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ABSTRACT 

 

 Formation of the synaptonemal complex (synapsis), and crossing over of DNA 

(recombination) is important for chromosome segregation during meiosis. However, reduced 

rates of recombination have been observed in infertile men. Our previous study linked 

decreased recombination on sex chromosomes to increased XY disomy in sperm. This 

finding elicited our interest in the relationship between autosomal recombination and sperm 

disomy. We hypothesize that a lack of recombination on smaller chromosomes (21, X and Y) 

may most likely lead to aneuploid sperm. Using immunofluorescence, and fluorescent in situ 

hybridization, we examined synaptic errors, recombination, and sperm aneuploidy in 

infertile, and fertile men. When all infertile men were pooled, the frequency of recombination 

on sex chromosomes and bivalent 21 negatively correlated to rates of corresponding sperm 

disomy. Our unprecedented finding suggest that meiotic defects may indeed be leading to 

infertility, and increasing sperm aneuploidy.  

 Moreover, we previously showed changes in crossover distribution in some infertile 

men. In this thesis, we examined whether this population display specific crossover 

distributions that may cause chromosome missegregation. Using FISH, we analyzed 

chromosome-specific crossover distributions, discovering that some infertile men had 

increased crossovers in regions where they are normally inhibited, which may disrupt 

structural proteins involved in segregation. We were also interested in the mechanisms 

behind meiotic defects, and hence studied telomere homeostasis in infertile men. We found 

deficiencies in telomere association with telomerase in this population, suggesting that 

defective telomere function may promote improper synapsis and recombination. 
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 Lastly, we examined the meiotic behaviour and sperm aneuploidy rate in an infertile 

man with a mosaic 45,X(50%)/46,XY karyotype. We found that only 25% of spermatocytes 

were 45,X, suggesting that half of these cells were arrested. We also noted unpaired sex 

chromosomes in 12% of spermatocytes. The X:Y sperm ratio was increased, indicating that 

some 45,X cells may give rise to X-bearing sperm. Even though the patient had higher rates 

of sperm aneuploidy, the vast majority were of normal constitution. Thus, stringent 

checkpoints appear to ensure the production of sperm with correct chromosomal 

complement, and extraction of normal sperm for ICSI may be possible in cases of sex 

chromosomal mosaicism. 
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 CHAPTER 1: INTRODUCTION 

 

The genetic material in humans is organized into highly structured units of DNA and 

protein complexes known as chromosomes. There are two sets of chromosomes in the 

somatic cells of the human body, one derived from the father and one derived from the 

mother. During sexual reproduction, the genetic information in the parents is passed to the 

offspring. In order to preserve the normal adult chromosome content in the offspring, sexual 

reproduction begins with the creation of haploid gametes with half the number of 

chromosomes (n) as the parent cell (2n). Subsequent fertilization involves the fusion of 

gametes to form a diploid (2n) cell with the normal chromosome complement, which then 

divides to form an embryo. There are two types of cell division involved in sexual 

reproduction, termed mitosis and meiosis. Mitosis results in daughter cells with the same 

number of chromosomes as the parent cell; it is responsible for the division of somatic cells 

in the embryo and adult, and the proliferation of germinal stem cells in the gonads. Meiosis is 

specific to gametogenesis, and is responsible for dividing the chromosome content in half to 

produce haploid gametes. Consequently, the proper progression and completion of meiosis is 

important for gametogenesis and thus fertility, as well as for ensuring the production of 

gametes with the correct chromosome complement. This thesis will aim to address how 

errors during meiosis may contribute to impaired sperm production, and/or the production of 

chromosomally abnormal sperm in infertile men. To begin, I will outline the processes of 

spermatogenesis, and explain the specific features in meiosis that deem this specialized cell 

division crucial for normal sperm production.  
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1.1 Spermatogenesis  

Spermatogenesis describes the development of mature spermatozoa from a self-

renewing pool of germinal stem cells (Amann, 2008). This process begins in the 

seminiferous tubules in the testes, and is aided by two differentiated cell types: Sertoli cells 

and Leydig cells. Sertoli cells reside in the seminiferous tubules, and mainly function to 

nourish the developing spermatocytes. Leydig cells are found in the interstitial spaces in the 

testes, adjacent to the seminiferous tubules, and are responsible for androgen production. The 

early embryonic development of these key cell types and the testes in general is important for 

establishing the framework for spermatogenesis to occur later in life.  

In the early stages of mammalian embryo development, a small group of cells in the 

wall of the yolk sac are induced by a set of mRNAs and proteins to form primordial germ 

cells (PGCs), which are cells that eventually form the germ line of the mammal (Ewen-

Campen et al., 2010; Richardson and Lehmann, 2010; Fig. 1.1). After a period of 

proliferation, PGCs begin to actively migrate into the extra-embryonic mesoderm, through 

the hindgut and dorsal mesentery, and into the two genital ridges that will eventually become 

the gonads (Ewen-Campen et al., 2010; Richardson and Lehmann, 2010; Fig. 1.1).  
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At this point, PGCs are incorporated into the sex cords and are committed to 

differentiating into either eggs or sperm, depending on the signals from the developing 

gonads. Whether the genital ridge develops into female or male gonads, namely the ovaries 

or testes, depends on the sex chromosome constitution in the somatic cells. The sex 

determining region (SRY) gene on the Y chromosome is the determining factor, where its 

expression signals the differentiation of the testis (Ewen-Campen et al., 2010; Richardson 

and Lehmann, 2010). In response to SRY expression, the sex cords morph into seminiferous 

tubules, while the epithelial cells in the tubules form Sertoli cells (Gilbert, 2014). 

Interestingly, Sertoli cells have been shown to be important regulators of fetal Leydig cell 

development (Wen et al., 2016). However, the exact origin of fetal Leydig cells remain 

unclear as these cells are thought to originate from multiple progenitor cells (Wen et al., 

2016). After the differentiation of the fetal testis, environmental cues begin to signal the 

differentiation of the PGCs into spermatogonial stem cells, referred to as spermatogonia 

Figure 1.1 Migration of mammalian primordial germ cells (PGCs) 

A) During early embryo development, a group of cells in the yolk sac, near the attachment to the 

allantois, differentiate into PGCs. B) PGCs migrate into the extra-embryonic mesoderm, through the 

hindgut and dorsal mesentery, and into the two genital ridges.  
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(Sutton, 2002). Spermatogonia are the pool of self-renewing cells that maintain 

spermatogenesis throughout life starting at puberty (Sutton, 2002). In humans, each cycle of 

spermatogenesis takes approximately 64 days to complete (Amann, 2008), and can be 

divided into three stages: (1) mitotic division of spermatogonia, (2) meiotic division resulting 

in haploid spermatids, and (3) differentiation of spermatids into mature spermatozoa in a 

process known as spermiogenesis (Fig. 1.2).  
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Figure 1.2 Spermatogenesis.  

Spermatogenesis is characterized by the differentiation of spermatogonial stem cells through 

mitosis, meiosis I and meiosis II to reduce the chromosome content by half [from diploid (2n) 

to haploid (n)], and finally spermiogenesis, where the spermatid differentiates into functional, 

mature spermatozoa 
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The development of spermatogonia into more committed cell types occurs in the 

compartmentalized spaces of the seminiferous tubules, where the least differentiated cells are 

at the outer edge of the germinal epithelium, while spermatozoa are released into the lumen 

of the tubules (Fig. 1.3). There are three types of spermatogonia at the outermost layer of the 

seminiferous tubules: dark type A (Ad), pale type A (Ap), and type B spermatogonia 

(Amann, 2008; Fig. 1.2). Ad cells are undifferentiated, and function in replenishing the pool 

of spermatogonia by undergoing mitosis to give rise to more Ad cells. In mammals, the bone 

morphogenetic protein (BMP) family, consisting of an array of signaling molecules, is 

thought to play a role in initiating spermatogenesis during puberty (Ghasemzadeh-

Hasankolaei et al., 2014). In mouse studies, the release of bone morphogenetic protein 8B 

precursors (BMP8B) by Ad cells have been shown to trigger their differentiation into Ap 

cells (Ghasemzadeh-Hasankolaei et al., 2014). Differentiating Ad cells continue to secrete 

increased levels of BMP8B, which in turn further induce the differentiation of neighbouring 

Ad cells into Ap cells (Ohinata, 2009). Ap cells subsequently differentiate into type B cells 

through mitotic divisions, followed by further differentiation into primary spermatocytes for 

entry into meiosis. Meiosis consists of two cell divisions, termed meiosis I (MI) and meiosis 

II (MII). During MI, the primary spermatocyte (2n) undergoes reductional division to 

segregate the homologous chromosomes, essentially splitting the chromosome content in 

half, to give rise to two haploid secondary spermatocytes (n). During MII, the secondary 

spermatocytes (n) undergo equational division to segregate the sister chromatids. This 

process does not reduce the chromosome content as the four spermatids that result remain 

haploid (n). This specialized cell division will be discussed in detail in section 1.2. 
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Figure 1.3 Development of spermatogonium into spermatozoa in the seminiferous 

tubules.  

The least differentiated cells, spermatogonium, are at the outer edge of the germinal 

epithelium, while spermatozoa are released into the lumen of the tubules 
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The last stage of spermatogenesis is spermiogenesis, which comprises of a series of 

remarkable events that transform round spermatids into streamlined, functional spermatozoa 

over a period of 24 days in humans (O’Donnell, 2016). The initial changes in the round 

spermatid entering spermiogenesis involve the formation of an acrosome cap from the Golgi 

apparatus and flagellum from the centriole. Both of these structures are necessary for motility 

and fertilization (O’Donnell, 2016). In the next phase, the nucleus and acrosome cap shift to 

one side of the cell in preparation for the elongation of the sperm head; a delicate process that 

is facilitated by nuclear compaction, and chromatin condensation (O’Donnell, 2016). The 

condensation of chromatin is achieved by replacing DNA-associated histones with small 

proteins called protamines (Bao and Bedford, 2016; Agarwal et al., 2016; O’Donnell, 2016). 

The human sperm has two types of protamines: protamine 1 (P1) and a family of protamine 2 

(P2). Although the function of protamine replacement in sperm is not fully understood, it is 

hypothesized that this process aims to condense the chromatin so that the sperm head can 

assume a compact structure, as well as protect the DNA from damage (Gilbert, 2014; Bao 

and Bedford, 2016; Agarwal et al., 2016; O’Donnell, 2016). However, only 85% of DNA in 

sperm is modified by protamines, while 15% of DNA remains associated with histones 

(Oliva, 2006). A balanced level of protamine replacement may be necessary to sperm 

function; studies have shown that decreased levels of protamine replacement are associated 

with DNA integrity, sperm viability, and male infertility (Oliva, 2006; Ravel et al., 2007). 

When this crucial step in spermiogenesis is complete, the mature spermatozoa are released 

into the lumen of the seminiferous tubules and transported to the epididymis where they will 

reside for approximately two weeks (Upadhyay et al., 2012; O’Donnell, 2016). It is during 

this period that the spermatozoa gain motility, and the ability to fertilize an oocyte.  
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1.1.1 Regulation of spermatogenesis 

From puberty and onward, the progression of spermatogenesis is intricately regulated 

by a network of hormones starting at the hypothalamus, which releases gonadotropin 

releasing hormone (GnRH) in regular intervals. GnRH induces the anterior pituitary to 

release follicle stimulating hormone (FSH) and lutenizing hormone (LH), which target the 

Sertoli cells and Leydig cells in the testes, respectively. FSH induces Sertoli cells to secrete 

various factors that are critical for spermatogenesis. In particular, glycoprotein secretion is 

important for the physical integrity of the seminiferous tubules, transport of ions and 

hormones, and movement of spermatocytes through the compartments of the tubule 

(Sherwood, 2015; Dimitriadis et al., 2015). Sertoli cells also possess androgen receptors 

(AR), while germ cells do not (Dimitriadis et al., 2015). Since Sertoli cells are in direct 

contact with the developing germ cells, it is theorized that androgens indirectly affect 

spermatogenesis through Sertoli cells (Dimitriadis et al., 2015). In fact, mouse studies 

showed that perturbed AR on Sertoli cells led to spermatogenic arrest at the spermatocyte or 

spermatid stage (Gendt et al., 2004; Holdcraft and Braun, 2004). Another important factor 

released by Sertoli cells in response to FSH is inhibin, which mainly acts in a negative 

feedback fashion to decrease FSH release by the anterior pituitary. Inhibin also possesses two 

heterodimers that are capable of enhancing or repressing testosterone production by Leydig 

cells (Martin, 2016). In addition to regulation by inhibin, Leydig cells are also controlled by 

LH to maintain the high level of testosterone that is needed for testis development, 

masculinization, and spermatogenesis. As testosterone builds up in the circulation, a negative 

feedback loop is activated to repress GnRH release by the hypothalamus (Sherwood, 2015; 

Martin, 2016). Due to the interconnection of hormones involved in spermatogenesis, an 
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imbalance in any component could negatively impact sperm production and fertility. 

Consequently, serum FSH and testosterone levels are routinely tested in the case of male 

infertility. Elevated FSH levels in particular have been shown to be a cause of impaired 

spermatogenesis (Dimitriadis et al., 2015). Abnormal hormone profiles may therefore affect 

crucial steps in spermatogenesis, such as meiosis, and lead to spermatocyte arrest. To better 

understand how errors during this step may contribute to male infertility, the next section will 

focus on the basic events in meiosis.   

1.2 Introduction to meiosis 

Meiosis marks a key feature of spermatogenesis, where it ensures correct 

chromosomal content in the sperm. This specialized cell division involves a round of DNA 

replication, followed by two successive cell divisions, MI and MII.  

1.2.1 Meiosis I 

During the first meiotic division, the homologous chromosomes in the diploid parent 

cell (2n) segregate to give rise to two haploid daughter cells (n) with half the chromosomal 

content. MI can be subdivided into four stages: prophase I, metaphase I, anaphase I, and 

telophase I based on the events that occur. From a genetic perspective, prophase I is 

considered the most important step in meiosis. During this period, the homologous 

chromosomes pair up and then join together in a process known as synapsis. This is mediated 

by the formation of the synaptonemal complex (SC), a ladder-like structure built from two 

axial/lateral elements and a transverse element, between the homologous chromosomes. 

Once synapsis is complete, the exchange of genetic material between the homologous 

chromosomes begins in a process known as recombination. Pairing, synapsis, and 
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recombination occur progressively during prophase I, which can be further subdivided into 5 

stages: leptotene, zygotene, pachytene, diplotene, and diakinesis according to the synaptic 

status of the homologous chromosomes (Fraune et al., 2012; Fig. 1.4). During leptotene, the 

chromosomes condense and begin to seek their homologous counterpart. Meanwhile, short 

fragments of the SC begin to form along the sister chromatids. During zygotene, the lateral 

elements of the SC have fully formed along the sister chromatids, while the transverse 

elements of the SC are just starting to form between the homologous partners. The start of 

pachytene is defined by the completion of synapsis, where the SC has linked the homologous 

chromosomes from end to end. This sets the stage for meiotic recombination to occur 

between the homologous chromosomes. During diplotene and diakinesis, the SC 

disintegrates, leaving the homologous chromosomes tethered solely at chiasmata, which are 

structures resulting from the recombination sites that formed during pachytene. In the 

following sections, we will further examine how the homologous chromosomes pair, 

synapse, and engage in meiotic recombination. 
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Figure 1.4 Stages of prophase I during meiosis I.  

The homologous chromosomes undergo homology search during leptotene; the lateral 

elements of the synaptonemal complex (SC) also starts to form. During zygotene, the 

transverse elements of the SC begin to form; synapsis is completed at the pachytene stage, 

followed by the completion of meiotic recombination which is characterized by the 

localization of the DNA mismatch repair protein MLH1 in humans. At the 

diplotene/diakinesis stages, the SC dissembles while the homologous chromosomes start to 

separate; however, the chromosomes are tethered at the chiasma. 
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1.2.1.1 Chromosome pairing  

Entering meiosis, the chromosomes are spatially separated from their homologous 

counterparts within the nucleus. The pairing of homologous chromosomes is characterized by 

overcoming this physical distance so that the chromosomes can pair with their partners based 

on their DNA sequence homology. Although how the homologous chromosomes find and 

recognize each other remains one of the mysteries in meiosis, the first step in this process is 

believed to be reducing the space between the homologous chromosomes (Zickler and 

Kleckner, 2016). Nearly all organisms rely on a telomere-led mechanism for bringing the 

homologous chromosomes in close proximity. The orientation of the centromeres and 

telomeres play an initial role where the telomeres fan out at one side of the nucleus opposite 

to the centromeres (Zickler and Kleckner, 2016; Fig. 1.5). A cytoskeleton-mediated process 

then moves the telomeres along the nuclear envelope to group them together, culminating in 

a tight bundle called a bouquet. The faithful attachment of the telomeres to the nuclear 

envelope depends on a functional telomere as well as an appropriate association with its 

structural proteins (Chikashige et al., 2007; Conrad et al., 2008). Numerous studies have 

shown that defects in telomere length and telomeric proteins may not only compromise 

synapsis, but also have a negative downstream effect on meiotic recombination (reviewed in 

Naranjo, 2012; Reig-Viader et al., 2014). 
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Figure 1.5 Telomere movement during prophase I of meiosis I.  

In leptotene, the homologous chromosomes are spatially distant from each other. The 

telomeres begin to attach to the nuclear membrane and move the chromosomes in to close 

proximity by early zygotene. By mid-zygotene, the telomeres are bundled closely together to 

form a bouquet; it is during this time that the transverse elements of the synaptonemal 

complex forms. During late zygotene, the telomeres disperse, but remain attached at the 

nuclear membrane; meiotic recombination follows during the pachytene stage. Finally, at the 

diplotene/diakinesis stage, the telomeres detach from the nuclear membrane. 
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The movement of the chromosomes into close association is only one step of the 

pairing process. The homologous chromosomes still need to pair up based on sequence 

homology, a process that occurs concomitantly with telomere bouquet formation. Studies in 

different model organisms have yielded a surprising variety of mechanisms for homology 

search (Naranjo, 2012; Zickler and Kleckner, 2016). The chromosomes of the worm 

Caenorhabditis elegans possess a chromosome-specific pairing center that consists of a 

DNA-protein complex (Naranjo, 2012; Zickler and Kleckner, 2016). The fission yeast 

Schizosaccharomyces pombe employs a meiosis-specific non-coding RNA to facilitate 

homology detection (Naranjo, 2012; Zickler and Kleckner, 2016). There are also 

recombination-dependent strategies identified in the yeast Saccharomyces cerevisiae, plants, 

and mammals (Naranjo, 2012; Zickler and Kleckner, 2016). In these species, the 

topoisomerase-like protein Spo11 catalyzes the formation of DNA double-strand breaks 

(DSBs) on the homologous chromosomes during early prophase I. Although DSBs are the 

foundation for recombination at the later stages of prophase I, they seem to be equally 

important for homology search and subsequent SC formation as studies in budding yeast, 

Sordaria, and mouse mutants have revealed a relationship between DSBs formation and SC 

formation (Kauppi et al., 2013; Rockmill et al., 2013). To further suggest the importance of 

DSB formation on homology recognition, there is evidence that DSBs are more abundant in 

species that require them for homology recognition compared to those that do not (Lam and 

Keeney, 2014; Borde and deMassy, 2013).   

1.2.1.2 Synapsis and the synaptonemal complex 

After the chromosomes pair with their homologous partners, they undergo synapsis 

where the SC forms to build a bridge between the homologous chromosomes. The SC was 
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first described in 1956 (Moses), and is a protein structure that is unique to synapsis (Moses, 

1958). The two lateral elements of this tripartite run along the length of the homologous 

chromosomes and are identified as the synaptonemal complex protein 2 (SCP2) and 

synaptonemal complex protein 3 (SCP3) in mammals (Heyting et al., 1985; Zickler and 

Kleckner, 2016). During synapsis, SCP2 and SCP3 directly interact with the chromosomes 

through DNA-binding domains (Offenberg et al., 1998; Zickler and Kleckner, 2016). The 

third component of the SC is the transverse filaments, made up of synaptonemal complex 

protein 1 (SCP1) in mammals, which joins the lateral elements together to form a ladder-like 

structure (Iersel et al., 1992; Zickler and Kleckner, 2016). SCP1 is made up of a middle 

coiled-coil segment, flanked by a globular N-terminal domain and a globular C-terminal 

domain (Page and Hawley, 2003; Zickler and Kleckner, 2016; Fig. 1.6). This protein 

structure facilitates the dimerization of two parallel SCP1s, such that their N-termini interact 

with each other and reside in the center of the SC, while the C-termini interact with the 

lateral elements of the SC (Page and Hawley, 2003; Zickler and Kleckner, 2016; Fig. 1.6).  

While the structure of the SC is highly conserved in eukaryotes, the order in which 

synapsis and recombination occur seems to vary drastically between species (Zickler and 

Kleckner, 2016). Some eukaryotes, such as Drosophila and C. elegans, require the complete 

formation of the SC prior to meiotic recombination (McKim et al., 1998; Dernburg et al., 

1998; Zickler and Kleckner, 2016). Conversely, many other species such as S. cerevisiae, 

humans, and other mammals initiate recombination through the formation of DSBs, before 

the SC forms (Mahadevaiah et al., 2001; Lenzi et al., 2005; Zickler and Kleckner, 2016).  
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Figure 1.6 Structure of the synaptonemal complex (SC).  

The lateral elements (SCP2 and SCP3 in humans) form along the homologous chromosomes. 

The transverse element (SCP1 in humans) contain a central region that is rich in coiled-coils, 

flanked by a globular C-terminal domain and a globular N-terminal domain. The C-termini 

embeds in the lateral elements, while the N-termini form the center of the SC. 



18 

 

1.2.1.3 Meiotic recombination  

Meiotic recombination, or crossing over, is characterized by the reciprocal exchange 

of DNA between homologous chromosomes during prophase I. This process plays two 

prominent roles: (1) increasing genetic diversity during sexual reproduction, and (2) ensuring 

the faithful segregation of homologous chromosomes during the first meiotic division. 

Although many proteins involved in recombination have been described, our understanding 

of the exact mechanisms of how crossovers form, and how the location of crossovers are 

regulated remains incomplete.  

1.2.1.3.1 Mechanism of meiotic recombination 

Meiotic recombination starts with the formation of DNA DSBs, or the physical 

breakage of DNA along the homologous chromosomes. These DSBs can be rejoined in either 

a crossover pathway to give a recombinant product, or a non-crossover pathway. Since the 

number of DSBs is observed to be vastly greater than the number of crossovers that form, it 

is theorized that most DSBs are resolved through a non-crossover pathway (Baudat et al., 

2013).  

Recombination is initiated at the onset of prophase I with the generation of DSBs 

along the homologous chromosomes by the nuclease Spo11 (Keeney et al., 1997; Fig. 1.7, 

step 1). There are two isoforms of Spo11: Spo11β and Spo11α. Spo11β is suggested to 

catalyze the majority of DSBs, namely those on autosomes (Bellani et al., 2010; Baudat et 

al., 2013). On the other hand, Spo11α is thought to catalyze DSBs specifically along the sex 

chromosomes, as suggested from studies in Spo11α null mice, which revealed impaired 

synapsis and recombination between the sex chromosomes (Kauppi et al., 2011; Baudat et 



19 

 

al., 2013). After DSBs are formed, Spo11 is released and an unknown exonuclease creates a 

3’ overhang in the DNA (Hunter and Kleckner, 2001; Fig. 1.7, step 2). Currently, the most 

probable exonuclease involved in the 3’ overhang cleavage is the DSB repair protein MRE11 

(Jing et al., 2005). These 3’ overhangs then undergo homology search and strand invasion 

into the homologous counterpart (Fig. 1.7, step 3), aided by the recruitment of numerous 

proteins including replication protein A (RPA), RAD51, DMC1 and BRCA1 (Sinohara and 

Shinohara, 2004; Baudat et al., 2013). This process, known as single end invasion, generates 

a displacement loop (D-loop) structure that anneals to the single-strand overhang of the 

homologous chromosome (Baudat et al., 2013). Subsequent DNA synthesis at the invading 

end then connects the homologous chromosomes by two DNA junctions, termed the double 

Holliday junction (Fig. 1.7, step 4A). The double Holliday junctions are then resolved, 

depending on the orientation of the cleavage, to give rise to either a crossover or non-

crossover (Fig. 1.7, step 5A-B). Several DNA-mismatch repair proteins are involved in the 

resolution of the double Holliday junction, including the heterodimers formed by mutS 

homologs MSH4 and MSH5 (de Vries et al., 1999; Kneitz et al., 2000; Baudat et al., 2013), 

as well as the mutL homologues MLH1 and MLH3, which are associated with crossover 

resolution (Hunter and Borts, 1997; Hoffmann and Borts, 2004; Baudat et al., 2013).  

Another pathway for how non-crossovers arise was suggested by several studies in 

various organisms such as S. cerevisiae and Drosophila (Do et al., 2014), which provided 

evidence that crossovers and non-crossovers may not necessarily arise from the same double 

Holliday junction (Borner, 2004; Terasawa et al., 2007; Miura et al., 2012). In fact, non-

crossovers are suggested to predominantly occur through a process called synthesis-

dependent strand-annealing (SDSA) (Cromie and Smith, 2007; Terasawa et al., 2007; Miura 
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et al., 2012). SDSA is characterized by strand displacement after the formation of the D-loop, 

where the extended single-strand DNA (ssDNA) end that forms following strand 

displacement anneals to the ssDNA on the homologous partner (Fig. 1.7, step 4B). The gap 

between the strands are then filled by DNA synthesis and ligation (Fig. 1.7, step 5C).  

 

Figure 1.7 Mechanisms of meiotic recombination.  

In step 1, double-strand breaks (DSBs) are initiated by exonuclease Spo11. Next, an 

unknown exonuclease creates 3’ overhangs (Step 2). In step 3, the 3’ overhang undergoes 

homology search, single end invasion, and generates a D-loop. In step 4, resolving the D-

loop can involve either DNA synthesis to create a double Holliday junction (4A), or single 

strand displacement (4B). The double Holliday Junction can be resolved through DNA 

synthesis into a crossover (5A), or non-crossover (5B), whereas the single strand 

displacement method can only create a non-crossover through DNA synthesis and ligation 

(5C). 
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Distribution of crossovers 

Crossovers are non-randomly distributed along the pairs of homologous 

chromosomes (bivalents) during meiosis. Cytological studies that examined the distribution 

of crossovers in humans have revealed several trends: (1) there are regions of the genome 

that are most susceptible to crossovers, termed hotspots, (2) at least one crossover is formed 

on each bivalent, (3) crossover formation is inhibited near the centromeres and telomeres, (4) 

crossover formation in the subtelomeres (region adjacent to telomeres) is favored, and (5) 

when two crossovers are found on the same chromosome, they are spaced apart due to 

crossover interference (Mezard et al., 2015).  

A comparison between genome-wide maps of DSBs and crossover sites in mice and 

humans demonstrated that the crossover landscape generally mirrors that of DSBs 

(Smagulova et al., 2011; Pratt et al., 2014). However, the correlation between the two maps 

did not span the entire chromosomes, suggesting that the heterogeneity in DSB formation is 

only one of the factors governing crossover distribution (Smagulova et al., 2011; Pratt et al., 

2014). It has been long speculated that the majority of crossover events occur in short 

chromosomal intervals, at so-called hotspots. Recent techniques using genome-wide mapping 

of the crossover landscape finally shed light on this theory. Over 25,000 crossover hot spots 

have been revealed in humans with the majority of these located outside of genes (Ségurel et 

al., 2011; Baudat et al., 2013; Border and de Massy, 2013).  

In humans, the number of DSBs that form in the leptotene stage of prophase I is ten 

times greater than the number of crossovers that result at the pachytene stage (Baudat et al., 

2013). The frequency of crossovers is highly regulated such that at least one crossover forms 

per bivalent. Since the homologous chromosomes are tethered by the chiasmata at the site of 
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recombination until they segregate during anaphase I, the presence of at least one chiasmata 

per bivalent is important for ensuring the proper segregation of the homologous 

chromosomes, and the progression of meiosis (discussed further in section 1.2.5.1).  

Aside from the regulation of the frequency of crossovers, the positions of the 

crossovers are also strategically placed. There are relatively low incidences of crossover 

events near the centromere in humans, most likely due to the compaction of chromatin. In 

humans, the distal regions of the chromosomes are largely composed of euchromatin and 

much more susceptible to recombination than the heterochromatin rich regions near the 

centromeres (Mezard et al., 2015). Analysis of DSBs in S. cerevisiae revealed abundant 

DSBs near the centromeres, but an inhibition of crossover formation during DSB repair 

(Blitzblau et al., 2007). The prevention of crossover formation near the centromeres is 

thought to protect the faithfulness of meiotic chromosome segregation (discussed further in 

section 1.2.5.2). Crossovers are also typically suppressed near the vicinity of the telomeres, 

possibly to prevent damage to the repetitive DNA (Blitzblau et al., 2007). In the past decade, 

studies have shed light on the importance of telomeres in meiotic recombination, where 

telomere-guided mechanisms have been shown to ensure sufficient DSB formation near the 

subtelomeres of the chromosomes in S. cerevisiae (Peoples-Holst and Burgess, 2005; 

Blitzblau et al., 2007). In human males, increased DSB activity and crossover formation have 

been observed near the subtelomeres compared to the rest of the chromosomes (Mezard et 

al., 2015). However, subtelomeric crossovers are less frequent in females (Blouin et al., 

1995; Badge et al., 2000; Mezard et al., 2015). This difference in crossover distribution may 

be due to the difference in the initiation of synapsis between the sexes; in males, synapsis 
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begins at the subtelomeric regions of the chromosomes, while in females, synaptic initiation 

is commonly located at the interstitial regions of the chromosomes (Mezard et al., 2015).  

Indeed, the timing of synapsis along with DSB formation seem to influence the 

crossover landscape, where early DSBs are preferentially selected for repair as crossovers 

(Higgins et al., 2012; Pratto et al., 2014). Once the first crossover forms, any subsequent 

crossovers generally do not form in the adjacent areas, such that all crossovers are adequately 

spaced apart in a phenomenon called crossover interference (Higgins et al., 2012; Pratto et 

al., 2014). Finally, there is recent evidence of crossover events corresponding with 

methylated histones H3K4me3, and local DNA hypomethylation in S. cerevisiae, mice and 

humans (Melamed-Bessudo et al., 2012; Macaulay et al., 2012; Mirouze et al., 2012; 

Colome-Tatche et al., 2012). These suggest that epigenetic mechanisms such as DNA and 

histone modifications that alter the chromatin’s accessibility to proteins may also affect the 

distribution and timing of DSBs, and thus the distribution of crossovers.  

1.2.1.4 Meiotic inactivation of sex chromosomes  

In mammals, female somatic cells undergo a process of sex chromosome inactivation 

where one of the X chromosomes is randomly transcriptionally silenced in order to achieve 

gene dosage compensation between the sexes. Another form of sex chromosome inactivation 

occurs in male germ cells during meiosis, where the sex chromosomes are inactivated upon 

entering prophase I. Human males have two distinct sex chromosomes, X and Y, which only 

share a small region of homology at the tip of the chromosome arms termed the 

pseudoautosomal region (PAR). Similar to meiotic recombination on the autosomes, at least 

one crossover event must occur between the sex chromosomes on the PAR to ensure their 

proper segregation during the first meiotic division. To achieve this, the X and Y 
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chromosomes must pair and synapse at the PAR during prophase I. Meanwhile, the 

unsynapsed regions on the sex chromosomes undergo chromatin compaction and form a 

condensed structure called the sex body (reviewed in Handel, 2004). The remodeling of the 

unpaired chromosome regions into heterochromatin during the formation of the sex body 

leads to the transcriptional silencing of the genes in that region, through a mechanism known 

as meiotic sex chromosome inactivation (MSCI). 

The mechanism of MSCI is distinct compared to that of X chromosome inactivation 

(XCI) in female somatic cells. In females, the functional RNA, inactive X specific transcript 

(XIST), transcribed from the X chromosome is responsible for initiating XCI through the 

localization of XIST to the X chromosome (Bontenbal and Gribnau, 2016; Payer, 2016). The 

binding of XIST recruits various proteins involved in chromatin remodeling, which function 

to compact the chromatin through epigenetic changes such as hypermethylation, and 

deacetylation of histones (Bontenbal and Gribnau, 2016; Payer, 2016). In males, XIST is 

exclusively expressed in the testis in mice (Dilworth and McCarrey, 1992), and have been 

shown to localize along the X chromosome (Ayoub et al., 1997). However, the deletion of 

XIST in mice did not affect MSCI, suggesting that other mechanisms are responsible for the 

male meiosis-specific process (McCarrey et al., 2002; Turner, 2007; Checchi and 

Engebretch, 2011). 

At the onset of prophase I, the sex chromosomes are transcriptionally active until the 

initiation of DSBs induces the temporary phosphorylation of H2AX (histone family, member 

X) on all chromosomes (Baudat et al., 2013). However, once the X and Y chromosomes have 

synapsed at the PAR at the zygotene to pachytene transition stage, BRCA1 proteins localize 

to the unsynapsed regions of the sex chromosomes, and subsequently recruit kinase ATR to 
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specifically phosphorylate H2AX to γH2AX in these regions. The phosphorylation of H2AX 

is thought to trigger chromatin condensation and transcriptional repression (Turner, 2007; 

Checchi and Engebretch, 2011). The inactivation of the unsynapsed regions on the sex 

chromosomes are later completed by additional chromatin modifications such as histone H3 

and H4 deacetylation (Khalil et al., 2004) and ubiquitylation of H2A (Baarends et al., 1999; 

Checchi and Engebretch, 2011). These modifications remain throughout meiosis, whereas 

BRCA1, γH2AX, and ATR are displaced after the diplotene stage of prophase I. In fact, there 

is evidence that parts of the sex chromosomes remain transcriptionally silenced beyond 

meiosis in a process termed post-meiotic sex chromosome repression (PSCR) (Namekawa et 

al., 2006; Checchi and Engebretch, 2011). There are also new revelations suggesting that the 

event of transcriptional silencing during the pachytene stage is not only limited to the sex 

body, but any unsynapsed region along homologous chromosomes during prophase I 

(Baarends et al., 2005; Turner, 2007; Checchi and Engebretch, 2011). Therefore, it has been 

hypothesized that MCSI may be the result of the more general mechanism, meiotic silencing 

of unsynapsed chromatin (MSUC), where the transcriptional status of the chromosomes is 

dependent on their synaptic status (Ferguson et al., 2008). For example, it appears that sex 

chromosomes that do undergo full synapsis can escape MSCI. This phenomenon is evident in 

XYY mice where the two Y chromosomes fully synapse and test negative for γH2AX 

(Turner, 2007; Checchi and Engebretch, 2011). Furthermore, studies on XO mice have 

demonstrated that the lone X chromosome without a pairing partner is transcriptionally 

inactivated during meiosis, leading to meiotic arrest and infertility (Turner, 2007; Checchi 

and Engebretch, 2011). It is apparent that normal MSCI is imperative for cells to proceed 

past prophase I onto the next steps in MI: the segregation of the homologous chromosomes.  
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1.2.1.5 Segregation of chromosomes  

At the diplotene stage of prophase I, the SC begins to disassemble, leaving the 

homologous chromosomes solely tethered at chiasmata, the spots where crossovers had 

formed. Bivalents that did not experience a crossover event are therefore untethered, and at 

risk of segregation errors in the first meiotic division. Recent evidence suggests that 

fragments of SC remain at the centromeres between bivalents at this time, which is 

speculated to promote the correct segregation of achiasmate bivalents (Kurdzo and Dawson, 

2014).  

Moving from prophase I to metaphase I, the homologous chromosomes begin to align 

along the equatorial plate of the cell. Microtubules extend from the centrioles and attach to 

the kinetochores on the centromeres of the sister chromatids. The sister kinetochores must 

attach to microtubules originating from the same spindle pole in a monopolar fashion in order 

for the sister chromatids to be pulled in the same direction (Hauf and Watanabe, 2004; 

Nambiar and Smith, 2016; Fig. 1.8). At the same time, the kinetochores on the homologous 

counterparts must attach to microtubules from the opposite spindle poles, so that the 

homologous chromosomes are pulled to opposite sides of the cell to form separate daughter 

cells (Hauf and Watanabe, 2004; Nambiar and Smith, 2016). In eukaryotes, ring-shaped 

protein complexes called cohesins also play a part in the segregation of chromosomes. 

Cohesins are established between sister chromatids along their entire length prior to meiosis 

and function to hold the sister chromatids together until they are ready to be separated (Fig. 

1.8). Since the homologous chromosomes at anaphase I are tethered at chiasmata, which 

covalently attaches a sister chromatid from one homologous chromosome to a sister 

chromatid from the homologous counterpart, cohesins along the arms of the sister chromatids 
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are released in order to resolve the chiasmata and allow the homologous chromosomes to 

segregate (Fig. 1.8). However, cohesins around the centromeres remain in order to prevent 

the premature segregation of the sister chromatids (Riedel et al., 2006, discussed in detail in 

section 1.2.2). The homologous chromosomes are then pulled to opposite sides of the cell 

through the shortening of the microtubules. At last, the microtubules disassemble and nuclear 

membranes form around each set of haploid chromosomes during telophase I. Cytokinesis 

follows by pinching the cell membranes to give rise to two haploid daughter cells, each 

containing two sister chromatids. These cells that arise from MI are called secondary 

spermatocytes, and are ready to enter the second meiotic division.   
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Figure 1.8 Meiotic spindle orientation and cohesin during metaphase and anaphase I 

and II. 

 During metaphase I, the kinetochores of the sister chromatids must attach to spindles 

originating from the same pole (monopolar orientation). In anaphase I, cohesins on the arms 

of the sister chromatids are cleaved so that the homologous chromosomes can resolve 

chiasmata and segregate. During metaphase II, the kinetochores on the sister chromatids must 

attach to spindles arising from opposite poles (bipolar orientation). During anaphase II, 

cohesins between the centromeres of the sister chromatids are cleaved to allow the 

segregation of the sister chromatids. 
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1.2.2 Meiosis II 

During the second meiotic division, the sister chromatids in the secondary 

spermatocytes are segregated such that each daughter cell receives one of the two sister 

chromatids to form a haploid gamete. Like the first meiotic division, MII can also be 

subdivided into four stages: prophase II, metaphase II, anaphase II, and telophase II. It is 

important to note that unlike in MI, DNA replication does not occur prior to prophase II. 

During metaphase II, the chromosomes align at the equatorial plate, with the kinetochores on 

the sister chromatids pointing toward opposite poles. This time, the sister kinetochores must 

attach to microtubules originating from the opposite spindle poles in a bipolar fashion in 

order for the sister chromatids to be pulled in the opposite directions (Yamamoto and 

Hiraoka, 2003; Hauf and Watanabe, 2004; Fig. 1.8). At the onset of anaphase II, cohesins 

that were tethering the centromeres of the sister chromatids together dissociate so the sister 

chromatids can segregate into separate daughter cells (Fig. 1.8). Similar to the events in MI, 

telophase II and cytokinesis then occur to give result in two daughter cells, each with one set 

of chromosomes.  

The fidelity of MII is dependent on the integrity of cohesins holding the sister 

chromatids together, such that the sister chromatids do not separate until anaphase II. As 

previously described, even though cohesins along the arms of the sister chromatids are 

dispelled during anaphase I, it is crucial that cohesins at the centromeres of the sister 

chromatids are retained until anaphase II. During meiosis, many eukaryotes rely on a cohesin 

complex that includes the protein Rec8 to enforce sister chromatid cohesion. Mounting 

evidence shows that Rec8 along the arms of sister chromatids are cleaved by the enzyme 

separase at anaphase I (Allshire, 2004). Interestingly, Rec8 on the centromeres of the sister 
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chromatids are protected from this cleavage, such that they remain until late metaphase II 

(Allshire, 2004; Wassmann, 2013; Marston, 2015). In 2004, Katajima et al. identified a 

protein, called shugoshin (Sgo1), in fission yeast that appears to protect centromeric Rec8 

from degradation (Wassmann, 2013; Marston, 2015). It turns out that the phosphorylation of 

Rec8 is essential for its cleavage by separase (Marston, 2015). The presence of Sgo1 at the 

centromeres counteracts this phosphorylation by recruiting protein phosphatase 2A to prevent 

the cleavage of Rec8 (Marston, 2015). Proteins with similar sequences to Sgo1 have also 

been identified in Drosopholia and mammals, suggesting that the function of Sgo1 may be 

widely conserved (Allshire, 2004; Wassmann, 2013; Marston, 2015). Our understanding of 

how Sgo1 homologues in mammals operate is only beginning to be understood. Future 

studies on the role of this protector protein and cohesins can further elucidate the 

mechanisms underlying the second meiotic division, and how errors may arise if these 

proteins are altered.  

1.2.3 Meiotic checkpoints 

The progression of meiosis is carefully monitored through checkpoints, in order to 

avoid the creation of defective gametes with an aberrant number of chromosomes. 

Checkpoints are regulatory processes that block erroneous cells from completing meiosis by 

targeting the cell for arrest and apoptosis. There are two well-defined checkpoints during 

meiosis: the pachytene checkpoint, or meiotic recombination checkpoint (MRC), and the 

spindle assembly checkpoint (SAC). The first checkpoint during meiosis occurs at the 

pachytene stage of prophase I (Subramanian and Hochwagen, 2014). The first evidence for 

this checkpoint came from observations in mouse studies where mice with different 

mutations for proteins involved in synapsis and recombination showed meiotic arrest at the 
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pachytene stage (Subramanian and Hochwagen, 2014). The main proteins involved in the 

MRC also function in the canonical DNA damage response pathways in mitosis. Two critical 

players are the checkpoint sensor kinases ATM and ATR, which are activated by DNA 

damage, such as unrepaired DSBs, as well as unsynapsed chromosomes during meiosis 

(Subramanian and Hochwagen, 2014). Both proteins require cofactors for the detection of 

DNA damage. ATM detects the end of DSBs with the help of the MRN complex (MRE11-

RAD50-NBS1) (Subramanian and Hochwagen, 2014). ATR detects ssDNA following its 

activation by ATRIP, as well as ssDNA/dsDNA junctions with the aid of the PCNA-like 9-1-

1 complex (RAD9-RAD1-HUS1) (Subramanian and Hochwagen, 2014).  

When germ cells successfully pass the MRC and head to metaphase I, a second 

checkpoint awaits them to ensure that the homologous chromosomes are aligned properly at 

the equatorial plate, in preparation for chromosome segregation later on. The SAC blocks the 

transition from metaphase I to anaphase I if defective spindles are detected, or if there is 

insufficient mechanical tension exerted on the kinetochores by the spindle microtubules 

(Gorbsky et al., 2015). The mechanisms of the SAC in meiosis and mitosis are thought to be 

analogous (Gorbsky et al., 2015). Mainly, kinetochores lacking microtubule tension or 

attachment trigger the accumulation of several checkpoint signaling proteins such as the 

mitotic arrest-deficient (Mad) proteins, budding uninhibited by benzimidizole (Bub) proteins, 

and monopolar spindle 1 (Mps1) protein (Jia et al., 2013; Sacristan and Kops, 2014; Gorbsky 

et al., 2015). These proteins function as a unit to inhibit the anaphase-promoting complex or 

cyclosome (APC/C), which is necessary for the transition into anaphase I (Gorbsky et al., 

2015). As we build understanding toward the mechanics of meiotic checkpoints, it became 

apparent that males and females may display sex specific variations when it comes to the 
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efficiency of checkpoints. The sex specific differences in meiosis will be discussed in the 

following section.  

1.2.4 Sex differences in meiosis 

 Although the sex specific differences in meiotic sex chromosome inactivation was 

previously addressed, there are three other main differences between male and female 

meiosis: (1) the temporal progression of meiosis, (2) the frequency of recombination and (3) 

the efficiency of checkpoints.  

The most apparent difference between male and female meiosis is the timing. In 

males, meiosis is initiated after puberty and proceeds without interruption. In females, 

meiosis begins during fetal development, but oocytes are arrested part-way through MI. They 

do not resume meiotic division until ovulation, when they finally complete MI and are 

arrested once more part-way through MII. The second meiotic division is completed when 

the oocyte is fertilized by a sperm (Paoloni-Giacobino et al., 2000).  

A molecular difference in female and male meiosis involves the frequency of 

crossover formation at the pachytene stage of prophase I. In males, spermatocytes have been 

shown to contain approximately 50 crossovers per cell, whereas female oocytes contain 

approximately 70 crossovers per cell (Tease and Hulten, 2004). Surprisingly, studies in XY 

sex-reversed female mice showed that the recombination rate in their XY germ cells 

mimicked that of an XX female, suggesting that the rate of recombination is determined by 

the sex chromosome content of the somatic cells surrounding the developing germ cell, 

instead of the sex chromosome content of the germ cell itself (Lynn et al., 2005). Females 

also display longer SCs when compared to those in males (Tease et al., 2004), which may 
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partly explain the difference in crossover frequency between the sexes as crossover 

frequency has been shown to positively correlate to SC length (Lynn et al., 2002; Baudat et 

al., 2013). The shorter SC lengths in males may also signify a more condensed chromosome 

state, which is less accessible to DSB machinery, and thus exhibit a lower rate of crossover 

formation (Baudat et al., 2013).  

There is increasing evidence that meiotic checkpoints operate at different efficiency 

in males and females (Touati and Wassmann, 2016). In contrast to males, female germs cells 

are particularly prone to errors in chromosome segregation (Hunt and Hassold, 2000). In fact, 

knock out studies on mice have demonstrated vastly different results between the sexes when 

mutations in proteins involved in synapsis and recombination were introduced. For example, 

mutations in the meiotic gene Scp3 led to spermatogenic arrest and infertility in male mice, 

while in females, fertility was retained despite a reduction in litter size and increase in 

chromosomal abnormalities in the offspring (Yuan et al., 2000). Likewise, mutations in the 

protein Fkpb6, which associates with the SC during prophase, resulted in spermatogenic 

arrest in male mice, and retained fertility in female mice (Crackower et al., 2003). It seems 

that meiotic checkpoints in females are less stringent than those in males. While the majority 

of erroneous cells are arrested during male meiosis, female meiosis allows a high portion of 

erroneous cells to complete meiosis, potentially resulting in aneuploid oocytes.  

1.2.5 Origin of aneuploidy 

 Aneuploidy refers to changes in the chromosome content of a cell, where there is a 

gain or loss of whole chromosomes. This condition can arise from errors in chromosome or 

sister chromatid segregation during meiotic or mitotic divisions. When segregation goes awry 

in either MI or MII cell division, the gamete that is produced may be aneuploid. The 
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subsequent fertilization of an aneuploid gamete will then give rise to an embryo with an 

abnormal chromosome constitution. Alternatively, a normal embryo may experience 

segregation errors during mitotic divisions during its growth, resulting in aneuploidy down 

the road. Segregation errors during cell division are relatively common, with aneuploidy 

being detected in 5% of human pregnancies (Hassold and Hunt, 2001; Nagaoka et al., 2012). 

As the human genome is intricately balanced and particularly sensitive to abnormal doses of 

genetic content, perturbations in the chromosome complement are for the most part 

incompatible with embryo survival, generally leading to pregnancy loss. In fact, aneuploidy 

is responsible for approximately 35% of spontaneous abortions and 4% of stillbirths, marking 

it the leading genetic cause of human pregnancy loss (Nagaoka et al., 2012, Table 1.1). When 

it comes to live births, the incidence of aneuploidy is dramatically decreased to 0.3%. This 

number is nevertheless significant as aneuploidy is the most common known cause of mental 

retardation and leading cause of congenital malformations (Nagaoka et al., 2012).  
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Table 1.1 Aneuploidy in humans at different stagesa 

Population Methodology 

Incidence 

of 

aneuploidy 

(%) 

Most common 

aneuploidies 
References 

bOocytes or 

polar bodies 

Karyotyping 10-35 
+16; +17; +18; 

+21; +22 

Pellestor et al., 2006; 

Pacchierotti et al., 

2007 

FISH 20->70 Various 

Pellestor et al., 2006; 

Pacchierotti et al., 

2007 

CGH, SNP 

array, CGH 

array 

30-70 
+15; +16; +21; 

+22 

Fragouli et al., 2011; 

Gabriel etla., 2011; 

Garaedts et al., 2011; 

Obradors et al., 2011 

Sperm 

Karyotyping 1-4 
XY disomy; 

+21; +22 

Martinand 

Rademaker, 1990; 

Martin et al., 1991 

FISH 1-3 
XY disomy; 

+13; +21; +22 
Templado et al., 2011 

cPreimplantation 

embryos 

Karyotyping 20-40 +16; +17; +18 
Zenzes and Casper, 

1992 

FISH 25->70 Various 

Magli et al., 2001; 

Staessen et al., 2004; 

Munne et al., 2007; 

Ercelen et al., 2011 

CGH, SNP 

array, CGH 

array 

30-60 
+15; +16; +21; 

+22 

Fragouli et al., 2011; 

Gutierrez-Mateo et 

al., 2011; Treff et al., 

2011; Treff et al., 

2010 

Spontaneous 

abortions 
Karyotyping >35 

45,X; +15; +16; 

+21; +22 
Hassold et al., 1996 

Stillbirths Karyotyping 4 

45,X; +13; +18; 

+21; XXX; 

XXY 

Hassold et al., 1996 

Newborns Karyotyping 0.3 

+13; +18; +21; 

XXX; XXY; 

XYY 

Hassold et al., 1996 

aTable adapted from Nagaoka et al., 2011   

bOocytes in these studies were retrieved after superovulation. The data therefore may not 

be reflective of oocytes under natural conditions. 

cEmbryos in these studies arose from in vitro fertilization. The data therefore may be 

reflective of embryos under natural conditions. 
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 Theoretically, segregation errors can occur to any of the autosomes and sex 

chromosomes in humans. However, only some trisomies (gain of a chromosome) and one 

type of monosomy (loss of a chromosome) may be viable in the embryo. The most common 

cases of aneuploidy in live births are trisomy 13 (Patau syndrome), trisomy 18 (Edwards 

syndrome), trisomy 21 (Down syndrome), and sex chromosomal aneuploidies such as XXY 

(Klinefelter syndrome), XYY, and monosomy X (Turner syndrome). With the use of 

polymorphic DNA markers, researchers have attempted to identify the parental origin of 

abnormal chromosomes in individuals with aneuploidy (Hall et al., 2007b, Table 1.2). The 

findings showed that the vast majority of aneuploidies originate from errors during the first 

meiotic division in the mother (Hassold et al., 1996; Ioannou and Tempest, 2015). 

Interestingly, not all chromosomes experience similar likelihoods for error; for example, 

trisomies 16 and 22 almost always originate from MI errors, while trisomy 18 originates 

more readily from MII errors (Bugge et al., 1998; Hassold and Hunt, 2001; Hall et al., 

2007b). On the other hand, aneuploidy for chromosomes 7 and 8 seem to originate most 

frequently during mitotic divisions in the embryo (Zaragoza et al., 1998; James and Jacobs, 

1996; Karadima et al., 1998).  
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Table 1.2 Origins of human aneuploidiesa 

  Maternal  Paternal   

Aneuploidy n 
MI 

(%) 
MII (%) 

MI 

(%) 

MII 

(%) 

Post-

zygotic 

mitosis 

References 

+2 18 53.4 13.3 27.8 0 5.6 
Zarogoza et 

al., 1998 

+7 14 17.2 25.7 0 0 57.1 
Zarogoza et 

al., 1998 

+8 12 50.0 0 0 50.0 

James and 

Jacobs, 1996; 

Karadima et 

al., 1998 

+13 74 56.6 33.9 2.7 5.4 1.4 
Hall et al., 

2007a 

+14 26 36.5 36.5 0 19.2 7.7 
Hall et al., 

2007b 

+15 34 76.3 9.0 0 14.7 0 
Zarogoza et 

al., 1998 

+16 104 100.0 0 0 0 0 
Hassold and 

Hunt, 2001 

+18 150 33.3 58.7 0 0 8.0 
Bugge et al., 

1998 

+21 671 67.5 22.1 3.9 0 19.2 
Hassold and 

Sherman, 2000 

+22 130 86.4 10 1.8 0 1.8 
Hall et al., 

2007b 

XXX 46 63.0 17.4 0 0 19.6 
Macdonald et 

al., 1994 

XXY 224 23.7 14.2 50.9 0 7.7 
Thomas and 

Hassold, 2003 

XYY 19 0 0 0 84.2 15.8 
Robinson et 

al., 1999 

XOc 93 25.8 74.2   
Jacobs et al., 

1997 
aTable adapted from Hall et al., 2006b 
bdid not distinguish between MI and MII errors 
ccannot distinguish between MI and MII errors in XO females 
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 About 90% of trisomies arise from meiotic errors in either the mother or father 

(Hassold et al., 2007). Because the majority of aneuploidies arise through maternal 

contribution, the importance of paternally derived aneuploidies has been largely overlooked. 

While the paternal contribution to autosomal trisomies is minor (0-30% depending on the 

chromosome), sex chromosome aneuploidies do frequently originate from fathers (Hall et al., 

2007b, Hall et al., 2007a; Uroz and Templado, 2012). In fact, paternal origins have been 

indicated in approximately 50% of XXY males (MacDonald et al., 1994; Ioannou and 

Tempest, 2015), 70 to 80% of 45,X females, and 100% of 47,XYY males (Jacobs et al., 

1997; Hall et al., 2007a; Uroz and Templado, 2012; Ioannou and Tempest, 2015). Moreover, 

there is accumulating evidence that infertile men display higher levels of aneuploidy in their 

sperm (Tang et al., 2004; Hansen et al., 2005; Ma et al., 2006a; Ma et al., 2006b; Kirkpatrick 

et al., 2008; Ferguson et al., 2009; Kirkpatrick et al., 2015; Ren et al., 2015), which is 

reflected in the higher incidences of aneuploidy in the embryo and offspring conceived 

through assisted reproduction by this population (Ioannou and Tempest, 2015, discussed in 

detail in section 1.4.1). Hence, when it comes to the infertile male population, paternally 

derived aneuploidies may possess greater clinical weight than traditionally perceived. The 

next sections will examine the mechanisms of how segregation errors may arise during cell 

division to give rise to aneuploidy.  

1.2.5.1 Nondisjunction 

The leading cause of aneuploidy is nondisjunction during meiosis, where the 

chromosomes or sister chromatids fail to separate during anaphase (Fig. 1.9). If the 

homologous chromosomes fail to segregate during the first meiotic division, all of the 

resulting gametes will be aneuploid; half of these gametes will contain an extra chromosome, 
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while the other half of the gametes will be missing a chromosome. Nondisjunction may also 

occur during the second meiotic division. In this case, only half of the gametes produced will 

be abnormal; one will have an extra chromosome, while another will be missing a 

chromosome.  

Currently, there are two theories regarding the molecular mechanics of 

nondisjunction, which involve errors with either meiotic recombination, or the spindle 

apparatus. Studies in the last two decades have shed light on the importance of proper 

meiotic recombination when it comes to chromosome segregation during MI. Homologous 

chromosomes that lack a crossover event, and therefore are not tethered by chiasmata after 

prophase I, have a significantly greater risk of missegregation during the first meiotic 

division. These homologous chromosomes essentially enter metaphase I without a partner 

and align at the equatorial plate as univalents. Univalents, or chromosomes that are not 

physically linked to their homologous counterpart, have been shown to segregate in 

unpredictable, random ways to either side of the cell (Hassold and Hunt, 2001; Uroz and 

Templado, 2012). Females appear to experience nondisjunction due to the lack of 

recombination on bivalents more frequently than males. In males, almost all spermatocytes 

show at least one crossover per bivalent (Nagaoka et al., 2012). Strikingly, over 10% of 

human oocytes contain at least one bivalent without a crossover (Nagaoka et al., 2012). It is 

estimated that half of these oocytes will result in aneuploidy (Nagaoka et al., 2012). The lack 

of crossovers may be one of the explanations for the higher incidence of aneuploidy seen in 

oocytes compared to sperm (Table 1.1).   

 As previously mentioned, the meiotic checkpoint during anaphase I, SAC, acts to 

ensure that all of the homologous chromosomes are aligned at the equatorial plate and 
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correctly attached at the kinetochore to spindle microtubules before APC/C is activated to 

signal the shortening of the microtubules. If one of the kinetochores on the sister chromatids 

in the homologous pair fails to attach to a spindle, the homologous chromosomes will fail to 

separate and be simultaneously pulled to one side of the cell. Normally, SAC should detect 

errors in kinetochore to spindle attachment and target the cell for meiotic arrest. However, if 

the faulty cell escapes the checkpoint, nondisjunction will likely occur (Sun and Kim, 2011).  

1.2.5.2 Premature sister chromatid segregation 

The premature loss of cohesins at the centromeres of sister chromatids can also lead 

to segregation errors during MI or MII cell divisions (Ma et al., 1989). This cause of 

aneuploidy is primarily observed in female meiosis. Numerous studies have linked increasing 

maternal age to an increased incidence of aneuploidy for most chromosomes (Hassold et al., 

1995; Lamb et al., 1996; Eichenlaub-ritter, 2012). This increased risk has been speculated to 

be caused by the deterioration of cohesins over time. During female fetal development, 

cohesins are loaded onto newly replicated chromosomes prior to the initiation of meiosis 

(Eichenlaub-ritter, 2012). As oocytes mature, their ability to reload cohesins onto the sister 

chromatids decline, leading to a progressive loss of coheins (Eichenlaub-ritter, 2012). 

Without attachment between the centromeres of sister chromatids, the chromatids behave as 

univalents and separate independently during anaphase. This can result in the sister 

chromatids being pulled to the opposite sides of the cell in anaphase I, or the same side of the 

cell in anaphase II, producing aneuploid gametes (Fig. 1.10). Indeed, studies in the oocytes of 

women undergoing assisted reproduction have suggested that premature sister chromatid 

segregation (PSCS) is a major contributor to aneuploidy in women of advanced maternal age 

(Nagaoka et al., 2012). 
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Recent investigation into the distribution of meiotic crossovers have presented a new 

perspective on how PSCS may occur. An increase in crossover formation near the 

centromeres of chromosome 21 have been proposed to cause MI and MII segregation errors 

in oocytes implicated in cases of trisomy 21 (Oliver et al., 2014). Whether this trend is 

observed in paternally derived trisomy 21 remains unclear (Oliver et al., 2009). Nevertheless, 

crossover formation near the centromeres is thought to interfere with centromeric cohesins, 

and thus disturb the attachment of sister chromatids. Future studies on whether crossovers 

near the centromeres on chromosomes other than 21 are linked to increased risks of PSCS, 

and aneuploidy is warranted.     
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Figure 1.9 Nondisjunction as a mechanism for the production of aneuploidy 

gametes.  

Meiosis I nondisjunction produces disomic (extra chromosome) and nullisomic 

(missing a chromosome) gametes, where all of the gametes are aneuploidy. On the other 

hand, nondisjunction at meiosis II creates haploid gametes (normal), disomic, and 

nullisomic gametes, where only half of the gametes produced are aneuploid. 
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Figure 1.10 Premature sister chromatid segregation as a mechanism for the production 

of aneuploid gametes.  

The premature loss of centromeric cohesin at meiosis I can result in the sister chromatids 

being segregated to opposite sides of the cell; one daughter cell will have an extra 

chromosome, whereas the other will be missing a chromosome. The premature loss of 

centromeric cohesin at meiosis II can result in both sister chromatids being pulled to the 

same pole of the cell; one daughter cell will have an extra chromosome, whereas the other 

will be missing a chromosome. 
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1.3 Male infertility  

1.3.1 Overview of male infertility 

Although some errors during meiosis may result in the production of sperm with an 

abnormal chromosome complement as discussed above, most erroneous cells are detected by 

meiotic checkpoints and arrested. With regards to spermatogenesis, meiotic arrest may cause 

diminished or even halted sperm production, leading to male infertility. Infertility is defined 

by the World Health Organization (WHO) as the inability to conceive a clinical pregnancy 

after 12 months or more of regular, unprotected sexual intercourse. Over the past decade, the 

incidence of infertility in Canada has doubled to approximately 16%, and continues to be on 

the rise (Bushnik et al., 2012). The cause of infertility can be female factor (~35%), male 

factor (~30%), combined factor (~20%), or unexplained (~15%) (Crosignani and Rubin, 

1996; Kumar and Singh, 2015). Male factor infertility can be further classified into four 

etiologies: (1) blockage of the reproductive tract, (2) immunological dysfunction, (3) sexual 

disorders, and (4) aberrancies in sperm production (Witczak et al., 2014). To assess the 

severity of male infertility and treatment options, semen analyses and testicular biopsies are 

routinely performed. 

1.3.1.1 Semen analysis parameters 

The first line of assessment for infertile men is usually semen analysis, which is a 

simple procedure that provides insight into the severity of male infertility. As defined by 

WHO, semen parameters are judged based on three characteristics of sperm: concentration, 

motility, and morphology. Sperm concentration is measured by the number of sperm in 

millions per milliliter of seminal fluid. Sperm motility is graded as rapid progressive (> 25 
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µm/s at 37ºC), slow progressive, non-progressive (<5 µm/s at 37ºC), or immotile (WHO, 

2010). Sperm morphological defects concern either the head, neck and midpiece, tail, or 

absence of cytoplasmic droplets in the midpiece (WHO, 2010). Clinically, sperm 

concentration and motility may be the most important semen parameters in predicting the 

potential for establishing a natural pregnancy. According to WHO’s revised semen 

parameters published in 2010, a sperm concentration of <15x106/ml, and progressive motility 

of <32% is considered the lower limit (Cooper et al., 2010). On the other hand, sperm 

morphology is relatively more challenging to interpret due to the level of subjectivity 

involved. Although the lower limit of morphology is <4% normal, there have been cases of 

men with normal sperm concentration and motility, but poor morphology scores (<3%) who 

nevertheless fathered children naturally (Murray et al., 2012).  

Semen parameters are useful for classifying the types of male infertility (Table 1.3), 

such as oligozoospermia (low sperm count, <15x106/ml), asthenozoospermia (low sperm 

motility, <32% normal), and teratozoospermia (abnormal sperm morphology, <4% normal). 

A combination of all three sperm defects is termed as oligoasthenoteratozoospermia (OAT). 

About 15% of infertile men show an absence of sperm in the ejaculate, a condition known as 

azoospermia (Boback and Schlegel, 2014). Azoospermia is subdivided into obstructive 

azoospermia (OA) and non-obstructive azoospermia (NOA). An examination of the testicular 

histology is required to tell these cases apart.  
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Table 1.3 World Health Organization (WHO) revised diagnoses of semen parameters  

  Sperm parameters 

  Concentration (106/ml) 
Motility 

(%) 

Normal 

morphology 

(%) 

Normal sperm parameters >15 >32% >4% 

Types of male infertility    

Oligozoospermia <15 Normal Normal  

Asthenozoospermia Normal <32% Normal  

Teratozoospermia Normal Normal <4% 

Oligoastenotearatozoospermia 

(OAT) 
<15 <32% <4% 

Azoospermia Absence of sperm in the ejaculate 

Aspermia No ejaculate 

 

1.3.1.2 Testicular histology 

When a semen analysis shows a lack of sperm in the ejaculate, a histological 

evaluation of the testes following a testicular biopsy can reveal the level of spermatogenesis 

present in the testes; this information is helpful for identifying the type of azoospermia, as 

well as predicting the success rate of sperm retrieval for assisted reproduction. OA, which is 

prevalent in 40% of azoospermic cases, is characterized by normal spermatogenesis and a 

normal hormone profile (Wosnitzer et al., 2014). In this case, the lack of sperm in the 

ejaculate may be the consequence of numerous causes including the absence of vas deferens, 

obstructions due to inflammatory diseases, physical blockage in the reproductive tract, or 

ejaculatory problems (Wosnitzer et al., 2014). On the other hand, NOA, which comprises 

60% of azoospermic cases, is characterized by impaired spermatogenesis (Wosnitzer et al., 
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2014). Histological analysis of the testes can reveal three levels of impaired spermatogenesis: 

hypospermatogenesis, germ cell/maturation arrest, or Sertoli-cell only syndrome (SCOS). 

Hypospermatogenesis is diagnosed if all stages of spermatogenesis are present, but at a 

reduced level. Maturation arrest is diagnosed in the presence of total cell arrest at any stage 

of spermatogenesis. Finally, SCOS is defined by the complete lack of germ cells in the 

seminiferous tubules. Early maturation arrest or SCOS often imply poor prognosis for 

successful testicular sperm retrieval (TESE), while hypospermatogenesis and partial 

maturation arrest may lead to higher chances of success (McLachlan et al., 2007; Wosnitzer 

et al., 2014). There are various factors contributing to NOA, classified as either congenital 

causes (such as abnormal testis development, endocrinological abnormalities, genetic 

mutations or chromosomal abnormalities), or acquired causes (such as exposure to radiation 

or environmental toxins, or inflammation of the testes) (Boback and Schlegel, 2014). Genetic 

contributors of male infertility however, are particularly concerning as they have the 

potential to be passed to the offspring if the infertile couple chooses to conceive via assisted 

reproduction.  

1.3.2 Genetic factors in male infertility 

Genetic abnormalities account for approximately 15-30% of male infertile cases 

(O’Flynn O’Brien et al., 2010; Bukulmez, 2012), and can influence a variety of processes 

that are vital for fertility such as hormone homeostasis, spermatogenesis, and sperm quality 

(O’Flynn O’Brien et al., 2010). Although many genetic factors remain to be elucidated, it is 

important to appraise the currently known, common genetic causes of male infertility, which 

include Y chromosome microdeletions, cystic fibrosis, chromosomal abnormalities, and 

defects in meiotic genes.  
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1.3.2.1 Y chromosome microdeletions 

Y chromosome microdeletion is the second leading genetic cause of male infertility 

(Krausz and Degl’Innocenti, 2006; Krausz et al., 2014). The relatively high prevalence of 

deletions on the Y chromosome may be attributed to its unstable structure. The Y 

chromosome originally evolved from the X chromosome by gaining testis-determining genes 

and large-scale inversions (Bachtrog, 2013). This change in genetic composition prevented 

the male-specific Y region on the Y chromosome from pairing with the X chromosome 

during meiosis, which is thought to have facilitated the formation of tandem duplications and 

inverted repeats (Bachtrog, 2013). Because of this, the inverted repeats on the Y chromosome 

now have the potential to pair with each other and form a hair pin shape that is susceptible to 

intra-chromosomal recombination during meiosis or the detection by DNA replication 

machinery, subjecting it to deletion (Bachtrog, 2013).  

The most commonly deleted region in infertile men is at the Yq11 locus, termed the 

azoospermia factor (AZF). The genetic significance of the AZF region in spermatogenesis 

has been described since 1976 (Vogt et al., 1996). There are three non-overlapping sub-

regions in the AZF termed AZFa, AZFb, and AZFc. A fourth region termed AZFd has also 

been suggested to exist between AZFb and AZFc (Kent-First et al., 1999). Microdeletions in 

AZFa are rare, in which deletions solely in this region account for 5% of cases (Krausz et al., 

2014). Candidate genes in AZFa that cause infertility upon their deletion are the dead box on 

the Y (DBY) and USP9Y genes (Krausz et al., 2014). These deletions are typically associated 

with SCOS (Krausz et al., 2014). Deletions involving AZFb and either AZFa or AZFc 

comprises 35% of cases (Krausz et al., 2014), while deletions in AZFc are the most common, 

occurring in 80% of infertile men with AZF microdeletions (Kuhnert et al., 2004; Lo Giacco 
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et al., 2014). Genes in AZFc that are critical for spermatogenesis include the testis transcript 

Y2 (TTY2) and basic protein Y2 (BPY2) genes (Lahn and Page, 1997). The complete deletion 

of AZFc, with or without the deletion of AZFb, often leads to SCOS or pre-meiotic cell arrest 

(Krausz et al., 2014). It is important to note that infertile men usually show a variety of 

partial or complete deletions along the AZF, which can manifest as a range of phenotypes 

from azoospermia to oligospermia.  

1.3.2.2 Cystic fibrosis 

Another genetic defect that is associated with male infertility is the autosomal 

recessive disease called cystic fibrosis (CF), which is caused by mutations in a gene that 

encodes for a chloride-conducting transmembrane channel called the cystic fibrosis 

transmembrane regulator (CFTR) gene (Elborn, 2016). The disease manifests as mucus 

retention, chronic local infection in the airways, and pancreatic insufficiency (Elborn, 2016). 

With recent advancements in treatment, the quality of life in CF patients has dramatically 

improved, with median life expectancy reaching over 40 years old (Elborn, 2016).  

Since CF follows a recessive inheritance pattern, the symptoms only manifest in 

individuals with two copies of the mutated CFTR allele. Individuals who are heterozygous 

for the CFTR mutation have one mutated CFTR allele, and one normal CFTR allele; although 

they do not have CF, they may experience other symptoms such as infertility. Over 95% of 

male CF patients have obstructive azoospermia, due to a congenital bilateral absence of vas 

deferens (CBAVD) (Elborn, 2016). Heterozygous men with only one mutated CFTR allele 

may also display CBAVD and be infertile, comprising 60% of CBAVD cases (Elborn, 2016). 

For this reason, infertile couples with OA are strongly advised to screen for CFTR mutations 

when seeking fertility treatment. If both parents are heterozygous for the CFTR mutation, 
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there is a 25% chance of conceiving a baby with CF. Genetic screening for infertile couples 

can therefore prevent the transmission of CFTR mutations onto offspring (Gazvani and 

Lewis-Jones, 2006).  

1.3.2.3 Chromosomal abnormalities 

Studies have shown an eight to ten fold higher incidence of chromosomal 

abnormalities in infertile men compared to fertile men (Johnson, 1998; Egozcue et al,. 2000; 

Bulkumez, 2012; Stouffs et al., 2014). This frequency increases to 15% in azoospermic men. 

Studies on 9766 azoospermic and severely oligozoospermic men found sex and autosomal 

chromosomal abnormalities in 4.2% and 1.5% of the cases compared to 0.14% and 0.25% of 

the control population, respectively (Johnson, 1998; Bulkumez, 2012).  

Chromosomal aberrancies consist of two types: structural or numerical. Structural 

chromosomal abnormalities are characterized by large-scale changes in chromosome content, 

including extra or missing genetic material, or rearranged sections of the chromosome. 

Chromosomes may also be altered numerically with the most prevalent condition being 

aneuploidy, the gain or loss of whole chromosomes (O’Flynn O’Brien, 2010). Some carriers 

of aneuploidy may be mosaic, where not all cells contain the additional or missing 

chromosome. Although aneuploidy can involve either sex or autosomal chromosomes, the 

most common cases involve extra or missing sex chromosomes such as Klinefelter Syndrome 

(47,XXY), XYY syndrome, and mixed gonadal dysgenesis (Bulkumez, 2012). Klinefelter 

Syndrome occurs in about 1 in 500 male live births and is the most prevalent genetic cause of 

azoospermia, occurring in about 14% of cases (Steinman et al., 2009). The classic 

phenotypes associated with the syndrome include testicular atrophy, a diminution of germ 

cells, and infertility. It is thought that the extra X chromosome poses lethal gene dosage, 
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resulting in germ cell death (Steinman et al., 2009). About 10% of Klinefelter men have a 

mosaic karyotype of 47,XXY/46,XY, in which case sperm production may be present due to 

the 46,XY germ cells that are able to complete meiosis (Bulkumez, 2012; Stouffs et al., 

2014). 47,XYY men are observed in 1 in 1000 live male births. Although the incidence of 

infertility is slightly increased in this population, most 47,XYY men are fertile (Stouffs et al., 

2014). Finally, mixed gonadal dysgenesis is a rare condition that is characterized by a 

unilateral testis and contralateral streak gonad (Bulkumez, 2012; Flannigan et al., 2014). Men 

with mixed gonadal dysgenesis can have a karyotype of 45,X/46,XY or 46,XY, and are 

generally infertile depending on the level of abnormal germ cells in the testes (Bulkumez, 

2012).  

1.3.2.4 Defects in meiotic genes 

Although the infertile population shows an increased incidence of chromosomal 

abnormalities, the majority of infertile men have a normal karyotype. Nonetheless, increased 

rates of numeric chromosomal abnormalities in sperm have been observed in the infertile 

population (Bernardini et al., 2000; Egozcue et al., 2003; Ferguson et al., 2007; Kirkpatrick 

et al., 2008). Since meiosis is responsible for producing sperm with the correct chromosome 

content, perturbations in this cell division event have been suggested to be the culprit behind 

some cases of male infertility. In fact, an estimated 5-10% of NOA cases may be due to 

meiotic arrest (Topping et al., 2006). Although mutations in meiosis-specific genes have 

been implicated in a small percentage of male infertility (Yang et al, 2015; Hann et al., 

2011), our understanding of how meiotic errors cause infertility remains elusive. Studies that 

screened large cohorts of infertile men found modest evidence for the association of 

mutations in SCP3 (facilitates chromosome synapsis) and Spo11 (involved in DSB 
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formation) with NOA (Miyamoto et al., 2003; Arabi et al., 2006; Sanderson et al., 2008). In 

2009, Dieterich et al. showed that a deletion in the aurora kinase C (AURKC) gene, which 

functions in spindle assembly during meiosis, gave rise to sperm with irregular morphology 

and infertility. However, a knock-out of the gene in mice resulted in poor sperm morphology 

and retained fertility (Kimmins et al., 2007). Recently, studies on azoospermic men have 

identified mutations in TEX11 and TEX15, which are genes shown to regulate meiotic 

recombination in mice (Yang et al., 2008; Ruan et al., 2012; Yang et al., 2015). Evidently, 

mutations in meiotic genes may be an emerging explanation for some cases of male 

infertility. However, further investigation is warranted to identify the mutations that are most 

clinically relevant for assessing the genetic risk of infertile couples undergoing assisted 

reproduction.  

1.3.3 Use of intracytoplasmic sperm injection to treat male infertility 

The introduction of intracytoplasmic sperm injection (ICSI) in the early 1990s as a 

type of assisted reproductive technology (ART) has revolutionized the treatment of male 

infertility. Prior to the inception of ICSI, men with severe infertility could not successfully 

establish a pregnancy through the conventional type of ART, in vitro fertilization (IVF), due 

to an inadequate amount of sperm for use in the procedure. ICSI overcame this obstacle by 

employing the injection of a single sperm into an oocyte (Ma and Ho Yuen, 2000). A review 

by Devroey and Steirteghem (2004) looking at ICSI cycles in twelve European countries 

summarized that more than 67% of injected oocytes become successfully fertilized when 

using ejaculated sperm. The fertilization rate using testicular sperm in the case of NOA was 

lower at 50% (Devroey and Steirteghem, 2004). When compared to conventional IVF 

methods, there were fewer unexpected fertilization complications in the ICSI cohort 
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(Devroey and Steirteghem, 2004). According to publications from fertility clinics across 

Europe, ICSI comprised 40% of all ART procedures in 2001 to 2002 (reviewed in Devroey 

and Steirteghem, 2004). The popularity of ICSI is also observed worldwide, where this 

procedure has replaced conventional IVF in many clinics even when sperm parameters are 

normal (Devroey and Steirteghem, 2004). As a result, there is a growing population of 

children born via ICSI, which has emphasized the importance of evaluating the possible 

genetic repercussions. As a portion of male infertility is caused by genetic factors, there is 

concern regarding the transmission of these genetic defects to the next generation. Over the 

past decades, our understanding of the sperm chromosome content and germ cells in infertile 

men has also rapidly improved. This has helped us to evaluate some of the potential 

complications associated with the use of sperm from infertile men in ICSI.  

1.4 Sperm aneuploidy and meiotic defects in infertile men 

1.4.1 Sperm aneuploidy in infertile men 

Although an early method for studying the chromosomal constitution of human sperm 

was developed in 1978 by Rudak et al., it could not be applied to men with severe infertility 

since the sperm used in the technique must be present in a sufficient concentration and be 

able to fertilize an egg. Therefore, it was not until the advent of a molecular cytogenetic 

technique called fluorescent in situ hybridization (FISH) that the study of chromosome 

content in the sperm of infertile men took off. FISH involves the hybridization of 

fluorescently labeled DNA probes to target DNA on specific chromosomes. This technique is 

efficient at detecting numerical chromosomal abnormalities, and allows for the study of 

sperm aneuploidy in large cohorts of fertile and infertile men. A review conducted by 

Templado et al. (2011) looked at the FISH analyses in the sperm of 388 healthy men, and 
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reported disomy frequencies for 18 of the 24 chromosomes, with the estimated rate of total 

aneuploidy to be 4.5%. With respect to individual chromosomes, the average frequency of 

aneuploidy was 0.1%, ranging from 0.03% for chromosome 8 to 0.47% for chromosome 22. 

The review also confirmed that chromosome 21 (0.17%), 22 (0.47%), and the sex 

chromosomes (0.27%) were most susceptible to segregation errors during meiosis, showing a 

two to three-fold higher rate of aneuploidy compared to the other autosomes.  

When the chromosome content of infertile men was examined, it became evident that 

infertile men with abnormal karyotypes had elevated rates of aneuploidy in the sperm (Wong 

et al., 2008; Kirkpatrick et al., 2008; Kirkpatrick et al., 2012; Kirkpatrick et al., 2015). The 

high rates of sperm aneuploidy in this population is thought to be due to the improper or 

unbalanced segregation of the abnormal chromosome during meiosis (Templado et al., 

2013). Beyond this revelation, the study of sperm in infertile men yielded a more surprising 

result, showing that infertile men with normal karyotypes may nevertheless carry a higher 

rate of sperm aneuploidy compared to fertile men. The first study to reveal this phenomenon 

found an increased rate of numerical chromosomal abnormalities in the sperm of men with 

severe oligozoospermia (Moosani et al., 1995). This trend was further confirmed in large 

cohorts of severely oligozoospermic men by other laboratories (Ferguson et al., 2008; 

Kirkpatrick et al., 2008; reviewed in Templado et al., 2013). In general, these studies 

observed a two to ten-fold increase in numerical chromosomal anomalies in the sperm of 

infertile men when compared to fertile men (Templado et al., 2013). Furthermore, the 

severity of infertility may be proportional to the production of aneuploid sperm as 

demonstrated by several studies including Nagvenkar et al. (2016), who found higher 

incidences of aneuploid sperm in severely oligozoospermic men when compared to 
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oligozoospermic men (Vegetti et al., 2000; Hansen et al., 2005; Templado et al., 2013; 

Chatziparasidou et al., 2014; Nagvenka et al., 2016). There are also various FISH studies 

performed on sperm retrieved from the testes of azoospermic men, where most studies have 

found higher levels of aneuploidy in this population when compared to fertile men 

(Bernardini et al., 2000; Burrello et al., 2002; Rodrigo et al., 2004; Kickpatrick et al., 2008; 

Vozdova et al., 2012). When it comes to the different types of azoospermia, NOA men have 

been shown to display higher incidences of aneuploid sperm than OA men, possibly due to 

the underlying causes of spermatogenic failure in the NOA population (reviewed in Burrello 

et al., 2005; Sun et al., 2008; Rodrigo et al., 2011; Vozdova et al., 2012).  

All in all, it appears that some infertile men are highly predisposed to producing 

sperm with numerical chromosomal abnormalities. Further investigation into which subset of 

infertile men may carry the highest risk of aneuploid sperm can benefit genetic counselling 

for couples undergoing ICSI. The level of aneuploid sperm in the infertile man may act as 

one of the predictors for the success rate of establishing a healthy pregnancy after ICSI; if an 

aneuploid sperm is used to fertilize an oocyte, the resulting aneuploid embryo has an 

extremely high risk of perishing in utero. In the rare chance that the embryo survives to birth, 

the newborn may exhibit a wide range of phenotypes, including congenital birth defects, 

depending on which chromosome was affected, and the severity of aneuploidy. Several case 

reports have in fact suggested the transmission of numerical chromosomal abnormalities 

from the sperm to the fetus after ICSI, including a 47,XXY pregnancy of paternal origin that 

was conceived using sperm with an increased frequency of XY disomy (Moosani et al., 

1999). Carrell et al. (2001) reported a trisomy 15 pregnancy of paternal origin that arose 

from a father with elevated rates of disomy 15 in the sperm (4.03% vs. 0.4% in control men). 
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Furthermore, Tang et al. (2004) reported a 45,X abortus that resulted from a man with 

exceptionally high rates of sex chromosome aneuploidy in the sperm (40% vs 0.4% in 

control men). Although there is mounting evidence of elevated incidences of chromosomal 

abnormalities in newborns conceived via ICSI (ranging from 1.5% to 12.7%) compared to 

natural conceptions (0.9%) (reviewed in Hansen et al., 2005 and Lie et al., 2005), there 

remains a shortage of studies examining whether paternal factors are significant contributors. 

Notwithstanding, the increased prevalence of aneuploid sperm in infertile men is concerning 

with regards to the safety of ICSI, and may potentially be contributing to paternal origins of 

chromosomal abnormalities in ICSI births. Therefore, ongoing research on the mechanisms 

underlying the production of aneuploid sperm in infertile men is direly warranted. In this 

respect, errors in meiotic recombination, and other defects in meiosis, have become an 

emerging explanation for the generation of aneuploid sperm in male reproduction.  

1.4.2 Meiotic defects in infertile men  

Until relatively recently, the vast majority of our understanding of meiotic events, 

including synapsis and recombination, was derived from studies in lower eukaryotes such as 

S. cerevisiae and Drosophila (Martin, 2010). However, recent advancements in 

immunocytogenetic approaches have allowed the visualization of meiotic proteins in 

humans, using antibodies against the proteins involved in the SC (SCP1 and SCP3), 

recombination (MLH1), and centromeres (Ma et al., 2006a; Ma et al., 2006b; Ferguson et al., 

2007). Notably, by combining immunofluorescent techniques and FISH, researchers were 

able to construct recombination maps on individual chromosomes in human meiotic cells 

(Sun et al., 2004; Sun et al., 2006b). The findings unraveled the interconnection between 

chromosome synapsis and recombination, where the frequency of crossovers was shown to 
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be proportional to the SC length (Sun et al., 2004; Sun et al., 2006b). Longer chromosomes, 

such as chromosome 1, display an average of 3.9 crossovers, whereas shorter chromosomes 

such as 21, 22, and the sex chromosomes only display a single crossover (Sun et al., 2004; 

2006c). Sun et al. (2005a) also demonstrated that disruptions in chromosome synapsis can 

influence recombination. The study noted that unsynapsed regions near the centromere are 

shown to have a cis effect on crossover distribution with crossovers forming farther from the 

centromeres on the affected chromosome. Another study unveiled a more surprising result, 

showing that unsynapsed regions on chromosome 9 were associated with a reduction in 

crossover formation on chromosome 5, and thus hinting at the possibility of a trans effect of 

asynapsis on recombination (Sun et al., 2007a).   

While data on chromosome synapsis and meiotic recombination in fertile men was 

being generated, studies have also begun to examine these meiotic events in infertile men. 

Since spermatocytes from the testes are required to study meiosis, most studies thus far have 

been performed on azoospermic men. Testicular tissue from these cases can be obtained with 

patient consent when the infertile men undergo testicular biopsies for sperm retrieval for the 

use in ICSI. These studies have demonstrated that infertile men may display several meiotic 

defects including errors in: 1) chromosome synapsis, 2) crossover frequency, and 3) 

crossover distribution.  

1.4.2.1 Errors in synapsis 

By visualizing the SC using antibodies against the lateral and transverse element 

proteins, problems with SCP1 assembly can be detected as splits within the SC, whereas 

simultaneous errors in SCP1 and SCP3 can be observed as gaps. With this approach, 

Ferguson et al. (2007) observed a significantly higher frequency of SC gaps in NOA men 
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(32.7%) and OAT men (38.1%) when compared to fertile men (26.6%). Moreover, Sun et al. 

(2007b) found an elevated incidence of SC splits in NOA men (24%) when compared to 

fertile men (10%). Numerous studies have suggested that synaptic errors may lead to partial 

(Gonsalves et al., 2004; Judis et al., 2004) or complete (Sun et al., 2004) spermatogenic 

arrest in infertile men. Additionally, errors in synapsis may negatively impact the formation 

of crossovers as shown by Ferguson et al. (2009), where 60% of NOA men who displayed 

elevated rates of synaptic errors also showed reduced crossover frequencies compared to 

fertile men.  

1.4.2.2 Errors in crossover frequency 

The investigation of the frequency of crossovers in infertile men unveiled several 

interesting trends. Pachytene is observed to be the longest stage in prophase I, where 80-90% 

of cells observed in a testicular sample are found at this stage in fertile men (Ferguson et al., 

2007; Martin, 2010). Strikingly, a large percent of NOA men (45-53%) show a complete 

absence of meiotic cells in the testes (Sun et al., 2005b; 2007b; Topping et al., 2006; 

Ferguson et al., 2007), or reduced frequency of pachytene cells (10% vs. 80-90%) due to 

partial or complete meiotic arrest at the zygotene stage (Gonsalves et al. 2004; Sun et al. 

2004b; 2007b; Ferguson et al. 2007). In addition to the disruption in the progression of 

meiosis, most studies showed that NOA men also display a reduced frequency in crossover 

formation when compared to fertile men (reviewed in Martin, 2010; Table 1.4). The first 

such study found that 10% of its NOA cohort showed a significantly reduced rate of 

recombination when compared to controls (Gonsalves et al., 2004). Similarly, reports by Ma 

et al. (2006a; 200b) and Ferguson et al. (2007) identified reduced recombination in 25% and 

63% of infertile men with impaired spermatogenesis, respectively. Conversely, there are two 
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studies that did not find a decrease in the frequency of recombination in their infertile cohort, 

although this may be due to the small sample sizes (Codina-Pascual et al., 2005; Topping et 

al., 2006). Combining all the meiotic analyses in infertile men with impaired 

spermatogenesis, it is estimated that approximately 20.8% of these men display a reduced 

rate of recombination (Table 1.4). Interestingly, OA men have also been shown to display 

slight reductions in the frequency of crossovers when compared to controls, although the rate 

of recombination is higher than that of NOA men (Sun et al., 2004; Sun et al., 2007b; 

Ferguson et al., 2007; Ren et al., 2016). Contrary to NOA men, OA men do not show 

impaired spermatogenesis. Thus, the errors in recombination in OA men is thought to 

possibly arise from epigenetic changes in the cells due to the prolonged obstruction of the 

reproductive tract (Martin, 2010; Minor et al., 2011).  

Table 1.4 immunofluorescent analyses of spermatocytes in infertile men  

Number of men 

showing impaired 

spermatogenesis 

Number of men 

with reduced 

recombination 

compared to 

controls  

Percentage of 

infertile men with 

reduced 

recombination 

compared to 

controls (%) 

References 

40 4 10 Gonsalves et al., 2004 

11 0 0 
Codina-Pascual et al., 

2005 

26 0 0 Topping et al., 2006 

4 1 25 
Ma et al., 2006a; Ma et 

al., 2006b 

29 5 17.2 Sun et al., 2007b 

8 5 62.5 Ferguson et al., 2007 

6 4 66.7 Ferguson et al., 2009 

4 3 75 Reig-Viader et al., 2014 

16 8 50 Ren et al., 2016 

Total: 144 30 20.8   
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1.4.2.2.1 Absence of crossovers  

An extreme form of recombination error has also been observed in the infertile male 

population, which is the complete lack of recombination on a bivalent (achiasmate bivalent) 

during pachytene (Ma et al., 2006a). This occurrence carries particular clinical significance 

since achiasmate bivalents may readily undergo nondisjunction at the first meiotic division. 

Although achiasmate bivalents are present in only 0.1-5% of cells in fertile men (Sun et al., 

2006a; 2005b; 2007b; Ferguson et al., 2007), the frequency is significantly higher in NOA 

men, occurring in up to 29% of cells (Martin 2006; Sun et al. 2007b; Ferguson et al., 2007). 

These studies note that chromosomes 21, 22, X, and Y are most likely to lack a crossover 

(Tempest, 2010). Interestingly, Ma et al. (2006a) also reported an infertile man who did not 

display any recombination on the sex chromosomes. This study was also the first to show a 

negative correlation between the frequency of recombination on the sex chromosomes and 

XY disomy in the sperm. Similarly, Sun et al. (2008) found a relationship between reduced 

recombination on the sex chromosomes and an increase in sex chromosome aneuploidy in 

NOA men. It is not yet clear whether the absence of recombination on autosomes show a 

similar relationship with regards to sperm disomy for the corresponding chromosome.  

1.4.2.3 Alterations in crossover distribution  

Thus far, studies of recombination errors in infertile men have primarily focused on 

the differences in the frequency of crossovers between infertile and fertile groups. However, 

crossover formation is meticulously regulated in not only number, but also position. Meiotic 

chromosomes are uniquely structured to facilitate their proper migration during chromosome 

pairing, synapsis, and segregation. Thus, a disruption in the chromosome structure and its 

associated proteins may lead to missegregation. As aforementioned in section 1.2.5.2, the 
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formation of crossovers is generally inhibited near the centromeres to avoid the disruption of 

centromeric cohesins, which aid in proper chromosome segregation. Intriguingly, Ferguson 

et al. (2009) reported that 30% of infertile men from the study (n=10) showed altered 

crossover distributions on chromosome 13, 18, or 21 compared to controls, where there was a 

shift in crossover formation toward the centromere, and decrease in crossover formation in 

the subtelomeric regions. This finding aligned with early chiasma studies that examined 

crossover distribution in a small group of infertile men (Hulten et al., 1970; Micic et al., 

1982; Codina-Pascual et al., 2006). Furthermore, Ferguson et al. (2009) identified two 

infertile men who had normal recombination rates, and nevertheless displayed altered 

crossover distributions. This observation was initially reported in a single infertile man in an 

early chiasma study (Laurie and Hulten, 1985). These limited studies posed the curious 

question of whether subsets of infertile men may show alterations in the localization of 

crossovers, regardless of changes in the number of crossovers, and whether this phenomenon 

has a negative effect on chromosome segregation.  

1.5 Rationale, hypotheses, and objectives 

So far, we have seen that meiosis is a key process in the production of sperm with the 

correct number of chromosomes, effectively dividing a diploid spermatocyte (2n) into four 

haploid spermatids (n). The reductional division of the spermatocyte ultimately boils down to 

the segregation of the homologous chromosomes during MI. Two events in the prophase I 

stage are particularly crucial for this step: 1) the synapsis of the chromosomes with their 

homologous counterpart, and 2) the crossing over of genetic material between the 

homologous chromosomes. Over the past decade, meiotic studies have shown that infertile 

men may exhibit errors in these two important processes, where increased rates of synaptic 
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errors, reduced rates of recombination, and alterations in crossover distribution have been 

noted. Nonetheless, it remains unanswered whether these defects may be contributing to the 

concerning increase in numerical chromosomal abnormalities in the sperm of infertile men 

when compared to fertile men. To date, only one study has reported a link between reduced 

rate of genome-wide recombination and increased rate of sperm aneuploidy in an infertile 

man (Ma et al., 2006a). While Ferguson et al. (2007) and Sun et al. (2008) have linked 

achiasmate sex chromosomes to an increase in sex chromosomal aneuploidies in the sperm of 

infertile men, it remains unclear whether such a relationship exists between achiasmate 

autosomes and disomy in the sperm. Aside from the frequency of crossovers, changes in the 

position of crossovers have also been implicated in some infertile men (Laurie and Hulten, 

1985; Ferguson et al., 2009; Ren et al., 2006). However, it remains uninvestigated whether 

this population show specific aberrant trends in crossover distribution, which may give rise to 

chromosome segregation errors.  

Thus, our work in this thesis aims to investigate whether meiotic defects, in the form 

of changes to crossover frequency or distribution, may explain the link between male 

infertility and the higher rate of sperm aneuploidy present in this population. We speculate 

that errors during meiosis may lead to the spermatogenic arrest of most cells, resulting in an 

infertile phenotype in the individual. However, some cells may escape meiotic arrest, and are 

at higher risk of chromosome missegregation and producing aneuploid sperm. We 

hypothesize that: (1) infertile men may display reduced rates of recombination, which may be 

associated with increased rates of sperm aneuploidy within the same individual; and (2) 

infertile men may also display changes in crossover distribution, where increased or 
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decreased crossover formation in certain regions of the chromosomes may facilitate 

chromosome missegregation.  

We are next interested in uncovering the underlying mechanisms behind the 

recombination defects observed in the infertile cohort. Crossover formation has been shown 

to be most frequent near the subtelomeres of the chromosomes in normal males, where 

telomere-guided mechanisms have been proposed to establish crossovers in this region 

(Blitzblau et al, 2007). However, previous studies on the crossover distribution of infertile 

men have found a decrease in crossover formation near the subtelomeres of some infertile 

men (Ferguson et al., 2009; Ren et al., 2016). Since assessment of telomeres in infertile men 

have shown defects in length and stability (Reig-Viader et al., 2014a), we sought to 

determine whether defects in telomeres may be leading to synapsis and recombination errors 

in infertile men. We hypothesized that telomeric stability, in terms of the association of 

telomeres with its structural protein, may be linked to the level of recombination observed in 

infertile and fertile men. 

Finally, our understanding of meiosis in infertile men has been relatively restricted to 

men with normal karyotypes, as it is rare to obtain testicular sample from infertile men with 

abnormal karyotypes due to the low prevalence of chromosomal abnormalities. However, 

infertile men with chromosomal abnormalities may face increased risks when undergoing 

ICSI as the chromosome complement in their sperm may be unpredictable. Therefore, the 

last objective of our study aims to examine the meiotic behaviour and sperm aneuploidy 

patterns in carriers of sex chromosomal abnormalities. Our findings hope to offer clinical 

significance for genetic counsellors and patients with similar sex chromosomal mosaicism. 

The work in this thesis will begin to address the following specific objectives: 
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Objective 1a. To assess the rate of synaptic errors, and frequency of crossovers in 

spermatocytes of infertile men compared to fertile men. 1b. To determine if reduced 

crossover formation is associated with the increased production of aneuploid sperm in 

infertile men. 

Objective 2. To determine whether the distribution of crossovers in infertile men is altered 

compared to fertile men. 

Objective 3. To correlate telomeric protein homeostasis with crossover frequency in infertile 

and fertile men.  

Objective 4a. To determine the meiotic behaviour and sperm aneuploidy rates in a mosaic 

45,X/46,XY infertile man.  
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 CHAPTER 2: ASSOCIATION BETWEEN SYNAPSIS, RECOMBINATION AND 

SPERM ANEUPLOIDY IN INFERTILE MEN 

 

2.1 Introduction 

During the first meiotic division, homologous chromosomes undergo pairing and 

synapsis, in which a ladder-like protein structure called the synaptonemal complex (SC) 

forms between them. This interaction facilitates the crossover or exchange of DNA between 

the homologous chromosomes in a process known as recombination. Meiotic recombination 

is important for not only genetic diversity, but also for the proper segregation of the 

homologous chromosomes during meiosis. Specifically, the crossovers form structures called 

chiasmata, which tether the homologous chromosomes at the sites of recombination, and 

ensure proper tension for chromosome segregation in anaphase I. Thus, crossover formation 

is regulated such that at least one crossover forms on each chromosome pair (bivalent) (Ma et 

al., 2006a; Martin, 2010). Anomalies in the frequency of crossovers, particularly achiasmate 

bivalents that are lacking a crossover, have been proposed to lead to an increased risk of 

chromosome missegregation, and the subsequent production of aneuploid gametes (Ma et al., 

2006a; Ma et al., 2006b; Ferguson et al., 2007; Ferguson et al., 2009; Ren et al., 2016).  

The development of immunofluorescent techniques for the analysis of germ cells has 

allowed for the study of meiosis in humans. A series of studies have demonstrated that 

infertile men may experience defects in meiosis (Gonsalves et al., 2004; Codina-Pasual et al., 

2005; Topping et al., 2006; Ma et al., 2006a; Sun et al., 2007). Numerous studies have also 

confirmed the decrease in recombination levels and increase in synaptic errors that are often 

reported in infertile men (Ma et al., 2006a; Ma et al., 2006b, Ferguson et al., 2007; Ferguson 

et al., 2009; Ren et al., 2016). It is proposed that the vast majority of defects in synapsis or 
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recombination are caught by meiotic checkpoints, which leads to the meiotic arrest of germ 

cells, and consequently infertility (Tempest et al., 2011). However, we speculate that some 

faulty cells may escape arrest, and are predisposed to chromosome segregation errors, thus 

potentially leading to an increase in aneuploidy in the sperm. Our hypothesis is supported by 

the abundant evidence of increased incidences of aneuploidy in the sperm of infertile men 

(Ferguson et al., 2008; Kirkpatrick et al., 2008; reviewed in Tempest et al., 2001 and 

Templado et al., 2013). However, there remains a lack of investigation into whether there is 

an association between the increased rates of meiotic defects and sperm aneuploidy observed 

in infertile men. In this respect, Ferguson et al. (2007) was the first to examine the 

chromosome-specific patterns of recombination in infertile men, in order to correlate the 

crossover frequencies on particular chromosomes to their disomy rates in the sperm within 

the same individual. The results showed that the frequency of recombination between the sex 

chromosomes is negatively correlated to the rate of XY disomy in the sperm of fertile and 

infertile men (Ferguson et al., 2007). However, due to the limitation in sample size (n=18), 

the analysis could not be accurately performed on the infertile cohort alone. Moreover, the 

study did not find a significant relationship between recombination on the autosomes 

analyzed and their disomy rates in the sperm. Building on these previous findings, we are 

largely interested in further investigating the chromosome-specific rates of recombination in 

a larger sample size (n=34), with a focus on elucidating the relationship between 

recombination and aneuploidy in infertile men. Through the use of immunofluorescent and 

FISH techniques, we studied synapsis, genome-wide recombination, and chromosome-

specific recombination in the spermatocytes of infertile men. We focused on chromosomes 

13, 18, 21, and the sex chromosomes as aneuploidies in these chromosomes are a major 



67 

 

cause of spontaneous abortions, as well as abnormalities in livebirths. Finally, we also 

assessed the rates of aneuploidy in sperm for these chromosomes in order to determine if 

infertile men with certain meiotic defects are at an increased risk of producing aneuploid 

sperm.  

2.2 Materials and methods 

2.2.1 Patient information and tissue collection 

Testicular tissue was collected from twenty-four azoospermic, infertile men seeking 

fertility treatment and fourteen proven fertile men who were undergoing vasectomy reversals 

(see Appendix I). Fertile men whose vasectomy lasted for more than ten years were excluded 

from the study. All infertile men were diagnosed with idiopathic forms of infertility, had 

normal 46,XY karyotypes, no microdeletions on the Y chromosome, and no CFTR 

mutations. The testicular tissue was used for pathology diagnosis, sperm extraction for ICSI, 

and a small portion was used for the meiotic analyses presented in this study. The pathology 

report diagnosed two infertile men with SCOS, where there was a lack of germ cells. Ten 

infertile men were classified as NOA; two of these men showed maturation arrest in the 

testes and did not have enough germ cells for meiotic analysis. The remaining eight NOA 

men were diagnosed with either hypospermatogenesis or partial maturation arrest, and had 

enough germ cells for analysis. Twelve infertile men were diagnosed as OA, and showed 

normal spermatogenesis despite having no sperm in the semen.  

2.2.2 Preparation of testicular tissue 

Testicular tissue was processed according to a modified version of the protocol 

described by Barlow and Hulten (1998). On a 37°C thermal plate, seminiferous tubules were 
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separated in human tubal fluid (HTF) and cut into 3-5mm segments. Segmented tubules were 

incubated at 37°C for 45-60 min in freshly prepared hypo-extraction buffer [30mM Tris, 

50mM sucrose, 17mM citric acid, 5mM ethylene diamine tetraacetic acid (EDTA), 0.5mM 

dithiothreitol (DTT), and 0.1mM phenylmethylsulphonyl fluoride (PMSF); pH 8.4]. Tissue 

was subsequently deposited onto a microscope slide with 20μl of 100mM sucrose (pH 8.2). 

Using fine forceps, tubules were minced in order to release their contents, in which 20μl of 

the germ cell/sucrose slurry was transferred to a new slide coated with 200μl of 1% 

paraformaldehyde with 0.2% Triton X. Slides were incubated for 24 hours at 37°C in a 

humid chamber.  

2.2.3 Fluorescence immunostaining 

The germ cell-containing slides were immunostained according to a previously 

published protocol by Ma et al., (2006b). Slides were air dried prior to two washes in 0.4% 

PhotoFlo (Kodak 200 solution). Slides were next incubated in antibody diluting buffer 

(ADB) [1% donkey serum, 0.3% bovine serum albumin, 0.005% Triton-X, PBS; pH 7.2] for 

30 min at room temperature. Primary antibody cocktail [mouse anti-human MLH1 (BD 

Pharmagen, San Diego, CA, USA), 1:12; rabbit anti-human SCP3 (Abcam, Cambridge, MA, 

USA), 1:20; rabbit anti-human SCP1 (produced by P. Moens), 1:60; human CREST antisera, 

1:25; 1 x ADB] was then applied to the drained slides. After applying a cover slip and sealing 

it using rubber cement, slides were incubated in a humid chamber at 37°C for 24 hours. 

Slides were washed in 1 x ADB for 20 min, followed by a second wash in 1 x ABD for 48 

hours at 4°C. Secondary antibody cocktail [Fluorescein isothiocynate (FITC) labeled donkey 

anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA, USA) 1:12; tetramethyl 

rhodamine isothiocynate (TRITC) labeled donkey anti-rabbit IgG (Jackson 
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ImmunoResearch) 1:15; aminomethyl coumarin acetic acid (AMCA) labeled donkey anti-

human IgG (Jackson ImmunoResearch) 1:25; 1 x ADB] was applied to the slides, which 

were then incubated for 90 min at 37°C in a humid chamber. Slides were sequentially 

washed three times in 1 x PBS (10, 20, and 30 min) with agitation every 5 min. Finally, 

slides were drained before antifade was added. Slides were examined using a Zeiss Axioplan 

epifluorescent microscope equipped with the appropriate filters in order to identify pachytene 

cells. Cytovision V2.81 Image Analysis software (Applied Imaging International, San Jose, 

CA, USA) was used to capture the SCP3/SCP1, MLH1, and CREST signals on the pachytene 

cells. Pachytene cells were captured if MLH1 foci were clear and the sex chromosomes were 

identifiable. The X and Y chromosomes are distinguishable due to its unique structure during 

pachytene, where the two chromosomes condense to form a sex body (Fig. 2.1A). The 

number of MLH1 foci per cell, frequency of synaptic errors, and cell coordinates were 

recorded.  

2.2.4 FISH on immunostained spermatocytes 

After capturing images of the SC and MLH1 foci, FISH was performed on the 

previously immunostained slides according to the methods reported by Ma et al. (200b). 

Coverslips were removed before soaking slides twice in 4 x saline sodium citrate 

(SSC)/0.05% Tween-20 solution for 5 min each time. Slides were dried in a series of ethanol 

solutions (70%, 80%, 90%, 100%) for 2 min each. After air drying, slides were soaked for 5 

min in 1 x PBS, re-fixed in 10% formalin phosphate for 5 min, washed for 5 min in 1 x PBS 

and air dried again in an ethanol series of solutions (70%, 80%, 90%, 100%) for 2 min each. 

Directly labeled single-stranded DNA probes: LSI 13 (SpectrumGreen), CEP 18 

(SpectrumAqua) and LSI 21 (SpectrumOrange) (Vysis Inc., Downers Grove, IL, USA) were 
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added to slides. Coverslips were added and sealed with rubber cement. Slides were then co-

denatured on a hotplate for 5 min at 76°C, and subsequently placed in a humid chamber 

overnight at 37°C. Coverslips were then removed, and slides were washed at 75°C in 0.4 x 

SSC/0.3% NP-40 solution for 2 min, followed by 2 x SSC/0.1% NP-40 at room temperature 

for 30 seconds. Finally, slides were air dried before antifade and coverslips were added. The 

pachytene cells that were captured beforehand were relocated in order to identify the 

chromosomes 13, 18, and 21. 

2.2.5 FISH on testicular spermatozoa 

Slides that were not previously immunostained were used for FISH on testicular 

sperm to examine the rate of aneuploidy. Slides were washed for 5 min in 2 x SSC, and 

incubated for 15-20 min in 10mM DTT/100Mm Tris (pH 8.0) to decondense the sperm 

nuclei. Slides were washed for 5 min in 2 x SSC, soaked in 1 x PBS, and dehydrated in an 

ethanol series (70%, 80%, 90%, 100%) for 2 min. A probe mixture of directly labeled single-

stranded DNA probes: CEP 18 (SpectrumAqua), CEP X (SpectrumGreen), and CEP Y 

(SpectrumOrange) (Vysis Inc.) was applied to the slides. Coverslips were added and sealed 

with rubber cement. Slides were co-denatured on a hotplate for 5 min at 76°C, and 

subsequently placed in a humid chamber overnight at 37°C. Coverslips were removed, and 

slides were washed at 75°C in 0.4 x SSC/0.3% NP-40 solution for 2 min, followed by 2 x 

SSC/0.1% NP-40 at room temperature for 30 seconds. Slides were air dried and 

counterstained with 4,6-diamidino-2 phenylindole (DAPI) (Vysis Inc) before antifade and 

coverslips were added. Slides were analyzed with a Zeiss Axioplan epifluorescent 

microscope. Only non-overlapping sperm nuclei with intact morphology, and visible sperm 

tails were scored. Two signals of the same colour were scored as disomy if the signals were 
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of comparable intensity and size, and were separated from each other by a distance equal or 

greater than the diameter of each signal.  

After scoring the signals for chromosomes 18, X, and Y, the same slide was re-

hybridized with probes for chromosomes 13 and 21. Coverslips were removed and slides 

were washed for 5 min in 4 x SSC/0.05% Tween-20 solution, and dried in an ethanol series 

(70%, 80%, 90%, 100%) for 2 min each. A probe mixture of directly labelled single-stranded 

DNA probes: LSI 13 (SpectrumGreen), and LSI 21 (SpectrumOrange (Vysis Inc.) was 

applied to the slides using the same steps that were used for the CEP 18/X/Y probe mixture.  

Scoring of the chromosome 13 and 21 signals were performed using the same criteria as 

those used for chromosomes 18, X, and Y.  

2.2.6 Statistical analyses 

The Mann-Whitney test was used to compare the mean rate of genome-wide 

recombination between individual infertile men and the control group. The rate of synaptic 

errors in the infertile men were considered significantly different if they were beyond the 

95% confidence interval of the control group. The Fisher exact test was used to compare the 

proportion of cells with XY recombination. Statistical analyses for genome-wide 

recombination rates were performed according to the methods used by Gonsalves et al., 

2004, Codina-Pascual et al., 2005, Sun et al., 2007b and Ferguson et al., 2009 in order to 

allow for the comparison of results. The Chi-square test with two degrees of freedom was 

used to compare the frequencies of crossovers on chromosomes 13 and 18, while a Chi-

square test with one degree of freedom was used to compare the crossover frequencies on 

chromosome 21 between individual infertile men and the control group. The Fisher exact test 

was used to compare the rates of disomy in the sperm. The Pearson’s correlation test was 
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used to correlate recombination frequencies on chromosomes 13, 18, 21, and the sex 

chromosomes to the corresponding sperm disomy rates in the infertile men. P <0.05 was 

considered significant.  

2.3 Results 

2.3.1 Analysis of synapsis  

With fluorescent immunostaining, we were able to assess the rate of synaptic errors 

and genome-wide recombination in the spermatocytes of infertile and fertile men by 

visualizing the SC (SCP3/SCP1), crossover sites (MLH1), and centromeres (CREST) using 

antibodies against the associated proteins (Fig. 2.1A). A total of 707 pachytene nuclei from 

the control group, 587 pachytene nuclei from the OA group, and 539 pachytene nuclei from 

the NOA group were analyzed. In our analyses, we observed two types of synaptic anomalies 

in the pachytene cells: 1) discontinuities in the SC cause by the absence of both SCP1 and 

SCP3 in the same region, and 2) unsynapsed regions in the SC in which only the lateral 

elements (SCP3) were present (Fig. 2.2). A cell containing either type of anomalies in the SC 

structure was noted to contain synaptic errors. The frequency of synaptic errors ranged from 

0% to 9.8% in the control group, with a mean of 3.0% (Table 2.1). The OA group and NOA 

group showed an average rate of synaptic errors of 4.4% and 5.1% respectively, which were 

not significantly different than the rate observed in the controls. However, three OA men 

(OA28, OA31, OA34) and three NOA men (NOA24, NOA29, NOA30) individually showed 

an increased frequency of synaptic errors when compared to controls. 
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Figure 2.1 Immunofluorescence and FISH analysis of pachytene cells. 

(A) Cells were immunostained using antibodies against SCP3/SCP1, MLH1, and CREST to 

visualize the SC (red), crossover sites (green) and centromeres (blue). A spermatocyte with 45 

crossovers is shown. The sex body is indicated by the arrow, and shows one crossover. (B) 

Subsequent FISH was performed to identify chromosomes 13 (green, LSI 13), 18 (blue, CEP 

18), and 21 (red, LSI 21) in the same cell. 
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Table 2.1 Analysis of recombination and synaptic errors in azoospermic and control 

men 

  No. of cells  

Mean rate (+ SD) of 

genome-wide 

recombination 

Proportion of 

cells with 

achiasmate sex 

body (%) 

Proportion of 

cells with 

unsynapsed 

regions (%) 

Control men (n = 14)      

C20 50 46.1 ± 4.0 6.0 6.0 

C21 51 51.4 ± 4.7 7.8 2.0 

C22 50 47.5 ± 4.7 12.0 4.0 

C23 50 49.7 + 4.42 6.0 6.0 

C24 51 50.2 + 3.6 7.8 9.8 

C25 50 48.1 ± 4.7 14.0 0 

C26 50 45.4 ± 4.8 6.0 2.0 

C27 52 47.5 ± 4.6 9.6 3.8 

C28 50 48.1 + 4.3 12.0 2.0 

C29 50 53.2 + 3.8 14.0 0 

C30 49 50.2 + 5.8 14.3 0 

C31 50 52.2 + 3.2 18.0 4.0 

C32 51 51.2 + 4.2 10.0 2.0 

C33 53 55.1 + 4.1 17.0 0 

Mean (95% CI)   49.7 (48.3-50.9) 11.0 (8.9-13.2) 3.0 (1.5-4.5) 

Obstructive azoospermic men (n = 12)    

OA26 28 46.0 + 4.7 10.7 0 

OA27 32 46.8 + 7.1 6.3 3.1 

OA28 58 50.8 + 3.5 15.5b 10.3c 

OA29 40 42.5 + 3.1a 11.8 2.5 

OA30 41 47.0 + 4.5 22.0b 4.9 

OA31 39 43.0 + 3.2a 12.8 10.3c 

OA32 42 48.5 + 4.9 11.9 2.4 

OA33 45 50.5 + 6.1 17.8b 2.2 

OA34 62 45.2 + 3.1a 9.7 6.5c 

OA35 99 50.7 + 6.2 8.6 3.0 
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  No. of cells  

Mean rate (+ SD) of 

genome-wide 

recombination 

Proportion of 

cells with 

achiasmate sex 

body (%) 

Proportion of 

cells with 

unsynapsed 

regions (%) 

OA36 50 49.7 + 3.2 8.0 4.0 

OA37 51 50.1 + 4.5 7.8 3.9 

Mean (95% CI)   47.6 (46.0-49.1) 11.9 (9.5-14.3) 4.4 (2.8-6.1) 

Non-obstructive azoospermic men (n = 8)    

NOA24 87 44.4 + 3.1a 25.3b 10.3c 

NOA25 35 41.4 + 3.7a 31.4b 2.9 

NOA26 100 53.8 ± 5.7 10 2.0 

NOA27 86 52.1 + 3.9 9.3 1.2 

NOA28 101 46.6 + 6.6 16.8b 4.0 

NOA29 45 40.9 + 3.5a 17.8b 8.9c 

NOA 30 47 40.5 + 3.2a 25.5b 8.5c 

NOA 31 38 42.5 + 4.2a 18.4b 2.6 

Mean (95% CI)   45.3 (42.6-48.0)a 19.3 (15.3-23.4)b 5.1 (3.2-6.9) 

aP < 0.05, recombination significantly reduced when compared with controls, Mann-Whitney 

Test. 
bP < 0.01, proportion of cells with aschiamate sex body is significantly higher when 

compared with controls, Fisher exact test 
cProportion of cells with unsynapsed regions was considered significantly different from 

controls if it was beyond the 95% CI of the control group 
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2.3.2 Analysis of genome-wide recombination 

The control group displayed an average of 49.7 crossovers per cell, with individual 

mean rates ranging from 45.4 to 55.1 (Table 2.1). The OA group showed an average of 47.6 

crossovers per cell (ranging from 42.5 to 50.8), which was not significantly different from 

the controls. On the other hand, the NOA group showed a significantly reduced average of 

45.3 crossovers per cell when compared to the controls (P < 0.05, Mann-Whitney test), with 

a range of 40.5 to 53.8. We also noted large inter-individual variations among the 

azoospermic, infertile men, where three OA men (OA29, OA31, OA34) and five NOA men 

(NOA24, NOA25, NOA29, NOA30, NOA31) independently showed reduced recombination 

when compared to the control group (P <0.01, Mann-Whitney test).  

The proportion of pachytene cells displaying an achiasmate sex body (showing 

absence of crossovers) ranged from 6.0% to 18.0% in the control group, and 6.3% to 22.0% 

in the OA group (Table 2.1). The average frequency of achiasmate sex bodies was not 

significantly different between the OA and control groups (11.9% vs. 11.0%). Three OA men 

(OA28, OA30, OA33), however, individually showed an increased proportion of cells with 

achiasmate sex body when compared to the controls (P <0.01, Fisher exact test). It appears 

that recombination on the sex body was particularly disrupted in the NOA group, where the 

frequency of achiasmate sex bodies ranged from 9.3% to 31.4%. The average frequency of 

achiasmate sex bodies was significantly higher in the NOA group than the controls (19.3% 

vs. 11.0%, P < 0.01, Fisher exact test). In this group, six NOA men (NOA24, NOA25, 

NOA28, NOA29, NOA30, NOA31) independently displayed a significantly higher 

proportion of cells with achiasmate sex body when compared to the controls (P <0.01, Fisher 

exact test). 
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2.3.3 Chromosome-specific crossover frequencies and sperm aneuploidy 

 After noting reduced levels of genome-wide recombination in some infertile men, we 

attempted to analyze the crossover frequencies on specific chromosomes. By combining 

immunofluorescence and FISH, we were able to assess the frequency of crossovers on 

chromosomes 13, 18, and 21 (Figure. 2.1B and Table 2.2). A total of 667 pachytene nuclei 

from the control group, 471 pachytene nuclei from the OA group, and 416 pachytene nuclei 

from the NOA group were analyzed. In the control group, two or more crossovers were 

observed on chromosome 13 in 86.1% of pachytene cells, and on chromosome 18 in 78.1% 

of cells. Furthermore, 99.1% of pachytene cells in the control group showed one crossover on 

chromosome 21. We did not observe significant differences in chromosome-specific 

crossover frequencies between the control group and either of the infertile groups. 

Nevertheless, recombination frequencies were altered in four infertile men (OA34, NOA25, 

NOA29, NOA30) on chromosome 13, and in six infertile men (OA26, OA31, OA34, 

NOA25, NOA29, NOA30) on chromosome 18 (P < 0.05, Chi-square test). These infertile 

men showed reduced frequencies of two or more crossovers on chromosome 13 or 18 (P < 

0.05, Chi-square test). Furthermore, crossover frequencies on chromosome 21 were altered in 

eight infertile men (OA26, OA27, OA33, OA34, NOA24, NOA25, NOA29, NOA30), in 

which the frequency of achiasmate bivalent 21 was increased (P < 0.05, Chi-square test).  

 Since recombination is thought to be important for the proper segregation of 

chromosomes during the first meiotic division, we were interested in whether reduced 

recombination rates in infertile men may correlate to an increased risk of sperm aneuploidy. 

Using FISH, we examined the rate of aneuploidy for chromosomes 13, 18, 21, and the sex 

chromosomes in the testicular sperm of infertile and fertile men (Table 2.3). A total of 14574 
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sperm nuclei from the control group, 10854 sperm nuclei from the OA group, and 5682 

sperm nuclei from the NOA group were scored. The mean frequency of disomy in sperm in 

the control group was 0.13% for XX or YY, 0.23% for XY, 0.12% for chromosome 18, 

0.17% for chromosome 13, and 0.26% for chromosome 21. The OA group did not show a 

significant difference in sperm disomy from the controls. However, the NOA group showed 

an increased mean rate of disomy XY (0.62%) and disomy 18 (0.32%) when compared to 

controls (P < 0.05, Fisher exact test). Overall, seven OA men, and five NOA men showed 

increases in sex chromosomal aneuploidy when compared to the controls (P < 0.05, Fisher 

exact test). Three OA men (OA28, OA29, OA31), and two NOA men (NOA24, NOA30) 

showed increased rates of disomy 13 (P < 0.05, Fisher exact test). Three OA men (OA26, 

OA31, OA34), and three NOA men (NOA24, NOA25, NOA30) showed increased rates of 

disomy 18 (P < 0.05, Fisher exact test). Furthermore, four OA men (OA26, OA31, OA33, 

OA34), and four NOA men (NOA24, NOA25, NOA29, NOA30) showed increased rates of 

disomy 21 (P < 0.05, Fisher exact test). Two NOA men (NOA 24 and NOA30) showed 

elevated levels of disomy for all chromosomes in the study, with particularly high rates of 

XY disomy (around 1.0% in both men).  

 When we combined all of the infertile men, we observed an inverse correlation 

between the frequency of recombination on the sex body and XY disomy in the sperm (Fig. 

2.3; P < 0.001, r=-0.79, Pearson’s test). Next, we wanted to assess the relationship between 

chromosome-specific recombination rates on the autosomes, and disomy in the sperm. We 

observed a negative correlation between the frequency of recombination on bivalent 21 and 

disomy 21 in the sperm (Fig. 2.4; P < 0.001, r=-0.68, Pearson’s test). However, there did not 



79 

 

appear to be a relationship between crossover frequencies and sperm disomy rates for 

chromosomes 13 and 18. 
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Table 2.2 Analysis of crossover frequencies on chromosome 13, 18 and 21 in azoospermic and control men 

    Chromosome 13   Chromosome 18   Chromosome 21 

  
No. of 

Cells 
0 foci 1 focus > 2 foci   0 foci 1 focus > 2 foci   0 foci 1 focus > 2 foci 

Control men (n = 14)            

C20 43 0% (0) 18.6% (8) 81.4% (35)  0% (0) 25.6% (11) 74.4% (32)  2.3% (1) 98.2% (42) 0% (0) 

C21 49 0% (0) 12.2% (6) 87.8% (43)  0% (0) 18.4% (9) 81.6% (40)  0% (0) 100% (49) 0% (0) 

C22 48 0% (0) 12.5% (7) 87.5% (49)  1.8% (1) 28.6% (16) 69.6% (39)  0% (0) 100% (56) 0% (0) 

C23 50 0% (0) 14.0% (7) 86.0% (43)  2.0% (1) 14.0% (7) 84.0% (42)  2.0% (1) 98.0% (49) 0% (0) 

C24 51 0% (0) 17.6% (9) 82.4% (42)  0% (0) 13.7% (7) 86.2% (44)  3.9% (2) 96.1% (49) 0% (0) 

C25 45 0% (0) 11.1% (5) 88.9% (40)  0% (0) 17.8% (8) 82.2% (37)  0% (0) 100% (45) 0% (0) 

C26 42 0% (0) 11.9% (5) 88.1% (37)  0% (0)  16.7% (7) 83.3% (35)  0% (0) 100% (42) 0% (0) 

C27 45 0% (0) 11.1% (5) 88.9% (40)  0% (0) 24.4% (11) 75.6% (34)  0% (0) 100% (45) 0% (0) 

C28 50 0% (0) 14.0% (7) 86.0% (43)  2.0% (1) 20.0% (10) 78.0% (39)  0% (0) 100% (50) 0% (0) 

C29 45 0% (0) 17.8% (8) 82.2% (37)  2.2% (1) 31.1% (14) 66.7% (30)  2.2% (1) 97.8% (44) 0% (0) 

C30 48 0% (0) 8.3% (4) 91.7% (44)  0% (0) 20.8% (10) 79.2% (38)  2.1% (1) 97.9% (47) 0% (0) 

C31 50 0% (0) 10% (5) 90.0% (45)  0% (0) 24.0% (12) 76.0% (38)  0% (0) 100% (50) 0% (0) 

C32 48 0% (0) 18.8% (9) 81.3% (39)  0% (0)  16.7% (8) 83.3% (40)  0% (0) 100% (48) 0% (0) 

C33 53 0% (0) 15.1% (8) 84.9% (45)  0% (0) 22.6% (12) 77.4% (41)  0% (0) 100% (53) 0% (0) 

Total 667 0% (0) 13.9% (93) 
86.1% 

(574) 
  0.6% (4) 21.3% (142) 78.1% (521)   0.9% (6) 

99.1% 

(661) 
0% (0) 

Obstructive azoospermic men (n = 12)          

OA26 20 0% (0) 10.0% (2) 90.0% (18)  
0% 

(0)** 

45.0% 

(9)** 

55.0% 

(11)** 
 

15.0% 

(3)** 

85.0% 

(17)** 

0% 

(0)** 

OA27 29 3.4% (1) 13.8% (4) 82.8% (24)  0% (0) 24.1% (7) 75.9% (22)  
10.3% 

(3)** 

86.2% 

(25)** 

3.4% 

(1)** 

OA28 49 0% (0) 8.2% (4) 91.8% (45)  0% (0) 18.4% (9) 81.6% (40)  0% (0) 100% (49) 0% (0) 

OA29 35 0% (0) 8.6% (3) 91.4% (32)  0% (0) 28.6% (10) 71.4% (25)  0% (0) 100% (35) 0% (0) 

OA30 40 0% (0) 5.0% (2) 95.0% (38)  0% (0) 15.0% (6) 85.0% (34)  2.5% (1) 97.5% (39) 0% (0) 

OA31 35 0% (0) 14.3% (5) 85.7% (30)  
0% 

(0)** 

51.4% 

(18)** 

48.6% 

(17)** 
 2.9% (1) 97.1% (34) 0% (0) 

OA32 40 0% (0) 25.0% (10) 75.0% (30)  0% (0) 20.0% (8) 80.0% (32)  2.5% (1) 97.5% (39) 0% (0) 



81 

 

    Chromosome 13   Chromosome 18   Chromosome 21 

  
No. of 

Cells 
0 foci 1 focus > 2 foci   0 foci 1 focus > 2 foci   0 foci 1 focus > 2 foci 

OA33 43 0% (0) 14.0% (6) 86.0% (37)  0% (0) 25.6% (11) 74.4% (32)  
14.0% 

(6)** 

86.0% 

(37)** 

0% 

(0)** 

OA34 41 0% (0)** 
31.7% 

(13)** 

68.3% 

(28)** 
 

0% 

(0)*** 

58.5% 

(24)*** 

40.5% 

(17)*** 
 

4.9% 

(2)** 

95.1% 

(39)** 

0% 

(0)** 

OA35 67 0% (0) 10.4% (7) 89.6% (60)  0% (0) 11.9% (8) 88.1% (59)  1.5% (1) 98.5% (66) 0% (0) 

OA36 41 0% (0) 12.2% (5) 87.8% (36)  0% (0) 26.8% (11) 73.2% (30)  0% (0) 100% (41) 0% (0) 

OA37 32 0% (0) 9.4% (3) 90.6% (29)   0% (0) 21.9% (7) 79.1% (25)   0% (0) 100% (32) 0% (0) 

Total 472 0.2% (1) 13.6% (64) 
86.2% 

(407) 
  0% (0) 27.1% (128) 72.9% (344)   3.8% (18) 

96.0% 

(453) 
0.2% (1) 

Non-obstructive azoospermic men (n = 8)          

NOA

24 
50 0% (0) 20.0% (10) 80.0% (40)  0% (0) 18.0% (9) 82.0% (41)  

14.0% 

(7)** 

86.0% 

(43)** 

0% 

(0)** 

NOA

25 
30 

0% 

(0)*** 

83.3% 

(25)*** 

16.7% 

(5)*** 
 

0% 

(0)*** 

60.0% 

(18)*** 

40.0% 

(12)*** 
 

6.7% 

(2)** 

93.3% 

(28)** 

0% 

(0)** 

NOA

26 
88 0% (0) 8.0% (7) 92.0% (81)  0% (0) 10.2% (9) 89.8% (79)  0% (0) 100% (88) 0% (0) 

NOA

27 
57 0% (0) 5.3% (3) 94.7% (54)  0% (0) 19.3% (11) 80.7% (46)  0% (0) 100% (57) 0% (0) 

NOA

28 
95 0% (0) 10.5% (10) 89.5% (85)  0% (0) 16.8% (16) 83.2% (79)  0% (0) 100% (95) 0% (0) 

NOA

29 
40 

2.5% 

(1)*** 

82.5% 

(33)*** 

15.0% 

(6)*** 
 

0% 

(0)*** 

57.5% 

(23)*** 

42.5% 

(17)*** 
 

5.0% 

(2)** 

95.0% 

(38)** 

0% 

(0)** 

NOA

30 
35 0% (0)** 

34.3% 

(12)** 

65.7% 

(23)** 
 

0% 

(0)*** 

74.3% 

(26)*** 

25.7% 

(9)*** 
 

8.6% 

(3)** 

91.4% 

(32)** 

0% 

(0)** 

NOA

31 
21 0% (0) 9.5% (2) 90.5% (19)   0% (0) 23.8% (5) 76.2% (16)   0% (0) 100% (21) 0% (0) 

Total 416 0.2% (1) 24.5% (102) 
75.2% 

(313) 
  0% (0) 28.1% (117) 71.9% (299)   3.4% (14) 

96.6% 

(402) 
0% (0) 

***P < 0.001,  Chi-square test with two degrees of freedom 

**P < 0.01,  Chi-square test with two degrees of freedom 

*P < 0.05, Chi-square test with two degrees of freedom
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Table 2.3 Testicular sperm aneuploidy in the azoospermic and control men 

 
No. of 

Cells 

Frequency of disomy % (n) 
No. of 

cells 

Frequency of 

disomy % (n) 

  XX  or YY XY 18 13 21 

Control men (n = 14)       

C20 1028 0.29% (3) 0.39% (4) 0.10% (1) 1022 0.39% (4) 0.49% (5) 

C21 1010 0.30% (3) 0.20% (2) 0.10% (1) 1005 0.20% (2) 0.30% (3) 

C22 1090 0.18% (2) 0.28% (3) 0.10% (1) 1235 0.16% (2) 0.43% (5) 

C23 1034 0.29% (3) 0.19% (2) 0.19% (2) 1041 0.38% (4) 0.29% (3) 

C24 1021 0.10% (1) 0.10% (1) 0% (0) 1001 0% (0) 0.20% (2) 

C25 1023 0.29% (3) 0.20% (2) 0% (0) 1000 0.10% (1) 0.30% (3) 

C26 1008 0% (0) 0.30% (3) 0.20% (2) 1009 0.20% (2) 0.20% (2) 

C27 1203 0.08% (1) 0.25% (3) 0.17% (2) 1013 0.30% (3) 0.20% (2) 

C28 1000 0.10% (1) 0.30% (3) 0.10% (1) 1002 0.10% (1) 0% (0) 

C29 1015 0% (0) 0.10% (1) 0.30% (3) 1006 0.10% (1) 0.40% (4) 

C30 1000 0% (0) 0.30% (3) 0.10% (1) 1002 0.10% (1) 0.20% (2) 

C31 1113 0.10% (1) 0.18% (2) 0.18% (2) 1171 0.26% (3) 0.10% (1) 

C32 1004 0.10% (1) 0.30% (3) 0% (0) 1030 0.10% (1) 0.29% (3) 

C33 1025 0% (0) 0.20% (2) 0.20% (2) 1002 0% (0) 0.30% (3) 

Total 14574 0.13% (19) 
0.23% 

(34) 

0.12% 

(18) 
14539 

0.17% 

(25) 

0.26% 

(38) 

Obstructive azoospermic men (n = 12)     

OA26 980 0% (0) 
0.41% 

(4)* 

0.41% 

(4)* 
956 0.21% (2) 

0.52% 

(5)* 

OA27 978 0% (0) 0.20% (2) 0% (0) 947 0% (0) 0.32% (3) 

OA28 870 0.34% (3)* 
0.57% 

(5)** 
0.23% (2) 852 0.23% (2) 0.12% (1) 

OA29 988 0.30% (3)* 
0.40% 

(4)* 
0.20% (2) 956 0.21% (2) 0.31% (3) 

OA30 1000 0.20% (2) 
0.40% 

(4)* 
0.20% (2) 957 0.21% (2) 0.10% (1) 

OA31 800 0.38% (3)* 0.38% (3) 
0.63% 

(5)** 
745 

0.40% 

(3)* 

0.67% 

(5)** 

OA32 789 0% (0) 0.25% (2) 0.25% (2) 821 0.12% (1) 0.12% (1) 

OA33 803 0.12% (1) 
0.50% 

(4)* 
0.12% (1) 834 0% (0) 

0.48% 

(4)* 

OA34 856 0.23% (2) 
0.58% 

(5)** 

0.70% 

(6)** 
914 

0.33% 

(3)* 

0.55% 

(5)* 

OA35 900 0% (0) 0.11% (1) 0.22% (2) 899 0% (0) 0.22% (2) 

OA36 950 0.11% (1) 0.21% (2) 0% (0) 923 0% (0) 0% (0) 

OA37 940 0% (0) 0.21% (2) 0.11% (1) 967 0.21% (2) 0.10% (1) 

Total 10854 0.14% (15) 
0.35% 

(38) 

0.25% 

(27) 
10771 

0.16% 

(17) 

0.29% 

(31) 
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No. of 

Cells 

Frequency of disomy % (n) 
No. of 

cells 

Frequency of 

disomy % (n) 

  XX  or YY XY 18 13 21 

Non-obstructive azoospermic men (n = 8)     

NOA24 
450 

0.44% 

(2)** 

1.11% 

(5)** 

0.67% 

(3)** 
530 

0.57% 

(3)** 

0.75% 

(4)** 

NOA25 678 0% (0) 
1.33% 

(9)** 

0.59% 

(4)** 
589 0.17% (1) 

0.51% 

(3)* 

NOA26 693 0.29% (2) 0.29% (2) 0.29% (2) 789 0% (0) 0.13% (1) 

NOA27 762 0% (0) 0.13% (1) 0.13% (1) 758 0% (0) 0.13% (1) 

NOA28 760 0% (0) 
0.53% 

(4)* 
0.13% (1) 745 0% (0) 0.13% (1) 

NOA29 780 0.26% (2) 
0.64% 

(5)** 
0.26% (2) 827 0.24% (2) 

0.60% 

(5)** 

NOA 30 860 0.34% (3)* 
1.01% 

(9)** 

0.47% 

(4)* 
765 

0.52% 

(4)** 

0.65% 

(5)** 

NOA 31 699 0.14% (1) 0.29% (2) 0.14% (1) 639 0.16% (1) 0.16% (1) 

Total 5682 0.18% (10) 
0.62% 

(35)** 

0.32% 

(18)* 
5642 

0.19% 

(11) 

0.37% 

(21) 

**P <0.001, Fisher exact test 

*P <0.05, Fisher exact test 
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Figure 2.2 Relationship between the frequency of recombination on the sex body and 

XY disomy in the sperm of azoospermic men (n = 20).  

Rates of XY disomy in sperm were highly variable among azoospermic men, and appears to 

be negatively correlated with the frequency of XY recombination in pachytene cells (p < 

0.0001, r=-0.79, Pearson’s test). 
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Figure 2.3 Relationship between the frequency of recombination on bivalent 21 and 

disomy 21 in the sperm of azoospermic men (n = 20).  

Rates of disomy 21 in sperm were highly variable among azoospermic men, and appear to 

negatively correlate with the frequency of recombination on bivalent 21 in pachytene cells (p 

< 0.0001, r=-0.79, Pearson’s test). 
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2.4 Discussion 

2.4.1 Errors in recombination and synapsis in azoospermic men 

Immunocytological studies performed in fertile men have established the frequency 

of recombination to be around 50 crossovers per cell (Lynn et al., 2002; Sun et al., 2005). In 

this study, the recombination levels we observed in the fertile men were similar to those 

presented by others (Lynn et al., 2002; Sun et al., 2005; Ferguson et al., 2009). There have 

been several reports of reduced genome-wide levels of recombination in infertile men 

(Gonsalves et al., 2004; Ma et al., 2006a; Ma et al., 2006b Sun et al., 2007b; Ferguson et al., 

2007; Ferguson et al., 2009). We identified eight azoospermic men who displayed reduced 

rates of genome-wide recombination when compared to the control group. Specifically, 

62.5% of the NOA men (5/8), and 25% of the OA men (3/12) showed reduced frequencies of 

crossovers. Our results add further evidence that errors in recombination are a major factor in 

male infertility. It was surprising to find higher rates of meiotic errors in the OA cohort. It is 

important to note that, unlike other studies (Gonsalves et al., 2004), the OA men in this study 

were classified based on the presence of normal spermatogenesis in the testes, despite having 

no sperm in the semen. However, it is unclear whether there are physical blockages in the 

seminal tract. Therefore, although spermatogenesis appears normal in this cohort, there may 

nevertheless be meiotic defects that may potentially lead to an increased rate of sperm 

aneuploidy.  

We noted nine azoospermic men who showed an increased frequency of achiasmate 

sex bodies when compared to the controls. The NOA group also displayed such a 

significance, confirming the observations made by other studies that this group is 

predisposed to disruptions in recombination on the sex body (Gonsalves et al., 2004; 



87 

 

Topping et al., 2006; Sun et al., 2007b; Ferguson et al., 2008). The higher risk of 

recombination errors faced by sex chromosomes compared to autosomes may be due to their 

differing experiences during prophase I. Kauppi et al., (2011) revealed that two different 

isoforms of Spo11 catalyze DSBs on the autosomes (Spo11β) versus the X and Y 

chromosomes (Spo11α). Knockout mice for Spo11α displayed unpaired X and Y 

chromosomes in up to 70% of pachytene cells, lack of recombination on the sex body, and 

infertility due to pachytene arrest of spermatocytes (Kauppi et al., 2011). Future investigation 

into the Spo11 gene, and its splice variants in humans may elucidate the high level of 

recombination errors on the X and Y chromosomes in infertile men.  

Our observations of synapsis in this study aligned with those reported by others (Sun 

et al., 2007b; Ferguson et al., 2007; Ferguson et al., 2009), where the frequency of synaptic 

errors was increased in nine infertile men. Notably, 66.7% of the OA men (2/3) and 60% of 

the NOA men (3/5) with reduced recombination displayed increased rates of synaptic errors 

as well, suggesting that some meiotic defects affect both synapsis and recombination. 

Synapsis and recombination are highly dependent on each other; DSB formation is required 

for chromosome pairing and thus synapsis, while synapsis in turn provides a platform for 

recombination to occur. It is therefore interesting that three infertile men showed defects in 

only synapsis or recombination. Since it has been shown that crossovers occur at short 

stretches of regions along the chromosome called hotspots (Ségurel et al., 2011; Smagulova 

et al., 2011), it is possible that synaptic errors that occurred outside of hotspots may 

noticeably affect the frequency of recombination. Furthermore, errors in recombination, but 

not synapsis, may be indicative of problems with late recombinant proteins that repair DSBs 

into crossovers. It has been shown that unpaired regions of chromosomes during pachytene 
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are transcriptionally silenced through the recruitment of BRCA1 and γH2AX, and may 

trigger meiotic checkpoints (Baarends et al., 2005; Turner, 2007; Ferguson et al., 2007; 

Checchi and Engebretch, 2011). Therefore, spermatogenic arrest due to synaptic errors may 

play a role in some cases of infertility.  

2.4.2 Linking recombination and sperm aneuploidy in azoospermic men 

Several studies have assessed the chromosome-specific patterns of recombination in 

normal males (Tease and Hulten, 2004; Codina-Pascual et al., 2006; Sun et al; 2006b). 

However, limited studies have examined the chromosome-specific frequencies of 

recombination in infertile men (Ferguson et al., 2007; Sun et al., 2008; Ferguson et al., 

2009). The 2009 study by Ferguson et al. found altered frequencies of crossovers on 

chromosomes 13, 18, and, 21 in the NOA group when compared to the control group. In this 

study, we did not find any significance in the crossover frequencies on chromosomes 13, 18, 

and 21 between the infertile groups and control group. However, 41.7% of the OA men 

(5/12), and 50% of the NOA men (4/8) showed significantly altered crossover frequencies on 

at least one of the chromosomes studied when compared to the control group. We found that 

chromosome 13 and 18 bivalents with only one crossover was more prevalent in infertile 

men when compared with the control men, who mostly display two or more crossovers on 

these chromosomes. Notably, 88.9% of the infertile men (8/9) with altered crossover 

frequency on the chromosomes studied showed an increase in achiasmate bivalent 21 when 

compared to controls. It is likely that achiasmate bivalents are caught by meiotic checkpoints, 

and induce meiotic arrest in the cell (Roeder and Bailis, 2000). However, some cells may 

evade arrest and lead to an increased risk of meiotic nondisjunction and disomy 21 in the 

sperm (Savage et al., 1998).  
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There have been two studies that showed a correlation between increased frequency 

of achiasmate sex bodies and increased sex chromosomal aneuploidy in the sperm (Ferguson 

et al., 2007; Sun et al., 2008), however the sample size for each study was limited to seven 

infertile men. Our data is in agreement with the previous findings, where we found a negative 

correlation between the frequency of recombination between the sex chromosomes and rate 

of XY disomy in the sperm of twenty infertile men. With a significantly larger sample size, 

our findings provide valuable insight for the risk of sperm aneuploidy in infertile men. It 

appears that infertile men with a high frequency of achiasmate sex bodies in pachytene cells 

are particularly susceptible to producing sperm with sex chromosomal aneuploidies. The sex 

chromosomes have been shown to be the most at risk of both recombination defects 

(Gonsalves et al., 2004; Ma et al., 2006a; Ma et al., 2006b; Ferguson et al., 2007) and sperm 

aneuploidy (Templado et al., 2013). The paternal contribution to sex chromosomal 

aneuploidies in pregnancies is also much higher than that of autosomal aneuploidies, ranging 

from 50% in XXY males to 100% in XYY males (Ioannou and Tempest, 2015). Thus, there 

is concern that infertile men with severely defective recombination on the sex chromosomes 

are more susceptible to conceiving an embryo with sex chromosomal anomalies. Indeed, 

there have been observations that most paternally derived XYY males were conceived by 

sperm produced from germ cells that did not undergo recombination on the sex chromosomes 

(Ioannou and Tempest, 2015). An infertile man who did not display recombination on the sex 

chromosomes also resulted in a paternally derived 45,X abortus (Ma et al., 2006a).  

We found no correlation between the rates of recombination and sperm disomy for 

chromosomes 13 and 18. Notwithstanding, to the best of our knowledge, we found the first 

evidence of a negative correlation between the frequency of recombination on bivalent 21 
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and disomy 21 in the sperm of infertile men. A decrease in recombination on bivalent 21 has 

been observed in oocytes that were implicated in trisomy 21 cases (Oliver et al., 2014). 

Analysis of such a trend in paternally derived trisomy 21 has shown conflicting results due to 

small sample sizes (Oliver et al., 2009). Further investigation into the rate of disomy 21 in 

the sperm of fathers who gave rise to trisomy 21 conceptions may shed light on the risks 

infertile men with extremely reduced rates of recombination on bivalent 21 may face during 

ICSI. Further studies that examine meiotic defects in infertile men may elucidate the 

mechanisms behind the production of aneuploid sperm, as well as aid in the risk assessment 

for couples undergoing fertility treatments.  
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 CHAPTER 3: CROSSOVER DISTRIBUTION IN INFERTILE MEN 

 

3.1 Introduction 

Meiotic recombination is essential for genetic diversity, as well as the correct 

segregation of chromosomes during the first meiotic division. This process is strictly 

regulated in part by the non-uniform structure of the chromosomes entering prophase I of 

meiosis, where accessibility to recombination machinery is restricted to specific regions of 

the chromosome. The layout of the chromatin, whether it is loosely or highly condensed, 

therefore allows for close surveillance of where DSBs and resulting crossovers can occur. 

Studies have examined the crossover positions in trisomic conceptions in humans, and 

observed that certain distributions of crossovers may increase the susceptibility of 

chromosome missegregation and give rise to aneuploid gametes (reviewed in Lamb et al., 

2005).  

In Chapter 2, we demonstrated correlations between reduced recombination on 

bivalent 21 and the sex chromosomes, and an increase in sperm disomy in infertile men for 

the respective chromosomes. However, aside from changes in the frequency of crossovers, 

early chiasma work has also observed changes in the position of crossovers in infertile men 

(Hulten et al., 1970; Micic et al., 1982; Laurie and Hulten 1985). In normal males, an 

inhibition of crossovers near centromeres and the vicinity of telomeres has been observed 

(Lynn et al., 2002; Tease and Hulten, 2004). Studies have also indicated a high frequency of 

crossovers near the subtelomeres (Sun et al., 2006a; Codin-Pascual et al., 2006; Ferguson et 

al., 2009). In a preliminary study, Ferguson et al., (2009) identified two infertile men with 

more frequent crossovers near the centromeres, and fewer crossovers near the subtelomeres 

on the chromosomes studied. Although an increased frequency of crossovers near the 
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centromeres has been linked to chromosome missegregation in model organisms (Rockmill 

et al., 2006; Blitzblau et al., 2007), the association has not been studied in humans. In this 

study, we aimed to further investigate whether infertile men display perturbations in 

crossover localization. To achieve our aims, we analyzed the distribution of crossovers on 

chromosomes 13, 18, and 21 in the same cohort of infertile and fertile men as those reported 

in Chapter 2. Furthermore, we assessed the average distance between crossovers and 

telomeres to determine if there is an overall shift in crossovers. By including the results on 

chromosome-specific crossover frequencies presented in Chapter 2, our findings may shed 

light on the consequences of altered crossover frequency and positions on spermatogenic 

arrest, as well as the production of aneuploid sperm in infertile men.  

3.2 Materials and methods 

3.2.1 Meiotic analyses 

The same infertile and fertile men participated in this study as those reported in 

section 2.2.1 in Chapter 2. Testicular tissue from the infertile and fertile men were processed, 

and spermatocytes were immunostained using antibodies against SCP3/SCP1, MLH1, and 

CREST antisera according to the methods described in section 2.2.3. FISH was performed on 

previously immunostained slides according to the methods described in section 2.2.4 in order 

to study the crossover locations on chromosomes 13, 18, and 21 in the spermatocytes. The 

crossover distribution, represented by the distribution of MLH1 foci, and SC lengths were 

measured using the image analysis software Micromeasure V3.3, available at: 

sites.biology.colostate.edu/MicroMeasure/ (Reeves et al., 2001). The SC arms of the 

chromosomes 13, 18, and 21 were divided into 10% intervals, with the centromeres at 0% 

and telomeres at 100% (Fig 3.1). The frequency of MLH1 foci in each interval was 
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calculated. As the number of crossovers along a chromosome significantly influences their 

distribution (Ferguson et al., 2009), we separately analyzed the crossover distributions on 

chromosome 13 and 18 bivalents with single and double crossovers (Fig 3.1). The absolute 

distance between crossovers and telomeres was measured for each arm of chromosomes 13, 

18, and 21, and then divided by the length of the SC arm in order to express the distance as a 

percentage.  
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Figure 3.1 Diagram depicting meiotic crossovers in regions along a chromosome.  

The p and q arms of the chromosome are divided into 10% intervals, with the centromere (C) 

at 0%, and telomeres at 100%. The subtelomere is shaded in the 80-100% intervals. The 

pericentromere, the region surrounding the centromere is shaded in the 10-30% intervals. This 

region attracts high levels of cohesin which are protein complexes that hold sister chromatids 

together until they separate during meiosis. Crossover formation in each region of the 

chromosome, and the resulting recombinant chromosomes are illustrated: a) a single crossover 

near the telomere on the p-arm; b) a single crossover near the centromere on the q-arm; c) a 

single crossover near the telomere on the q-arm; d) double crossovers on the q-arm. 
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3.2.2 Statistical analyses 

We used a Chi-square test to compare the crossover distribution in the fourteen 

control men, and found no significant differences for any of the chromosome arms studied. 

Thus, the control men were pooled, and a Chi-square test with nine degrees of freedom was 

used to compare the crossover distribution on specific chromosome arms between individual 

infertile men and the control group. The Fisher test was used to compare the crossover 

frequencies in each 10% interval between individual infertile men and the control group. P 

<0.05 was considered significant. The Mann-Whitney test was used to compare the average 

crossover distance to telomeres between the NOA/OA group and the control group. P < 0.05 

was considered statistically significant. 

3.3 Results 

3.3.1 Frequency of crossovers, and sperm aneuploidy in azoospermic men 

Frequency of chromosome-specific crossovers in the infertile (n=20) and fertile men 

(n=14) in this study were reported in section 2.3.3 of Chapter 2. Crossover frequencies were 

altered in four infertile men (OA34, NOA25, NOA29, NOA30) on chromosome 13, and in 

six infertile men (OA26, OA31, OA34, NOA25, NOA29, NOA30) on chromosome 18 

(Table 2.2). Moreover, eight infertile men (OA26, OA27, OA33, OA34, NOA24, NOA25, 

NOA29, NOA30) showed elevated incidences of achiasmate bivalent 21 (Table 2.2).  

3.3.2 Distribution of crossovers in fertile men  

We analyzed the crossover distribution on chromosomes 13, 18, and 21 in a total of 

667 pachytene nuclei from the control group. We observed that single crossovers on the long 

arm of chromosome 21 (21q) were most frequently located near subtelomeres, at relative 
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distances to the centromere of 70-90% (denoted as intervals) as shown in Figure 3.2A. 

Similarly, double crossovers on chromosome 18 were most commonly found near 

subtelomeres, where crossover frequency was highest at the 60-80% intervals on 18p, and 

80-90% intervals on the long arm of chromosome 18 (18q) (Fig 3.2C). Furthermore, 

crossover frequencies were low near the centromere on both arms of chromosome 18, as well 

as near the vicinity of the telomere on 18p. In contrast, the pattern of crossover distribution 

was different on 13q, where crossovers were frequently located near the centromere and 

telomeres (Fig 3.2B). In fact, crossover frequency was lowest around the middle of 13q, at 

the 50-70% intervals (Fig 3.2B).  

3.3.3 Distribution of crossovers in OA men  

We examined the crossover distributions in a total of 472 pachytene nuclei from the 

OA group. Five OA men displayed altered crossover distributions on at least one of the 

chromosome arms studied when compared to the control group (P < 0.05, Chi-square test). 

OA31 displayed altered crossover distributions on 21q, where there were fewer crossovers 

near the subtelomere (Fig 3.2A). Out of all the infertile men, only OA35 displayed an altered 

crossover distribution on 13q containing double crossovers (P < 0.05, χ² test), showing more 

frequent crossovers near the telomere at the 90% interval (Fig 3.2B). 

We identified three OA men who exhibited changes in crossover distributions on 

either arms of chromosome 18 containing double crossovers when compared to the controls 

(P < 0.05, Chi-square test). OA26 displayed more frequent crossovers near the centromere, 

and fewer crossovers near the subtelomere (Fig 3.3A). OA33 showed fewer crossovers near 

the subtelomere of 18q at the 70% interval (Fig 3.3B). Finally, OA34 showed a much 

different change in crossover distribution compared to the rest of the infertile men, where 



97 

 

there were fewer crossovers at the subtelomere, but more frequent crossovers at the vicinity 

of the telomeres at the 100% interval (Fig. 3.3C).  
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Figure 3.2 Chromosomes 21, and 13 displaying altered crossover distributions in OA men. 

The Y-axis represents the frequency of crossovers in each interval. The X-axis represents the 

relative crossover position from the centromere with the values representing the upper limit of 

each interval. As crossovers in the p-arm of chromosomes 13 and 21 are extremely rare, the p-

arms are not shown. The crossover frequencies in each interval were compared to the control 

group, and significant differences are indicated by asterisks (P < 0.05, Fisher test). 



99 

 

 

Figure 3.3 Chromosome 18 displaying altered crossover distributions in OA men. 

The Y-axis represents the frequency of crossovers in each interval. The X-axis represents the 

relative crossover position from the centromere with the values representing the upper limit of 

each interval. The crossover frequencies in each interval were compared to the control group, 

and significant differences are indicated by asterisks (P < 0.05, Fisher test). 
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3.3.4 Distribution of crossovers in NOA men  

A total of 416 pachytene nuclei from the NOA group were analyzed for the 

distribution of crossovers. We identified four NOA men who displayed altered crossover 

distributions on at least one of the chromosome arms studied when compared to the control 

group (P <0.05, Chi-square test). Two of these cases had altered crossover distributions on 

21q. NOA24 showed an increase in crossover frequency in the middle of 21q, and a decrease 

in crossover frequency at the subtelomere (Fig 3.4A). Similarly, NOA30 showed increased 

crossover formation near the centromere, and decreased crossover formation at the 

subtelomere (Fig 3.4B). None of the NOA men showed an altered crossover distribution on 

chromosome 13 when compared to controls.  

We observed altered crossover distributions on chromosome 18 with double crossovers 

in two NOA men when compared to the controls (P <0.05, Chi-square test). NOA25 showed 

an increase in crossover formation near the centromere and subtelomere (Fig 3.5A), while 

NOA29 exhibited a decrease in crossover formation at the subtelomere (Fig 3.5B).  
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Figure 3.4 Chromosome 21 displaying altered crossover distributions in NOA men. 

The Y-axis represents the frequency of crossovers in each interval. The X-axis represents the 

relative crossover position from the centromere with the values representing the upper limit 

of each interval. As crossovers in the p-arm of chromosomes 21 are extremely rare, the p-

arms are not shown. The crossover frequencies in each interval were compared to the control 

group, and significant differences are indicated by asterisks (P < 0.05, Fisher test). 
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Figure 3.5 Chromosome 18 displaying altered crossover distributions in NOA men. 

The Y-axis represents the frequency of crossovers in each interval. The X-axis represents the 

relative crossover position from the centromere with the values representing the upper limit of 

each interval. The crossover frequencies in each interval were compared to the control group, 

and significant differences are indicated by asterisks (P < 0.05, Fisher test). 
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3.3.5 Crossover distance to telomere 

We pooled the NOA, OA, and control men into the respective groups, and measured 

the average crossover distance to the telomere as a percentage of the total SC length. On 21q, 

the NOA group displayed an increased average distance between crossover and telomere 

compared to controls (50.8%+4.8 vs. 37.8%+4.2, P < 0.05, Mann-Whitney test, Fig 3.6A). 

The OA group did not show any significance in this aspect compared to the control group 

(Fig 3.6A). Regarding chromosome 18, neither the NOA nor OA group showed a significant 

difference in mean crossover distance to the telomere on 18p when compared to controls (Fig 

3.6B). Nevertheless, the OA group showed an increased average crossover distance to the 

telomere compared to controls on 18q (58.6%+7.5 vs. 39.5%+5.7, P < 0.05, Mann-Whitney 

test, Fig 3.6B). However, the NOA group did not show such significance compared to 

controls (Fig 5B). Neither the NOA nor OA group showed significantly different average 

distances between crossover and telomere on 13q compared to controls (P > 0.05, Mann-

Whitney test). 
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Figure 3.6 Average crossover distance to telomere (+SD) on chromosomes 18 and 21 in 

OA, NOA and control men.  

The absolute distance between crossover and telomere was divided by the total SC arm 

length in order to express the distance as a percentage. The Y-axis represents the mean 

distance between crossovers to the telomeres on the chromosome arms 18q-arm, 18p-arm 

and 21q-arm. The average distances between crossovers to telomeres were compared to the 

control group and significant differences are indicated by asterisks (P < 0.05, Mann-Whitney 

test). 

* 

* 
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3.4 Discussion 

3.4.1 Increase in crossovers near centromere and telomeres in azoospermic men 

It has been shown that the distal regions of the chromosomes in normal men are 

largely composed of loosely condensed euchromatin, and much more susceptible to 

recombination events than the highly condensed regions of heterochromatin near the 

centromeres (Mézard et al., 2015). Analysis of meiotic chromosomes in S. cerevisiae 

revealed that crossover formation near the centromeres are generally inhibited, which is 

thought to be important for chromosome segregation. Namely, an abnormally high 

prevalence of crossovers near the centromeres may disturb the attachment of cohesins in this 

region, as shown in S. cerevisiae, where crossover formation near the centromeres have been 

linked to the premature segregation of the sister chromatids (Blitzblau et al., 2007; Rockmill 

et al., 2006). In our study, the distribution of crossovers was altered in five OA and four 

NOA men when compared to the control group. Out of these nine infertile men, four men 

(44.4%) displayed an increase in crossover formation near centromeres. Although this shift 

of crossovers toward the centromere was previously observed in three infertile men (Laurie 

and Hulten, 1985; Ferguson et al., 2009), this is the first report in a group of NOA and OA 

men. Furthermore, our observation of a shift in crossovers toward the centromere on 

chromosome 21 in two NOA men (NOA24, NOA30) may be of particular clinical 

significance. Human oocytes with increased frequencies of crossovers near the centromere on 

21q have been implicated in maternally-derived trisomy 21 (Down syndrome) (Oliver et al., 

2014). Our observation in spermatocytes may follow a similar pattern, where sperm from 

some infertile men may introduce an elevated risk of paternally-derived trisomy 21. 

Although altered crossover distribution as a risk factor for paternally derived trisomy 21 has 
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not been extensively studied, Oliver et al. found weak evidence that an increase in crossovers 

near the centromere may play a role in paternal chromosome 21 nondisjunction. 

Crossovers are also suppressed near the vicinity of the telomeres, possibly to prevent 

damage to the repetitive DNA (Blitzblau et al., 2007). In our study, one of the nine infertile 

men (11.1%) with altered crossover distributions demonstrated more frequent crossovers at 

the telomeres, with extremely high rates of crossover formation near the telomere on both 

18q and 18p. In S. cerevisiae, crossovers in this region may migrate to the ends of the 

chromosomes and disrupt the microtubule tension, leading to premature sister chromatid 

separation (Ross et al., 1996; Su et al., 2000). Potentially, an increase in crossovers near the 

centromeric or telomeric regions may disrupt the segregation of chromosomes and play a role 

in the production of aneuploid sperm in infertile men. Yet, this mechanism may be 

chromosome-specific as we only observed one infertile man (OA35) with an altered 

crossover distribution on chromosome 13. It is important to note that the control group 

displayed a different pattern of crossover distribution on chromosome 13 compared to 18 and 

21, where crossovers were most frequent at the centromere and telomere. It will be worth 

investigating whether chromosomes with a strong inhibition of crossovers at the centromere 

and telomeres are more prone to disruptions in crossover distribution. 

3.4.2 Increased crossover distance to telomeres in azoospermic men 

It has been shown in S. cerevisiae, mice, and humans that most crossovers occur near 

the subtelomeres (Peoples-Holst and Burgess, 2005; Blitzblau et al., 2007). The sufficient 

formation of crossovers in this region is thought to be facilitated by telomeric activity 

(Peoples-Holst and Burgess, 2005; Blitzblau et al., 2007). Our study demonstrated a decrease 

in crossover formation near the subtelomeres in three of the nine infertile men (33.3%) with 
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altered crossover distributions. Moreover, the NOA and OA groups displayed increased 

crossover distances to the telomeres on 21q and 18q respectively. These results may suggest 

a link between altered crossover distribution and compromised telomeres in infertile men, 

where this population shows reduced telomere length and impaired telomere integrity 

(Thilagavathi et al., 2013; Reig-Viader et al., 2014a). The copy number of telomeric or 

subtelomeric repeats could lead to changes in crossover positions (Barton et al., 2003). 

Moreover, defects in telomere-associated proteins that function in synapsis and DSB repair 

could reduce recombination rates (Watanabe et al., 1998; Joseph and Lustig, 2007; Wu et al., 

2006). This trend has been shown in S. cerevisiae, where the deletion of a telomere-

associated protein, Tam1/Ndj1, altered the distribution, but not frequency of crossovers 

(Chua et al., 1997). Tam1/Ndj1 mutants also displayed an increase in MI and MII 

nondisjunction, demonstrating the possible effect of impaired telomeres on aneuploidy (Chua 

et al., 1997). 

3.4.3 Altered crossover frequency and distribution in azoospermic men 

Our results confirmed the limited reports that both NOA and OA men may have 

meiotic defects that affect the position of crossover, frequency of crossovers, or both (Laurie 

and Hulten, 1985; Ferguson et al, 2009). However, the degree of meiotic defects in these two 

types of azoospermic men may be different due to distinct etiologies. NOA cases display 

impaired spermatogenesis in the testes, where a high degree of maturation arrest leads to the 

absence of sperm in the ejaculate. Although OA cases also lack sperm in the ejaculate, they 

exhibit normal spermatogenesis. From our data, two of the five OA men with altered 

crossover distributions, whereas all four of the NOA men with altered crossover distributions 

showed disrupted crossover frequencies on the same chromosome. It seems that OA men 
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may possess meiotic defects despite normal spermatogenesis. Possibly, prolonged 

obstruction of the reproductive tract may alter the microenvironment of the testes, and 

consequently affect the epigenetic regulation of DSB formation. Our current knowledge 

regarding the epigenetic dynamics in OA men is scarce, where only a few studies have 

shown abnormal epigenetic status, in the form of altered DNA methylation, in the testicular 

tissue of OA men (Minor et al., 2011; Ferfouri et al., 2013).  

It appears that NOA men may be at a higher risk of having both alterations in the 

frequency and position of crossovers. Our findings coincide with previous data that 

suggested higher incidences of aneuploid sperm in NOA men compared to OA men 

(Kirkpatrick et al., 2008; Ferguson et al., 2009). We speculate that altered crossover 

frequency and distribution may have negative synergistic effects on chromosome 

segregation, giving rise to sperm with abnormal chromosome count. Meiotic defects in NOA 

cases may be due to genetic factors associated with impaired spermatogenesis. Mouse studies 

have shown that mutations in meiosis-specific genes such as SCP3 and MRE11, which 

function in DNA repair, may alter crossover distributions (Cherry et al., 2007). Variations in 

centromeric heterochromatin can also inhibit or promote crossovers, possibly resulting in the 

shift in crossovers toward the centromere (Yamamoto et al., 1979). Studies on azoospermic 

men have also identified mutations in TEX11 and TEX15, which are genes shown to regulate 

recombination in mice (Yang et al., 2008; Ruan et al., 2012; Yang et al., 2015).  

In summary, our data is in agreement with our previous findings, indicating that 

infertile men may possess meiotic defects that affect the frequency and distribution of 

crossovers. We confirmed several aberrant trends of crossover distribution in infertile men 

that may facilitate errors in chromosome segregation. Moving forward, we plan to investigate 
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the relationship between crossover distribution and sperm aneuploidy in hopes of elucidating 

whether spermatocytes with abnormal crossover localization are arrested at meiotic 

checkpoints, or progress through meiosis, potentially giving rise to aneuploid sperm. Our 

study also provides valuable insight for future directions on the role of telomeres in crossover 

distribution, particularly the establishment of crossovers in subtelomeres. The work from this 

chapter has built the foundation for our next study presented in the following chapter, which 

looks at the role of telomeric proteins in relation to meiotic recombination in infertile men. 
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 CHAPTER 4: TELOMERE HOMEOSTASIS, AND RECOMBINATION IN 

INFERTILE MEN 

 

4.1 Introduction 

In recent years, telomeres have become an emerging topic of research with regards to 

its importance for meiosis and fertility. Telomeres are DNA repeat structures that cap the 

ends of mammalian chromosomes. Along with its association with numerous structural 

proteins, telomeres are primarily known to protect the stability of chromosomes. However, it 

appears that telomeres may also play crucial roles during early meiosis, where they are 

shown to aid in the processes of chromosome synapsis and meiotic recombination. In detail, 

telomeres attach to the inner nuclear membrane and migrate towards the cell pole at the onset 

of the zygotene stage of prophase I (Scherthan et al., 2007). This event brings the 

chromosomes into close proximity, thus facilitating homology search, pairing, and synapsis 

between homologous chromosomes (Scherthan et al., 2007). Recently, studies have focused 

on how defects in telomere length and integrity may be contributing to infertility. In mice and 

humans, shortened or damaged telomeres have been linked to meiotic arrest, risks of DNA 

fragmentation in sperm, as well as increased levels of aneuploidy in oocytes (Keefe et al., 

2006; Thilagavathi et al., 2013).  

There are many proteins that are responsible for maintaining the integrity of the 

telomeres, one of which being the protein complex shelterin (TRF2), which forms part of the 

telomeric structure (O’Sullivan et al., 2010). Another telomere-associated protein, telomerase 

(TERT), is better known for its role in maintaining telomere length. Aside from elongating 

the telomere, telomerase can also act as a structural component when bound to the telomeric 

complex, possibly acting to stabilize its structure (Reig-Viader et al., 2013). It is thought that 
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a careful balance of telomere-bound and free-form TERT is necessary for maintaining the 

structure, and function of telomeres. A recent report by Reig-Viader et al., (2014a) described 

a disruption in telomere homeostasis, in part due to decreased localization of TERT to 

telomeres, in the spermatocytes of infertile men. Although the study also showed reduced 

rates of genome-wide recombination in the infertile men, a relationship between telomere 

homeostasis and recombination was not analyzed. Furthermore, the study was limited by a 

small sample size with four men with idiopathic infertility, and one fertile man undergoing 

vasectomy reversal. As large variability in recombination and other meiotic defects between 

infertile men have been described in literature (Ma et al., 2006a; Ferguson et al., 2007; 

Ferguson et al., 2009; Ren et al., 2016), further investigation into telomere homeostasis and 

its potential effect on recombination is warranted in a larger sample size. Studies in yeast and 

mice have revealed a relationship between reduced rates of recombination, and defective 

telomeres (Joseph and Lustig, 2007; Liu et al., 2004). From these findings, we postulate that 

compromised telomeric structure may be contributing to the impaired recombination often 

seen in infertile men. In this preliminary study, we aim to analyze the linkage between 

telomere homeostasis, based on the association of TERT to telomeres, and meiotic 

recombination in infertile men.  

4.2 Materials and methods 

4.2.1 Fluorescence immunostaining 

Spermatocytes from four fertile men (C20, C21, C22, C23) and two OA men (OA29, 

OA31) reported in section 2.2.1 in Chapter 2 were analyzed for this study. Due to limitations 

of technique, we currently could not successfully analyze spermatocytes in NOA men for 

telomere homeostasis. Further optimization of the fluorescence immunostaining protocol is 
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required in order to analyze the limited number of spermatocytes that is present in NOA 

testicular samples. Testicular tissue from the infertile and fertile men were processed 

according to the methods described in section 2.2.2. For the analysis of genome-wide 

recombination, a slide containing spermatocytes from each man was immunostained using 

antibodies against SCP3/SCP1, MLH1, and CREST antisera according to the protocol 

described in section 2.2.3. For the assessment of telomere homeostasis, another slide from 

each man was incubated with a primary antibody cocktail [mouse anti-TRF2 (Millipore, 

Ontario, Canada), 1:24; rabbit anti-SCP3/1 (Abcam), 1:20; rabbit anti-TERT (Rockland, 

Limerick, PA, USA), 1:12] overnight in a 37°C humid chamber. The telomeric regions of the 

chromosome, and localization of telomerase were visualized by using antibodies against 

TRF2 and TERT, respectively. The slide was then incubated in a secondary antibody cocktail 

[FITC labeled donkey anti-mouse IgG (Jackson ImmunoResearch) 1:12; TRITC labeled 

donkey anti-rabbit IgG (Jackson ImmunoResearch) 1:15] for 90 mins in a 37°C humid 

chamber, and subsequently washed according to steps detailed in section 2.2.3. Using a Zeiss 

Axioplan epifluorescent microscope equipped with the appropriate filters, the localization of 

TRF2 and TERT were detected in the pachytene nuclei. Pachytene nuclei were identified by 

the state of the SC, where 22 strands of SC (representing pairs of autosomes) were present. 

Only cells with intact SC were assessed, as non-fragmented SC reveals the completion of 

synapsis at the pachytene stage. The percentage of telomere-bound TERT was noted by the 

number of TERT signals that were associated with TRF2 signals divided by the total number 

of TERT signals in a given spermatocyte. Approximately 50 spermatocytes were evaluated 

per individual to yield an average percentage of telomere-bound TERT in the individual.  
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4.2.2 Statistical analyses 

We compared the average percentage of telomere-bound TERT in the individual OA 

men with the pooled controls using the Mann-Whitney test. The frequency of genome-wide 

recombination in the OA and control men were correlated with the average percentage of 

telomere-bound TERT using Pearson’s correlation test. P <0.05 was considered significant.  

4.3 Results 

4.3.1 Analysis of genome-wide recombination 

The rates of genome-wide recombination in the OA men and fertile men were reported 

in Table 2.1. The four fertile men in this study displayed genome-wide recombination levels 

ranging from 46.1 to 51.4 (Table 2.1). Both OA men showed reduced rates of recombination 

when compared to controls, with OA29 displaying an average of 42.5 crossovers per cell, 

and OA31 showing an average of 43.0 crossovers per cell (P <0.05, Mann-Whitney test).  

4.3.2 Analysis of telomere homeostasis 

Using antibodies against the telomere-associated protein complex shelterin (TRF2), 

telomerase (TERT), and SC (SCP3/1), we were able to visualize the telomeres, denoted by 

TRF2 signals, as well as the distribution of TERT in the pachytene nuclei of infertile and 

fertile men. We calculated the percentage of TRF2-bound TERT (TRF2-TERT) in a total of 

213 pachytene nuclei in the control group, and 101 pachytene nuclei in the OA group (Fig. 

4.1, Table 4.1). The control group displayed an average percentage of 48.2% for TRF2-

TERT association, ranging from 42.7% to 56.2%. The OA group displayed a significantly 

lower average TRF2-TERT level of 29.4% when compared to the controls (P <0.05, Mann-
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Whitney Test). With regards to individual infertile men, both OA men showed reduced 

percentage of TRF2-TERT when compared to controls (P <0.05, Mann-Whitney Test). 

 

Figure 4.1 Cartoon depiction of telomerase (TERT) association with telomeres in 

spermatocytes. 

Antibodies against the telomeric region of chromosomes (TRF2), telomerase (TERT) and 

synaptonemal complex (SCP3/1) were used to immunostain spermatocytes. (A) TRF2 signals 

in a given spermatocyte. (B) Overlay of TRF2 and SCP1/3 signals to detect the telomeres on 

the 22 pairs of chromosomes during pachytene (noted by non-fragmented SC). (C) The same 

spermatocyte showing 35 TERT signals. (D) Overlay of TERT, TRF2 and SCP allows the 

assessment of the percentage of TERT that is bound to telomeres. In this spermatocyte, 18 

out of the 35 TERT signals are superimposed on TRF2 signals, signifying a 51.4% of 

telomere-bound TERT. 
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Table 4.1 Percentage of TRF2-bound TERT in azoospermic and fertile men 

  No. of cells  
Mean percentage (% + SD) of TRF2-

associated TERT signals  

Control men (n = 4)   

C20 52 56.2+4.5 

C21 51 42.7+5.3 

C22 53 45.7+3.2 

C23 57 53.1+5.8 

Mean (95% CI)   48.2 (40.1-56.3) 

Obstructive azoospermic men (n = 2) 

OA29 50 33.3+6.2* 

OA31 51 25.4+5.1* 

Mean (95% CI)   29.4 (21.6-37.1)* 

*P <0.05, Man-Whitney test 

 

 

4.3.3 Genome-wide recombination and telomere homeostasis 

When we examined the relationship between the level of genome-wide recombination 

and TRF2-TERT in the pachytene nuclei of all infertile and fertile men (n=6), we did not 

observe a significant correlation between the two variables (Fig. 4.2, r =0.618, P =0.191, 

Pearson’s correlation test). Nevertheless, there was a trend of increasing genome-wide 

recombination as TRF2-TERT levels increased.  
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Figure 4.2 Relationship between percentage of TRF2-bound TERT and mean rate of 

genome-wide recombination in azoospermic and fertile men (n=6). 

There appears to be a moderate positive correlation where the recombination rate increases 

as the percentage of TRF2-bound TERT increases. However, due to the small sample size, 

the correlation was not statistically significant (p=0.191, Pearson’s correlation test). 
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4.4 Discussion 

Although meiotic defects, mainly regarding recombination, have been frequently 

reported in the infertile male population, the mechanisms behind the errors remain elusive. In 

this study, we aimed to examine the association between telomere homeostasis and meiotic 

recombination, in hopes of elucidating potential mechanisms for how recombination may be 

affected in infertile men.  

4.4.1 Deficiency in TERT association with telomeres in azoospermic men 

Mouse studies have suggested that a decrease in telomere length due to aberrant 

TERT activity may lead to gametogenic arrest (Reig-Viader et al., 2014a). However, there 

has been little information on TERT activity in male germ cells, due to strict meiotic 

checkpoints, where most cases of severe TERT deficiency showed an absence of germ cells 

at the pachytene stage of prophase I (Ravidranath et al., 1997, Riou et al., 2005). 

Furthermore, studies on the human male germ line were limited to the evaluation of TERT 

activity in whole testicular samples (Fujisawa et al., 1998; Schrader et al., 2000), which are 

made up of multiple cell types including somatic cells such as epithelial cells, Leydig cells, 

and Sertoli cells, as well as germ cells. Because telomere length and TERT activity has been 

shown to vary dramatically in somatic cells when compared to germ cells (Reig-Viader et al., 

2014a), the results from these studies offer a level of uncertainty. Notwithstanding, there has 

been two studies that examined the level of TERT in different stages of spermatogenesis 

(Yashima et al., 1998; Reig-Viader et al., 2014b). However, these studies on the general 

activity of TERT in a given cell may not be showing the full picture when it comes to 

maintaining telomere stability. A better measure of TERT efficiency is to examine the TERT 

proteins that are physically associated with the telomeres, and are therefore actively 
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maintaining telomere structure and function. In this respect, Reig-Viader et al. (2014a) 

provided the first evaluation of the percentage of TERT that is associated with the telomeres 

in infertile and fertile men. In this study, the percentage of TRF2-TERT in the spermatocytes 

of fertile men ranged from 42.7% to 56.2%, which is similar to the level reported in the one 

fertile man assessed by Reig-Viader et al. (2014a) at around 48%. Our data thus provides a 

baseline for the level of telomere-associated TERT in the germ cells of fertile men. Like the 

results reported in Reig-Viader et al. (2014a), we also found significantly decreased 

percentages of TERT levels associated with the telomeres in the spermatocytes of infertile 

men. However, the infertile men in our study were diagnosed with OA, whereas the infertile 

men reported in Reig-Viader et al. (2014a) were diagnosed with impaired spermatogenesis. It 

is also important to note that the levels of telomere-bound TERT in the OA men from our 

study (ranging from 25.4% to 33.3%) were higher than the levels in the infertile men (<20%) 

presented by Reig-Viader et al. (2014a). Thus, our results may suggest that infertile men with 

normal spermatogenesis may display subtler disruptions in telomere homeostasis than 

infertile men with compromised spermatogenesis. Furthermore, the regulation of the nuclear 

distribution of TERT and its association to the telomeres may be exclusive to meiosis. A 

study that looked at the level of telomere-bound TERT in testicular cells that were not in 

prophase I, classified by the absence of the SC, did not show significant differences between 

infertile and fertile men (Reig-Viader et al., 2014a). From these results, it seems that it is the 

meiosis-specific mechanisms that are responsible for ensuring proper telomere homeostasis 

during prophase I that may be compromised in infertile men. For future studies, it would be 

interesting to evaluate if variable perturbations in telomere homeostasis during prophase I 

may link to the differing levels of recombination seen in infertile men with NOA and OA. 
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4.4.2 Linking levels of telomere-associated TERT with recombination 

Telomere-guided movement of chromosomes have been verified in lower eukaryote 

and plant meiosis (Scherthan et al., 2000; Bass et al., 2000), and it is theorized that a similar 

mechanism occurs during mammalian meiosis (de Lange, 1998). Thus, telomere function has 

been speculated to be important for the subsequent steps in meiosis such as chromosome 

synapsis and recombination. There has indeed been evidence in fission yeast and C. elegans 

to support this theory (Nimmo et al., 1998; Ahmed and Hogdkin, 2000). In these studies, the 

loss of telomeric function led to reduced levels of meiotic recombination, and increased 

incidences of chromosome missegregation. In this study, we examined the association of 

telomeres to TERT, which is an important protein for maintaining telomere structure and 

function when bound. We first found that telomere-associated TERT levels were 

significantly decreased in infertile men, and next investigated whether the level of telomere-

bound TERT was linked to recombination. Our data showed a moderate positive correlation 

between the percentage of telomere-bound TERT and level of genome-wide recombination 

in the pachytene nuclei of four fertile and two infertile men. However, due to the limited 

sample size in this preliminary study, the correlation was not statistically significant. 

Nevertheless, our preliminary data offers valuable insight into the potential effect of telomere 

impairment on meiotic recombination in men. To date, our understanding of the role of 

telomeres in mammalian meiosis, with regards to chromosome synapsis and recombination, 

is relatively scarce. Male mice with severe TERT deficiency unfortunately show a complete 

depletion of meiotic cells in the testes due to apoptosis (Zalenskaya et al., 2002). In order to 

overcome this obstacle, studies have examined the patterns of synapsis and recombination in 

mice with intermediate deficiencies in TERT, where germ cells exhibit telomere shortening, 
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but less apoptosis compared to mice with severe TERT deficiencies (Liu et al., 2004). This 

work found that shortened telomere length was associated with reduced synapsis and 

recombination, as well as meiotic arrest in female germ cells. On the other hand, male germ 

cells showed extensive apoptosis prior to prophase I, but the few germ cells that did survive 

to pachytene showed compromised synapsis and recombination. Therefore, a sex-specific 

meiotic checkpoint is suggested to exist prior to prophase I to allow only the germ cells with 

minimum telomere length to proceed. Moreover, the study noted that telomere length was not 

a sole indicator of synaptic and recombination status; many telomere-associated proteins, 

including TERT, come into play to stabilize the structure and function of the telomeres 

during meiosis (Trelles-Sticken et al., 2000). Taking these studies into account, we speculate 

that infertile men who show meiotic cells in the testes may have adequate telomere length, 

which allowed the germ cells to progress into meiosis. However, the function of the 

telomeres may be impaired in some infertile men due to disrupted telomere homeostasis, 

leading to increased synaptic and recombination errors. Consequently, telomere homeostasis 

may be a novel indicator of infertility, in which changes could affect synapsis and 

recombination, resulting in the depletion of germ cells in males. Further investigation into the 

relationship between telomere homeostasis and recombination in a larger sample size may be 

useful for elucidating novel mechanisms behind the increased rates of recombination errors 

observed in infertile men.  
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 CHAPTER 5: MEIOTIC BEHAVIOUR AND SPERM ANEUPLOIDY IN AN 

INFERTILE MAN WITH 45,X/46,XY MOSAICISM 

 

5.1 Introduction 

45,X/46,XY mosaicism, where 45,X somatic cells are present at a high level, is very 

rare in the general population with an incidence rate of around 1.5/10,000 (Moussaif et al., 

2011; Chang et al., 1990). Depending on the level of somatic 45,X cells, individuals exhibit a 

wide range of phenotypic abnormalities from males with apparently normal phenotypes or 

men with short stature and gonadal failure, to females with Turner syndrome (Newberg et al., 

1998; Layman et al., 2009; Gantt et al., 1980; Telvi et al., 1999). Anaphase lag during the 

first mitotic division of the zygote is the simplest explanation for how 45,X/46,XY 

mosaicism may arise, where one of the Y sister chromatids fails to be included in the 

daughter cells (Telvi et al., 1999; Lukasa et al., 1986). This mitotic error may result in a 

50:50 split of 45,X cells and 46,XY cells being present in the somatic cells. This type of 

mosaic karyotype is often accompanied by a rare sexual development disorder termed mixed 

gonadal dysgenesis (MGD). Adults with MGD may vary in degrees of infertility depending 

on the level of mosaicism (Brosman, 1979). In rare MGD cases, testicular spermatozoa are 

present and intracytoplasmic sperm injection (ICSI) is sought for fertility treatment. 

However, there have been very few MGD cases that resulted in successful conceptions, and 

the genetic transmission of chromosomal abnormalities in the sperm remains a concern 

(Arnedo et al., 2005; Bofinger et al., 1999). To better understand the production of aneuploid 

sperm in these mosaic individuals, it is crucial to study the behaviours of the abnormal cell 

lines during meiosis. 
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During the first meiotic division, two events are critical for the fidelity of meiosis 1) 

Homologous chromosome pairing, or synapsis, characterized by the establishment of the 

synaptonemal complex (SC) and, 2) The exchange of genetic materials, or DNA 

recombination, between homologous chromosomes. Our and others’ studies have also shown 

that compromised synapsis or recombination in infertile men may lead to meiotic cell arrest 

and subsequent infertility, as well as contribute to an increased production of aneuploid 

sperm (Gonsalves et al., 2004; Ma et al., 2006; Ferguson et al., 2007). In male meiosis, the X 

and Y chromosomes pair up at a small region of homology called the pseudoautosomal 

region (PAR). The rest of the X and Y chromosomes form a condensed chromatin structure 

termed the sex body. While the PAR remains transcriptionally active during meiosis, the sex 

body is transcriptionally silenced through a mechanism known as meiotic sex chromosome 

inactivation (MSCI) (Ferguson et al., 2007; Turner, 2007). MSCI is characterized by the 

localization of phosphorylated histone H2AX and BRCA1, which is thought to trigger 

chromatin condensation and transcriptional repression (Turner, 2007). Recent studies suggest 

that transcriptional silencing is not limited to the sex body, but to any unsynapsed regions on 

autosomal or sex chromosomes through meiotic silencing of unsynapsed chromatin (MSUC) 

(Turner, 2007; Baarends et al., 2005). In the case of 45,X/46,XY cell lines, transcriptional 

activity has not been analyzed on the unpaired (univalent) X chromosome in humans.  

Until now, meiotic behaviour and sperm aneuploidy in 45,X/46,XY men with a high 

level of 45,X cells have not been studied. By combining immunofluorescence techniques 

with fluorescence in situ hybridization (FISH), our study sought to analyze the meiotic 

recombination and synapsis, sex chromosome configurations, MSCI, and sperm aneuploidy 

in an azoospermic man with a 50:50 split 45,X/46,XY karyotype. By comparing the unique 
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case to fertile 46,XY males, we aimed to better understand the fate of the 45,X/46,XY cell 

lines, whether chromosomally abnormal cell lines progress through meiosis, and if they give 

rise to aneuploid sperm.  

5.2 Materials and methods 

5.2.1 Patient information and tissue collection 

A 27-year-old male and his 25-year-old female partner presented a two year history 

of primary infertility, where a successful pregnancy had not been achieved following 1.5 

years of unprotected intercourse. The female had undergone infertility assessment and 

displayed no evidence of tubal, ovulatory, or pelvic infertility factors. The male patient was 

previously diagnosed with MGD. Karyotyping of the man’s peripheral blood revealed a 

50:50 45,X/46,XY mosaicism. Hormonal profiles revealed elevated follicle-stimulating 

hormone at 14 IU/L, normal luteinizing hormone, and normal total testosterone. The patient 

tested negative for Y chromosome microdeletions in the regions AZFa, AZFb, and AZFc. 

Upon physical examination and semen analysis, he was diagnosed with azoospermia. A 

testicular biopsy was performed to acquire sperm for ICSI treatment, where a piece of 

testicular tissue was obtained for this study. Subsequent histological analysis revealed 

common characteristics of MGD such as the presence of spermatogenesis, thickening of the 

basement membrane and significant Leydig cell hyperplasia (Flannigan et al., 2014). The 

patient and his partner were unable to conceive after two rounds of ICSI. Because the level of 

sperm aneuploidy was low in the patient (reported in section 5.3.2), the failure to conceive 

was likely not due to sperm quality (Flannigan et al., 2014). Testicular tissues from ten 

proven fertile, 46,XY men previously reported in Chapter 2 (C20-C29) were used as controls 

for this study.  
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5.2.2 Fluorescence immunostaining  

Testicular tissue from the patient and control men were processed, fixed onto 

microscope slides, and immunostained using antibodies against SCP3/SCP1, MLH1, and 

CREST antisera in order to visualize the SC, recombination sites and centromeres 

respectively according to the methods described in section 2.2.3.  

A previously immunostained slide from the patient was re-stained for γH2AX in 

order to observe the MSCI according to a previously described protocol (Ferguson et al., 

2008). Mouse anti- γH2AX antibodies (Upstate Biotech, Lake Placid, NY, USA) at a dilution 

of 1:1000 was used as the primary antibody cocktail.  

5.2.3 FISH on immunostained spermatocytes 

FISH was performed on a previously immunostained slide for the patient as well as a 

control man (C29) according to the methods described in section 2.2.4 in order to study the 

chromosomes 18, X, and Y in the spermatocytes.  We observed three types of meiotic sex 

chromosome configurations in the patient: (1) 46,XY cell with XY bivalent (XY) where the 

sex body was present and the signals for X and Y were in close proximity (Fig. 5.2A), (2) 

46,XY cell with univalent X and Y (X+Y) when the X and Y chromosomes were unpaired 

and their signals were distant from each other (Fig. 5.2B), and (3) 45,X cell with univalent X 

(X) when the signal for the Y chromosome was absent (Fig. 5.2C).  
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Figure 5.2 Immunofluoresence and FISH analysis of 46,XY and 45,X pachytene 

spermatocytes.  

The SC is immunolabeled in red while chromosomes 18 (blue), X (green), and Y (red) are 

identified by FISH. (A) 46,XY cell with sex body formation (XY). (B) 46,XY cell with 

unpaired sex chromosomes (X+Y). (C) 45,X cell with univalent X (X). 

 

Figure 5.1 Immunofluorescence analysis of 46,XY and 45,X pachytene spermatocytes to 

visualize the SC (red), MLH1 foci (green) and centromeres (blue).  

(A) 46,XY cell with sex body (arrow). (B) 45,X cell with 23 centromeres where a gap in the SC 

is present (arrow). 
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5.2.4 FISH on testicular spermatozoa 

Slides that were not previously immunostained were used for FISH to examine rates 

of chromosome 13, 18, 21, and sex chromosome aneuploidy in the testicular sperm of the 

patient and ten control men according to the protocol outlined in section 2.2.5.  

5.2.5 Statistical analyses 

The Mann-Whitney test was used to compare the mean rate of genome wide 

recombination between the patient and control group. Fisher exact test was used to compare 

the proportion of cells where the sex body lacks a recombination event (achiasmate). The rate 

of synaptic errors in the patient was considered significantly different if they were beyond the 

95% confidence interval of the control group. The Chi-square test with two degrees of 

freedom was used to compare the frequencies of sperm aneuploidy and X:Y ratio in the 

patient versus the control group. 

5.3 Results 

5.3.1 Meiotic sex chromosome configurations 

Pachytene spermatocytes from the 45,X/46,XY patient (n=89) and a control man 

(n=100) were immunostained for the SC, and analyzed by FISH to identify chromosomes 18, 

X, and Y (Table 5.1). In the patient, 75.3% of cells were 46,XY constitution, and 24.7% were 

45,X. The most common meiotic configuration observed was XY (62.9%), while 12.4% were 

X+Y. 100% of cells analyzed in the control were XY configuration.   
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Table 5.1 Meiotic sex chromosome configuration in the infertile 45,X/46,XY patient and 

fertile man 

 
No. of cells 

Frequeny of configuration in pachytene cells (%) 

 XY X+Y X 

Control (n =1)       

C29 100 100 0 0 

Patient 89 62.9 12.4 24.7 

 

5.3.2 Testicular sperm aneuploidy 

FISH was performed on the testicular sperm of the 45,X/46,XY patient and ten 

control men to identify chromosomes 18, X, and Y (Table 5.2). 2679 sperm from the patient 

and 10432 from the control group were scored. The patient showed increased levels of sex 

nullisomy (1.7% vs.0.24%, P<0.001), XY disomy (2.0% vs. 0.23%, P<0.001), and disomy 18 

(0.19% vs. 0.12%, P<0.05) when compared to controls. The ratio of X:Y sperm in the patient 

was also significantly different compared to controls (2:1 vs. 1:1, P<0.001). A second round 

of FISH was performed on the same slides to identify chromosomes 13 and 21 (Table 5.2).  

2125 sperm from the patient and 10334 from the control group were scored. Increased 

frequencies of disomy 21 was observed in the patient compared to controls (0.52% vs 0.28%, 

P<0.05), while the level of disomy 13 was not significantly different.  
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Table 5.2 Testicular sperm aneuploidy in the 45,X/46,XY patient and control men 

 
No. of 

Cells 

 

Frequency of disomy % (n) Frequency of 

sex 

nullisomy % 

(n) 

X:Y 

ratio 

No. 

of 

cells 

Frequency of disomy % 

(n) 

  
 XX  or 

YY 
XY 18 13 21 

Control men (n = 10)          

C20 1028  0.29% (3) 0.39% (4) 0.10% (1) 0.19% (2) 1.05 1022 0.39% (4) 0.49% (5) 

C21 1010  0.30% (3) 0.20% (2) 0.10% (1) 0.20% (2) 1 1005 0.20% (2) 0.30% (3) 

C22 1090  0.18% (2) 0.28% (3) 0.10% (1) 0.37% (4) 1.01 1235 0.16% (2) 0.43% (5) 

C23 1034  0.29% (3) 0.19% (2) 0.19% (2) 0.39% (4) 0.99 1041 0.38% (4) 0.29% (3) 

C24 1021  0.10% (1) 0.10% (1) 0% (0) 0.10% (1) 0.98 1001 0% (0) 0.20% (2) 

C25 1023  0.29% (3) 0.20% (2) 0% (0) 0.39% (4) 1.02 1000 0.10% (1) 0.30% (3) 

C26 1008  0% (0) 0.30% (3) 0.20% (2) 0.10% (1) 1.14 1009 0.20% (2) 0.20% (2) 

C27 1203  0.08% (1) 0.25% (3) 0.17% (2) 0.25% (3) 1.05 1013 0.30% (3) 0.20% (2) 

C28 1000  0.10% (1) 0.30% (3) 0.10% (1) 0.30% (3) 1.12 1002 0.10% (1) 0% (0) 

C29 1015  0% (0) 0.10% (1) 0.30% (3) 0.10% (1) 0.98 1006 0.10% (1) 0.40% (4) 

Total 10432  0.16% (17) 0.23% (24) 0.12% (13) 0.24% (25) 1.03 10334 0.19% (20) 0.28% (29) 

Patient 2679 
 

0.19% (5) 1.97% (53) ** 0.19% (5) 1.72% (46)** 1.98** 2125 0.28% (6) 0.52% (11)* 

**P <0.001, Chi-square test with two degrees of freedom. 

*P <0.05, Chi-square test with two degrees of freedom. 
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5.3.3 MSCI of unpaired sex chromosomes 

Immunostaining for γH2AX was performed to identify the patterns of MSCI in the 

pachytene spermatocytes of the 45,X/46,XY patient. Pachytene cells with XY configuration 

displayed γH2AX localization along the sex body, but not the PAR (Fig. 5.3A). However, 

γH2AX localization was observed along the entire univalent chromosomes in the X and X+Y 

configurations (Fig. 5.3B).  

 

Figure 5.3 Meiotic sex chromosome inactivation in 46,XY and 45,X pachytene 

spermatocytes.  

Spermatocytes are immunolabeled to visualize the SC (Red) and γH2AX (Green) (A) 46,XY 

cell displaying γH2AX staining along the sex body except for the PAR (arrow). (B) 45,X cell 

displaying γH2AX staining along the univalent X chromosome. 
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5.3.4 Genome-wide recombination and synaptic errors 

Using immunofluorescence techniques to visualize the recombination sites and SC, 

we assessed the frequency of genome-wide recombination and synaptic errors in the 

pachytene spermatocytes of the 45,X/46,XY patient and ten control men (Table 5.3). A total 

of 101 cells from the patient and 735 from the control group were analyzed. The mean rate of 

recombination per cell in the control group was 48.7, with the individual mean rates ranging 

from 45.4 to 53.2. For the patient, the average number of crossovers per cell was 46.6+5.6. 

There was no significant difference in the mean recombination rate between the patient and 

controls. There was also no significant difference in the proportion of cells with achiasmate 

sex body in the patient compared to controls (9.9% vs. 9.2%).   

There were two types of synaptic errors observed in the patient and control group: 1) 

A discontinuous SC where both the SCP1 (transverse) and SCP3 (lateral) proteins are absent 

resulting in a gap (Fig. 5.1B), and 2) Unsynapsed regions between the homologous 

chromosomes where the lateral element of the SC (SCP3) is absent. The frequency of cells 

with synaptic errors in the patient was not significantly different than the controls (5.2% vs. 

3.6%).  

 

 

 

 



131 

 

Table 5.3 Genome-wide recombination, synaptic errors and sex body recombination in the 45,X/46,XY patient and control 

men 

  No. of cells 

Mean rate (+ SD) of 

genome-wide 

recombination 

Proportion of cells with 

achiasmate sex body (%) 

Proportion of cells with 

unsynapsed regions (%) 

Control men (n =10)    

C20 50 46.1 ± 4.0 6.0 6.0 

C21 51 51.4 ± 4.7 7.8 2.0 

C22 50 47.5 ± 4.7 12.0 4.0 

C23 50 49.7 + 4.42 6.0 6.0 

C24 51 50.2 + 3.6 7.8 9.8 

C25 50 48.1 ± 4.7 14.0 0 

C26 50 45.4 ± 4.8 6.0 2.0 

C27 52 47.5 ± 4.6 9.6 3.8 

C28 50 48.1 + 4.3 12.0 2.0 

C29 50 53.2 + 3.8 14.0 0 

Mean (95% CI) 504 48.7 (47.2 - 50.2) 9.5 (7.5 - 11.5) 3.6 (1.7 - 5.5) 

Patient 101 46.6+5.6 9.9 5.2 
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5.4 Discussion 

5.4.1 Fate of 45,X cell line in the testis 

 Assuming the patient’s germ cell chromosomal constitution is consistent with his 

somatic karyotype, we should expect a 50:50 split of 45,X and 46,XY cells in the 

spermatogonia. If both cell lines entered meiosis, 50% of pachytene cells in the Prophase I 

stage should be of 45,X constitution. We observed a smaller than theoretically expected 

proportion of 45,X pachytene cells at 24.7%, which may be explained by one of two 

hypotheses: (1) the level of mosaicism in the germ cells is different than that in the somatic 

cells, or (2) half of the 45,X germ cells were arrested prior to meiosis. Since we did not 

observe 45,X pachytene cells in the control, it is likely that a proportion of the 45,X germ 

cells in the patient indeed proceeded to early meiosis I (MI). Mouse studies have shown that 

XO pachytene oocytes with unpaired X chromosomes are progressively eliminated during 

meiosis starting at the pachytene checkpoint (Turner, 2007). Nevertheless, it is hypothesized 

that a proportion of XO pachytene oocytes in mice and rare human cases may complete 

meiosis by undergoing heterologous X-chromosome pairing with an autosome or itself 

(Turner, 2007; Speed, 1986). In our study, the increase in X:Y sperm ratio (2:1) may suggest 

that a proportion of the 45,X pachytene cells progressed through meiosis and gave rise to X-

bearing sperm. Presumably, if the 45,X cells (24.7%) completed meiosis, the cell lines would 

give rise to sex nullisomic and X-bearing sperm at 12.5% each. As we observed a sex 

nullisomy level (1.7%) much lower than theoretically expected, the majority of the 45,X cells 

resulting in nullisomic sperm may have been eliminated during meiosis. Due to the scarcity 

of testicular spermatocytes in the patient, we could not analyze cells in the metaphase I stage, 
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which may have elucidated whether the 45,X cells could evade the pachytene checkpoint and 

progress through MI. 

5.4.2 Sex chromosome asynapsis in 46,XY cells 

The meiotic sex chromosome configuration analysis showed a high frequency of sex 

chromosome asynapsis in the 46,XY cells of the patient compared to control (12.4% vs 

0.0%). Our previous meiotic analysis of an infertile 47,XYY male, and others’ studies on 

infertile men with 47,XYY, 47,XXY, and mosaic 46,XY/47XXY karyotypes have also 

implicated the presence of  unpaired sex chromosomes in the 46,XY pachytene cells (Wong 

et al., 2008; Blanco et al., 2001; Milazzo et al., 2006). In these cases, a mosaic germ cell 

composition was observed regardless of a mosaic or non-mosaic somatic karyotype. The 

etiology of sex chromosome asynapsis seen in the 45,X/46,XY patient and other cases 

remains unclear and may be due to several factors. Studies have demonstrated that an 

aberrant testicular environment affects chromosomal behaviour especially in chromosomes 

with fewer crossover events such as X and Y (Newberg et al., 1998; Mroz et al., 1999; 

Blanco et al., 2003). The disrupted hormonal and physical testicular environment common in 

MGD men and men with abnormal sex chromosome karyotypes may cause a general 

increase in aberrant meiotic behaviours affecting the sex chromosomes and nondisjunction 

(Newberg et al., 1998; Mroz et al., 1999; Egozcue et al., 2000). Furthermore, we speculate 

that a mosaic germ cell composition and intercellular effect may play a role in the disrupted 

X and Y pairing seen in the 45,X/46,XY patient and other men with abnormal sex 

chromosome karyotypes.  

Mouse and other model organism studies such as Caenorhabditis elegans have 

demonstrated the importance of X and Y pairing in male infertility (Burgoyne et al., 1992; 
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Jaramillo-Lambert and Engebrecht, 2010). Recent studies showed that pachytene 

spermatocytes of mice lacking Spo11α, an evolutionarily conserved protein involved in PAR 

recombination, displayed a high percentage of asynapsed X and Y chromosomes at 70% 

(Kauppi et al., 2013; Kauppi et al., 2011). Although the aberrant cells accumulated at 

Metaphase I, the univalent X and Y chromosomes failed to properly align at the spindles and 

appeared to undergo spindle checkpoint-induced apoptosis (Kauppi et al., 2013). While some 

male mice lacking Spo11α produced offspring, most were infertile (Kauppi et al., 2013; 

Kauppi et al., 2011). In our study, it is possible that the X+Y cells observed in the 

45,X/46,XY patient followed a similar fate and are meiotically incompetent. Aside from the 

presence of univalent chromosomes at Metaphase I, we propose that an abnormal 

transcriptional silencing of the PAR may also trigger meiotic arrest in the X+Y cells. Our 

analysis of MSCI demonstrated the localization of γH2AX along the entire univalent X 

chromosomes in the X and X+Y cells, suggesting the transcriptional silencing of the PAR 

through MSUC. The lack of PAR gene expression during meiosis may cause cell arrest as 

observed in mice with PAR deletions (McElreavey and Cortes, 2001). Thus, it is likely that 

the X+Y pachytene cells in the patient do not give rise to viable sperm, or contribute to the 

sperm aneuploidy rate and X:Y sperm ratio observed.  

5.4.3 Recombination and synapsis in mosaic 45,X/46,XY cells 

With regards to meiotic DNA recombination, it is thought that the reduced 

recombination rate and increased synaptic errors observed in infertile men may contribute to 

an increase in sperm aneuploidy due to MI nondisjunction events (Gonsalves et al., 2004; Ma 

et al., 2006b; Ferguson et al., 2007; Sun et al., 2007b; Codina-Pascual et al., 2005; Topping 

et al., 2006; Moosani et al., 1995; Bernardini et al., 2000; Ushijima1 et al., 2000). Our 
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previous study demonstrated the inverse correlation between the frequency of recombination 

on the sex body and XY disomy in the sperm (Ferguson et al., 2007). For the 45,X/46,XY 

patient, the pachytene cells did not show significantly different rates of global recombination, 

sex body recombination, or synaptic error. The lack of association between sex chromosome 

aneuploidy and sex body recombination rate suggests that 46,XY cells have the capacity of 

normal meiotic division. The increase in XY disomy and sex nullisomy seen in the sperm is 

unlikely to have originated from MI nondisjunction of the 46,XY cell line with paired sex 

chromosomes. Although the patient displayed increased rates of sex chromosome aneuploidy 

and disomy 18 and 21, the rates were within the range found in infertile 46,XY men with or 

without recombination and synaptic errors (Gonsalves et al., 2004; Ferguson et al., 2007; 

Sun et al., 2007b; Codina-Pascual et al., 2005; Topping et al., 2006; Moosani et al., 1995; 

Bernardini et al., 2000; Ushijima1 et al., 2000). 

To our knowledge, we are the first to apply fluorescence immunostaining to examine 

the meiotic sex chromosome configuration, recombination, synapsis, and MSCI in a mosaic 

45,X/46,XY man. Furthermore, we present the unprecedented report of asynapsed sex 

chromosomes in such an individual. Despite a mosaic karyotype, the 45,X/46,XY man 

displayed similar rates of sperm aneuploidy compared to infertile men with normal 

karyotypes (Gonsalves et al., 2004; Ferguson et al., 2007; Sun et al., 2007b; Codina-Pascual 

et al., 2005; Topping et al., 2006; Moosani et al., 1995; Bernardini et al., 2000; Ushijima1 et 

al., 2000). Consistent with previous reports on a 45,X/46,XY mosaic male, as well as 

47,XYY and Klinefelter’s syndrome men, our study suggests that infertile men with 

abnormal sex chromosome karyotypes and high levels of mosaicism may nevertheless 

produce sperm that are primarily normal in chromosomal constitution (Wong et al., 2008; 
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Blanco et al., 2001; Milazzo et al., 2006). The extraction of normal sperm for ICSI may be 

possible in men with similar karyotypes.  
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 CHAPTER 6: SUMMARY AND CONCLUSIONS    

 

6.1 Summary and future directions 

6.1.1 Meiotic recombination and sperm aneuploidy 

Infertility is a rising health concern affecting 16% of couples in Canada (Bushnik et 

al., 2012), and approximately 30% of infertile cases are solely due to male factors. With 

advancements in immunocytogenetic approaches, it has become possible to closely study the 

meiotic events that are critical for proper sperm production. The results presented in this 

thesis add further evidence that errors in early meiotic processes may contribute to impaired 

sperm production. Our first study described in Chapter 2 examined two key events in early 

meiosis, 1) synapsis and 2) recombination, in cohorts of infertile and fertile men. We found 

that 16.7% of the OA men (2/12), and 37.5% of the NOA men (3/8) displayed increased rates 

of synaptic errors when compared to controls (n=14). Moreover, 25% of the OA men (3/12), 

and 62.5% of the NOA men (5/8) displayed reduced rates of genome-wide recombination. It 

appears that meiotic defects may be present in some OA men who otherwise show normal 

spermatogenesis. However, NOA men may experience more frequent, and severe meiotic 

defects than OA men. XY disomy was observed to be the most frequently elevated 

aneuploidy in the sperm of infertile men, where it was increased in 50% of OA men (6/12), 

and 62.5% of NOA men (5/8). When all the infertile men were pooled (n=20), we noticed a 

negative correlation between the rate of XY disomy in the sperm, and frequency of 

recombination on the sex chromosomes. Hence, the absence of recombination on the sex 

chromosomes may be indicative of the level of sex chromosomal aneuploidy in the sperm. 

Lastly, we are the first to report a negative correlation between the rate of disomy 21 and 

frequency of recombination on bivalent 21 in infertile men. As a lack of recombination on 
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bivalent 21 in oocytes has been implicated in trisomic 21 cases, our findings warrant further 

research into whether this pattern also applies to spermatocytes of infertile men. Overall, we 

speculate that infertile men displaying an absence of recombination on chromosome 21 or the 

sex chromosomes may be at increased risks of producing aneuploid sperm, and possibly 

chromosomally abnormal conceptions following ICSI.  

With regards to chromosome-specific recombination frequencies, 41.7% of the OA 

men (5/12), and 50% of NOA men (4/8) showed alterations on at least one of the 

chromosomes studied (13, 18, and 21). Thus, our study in Chapter 3 was interested in 

whether the distribution of crossovers along these chromosomes may also be altered in 

infertile men. We observed changed crossover distributions in 41.7% of OA men (5/12), and 

50% of NOA men. We most frequently noted an increase in crossover formation near the 

centromere, and decrease in crossover formation at the subtelomeres. One infertile man also 

showed an increase in crossovers at the vicinity of the telomeres. Strikingly these three 

patterns of crossover distribution have been shown to likely lead to chromosome 

missegregation in yeast and mice (Blitzblau et al., 2007). Hence, the change in crossover 

distribution may be another mechanism that results in the increased production of aneuploid 

sperm seen in infertile men. Notably, all of the NOA men in our study had altered crossover 

frequencies on the same chromosome where they displayed altered crossover distribution. 

We postulate that these two types of meiotic defects may synergistically disturb chromosome 

segregation, and lead to the higher level of aneuploid sperm in NOA men when compared to 

OA men and controls (Kirkpatrick et al., 2007; Templado et al., 2013).  

Moving forward, we plan to investigate the relationship between crossover 

distribution and sperm aneuploidy in hopes of elucidating whether spermatocytes with 
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abnormal crossover localization are arrested at meiotic checkpoints, or progress through 

meiosis to potentially give rise to aneuploid sperm. We also aim to correlate different 

patterns of altered crossover distribution, such as increases in crossovers near the centromere, 

with sperm disomy rates for the corresponding chromosome in infertile men. Such work 

would be useful for discovering novel mechanisms for chromosome segregation, meiotic 

arrest, and infertility in humans. 

6.1.2 Telomere homeostasis and recombination 

In Chapter 4, we aimed to elucidate the underlying mechanisms behind the 

recombination errors we observed in infertile men. As telomeres play an essential role in 

chromosome synapsis and recombination, we sought to determine if telomere instability, 

caused by the improper association of telomeres to telomerase (TERT), may be linked to 

recombination errors in men. We found that the levels of telomere-associated TERT in 

pachytene cells were decreased in OA men (n=2) compared to controls (n=4). Further 

correlation of the percentage of telomere-bound TERT, and frequency of genome-wide 

recombination in pachytene cells showed a moderate positive correlation. However, the 

correlation was not statistically significant likely due to the small sample size. Nonetheless, 

our findings suggest that deficient levels of telomere-associated TERT may possibly 

contribute to recombination errors and male infertility.  

The limitations to our current study include the small sample size, and the inability to 

study telomere homeostasis in NOA men with our current protocol. Our future studies can 

build on the preliminary findings presented in this thesis, by examining the relationship 

between telomeric protein homeostasis, and crossover distribution in addition to frequency in 

a larger group of NOA and OA men. Furthermore, it will be useful to examine telomere 
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homeostasis during the different stages of prophase I, in which telomeres are actively 

interacting with the nuclear membrane to facilitate chromosome synapsis and recombination. 

Such a study would be useful for elucidating the role of telomeres in crossover formation, 

and provide further insight for identifying genes that may be implicated in male infertility. 

6.1.3 The fate of sex chromosomal mosaicism in the testes 

In Chapter 5, we investigated the meiotic behaviour and sperm aneuploidy rate of an 

azoospermic man with a 45,X/46,XY karyotype. Despite a 50:50 somatic mosaicism in the 

patient, we found a surprisingly low level of 45,X pachytene cells (25%). Assuming that the 

chromosome constitution of the germ cells is identical to that of the somatic cells, this result 

suggests that half of the 45,X germ cells are arrested prior to meiosis. Interestingly, only 63% 

of the pachytene cells showed normal pairing between the X and Y chromosomes, whereas 

12% of the cells displayed unpaired sex chromosomes (X+Y). These X+Y cells, along with 

45,X cells, showed abnormal transcriptional silencing of the pseudoautosomal region (PAR). 

As demonstrated in mouse studies, the vast majority of cells with unpaired chromosomes are 

likely arrested at the pachytene checkpoint (McElreavey and Cortes, 2001). Most 

importantly, although the patient’s testicular sperm showed increased levels of aneuploidy, 

the majority were of normal constitution. However, the X:Y sperm ratio was significantly 

increased, possibly suggesting that some 45,X cells completed meiosis to give rise to X-

bearing sperm. Our findings provide insight into the fate of mosaic germ cells in meiosis, and 

support the theory that checkpoints ensure the favorable production of sperm with normal 

chromosomal constitution despite an individual’s abnormal karyotype.  

Although there has been reports of sperm aneuploidy rates in infertile men with other 

types of sex chromosomal abnormalities, information on meiotic analyses is scarce. Future 
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meiotic studies in these individuals can improve our knowledge of how abnormal sex 

chromosomes behave during meiosis, and possibly identify new mechanisms for meiotic 

arrest, or chromosome missegregation. For example, this study surprisingly found a high 

frequency of unpaired sex chromosomes in otherwise normal 46.XY cells in the mosaic 

individual. This phenomenon has also been reported in mosaic men with lower levels of 

45,X/46,XY, and even 47,XYY. We postulate that a mosaic somatic environment may have 

intercellular effects on chromosome behavior in germ cells during meiosis due to physical, 

hormonal, or epigenetic factors. 

6.2 Conclusion 

In summary, we observed meiotic defects in the form of synaptic errors, reduced levels 

of recombination, and changes in the distribution of crossovers in infertile men with 

idiopathic infertility. These impairments are implicated in the majority of infertile men with 

NOA, suggesting that meiotic errors may be contributing to spermatogenic arrest in this 

population. Moreover, smaller chromosomes that usually only experience one crossover 

event may be more likely to be disrupted; we found that reduced recombination on the sex 

chromosomes and bivalent 21 may be associated with higher rates of sperm disomy for the 

affected chromosome in infertile men. A possible explanation for the recombination errors 

frequently seen in infertile men is the perturbation of telomere homeostasis during meiosis. 

Spermatocytes of infertile men are more likely to have deficient association between the 

telomeres and its structural protein, thus potentially causing compromised telomere function. 

Aside from infertile men with normal karyotypes, infertile men with mosaic sex 

chromosomes also show substantial defects during meiosis. Our results revealed that the 

chromosome constitution of germ cells may not be similar to that in somatic cells, possibly 
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due to germ cell arrest prior to meiosis. Despite a mosaic karyotype, infertile men may 

nevertheless produce sperm with mostly normal constitution, and safely undergo ICSI to 

father biological children. Taking into account the data from this thesis, it is clear that future 

meiotic studies are warranted in order to reaffirm our findings in larger sample sizes, as well 

as address the novel postulations that have arisen from our work. 
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