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Abstract

Models of the spread of disease in a population often make the simplifying assumption that the popula-

tion is homogeneously mixed, or is divided into homogeneously mixed compartments. However, human

populations have complex structures formed by social contacts, which can have a significant influence

on the rate and pattern of epidemic spread. Contact networks capture this structure by explicitly repre-

senting each contact that could possibly lead to a transmission. Contact network models parameterize

the structure of these networks, but estimating their parameters from contact data requires extensive,

often prohibitive, epidemiological investigation.

We developed a method based on approximate Bayesian computation (ABC) for estimating struc-

tural parameters of the contact network underlying an observed viral phylogeny. The method combines

adaptive sequential Monte Carlo for ABC, Gillespie simulation for propagating epidemics though net-

works, and a previously developed kernel-based tree similarity score. Our method offers the potential to

quantitatively investigate contact network structure from phylogenies derived from viral sequence data,

complementing traditional epidemiological methods.

We applied our method to the Barabási-Albert network model. This model incorporates the prefer-

ential attachment mechanism observed in real world social and sexual networks, whereby individuals

with more connections attract new contacts at an elevated rate (“the rich get richer”). Using simulated

data, we found that the strength of preferential attachment and the number of infected nodes could of-

ten be accurately estimated. However, the mean degree of the network and the total number of nodes

appeared to be weakly- or non-identifiable with ABC.

Finally, the Barabási-Albert model was fit to eleven real world HIV datasets, and substantial het-

erogeneity in the parameter estimates was observed. Posterior means for the preferential attachment

power were all sub-linear, consistent with literature results. We found that the strength of preferential

attachment was higher in injection drug user populations, potentially indicating that high-degree “su-

perspreader” nodes may play a role in epidemics among this risk group. Our results underscore the

importance of considering contact structures when investigating viral outbreaks.
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Preface

The initial idea to use approximate Bayesian computation (ABC) to infer contact network model pa-

rameters was Dr. Poon’s, based on his previous work using ABC to infer parameters of population

genetic models. The tree kernel was originally developed by Dr. Poon, but the version used here was

implemented by me to improve computational efficiency. The idea to apply sequential Monte Carlo was

mine, but Dr. Alexandre Bouchard-Côté made me aware of the adaptive version used in this work. Dr.

Sarah Otto suggested the experiments involving a network with a heterogeneous α parameter and peer-

driven sampling. Dr. Richard Liang provided guidance in the development of the Gillespie simulation

algorithm and statistical advice. The netabc program, and all supplementary analysis programs, were

written by me.

A version of chapter 2 has been submitted for publication with the title “Reconstructing network

parameters from viral phylogenies.” An oral presentation entitled “Phylodynamic inference of contact

network parameters with kernel-ABC” was given based on chapter 2 to the 23rd HIV Dynamics and

Evolution meeting on April 25, 2016, in Woods Hole, Massachusetts, USA (the presentation was de-

livered remotely). A poster based on chapter 2 entitled “Likelihood-free estimation of contact network

parameters from viral phylogenies” was presented at the Intelligent Systems for Molecular Biology

meeting on July 8, 2016, in Orlando, Florida, USA.

Use of the BC data is in accordance with an ethics application that was reviewed and approved by

the UBC/Providence Health Care Research Ethics Board (H07-02559).

Source code for the netabc program is freely available at https://github.com/rmcclosk/netabc under

the GPL-3 license. Scripts to run all computational experiments, as well as the source code for this

thesis, are available at https://github.com/rmcclosk/thesis.
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Chapter 1

Introduction

1.1 Objective

The spread of a disease is most often modelled by assuming either a homogeneously mixed popula-

tion [1, 2], or a population divided into a small number of homogeneously mixed groups [3]. This

assumption, also called mass action [4], or panmixia, implies that any two individuals in the same com-

partment are equally likely to come into contact making transmission possible at some predefined rate.

Although this provides a reasonable approximation in many cases [5], the error introduced by assuming

a panmictic population can be substantial when significant contact heterogeneity exists in the underly-

ing population [6–8]. Contact network models provide an alternative to compartmental models which

do not require the assumption of panmixia. In addition to more accurate predictions, the parameters

of the networks themselves may be of interest from a public health perspective. For example, certain

vaccination strategies may be more or less effective in curtailing an epidemic depending on the under-

lying network’s degree distribution [9, 10]. Phylodynamic methods, which link viruses’ evolutionary

and epidemiological dynamics, have been used to fit many different types of models to phylogenetic

data [11, 12]. However, these models generally assume a panmictic population. The primary objective

of this work is to develop a method to fit contact network models, and thereby relax the assumption of

homogeneous mixing, in a phylodynamic framework.

In this work, we take a Bayesian approach: our goal is to estimate the posterior distribution on model

parameters given our data,

π(θ | T ) = f (T | θ)π(θ)∫
Θ

f (T | θ)π(θ)dθ
, (1.1)

where f (T | θ) is the likelihood of the parameters given T , π(θ) is the prior on θ , and Θ is the space

of possible model parameters. The denominator on the right-hand side is the marginal probability of

T which acts as a normalizing constant on the posterior (see appendix A for a review of mathematical

modelling and Bayesian inference, including definitions of these concepts). As we shall show (sec-

tion 2.1.4), estimating this distribution presents computational challenges beyond those usually encoun-

tered in Bayesian inference. Both the likelihood f (T | θ) and the normalizing constant seem to be

1



intractable, which rules out the use of most common maximum likelihood and Bayesian methods.

An alternative to likelihood-based methods, which could be applied to any network model, is pro-

vided by approximate Bayesian computation (ABC) [13–16]. All of the ingredients required to apply

ABC to this problem are readily available. Simulating networks is straightforward under a variety of

models. Epidemics on those networks, and the corresponding transmission trees, can also be easily

simulated. As mentioned above, contact networks can profoundly affect transmission tree shape. Those

shapes can be compared using a highly informative similarity measure called the “tree kernel” [17]; sim-

ilar kernel functions have been demonstrated to work well as distance functions in ABC [18]. ABC can

be implemented with several algorithms, but sequential Monte Carlo (SMC) has advantages over oth-

ers, including improved accuracy in low-density regions and parallelizability [19]. A recently-developed

adaptive algorithm requiring minimal tuning on the part of the user makes SMC an even more attractive

approach [20]. In summary, our method to infer contact network parameters will combine the follow-

ing: stochastic simulation of epidemics on networks, the tree kernel, and adaptive ABC-SMC. Our

method will expand on the framework developed by [21], who combined ABC with the tree kernel to

infer parameters of population genetic models from viral phylogenies using Markov chain Monte Carlo

(MCMC).

Empirical studies of sexual contact networks have found that these networks tend to be scale-

free [22–25], meaning that their degree distributions follow a power law (although there has been some

disagreement, see [6, 26]). Preferential attachment has been postulated as a mechanism by which scale-

free networks could be generated [27]. The Barabási-Albert (BA) model [27] is one of the simplest

preferential attachment models, which makes it a natural choice to explore with our method. The sec-

ond aim of this work is to use simulations to investigate the parameters of the Barabási-Albert model,

including whether they have a detectable impact on tree shape, and whether they can be accurately

recovered using ABC.

Due to its high global prevalence and fast mutation rate, HIV is one of the most commonly-studied

viruses in a phylodynamic context. Consequently, a large volume of HIV sequence data is publicly

available, more than for any other pathogen, and including sequences sampled from diverse geographic

and demographic settings. At the time of this writing, there were 635,400 HIV sequences publicly

available in GenBank, annotated with 172 distinct countries of origin. Since HIV is almost always spread

through either sexual contact or sharing of injection drug supplies, the contact networks underlying HIV

epidemics are driven by social dynamics and are therefore likely to be highly structured [25]. Moreover,

since no cure yet exists, efforts to curtail the progression of an epidemic have relied on preventing

further transmissions through measures such as treatment as prevention (TasP) and education leading

to behaviour change. The effectiveness of this type of intervention can vary significantly based on the

underlying structure of the network and the particular nodes to whom the intervention is targeted [28,

29]. Due to this combination of data availability and potential public health impact, HIV is an obvious

context in which our method could be applied. Therefore, the third and final aim of this work is to apply

ABC to fit the Barabási-Albert model to existing HIV outbreaks.

To summarize, this work has three objectives. First, we will develop a method which uses ABC
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to infer parameters of contact network models from observed transmission trees. Second, we will use

simulations to characterize the parameters of the BA network model in terms of their effect on tree shape

and how accurately they can be recovered with ABC. Finally, we will apply the method to fit the BA

model to several real-world HIV datasets.

The remainder of this background chapter is organized in four sections. The first section introduces

phylogenies and transmission trees, which are the input data from which our method aims to make

statistical inferences. This section also introduces phylodynamics, a family of methods that, like ours,

aim to infer epidemiological parameters from evolutionary data. The second section focuses on contact

networks and network models, whose parameters we are attempting to infer. The relationship between

contact networks and transmission trees is also discussed. The third and fourth sections introduce SMC

and ABC respectively, which are the two algorithmic components of the method we will implement. In

particular, ABC refers to the general approach of using simulations to replace likelihood calculations in

a Bayesian setting, while SMC is a particular algorithm which can be used to implement ABC.

1.2 Phylogenetics and phylodynamics

1.2.1 Phylogenetic trees

In evolutionary biology, a phylogeny, or phylogenetic tree, is a graphical representation of the evolution-

ary relationships among a group of organisms or species (generally, taxa) [30]. The tips of a phylogeny,

that is, the nodes without any descendants, correspond to extant, or observed, taxa. The internal nodes

correspond to their common ancestors, usually extinct (although occasionally the internal nodes may be

observed as well, e.g.[31]). The edges or branches of the phylogeny connect ancestors to their descen-

dants. Phylogenies may have a root, which is a node with no parent distinguished as the most recent

common ancestor of all the extant taxa [32]. When such a root exists, the tree is referred to as being

rooted; otherwise, it is unrooted. The structural arrangement of nodes and edges in the tree is referred

to as its topology [33].

The branches of the tree may have associated lengths, representing either evolutionary distance or

calendar time between ancestors and their descendants. The term “evolutionary distance” is used here

imprecisely to mean any sort of quantitative measure of evolution, such as the number of differences

between the DNA sequences of an ancestor and its descendant, or the difference in average body mass

or height. A phylogeny with branch lengths in calendar time units is often referred to as time-scaled.

In a time-scaled phylogeny, the internal nodes can be mapped onto a timeline by using the tips of the

tree, which usually correspond to the present day, reference points [34]. The corresponding points on

the timeline are called branching times, and the rate of their accumulation is referred to as the branching

rate. Rooted trees whose tips are all the same distance from the root are called ultrametric trees [35].

These concepts are illustrated in fig. 1.1.
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presentpast

branching times

internal nodes

root

Figure 1.1: Illustration of a rooted, ultrametric, time-scaled phylogeny. The tips of the tree, which rep-
resent extant taxa, are placed at the present day on the time axis. Internal nodes, representing extinct
common ancestors to the extant taxa, fall in the past. The topology of the tree indicates that cats and
dogs are the most closely related pair of species, whereas fish is most distantly related to any other taxon
in the tree.

1.2.2 Transmission trees

In epidemiology, a transmission tree is a graphical representation of an epidemic’s progress through

a population [36]. Like phylogenies, transmission trees have tips, nodes, edges, and branch lengths.

However, rather than recording an evolutionary process (speciation), they record an epidemiological

process (transmission). The tips of a transmission tree represent the removal by sampling of infected

hosts, while internal nodes correspond to transmissions from one host to another. Transmission trees

generally have branch lengths in units of calendar time, with branching times indicating times of trans-

mission. The root of a transmission tree corresponds to the initially infected patient who introduced

the epidemic into the network, also known as the index case. The internal nodes may be labelled with

the donor of the transmission pair, if this is known. The tips of the tree, rather than being fixed at the

present day, are placed at the time at which the individual was removed from the epidemic, such as

by death, recovery, isolation, behaviour change, or migration [37]. Consequently, the transmission tree

may not be ultrametric, but may have tips located at varying distances from the root. Such trees are

said to have heterochronous taxa [38], in contrast to the isochronous taxa found in most phylogenies

of macro-organisms. A transmission tree is illustrated in fig. 1.2 (right). The object on the right of the

figure is called a contact network, which depicts the entire susceptible population along with all possible

routes of disease transmission. Contact networks, and their relationships to transmission trees, will be
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Figure 1.2: Illustration of epidemic spread over a contact network, and the corresponding transmis-
sion tree. (Left) A contact network with five hosts, labelled a through e. Thick shaded edges indicate
symmetric contacts among the hosts. The transmission network is indicated by coloured arrows. The
epidemic began with node a, who transmitted to nodes b and c. Node c further transmitted to node d.
Node e was not infected. (Right) The transmission tree corresponding to this scenario, with a timeline
of transmission and removal times.

discussed further in section 1.3.

Each infected individual in an epidemic may appear at nodes of the transmission tree more than

once. This is different from the transmission network, in which each infected individual appears exactly

once, and edges are in one-to-one correspondence with transmissions [8, 39]. The distinction between

the two objects is illustrated in fig. 1.2. However, since transmission networks generally have no cycles

(unless re-infection occurs), they are trees in the graph theoretical sense, and hence are sometimes also

referred to as transmission trees [e.g. 40]. In this work, we reserve the term “transmission tree” for

the objects depicted on the right side of fig. 1.2, following e.g. [37]. The term “transmission network”

is taken to mean the subgraph of the contact network along which transmissions occurred, following

e.g. [8, 39].

Since transmission trees are essentially a detailed record of an epidemic’s progress, they contain

substantial epidemiological information. As a basic example, the lineages-through-time (LTT) plot [34],

which plots the number of lineages in a phylogeny against time, can be used to quantify the incidence

of new infections over the course of an epidemic [41]. However, in all but the most well-studied of

epidemics, transmission trees are not possible to assemble through traditional epidemiological meth-

ods [39]. The time and effort to conduct detailed interviews and contact tracing of a sufficient number

of infected individuals is usually prohibitive, and may additionally be confounded by misreporting and

other challenges [42]. However, it turns out that for viral epidemics, some of the epidemiological in-

formation contained in the transmission tree leaves a mark on the viral genetic material circulating in

the population. A family of methods called phylodynamics [43] addresses the challenge of estimating

epidemiological parameters from viral sequence data [12].
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1.2.3 Phylodynamics: linking evolution and epidemiology

The basis of phylodynamics is the fact that, for RNA viruses, epidemiological and evolutionary pro-

cesses occur on similar time scales [38]. In fact, these two processes interact, such that it is possible

to detect the influence of host epidemiology on the evolutionary history of the virus as recorded in an

inter-host viral phylogeny. Phylodynamic methods aim to detect and quantify the signatures of epidemi-

ological processes in these phylogenies [11, 12], which relate one representative viral genotype from

each host in an infected population. These methods have been used to investigate parameters such as

transmission rate, recovery rate, and basic reproductive number [11, 12]. The majority of phylodynamic

studies attempt to infer the parameters of an epidemiological model for which the likelihood of an ob-

served phylogeny can be calculated. Most often, this is some variation of the birth-death [44, 45] or

coalescent [46, 47] models. These methods either assume the viral phylogeny is known, as we do in this

work, or (more commonly) integrate over phylogenetic uncertainty in a Bayesian framework. Phyloge-

netic inference is a complex topic which we shall not discuss here; see e.g. [48] for a full review.

Due to the relationship between the aforementioned processes, there is a degree of correspondence

between viral phylogenies and transmission trees [36, 40, 49, 50]. In particular, the transmission process

is quite similar to allopatric speciation [51], where genetic divergence follows the geographic isolation

of a sub-population of organisms. Thus, transmission, which is represented as branching in the transmis-

sion tree, causes branching in the viral phylogeny as well [52]. Similarly, the removal of an individual

from the transmission tree causes the extinction of their viral lineage in the phylogeny. Consequently,

the topology of the viral phylogeny is sometimes used as a proxy for the topology of the transmis-

sion tree [53]. Modern likelihood-based methods of phylogenetic reconstruction [e.g. 54, 55] produce

unrooted trees whose branch lengths measure genetic distance in units of expected substitutions per

site. On the other hand, transmission trees are rooted, and have branches measuring calendar time [11].

Therefore, estimating a transmission tree from a viral phylogeny requires the phylogeny to be rooted

and time-scaled. Methods for performing this process include root-to-tip regression [56–58], which we

apply in this work, and least-square dating [59]. Alternatively, the tree may be rooted separately with an

outgroup [60] before time-scaling.

A caveat of estimating transmission trees in this manner is that the correspondence between the

topologies of the viral phylogeny and transmission tree is far from exact [36, 61]. Due to intra-host

diversity, the viral strain which is transmitted may have split from another lineage within the donor

long before the transmission event occurred. Hence, the branching point in the viral phylogeny may be

much earlier than that in the transmission tree. Another possibility is that one host transmitted to two

or more recipients in one order, but the transmitted lineages originated within the donor in a different

order. In this case, the topology of the transmission tree and the viral phylogeny will be mismatched. In

practice, this discordance has not proven an insurmountable problem: for example, Leitner et al. [62] and

Paraskevis et al. [63] were able to accurately recover known transmission trees using viral phylogenies.

The problem of accurately estimating transmission trees is an ongoing area of research [31, 53, 64–67].

For example, Hall, Woolhouse, and Rambaut [53] developed a Bayesian method to jointly estimate a

transmission tree and viral phylogeny by combining models of agent-based transmission, within-host
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population dynamics, and sequence evolution.

1.2.4 Tree shapes

To perform phylodynamic inference, we must be able to extract quantitative information from viral

phylogenies. What is informative about a phylogeny, beyond the demographic characteristics of the

individuals it relates, is its shape. The shape of a phylogeny has two components: the topology, and the

distribution of branch lengths [68]. Methods of quantifying tree shape fall into two categories: summary

statistics, and pairwise measures. Summary statistics assign a numeric value to each individual tree,

while pairwise measures quantify the similarity between pairs of trees.

One of the most widely used tree summary statistics is Sackin’s index [69], which measures the

imbalance or asymmetry in a rooted tree. For the ith tip of the tree, we define Ni to be the number of

branches between that tip and the root. The unnormalized Sackin’s index is defined as the sum of all

Ni. It is called unnormalized because it does not account for the number of tips in the tree. Among

two trees having the same number of tips, the least-balanced tree will have the highest Sackin’s index.

However, among two equally balanced trees, the larger tree will have a higher Sackin’s index. This

makes it challenging to compare balances among trees of different sizes. To correct this, Kirkpatrick

and Slatkin [70] derive the expected value of Sackin’ index under the Yule model [71], under which

each lineage has an equal probability of splitting (creating a branching in the tree) at all times. Dividing

by this expected value normalizes Sackin’s index, so that it can be used to compare trees of different

sizes. An example of a pairwise measure is the normalized lineages-through-time (nLTT) [72], which

compares the LTT [34] plots of two trees. Specifically, the two LTT plots are normalized so that they

begin at (0,0) and end at (1,1), and the absolute difference between the two plots is integrated between

0 and 1. In the context of infectious diseases, the LTT is related to the prevalence [41], so large values

may indicate that the trees being compared were produced by different epidemic trajectories [72].

Poon et al. [17] developed an alternative pairwise measure which applies the concept of a ker-

nel function to phylogenies. Kernel functions, whose best known use is in support vector machines

(SVMs) [73], compare objects in a space X by mapping them into a feature space F of high or infinite

dimension via a function ϕ . The similarity between the objects is defined as

K(x,x′) = 〈ϕ(x),ϕ(x′)〉,

that is, the inner product of the objects’ representations in the feature space. Computing ϕ(x) may be

computationally prohibitive due to the dimension of F . The utility of a kernel function is that it is

constructed in such a way that it can compute the inner product without explicitly computing ϕ(x). The

kernel function developed in [17] will henceforth be referred to as the tree kernel. This kernel maps trees

into the space of all possible subset trees, which are subtrees that do not necessarily extend all the way to

the tips. The subset-tree kernel was originally developed for comparing parse trees in natural language

processing [74] and did not incorporate branch length information. The version developed by Poon et

al. [17] includes a radial basis function to compare the differences in branch lengths, thus incorporating
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both the trees’ topologies and their branch lengths in a single similarity score.

The kernel score of a pair of trees, denoted K(T1,T2), is defined as a sum over all pairs of nodes

(n1,n2), where n1 is a node in T1 and n2 is a node in T2. Following Poon et al. [17], let N(T ) denote the

set of all nodes in T , nc(n) be the number of children of node n, c j
n be the jth child of node n, and ln be

the ordered vector of branch lengths connecting node n to its nc(n) children. Furthermore, let nl(n) be

the number of children of n which are leaves (we always have nl(n)≤ nc(n)). The production rule of n

is the pair (nc(n),nl(n)). That is, if two nodes have the same number of children and among these, the

same number of leaves, then they have the same production rule. Let kG(x,y) be a Gaussian radial basis

function of the vectors x and y,

kG(x,y) = exp
(
− 1

2σ
‖x− y‖2

2

)
,

where ‖·‖2 is the Euclidean norm and σ is a variance parameter. The tree kernel is defined as

K(T1,T2) = ∑
n1∈N(T1)

∑
n2∈N(T2)

∆(n1,n2), (1.2)

where

∆(n1,n2) =


λ n1 and n2 are leaves

λkG(ln1 , ln2)
nc(n1)

∏
j=1

(
1+∆(c j

n1
,c j

n2
)
) n1 and n2 have the same

production rule

0 otherwise.

The parameter λ in the above expression, is called the decay factor [75], and takes a value between 0

and 1. Without this parameter, terms in the sum 1.2 corresponding to large subset trees with the same

topology would be similarly large and tend to dominate the kernel score. λ penalizes ∆ more strongly

as the number of recursive calls increases, which downweights the largest matching substructures and

allows smaller matches to contribute more to the kernel score. In this work, we refer to the parameters

λ and σ as meta-parameters, to avoid confusing them with model parameters we are trying to estimate.

When evaluating the tree kernel, it is helpful to reorder the children of each internal node such that

the larger of the two subtrees is on the right-hand side. If the two subtrees have equal sizes, then the

child with the longer branch length can be put on the right-hand side. This operation is referred to

as ladderizing. Since the ordering of children is arbitrary in phylogenies, this operation ensures that a

maximal number of matching subset trees are counted by the tree kernel without making meaningful

changes to the trees.

The tree kernel was later shown to be highly effective in differentiating trees simulated under a

compartmental model with two risk groups of varying contact rates [21]. In that paper, Poon used the

tree kernel as the distance function in approximate Bayesian computation (ABC) (see section 1.5), to fit

epidemiological models to observed trees.
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1.3 Contact networks

1.3.1 Overview

Epidemics spread through populations of hosts through contacts between those hosts. The definition

of contact depends on the mode of transmission of the pathogen in question. For an airborne pathogen

like influenza, a contact may be simple physical proximity, while for human immunodeficiency virus

(HIV), contact could be via unprotected sexual relations or blood-to-blood contact (such as through

needle sharing). A contact network is a graphical representation of a host population and the contacts

among its members [8, 76, 77]. The nodes in the network represent hosts, and edges or links represent

contacts between them. A contact network is shown in fig. 1.2 (left). Contact networks are a particular

type of social network [78, 79], which is a network in which edges may represent any kind of social or

economic relationship. Social networks are frequently used in the social sciences to study phenomena

where relationships between people or entities are important [for a review see 80].

Edges in a contact networks may be directed, representing one-way transmission risk, or undirected,

representing symmetric transmission risk. For example, a network for an airborne epidemic would use

undirected edges, because the same physical proximity is required for a host to infect or to become in-

fected. However, an infection which may be spread through blood-to-blood contact through transfusions

would use directed edges, since the recipient has no chance of transmitting to the donor. Directed edges

are also useful when the transmission risk is not equal between the hosts, such as with HIV transmission

among men who have sex with men (MSM), where the receptive partner carries a higher risk of infection

than the insertive partner [81]. In this case, a contact could be represented by two directed edges, one in

each direction between the two hosts, with the edges annotated by what kind of risk they imply [80]. An

undirected contact network is equivalent to a directed network where each contact is represented by two

symmetric directed edges. The degree of a node in the network is how many contacts it has. In directed

networks, we may make the distinction between in-degree and out-degree, which count respectively the

number incoming and outgoing edges. The degree distribution of a network denotes the probability that

a node has any given number of links. The set of edges attached to a node are referred to as its incident

edges.

Epidemiological models most often assume some form of contact homogeneity. The simplest mod-

els, such as the susceptible-infected-recovered (SIR) model [5], assume a completely homogeneously

mixed population, where every pair of contacts is equally likely. More sophisticated models partition the

population into groups with different contact rates between and among each group [82]. However, these

models still assume that every possible contact between a member of group i and a member of group

j is equally likely. Real human communuties are not necessarily homogeneously mixed; therefore, this

assumption can lead to errors in predicted epidemic trajectories when there is substantial heterogeneity

present [6, 83, 84]. Contact networks provide a way to relax this assumption by representing individuals

and their contacts explicitly. It is important to note that, although panmixia is an unrealistic modelling

assumption, it has not proven a substantial hurdle to epidemic modelling in practice [5]. Using this

assumption, researchers have been able to derive estimates of the transmission rate and the basic repro-
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ductive number of various outbreaks, which have agreed with values obtained by on-the-ground data

collection [85]. Therefore, if one is interested only in these population-level variables, the additional

complexity of contact network models may not be warranted. Rather, these models are most useful

when we are interested in properties of the network itself, such as centrality, structural balance, and

transitivity [80].

From a public health perspective, knowledge of contact networks has the potential to be extremely

useful. On a population level, network structure can dramatically affect the speed and pattern of epi-

demic spread [e.g. 7, 86]. For example, epidemics are expected to spread more rapidly in networks

having the “small world” property, where the average path length between two nodes in the network is

relatively low [87]. Some sexually transmitted infections would not be expected to survive in a homoge-

neously mixed population, but their long-term persistence can be explained by contact heterogeneity [5,

88]. Hence, the contact network can provide an idea of what to expect as an epidemic unfolds. In terms

of actionable information, the efficacy of different vaccination strategies may depend on the topology

of the network [8–10, 89]. On a local level, contact networks can be informative about the groups or

individuals who are at highest risk of acquiring or transmitting infection who would therefore benefit

most from public health interventions [28, 29].

Contact networks are a challenging type of data to collect, requiring extensive epidemiological in-

vestigation in the form of contact tracing [8, 39, 42, 77]. Therefore, it has been necessary to explore

less resource-intensive alternatives which still contain information about population structure. For in-

stance, it is possible to obtain limited information about the contact network by individual interviews

without contact tracing. Variables which can be estimated in this fashion are referred to as node-level

measures [80]. One of the most well-studied of these is the degree distribution mentioned above, which

can theoretically be estimated by simply asking each person how many contacts they had in some inter-

val of time. However, the degree distributions often observed in real-world sexual networks are heavy-

tailed [22–24], so dense or respondent-driven sampling [90] would be needed to capture the high-degree

nodes characterizing the tail of the distribution.

An alternative approach has been the analysis of other types of network, which can be directly

estimated with phylogenetic methods from viral sequence data. Some work focuses on the phylogenetic

network, in which two nodes are connected if the genetic distance between their viral sequences is below

some threshold. Primarily, this work has focused on the detection of phylogenetic clusters, which are

groups of individuals whose viral sequences are significantly more similar to each other’s than to the

general population’s. The phylogenetic network is informative about “hotspots” of transmission and can

be used to identify demographic groups to whom targeted interventions are likely to have the greatest

effect [91]. However, this network may show little to no agreement with contact data obtained through

epidemiological methods [92–94] and therefore may be a poor proxy for the contact network. Other

studies [95] have investigated the transmission network, which is the subgraph of the contact network

consisting of infected nodes and the edges that led to their infections [39] (fig. 1.2, left). It is possible

to estimate the transmission network phylogenetically, although the methods required for doing so are

more sophisticated than for estimating the phylogenetic network [95]. These studies again mostly focus
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on clustering and also on degree distributions.

Other statistical methods have been developed to infer contact network parameters strictly from the

timeline of an epidemic, using neither genetic data nor reported contacts. Britton and O’Neill [96] de-

veloped a Bayesian method to infer the p parameter of an Erdős-Rényi (ER) network, along with the

transmission and removal rate parameters of the susceptible-infected (SI) model, using observed infec-

tion and optionally removal times. However, it was designed for only a small number of observations,

and was unable to estimate p independently from the transmission rate. Groendyke, Welch, and Hunter

[97] significantly updated and extended the methodology of Britton and O’Neill and applied it to a

measles outbreak affecting 188 individuals. They were able to obtain a much more informative estimate

of p, although this data set included both symptom onset and recovery times for all individuals and was

unusual in that the entire contact network was presumed to be infected. Volz [86] developed differen-

tial equations describing the dynamics of the SIR model on a wide variety of random networks defined

by their degree distributions. Although the topic of estimation was not addressed in the original paper,

Volz’s method could in principle be used to fit such models to observed epidemic trajectories, similar to

what is done with the ordinary SIR model. Volz and Meyers [83] later extended the method to dynamic

contact networks and applied it to a sexual network relating 99 individuals investigated during a syphilis

outbreak.

1.3.2 Scale-free networks and preferential attachment

A scale-free network is one whose degree distribution follows a power law, meaning that the number of

nodes in the network with degree k is proportional to k−γ for some constant γ [27]. Scale-free networks

are characterized by a large number of nodes of low degree, with relatively few “hub” nodes of very high

degree. Epidemiological surveys have indicated that human sexual networks tend to be scale-free [22–

25]. Interestingly, many other types of network, including computer networks [88], biological metabolic

networks [98], and academic co-author networks [99], also have the scale-free property.

Several properties of scale-free networks are relevant in epidemiology. The high-degree hub nodes

are known as superspreaders [100], which have been postulated to contribute in varying degree to the

spread of diseases such as HIV [37] and severe acute respiratory syndrome (SARS) [101]. Scale-free

networks have no epidemic threshold [88], meaning that diseases with arbitrarily low transmissibility

have a chance, however small, of persisting at low levels indefinitely. This is in contrast with homo-

geneously mixed populations, in which transmissibility below the epidemic threshold would result in

exponential decay in the number of infected individuals and eventual extinction of the pathogen [5].

One mechanism which has been shown to lead to scale-free networks is preferential attachment [27,

102]. The simplest preferential attachment model is known as the Barabási-Albert (BA) model after its

inventors [27]. Under this model, networks are formed by starting with a small number m0 of nodes.

New nodes are added one at a time until there are a total of N in the network. Each time a new node

is added, m ≥ 1 edges are added from it to other nodes in the graph. In the original formulation, the

partners of the new node are chosen with probability linearly proportional to their degree plus one.

There has been some contention over the idea that contact networks are scale-free. Handcock and
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Figure 1.3: Examples of Barabási-Albert networks with preferential attachment power α = 0 (left),
1 (centre), and 2 (right). All networks have N = 50 nodes and were constructed with m = 2 edges
per vertex. When α = 0, attachments are formed at random and most nodes have low degree. When
α = 1, preferential attachment is linear and several higher-degree nodes are observable. When α = 2,
preferential attachment is quadratic and nearly every vertex is attached to a small number of hub nodes.

Jones [26] fit several stochastic models of partner formation to empirical degree distributions derived

from population surveys of sexual behaviour. They found that a negative binomial distribution, rather

than a power law, was the best fit to five out of six datasets, although the difference in goodness of

fit was extremely small in four out of these five. Bansal, Grenfell, and Meyers [6] found that an expo-

nential distribution, rather than a power law, was the best fit to degree distributions of six social and

sexual networks. Dombrowski et al. [103] contend that sexual networks are shaped more by homophily

(“like attract like”) than by preferential attachment, but find that injection drug users (IDU) network do

demonstrate a scale-free structure.

In the paper describing the BA model, Barabási and Albert suggest an extension where the proba-

bility of choosing a partner of degree d is proportional to dα +1 for some constant α . When α 6= 1, the

degree distribution no longer follows a power law [104]. For α < 1, the distribution is a stretched expo-

nential, meaning that the number of nodes of degree k is proportional to exp(−kβ ) for some constant β .

For α > 1, the distribution takes on a characteristic called gelation, where a one or a few high-degree hub

nodes are connected to nearly every other node in the graph. We do not believe these departures from the

power law affect the applicability of the model to real world networks. In fact, de Blasio, Svensson, and

Liljeros [105] were able to estimate the preferential attachment power from partner count data collected

from the same individuals for consecutive time intervals, and found a value less than one in all cases.

It is also worth noting that, in addition to the BA model, other investigations of the interaction between

contact networks and transmission trees have studied the Erdős-Rényi and Watts-Strogatz models [106],

whose degree distributions do not generally follow a power law under any parameter settings.

When m = 1, the network takes on the distinctive shape of a tree, that is, it does not contain any

cycles. Cycles are present in the network for all other m values. Examples of BA networks with three

different values of the preferential attachment power α are shown in fig. 1.3.
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1.3.3 Relationship between network structure and transmission trees

The contact network underlying an epidemic constrains the shape of the transmission network, which in

turn determines the topology of the transmission tree relating the infected hosts (fig. 1.2). The index case

who introduces the epidemic into the network becomes the root of the tree. Each time a transmission

occurs, the lineage corresponding to the donor host in the tree splits into two, representing the recipient

lineage and the continuation of the donor lineage. Figure 1.2 illustrates this correspondence. It must be

emphasized that, although the order and timing of transmissions determines the tree topology uniquely,

the converse does not hold. That is, for any given topology, there are in general many transmission net-

works which would lead to that topology. In other words, it is impossible to distinguish who transmitted

to whom from a transmission tree alone [107].

A number of studies have made progress in quantifying the relationship between contact networks

and transmission trees. O’Dea and Wilke [108] simulated epidemics over networks with four types of

degree distribution. They then estimated the Bayesian skyride [109] population size trajectory in two

ways: from the phylogeny, using MCMC; and from the incidence and prevalence trajectories, using the

method developed by Volz et al. [52]. The concordance between the two skyrides, as well as the relation-

ship between the skyride and prevalence curve, was qualitatively different for each degree distribution.

Leventhal et al. [106] investigated the relationship between transmission tree imbalance and several

epidemic parameters under four contact network models and found that these relationships varied con-

siderably depending on which model was being considered. The authors also investigated a real-world

HIV phylogeny and found a level of imbalance inconsistent with a randomly mixing population. Welch

[110] simulated transmission trees over networks with varying degrees of community structure. They

found that transmission trees simulated under networks with low clustering could not generally be dis-

tinguished from those simulated under highly clustered networks and concluded that contact network

clusters do not affect transmission tree shape. However, more recently, Villandre et al. [111] investi-

gated the correspondence between contact network clusters and transmission tree clusters and did find a

moderate correspondence between the two in some cases. Goodreau [112] combined a dynamic contact

network model with a model of within-host viral evolution to simulate viral phylogenies over eight types

of contact network. Estimates of prevalence and effective population size were calculated for each sim-

ulated phylogeny under three models of epidemic growth. The author found that estimates for networks

with a small high-risk subgroup and networks involving commercial sex workers were substantially

different than estimates for random networks or networks with segregated equal-risk groups.

1.4 Sequential Monte Carlo

1.4.1 Overview and notation

Recall that the primary objective of our work is to develop a statistical inference method for estimating

contact network parameters from transmission trees. For a network model with parameters θ and an

input transmission tree T , our goal is to estimate statistics, such as means and credible intervals, of the
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posterior distribution (1.1). As alluded to in section 1.1, both the likelihood f (T | θ) and the normalizing

constant are likely computationally intractable (this will be discussed further in section 2.1.4). Hence,

rather than computing the posterior distribution analytically, we will approximate it using a Monte Carlo

approach. The fundamental idea behind Monte Carlo methods is succinctly expressed by Liu, Chen, and

Logvinenko [113]:

Monte Carlo’s view of the world is that any probability distribution π , regardless of its

complexity, can always be represented by a discrete sample from it. By “represented”, we

mean that any computation of expectations using π can be replaced to an acceptable degree

of accuracy by using the empirical distribution resulting from the discrete sample.

In other words, if we are able to sample enough points from a distribution of interest, we will be able to

make reasonably accurate statements about the distribution itself. For example, the expected value of the

distribution can be estimated by the sample’s population mean. The reason Monte Carlo methods will be

useful in this work is that algorithms exist for obtaining samples from distributions that are analytically

intractable and from which direct sampling is not possible (for a review see [114]). Sequential Monte

Carlo (SMC) [115–117] is one such algorithm.

SMC considers a population of points or “particles”, here denoted
{

x(k)
}

and indexed by an integer

k. The particles are associated with weights,
{

w(x(k))
}

representing their probability density. After the

algorithm has been run, the weighted particles are a Monte Carlo representation for the target distribu-

tion. For example, the expected value is approximated by

1
n

n

∑
k=1

x(k)w(x(k)),

where n is the number of particles. The weights of the whole population always sum to 1 so that their

weighted histogram defines a true probability density function integrating to 1. Initially, the particles do

not represent the target distribution but rather a more tractable distribution from which direct sampling

is straightforward. The word “sequential” is used to describe the iterative process of perturbation, re-

sampling, and reweighting applied to the particles in such a way that they converge, collectively, to a

representation of the target. SMC is also known as the particle filter.

In this work, the distribution of interest is the posterior distribution ??. The particles are particular

values of the parameters θ of the contact network model being studied. If we were taking a typical

Bayesian Monte Carlo approach to this problem, the particles would end up weighted by their posterior

probability and distributed in such a way that the weighted population was a reasonable representation

of π(θ | T ). In our case, due to the intractable likelihood, we will need to consider an approximation to

the posterior (see section 1.5). However, for now, nothing is lost by assuming that our target distribution

is the posterior itself.

In this section, we review an algorithm called the SMC sampler, developed by Del Moral, Doucet,

and Jasra [118], which forms the basis of the adaptive ABC-SMC algorithm we apply toward the main

objective of this work. We begin by describing sequential importance sampling (SIS), which is a precur-

sor to SMC that samples from a sequence of distributions defined on spaces of increasing dimension.
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We then describe SMC itself, which extends SIS with a resampling step to fight particle degeneracy.

Finally, we outline the SMC sampler, which allows SMC to be applied to sequences of distributions all

defined on the same space. This terminology will become clear as the methods are described.

To fully describe SMC, we will introduce some notation and terminology. For a sequence x1, . . . ,xd ,

we will write xi to mean the partial sequence x1, . . . ,xi. The subscript (k) will be used to indicate the kth

particle in a population. To ease the notational burden we will omit the superscripts and subscripts on

the weight functions w. We define a Markov kernel as the continuous analogue of the transition matrix

in a finite-state Markov model. For some spaces X and Y , K : X×Y → [0,1] such that∫
Y

K(x,y)dy = 1 (1.3)

for all x∈X . This is an “operational” definition of Markov kernel which will be suitable for our purposes.

A more rigorous definition can be found in e.g. [119]. Note that Markov kernels have nothing to do with

the kernel functions defined in section 1.2.4, other than sharing a name (the word “kernel” is ubiquitous

in mathematics). Also, the variable π refers to a generic distribution in the following descriptions of

SMC and related algorithms, and does not refer to the prior or posterior distributions we will eventually

want to work with.

1.4.2 Sequential importance sampling

Sequential importance sampling (SIS) [120] is a particle-based method whose aim is to sample from a

distribution π on an high-dimensional space, say π(x) = π(x1, . . . ,xd). The basis of SIS is importance

sampling (IS), which is a method of estimating summary statistics of distributions which are known

only up to a normalizing constant, and therefore cannot be sampled from directly. That is, if π is such a

distribution and f is any real-valued function, IS is concerned with estimating

π( f ) =
∫

f (x)π(x)dx =
∫

f (x)
γ(x)

Z
dx,

where the integral is over the space on which π is defined, γ(x) is known pointwise, and Z =
∫

γ(x)dx

is the unknown normalizing constant. Suppose we have at hand another distribution η , called the im-

portance distribution, from which we are able to sample. Define the importance weight as the ratio

w(x) = γ(x)/η(x). We can write the expectation of interest as∫
f (x)π(x)dx =

1
Z

∫
w(x)η(x) f (x)dx. (1.4)

Since η can be sampled from exactly, and γ and f can both be evaluated pointwise, the integral∫
w(x)η(x) f (x)dx can be approximated by a Monte Carlo estimate. We simply take a sample from

η , multiply each point in the sample by f and γ evaluated at that point, and sum the results. More-

over, the normalizing constant Z can be expressed in terms of the importance weight and distribution,

Z =
∫

w(x)η(x)dx. Therefore, we have all the ingredients we need to obtain an estimate of π( f ) using

eq. (1.4). Although this is a simple and elegant approach, the drawback is that the variance of the esti-
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mate is proportional to the variance of the importance weights [117], which may be quite large if η and

γ are very different. Therefore, the practical use of IS on its own is limited, since it depends on finding

an importance distribution similar to π , which we usually know very little about a priori.

The objective of SIS is to build up an importance distribution η for π sequentially. By the general

product rule, π(x) can be decomposed as

π(x) = π(x1)π(x2 | x1) · · ·π(xd−1 | xd−2)π(xd | xd−1).

This decomposition is natural in many contexts, particularly for on-line estimation. For example, in a

stateful model like an hidden Markov model (HMM), xi may represent the state at time i, with π(x) being

the posterior distribution over possible paths. The importance distribution η for π will be constructed

using a similar decomposition,

η(x) = η(x1)η(x2 | x1) · · ·η(xd−1 | xd−2)η(xd | xd−1).

The importance weights for η can be written recursively as

w(xi) =
π(xi)

η(xi)
definition of importance weight

=
π(xi | xi−1)π(xi−1)

η(xi | xi−1)η(xi−1)
definition of conditional probability

=
π(xi | xi−1)

η(xi | xi−1)
·w(xi−1) definition of importance weight.

(1.5)

Thus, we can choose η(xi | xi−1) such that the variance of the importance weights is as small as possible

at every step, eventually arriving at a full importance distribution. This choice is made on a problem-

specific basis, taking any available information about π(xi | xi−1) into account (see e.g. [117, 121] for

many examples). One potential choice for η(xi | xi−1) is simply π(xi | xi−1), if it is possible to compute.

In a Bayesian setting, the prior distribution may be used. The exact form of η(xi | xi−1) which minimizes

the variance of the weights is called the optimal kernel [122], the name deriving from the fact that

k(xi,xi−1) = η(xi | xi−1) is a Markov kernel. In some applications, it is possible to approximate the

optimal kernel or even compute it explicitly.

The recursive definition 1.5 suggests an algorithm for obtaining a sample from η and using it to

obtain an approximate sample from π by IS (algorithm 1). We begin with n particles, which have been

sampled from the importance distribution η(x1) for π(x1). Each particle is extended by drawing x2 from

η(x2 | x1), and the importance weights are updated by eq. (1.5). This procedure is repeated d times until

the particles have dimension equal to that of π .

1.4.3 Sequential Monte Carlo

The importance distribution η constructed with SIS is merely an approximation to π , and may be a

fairly poor one in practice depending on the application. Try as we might to keep the variances of the
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Algorithm 1 Sequential importance sampling.
for k = 1 to n do

Sample x(k)1 from η(x1) . Initialize the kth particle
w(k)← π(x(k)1 )/η(x(k)1 ) . Initialize importance weight

end for
for i = 2 to d do

for k = 1 to n do
Sample x(k)i from η(xi | x(k)i−1) . Extend the kth particle

w(k)← [π(x(k)i | x
(k)
i−1)/η(x(k)i | x

(k)
i−1)] ·w(k) . Update importance weight

end for
Normalize the weights so that ∑w = 1

end for

weights low, the cumulative errors at each sequential step tend to push many of the weights to very

low values [115]. This results in a poor approximation to π , since only a few particles retain high

importance weights after all d sequential steps, a problem known as particle degeneracy. To mitigate

this problem, Gordon, Salmond, and Smith [120] introduced technique they called the bootstrap filter,

which involves a resampling of the population of particles after each sequential step in accordance with

their importance weights. A similar idea, termed particle rejuvenation, was proposed by Liu and Chen

[123]. These approaches cause particles with high importance weights to be replicated in the population,

while particles with low weights may be removed. After each resampling step, the importance weights

for all particles are set equal.

The resampling step was formally integrated with SIS by Doucet, Godsill, and Andrieu [115] to

form the first SMC algorithm (algorithm 2). Rather than resample at every step as the bootstrap filter

proposed, the authors use a criterion based on the expected sample size (ESS) the particle population to

determine when resampling is necessary. The ESS of the population of particles is defined as

ESS(w) =
n

1+Var(w)
,

where n is the number of particles in the population. Resampling is triggered when the ESS drops below

the threshold (conventionally n/2 [117]). Various resampling strategies beyond basic sampling with

replacement have been proposed [124], but we will not discuss those here.

1.4.4 The sequential Monte Carlo sampler

The SIS and SMC algorithms described above aim to sample from a high-dimensional distribution π(x),
by sequentially sampling from d distributions of lower but increasing dimension. Del Moral, Doucet,

and Jasra [118] developed the SMC sampler with an alternative objective: to sample sequentially from

d distributions π1, . . . ,πd , all of the same dimension and defined on the same space. The πi are assumed

to form a related sequence, such as posterior distributions attained by sequentially considering new

evidence. As with SIS, we assume that πi(x) = γi(x)/Zi, where each γi is known pointwise and the

normalizing constants Zi are unknown.
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Algorithm 2 Sequential Monte Carlo [115].
for k = 1 to n do

Sample x(k)1 from η(x1) . Initialize the kth particle
w(k)← π(x(k)1 )/η(x(k)1 ) . Initialize importance weight

end for
for i = 2 to d do

for k = 1 to n do
Sample x(k)i from η(xi | x(k)i−1) . Extend the kth particle

w(k)← [π(x(k)i | x
(k)
i−1)/η(x(k)i | x

(k)
i−1)] ·w(k) . Update importance weight

end for
if ESS(w)< T then . T is a user-defined threshold

Resample the particles according to w
for k = 1 to n do

w(k)← 1/n
end for

end if
end for

Both algorithms involve progression through a sequence of related distributions. For SIS and SMC,

these distributions are lower-dimensional marginals of the target distribution, while for the SMC sam-

pler, they are of the same dimension and constitute a smooth progression from an initial to a final

distribution. In both cases, the neighbouring distributions in the sequence are related to each other in

some way, and we can take advantage of that relationship to create a sequence of importance distri-

butions alongside the sequence of targets. In SIS, the neighbouring marginals π(xi) and π(xi+1) were

related by the conditional density π(xi | xi−1), which we used to inform the importance distribution. In

SMC, the relationship between subsequent distributions is less explicit, but it is assumed that they are

related closely enough that an importance distribution for πi can be easily transformed into one for πi+1.

In particular, the sequence of importance distributions ηi is constructed as

ηi(x′) =
∫

ηi−1(x)Ki(x,x′)dx, (1.6)

where Ki is a Markov kernel and the integral is over the space on which the πi are defined. The choice

of Ki should be based on the perceived relationship between πi−1 and πi. Del Moral, Doucet, and Jasra

[118] propose the use of a MCMC kernel with equilibrium distribution πi. That is,

Ki(x,x′) = max
(

1,
q(x′,x)πi(x)
q(x,x′)πi(x′)

)
,

where q(x,x′) is a proposal function such as a Gaussian distribution centred at x from which x′ is drawn

(see appendix A).

Although this method of building up η appears straightforward, the drawback is that the importance

distribution itself becomes intractable. In particular, evaluating ηi(x) involves an i-dimensional integral

of the type in eq. (1.6). As it is necessary to evaluate η(x) pointwise to perform IS, this construction
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appears to have defeated the purpose of providing an importance distribution for each πi. Del Moral,

Doucet, and Jasra [118] overcome this problem with two “artificial” objects. First, they propose the

existence of backward Markov kernels Li−1(xi,xi−1). For now, these kernels are arbitrary; they will later

be precisely defined on a problem-specific basis. Second, the authors define an alternative sequence of

target distributions

π̃i(xi) = πi(xi)
i−1

∏
k=1

Lk(xk+1,xk)

of increasing dimension. That is, π̃i has dimension equal to the original dimension of πi raised to the

power of i. This brings us back to the SIS setting described above (section 1.4.2), namely of building up

an importance distribution sequentially through lower-dimensional distributions. The dimension of the

importance distributions η is similarly augmented with the forward kernels,

ηi(xi) = η1(x1)
i−1

∏
k=1

Kk(xk,xk+1) (1.7)

Thanks to the backwards kernels, we can write π̃i in terms of π̃i−1 as follows.

π̃i(xi) = πi(xi)
i−1

∏
k=1

Lk(xk+1,xk) definition of π̃i

= πi(xi)Li−1(xi−1,xi)
i−2

∏
k=1

Lk(xk+1,xk) pull out k = i−1 term from product

=
πi(xi)Li−1(xi−1,xi)

πi−1(xi−1)
·πi−1(xi−1)

i−2

∏
k=1

Lk(xk+1,xk) multiply and divide by πi−1(xi−1)

=
πi(xi)Li−1(xi−1,xi)

πi−1(xi−1)
· π̃i−1(xi−1) definition of π̃i−1.

The importance distributions can also be expressed recursively using the forward kernels, which follows

directly from eq. (1.7),

ηi(xi) = ηi−1(xi−1)Ki(xi−1,xi).

Therefore, the importance weights for these new targets are defined recursively as

w(xi) =
π̃i(xi)

ηi(xi)
definition of importance weight

=
π̃i(xi)

ηi−1(xi−1)Ki(xi−1,xi)
recursive definition of ηi

=
π̃i−1(xi−1)πi(xi)Li−1(xi,xi−1)

ηi−1(xi−1)πi−1(xi−1)Ki(xi−1,xi)
recursive definition of πi

= w(xi−1) ·
πi(xi)Li−1(xi,xi−1)

πi−1(xi−1)Ki(xi−1,xi)
definition of importance weight

∝ w(xi−1) ·
γi(xi)Li−1(xi,xi−1)

γi−1(xi−1)Ki(xi−1,xi)
remove normalizing constant Zi/Zi−1 (1.8)
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The final key piece of information is to notice that, because the Li are Markov kernels, πi is simply

the marginal in xi−1 of π̃ . Therefore, a sample from π̃i automatically gets us a sample from πi, by

considering only the ith component of xi. In fact, since the weight update eq. (1.8) depends only on

the ith and i− 1st components of each particle, we do not even need to keep track of the complete

particles if we are only interested in the final distribution. The sequences of kernels L and K should

be chosen based on the problem at hand to minimize the variance in the importance weights as well

as possible. For a fixed choice of K, the backward kernels which minimize this variance are called the

optimal backward kernels. The full SMC sampler algorithm is presented as algorithm 3. A resampling

step is applied whenever the ESS of the population drops too low, as discussed in the previous section.

Algorithm 3 Sequential Monte Carlo sampler of Del Moral, Doucet, and Jasra [118].
for k = 1 to n do

Sample x(k)1 from η1(x1) . Initialize the kth particle
w(k)← γ1(x

(k)
1 )/η1(x

(k)
1 ) . Initialize the importance weights

Normalize the weights so that ∑w = 1
end for
for i = 2 to d do

for k = 1 to n do
Sample x(k)i from K(x(k)i−1,xi) . Extend the kth particle

w(k)← w(k) · γi(xi)Li−1(xi,xi−1)

γi−1(xi−1)Ki(xi−1,xi)
. Update the importance weights

end for
Normalize the weights so that ∑w = 1
if ESS(w)< T then . T is a user-defined threshold

Resample the particles according to w
for k = 1 to n do

w(k)← 1/n
end for

end if
end for

1.5 Approximate Bayesian computation

1.5.1 Overview and motivation

Sequential Monte Carlo, and the SMC sampler, were developed for sampling from distributions which

can be evaluated up to a normalizing constant. We claim, and shall argue more thoroughly below (sec-

tion 2.1.4) that the posterior distribution

π(θ | T ) ∝ f (T | θ)π(θ)

for a contact network model with parameters θ and an input transmission tree T does not fall in this

category. Therefore, SMC, and other Bayesian and maximum likelihood (ML) techniques for fitting

20



mathematical models (see appendix A), cannot be directly applied to our problem. In particular, MCMC

and the SMC sampler are designed for distributions π which can be evaluated up to a normalizing

constant Z, that is, π(x) = γ(x)/Z. Both algorithms calculate a ratio of the form π(x)/π(x′) ∝ γ(x)/γ(x′)

for a current value x and proposed updated value x′ - for MCMC, this is part of the Metropolis-Hastings

ratio, while for the SMC sampler, a similar ratio is required to calculate the importance weights. In

the context of Bayesian inference, this ratio contains a likelihood ratio, which must be calculated by

computing the individual likelihoods and dividing them. If the likelihood is intractable, this is clearly

not a viable approach.

Approximate Bayesian computation (ABC) [13–15] was developed to estimate posterior distribu-

tions with intractable likelihoods, which have arisen frequently in the domain of population genetics [16,

125]. ABC navigates around the intractable likelihood by replacing the posterior as the target of infer-

ence by an approximate posterior. This distribution is constructed in such a way that the ratios required

for MCMC and the SMC sampler can be computed, conveniently allowing us to apply those algorithms

with minimal changes. In the next section, we shall demonstrate how this is done, but first we give the

definition of the approximate posterior.

By targeting the posterior distribution, Bayesian inference makes the assertion that model parame-

ters with higher posterior density are “better” in the sense that they offer a more credible explanation

for the observed data. The approximate posterior targeted by ABC uses an alternative metric for pa-

rameter credibility: the similarity of simulated datasets to the observed data. If datasets simulated under

the model closely resemble the real data, it follows that the model is a reasonable approximation to the

real-world process generating the observed data. More formally, let y be the observed data to which we

are trying to fit a model with parameters θ . In the case of this work, the data is a transmission tree T ,

but we shall stick with the generic variable y for now. Suppose we have a distance measure ρ defined

on the space of all possible data our model could generate. ABC aims to sample from the joint posterior

distribution of model parameters and simulated datasets z which are within some small distance ε of the

observed data y,

πε(θ ,z | y) =
π(θ) f (z | θ)IAε,y(z)∫

Aε,y×Θ
π(θ) f (z | θ)dθ

. (1.9)

Here, Aε,y is an ε-ball around y with respect to ρ , Θ is the space of all possible model parameters, and I is

the indicator function [126] (that is, IAε,y(x) = 1 if x ∈ Aε,y or 0 otherwise). The distribution πε(θ ,z | y)
will be referred to as the ABC target distribution. The term f (z | θ) appears to be the bothersome

likelihood again, but this will turn out not to be a problem because we are simulating z ourselves.

To return to the context of this thesis, the observed data y is an estimated transmission tree for a viral

epidemic under investigation. The model in question is a contact network model with parameters θ . The

simulated dataset z is a transmission tree, obtained by first generating a contact network under the model,

and then simulating the spread of an epidemic over that network. A transmission tree can be constructed

by keeping track of who infected whom during the simulated epidemic (further details will be given in

section 2.1.1). The distance function ρ must compare two transmission trees - the observed tree, which
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takes the place of y, and the simulated tree z. We will define this distance function using the tree kernel

discussed in section 1.2.4. To write eq. (1.9) in words, the approximate posterior we consider here is a

distribution which assigns a joint probability density to model parameters and simulated transmission

trees under those parameters. The probability density is proportional to the product of the prior on the

parameters, and the likelihood of the simulated transmission tree under those parameters, but only if the

simulated transmission tree is sufficiently close to the observed tree. Otherwise, the probability density

is zero.

In fact, it is not the ABC target distribution itself, but rather its marginal in z, which approximates

the posterior distribution. In other words, we claim that∫
πε(θ ,z | y)dz≈ π(θ | y).

The intuition for why this approximation might be reasonable comes from considering the case when

ε = 0 and ρ has the property that ρ(z,y) if and only if x = y. In that case, the ε-ball around y should

contain only y itself, hence the integral on the left is exactly equal to the posterior. Thus, by taking ε

small, we should attain something close to the posterior if ρ captures the similarity between datasets

reasonably well. However, the accuracy of the ABC approximation depends heavily on the choice of

distance function [127, 128].

Distance functions and summary statistics in ABC

In many applications (eg. [15, 129]), ρ is defined as ρ(S(·),S(·)) where S is a function which maps

data points into a vector of summary statistics. In the context of ABC, a summary statistic S is called

sufficient if

π(θ | y) = π(θ | S(y)).

That is, sufficiency implies that the data can be replaced with the summary statistic without losing any

information about the posterior distribution [130]. For most problems, it is not possible to find sufficient

summary statistics [130]. A number of sophisticated methods have been developed for selecting and

weighting summary statistics based on various optimality criteria [127, 128, and references therein]. We

do not apply these methods in this work, instead focusing on a distance function which is not based on

summary statistics.

Although summary statistics are often presented as a fundamental part of ABC, they are not strictly

necessary. For instance, if the data are numeric and of low dimension, the distance function may simply

be the Euclidean distance [131]. Park et al. [18] proposed the use of a kernel function (as defined in

section 1.2.4) in place of a distance function. The authors referred to their approach as “double-kernel

ABC” due to the use of a second (unrelated) kernel function to compute the weights of the particles. The

work by Poon [21], upon which ours is based, employed a similar approach, replacing the likelihood

ratio in Bayesian MCMC with a ratio of kernel scores.
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1.5.2 Algorithms for ABC

Algorithms for performing ABC can be grouped into three categories: rejection, MCMC, and SMC [126].

To simplify the notation, we shall restrict the descriptions of these algorithms to the case of one sim-

ulated dataset per parameter particle (the meaning of this will become clear shortly). The extension to

multiple datasets per particle is straightforward and will be given at the end of the section. We use the

variable x to refer to the pair (θ ,z), so that the ABC target distribution can be written πε(x | y). This

makes our notation consistent with section 1.4.

Rejection ABC is the simplest method, and also the one that was first proposed [13, 14]. The al-

gorithm, outlined in algorithm 4, repeats the following steps until a desired number of samples from

the target distribution are obtained. Parameter values θ are sampled according to the prior distribution

π(θ). Then, a simulated dataset z is generated from the model with the sampled parameter values. By

definition, the probability density of obtaining the particular dataset z is f (z | θ). Finally, the parameters

are sampled if the distance of z from the observed data y is less than ε , that is, with probability IAε,y(z).

Putting this all together, the parameters θ are sampled with probability proportional to

π(θ) f (z | θ)IAε,y(z),

which is exactly the numerator of the ABC target distribution. Thus, θ represents an unbiased sample

from the approximate posterior.

Algorithm 4 Rejection ABC.
loop

Draw θ according to π(θ)
Simulate a dataset z from the model with parameters θ

if ρ(y,z)< ε then
Sample θ

end if
end loop

Rejection ABC is easy to understand and implement, but it is not generally computationally feasible.

If the posterior is very different from the prior, a very large number of samples may need to be taken

in order to find a simulated dataset that is close to z. The inefficiency is compounded by the curse

of dimensionality - the measure of the ε-ball around y decreases exponentially with the number of

dimensions. ABC-MCMC (algorithm 5) was designed to overcome these hurdles [132]. The approach is

similar to ordinary Bayesian MCMC (appendix A), except that a distance cutoff replaces the likelihood

ratio. That is, the transition probability between states x and x′ is defined as

min
(

1,
π(θ ′)q(θ ′,θ)
π(θ)q(θ ,θ ′)

· IAε,y(z
′)

)
.

Some of the same computational inefficiencies arise with ABC-MCMC as with rejection. For ex-

ample, in regions of low posterior density, the probability to simulate a dataset proximal to the observed
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Algorithm 5 ABC-MCMC.
Draw θ according to π(θ)
loop

Propose θ ′ according to q(θ ,θ ′)
Simulate a dataset z′ according to the model with parameters θ

Accept θ ← θ ′ with probability min
(

1,
π(θ ′)q(θ ′,θ)
π(θ )q(θ ,θ ′)

· IAε,y(z
′)

)
end loop

data is low. Various strategies have been developed to mitigate this, including reducing the tolerance

level ε as the chain progresses [133].

The most recently developed class of algorithm for ABC is ABC-SMC [131, 134]. As with ABC-

MCMC, the algorithm is a straightforward modification of an existing Bayesian inference method, in this

case the SMC sampler (section 1.4.4). The sequence of target distributions is defined as πi(x) = πεi(x | y)
for a decreasing sequence of tolerances εi. The intention is for the algorithm to progress smoothly

through a sequence of target distributions which ends at the ABC approximation to the posterior. The

initial value ε1 is set to ∞, which makes the first distribution in the sequence

π1(θ ,z) =
π(θ) f (z | θ)∫

R×Θ
π(θ) f (z | θ)dθdz

.

This initial distribution does not depend on the observed data y. In the terminology of the SMC sampler

(algorithm 2), the numerator is the first of the γ’s, that is, γ1 = π(θ) f (z | θ). Sampling in proportion to

γ1 is straightforward and was already demonstrated for rejection ABC above. Because the sampling is

exact, the initial importance weights are all set equal to 1 and normalized to 1/n where n is the number

of particles.

As discussed in section 1.4.4, the choices of the kernels K and L are problem-specific, and so ap-

propriate kernels must be chosen for ABC. Several options have been proposed [20, 131, 134]. With an

appropriately chosen kernel, the weight update (eq. (1.8)) will simplify into a computable expression.

Sisson, Fan, and Tanaka [131] and Beaumont et al. [134] both suggest random walk kernels for K, where

each particle is perturbed according to a Gaussian distribution. The backwards kernels L are chosen to

approximately minimize the variance in importance weights. In this thesis, we use an MCMC kernel, as

proposed by Del Moral, Doucet, and Jasra [20]. The associated backwards kernels and weight updates

are discussed in the next chapter (section 2.1.3). With generic kernels K and L, the ABC-SMC algorithm

is almost identical to the SMC sampler (algorithm 3), with γi replaced with πi. Therefore we will not

repeat the full algorithm here.

All the algorithms discussed in this section can be straightforwardly extended to sample from the

joint distribution

πε(θ ,z1, . . . ,zM | y),

which is equivalent to associating M simulated datasets to each parameter particle instead of just one.

The simulated dataset z is replaced by z = z1, . . . ,zM, and the indicator function for the ε-ball around y
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is replaced by
M

∑
k=1

IAε,y(zi).

For ABC-MCMC and ABC-SMC, the proposal distribution q(θ ,θ ′) f (z | θ ′) is replaced by

qi(θ ,θ
′)

M

∏
k=1

f (zi | θ ′).

1.6 Summary

In section 1.1, we outlined three research objectives that will be addressed in this thesis. First, we aim

to develop a method for fitting contact network models to estimated transmission trees. Although trans-

mission trees can be estimated for any epidemic by thorough contact tracing, viral diseases are the most

useful context for this method due to the possibility of inferring the trees from sequence data. Transmis-

sion and sequence evolution occur on similar time scales for RNA viruses, resulting in viral phylogenies

whose shapes are heavily constrained by the transmission process. The study of this interaction between

evolution and epidemiology is called phylodynamics; phylodynamic methods make it possible to es-

timate transmission trees from viral sequence data. These estimated trees form the input data for our

method.

The desired output of our method is a posterior distribution of the parameters of a contact network

model. Rather than assuming a homogeneously mixed population, as most epidemiological models do,

network models take the more realistic view that human populations are structured. For example, con-

tacts may tend to occur more often between “like” individuals (with respect to geography, socioeco-

nomic status, or other factors) than at random. A network model provides a formal representation of this

structure. In particular, our second research objective is to characterize our ability to fit the Barabási-

Albert (BA) model, which incorporates preferential attachment to generate networks with realistic de-

gree distributions.

To fit these models, our method will apply approximate Bayesian computation (ABC), a simulation-

based approach. Simulating a transmission tree according to a network model is straightforward: a

network can be generated according to the model, and the spread of an epidemic can be simulated over

the network and recorded in a transmission tree. ABC uses the concordance between these simulated

transmission trees and the “true” estimated tree as an indicator of parameter credibility. The closer

the simulated transmission trees appear to the true tree, the more weight is assigned to the associated

network parameters.

ABC can be implemented by at least three classes of algorithm, but the one we choose to apply

in this work is sequential Monte Carlo (SMC). SMC uses a population of parameter “particles” to

approximate a distribution of interest, in this case the approximate posterior distribution targeted by

ABC. After running the ABC-SMC algorithm, statistics on the model parameters can be approximated

by the weighted population of particles. For example, a weighted average would give an approximate

expected value for each parameter.
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Thus, our method integrates four research topics: phylogenetics, contact networks, sequential Monte

Carlo, and approximate Bayesian computation. The first two topics together form the problem domain.

Phylogenetic data are the input to our method, while estimates of the parameters of contact network

models are the desired output. The latter two topics define the algorithm and statistical framework that

our inference method will use.
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Chapter 2

Reconstructing contact network
parameters from viral phylogenies

In this chapter, we will address the three research aims of this thesis introduced in section 1.1. First, in

section 2.1, we describe netabc, a computer program that implements an approximate Bayesian compu-

tation-based algorithm to fit contact network models to phylogenetic data. We also provide a justification

for the use of ABC for this problem by arguing that the likelihood functions required to fit these models

by more conventional means are likely to be computationally intractable. Second, in section 2.2, we

perform a simulation study to investigate the Barabási-Albert network model, which uses a preferential

attachment mechanism to generate networks with the power law degree distributions observed in real

world social and sexual networks. We progress through two exploratory analyses testing the identifi-

ability of the model’s parameters, and conclude by testing netabc’s ability to recover the parameters

from simulated transmission trees. Third, in section 2.3, we apply netabc to fit the BA model to six real

world HIV datasets, with the understanding of the model parameters’ identifiability gained through the

simulation experiments. We conclude the chapter with a unified discussion of the three research aims,

including interpretation of the results of both the simulated and real data experiments, as well as an

examination of the limitations of our approach and opportunities for future investigation.

2.1 Netabc: a computer program for estimation of contact network pa-
rameters with ABC

Netabc is a computer program to perform statistical inference of contact network parameters from an

estimated transmission tree using ABC. As discussed in section 1.1, the principal statistical algorithm

used by netabc is adaptive ABC-SMC [20]. In addition, there are two supplementary components which

are specific to the domain of phylogenetics and contact networks: Gillespie simulation [135], to simulate

transmission trees on contact networks; and the tree kernel [17], which is used as the distance function in

ABC to compare transmission trees [21] (see section 1.5). We give a high-level overview of the program

here, before describing these components in detail. Netabc takes as input an estimated transmission tree,
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Figure 2.1: Graphical schematic of the ABC-SMC algorithm implemented in netabc. Particles are
initially drawn from their prior distributions, making the initial population a Monte Carlo approximation
to the prior. At each iteration, particles are perturbed, and a distance threshold around the input tree
contracts. Particles are rejected, and eventually resampled, when all their associated simulated trees lie
outside the threshold. As the algorithm progresses, the population smoothly approaches a Monte Carlo
approximation of the ABC target distribution, which is assumed to resemble the posterior.

which can be derived from a viral phylogeny by rooting and time-scaling as described in section 1.2.3

or estimated by other methods [31, 53, 64–67]. We variously refer to this estimated transmission tree as

the observed tree, estimated tree, or input tree.

As described in section 1.4, netabc keeps track of a population of particles x(k) indexed by an integer

k, each of which contains particular parameter values θ (k) for the contact network model we are trying

to fit to the input tree. A small number M of contact networks z(k,i), 1≤ i≤M, are generated under the

model for each particle in accordance with that particle’s parameters. An epidemic is simulated over each

of these networks using Gillespie simulation, and by keeping track of its progress, a transmission tree is

obtained. Thus, each particle becomes associated with several simulated transmission trees. These trees

are compared to the input tree using the tree kernel. Particles are weighted according to the similarity

of their associated simulated trees with the input tree, with more similar trees receiving higher weights.

The particles are iteratively perturbed to explore the parameter space, and particles with simulated trees

too distant from the input tree are periodically dropped and resampled. Once a convergence criterion is

attained, the final set of particles is used as a Monte Carlo approximation to the target distribution of

ABC, which is assumed to resemble the posterior distribution on model parameters (see section 1.5). A

graphical schematic of this algorithm is shown in fig. 2.1.

Netabc is written in the C programming language. The igraph library [136] is used to generate and
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store contact networks and phylogenies. Judy arrays [137] are used for hash tables and dynamic pro-

gramming matrices. The GNU scientific library (GSL) [138] is used to generate random draws from

probability distributions, and to solve for the next ε by bisection in the adaptive ABC-SMC algorithm.

Parallelization is implemented with Portable Operating System Interface (POSIX) threads [139]. In

addition to the netabc binary to perform ABC, we provide three additional stand-alone utilities: treek-

ernel, to calculate the tree kernel; nettree, to simulate a transmission tree over a contact network; and

treestat, to compute various summary statistics of phylogenies. The programs are freely available at

https://github.com/rmcclosk/netabc.

To check that our implementation of Gillespie simulation was correct, we reproduced Figure 1A of

Leventhal et al. [106] (our fig. B.1), which plots the imbalance of transmission trees simulated over four

network models at various levels of pathogen transmissibility. Our implementation of adaptive ABC-

SMC was tested by applying it to the same mixture of Gaussians used by Del Moral, Doucet, and Jasra

[20] to demonstrate their method (originally used by Sisson, Fan, and Tanaka [131]). We were able to

obtain a close approximation to the function (see fig. B.2), and attained the stopping condition used by

the authors in a comparable number of steps. To check that the algorithm would converge to a bimodal

distribution, we also applied it to a mixture of two Gaussians with means ±4 and variances 1. The

algorithm was able to recover both peaks (fig. B.3).

2.1.1 Simulation of transmission trees over contact networks

The simulation of epidemics, and the corresponding transmission trees, over contact networks is per-

formed in netabc using the Gillespie simulation algorithm [135]. This method has been independently

implemented and applied by several authors [e.g. 94, 97, 106, 108, 111]. Groendyke, Welch, and Hunter

[97] published their implementation as an R package, but since the SMC algorithm is quite computa-

tionally intensive, we chose to implement our own version in C as part of netabc.

Let G= (V,E) be a directed contact network. We assume the individual nodes and edges of G follow

the dynamics of the SIR model [2]. Each directed edge e = (u,v) in the network is associated with a

transmission rate βe, which indicates that, once u becomes infected, the waiting time until u infects

v is distributed as Exponential(β e). Note that v may become infected before this time has elapsed, if

v has other incoming edges. v also has a removal rate νv, so that the waiting time until removal of v

from the population is Exponential(νv). Removal may correspond to death or recovery with immunity,

or a combination of both, but in our implementation recovered nodes never re-enter the susceptible

population. We define a discordant edge as an edge (u,v) where u is infected and v has never been

infected. In the epidemiology literature, the symbol γ is usually used in place of ν ; we use ν here to

distinguish the recovery rate from the power law exponent of scale free networks (see section 1.3.2).

To describe the algorithm, we introduce some notation and variables. Let inc(v) be the set of in-

coming edges to v, and out(v) be the set of outgoing edges from v. Let I be the set of infected nodes

in the network, R be the set of removed nodes, S be the set of susceptible nodes, and D be the set of

discordant edges in the network. Let β be the total transmission rate over all discordant edges, and ν be
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the total removal rate of all infected nodes,

β = ∑
e∈D

β e, ν = ∑
v∈I

νv.

The variables S, I,R,D, β , and ν are all updated as the simulation progresses. When a node v becomes

infected, it is deleted from S and added to I. Any formerly discordant edges in inc(v) are deleted from

D, and edges in out(v) to nodes in S are added toD. If v is later removed, it is deleted from I and added

toR, and any discordant edges in out(v) are deleted from D. At the time of either infection or removal,

the variables β and ν are updated to reflect the changes in the network.

The Gillespie simulation algorithm is given as section 2.1.1. The transmission tree T is simulated

along with the epidemic. We keep a map called “tip”, which maps infected nodes in I to the tips of

T . The simulation continues until either there are no discordant edges left in the network, or we reach

a user-defined cutoff of time (tmax) or number of infections (I). We use the notation Uniform(0,1) to

indicate a number drawn from a uniform distribution on (0,1), and Exponential(λ ) to indicate a number

drawn from an exponential distribution with rate λ . The combined number of internal nodes and tips in

T is denoted |T |. The updates to S, I,R,D, β , and ν described in the previous paragraph are not written

explicitly in section 2.1.1, as they are quite straightforward and would only obfuscate the pseudocode.

Algorithm 6 Simulation of an epidemic and transmission tree over a contact network
infect a node v at random, updating S, I, D, β , and ν

T ← a single node with label 1
tip[v]← 1
t← 0
while D 6=∅ and |I|+ |R|< I and t < tmax do

s←min(tmax− t, Exponential(β +ν))
for v ∈ tip do

extend the branch length of tip[v] by s
end for
t← t + s
if t < tmax then

if Uniform(0,β +ν)< β then
choose an edge e = (u,v) from D with probability β e/β and infect v
tip[v]← |T |+1 . add new tips to tree and tip array
tip[u]← |T |+2 . corresponding to u and v
add tips with labels (|T |+1) and (|T |+2) to T
connect the new nodes to tip[v] in T , with branch lengths 0

else
choose a node v from I with probability νv/ν and remove v
delete v from tip

end if
update S, I,R, D, β , and ν

end if
end while

30



2.1.2 Phylogenetic kernel

The tree kernel developed by Poon et al. [17] provides a comprehensive similarity score between two

phylogenetic trees, via the dot-product of the two trees’ feature vectors in the space of all possible

subset trees with branch lengths (see section 1.2.4). Because the branch lengths are continuous, there

are infinitely many possible subset trees; hence, the feature space is infinite-dimensional. The kernel

was implemented using the fast algorithm developed by Moschitti [75]. First, the production rule of

each node, which is the total number of children and the number of leaf children, is recorded. The nodes

of both trees are ordered by production rule, and a list of pairs of nodes sharing the same production rule

is created. These are the nodes for which the value of the tree kernel must be computed - all other pairs

have a value of zero. The pairs to be compared are then re-ordered so that the child nodes are always

evaluated before their parents. Due to its recursive definition, ordering the pairs in this way allows

the tree kernel to be computed by dynamic programming. The complexity of this implementation is

O(|T 1||T 2|) for the two trees T 1 and T 2 being compared.

The tree kernel cannot be used directly as a distance measure for ABC, since it is maximized, not

minimized, when the two trees being compared are the same. Therefore, we defined the distance between

two trees as

ρ(T 1,T 2) = 1− K(T 1,T 2)√
K(T 1,T 1)K(T 2,T 2)

,

which is a number between 0 and 1 that is minimized when T 1 = T 2. This is similar to the normalization

used by Poon et al. [17] and Collins and Duffy [74].

2.1.3 Adaptive sequential Monte Carlo for Approximate Bayesian computation

We implemented the adaptive SMC algorithm for ABC developed by Del Moral, Doucet, and Jasra [20].

This algorithm is similar to the reference ABC-SMC algorithm described in section 1.5.2, except that the

sequence of tolerances ε i is automatically determined rather than specified in advance. The tolerances

are chosen such that the ESS of the particle population, which indicates the quality of the Monte Carlo

approximation (see section 1.4.2), decays at a controlled rate. A sudden precipitous drop in ESS would

indicate that only a small number of particles had non-zero importance weights, which would result in

a very poor Monte Carlo approximation to the target distribution. This situation is referred to as the

collapse of the approximation or particle degeneracy (see section 1.4.3) and is mitigated by the adaptive

approach. A single parameter controls the decay rate. In the original paper of Del Moral, Doucet, and

Jasra [20], the parameter is called α , but to avoid confusion with the BA parameter of the same name

we will refer to it here as αESS. The tolerance ε i is chosen to satisfy

ESS(wi) = αESS ESS(wi−1),

where, wi is the vector of weights at the ith step. Note that, since wi depends on ε i, this equation solves

for the updated weights and the updated tolerance simultaneously. As pointed out by Del Moral, Doucet,

and Jasra [20], the equation has no analytic solution, but can be solved numerically by bisection. The
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forward kernels Ki are taken to be MCMC kernels with stationary distributions πε i and proposal distri-

butions

qi

(
θ
(k),θ (k)′

) M

∏
j=1

f
(

z( j,k)′
∣∣∣θ (k)′

)
,

where θ (k) is the vector of model parameters associated with particle x(k) and z( j,k)′, 1 ≤ j ≤ M, are

M datasets simulated according to θ (k)′ [20]. In our implementation, the qi are constructed component-

wise for θ out of Gaussian proposals for continuous parameters [20] and Poisson proposals for discrete

parameters. For the Poisson proposals, the number of discrete steps to move the particle is drawn from

a Poisson distribution, and the direction in which to move the particle is chosen uniformly at random.

The variance of each proposal distribution is set equal to twice the empirical variance of the particles,

following [20, 134]. The backwards kernels are

Li−1(x′,x) =
πi(x)Ki(x,x′)

πi(x′)
.

Here we have written x′ for xi and x for xi−1 to emphasize that xi−1 is the current value of the particle

and xi is the proposed value. When substituted into eq. (1.8), the forward kernels Ki(x,x′) and densities

πi(x′) = πεi(x
′) cancel out, and we are left with the following weight update.

wi(x) ∝ wi−1(x)
πi(x′)Li−1(x′,x)
πi−1(x)Ki(x,x′)

importance weight update from SMC

= wi−1(x)
πi(x′)πi(x)Ki(x,x′)

πi−1(x)Ki(x,x′)πi(x′)
substitute Li−1

= wi−1(x)
πi(x)

πi−1(x)
cancel Ki(x,x′) and πi(x′)

= wi−1(x)
π(θ)∏

M
j=1 f (z( j)′ | θ)∑

M
j=i IAεi ,y

(z( j))

π(θ)∏
M
j=1 f (z( j)′ | θ)∑

M
j=i IAεi−1 ,y

(z( j))
definition of πi(x)

= wi−1(x)
∑

M
j=i IAεi ,y

(z( j))

∑
M
j=i IAεi−1 ,y

(z( j))
cancel prior and likelihood.

In other words, when the distance threshold ε i−1 is contracted to ε i, the particles’ weights are multiplied

by the proportion of simulated datasets that are still inside the new threshold. The user may specify

a final tolerance ε , or a final acceptance rate of the MCMC kernel, and the algorithm will be stopped

when either of these termination conditions is reached. The latter condition stops the algorithm when

the particles are not moving around very much, implying little change in the estimated target.

2.1.4 Justification for approach

We present here a non-rigorous justification for the use of ABC for the problem at hand, as opposed to

more frequently-used approaches for fitting mathematical models (see appendix A). Consider a contact

network model with parameters θ , and an estimated transmission tree T . Taking a Bayesian approach,
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Figure 2.2: Illustration of an estimated transmission tree without labels (left) and two possible under-
lying complete transmission trees with labels (right). In the top right scenario, the epidemic began with
node a who transmitted first to b and then to c. In the bottom right scenario, b was the index case; b
infected c, who went on to infect a. A transmission tree estimated from a viral phylogeny would have
the same topology and tip labels in both cases.

our aim is to obtain a sample from the posterior distribution on the model’s parameters given our data,

π(θ | T ) = f (T | θ)π(θ)∫
Θ

f (T | θ)π(θ)dθ
.

For all but the simplest models, the normalizing constant in the denominator is an intractable integral.

What we shall argue here is that, in contrast to most commonly studied mathematical models, the like-

lihood f (T | θ) is also likely to be intractable in our case.

As discussed in section 1.2.2, the internal nodes of transmission trees represent transmission events,

and are labelled with the donor in the associated transmission pair. However, when we estimate a trans-

mission tree from viral sequence data, we generally only know the labels of the tips of the tree, not

the labels of the internal nodes. In viral phylogenies, the transmissions are at least partially preserved

through the evolutionary relationships among the viruses, but the directionality of those transmissions

is unknown. Thus, a single estimated transmission tree can correspond to many possible pathways of

the epidemic through the network. Figure 2.2 illustrates this concept for a simple transmission tree

with three tips. When calculating a likelihood given a transmission tree, we must sum over all possible

labellings of the internal nodes. Let L be the set of such labellings. Then

f (T | θ) = ∑
l∈L

f (T , l | θ). (2.1)
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A contact network model assigns a probability density to each possible contact network. Transmission

trees are realized over particular contact networks, not over the model itself. Therefore, we must also

sum over all contact networks which could be generated by the model. Let G be the set of all possible

contact networks. Summing eq. (2.1) over G gives

f (T | θ) = ∑
G∈G

∑
l∈L

f (T , l | G,θ) f (G | θ). (2.2)

This can be simplified somewhat by noticing that, given a specific contact network, the labelled trans-

mission tree depends only on that network and not on the model that generated it. That is, f (T ,ν |
G,θ) = f (T , l | G), and

f (T | θ) = ∑
G∈G

f (G | θ) ∑
l∈L

f (T ,ν | G) (2.3)

Under the assumption that both transmission and removal are Poisson processes, calculating f (T , l |G)

can be accomplished by a straightforward modification of the Gillespie simulation algorithm (sec-

tion 2.1.1). Rather than choosing transmission or removal events according to their probabilities, the

events would be deterministically chosen to mimic the events recorded in the transmission tree. Assum-

ing efficient data structures for storing lists of nodes and edges, the complexity of this calculation would

be O(|T |). The number of possible labellings of internal nodes of T is easily seen to be 2(|T |−1)/2 by

noticing that each of the (|T | − 1)/2 internal nodes must be labelled with the same label as either its

right child or its left child. Although exponential calculations of this nature can often be simplified on

trees using dynamic programming (e.g.[140]), it cannot be straightforwardly applied in this case because

the subtrees’ probabilities depend on the existing epidemic progress (their parents and siblings). Hence,

calculating the inner sum over labels may take time O(2(|T |−1)/2).

The outer sum, over all contact networks, is also difficult to evaluate in general. There are 2N(N−1)

directed graphs on N nodes [141]. There must be at least as many nodes in the contact network as the

number of tips in the tree, which is (|T |+ 1)/2. Of course, it is very likely that there are more nodes

in the network than observed tips because some individuals are never infected and/or some infected

individuals are never sampled. The complexity of calculating f (G | θ) is obviously dependent on the

particular model being investigated. For the BA model, we might have to sum over all possible orders

in which the nodes could be added, and all assignments of edges to the nodes which generated them.

However, even in the case that calculating f (G | θ) can be done in constant time, the sum (2.3) still has

at least O(2|T |
2
) terms.

We have shown that both the normalizing constant
∫

Θ
f (T | θ)π(θ)dθ and the likelihood f (T | θ)

are likely computationally prohibitive to calculate. If this is the case, the problem of fitting contact

network models to phylogenies seems to be of the doubly-intractable type [142], which would imply that

these models are amenable to neither ML nor Bayesian inference techniques. Although both methods are

able to cope with an intractable normalizing constant (for example, by local search for ML or Bayesian

MCMC), neither can avoid the intractable likelihood calculations. This justifies the use of ABC, which
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is a likelihood-free method.

We have not proven here that eq. (2.3) is impossible to calculate in polynomial time - it could

be possible to algebraically simplify the sum into a tractable expression. Furthermore, under certain

models, a large proportion of G may have zero probability, which would enable the simplification of the

outer sum on a model-specific basis. It should also be noted that extensions of Bayesian MCMC have

been developed for doubly-intractable problems [142, 143], which might be adaptable to the problem at

hand. These have not been as widely used as ABC, nor are they as easily parallelizable as SMC.

2.2 Analysis of Barabási-Albert model with synthetic data

2.2.1 Why study the Barabási-Albert model?

We developed netabc with the objective of extracting useful, quantitative information about network

structures from viral phylogenies. An important aspect of “usefulness” is model specification and the

biological or epidemiological interpretation of the parameters. We want the model to be realistic, but

not so complicated that it becomes difficult to interpret. At least some of the parameters should be of

interest from a theoretical or practical perspective, or there would be no point in estimating them. Since

netabc is a phylodynamic method, intended to be used with viral sequence data, we would also like

to choose parameters which may be difficult to estimate with more standard methods. Otherwise, our

method provides no advantage. The Barabási-Albert (BA) model (section 1.3.2) satisfies these criteria,

albeit some better than others. The purported realism of the model stems from the fat-tailed degree

distributions it produces, which are similar to those observed in real world sexual networks [22–25,

144]. Moreover, the “rich get richer” phenomenon, where popular individuals attract new connections

at an elevated rate, is intuitively reasonable for both sexual [105] and IDU [103] networks. However, the

model is very simple, assuming that all nodes form the same number of links when added to the network

and share the same preference for popular individuals.

In this thesis, we consider four parameters related to the BA model, denoted N, m, α , and I (see sec-

tion 1.3.2). The first three of these parameterize the network structure, while I is related to the simulation

of transmission trees over the network. However, we will refer to all four as BA parameters. N denotes

the total number of nodes in the network, or equivalently, susceptible individuals in the population; m is

the number of new undirected edges added for each new vertex, or equivalently one-half of the average

degree; α is the power of preferential attachment – new nodes are attached to existing nodes of degree d

with probability proportional to dα +1; finally, I is the number of infected individuals at the time when

sampling occurs. The α parameter is unitless, while m has units of edges or connections per vertex, and

N and I both have units of nodes or individuals.

From a public health standpoint, all four parameters are of some interest. The prevalence I can be

used to estimate the resources required to combat an ongoing epidemic, while total susceptible popu-

lation size N provides a similar metric for preventative measures. The average degree of the network,

in this case 2m, is directly related to R0, the basic reproductive number [96]. R0 quantifies the aver-

age number of secondary infections ultimately caused by one infected individual; higher R0 generally
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indicates faster epidemic growth and/or larger eventual epidemic size [5]. In a homogeneously mixed

population, the theoretically expected proportion of the population which must be vaccinated to con-

trol an epidemic (the vaccination threshold) can be expressed in terms of R0 [145]. Although optimal

vaccination strategies may differ in heterogeneous contact structures [10], it is reasonable to suppose

that there would still be a relationship between m, R0, and the vaccination threshold. The preferential

attachment power α quantifies the degree to which high-degree nodes, also called superspreaders [100],

characterize the network structure. Superspreaders have been hypothesized to play a disproportionately

greater role in the spread of several diseases [37, 101]. If so, network-based interventions [28, 29] may

be worth considering as part of an epidemic control strategy. α can also offer some insight into how the

network would react to the removal of nodes. Dombrowski et al. [103] found evidence of preferential

attachment in IDU networks, and suggested that as a consequence of this characteristic, the removal of

random nodes (such as through a police crackdown) might inadvertently make it easier for epidemics to

spread. When individuals with only one or two connections lose them, they might tend to seek out well-

known (that is, high-degree) members of the community, thus increasing those individuals’ connectivity

even further. Although we do not consider a dynamic network in this work, it is not unreasonable that the

network could be close to static over short periods of time, and this static structure might be informative

of future dynamic behaviour.

Though it is theoretically possible to estimate all four BA parameters using more conventional ap-

proaches, the cost of doing so may be high, in addition to other situation-specific challenges. In theory,

any network parameter can be estimated by explicitly constructing the contact network, although this

is highly resource intensive and is hampered by misreporting and other challenges [42]. All parameters

become more difficult to estimate when the infected population is “hidden” due to illegal or stigmatized

behaviour, as is sometimes the case with HIV outbreaks among IDU, MSM, or sex workers. In such

cases, phylodynamic methods may offer the advantage of providing information about the whole pop-

ulation from only a small sample. A survey, for example, will not tell us if there are large groups of

the population that we simply have not sampled. Our hope is that estimating N and I phylogenetically

might provide this additional information. The average degree of the network, 2m, is also estimable by

a survey, although individuals may be unwilling or unable to disclose how many contacts they have had.

Sequence data also provide an advantage in this respect – they are objective and do not share the same

biases as self-reported partner counts. The estimation of α is more complex, as this parameter is most

strongly reflected in the connectivity of very high degree nodes, who are rare in the population. Locating

them might require contact tracing, or respondent-driven sampling [90]. Even if the full degree distri-

bution of a network is available, there are models other than preferential attachment which can produce

scale-free networks [e.g. 146]. de Blasio, Svensson, and Liljeros [105] were able to estimate α by max-

imum likelihood using partner count data from several sequential time intervals, but they admit such

detailed data are not usually available. Moreover, their dataset was constructed via a random survey,

which would likely miss the few high-degree nodes characterizing a power law degree distribution. In

summary, each of the BA parameters may be estimated without phylodynamics, but there are sufficient

difficulties that we believe an alternative method using sequence data is warranted.
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2.2.2 Using synthetic data to investigate identifiability and sources of estimation error

We have argued that the parameters of the BA model are interesting and worth estimating with phylody-

namic methods. However, these estimates will only constitute “useful” information about the network if

the parameters are identifiable from phylogenetic data. Roughly speaking, the identifiability of a param-

eter says how much information about that parameter can possibly be obtained from the observed data.

If the parameters of the BA model do not influence tree shape at all, then we cannot possibly estimate

them – the posterior distribution will exactly resemble the prior, no matter how accurate a representation

of the posterior we are able to produce. Hence, before proceeding with a full validation of netabc on

simulated data, we undertook two experiments designed to assess the identifiability of the BA param-

eters. These experiments only investigated one parameter of the BA model at a time while holding all

others fixed, a strategy commonly used when performing sensitivity analyses of mathematical models.

This allowed us to perform a fast preliminary analysis without dealing with the “curse of dimensional-

ity” of the full parameter space. The experiments are motivated and described on a high level here, with

more detail provided in the next section.

First, we simulated trees under three different values of each parameter, and asked how well we could

tell the different trees apart. The better we are able to distinguish the trees, the more identifiability we

might expect for the corresponding parameter when we attempt to estimate it with ABC. This experiment

also had the secondary purpose of validating our choice of the tree kernel as a distance measure in ABC.

To tell the trees apart, we used a classifier based on the tree kernel, but we also tested two other tree shape

statistics: one which considers only the topology, and another which considers only branching times.

Since the tree kernel incorporates both of these sources of information, we expected it to outperform the

other two statistics. Finally, the tree kernel can be “tuned” by adjusting the values of the meta-parameters

λ and σ . The results of this experiment were used to select values for these meta-parameters to carry

forward to the rest of the thesis, based on their accuracy in distinguishing the different trees.

A second experiment was designed to test whether we could actually estimate the parameters nu-

merically, rather than just telling three different values apart, and also to assess how identifiability varied

in different regions of the parameter space. An individual tree was compared to simulated trees on a one-

dimensional grid of values of one BA parameter, to obtain a “distribution” of kernel score values. From

this distribution, estimates and credible intervals of the parameter could be calculated. Repeating this

experiment with trees located throughout the parameter space allowed us to better quantify the identifi-

ability. Furthermore, doing marginal estimation (that is, estimating one parameter with all others fixed)

can provide insight into any biases observed when doing joint estimation with ABC. If grid search is

inaccurate, it indicates a lack of parameter identifiability. However, if the marginal grid search estimates

are accurate but the estimates obtained with ABC are biased, this points to confounding between the

parameters which could only be observed when they are all estimated jointly.

After these preliminary experiments, the strategy we used for testing netabc was a standard simulation-

based validation. Transmission trees were simulated under several combinations of parameter values,

and we tried to recover these values with netabc. We then used a multivariable analysis to investigate

how accuracy of these estimates was influenced by the true parameter values.
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In the previous section, we argued that the BA model parameters were worth investigating, and here

we have presented several computational experiments designed to assess their identifiability. There is

a final, more technical aspect of our method’s “usefulness” to consider, which is the accuracy of the

ABC approximation to the posterior. As discussed in section 1.5, ABC does not target the posterior

distribution directly, but rather an approximate posterior derived from simulated data and a distance

function. ABC assumes that this approximate posterior resembles the true posterior, and it is critical

for our estimates’ relevance that this assumption holds. There are two potential causes of an inaccurate

ABC approximation [147]. First, the Monte Carlo approximation to the ABC target distribution may

be poor, due to the settings used for ABC-SMC. Second, the ABC target distribution may not resemble

the posterior, due to a poor choice of distance function. We designed two experiments to investigate the

impact of these sources of error.

The Monte Carlo approximation error is fairly easily quantified by simply increasing the computing

power used for SMC. We ran one simulation using a larger number of particles, more simulated datasets

per particle, and a higher value for αESS (defined in section 2.1.3). A substantial improvement in accu-

racy resulting from these changes would likely indicate a high Monte Carlo error with the lower settings.

The second issue, the resemblance of the ABC target distribution to the true posterior, is somewhat more

difficult to investigate. We do not have access to the true posterior, even for simulations where the true

parameter values are known. To address this source of error, we performed marginal parameter esti-

mation with ABC by informing netabc of some of the true parameter values. Any inaccuracy or bias

observed only in the joint estimation results, but not the marginal estimates, is most easily explained by

interdependence between parameters in the true posterior. However, errors observed in both marginal

and joint estimates could be due to either the shape of the true posterior or an inaccurate ABC approxi-

mation, and we have no way to distinguish one from the other. In other words, this experiment provided

only an upper bound on the error due to an inaccurate ABC approximation.

2.2.3 Methods

For all simulations, we assumed that all contacts had symmetric transmission risk, which was imple-

mented by replacing each undirected edge in the network with two directed edges (one in each di-

rection). Nodes in our networks followed simple SI dynamics, meaning that they became infected at

a rate proportional to their number of infected neighbours, and never recovered. We did not consider

the time scale of the transmission trees in these simulations, only their shape. Therefore, the transmis-

sion rate along each edge in the network was set to 1, the removal rate of each node was set to 0,

and all transmission trees’ branch lengths were scaled by their mean. The igraph library’s implemen-

tation of the BA model [136] was used to generate the graphs. The analyses were run on Westgrid

(https://www.westgrid.ca/) and a local computer cluster. With the exception of our own C programs, all

analyses were done in R, and all packages listed below are R packages. Code to run all experiments is

freely available at https://github.com/rmcclosk/thesis.
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Classifiers for BA model parameters based on tree shape

Our first computational experiment was designed as an exploratory analysis of the four BA model pa-

rameters defined above: α , I, m, and N. The objective of this experiment was to determine whether any

of the four parameters were identifiable from the shape of the transmission tree, as quantified by the tree

kernel. Each of the BA model parameters was varied one at a time, while holding the other parameters

at fixed, known values. Contact networks were generated according to each set of parameter values, and

transmission trees were simulated over the networks. We then evaluated how well a classifier based on

the tree kernel could differentiate the trees simulated under distinct parameter values. If the classifier’s

cross-validation accuracy was high, this could be taken as an indication that the parameter in question

was identifiable in the range of values considered. A caveat of this preliminary analysis is that, since

all parameters but one were held at known values, nothing could be said about the identifiability of

combinations of parameters; this issue will be explored later by jointly estimating all parameters with

ABC.

In addition to testing for identifiability, a secondary objective of this analysis was to validate the

use of the tree kernel as a distance measure for ABC in our context. As discussed in section 1.5, the

choice of distance function is extremely important for the accuracy of the ABC approximation to the

posterior. Therefore, we evaluated two additional tree statistics in the same manner as we evaluated the

tree kernel (that is, by constructing and testing a classifier). First, we considered Sackin’s index [69],

which measures the degree of imbalance or asymmetry in a phylogeny (see section 1.2.4). Sackin’s

index is widely used for characterizing phylogenies [148] and has been demonstrated to vary between

transmission trees simulated under different contact network types [106]. Sackin’s index does not take

branch lengths into account, considering only the tree’s topology. The other statistic we considered

was the normalized lineages-through-time (nLTT) [72], which compares two trees based on normalized

distributions of their branching times (see section 1.2.4). In contrast with Sackin’s index, the nLTT does

not explicitly consider the trees’ topologies, but it does use their normalized branch lengths. While the

nLTT is a newly developed statistic not yet in widespread use, the unnormalized LTT [34] was the basis

of seminal early work extracting epidemiological information from phylogenies [41]. We expected the

tree kernel to classify the BA parameters more accurately than either Sackin’s index or the nLTT, since

the tree kernel takes both topology and branch lengths into account.

This experiment involved a large number of variables that were varied combinatorially. For ease

of exposition, we will describe a single experiment first, then enumerate the values of all variables for

which the experiment was repeated. The parameters of the tree kernel, λ and σ (section 1.2.4), will be

referred to as meta-parameters to distinguish them from the parameters of the BA model.

The attachment power parameter α was varied among three values: 0.5, 1.0, and 1.5. For each

value, the sample pa function in the igraph package was used to simulate 100 networks, with the other

parameters set to N = 5000 and m = 2. This step yielded a total of 300 networks. An epidemic was

simulated on each network using our nettree binary until I = 1000 nodes were infected, at which point

500 of them were sampled to form a transmission tree. A total of 300 transmission trees were thus

obtained, comprised of 100 trees for each of the three values of α . The trees were “ladderized” so
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that the subtree descending from the left child of each node was not smaller than that descending from

the right child. Summary statistics, such as Sackin’s index and the ratio of internal to terminal branch

lengths, were computed for each simulated tree using our treestat binary. The trees were visualized

using the ape package [149]. Both the tree kernel and the nLTT are pairwise statistics, and the SVMs

classifiers we used to investigate them operate on pairwise distance matrices. Our treekernel binary was

used to calculate the value of the kernel for each pair of trees, with the meta-parameters set to λ = 0.3

and σ = 4. These values were stored in a symmetric 300 × 300 kernel matrix. Similarly, we computed

the nLTT statistic between each pair of trees using our treestat binary, and stored them in a second

300×300 matrix.

To investigate the identifiability of α from tree shape, we constructed classifiers for α based on the

three tree shape statistics discussed above. The kernlab package [150] was used to create a kernel support

vector machine (kSVM) classifier using the computed kernel matrix, and the e1071 package [151] was

used to create ordinary SVM classifiers using the pairwise nLTT matrix and Sackin’s index values. Each

of these classifiers was evaluated with 1000 two-fold cross-validations with equally-sized folds. We also

performed a kernel principal components analysis (kPCA) projection of the kernel matrix, and used it to

visualize the separation of the different α values in the tree kernel’s feature space. A schematic of this

experiment is presented in fig. 2.3.

Similar experiments were performed with the values shown in table 2.1. The other three BA param-

eters, N, m, and I, were each varied while holding the others fixed. The experiments for α , m, and N

were repeated with three different values of I. All experiments were repeated with trees having three

different numbers of tips. Kernel matrices were computed for all pairs of the meta-parameters λ = {0.2,

0.3, 0.4} and σ = {1/8, 1/4, 1/2, 1, 2, 4, 8}.
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3 parameter values

θ1θ2 θ3

300 networks

× 100 × 100 × 100

300 epidemics

× 100 × 100 × 100

300 transmission trees

× 100 × 100 × 100

3 tree shape statistics

300 × 300 kernel matrix

300 × 300 nLTT matrix

300 Sackin’s index values

3 cross-validations

kernel-PCA projection

Figure 2.3: Schematic of classifier experiments investigating identifiability of BA model parameters
from tree shapes. The parameters of the BA model were varied one at a time while holding all others
fixed. Transmission trees were simulated under three different values of each parameter. Classifiers were
constructed for each parameter based on three tree shape statistics, and their accuracy was evaluated by
cross-validation. Kernel-PCA projections were used to visually examine the separation of the trees in
the feature space defined by the tree kernel.
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varied parameter N α m I tips λ σ

N 3000, 5000, 8000 1.0 2 500, 1000, 2000 100, 500, 1000 0.2, 0.3, 0.4 1/8, 1/4, 1/2, 1, 2, 4, 8
α 5000 0.5, 1.0, 1.5 2 500, 1000, 2000 100, 500, 1000 0.2, 0.3, 0.4 1/8, 1/4, 1/2, 1, 2, 4, 8
m 5000 1.0 2, 3, 4 500, 1000, 2000 100, 500, 1000 0.2, 0.3, 0.4 1/8, 1/4, 1/2, 1, 2, 4, 8
I 5000 1.0 2 500, 1000, 2000 100, 500 0.2, 0.3, 0.4 1/8, 1/4, 1/2, 1, 2, 4, 8

Table 2.1: Values of parameters and meta-parameters used in classifier experiments to investigate identifiability of BA model parameters from tree
shapes. Each row corresponds to one of the BA model parameters. One kernel matrix was created for every combination of values except the one
indicated in the “varied parameter” column, which was varied when producing simulated trees.

parameter grid values test values N α m I tips
N 1050, 1125, . . . , 15000 1000, 3000, . . . , 15000 - 1.0 2 1000 100, 500, 1000
α 0, 0.01, . . . , 2 0, 0.25, . . . 2 5000 - 2 1000 100, 500, 1000
m 1, 2, . . . , 6 1, 2, . . . 6 5000 1.0 - 1000 100, 500, 1000
I 500, 525, . . . , 5000 500, 1000, 1500, 2000 5000 1.0 2 - 100, 500

Table 2.2: Values of parameters and meta-parameters used in grid search experiments to further investigate identifiability of BA model parameters.
Trees were simulated under the test values, and compared to a grid of trees simulated under the grid values. Kernel scores were used to calculate point
estimates and credible intervals for each parameter, which were compared to the test values.
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Grid search

The previous experiment was an exploratory analysis intended to determine which of the BA parameters

were identifiable, and whether the tree kernel could potentially be used to distinguish different parameter

values when all others were held fixed. In this experiment, which was still of an exploratory nature, we

continued to consider one parameter at a time while fixing the other three. However, rather than checking

for identifiability, we were now interested in quantifying the accuracy and precision of kernel score-

based estimates. This was done by examining the distribution of kernel scores on a grid of parameter

values, when trees simulated according to those values were compared with a single simulated test tree.

As in the previous section, we will begin by describing a single experiment, and then list the vari-

ables for which similar experiments were performed. We varied α along a narrowly spaced grid of val-

ues: 0, 0.01, . . . , 2. For each value, fifteen networks were generated with igraph, and transmission trees

were simulated over each using nettree. These trees will be referred to as “grid trees”. Next, one further

test tree was simulated with the test value α = 0. Both the grid trees and the test tree had 500 tips, and

were simulated with the other BA parameters set to the known values N = 5000, m = 2, and I = 1000.

The test tree was compared to each of the grid trees using the tree kernel, with the meta-parameters set

to λ = 0.3 and σ = 4, using the treekernel binary. The median kernel score was calculated for each

grid value, and the scores were normalized such that the area under the curve was equal to 1. For all

parameters except m, 50% and 95% highest density intervals were obtained using the hpd function in

the TeachingDemos package [152]. Since the hpd function assumes a continuous distribution, we im-

plemented our own version for discrete distributions to use for m.

Each experiment of the type just described was repeated ten times with the same test value. Similar

experiments were performed for each of the four BA parameters, with several test values and trees of

varying sizes. The variables are listed in table 2.2. A graphical schematic of the grid search experiments

is shown in fig. 2.4.

Approximate Bayesian computation

Our final synthetic data experiment was designed to test the full ABC-SMC algorithm by jointly esti-

mating the four parameters of the BA model. We used the standard validation approach of simulating

transmission trees under the model with known parameter values and attempting to recover those val-

ues with netabc. The algorithm was not informed of any of the true parameter values for the main set

of simulations. Despite the fact that the parameter values used to generate the simulated transmission

trees were known, the true posterior distributions on the BA parameters were unknown. Therefore, any

apparent errors or biases in the estimates could be due to either poor performance of our method, or to

real features of the posterior distribution. The latter type of error reflects on the suitability of the model,

but does not invalidate the use of our method in cases where the parameters are more identifiable. Two

retrospective experiments were performed to disambiguate some of the observed errors: one where we

ran a simulation with increased computational power to test for an increase in accuracy, and a second

where we estimated parameters marginally to remove confounding from the other parameters in the
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k test values n grid values

10× k test trees

× 10 · · · × 10

15×n grid trees

× 15 · · · × 15

10× k kernel score vectors
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Figure 2.4: Schematic of grid search experiment to further investigate identifiability of BA model pa-
rameters from tree shapes. Trees were simulated along a narrowly spaced grid of values of one parameter
(“grid trees”) with all other parameters fixed to known values. Separate trees were simulated for a small
subset of the grid values (“test trees”), also holding the other parameters fixed. Each test tree was com-
pared to every grid tree using the tree kernel, and the resulting kernel scores were normalized to resemble
a probability density from which the mode and 95% highest density interval were calculated.

joint posterior.

The parameter values and priors used are listed in table 2.3. The tree kernel meta-parameters were

set to λ = 0.3 and σ = 4. The SMC algorithm was run with 1000 particles, five sampled datasets per

particle, and αESS set to 0.95. The algorithm was stopped when the acceptance rate of the MCMC kernel

(see section 2.1.3) dropped below 1.5%, the same criterion used by Del Moral, Doucet, and Jasra [20].

For visualization, approximate marginal posterior densities for each parameter were calculated using

the density function in R applied to the final weighted population of particles. Posterior means obtained

for each parameter using the wtd.mean function in the Hmisc package [153]. Credible intervals were

obtained using the hpd function in the TeachingDemos package [152] for α I, and N, and using our own

implementation for discrete distributions for m.

To evaluate the effects of the true parameter values on the accuracy of the posterior mean estimates,

we analyzed the α and I parameters individually using GLMs. The response variable was the error of
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parameter or variable test values prior
N 5000 Uniform(500, 15000)
α 0, 0.5, 1, 1.5 Uniform(0, 2)
m 2, 3, 4 DiscreteUniform(1, 5)
I 1000, 2000 Uniform(500, 5000)

tips 500 -

Table 2.3: Parameter values used in simulation experiments to test accuracy of BA model fitting with
netabc. Trees were simulated under the test values, and netabc was used to estimate posterior distribu-
tions on the BA parameters for each simulated tree. Netabc was naı̈ve to the true parameter values.

the point estimate, and the predictor variables were the true values of α , I, and m. We did not test for dif-

ferences across true values of N, because N was not varied in these simulations. The distribution family

and link function for the GLMs were chosen as Gaussian and inverse, respectively, by examination of

residual plots and Akaike information criterion (AIC). The p-values of the estimated GLMs coefficients

were corrected using Holm-Bonferroni correction [154] with n = 6 (two GLMs with three predictors

each). Because there was clearly little to no identifiability of N and m with ABC (see results in next

section), we did not construct GLMs for those parameters.

Two further simulations were performed to assess the possible impact of two types of model mis-

specification. To consider the effect of heterogeneity among nodes, we generated a network where half

the nodes were attached with power α = 0.5 and the other half with power α = 1.5. The other parameters

for this network were N = 5000, I = 1000, and m = 2. To investigate the effects of potential sampling

bias [155], we simulated a transmission tree where the tips were sampled in a peer-driven fashion, rather

than at random. That is, the probability to sample a node was twice as high if any of that node’s network

peers had already been sampled. The parameters of this network were N = 5000, I = 2000, m = 2, and

α = 0.5.

To assess the impact of the SMC settings on netabc’s accuracy, we ran netabc twice on the same

simulated transmission tree. For the first run, the SMC settings were the same as in the other simu-

lations: 1000 particles, 5 simulated transmission trees per particle, and αESS = 0.95. The second run

was performed with 2000 particles, 10 simulated transmission trees per particle, and αESS = 0.97. To

investigate the extent to which errors in the estimated BA parameters were due to true features of the

posterior, rather than an inaccurate ABC approximation, we performed marginal estimation for one set

of parameter values. Each combination of 1, 2, or 3 model parameters (14 combinations total) was fixed

to their known values, and the remaining parameters were estimated with netabc. The parameter values

were α = 0.0, m = 2, I = 2000, and N = 5000.

2.2.4 Results

Classifiers for BA model parameters based on tree shape

Trees simulated under different values of α were visibly quite distinct (fig. 2.5). In particular, higher

values of α produce networks with a small number of highly connected nodes, which, once infected,
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are likely to transmit to many other nodes. This results in a more unbalanced, ladder-like structure in

the phylogeny, compared to networks with lower α values. None of the other three parameters produced

trees that were as easily distinguished from each other (figs. B.4 to B.6). Sackin’s index, which measures

tree imbalance, was significantly correlated with all four parameters (for α , I, m, and N respectively:

Spearman’s rho = 0.85, −0.12, −0.13, 0.09; p-values <10−5, 0.003, <10−5, <10−5). The ratio of

internal to terminal branch lengths was negatively correlated with α and I, and positively correlated

with m and N (Spearman’s rho −0.8, −0.69, 0.09, 0.17; all p < 10−5).

α = 0.5 α = 1 α = 1.5

Figure 2.5: Simulated transmission trees under three different values of preferential attachment power
(α) parameter of BA model. Epidemics were simulated on BA networks of 5000 nodes, with α equal to
0.5, 1.0, or 1.5, until 1000 individuals were infected. Transmission trees were created by randomly sam-
pling 500 infected nodes. Higher α values produced networks with a small number of highly-connected
nodes, resulting in highly unbalanced, ladder-like trees.

Figure 2.6 shows kPCA projections of the simulated trees onto the first two principal components

of the kernel matrix. The figure shows only the simulations with 500-tip trees and 1000 infected nodes.

The three α and I values considered are well separated from each other in the feature space mapped to

by the tree kernel. On the other hand, the three N values overlap significantly, and the three m values

are virtually indistinguishable. Similar observations can be made for other values of I and the number

of tips (figs. B.11 to B.14). The values of I and N separated more clearly with larger numbers of tips,

and in the case of N, with larger epidemic sizes (figs. B.12 and B.14).

The accuracy of each classifier, which is the proportion of trees assigned the correct parameter value,

is shown in fig. 2.7. Since there were three possible values, random guessing would produce an accuracy

of 0.33. Classifiers based on the nLTT and Sackin’s index generally exhibited worse performance than

the tree kernel, although the magnitude of the disparity varied between the parameters (fig. 2.7, centre
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Figure 2.6: Each parameter of the BA model was individually varied to produce 300 simulated trees
with 500 tips each. Kernel matrices were formed from all pairwise kernel scores among each set of 300
trees. The trees were projected onto the first two principal components of the kernel matrix calculated
using kPCA. The other parameters, which were not varied, were set to α = 1, I = 1000, m = 2, and
N = 5000. The tree kernel meta-parameters were λ = 0.3 and σ = 4.

and right). The results were largely robust to variations in the tree kernel meta-parameters λ and σ ,

although accuracy varied between different epidemic and sampling scenarios (figs. B.7 to B.10). For

all parameters except m, the absolute number of tips in the tree had a much greater impact on accuracy

than the proportion of infected individuals these tips represented. However, for m, both the number and

proportion of sampled tips had a strong impact or the accuracy of the kSVM (fig. B.9).

The kSVM classifier for α had an average accuracy of 0.92, compared to 0.6 for the nLTT-based

SVM, and 0.77 for Sackin’s index. There was little variation about the mean for different tree and epi-

demic sizes. No classifier could accurately identify m in any epidemic scenario, with average accuracy

values of 0.35 for kSVM, 0.32 for the nLTT, and 0.38 for Sackin’s index. Again, there was little vari-

ation in accuracy between epidemic scenarios, although the accuracy of the kSVM was slightly higher

on 1000-tip trees (average 0.33, 0.35, 0.38 for 100, 500, and 1000 tips respectively).

The accuracy of classifiers for I appeared to be strongly influenced by the number of tips in the
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Figure 2.7: Cross-validation accuracy of kernel-SVM classifier (left), SVM classifier using nLTT (cen-
tre), and SVM using Sackin’s index (right) for BA model parameters. Kernel meta-parameters were
set to λ = 0.3 and σ = 4. Each point was calculated based on 300 simulated transmission trees over
networks with three different values of the parameter being tested, assuming perfect knowledge of the
other parameters. Vertical lines are empirical 95% confidence intervals based on 1000 two-fold cross-
validations. The classifiers for I were not evaluated with 1000-tip trees, because one of the tested I
values was 500, and it is not possible to sample a tree of size 1000 from 500 infected individuals.

tree. For 100-tip trees, the average accuracy values were 0.59, 0.58, and 0.34 for the tree kernel, nLTT,

and Sackin’s index respectively. For 500-tip trees, the values increased to 0.99, 0.76, and 0.37. Finally,

the performance of classifiers for N depended heavily on the epidemic scenario. The accuracy of the

kSVM classifier ranged from 0.36 for the smallest epidemic and smallest sample size, to 0.81 for the

largest. Likewise, accuracy for the nLTT-based SVM ranged from 0.33 to 0.63. Sackin’s index did not

accurately classify N in any scenario, with an average accuracy of 0.35 and little variation between

scenarios.

Marginal parameter estimates with grid search

Figure 2.8 shows point estimates and 50% and 95% highest density intervals for each of the BA param-

eters, for one replicate experiment with 500-tip trees. Plots showing the point estimates for all replicates

can be found in figs. B.19 to B.22. For all parameters except m, the error of point estimates was nega-

tively correlated with the number of sampled tips in the tree (for α , I, and N respectively: Spearman’s ρ

= −0.22, −0.51, −0.16; p-values 4×10−4, <10−5, 0.01). The 95% highest density intervals obtained

for all parameters were extremely wide, occupying >75% of the grid in all cases (fig. 2.8).

Across all replicates, R2 values for the correlations between the estimated and true values were 0.91,

0.91, 0.25, and 0.54 for α , I, m, and N respectively. The mean absolute errors of the point estimates were

0.14, 310, 1.31, and 2419, representing 7%, 8%, 26%, and 17% of the respective grids. Note that fig. 2.8

contains only one replicate data point per parameter value, out of ten total. For I and N, relative errors

may be more appropriate to consider. An overestimate of 100 individuals would be very misleading if

the true population was only of size 100, but almost negligible in a population of size 5000. The mean

relative errors for I and N respectively were 18% and 31%.

Qualitatively, α and I exhibited weak identifiability within particular sections of the grid (fig. 2.8).
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Figure 2.8: Grid search estimates of BA model parameters for one replicate experiment with trees of size
500. Point estimates (dots), 95% HDIs (lines), and 50% HDIs (notches) for each BA model parameter,
obtained using grid search. Networks and transmission trees were simulated over a grid of values for
each parameter while holding the others fixed to known values. For a subset of the grid values (x-axis),
test networks and trees were created and compared to each tree on the grid using the tree kernel. The
kernel scores along the grid were normalized to resemble a probability distribution, from which the
mode and highest density interval were calculated.

That is, the posterior distributions for several different grid values were extremely similar. The 50%

HDIs for α were similar for the values α ≤ 0.5 (on average 0.02 - 0.84) and for α ≥ 1.5 (1.26 - 2).

For I, similar 50% HPD were observed for I ≤ 1500 (average [650 - 2846]) and for I > 3000 ([2596 -

4802]). No similar patterns were observed for m or N (although the 50% HDIs appear to be identical for

m > 2 in fig. 2.4, this was not consistent across replicates).

Figures B.15 to B.18 show kernel score distributions of kernel scores along the grid for each pa-

rameter. The distributions for some values, such as α = 1.25, I = 500 and 4500, m = 1, and N = 1000,

exhibited distinct peaks around the true value. This indicates that these values produce distinctively

shaped trees that can be identified with the tree kernel, when the other parameter values are fixed and

known. However, for the majority of values of each parameter, the score distributions were fairly flat

around the true value. This means there is a range of values which produce similarly shaped trees,

and the parameter is less identifiable within that range. The exception was I, whose score distributions
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exhibited a more or less rounded shape with the highest point near the true value.

Joint parameter estimates with netabc

Figure 2.9 shows stratified posterior mean point estimates of the BA model parameters α and I obtained

with ABC on simulated data. The parameters m and N were not identifiable with ABC for any parameter

combinations (fig. B.23). Average boundaries of 95% HPD intervals are given in table 2.4.
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Figure 2.9: Posterior mean point estimates for BA model parameters α and I obtained by running netabc
on simulated data, stratified by true parameter values. First row of plots contains true versus estimated
values of α; second row contains true versus estimated values of I. Columns are stratified by α , I, and
m respectively. Dashed lines indicate true values.

Across all simulations, the median [interquartile range (IQR)] absolute errors of the parameter esti-

mates obtained with netabc were 0.11 [0.03 - 0.25] for α , 492 [294 - 782] for I, 1 [0 - 1] for m, and 4153

[3660 - 4489] for N. These errors comprised, respectively, 6%, 11%, 17%, and 29% of the regions of

nonzero prior density. For I and N, relative errors were 38% [20 - 50%] and 83% [73 - 90%]. Average

95% HPD interval widths were 0.68, 2454, 3.01, and 12046, representing 34%, 55%, 50%, and 83%

of the nonzero prior density regions. Point estimates of I were upwardly biased: I was overestimated in

69 out of 72 simulations (96%). The estimates for m and N were similar across all simulations (median

[IQR] point estimates 3 [3 - 3] and 9153 [8660 - 9489]) regardless of the true values of any of the BA

parameters.
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Parameter True value Mean point
estimate

Mean HPD
lower bound

Mean HPD
upper bound

α 0.0 0.36 0.01 0.81
0.5 0.43 0.04 0.83
1.0 0.90 0.51 1.09
1.5 1.52 1.26 1.81

I 1000 1450 651 2592
2000 2622 1114 4080

m 2 2.96 2.00 5.00
3 3.04 2.04 4.96
4 3.17 1.88 5.00

N 5000 9041 2613 14659

Table 2.4: Average posterior mean point estimates and 95% HPD interval widths for BA model param-
eter estimates obtained with netabc on simulated data. Three transmission trees were simulated under
each combination of the listed parameter values, and the parameters were estimated with ABC without
training.

To analyze the effects of the true parameter values on the accuracy our estimates of α and I, we

fitted one GLM for each of these two parameters, with error rate as the dependent variable and the true

parameter values as independent variables. Since the estimates of m and N were roughly equal across

all simulations (fig. B.23), GLMs were not fitted for these parameters. The estimated coefficients are

shown in tables 2.5 and 2.6. The GLM were fitted using the inverse link function. That is, if p is the true

value of the parameter and p̂ is a random variable representing our estimate of the parameter, the GLM

posits a relationship of the form

E(|p− p̂|) = (β0 +βαα +βII +βmm)−1,

where the β ’s are coefficients to be fitted. If the true value α , say, is increased by one, the inverse of the

expected absolute error will increase by βα . If βα is positive, it means that the absolute error decreases

as the true value of α increases.

Parameter Estimate Standard error p-value
(Intercept) 2 0.6 0.01
α 10 2 <10−5

I −3×10−4 2×10−4 0.7
m 0.5 0.2 0.01

Table 2.5: Parameters of a fitted GLM relating error in estimated α to true values of BA parameters.
GLM was fitted with a Gaussian distribution and inverse link function. Coefficients are interpretable as
additive effects on the inverse of the mean error.

The GLM analysis indicated that the error in estimates of α decreased with larger true values of α

(p<10−5) and m (p= 0.01) but was not significantly affected by I (table 2.5). Qualitatively, α seemed to

be only weakly identifiable between the values of 0 and 0.5 (fig. 2.9). The error in the estimated preva-

lence I was slightly lower for smaller values of α (p<10−5) and I (p = 0.05), but was not significantly
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Parameter Estimate Standard error p-value
(Intercept) 0.004 5×10−4 <10−5

α −0.001 2×10−4 <10−5

I −4×10−7 2×10−7 0.05
m −7×10−5 8×10−5 1

Table 2.6: Parameters of a fitted GLM relating error in estimated I to true values of BA parameters.
GLM was fitted with a Gaussian distribution and inverse link function. Coefficients are interpretable as
additive effects on the inverse of the mean error.

affected by the true value of m (table 2.6).

The dispersion of the ABC approximation to the posterior also varied between the parameters (ta-

ble 2.4). HPD intervals around α and I were often narrow relative to the region of nonzero prior density,

whereas the intervals for m and N were more widely dispersed. Figures 2.10 and 2.11 show one- and

two-dimensional marginal distributions for a simulation with relatively low error. Each parameter was

chosen based on its mean error rate across all simulations. The parameters for this simulation were

α = 1.5, I = 1000, m = 4, and N = 5000. Figures 2.12 and 2.13 show the equivalent marginals for a

different simulation with relatively high error rates for each individual parameter. The parameters were

α = 0, I = 2000, m = 2, and N = 5000. The two-dimensional marginals indicate some dependence be-

tween pairs of parameters, particularly I and N which show a diagonally shaped region of high posterior

density.

To test the effect of model misspecification, we simulated one network where the nodes exhibited

heterogeneous preferential attachment power (half 0.5, the other half 1.5), with m = 2, N = 5000, and

I = 1000. The posterior mean [95% HPD] estimates for each parameter were: α , 1.03 [0.67 - 1.18]; I,

1474 [511 - 2990]; m, 3 [1 - 5]; N, 9861 [3710- 14977]. To test the effect of sampling bias, we sampled

one transmission tree in a peer-driven fashion, where the probability to sample a node was twice as

high if one of its peers had already been sampled. The parameters for this experiment were N = 5000,

m = 2, α = 0.5, and I = 2000. The estimated values were: α , 0.3 [0 - 0.63]; I, 2449 [1417 - 3811]; m,

3 [2 - 5]; N, 9132 [2852 - 14780]. Both of these results were in line with estimates obtained on other

simulated datasets (table 2.4), although the estimate of peer-driven sampling for α was somewhat lower

than typical.

Figure 2.14 shows the effect of performing marginal ABC estimation of each of the BA parameters

on the same simulated transmission tree. The estimates of m were apparently unaffected by marginaliz-

ing out the other parameters, corroborating the previous experiments’ findings that m is not an identifi-

able parameter from scaled tree shapes. Compared to allowing all parameters to vary, estimates of α , I,

and N were improved by 41%, 59%, and 46% when all other parameters were fixed. Figure 2.15 shows

the impact of increasing the number of particles, simulated datasets, and αESS parameter on the accuracy

of a single simulation. The results of the two simulations were similar, but surprisingly, the results with

higher SMC settings were slightly worse (by 10%, 8%, and 11% for α , I, and N respectively). However,

the 50% HPD interval for I was closer to the true value of 2000 with the improved settings (2338 - 3423,

vs. 2810 - 3767 with basic settings). The estimate of m, 3 in both cases, was unaffected by the settings.

52



0.0 0.5 1.0 1.5 2.0
α

1000 2000 3000 4000 5000
I

1 2 3 4 5
m

0 5000 10000 15000
N

ap
pr

ox
im

at
e 

po
st

er
io

r 
de

ns
ity

Figure 2.10: One-dimensional marginal posterior distributions of BA model parameters estimated with
low error by netabc from a simulated transmission tree. Dashed lines indicate true values, solid lines
indicate posterior means, and shaded areas show 95% highest posterior density intervals.

2.3 Application to real world HIV data

2.3.1 Methods

Because the BA model assumes a single connected contact network, it is most appropriate to apply

to groups of individuals who are epidemiologically related. Therefore, we searched for published HIV

datasets which originated from existing clusters, either phylogenetically or geographically defined. To

identify datasets fitting these criteria, we used the Entrez module in the BioPython library [156] to

identify all studies which were linked to at least 150 sequences of the same HIV gene in GenBank (635

at the time when the data was collected). We manually curated a subset of these articles which, based

on their title and abstract, appeared to have sampled one sequence per individual in a group likely to

be epidemiologically related. For example, studies were excluded if they were investigating response to

a particular drug, pregnant women or pediatric HIV patients, intra-host evolution, or a multi-region or

multi-country cohort. We acknowledge that our perusal of the complete set of articles was rather cursory,

often limited to reading the title, and it is quite possible that we failed to identify other studies which

would have been suitable to include. Each potential dataset was revisited, and those without sampling

time annotation in GenBank were excluded. We also excluded studies where all sequences were sampled

at the same timepoint, which was necessary because the method we used to time scale the tree requires
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Figure 2.11: Two-dimensional marginal posterior distributions of BA model parameters estimated with
low error by netabc from a simulated transmission tree. White circles indicate true values, magenta
diamonds indicate posterior means.

non-contemporaneous tips. The datasets are summarized in table 2.7. In addition to the published data,

we analyzed an in-house dataset sampled from HIV-positive individuals in British Columbia, Canada.

For clarity, we will refer to each dataset by its risk group and location of origin in the text. For example,

the Zetterberg et al. [157] data will be referred to as IDU/Estonia.

We downloaded all sequences associated with each published study from GenBank. For the IDU/Romania

data, only sequences from IDU (whose sequence identifiers included the letters “DU”) were included

in the analysis. Kao et al. [163] (MSM/Taiwan) found a strong association in their study population

between subtype and risk group - subtype B was most often associated with MSM, whereas IDU were

usually infected with a circulating recombinant form. Since there were many more subtype B sequences

in their data than sequences of other subtypes, we restricted our analysis to the subtype B sequences and

labelled this dataset as MSM. Two datasets (HET/Uganda and HET/Malawi) included both env and gag

sequences. Each gene was analyzed separately to assess the robustness of netabc to the particular HIV

gene sequence used to estimate a transmission tree. The IDU/Estonia data also sequenced both genes,

but the highly variable coverage and high homology of the gag sequences made it impossible to obtain a

sufficiently large block of non-identical sequences to analyze. Therefore, we analyzed only env for this
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Figure 2.12: One-dimensional marginal posterior distributions of BA model parameters estimated with
high error by netabc from a simulated transmission tree. Dashed lines indicate true values, solid lines
indicate posterior means, and shaded areas show 95% highest posterior density intervals.

dataset.

Each env sequence was aligned pairwise to the HXB2 reference sequence (GenBank accession num-

ber K03455), and the hypervariable regions were clipped out with BioPython version 1.66+ [156]. Se-

quences were multiply aligned using MUSCLE version 3.8.31 [166], and alignments were manually

inspected with Seaview version 4.4.2 [167]. Duplicated sequences were removed with BioPython. Phy-

logenies were constructed from the nucleotide alignments by approximate maximum likelihood using

FastTree2 version 2.1.7 [54] with the generalized time-reversible (GTR) model [168]. Transmission

trees were estimated by rooting and time-scaling the phylogenies by root-to-tip regression, using a mod-

ified version of Path-O-Gen (distributed as part of BEAST [169]) as described previously [21]. Due to

the removal of duplicated sequences, all estimated transmission trees were fully binary.

To check if our results were robust to the choice of phylogenetic reconstruction method, we built and

reanalyzed phylogenies for the datasets with the lowest and highest estimated α values (mixed/Spain and

IDU/Estonia) with RAxML [55] with the GTR+Γ model of sequence evolution and rate heterogeneity.

The trees were rooted and time-scaled with Least Square Dating [LSD, 59]. For expediency, the analysis

was run with the prior m ∼ DiscreteUniform(2,5), which defines a smaller total search space than the

prior allowing m = 1.

Four of the datasets (MSM/Shanghai, HET/Botswana, HET/Uganda, and MSM/USA) were initially
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Figure 2.13: Two-dimensional marginal posterior distributions of BA model parameters estimated with
high error by netabc from a simulated transmission tree. White circles indicate true values, magenta
diamonds indicate posterior means.

larger than the others, containing 1265, 1299, 1026/915 (env/gag), and 648 sequences respectively.

To ensure that our results would not be affected by the dataset size, we reduced these to a number

of sequences similar to the smaller datasets. For the MSM/Shanghai dataset, we detected a cluster of

size 280 using a patriotic distance cutoff of 0.02 as described previously [91]. Only sequences within

this cluster were carried forward. For the HET/Uganda, HET/Botswana, and MSM/USA datasets, no

large clusters were detected using the same cutoff, so we analyzed subsets of size 225, 180, and 180

respectively. The subset of the HET/Uganda data was chosen by eye such that the individuals were

monopolistic in both the gag and env trees. The other subsets were arbitrarily chosen subtrees from

phylogenies of the complete datasets.

For all datasets, we used the priors α ∼ Uniform(0,2) and N and I jointly uniform on the region

{n≤ N ≤ 10000, n≤ I ≤ 10000, I ≤ N}, where n is the number of tips in the tree (see table 2.7). Since

the value m = 1 produces networks with no cycles, which we considered fairly implausible, we ran one

analysis with the prior m ∼ DiscreteUniform(1,5), and one with the prior m ∼ DiscreteUniform(2,5).

The other parameters to the SMC algorithm were the same as used for the simulation experiments,

except that we used 10000 particles instead of 1000 to increase the accuracy of the estimated posterior.
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Reference Sequences (n) Location Risk group Gene
Zetterberg et al. [157] 171 Estonia IDU env
Niculescu et al. [158] 136 Romania IDU pol

unpublished 399 British Columbia, Canada IDU pol
Novitsky et al. [159]

180 Mochudi, Botswana HET env
Novitsky et al. [160]

McCormack et al. [161] 141/154 Karonga District, Malawi HET env/gag
Grabowski et al. [162] 225 Rakai District, Uganda HET env/gag

Wang et al. [29] 173 Beijing, China MSM pol
Kao et al. [163] 275 Taiwan MSM pol
Little et al. [28] 180 San Fransisco, USA MSM pol
Li et al. [164] 280 Shanghai, China MSM pol

Cuevas et al. [165] 287 Basque Country, Spain mixed pol

Table 2.7: Characteristics of published HIV datasets analyzed with netabc. Abbreviations: MSM, men
who have sex with men; HET, heterosexual; IDU, injection drug users. The HET data were sampled from
a primarily heterosexual risk environment but did not explicitly exclude other risk factors. The number
of sequences column indicates how many sequences were included in our analysis; there may have been
additional sequences linked to the study which we excluded for various reasons (see methods).

This was computationally feasible due to the small number of runs required for this analysis.

Empirical studies of contact networks often report the exponent γ of the power law degree distribu-

tion [22–25, 95, 144]. Although the BA model does not produce networks with true power law degree

distributions except when α = 1, the power law still provides a reasonable approximation to the slope

when α 6= 1 (fig. B.25). To compare our results to existing network literature we simulated 100 net-

works each according to the posterior mean parameter estimates obtained for each investigated dataset.

Although the BA model does not produce power law networks except when α = 1, simulations show

that the power law fit still captures the slope of the degree distribution reasonably well (fig. B.25). γ was

calculated for each network using the fit power law function in igraph, with the ‘R.mle’ implementa-

tion. The median of the 100 γ values was taken as a point estimate for the associated dataset.

2.3.2 Results

Posterior mean point estimates and 50% and 95% HPD intervals for each parameter are shown in

fig. 2.16. Figure B.26 shows point estimates and HPD intervals obtained when the value m = 1 was

disallowed by the prior. Since the results indicated that m = 1 was the most credible value for several

datasets, all results discussed henceforth are for the prior m ∼ DiscreteUniform(1,5) unless otherwise

stated.

Posterior mean point estimates for the preferential attachment power α were all sub-linear, ranging

from 0.83 for the IDU/Estonia data to 0.27 for the mixed/Spain data. When aggregated by risk group,

the average estimates were 0.73 for IDU, 0.41 for primarily heterosexual risk, and 0.37 for MSM.

These values were obtained with gag for the datasets where both gag and env were sequenced, but

the estimates for α did not change appreciably between the two genes (fig. 2.17). There was a large
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amount of uncertainty associated with these estimates. 95% HPD intervals were very wide for most

datasets, often encompassing almost the entire range from 0 to 1 (fig. 2.16). For all the datasets except

HET/Malawi and MSM/Beijing, the posterior mean was either outside, or very close to the border of, the

50% HPD intervals. This indicates that the posterior distributions were diffuse with heavy tails, rather

than having most of their mass around the mode.

For all but the HET/Botswana data, the posterior mean estimates for the prevalence I were between

373 (IDU/Estonia) and 1391 (MSM/Shanghai). The HET/Botswana data had a much higher estimated

I value (5432) than the other datasets, with a very wide 95% HPD interval covering almost the entire

prior region (fig. 2.16). There was no significant correlation between the number of sequences in the

tree and the estimated prevalence (Spearman correlation, p = 0.7), indicating that the higher prevalence

estimates were not simply due to increased sampling density. When both gag and env sequences were

analyzed, the estimates from the env data were higher (HET/Uganda, 939 for gag vs. 1615 for env;

HET/Malawi, 724 for gag vs. 845 for env). As with α , many of the posterior means were outside the

50% HPD intervals, suggesting diffuse posterior distributions.

The posterior means of m were equal to one for zero of the datasets analyzed. The widths of the 95%

HPD intervals varied from 0 (all the mass on the estimated value) to 5 (the entire prior region). Estimates

of N were mostly uninformative, with very similar estimates for all datasets (mean 6212, range 5881 -

6882). This was similar to the pattern observed for the synthetic data, where the posterior mean always

fell around the upper two-thirds mark of the region allowed by the prior (fig. B.23).

When the value m = 1 was disallowed by the prior, the separation in α between the IDU datasets

and the others became more striking (fig. B.26). All three IDU datasets had estimated α values at or

above 1. The estimate for the MSM/Beijing data was slightly lower (0.85) and the estimates for the

seven remaining non-IDU datasets were bounded above by 0.58. The values of I were fairly robust

to the choice of prior (compare figs. 2.16 and B.26), although the 95% HPD intervals were slightly

narrower (average width 2244 for m≥ 1 and 1848 for m≥ 2). The posterior means of m for all but the

HET/Botswana data took on the value 3 with this prior, with the HPD intervals spanning the entire prior

region. This is very similar to the results observed for m on simulated data (table 2.4), and suggests

that m is not identifiable from these data with this prior. The results for N did not change appreciably

between the two choices of prior.

For the two datasets we reanalyzed using RAxML [55] and LSD [59], α was relatively robust to the

choice of method (??, posterior means 0.48 vs. 0.48 for mixed/Spain and 1.02 vs. 1.12 for IDU/Estonia).

However, the estimates of I were about twice as high when RAxML was used instead of FastTree to

reconstruct the trees (228 vs. 437 for IDU/Estonia, 816 vs. 1949 for mixed/Spain).

To compare our results to the existing network literature, we estimated values of the power law

exponent γ for each of the datasets investigated, using the posterior median estimates. The results are

summarized in table 2.8. All of the estimated exponents were in the range 2≤ γ ≤ 2.5, which is on the

lower end of the range 2≤ γ ≤ 4 reported in the literature. Because the estimates of N were uninforma-

tive, we also simulated another set of networks with the estimated I value, rather than N, as the number

of nodes. However, none of the estimated γ values were changed by this operation (not shown).
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Dataset γ

mixed/Spain (Cuevas et al. 2009) 2.09
MSM/Shanghai (Li et al. 2015) 2.10
MSM/USA (Little et al. 2014) 2.10
MSM/Taiwan (Kao et al. 2011) 2.42
MSM/Beijing (Wang et al. 2015) 2.12
HET/Uganda (Grabowski et al. 2014) 2.09
HET/Malawi (McCormack et al. 2002) 2.32
HET/Botswana (Novitsky et al. 2013 & 2014) 2.44
IDU/Canada (unpublished) 2.12
IDU/Romania (Niculescu et al. 2015) 2.14
IDU/Estonia (Zetterberg et al. 2004) 2.41

Table 2.8: Estimated power law exponents for six HIV datasets based on posterior mean point estimates
of BA model parameters. 100 networks were simulated using posterior mean parameter estimates ob-
tained with netabc. The power law exponent γ was estimated for each, and the median of those estimates
was used as a point estimate for the corresponding dataset.
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Figure 2.14: Marginal posterior mean estimates (points), 50% HPD intervals (notches), and 95% HPD
intervals (lines) of BA model parameters when some parameters (x-axis) were fixed. Parameters were
fixed by specifying a Dirac-delta prior at the true value. True values are indicated by horizontal dashed
lines.
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2.4 Discussion

2.4.1 Netabc: uses, limitations, and possible extensions

Contact networks can have a strong influence on epidemic progression, and are potentially useful as a

public health tool [28, 29]. Despite this, few methods exist for investigating contact network parameters

in a phylodynamic framework [although see 86, 95, 97, 106, 170, for related work]. Kernel-ABC is a

model-agnostic method which can be used to investigate any quantity that affects tree shape [21]. In

this work, we developed netabc, a method based on kernel-ABC to infer the parameters of a contact

network model. The method can be used to infer parameters of any network model, as long as it allows

simulated networks to be easily generated. We have included generators for the BA model discussed

here, as well as the Erdős-Rényi (ER) [171] and Watts-Strogatz (WS) [87] network models. Instructions

for adding additional models are available in the project’s online documentation. We have made netabc

publicly available at github.com/rmcclosk/netabc under a permissive open source license, to encourage

other researchers to apply and extend our method.

Several alternative network models and modelling frameworks have been developed which may

provide useful future targets for ABC. Waring models [26, 172] are a more flexible type of preferential

attachment model which permit a subset of attachments to be formed non-preferentially. These models

were used by Leigh Brown et al. [95] to characterize the transmission network in the United Kingdom.

Exponential random graph models (ERGMs) [173] are a flexible and expressive parameterization of

contact networks in terms of statistics of network features such as pairs and triads. Goodreau [112] eval-

uated the effect of several different ERGM parameterizations on transmission tree shape and effective

population size, and suggested the use of ERGMs as a general framework for estimation of epidemi-

ological quantities related to HIV transmission. Except for a few special cases, simulating a network

according to an ERGM generally requires MCMC, which would be too computationally intensive to

integrate into netabc as it currently stands. To fit ERGM with ABC, one possibility would be to con-

sider the network itself as a parameter to be modified by the MCMC kernel. Other network modelling

frameworks include the partnership-centric formulation developed by Eames and Keeling [174] and the

log-linear adjacency matrix parameterization applied by Morris [77].

The two-step process of simulating a contact network and subsequently allowing an epidemic to

spread over that network carries with it the assumption that the contact network is static over the duration

of the epidemic. Clearly this assumption is false, as people make and break partnerships on a regular

basis. Addressing the impact of this simplifying assumption is outside the scope of this work. However,

the same assumption is made by most studies using contact network models in an epidemiological

context [6, 39]. In principle, ABC could be adapted to dynamic contact networks by using a method such

as that developed by Robinson, Cohen, and Colijn [175] to simulate such a network, while concurrently

simulating the spread of an epidemic.

It is important to note that netabc takes a transmission tree as input, rather than a viral phylogeny. In

reality, true transmission trees are not available and must be estimated; these estimates are often based

on the viral phylogeny. Although this has been demonstrated to be a fair approximation [e.g. 62], and is
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frequently used in practice [e.g. 37], the topologies of a viral phylogeny and transmission tree can differ

significantly [36, 53] due to within-host evolution and the sampling process. We have left the estimation

of a transmission tree up to the user. In theory, it is possible to incorporate the process by which a

viral phylogeny is generated along with a transmission tree into our method, for example by simulating

within-host dynamics. Indeed, progress has very recently been demonstrated on this front in a talk by

Giardina [176], who have independently developed in a method similar to ours to fit contact network

models to phylogenetic data that additionally incorporates a within-host evolutionary model. Although

this may be an avenue for future extension, we felt that it would obscure the primary purpose of this

work, which is to study contact network parameters. In addition, there are a number of different methods

available for inferring transmission trees [31, 53, 64, 65, 67], some of which incorporate geographic

and/or epidemiological data not accommodated by our method. We therefore felt it would be best to

allow researchers to use their own preferred method of constructing a transmission tree.

Our implementation of SMC uses a simple multinomial scheme to sample particles from the pop-

ulation according to their weights. Several other sampling strategies have been developed [124], and it

is possible that the use of a more sophisticated technique might increase the algorithm’s accuracy. Fi-

nally, the ABC-SMC algorithm is computationally intensive, taking about a day when run on 20 cores in

parallel with the settings described in the methods section. Implementing parallelization using message

passing interface (MPI), rather than POSIX threads as we have done here, would allow the program to

be run over a larger number of cores on multiple CPUs in parallel.

2.4.2 Analysis of Barabási-Albert model with synthetic data

The preferential attachment power α had a very strong influence on tree shape in the range of values

we considered (figs. 2.5 and 2.6). Although the tree kernel was the most effective classifier for α , a

Sackin’s index of tree imbalance performed nearly as well (fig. 2.7). This result was intuitive: high α

values produce networks with few well-connected “superspreader” nodes which are involved in a large

number of transmissions, resulting in a highly unbalanced ladder-like tree structure (fig. 2.5). There

appeared to be weaker identifiability for α < 1 than for α ≥ 1 (fig. 2.9 and table 2.4), which may be

partially explained by the relationship between α and the power law exponent γ (fig. B.24). Although

the degree distributions do not truly follow a power law for α 6= 1, the fitted exponent still captures

the slope of the degree distribution reasonably well (fig. B.25), and distributions with similar fitted γ

values appear qualitatively similar in other respects. The γ values fitted to α = 0 and α = 0.5 are nearly

identical (about 2.28 f orα = 0 and 2.33 f orα = 0.5 with N = 5000 and m = 2). In other words, the

degree distributions of networks with α < 1 are similar to each other, which may result in similarity of

corresponding transmission trees as well.

The I parameter, representing the prevalence at the time of sampling, was also generally identifiable,

although it was slightly over-estimated for both cases we considered with ABC. Sackin’s index was

better able to capture the effect of I on tree shape than the nLTT (figs. 2.7 and B.8), suggesting that

this parameter impacts the distribution of branching times in the tree more than the topology. In a

homogeneously-mixed population, branching times can be modelled by the coalescent process [46], in
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our case under the SI model [52]. Although our populations are not homogeneously mixed, the forces

which affect the distributions of branching times still apply. In our simulations, we assumed that all

discordant edges shared the same transmission rate, so that the waiting time until the next transmission

in the entire network was always inversely proportional to the number of discordant edges. In the initial

phase of the epidemic, when I is small, each new transmission results in many new discordant edges.

Hence, there is an early exponential growth phase, producing many short branches near the root of the

tree. As the epidemic gets closer to saturating the network, the number of discordant edges decays,

causing longer waiting times.

The number of nodes in the network, N, exhibited the most variation in terms of its effect on tree

shape. There was almost no difference between trees simulated under different N values when the num-

ber of infected nodes I was small (figs. B.10 and B.14). There is an intuitive explanation for this result,

namely that adding additional nodes does not change the edge density or overall shape of a BA net-

work. In fact, this is why the degree distributions of these networks are called “scale-free.” This can

be illustrated by imagining that we add a small number of nodes to a network after the epidemic sim-

ulation has already been completed. It is possible that none of these new nodes attains a connection to

any infected node. Thus, running the simulation again on the new, larger network could produce the

exact same transmission tree as before. On the other hand, when I is large relative to N, the coalescent

dynamics discussed above also apply. The waiting times until the next infection increase, resulting in

longer coalescence times toward the tips. The relative accuracy of the nLTT in these situations (figs. 2.7

and B.10) corroborates this hypothesis, as the nLTT uses only information about the coalescence times.

When all BA parameters were simultaneously estimated with ABC, N was nearly always over-estimated

by approximately a factor of two (fig. B.23 and table 2.4). One factor which may have contributed to

this bias was our choice of prior distribution. Since the prior for I and N was jointly uniform on a region

where I ≤ N, more prior weight was assigned to higher N values. Another contributing factor relates to

the dynamics of the SI model and the coalescent process and is discussed below.

I and N were both systematically over-estimated by netabc, although the bias was more severe for N

than for I. The number of infected individuals follows a logistic growth curve under the SI model. This

kind of growth curve has three qualitative phases: a slow ramp-up, an exponential growth phase, and a

slow final phase when the susceptible population is almost depleted. The waiting times until the next

transmission, which determine the coalescence times in the tree, are dependent on the growth phase of

the epidemic. Therefore, we hypothesize that it is the growth phase at the time of sampling which most

affects tree shape, rather than the specific values of I or N. To investigate this hypothesis, we simulated

transmission trees over networks on a grid of I and N values in the region of uniform prior density. We

fit logistic growth curves to the proportion of infected individuals over time, and calculated the first and

second derivatives of these curves (with respect to time) at the time of transmission tree sampling. These

derivatives give us an indication of the growth rates of the epidemics at the time of sampling. As shown

in fig. 2.18, there are bands along which both derivatives are similar which contain the values we tested.

These bands span mostly higher values of N and I than the true values. Therefore, if N and I are free to

vary (as is the case in ABC), and our hypothesis is true, both parameters will tend to be overestimated
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due to being less identifiable within their own band. However, when N is fixed at 5000, the derivatives

vary substantially along the I-axis, which explains why the grid search estimates of I were accurate and

unbiased (figs. 2.8 and B.20). We also note the resemblance of the contour surface of fig. 2.18 to the

two-dimensional marginal posterior distributions on I and N obtained with simulated data (figs. 2.11

and 2.13). In addition, both the accuracy and precision of the ABC estimates of I improved substantially

when N was marginalized out (fig. 2.14).
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Figure 2.18: First and second time derivatives of epidemic growth curves at time of sampling for various
values of I and N. Networks were simulated under the BA model with α = 1.0, m = 2, and N varied
along the values shown on the x-axis. Transmission trees were sampled at the time when I nodes were
infected (y-axis). Logistic growth curves were fit to epidemic trajectories derived from the transmission
trees, and their first and second derivatives were calculated at the time of sampling. Contours show first
derivatives, while colours indicate second derivatives. Values of I and N used in simulation experiments
with ABC are indicated by diamonds.

The m parameter, which controls the number of connections added to the network per vertex, did

not have a measurable impact on tree shape and was not identifiable with ABC, nor with grid search

when the other parameters were held fixed. The exception to this was the value m = 1, which produces

networks without cycles whose associated trees were more easily distinguished (figs. 2.8 and B.17).

However, all the analyses presented here did not take the absolute size of the transmission trees into

account, as the branch lengths were rescaled by their mean. Because higher m values imply higher edge

density, an epidemic should spread more quickly for higher m than lower m with the same per-edge

transmission probability. Hence, considering the absolute height of the trees may improve our method’s

ability to reconstruct m. It was also pointed out to us by an anonymous reviewer that for a fixed I, an
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infected node may only end up transmitting along a fraction of its outgoing edges, which could mask

the presence of the extra edges associated with higher m.

In addition to the tree height, many summary statistics have been developed to capture particular

details of tree shape [177]. Two of these, Sackin’s index and the ratio of internal to terminal branch

lengths, were correlated with every BA parameter. Classifiers based on Sackin’s index and the nLTT

similarity measure performed well in some cases, though poorly in others. ABC is often applied using

a vector of summary statistics [126, 178], rather than a kernel-based similarity score as we have done

here. Methods have been developed to select an optimal combination of summary statistics for a given

inference task [147]. Hence, an avenue for future improvement of our method may be the inclusion of

additional summary statistics to supplement the tree kernel. In addition, all four BA parameters were

more accurately classified when the number of tips in the transmission trees was larger, underscoring

the importance of adequate sampling for accurate phylodynamic inference [160].

For α and I, the credible intervals attained from the marginal ABC target distributions were narrower

than those obtained through grid search. This was likely due to the fact that SMC employs importance

sampling to approximate the posterior distribution, while grid search simply calculates a distance met-

ric which may not have any resemblance to the posterior. Our method of finding credible intervals from

kernel scores along the grid, by normalizing the scores to resemble a probability distribution, was some-

what ad hoc, which may also have played a role. Regardless, this result indicates that there is benefit to

applying the more sophisticated method, even if values for some of the parameters are known a priori,

and especially if credible intervals are desired on the parameters of interest.

As noted by Lintusaari et al. [179], uniform priors on model parameters may translate to highly

informative priors on quantities of interest. We observed a non-linear relationship between the prefer-

ential attachment power α and the fitted power law exponent γ (fig. B.24, although see the discussion

in section 1.3.2). Therefore, placing a uniform prior on α between 0 and 2 is equivalent to placing an

informative prior that γ is close to 2. If we were primarily interested in γ rather than α , a more sensi-

ble choice of prior might have a shape informed by fig. B.24 and be bounded above by approximately

α = 1.5. This would bound γ in the region 2≤ γ ≤ 4 commonly reported in the network literature [22–

25, 95]. We note however that Jones and Handcock [180] estimated γ values greater than four for some

datasets, in one case as high as 17, indicating that consideration of a wider range of permitted γ values

may be warranted.

The combination of method, model, and priors we employed did not produce perfect estimates of any

of the parameters. The estimates of α were the most accurate, although the variance of the estimates was

high and the confidence intervals were wide for α < 1 (fig. 2.9 and table 2.4). The estimates of N and I

were both upwardly biased, and the estimates of m were largely uninformative. Despite these limitations,

a major result of our investigation is that some contact network parameters have a measurable impact

on tree shape which can be used to perform statistical inference. Further refinements to netabc, as well

as the use of more sophisticated network models, may improve the accuracy and precision of these

estimates.
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2.4.3 Application to real world HIV data

Our investigation of published HIV datasets indicated heterogeneity in the contact network structures

underlying several distinct local epidemics. When interpreting these results, we caution that the BA

model is quite simple and most likely misspecified for these data. In particular, the average degree of a

node in the network is equal to 2m, and therefore is constrained to be a multiple of 2. Furthermore, we

considered the case m = 1, where the network has no cycles, to be implausible and therefore assigned it

zero prior probability in one set of analyses. This forced the average degree to be at least four, which may

be unrealistically high for sexual networks. The fact that the estimated values of α differed substantially

for several datasets depending on whether or not m = 1 was allowed by the prior is further evidence of

this potential misspecification. However, we note that for two of the datasets, the estimated values of

α did not change much between priors, and the estimates of I were robust to the choice of prior for all

datasets studied. More sophisticated models, for example models incorporating heterogeneity in node

behaviour, are likely to provide a better fit to these data.

Preferential attachment power is sub-linear and higher for IDU

For all datasets we examined, the posterior mean estimates for α were sub-linear, ranging from 0.27

to 0.83. The sub-linearity is consistent with the results of de Blasio, Svensson, and Liljeros [105], who

developed a statistical inference method to estimate the parameters of a more sophisticated preferential

attachment model incorporating heterogeneous node behaviour. When used to analyze population-level

longitudinal partner count data, they found α values ranging from 0.26 to 0.62 depending on the gender

and time period considered. Our estimates of α for the IDU/Romania was above this range under both

priors, as were the estimates for the MSM/Beijing data and the BC data when m = 1 was disallowed by

the prior. The dataset investigated by de Blasio, Svensson, and Liljeros [105] was derived from a survey

of a random sample of the Norwegian population, whereas our investigation focused on datasets from

known phylogenetic or geographic clusters of HIV-infected persons. It is therefore unsurprising that

we detected stronger preferential attachment dynamics in some cases. For instance, random sampling

is much less likely to discover the high-degree nodes characterizing the tail of the degree distribution,

simply because those individuals are rare in the general population. In addition, it is plausible that HIV-

positive individuals are more likely to be highly connected in their sexual networks, as the odds of

acquiring HIV increase with the number of unprotected sexual contacts.

Both de Blasio, Svensson, and Liljeros [105] and the HET/Botswana data studied populations whose

primary risk factor for HIV infection was heterosexual contact. de Blasio, Svensson, and Liljeros explic-

itly excluded reported homosexual contacts; Novitsky et al. did not, but noted that heterosexual contact

is the primary mode of transmission in Botswana where the study was done. In the first of the two pa-

pers describing the Botswana study [159], the authors noted that their sample was gender-biased, being

composed of approximately 75% women. Our estimate of α for these data was 0.55 or 0.53, depending

on the prior on m. Similarly, de Blasio, Svensson, and Liljeros [105] estimated 0.54, 0.57, and 0.29 for

3-year, 5-year, and lifetime partnership networks respectively for the female portion of their sample.
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For both choices of prior on m, the datasets derived from IDU populations had a higher estimated

preferential attachment power than the other datasets (figs. 2.16 and B.26). This finding is in line with

Dombrowski et al. [103], who reanalyzed a network of IDUs in Brooklyn, USA, collected between

1991 and 1993 [181]. They found that the IDU network resembled a BA network much more closely

than other social and sexual networks, and offered sociological explanations for the apparent preferen-

tial attachment dynamics in this population. Importantly, from a public health perspective, the authors

asserted that the removal of random individuals from IDU networks may have the paradoxical effect of

increasing the network’s epidemic susceptibility. When low-degree nodes are removed, as would occur

during a police crackdown, their network neighbours may turn to well-known community members for

advice or supplies, thus increasing the connectivity of these high-degree nodes.

Unfortunately, the sub-linear region for α identified by both de Blasio, Svensson, and Liljeros [105]

and netabc is also the region of poorest identifiability (figs. 2.8 and 2.9). This was reflected in the high

level of uncertainty in the estimates, with most 95% HPD intervals covering the majority of the range

[0, 1]. The value α = 0.5 was contained in the 95% HPD interval for every dataset; consequently, it

is not possible to say with high confidence that any of the α values are different from each other. In

synthetic data, the confidence intervals around α narrowed when other parameters were marginalized

out (fig. 2.14). Thus, it is possible that estimates of α could be made more precise by specifying either

exact values or informative priors on the other BA parameters. We argued informally in section 2.2.1 that

I, m, and N can sometimes be estimated by standard epidemiological methods, although the difficulty

may depend on the specific epidemic under consideration.

Power law exponent is within reported range, but hard to interpret

In order to compare our results to existing literature on networks and distributions of partner counts,

we have reported estimated values for the power law exponent γ of the real data sets we evaluated.

However, the posterior means for α for all six datasets were less than one; the degree distributions

in this parameter range are stretched exponential, not power law [104]. As we show in fig. B.25, the

power law fit does capture the slope of the degree distribution fairly well, but the results should still

be interpreted cautiously. Krapivsky, Redner, and Leyvraz [104] showed that the power law distribution

can be maintained, with γ tuned to any desired value, by a straightforward modification of the BA model.

The authors define the “connection kernel” Ak the probability of a new connection to a node of degree

k, up to a normalizing constant. In the BA model as we have presented it here, Ak = kα + 1. Taking

Ak as any asymptotically linear function will result in a power law distribution, with the exponent γ

determined by the properties of Ak. Implementing such a model would be straightforward and seems a

natural next step toward improving the realism of the BA model.

Table 2.9 shows some estimated γ values reported in the network literature. Our estimates are most

similar to those of Liljeros et al. [23] and Rothenberg and Muth [144], but interpretation of the exact

values is challenging. Estimates from the literature mainly fall between 2 and 4, although substantial

variation within this range exists, even for networks with apparently similar demographics. For example,

Schneeberger et al. [24] estimate higher γ values for heterosexual females than heterosexual males, while
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Clémençon et al. [25] find the opposite. Some of these differences are likely due to the differing time

intervals considered in each study – some investigate the distribution of lifetime partners, while others

consider only recent partnerships, such as in the past year. However, the effect of the time period on γ is

not readily obvious from the available estimates.

reference risk group observation period estimated γ

Colgate et al. [22] MSM 1 year 3
Clémençon et al. [25] MSM 20 years 3.02

Schneeberger et al. [24] MSM
1 year 1.57-1.75

six years 1.85
lifetime 1.64-1.75

Leigh Brown et al. [95] MSM 7 years 2.7

Clémençon et al. [25]
HET, females 20 years 2.71
HET, males 20 years 3.36

Schneeberger et al. [24]
HET, females

1 year 3.10-3.68
lifetime 2.99-3.09

HET, males
1 year 2.48-2.85

lifetime 2.46-2.47

Liljeros et al. [23]
mixed sexual, females

1 year 2.54
lifetime 2.1

mixed sexual, males
1 year 2.31

lifetime 1.6
Rothenberg and Muth [144] mixed sexual 1-15 years 2.12-2.65

Jones and Handcock [180]
mixed sexual, females not stated 3.84-17.04
mixed sexual, males not stated 3.03-5.43

Latora et al. [182]
mixed sexual, females 1 year 3.9
mixed sexual, males 1 year 2.93

Rothenberg and Muth [144]
IDU 1-2 years 2.08-2.87

mixed sexual and IDU 3-5 years 2.20-4.74
Dombrowski et al. [103] IDU 2 years 1.8

Table 2.9: Values of power law exponent γ previously reported in the literature. In the risk group col-
umn, “mixed sexual” indicates participants were not selected on the basis of sexual orientation; these
values likely reflect primarily heterosexual dynamics. Leigh Brown et al. [95] studied a phylogeneti-
cally estimated transmission network, rather than a contact network. The values presented by Jones and
Handcock [180] were in the context of arguing that the power law distribution is not suitable for use
with network data.

HIV prevalence estimates are often discordant with epidemiological information

The true HIV prevalence in a population can be difficult to estimate for several reasons. HIV-infected

individuals may be asymptomatic for months or years, possibly delaying their awareness of their status.

In many contexts, the risk factors for acquisition of HIV are illegal or stigmatized, which may represent

a barrier to testing, treatment, and/or disclosure of status. Several of the studies whose data we ana-

lyzed report the number of new infections over the study period. We expect these numbers to be lower,

perhaps substantially, than the true prevalence. We also note that our simulation study showed that the
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estimates of I obtained with netabc were upwardly biased, the severity increasing with the true value

of I. In addition, our initial exploratory analysis showed that the identifiability of I decreases with the

number of sampled tips (figs. B.8 and B.12). In real world studies, the proportion of infected individuals

sampled is usually low, which may impede our ability to estimate I. In the following, we discuss any

information available about the HIV prevalence in the analyzed study populations, and relate this to our

estimates. However, due to the aforementioned challenges, this information cannot be taken as absolute

“ground truth”. Discrepancies between our results and the available data may indicate that the estimates

produced by netabc are inaccurate, but they may also indicate that the available epidemiological data

was not sufficient to estimate the true prevalence. Since the estimates of I were largely robust to the

choice of prior on m (figs. 2.16 and B.26), we discuss here only the results obtained with the prior

m∼ DiscreteUniform(1,5).

The prevalence estimates for two IDU epidemics in Eastern Europe, IDU/Romania and IDU/Estonia,

were 747 and 373. The authors of the IDU/Romania study [158] reported that 494 new HIV infections

were diagnosed among the studied population (IDUs in Bucharest) during the study period, and this

value was contained in our 95% HPD interval (136 - 2379). On the other hand, the IDU/Estonia data

were collected from several locations in the country. Using their reported incidence estimates, there

were approximately 2000 new infections in the country during the study period, a value outside our

95% HPD interval (171 - 1012). The authors indicated that their sample was “convenience based”; it is

possible that other, harder-to-reach individuals had no contacts with those sampled, reducing the appar-

ent network size. In contrast, the IDU/Canada data was collected primarily from IDU in Vancouver’s

downtown east side, a population that has been intensively targeted by public health interventions. Com-

bined with the routine clinical genotyping performed in British Columbia for all new HIV infections, it

is not unreasonable to suppose that the sampled individuals (399) comprise the majority of HIV-positive

network members. This value was the lower bound of our estimated 95% HPD interval (384 - 3484),

but it seems likely that the posterior mean of 1356 is an overestimate.

The prevalence estimates for two MSM populations in major Chinese cities (MSM/Beijing and

MSM/Shanghai) were 676 and 1391. The individuals sampled for the MSM/Beijing study were recruited

by following a prospective cohort of size 2000. 179 new infections were identified in the cohort during

the study period, which is much lower than the estimated prevalence obtained with netabc. However, the

authors did not claim to have sampled the entire sexual network. In a nationwide survey, Wu et al. [183]

estimated that there were 24,198 MSM living in Beijing, of whom 5.7%, or 1379, were HIV-infected,

which is close to the upper limit of the 95% confidence interval of our estimate of I (175 - 1401). The

same survey estimated the size of the MSM population in Shanghai 14,511, with an HIV prevalence

of 6.8% or approximately 987 individuals. This was within the 95% confidence interval of the estimate

obtained with netabc for the MSM/Shanghai data (311 - 2822). It is worth noting that the authors of

the IDU/Shanghai study [164] claimed that there were 80,000 MSM living in Shanghai, which is a

significantly different estimate than that obtained by Wu et al. [183]. The authors of the MSM/Taiwan

study [163] stated that there were 18,378 HIV-infected individuals in Taiwan, of which approximately

44% (8086 individuals) were MSM. This value is well outside of our 95% HPD (268 - 607), suggesting
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that the entire MSM population does not comprise a single network. In fact, our estimate of I for these

data (410), was closer to the number of MSM enrolled in the study (301) than to the epidemiologically

estimated prevalence. The study focused exclusively on newly diagnosed individuals. On the other hand,

our estimated prevalence for the MSM/USA data (482) was clearly an underestimate. The study enrolled

almost 648 HIV-infected individuals, which should have been a lower bound on I, although the value

was contained in the 95% HPD interval (180 - 1112).

The HET/Uganda, HET/Malawi, and HET/Botswana data all originated from populations in sub-

Saharan Africa, where the dominant mode of transmission is believed to be heterosexual. The HET/Uganda

study population included 1434 seropositive individuals. Since the majority of inhabitants of the study

district were enrolled in the study, it is likely that this number represents the majority of HIV-infected

persons. Our estimate was slightly lower (939), but the value 1434 was contained within the 95% HPD

interval (226 - 2661). The HET/Malawi data represents possibly the oldest population-level HIV se-

quencing effort, carried out on samples collected for other purposes between 1981 and 1989. Every

individual in the study district was sampled; among these, a total of 200 were HIV-positive. Although

the HET/Malawi data had the lowest estimated I value among the heterosexual datasets, the posterior

mean (724), was much higher than this value. Due to the thorough population-level screening, it is most

likely that the posterior mean represents an overestimate, especially considering the upward bias of

ABC estimates of I observed on simulated data (fig. B.23). It is also possible that the true sexual net-

work extended outside the study’s geographic area to include a larger number of infected individuals.

The authors of the HET/Botswana data [159, 160] estimated that there were 1731 HIV-positive individ-

uals in the study area. HIV sequences were obtained from approximately 70% of these individuals. The

estimated prevalence we obtained was much higher (5432), with a 95% HPD interval spanning nearly

the entire prior region. The authors noted that the town where the study took place was located prox-

imally to the country’s capital city, and suggested that frequent travel between the two locations may

have facilitated linking of their sexual networks. Thus, the high estimate of I we obtained for these data

may include a larger network component based in the capital city.

Cuevas et al. [165] reported that 620 newly infected and 1500 chronically infected patients had been

sampled during the study period, for a total of 2120. This is substantially greater than the point estimate

of 702 we obtained with ABC. This error may in part be due to model misspecification – it is highly

unlikely that a mixed risk group population would form a single, well-connected contact network of the

type generated by the BA model.

Modelling assumptions

Our use of the BA model makes several simplifying assumptions. First, we assume homogeneity across

the network with respect to node behaviour and transmission risk. In reality, the attraction to high-

degree nodes seems likely to vary among individuals, as does their risk of transmitting or contracting

the virus. We have also assumed that all transmission risks are symmetric, which is clearly false for all

known modes of HIV transmission, and that infected individuals never recover but remain infectious

indefinitely. These assumptions were made for the purpose of keeping the model as simple as possible,
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since this is the very first attempt to fit a contact network model in a phylodynamic context. However,

the Gillespie simulation algorithm built into netabc can handle arbitrary transmission and removal rates

which need not be homogeneous across the network. Moreover, it is possible to use ABC to fit a model

which relaxes some or all of these assumptions, which may be a fruitful avenue for future investigation.

Despite the possible misspecification, our estimates of the power law exponent γ were within the range

of values reported in the literature (table 2.8), and our estimates of α were in rough agreement with a

previous study using survey-based epidemiology [105].
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Chapter 3

Conclusion

Due to the rapid advancement of nucleotide sequencing technology, viral sequence data have become

increasingly feasible to collect on a population level. Through phylodynamic methods, these data offer

a window into epidemiological processes that would otherwise be virtually impossible to study on a

realistic scale.

This thesis developed netabc, a computer program implementing a statistical inference method for

contact network parameters from viral phylogenetic data. Netabc brings together the areas of viral phylo-

dynamics and network epidemiology, which have only intersected in a very limited fashion thus far [39].

The use of kernel-ABC, a likelihood-free method, makes it possible to fit network models to phylogenies

without calculating intractable likelihoods.

Although phylodynamic methods have been developed to fit a wide variety of epidemiological mod-

els to phylogenetic data assuming homogeneous mixing [47, 184], our method is able to fit models not

requiring this assumption. We believe this capability will be of broad interest to the molecular evolution

and epidemiology community, as it widens the field of epidemiological parameters that may be investi-

gated through viral sequence data. In addition, the characterization of local contact networks could be

valuable from a public health perspective, such as for investigating optimal vaccination strategies [8–10,

89]. This information could assist in curtailing current epidemics, as well as preventing future epidemics

of different diseases over the same contact network.

The particular model we have investigated uses a preferential attachment mechanism to generate

scale-free networks resembling real-world social and sexual networks [22–24]. Of the four parameters

we considered, the preferential attachment power α was the most readily estimable. Estimating α with

traditional epidemiological methods is challenging due to the requirement of sampling the high-degree

nodes making up the tail of the power law distribution, although approaches such as respondent-driven

sampling [90] or collection of longitudinal partner count data [105] may be effective.

In closing, netabc combines phylodynamics, contact network epidemiology, approximate Bayesian

computation, and sequential Monte Carlo to provide a source of insight into network structures comple-

mentary to traditional epidemiology.
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Appendix A

Mathematical models, likelihood, and
Bayesian inference

This appendix reviews some fundamental statistical concepts that are referred to throughout the body

of this thesis. A mathematical model is a formal description of a hypothesized relationship between

some observed data, y and covariates x. A parametric model defines a family of possible relationships

between data and outcomes, parameterized by one or more numeric parameters θ . A statistical model

describes the relationship between data and outcomes in terms of probabilities. Statistical models define,

either explicitly or implicitly, the probability of observing y given x and, if the model is parametric, θ .

Note that it is entirely possible to have no data x, only observed outcomes y. In this case, a model would

describe the process by which y is generated.

To illustrate these concepts, consider the well-known linear model. For clarity, we will restrict our

attention to the case of one-dimensional data and outcomes where x = {x1, . . . ,xn} and y = {y1, . . . ,yn}
are vectors of real numbers. The linear model postulates that the outcomes are linearly related to the

data, modulo some noise introduced by measurement error, environmental fluctuations, and other exter-

nal factors. Formally, yi = βxi + εi, where β is the slope of the linear relationship, and εi is the error

associated with measurement i. We can make this model a statistical one by hypothesizing a distribution

for the error terms εi; most commonly, it is assumed that they are normally distributed with variance σ .

In mathematical terms, yi ∼ βxi +N (0,σ2), where “∼” means “is distributed as”. We can see from this

formulation that the model is parametric, with parameters θ = (β , σ ). Moreover, we can write down the

probability density fof observing outcome yi given the parameters,

f (y | β ,σ) =
n

∏
i=1

fN (0,σ2)(yi−βxi),

where fN (0,σ2) is the probability density of the normal distribution with mean zero and variance σ2.

Note that we are treating the xi as fixed quantities and therefore have not conditioned the probability

density on x. Also, we have assumed that all the yi are independent.

For a general model, the probability density of y given the parameters θ is also known as the likeli-
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hood, written L, of θ . That is, L(θ | y) = f (y | θ) for the model’s probability density function (pdf) f .

The higher the value of the likelihood, the more likely the observations y are under the model. Thus, the

likelihood provides a natural criterion for fitting the model parameters: we want to pick θ such that the

probability density of our observed outcomes y is as high as possible. The parameters that optimize the

likelihood are known as the ML estimates, denoted θ̂ . That is,

θ̂ = argmax
θ

L(θ | y).

ML estimation is usually performed with numerical optimization. In the simplest terms, many possible

values for θ are examined, L(θ | y) is calculated for each, and the parameters that produce the highest

value are accepted. Many sophisticated numerical optimization methods exist, although they may not be

guaranteed to find the true ML estimates if the likelihood function is multi-modal.

ML estimation makes use only of the data and outcomes to estimate the model parameters θ . How-

ever, it is frequently the case that the investigator has some additional information or belief about what

θ are likely to be. For example, in the linear regression case, the instrument used to measure the out-

comes may have a well-known margin of error, or the sign of the slope may be obvious from previous

experiments. The Bayesian approach to model fitting makes use of this information by codifying the in-

vestigator’s beliefs as a prior distribution on the parameters, denoted π(θ). Instead of considering only

the likelihood, Bayesian inference focuses on the product of the likelihood and the prior, f (y | θ)π(θ).
Bayes’ theorem tells us that this product is related to the posterior distribution on θ ,

π(θ | y) = f (y | θ)π(θ)∫
f (y | θ)π(θ)dθ

. (A.1)

In principle, π(y | θ)π(θ) can be optimized numerically just like L(θ | y), which would also optimize

the posterior distribution. The resulting optimal parameters are called the maximum a posteriori (MAP)

estimates. However, from a Bayesian perspective, θ is not a fixed quantity to be estimated, but rather a

random variable with an associated distribution (the posterior). Therefore, the MAP estimate by itself

is of limited value without associated statistics about the posterior distribution, such as the mean or

credible intervals. Unfortunately, to calculate such statistics, it is necessary to evaluate the normalizing

constant in the denominator of eq. (A.1), which is almost always an intractable integral.

A popular method for circumventing the normalizing constant is the use of MCMC to obtain a

sample from the posterior distribution. MCMC works by defining a Markov chain on the space of

possible model parameters. The transition density from parameters θ1 to θ2 is taken to be

min
(

1,
f (y | θ2)π(θ2)q(θ2,θ1)

f (y | θ1)π(θ2)q(θ1,θ2)

)
,

where q(θ ,θ ′) is a symmetric proposal distribution used in the algorithm to generate the chain. The

stationary distribution of this Markov chain is equal to the posterior distribution on θ . Therefore, if a long

enough random walk is performed on the chain, the distribution of states visited will be a Monte Carlo

approximation of π(θ | y), from which we can calculate statistics of interest. Actually performing this
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random walk is straightforward and can be accomplished via the Metropolis-Hastings algorithm [185,

186] (algorithm A.1).

Algorithm A.1 Metropolis-Hastings algorithm for Markov chain Monte Carlo.
Draw θ according to the prior π(θ)
loop

Propose θ ′ according to q(θ ,θ ′)

Accept θ ← θ ′ with probability min
(

1,
f (y | θ ′)π(θ ′)q(θ ′,θ)
f (y | θ )π(θ )q(θ ,θ ′)

)
end loop
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Appendix B

Additional plots
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Figure B.1: Reproduction of Figure 1A from Leventhal et al. (2012) used to check the accuracy of our
implementation of Gillespie simulation. Transmission trees were simulated over three types of network,
with pathogen transmissibility varying from 0 to 1. Sackin’s index was calculated for each simulated
transmission tree. Lines indicate median Sackin’s index values, and shaded areas are interquartile ranges.
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Figure B.2: Approximation of mixture of Gaussians used by Del Moral et al. (2012) and Sisson et
al. (2009) to test SMC. Solid black line indicates true distribution. Grey shaded area shows ABC ap-
proximation obtained with our implementation of adaptive ABC-SMC, using 10000 particles with one
simulated data point per particle.
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Figure B.3: Approximation of mixture of two Gaussians used to test convergence of SMC algorithm to
a bimodal distribution. Solid black line indicates true distribution. Grey shaded area shows ABC-SMC
approximation obtained with our implementation, using 10000 particles with one simulated data point
per particle.
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I = 500 I = 1000 I = 2000

Figure B.4: Simulated transmission trees under three different values of BA parameter I. Epidemics
were simulated on BA networks with parameters α = 1.0, m = 2, and N = 5000. Epidemics were
simulated until I = 500, 1000, or 2000 nodes were infected. Transmission trees were created by sampling
500 infected nodes. For higher I values, the network was closer to saturation at the time of sampling,
resulting in longer terminal branches as the waiting time until the next transmission increased.
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m = 2 m = 3 m = 4

Figure B.5: Simulated transmission trees under three different values of BA parameter m. Epidemics
were simulated on BA networks with parameters α = 1.0, n = 5000, and m = 2, 3, or 4. Epidemics
were simulated until I = 1000 nodes were infected. Transmission trees were created by sampling 500
infected nodes.
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N = 3000 N = 5000 N = 8000

Figure B.6: Simulated transmission trees under three different values of BA parameter N. Epidemics
were simulated on BA networks with parameters α = 1.0, m = 2, and N = 3000, 5000, or 8000. Epi-
demics were simulated until I = 1000 nodes were infected. Transmission trees were created by sampling
500 infected nodes. For lower N values, the network was closer to saturation at the time of sampling,
resulting in longer waiting times until the next transmission and longer terminal branch lengths.
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Figure B.7: Cross validation accuracy of classifiers for BA model parameter α for eight epidemic
scenarios. Solid lines and points are R2 of tree kernel kSVR under various kernel meta-parameters.
Dashed and dotted lines are R2 of linear regression against Sackin’s index, and SVR using nLTT.
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Figure B.8: Cross validation accuracy of classifiers for BA model parameter I for eight epidemic sce-
narios. Solid lines and points are R2 of tree kernel kSVR under various kernel meta-parameters. Dashed
and dotted lines are R2 of linear regression against Sackin’s index, and SVR using nLTT.
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Figure B.9: Cross validation accuracy of classifiers for BA model parameter m for eight epidemic
scenarios. Solid lines and points are R2 of tree kernel kSVR under various kernel meta-parameters.
Dashed and dotted lines are R2 of linear regression against Sackin’s index, and SVR using nLTT.
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Figure B.10: Cross validation accuracy of classifiers for BA model parameter N for eight epidemic
scenarios. Solid lines and points are R2 of tree kernel kSVR under various kernel meta-parameters.
Dashed and dotted lines are R2 of linear regression against Sackin’s index, and SVR using nLTT.
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Figure B.11: Kernel principal components projection of trees simulated under three different values of
BA parameter α , for eight epidemic scenarios.
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Figure B.12: Kernel principal components projection of trees simulated under three different values of
BA parameter I, for eight epidemic scenarios.
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Figure B.13: Kernel principal components projection of trees simulated under three different values of
BA parameter m, for eight epidemic scenarios.
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Figure B.14: Kernel principal components projection of trees simulated under three different values of
BA parameter N, for eight epidemic scenarios.
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Figure B.15: Grid search kernel scores for testing trees simulated under various α values. The other BA
parameters were fixed at I = 1000, N = 5000, and m = 2.
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Figure B.16: Grid search kernel scores for testing trees simulated under various I values. The other BA
parameters were fixed at α = 1.0, N = 5000, and m = 2.
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Figure B.17: Grid search kernel scores for testing trees simulated under various m values. The other BA
parameters were fixed at α = 1.0, I = 1000, and N = 5000.
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Figure B.18: Grid search kernel scores for testing trees simulated under various N values. The other BA
parameters were fixed at α = 1.0, I = 1000, and m = 2.
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Figure B.19: Point estimates of preferential attachment power α of Barabási-Albert network model,
obtained on simulated trees with kernel-score-based grid search. Test trees were simulated according to
several values of α (x-axis) with other model parameters fixed at m = 2, N = 5000, and I = 1000. The test
trees were compared to trees simulated along a narrowly spaced grid of α values using the tree kernel,
with the same values of the other parameters. The grid value with the highest median kernel score was
taken as a point estimate for α (y-axis).
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Figure B.20: Point estimates of prevalence at time of sampling I of BA network model, obtained on
simulated trees with kernel-score-based grid search. Test trees were simulated according to several val-
ues of I (x-axis) with other model parameters fixed at α = 1, m = 2, and N = 5000. The test trees were
compared to trees simulated along a narrowly spaced grid of I values using the tree kernel, with the
same values of the other parameters. The grid value with the highest median kernel score was taken as
a point estimate for I (y-axis).
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Figure B.21: Point estimates of number of edges per vertex m of BA network model, obtained on sim-
ulated trees with kernel-score-based grid search. Test trees were simulated according to several values
of m (x-axis) with other model parameters fixed at α = 1, I = 1000, and N = 5000. The test trees were
compared to trees simulated along a narrowly spaced grid of m values using the tree kernel, with the
same values of the other parameters. The grid value with the highest median kernel score was taken as
a point estimate for m (y-axis).

112



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

4000

8000

12000

4000 8000 12000
true N

es
tim

at
ed

 N

Figure B.22: Point estimates of number of edges per vertex N of BA network model, obtained on sim-
ulated trees with kernel-score-based grid search. Test trees were simulated according to several values
of N (x-axis) with other model parameters fixed at α = 1, m = 2, and I = 1000. The test trees were
compared to trees simulated along a narrowly spaced grid of N values using the tree kernel, with the
same values of the other parameters. The grid value with the highest median kernel score was taken as
a point estimate for m (y-axis).
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Figure B.23: Posterior mean point estimates for BA model parameters m and N obtained by running
netabc on simulated data, stratified by true parameter values. First row of plots contains true versus
estimated values of m; second row contains true versus estimated values of N. Columns are stratified by
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Figure B.24: Relationship between preferential attachment power parameter α and fitted power law
exponent γ for networks simulated under the BA network model with N = 5000 and m = 2.
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Figure B.25: Best fit power law and stretched exponential curves for degree distributions of simulated
Barabási-Albert networks for several values of α and m.
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Figure B.26: Posterior mean point estimates and 95% HPD intervals for parameters of the BA network
model, fitted to five published HIV datasets with netabc using the prior m ∼ DiscreteUniform(2,5).
x-axes indicate regions of nonzero prior density.
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