
Optimizing Modern Code Review Through
Recommendation Algorithms

by

Giovanni Viviani

B. in Informatics, Università della Svizzera Italiana, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2016

© Giovanni Viviani, 2016

Abstract

Software developers have many tools at their disposal that use a variety of sophis-

ticated technology, such as static analysis and model checking, to help find defects

before software is released. Despite the availability of such tools, software de-

velopment still relies largely on human inspection of code to find defects. Many

software development projects use code reviews as a means to ensure this human

inspection occurs before a commit is merged into the system. Known as modern

code review, this approach is based on tools, such as Gerrit, that help developers

track commits for which review is needed and that help perform reviews asyn-

chronously. As part of this approach, developers are often presented with a list

of open code reviews requiring attention. Existing code review tools simply order

this list of open reviews based on the last update time of the review; it is left to a

developer to find a suitable review on which to work from a long list of reviews.

In this thesis, we present an investigation of four algorithms that recommend an

ordering of the list of open reviews based on properties of the reviews. We use a

simulation study over a dataset of six projects from the Eclipse Foundation to show

that an algorithm based on ordering reviews from least lines of code modified in

the changes to be reviewed to most lines of code modified out performs other al-

gorithms. This algorithm shows promise for eliminating stagnation of reviews and

optimizing the average duration reviews are open.

ii

Preface

No part of this thesis has been published. This thesis is an original intellectual

product of the author, G. Viviani.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Acknowledgments . xii

Dedication . xiii

1 Introduction . 1

2 Background and Related Work . 4
2.1 Code Inspection . 4

2.1.1 Lightweight Code Review 5

2.2 Code Review Tools . 6

2.2.1 Gerrit . 6

2.3 Code Review Completion Time 8

2.4 Code Review Recommendation 8

3 Recommending Code Review Ordering 10
3.1 Lines of Code . 10

iv

3.2 Edit Actions . 11

3.3 Recommendation Algorithms . 13

4 Simulation . 14
4.1 Eclipse Foundation Data . 15

4.2 Actual Duration . 15

4.3 Actual Effort . 16

4.4 Effort per Hour . 16

4.5 Simulation and Estimated Duration 18

5 Results . 20
5.1 JGit . 21

5.2 EGit . 25

5.3 Algorithm Choice . 29

6 Threats to Validity . 30
6.1 Internal Validity . 30

6.2 Construct Validity . 31

7 Discussion and Future Work . 32
7.1 Additional Metrics . 32

7.2 Better Algorithms . 32

7.3 Personalized Recommendations 33

7.4 Human Evaluation . 33

8 Summary . 34

Bibliography . 35

A Simulation Results . 39
A.1 EGit . 40

A.2 Linuxtools . 47

A.3 JGit . 54

A.4 Sirius . 61

A.5 Osee . 68

v

A.6 Tracecompass . 75

vi

List of Tables

Table 4.1 The Eclipse Foundation dataset 15

Table 4.2 Duration and effort in hours for the Eclipse dataset 18

Table 5.1 Simulation results . 21

Table 5.2 Best estimation algoritm for each project 29

vii

List of Figures

Figure 2.1 Basic model for Fagan Inspection 5

Figure 2.2 A sample of the main page of the Gerrit web interface 7

Figure 3.1 Output example of the Gumtree tool. Yellow represents an

update, green an addition and blue a move. 12

Figure 4.1 Actual duration (Da) of code reviews for JGit, sorted by ac-

tual effort (Ea) . 17

Figure 5.1 Actual duration (Da) of code reviews for JGit, sorted by ac-

tual effort (Ea) . 22

Figure 5.2 Simulation results for JGit using the RlocMin and ReditMin al-

gorithms . 23

Figure 5.3 Violin plots of the difference between the two estimates and

the real durations for JGit 24

Figure 5.4 Actual duration (Da) of code reviews for EGit, sorted by ac-

tual effort (Ea) . 26

Figure 5.5 Simulation results for EGit using the RlocMin and ReditMin al-

gorithms . 27

Figure 5.6 Violin plots of the difference between the two estimates and

the real durations for EGit 28

Figure A.1 Actual durations (Da) of code reviews for EGit, sorted by ac-

tual effort (Ea) . 40

viii

Figure A.2 Scatter plots with regression lines of the estimated durations

for EGit computed using the min algorithms 41

Figure A.3 Scatter plots with regression lines of the difference between

the min estimates and the real durations for EGit 42

Figure A.4 Scatter plots with regression lines of the estimated durations

for EGit computed using the max algorithms 43

Figure A.5 Scatter plots with regression lines of the difference between

the max estimates and the real durations for EGit 44

Figure A.6 Violin plots of the difference between the estimates and the

real durations for EGit for the min algorithms 45

Figure A.7 Violin plots of the difference between the estimates and the

real durations for EGit for the max algorithms 46

Figure A.8 Actual durations (Da) of code reviews for Linuxtools, sorted

by actual effort (Ea) . 47

Figure A.9 Scatter plots with regression lines of the estimated durations

for Linuxtools computed using the min algorithms 48

Figure A.10 Scatter plots with regression lines of the difference between

the min estimates and the real durations for Linuxtools . . 49

Figure A.11 Scatter plots with regression lines of the estimated durations

for Linuxtools computed using the max algorithms 50

Figure A.12 Scatter plots with regression lines of the difference between

the max estimates and the real durations for Linuxtools . . 51

Figure A.13 Violin plots of the difference between the estimates and the

real durations for Linuxtools for the min algorithms . . . 52

Figure A.14 Violin plots of the difference between the estimates and the

real durations for Linuxtools for the max algorithms . . . 53

Figure A.15 Actual durations (Da) of code reviews for JGit, sorted by ac-

tual effort (Ea) . 54

Figure A.16 Scatter plots with regression lines of the estimated durations

for JGit computed using the min algorithms 55

Figure A.17 Scatter plots with regression lines of the difference between

the min estimates and the real durations for JGit 56

ix

Figure A.18 Scatter plots with regression lines of the estimated durations

for JGit computed using the max algorithms 57

Figure A.19 Scatter plots with regression lines of the difference between

the max estimates and the real durations for JGit 58

Figure A.20 Violin plots of the difference between the estimates and the

real durations for JGit for the min algorithms 59

Figure A.21 Violin plots of the difference between the estimates and the

real durations for JGit for the max algorithms 60

Figure A.22 Actual durations (Da) of code reviews for Sirius, sorted by

actual effort (Ea) . 61

Figure A.23 Scatter plots with regression lines of the estimated durations

for Sirius computed using the min algorithms 62

Figure A.24 Scatter plots with regression lines of the difference between

the min estimates and the real durations for Sirius 63

Figure A.25 Scatter plots with regression lines of the estimated durations

for Sirius computed using the max algorithms 64

Figure A.26 Scatter plots with regression lines of the difference between

the max estimates and the real durations for Sirius 65

Figure A.27 Violin plots of the difference between the estimates and the

real durations for Sirius for the min algorithms 66

Figure A.28 Violin plots of the difference between the estimates and the

real durations for Sirius for the max algorithms 67

Figure A.29 Actual durations (Da) of code reviews for Osee, sorted by ac-

tual effort (Ea) . 68

Figure A.30 Scatter plots with regression lines of the estimated durations

for Osee computed using the min algorithms 69

Figure A.31 Scatter plots with regression lines of the difference between

the min estimates and the real durations for Osee 70

Figure A.32 Scatter plots with regression lines of the estimated durations

for Osee computed using the max algorithms 71

Figure A.33 Scatter plots with regression lines of the difference between

the max estimates and the real durations for Osee 72

x

Figure A.34 Violin plots of the difference between the estimates and the

real durations for Osee for the min algorithms 73

Figure A.35 Violin plots of the difference between the estimates and the

real durations for Osee for the max algorithms 74

Figure A.36 Actual durations (Da) of code reviews for Tracecompass,

sorted by actual effort (Ea) 75

Figure A.37 Scatter plots with regression lines of the estimated durations

for Tracecompass computed using the min algorithms . . . 76

Figure A.38 Scatter plots with regression lines of the difference between

the min estimates and the real durations for Tracecompass 77

Figure A.39 Scatter plots with regression lines of the estimated durations

for Tracecompass computed using the max algorithms . . 78

Figure A.40 Scatter plots with regression lines of the difference between

the max estimates and the real durations for Tracecompass 79

Figure A.41 Violin plots of the difference between the estimates and the

real durations for Tracecompass for the min algorithms . . 80

Figure A.42 Violin plots of the difference between the estimates and the

real durations for Tracecompass for the max algorithms . . 81

xi

Acknowledgments

I would like to start thanking my parents and my sister for believing in me and

supporting me from Europe over the past two years. They have been encouraging

me to follow my dreams since I took the decision of studying Computer Science

five years ago. Pursuing my studies on the other side of the planet has been a great

source of stress for all of us, but I am glad to have their support.

Special thanks to my supervisor, Gail C. Murphy, for being the best mentor I

could have asked for. Gail has been there to guide me whenever I felt lost and she

has done an amazing job in teaching me what research is. She has also shown an

incredible patience in dealing with my stubbornness and my habit of signing up for

too many extra-curricular activities.

I would also thank my second reader, Reid Holmes, for taking the time to read

this thesis and providing valuable feedback. Similarly, I want to acknowledge the

whole Software Practices Lab for the support and for providing a great environment

in which to work.

Finally, I want to thank all my friends, both in Canada and Switzerland, for

keeping me sane during the past two years. Special mentions go to Jessica Wong

and Ambra Garcea for enduring me during ups and downs without too many com-

plaints.

xii

To my family, for providing all the support I have ever needed.

Chapter 1

Introduction

For over forty years, software developers have used humans looking at the code as

a means of reducing defects in the code. In the 1970s and 1980s, developers used

a highly structured process, known as code inspection, in which groups of people

met in person to review code line-by-line [6]. In recent years, advancements in

tools and techniques have allowed this process to evolve to a more lightweight

approach, defined by Baccheeli and Bird as modern code review [1].

The lightweight approach has been largely made possible by the invention of

collaborative tools, such as Gerrit1, that enable human reviewers to work asyn-

chronously and remotely from each other. These tools enable code reviews to be

performed for most, if not all, commits made to a source code repository both for

open and closed source projects. Compared to the older style code inspections,

most code reviews have a smaller size and involve less people [13].

In projects using a modern code review approach, every commit submitted is

required to go through a review process that will decide if the change satisfies the

project standards. Developers on a project are typically expected to contribute to

open code reviews. On large projects, the number of open code reviews can become

quite large, leading to a slow down in the release of changes. As an example,

an analysis of six projects from the Eclipse ecosystem shows that there can be

hundreds of code review open at a time; the JGit project currently has more than

1https://gerrit.googlecode.com, verified 20/7/16

1

https://gerrit.googlecode.com

150 open code reviews2.

Despite developers spending time daily working on code reviews [12], code

reviews go stagnant and remain stagnant for long periods of time. My analysis of

the code review process for the Eclipse ecosystem showed that some code reviews

can end up being left open for entire months without any update: in the JGit

project, some code reviews are open for two years before being merged into the

main branch.

In this thesis, I hypothesize that the stagnation of reviews is due, in part, to a

lack of support by the tools, such as Gerrit, to help developers choose which code

reviews to work on. Gerrit, and other similar tools, provide many features to aid

code reviews. For example, the tools provide easy access to a list of files changed

as part of a commit and user interfaces to visualize the difference of files in the

commit to the current state of the file. However, these tools offer nearly no support

for choosing the code review to analyze, but they rather display the reviews ordered

by update timestamps.

I investigate whether an algorithm that suggests developers the order in which

to work on code reviews can help avoid stagnation of reviews and improve the

overall review process. I propose four algorithms for ordering open code reviews.

I report on the effectiveness of each algorithm by using a simulation to show the

effect that the algorithm would have in the order in which code review are solved

and the average duration of resolution if the reviews were worked on in the sug-

gested order. I found that an algorithm based on changes between the commit and

existing code, when ordered from least changes (lines of code) to most changes,

results in a lower average duration of open reviews and less stagnation.

This thesis makes the following contributions.

• Provides evidence to the problem of code review stagnation, identified by Rigby

and Bird [13]

• It introduces four algorithms to order open code reviews to avoid stagnation

and to reduce overall code review resolution time.

• It shows, through a simulation study, the effectiveness of each algorithm,

2Verified 2/7/2016

2

finding that an algorithm based on a syntactic analysis of the change re-

ported in lines of code is the most likely approach to solve the code review

stagnation problem.

I being by reviewing background and related work (Chapter 2). I then present

my approach of recommending a code review ordering (Chapter 3). Chapter 4

presents the evaluation I run for validating my approach, followed by the results in

Chapter 5. In Chapter 6, I address the threats to my results and I discuss possible

future developments in Chapter 7. I finally summarize the work and draw some

conclusion in Chapter 8.

3

Chapter 2

Background and Related Work

In this chapter, I describe the origin of code reviews, starting from the code in-

spection process up to the concept of lightweight code review. I also describe code

review tools, with particular attention to Gerrit, the tool around which this research

is built. I also cover research closely related to this thesis: time taken to complete

code reviews and tools that use recommendation to improve aspect of the code

review process. Finally, I provide some information on code review systems.

2.1 Code Inspection
The idea of code review can be attributed to Michael Fagan. Fagan defined an

inspection process for code with two goals[5]:

• find and fix all product defects, and

• find and fix all development process defects that lead to product defects.

Figure 2.1 outlines the Fagan Inspection process. The Fagan Inspection is com-

posed of 6 steps:

1. Planning: Materials meet the entry criteria; arrange the availability of the

participants; arrange the place and time of the meeting.

2. Overview: Educate the group on the materials; assign the roles to the par-

ticipants.

4

Figure 2.1: Basic model for Fagan Inspection

3. Preparation: Prepare for the review by learning the materials.

4. Meeting: Find the defects.

5. Rework: Rework the defects.

6. Follow-up: Assure that all defects have been fixed; assure that no other

defect has been introduced.

In a follow-up paper, Fagan describes the advancement that has been made

on the original concept of code inspection, identifying three main aspects Defect

Detection, Defect Prevention and Process Management, and actions that can be

taken to improve them[7].

Since the introduction of code inspection, researcher have studied how and why

this process works and how to improve it. For further information, Kollanus and

Koskinen provide a survey covering the research on code inspection, between 1980

and 2008[11].

2.1.1 Lightweight Code Review

In more recent years, the code inspection process has become more lightweight

compared to the code inspection created by Fagan. This lightweight process has

been named Modern Code Review by Bacchelli and Bird [1], to differentiate be-

tween the old process of inspection described by Fagan from the process that has

been recently evolving. This process is being used by many companies, and it is

characterized by being informal and tool-based.

Through its basis in tools, modern code review has the advantage of being asyn-

chronous, whereas previous software inspection processes were synchronous. This

5

allows teams spread around the globe to continue their work without the problem

of scheduling meetings.

2.2 Code Review Tools
Many code review tools have been developed to help developers with the code

review process. Pre-commit and post-commit are the two different approaches that

can be taken for code reviews. The major classification of the tools is based on the

use of a pre-commit, like Gerrit1, or a post-commit workflow, like Upsource2. In

a pre-commit workflow, changes are reviewed before they are applied to the code,

while in post-commit they are first applied and then reviewed.

Pre-commit allows for checking the quality of the changes before they are ap-

plied: this allows developers to assess that the code of the changes satisfies the

project standards and that the changes do not introduce bugs in the code. The

downside with this approach is that it lengthens the release period since the change

has to be first approved. This means that developers are not able to work with the

changes for a longer time, possibly slowing down the development time.

Post-commit, on the other hand, immediately applies the changes, and then

the code is reviewed. This approach allows developers to continue working on

new features while waiting for the review to be completed, allowing for a faster

release cycle. The downside of this approach is that it is more likely to have bugs

introduced in code and that there is no guarantee that the review will ever take

place.

In this thesis, I focus on the pre-commit approach, particularly around the Ger-

rit tool.

2.2.1 Gerrit

Gerrit is a popular tool for supporting modern code review and the tool on which

I focus in this thesis. To use Gerrit, developers can hook Gerrit up to the Git dis-

tributed version control system3 hosting the source code for their system. After

1https://www.gerritcodereview.com/
2https://www.jetbrains.com/upsource/
3Git

6

https://www.gerritcodereview.com/
https://www.jetbrains.com/upsource/

Figure 2.2: A sample of the main page of the Gerrit web interface

connecting to the web interface of Gerrit, developers are presented with a list of

open code reviews for the project. The developer can then submit a new code

review or select an existing code review on which to work. The developers’ inter-

actions with Gerrit are asynchronous from each other, providing several benefits:

• there is no need for meetings in which multiple developers convene to review

code as was true for older software inspection approaches,

• developers are in charge of their own context switching and can work on

code reviews when it fits into their work patterns, and

• developers in multiple timezones or different work patterns can collaborate

on reviews.

Figure 2.2 shows a code review in Gerrit. When a review is created, Gerrit shows

the same information available from Git about the commit to be reviewed. In ad-

dition, Gerrit enables a record of an activity stream of work on the review in the

form of comments about the review and a list of patches applied to the original

7

commit. In many projects, Gerrit can be integrated with a continuous integration

service such that for each new patch, integration is run and comments are added by

the continuous integration tool to the review. Gerrit uses a pre-commit workflow

for reviews. A Gerrit code review works in three stages:

• Verified: A change enter this phase as soon as it is verified that it can be

merged without breaking the build. This is often done by a continuous inte-

gration system, but can also be done manually.

• Approve: Any developer can comment on a code review, however, only a

specific set of developers, specified by the owner of the Gerrit server, is able

to approve a change.

• Merged: A change that has been successfully merged in the repository will

move to this final stage. It is still possible to comment on the review.

2.3 Code Review Completion Time
My initial investigation on the Eclipse dataset indicated that code review stagnation

is a phenomenon present in several projects. Similar findings were made by Rigby

et al. [15] when they report that if a code review is not closed immediately, it will

not be reviewed and will become stagnant. Even in the other cases, some code

reviews can take a long period of time before they are resolved. This observation

was also made by Rigby and Bird, who observed that 50% of the reviews they

studied have a duration of almost a month [13].

Jiang et al. noticed that the integration time of a code review was particularly

dependent on the experience of the developer that created it[10]. Similarly, Bosu

and Carver observed that code reviews submitted by newcomers to a project tend

to receive feedback more slowly, another instance where code reviews may be in

the queue for longer than desired [4].

2.4 Code Review Recommendation
Rigby and Storey investigated OSS projects, interviewing developers to find out

how they were selecting code reviews to be reviewed, finding that often devel-

opers tend to review code they are familiar with or that they have edited in the

8

past[14]. Subsequent work has considered the use of recommenders to speed code

review resolution by automatically selecting reviewers.Balachandran proposes Re-

view Bot, a tool that recommends reviewers based on the line change history of

the code requiring a review, reporting an accuracy in finding the correct reviewer

of 60-92%[2]. Thongtanunam et al. propose a similar approach, in which the ex-

pertise is computed from the similarity between the path of the files changed in the

code review and the path of files changed in code reviews reviewed by the reviewer

in the past[16][17]. They empirically show on historical data from a selection of

open source projects that the recommender can accurately recommend the correct

reviewer for 79% of the reviews within the top ten recommendations generated.

Zanjani et al. presented a new approach, chRev, based on the expertise of the

reviewers[19]. In this approach, the expertise is calculated with a combination of

previous comments made by the reviewer on reviews on the code being reviewed,

number of workdays spent on those comments and period of time since the last

comment. Baysal and colleagues take a different approach to recommendation by

showing a developer reviews only related to issues on which they have worked[3].

My recommendation approach aims to improve the process of code reviews from

a different angle. Instead of assigning the reviewer to the code review, I aim to

assign the code review to the reviewer. My approach also differs in being agnostic

to the developer asking for the recommendation: as a result, my recommender is

not sensitive to the ebb and flow of developers joining and leaving an open source

project or a company involved in a closed source project.

9

Chapter 3

Recommending Code Review
Ordering

I propose the use of a recommender to help reduce stagnation of code reviews and

reduce the duration of time that code reviews remain open. The recommender uses

information from open code reviews to rank the code reviews and suggest which

review should be worked on next. The goal of the recommender is to optimize the

overall handling of reviews. A recommender for code review ordering could be

easily integrated into code review tools, such as Gerrit, that present a list of open

reviews to developers, without requiring any change in the front end. In addition

to an overall reduction in time reviews are open, software developers could also

benefit from reducing or eliminating the time necessary to choose a review on

which to work. The algorithms I investigate in this thesis are based on metrics that

are accessible from the code review as soon as the review is created. I consider

two metrics to embed in algorithms: 1) lines of code modified by the code change

causing the review to occur and 2) edit actions representing syntax changes to files

involved in the change.

3.1 Lines of Code
A simple, but still often turned to metric when considering code, is a count of

lines of code. A benefit of using the number of lines of code in a code change to

10

represent the complexity of the change is the simplicity of computing the metric.

The idea behind using lines of code for ordering code reviews is that the more

lines of code that have been changed, likely the harder it will be for a reviewer to

understand the scope of the change.

For my investigation of recommenders, I use the lines of code as reported by

Gerrit for a change. Gerrit, like Git, uses information from running diff on the

files associated with the change. Gerrit records the number of lines inserted and

deleted in each file mentioned in the change. When using lines of code in a code

review ordering recommender, I sum the number of lines added and the number of

lines removed for each file in the code review.

3.2 Edit Actions
The simplicity of lines of code as a proxy metric for complexity is that one single

line change can be more complex than to understand a many line, simple change.

Another way to assess the complexity of change in code is through edit actions,

as explored by Falleri et al. [8]. Edit actions are based on a syntactic understanding

of the change, and are computed from the AST1 of the code. Edit actions can be of

four possible types:

• an addition, indicating that nodes have been added to the syntax tree,

• a deletion, indicating that nodes have been removed from the syntax tree,

• an update, indicating that a syntax node (and its children) have been modi-

fied, but remains of the same type, and

• a move, indicating that the syntax node (and its children) have been moved

to another parent in the syntax tree, without having been modified.

The edit script of a change is defined as the sequence of edit actions necessary

to move from one version of the file to next one. Computing the minimum edit

script for file in a given change, defined as the edit script that requires the least

number of edit actions, is an NP-hard problem. To approximate the edit script for

each file in a change described in a review, I use the Gumtree2 tool. Gumtree uses a
1Abstract Syntax Tree
2https://github.com/GumTreeDiff/gumtree/wiki

11

heuristic algorithm to calculate the minimum edit script from the AST of the code.

Figure 3.1 shows an example of the minimum edit script generated by Gumtree

for a simple piece of Java code that has been changed. In this example, yellow

represents an update, green an addition and blue a move.

Figure 3.1: Output example of the Gumtree tool. Yellow represents an up-
date, green an addition and blue a move.

Edit actions allow us to separate movements and changes in files from additions

and deletions, as compared to using lines of code. However, the use of Gumtree is

limited. First of all, Gumtree requires a parsers to generate the ASTs. Currently,

Gumtree supports only 4 languages: Java, C, JavaScript and Ruby. Gumtree uses

a heuristic algorithm, computing only an approximation of the solution. There are

some extreme cases in which Gumtree returns an errorenous results or is not able

12

to compute the results. These cases seem to be caused by specific conditions that

appear relatively rarely.

3.3 Recommendation Algorithms
I decided to initially opt for a greedy approach: I use the above mentioned metrics

to define four recommendation algorithms:

1. lines of code that orders the code reviews from least lines of code changed

to most lines of code changed (RlocMin),

2. lines of code that orders the code from most lines of code changes to least

changed (RlocMax),

3. edit actions that orders the code reviews from least edit actions in the review

to most edit actions (ReditMin), and

4. edit actions that orders the code reviews from most edit actions in the review

to least edit actions (ReditMax).

I investigate the ordering of code reviews from both least to most of each metric

and vice versa as there is no basis to determine whether tackling the likely hardest

review first is better than last.

13

Chapter 4

Simulation

The best way to evaluate the different algorithms for recommending the order in

which to proceed with code reviews would be to build the algorithms into a stan-

dard code review tool, put the algorithms into use for an extended period of time

and compare against the history of duration times for code reviews of the project.

Such an evaluation is very costly in terms of people’s time and effort.

Instead of starting with this costly approach, I chose to compare the effective-

ness of the algorithms using a simulation approach. Simulation approaches are

often used to evaluate recommendation systems for software development [18].

With a simulation approach, I apply an algorithm to order code reviews for his-

torical project data and compute estimates of the completion time of the reviews

if such an ordering was used. A simulation allows us to initially reproduce the

original process and observe the performances of the various algorithms.

I start my description of the simulation by explaining the project data used.

I then explain how I compute the actual duration (Da) and the actual effort (Ea)

for each code review in a project’s history. Using these values, I can define the

simulation: the goal of the simulation is to estimate a duration (De) for each code

review if the algorithm’s ordering was respected. I defer a discussion of the threats

to validity until after I present the results (Chapter 6).

14

Table 4.1: The Eclipse Foundation dataset

Project # Code Reviews # Lines Of Code
egit 4,636 16,563
org.eclipse.linuxtools 4,441 239,176
jgit 4,255 168,864
org.eclipse.sirius 2,504 382,459
org.eclipse.osee 2,451 696,706
org.eclipse.tracecompass 1,894 196,344

4.1 Eclipse Foundation Data
The data I use for the simulation study comes from the Gerrit repository of the

Eclipse Foundation1. I sorted Eclipse projects by the number of successfully merged

code reviews and chose the top six for study. I took this approach to ensure enough

data to see trends in the ordering algorithms simulated. Table 4.1 shows the project

used in the simulation study. The data reported for code reviews is from 2010-08-

19 to 2016-03-06.

Before beginning the simulation, I had to clean the dataset to remove code

reviews with confusing metadata. These reviews were easily identifiable because

their creation date happened after the merge date. All of the faulty entries belong to

the first 5,000 reviews and have the same creation date (2012-2-10), suggesting the

data problem might be related to the introduction of Gerrit for Eclipse Foundation

projects.

All of the projects in the simulation are written in Java and represent a variety

of project sizes from tens of thousands of lines to code to half a million of lines of

code (Table 4.1).

4.2 Actual Duration
Actual duration (Da) is the time from the creation of a code review to its completion

as obtained from the historical data of Gerrit. The actual duration of a review is

computed as the difference between the time the code review was opened and the

1https://eclipse.org/org/foundation/, verified 3/7/16

15

https://eclipse.org/org/foundation/

time the code review was merged, computed using the timestamps saved in the

code review. I report Da in hours.

Duration is an important factor in code reviews: a code review that has been

left open for too long is at risk to become stagnant. In some cases, an open code

review might delay the project, particularly if it affects critical parts of the code.

4.3 Actual Effort
To run the simulation, I need to determine how much effort is needed to resolve

a given code review and how much effort is available from project personnel on a

particular day to work on code reviews. I define effort of a given review (Ea) as

the sum of the number of messages, number of patches and number of developers

involved in that code review.

Effort is an important factor in my evaluation because it allows us to quantify

the amount of work that was put on the code review. A code review that involved

more reviewers and went through multiple iterations required more work than a

code review with a single version and only one reviewer. In using this definition,

I am dependent on the externalized activity that happened on a code review before

it was merged. I discuss the impact of this choice on the validity of the results in

Chapter 6.

To give a sense of the data on which I run simulations, Figure 4.1 shows the

actual duration (Da) (Y-axis) in relation to the actual effort (Ea) (X-axis) of each

code review in the JGit project. An analysis of the plot indicates that Da is less

than a day for half of the code reviews; these code reviews are all plotted on the

bottom left of the graph as they typically also have a small Ea value. The overall

average Da is higher because of the code reviews plotted on the right side of the

graph. In Figure 4.1, I have also plotted regression curves for degrees 1, 2 and 3.

I will use these regression lines later in the thesis to compare to the results of the

recommendation algorithms.

4.4 Effort per Hour
For the simulation, I also need to determine, for each project, the amount of effort

developers on the project spend on average over a unit of time. I use effort per hour

16

Figure 4.1: Actual duration (Da) of code reviews for JGit, sorted by actual
effort (Ea)

(Eh) as the average amount of effort spent per hour. To calculate this value, I divide

the sum of effort for every code review in the project and by the number of hours

between the creation of the first code review and the last registered activity on any

code review.

One might note the large differences of values between Da and both Ea and Eh

for most projects. These differences are the result of how the values are calculated.

While Da is based on the values of actual duration from the code reviews, Ea and

Eh are derived from the time difference, in hours, between the creation of the first

code review and the last registered activity. For this reason, Da is affected by the

co-existence of multiple open code reviews at the same time, while the interval of

time calculated is not.

Table 4.2 shows the value of these three metrics for each project in the simu-

lation. The first two columns show the values for the average actual duration (Da)

17

Table 4.2: Duration and effort in hours for the Eclipse dataset

Project Name Avg. Da Avg. Ea Eh

egit 268.27 6.46 0.34
org.eclipse.linuxtools 138.58 7.41 0.81
jgit 358.32 6.99 0.41
org.eclipse.sirius 190.07 8.13 0.79
org.eclipse.osee 76.37 8.06 0.23
org.eclipse.tracecompass 303.08 9.68 1.33

and the average actual effort (Ea). The average actual duration varies greatly be-

tween projects and does not show any correlation with the project size (as reported

in Table 4.1. Average effort (Ea) is in a much smaller range between 6 and 9, hint-

ing that the effort per code review in terms of externalized actions is roughly the

same between projects.

The third column of Table 4.1 shows the computed Eh for each project in the

dataset studied. All of these values are quite low compared to their respective Ea,

meaning that it will be unlikely for a code review to be closed immediately even if

it is the only open review.

4.5 Simulation and Estimated Duration
The simulation proceeds for a code review ordering algorithm by iterating over the

data, in order of the project history, and estimating the amount of time that each

code review would have taken if it was worked on in the order suggested.

Specifically, the simulation keeps a list of open code reviews, ordered increas-

ingly by creation date, and has a clock, initialized at the creation date of the first

code review. The clock ticks hour by hour and runs until the date of the last activity

registered on Gerrit. At every iteration, the following actions are executed in order:

• The clock is moved forward by an hour.

• The list of open code reviews is updated by adding the code reviews opened

in the last hour.

18

• The list of open code reviews is sorted following the current code review

ordering algorithm being analyzed.

• The amount of effort available for the hour is assigned to the code reviews,

starting from the top one. Each time a code review is assigned an effort at

least as large as its Ea, the review is considered closed. If there are no code

reviews left open, the amount of effort remaining is carried forward.

I repeated the process for every project with every code review ordering algo-

rithm. The simulation enables the computation of an estimated duration (De) for

each review. The estimated duration represents the estimated amount of time that

would have taken to close a code review if the recommended order of code reviews

was to be followed.

The code of the simulation is available at http://www.cs.ubc.ca/∼vivianig/scribe.

19

http://www.cs.ubc.ca/~vivianig/scribe

Chapter 5

Results

I simulated each of the recommendation algorithms on the dataset. In table 5.1,

I show the results of the simulation. Each project in the table has two rows, one

for the algorithm version using the LOC1 metric, the other one for the version

using the edit actions. The columns are used to show the results for each ordering

of the recommendation. For instance, RlocMin is represented by LOC indicated in

the row and Min represented by the column. For each project, I report the average

estimated duration (De) computed by a particular algorithm, the difference between

the average actual duration and the average estimated duration (Da −De) and the

standard deviation of the estimated duration.

The results show that the RlocMin algorithm based on ordering the reviews from

the least lines of code changes to the most changed, shown in the Min column, al-

ways produces an estimated duration (De) less than the actual duration, a desirable

result. This result can be seen because the values of the difference in the actual

and estimated duration (Avg Da −De) are always positive (and large). With two

exceptions, the ReditMin also performs better than what occurred in reality. The two

exceptions are org.eclipse.linuxtools and orc.eclipse.osee.

The algorithms based on ordering from most to least, whether line or edit action

based, perform worse than reality for all but one projects. For org.eclipse.osee,

the algorithm based on lines of code (RlocMax) performs better than reality. The

standard deviation values are fairly large compared to the respective De values.

1Lines of code

20

Table 5.1: Simulation results

Project Name Metric Avg De (Hrs) Avg Da −De (Hrs) Std. Dev. De

Min Max Min Max Min Max

egit
LOC 47 5248 221 -4979 412 6141
Actions 107 9810 161 -9540 861 8593

org.eclipse.linuxtools
LOC 8 1060 131 -921 175 1884
Actions 197 10427 -57 -10287 1276 8459

jgit
LOC 23 2091 335 -1731 282 3356
Actions 15 374 343 -16 146 1067

org.eclipse.sirius
LOC 11 425 179 -235 101 720
Actions 13 1549 177 -1357 183 2356

org.eclipse.osee
LOC 61 9929 16 7961 545 7966
Actions 156 14610 -78 -14533 1071 7967

org.eclipse.tracecompass
LOC 42 5422 261 -5117 341 3413
Actions 50 5734 253 -5429 351 3439

These results suggest that either RlocMin or ReditMin may be useful to subject

to human evaluation in the context of actual use. A decision on which algorithm

to first subject to human evaluation requires a deeper investigation of the trends

indicated in Table 5.1. I run an detailed analysis on two projects, JGit and EGit,

focusing only on the algortithm sorting in ascending order. The complete set of

results are available in Appendix A.

5.1 JGit

Figure 5.1 presents the distribution of actual duration of code reviews compared to

their effort for the JGit project. The duration is on the y-axis, in hours, while the

effort is on the x-axis. The figure shows most code reviews have a low value for

both effort and duration, as the data points are clustered near the bottom left. There

is no recognizable correlation between duration and effort. The three coloured lines

represent the regression curves for degrees 1, 2 and 3.

Figures 5.2(a) and 5.2(b) show the the result of the simulations for RlocMin and

ReditMin respectively by plotting estimated duration (De) (y-axis) against actual ef-

fort (Ea) (x-axis) sorted by effort. As before, regression lines are shown with degree

1 (red), degree 2 (green) and degree 3 (cyan). These figures show how, compared

21

Figure 5.1: Actual duration (Da) of code reviews for JGit, sorted by actual
effort (Ea)

to the actual values shown in figure 5.1, the estimated durations of the code re-

views have a largely smaller value for both RlocMin and ReditMin. The figures also

show how the number of outliers, representing stagnant reviews, has diminished

considerably.

Most of the cases where code reviews had large values also disappeared, lead-

ing to a more compact graph. Looking at the regression curves, we see how the

results obtained using ReditMin are less scattered, since even the regression of de-

gree one is able to predict it with the same error as higher degrees. In figure 5.2(a),

a single code review (the dot that appears in the top left corner) received a large

estimated duration when estimating using RlocMin, even if it has a fairly low effort

value. This outlier is the result of my algorithm being nothing more than a greedy

algorithm: because I am considering the ordering of reviews by least estimated ef-

fort to largest estimated effort, it can happen than certain code reviews with a low

22

(a) Estimated Duration (De) computed using RlocMinv. Effort (Ea) for JGit

(b) Estimated Duration (De) computed using ReditMinv. Effort (Ea) for JGit

Figure 5.2: Simulation results for JGit using the RlocMin and ReditMin algo-
rithms

23

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for JGit

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for JGit

Figure 5.3: Violin plots of the difference between the two estimates and the
real durations for JGit

24

estimated effort are delayed. I describe some possible solution for this problem in

Chapter 7.

Figure 5.3 shows the difference between the actual duration and the estimate

from the RlocMin and ReditMin algorithms, using a violin plot. In the same way as

the previous plots, the y-axis represents the duration in hours and the x-axis repre-

sents the effort. These plots are useful to understand the degree of improvement in

my estimates. In figure 5.3(a), most of the differences are positive, indicating that

the estimates produced by the algorithms are better than the actual durations in the

majority of cases. There are few outliers, some of them positive and one of them

negative. The negative outlier is the same code review described in the previous

paragraph. The positive outliers indicate code reviews that either got resolved im-

mediately, in the case of small effort values, or were introduced in a situation were

all other code reviews had already been solved, in the case of a large effort value.

Figure 5.3(b) presents a more scattered situation. There are no differences with a

large negative result, but there are more differences with a negative result. The two

plots are similar, suggesting that the two algorithms return a similar ordering in

many cases.

5.2 EGit

Figure 5.4 shows the distribution of actual duration of code reviews compared to

their effort for the EGit project. The duration is on the y-axis, while the effort is

on the x-axis. Similarly to the JGit project in figure 5.1, most code reviews have a

low value for both effort and duration, as can be seen by the dots being prevalently

located in the bottom right corner. In confront, to figure 5.1 for the JGit project,

this plot appears to be less scattered. As before, the three coloured lines represent

the regression curves for degrees 1, 2 and 3.

Figures 5.5(a) and 5.5(b) show the the result of the simulations for RlocMin

and ReditMin respectively by plotting estimated duration (De) (y-axis) against actual

effort (Ea) (x-axis) sorted by effort. As before, regression lines are shown with

degree 1 (red), degree 2 (green) and degree 3 (cyan). These results differ from

the simulation on JGit: in JGit, the simulation using ReditMin performed better,

for EGit the RlocMin algorithm performs better. In EGit, the simulation using

25

Figure 5.4: Actual duration (Da) of code reviews for EGit, sorted by actual
effort (Ea)

ReditMin, shown in figure 5.5(b) is more scattered and presents many outliers. On

the other hand, the simulation using RlocMin, shown in figure 5.5(a) is more com-

pact and presents few outliers. The regression curves echo this observation: in

figure 5.5(a), the curves of first and second degree are nearly the same, and the

curve of third degree is close; in figure 5.5(b), on the other hand, the curves differ

a lot.

Figure 5.6 shows the difference between the actual duration and the estimate

from the RlocMin and ReditMin algorithms, using a violin plot. In the same way as the

previous plots, the y-axis represents the duration in hours and the x-axis the effort.

These plots are useful to understand the degree of improvement in my estimates.

The graph are fairly similar and positive, indicating that both algorithms perform

well. Nonetheless, we can notice how figure 5.5(b) is more compact around the

x-axis, while figure 5.5(a) is less scattered but tends upwards. This indicates that,

26

(a) Estimated Duration (De) computed using RlocMinv. Effort (Ea) for EGit

(b) Estimated Duration (De) computed using ReditMinv. Effort (Ea) for EGit

Figure 5.5: Simulation results for EGit using the RlocMin and ReditMin algo-
rithms

27

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for EGit

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for EGit

Figure 5.6: Violin plots of the difference between the two estimates and the
real durations for EGit

28

Table 5.2: Best estimation algoritm for each project

Project Best Result
egit locMin
org.eclipse.linuxtools locMin
jgit editMin
org.eclipse.sirius locMin
org.eclipse.osee locMin
org.eclipse.tracecompass locMin

RlocMin performs better than ReditMin.

5.3 Algorithm Choice
After analyzing in depth the simulation for two of my six projects, I can concluded

that RlocMin performs better. Table 5.2 shows the best algorithm for each project.

Interestingly, in only one project out of six, the JGit project, ReditMin performs

better than RlocMin. In all other cases, RlocMin performs better. Based on these

results, and considering the higher computation of cost to compute edit actions

compared to the cost to compute lines of code, I argue that RlocMin should be subject

to further human evaluation in real use.

29

Chapter 6

Threats to Validity

Every study must make choices that affect the validity of the results. I first discuss

choices that affect the results I report. I then discuss choices that affect whether

my results may hold when applied to order code reviews for other projects.

6.1 Internal Validity
In the simulation I used to evaluate the ordering algorithms, I assume that effort is

spent on code reviews for the entire 24 hours of each day. This assumption does

not reflect reality in which people work a limited number of hours a day. I believe

my simulation is still valid because my calculation of the effort available per hour

is averaged over the day. Thus, even though the effort is spread over 24 hours a day

by the simulation, the total amount of effort is the same. For this reason, I argue

that the estimate used by the simulation is valid.

The effort computed per review (Ea) may not accurately represent the amount

of work actually required to complete the review. My computation for Ea is able to

measure only the amount of activity recorded in the review, such as in the online

discussion; it is unable to measure the amount of work put into such actions as

developing patches. My intent with my estimate of actual effort (Ea) is to capture

the essence of work on code reviews.

Due to inconsistent metadata, as described in Chapter 4, I cleaned the dataset,

removing a number of code reviews from my dataset and the simulation. Even with

30

the cleaning, the projects all contain a large number of code reviews, thus I believe

the effect on the overall results is minimal.

A final threat comes from imprecision in the calculation of the metrics used

in the algorithms. As described in Chapter 5, both lines of code and edit actions

suffer from possible false results. In these cases, a single outlier can have a ripple

effect over the entire simulation, inflating (or deflating) the estimated durations. I

argue that the number of outliers is far smaller than the general trend: when the

effect of the outlier is applied, it will affect the estimated duration for all the code

reviews but only by a small amount.

6.2 Construct Validity
My recommendation approach aims to avoid stagnation in modern code review and

to reduce overall code review resolution time. In order to evaluate it, I built the sim-

ulation to reproduce the original process and observe the effect of the algorithms.

This approach might not be suited to claim an improvement in the modern code

review process, but it allowed me to quickly understand which algorithms would

perform the best before moving to a more structured user study.

I simulated the algorithms on projects from one ecosystem, Eclipse. The ecosys-

tem may represent a limited number of software development processes that affect

the data and results. By simulating over seven projects from the ecosystem, I be-

lieve I have captured a variety of teams with variations in their work practices.

Also, since the simulation is relative to a given project, and not absolute, I believe

there is more likelihood that similar results would be seen on projects from other

ecosystem.

31

Chapter 7

Discussion and Future Work

I have made many assumptions in my investigation of recommenders to optimize

code review processing. I discuss other metrics than those I studied that might be

used for a code review ordering recommender, more personalized approaches for

recommending which code review to work on and future work needed in evaluating

recommenders to improve code review handling.

7.1 Additional Metrics
The algorithms for code review ordering I investigated were based on metrics avail-

able from the code reviews themselves. There are more metrics in this category

that could be investigated. For example, instead of just using lines of code, a met-

ric based on number of files or packages changed might provide better results. Or,

path similarities of files modified in a change might be used: the more similar the

paths, the less complex the code change may be. Other characteristics of the code

reviews that are open and available to be ordered could also be considered, such as

the length of time a review is open or the amount of activity that has occurred to

date on the review.

7.2 Better Algorithms
The greedy approach returns promising results, but can suffer from particular cases.

I described an example in chapter 5, in which a code review was delayed for a long

32

time, even though it should have been dealt with sooner. I argue that an algorithm

that takes into account both the greedy order and the time that a code review has

been waiting may be beneficial for creating a recommender.

7.3 Personalized Recommendations
The recommendation algorithms I have considered in this thesis all provide one or-

dering for all developers on a project. More complex recommendation algorithms

could be investigated that produce a personalized recommendation for each devel-

oper available to work on a code review. For instance, the recommender could

use knowledge of what code a developer knows (e.g., [9]) to rank code reviews

where the developer has knowledge of the code higher in the list. A more complex

recommendation algorithm could also take into account the time a developer has

available to perform a code review: if the developer indicates only a short time is

available, simpler code reviews might be prioritized over others.

7.4 Human Evaluation
My current evaluation of algorithms is based on a computer simulation. Although

this approach can be useful to compare algorithms, it cannot take into account all

of the factors that may affect the resolution of code reviews in practice. A human

evaluation of algorithms that perform well in simulation is needed. A human eval-

uation of RlocMin or ReditMin could be performed as an A/B (or split) test. Since

both of these algorithms order the list of open code reviews, the algorithms could

be put into practice for different weeks of a year and the actual duration of reviews

compared to the actual duration prior to the use of an ordered code review list.

Care would need to be taken in the number of reviews subjected to each treatment

and the complexity of the reviews as measured using some of the metrics I have

introduced to ensure similar samples.

33

Chapter 8

Summary

Software developers expend significant human effort on code reviews. Yet, despite

this effort, code reviews remain open for long periods of time on projects and a

number of code reviews go stagnant.

As a means for reducing stagnation and the duration of time required to resolve

reviews, I introduce the idea of a code review ordering recommender. An advantage

of this approach is that it could be easily put in use in a project as the recommender

can be integrated easily into existing code review tools, such as Gerrit.

I introduced four algorithms that might be used to recommend an order for open

code reviews. I performed simulation studies on these algorithms on a dataset of

six projects from the Eclipse Foundation. I found that the algorithm which ranked

the open code reviews from least lines of code to the most lines of code involved in

the change to be reviewed (RlocMin), and the algorithm which ranked the open code

reviews from least amount of edit actions based on the syntax of the change to the

most (ReditMin) performed the best of the four algorithms. A more detailed analysis

indicates that the effectiveness of those two algorithms varies project by project.

Based on the results of the simulation, the algorithm based on edit actions

(RlocMin) may be the most stable and the most suitable to subject, as a next step, to

evaluation in use in a real project.

34

Bibliography

[1] A. Bacchelli and C. Bird. Expectations, Outcomes, and Challenges of
Modern Code Review. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 712–721, Piscataway, NJ, USA,
2013. IEEE Press. ISBN 978-1-4673-3076-3. URL
http://dl.acm.org/citation.cfm?id=2486788.2486882. → pages 1, 5

[2] V. Balachandran. Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer
Recommendation. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 931–940, Piscataway, NJ, USA,
2013. IEEE Press. ISBN 978-1-4673-3076-3. URL
http://dl.acm.org/citation.cfm?id=2486788.2486915. → pages 9

[3] O. Baysal, R. Holmes, and M. W. Godfrey. No Issue Left Behind: Reducing
Information Overload in Issue Tracking. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 666–677, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3056-5. doi:10.1145/2635868.2635887. URL
http://doi.acm.org/10.1145/2635868.2635887. → pages 9

[4] A. Bosu and J. C. Carver. Impact of Developer Reputation on Code Review
Outcomes in OSS Projects: An Empirical Investigation. In Proceedings of
the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, pages 33:1—-33:10, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2774-9.
doi:10.1145/2652524.2652544. URL
http://doi.acm.org/10.1145/2652524.2652544. → pages 8

[5] M. Fagan. A History of Software Inspections, pages 562–573. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-642-59412-0.
doi:10.1007/978-3-642-59412-0 34. URL
http://dx.doi.org/10.1007/978-3-642-59412-0 34. → pages 4

35

http://dl.acm.org/citation.cfm?id=2486788.2486882
http://dl.acm.org/citation.cfm?id=2486788.2486915
http://dx.doi.org/10.1145/2635868.2635887
http://doi.acm.org/10.1145/2635868.2635887
http://dx.doi.org/10.1145/2652524.2652544
http://doi.acm.org/10.1145/2652524.2652544
http://dx.doi.org/10.1007/978-3-642-59412-0_34
http://dx.doi.org/10.1007/978-3-642-59412-0{_}34

[6] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Syst. J., 15(3):182–211, sep 1976. ISSN 0018-8670.
doi:10.1147/sj.153.0182. URL http://dx.doi.org/10.1147/sj.153.0182. →
pages 1

[7] M. E. Fagan. Advances in software inspections. IEEE Transactions on
Software Engineering, SE-12(7):744–751, jul 1986. ISSN 0098-5589.
doi:10.1109/TSE.1986.6312976. → pages 5

[8] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus.
Fine-grained and Accurate Source Code Differencing. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 313–324, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3013-8. doi:10.1145/2642937.2642982. URL
http://doi.acm.org/10.1145/2642937.2642982. → pages 11

[9] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A Degree-of-knowledge
Model to Capture Source Code Familiarity. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE ’10, pages 385–394, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-719-6. doi:10.1145/1806799.1806856. URL
http://doi.acm.org/10.1145/1806799.1806856. → pages 33

[10] Y. Jiang, B. Adams, and D. M. German. Will My Patch Make It? And How
Fast?: Case Study on the Linux Kernel. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 101–110,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487111. → pages 8

[11] S. Kollanus and J. Koskinen. Survey of software inspection research. The
Open Software Engineering Journal, 3(1):15–34, 2009. → pages 5

[12] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann. Software
Developers’ Perceptions of Productivity. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 19–29, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3056-5. doi:10.1145/2635868.2635892. URL
http://doi.acm.org/10.1145/2635868.2635892. → pages 2

[13] P. C. Rigby and C. Bird. Convergent Contemporary Software Peer Review
Practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 202–212, New York, NY,

36

http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1109/TSE.1986.6312976
http://dx.doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/1806799.1806856
http://doi.acm.org/10.1145/1806799.1806856
http://dl.acm.org/citation.cfm?id=2487085.2487111
http://dx.doi.org/10.1145/2635868.2635892
http://doi.acm.org/10.1145/2635868.2635892

USA, 2013. ACM. ISBN 978-1-4503-2237-9.
doi:10.1145/2491411.2491444. URL
http://doi.acm.org/10.1145/2491411.2491444. → pages 1, 2, 8

[14] P. C. Rigby and M.-A. Storey. Understanding Broadcast Based Peer Review
on Open Source Software Projects. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 541–550, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0445-0.
doi:10.1145/1985793.1985867. URL
http://doi.acm.org/10.1145/1985793.1985867. → pages 9

[15] P. C. Rigby, D. M. German, and M.-A. Storey. Open Source Software Peer
Review Practices: A Case Study of the Apache Server. In Proceedings of the
30th International Conference on Software Engineering, ICSE ’08, pages
541–550, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-079-1.
doi:10.1145/1368088.1368162. URL
http://doi.acm.org/10.1145/1368088.1368162. → pages 8

[16] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida.
Improving Code Review Effectiveness Through Reviewer
Recommendations. In Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 2014,
pages 119–122, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2860-9. doi:10.1145/2593702.2593705. URL
http://doi.acm.org/10.1145/2593702.2593705. → pages 9

[17] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and
K. i. Matsumoto. Who should review my code? A file location-based
code-reviewer recommendation approach for Modern Code Review. In
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on, pages 141–150, mar 2015.
doi:10.1109/SANER.2015.7081824. → pages 9

[18] R. J. Walker and R. Holmes. Simulation, chapter Simulation, pages
301–327. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN
978-3-642-45135-5. doi:10.1007/978-3-642-45135-5 12. URL
http://link.springer.com/10.1007/978-3-642-45135-5 12. → pages 14

[19] M. Zanjani, H. Kagdi, and C. Bird. Automatically Recommending Peer
Reviewers in Modern Code Review. IEEE Transactions on Software
Engineering, PP(99):1–1, jun 2015. ISSN 0098-5589.
doi:10.1109/TSE.2015.2500238. URL

37

http://dx.doi.org/10.1145/2491411.2491444
http://doi.acm.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/1985793.1985867
http://doi.acm.org/10.1145/1985793.1985867
http://dx.doi.org/10.1145/1368088.1368162
http://doi.acm.org/10.1145/1368088.1368162
http://dx.doi.org/10.1145/2593702.2593705
http://doi.acm.org/10.1145/2593702.2593705
http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1007/978-3-642-45135-5_12
http://link.springer.com/10.1007/978-3-642-45135-5{_}12
http://dx.doi.org/10.1109/TSE.2015.2500238

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7328331.
→ pages 9

38

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7328331

Appendix A

Simulation Results

In this Appendix we provide all the plots for each of the 6 projects used in the

simulation described in chapter 4. For each project, we provide the following plots:

• a scatter plot of the distribution of actual duration of code review,

• a scatter plot for each of the estimated durations for the two Min algorithms,

• a scatter plot for the difference between each Min estimation and the actual

duration,

• a violin plot for the difference between each Min estimation and the actual

duration,

• a scatter plot for each of the estimated durations for the two Max algorithms,

• a scatter plot for the difference between each Max estimation and the actual

duration,

• a violin plot for the difference between each Max estimation and the actual

duration.

39

A.1 EGit

Figure A.1: Actual durations (Da) of code reviews for EGit, sorted by actual
effort (Ea)

40

(a) Estimated Duration (De) computed using RlocMin v. Effort (Ea) for EGit

(b) Estimated Duration (De) computed using ReditMin v. Effort (Ea) for EGit

Figure A.2: Scatter plots with regression lines of the estimated durations for
EGit computed using the min algorithms

41

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMin v. Effort (Ea) for EGit

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMin v. Effort (Ea) for EGit

Figure A.3: Scatter plots with regression lines of the difference between the
min estimates and the real durations for EGit

42

(a) Estimated Duration (De) computed using RlocMax v. Effort (Ea) for EGit

(b) Estimated Duration (De) computed using ReditMax v. Effort (Ea) for EGit

Figure A.4: Scatter plots with regression lines of the estimated durations for
EGit computed using the max algorithms

43

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMax v. Effort (Ea) for EGit

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMax v. Effort (Ea) for EGit

Figure A.5: Scatter plots with regression lines of the difference between the
max estimates and the real durations for EGit

44

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for EGit

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for EGit

Figure A.6: Violin plots of the difference between the estimates and the real
durations for EGit for the min algorithms

45

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMax for EGit

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMax for EGit

Figure A.7: Violin plots of the difference between the estimates and the real
durations for EGit for the max algorithms

46

A.2 Linuxtools

Figure A.8: Actual durations (Da) of code reviews for Linuxtools, sorted
by actual effort (Ea)

47

(a) Estimated Duration (De) computed using RlocMin v. Effort (Ea) for
Linuxtools

(b) Estimated Duration (De) computed using ReditMin v. Effort (Ea) for
Linuxtools

Figure A.9: Scatter plots with regression lines of the estimated durations for
Linuxtools computed using the min algorithms

48

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMin v. Effort (Ea) for Linuxtools

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMin v. Effort (Ea) for Linuxtools

Figure A.10: Scatter plots with regression lines of the difference between the
min estimates and the real durations for Linuxtools

49

(a) Estimated Duration (De) computed using RlocMax v. Effort (Ea) for
Linuxtools

(b) Estimated Duration (De) computed using ReditMax v. Effort (Ea) for
Linuxtools

Figure A.11: Scatter plots with regression lines of the estimated durations for
Linuxtools computed using the max algorithms

50

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMax v. Effort (Ea) for Linuxtools

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMax v. Effort (Ea) for Linuxtools

Figure A.12: Scatter plots with regression lines of the difference between the
max estimates and the real durations for Linuxtools

51

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for Linuxtools

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for Linuxtools

Figure A.13: Violin plots of the difference between the estimates and the real
durations for Linuxtools for the min algorithms

52

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMax for Linuxtools

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMax for Linuxtools

Figure A.14: Violin plots of the difference between the estimates and the real
durations for Linuxtools for the max algorithms

53

A.3 JGit

Figure A.15: Actual durations (Da) of code reviews for JGit, sorted by ac-
tual effort (Ea)

54

(a) Estimated Duration (De) computed using RlocMin v. Effort (Ea) for JGit

(b) Estimated Duration (De) computed using ReditMin v. Effort (Ea) for JGit

Figure A.16: Scatter plots with regression lines of the estimated durations for
JGit computed using the min algorithms

55

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMin v. Effort (Ea) for JGit

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMin v. Effort (Ea) for JGit

Figure A.17: Scatter plots with regression lines of the difference between the
min estimates and the real durations for JGit

56

(a) Estimated Duration (De) computed using RlocMax v. Effort (Ea) for JGit

(b) Estimated Duration (De) computed using ReditMax v. Effort (Ea) for JGit

Figure A.18: Scatter plots with regression lines of the estimated durations for
JGit computed using the max algorithms

57

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMax v. Effort (Ea) for JGit

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMax v. Effort (Ea) for JGit

Figure A.19: Scatter plots with regression lines of the difference between the
max estimates and the real durations for JGit

58

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for JGit

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for JGit

Figure A.20: Violin plots of the difference between the estimates and the real
durations for JGit for the min algorithms

59

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMax for JGit

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMax for JGit

Figure A.21: Violin plots of the difference between the estimates and the real
durations for JGit for the max algorithms

60

A.4 Sirius

Figure A.22: Actual durations (Da) of code reviews for Sirius, sorted by
actual effort (Ea)

61

(a) Estimated Duration (De) computed using RlocMin v. Effort (Ea) for Sirius

(b) Estimated Duration (De) computed using ReditMin v. Effort (Ea) for Sirius

Figure A.23: Scatter plots with regression lines of the estimated durations for
Sirius computed using the min algorithms

62

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMin v. Effort (Ea) for Sirius

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMin v. Effort (Ea) for Sirius

Figure A.24: Scatter plots with regression lines of the difference between the
min estimates and the real durations for Sirius

63

(a) Estimated Duration (De) computed using RlocMax v. Effort (Ea) for Sirius

(b) Estimated Duration (De) computed using ReditMax v. Effort (Ea) for Sirius

Figure A.25: Scatter plots with regression lines of the estimated durations for
Sirius computed using the max algorithms

64

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMax v. Effort (Ea) for Sirius

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMax v. Effort (Ea) for Sirius

Figure A.26: Scatter plots with regression lines of the difference between the
max estimates and the real durations for Sirius

65

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for Sirius

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for Sirius

Figure A.27: Violin plots of the difference between the estimates and the real
durations for Sirius for the min algorithms

66

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMax for Sirius

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMax for Sirius

Figure A.28: Violin plots of the difference between the estimates and the real
durations for Sirius for the max algorithms

67

A.5 Osee

Figure A.29: Actual durations (Da) of code reviews for Osee, sorted by ac-
tual effort (Ea)

68

(a) Estimated Duration (De) computed using RlocMin v. Effort (Ea) for Osee

(b) Estimated Duration (De) computed using ReditMin v. Effort (Ea) for Osee

Figure A.30: Scatter plots with regression lines of the estimated durations for
Osee computed using the min algorithms

69

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMin v. Effort (Ea) for Osee

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMin v. Effort (Ea) for Osee

Figure A.31: Scatter plots with regression lines of the difference between the
min estimates and the real durations for Osee

70

(a) Estimated Duration (De) computed using RlocMax v. Effort (Ea) for Osee

(b) Estimated Duration (De) computed using ReditMax v. Effort (Ea) for Osee

Figure A.32: Scatter plots with regression lines of the estimated durations for
Osee computed using the max algorithms

71

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMax v. Effort (Ea) for Osee

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMax v. Effort (Ea) for Osee

Figure A.33: Scatter plots with regression lines of the difference between the
max estimates and the real durations for Osee

72

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for Osee

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for Osee

Figure A.34: Violin plots of the difference between the estimates and the real
durations for Osee for the min algorithms

73

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMax for Osee

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMax for Osee

Figure A.35: Violin plots of the difference between the estimates and the real
durations for Osee for the max algorithms

74

A.6 Tracecompass

Figure A.36: Actual durations (Da) of code reviews for Tracecompass,
sorted by actual effort (Ea)

75

(a) Estimated Duration (De) computed using RlocMin v. Effort (Ea) for
Tracecompass

(b) Estimated Duration (De) computed using ReditMin v. Effort (Ea) for
Tracecompass

Figure A.37: Scatter plots with regression lines of the estimated durations for
Tracecompass computed using the min algorithms

76

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMin v. Effort (Ea) for Tracecompass

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMin v. Effort (Ea) for Tracecompass

Figure A.38: Scatter plots with regression lines of the difference between the
min estimates and the real durations for Tracecompass

77

(a) Estimated Duration (De) computed using RlocMax v. Effort (Ea) for
Tracecompass

(b) Estimated Duration (De) computed using ReditMax v. Effort (Ea) for
Tracecompass

Figure A.39: Scatter plots with regression lines of the estimated durations for
Tracecompass computed using the max algorithms

78

(a) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using RlocMax v. Effort (Ea) for Tracecompass

(b) Difference betweent the actual duration (Da) and the estimated Duration (De)
computed using ReditMax v. Effort (Ea) for Tracecompass

Figure A.40: Scatter plots with regression lines of the difference between the
max estimates and the real durations for Tracecompass

79

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMin for Tracecompass

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMin for Tracecompass

Figure A.41: Violin plots of the difference between the estimates and the real
durations for Tracecompass for the min algorithms

80

(a) Difference between actual duration (Da) and estimated Duration (De) com-
puted using RlocMax for Tracecompass

(b) Difference between actual duration (Da) and estimated Duration (De) com-
puted using ReditMax for Tracecompass

Figure A.42: Violin plots of the difference between the estimates and the real
durations for Tracecompass for the max algorithms

81

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	2 Background and Related Work
	2.1 Code Inspection
	2.1.1 Lightweight Code Review

	2.2 Code Review Tools
	2.2.1 Gerrit

	2.3 Code Review Completion Time
	2.4 Code Review Recommendation

	3 Recommending Code Review Ordering
	3.1 Lines of Code
	3.2 Edit Actions
	3.3 Recommendation Algorithms

	4 Simulation
	4.1 Eclipse Foundation Data
	4.2 Actual Duration
	4.3 Actual Effort
	4.4 Effort per Hour
	4.5 Simulation and Estimated Duration

	5 Results
	5.1 JGit
	5.2 EGit
	5.3 Algorithm Choice

	6 Threats to Validity
	6.1 Internal Validity
	6.2 Construct Validity

	7 Discussion and Future Work
	7.1 Additional Metrics
	7.2 Better Algorithms
	7.3 Personalized Recommendations
	7.4 Human Evaluation

	8 Summary
	Bibliography
	A Simulation Results
	A.1 EGit
	A.2 Linuxtools
	A.3 JGit
	A.4 Sirius
	A.5 Osee
	A.6 Tracecompass

