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Abstract

Parkinson’s Disease is the second most common neurodegenerative disorder. Apart

from motor symptoms, cognitive deficits are also common. Treatments, mainly in

the form of dopamine (DA) replacement therapy, although reduce motor symptoms

at first, can lead to treatment-induced complications. Abnormal spatial covariance

metabolic pattern linked to the motor and cognitive symptoms of Parkinson’s Dis-

ease (PD) have previously been defined using Fludeoxyglucose Positron Emission

Tomography (PET). In contrast, little is known about the functional networks in the

serotonergic system, which is known to be closely related to cognitive dysfunctions

of the disease.

In this thesis work, we want to investigate the interactions between the dopamin-

ergic and serotonergic pathways in presymptomatic and early stages of the disease,

and their contributions to treatment-induced complications and non-motor symp-

toms in PD subjects.

In the first part of this project, we investigated the PD and LRRK2 mutation re-

lated patterns in the serotonergic system by studying 12 asymptomatic LRRK2 mu-

tation carriers (LRRK2-AMC), 9 healthy controls (HC), and 18 PD subjects using

[11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB) PET

and a principal component analysis (PCA) based regional covariance model with

bootstrap resampling. The serotonergic PD-related pattern (SPDRP) significantly

separated PD subjects from HC subjects (p< 0.0001). A distinct asymptomatic

LRRK2 mutation-related pattern (LRRK2-AMRP) significantly separated LRRK2-

AMC with HC subjects (p< 0.0001).

In the second part of the project, we analyzed the medication-induced DA release

pattern for 10 early PD subjects using double [11C]-Raclopride scans. We found a

significant negative correlation between DA release and age of onset in the striatum.

These findings, although obtained with a small number of subjects, suggest that

the serotonergic system may be affected by PD in a specific pattern and regions

relatively preserved binding may contribute to cognitive dysfunctions related to
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PD. LRRK2-AMC subjects showed a distinct pattern, which indicates that either

such increase is of compensatory nature or is a characteristic of this specific mu-

tation. The combination of abnormal medication-induced DA release pattern and

upregulation of the serotonergic system may be able to explain the occurrence of

treatment-induced complications and non-motor symptoms in PD patients, and act

as a potential early marker for the disease.
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Chapter 1

Introduction

1.1 Positron Emission Tomography

Positron Emission Tomography (PET) has been widely used to provide information

about numerous neural pathways and abnormal patterns of neural activity in pa-

tients with neurodegenerative diseases. In this section, I will briefly discuss basic

principles behind PET radiotracers, radioisotope decays, signal detection and image

reconstruction.

Overview

Positron emission tomography (PET) is a nuclear imaging technique which uses ra-

diotracers to construct a 3D image based on the spatial and temporal distribution

of the tracers and provides functional information of the tissues of interest in-vivo.

PET enables the monitoring of molecular or cellular processes for varies diagnostic

or therapeutic applications. Since patients with brain disorders often show distinct

metabolic patterns under PET scan, PET imaging offers the possibility to determine

in-vivo multiple aspects of physiological processes for the study of varies neurode-

generative diseases.

The radiotracer tagged with a radioisotope is introduced into the patients body.

The radioisotope decays to produce positrons. Annihilation between a positron and

an electron produces two 511 keV gamma rays flying off in opposite directions along

a random orientated line. The two gamma rays are detected in coincidence by a pair

of scintillation detector elements. The imaginary line that joins the location where

the two gamma rays are detected is used to assign those matching gamma rays to

a specific line of response (LOR). The measured counts in each LOR are used to

produce a 3D image of the object being studied via various image reconstruction

algorithms. Details of the process will be discussed the following sections.

Table1.1 summarizes characteristics of common imaging modalities. Compared

to other imaging modalities, PET has the highest sensitivity and specificity, but rel-

1



1.1. Positron Emission Tomography

Spatial Resolution Temporal Resolution Sensitivity (mol l−1)

PET 4-6 mm 5-10 s 10−11 − 10−12

SPECT y 8-11 mm 5-10 s 10−10 − 10−11

MRI 0.05-1.5 mm 0.1-5 s 10−3 − 10−5

CT 0.05-0.8 mm 0.1-0.5 s not well defined
Ultrasound 0.05-0.5 mm 0.005-1 s single microbubbles

Table 1.1: Comparison between commonly used imaging modalities. [1]

atively low temporal and spatial resolution. On the other hand, magnetic resonance

(MR) imaging and computed tomography (CT) can provide high spatial resolution

and high soft tissue contrast. Hybrid imaging such as PET/CT and PET/MR have

been adopted to combine anatomical and metabolic information. In the field of

brain research, PET/MRI provides more comprehensive investigation of brain orga-

nization and physiology by looking at metabolic and functional information at the

same time. For example, in the study of brain connectivity, structural or functional

connectivity from MRI can be combined with metabolic connectivity from PET to

provide more specific, sensitive and quantitative measurements, and therefore yield

new insights into the brain [12][1].

1.1.1 Radiotracer

A radiotracer is a biological molecule (tracer) tagged with a radioisotope. The choice

of tracer and molecule depends on the tissue to be studied and questions of interest.

In oncology, fluorodexoyglucose (FDG), which is a glucose analog that is taken

up by glucose-using cells, is often used as the tracer. FDG molecules are tagged with

radioisotope fluorine-18 (F-18), which has a half-life of 110 mins. These radioactive

[18F]-FDG molecules are trapped in cells until decay. Since cancerous cells take up

more glucose than normal cells, FDG/PET can be used for diagnosis, staging and

monitoring treatment of various cancers. In neuroimaging, regions with higher brain

activity have higher radioactivity. Since brain has a high uptake of glucose and many

neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease,

decrease the brain metabolism in certain brain regions, FDG/PET can be also used

for neuroimaging [13]. Other tracers, such as raclopride, dihydrotetrabenazine and

fluorodopa, are used to target specific physiological pathways related to various

diseases. Details about a few radiotracers relevant to this project will be discussed

in later sections.

2



1.1. Positron Emission Tomography

Once inside the body, the radio-labeled molecule can ’tracer’ out its path. Ideally

a tracer should have the following properties:

1. specific to the process or site of interest, which can be difficult since tracer in

bloodstream can be carried away from the site of interest

2. no metabolism after injection. Metabolites can carry labeled isotopes away

from the site of interest and cause problems in data interpretation

3. easily synthesized from available precursor. The synthesis process should take

a relatively short-time before radioisotope activity decays, and have a good

yield

Isotope Half-Life (mins) Maximum Energy (MeV) Range in Water (mm)
18F 109.7 0.635 1.03
11C 20.4 0.96 1.86
13N 9.96 1.19 2.53
150 2.07 1.72 4.14

Table 1.2: Characteristics of commonly used PET radioisotopes. The range in water
is the total distance traveled by the positron before it annihilates with an electron.
[2]

PET imaging depends on positron-emitting isotopes. Radioisotopes can be pro-

duced by a cyclotron, or as bi-products of a nuclear reactor, or in a generator system.

Short-lived isotopes, such as 11C and 150, have to be produced by an in-house or

nearby cyclotron. Some commonly used isotopes are listed in Table1.1.1. Isotopes

suitable for PET imaging have the following characteristics:

1. half-lives are long enough for the duration of the scan, but not too long to

avoid unnecessary patient exposure to radiation

2. the decayed positrons have relatively low energy and short range before anni-

hilating with electrons in the body to avoid inherent error in the data

3. targets are easily available for isotope production

4. do not change the biochemical properties of the labeled tracer molecules

The labeled radiotracers have the same physiological properties and hence same

tracer kinetics as the unlabeled biological molecules. When the radioisotope decays

3



1.1. Positron Emission Tomography

by emitting gamma rays, distribution of the radiotracer is mapped as a function of

time and space by the detected gamma rays. The spatial and temporal distribution

of the tracer provides functional or metabolic information of the tissue depends

on its biochemical or metabolic properties without disturbing the normal tissue

function.The low amount of radiotracer administered to the patient does not induce

any pharmacological effect nor affect the biological process under observation [14].

1.1.2 Radioisotope Decay

Radioactive decay is based on the unstable nucleus with too many neutrons or

protons which disrupts the balance between attractive and repulsive forces in the

nucleus. the Coulomb force (repulsive) and the strong force (attractive). Unlike

stable nuclei, unstable nuclei do not have enough attractive force to hold the nuclei

permanently together, and are therefore radioactive.

Positron emission is a particular type of radioactive decay, in which a proton in

a proton-rich nucleus (X) is converted to a neutron while releasing a positron (β+)

and a neutrino (υ):
A
ZX =A

Z−1 Y + e+ + υ (1.1)

After converting proton to neutron, the nucleus decays to its stable form (Y).

Positron is emitted to conserve electric charge.

Annihilation occurs when a subatomic particle collides with its antiparticle, in

this case, when a positron collides with an electron. Due to energy and momentum

conservation, low-energy annihilated particles are replaced with two gamma ray

photons. Since both electron and positron have a rest energy of 511k electron volts

(eV), this energy is given off equally to two gamma rays. Energy and momentum

are conserved with 1.022 MeV of gamma rays traveling at opposite directions, which

are detected by PET detection system [4].

Emitted positron undergoes many scattering events along its path in the medium

before annihilates with an electron, so the actual path length the positron travels

before annihilation (p) is greater than the positron range (r) as shown in Figure1.1.

Corrections are made to account for the degrading effects of positron range, espe-

cially for isotopes with high positron range. Many have used Monte Carlo simula-

tions or high resolution optical methods to model the positron range distribution.

[2]
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1.1. Positron Emission Tomography

Figure 1.1: Nucleus decays to emit positron (β+) which travels to the site of anni-
hilation where it annihilates with an electron (e−) producing two 511 keV gamma
rays (γ) in opposite directions. r is the displacement from the parent nucleus to the
site of annihilation, whereas p is the actual path of β+ [4]

Radioactive Decay Rates

For a given radioactive nucleus, the exponential probability of decay is described

using decay constant λ, the probability that a nucleus will decay per unit time. The

radioactivity (A) of a sample is the number of decays per unit time in the units of

Becquerel (decays/second). N is the number of radioactive atom in the sample. The

half-life (T1/2)is the time when activity of sample has halved.

N(t) = N0e
−λt

A(t) =
−dN(t)

dt
= λN(t)

T1/2 =
ln(2)

λ

(1.2)
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1.1. Positron Emission Tomography

1.1.3 Detection System

Detection system is a key component to obtain quantitative information from the

imaging system. PET scanner detects the two gamma rays originating from positron

annihilation using scintillation detectors. The annihilation photons (511 keV) trav-

eling in opposite directions form a line of response (LOR) are detected in coincidence

(i.e. by searching for light signal at this energy within a very short time window

within a few nanoseconds) by a pair of detector elements surrounding the part of

the body being scanned (in our case, the brain).

Figure 1.2: A schematic of PET block detectors which is based on the first com-
mercial human PET scanner built in 1974. The scanner was made by 48 NaI(T1)
detectors. [4][5]
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1.1. Positron Emission Tomography

Scintillation

Scintillating crystals detect the gamma rays and convert them to scintillation light

via the following steps [5]:

1. Incident photon on the scintillating crystal creates an energetic electron by

Compton scatter or photoelectric effect

2. Electron loses its energy as it passes through the scintillator, and excites other

electrons along the way

3. Excited electrons return to their ground state, releasing energy in the form of

visible light

Some photons may scatter off the detector and only deposit portion of their

energy in the scintillator, especially in small detectors, but increasing detector size

reduces the spatial resolution of the system. So choosing the ideal scintillator ma-

terial based on the following criterion is important to have optimal scintillator per-

formance:

• high effective atomic number (Z). High Z materials have high linear attenua-

tion coefficients, which increase the proportion of photons undergoing photo-

electric absorption, thus increasing sensitivity of the scintillator

• high light yield, meaning that incident photons should produce a large number

of scintillation photons

• low self-absorption for the scintillation light

• index of refraction close to glass, which improves the optical coupling between

the scintillator and photomultiplier tubes

Photomultiplier Tubes

The scintillator is coupled with the photomultiplier tubes (PMTs) (as shown in Fig-

ure1.2), which then generate electric signal in response to the light incidence and

send the signal to computers. The scintillating photons incident on the surface of

PMTs result in a short electrical pulse, which is then further amplified by electronics

and coincidence circuitry. When two signals from opposing detectors arrive in coin-

cidence along a line of response (LOR) and sends this information to a computer.
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1.1. Positron Emission Tomography

In contrast to single photon emission computed tomography (SPECT), PET does

not need physical collimator to determine the direction of the incident photons [6].

Figure 1.3: a) two annihilation: X is detected by detector elements D3 and D67 along
line of response (LOR), Y is undetected because photon path does not interact with
detector ring. b) top view of annihilation of X [6]

Figure 1.4: True coincidence detection vs scatter and random coincidence detection
in PET [7]

Photon Interaction and Attenuation Correction

When the two photon beams travel through the medium, they can interact with

human tissues via Compton scatter or photoelectric absorption.

In Compton scattering, which is the most dominant interaction for 511 keV

photons, a photon interacts with an electron, which results in decrease in photon
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1.1. Positron Emission Tomography

energy (increase in wavelength) and change in the direction of the photon. This lost

energy is transferred to the recoil electron, and the energy of the scattered photon

after interaction is given by [15]:

E′ =
E

1 + (E/m0c2)(1− cos θ)
(1.3)

where E’ is the energy of the scattered photon, E is the energy of incident photon,

m0c
2 is the rest mass of an electron, and θ is the scattering angle.

In photoelectric absorption, the incident photon is completely absorbed and an

energetic electron is ejected from the outer bound shell of the atom [15]. In human

tissues, the probability of photoelectric absorption is low for photon with 511 keV

energy [16].

Compton scattering and other interactions lead to attenuation of the two 511 keV

photons. The number of photons pass through an attenuating material decreases

exponentially with increasing length of the material. For 511 keV photons, about

7cm thickness of tissue is needed to reduce the number of photons to half.

The probability that a photon will reach the detector is given by:

P = exp−
∫ x
0 µ(x)dx (1.4)

where P is the probability a photon will reach the detector at distance x through

some attenuating material, and µ is the linear attenuation coefficient.

Because the interaction probabilities for the two photons are independent of

each other, the total probability that both photons will reach the detector and been

recorded as a coincidence event is given by [16]:

Pc = exp−
∫ L
0 µ(x)dx (1.5)

where L is the distance between two detectors.

Coincidences Detection and Correction

As a result of annihilation, we expect the two photons to arrive at the detectors

at approximately the same time. Temporal mismatches (photon detection not oc-

curring at the same time) may occur due to the finite timing resolution of the

scintillation crystal and the processing time of the PMT. These timing uncertainties

are taken into account using the coincidence time-window, usually in the order of
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1.1. Positron Emission Tomography

6-10ns [17]. When annihilation occurs at a location closer to one detector than the

other, there will be a slight delay from one photon than the other. This can be

corrected with time-of-flight PET imaging, which uses the relative time difference

(∆t) between detection of two photons to estimate the most likely location of the

annihilation event along the LOR.

There are 4 different kinds of coincidence events in PET: true, scatter and ran-

dom (as shown in Figure1.4).

As mentioned before, true coincidence event occurs when two 511 keV photons

from annihilation are detected by scintillators at the same time. Photons do not

undergo any interaction before detection and no other event is detected within this

coincidence time-window [17].

Random coincidences occur when two detected photons are actually originated

fro two separate annihilation events, which can be corrected using a delayed coinci-

dence circuit. Scattered coincidences are caused by scattered photons within patient

body as a result of Compton scattering. Even though two photons are originated

from the same annihilation event, since the direction of the photon is changed, the

LOR does not cover the true location of this event. This incorrect LOR assignment

can be corrected using complex simulation methods [7]. These scattered and random

coincidences add noise to the signal and decrease image contrast.

Attenuation Correction Attenuation due to interaction between photons and

tissues can be corrected using attenuation correction (AC). Because tissues with

different densities have different attenuation abilities, less dense regions (e.g. lungs)

will appear darker (more photon emissions) than more dense regions (e.g. bones)

without AC, which can lead to inaccurate estimation of tracer uptake. To perform

AC, we need to obtain the attenuation map from all LORs. On stand-alone PET

scanners, a transmission scan is usually performed, in which an external positron

source is rotated around the patient to determine the attenuation of this transmission

photon beam [18]. In PET/CT scanners, CT images can be used for PET AC [19].

The collected data are the counts for the number of coincidences [n*(l), . . . ,

n*(D)] where n*(d) is the total number of coincidences counted by the dth detector

pair and D is the total number of detector pairs. Note that not all photons reach

the detector due to attenuation inside the body and detector. Considering different

factors affecting the counts of coincidence events, the following equation is often

used to estimate loss of counts (or attenuation)
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1.1. Positron Emission Tomography

Ydθ = γdθ[η
t
dθPdθMdθ + ηrdθrdθ + ηsdθsdθ]

Pdθ = exp−
∫
µ(x)dx

where µ(x) is the linear attenuation coefficient at position x, M is the number of

annihilation along LOR specified by (d, θ), P is the survival probability (probability

of a photon not interacting along LOR), r is the number of accidental coincidences,

s is the number of scattered events, η is the probability of each corresponding event,

γ is the probability of event not being lost due to deadtime [20][21].

1.1.4 Image Reconstruction

After corrections for attenuation, scatter and random effects, the number of counts

along each LOR is proportional to the line integral of the activity along that LOR,

which is known as projection. Radiotracer distribution inside the body is modeled

using 3D volume elements (voxels), and f is the true image which can be represented

as the number of β+ decays at each spatial location corresponding to each voxel.

If the number of coincidence events along each LOR is vector p, the system matrix

H relates radioactive decay inside the body to coincidence events recorded by the

detector. The imaging system is described as:

p = Hf (1.6)

Given p and H, we can estimate f through varies image reconstruction algorithms.

The reconstruction algorithm of choice depends on the question of interest, and

there is always a trade-off between the signal-to-noise ratio (SNR), contrast, bias

and resolution.

There are two common types of PET image reconstruction algorithms, the it-

erative and analytic algorithms. Iterative algorithms are very flexible and require

no constraints on the system model, but can be very computationally expensive.

Analytic algorithms, on the other hand, are much faster, but have higher noise and

limited quantification accuracy [4][22].

Analytical Reconstruction

Analytic reconstruction, such as the filtered back projection (FBP) algorithm, re-

quires the system matrix H to be simplified. In the analytic approach, a finite

number of projections is applied back to the image to obtain a rough estimation
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1.2. Kinetic Modeling

of the true radiotracer distribution. Star-like artifacts resulting from the limited

number of projections can be improved using a ramp filter. The combination of the

back projection and the ramp filter is the FBP method. In the analytic approach,no

statistical model is included, which lowers the SNR [23].

Iterative Reconstruction

Compared to analytic reconstruction algorithms, iterative reconstruction approxi-

mates the real solution of the object using multiple iterative steps, which allows us

to reconstruct better images but at a higher cost of computational time. Iterative

reconstruction algorithm has the advantage of improved noise insensitivity, which is

particular interest for images with poor noise statistics like PET [23][22].

In iterative reconstruction approach, we need to define the parameters to esti-

mate (represent radiotracer concentration) and the system model which relates the

radiotracer distribution and the mean of the measured data.

The system matrix Hij, which is the probability that an emission from voxel j

is detected in projection i, characterizes the imaging system. The projection pi is

given by [24]:

pi =
N∑
j=1

Hijfj (1.7)

After acquiring the projection measurements, a statistical model is used to de-

scribe how the projection measurements vary around the expected mean. A cost

function is often used to define the ’best’ image, and the Maximum Likelihood ap-

proach is most commonly used for PET since it offers unbiased, minimum variance

estimates as the number of measurement increases.

1.2 Kinetic Modeling

To obtain quantitative measurements from physiological tracer distribution, we often

need a kinetic model to relate PET data to tissue functions. In these models,

radiotracer moves between different tissue compartments, which represent different

biochemical states of the radiotracer and its metabolites. By assumption, there is

an uniform radiotracer distribution inside each compartment.

In a compartment model, there a fixed number of states with specific interactions

among them and arrows represent pathways where radiotracers flow between each

12



1.2. Kinetic Modeling

compartment. The change in concentration in each tissue compartment is described

by a linear, first-order ordinary differential equations (ODE) of the concentrations

in all other compartments. From these ODEs, tracer kinetics are the convolution of

the input function and response function in other compartments.

Compartment models can be used to fit the tissue concentrations as a function

of time from the measured PET data. Kinetic models used in PET quantification

are discussed in the following sections.

1.2.1 Time Activity Curves

The time activity curve (TAC) gives the radioactivity value in each region-of-interest

(ROI) or pixel across a sequence of PET images (i.e. scanning time) as shown

in Figure1.5. Radioactivity of the tracer reaches maximum then stabilizes as the

isotope decays. To quantify this curve, we need to fit compartment models to obtain

quantitative information.

Standard Uptake Values

Standard uptake values (SUV) can be estimated from TACs. SUV is defined as the

ratio of 1) the mean tissue radioactivity concentration c of ROI (Mbq/kg), and 2)

the injected activity (Mbq) divided by the body weight (kg). SUV(t)=c(t)/(injected

activity(t) / body weight). SUV represents the ratio of (1) the image derived ra-

dioactivity concentration found in certain ROI, and (2) as reference the radioactivity

concentration in the hypothetical case of an even distribution of the injected radioac-

tivity across the whole body. Average SUV in each ROI was also obtained over the

last 30mins (50-80mins) time frame. SUV can be significantly affected by image

noise, low image resolution and/or user biased ROI selection.

1.2.2 Reference Tissue Model

The commonly used reference tissue model (RTM) in PET neuroscience studies is

illustrated in Figure1.6 and parameters are explained in Table1.2.2. The reference

region is modeled as a ’single-tissue’ compartment (CR), while the target region is

modeled as a ’two-tissue’ compartment (CNDandCS).

CP is the arterial input function, which represents the cumulative availability of

the radiotracer in arterial plasma. Tissue concentration normalized to the cumula-

tive arterial concentration is often used as the gold standard for quantitative PET
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1.2. Kinetic Modeling

Figure 1.5: Time activity curve for [11C]-DASB tracer with SRTM model fit in the
left caudate region. The estimated parameters from SRTM are shown. Error bars
are estimated from the scanner count-rates [4]

studies. However, since getting arterial blood samples during the scan can be a

challenge sometimes, arterial input function can be sometimes replaced by reference

tissue if one exists.

The rate of which tracer moves from one compartment to another is proportional

to the tracer concentration in the first compartment [3]. For the non-displaceable

compartment CND, we have the following differential equation describing the change

in radioactivity concentration:

dCND
dt

= K1CP − k2CND − k3CND + k4CS (1.8)

In RTM, the two target tissue compartments do not represent different physical

spaces. The specifically bound compartment CS is where tracers bind to their

specific target. The non-specifically bound compartment CND is where tracers may
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1.2. Kinetic Modeling

Figure 1.6: Systematic diagram of the reference tissue model [8]. Using a reference
region, parameter Cp can be eliminated.

either bind to non-target molecules or unbound (free).

The reference tissue compartment CR, which is assumed to have no specific

binding but similar non-specific binding as the target compartment, is used to esti-

mate the input function without measuring tracer concentration in plasma CP . The

reference tissue compartment only contains non-specifically bound and free tracer

[3][8].

For RTM, the operational equation is given by:

CT (t) = R1[CR(t) + a · CR(t)
⊗

e−ct + b · CR(t)
⊗

e−dt] (1.9)

where t is the time after tracer administration and
⊗

is convolution.

R1 is defined as the ratio of tracer deliver rates between the target and reference

regions:

R1 =
K1

K ′1
(1.10)
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Symbol Definition Units

CP Tracer concentration in plasma kBq.mL−1

CND Tracer concentration in non-specifically bound
target tissue

kBq.cm−3

CS Tracer concentration in specifically bound target
tissue

kBq.cm−3

CR Tracer concentration in reference tissue kBq.cm−3

K1 Rate constant for transporting tracer from arte-
rial plasma to reference tissue

mL.cm−3.min−1

K ′1 Rate constant for transporting tracer from arte-
rial plasma to reference tissue

mL.cm−3.min−1

k2 Rate constant for transporting tracer from ref-
erence tissue to venous plasma

min−1

k′2 Rate constant for transporting tracer from ref-
erence tissue to venous plasma

min−1

k3 Rate constant for transporting tracer from non-
displaceable to specifically bound compartment

min−1

k4 Rate constant for transporting tracer from
specifically bound to non-displaceable compart-
ment

min−1

Table 1.3: Symbols used in the reference tissue model, as shown in Figure1.6. [3][4]

The parameters a,b,c,d can be estimated from different combinations of rate

constants. Because we assume that the volumes of distribution for non-displaceable

tracer are equal in the reference and target region, so that
K1

k2
=

K1′

k2′
. This

assumption allows us to reduce the number of independent parameters from five

(a,b,c,c and R1) to four (R1,k2,k3,and BPND), which are then estimated using

nonlinear regression analysis [8]. The two assumptions of RTM are: 1) there is no

specific binding in the reference tissue compartment and 2) K1/k2 is the same in

reference and target tissue compartments.

Binding Potential

The goal of PET study is to estimate all the rate constants in the compartment

model using the fit parameters. Instead of estimating these rate constants directly,

which is prone to statistical noise in model fitting, more robust parameter is used

to combine these rate constants. Because the rate constants are highly covariated,

the overall error for the combined parameter is less than the error for each rate
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constant.

In a ligand receptor binding system, ligand-receptor kinetics is described by the

Michaelis-Menten equation.

L+R↔ LR

where L = ligand, R = receptor, LR = ligand-receptor complex.

Binding potential (BP) is most commonly used to estimate the rate constants.In

PET, BP values are combined measures of availability and affinity of neuroreceptors,

and is the ratio of Bmax oto KD:

BP = Bmax/KD = receptordensityxaffinity (1.11)

where Bmax is the total concentration of receptors in the tissue, and KD is the

radioligand equilibrium dissociation constant.

There are different definitions of BP, but for our interest, non-displaceable bind-

ing potential (BPND) is used, which defined as [3]:

BPND =
k3
k4

(1.12)

1.2.3 Simplified Reference Tissue Model

RTM has four parameters to be estimated which is often too complex for the noisy

PET data. In most cases, it can be replaced by the simplified reference tissue model

(SRTM).

Compared to the original RTM, SRTM reduces the number of tissue compart-

ments to one instead of two (i.e. combined the specifically bound compartment CS

and non-specifically bound compartment CND). This reduces the number of param-

eters from four to three (eliminate k3) and reduces the variability in the parameter

estimates. SRTM is used to quantify the receptor kinetics from PET measurements

using input function derived from a reference region without acquiring an arterial

input function [8] [25]. The three parameters used in SRTM are R1 (relative deliv-

ery in tissue compartment compared to the reference region), k2’ (the clearance rate

constant from the reference region) and BPND (k3/k4) estimated using nonlinear

fitting or more complex models.

SRTM uses the following three assumptions to estimate specific binding in tissue

regions of interest as a function of the reference region [25][26]:
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1. reference tissue compartment has no specific binding

2. the volumes of distribution for non-displaceable tracer are equal in the refer-

ence and target region, so that
K1

k2
=
K1′

k2′
.

3. there is no difference between the specific and the non-specific compartment,

so TAC can be fitted by an one-tissue compartment model.

SRTM was used to generate BPND values for covariance pattern analysis in the

serotonergic system, which was the main part of this thesis work.

1.2.4 Two-Step Simplified Reference Tissue Model

SRTM calculates one BPND value for each ROI using regional TAC, but sometimes

parametric images of BPND values are of particular interest. In parametric images,

each voxel is related to some physiological parameter. This is done by applying

traditional model to each individual voxel separately.

Although there is only one true value of k2’, SRTM estimates k2’ value for each

pixel of the image. A two-step method (SRTM2) was developed [25][26]:

1. R1, k2 and k2’ values are calculated using SRTM for all brain pixels. A global

k2’ value is calculated from all pixels outside the reference region.

2. Fix k2’ value to the averaged global value and calculate functional images of

BP and R1 using a two-parameter fit.

SRTM2 was used to generate parametric BPND images for DASB tracer and

was compared with regional BPND values from SRTM.

1.2.5 Logan Plot Method

Compared to RTM or SRTM, data fitting using linear regression methods is in

particular interest due to faster computational time . Logan plot is a graphical

method which reduces the number of parameters by transforming the model equation

(1.9) to a linear equation evaluated at several time points and interpret the slopes

and intercepts of the linear equations [27]. This method is independent of the

specific model structure of the reference tissue and uses a global clearance rate k2’

as SRTM2. Logan plot method was used to generate regional BPND values for RAC

and DTBZ tracers.
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1.3 Network Analysis

Functional imaging techniques allow us to quantify brain activity to study patho-

physiology of neurodegenerative disorders, but absolute activity may not provide

the complete picture. In addition, activity variability between subjects and brain

regions increases the difficulty to quantify PET signal.

Moeller and colleagues [28] proposed a data-driven, statistical regional covariance

model based on multivariate principal component analysis (PCA), namely the Scaled

Subprofile Model (SSM). SSM models the sources of subject and region variation

as spatially distributed networks in functional images. SSM is able to identify a

group-dependent, region-specific, disease specific spatial covariance patterns in the

brain that can be used study the heterogeneous regional interactions in different

patient groups and to discriminate patients from healthy controls [29][30]. Network

analysis has been proven to be more robust than local binding analysis and more

sensitive to small changes. For the serotonergic system, which is the main focus of

this thesis work, most studies on serotonergic pathways have been focused on local

binding, disease-specific alteration of the functional network across the entire brain

is still unknown.

1.3.1 Overview

Disease-specific metabolic network abnormalities have been used to accurately dis-

criminate between PD patients and controls using SSM. The so-called PD-related

pattern (PDRP) derived from 18F-fluorodeoxyglucose (FDG) PET was characterized

by increased pallido-thalamic and pontine activity associated with relative reduced

activity in the cortical motor regions [31] [32] and was found to correlate consis-

tently with Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores [30]

and clinical response to therapy [33].

Similar network analysis has also been applied to identify the PD-related cogni-

tive pattern (PDCP) using FDG as a potential biomarker of cognitive functioning in

PD. PDCP pattern was characterized by relative increased activity in the cerebellar

vermis and dentate nuclei with associated reduced activity in frontal and parietal

association areas [34]. It was also shown that brain network patterns associated

with motor and cognitive functions are orthogonal of each other [32]. By applying

network analysis to the serotonergic system, we can further study the functioning

role of serotonergic pathways in PD.
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1.3.2 Principal Component Analysis

SSM is based on PCA to decompose sources of variation (deviation) in the data into

a set of linearly uncorrelated/orthogonal vectors called Principal Components (PCs).

PCs are ranked based on the variance accounted by each PC in the subject by region

data matrix, so that the first PC accounts for the largest variance. PCA is done

by Singular Value Decomposition (SVD) of the data matrix (detailed mathematical

steps are listed in the next subsection) [35].

1.3.3 SSM/PCA Analysis

After minimizing substantive variability in subjects and brain regions, we can iden-

tify the significant spatial covariance patterns in the combined control and patient

groups. Detailed computational steps of region-based SSM are listed below [30][28]:

1. subject PET images are smoothed and normalized onto a common template

(e.g. the normalized Talairach-like space (MNI)) using Statistic Parametric

Mapping (SPM) software. This step ensures all functional activity measure-

ments at different locations in the brain are mapped onto the same coordinate

system in a one-to-one correspondence fashion. (This step can be eliminated

when using regional BPND values).

2. regional quantitative measurements (e.g. BP values or SUV) are obtained

using pre-defined brain region mask. Value in each region r (1,...,N) of each

subject s (1,...,M) are combined together to form the subject by region data

matrix Psr.

3. (optional) depending on the characteristics of the quantitative measurements,

logarithmically transformation of Psr can be applied. Logarithmically trans-

formation makes highly skewed distributions less skewed, and changes multi-

plicative scaling effect into additive components which can be then removed

by double centering step (step 4) . For BP data, we did not apply any trans-

formation before applying statistical analysis.

Psr −→ LogPsr

4. LogPsr is centered with respect to subject means in each region LGMRr

and region means in each subject GMPr obtain the Subject Residual Profile
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(SRPsr). LGMRr is the mean across subjects of brain data of region r,

and GMPr is the mean across regions of subject s. Through this double

centering process, the resulting matrix SRPsr is the deviation of the mean

subject and mean regional values which represents a coordinate system that

relates differences from the mean values. Double centering ensures the result

was invariant to subject and regional scaling effects.

SRPsr = Psr − LGMRr −GMPr

where LGMRr = meanregion(LogPsr)

GMPr = meansubject(LogPsr)−meansubject(LGMRs)

(1.13)

5. Singlular Value Decomposition (SVD) of SRPsr matrix to derive the regional

brain patterns and the associated subject scores. We first determine the MxM

subject by subject covariance matrix Ssub in matrix format as:

Ssub = SRP ∗ SRP T (1.14)

Eigenvalue decomposition of the matrix Ssub results in eigenvalues (λk, k=1,...,M)

and eigenvectors (ek, k=1,...,M):

Ssubek = λkek (1.15)

After left multiplying both sides by SRP T :

SRP TSsubek = λkSRP
T ek

(SRP TSRP )SRP T ek = λkSRP
T ek

(1.16)

where (SRP TSRP ) is the NxN region by region covariance matrix Sreg. We

can also get the Group Invariant Subprofile vectors (GISk) as eigenvectors of

matrix Sreg using the same eigenvalues as before λk

SregGISk = λkGISk

where Sreg = SRP TSRP and GISk = SRP T ek
(1.17)

ek vectors weighted by the square root of their corresponding λk eigenvalues

gives the subject score vectors (Scorek) whose elements represent the pattern
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vector GISk

Scorek =
√
λek (1.18)

So as a result of SUV, SRPk for each subject is expressed as sum of the GISk

multiplied by corresponding subject score (Scorek) along each PC:

SRPk =
∑
k

ScorekGISk (1.19)

The eigenvalues represent the Variance Accounted For (V AFk) for each vector:

V AFk = λk/(λ1 + λ2 + ...+ λk) (1.20)

Identify Disease-Related pattern

Therefore, for each PC, we have the subject scores for each subject and GIS values

for each region. To identify significant topographic covariance profiles which best

distinguish between subject groups, PCs related to disease are judged by discrim-

inative accuracy between groups. A single or linearly combination of GIS vectors

has to separate the subject scores of two subject groups at a pre-specified statistical

threshold. Only the first few PCs accounting for a relatively significant amount of

variation in the original data matrix, which correspond to major sources of spatial

variance, should be considered. The general steps for identification of significant

disease-related spatial covariance pattern are listed below:

1. choose PCs accounting for a significant amount of total variation in the data

matrix for further analysis. This eliminate PCs accounting for low percentage

of total variance due to noise.

2. choose PCs satisfying a pre-specified statistical threshold. This is done by

applying two-sample T-test on the subject scores along each PC, and select

only PCs with p-value lower than a pre-specified threshold (e.g. p < 0.001) to

eliminate noise. This threshold is based the characteristics of the data matrix.

3. subject scores of the selected PCs are entered into logistic regression models

with groups (binary number) as dependent variables and subject scores as
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Figure 1.7: Overflow of the Scaled Subprofile Model.
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independent variables. The combination of PCs with the lowest Akaike In-

formation Criterion (AIC) [36] is selected as the one which best distinguishes

between groups.

4. p-value of likelihood-ratio test for this combination of Z-transformed subject

scores (based on equation1.21 ) is used to examine the level of discrimination

between groups.

5. PCs are then combined using the coefficients from the regression model to

yield a single disease-related covariance pattern

Zscore = (score−mean(score(1 : NC)))/std(score(:)) (1.21)

To obtain the most robust results that is most suitable for our dataset, we

combined SSM analysis with bootstrap resampling techniques to identify the disease-

related covariance pattern. Details about the modification can be found in the

method section.

Topographic Profile Rating

After obtaining the significant disease-related covariance pattern, we can apply the

forward application to calculate the subject scores for a specific pattern on individual

basis using equation1.22. This process is called the topographic profile rating (TPR)

[28].

SRP Tk GISk = Scorek (1.22)

1.4 Parkinson’s Disease

1.4.1 Background

Parkinson’s disease (PD) is the second most common progressive neurodegenerative

disorder of the central nerves system (CNS), and has a prevalence of approximately

0.3% of the entire population. PD affects around 100,000 Canadians with a cost of

about $2.5-5 billion annually. The prevalence of PD increases significantly with age,

affecting about 4.4% of people over 50 years of age and 11.9% over 80 years of age

[37].
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1.4. Parkinson’s Disease

1.4.2 Symptoms

Motor Deficits The most common symptoms of PD are abnormalities in mo-

tor system, including resting tremor, rigidity and difficulty initiating and sustain-

ing voluntary movements. These motor abnormalities are known to caused by the

presence of Lewy bodies in the brain, which results in the degradation of nigrostri-

atal dopamine (DA) neurons and therefore alters the activity of the motor cortico-

striatopallido-thalami cortical (CSPTC) pathways. It is known that the motor

symptoms of PD start to occur when about 50% of the nigral dopaminergic neurons

have died, resulting in 80% reduction in the striatal DA content. [38]. Pathologic

process of PD begins in the dorsal motor nucleus, proceeding to midbrain and fore-

brain in different stages of the disease as predicted by the Braak hypothesis [39].

This implies the existence of a relatively long preclinical period during which several

disease-induced neurochemical changes take place.

Cognitive Deficits Apart from common motor abnormalities, PD patients often

experience cognitive deficits which may occur before or along with motor deficit.

Some of these deficits, such as depression and dementia, occur in more than one

third of PD patients and take years to develop before initial motor symptom onset

which make them potential preclinical markers of PD. These motor and cognitive

deficits can have a great impact on the quality of life. There is currently no cure

for PD, medications and surgeries aim to reduce symptoms and improve quality of

life through coping mechanism which help patients adapting to motor and cognitive

limitations, mainly by using levodopa or DA agonists. [40] [41] However, treatment-

induced cognitive complications are common side effects. [42].

Exact causes of these cognitive symptoms are still unclear. Some studies have

suggested that the degradation of nigrostriatal DA content may also contribute

to the cognitive deficits in PD due to the direct connections between the ventral

tegmental area (VTA) and the prefrontal cortex [43]. However, changes in the

dopaminergic pathway alone cannot fully explain the cognitive deficits of the disease.

Several studies have suggested that the serotonergic pathway may contribute to

several non-motor disturbance.

Treatment There is currently no cure for PD, medications and surgeries aim to

reduce symptoms and improve quality of life. The most commonly used medica-

tion is the pharmacological replacement of DA, which is mostly accomplished by
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1.4. Parkinson’s Disease

levodopa (L-DOPA). L-DOPA is a precursor of DA and is converted to DA in the

dopaminergic neurons. Since motor symptoms occur as a result of DA degenera-

tion, administration of L-DOPA temporarily diminishes the motor symptoms. DA

agonists can also be used. Agonist binds to DA receptor and activates the receptor

to produce a biological response.

Motor function responds well to the DA therapy. The most common complica-

tion as a result of DA therapy is dyskinesia, which is involuntary muscle movement

and can range from slight tremor of the hands to uncontrollable movement of the

body. Treatment of cognitive symptoms in PD mainly aims to reduce symptoms or

improve quality of life through coping mechanism which help patients adapting to

cognitive limitations [40].

In order to better understand the disease, we will look closer at two neurological

pathways inside the brain: dopaminergic pathway which is the most commonly

known pathway to be affected by PD and serotonergic pathway which is linked

more closely to cognitive abnormalities of the disease.

1.4.3 Dopaminergic System

Motor abnormalities are caused by the presence of Lewy bodies, which results in

the degradation of nigrostriatal DA neurons. Pathologic process of PD begins in

the dorsal motor nucleus, proceeding to midbrain and forebrain [39].

Figure 1.8: Chemical structure of dopamine molecule

Dopamine (3,4-dihydroxyphenylethylamine) is the neurotransmitter that con-

trols the dopaminergic pathway, which has a characteristic anatomical pattern in

the brain. DA is involved in the regulation of locomotor activity, emotion and neu-

roendocrine secretion. The chemical structure of dopamine is shown in Figure1.8.
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1.4. Parkinson’s Disease

Figure 1.9: Neuronal projections of four DA systems in human brain [9]

There are four central DA pathways which are defined neuroanatomically as

shown in Figure1.9 [10][9].

1. The nigrostriatal system projects from the substantia nigra to the caudate

nucleus and putamen, where nearly 80% of DA is located here. Destruction

of this pathway results in sever motor dysfunction.

2. The mesolimbic system originates in the ventral tegmental area of the midbrain

and projects to nucleus accumbens, olfactory tubercle, hippocampus, septal

nuclei, and amygdala. This system is heavily involved in emotions, memory

and the reward system.

3. The mesocortical system originates in the ventral tegmental area and projects

to the anterior cingulate cortex, septum, neocortex and prefrontal cortex.

These cortical regions are important for motivation, cognition and emotional

control.

4. The tuberoinfundibular system projects from hypothalamus to the pituitary

gland, which regulates the neuroendocrine functions.
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1.4. Parkinson’s Disease

DTBZ

It is known that the motor symptoms of PD start to occur when about 50% of

the nigral dopaminergic neurons have died, resulting in 80% reduction in striatal

DA content. We used [11C]-dihydrotetrabenazine (DTBZ) to estimate dopaminergic

denervation. DTBZ is a presynaptic vesicular monoamine type 2 (VMAT2) marker,

which competes with DA and binds to these VMAT2 DA transporters within DA-

producing neurons. VMAT2 binding site is a specific protein located in the mem-

branes of presynaptic vesicles, so DTBZ is used to access membrane DA transporter

binding. Even though DTBZ is not specific to DA, it is found that over 95% of

VMAT2 binds to DA terminal in the striatum (largely in the storage vesicles in the

predominant dopaminergic terminals) and does not undergo any major disease or

treatment induced regulatory changes. Studies showed that there is striatal DTBZ

uptake reduction is correlated with motor disability and disease progression of PD

[44]. The advantage of DTBZ is not up regulated by DA, so there is a consistent

rate of decrease in the course of disease progression [45].

1.4.4 DA release

The DA transmission process involves the production, release, reuptake, breakdown

and diffusion of DA as shown in Figure1.10. DA is produced from tyrosine by DOPA

decarboxylase (DDC) in the presynaptic neuron. DA is then taken up by storage

vesicles which carry and release DA into the synapse. Once in the synapse, DA can

react with 5 different post-synaptic DA receptors which trigger various cascade of

intracellular signaling in different parts of the brain. For example, D2 receptors are

mainly located in the striatum, limbic areas, hypothalamus and pituitary gland [10].

Abnormal DA release in the synapse was shown to relate to treatment-induced

motor complications in PD patients [46] due to dramatic changes in receptor oc-

cupancy. DA release pattern was analyzed in details using double RAC scans as

shown in later sections.

RAC

Radiotracer [11C]-raclopride (RAC) is used to study the change in DA release pat-

tern due to various stimuli. RAC is a dopamine D2 receptor antagonist and can be

used to evaluate the amount of DA changes and the synaptic DA loss. The antag-

onist binds to the receptor and competes with DA released due to any stimuli for
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1.4. Parkinson’s Disease

Figure 1.10: Systematic diagram of DA synapse showing the production, release,
reuptake, break down and diffusion of DA. [10]

binding to these receptors [47]. Therefore, if DA is released because of any stimuli,

the ability of RAC to bind to the receptors will be reduced, resulting in a lower

RAC BPND value for scans taken during stimuli. There is evidence that different

disease-induced changes in the synaptic DA levels (referred to as DA release pattern)

may be related to different manifestation of the disease and responses to therapy

[46][47].

Clinically, RAC shows an asymmetric binding in the left and right hemispheres.

There is evidence that in advanced PD subjects, improvement in bradykinesia and

rigidity scores following DA medication administration significantly correlated with

reduction in RAC binding, suggesting an increased DA release into the synapse.
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1.4. Parkinson’s Disease

As discussed before, L-DOPA treatment, although remains as the most effective

treatment of PD symptoms, can lead to motor fluctuations and complications such

as L-DOPA-induced dyskinesia (LIDs). Although the origin of such complications

is not clear, it is thought that both pre- and post-synaptic DA systems in com-

bination with non-DA systems play an important role in the development of the

complications.

1.4.5 Serotonergic System

Serotonin neurons (5-HT) are originated in the dorsal raphe nuclei which are then

projected to the basal ganglia (particularly in the striatum) and to the frontal cor-

tex and limbic system as shown in Figure1.12 [48]. Serotonin (5-hydroxytryptamine,

5-HT) is a monoamine brain neurotransmitter. The chemical formula for serotonin

is N2OC10H12 and its chemical structure is shown in Figure 1.11. Serotonin is pro-

duced from the hydroxylation and decarboxylation of the amino acid tryptophan.

In the central nervous system, serotonin is only synthesized by the neurons of Raphe

nuclei which are distributed along the length of the brainstem in nine pairs. Sero-

tonin is widely distributed in the brain and serves an important role in the regulation

of mood, sleep, appetite, memory, learning, etc. Low level of serotonin is associated

with depression, bipolar disorders, fear and anxiety, since serotonin is required for

the metabolism of stress hormones [11].

The serotonergic system is involved in different types of psychopathlogical con-

ditions associated with PD, especially depression, weight and appetite problems

[49][50]. The degeneration of serotonergic terminals occur earlier in the disease

compared to dopaminergic system. PD patients exhibit progressive, nonlinear loss

of serotonergic function, which starts in the caudate, thalamus, hypothalamus and

anterior cingulate cortex and expands to the basal ganglia and limbic system as

disease progresses [51].

It was shown that 5-HT neurons share the same monoamine biosynthetic compo-

nents with DA neurons, which contributes to DA processing in denervated striatum

in PD subjects [52] and play a role in levodopa-induced dyskinesia (LID) by releas-

ing DA as a false neurotransmitter. An autoradiographic study has shown a higher

SERT level in the putamen of dyskinetic than non-dyskinetic levodopa-treated sub-

jects [42].
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Figure 1.11: Chemical structure of serotonin

DASB

To study the brain serotonergic system, we used second generation [11C]-DASB PET

imaging tracer to measure the level of serotonin transporter (SERT) binding and

to estimate serotonin neuronal integrity. DASB has high specificity and sensitivity

for SERT, and low affinity for DA transporter (DAT). Studies have suggested a

decrease in striatal 5-HT [48] and some observed a striatal hyperinnervation in PD

postmortem study and animal models.

1.5 LRRK2 Mutation

The human leucine-rich repeat kinase 2 (LRRK2) gene was discovered in 2004 and

is the greatest known genetic contributor to PD. Majority of PD is sporadic PD,

meaning the cause of the disease is unknown. About 10 % of the disease is related

to genetic mutation in the LRRK2 gene. In the US, LRRK2 mutation accounts for

approximately 0.5% of simplex PD (e.g. single occurrences in a family) and 2%-6%

of familial PD. [53]

Clinical characteristics of sporadic PD and LRRK2 mutation associated PD

patients are quite similar. The motor symptoms are comparable between the two

PD groups. Cognitive impairment does not appear to be more common in LRRK2

associated PD than in typical sporadic disease [54].

Studies have shown that there is an increased DA turnover and increased SERT

binding in asymptomatic LRRK2 mutation carriers compared to healthy controls
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Figure 1.12: Serotonin projections in the brain. Serotonin is produced in nucleus
raphe and projects onto other brain regions [11]

[55][56]. Studying LRRK2 associated PD in comparison with healthy and sporadic

PD populations can help us to further understand the contribution of genetic mu-

tations to the disease, and understand the presymptomatic stages of the disease.

1.6 Research Objectives

PET imaging has been an effective tool to study altered neurological pathways in

patients with Parkinson’s disease. Even though motor symptoms of this disease are

mainly due to the loss of neurons in the dopaminergic pathway, interactions between

the dopaminergic and serotonergic pathways may contribute to treatment-induced

complications (motor and cognitive) in later stages of the disease.

The overall objective of this thesis work is to investigate the interactions between

the dopaminergic and serotonergic pathways in presymptomatic and early stages of

the disease, and their contributions to treatment-induced complications and non-

motor symptoms in PD subjects.

In the first part of the project (Chapter 4), we applied a regional covariance
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1.6. Research Objectives

pattern analysis to [11C]-DASB data in PD subjects (in early and moderate stages).

Regions with relatively preserved binding in the disease-specific networks may act

as a compensatory mechanism for the dopaminergic system. We also applied the

same analysis to asymptomatic LRRK2 mutation carriers to investigate if there is

a distinct mutation-specific network, which may explain the increased risk of PD in

this group of subjects and maybe used as an earlier marker before motor symptom

onset.

In the second part of the project (Chapter 5), we analyzed the medication-

induced DA release pattern on early PD subjects (less than 5 years of disease du-

ration) using double [11C]-RAC scans. We want to examine if altered DA release

pattern in response to treatment would contribute to treatment-induced motor com-

plications.

The combination of abnormal medication-induced DA release pattern and up-

regulation of the serotonergic system may be able to explain the occurrence of

treatment-induced complications and non-motor symptoms in PD patients, and act

as a potential early marker for the disease.
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Chapter 2

Methods

2.1 Subjects and Clinical Information

Subjects We studied 18 non-demented patients with PD, 9 asymptomatic LRRK2

mutation carriers (LRRK2-AMC), and 9 healthy control volunteers (HC). The 18 PD

subjects were further divided into 12 sporadic PD (sPD) and 6 LRRK2 mutation-

associated PD (LRRK2-PD) subjects. All subjects in this study had no clinical

history of depression or had received anti-depressant therapy, and they had no other

medication with known action on the serotonergic system. All healthy controls had

no history of neurological or psychiatric disorders and were not on any medication.

All groups were matched for age and sex (Table2.1).

Control sPD gPD Unaffected
No of Subjects 9 13 8 9
Age (years) 56±14 59±8 66±15 48±10
Disease Duration (years) 3±3 8±7
UPDRS total off 16±7 22±10
UPDRS total on 10±6
Gender 8M/5F 3M/5F 6M/6F
Tracers DASB DASB/DTBZ/MP/RAC DASB/DTBZ/PBR/PMP DASB/DTBZ/PBR/PMP

Table 2.1: Participants clinical information: values reported as mean±standard
deviation; Disease duration has been accounted from the time of PD motor symp-
toms initiation (not from time of clinical diagnosis); M=Males; F=Females; UP-
DRS=Unified Parkinson’s Disease Rating Scale; UPDRS off=UPDRS without drug
(LDOPA) intervention; UPDRS on=UPDRS when on drug medication.

All subjects were used in the DASB SSM pattern analysis study. Only sPD

subjects were involved in DA release study because only they had double RAC

scans to evaluate DA release patterns.

Clinical Evaluation PD subjects were clinically evaluated with the Unified Parkin-

son’s Disease Rating Scale (UPDRS). UPDRS was used to measure severity of mo-

tor symptoms and therefore monitor disease progression. UPDRS off was measured

when subjects were taken off LDOPA medication; UPDRS on was measured when

subjects were still on medication. By calculating the change in UPDRS with and
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without medication, we can relate the amount of DA released with the effectiveness

of the medication.

Age of disease onset for PD patients was defined as reported by the patients,

not at diagnosis. Montreal Cognitive Assessment (MoCA) scores were also recorded

to access mild cognitive dysfunction. The assessment tests on attention, executive

functions, memory, language, visuoconstructional skills, conceptual thinking, cal-

culations, and orientation. Hoehn and Yahr scale was used to access the disease

symptoms progression. Beck depression inventory was used to access the severity of

depression.

2.2 Scanning Protocol and Image Processing

2.2.1 Scanning Protocol

To perform [11C]-DASB PET scans, a mean dose of 555Mbq of DASB radiotracer

was administered by intravenous injection over 60 seconds, and acquisition time

of 80 minutes was used. For DTBZ and RAC scans, 60mins scan time was used.

PET images were obtained on a high resolution research tomography with an in-

plane resolution of 2.3mm. Patients stopped medication for at least 18 hours before

scanning. MRI scans were performed as resting-state MRI at UBC 3 Tesla MRI

center.

2.2.2 Image Processing

Reconstructed images were summed to create the entire dynamic set using Matlab

based Statistical Parametric Mapping (SPM12) software. Pre-defined high-contrast

region-of-interest (ROI) templates were developed in Montreal Neurological Institute

(MNI) space using MRI and PET data from healthy controls.

Subject PET images were coregistered to the corresponding MRI images using

SPM12 software, and then warped onto the MNI space to obtain the corresponding

transformation matrix. Inverse transformation was applied to the MNI space ROIs

to place ROIs onto the original PET images.

ROI Selection

For DASB, ROIs were manually defined on both hemispheres for 21 non-overlapping

ROIs which are known to be related to the serotonergic system: anterior and pos-
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terior cingulate (ACC and PCC), amygdala, caudate, cerebellum, dorsolateral pre-

frontal cortex (DLPFC), hypothalamus, insula, medulla, midbrain, orbital frontal

cortex (OFC), pons, pedunculopontine nucleus (PPN), putamen, substantia nigra

(SN), thalamus, ventral striatum (VS), hippocampus, ventral tegmental area (VTA),

dentate nucleus (DN), and globus pallidus (GP).

ROIs for DTBZ and RAC scans were placed on the ventral and dorsal striatum

regions (1 on caudate and 3 on putamen) for both hemispheres. Four consecutive

saggital slices (17mm) were selected for data extraction for the dorsal striatum

regions, 3 consecutive saggital slices (7.5mm) were used for the ventral striatum data

extraction. Occipital Cortex was used as the reference region which was defined by 3

ROIs placed on the same slices as the striatum regions for DTBZ. The Cerebellum

was used as the reference region which was defined by a single ROI placed on 3

consecutive saggital slices (12.75mm)

Quantitative Measurements

For DTBZ and RAC, Logan plot method was used to obtain BPND values in each

of the 5 ROIs.

For DASB, we obtained 3 sets of quantitative data from these PET/MRI im-

ages: regional non-displaceable binding potential (BPND) values, parametric BPND

values, and standard uptake values (SUV) for all subjects:

• regional BPND values in each ROI were obtained using Simplified Reference

Tissue Model (SRTM) with cerebellum as reference region

• parametric BPND values were obtained using two-step Reference Tissue Model

(SRTM2), which used k2’ values generated from RTM (k2’=0.05 min−1 for

DASB) in the first step and fixed k2’ value in the second step

• regional SUV obtained over the last 30mins (50-80mins) time frame

To reduce noise in the network analysis, BPND values instead of SUVs were

chosen as the quantitative measurement of choice. In the next chapter, we compared

these quantitative measurements for DASB tracer to 1) validate DASB parametric

BPND algorithm and 2) to choose the best quantitative measurement for network

analysis.
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Chapter 3

DASB Parametric Validation

In this chapter, we validated the SRTM2 method for DASB tracer by comparing

global k2’ values in the first step of SRTM2 with reported k2’ values in literature

and comparing parametric BPND values with regional BPND values obtained using

SRTM.

3.1 Methods

To calculate parametric BPND values for DASB data using SRTM2, we need to fix

a global k2’ value for the second step of the kinetic model as discussed previously.

There are two ways to find the global k2’ value:

• k2’ value for each pixel of the brain image was estimated using SRTM first

and then averaged outside the reference region to obtain the global k2’ value

for each subject [25]

• set k2’ value based on literature, which was reported to be 0.056min−1 for

DASB tracer from one-tissue-compartment kinetic modeling [57] [26] [58]

To validate the parametric BPND values, we first compared the k2’ values ob-

tained from the first step of SRTM for 7 healthy control subjects to check the

variation and agreement of the calculated k2’ values with reported values. In the

second step of SRTM2, after fixing k2’, BPND values were estimated using two-

parameter fit. We then compare the regional BPND values obtained from SRTM

with the averaged parametric BPND values in each ROI.

3.2 Results

3.2.1 k2’ Values

The calculated k2’ values for 7 control subjects had an average of 0.052±0.017min−1

as shown in Figure3.1. The calculated k2’ values agree with the reported true
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k2’ value 0.056min−1 from one-tissue-compartment kinetic parameter values using

cerebellum as the reference region [57].

Figure 3.1: estimated k2’ values for each subject compared to reported k2’ value as
shown with red line

3.2.2 BPND Values

To validate SRTM2 parametric BPND values, we compared the regional values ob-

tained from SRTM and averaged values from SRTM2 in each ROI as shown in

Figure3.2, and averaged regional and parametric values for each subject as shown

in Figure3.3.

When correlating regional BPND from SRTM and SRTM2, we found a significant

correlation between average SRTM BPND values and averaged parametric BPND

values in each brain region (R2=0.967) as shown in Figure3.4.

3.3 Discussion

k2’ values from SRTM2 showed excellence agreement with reported k2’ value and

averaged parametric BPND values also showed excellent agreement with regional

BPND values from SRTM. Parametric BPND values can be used for network analysis
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Figure 3.2: Averaged BPND values from SRTM and SRTM2 in each ROI

at voxel level and to explore tracer gradient inside a ROI. However, to reduce noise,

network analysis in this project focused on 20 pre-defined ROIs instead of individual

voxel. The analysis can be extended to voxel level in the future.
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Figure 3.3: Averaged BPND values from SRTM and SRTM2 in each subject

Figure 3.4: Correlation between SRTM and SRTM2 BPND values in each ROI.
Equation of the linear regression model is shown in the Figure
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Chapter 4

SSM Pattern Analysis in

Serotonergic System

4.1 Methods

To identify network abnormalities, we used a region-based network modeling ap-

proach, the Scaled Subprofile Model (SSM), defined previously [30]. This approach

is based on multivariate principal component analysis (PCA) and models the sources

of subject and region variation as spatially distributed networks in functional im-

ages [28]. SSM is able to identify a group-dependent, region-specific, disease specific

spatial covariance patterns in the brain that can be used study the heterogeneous

regional interactions in different patient groups and to discriminate patients from

healthy controls.[28] [29]

In this study, we applied SSM on BPND values in 20 brain regions to identify sig-

nificant regional covariance networks which best distinguish between subject groups

based on individual expression of the principal components (PC).

4.1.1 Pattern Identification

To limit the analysis to a subset of PCs related to the disease, individual PCs must

account for at least 5% of the total subject by region variability in the data. To

improve the stability of the selected PCs and the estimated weight for each PC in

the logistic regression model, bootstrap resampling was performed 1000 times to

obtain the frequency histogram of PCs entering the regression model.

In the case of identifying disease-related pattern using HC and PD subjects, only

7 out of 28 PCs made the 5% cutoff and were used to generate the PC histogram

(Fig4.1). The scree test was then used to determine the frequency cutoff to choose

the optimal number of PCs to include in the model.

After selecting the subset of PCs, frequency histograms of the estimated model
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Figure 4.1: Frequency Histogram of the included PCs. Only 7 PCs account for
greater than 5% of total variance in the data. The first 3 PCs with the highest
frequency were entered into the logistic regression model to obtain the combined
disease-related pattern.

parameters of the selected PCs were used to determine the weights of each PC.

Subject scores for each selected PC were then entered singly or in linear combination

into a forward stepwise logistic regression models (Matlab scripts, Mathworks). The

combination of PCs with the lowest Akaike Information Criterion (AIC) score [36]

was selected to yield a single disease/mutation-related covariance pattern. This

model was used to estimate the corresponding weights (coefficients) on each pattern,

that in linear combination, best discriminated between subject groups. In this case,

histograms of model coefficients of the selected PCs gave the weights of 0.174, 0.267

and 0.232 for PC2, PC4 and PC5 respectively.

The final disease/mutation-related spatial covariance pattern was a linear com-

bination of the regional weights of the selected PCs. The same coefficients were

then applied to subject scores for the three PCs to compute the combined SPDRP

subject score for each individual subject. Regional weights for this specific combi-

nation of PCs were Z-thresholded at 1 to select significant regions contributing to

the corresponding covariance pattern. Network expression for new subjects or test

set in validation was computed using the projection of the subject data onto the

corresponding spatial maps. This process, the topographic profile rating (TPR),

was defined previously.
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Figure 4.2: Frequency Histogram of the model parameters of the included PCs in
the logistic regression model. The mean of each frequency histogram was used as
the coefficient for each corresponding PC in the logistic regression model.

4.1.2 Validation

To validate the disease/mutation-related spatial covariance pattern, we preformed

5-fold cross-validation with 1000 iterations. All subjects in the analysis were divided

into 5 groups; 4 groups were used as training set to obtain the pattern; 1 group was

used as test set to examine the robustness of the pattern by calculating individual

subject expression of this specific pattern. The sensitivity and specificity of each

discrimination were determined using Receiver Operating Curve algorithm (ROC).

4.2 Results

4.2.1 Absolute BPND Values

Before applying PCA to the data, we performed group analysis on the mean BPND

values in all 20 regions in all 4 subject groups to validate the choice of the ROIs and

get a sense of possible regions might appearing in the covariance brain pattern.

Looking at BPND values, there was a significant decrease in BPND values in

caudate, amygdala and putamen in PD compared to HC subjects. PD subjects

showed a lower BPND in all 20 regions compared to HC subjects, but there is a

relatively smaller decrease in hypothalamus compared to other regions. There was

a significant higher BPND values in ACC, amygdala, hypothalamus and medulla in

the asymptomatic LRRK2 mutation carrier (LRRK2-AMC) subjects compared to

HC subjects. There was no significant difference between LRRK2-associated PD

(LRRK2-PD) and sporadic PD (sPD) in any brain region.

There was a significant age correlation in left hypothalamus, left amygdala and

right PPN regions in HC BPND values. We did not observe any significant cor-
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Figure 4.3: Serotonergic Parkinson’s disease-related pattern (SPDRP) identified
by spatial covariance analysis of DASB PET scans from 17 PD patients. This
pattern was characterized by a relative decreased SERT binding in caudate and
putamen, and a covarying increased SERT binding in hypothalamus, hippocam-
pus, anterior cingulate (ACC), amygdala, and medulla. Only regions that signifi-
cantly contributed to the network at Z>1. Regions with positive weights (increased
binding) are colour-coded red; those with negative weights (decreased binding) are
colour-coded blue.

relation between BPND values and age or age of onset in any brain region in PD

subjects. With age as a covariate, there was a significant group differences in amyg-

dala (p=0.008), caudate (p=0.011), putamen (p=0.043), hypothalamus (p¡0.001)

and medulla (p=0.005) between LRRK2-AMC and HC subjects.

4.2.2 PD vs HC

Disease-specific spatial covariance pattern was derived using BPND values in 20

brain regions from 9 HC and 18 PD subjects. Subject scores significantly separated

HCs from PD patients (p<0.0001). The pattern was obtained from PC2, PC4 and

PC5, which accounted for 27% of the total variance in the subject by region BPND

data set. The serotonergic Parkinson’s disease-related pattern (SPDRP) was char-

acterized by a relative decreased SERT binding in caudate and putamen, and a

covarying increased SERT binding in hypothalamus, hippocampus, anterior cingu-
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Figure 4.4: SPDRP expression in HC, PD and LRRK2-AMC subjects. There was a
significant separation between HC (blue) and PD (red) groups (p¡0.0001). LRRK2-
AMC subjects did not show an elevation of this disease-specific pattern.

late (ACC), amygdala, and medulla. Only regions that significantly contributed to

the network at Z>1.

Correlation with Clinical Measurements

There was an almost significant negative correlation between SPDRP expression

(subject scores) and age of onset (p=0.0579) as shown in Fig.4.5. There was also

an almost significant positive correlation between SPDRP expression and UPDRS

motor scores (p=0.0558) as shown in Fig.4.6. No correlation was observed for disease

duration or age.

SPDRP Expression in Asymptomatic LRRK2 Mutation Carriers

LRRK2-AMC subjects did not show an elevated expression of SPDRP compared to

HC subjects (p=0.14).

4.2.3 Asymptomatic LRRK2 Mutation Carrier vs HC

Asymptomatic LRRK2 mutation-related spatial covariance pattern (LRRK2-AMRP)

was derived using BPND values in the same 20 brain regions from 9 HC and 9 asymp-
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4.2. Results

Figure 4.5: SPDRP expression vs age of disease onset in PD subjects. SPDRP
expression in PD subjects showed an almost significant correlation with age of onset
(p=0.0579).

Figure 4.6: SPDRP expression vs UPDRS motor score in PD subjects. SPDRP
expression in PD subjects showed an almost significant correlation with UPDRS
(p=0.0558).

tomatic LRRK2 mutation carriers (LRRK2-AMC). Subject scores were significantly

higher in LRRK2-AMC subjects compared to HC (p<0.0001). The pattern was ob-

tained from PC3, PC1, PC2 and PC5. The resulting LRRK2-AMRP was comprised

of a relatively decreased binding in putamen, and relatively preserved binding in hy-

pothalamus, amygdala, PPN, midbrain, substantia nigra (SN) and medulla.
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Figure 4.7: Serotonergic asymptomatic LRRK2 mutation-related spatial covariance
pattern (LRRK2-AMRP) identified by spatial covariance analysis of DASB PET
scans from 9 LRRK2-AMC subjects. This pattern was characterized by a relative
decreased SERT binding in putamen, and a covarying increased SERT binding in
hypothalamus, amygdala, midbrain, PPN, SN and medulla. Only regions that signif-
icantly contributed to the network at Z>1. Regions with positive weights (increased
binding) are colour-coded red; those with negative weights (decreased binding) are
colour-coded blue.

Figure 4.8: LRRK2-AMRP expression in HC, PD and LRRK2-AMC subjects.
There was a significant separation between HC (blue) and PD (red) groups
(p¡0.0001). LRRK2-AMC subjects did not show an elevation of this disease-specific
pattern.
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LRRK2-AMRP Expression in PD subjects

PD subjects did not show an elevated expression of LRRK2-AMRP compared to

HC subjects (p=0.65).

Validation

We preformed 5-fold cross validation with 1000 iterations to confirm the obtained

pattern. In each iteration, subjects were divided randomly into five subsets: four

subsets were used to train the model to obtain the covariance pattern, and the

remaining one group with each subset containing approximately equal number of

members from different groups was used to test the accuracy of the classification.

Receiver Operator Curve (ROC) was used to examine the accuracy and speci-

ficity of the pattern. Area under curve (AUC) for training set is 0.98 and 0.62 for

testing set for the PD vs HC pattern (SPDRP).

Figure 4.9: ROC for training set for 1000 iterations.

Figure 4.10: ROC for testing set for 1000 iterations
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4.3 Discussion

In this study, we applied network analysis to DASB PET data from sporadic PD

(sPD), LRRK2-associated PD (LRRK2-PD) and asymptomatic LRRK2 mutation

carriers (LRRK2-AMC) to identify a novel disease or mutation-related spatial co-

variance pattern in the serotonergic pathways.

4.3.1 Use of PCA to Identify Disease/Mutation-Related

Topographies

Functional imaging techniques allow us to quantify brain activity to study patho-

physiology of neurodegenerative disorders, but absolute tracer binding or metabolic

activity may not provide the complete picture. In addition, variability in subjects

and brain regions increases the difficulty in quantitative analysis. Comparing to

traditional group analysis using BPND amplitudes, pattern analysis is proven to be

more robust and sensitive to small change in brain physiology.

Studies have suggested that cognitive processes depend on interactions among

distributed brain regions, which are characterized by brain connectivity [59]. The

scaled subprofile model (SSM) employed in this analysis was able to examine the

subject by region interactions in SERT binding, while eliminating global and region-

specific effects in the data. Before applying PCA, BPND data was double-centered

to obtain the residual regional BPND values which contain relevant biological infor-

mation independent of the global mean.

A more detailed review of the mathematical principles and basic assumptions

underlying this method was discussed previously [60].

4.3.2 ROI-based Network Analysis

All the 20 ROIs in this analysis were chosen based on prior knowledge about the

serotonergic system. Choice of ROIs were also confirmed by analyzing the absolute

BPND values between groups. In this project, network analysis was done on ROI-

level only to 1) reduce noise compared to BPND values and 2) compare to absolute

regional BPND values. Future analysis can be extended to voxel level when no prior

knowledge or hypothesis is present.
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4.3.3 PC1

For FDG PDRP, the PC1 was found to best separate between subject groups and

no other PCs were entered into the logistic regression model. In our case, PC1

was mainly contributed by the noise in the ROIs. Regions contributed the most to

PC1 included midbrain, PPN, SN and pons, which were also shown to have higher

noise in raw data compared to other regions. TACs in these regions have the largest

variation, which results in large variance in BPND in these regions.

4.3.4 Pattern Identification and Validation

ROIs contributing to SPDRP or LRRK2-AMRP were selected based on a pre-defined

threshold (Z-transformed regional weights are greater than 1). We note that con-

tributions from two hemispheres were asymmetrical in some regions, with relatively

greater involvement of one hemisphere or the other. This is likely attributed to the

noise in the BPND values before the PCA analysis.

Validation

In 5-fold cross validation, accuracy for test set is not optimal (AUC=0.62). This

relatively low AUC was mainly due to high false positive rate in the classification of

HC subjects. However there is good accuracy in the classification of PD subjects.

Due to the imbalance in the number of HC and PD subjects and the low number of

subjects in the analysis, the logistic model can suffer the overfitting problem. Ways

to improve AUC for the test set include 1) reducing the number of PCs included

in the regression model, 2) balancing the number of subjects in two groups, and 3)

including more subjects into the analysis.

4.3.5 Comparison with Other Network Analysis

For PD subjects, they showed a relatively decreased SERT binding in caudate (most

significant) and putamen, and relatively preserved SERT binding in hypothalamus

(most significant), hippocampus, medulla, dentate nucleus, anterior cingulate and

amygdala compared to HC. Here, we compared SPDRP obtained from PD vs HC

subjects to common network analysis to examine if there is any similarities between

these networks.
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FDG/PET PDRP and PDCP

PCA-based covariance analysis has been previously applied to FDG/PET data as

discussed before in the Introduction Chapter. The Parkinson’s Disease Related

Pattern (PDRP) and Parkinson’s Disease Cognitive Pattern (PDCP) were validated

across different patient populations.

PDRP as previously defined using FDG PET was characterized by hyperme-

tabolism in the thalamus, globus pallidus (GP), pons, and primary motor cortex,

with associated relative metabolic reduction in the lateral premotor and posterior

parietal areas. PDCP defined also with FDG PET was characterized by relatively

increased activity in the cerebellar vermis and dentate nuclei, with associated de-

creased activity in frontal and parietal association areas [30].

No direct correlation was found between SPDRP and FDG PDRP or FDG

PDCP. We do not expect to see a close connection between these distinct patterns,

because DASB specifically targets the serotonergic pathway while FDG targets brain

metabolic activities.

Resting-State fMRI Connectivity

SPDRP also did not resemble any of the known resting-state fMRI connectivity

networks. This is also expected since resting-state fMRI looks at brain activation

instead of any specific neurological pathways in the brain.

However, by applying network analysis (such as Independent Component Anal-

ysis (ICA))) to resting-state fMRI images for the same subjects, we can incorporate

the serotonergic network with functional activation network. Advance statistical

analysis (such as joint ICA) can be applied to both DASB and resting-state fMRI

data together to examine the intrinsic network underlying both modalities.

4.3.6 Possible Functional Basis for SPDRP and LRRK2-AMRP

Topography

In this section, we look into the regions involved in SPDRP and LRRK2-AMRP

and try to link them with their functional roles in the brain related to the disease.
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Regions with Decreased Binding

Compared to the localized SERT binding reduction (as measured by absolute BPND

values in each ROI), PD subjects showed a significantly lower SERT binding com-

pared to HC subjects in caudate and putamen, which were also shown to have a

relative decreased binding in SPDRP.

Previous studies showed that PD subjects had a significant decreased absolute

SERT binding in caudate (30%) and putamen (26%) compared to HC subjects

[61] [62]). Unlike in the dopaminergic system where posterior putamen is more

affected by the disease, there is a preferential loss of SERT in caudate [62] which

is consistent with the greater relative decreased binding in caudate compared to

putamen in SPDRP.

Regions with Increased Binding

Regions with significantly higher absolute BPND values (ACC, amygdala, hypotha-

lamus and medulla) in LRRK2-AMC compared to HC subjects all showed a relative

preserved binding in SPDRP. This may indicate that upregulated regions in SP-

DRP are affected before motor symptoms onset and may act as a compensatory

mechanism in the serotonergic system.

According to Braak hypothesis of PD brain pathological staging, Lewy body and

neurite deposition occur in raphe nuclei (in brainstem) at stage 2; substantia nigra

(SN) and midbrain are affected at stage 3 where clinical motor symptoms start to

occur [39].

Both SN and midbrain showed upregulated binding in LRRK2-AMRP, but not

in SPDRP. One study suggested SERT loss in striatum regions of PD precedes the

loss in midbrain region [63], which may indicate the upregulation in midbrain and SN

tries to compensate the loss of SERT in the striatum regions in the presymptomatic

stage of the disease.

Regions with relative preserved binding were also shown to be involved in cogni-

tive impairments of PD. For PD patients with depression, hypothalamus and amyg-

dala showed a higher SERT binding than PD patients without depression [? ][49].

These two regions both showed upregulated binding in SPDRP and LRRK2-AMRP.

PD patients with abnormal BMI changes showed significantly higher SERT binding

in hypothalamus compared to cases with no significant BMI changes [50]. These

findings may suggest upregulation of SERT function starting from presymptomatic
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stages of the disease may be related to depression and BMI changes in PD patients.

Comparing SPDRP with LRRK2-AMRP, putamen was the only region with

relative decreased binding in LRRK2-AMRP. This may indicate that even though

caudate is more affected after motor symptom onset, putamen is still affected earlier

by the disease in the presymptomatic stage.

In the presymptomatic LRRK2-AMRP, there are more regions with relatively

increased binding than in SPDRP. This may indicate a stronger upregulation in the

presymptomatic stage compared to symptomatic stage of the disease. This stronger

upregulation may act as a compensatory mechanism in the serotonergic system, but

this over activation of serotonergic system may lead to various non-motor symptoms

after disease onset.

4.3.7 Correlation with Clinical Measurements

We observed an almost significant correlation between SPDRP expression and UP-

DRS motor scores, which indicate more sever patients (in terms of motor disability)

may have a higher expression of SPDRP.

We also observed an almost significant negative correlation between SPDRP

expression and age of disease onset, meaning that younger onset patients have a

higher expression of SPDRP. This finding can be combined with the DA release

findings discussed in the next chapter to examine the possible relationship between

serotonergic network.

53



Chapter 5

Levodopa-Induced Dopamine

Release in PD

In the second part of the project, we analyzed the drug-induced DA release pattern

on early PD subjects (less than 5 years of disease duration) using double RAC data.

The combination of abnormal drug-induced DA release pattern and upregulation of

the serotonergic system may be able to explain the occurrence of treatment-induced

complications in PD patients.

5.1 Objectives

In this study, we investigated the levodopa (LDOPA)-induced DA release pattern for

10 early (less than 5 years disease duration) sporadic PD subjects using double [11C]-

RAC scans to examine the relationships between DA release pattern, DA denervation

and SERT binding.

Since we already observed some regions with upregulated SERT binding in PD

subjects, we want to investigate if the combination of abnormal drug-induced DA

release pattern and upregulation of the serotonergic system may be able to explain

the occurrence of treatment-induced complications in PD patients.

5.2 Methods

5.2.1 Subjects and Quantitative Measurements

We examined the correlations between LDOPA-induced DA release (as measured

by double RAC scans), DTBZ BPND values and DASB BPND values for 10 early

sporadic PD subjects.

DA release was calculated as RAC BPND values without drug minus RAC BPND

values with drug. Unified Parkinson’s Disease Rating Scale (UPDRS) was measured
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5.2. Methods

No.Subjects Age Disease Duration UPDRS on drug UPDRS off drug

10 57.8± 8.7 years 2.1± 1.4 years 10.8± 5.4 13.7± 4.7

Table 5.1: Clinical information for 10 early sporadic PD subjects

with and without drug to evaluate the severity motor symptoms in each subject.

The change in UPDRS was defined as the difference between UPDRS off and on

drug, which should correspond to the effectiveness of the drug on individual subject.

BPND values were extracted in 3 striatum regions (caudate, ventral striatum

and putamen) using either Logon or RTM method with cerebellum used as the

reference region. The 3 striatum regions were further divided into the most and

least affected sides for each subject, which was defined using the averaged DTBZ

BPND in the putamen regions (i.e. the side with lower DTBZ putamen BPND

had severer degradation of dopamine-producing neurons, so was defined as the most

affected side).

5.2.2 Regression Models

We used linear and multiple regression analysis to examine the relationship between

DA release, DTBZ BPND values, DASB BPND values and clinical measurements

in each striatum region. Detailed regression method is as follows:

1. DA release values were regressed on each of the possible explanatory variables

(predictors) separately (linear regression)

• DTBZ BPND

• DASB BPND

• RAC baseline BPND

• Age of onset

• Change in UPDRS (UPDRS off drug − UPDRS on drug)

• disease duration

• gender

2. Multiple regression was applied on all predictors which survived a cut-off cri-

terion from the linear regression

• Cut-off criterion: correlation p-value < 0.3
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5.3. Results

Correlations between DA release and all the above variables were examined in

each of the striatum regions for all subjects.

5.3 Results

5.3.1 Correlations in Striatum Regions

Most Affected Putamen

In the most affected putamen region, DA release showed a significant correlation with

age of onset and change in UPDRS (p=0.013 and p=0.049) in linear regression as

shown in Figure5.1 and Figure5.2. No variable was significant in multiple regression

after correcting for other variables.

Figure 5.1: Correlation between DA release and age of onset for sPD subjects in
most affected putamen region.

Least Affected Putamen

In the least affected putamen region, DA release correlated significantly with age of

onset and RAC baseline BPND values (p=0.030 and p=0.012). Age of onset and

RAC baseline BPND values increased significance level when entered in multiple

regression (p=0.00060 and p=0.00029) after correcting for each other as shown in

Figure5.3 and Figure5.4.
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5.3. Results

Figure 5.2: Correlation between DA release and change in UPDRS for sPD subjects
in most affected putamen region.

Figure 5.3: Correlation between DA release and RAC baseline BPND values after
correcting for age of onset for sPD subjects in least affected putamen region.

Caudate

No correlation was found between DA release and any possible explanatory variables.

However, there was a significant correlation between RAC baseline BPND values

and age of onset for both the most and the least affected Caudate (p=0.0077 and

p=0.015) as shown in Figure5.5.
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Figure 5.4: Correlation between DA release and age of onset after correcting for
RAC baseline BPND values for sPD subjects in least affected putamen region.

Figure 5.5: Correlation between RAC baseline BPND values and age of onset for
sPD subjects in caudate region.

5.3.2 Disease Severity

Disease severity can be defined by either UPDRS off medication or DTBZ BPND

values. DA release did not correlate with either disease severity measures.

In the 10 early PD patients, UPDRS off drug did not depend on age (p=0.067)

or age of onset (p=0.12). DA depletion (defined by DTBZ BPND values) did not

depend on age (p=0.66), age of onset (p=0.8), UPDRS off (p=0.52), change in

UPDRS or disease duration.
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5.3.3 Correlation with Other Tracers

No significant correlation was found between DA release and DTBZ or DASB BPND

values in any of the striatum regions.

5.4 Discussion

5.4.1 Correlations with Disease Severity

Studies have shown that age of onset did not influence the absolute severity of

nigrostriatal damage as measured by DTBZ BPND values [46][65], which agrees

with the fact that we did not see any significant correlation between DTBZ BPND

values and age or age of onset in early PD subjects.

5.4.2 DA Release Correlation with Age of Onset and Change in

UPDRS

Our results suggest that, for early PD patients, younger onset patients have an in-

creased DA release in response to LDOPA stimuli and a trend towards better motor

response to the medication. This was indicated by a strong negative correlation

between DA release and age of onset in the putamen region after adjusting for RAC

BPND at baseline , and a trend of positive correlation between DA release and

change in UPDRS motor scores.

Younger onset patients have a higher DA release while motor symptoms severity

(as measured by UPDRS motor scores) and DA depletion (as measured by DTBZ

BPND values) remain relatively the same compared to older onset patients. This

finding implies that DA release in younger onset patients undergoes larger alter-

ation, which results in larger swing in synaptic DA levels. This large swing or

imbalance may contribute to greater risk of motor fluctuations, which may explain

age-dependent occurrence of complications. We are following these PD subjects

clinically (follow-up 3 years after first scan) to see if they would develop treatment-

induced motor complications.

These results will be validated by including more subjects into the study.
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5.4.3 Relationship with Serotonergic System

As shown before in Chapter 4, there was an almost significant negative correlation

between SPDRP expression and age of onset for PD subjects.

5-HT terminals also participate in DA re-uptake (Berger 1978) and can me-

tabolize L-DOPA into DA. DA released in the striatum by 5-HT terminals acts as

false neurotransmitter which contributes to L-DOPA-induced dyskinesia (LID). The

decline in SERT levels i the striatum of PD precedes the decline in midbrain and

other regions, so we see a relative preserved binding in some brain regions. The

upregulation in these serotonergic projection regions may act as a compensatory

mechanism in the serotonergic pathway for the loss of dopamine-producing neurons

in early stages of the disease.
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Chapter 6

Conclusions and Future Work

In this project, we used a PCA-based network analysis to investigate whether a dis-

ease or a LRRK2 mutation specific spatial covariance pattern exists in the serotoner-

gic system. A disease-related SPDRP and a mutation-related LRRK2-AMRP were

found. Brain regions with a relatively preserved binding may act as presymptomatic

marker and/or compensatory mechanism for the disease, which also may link to non-

motor symptoms of the disease. We also investigated the altered medication-induced

DA release pattern in early PD subjects. The combination of abnormal medication-

induced DA release pattern and upregulation of the serotonergic system may be

able to explain the occurrence of treatment-induced complications and non-motor

symptoms in PD patients, and act as a potential early marker for the disease.

As discussed before, more subjects will be included in the analysis to confirm

the results and improve statistical power. Patients involved in DA release study will

have follow-ups to check if medication-induced motor complications occur. Network

analysis can also be extended to voxel level after reducing noise in the parametric

BPND images. Other network analysis can also be applied to combine different

imaging modalities (PET and fMRI) or different PET tracers together to gain better

understanding of the disease.
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