion mass ma ' 10−4 eV is

perfectly consistent with recent claim [58],[59] that the previously observed
small signal in resonant S/N/S Josephson junction [60] is a result of the
dark matter axions with the mass ma ' 1.1 · 10−4 eV. Furthermore, it
has been also claimed that similar anomalies have been observed in other
experiments [61–63] which all point towards an axion massma ' 1.1·10−4 eV
if interpreted within framework [58],[59]. The only comment we would like
to make here is that if the interpretation [58],[59] of the observed anomalies
[60–63] is indeed due to the dark matter axions, then the corresponding
axion mass is perfectly consistent with our estimates (based on cosmological
observations) of the average baryon charge of the nuggets 〈B〉 ' 1025 as
reviewed in section 1.2.

We conclude this section on an optimistic note with a remark that the
most interesting region of the parametric space corresponding to the nuggets
with mean baryon charge 〈B〉 ' 1025 might be tested by the Orpheus axion
search experiment [15] as shown on Fig. 4.1.
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Conclusion

First, we want to list the main results of the present studies, while the
comments on possible future developments will be presented at the end of
this chapter.

1. First key element of this proposal is the observation (2.12) that
the closed axion domain walls are copiously produced and generically will
acquire the baryon or antibaryon charge. This phenomenon of “separation
of the baryon charge” can be interpreted as a local version of spontaneous
symmetry breaking. This symmetry breaking occurs not in the entire volume
of the system, but on the correlation length ξ(T ) ∼ m−1

a which is determined
by the folded and crumpled axion domain wall during the formation stage.
Precisely this local charge separation eventually leads to the formation of
the nuggets and anti-nuggets serving in this framework as the dark matter
component Ωdark.

2. Number density of nuggets and anti-nuggets will not be identically
the same as a result of the coherent (on the scale of the Universe) axion
CP -odd field. We parameterize the corresponding effects of order one by
phenomenological constant c(T ) ∼ 1. It is important to emphasize that
this parameter of order one is not a fundamental constant of the theory,
but, calculable from the first principles. In practice, however, such a com-
putation could be quite a challenging problem when even the QCD phase
diagram is not known. The fundamental consequence of this framework,
Ωdark ≈ Ωvisible, which is given by (1.1) is universal, and not sensitive to
any parameters as both components are proportional to ΛQCD. The ob-
served ratio (1.2), (3.11) corresponds to a specific value of c(Tform) ' −1.5
as discussed in section 3.2.

3. Another consequence of the proposal is a natural explanation of the
ratio (1.5) in terms of the formation temperature Tform ' 40 MeV, rather
than in terms of specific coupling constants which normally enter conven-
tional “baryogenesis” computations. This observed ratio is expressed in our
framework in terms of a single parameter Tform when the nuggets complete
their formation. This parameter is not fundamental constant of the theory,
and as such is calculable from the first principles. In practice, however, the
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computation of Tform is quite a challenging problem as explained in section
3.3. Numerically, the observed ratio (1.5) corresponds to Tform ' 40 MeV
which is indeed slightly below the critical temperature TCS ' 60 MeV where
the colour superconductivity sets in.

The relation Tform . TCS ∼ ΛQCD is universal in this framework as
both parameters are proportional to ΛQCD. As such, the universality of
this framework is similar to the universality Ωdark ≈ Ωvisible mentioned in
previous item. At the same time, the ratio (1.5) is not universal itself as
it is exponentially sensitive to precise value of Tform due to conventional
suppression factor ∼ exp(−mp/T ).

4. The only new fundamental parameter of this framework is the axion
mass ma. Most of our computations (related to the cosmological observa-
tions, see section 1.2 and Fig. 1.2), however, are expressed in terms of the
mean baryon number of nuggets 〈B〉 rather than in terms of the axion mass.
However, these two parameters are unambiguously related according to the
scaling relations (1.3). Our claim is that all universal properties of this
framework listed above still hold for any ma. In other words, there is no any
fine tuning in the entire construction with respect to ma. The constraints
(and possible cosmological observations) from section 1.2 strongly suggest
〈B〉 ' 1025 which can be translated into preferred value for the axion mass
ma ' 10−4 eV.

5. This region of the axion mass ma ' 10−4 eV corresponding to average
size of the nuggets 〈B〉 ' 1025 can be tested in the Orpheus axion search
experiment [15] as shown on Fig. 4.1.

We conclude with few thoughts on future directions within our frame-
work. It is quite obvious that future progress cannot be made without a
much deeper understanding of the QCD phase diagram at θ 6= 0. In other
words, we need to understand the structure of possible phases along the
third dimension parametrized by θ on Fig 1.1.

Presently, very few results are available regarding the phase structure at
θ 6= 0. First of all, the phase structure is understood in simplified version
of QCD with two colours, Nc = 2 at T = 0, µ 6= 0, see [64]. In fact, the
studies [64] were mostly motivated by the subject of the present work and
related to the problem of formation of the quark nuggets during the QCD
phase transition in early Universe with non vanishing θ. With few additional
assumptions the phase diagram can be also conjectured for the system with
large number of colours Nc =∞, at non vanishing T, µ, θ, see [65, 66].

Due to the known “sign problem”, see footnote 2, the conventional lattice
simulations cannot be used at θ 6= 0. The corresponding analysis of the
phase diagram for non vanishing θ started just recently by using some newly
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invented technical tricks [67–70].
Another possible development from the “wish list” is a deeper under-

standing of the closed bubble formation. Presently, very few results are
available on this topic. The most relevant for our studies is the observation
made in [11] that a small number of closed bubbles are indeed observed in
numerical simulations. However, their detailed properties (their fate, size
distribution, etc) have not been studied yet. A number of related questions
such as an estimation of correlation length ξ(T ), the generation of the struc-
ture inside the domain walls, the baryon charge accretion on the bubble, etc,
hopefully can be also studied in such numerical simulations.

One more possible direction for future studies from the “wish list” is a
development some QCD-based models where a number of hard questions
such as: evolution of the nuggets, cooling rates, evaporation rates, annihila-
tion rates, viscosity of the environment, transmission/reflection coefficients,
etc in unfriendly environment with non-vanishing T, µ, θ can be addressed,
and hopefully answered. All these and many other effects are, in general,
equally contribute to our parameters Tform and c(T ) at the ΛQCD scale in
strongly coupled QCD. Precisely these numerical factors eventually deter-
mine the coefficients in the observed relations: Ωdark ≈ Ωvisible given by eq.
(3.10) and nB/nγ expressed by eq. (3.12).

Last but not least: the discovery of the axion in the Orpheus experiment
[15] would conclude a long and fascinating journey of searches for this unique
and amazing particle conjectured almost 40 years ago. Such a discovery
would be a strong motivation for related searches of “something else” as
the axion mass ma ' 10−4 is unlikely to saturate the dark matter density
observed today. We advocate the idea that this “something else” is the
“quark nuggets” (where the axion plays the key role in entire construction)
which could provide the principle contribution to dark matter of the Universe
as the relation Ωdark ≈ Ωvisible in this framework is not sensitive to the axion
mass.
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Appendix A

Estimation of Fluxes

The main goal of this Appendix is to argue that the approximation in eq.
(2.24) which was adopted in the text by neglecting the extra term “fluxes”
is justified, at least on qualitative level. In other words, while these “flux”
terms are obviously present in the system, they, nevertheless, do not dras-
tically change a key technical element (an implicit relation between R(t)
and µ(t)) which this equation provides. Precisely this implicit relation be-
tween R(t) and µ(t) eventually allows us to express the µ-dependent pres-
sure ∆P [µ] in terms of R dependent function ∆P [f(R)] such that the basic
equation (2.37) describing the time evolution of the nuggets is reduced to a
differential equation on a single variable R(t).

Our starting point is the observation that the relevant flux which enters
equation (2.24) is ∆Φ = (Φ⇒−Φ⇐), counting the net baryon charge transfer
and sensitive to the chemical potential difference, rather than total flux 〈Φ〉
which counts the exchange of all the particles, including bosons22. In fact, if
the average flux 〈Φ〉 were entering equation (2.24) one could explicitly check
that this term would be the same order of magnitude as two other terms of
the equation. However, the key point is that the baryon charge transfer ∆Φ
is numerically suppressed, i.e. ∆Φ � 〈Φ〉. In fact, ∆Φ identically vanishes
for µ = 0. Furthermore, one can use the same technique which has been used
in section 2.4.1 to argue that ∆Φ � 〈Φ〉 in entire region of µ. Numerical
analysis supports this claim.

To reiterate this claim: while a typical flux defined as

Φ =
gin

(2π)3

∫
vzd

3k

exp(k−µT ) + 1
+ (bosons) ∼ (fm)−3 (A.1)

assumes a conventional QCD value, the net baryonic flux ∆Φ · S through
surface S is numerically suppressed, and can be neglected in eq. (2.24).

22The dominant contribution to the fluxes normally comes from the lightest degrees of
freedom which are the Nambu-Goldstone bosons in hadronic and CS phases. These con-
tributions are crucial for maintaining the thermodynamical equilibrium between exterior
and interior, but they do not play any role in the baryon fluxes which enter eq.(2.24).
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One can explain this result as follows. Consider a single oscillation of the
domain wall evolution. To be more specific, consider a squeezing portion of
this evolution when R(t) decreases. During this process the chemical poten-
tial (and the baryon charge density) locally grow as we discussed in section
2.4.1. The major portion of this growth is resulted from the baryon charge
which was already bound to the domain wall, rather than from the baryon
charge which enters the system as a result of the baryonic flux transfer.

On an intuitive level the dominance of the bound charges (accounted in
eq. (2.24)) in comparison with flux-contribution (neglected in eq. (2.24))
can be explained using pure geometrical arguments. Indeed, the chemical
potential increases very fast as a result of rapid shrinking of the bubble with
speed v ' c. The corresponding contraction of a bubble leads to propor-
tionally rapid increase of the chemical potential on the domain wall. This
happens because the baryon charges are strongly bound to the wall, and
cannot leave the system due to the topological reasons as the boundary con-
ditions effectively lock the charge to the macroscopically large domain wall.
As a result of this evolution the binding energy of a quark ∼ µ increases
when the bubble contracts. This process represents a highly efficient mech-
anism of very rapid growth of the chemical potential due to the domain
wall dynamics. It is vey hard to achieve a similar efficiency with the flux-
contribution when the probability for a reflection from the domain wall is
typically much higher than probability for a transmission. Furthermore, a
non-vanishing quark mass make suppression even stronger ∼ exp(−m/T ).

To conclude: we do expect that an accounting for the flux- contribution
modifies our equations relating µ(t) and R(t) as expressed by eqs. (2.24),
(2.30). However, we do not expect that this modification may drastically
change the basic qualitative features of eqs. (2.24), (2.30) which have been
heavily employed in this work.
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Appendix B

Formation of the Nuggets:
Numerical Analysis

This appendix is devoted to exact numerical computation in contrast with
analytical qualitative arguments presented in section 2.4. The basic lesson
of this Appendix is that a number of simplifications which have been made
in section 2.4 are justified, at least, on a qualitative level.

Before we proceed with numerical computations we want to make few
comments on parameters entering the basic dynamical equation (2.37). In
the previous sections, σ was treated as a constant in order to simplify the
analysis. This approximation is justified as long as a typical curvature of
the domain wall is much smaller than the width of the domain wall, i.e.
R � m−1

a . This condition is only marginally justified as a typical radius
of the bubble is of order m−1

a , which is the same order of magnitude as the
width of the wall. At the same time, the width of the QCD substructure of
the domain wall (including the η′ substructure and the baryon substructure)
is very small in comparison with the curvature, and it does satisfy the criteria
of a thin wall approximation as m−1 � R ∼ m−1

a . Precisely this QCD
substructure plays a crucial role in our analysis in section 2.2 where we
studied the “local violation” of the baryon charge in the presence of the
domain walls. The broad structure of the domain wall due to the axion
field with the width m−1

a does not play any role. However, precisely this
structure determines the large tension σ ∼ m−1

a of the domain wall.
We want to effectively account for this physics by assuming that σ(R)

effectively depends on the radius of the bubble R. On the physical grounds
we expect that σ(R) approaches its asymptotic value at large R when the
domain wall is almost flat, σ(R → ∞) → σ0, while σ reduces its value at
smaller R, and eventually vanishes at some cutoff Rcut. A natural choice is
Rcut ' 0.24R0 which corresponds to large µcut . 500MeV from (2.30), when
the chemical potential assumes its typical CS value. To introduce such an
infrared cutoff smoothly, it is convenient to parametrize σ as follows

σ(R) = σ0e
−r0/2(R−Rcut) (B.1)
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where σ0 ' 9f2
ama is the conventional domain wall tension, see e.g. [11],

while r0 is a free phenomenological parameter, 0 < r0 . R0 as we expect
σ(R0) ' σ0. In our numerical studies we verified that the physical results
(such as formation size Rform) are not very sensitive to parameter r0.

Another parameter which requires some comments is the viscosity η.
In the context of the present work, the viscosity accounts for a number
of different QCD effects which lead to dissipation and “friction”. Such ef-
fects include, but are not limited to different scattering process by quarks,
gluons or Nambu Goldstone Bosons in different phases. Furthermore, the
annihilation processes which take place inside the bubble and which result
in production of a large number of strongly interacting quasi-particles also
contribute to η. The viscosity can be computed from the first principles in
weakly coupled quark-gluon phase [71]. However, we are more interested
in behaviour of η below Tc. In this case the computations [72] based on
chiral perturbation theory suggest that η ∼ m3

π. This numerical value is
quite reasonable in all respects, and consistent with simple dimensional ar-
guments. It is also known that η(T ) depends on temperature [72]. However,
we neglect this dependence in our estimates which follow.

Now we can proceed with our numerical studies. Since σ(R) is a function
of R as explained above, we should start with a modified differential equation
for R(t):

σ(R)R̈(t) = −2σ(R)

R
− σ(R)Ṙ2

R
+ ∆P (R) (B.2)

− (
1

2
Ṙ2 + 1)

dσ(R)

dR
− 4η

Ṙ

R
.

This equation is not identically the same as equation (2.37) discussed in
section 2.4. This is due to the fact that the tension σ(R) is now become
R dependent function as we discussed above. The equation (B.2) has been
solved numerically using parameters listed in Table B.1. The numerical
values of these parameters can be obviously somewhat modified. However,
the basic qualitative features presented in section 2.4 do not drastically
change when the QCD parameters are varied within reasonable parametrical
region. Our numerical studies, as we discuss below, do support the analytical
qualitative results presented in section 2.4.

We start our short description with Fig.B.1. It shows a typical evolution
of a bubble with time. The frequencies of oscillations are determined by the
axion mass m−1

a , while typical damping time is determined by parameter τ
as discussed in section 2.4. To make the pattern of oscillations visible, the
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viscosity has been rescaled23. At large times, t → ∞, the solution settles
at R0/Rform ' 2.9 and µform ' 330MeV ∼ µ1, consistent with qualitative
analysis of section 2.4.

We now describe Fig. B.2 where we zoom-in first few oscillations of a
typical solution shown on previous plot Fig. B.1. We want to emphasize that
a seeming cusp singularity is actually a smooth function near Rmin. It looks
“cuspy” as a result of a large time scale on Fig. B.1. The “cusp” is relatively
narrow comparing to macroscopic period of oscillation (δtcusp ∼ 10−3R0).
Nevertheless it actually lasts much longer in comparison with a typical QCD
scale (δtcusp � Λ−1

QCD).
On Fig. B.3 we demonstrate a (non)sensitivity of the system to pa-

rameter r0 introduced in eq. (B.1). One can explicitly see that the initial
evolution is indeed quite sensitive to ad hoc parameter r0. However, the fi-
nal stage of the evolution is not sensitive to r0. In other words, the physical
parameters Rform and τ are not sensitive to ad hoc parameter r0. Note that
estimation of damping time τ and period of oscillation tosc agree well with
qualitative estimations presented in section 2.4.

23In this plot we use η ' 108η0, which is eight orders of magnitude larger than η0 ' m3
π.

We did it on purpose: First, it simplifies the numerics. Indeed, the η parameter determines
the dumping time scale (2.45) which is many orders of magnitude longer than any other
scales of the problem. Secondly, we use η ' 108η0 for the demonstration purposes. Indeed,
a typical oscillation time ω−1 and the damping time τ are characterized by drastically
different scales. If we take η according to its proper QCD value than the time scale on
plots Fig. B.1 would be eight orders of magnitude longer than shown.
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Figure B.1: Typical underdamped solution of R(t) and µ(t). The oscillations
with frequencies ∼ m−1

a shown in orange, the modulation of R(t) is shown
in blue. The chemical potential µ(t) shown in red. The initial R0 = 1011fm
and r0 = 0.5R0.
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Figure B.2: The first few oscillations of an underdamped solution shown on
Fig. B.1.
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Figure B.3: Dependence on parameter r0 as defined by eq. (B.1). Zoom-in
shows small oscillations during the final stage of formation.

Table B.1: Table for some numerical parameters

Quantity Symbol Value
QCD units
(mπ = 1)

flavours Nf 2 2
colors Nc 3 3
degeneracy factor (in) (2.21) gin 12 12
degeneracy factor (out) (2.18) gout 37 37
baryon charge on DW (2.12) N 2 2
axion decay constant fa 1010GeV 7× 1010

mass of axion ma 6× 10−4eV 4× 10−12

domain wall tension σ0 5× 108GeV3 2× 1011

bag constant (2.23) EB (150MeV)4 1.5
“squeezer” parameter (2.23) µ1 330 MeV 2.4
cosmological time scale t0 10−4s 1019

initial µ µ0 1.35 MeV 0.01
initial radius R0 10−2cm 1011

initial temperature T0 100 MeV 0.74
QCD viscosity[72] η0 0.002 GeV3 1
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Appendix C

Evaluation of Fermi-Dirac
Integrals

The main goal of this Appendix is to present some supporting arguments
suggesting that the approximation we have used in section 2.4.1 and which
involves the Fermi-Dirac integrals are qualitatively justified. Indeed, the
relevant integrals which enter eqs. (2.28), (2.31) have the form

In(b) ≡
∫ ∞

0

dx · xn−1

ex−b + 1
, b =

µ

T
> 0, (C.1)

where n = 2 appears in integral (2.28), while n = 4 appears in (2.31). We
will hence focus on evaluation of I2 and I4 in this appendix. They can be
exactly evaluated as

I2(b) =
π2

6
+

1

2
b2 + Li2(−e−b) (C.2a)

I4(b) =
7π4

60
+
π2

2
b2 +

1

4
b4 + 6 Li4(−e−b) (C.2b)

where Li2(−z) and Li4(−z) are the polylogarithm functions of order 2 and
4, respectively. Polylogarithm functions are commonly known to represent
the Fermi-Dirac and Bose-Eisterin integrals. The Polylogarithm functions
are defined as

Lin(−z) =

∞∑
k=1

(−1)k

kn
zk. (C.3)

Note that |z| = e−b ≤ 1 for any positive b. In this case Lin(−z) is evidently
fast-converging, so that we can efficiently estimate it by extracting the lead-
ing exponent e−b then using the Taylor expansion for the remaining piece:

Li2(−e−b) ' e−b
[
−π

2

12
+ (ln 2− π2

12
)b+O(b2)

]
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Figure C.1: Comparison of I
(0)
n to In with different values of b.

Li4(−e−b) ' e−b
[
− π4

720
+ (

3ζ(3)

4
− 7π4

720
)b+O(b2)

]
,

where ζ(3) ' 1.202 is the Riemann zeta function. Neglecting the terms of
order O(be−b) which are small in both limits, at large and small chemical
potentials, one can approximate I2 and I4 as follows

I
(0)
2 ' π2

6
+

1

2
b2 − π2

12
e−b +O(be−b) (C.5a)

I
(0)
4 ' 7π4

60
+
π2

2
b2 +

1

4
b4 − 7π4

120
e−b +O(be−b). (C.5b)

We test our approximation by comparing our approximate expressions (C.5a),
(C.5b) with exact formulae (C.2a), (C.2b). As one can see from Fig. C.1,

our approximation shown in blue (I
(0)
2 /I2) and orange (I

(0)
4 /I4) is very good

with errors less than 3% in the entire range of b > 0.

On the same plot we also show the approximation Ĩ
(0)
4 for approximate
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expression I
(0)
4 used in the main text in eq. (2.31)

Ĩ
(0)
4 ' 7π4

60
+
π2

2
b2 +

1

4
b4 − π4

12
e−b. (C.6)

The error for Ĩ
(0)
4 is quite large for very small chemical potential b� 0.5, on

the level of 40%, shown in green. The error becomes much smaller after short
period of time when b = µ/T ≥ 0.5 becomes sufficiently large. To conclude:
the approximations of the integrals in section 2.4.1 are sufficiently good for
qualitative analysis presented in that section.
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