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Abstract

X-ray computed tomography (CT) is an essential tool in modern medicine.
As the scale and diversity of the medical applications of CT continue to
increase, the quest for reducing the radiation dose becomes of extreme im-
portance. However, producing high-quality images from low-dose scans has
proven to be a serious challenge. Therefore, further research in develop-
ing more effective image reconstruction and processing algorithms for CT is
necessary.

This dissertation explores the potential of patch-based image models and
total variation (TV) regularization for improving the quality of low-dose CT
images. It proposes novel algorithms for 1) denoising and interpolation of
CT projection measurements (known as the sinogram), 2) denoising and
restoration of reconstructed CT images, and 3) iterative CT image recon-
struction.

For sinogram denoising, patch-based and TV-based algorithms are pro-
posed. For interpolation of undersampled projections, an algorithm based
on both patch-based and TV-based image models is proposed. Experiments
show that the proposed algorithms substantially improve the quality of CT
images reconstructed from low-dose scans and achieve state-of-the-art re-
sults in sinogram denoising and interpolation.

To suppress streak artifacts in CT images reconstructed from low-dose
scans, an algorithm based on sparse representation in coupled learned dic-
tionaries is proposed. Moreover, a structured dictionary is proposed for
denoising and restoration of reconstructed CT images. These algorithms
significantly improve the image quality and prove that highly effective CT
post-processing algorithms can be devised with the help of learned overcom-
plete dictionaries.

This dissertation also proposes two iterative reconstruction algorithms
that are based on variance-reduced stochastic gradient descent. One algo-
rithm employs TV regularization only and proposes a stochastic-deterministic
approach for image recovery. The other obtains better results by using both
TV and patch-based regularizations. Both algorithms achieve convergence
behavior and reconstruction results that are better than widely used itera-
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Abstract

tive reconstruction algorithms compared to. Our results show that variance-
reduced stochastic gradient descent algorithms can form the basis of very
efficient iterative CT reconstruction algorithms.

This dissertation shows that sparsity-based methods, especially patch-
based methods, have a great potential in improving the image quality in
low-dose CT. Therefore, these methods can play a key role in the future
success of CT.

iii



Preface

This dissertation presents the research conducted by Davood Karimi, with
the help and supervision of Prof. Rabab K. Ward. Below is a list of the
scientific articles written by Davood Karimi during the course of his doctoral
studies at the University of British Columbia.

Part of Chapter 2 was published in paper J7. The work presented in
Chapter 3 has been published in paper J6. The contents of Chapter 4
appear in papers J1 and J2. Chapter 6 was published as J5. Chapter 7 was
published as C2. Finally, the contents of Chapter 8 appear in J3, J4, and
C1.

J1: Davood Karimi, Pierre Deman, Rabab Ward, and Nancy Ford. A sino-
gram denoising algorithm for low-dose computed tomography. BMC
Medical Imaging, 16(11):1–14, 2016.

J2: Davood Karimi and Rabab Ward. A denoising algorithm for projec-
tion measurements in cone-beam computed tomography. Computers
in Biology and Medicine, 69:71–82, 2016.

J3: Davood Karimi and Rabab Ward. On the computational implemen-
tation of forward and back-projection operations for cone-beam com-
puted tomography. Medical & Biological Engineering & Computing,
pages 1–12, 2015.

J4: Davood Karimi and RababWard. A hybrid stochastic-deterministic
gradient descent algorithm for image reconstruction in cone-beam com-
puted tomography. Biomedical Physics and Engineering Express, 2(1):
015008, 2016.

J5: Davood Karimi and RababWard. Reducing streak artifacts in com-
puted tomography via sparse representation in coupled dictionaries.
Medical Physics, 43(3):1473-1486, 2016.

J6: Davood Karimi and RababWard. Sinogram denoising via simultane-
ous sparse representation in learned dictionaries. Physics in Medicine
and Biology, 61(9):3536-53, 2016.

iv



Preface

J7: Davood Karimi and Rabab Ward. Patch-based models and algorithms
for image processing- a review of the basic principles and methods, and
their application in computed tomography. pages 113, 2016.

C1: Davood Karimi, Rabab Ward, and Nancy Ford. A weighted stochastic
gradient descent algorithm for image reconstruction in 3D computed
tomography. In World Congress on Medical Physics and Biomed-
ical Engineering, June 7-12, 2015, Toronto, Canada, pages 70–73.
Springer, 2015.

C2: Davood Karimi and RababWard. A novel structured dictionary for
fast processing of 3D medical images, with application to computed to-
mography restoration and denoising. In SPIE Medical Imaging, 2016.

J1: Davood Karimi is the primary author and the main contributor.
Pierre Deman contributed to the design of the experiments. Pierre Deman,
Dr. Rabab Ward, and Dr. Nancy Ford provided technical feedback and
helped with the writing of the manuscript.

The rest of papers: Davood Karimi is the primary author and the
main contributor. Dr. Rabab Ward provided technical feedback and helped
with the writing of the papers.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A brief history of x-ray computed tomography . . . . . . . . 1
1.2 Imaging model . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Image reconstruction algorithms in CT . . . . . . . . . . . . 4
1.4 The goals of this dissertation . . . . . . . . . . . . . . . . . . 6

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Image processing with learned overcomplete dictionaries . . . 9

2.1.1 Sparse representation in analytical dictionaries . . . . 9
2.1.2 Learned overcomplete dictionaries . . . . . . . . . . . 11
2.1.3 Applications of learned dictionaries . . . . . . . . . . 17

2.2 Non-local patch-based image processing . . . . . . . . . . . . 23
2.3 Other patch-based methods . . . . . . . . . . . . . . . . . . . 27
2.4 Patch-based methods for Poisson noise . . . . . . . . . . . . 28
2.5 Total variation (TV) . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Published research on sparsity-based methods in CT . . . . . 33

2.6.1 Pre-processing methods . . . . . . . . . . . . . . . . . 34

vi



Table of Contents

2.6.2 Iterative reconstruction methods . . . . . . . . . . . . 36
2.6.3 Post-processing methods . . . . . . . . . . . . . . . . 44

2.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Sinogram Denoising with Learned Dictionaries . . . . . . . 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Dictionary learning . . . . . . . . . . . . . . . . . . . 57
3.2.3 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Simulation experiment . . . . . . . . . . . . . . . . . 62
3.3.2 Experiment with micro-CT scan of a rat . . . . . . . 66
3.3.3 Experiment with micro-CT scan of a phantom . . . . 69

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Sinogram Denoising using Total Variation . . . . . . . . . . 80
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Approach 1- Employing higher-order derivatives . . . . . . . 81

4.2.1 The proposed algorithm . . . . . . . . . . . . . . . . . 81
4.2.2 Simulation experiment . . . . . . . . . . . . . . . . . 87
4.2.3 Experiments with real micro-CT data . . . . . . . . . 89
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Approach 2- Locally adaptive regularization . . . . . . . . . 99
4.3.1 The proposed algorithm . . . . . . . . . . . . . . . . . 99
4.3.2 Simulation experiment . . . . . . . . . . . . . . . . . 103
4.3.3 Experiment with real micro-CT data . . . . . . . . . 106
4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Sinogram Interpolation . . . . . . . . . . . . . . . . . . . . . . 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Regularization in terms of sinogram self-similarity . . 117
5.2.2 Regularization in terms of sinogram smoothness . . . 119
5.2.3 Optimization algorithm . . . . . . . . . . . . . . . . . 120

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 121
5.3.1 Experiment with simulated data . . . . . . . . . . . . 121
5.3.2 Experiment with real CT data . . . . . . . . . . . . . 123

vii



Table of Contents

6 Reducing Streak Artifacts using Coupled Dictionaries . . 126
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.1 The proposed approach . . . . . . . . . . . . . . . . . 127
6.2.2 The dictionary learning algorithm . . . . . . . . . . . 129

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Two-Level Dictionary for Fast CT Image Denoising ... . . 148
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . 149
7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 153

7.3.1 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.3.2 Restoration . . . . . . . . . . . . . . . . . . . . . . . . 154

8 TV-Regularized Iterative Reconstruction . . . . . . . . . . . 159
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1.1 Motivation and background . . . . . . . . . . . . . . 159
8.1.2 Formulation of the problem . . . . . . . . . . . . . . . 160
8.1.3 Stochastic gradient descent method . . . . . . . . . . 162
8.1.4 Variance-reduced stochastic gradient descent . . . . . 165

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2.1 The proposed algorithm . . . . . . . . . . . . . . . . . 167
8.2.2 Implementation details . . . . . . . . . . . . . . . . . 170
8.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 173

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . 174
8.3.2 Micro-CT scan of the physical phantom . . . . . . . . 174
8.3.3 Micro-CT scan of a rat . . . . . . . . . . . . . . . . . 177

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Iterative Reconstruction with Nonlocal Regularization . . 188
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.2.1 Problem formulation . . . . . . . . . . . . . . . . . . 191
9.2.2 Optimization algorithm . . . . . . . . . . . . . . . . . 194

9.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 196
9.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . 196
9.3.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . 199

viii



Table of Contents

10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.1 Contributions of this dissertation . . . . . . . . . . . . . . . . 202

10.1.1 Pre-processing algorithms . . . . . . . . . . . . . . . . 202
10.1.2 Post-processing algorithms . . . . . . . . . . . . . . . 203
10.1.3 Iterative reconstruction algorithms . . . . . . . . . . . 204

10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.2.1 Pre-processing algorithms . . . . . . . . . . . . . . . . 205
10.2.2 Post-processing algorithms . . . . . . . . . . . . . . . 206
10.2.3 Iterative reconstruction algorithms . . . . . . . . . . . 206

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

ix



List of Tables

3.1 Comparison of sinogram denoising algorithms in the projec-
tion domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Comparison of sinogram denoising and image denoising algo-
rithms on simulated data. . . . . . . . . . . . . . . . . . . . . 63

3.3 Comparison of sinogram denoising and image denoising algo-
rithms in terms of spatial resolution. . . . . . . . . . . . . . . 66

3.4 Comparison of sinogram denoising and image denoising algo-
rithms on the micro-CT scan of a rat. . . . . . . . . . . . . . 68

3.5 Comparison of sinogram denoising and image denoising algo-
rithms on the micro-CT scan of a physical phantom. . . . . . 72

4.1 Evaluation of second-order TV sinogram denoising with sim-
ulated data in sinogram domain. . . . . . . . . . . . . . . . . 88

4.2 Evaluation of second-order TV sinogram denoising with sim-
ulated data in image domain. . . . . . . . . . . . . . . . . . . 90

4.3 Evaluation of second-order TV sinogram denoising with micro-
CT scan of a phantom. . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Evaluation of second-order TV sinogram denoising with micro-
CT scan of a rat. . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Objective evaluation of image quality improvement with sino-
gram interpolation on simulated data. . . . . . . . . . . . . . 122

5.2 Objective evaluation of image quality improvement with sino-
gram interpolation on real micro-CT data. . . . . . . . . . . . 124

6.1 Evaluation of dictionary-based streak artifact suppression on
micro-CT scan of a rat. . . . . . . . . . . . . . . . . . . . . . 137

6.2 Evaluation of dictionary-based streak artifact suppression on
micro-CT scan of a phantom. . . . . . . . . . . . . . . . . . . 138

6.3 Evaluation of the generalizability of learned parameters in
dictionary-based streak artifact suppression. . . . . . . . . . . 142

x



List of Tables

7.1 Evaluation of the two-level learned dictionary with simulation
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2 Evaluation of the two-level learned dictionary with micro-CT
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.1 Objective evaluation of the hybrid stochastic-deterministic re-
construction algorithm with simulation data. . . . . . . . . . 176

8.2 Evaluation of the hybrid stochastic-deterministic reconstruc-
tion algorithm with micro-CT data of a phantom. . . . . . . . 176

8.3 Evaluation of the hybrid stochastic-deterministic reconstruc-
tion algorithm with micro-CT data of a rat. . . . . . . . . . . 181

9.1 Image quality metrics for the experiment with simulated data. 196
9.2 Image quality metrics for the experiment with real data. . . . 199

xi



List of Figures

1.1 A schematic representation of cone-beam CT geometry. . . . 3

3.1 Stacking of cone-beam projections to exploit intra-projection
and inter-projection correlations. . . . . . . . . . . . . . . . . 52

3.2 Demonstration of the effectiveness of the proposed dimension-
ality reduction mapping for projection signals. . . . . . . . . . 55

3.3 Visual comparison of sinogram denoising and image denoising
on simulated data. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Comparison of sinogram denoising and image denoising algo-
rithms in terms of spatial resolution on simulated data. . . . 65

3.5 Performance comparison of sinogram denoising and image de-
noising on micro-CT scan of a rat. . . . . . . . . . . . . . . . 70

3.6 Visual comparison of sinogram denoising and image denoising
on micro-CT data. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Comparison of sinogram denoising and image denoising in
terms of spatial resolution on micro-CT data. . . . . . . . . . 74

3.8 Generalizability of the learned dictionary in dictionary-bases
sinogram denoising. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Effect of the dictionary size in dictionary-based sinogram de-
noising. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.10 Visual comparison of dictionary atoms learned from CT pro-
jections and CT images. . . . . . . . . . . . . . . . . . . . . . 79

4.1 A visual depiction of the piecewise-smooth nature of CT pro-
jections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Evaluation of second-order TV sinogram denoising with sim-
ulated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Evaluation of second-order TV sinogram denoising with micro-
CT scan of a phantom. . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Profiles of the images reconstructed after second-order TV
sinogram denoising. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Parameter tuning for second-order TV sinogram denoising. . 94

xii



List of Figures

4.6 Image-domain spatial resolution as influenced by TV-based
sinogram denoising. . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Evaluation of second-order TV sinogram denoising with micro-
CT scan of a rat. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Evaluation of second-order TV sinogram denoising with low-
dose micro-CT scan of a rat. . . . . . . . . . . . . . . . . . . 97

4.9 Parameter tuning for first and second-order TV sinogram de-
noising. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.10 Visual evaluation of locally-adaptive TV sinogram denoising
on simulated data. . . . . . . . . . . . . . . . . . . . . . . . . 104

4.11 Objective evaluation of locally-adaptive TV sinogram denois-
ing on simulated data. . . . . . . . . . . . . . . . . . . . . . . 105

4.12 Objective evaluation of locally-adaptive TV sinogram denois-
ing on micro-CT scan of a phantom. . . . . . . . . . . . . . . 107

4.13 Visual evaluation of locally-adaptive TV sinogram denoising
on micro-CT scan of a phantom. . . . . . . . . . . . . . . . . 108

4.14 Profiles of the images reconstructed after locally-adaptive TV
sinogram denoising. . . . . . . . . . . . . . . . . . . . . . . . . 109

4.15 Trade-off between noise and spatial resolution for locally-
adaptive TV sinogram denoising. . . . . . . . . . . . . . . . . 110

4.16 Objective evaluation of locally-adaptive TV sinogram denois-
ing on micro-CT scan of a rat. . . . . . . . . . . . . . . . . . 111

4.17 Visual evaluation of locally-adaptive TV sinogram denoising
on micro-CT scan of a rat. . . . . . . . . . . . . . . . . . . . . 111

4.18 Trade-off between noise and spatial resolution for locally-
adaptive TV sinogram denoising evaluated on micro-CT scan
of a rat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 A schematic representation of the sinogram interpolation prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Block matching between the undersampled scan to be inter-
polated and a high-dose reference scan. . . . . . . . . . . . . . 118

5.3 Effect of sinogram interpolation on the quality of brain phan-
tom images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Effect of sinogram interpolation on the quality of rat images
reconstructed from micro-CT data. . . . . . . . . . . . . . . . 125

6.1 Schematic representation of dictionary-based algorithm for
streak artifact suppression. . . . . . . . . . . . . . . . . . . . 129

xiii



List of Figures

6.2 Evaluation of dictionary-based algorithm for streak artifact
suppression on training data. . . . . . . . . . . . . . . . . . . 134

6.3 Evaluation of dictionary-based algorithm for streak artifact
suppression on test data. . . . . . . . . . . . . . . . . . . . . . 136

6.4 Visual evaluation of dictionary-based algorithm for streak ar-
tifact suppression on micro-CT scan of a phantom. . . . . . . 139

6.5 Assessment of generalizability of the parameters of dictionary-
based algorithm for streak artifact suppression. . . . . . . . . 141

6.6 Visual comparison of two models with different complexities
for dictionary-based streak artifact suppression. . . . . . . . . 143

7.1 Schematic representation of two-level dictionary. . . . . . . . 150
7.2 Visual inspection of the denoising performance of two-level

dictionary on simulation data. . . . . . . . . . . . . . . . . . . 154
7.3 Visual inspection of the denoising performance of two-level

dictionary on micro-CT data. . . . . . . . . . . . . . . . . . . 155
7.4 Visual inspection of the performance of two-level dictionary

for suppressing ring artifacts. . . . . . . . . . . . . . . . . . . 157
7.5 Effect of dictionary size and sparsity level on the performance

of the two-level dictionary for suppressing ring artifacts. . . . 158

8.1 Convergence behavior of the stochastic-deterministic iterative
reconstruction on simulation data. . . . . . . . . . . . . . . . 175

8.2 Visual inspection of the reconstruction results of the stochastic-
deterministic iterative reconstruction on simulation data. . . 177

8.3 Convergence of the stochastic-deterministic iterative recon-
struction on micro-CT scan of a phantom. . . . . . . . . . . . 178

8.4 Reconstruction results of the stochastic-deterministic itera-
tive reconstruction on micro-CT scan of a phantom. . . . . . 179

8.5 Convergence of the stochastic-deterministic iterative recon-
struction on micro-CT scan of a rat. . . . . . . . . . . . . . . 180

8.6 Reconstruction results of the stochastic-deterministic itera-
tive reconstruction on micro-CT scan of a rat. . . . . . . . . . 182

8.7 Effects of batch size and regularization parameter on the con-
vergence of stochastic-deterministic iterative reconstruction. . 185

8.8 Effects of batch size and regularization parameter on the re-
construction results of stochastic-deterministic iterative re-
construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xiv



List of Figures

9.1 The proposed initialization for the Generalized PatchMatch
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.2 Reconstruction results for the experiment with the brain phan-
tom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.3 RMSE plots for reconstruction of the brain phantom. . . . . . 198
9.4 Reconstruction results of the experiment with the rat scan. . 200

xv



Glossary

ANLM Adaptive non-local means

CBCT Cone-beam computed tomography

CNR Contrast to noise ration

CT Computed tomography

DCT Discrete cosine transform

FBP Filtered back-projection

FDK Feldkamp-Davis-Kress

FGD Full gradient descent

GPU Graphical processing unit

MAP Maximum a posteriori

MI Mutual information

MRI Magnetic resonance imaging

MTF Modulation transfer function

NLM Non-local means

NS Noise strength

OMP Orthogonal matching pursuit

PCA Principal component analysis

PET Positron emission tomography

PSNR Peak signal to noise ration

RMSE Root mean square error

xvi



Glossary

ROF Rudin-Osher-Fatemi

ROI Region of interest

SAG Stochastic average gradient

SGD Stochastic gradient descent

SNR Signal to noise ration

SR Spatial resolution

SSIM structural similarity index

SVD Singular value decomposition

SVRG Stochastic variance-reduced gradient

TV Total variation

VR-SGD Variance-reduced stochastic gradient descent

xvii



Acknowledgements

I would like to sincerely thank my thesis advisor, Prof. Rabab Ward, for all
her support, guidance, advice, and encouragement during the course of my
Ph.D. studies.

All of the micro-CT data that were used in this dissertation were pro-
vided by the Centre for High-Throughput Phenogenomics at the University
of British Columbia. I am very grateful to Dr. Nancy Ford, the Director of
the Centre, for her constant support. I am also very thankful to Mr. John
Schipilow and Dr. Pierre Deman who carried out most of the micro-CT
scanning.

Sincere thanks to the members of my thesis committee: Dr. Nancy Ford,
Dr. Vikram Krishnamurthy, and Dr. Jane Wang, the University Examiners:
Dr. Shuo Tang and Dr. Ozgur Yilmaz, the Chair of the Final Oral Defence:
Dr. Anna Celler, and the External Examiner: Dr. Charles Bouman of Pur-
due University, for their valuable feedback that helped improve the research
presented in this dissertation.

I was supported by the University of British Columbia through a Four-
Year Fellowship (4YF) and by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) through an Alexander Graham Bell
Canada Graduate Scholarship (CGS-D). Their support is greatly appreci-
ated.

Greatest thanks to my family for what words cannot describe.

xviii



Dedication

To my parents, for their dedication.

xix



Chapter 1

Introduction

1.1 A brief history of x-ray computed
tomography

Computed tomography (CT) refers to creating images of the cross sections
of an object using transmission or reflection data. These data are usually
referred to as the projections of the object. For the projection data to
be sufficient for reconstructing the object’s image, the object needs to be
illuminated from many different directions. The problem of reconstructing
the image of an object from its projections has various applications, from
reconstructing the structure of molecules from data collected with electron
microscopes to reconstructing maps of radio emissions of celestial objects
from data collected with radio telescopes [129]. However, the most important
applications of CT have been in the field of medicine, where the impact of
CT has been nothing short of revolutionary. Today, physicians and surgeons
are able to view the internal organs of their patients with a precision and
safety that was impossible to imagine before the advent of CT.

The fundamental difference between different medical imaging modalities
is the property of the material (i.e., tissue) that they image. X-ray CT, which
is the focus of this dissertation, is based on the tissue’s ability to attenuate x-
ray photons. X-rays had been discovered by the German physicist Wilhelm
Rontgen in 1895. Rontgen, who won the first Nobel Prize in Physics for
this discovery, realized that x-rays could reveal the skeletal structure of
the body parts because bones and soft tissue had different x-ray attenuation
properties. However, the first commercial CT scanners appeared in the early
1970s, finally winning the 1979 Nobel Prize in Medicine for Allan Cormack
and Godfrey Hounsfield for independently inventing CT.

Today, x-ray CT is an indispensable tool in medicine. In fact, the words
CT and computed tomography are used to refer to x-ray CT with no con-
fusion. In the rest of this dissertation, too, the qualifier “x-ray” is dropped,
assuming the implicit knowledge that the whole dissertation is devoted to
x-ray computed tomography. Since its commercial introduction more than
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1.2. Imaging model

40 years ago, diagnostic and therapeutic applications of CT have continued
to grow. In the past two decades especially, great advancements have been
made in CT scanner technology and the available computational resources.
Moreover, new scanning methods such as dual-source and dual-energy CT
have become commercially available. Today, very fast scanning of large vol-
umes has become possible. This has led to a dramatic increase in CT usage
in clinical settings. It is estimated that globally more than 50,000 dual-
energy x-ray CT scanners are in operation [290]. In the USA alone, the
number of CT scans made annually increased from 19 million to 62 million
between 1993 and 2006 [226].

1.2 Imaging model

Although the algorithms proposed in this dissertation apply to most or all
CT geometries, the focus of this dissertation is on cone-beam computed
tomography (CBCT). CBCT is a relatively new scan geometry that has
found applications as diverse as image-guided radiation therapy, dentistry,
breast CT, and microtomography [52, 108, 137, 283]. Figure 1.1 shows a
schematic representation of CBCT. Divergent x-rays penetrate the object
and become attenuated before being detected by an array of detectors. The
equation relating the detected photon number to the line integral of the
attenuation coefficient is [269]:

N i
d

N i
0

= exp

(
−
∫
i
µds

)
(1.1)

where N i
0 and N i

d denote, respectively, the emitted and detected photon
numbers for the ray from the x-ray source to the detector bin i and

∫
i µds

is the line integral of the attenuation coefficient (µ) along that ray. By
discretizing the imaged object, the following approximation to (1.1) can be
made:

log

(
N i

0

N i
d

)
=

K∑
k=1

ai,k xk (1.2)

where xk is the value of the unknown image at voxel k and ai,k is the length
of intersection of ray i with this voxel. The equations for all measurements
can be combined and conveniently written in matrix form as:

y = Ax+ w (1.3)
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1.2. Imaging model

where y represents the vector of measurements (also known as the sinogram),
x is the unknown image, A represents the projection matrix, and w is the
measurement noise.

Figure 1.1: A schematic representation of cone-beam CT geometry.

The discretization approach mentioned above has several shortcomings.
For example, it does not consider the finite size of the x-ray source and the
detector area. Furthermore, exact computation of the intersection lengths
of rays with voxels is computationally very costly for large-scale 3D CT.
Therefore, several efficient implementations of the system matrix A have
been proposed [78, 185, 193, 221]. For large-scale 3D CT, matrix A is too
large to be saved in computer memory. Instead, these algorithms implement
multiplication with matrix A and its transpose by computing the matrix
elements on-the-fly.

Even though in theory Nd follows a Poisson distribution, due to many
complicating factors including the polychromatic nature of the x-ray source
and the electronic noise, an accurate model of the raw data takes the form
of a compound Poisson, shifted Poisson, or Poisson+Gaussian distribution
[174]. For many practical applications, an adequate noise model is obtained
by adding a Gaussian noise (to simulate the electronic noise) to the theo-
retical values of Nd. More realistic modeling, especially in low-dose CT, is
much more complex and will need to take into account very subtle phenom-
ena, which are the subject of much research [244, 312, 351]. An alternative
approach is to consider the ratio of the photon counts after the logarithm
transformation. Even though N i

0 and N i
d are Poisson distributed, the noise

in the sinogram (i.e., after the logarithm transformation) can be modeled as
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1.3. Image reconstruction algorithms in CT

a Gaussian-distributed random variable with zero mean and a variance that
follows [201, 204, 326]:

σ2
i =

exp(ȳi)

N i
0

(1.4)

In this equation, ȳi is the expected value of the sinogram datum at detector
i. In general, a system-specific constant η is needed to fit the measurements
[326]:

σ2
i = fi exp

(
ȳi
η

)
(1.5)

where fi, similar to 1/N i
0 in (1.4), mainly accounts for the effect of bowtie

filtration.

1.3 Image reconstruction algorithms in CT

A central component in every CT system is the suite of image reconstruc-
tion and processing algorithms, whose task it to reconstruct the image of
the object from its projection measurements. These algorithms have also
continually evolved over time. The first CT scanners relied on simple iter-
ative algorithms that aimed at recovering the unknown image as a solution
of a system of linear equations. Many of these basic iterative methods had
been developed by mathematicians like Kaczmarz well before the advent
of CT. As the size of CT images grew, analytical filtered-backprojection
(FBP) methods became more common and they are still widely used in
practice [247]. For CBCT, the well-known Feldkamp-Davis-Kress (FDK)
filtered-backprojection algorithm is still widely used [107, 307, 310]. These
methods, which are based on the Fourier slice theorem, require a large num-
ber of projections to produce a high-quality image, but they are much faster
than iterative methods.

The speed advantage of FBP methods has become less significant in
recent years as the power of personal computers has increased and new
hardware options such as graphical processing units (GPUs) have become
available. On the other hand, with a consistent growth in medical CT us-
age, many studies have shown that the radiation dose levels used in CT may
be harmful to the patients [24, 299]. Reducing the radiation dose can be
accomplished by reducing the number of projection measurements and/or
by reducing the radiation dose for each projection. However, the images
reconstructed from such under-sampled or noisy measurements with FBP
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methods will have a poor diagnostic quality. As a result of these develop-
ments, there has been a renewal of interest in statistical and iterative image
reconstruction methods because they have the potential to produce high-
quality images from low-dose scans [19, 149]. Furthermore, even though in
the beginning most of the algorithms used in CT were image reconstruction
algorithms, gradually image processing algorithms were used for denoising,
restoration, or otherwise improving the projection measurements and the
reconstructed images. Many of these algorithms are borrowed from the re-
search on image processing for natural images. Even today, algorithms that
have been developed for processing of natural images are often applied in
CT with little or no modifications.

Turning to more effective image reconstruction and processing algo-
rithms is not the only approach to radiation dose reduction. There are
indeed other approaches, such as improving the system hardware and imag-
ing protocols [222, 223]. However, there are very strong additional reasons
that encourage research on better algorithms for CT. To begin with, the
advantage of iterative/statistical reconstruction algorithms is not limited to
low-dose CT. There are other situations where FBP methods fail and one
has to resort to more sophisticated iterative/statistical reconstruction meth-
ods. Examples include non-standard scanning geometries such as those with
irregular or limited angular sampling (e.g., in tomosynthesis) or when some
of the measurements are missing or corrupted. Another important factor,
as we mentioned above, is the increased availability of high-performance
computational hardware. The potential of these advancements in computer
hardware for CT has begun to be understood and there is a growing body
of research to investigate the significance of this increased computational
power for CT [144, 224, 261, 272]. Lastly, a very important factor that is
more related to the subject of this dissertation, is the introduction of new
theories and methods in signal and image processing and applied mathe-
matics that can lead to more powerful and more flexible algorithms for CT.
For example, new optimization algorithms that have much faster theoretical
convergence rates have led to state-of-the-art image reconstruction algo-
rithms in recent years [160, 263]. Another example of recent advancements
in signal and image processing that has already had a great impact on CT is
the new developments in sparsity-based models. In these models, the image
is transformed from its native representation in terms of pixel/voxel values
into a different space where it has a more concise and more meaningful rep-
resentation. It is hoped that such a representation provides a more effective
description of the relevant image features, thereby improving the achievable
results in various image processing tasks. Even though this is an old idea in
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image processing, recent decades and years have witnessed the emergence
of new models and algorithms that have called for a reassessment of the
potential of sparsity-based methods in CT.

1.4 The goals of this dissertation

The goal of this dissertation is to advance the state of the art in the applica-
tion of sparsity-based methods in low-dose CT. Even though sparsity-based
methods have been widely used for image reconstruction and processing in
CT, more recent sparsity-based models and optimization algorithms have
the potential to substantially improve the current state of the art. The goal
of this dissertation is to make significant contributions in this direction.
Some of the novelties of the research that is reported in this dissertation are
summarized below.

• This dissertation relies heavily on learned overcomplete dictionaries.
Compared with analytical dictionaries such as wavelets, learned dic-
tionaries have a much higher representational power and flexibility.
In recent years, these dictionaries have been shown to achieve state-
of-the-art results in many image processing tasks. However, the po-
tential of learned dictionaries for CT has not been fully appreciated.
This dissertation tries to explore this potential. This dissertation also
draws heavily upon other patch-based models and algorithms, espe-
cially those that exploit nonlocal patch similarities. Patch-based mod-
els have emerged as one of the most powerful models in image process-
ing in the past decade. However, little research has been reported on
the application of these models in CT. This dissertation tries to inves-
tigate the potential of patch-based methods for image reconstruction
and processing in CT.

• The great majority of the published research have focused on itera-
tive reconstruction algorithms and image-domain post-processing al-
gorithms. Comparatively, many fewer studies have been reported on
denoising, restoration, or otherwise improving the projection measure-
ments. In this dissertation, we pay particular attention to this gap in
research.

• For iterative image reconstruction, this dissertation makes use of new
stochastic optimization algorithms. Stochastic/incremental optimiza-
tion methods have been used to accelerate various CT reconstruction
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algorithms over the past two decades. This dissertation shows that the
new class of variance-reduced stochastic gradient descent algorithms
are superior to the traditional stochastic optimization methods for CT
reconstruction.
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Chapter 2

Literature Review

This chapter starts by reviewing the basic principles of the three main image
models that are used in this dissertation. These models are based on sparse
representation in learned dictionaries, nonlocal patch-based models, and to-
tal variation (TV). Then, example studies that have used these models for
image reconstruction and processing in CT are reviewed.

The first two of the three image models mentioned above belong to patch-
based models. In patch-based image processing, the units upon which op-
eration are carried are small image patches, which in the case of 3D images
are also referred to as blocks. In the great majority of applications square
patches or cubic blocks are used, even though other patch shapes can also be
employed. For simplicity of presentation, we will use the term “patch” un-
less when talking explicitly about 3D images. The number of pixels/voxels
in a patch in patch-based image processing methods is usually on the order
of tens or a few hundreds. A typical patch size would be 8× 8 pixels for 2D
images or 8× 8× 8 voxels for 3D images.

Broadly speaking, in patch-based methods the image is first divided into
small patches. Then, each patch is processed either separately on its own
or jointly with patches that are very similar to it. The final output image
is then formed by assembling the processed patches. In patch-based denois-
ing, for instance, one can divide the image into small overlapping patches,
denoise each patch independently, and then build the final denoised image
by averaging the denoised patches. There are many reasons for focusing on
small patches rather than on the whole image. First, because of the curse
of dimensionality, it is much easier and more reliable to learn a model for
small image patches than for very large patches or for the whole image.
Secondly, for many models, computations are significantly reduced if they
are applied on small patches rather than on the whole image. In addition,
research in the past decade has shown that working with small patches can
result in very effective algorithms that outperform competing methods in a
wide range of image processing tasks. For example, as we will explain later
in this chapter, patch-based denoising methods are currently considered to
be the state of the art, achieving close-to-optimal denoising performance.
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Patch-based methods have been among the most heavily researched
methods in the field of image processing in recent years and they have pro-
duced state-of-the-art results in many tasks including denoising, restoration,
super-resolution, inpainting, and reconstruction. However, these methods
have received very little attention in CT. Even though there has been a lim-
ited effort in using patch-based methods in CT, the results of the published
studies have been very promising. Given the great success of patch-based
methods in various image-processing applications, they seem to have the
potential to substantially improve the current state of the art algorithms in
CT.

The word “patch-based” may be ambiguous because it can potentially
refer to any image model or algorithm that works with small patches. For
example, image compression algorithms such as JPEG work on small image
patches. However, the word patch-based has recently been used to refer to
certain classes of methods. In order to explain the central concepts of these
methods, we will first describe the two main frameworks in patch-based
image processing: (1) sparse representation of image patches in learned
overcomplete dictionaries, (2) models based on nonlocal patch similarities.
These two frameworks do not cover all patch-based image processing meth-
ods. However, most of these methods have their roots in one or both of
these two frameworks.

2.1 Image processing with learned overcomplete
dictionaries

2.1.1 Sparse representation in analytical dictionaries

A signal x ∈ Rm is said to have a sparse representation in a dictionary
D ∈ Rm×n if it can be accurately approximated by a linear combination of a
small number of its columns. Mathematically, this means that there exists
a vector γ such that x ∼= Dγ and ‖γ‖0 � n. Here, ‖γ‖0 denotes the the
number of nonzero entries of γ and is usually referred to as the `0-norm of
γ, although it is not a true norm. This means that only a small number
of columns of D are sufficient for accurate representation of the signal x.
The ability to represent a high-dimensional signal as a linear combination
of a small number of building blocks is a very powerful concept and it is
at the center of many of the most widely used algorithms in signal and
image processing. Columns of the dictionary D are commonly referred to
as atoms. If these atoms comprise a set of linearly independent vectors and
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if they span the whole space of Rm, then they are called basis vectors and
D is called a basis. Moreover, if the basis vectors are mutually orthogonal,
D is called an orthogonal basis.

Bases, and orthogonal bases in particular, have interesting analytical
properties that makes them easy to analyze. Moreover, for many of the
orthogonal bases that are commonly used in signal and image processing,
very fast computational algorithms have been developed. This computa-
tional advantage made these bases very appealing when the computational
resources were limited. Over the past two decades, and especially in the
past decade, there has been a significant shift of interest towards dictio-
naries that can adapt to a given class of signals using a learning strategy.
The dictionaries obtained in this way lack the analytical and computational
advantages of orthogonal bases, but they have much higher representational
power. Therefore, they usually lead to superior results for many image pro-
cessing tasks. Before we explain these dictionaries, we briefly review the
history of sparsity-inducing transforms in image processing. More detailed
treatment of this background can be found in [218, 273].

Sparsity-based models are as old as digital signal processing itself. Start-
ing in the 1960s, the Fourier transform was used in signal processing because
it could diagonalize the linear time-invariant filters, which were widespread
in signal processing. Adoption of the Fourier transform was significantly
accelerated by the invention of the Fast Fourier Transform in 1965 [138].
Fourier transform represents a signal as a sum of sinusoids of different fre-
quencies. Suppressing the high-frequency components of this representa-
tion, for example, is a simple denoising method. This is, however, not a
good model for natural images because these Fourier basis functions are not
efficient for representing sharp edges. In fact, a single edge results in a large
number of non-zero Fourier coefficients. Therefore, denoising using Fourier
filtering leads to blurred images. An efficient representation of localized
features needs bases that include elements with concentrated support. This
gave rise to the Short-Time Fourier Transform (STFT) [5, 16] and, more im-
portantly, the wavelet transform [74, 217]. The wavelet transform was the
major manifestation of a revolution in signal processing that is referred to
as multi-scale or multi-resolution signal processing. The main idea in this
paradigm is that many signals, and in particular natural images, contain
relevant features on many different scales. Both the Fourier transform and
the wavelet transform can be interpreted as the representation of a signal in
a dictionary. For the Fourier transform, for example, the dictionary atoms
include sinusoids of different frequencies.

Despite its tremendous success, the wavelet transform suffers from im-
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2.1. Image processing with learned overcomplete dictionaries

portant shortcomings for analyzing higher-dimensional signals such as nat-
ural images. Even though the wavelet transform possesses important op-
timality properties for one-dimensional signals, it is much less effective for
higher-dimensional signals. This is because in higher dimensions, the wavelet
transform is a separable extension of the one-dimensional transform along
different dimensions. As a result, for example the 2D wavelet transform
is suitable for representing points but it is not effective for representing
edges. This is a major shortcoming because the main features in natural
images are composed of edges. Therefore, there was a need for sparsity-
inducing transforms or dictionaries that could efficiently represent these
types of features. Consequently, great research effort was devoted to de-
signing transforms/dictionaries especially suitable for natural images. Some
of the proposed transforms that have been more successful for image process-
ing applications include the complex wavelet transform [164], the curvelet
transform [41, 42], the contourlet transform [86] and its extension to 3D
images known as surfacelet [198], the shearlet transform [96, 171], and the
bandlet transform [176].

The transforms mentioned above have had a great impact on the field
of image processing and are still used in practice. They have also been used
in CT [e.g., 41, 110, 266, 321]. However, learned overcomplete dictionaries
achieve much better results in practice by breaking some of the restrictions
that are naturally imposed by these analytical dictionaries. The restriction
of orthogonality, for instance, requires the number of atoms in the dictionary
to be no more than the dimensionality of the signal. The consequences
of these limitations had already been realized by researchers working on
wavelets. This realization led to developments such as stationary wavelet
transform, steerable wavelet transform, and wavelet packets, which greatly
improved upon the orthogonal wavelet transform [64, 230, 295]. However,
these transforms are still based on fixed constructions and do not have the
freedom and adaptability of learned dictionaries that we will explain below.

2.1.2 Learned overcomplete dictionaries

The basic idea of adapting the dictionary to the signal is not completely
new. One can argue that the Principal Component Analysis (PCA) method
[131], which is also known as the Karhunen–Love Transform (KLT) in signal
processing, is an example of learning a dictionary from the training data.
However, this transform also is limited in terms of the dictionary structure
and the number of atoms in the dictionary. Specifically, the atoms in a PCA
dictionary are necessarily orthogonal and their number is at most equal to
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the signal dimensionality.
The modern story of dictionary learning begins with a paper by Ol-

shausen and Field [245]. The question posed in that paper was: if we assume
that small patches of natural images have a sparse representation in a dictio-
nary D and try to learn this dictionary from a set of training patches, what
would the learned dictionary atoms look like? They found that the learned
dictionary consisted of atoms that were spatially localized, oriented, and
bandpass. This was a remarkable discovery because these are exactly the
characteristics of simple-cell receptive fields in the mammalian visual cortex.
Although similar patterns existed in Gabor filters [75, 76], Olshausen and
Field had been able to show that these structures can be explained using
only one assumption: sparsity.

Suppose that we are given a set of training signals and would like to
learn a dictionary for sparse representation of these signals. We stack these
training signals as columns of a matrix, which we denote with X. Each
column of X is a referred to as a training signal. In image processing ap-
plications, each training signal is a patch (for 2D images) or block (in the
case of 3D images) that is vectorized to form a column of X. Using the
matrix of training signals, a dictionary can be learned through the following
optimization problem.

minimize
D∈D ,Γ

‖X −DΓ‖2F + λ‖Γ‖1 (2.1)

In the above equation, X denotes the matrix of training data, Γ is the
matrix of representation coefficients of the training signals in D, and D is
the set of matrices whose columns have a unit Euclidean norm. The ith

column of Γ is the vector of representation coefficients of the ith column of
X (i.e., the ith training signal) in D. The notations ‖.‖F and ‖.‖1 denote,
respectively, the Frobenius norm and the `1 norm. The constraint D ∈ D
is necessary to avoid scale ambiguity because without this constraint the
objective function can be made smaller by decreasing Γ by an arbitrary
factor and increasing D by the same factor. The first term in the objective
function requires that the training signals be accurately represented by the
columns of D and the second terms promotes sparsity, encouraging that a
small number of columns of D are used in the representation of each training
signal.

There are many possible variations of the optimization problem pre-
sented in Equation (2.1), some of which will be explained in this chapter.
For example the `1 penalty on Γ is sometimes replaced with an `0 penalty.
In fact, it can be shown that variations of this problem include problems as
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diverse as PCA, clustering or vector quantization, independent component
analysis, archetypal analysis, and non-negative matrix factorization (see for
example [9, 211]). The most important fact about the optimization problem
in (2.1) is that it is not jointly convex with respect to D and Γ. Therefore,
only a stationary point can be hoped for and the global optimum is not
guaranteed. However, this problem is convex with respect to D and Γ indi-
vidually. Therefore, many dictionary learning problems adopt an alternating
minimization approach. In other words, the objective function is minimized
with respect to one of the two variables while keeping the other fixed. The
first such method was the method of optimal directions (MOD) [103]. In
each iteration of MOD, the objective function is first minimized with respect
to Γ by solving a separate sparse coding problem for each training signal:

Γk+1
i = argmin

γ
‖Xi −Dkγ‖22 subject to: ‖γ‖0 ≤ K (2.2)

In the above equation, and in the rest of this chapter, we use subscripts on
matrices to index their columns. Therefore, Xi indicates the ith column of
X, which is the ith training signal and Γi is the ith column of Γ, which is the
vector of representation coefficients of Xi in D. We will use superscripts to
indicate iteration number. Once all columns of Γ are updated, Γ is kept fixed
and the dictionary is updated. This update is in the form of a least-squares
problem that has a closed-form solution:

Dk+1 = X(Γk+1
i )† (2.3)

where † denotes the Moore-Penrose pseudo-inverse.
Before moving on, we need to say two brief words about the optimization

problem in (2.2). This optimization problem is one formulation of the sparse
coding problem that is a central part of any image processing method that
makes use of learned overcomplete dictionaries. Because of their ubiquity,
there has been a very large body of research on the properties of these prob-
lems and solution methods. Often the `0 norm in this equation is replaced
with an `1 norm. This problem is known as Least Absolute Shrinkage and
Selection Operator (LASSO) in statistics [315] and Basis Pursuit Denoising
(BPDN) in signal processing [54]. A review of these methods is beyond the
scope of this dissertation. Therefore, we will only mention or describe the
relevant algorithms where necessary. A recent review of these methods can
be found in [9]. In MOD, this step is solved using the orthogonal matching
pursuit (OMP) [252] or the focal underdetermined system solver (FOCUSS)
[119].
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Another dictionary-learning algorithm that has shown to be more effi-
cient than MOD is the K-SVD algorithm [2]. K-SVD is arguably the most
widely used dictionary learning algorithm today. Similar to MOD, each iter-
ation of the K-SVD algorithm updates each column of Γ by solving a sparse
coding problem similar to (2.2). However, unlike the MOD that updates all
dictionary atoms at once, K-SVD updates each dictionary atom (i.e., each
column of D) sequentially. Assuming all dictionary atoms are fixed except
for the ith atom, the cost function in (2.1) can be written as:

‖X −DΓ‖2F =

∥∥∥∥∥∥X −
N∑
j=1

DjΓ
T
j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥X −
N∑

j=1,j 6=i
DjΓ

T
j −DiΓ

T
i

∥∥∥∥∥∥
2

F

= ‖Ei −DiΓ
T
i ‖2F

(2.4)

In the K-SVD algorithm this is minimized using an SVD decomposition of
the matrix Ei after restricting it to the training signals that are using Di

in their representation. The reason behind this restriction is that it will
preserve the sparsity of the representation coefficients. Let us denote the
restricted version of Ei with ERi and assume that the SVD decomposition
of ERi is ERi = U∆V T . Then, U1 and ∆(1, 1)V1 provide the updates of Di

and ΓTi , where U1 and V1 denote the first columns of U and V , respectively,
and ∆(1, 1) is the largest singular value of ERi .

A major problem with methods like MOD and K-SVD is that they are
computationally intensive. Even though efficient implementations of these
algorithms have been developed [275], the amount of computations becomes
very excessive when the number of training signals and the signal dimen-
sionality grow. Therefore, a number of studies have proposed algorithms
that are particularly designed for learning dictionaries from huge datasets
in reasonable time [213, 313]. The algorithm proposed in [212, 213], for ex-
ample, is based on stochastic optimization algorithms that are particularly
suitable for large-scale problems. Instead of solving the optimization prob-
lem by considering the whole training data, it randomly picks one training
signal (i.e., one column of X) and approximately minimizes the objective
function using that one training signal. Convincing theoretical and empiri-
cal evidence regarding the convergence of this dictionary learning approach
have been presented in [213].

Another important class of dictionary learning algorithms are maximum-
likelihood algorithms, which are in fact among the first methods suggested
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for learning dictionaries from data [167, 183, 184]. These methods assume
that each training signal is produced by a model of the form:

Xi = DΓi + wi (2.5)

where wi is a Gaussian-distributed white noise. To encourage sparsity of the
representation coefficients (Γi), these methods assume a sparsity-promoting
prior such as a Cauchy or Laplace distribution for entries of Γ. Addition-
ally, these approaches assume that the entries of Γ are independent and
identically distributed and that each signal Xi is drawn independently. A
dictionary can then be learned by maximizing the data likelihood p(X|D)
or the posterior p(D|X). Quite often, the resulting likelihood function is
very difficult to maximize and it is further simplified before applying the
optimization algorithm.

It can be argued that the maximum-likelihood methods explained above
are not truly Bayesian methods because they yield a point estimate rather
than the full posterior distribution [211]. As a result, in recent years several
fully-Bayesian dictionary learning methods have been proposed [135, 358,
359]. In these algorithms, priors are placed on all model parameters, i.e.,
not only on the dictionary atoms Di and sparse representation vectors Γi,
but also on all other model parameters such as the number of dictionary
atoms and the noise variance for each training signal. The most important
priors assumed in these models are usually Gaussian priors with Gamma
hyper-priors for the dictionary atoms (Di) and representation coefficients
(Γi), and a Beta-Bernoulli process for the support of Γi [135, 359]. Full
posterior density of the model parameters and hyper-parameters are itera-
tively estimated via Gibbs sampling. Compared to all other dictionary learn-
ing methods described above, these fully-Bayesian methods are significantly
more computationally demanding. On the other hand, their robustness with
respect to poor initialization and their ability to learn some important pa-
rameters such as the noise variance makes them potentially very useful for
certain applications [304, 337].

There are many variations and enhancements of dictionary learning that
we cannot describe in detail due to space limitations. However, we briefly
mention three important variations. The first is the structured dictionary
learning. The main idea here is not only to learn the dictionary atoms but
also the interaction between the learned dictionary atoms. For example, a
common structure that is assumed between the atoms is a tree structure,
where each atom is the descendant/parent of some other atoms [141, 142].
During the dictionary usage, then, an atom will participate in the sparse
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2.1. Image processing with learned overcomplete dictionaries

code of a signal if and only if its parent atom does so. Obviously, the basic
`0 and `1 norms are not capable of modelling these interactions between dic-
tionary atoms. The success of structured dictionary learning, therefore, has
been made possible by algorithms for structured sparse coding [134, 140].
Another common structure is the grid structure that enforces a neighbor-
hood relation between atoms [153, 313]. The second variation that is of
great importance is multi-scale dictionary learning. Extending the basic
dictionary learning scheme to consider different patch sizes has been shown
to significantly improve the performance of the dictionary-based image pro-
cessing [216, 246]. Moreover, this extension to multiple scales has been
suggested as an approach to addressing some of the theoretical flaws in the
dictionary-based image processing [250]. The third important variation that
we mention here includes dictionaries that have a fast application. As we
mentioned above, learned dictionaries do not possess such desired struc-
tural properties as orthogonality. As a result, they are much more costly to
apply than analytical dictionaries. Therefore, several dictionary structures
have been proposed with the goal of reducing the computational cost during
dictionary usage [1, 274]. These dictionaries can be particularly useful for
processing of large 3D images.

As final remarks on dictionary learning, we should first mention that
there is no strong theoretical justification behind most dictionary learn-
ing algorithms. In particular, there is no theoretical guarantee that these
algorithms are robust or that the learned dictionary should work well in
practical applications. In practice, learning a good dictionary certainly re-
quires a sufficient amount of training data and the minimum amount of
data needed grows at least linearly with the number of dictionary atoms
[274, 276]. Uniqueness of the learned dictionary, however, is only guaran-
teed for an exponential number of training signals [3]. In fact, the theory of
dictionary learning is considered to be one of the major open problems in
the field of sparse representation [98]. Secondly, pre-processing of training
image patches has proved to significantly influence the types of structures
that emerge in the learned dictionary and the performance of the learned
dictionary in practice. Three of the most commonly used pre-processing
operations include: (i) removing of the patch mean, also known as centering
[100], (ii) variance normalization which is preceded with centering [139, 258],
and (iii) de-correlating the pixel values within a patch, referred to as whiten-
ing [20, 136]. The overall effect of all these three operations is to amplify
the high-frequency structure such as edges, resulting in more high-frequency
patterns in the learned dictionary [211].
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2.1. Image processing with learned overcomplete dictionaries

2.1.3 Applications of learned dictionaries

Learned overcomplete dictionaries have been employed in various image pro-
cessing and computer vision applications in the past ten years. There are
monographs that review and explain these applications in detail [99, 211].
Because of space limitations, we describe the basic formulations for image
denoising, image inpainting, and image scale-up. Not only these three tasks
are among the most successful applications of learned dictionaries in image
processing, they are also very instructive in terms of how these dictionaries
can be used to accomplish various image processing tasks.

Image denoising

Suppose that we have measured a noisy image x = x0 + w, where
x0 is the true underlying image and w is the additive noise that is
assumed to be white Gaussian. The prior assumption in denoising
using a dictionary D is that every patch in the image has a sparse
representation in D. If we denote a typical patch with p, this would
mean that there exists a sparse vector γ such that ||p−Dγ||22 < ε, where
ε is proportional to the noise variance [100, 215]. Using this prior on
every patch in the image, the maximum a posteriori (MAP) estimation
of the true image can be found as the solution of the following problem
[99]:

{
x̂0, {γ̂i}Ni=1

}
= argmin

z,{γi}Ni=1

λ‖z−x‖22 +

N∑
i=1

(
‖Riz−Dγi‖22 +‖γi‖0

)
(2.6)

where Ri represents a binary matrix that extracts and vectorizes the
ith patch from the image. This is a very common notation that is
used to simplify the presentation of this type of equations and we
will use it in the rest of this dissertation. N is the total number of
extracted patches. It is common to use overlapping patches to avoid
discontinuity artifacts at the patch boundaries. In fact, unless the
computational time is a concern, it is recommended that maximum
overlap is used such that adjacent extracted patches are shifted by
only one pixel in each direction. This means extracting all possible
patches from the image.

The objective function in Equation (2.6) is easy to understand. The
first term requires the denoised image to be close to the measurement,
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2.1. Image processing with learned overcomplete dictionaries

x, and the second term requires that every patch extracted from this
image to have a sparse representation in the dictionary D. The com-
mon approach to solving this optimization problem is an approximate
block-coordinate minimization. First, we initialize z to the noisy mea-
surement (z = x). Keeping z fixed, the objective function is minimized
with respect to {γi}Ni=1. This step is simplified because it is equivalent
to N independent problems, one for each patch, that can be solved
using sparse coding algorithms. Then {γi}Ni=1 are kept fixed and the
objective function is minimized with respect to z. This minimization
has a closed-form solution:

x̂0 =

(
λI +

N∑
i=1

RTi Ri

)−1(
λx+

N∑
i=1

RTi Dγ̂i

)
(2.7)

There is no need to form and invert a matrix to solve this equation. It
is basically equivalent to returning the denoised patches to their right
place on the image canvas and performing a weighted averaging. The
weighted averaging simply takes into account the overlapping of the
patches and a weighted averaging with the noisy image x (with weight
λ).

The minimization with respect to {γi}Ni=1 and z can be performed
iteratively by using x̂0 obtained from (2.7) as the new estimate of
the image. However, this will run into difficulties because the noise
distribution in x̂0 is unknown and it is certainly not white Gaussian.
Therefore, x̂0 obtained from (2.7) is usually used as the estimate of
the underlying image x0.

Image inpainting

Let us denote the true underlying image with x0 and assume that the
observed image x not only contains noise, but also some pixels are
not observed or are corrupted to the extent that the measurements of
those pixels should be ignored. The model used for this scenario is x =
Mx0 +w where w is the additive noise and M is a mask matrix, which
is a binary matrix that removes the unobserved/corrupted pixels. The
goal is to recover x0 from x. Similar to the denoising problem above,
one can use the prior assumptions that patches of x0 have a sparse
representation in a dictionary D. The MAP estimate of x0 can be
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found as a solution of the following problem [99]:{
x̂0, {γ̂i}Ni=1

}
= argmin

z,{γi}Ni=1

λ‖Mz − x‖22

+

N∑
i=1

(
‖Riz −Dγi‖22 + ‖γi‖0

) (2.8)

An approximate solution can be found using an approach rather similar
to that described above for the denoising problem. Specifically, we
start with an initialization z = MTx. Then, assuming that z is fixed,
we solve N independent sparse coding problems to find estimates of
{γi}Ni=1. The only issue here is that this initial z will be corrupted
at the locations of unobserved pixels. Therefore, the estimation of
{γi}Ni=1 needs to take this into account by introducing a local mask
matrix for each patch:

γ̂i = argmin
γ

‖Mi(Riz −Dγ)‖22 subject to: ‖γ‖0 ≤ K (2.9)

Once {γi}Ni=1 are estimated, an approximation to the underlying full
image is found as:

x̂0 =

(
λMTM +

N∑
i=1

RTi Ri

)−1(
λMTx+

N∑
i=1

RTi Dγ̂i

)
(2.10)

which has a simple interpretation similar to (2.7). The method de-
scribed above has been shown to be very effective in many studies
[215, 216, 254].

Image scale-up (super-resolution)

As we saw above, the applications of learned dictionaries for image
denoising and inpainting can be quite straightforward. Nevertheless,
application of learned dictionaries for image processing may involve
much more elaborate approaches, even for the simple tasks such as
denoising. As an example of a slightly more complex task, in this
section we explain the image scale-up. Image scale-up can serve as a
good example of more elaborate applications of learned dictionaries in
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2.1. Image processing with learned overcomplete dictionaries

image processing. Moreover, it has been one of the most successful
applications of learned dictionaries to date [345].

Suppose xh is a high-resolution image. A blurred low-resolution ver-
sion of this image can be modeled as xl = SHxh, where H and
S denote the blur and down-sampling operators. Given the mea-
sured low-resolution image, which can also include additive noise (i.e.,
xl = SHxh + w), the goal is to recover the high-resolution image.
This problem is usually called the image scale-up problem, and it is
also referred to as image super-resolution.

The first image scale-up algorithm that used learned dictionaries was
suggested in [345]. This algorithm is based on learning two dictionar-
ies, one for sparse representation of the patches of the high-resolution
image and one for sparse representation of the patches of the low-
resolution image. Let us denote these dictionaries with Dh and Dl,
respectively. The basic assumption in this algorithm is that sparse rep-
resentation of a low-resolution patch inDl is identical to the sparse rep-
resentation of its corresponding high-resolution patch in Dh. There-
fore, given a low-resolution image xl, one can divide it into patches
and use each low-resolution patch to estimate its corresponding high-
resolution patch. Let us denote the ith patch extracted from xl with X l

i

and its corresponding high-resolution patch with Xh
i . One first finds

the sparse representation of X l
i in Dl using any sparse coding algo-

rithm such that X l
i
∼= Dγi. Then, by assumption, γi is also the sparse

representation of Xh
i in Dh. Therefore, the estimate of Xh

i will be:

X̂h
i
∼= Dhγi. These estimated high-resolution patches are then placed

on the canvas of the high-resolution image and the high-resolution im-
age is formed via a weighted averaging similar to that in the denoising
application above. The procedure that we explained here for estimat-
ing the high-resolution patches from their low-resolution counterparts
is the simplest approach. In practice, this procedure is applied with
slight modifications that significantly improve the results [99, 345, 352].

The main assumption in the above algorithm was that the sparse codes
of the low-resolution and high-resolution patches were identical. This
is an assumption that has to be enforced during dictionary learning.
In other words, the dictionaries Dh and Dl are learned such that this
condition is satisfied. The dictionary learning approach suggested in
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[345] is:

minimize
Dh,Dl,Γ

1

mh
‖Xh −DhΓ‖2F +

1

ml
‖X l −DlΓ‖2F + λ‖Γ‖1 (2.11)

where Xh and X l represent the matrices of training signals. The ith

column ofXh is the vectorized version of a patch extracted from a high-
resolution image and the ith column of X l is the vectorized version of
the corresponding low-resolution patch. mh and ml are the lengths of
the high-resolution and low-resolution training signals and are included
in the objective function to properly balance the two terms. The
important choice in the objective function in (2.11) is to use the same
Γ in the first and the second terms of the objective function. It is easy
to understand how this choice forces the learned dictionariesDh andDl

to be such that the corresponding high-resolution and low-resolution
patches have the same sparse representation.

The above algorithm achieved surprisingly good results [345]. How-
ever, it was soon realized that the assumption of this algorithm on
the sparse representations was too restrictive and that better results
could be obtained by relaxing those assumptions. For instance, one
study suggested a linear relation between the sparse representations of
low-resolution and high-resolution patches and obtained better results
[327]. The dictionary learning formulation for this algorithm had the
following form:

minimize
{Dh,Γh,Dl,Γl,W}

(
||Xh −DhΓh||2F + ||X l −DlΓ

l||2F

+ λh||Γh||1 + λl||Γl||1

+ λW ||Γl −WΓh||2F + α||W ||2F
) (2.12)

It is easy to see that here the assumption is not that the sparse rep-
resentation of high-resolution patches (Γh) is the same as the sparse
representation of the low-resolution patches (Γl), but that there is a
linear relationship between them. This linear relation is represented
by the matrix W . This results in a much more general and more flex-
ible model. On the other hand, this is also a more difficult model to
learn because it requires learning of the matrix W , in addition to the
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2.1. Image processing with learned overcomplete dictionaries

two dictionaries. In [327], a block-coordinate optimization algorithm
was suggested for solving this problem and it was shown to produce
very good results.

There have also been other approaches to relaxing the relationship be-
tween the sparse codes of high-resolution and low-resolution patches.
For instance, one study suggested a bilinear relation involving two ma-
trices [132]. Another study suggested a statistical inference technique
to predict the sparse code of the high-resolution patches from low-
resolution ones [253]. Both of these approaches reported very good
results. In general, image scale-up with the help of learned dictio-
naries has shown to outperform other competing methods and it is a
good example of the power of learned dictionaries in modeling natural
images.

Other applications

In the above, we explained three applications of learned dictionar-
ies. However, these dictionaries have proved highly effective in many
other applications as well. Some of these other applications include
image demosaicking [215, 225], deblurring [69, 88], compressed sens-
ing [55, 93, 267], morphological component analysis [99], compression
[36, 298], classification [147, 265], cross-domain image synthesis [362]
and removal of various types of artifacts from the image [151, 350].

For many image processing tasks, such as denoising and compression,
application of the dictionary is relatively straightforward. However,
there are also more complex tasks for which learning and application
of overcomplete dictionaries are much more complex. It has been sug-
gested in [210, 211] that many of these applications can be considered
as instances of classification or regression problems. The authors of
[210] coin the term “task-driven dictionary learning” to describe these
applications and suggest that a general optimization formulation for
these problems is of the form:

minimize
D∈D,W∈W

L(Y,W, Γ̂) + λ‖W‖2F (2.13)

In the above formulation, Γ̂ is the matrix of representation coefficients
of the training signals, obtained by solving a problem such as (2.2).
The cost function L quantifies the error in the prediction of the tar-
get variables Y from the sparse codes Γ̂, and W denotes the model
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2.2. Non-local patch-based image processing

parameters. For a classification problem, Y represents the labels of
the training signals, whereas in a regression setting Y represents real-
valued vectors. For example, the image scale-up problem that we have
presented above is an example of the regression setting where Y repre-
sents the vectors of the pixel values of the high-resolution patches. The
second term in the above objective function is a regularization term
on model parameters that is meant to avoid overfitting and numerical
instability.

Therefore, in task-driven dictionary learning, the goal is to learn the
dictionary not only for sparse representation of the signal, but also so
that it can be employed for accurate prediction of the target variables,
Y . The general optimization problem in (2.13) is very difficult to solve.
In addition to the fact that the objective function is non-convex, the
dependence of L on D is through Γ̂, which is in turn obtained by
solving (2.2). In the asymptotic case when the amount of training
data is very large, it has been shown that this general optimization
problem is differentiable and can be effectively solved using stochastic
gradient descent [210]. It has been shown that this approach can
lead to very good results in a range of classification and regression
tasks such as compressed sensing, handwritten digit classification, and
inverse halftoning [210].

2.2 Non-local patch-based image processing

Natural images contain abundant self-similarities. In terms of image patches,
this means that for every patch in a natural image we can probably find many
similar patches in the same image. The main idea in non-local patch-based
image processing is to exploit this self-similarity by finding/collecting similar
patches and processing them jointly. The idea of exploiting patch similarities
and the notion of nonlocal filtering are not very new [70, 97, 316, 330, 349].
However, it was the non-local means (NLM) denoising algorithm proposed
in [37] that started the new wave of research in this field. Even though the
basic idea behind NLM denoising is very simple and intuitive, it achieves
remarkable denoising results and it has created a great deal of interest in
the image processing community.

Let us denote the noisy image with x = x0 + w, where, as before, x0

denotes the true image. We also denote the ith pixel of x with x(i) and a
patch/block centered on x(i) with x[i]. We will use similar notations in the
rest of this dissertation. The NLM algorithm considers overlapping patches,
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each patch centered on one pixel. The value of the ith pixel in the underlying
image, x0(i), is estimated as a weighted average of the center pixels of all
the patches as follows:

x̂0(i) =
N∑
j=1

Ga(‖x[j]− x[i]‖2F )∑N
j=1Ga(‖x[j]− x[i]‖2F )

x(j) (2.14)

where Ga denotes a Gaussian kernel with bandwidth a and N is the total
number of patches. The intuition behind this algorithm is very simple:
similar patches are likely to have similar pixels at their centers. Therefore,
in order to estimate the true value of the ith pixel, the algorithm performs a
weighted averaging of the values of all pixels, with the weight being related
to the similarity of each patch with the patch centered on the ith pixel.
Although in theory all patches can be included in the denoising of the ith

pixel, as shown in (2.14), in practice only patches from a small neighborhood
around this pixel are included. In fact, many of the methods that are based
on NLM denoising first find several patches that are similar to x[i]. Only
those patches that are similar enough to x[i] are used in computing x̂0(i).
Therefore, a practical implementation of the NLM denoising will be:

x̂0(i) =
∑
j∈Si

Ga(‖x[j]− x[i]‖2F )∑
j∈Si Ga(‖x[j]− x[i]‖2F )

x(j)

where: Si = {j| j ∈ Ni & ‖x[j]− x[i]‖F ≤ ε}
(2.15)

where Ni is a small neighborhood around the ith pixel and ε is a noise-
dependent threshold.

The idea behind the NLM has proved to be an extremely powerful model
for natural images. For the denoising task, NLM filtering and its extensions
have led to the best denoising results [228, 289]. Some studies have shown
that the current state-of-the-art algorithms are approaching the theoretical
performance limits of denoising [51, 182]. Some of the recent extensions of
the basic NLM denoising include Bayesian/probabilistic extensions of the
method [178, 333], spatially adaptive selection of the algorithm parameters
[91, 95], combining NLM denoising with TV denoising [306], and the use of
non-square patches that has been shown to improve the results around edges
and high-contrast features [83]. Some of the most productive extensions of
the NLM scheme involve exploiting the power of learned dictionaries. We
will discuss these methods in the next section.
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Nonlocal patch-based methods are very computationally demanding.
Therefore, a large number of research papers have focused on speedup strate-
gies. A very effective strategy was proposed in [73]. This strategy is based
on building a temporary image that holds the discrete integration of the
squared differences of the noisy image for all patch translations. This inte-
gral image is used for fast computation of the patch differences (x[j]−x[i]),
which is the main computational burden in nonlocal patch-based methods.
A large number of papers have focused on reducing the computational cost
of NLM denoising by classifying/clustering the image patches before starting
the denoising process [27, 77, 207]. The justification behind this approach is
that the computational bottleneck of NLM denoising is the search for similar
patches. Therefore, these methods aim at clustering the patches so that the
search for similar patches becomes less computationally demanding. Most
of these methods compute a few features from each patch to obtain a concise
representation of the patches. Typical features include average gray value
and gradient orientation. During denoising, for each patch a set of similar
patches is found using the clustered patches. One study compared various
tree structures for fast finding of similar patches in an image and found
that vantage point trees are superior to other tree structures [170]. Another
class of highly efficient algorithms for finding similar patches are stochastic
in nature. These methods can be much faster than the deterministic tech-
niques we mentioned above, but they are less accurate. Perhaps the most
widely used algorithm in this category is the PatchMatch algorithm and its
extensions [12, 13].

The NLM algorithm and its extensions that we will explain in the next
section have been recognized as the state-of-the-art methods for image de-
noising. However, the idea of exploiting the patch similarities has been used
for many other image processing tasks. For instance, it has been shown that
nonlocal patch similarities can be used to develop highly effective regular-
izations for inverse problems and iterative image reconstruction algorithms
[114, 194, 229, 255, 354]. Below, we briefly explain two of these algorithms.

Let us consider the inverse problem of estimating an unknown image x
from the measurements y = Ax + w, where w is the additive noise. The
matrix A represents the known forward model that can be, for example, a
blur matrix (in image deblurring) or the projection matrix (in tomography).
In [255], it is suggested to recover x by solving the optimization problem:

x̂ = argmin
x

‖y −Ax‖22 + λ
∑
i

∑
j

√
wi,j |(x(i)− x(j)| (2.16)
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where wi,j are the nonlocal patch-based weights that are computed in a
fashion similar to NLM denoising:

wi,j =
1

Z
exp

(
− ‖x[i]− x[j]‖

2σ2

)
(2.17)

where Z is a normalizing factor. Therefore, the regularization term in (2.16)
is a non-local total variation on a graph where the graph weights are based
on nonlocal patch similarities. The difficulty with solving this optimization
problem is that the weights themselves depend on the unknown image, x.
The algorithm suggested in [255] iteratively estimates the weights from the
latest image estimate and then updates the image based on the new weights
using a proximal gradient method. In summary, given the image estimate
at the kth iteration, x̂k, the weights are estimated from this image. Then,
the image is updated using a proximal gradient iteration [46, 66] :

x̂k+1 =ProxµλJ

(
x̂k + µAT

(
y −Ax̂k

))
ProxJ(x) = argmin

z

1

2
‖x− z‖22 + J(z)

(2.18)

where J is the regularization term in (2.16) and µ is the step size. Having
computed the new estimate x̂k+1, the patch-based weights are re-computed
and the algorithm continues. This algorithm showed very good results on
three types of inverse problems including compressed sensing, inpainting,
and image scale-up [254].

In [348], the following optimization problem was suggested for recovering
the unknown image x.

x̂ = argmin
x

‖y −Ax‖22 + λ
∑
i

∑
j∈Ni

‖x[i]− x[j]‖p (2.19)

where p ≤ 1 and Ni is a neighborhood around the ith pixel. An iterative
majorization-minimization algorithm is suggested for solving (2.19). Ma-
jorization of the regularization term will lead to the following quadratic
surrogate problem:

x̂ = argmin
x

‖y −Ax‖22 + λxTSx (2.20)

where S is a sparse matrix representing the patch similarities. The algorithm
alternates between minimization of (2.20) using a conjugate gradient descent
method and updating the matrix S from the new image estimate.
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As we mentioned above, nonlocal patch similarities have been shown to
be very useful for many image processing tasks. Because of space limitations,
in this section we focused on image denoising and inverse problems, which are
more relevant to CT. However, we should mention that in recent years, the
idea of exploiting nonlocal patch similarities has been applied to many image
processing tasks and this is currently a very active area of research. Some
examples of these applications include image enhancements [38], deblurring
[163], inpainting [124], and super-resolution [262].

2.3 Other patch-based methods

The large number and diversity of patch-based image processing algorithms
that have been developed in the past ten years makes it impossible to review
them all here. Nonetheless, most of these algorithms are based on sparse
representation of patches in learned dictionaries (Section 2.1) and/or ex-
ploiting nonlocal patch similarities (Section 2.2). In this section, we try to
provide a broad overview of some of the extensions of these ideas and other
patch-based methods.

To begin with, it is natural to combine the two ideas of learned dictionar-
ies and non-local filtering to enjoy the benefits of both methods. Research
in this direction has proven to be very fruitful. The first algorithm to ex-
plicitly follow this approach was “the non-local sparse model” proposed in
[214]. This method collects similar patches of the image, as in NLM denois-
ing. However, unlike NLM that performs a weighted averaging, the non-local
sparse model uses sparse coding of similar patches in a learned dictionary.
The basic assumption in the non-local sparse model is that similar patches
should use similar dictionary atoms in their representations. Therefore, si-
multaneous sparse coding techniques (e.g., [318, 319]) are applied on groups
of similar patches.

The idea of combining the benefits of non-local patch similarities and of
learned dictionaries has been explored by many studies in the recent years
[50, 84, 87, 88, 311, 347]. Most of these methods have reported state-of-the-
art results. Although the details of these algorithms are different, the main
ideas can be simply explained in terms of the non-local patch similarities and
sparse representation in learned dictionaries. The K-LLD algorithm [50], for
example, uses steering kernel regression method to find structurally similar
patches and then uses PCA to learn a suitable dictionary for each set of
similar patches. The Adaptive Sparse Domain Selection (ASDS) algorithm
[88], on the other hand, clusters the training patches and learns a sub-
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dictionary for each cluster using PCA. For a new patch, then, ASDS selects
the most relevant sub-dictionary for sparse coding of that patch. The idea of
using PCA for building the dictionaries in these methods has received great
attention because the learned dictionaries will be orthonogonal. In [84],
global, local, and hierarchical implementations of PCA dictionaries were
studied. It was found the local-PCA (i.e., PCA applied on patches selected
from a sliding window) led to the best results.

A very successful patch-based image denoising algorithm, that has simi-
larities with the non-local sparse model, is the BM3D algorithm [71]. Even
though BM3D has been proposed in 2007, it is still regarded as the state-of-
the-art image denoising algorithm. Similar to the non-local sparse model,
BM3D collects similar patches and filters them jointly. However, unlike
the non-local sparse model, it uses orthogonal DCT dictionaries instead of
learned overcomplete dictionaries. Moreover, BM3D works in two steps.
First, patch-matching and filtering is performed on the original noisy image
to obtain an intermediate denoised image. Then, a new round of denoising
is performed. This time, the intermediate image is used for finding similar
patches. The algorithm includes other components such as Wiener filtering
and weighted averaging [71]. Further improvements to the original BM3D
algorithm and an extension to 3D images (called the BM4D algorithm) have
also been proposed [72, 205].

2.4 Patch-based methods for Poisson noise

In this section, we focus on the patch-based methods for the case when the
noise follows a Poisson distribution. The reason for devoting a section to
this topic is that, as we explained in Section 1.2, the noise in CT projection
measurements has a complex distribution that can be best approximated as a
Poisson noise or, after log-transformationm, as a Gaussian noise with signal-
dependent variance [204, 326]. In any case, application of the patch-based
image processing methods to the projection measurements in CT requires
careful consideration of the complex noise distribution. Unfortunately, most
of the patch-based image processing methods, including all algorithms that
we have described so far in this chapter, have been proposed for Gaussian
noise. Moreover, most of these algorithms (with the exception of fully-
Bayesian methods described in Section 2.1.2) assume that the Gaussian
noise has a uniform variance. Comparatively, the research on patch-based
methods for the case of Poisson noise has been very limited and most of
these limited works have been published very recently.
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An important first obstacle facing the application of patch-based meth-
ods to the case of Poisson noise is the choice of an appropriate patch sim-
ilarity measure. Methods that depend on nonlocal patch similarities need
a patch similarity measure to find similar patches. Likewise, when we use
sparse representation of the patches in a learned dictionary we often need a
patch similarity measure. This is needed, for example, for finding the sparse
representation of the patch in the dictionary using greedy methods. When
the noise has a Gaussian distribution, the standard choice is the Euclidean
distance, which has a sound theoretical justification and is easy to use.

For the non-Gaussian noise distributions, one straight-forward approach
is to apply a so-called variance-stabilization transform so that the noise
becomes close to Gaussian and then use the Euclidean distance. For the
Poisson noise, the commonly-used transforms include the Anscombe trans-
form [7] and the Haar-Fisz transform [111]. If one wants to avoid these
transforms and work with the original patches that are contaminated with
Poisson noise, the proper choice of patch similarity measure is less obvious.
Over the years, many criteria have been suggested for measuring the sim-
ilarity between patches contaminated with Poisson noise [6]. For the case
of low-count Poisson measurements, one study has suggested that the earth
mover’s distance (EMD) is a good measure of distance between patches
[115]. It has been suggested that EMD can be approximated by passing the
patches with Poisson noise through a Gaussian filter and then applying the
Euclidean distance [115]. One study compared several different patch dis-
tance measures for Poisson noise through extensive numerical experiments
[85]. It was found that the generalized likelihood ratio (GLR) was the best
similarity criterion in terms of the trade-off between the probability of de-
tection and false alarm [85]. GLR has many desirable theoretical properties
that make it very appealing as a patch distance measure [82]. For the Pois-
son noise, this ratio is given by the following Equation:

LG(x1, x2) =
(x1 + x2)x1+x2

2x1+x2xx1
1 x

x2
2

(2.21)

Given two noisy patches x1[i] and x2[i], where i ∈ ω, and assuming that
the noise in pixels is independent, this gives the following similarity measure
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between the two patches:

S(x1, x2) =
∑
i∈ω

(x1[i] + x2[i]) log(x1[i] + x2[i])

− (x1[i]) log(x1[i])− (x2[i]) log(x2[i])

− (x1[i] + x2[i]) log 2

(2.22)

In [82], the GLR-based patch similarity criterion was also compared with
six other criteria for non-local patch-based denoising of images with Poisson
noise. It was found that using GLR led to the best denoising result when
the noise is strong [82]. When the noise was not strong, the results showed
that it was better to use a variance-stabilization transform to convert the
Poisson noise into Gaussian noise and then to use the Euclidean distance.
The algorithm used in [82] for non-local filtering is as follows:

x̂0(i) =
N∑
j=1

LG(x[j]− x[i])1/h∑N
j=1 LG(x[j]− x[i])1/h

x(j) (2.23)

This algorithm includes the parameter h instead of the kernel bandwidth a
in Equation (2.14).

Another nonlocal patch-based denoising algorithm for Poisson noise was
suggested in [81]. A main feature of this algorithm is that the patch simi-
larity weights are computed from the original noisy image as well as from a
pre-filtered image:

x̂0(i) =

N∑
j=1

wi,j∑N
j=1wi,j

x(j) where: wi,j = exp

(
− ui,j

α
− vi,j

β

)
(2.24)

where ui,j are computed from the noisy image using a likelihood ratio prin-
ciple and vi,j are computed from a pre-estimate of the true image using the
symmetric Kullback-Leibler divergence. It is shown that the optimal values
for the parameters α and β can be computed and that this algorithm can
achieve state of the art denoising results.

The patch-similarity measure in (2.22) was used to develop a k-medoids
denoising algorithm in [44]. The k-medoids algorithm is similar to k-means
algorithms. They are different in that k-means uses the centroid of each
cluster as the representative of that cluster, whereas the k-medoids algo-
rithm uses data points (i.e., examples) as the representative of the cluster.
Moreover, k-medoids can work with any distance measure, not necessarily
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the Euclidean distance. It was shown in [44] that the k-medoids algorithm
achieved very good Poisson denoising results, outperforming the nonlocal
Poisson denoising method of [82] in some tests. The k-medoids algorithm
is in fact a special case of the dictionary learning approach. The difference
with the dictionary-learning approach is that in the k-medoids algorithm
only one atom participates in the representation of each patch.

The reason why the study in [44] limited itself to using only one atom
for representation of each patch was the difficulties in sparse coding under
the Poisson noise. Suppose that x0[i] is the ith patch of the true underlying
image and x[i] is the measured patch under Poisson noise. If we wish to
recover x0[i] from x[i] via sparse representation in a dictionary D, we need
to solve a problem that has the following form [94]:

γ̂i = argmin
γ s.t. ‖γ‖0≤T

1TDγi − x[i]T log(Dγi) subject to: Dγi > 0 (2.25)

Having found γ̂i, we will have: x̂0[i] = Dγ̂i. The difficulties of solving this
problem have been discussed in [94, 115] and greedy sparse coding algorithms
have been proposed for solving this problem. The author of [94] then apply
their proposed algorithm for denoising of images with Poisson noise. Even
though they use a wavelet basis for D, they achieve impressive results.

A true dictionary learning-based denoising algorithm for images with
Poisson noise was suggested in [115]. In that study, a global dictionary
is learned from a set of training data. Then, for a given noisy image to
be denoised, the algorithm first clusters similar patches. All patches in a
cluster are denoised together via simultaneous sparse representation in D.
This means that patches that are clustered together are forced to share
similar dictionary atoms in their representation. Experiments showed that
this method was comparable with or better than competing methods. A
slightly similar approach that also combines the ideas of learned dictionaries
and non-local filtering is proposed in [280, 281]. In this approach, k-means
clustering is used to group similar image patches. A dictionary is learned for
each cluster of similar patches using the Poisson-PCA algorithm [65, 297].
For solving the Poisson-PCA problem, which is also known as exponential-
PCA, the authors use the Newton’s method. This algorithm showed good
performance under low-count Poisson noise.
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2.5 Total variation (TV)

Total variation (TV), which was first proposed in [277] for image denoising
and reconstruction, has become one of the most widely used regularization
functions in image processing. For a function x(t) defined on the interval
[0, 1], it is defined as [278]:

TV(x) = sup
∑
i

|x(ti)− x(ti−1)| (2.26)

where the supremum is computed over all possible partitions of the inter-
val [0, 1]. For a piecewise-constant signal, TV(x) is simply the sum of the
magnitudes of the signal jumps. If x(t) is smooth, the following equivalent
definition exists:

TV(x) =

∫ 1

0

∣∣∣∣dxdt
∣∣∣∣ dt (2.27)

For a function x(s, t) of two variables defined on the unit square, the
above definition can be extended as:

TV(x) =

∫ 1

0

∫ 1

0

∥∥∥∥(∂x∂s , ∂x∂t
)∥∥∥∥ ds dt (2.28)

Different discretizations have been proposed. Suppose x ∈ RN×N is a
2D image. A common discretization is [46]:

TV(x) =
∑

1≤i,j≤N
|(∇x)i,j | (2.29)

where

(∇x)i,j =
(
(∇x)1

i,j , (∇x)2
i,j

)
(∇x)1

i,j =

{
xi+1,j − xi,j if i < N
0 if i = N

(∇x)2
i,j =

{
xi,j+1 − xi,j if j < N
0 if j = N

(2.30)

and for z = (z1, z2) ∈ R2, |z| =
√
z2

1 + z2
2 .

Suppose that we obtain measurements y = Ax+ w, where, as before, A
is some operation or transformation such as blurring, sampling, or forward
projection in CT and w is additive Gaussian noise with uniform variance.
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The maximum a posteriori estimate of x with a total variation prior P (x) ∼
e−J(x) is obtained as:

xMAP = argmin
x
‖Ax− y‖22 + TV(x) (2.31)

A special case of this problem is the denoising problem shown below,
which corresponds to the case where A is the identity matrix.

xMAP = argmin
x
‖x− y‖22 +

∫
Ω
|∇x|du (2.32)

which is usually referred to as the Rudin-Osher-Fatemi (ROF) model for
image denoising.

The main properties of TV include convexity, lower semi-continuity, and
homogeneity [45]. Many different algorithms have been suggested for solving
this problem. Examples of the optimization approaches that are used to
solve this problem include primal-dual methods [168, 278], second-order cone
programming [116], dual formulations [46, 361], split Bregman methods [112,
117], and accelerated proximal gradient methods [17, 237].

In general, TV is a good model for recovering blocky images, i.e., images
that consist of piecewise-constant features with sharp edges [278]. Many
studies have used TV to successfully accomplish various image processing
tasks, including denoising [46], deblurring [332], inpainting [249], restoration
[29], and reconstruction [303]. However, on images with fine texture and
ramp-like features, this model usually performs poorly [113]. Therefore,
many studies have tried to improve or modify this model so that it can
be useful for more complicated images. Some of the research directions
include employing higher-order differentials [21, 23, 34], locally adaptive
formulations that try to identify the type of local image features and adjust
the action of the algorithm accordingly [53, 89, 120, 125], and combining TV
with other regularizations in order to improve its performance [121, 199].

2.6 Published research on sparsity-based
methods in CT

This section reviews some of the published research on the application of
the sparsity-based models and algorithms described so far in this chapter
in CT. We divide these applications into three categories: 1) pre-processing
methods, which aim at restoring or denoising the projection measurements,
2) iterative reconstruction methods, and 3) post-processing methods, whose
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goal is to enhance, restore, denoise, or otherwise improve the quality of the
reconstructed image.

2.6.1 Pre-processing methods

Compared with iterative reconstruction methods and post-processing meth-
ods, pre-processing methods account for a much smaller share of the pub-
lished studies on sparsity-based algorithms for CT. There are two main
reasons behind this. The first reason is that the pre-processing methods for
CT, in general, face certain difficulties. For example, it is well-known that
sharp image features are smoothed in the projection domain. Therefore,
the preservation of sharp image features and fine details is more challenging
when working in the projection domain. Moreover, many commercial scan-
ners do not allow access to the raw projection data. Therefore, it is more
difficult to validate the pre-processing algorithms and apply them in clinical
settings. The second reason is that a great majority of the sparsity-based
image processing algorithms have been proposed with the assumption of
additive Gaussian noise with uniform variance. As we described in Section
2.4, research on patch-based methods for the case of Poisson noise has been
much more limited in extent and the algorithms that have been proposed for
Poisson noise are very recent and have not yet been absorbed by researchers
working on CT.

A patch-based sinogram denoising algorithm was proposed in [292]. A
fixed DCT dictionary was used for representation of the sinogram patches.
However, the shrinkage rule used for denoising was learned from the training
data. The denoised projections were then used to reconstruct the image
using an FBP method. A patch-based processing using learned shrinkage
functions was then applied on the reconstructed image. The results of the
study showed that this rather simple algorithm outperformed some of the
well-known iterative CT reconstruction algorithms.

The use of learned dictionaries for inpainting (i.e., upsampling) of the
CT projection measurements has also been proposed [188]. The goal of sino-
gram upsampling is to reduce the x-ray dose used for imaging by acquiring
only a fraction of the projections directly and estimating the unobserved
projections with upsampling. The assumption used in this algorithm was
that patches extracted from the projections admit a sparse representation
in a dictionary that could be learned from a set of training sinograms. The
approach followed by this study was very similar to the general inpaint-
ing approach that we explained in Section 2.1.3. The results of the study
showed that dictionary-based upsampling of the projections substantially
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improved the quality of the images reconstructed with FBP, outperforming
more traditional sinogram interpolation methods based on splines.

As we mentioned above, a challenge for all sinogram denoising/restoration
algorithms is preservation of fine image detail. The algorithm presented in
[291] has proposed an interesting idea to address this issue. In fact, this
study contains several interesting ideas. One of these ideas is that in learn-
ing a dictionary for sparse representation of sinogram patches, not only the
sinogram-domain error but also the error in the image domain is considered.
Specifically, first a dictionary (D1) is learned considering only the error in
the sinogram domain. Let us denote the CT image by x and its sinogram
by y. Then D1 is found by solving:

{D1, Γ̂} = argmin
D,Γ

‖Γ‖0 subject to: ‖DΓi −Riy‖22 ≤ Cσi ∀ i (2.33)

This optimization to find D1 is carried out using the K-SVD algo-
rithm described in Section 2.1. The only difference here is that the signal-
dependent nature of noise, σi, should be taken into account in the sparse
coding step (C is a tuning parameter). This dictionary is then further opti-
mized by minimizing the reconstruction error in the image domain:

D2 = argmin
D

∥∥∥∥∥FBP
(∑

i

(RTi Ri)
−1
∑
i

RTi DΓ̂

)
− x

∥∥∥∥∥
2

Q,2

(2.34)

where we have used FBP to denote the CT reconstruction algorithm (here,
filtered back-projection). Note that the Γ̂ in the optimization problem (2.34)
is that found by solving (2.33). In other words, for finding D2 we keep the
sparse representations fixed and find a dictionary that leads to a better
reconstruction of the image, x. The notation ‖.‖Q,2 denotes a weighted `2
norm. It is suggested that the weights Q are chosen such that more weights
are given to low-contrast features [291].

The x and y in the above equations denote the “training data”, which
includes a set of high-quality images and their projections. In fact, instead
of only one image, a large number of images can be used for better training.
Now, suppose that we are given noisy projections of a new object/patient,
which we denote with ynoisy. It is suggested to denoise ynoisy in two steps.
First, sparse representations of patches of ynoisy in D1 are obtained. Denot-
ing this with Γ̂, the final denoised sinogram is obtained as the solution of
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the following problem which uses D2:

ydenoised = argmin
y

λ‖y − ynoisy‖2W +
∑
i

‖D2Γ̂i −Riy‖ (2.35)

where W are weights to account for the signal-dependent nature of the noise.
This problem has a simple solution similar to Equation (2.7). Experimental
results for 2D CT have shown promising results [291].

2.6.2 Iterative reconstruction methods

In recent years, several iterative image reconstruction algorithms involving
regularizations in terms of image patches have been proposed for CT. In
general, these algorithms have reported very promising results. However, a
convincing comparison of these algorithms with other classes of iterative re-
construction algorithms such as those based on TV or other edge-preserving
regularizations is still lacking. In this section, we review some of the iterative
CT reconstruction algorithms that use patch-based or TV regularization.

A typical example of dictionary-based CT reconstruction algorithms is
the algorithm proposed in [339]. That paper suggested recovering the image
as a solution of the following optimization problem:

minimize
x,D,Γ

∑
i

wi([Ax]i−yi))2 +λ

(∑
k

||Rkx−DΓk||22 + νk||Γk||0

)
(2.36)

In the above problem, A is the projection matrix and wis are noise-
dependent weights. The first term in the objective function encourages
measurement consistency. The remaining terms constitute the regulariza-
tion, which are very similar to the terms in the formulation of the basic
dictionary learning problem in (2.1). In (2.36), the dictionary is learned
from the image itself. The authors of [339] solved this problem by alter-
nating minimization with respect to the three variables. Minimization with
respect to x is carried out using the separable paraboloid surrogate method
suggested in [101]. The problem with this approach, however, is that it re-
quires access to the individual elements of the projection matrix. Although
this is a simple requirement for 2D CT, this can be a major problem for
large 3D CT because with efficient implementations of forward and back-
projection operations it is not convenient to access individual matrix ele-
ments [152, 193]. Minimization with respect to D and Γ is performed using
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the K-SVD and OMP algorithms, respectively. Alternatively, the dictionary
can be learned in advance from a set of training images. This will remove D
from the list of the optimization variables in (2.36), substantially simplifying
the problem. Both approaches are presented in [339]. Experiments showed
that both these approaches led to very good reconstructions, outperforming
a TV-based algorithm.

Other formulations that are very similar to the one described above have
been shown to be superior to TV-based reconstruction and other standard
iterative reconstruction algorithms in electron tomography [4, 192]. Another
study had first learned a dictionary from training images, but for the image
reconstruction step it did not include the sparsity term in the objective
function [105]. In other words, only the first two terms in the objective
function in Equation (2.36) were considered. A gradient descent approach
was used to solve the problem. That study obtained superior reconstructions
with learned dictionaries compared to using a DCT basis.

One study used an optimization approach similar to the one described
above, but used box-splines for image representation [279]. In other words,
instead of native pixel representation of the image, box spline were used
as the basis functions in the image domain. The unknown image x has a
representation of the form x =

∑
i ciφi, where φi is the box spline centered

on the ith pixel and ci is the value of attenuation coefficient for that pixel.
The resulting optimization problem is of the following form:

minimize
c,Γ

‖Hc− y‖2W + λ

(∑
k

||Rkc−DΓk||22 + νk||Γk||0

)
(2.37)

In the above problem, H is the forward model relating the image represen-
tation coefficients to the sinogram measurements, y. In other words, H is
simply the equivalent of the projection matrix A. The rest of the objective
function is the same as that in Equation (2.36). Once the representation
coefficients, c, are found by solving (2.37), the image is reconstructed simply
as x =

∑
i ciφi. The results of this study showed that this dictionary-based

algorithm achieved much better reconstructions than a wavelet-based recon-
struction algorithm.

The dual-dictionary methods proposed in [197, 355] rely on two dictio-
naries. One of the dictionaries (Dl) is composed of patches from CT images
reconstructed from a small number of projection views, while the second
dictionary (Dh) contains the corresponding patches from a high-quality im-
age. The atoms of the two dictionaries have one-to-one correspondence. The
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strategy here is to first find the sparse code of the patches of the image to
be reconstructed in Dl and then to recover a good estimate of the patch by
multiplying this sparse code with Dh. The dictionaries are not learned here,
but they are built by sampling a large number of patches from few-view and
high-quality training images. This approach has been reported to achieve
better results than TV-based reconstruction algorithms [197].

A different dictionary-based reconstruction algorithm was suggested in
[301]. In this algorithm, first a dictionary (D) is learned by solving a problem
of the following form:

minimize
D,Γ

‖X −DΓ‖2F + λ‖Γ‖1 subject to: D ∈ D & Γ ∈ R+ (2.38)

where D can be an `2 ball and R+ is the non-negative orthant of the proper
size. The above problem is solved using the Alternating Direction Method
of Multipliers (ADMM) to find the dictionary. It is reported that learning
the dictionary with ADMM is computationally very efficient and largely
independent of the initialization. The learned dictionary is then used to
regularize the reconstruction algorithm by requiring that the patches of the
reconstructed image have a sparse representation in the dictionary. However,
unlike most other dictionary-based algorithms, overlapping patches are not
used. Instead, a novel regularization term is introduced to avoid the blocking
artifacts at the patch borders. Specifically, the optimization problem to
recover the image from projection measurements y has this form:

minimize
xΓ

‖AxΓ − y‖22 + λ‖Γ‖1 + µ‖LxΓ‖22 (2.39)

where, to simplify the notation, we have used xΓ to emphasize that the
reconstructed image depends on the sparse representation matrix, Γ. The
matrix L is a matrix that computes the directional derivatives across the
patch boundaries. Therefore, the role of the last term in the objective func-
tion is to penalize large jumps at the patch boundaries, thereby suppressing
blocking artifacts that arise when non-overlapping patches are used. Com-
parison with TV-based reconstruction showed that this dictionary-based
reconstruction algorithm resulted in much better images, preserving fine
textural detail that are smeared by TV-based reconstruction. Overall, the
algorithm proposed in that paper contains several interesting ideas that can
be useful for designing dictionary-based reconstruction algorithms for CT.
A later paper studied the sensitivity of this algorithm to such factors as the
scale and rotation of features in the training data [300].
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An iterative reconstruction algorithm that combines sparse representa-
tion of image patches with sinogram smoothing was proposed in [305]. The
image is reconstructed as a solution of the following optimization problem:

minimize
x,y,Γ

‖y − ȳ‖+ α yTWy + β‖Ax− y‖22

+ λ

(∑
k

||Rkx−DΓk||22 + νk||Γk||0

)
(2.40)

The first two terms, where ȳ is the measured noisy sinogram, represent
the sinogram Markov random field model [189, 324]. The remaining terms
are similar to those we encountered above. As usual, the authors have
suggested to solve the above problem using a block-coordinate minimization,
where the minimization with respect to the image x is carried out using a
conjugate gradients method. That study also suggests interesting variations
of the objective function in (2.40), but the experimental evaluations that
are presented are very limited.

As the last example of dictionary-based iterative reconstruction algo-
rithms, we include the method based on sparsifying transforms proposed in
[256, 257]. Sparsifying transforms are variations of the analysis model for
sparsity [268, 331]. In the analysis model, instead of the relation x = Dγ
that we have discussed so far in this chapter, the relation Dx = γ is used.
In other words, D here acts as an operator on the signal (e.g., the image
patch) to find the representation coefficients, γ. In [256, 257], it is suggested
that the unknown CT image be recovered as the solution of the following
optimization problem:

minimize
x,D,Γ

∑
i

‖DRix− Γi‖22 + λ‖Γ‖1 + αH(D)

subject to: ‖Ax− y‖2W ≤ ε
(2.41)

where H(D) is a regularization on the dictionary D, and W represents
the weights introduced to account for the signal-dependent noise variance.
The results of that study showed that this approach led to results that
were comparable with iterative reconstruction with synthesis formulation
and TV-based regularization, while also being slightly faster.

In recent years, there has also been a growing attention to the potential
of regularization in terms of non-local patch priors for iterative CT recon-
struction. In [194], it was suggested to recover the CT image as a solution

39



2.6. Published research on sparsity-based methods in CT

of the following optimization problem:

x̂ = argmin
x

‖y −Ax‖22 + λJNL(x) (2.42)

where JNL(x) is the regularization in terms of patch similarities. Two dif-
ferent forms were suggested for JNL(x):

JNL/TV(x) =
∑
i

∑
j∈Ni

‖√wi,j(x(i)− x(j))‖2

JNL/H1(x) =
∑
i

∑
j∈Ni

wi,j‖x(i)− x(j)‖22
(2.43)

where wi,j are the patch-based similarity weights. For the ith pixel, they are
computed from all pixels j in a window around i using:

wi,j = exp

(
− ‖x[i]− x[j]‖

h2

)
(2.44)

It is suggested that these weights be computed from a FBP-reconstructed
image and that the filter parameter h be chosen based on the local estimate
of noise variance. The local noise variance is estimated from the wavelet
coefficients of the finest wavelet subband (vi) according to [90]:

h =
median(|vi|)

0.6745
(2.45)

The authors of [194] solved the problem (2.42) with either of the regu-
larization functions in (2.43) using a simple gradient descent and found that
the recovered CT image had a better visual and objective quality than a
standard TV-based iterative reconstruction algorithm.

As simple iterative algorithm that alternates between projections onto
convex sets (POCS) to improve measurements consistency and an NLM-
type restoration has been proposed in [133] . That algorithm was shown to
perform better than a TV-based algorithm but no comparison with the state
of the art methods was performed. Another study developed a NLM-type
regularization for perfusion CT that relies on a high-quality prior image
[202]. The proposed regularization function, shown in the following equa-
tion, is in terms of the similarity between patches of the unknown image
to be reconstructed from a low-dose scan (x) and the patches of the prior
image (xp).

J(x) = ‖x− x̄‖qq where x̄(i) =
∑
j∈Ni

wi,jxp(j) (2.46)
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The authors suggest q = 1.2. A steepest-descent approach is used to ap-
proximately solve this problem. A similar, but more general, algorithm that
does not require a prior image was proposed in [353]. The formulation is the
same as the above, the main difference being that the weights in the NLM
formulation are computed from the image itself. A Gauss-Seidel approach is
used to solve the resulting problem. Both of the above NLM-type regular-
ization methods are reported to result in better reconstructions than more
conventional regularizations such as Gaussian Markov random field.

Non-local patch-based regularization was also used for the new technique
of equally-sloped tomography (EST, [227]) and was shown to improve the
quality of the reconstructed image both from small or large number of pro-
jections [106]. Nonlocal patch-based regularization substantially improved
the CNR, SNR, and spatial resolution of the images reconstructed from 60,
90, and 360 projections in that study.

Patch-based iterative reconstruction algorithms have also been proposed
for dynamic CT. In dynamic CT, several successive images of the the same
patient are reconstructed. Therefore, there is abundant temporal correla-
tion (i.e., correlation between successive images) in addition to the spatial
correlation within each of the images in the sequence. There have been sev-
eral studies in recent years aimed at exploiting these correlations in terms
of patch/block similarities. In general, these studies have reported very
promising results.

A reconstruction algorithm with nonlocal patch-based regularization was
proposed for dynamic CT in [155]. The proposed regularizer for the kth

frame of the image is as follows:

J(xk) =
∑
i

∑
j∈Ni

Ga(xk[i]− xk[j])|xk(i)− xk(j)|2

+
∑
i

∑
l∈{1,2,...,K}\k

∑
j∈∆i

Ga(xl[i]− xl[j])|xl(i)− xl(j)|2
(2.47)

where, as before, x(i) and x[i] denote the ith image pixel and the patch
centered on that pixel, respectively. Ga(.) is a Gaussian kernel as in the
standard NLM denoising. The first term is a spatial regularization in terms
of the patches of the current image frame, xk. In this term, Ni is a simple
rectangular neighborhood around the ith pixel. The second term (where K
is the total number of frames) is a temporal patch-based regularization that
involves patches from all other frames in the image sequence. In this term,
∆i is a neighborhood whose spatial size is pre-fixed but whose temporal ex-
tension is found for each pixel such that the probability of finding patches
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with similar structural features (e.g., edges) is increased. This is done by di-
viding the temporal neighborhood into blocks and estimating the structural
similarity of these blocks with the patch centered on the ith pixel. Only
a small fraction of blocks that are most similar to x[i] are included in ∆i.
A similar approach was proposed in [154] for the case when a high-quality
prior image is available. This high-quality prior image does not have to be a
CT image and can be acquired in other imaging modalities. The results of
experiments with simulated and real data show that this algorithm achieves
very good reconstructions.

Temporal non-local-means (TNLM) algorithms were proposed in [146,
314]. These algorithms suggest recovering a set of successive CT images
{xk| k ∈ 1 : K} by minimizing an optimization problem that includes (in
addition to the measurement fidelity term) the following regularization:

J
(
{xk}

)
=

K∑
k=1

∑
i

∑
j

wi,j
(
xk(i)− xk+1(j)

)2
(2.48)

where, as usual, the weights are computed based on patch similarities:

wi,j =
1

Z
exp

(
− ‖x[i]− x[j]‖2

2h2

)
(2.49)

An important choice in this algorithm is that only inter-image patch
similarities are taken into account and not the intra-image patch similari-
ties. The justification is that the proposed algorithm is for the case when
each of the images in the sequence is reconstructed from a small number
of projections and, hence, contains much streak artifacts. Therefore, using
patches from the same image will amplify the streak artifacts, while using
patches from neighboring images will suppress the artifacts. In addition to
the iterative reconstruction algorithm, in [146] another very similar algo-
rithm has been suggested that can also be classified as a post-processing
algorithm. In this alternative scheme, each of the images in the sequence
are first reconstructed from their correponding projections, and then they
are post-processed using an optimization algorithm that includes the very
same regularization function in (2.48).

A tensor-based iterative reconstruction algorithm was proposed for dy-
namic CT in [308]. Tensor-based dictionaries are a relatively new type of
dictionary that are gaining more popularity. As we have mentioned above, in
image processing applications, image patches/blocks are vectorized and used
as training/test signals. Tensor-based methods treat the image patches or
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blocks in their original form, i.e., without vectorizing them [40, 62]. There-
fore, they are expected to better exploit the correlation between adjacent
pixels. In [308], a tensor-based algorithm was compared with a standard
dictionary for dynamic CT reconstruction and it was found that the tensor-
based dictionaries resulted in a slight improvement in the quality of the
reconstructed image.

Compared with the reconstruction algorithms that are based on learned
dictionaries or nonlocal patch similarities, many more algorithms have used
TV regularization terms. This is partly because TV-regularized cost func-
tions are easier to handle using standard optimization algorithms, especially
for large-scale 3D image reconstruction. Moreover, the CT community is
more familiar with TV-based regularization because it has been used for
CT reconstruction for a longer time. Many studies have formulated the re-
construction problem as a regularized least-squares minimization similar to
(2.31). Some of the optimization techniques that have been suggested for
solving this problem include accelerated first-order methods [61, 143, 251],
alternating direction method of multipliers [264], and forward-backward
splitting algorithm [145]. Another very commonly used formulation for CT
reconstruction is the constrained optimization formulation, where the image
TV is minimized under measurement consistency constraints [126, 242, 270].
Most published studies use an alternating algorithm for solving this prob-
lem, whereby at each iteration first the image TV is reduced, and this is then
followed by a step that enforces the measurement consistency constraint. A
simple (and probably inefficient [45]) method that has been adopted in many
studies uses a steepest descent for TV minimization followed by projection
onto convex sets for measurement consistency [293].

Several studies have combined the TV regularization with regulariza-
tion in terms of a prior high-quality image in applications such as dynamic
CT [22, 123], perfusion imaging [239], and respiratory-gated CT [180, 302].
In general, the existence of a high-quality prior image reduces the number
of projection measurements required for reconstructing high-quality images
from subsequent scans. Other variations of the standard TV regulariza-
tion that have been successfully applied for CT reconstruction include non-
convex TV [49, 294] and higher-order TV [346].

In general, TV-based reconstruction methods have proven to be much
better than traditional CT reconstruction algorithms, particularly in recon-
struction from few-view and noisy projection data. Therefore, many studies
have concluded that TV-based reconstruction methods have a great poten-
tial for dose reduction in a wide range of CT applications [28, 162, 309, 342].
However, there has been no satisfying comparison between TV and other
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edge-preserving or smoothness-promoting regularization functions that are
very widely used in CT [32, 80, 160, 325].

2.6.3 Post-processing methods

Many of the sparsity-based algorithms that have been proposed for CT fall
into the category of post-processing methods. This is partly because most of
these algorithms are directly based on the sparsity-based methods that have
been proposed for natural images. Because general sparsity-based image
processing algorithms mostly include denoising and restoration algorithms,
they are more easily extended as post-processing methods for CT. Moreover,
some of the sparsity-based methods, particularly patch-based image process-
ing methods, are very computationally expensive. Therefore, especially for
large-scale 3D CT, it is easier to deploy them as one-shot post-processing
algorithms than as part of an iterative reconstruction algorithm.

A large number of dictionary-based algorithms have been proposed for
CT denoising. The basic denoising algorithm that we described in Section
2.1.3 was used for denoising of abdomen CT images in [58, 60], and head CT
images in [59] and showed promising results in all these studies. Straight-
forward representation of image patches in a learned dictionary followed by
weighted averaging resulted in effective suppression of noise and artifacts
and a marked improvement in the visual and objective image quality.

Non-local means methods have also been applied for CT image denoising.
An early example is [156]. In that study, the authors investigated the effect
of different parameters such as the patch size, smoothing strength, and the
size of the search window around the current pixel to find similar patches.
Among the findings of that study with lung and abdomen CT images was
that one can choose the size of the search window for finding similar patches
to be as small as 25 × 25 pixels and still achieve very impressive denoising
results. However, this required careful tuning of the denoising parameter (a
in Equation (2.15)). Moreover, choosing a small search window also required
reducing the patch size to ensure that for every pixel a sufficient number of
similar patches is found in the search window. Otherwise, in certain image
areas such as around the edges, very little denoising is accomplished. An-
other study found that with a basic NLM denoising, the x-ray tube current
setting can be reduced to one fifth of that in routine abdominal CT imaging
without jeopardizing the image quality [56].

An algorithm specially tailored to image-guided radiotherapy was pro-
posed in [343]. Since in this scenario a patient is scanned multiple times, it
was suggested that the first scan be performed with standard dose and later
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scans with much reduced dose. An NLM-type algorithm was suggested to re-
duce the noise in the low-dose images. The proposed algorithm denoised the
low-dose images by finding similar patches in the image reconstructed from
the standard-dose scan. Similarly, in CT perfusion imaging and angiography
the same patient is scanned multiple times. A modified NLM algorithm was
suggested for these imaging scenarios in [200]. The algorithm proposed in
that study registered a standard-dose prior image to the low-dose image at
hand. The low-dose image is then denoised using a NLM algorithm where
patches are extracted from the registered standard-dose image.

One study suggested adapting the strength of the NLM denoising based
on the estimated local noise level [191]. That paper proposed a fast method
for approximating the noise level in the reconstructed image and suggested
choosing the bandwidth of the Gaussian kernel in the NLM denoising to be
proportional to the estimated standard deviation of the noise. Evaluations
showed that this algorithm effectively suppressed the noise without degrad-
ing the spatial resolution. Using speed-up techniques such as those in [73],
this algorithm was able to process large 3D images in a few minutes when
implemented on a GPU.

Applying the nonlocal patch-based denoising methods in a spatially
adaptive fashion has been proposed by many studies on natural images
[157, 158]. For CT images, it is well known that the noise variance in
the reconstructed image can vary significantly across the image. Therefore,
estimating the local noise variance may improve the performance of the
patch-based denoising methods. Another approach for estimating the local
noise variance in the CT image was proposed in [15]. In this approach, which
is much simpler than the method proposed in [191], even and odd-numbered
projections are used to reconstruct two images. Then, assuming the noise in
the projections are uncorrelated, the local noise variance is estimated from
the difference of the two images.

So far in this section, we have talked about algorithms that have been
suggested primarily for removing the noise. However, CT images can also
be marred by various types of artifacts that can significantly reduce their
diagnostic value [14]. Recently, a few patch-based algorithms have been
proposed specifically for suppressing these artifacts. A dictionary-based al-
gorithm for suppressing streak artifacts in CT images is proposed in [57].
The artifact-full image is first decomposed into its high-frequency bands in
the horizontal, vertical, and diagonal directions. Sparse representation of
patches of each of these bands are computed in three “discriminative” dic-
tionaries that include atoms specifically learned to represent artifacts and
genuine image features. Artifacts are suppressed by simply setting to zero
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the large coefficients that correspond to the artifact atoms. The results of
this study on artifact-full CT images are impressive.

A nonlocal patch-based artifact reduction method was suggested in [341].
This method is tailored for suppressing the streak artifacts that arise when
the number of projections used for image reconstruction is small and it
relies on the existence of a high-quality prior image. The few-view image
that is marred by artifacts is first registered to the high-quality reference
image using a registration algorithm that uses the SIFT features [196]. The
registered reference image is then used to simulate an artifact-full few-view
image. To remove the streak artifacts from the current image, its patches are
matched with the simulated artifact-full image, but then the corresponding
high-quality patches from the reference image are used to build the target
image. This algorithm is further extended in [340] to be used when a prior
scan from the same patient is not available but a rich database of scans
from a large number of patients exists. The results of both these studies
on real CT images of human head and lung are very good. Both methods
substantially reduced the streaking artifacts in images reconstructed from
less than 100 projections.

A major challenge facing the application of patch-based algorithms for
large 3D CT images is the computational time. Although we discuss this
challenge here under the post-processing methods, they apply equally to
pre-processing methods and are indeed even more relevant to iterative re-
construction algorithms. Of course, one obvious approach to reducing the
computational load is to work with 2D patches, instead of 3D blocks. How-
ever, this will likely hurt the algorithm performance because the voxel corre-
lations in the 3rd dimension are not exploited. Three studies have reported
that compared with 2D denoising, 3D denoising of CT images leads to an
improvement in PSNR of approximately 1 to 4 dB [186, 187, 274]. Another
study used 2D patches to denoise the slices in 3D CT images but patches
were used from neighboring slices in addition to patches from the same slice
[156]. They found that this approach increased the PSNR by more than 4
dB. Another obvious solution is to use faster hardware such as GPUs. This
option has been explored in many studies. For instance, implementation
of an NLM-type algorithm on a GPU reduced the computational time by
a factor of 35 in one study [191]. Iterative reconstruction algorithms with
non-local patch-based regularization terms have also been implemented on
GPU [146, 314]. Another remarkable example was shown in [15], where the
authors implemented the K-SVD algorithm for CT denoising on Cell Broad-
band Engine Architecture and achieved speedup factors between 16 and 225
compared with its implementation on a CPU.
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There have also been many algorithmic approaches to reducing the com-
putational time. An ingenious and highly efficient method to address this
challenge was proposed in [274]. This method, which is named “double
sparsity” is based on the observation that the learned dictionary atoms,
themselves, have a sparse representation in a standard basis, such as DCT.
The authors suggest a dictionary structure of the form D = ΦA, where Φ
is a basis with fast implicit implementation and A is a sparse matrix. They
show that this dictionary can be efficiently learned using an algorithm simi-
lar to the K-SVD algorithm. Denoising of 3D CT images with this dictionary
structure leads to speed-up factors of around 30, while also improving the
denoising performance. A relatively similar idea is the separable dictionary
proposed in [127], where the dictionary to be learned from data is assumed
to be the Kronecker product of two smaller dictionaries. By reducing the
complexity of sparse coding from O(n) to O(

√
n), this dictionary model al-

lows much larger patch/block sizes to be used, or alternatively, it results
in significant speedups for equal patch size. A two-level dictionary struc-
ture was proposed in [186]. In this method, the learned dictionary atoms
are clustered using a k-means algorithm that employs the coherence as the
distance measure. For sparse coding of a test patch, a greedy algorithm
is used to select the most likely atoms which are then used to obtain the
sparse representation of the patch. Another study used the coherence of the
dictionary atoms in learning a dictionary on a graph and reported very good
results in 3D CT denoising [190].

For dictionary-based methods, the most computationally demanding part
of the algorithm during both dictionary learning and usage is the sparse cod-
ing step. As we mentioned above, the image is usually divided into overlap-
ping patches/blocks and the sparse representation of each patch/block in the
dictionary has to be computed at least once (more than once if the algorithm
is iterative). If the dictionary has no structure, which is the general case
for overcomplete learned dictionaries, the sparse coding of each patch will
require solving a small optimization problem. This will be computationally
demanding, especially when the number and size of these patches/blocks are
large such as in 3D CT. In recent years, many algorithms have been sug-
gested for sparse coding of large signals in unstructured dictionaries. Some of
these algorithms are basically faster implementations of traditional sparse
coding algorithms [169, 275], while others are based on more novel ideas
[35, 122, 179, 334]. Some of these methods have achieved several orders of
magnitude speedups [35, 122]. A description of these algorithms is beyond
the scope of this manuscript, but the computational edge that they offer
makes patch-based methods more appealing for large-scale CT imaging.
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For the NLM algorithms, the major computational bottleneck is the
search for similar patches. We have described some of the state-of-the-art
methods for reducing the computational load of patch search in Section 2.2.
There has been little published research on how these techniques may work
on CT images. One study has applied the method of integral image [73]
on CT images. The same study reported that if the smoothing strength is
properly adjusted, a very small search window and a very small patch size
can be used, to obtain significant savings in computation.

2.7 Final remarks

Sparsity-based models have long been used in digital image processing. Re-
cently, learned overcomplete dictionaries have been shown to lead to better
results than analytical dictionaries such as wavelets in almost all image
processing tasks. Nonlocal patch similarities have also been proven to be
extremely useful in many image processing applications. Algorithms based
on nonlocal patch similarities are considered to be the state of the art in im-
portant applications such as denoising. The practical utility of patch-based
models has been demonstrated by hundreds of studies in recent years, many
of which have been conducted on medical images. The use of learned over-
complete dictionaries for sparse representation of image patches and use of
nonlocal patch similarities are at the core of much of the ongoing research
in the field of image processing.

The published studies on the application of these methods for reconstruc-
tion and processing of CT images have reported very good results. However,
the amount of research on the application of these methods in CT has been
far less than that on natural images. Any reader who is familiar with the
challenges of reconstruction and processing of CT images will acknowledge
that there is an immense potential for these methods to improve the current
state of the art algorithms in CT.

In terms of the pre-processing algorithms, there has been only a couple
of published papers on patch-based algorithms. This is partly due to the
fact that most of the patch-based models and algorithms have been origi-
nally proposed for the case of uniform Gaussian noise. For example, greedy
sparse coding algorithms that form a central component of methods that use
learned overcomplete dictionaries have been proposed for the case of Gaus-
sian noise. As we mentioned in Section 2.4, only recently similar methods
for the case of Poisson noise have started to appear. Nonetheless, even with
the current tools, patch-based models can serve as useful tools for devel-
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oping powerful pre-processing algorithms for CT. Some of the patch-based
methods that we have reviewed in Section 2.4 have been applied on very
noisy images (i.e., very low-count Poisson noise) and they have achieved
impressive results. This might be extremely useful for low-dose CT, which
is of special importance in clinical settings.

Iterative CT reconstruction algorithms that have used TV or patch-
based regularization terms have reported very promising results. One can
say that the published works have already demonstrated the usefulness of
patch-based methods for CT reconstruction. However, many of the proposed
algorithms have been applied on 2D images. In some cases it is not clear
whether a proposed algorithm can be applied to large 3D reconstruction
where the efficient implementations of forward and back-projection opera-
tions limit the type of iterative algorithm that can be employed. Moreover,
little is known about the robustness of these algorithms in terms of the
trained dictionary. As we mentioned in Section 2.1.2, the dictionary learn-
ing problem is non-convex and, hence, dictionary learning algorithms are
not supported by strong theoretical guarantees.

Post-processing accounts for the largest share of the published papers on
the application of patch-based methods in CT. Both denoising and restora-
tion (e.g., artifact removal) algorithms have been proposed. Most of these
papers have reported good results, even though many of them have used
algorithms that have been originally proposed for natural images with lit-
tle modification. Therefore, it is likely that much better results could be
achieved by designing dedicated algorithms for CT. In fact, CT images, es-
pecially those reconstructed from low-dose scans, present unique challenges.
Specifically, these images are contaminated by very strong noise with a non-
uniform and unknown distribution. Moreover, they are also marred by var-
ious types of artifacts. This situation calls for carefully-devised algorithms
that are tailored for CT images. Although this can be challenging, the suc-
cess of patch-based methods on natural images can be taken as a strong
indication of their potential to tackle these challenges. Patch-based meth-
ods have led to the best available denoising algorithms. Moreover, they have
been successfully used for suppressing various types of artifacts and anoma-
lies in natural images and videos. Therefore, they are likely to achieve state
of the art denoising and restoration results in CT.

In conclusion, this review of the literature shows that sparsity-based
and patch-based methods have a great potential to improve the current
image reconstruction and image processing algorithms in CT. With an ever
increasing usage of CT in clinical applications, it is necessary to reduce the
radiation dose used for imaging so that CT can be used to its full potential.
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Meanwhile, the increased computational power of modern computers makes
it possible to use more sophisticated algorithms for image reconstruction
and processing. Therefore, the methods reviewed in this chapter can play a
key role in solving some of the major challenges facing CT.
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Chapter 3

Sinogram Denoising via
Simultaneous Sparse
Representation in Learned
Dictionaries

3.1 Introduction

In this chapter, we propose a novel algorithm for denoising the projection
measurements in 3D CBCT. The noise model that we use in this chapter
is the Gaussian model that we described in Section 1.2. Specifically, if we
denote the line integral of the linear attenuation coefficient by yi =

∫
i µds,

then:

yi ∼ N (ȳi, σ
2
i ) where σ2

i = fi exp(ȳi) (3.1)

where fi is a factor that depends mainly on the effect of bowtie filtration.
The value of fi does not depend on the object being imaged and can be
easily estimated from data [326].

Because of the nature of the projection measurements in CBCT, there is
a strong correlation between neighboring pixels within a projection. There is
also a strong correlation between the value of a pixel in neighboring projec-
tions. In order to exploit both of these correlations, we stack the projections
together to form a large 3D image as shown in Figure 3.1. We assume that
each projection is of size nu × nv pixels and that nθ equally-spaced projec-
tions are acquired. The algorithm that we propose extracts small blocks
of size m3 pixels for processing. Throughout this chapter we use m = 8,
which is a common patch/block size for dictionary-based image processing.
We denote the whole 3D image of size nu × nv × nθ with y. Blocks of size
m3 extracted from y are vectorized and stacked in a matrix denoted by
Y ∈ Rm3×n, where n is the number of blocks. We will use Yi to denote the
ith vectorized block, which is the ith column of Y .
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Figure 3.1: A schematic representation of the cone beam CT (left) and the
stacked projections (right).

We described the method of image denoising with learned dictionaries
in Section 2.1.3 and the method of NLM denoising in Section 2.2. We men-
tioned that both these methods have been shown to be effective denoising
methods. Therefore, the algorithm that is proposed in this chapter com-
bines the advantages of the two methods. As in the NLM algorithm, we find
similar blocks and process them together in order to exploit the abundant
self-similarities that exist in CT projections. However, unlike NLM that uses
weighted averaging and unlike the BM4D algorithm ([71, 205], briefly de-
scribed in Section 2.3) that uses thresholding in standard bases, we perform
simultaneous sparse coding of the similar blocks in a learned dictionary. In
this sense, the proposed algorithm is similar to the non-local sparse model
proposed in [214].

In brief, using training data we first learn a dictionary for simultaneous
sparse coding of similar blocks. Given a new set of noisy projections, we
group the similar blocks and denoise them via simultaneous sparse coding in
the learned dictionary. The main intuition behind our proposed algorithm is
that similar blocks must have a jointly sparse representation in the learned
dictionary. In other words, sparse representation of similar blocks must use
similar atoms in the learned dictionary.
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3.2 The proposed algorithm

3.2.1 Clustering

As mentioned above, the algorithm proposed in this chapter first learns a
dictionary for simultaneous sparse representation of similar blocks. Then,
this dictionary is used for denoising. Since both of these steps involve clus-
tering of similar blocks, we start by explaining our clustering algorithm.

In the NLM algorithm and similar algorithms such as BM4D, desnoising
of the ith pixel requires searching the entire image or a sizable neighborhood
around this pixel to find blocks that resemble the block centered on this pixel.
Since this search has to be performed for every block, it is computationally
very intensive. In the algorithm proposed in this chapter, we follow an
approach that is much less computationally demanding. Specifically, we
divide the stacked projections into overlapping blocks and cluster all these
blocks only once.

Consider a particular block, Yi, and suppose that we would like to decide
whether block Yj is similar to Yi so that they can be clustered together.
We make two simplifying assumptions: (1) the value of the true projection
does not change drastically between neighboring pixels, and (2) the noise
in adjacent pixels are independent. These are mild assumptions and are
satisfied to a high degree in practice. From these assumptions, we can
compute the average noise variance in block Yi, which we denote as σi, using
Equation (3.1). Then, if values of Yi and Yj are close, the variable ‖Yi −
Yj‖22/(2σ2

i ) will follow a central chi-squared distribution with m3 degrees of
freedom, χ2

m3 . Denoting its cumulative distribution function with Fm3(t),

a good choice for similarity threshold will be α = (2σ2
i )F

−1
m3 (t0) for some

parameter t0 [214, 215]. Here, F−1
m3 is the inverse of Fm3 . In other words,

we decide that Yi and Yj are similar if their squared Euclidean distance
‖Yi−Yj‖22 is less than or equal to α. We have empirically found that a value
of t0 ' 0.90 leads to good clustering results for all noise levels. The same
value has been suggested in [214].

A straightforward clustering would require computing the distance ‖Yi−
Yj‖22 for each pair of blocks that we wish to compare. Because the dimension
of the blocks and their number are large, we suggest a two-step approach to
reduce the computation. Our approach is similar in concept to the locality-
sensitive hashing methods that are common in the field of data mining for
finding nearest neighbors in high-dimensional data [181]. Specifically, we
map each block Yi, which resides in R512, onto R4 using the following com-
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putations:

hi(1) =
m∑
i=1

m∑
j=1

m∑
k=1

Yi(i, j, k)

hi(2) =

m/2∑
i=1

m∑
j=1

m∑
k=1

Yi(i, j, k)−
m∑

i=m/2+1

m∑
j=1

m∑
k=1

Yi(i, j, k)

hi(3) =
m∑
i=1

m/2∑
j=1

m∑
k=1

Yi(i, j, k)−
m∑
i=1

m∑
j=m/2+1

m∑
k=1

Yi(i, j, k)

hi(4) =
m∑
i=1

m∑
j=1

m/2∑
k=1

Yi(i, j, k)−
m∑
i=1

m∑
j=1

m∑
k=m/2+1

Yi(i, j, k)

(3.2)

It is easy to see that hi(1) is a measure of average projection amplitude
in the ith block whereas hi(2), hi(3), and hi(4) estimate its slope along the
three dimensions. We can interpret these computations as a “projection” of
Yi from R512 onto R4. In locality-sensitive hashing, high-dimensional signals
are projected onto a low-dimensional space where they can be clustered at a
much lower computational cost. The choice of projections is highly critical
because similar signals in the original high-dimensional space must remain
close to each other in the low-dimensional space defined by the projections.
Conversely, signals that are far apart in the original space should remain
far apart in the low-dimensional space. Our choice of the projections in
(3.2) is motivated by the nature of CT projections as smooth and slowly
varying signals. Therefore, we hope that, in general, Yi and Yj are close
together if and only if hi and hj are so. In Figure 3.2 we have shown
the effectiveness of the proposed mapping on projections simulated from
a Shepp-Logan phantom. We selected 105 random pairs of blocks from
simulated projections of this phantom and computed the Euclidean distances
in the Y and h spaces for each pair of blocks. In part (a) of this figure we have
shown the result for noise-free projections. In part (b) of the same figure
we have shown the result for very noisy projections that were simulated by
assuming the number of incident photons to be 100. It is clear that the
proposed mapping is highly effective. What is particularly important to us
is that blocks that are very close to each other in the Y space are also very
close in the h space.

These projections are computed for all Yi prior to clustering and they
are normalized so that each of the four projections has a mean of zero and
standard deviation equal to one. During clustering, every time two signals
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Figure 3.2: The Euclidean distance between blocks extracted from projec-
tions of Shepp-Logan phantom in the h space versus that in the Y space.
(a) noise-free projections, (b) very noisy projections.

Yi and Yj are to be compared, we first compare their projections, hi and hj .
Only if hi and hj are sufficiently close, we will proceed to compare Yi and Yj .
As we mentioned above, we use the `2 norm to compare Yi and Yj because
our noise model allows us to find a reasonable threshold for ‖Yi − Yj‖22. For
comparing hi and hj , however, we use the `∞-norm. This is because we
expect that two blocks Yi and Yj be similar only if their mean amplitude
and slope in all three directions are close to each other. Therefore, when we
would like to decide if Yi and Yj are close enough to be clustered, first we
test if ‖hi−hj‖∞ ≤ εh for some threshold εh, and only if this is the case then
we will proceed to test ‖Yi − Yj‖22 ≤ α. If this latter test is also satisfied,
then we will decide that Yj can be clustered with Yi. This two-step scheme
will drastically reduce the number of comparisons between 512-dimensional
blocks needed for clustering.

The choice of threshold εh is very important. If εh is too small, many
blocks that are truly close will not be clustered together, reducing the per-
formance of the algorithm. On the other hand, if εh is too large, the number
of comparisons of high-dimensional signals that are not truly similar will
increase, increasing the computational time with no gain in the denoising
performance. We have empirically found that a value of εh ' 0.5 works well
for all noise levels (as we mentioned above, the computed values of h are
normalized to have a standard deviation of 1). The reason why this value
works well for different noise levels is because the features that constitute
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our proposed mapping (h) are not much affected by the noise. As can be
seen in Equation (3.2), all four features that constitute h involve a large
amount of summing (or, equivalently, averaging) of the elements of Y . As a
result, the values of h are very robust to the noise level. Consequently, the
proper value of the threshold εh is also largely unaffected by the noise level.

The proposed clustering algorithm is presented in Algorithm 1. The
algorithm sweeps through the columns of Y (we remind the reader that
columns of Y are blocks extracted from stacked projections that have been
vectorized). If column Yi has not been clustered yet, a new cluster is defined
with Yi as its representative element. The algorithm will then check all
unclustered columns and adds them to the newly-formed cluster if they are
sufficiently close to Yi based on the criteria described above. As we explained
above, first all unclustered columns are compared with Yi in terms of their
projections (h). Those that are close to Yi in terms of their projections,
denoted with I2 in Algorithm 1, are then tested to identify those that are
truly close to Yi in the original space.

input : matrix Y ∈ Rm3×n containing vectorized blocks as its
columns

output: sets of indices of similar blocks, S
ncluster = 0
S = {}
for i← 1 to n do

if i /∈ S{k} ∀k = 1 : ncluster then
ncluster = ncluster + 1
σ2 = fi exp(Ȳi)
α = (2σ2)F−1

m3 (0.90)
I1 = {j ∈ [i+ 1, n] : j /∈ S{k} ∀k = 1 : ncluster}
I2 = {j ∈ I1 : ‖hj − hi‖∞ ≤ εh}
I3 = {j ∈ I2 : ‖Yj − Yi‖22 ≤ α}
S{ncluster} = i ∪ I3

end

end
Algorithm 1: Algorithm for clustering of the blocks extracted from the
stacked projections.
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3.2.2 Dictionary learning

As mentioned above, the core idea in the proposed algorithm is to exploit
both the self-similarity in the stacked projections and the power of learned
dictionaries by collecting similar blocks in the stacked projections and com-
puting their simultaneous sparse representation in a properly designed dic-
tionary. Therefore, the central role of the dictionary in this algorithm is
obvious. In this section, we describe how we learn the dictionary.

Given a set of training projections, we first select 3D blocks from different
locations in the stacked projections and vectorize them as columns of a
matrix Y . In this section, we refer to columns of Y as “training signals”.
We cluster these training signals using Algorithm 1, and obtain a set S =
{s1, s2, ..., sncluster

}, where each si contains the indices of similar training
signals. A good dictionary can then be learned by solving the following
optimization problem:

minimize
D,Γ

‖Y −DΓ‖2F + λ

ncluster∑
i=1

‖Γsi‖row-0 (3.3)

In the above equation, Γsi denotes the matrix Γ restricted to columns
indexed by si. In other words, Γsi is the matrix of representation coefficients
of all signals in cluster si. ‖.‖row-0 is a pseudo-norm that counts the number
of non-zero rows; that is, ‖Γsi‖row-0 counts the number of rows of Γsi that
have at least one non-zero element. In other words, ‖Γsi‖row-0 counts the
number of atoms of the dictionary D that participate in the representation
of at least one of the signals in cluster si. Therefore, using ‖Γsi‖row-0 as a
penalty encourages atoms in the set si to share the same atoms and to use a
small number of atoms in their representation. In summary, the form of the
cost function in (3.3) reflects what we expect from the trained dictionary:
the first term requires that the dictionary accurately model the training
signals, while the second term requires that the training signals have a sparse
representation in D and that similar training signals share the same atoms
from the dictionary, i.e., to have a joint-sparse representation in D. This is
precisely in accordance with the intuition behind our proposed algorithm.

As we mentioned above, (3.3) is a non-convex minimization problem
and is commonly solved by alternately minimizing with respect to Γ and
D. Below, we will explain how we perform these minimizations. In our
presentation, we will assume that Y ∈ Rm3×N and D ∈ Rm3×K , i.e., the
number of training blocks is N and the trained dictionary has K atoms. We
also assume that the columns of D are normalized so that they have `2 norm
of unity.
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Minimization with respect to D: Our approach here is similar to the
approach followed in the K-SVD algorithm [2]. K-SVD algorithm sweeps
through the columns of D (i.e., dictionary atoms) and updates each atom
along with the coefficients of the signals that use it. Details were given in
Section 2.1.2.

Minimization with respect to Γ: With D being fixed, the minimization
problem in this step can be written as:

minimize
Γ

ncluster∑
i=1

(
‖Ysi −DΓsi‖2F + λ‖Γsi‖row-0

)
(3.4)

where, as before, Ysi and Γsi denote the restriction of these matrices to the
columns indexed by si. From (3.4) we see that the optimization problem
in this step consists of ncluster separate subproblems, one for each cluster of
signals. Each of these subproblems is a simultaneous sparse coding problem.
Since we can estimate the noise variance, we prefer to re-write (3.4) in a
constrained form:

(
min.

Γsi

‖Γsi‖row-0 subject to: ‖Ysi −DΓsi‖2F ≤ εi
)
i = 1 : ncluster

The advantage of this constrained minimization over the unconstrained
formulation in (3.4) is that λ is unknown and has no physical meaning,
whereas εi is directly related to the noise variance, which we can easily
estimate. We solve each of these subproblems using Algorithm 2, which is
an extension of the famous OMP algorithm [319]. In this algorithm, |si|
denotes the cardinality of the set si. At each iteration of this algorithm, we
select the atom that has the largest cumulative correlation with the signals
in Ysi and then project Ysi on the subspace spanned by the set of atoms
selected so far. We then update the residual and repeat.

An important choice is the dictionary size, i.e., the number of atoms in
the dictionary. We used a dictionary size of 1024 in all our experiments.
We will discuss the effect of the dictionary size on the performance of the
proposed algorithm later in this chapter. Another important decision is the
choice of the initial dictionary. It is common to use an overcomplete DCT
or wavelet dictionary as the initial dictionary. Our experience shows that
the algorithm converges much faster if we build the initial dictionary from
the training signals. For example, 1024 training signals can be randomly
selected. Alternatively, after clustering the training signals, 1024 clusters
can be randomly selected and one random signal from each cluster or the
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input : Dictionary D and the set of similar signals Ysi
output: Γsi , sparse representation coefficients of Ysi in D
r = Ysi
I = {}
σ2 = fi exp(Ȳsi)
α = (σ2)F−1

|si|m3(0.90)

while ||r||2F > α do

k̂ = argmax k
∑|si|

j=1 |〈(Ysi)j , Dk〉|
I = I ∪ k̂
Γsi = (DT

I DI)
−1DT

I Ysi
r = Ysi −DIΓsi

end
Algorithm 2: Simultaneous greedy sparse coding [319].

average of all atoms in each cluster be used in the initial dictionary. With
this initialization, at most 50 iterations of the proposed algorithm were
enough to converge to a good dictionary.

Moreover, at the end of each iteration of the dictionary learning algo-
rithm we removed from the dictionary the least-used atom (the atom used
by the least number of signal groups) and instead added a new dictionary
atom that was formed as the average of the most difficult group of signals
(the group that used the largest number of dictionary atoms in its rep-
resentation). Similar strategies are commonly used in dictionary learning
algorithms.

3.2.3 Denoising

Once a dictionary is learned for simultaneous sparse representation of similar
blocks using the method described above, it can be used for denoising of a
newly-acquired projection set. Of course, one can learn the dictionary from
the noisy image itself. This is indeed a common approach in dictionary-based
image denoising and may lead to slightly better results [100, 215]. However,
dictionary learning is very computationally expensive and it would be highly
desirable if a pre-trained dictionary could be used, instead of learning a
new dictionary for newly-acquired projections. As we will describe later
in this chapter, our results show that for CT projections, as long as the
scan geometry does not change, a well-trained dictionary can be used for
denoising the projections of different objects without a loss of performance.

Denoising of a new set of projections is carried out in three simple steps
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described below.

• Partition the stacked projections into overlapping blocks and cluster
them using Algorithm 1.

• For each cluster of blocks Ysi , use the simultaneous sparse coding al-
gorithm outlined in Algorithm 2 to find the representation coefficients
of Ysi in D. Denoting these representation coefficients by Γ̂si , the
denoised estimate of the blocks in this cluster will be: Ŷsi = DΓ̂si .

• The final (denoised) estimate of the projections is computed using a
simple averaging:

Ŷ =

ncluster∑
i=1

∑
j∈si

Rj(DΓ̂si)j

�
ncluster∑

i=1

∑
j∈si

Rj1

 (3.5)

where Rj is a binary matrix that places the jth block in its location
in the stacked projections, � indicates element-wise division, and 1 ∈
Rm3

is a vector of all ones. The above equation has a simple meaning
similar to Equation 2.7.

3.3 Evaluation

We apply the proposed denoising algorithm on simulated and real cone-beam
CT projections and compare its performance with the following algorithms:

• Bilateral filtering, which has been suggested for sinogram denois-
ing in [219]. Since this is not a patch-based algorithm, we expect
that it should be faster than patch-based algorithms but to be less
effective in terms of denoising performance. We include it here to con-
trast the patch-based denoising algorithms with the more traditional
sinogram denoising methods. This algorithm estimates the denoised
value of the image at pixel k by minimizing a cost function of the
form E(u(k)) =

∑
k′∈Ωk

P1(k, k′)P2(k, k′) where Ωk is a neighborhood
around this pixel, and P1 and P2 are two cost functions in terms of the
spatial distance and difference in pixel values, respectively. In [219]
both P1 and P2 are suggested to be Gaussians. The bandwidth of P1 is
suggested to be fixed at w/6, where w is the neighborhood width, and
the bandwidth of P2 is suggested to be chosen in the range [0.7, 2.8].
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• We will apply the dictionary-based approach proposed in [100] to de-
noise the projection measurements. We will refer to this algorithm as
K-SVD.

• We will apply the BM4D denoising algorithm [205] on the projection
measurements. There are many parameters that influence the per-
formance of this algorithm. We use the set of parameter values that
has been named “normal profile” in [205]. These parameter values
provide a good balance between speed and performance for this algo-
rithm. For brevity, we will refer to the BM4D algorithm applied on
the projections (sinogram) as BM4D-s.

• We will apply the BM4D algorithm also in the image domain. In
other words, we reconstruct the image from noisy projections and then
denoise the reconstructed image. Although this is the same BM4D
algorithm, we will refer to it as BM4D-i to distinguish it from BM4D-
s that is applied on the sinogram.

• An adaptive NLM algorithm was proposed for CT image denoising
in [191]. We will apply this algorithm on the images reconstructed
from noisy projections. We will refer to this algorithm as ANLM. An
important difference between ANLM and the basic NLM algorithm is
that ANLM relies on a relatively fast approximation of the noise level
in the reconstructed image and adjusts the denoising strength based
on the estimated noise level.

To have a fair comparison between different algorithms, we will use the
same block size (i.e., 83) and the same level of overlapping by using a 3-
pixel shift so that adjacent overlapping blocks share 5 pixels in each di-
rection. Therefore, the methods that we compare are of two types: 1)
the sinogram denoising (pre-processing) algorithms, which include bilateral
filtering, K-SVD, BM4D-s, and the proposed algorithm, and 2) the post-
processing algorithms that work on the reconstructed image, which include
BM4D-i and ANLM. As we will explain below, we apply these algorithms
on several sets of simulated and real cone-beam projections. Since the ulti-
mate goal is to achieve a high-quality image, most of our evaluations will be
done in the image domain. Therefore, for each of the experiments that we
will describe below, we will apply these three types of algorithms as follows:
1) For the sinogram-denoising algorithms (i.e., bilateral filtering, BM4D-s,
K-SVD, and the proposed algorithm), after denoising the projections with
each algorithm we use the FDK algorithm to reconstruct the image, 2) For
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Bilateral filtering K-SVD BM4D-s Proposed algorithm

0.060 0.055 0.051 0.048

Table 3.1: Root-Mean-Square of the difference between the denoised projec-
tions and the true projections on the data simulated from the digital brain
phantom.

the post-processing algorithms (i.e., BM4D-i and ANLM), we reconstruct
the image using the FDK algorithm from noisy projections and then apply
these algorithms to denoise the reconstructed image. Therefore, all algo-
rithms will include an FDK reconstruction. We use a Hamming window
with the FDK algorithm.

3.3.1 Simulation experiment

We simulated 1440 equally-spaced noisy projections from a 3D digital brain
phantom. We generated this phantom using one of the phantoms in the
BrainWeb database [63]. The phantom size was 362× 434× 362 voxels and
the projections were each 650× 450 pixels in size. We assumed the number
of incident photons N i

0 = 105 to be constant for all i by ignoring the bowtie
filtration. To simulate the electronic noise that becomes more important
in low-dose CT, we added a Gaussian noise with a standard deviation of
σ = 100 to the detected photon counts.

For this simulation study, since we know the true phantom projections,
we can quantitatively compare the sinogram denoising algorithms in the pro-
jection domain. For this purpose, we computed the Root Mean Square of the
Error (RMSE), where error is defined as the difference between the denoised
and the true (i.e., noise-free) projections. Table 3.1 shows this comparison.
Note that this comparison only includes the sinogram denoising algorithms,
i.e., bilateral filtering, K-SVD, BM4D-s, and the proposed algorithm. It can
be seen from this table that the proposed algorithm has achieved a lower
RMSE than the other sinogram-denoising algorithms. As one might expect,
bilateral filtering is not as effective as the patch-based denoising algorithms.

A more useful comparison is in terms of the quality of the reconstructed
image, where we can compare all three types of algorithms. To assess the
quality of the reconstructed images, we compute the RMSE, where error
is the difference between the reconstructed image and the true phantom
image. We also compute the structural similarity index (SSIM) between the
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RMSE SSIM time (h)

Bilateral filtering 0.066 0.735 0.40
KSVD 0.065 0.738 1.84
BM4D-s 0.059 0.765 4.35
Proposed algorithm 0.057 0.774 0.44
BM4D-i 0.055 0.770 0.82
ANLM 0.062 0.758 1.70

Table 3.2: Comparison of different algorithms in terms of the quality of the
reconstructed image and the computational time on the noisy scan simulated
from the digital brain phantom.

reconstructed image, x̂, and the true image, x0, as follows [329]:

SSIM(x̂, x0) =
(2µx̂µx0 + C1)(2σx̂x0 + C2)

(µ2
x̂ + µ2

x0
+ C1) + (σ2

x̂ + σ2
x0

+ C2)
(3.6)

where µx and σx represent the mean and standard deviation of x, σx̂x0 is
the covariance, and C1 and C2 are constants.

The results of the quantitative comparison are presented in Table 3.2.
In addition to RMSE and SSIM, we have also presented the computational
times. From this table, the proposed algorithm has performed better than
the other sinogram denoising algorithms and ANLM. The image produced
by BM4D-i is close to the image produced by the proposed algorithm. An-
other very important observation is that the computational time of the pro-
posed algorithm is much shorter than that of K-SVD, BM4D-s, BM4D-i,
and ANLM. In fact, the computational time of the proposed algorithm is
not much longer than that of bilateral filtering, whereas the computational
times of other algorithms are approximately 2 to 11 times longer than that
of bilateral filtering. All algorithms were run in Matlab version R2012b on
a Windows 7 PC with 32 GB of memory and 3.4 GHz Intel Core i7 CPU.
We should point out that the computation times reported for K-SVD and
the proposed algorithm in Table 3.2 do not include the time for the dic-
tionary learning stage. As we will describe later in this chapter, it is not
always necessary to learn a new dictionary for every new set of projections
and, in many cases, a dictionary learned on projections of one object can be
effectively used for denoising of the projections of a different object.

Figure 3.3 shows a slice of the digital brain phantom in the images recon-
structed with different algorithms. Compared with other sinogram denoising
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algorithms (i.e., K-SVD, BM4D-s, and bilateral filtering) and ANLM, the
proposed algorithm has resulted in a better image quality. The visual quality
is not very different between the proposed algorithm and BM4D-i.

Figure 3.3: A slice of the digital brain phantom. (a) reference image,
(b) FDK-reconstructed from noisy projections, (c) bilateral filtering, (d)
K-SVD, (e) BM4D-s, (f) the proposed algorithm, (g) BM4D-i, (h) ANLM.

In order to further evaluate the proposed algorithm in terms of the spa-
tial resolution, we performed a second simulation experiment. The goal of
this experiment was to determine how the spatial resolution for different
algorithms is affected by the object contrast. We rely on the estimation
of the modulation transfer function (MTF) following an approach similar
to that in [209]. In this experiment, we simulated noisy projections from
the MTF bead phantom, which we generated using the CONRAD software
[208]. As shown in Figure 3.4(a), this digital phantom includes three small
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Figure 3.4: (a) The central slice of the MTF bead phantom; the square C
shows the location of the cube used to compute the noise in the reconstructed
images to ensure equal noise for all algorithms, (b) estimated MTF for the
high-contrast phantom, (c) estimated MTF for the low-contrast phantom.

beads and two large high-attenuation inserts. We generated two versions
of this phantom. In both versions, the phantom disk was assumed to have
a linear attenuation coefficient of 1. However, in one of the phantoms the
beads had a linear attenuation coefficient of 3, whereas in the other they
had a linear attenuation coefficient of 1.4. We will refer to these two phan-
toms as high-contrast and low-contrast MTF bead phantoms, respectively.
If we regard the phantom disk as the background, the contrast of the beads
in the low-contrast phantom was 1/5 that in the high-contrast phantom.
The phantom size was 5123 voxels and the projections were each 600× 600
pixels in size. We simulated 720 equally-spaced noisy projections from each
phantom by assuming the number of incident photons to be N i

0 = 2 × 103

and the standard deviation of the additive Gaussian noise to be σ = 50. We
estimated the MTF from the center bead in the reconstructed images.

In addition to contrast, another factor that affects the spatial resolution
is the amount of smoothing (i.e., the denoising strength). In fact, noise,
contrast, and spatial resolution are three inter-dependent criteria. In order
to also account for the noise level, we adjusted the denoising strengths of
the sinogram-denoising and image-domain denoising methods such that the
noise in the images produced by different algorithms were approximately
equal. Each of these algorithms have tuning parameters that allow for ad-
justment of the denoising strength. In this simulation experiment we con-
sidered a cube, the cross-section of which is shown in 3.4(a), and adjusted
the denoising strengths of the sinogram-denoising and image-domain de-
noising methods such that the variance of the voxel values in this cube was
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Spatial resolution Spatial resolution
(high-contrast) (low-contrast)

Bilateral filtering 0.86 0.75
KSVD 0.85 0.74
BM4D-s 0.88 0.79
Proposed algorithm 0.88 0.80
BM4D-i 0.90 0.82
ANLM 0.90 0.81

Table 3.3: Spatial resolution (defined as the spatial frequency at which the
normalized MTF reaches 0.10) in units of mm−1 in the images of the MTF
bead phantom produced by different algorithms.

approximately equal in the images produced by different algorithms.
The estimated MTFs from the high-contrast and low-contrast phantom

images produced by different algorithms are shown in Figure 3.4(b)-(c). In
Table3.3 we have shown the spatial frequency at which the normalized MTF
for different algorithms reached a value of 0.10. These results show that the
images produced by the proposed algorithm have a higher spatial resolution
than the images produced by the other three sinogram denoising algorithms.
The two image-based denoising algorithms also achieve high spatial resolu-
tion and outperform the sinogram-denoising algorithms including our pro-
posed algorithm. From the MTF plots for the low-contrast phantom shown
in Figure 3.4(c), there is also a general difference between the sinogram-
denoising and image-domain denoising methods. In general, the sinogram
denoising methods have resulted in higher MTF at low spatial frequencies
but the image-domain denoising methods have resulted in higher MTF at
higher spatial frequencies.

3.3.2 Experiment with micro-CT scan of a rat

All of the real CT data that is used in this dissertation were collected with
a Gamma Medica eXplore CT 120 micro-CT scanner. Therefore, here we
provide some technical details about this scanner. This scanner has a flat
panel detector located 449 mm from the source and 397 mm from the axis of
rotation. The detector panel includes 3500× 2272 detector elements. Using
three different binning options of 1 × 1, 2 × 2, and 4 × 4, projections with
three different sizes of 3500×2272, 1750×1136, 875×568, respectively, can
be obtained. The distance between the centers of adjacent detector elements
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is 0.02831mm. Unless otherwise stated, the size of the reconstructed images
is 880×880×650 voxels, each voxel having a size 0.1×0.1×0.1 mm3. Other
scan settings are different for different experiments; therefore they will be
stated for each experiment separately. Some further information about this
scanner can be found in [203].

For the rat scan used in this section, tube voltage, tube current, and
exposure time were equal to 70 kV, 32 mA, and 16 ms, respectively. This
was the lowest possible setting in terms of mAs because the scanner did not
operate under 0.5 mAs. The scan consisted of 720 projections between 0◦

and 360◦ at 0.5◦ intervals. The size of each projection was 875× 568 pixels.
Because we do not have access to the true (i.e., noise-free) projections,

we evaluate the performance of different algorithms in terms of the quality of
the reconstructed images. For this purpose, we reconstructed a high-quality
image of the rat using the full set of 720 projections. To create this image,
we reconstructed an initial image using the FDK algorithm followed by 50
iterations of the MFISTA algorithm [17] to improve the quality of the FDK-
reconstructed image. The resulting image had a very high quality and we
will refer to it as “the reference image”.

To compare different algorithms, we applied them on the same scan. As
we did in the simulation studies described above, in our experiments with
real data we applied the sinogram denoising algorithms (i.e., bilateral filter-
ing, K-SVD, BM4D-s, and the proposed algorithm) on the noisy projections
and used the denoised projections to reconstruct an image with the FDK
algorithm. We applied the post-processing algorithms (i.e., BM4D-i and
ANLM) on the FDK-reconstructed image from the noisy projections. The
quality of the reconstructed images was assessed by computing the RMSE,
where we define the error as the difference between the reconstructed image
and the reference image, and the SSIM between the two images. In Table
3.4, we have summarized the results of the quantitative comparison between
different algorithms. In addition to RMSE, SSIM, and the computational
time, we have included two additional numbers that are indicators of spatial
resolution and noise strength, which we have denoted by SR and NS and
are computed as follows:

• As an indicator of spatial resolution (SR), we computed the maximum
absolute value of the gradient (i.e., slope) along the line L marked in
Figure 3.5(a). A larger gradient, corresponding to a sharper slope,
indicates a higher spatial resolution.

• As a measure of noise strength (NS), we computed the standard devia-
tion of the voxel values in a cube whose cross-section has been marked
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in Figure 3.5(a) with the rectangle C. From the reference image, we
identified this cube to be highly uniform.

Noise suppression and spatial resolution are usually two opposing objec-
tives in denoising. A stronger denoising, in general, leads to a loss of spa-
tial resolution and a successful denoising algorithm can be simply defined
as one that reduces the noise with little degradation of spatial resolution.
Therefore, the above two numbers are very useful indicators for comparing
different algorithms. A very similar approach was suggested for examining
the trade-off between noise removal and spatial resolution in CT images in
[219].

RMSE SSIM time (h) SR NS

Bilateral filtering 0.0123 0.783 0.42 0.160 0.138
KSVD 0.0121 0.792 2.2 0.156 0.124
BM4D-s 0.0116 0.808 2.8 0.165 0.119
Proposed algorithm 0.0106 0.814 1.0 0.165 0.116
BM4D-i 0.0110 0.810 3.9 0.160 0.112
ANLM 0.0118 0.803 4.6 0.162 0.123

Table 3.4: Quality criteria for the images produced by different algorithms
from the noisy rat scan.

The numbers in Table 3.4 show that the propsoed algorithm has outper-
formed other sinogram denoising algorithms and image-domain denoising
algorithms, while having a much shorter computational time. The proposed
algorithm is, in most cases, better than other methods in terms of the spatial
resolution and the noise strength. Bilteral filtering has a shorter computa-
tional time but it is less effective than the other algorithms. In terms of
computational time, the proposed algorithm requires a much shorter time
than other methods, except for bilateral filtering. BM4D-s and BM4D-i,
which are close to the proposed algorithm in terms of the image quality
criteria, take 3 to 4 times longer to complete.

Figure 3.5 shows a slice in the image of the rat produced using differ-
ent algorithms. The entire slice has been displayed with a window of linear
attenuation coefficient of [0, 0.45]. In order to better demonstrate the dif-
ference between the images, we have selected two ROIs and displayed them
with a magnification of 150% and with much narrower windows of linear
attenuation coefficients. The locations of these ROIs have been marked on
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the slice of the reference image in Figure 3.5(a). The ROI shown on the top-
left of each slice contains fat surrounded by soft tissue and is shown with a
window of linear attenuation coefficient of [0.14, 0.22]. The ROI shown on
the top-right of each slice contains bone surrounded by soft tissue and is dis-
played with a window of linear attenuation coefficient of [0.18, 0.30]. From
this figure, the proposed algorithm seems to have resulted in a better image
than other sinogram denoising algorithms and post-processing algorithms.
This is more visible from the ROI displayed on the top left of each slice.

3.3.3 Experiment with micro-CT scan of a phantom

A physical phantom was scanned using the same micro-CT scanner described
above. This is a quality assurance phantom that has been designed for
comprehensive evaluation of the performance of micro-CT systems. It has
various modules that allow for a complete evaluation of the quality of the
reconstructed images in terms of spatial resolution, noise, geometric accu-
racy, linearity, etc. Therefore, in this dissertation this phantom is used very
frequently and referred to as “the physical phantom”. A detailed description
of this phantom can be found in [92].

For evaluation of the algorithm proposed in this chapter, the physical
phantom was scanned twice:

1. Low-noise scan. This scan consisted of 720 projections at 0.5◦ in-
tervals between 0◦ and 360◦. The tube voltage, tube current, and
exposure time were 70 kV, 40 mA, and 25 ms, respectively.

2. High-noise scan. This scan consisted of 720 projections between
0◦ and 360◦ at 0.5◦ intervals. The tube voltage, tube current, and
exposure time were equal to 50 kV, 32 mA, and 16 ms, respectively.
Moreover, a 0.2mm copper filter was used for this scan.

The phantom had no movement between the two scans. Therefore, the
two scans are from the same object at exactly the same location. Note
that it was not possible to perform two identical scans in the rat experiment
described above because the internal organs of the rat moved ever so slightly
during the experiments.

From the low-noise scan, we reconstructed a high-quality reference image
in a way similar to our rat experiment above. Different algorithms were used
to reconstruct the image of the phantom from the high-noise scan and the
reconstructed image was compared with the reference image. In addition
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Figure 3.5: A slice of the image of the rat. (a) the reference image, (b) FDK-
reconstructed from noisy projections, (c) bilateral filtering, (d) K-SVD, (e)
BM4D-s, (f) the proposed algorithm, (g) BM4D-i, (h) ANLM.
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to SSIM and RMSE, we computed two numbers as indicators of the noise
strength (NS) and the spatial resolution (SR) as described below:

• The phantom has a uniform polycarbonate disk that has been included
in the phantom for the purpose of estimating the noise level. We
selected five 103−voxel cubes at different locations within the disk
and computed the standard deviation of the voxel values in each cube.
We use the average of these five standard deviations as an indicator
of noise strength (NS).

• The phantom included a slanted edge that consisted of a plastic-air
boundary that is specially designed for accurate estimation of the mod-
ulation transfer function (MTF). Although the MTF can also be esti-
mated from a slit or a wire, this phantom provides an edge for MTF
estimation because it is easier to fabricate a very smooth edge in a
physical phantom. The slanted edge in this phantom had an angle of
5◦ relative to the image matrix that allowed for accurate estimation of
MTF using methods such as that proposed in [39]. We estimate the
MTF for the range of spatial frequencies between 0 and 5mm−1. As it
is commonly done, we report the spatial frequency at which the nor-
malized MTF reaches a value of 0.10 as a measure of spatial resolution
(SR). We will also show the full MTF curves.

Figure 3.6 shows two fine coils inside the phantom in the images re-
constructed by different algorithms. These coils are very useful for visual
inspection of the spatial resolution and noise in the images. Compared with
other sinogram denoising algorithms (i.e., bilateral filtering, K-SVD, and
BM4D-s) and ANLM, the proposed algorithm seems to have resulted in a
better image.

A more objective comparison of different algorithms can be performed
using the quantitative criteria that we described above, which we have sum-
marized in Table 3.5. These numbers clearly show that compared with the
other sinogram denoising algorithms and ANLM, the proposed algorithm
has resulted in a better image. BM4D-i has also performed well and is
slightly better than the proposed algorithm but it takes 4 times longer to
complete. In terms of computational time, the proposed algorithm is again
much faster than the other algorithms, except bilateral filtering.

The values of spatial resolution (SR) shown in Table 3.5 represent the
spatial frequency at which the normalized MTF reached a value of 0.10.
However, this is not a complete characterization of the spatial resolution. A
more detailed comparison of different algorithms can be done by examining
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RMSE SSIM time (h) SR NS

Bilateral filtering 0.0145 0.786 0.42 3.81 0.0148
KSVD 0.0142 0.789 2.5 3.78 0.0144
BM4D-s 0.0129 0.800 3.0 3.83 0.0139
Proposed algorithm 0.0127 0.820 0.9 3.83 0.0135
BM4D-i 0.0124 0.822 4.0 3.83 0.0132
ANLM 0.0132 0.797 5.4 3.81 0.0143

Table 3.5: Comparison between different algorithms on the scan of the phys-
ical phantom.

the full MTF curves. Moreover, as can also be seen in Table 3.5, the noise
strengths are different for different algorithms. As we mentioned above, spa-
tial resolution is influenced by the denoising strength. Therefore, we also
estimated the MTF for different algorithms with noise matching. Specifi-
cally, we adjusted the denoising strengths of different algorithms such that
the noise strength (NS, computed as described above) was approximately
equal to 0.0130 for all algorithms. We then estimated the MTF for the
images produced by different algorithms.

The estimated MTFs are shown in Figure 3.7. We have shown the esti-
mated MTFs in part (a) of this figure. Because the number of algorithms
compared is large and some of the MTF curves are very close, in part (b) of
this figure we have shown the difference between the MTF of the image pro-
duced by different algorithms and the MTF of the image reconstructed from
noisy projections with the FDK algorithm. We have done this only to be
able to better see the difference between the MTFs for different algorithms.
Overall, the plots of MTF in this figure show that the images produced
by BM4D-s and the proposed algorithm have higher spatial resolution than
other algorithms, especially in the frequency range [1mm−1, 2mm−1].

3.4 Discussion

In summary, our results with simulated and real CT projections show that
the proposed algorithm achieves state-of-the-art results. It outperforms or at
least matches some of the best projection-domain and image-domain denois-
ing algorithms in terms of the visual and objective quality of the produced
image and computational time. Our simulation study with the digital brain
phantom showed that the projections denoised with the proposed algorithm
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Figure 3.6: Images of two fine coils inside the physical phantom in the
reference image and the images produced from the high-noise scan using
different algorithms.
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Figure 3.7: (a) The estimated noise-matched MTF for the images of the
physical phantom produced by different algorithms, and (b) the difference
between the MTF for different algorithms and the MTF for the FDK-
reconstructed image without denoising.
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were closer to the true projections, compared with projections denoised with
the other sinogram-denoising algorithms. Our simulation experiments as
well as our experiments with real data showed that in terms of the visual and
objective quality of the produced image, the proposed algorithm achieved
better results than the other methods. Denoising in the image domain with
the BM4D algorithm often produced results that were close to the images
produced by our proposed sinogram-denoising algorithm, but BM4D is much
more computationally intensive than our proposed algorithm.

The proposed algorithm exploits the abundant self-similarity in the pro-
jections by grouping similar blocks extracted from the stacked projections.
To denoise groups of similar blocks, the proposed algorithm makes the as-
sumption that blocks in each such group should have a joint-sparse repre-
sentation in a well-designed dictionary, which can be learned from training
data. It is important to note that, at the level of small blocks of size 83

considered by the proposed algorithm, the type of patterns that appear in
the stacked projections does not depend strongly on the object being im-
aged. This is important because it can mean that a dictionary learned from
projections of a certain object can be used for denoising the projections
of a different object. This can lead to large savings in computation be-
cause learning a dictionary is by far more computationally demanding than
applying the dictionary for denoising. For natural images, in general, the
dominant types of features in different images can be quite different and, for
example, a dictionary learned on a cartoon-like or smooth image may not
be optimal for denoising an image that contains fine textures. Therefore,
for dictionary-based denoising of natural images, it is usually better to learn
the dictionary from a set of similar training images or even from the noisy
image itself. For CT projections, however, because the local nature of CT
projections is not dependent on the scanned object, we expect that a dictio-
nary learned from the projections of one object could be used for denoising
the projections of another object.

In order to determine if this is in fact the case, we used the dictionary
learned from the projections of the rat (from Section 3.3.2) to denoise the
projections of the physical phantom (from Section 3.3.3). And vice versa,
we used the dictionary learned on the projections of the physical phantom to
denoise the projections of the rat. In both cases, the results obtained were
almost exactly the same as those presented in the Results section above.
In particular, none of the values in Tables 3.4 and 3.5 changed by more
than 2%. In our opinion, this indicates that the dictionary learned from
projections of one object can be used for denoising of the projections of
an entirely different object. Of course, if the scan geometry changes, for
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example if the cone angle is increased or decreased significantly, the learned
dictionary may no longer be effective and a new dictionary must be learned.
But these settings do not usually change on a commercial scanner.

As a further test of generalizability of the learned dictionaries in the
proposed algorithm, we performed another experiment. In this experiment,
the abdominal part of another rat was scanned. The rat in Section 3.3.2
was scanned in the chest region (as can be seen in Figure 3.5) and the tube
voltage, tube current, and exposure time were equal to 70 kV, 32 mA, and
16 ms, respectively. In this new scan, the new rat was scanned in the abdom-
inal region using a tube voltage of 50 kV. Furthermore, a 0.2mm copper
filter was used to create a noisier scan than the scan in Section 3.3.2. We
applied the proposed algorithm with the dictionary learned from the scan
of the rat in Section 3.3.2 on this new scan. We also applied the other algo-
rithms on this scan. A slice of the images produced by different algorithms
from this scan has been shown in Figure 3.8. In the same figure, we have
also shown a segment of a profile in this slice. The proposed algorithm has
resulted in very effective denoising that is better than or comparable with
the other methods. Our experience shows that the dictionary learned on the
scan of one object can be used for effective denoising of the scan of another
object, unless the scan settings such as angular spacing between successive
projections changes drastically. This can mean large savings in computa-
tional time. As an example, denoising of the scan of the rat in Section 3.3.2
required approximately 1h, as shown in Table 3.4, while learning the dictio-
nary for the same scan takes longer than this. The dictionary learning time
depends on the number of training signals, the initial dictionary used, and
the dictionary size. With a good initialization, as we explained in Section
3.2.2, a dictionary can be trained in approximately 3− 4h.

The size of the dictionary has a direct effect on the computational de-
mand and the denoising performance. A larger dictionary is usually more
expressive and, in general, can lead to a sparser representation and higher
performance. On the other hand, the computational cost of applying the
dictionary is directly related to its size. As we mentioned above, in all of
the experiments that we reported in this chapter we used a dictionary of
size 1024, which means that the number of atoms was twice the signal di-
mensionality. A natural question is what is the effect of dictionary size in
this application. In other words, one would like to know if the performance
of the proposed algorithm can be improved by increasing the dictionary
size, or whether the size of the dictionary may be reduced without a loss in
performance.

In our experience, larger dictionaries do not lead to a significant im-
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Figure 3.8: (Top) A slice in the image of the second rat produced by dif-
ferent algorithms, and (Bottom) a small profile segment through this slice.
The location of the profile segment has been marked on the slice of the
reference image with the line segment “L”. (a) reference image, (b) FDK-
reconstructed from noisy projections, (c) bilateral filtering, (d) KSVD, (e)
BM4D-s, (f) the proposed algorithm, (g) BM4D-i, (h) ANLM.
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provement in the denoising performance, while significantly increasing the
computational load. Reducing the dictionary size, on the other hand, leads
to a slight performance loss. As an example, in Figure 3.9 we show the effect
of the size of the dictionary in our experiment with the rat data (Section
3.3.2). In this figure, we plot the RMSE, SSIM, and computational time
for several different dictionary sizes. The actual values reported in Table
3.4 were for a dictionary of size 1024. In Figure 3.9 we plot the normalized
values of RMSE, SSIM, and the computational time by dividing the values
for various dictionary sizes by the values for a dictionary size of 1024. Note
that a low RMSE and computational time and a high SSIM are desirable.
From this figure, for dictionary sizes of 768 and 512 the quality of the re-
constructed image is only slightly lower compared to a dictionary size of
1024. Increasing the dictionary size to 1536 and 2048 does not lead to a
noticeable improvement in RMSE and SSIM, while significantly increasing
the computational time.

Figure 3.9: Effect of the dictionary size on the denoising performance and
computational time for denoising of the projections of the rat (Section 3.3.2).

The observation that the dictionary size can be reduced to the signal di-
mensionality (i.e., 512) without a substantial degradation in the performance
loss is surprising. In almost all image-processing applications of learned
dictionaries, the dictionary size is at least twice the signal dimensionality.
Figure 3.10(a) shows some typical atoms of the dictionary learned from the
projections of the rat described in Section 3.3.2. Because the learned atoms
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are actually 8×8×8 cubes, we have randomly selected 50 of these atoms and
have shown all of their 8 slices in Figure 3.10(a). In Figure 3.10(b) we have
randomly selected 50 atoms learned on the reconstructed image of the rat.
A visual comparison of these atoms from the two dictionaries quickly reveals
their fundamental difference. Even though there exist similar-looking atoms
in the two dictionaries, one can easily see at a glance that the atoms learned
on the projections are simpler and smoother. This stems from the fact that
the type of patterns that occur in CT projections are much more limited.
This is also why we could limit the number of dictionary atoms to the signal
dimensionality (512), while for natural images, including medical images,
the number of atoms in the dictionary is usually chosen to be at least twice
the signal dimensionality. Further reducing the dictionary size below 512
leads to a sharp deterioration of the performance of the proposed algorithm.

Figure 3.10: (a) A full depiction of 50 randomly selected atoms from the
dictionary learned from the projections of the rat; each column shows the
8 slices of a single atom. (b) The same, for the dictionary learned from the
reconstructed image of the rat.
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Chapter 4

Sinogram Denoising using
Total Variation

4.1 Introduction

In this chapter, we use a Poisson noise model for the projection measure-
ments and propose denoising algorithms based on total variation (TV) regu-
larization. Unlike our approach in Chapter 3, in this Chapter we will denoise
each projection view separately.

We denote the true and noisy projections with u and v, respectively,
and assume that they are of size m × n. Individual pixels of a projection,
for example for u, are denoted as u(i, j), i = 1 to m, j = 1 to n. For an
arbitrary pixel location (from the probability mass function of a variable
with Poisson distribution):

P (v(i, j)|u(i, j)) =
e−u(i,j)u(i, j)v(i,j)

v(i, j)!
(4.1)

Assuming the pixel values are independent, for the entire image we will
have:

P (v|u) =
∏
i,j

e−u(i,j)u(i, j)v(i,j)

v(i, j)!
(4.2)

We ignore the denominator, which is independent of u. Since we want
to find a functional to minimize, we consider the negative logarithm of the
numerator:

−log(P (v|u) ∝
∑
i,j

u(i, j)− v(i, j)log(u(i, j)) (4.3)

With this measurement consistency term, total variation denoising can
be performed by minimizing this cost function:

Eλ(u) =

∫
Ω

(u− v logu) + λ

∫
Ω
|∇u| (4.4)
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where ∇u is the gradient of u. As we mentioned in Section 2.5, because this
regularizer is based on the `1-norm of the gradient, it is very effective in
preserving image edges while suppressing the noise. Therefore, it has been
tremendously successful in reconstruction, deconvolution, and denoising of
piecewise-constant images. In recent years, there has been a growing body
of research on improving the capabilities of this model [48]. Perhaps the
most significant enhancements have been achieved by including higher-order
differentials in the model [47, 286].

The use of higher-order derivatives leads to superior results on images
that contain piecewise-smooth features. On piecewise-smooth images, the
basic TV formulation leads to artificial blocky features known as staircase
artifacts. This is because with the basic TV model, piecewise-constant solu-
tions are preferred. Including higher-order differentials, on the other hand,
will encourage piecewise-smooth solutions. This can be very important for
projection measurements in CT. Even if the imaged object (e.g., the hu-
man body) may be modeled as piecewise-constant, its projections will not
be piecewise-constant. This is easy to visualize and we show a simple ex-
ample in Figure 4.1. This figure shows a 2D slice and a 1D profile from
the low-contrast 3D Shepp-Logan phantom alongside a typical cone-beam
projection of it. Even though the the phantom itself is strictly piecewise
constant, this is not the case for its projection. It is well documented that
the basic TV model does not achieve optimal performance on this type of
images [47, 199].

In this chapter, we propose two approaches for tackling this problem.
The first approach is to use higher-order differentials. The second approach
is to apply the basic TV denoising in a locally adaptive fashion.

4.2 Approach 1- Employing higher-order
derivatives in TV regularization

4.2.1 The proposed algorithm

Following the above discussion, we suggest a regularization function that
includes the `1-norm of both the gradient and the Hessian of the image,
leading to a cost function of the form:

E(u) =

∫
Ω

(u− v logu) + λ1

∫
Ω
|∇u|+ λ2

∫
Ω
|∇2u| (4.5)
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Figure 4.1: The central slice of the low-contrast 3D Shepp-Logan phan-
tom (a), and a representative one-dimensional profile of it (b); a cone-beam
projection of the same phantom (c), and a one-dimensional profile of the
projection (d).

or in the discrete image domain:

E(u) =
∑
i,j

(u(i, j)− v(i, j) logu(i, j))

+ λ1

∑
i,j

|∇u(i, j)|+ λ2

∑
i,j

|∇2u(i, j)|
(4.6)

The norms of the gradient and the Hessian in the discrete image domain
are defined as follows:

|∇u(i, j)| =
(
Dxu(i, j)2 +Dyu(i, j)2

)1/2
(4.7)

|∇2u(i, j)| =
(
Dxxu(i, j)2 + 2Dxyu(i, j)2 +Dyyu(i, j)2

)1/2
(4.8)

where Dx, Dy, Dxx, Dxy, and Dyy are the first and second-order difference
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operators defined as follows:

Dxu(i, j) = u(i+ 1, j)− u(i, j)

Dyu(i, j) = u(i, j + 1)− u(i, j)

Dxxu(i, j) = u(i+ 1, j)− 2u(i, j) + u(i− 1, j)

Dyyu(i, j) = u(i, j + 1)− 2u(i, j) + u(i, j − 1)

Dxyu(i, j) = u(i+ 1, j + 1)− u(i+ 1, j)− u(i, j + 1) + u(i, j)

(4.9)

Here, we have provided the definitions for the interior pixels. For the bound-
ary pixels we assume periodic boundary condition as in [248, 332]. Hence-
forth, we only work in the discrete domain but to simplify the expressions
we drop the pixel indices and only show them when necessary.

To derive a minimization algorithm for the functional E(u), we follow
the split Bregman iterative framework [117] which is a very efficient algo-
rithm for `1-regularized problems. Split Bregman method can be considered
as a member of larger families of algorithms such as the alternating direction
method of multipliers [33] or proximal methods [66]. In the split Bregman
method, first the unconstrained optimization problem is converted into a
constrained problem by introducing new variables. For E(u) in (4.6), we
write the corresponding constrained problem by introducing three new vari-
ables (f , g, and h):

minimize
∑

(f − v log f) + λ1

∑
|g|+ λ2

∑
|h|

subject to f = u, g = ∇u, h = ∇2u
(4.10)

This constrained problem can now be solved through the following Bregman
iteration:

Initialize: u0 = v, f0 = v, g0 = ∇v, h0 = ∇2v, b01 = b02 = b03 = 0

while ‖uk − uk−1‖2 > ε

[uk+1, fk+1, gk+1, hk+1] = arg min
u,f,g,h

∑
(f − v log f)

+ λ1

∑
|g|+ λ2

∑
|h|

+
µ1

2

∑
(f − u− bk1)2

+
µ2

2

∑
(g −∇u− bk2)2

+
µ3

2

∑
(h−∇2u− bk3)2

(4.11)
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bk+1
1 = bk1 + uk+1 − fk+1

bk+1
2 = bk2 +∇uk+1 − gk+1

bk+1
3 = bk3 +∇2uk+1 − hk+1

end

where µi are the algorithm parameters and bi are auxiliary variables. In
the Bregman iterative approach, the updates of the auxiliary variables bi re-
place the updates of the subgradients of the objective function. We should
also note that if u is an m-by-n image, i.e., u ∈ Rm×n, then f , b1 ∈ Rm×n,
∇u , g , b2 ∈ (Rm×n)2, and ∇2u , h , b3 ∈ (Rm×n)4. We denote the compo-
nents of g and h as g = [gx, gy] and h = [hxx, hxy, hyx, hyy] and similarly for
∇u, ∇2u, b2, and b3.

Although it may seem that the above modification has made the problem
harder, the efficiency of the split Bregman scheme lies in the fact that the
minimization problem can now be split into smaller problems that can be
solved much more easily. Therefore, the large minimization problem in the
above algorithm is solved by iteratively minimizing with respect to each of
the four variables (u, f , g, and h), resulting in the following algorithm:

Initialize: u0 = v, f0 = v, g0 = ∇v, h0 = ∇2v, b01 = b02 = b03 = 0

while ‖uk − uk−1‖2 > ε

For i = 1 : N

fk+1 = arg min
f

∑
(f − v log f) +

µ1

2

∑
(f − uk − bk1)2

uk+1 = arg min
u

µ1

2

∑
(fk+1 − u− bk1)2

+
µ2

2

∑
(gk −∇u− bk2)2

+
µ3

2

∑
(hk −∇2u− bk3)2

gk+1 = arg min
g

λ1

∑
|g|+ µ2

2

∑
(g −∇uk+1 − bk2)2

hk+1 = arg min
h

λ2

∑
|h|+ µ3

2

∑
(h−∇2uk+1 − bk3)2

end

bk+1
1 = bk1 + uk+1 − fk+1

(4.12)
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bk+1
2 = bk2 +∇uk+1 − gk+1

bk+1
3 = bk3 +∇2uk+1 − hk+1

end

To avoid complicating the notation, we have not introduced additional
indices for the variable updates in the For loop. In fact, for many problems
only one iteration of this loop is sufficient for fast convergence of the overall
algorithm [117]. The efficiency of the split Bregman scheme entirely depends
on how fast the sub-problems can be solved. In the following, we will show
that for our problem, the four sub-problems can be solved very efficiently.

Minimization with respect to f : Returning to the notation with pixel
indices, this sub-problem is:

fk+1 = arg min
f

∑
i,j

(f(i, j)− v(i, j) log f(i, j))

+
µ1

2

∑
i,j

(f(i, j)− uk(i, j)− bk1(i, j))2
(4.13)

This expression can be written as a sum of scalar minimization problems
in terms of individual pixel values. Since the function to be minimized is
convex in terms of f(i, j), the solution can be found by setting the derivative
to zero. Using basic calculus and the knowledge that f ≥ 0 we can show
that the following formula gives the exact solution to this problem.

fk+1(i, j) =
B

2
+

√(
B

2

)2

+
v(i, j)

µ1

where B = uk(i, j) + bk1(i, j)− 1

µ1

(4.14)

Minimization with respect to u: This subproblem can be solved through
its optimality condition which can be written as [117, 248]:[
µ1I − µ2(DT

xDx +DT
y Dy) + µ3(DT

xxDxx + 2DT
xyDxy +DT

yyDyy)
]
uk+1 =

µ1(fk+1 − bk1)− µ2(DT
x (gkx − bk2x) +DT

y (gky − bk2y))
+ µ3(DT

xx(hkxx − bk3xx) + 2DT
xy(h

k
xy − bk3xy) +DT

yy(h
k
yy − bk3yy))
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where DT
x , DT

y , DT
xx, DT

xy, and DT
yy are the backward-difference operators

corresponding to the forward-difference operators defined in (4.9). For the
pixels in the interior of the image, these operators are defined as:

DT
x u(i, j) = u(i, j)− u(i− 1, j)

DT
y u(i, j) = u(i, j)− u(i, j − 1)

DT
xxu(i, j) = Dxxu(i, j) = u(i+ 1, j)− 2u(i, j) + u(i− 1, j)

DT
yyu(i, j) = Dyyu(i, j) = u(i, j + 1)− 2u(i, j) + u(i, j − 1)

DT
xyu(i, j) = u(i, j)− u(i− 1, j)− u(i, j − 1) + u(i− 1, j − 1)

(4.15)

Despite its long expression, the above equation is a system of linear equa-
tions in uk+1. Due to the structure of the forward and backward difference
matrices, the system matrix is diagonally dominant. When the size of the
image is not small, an efficient algorithm for finding a good approximate
solution is the Gauss-Seidel method [118, 248].

Minimization with respect to g: This problem reads:

gk+1 = arg min
g

λ1

∑
i,j

|g(i, j)|+ µ2

2

∑
i,j

(g(i, j)−∇uk+1(i, j)− bk2(i, j))2

This problem is also equivalent to a set of scalar problems in terms of indi-
vidual pixel values. Its solution is a simple extension of the soft thresholding
operation [249, 328]:

gk+1
x (i, j) = max

(
|B(i, j)| − λ1

µ2
, 0

)
Bx(i, j)

|B(i, j)|

gk+1
y (i, j) = max

(
|B(i, j)| − λ1

µ2
, 0

)
By(i, j)

|B(i, j)|
where B(i, j) = [Bx(i, j), By(i, j)]

= [bk2x(i, j) +Dxu
k+1(i, j), bk2y(i, j) +Dyu

k+1(i, j)]

(4.16)

Minimization with respect to h: This problem is very similar to min-
imization with respect to g above. Its solution is similarly a generalization
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of the soft thresholding operation [249]:

hk+1
xx (i, j) = max

(
|C(i, j)| − λ2

µ3
, 0

)
Cxx(i, j)

|C(i, j)|

hk+1
xy (i, j) = max

(
|C(i, j)| − λ2

µ3
, 0

)
Cxy(i, j)

|C(i, j)|

hk+1
yx (i, j) = max

(
|C(i, j)| − λ2

µ3
, 0

)
Cyx(i, j)

|C(i, j)|

hk+1
yy (i, j) = max

(
|C(i, j)| − λ2

µ3
, 0

)
Cyy(i, j)

|C(i, j)|
where C(i, j) = [Cxx(i, j), Cxy(i, j), Cyx(i, j), Cyy(i, j)]

= [bk3xx(i, j) +Dk+1
xx u(i, j), bk3xy(i, j) +Dk+1

xy u(i, j),

bk3yx(i, j) +Dk+1
yx u(i, j), bk3yy(i, j) +Dk+1

yy u(i, j)]

(4.17)

If we set λ2 = 0 in Equations (4.5) or (4.6), we get a simplified model
with standard (i.e., first-order) TV regularization. This will greatly simplify
the algorithm because the variables h and b3 will also be removed. We
will refer to this simplified model as “TV sinogram denoising” and to the
full model described above as “(TV + TV2) sinogram denoising” and will
present the results for both models. This will allow us to see whether or not,
and to what extent, the more complex model with two regularizers improves
the results.

To evaluate the proposed denoising algorithm, we applied it on sets of
simulated and real cone-beam sinograms. We compare our proposed al-
gorithm with the bilateral filtering algorithm that we described in Section
3.3.

4.2.2 Simulation experiment

Noisy cone-beam projections were simulated from a 3D low-contrast Shepp-
Logan phantom according to the model in Equation (1.1). We used two
different values of N i

0 = 1000 and N i
0 = 100 to simulate two sets of pro-

jections with different levels of noise. For each ray, the expected number
of detected photons (N i

d) is given by Equation (1.1). The actual detected
photon count was simulated as a Poisson random variable with mean equal
to N i

d. We will refer to the scans with N i
0 = 1000 and N i

0 = 100 as low-noise
and high-noise, respectively. The phantom size was 2563 voxels and the pro-
jections were each 300× 300 pixels in size. Each simulated scan consisted of
720 projections between 0◦ and 360◦.
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Because for this simulated experiment we have access to the true pro-
jections, we can quantitatively compare the denoised projections with the
true projections. To this end, we computed the value of two criteria: (1)
the root-mean-square of the error (RMSE), where the error is defined as
the difference between the denoised projection and the true projection (i.e.,
without the Poisson noise), and (2) the mutual information (MI) between
the denoised projections (û) and the true projections (u∗) computed as [259]:

MI(u∗, û) =

h∑
i=1

h∑
j=1

q(u∗i , ûj)log

(
q(u∗i , ûj)

p(u∗i )p(ûj)

)
(4.18)

Here, p and q represent the marginal and joint probability distribution func-
tions, respectively. We used histograms of u∗ and û for estimating these
probability densities and h is the number of bins in the histograms. We
normalized the computed MI(u∗, û) by dividing it by MI(u∗, u∗).

The results of this comparison are presented in Table 4.1. As we men-
tioned above, “TV sinogram denoising” means setting λ2 = 0 and adjusting
λ1 in our model. We will discuss the role of the parameter values and some
possible approaches to selecting proper values later in this chapter. The
results shown for TV sinogram denoising in Table 4.1 were obtained with
λ1 = 2, µ1 = 10, and µ2 = 0.1. The results shown for (TV + TV2) sino-
gram denoising in Table 4.1 were obtained with λ1 = 2, λ2 = 0.1, µ1 = 10,
µ2 = 0.5, and µ3 = 0.01. For bilateral filtering, the results are shown for
the choice of the bandwidth of P2 being equal to 2.2, which gave us the
lowest RMSE. The numbers in this table indicate that the proposed TV
sinogram denoising methods, especially the (TV + TV2) sinogram denois-
ing algorithm, outperform the method based on bilateral filtering.

Bilateral
filtering

TV
denoising

(TV + TV2)
denoising

N0 = 100
RMSE 0.0420 0.0364 0.0308
MI 0.277 0.351 0.375

N0 = 1000
RMSE 0.0192 0.0174 0.0163
MI 0.408 0.425 0.442

Table 4.1: Comparison of different denoising algorithms in terms of the
RMSE and MI of the denoised projections on the data simulated from the
low-contrast Shepp-Logan phantom.
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In order to determine the effect of sinogram denoising on the quality
of the reconstructed image, we used the FDK algorithm to reconstruct the
image of the phantom from noisy and denoised projections. In Figure 4.2
we have shown the central slices of the reconstructed images. This figure
clearly shows that the image reconstructed from the projections denoised
with the (TV + TV2)-model has a better quality than the bilateral filtering
and TV denoising, especially for the high-noise case.

For a quantitative comparison, we computed the RMSE, where error
is defined as the difference between the reconstructed image and the true
phantom image, and the structural similarity index (SSIM) between the two
images as given in Equation (3.6). We have summarized the results of this
quantitative comparison in Table 4.2. The numbers in this table indicate
that denoising of the projections using the (TV + TV2)-model results in a
better image. The difference is more significant for the high-noise case.

Figure 4.2: The central slice of the low-contrast Shepp-Logan phantom re-
constructed from (a) noisy projections, and from projections denoised using
(b) bilateral filtering, (c) TV sinogram denoising, and (d) (TV + TV2)
sinogram denoising. The top row is for reconstruction from the low-noise
projections and the bottom row is for reconstruction from the high-noise
projections. The location of the ROI that has been displayed on the bottom
left of each slice has been marked by a rectangle in part (d) of this figure.

4.2.3 Experiments with real micro-CT data

The scanner described in Section 3.3.2 was used to scan the physical phan-
tom. The phantom was scanned twice. The first scan consisted of 720
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No
denoising

Bilateral
filtering

TV
denoising

(TV + TV2)
denoising

N0 = 100
RMSE 0.360 0.148 0.124 0.111
SSIM 0.220 0.396 0.451 0.480

N0 = 1000
RMSE 0.210 0.091 0.083 0.077
SSIM 0.404 0.634 0.672 0.690

Table 4.2: RMSE and SSIM for the images of the low-contrast Shepp-Logan
phantom reconstructed from noisy projections and from projections denoised
with different denoising algorithms.

projections between 0◦ and 360◦ at 0.5◦ intervals. For this scan, the tube
voltage, tube current, and exposure time were chosen to be, respectively,
70 kV, 40 mA, and 25 ms. We used the full set of 720 projections from
this scan to reconstruct a high-quality image. This image was created by
first using the FDK algorithm to reconstruct an initial image and then ap-
plying 50 iterations of the MFISTA algorithm [17] to further improve its
quality. We will refer to this image as “the reference image” and will use
it as the ground-truth for evaluating the denoising algorithms. The second
scan of the phantom consisted of 360 projections between 0◦ and 360◦ at 1◦

intervals. For this scan, the tube voltage, tube current, and exposure time
were chosen to be 50 kV, 32 mA, and 16 mAs, respectively. This was the
lowest possible setting in terms of mAs as the scanner did not operate under
0.5 mAs. Moreover, a 0.1-mm copper filter was used to further reduce the
radiation dose, further increasing the noise level. The resulting scan was
very noisy. Since we do not have the true projections, in this experiment we
evaluate the denoising algorithms in the image domain.

In order to evaluate the quality of the reconstructed images, we com-
pared them with the reference image by computing the RMSE and SSIM.
The results are summarized in Table 4.3. In addition, we used two of the
modules in the phantom to evaluate the spatial resolution and the noise level
in the reconstructed images. We used the plastic-air edge for estimating the
modulation transfer function (MTF). We used the method proposed in [39]
to estimate the MTF over the range of spatial frequencies [0, 5mm−1]. We
report the spatial frequency at which the normalized MTF reached a value of
0.1 as the indicator of the spatial resolution. We use the standard deviation
of the voxel values in a uniform polycarbonate disk in the phantom as an
indicator of noise level. The values in Table 4.3 clearly show that the pro-
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posed TV denoising model is better than bilateral filtering. Moreover, the
full (TV + TV2) model has led to a higher image quality than the simpler
TV-denoising model.

No
denoising

Bilateral
filtering

TV
denoising

(TV + TV2)
denoising

RMSE 0.0393 0.0255 0.0228 0.0210
SSIM 0.460 0.646 0.696 0.707
Spatial resolution 3.55 3.58 3.61 3.61
Noise level 0.0383 0.0191 0.0172 0.0160

Table 4.3: Comparison of different sinogram denoising algorithms in terms
of the quality of the reconstructed image of the physical phantom.

For visual comparison, in Figure 4.3 we have shown a slice of the phantom
reconstructed from noisy and denoised projections. This figure agrees with
quantitative comparison in Table 4.3. Our proposed TV-based denoising
seems to have resulted in a higher quality image than bilateral filtering.
Moreover, the (TV + TV2)-model has produced a slightly better image than
the TV-model. To show the difference between the images reconstructed
from projections denoised with different algorithms more clearly, in Figure
4.4 we have shown a profile in the reconstructed images. The location of
this profile has been marked with a white vertical line on the slice of the
reference image in Figure 4.3(a). From the profiles in Figure 4.4, the image
reconstructed from the projections denoised using the (TV+TV2)-model
is much closer to the reference image, which agrees with the quantitative
evaluations presented in Table 4.3.

The values of the image quality metrics presented in Table 4.3 and the
images shown in Figures 4.3 and 4.4 were obtained using one particular set
of parameter values for each algorithm. However, they do not present a
complete comparison of the performance of different denoising algorithms.
Comparing different denoising algorithms requires a more detailed look at
the trade-off between noise and spatial resolution. In Figure 4.5 we have
shown plots of the noise level versus spatial resolution for a range of pa-
rameter values for different algorithms. Noise level and spatial resolution
were computed as described above using the slanted edge module and the
uniform disk module in the phantom. For bilateral filtering, we have shown
the plot for the bandwidth of P2 in the range [0.7, 2.8]. For the proposed
TV-based algorithm we have presented three curves, each for one different
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Figure 4.3: A slice of the image of the physical phantom reconstructed from
noisy and denoised projections. (a) the reference image, (b) reconstructed
from noisy projections, and reconstructed from projections denoised using
(c) bilateral filtering, (d) the TV-model, and (e) the (TV+TV2)-model.

value of the regularization parameter λ2 ∈ {0, 0.2, 1}. The curve for λ2 = 0
corresponds to the “TV-denoising”, i.e. regularization only in terms of the
gradient. For each value of λ2, we applied the proposed algorithm for ten
values of λ1 in the range [0.5, 10]. Note that a high spatial resolution and a
low noise level are desirable.

From this figure, it is clear that the proposed TV-based denoising algo-
rithm outperforms the bilateral filtering. For the range of values of λ1 and
λ2 that we tried in this experiment, the value of λ1 seems to more strongly
affect the behavior of the proposed algorithm. The Hessian regularization
has a very positive effect. When λ2 > 0, i.e., when the Hessian regulariza-
tion term exists, the proposed algorithm can achieve better results in terms
of noise level and spatial resolution, i.e., lower noise level and higher spatial
resolution. Moreover, when λ2 > 0, the performance is more stable with
regard to changes in λ1. This can be seen by comparing the three curves
that have been shown for the TV-based algorithm. The curve corresponding
to λ2 = 0 is influenced more strongly by the change in λ1, whereas when
λ2 > 0 the algorithm is less sensitive to change in λ1.

For a complete characterization of the spatial resolution of the images
reconstructed from the projections denoised by different algorithms, we plot
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Figure 4.4: A profile in the reconstructed images of the physical phantom
reconstructed from (a) noisy projections, and from projections denoised with
(b) bilateral filtering, (c) the TV-model, and (d) the (TV+TV2)-model. The
blue line in each figure shows the profile in the reference image. The location
of this profiles has been marked in Figure 4.3(a).

the estimated MTFs in Figure 4.6. Our approach to estimating the MTFs
that are shown in this figure are different from the spatial resolutions shown
in Table 4.3 in an important way. As can be seen in Table 4.3, the three
algorithms are different in terms of both spatial resolution and noise level.
However, as we mentioned above, noise and spatial resolution are inter-
dependent. Therefore, estimation of the MTF curves in Figure 4.6 was
done while matching the noise level of the reconstructed image for different
algorithms. We adjusted the tuning parameters of the different algorithms
(i.e., σi for bilateral filtering and λ1 and λ2 for the proposed algorithm)
such that the noise level was the same in the reconstructed images for all
three algorithms. We then estimated the MTF for different algorithms.
From the estimated MTFs in Figure 4.6 it can be seen that the TV-based
denoising leads to a higher MTF for all spatial frequencies, especially for
spatial frequencies above 2mm−1. All three algorithms are very close up to
the spatial frequency of approximately 1mm−1. The MTF for the two TV-
based algorithms are close, but the (TV + TV2)-model results in a sightly
higher MTF at higher spatial frequencies.

The same scanner was used to scan two dead rats. The first scan had
relatively less noise, whereas the second scan was much noisier. We will
refer to these two scans as low-noise and high-noise rat scans. Each of the
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Figure 4.5: Plots of noise level versus spatial resolution for a range of pa-
rameter values for bilateral filtering and the proposed TV-based denoising
algorithm.

two scans consisted of 720 projections between 0◦ and 360◦ at 0.5◦ intervals.
For both scans, the tube voltage, tube current, and exposure time were
set to 50 kV, 32 mA, and 16 ms, respectively. However, for the high-noise
scan we used a 0.2-mm copper filter. For both the low-noise and the high-
noise rat scans, we used all 720 projections to reconstruct a high-quality
reference image using the same procedure as that described for the physical
phantom above. We will use this image as the ground-truth for evaluating
the denoising algorithms. For both the low-noise and the high-noise scans,
we applied the denoising algorithms on a subset of 360 projections of the
same scan and reconstructed the image of the rat using the FDK algorithm.

Table 4.4 shows a summary of the quantitative comparison between dif-
ferent sinogram denoising algorithms in terms of RMSE and SSIM of the
reconstructed images of the low-noise rat scan. Furthermore, for a visual
comparison, we have shown a typical slice of the reconstructed images in Fig-
ure 4.7. Similar to the above experiments, compared with bilateral filtering,
the TV-based algorithms have produced better results.

In Figure 4.8, we have shown a slice from the reconstructed images of the
high-noise rat scan. All three sinogram denoising algorithms have resulted
in a significant improvement in the visual quality of the reconstructed image
from this high-noise scan. Similar to the above experiments, the proposed
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Figure 4.6: The estimated noise-matched MTF for different sinogram de-
noising algorithms.

No
denoising

Bilateral
filtering

TV
denoising

(TV + TV2)
denoising

RMSE 0.0220 0.0173 0.0140 0.0126
SSIM 0.622 0.685 0.711 0.740

Table 4.4: Comparison of different sinogram denoising algorithms in terms
of the quality of the reconstructed image of the low-noise rat scan.

TV-based algorithm has worked better than bilateral filtering. Moreover,
the (TV + TV2) model seems to have more effectively suppressed the noise
without blurring the image features.

However, the images shown in Figure 4.8 have been reconstructed using
a particular set of parameters for each algorithm. For a better comparison
between different denoising algorithms, we examine the trade-off between the
noise suppression and image sharpness. For this purpose, as a measure of
the noise level we computed the contrast-to-noise-ratio (CNR). We selected
the cubes b and s as shown on the slice of the reference image in Figure
4.8(a). We estimated the CNR using the following equation:

CNR =
|µs − µb|

(σs + σb)/2
(4.19)

where µ and σ denote, respectively, the mean and the standard deviation

95



4.2. Approach 1- Employing higher-order derivatives

Figure 4.7: A slice of the images reconstructed from the low-noise rat scan;
(a) the reference image, (b) reconstructed from noisy projections, and recon-
structed from projections denoised with (c) bilateral filtering, (d) the TV
model, and (e) the (TV + TV2)-model.

of the voxels in each cube. As a measure of image sharpness, we computed
the maximum slope along the line “L” shown in Figure 4.8(a). This line lies
on an edge between soft tissue and fat. If the spatial resolution is high, the
slope of this edge will also be high. On the other hand, if the image is over-
smoothed this slope becomes small. We will denote the computed slope
along the line “L” with SL and use it as a measure of image sharpness.
A similar approach was used to quantify the spatial resolution in [219].
Therefore, a small SL indicates that the image is over-smoothed and spatial
resolution is low. On the other hand, a large value of SL indicates that the
image is sharp and spatial resolution is high.

Figure 4.9 shows the plots of SL versus CNR for different parameter
values for bilateral filtering and TV-based denoising algorithms. Note that
a high CNR and a high SL are desirable. For bilateral filtering, we changed
the bandwidth of P2 in the range [0.7, 2.8]. For the proposed TV-based
algorithm, we found that parameter values λ1 = 4 and λ2 = 0.4 lead to good
results. Therefore, in order to investigate the role of these two parameters,
we first kept λ2 = 0.4 constant and changed λ1 in the range [0, 10]. Then,
we kept λ1 = 4 constant and changed λ2 in the range [0, 2.0]. Therefore, for
the proposed TV-based algorithm we have two curves that show the effect
of tuning λ1 and λ2. It is clear from the proposed cost function in Equation
(4.5) that λ1 and λ2 determine the strength of regularization in terms of the
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Figure 4.8: A slice of the images reconstructed from the high-noise rat
scan; (a) the reference image, (b) reconstructed from noisy projections, and
reconstructed from projections denoised with (c) bilateral filtering, (d) the
TV model, (e) the (TV + TV2)-model.

gradient and the Hessian, respectively. The plots in Figure 4.9 show that
the proposed TV-based denoising algorithm can achieve higher SL and CNR
compared with bilateral filtering. It is also clear that both regularization
terms play an important role in the performance of the proposed algorithm
because when either λ1 or λ2 decrease to zero, one or both of the criteria
decrease. Especially, when λ2 → 0, both SL and CNR decrease. This clearly
indicates the importance of the regularization in terms of the Hessian.

4.2.4 Discussion

Overall, the results of our experiments with simulated and real data show
that the proposed algorithm is highly effective in suppressing the noise in the
projection measurements in cone-beam CT. This is evident from the quanti-
tative evaluation presented in Table 4.1. The effect of the noise suppression
on the quality of the FDK-reconstructed images is substantial, as can be
seen from Figures 4.2 - 4.9 and from the objective image quality metrics in
Tables 4.2 - 4.4. Our results suggest that the proposed TV-based algorithm
is superior to the method based on bilateral filtering both in terms of spatial
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Figure 4.9: The computed SL (a measure of image sharpness or spatial
resolution) versus CNR for a range of parameter values for different sinogram
denoising algorithms.

resolution and noise suppression. The difference between the proposed TV
sinogram denoising and the (TV + TV2) sinogram denoising models was
also significant on both the simulated data and on the real data. This shows
a clear gain in the denoising performance by including the regularization
in terms of the Hessian. We should note, however, that this gain in per-
formance comes at the cost of more computation. For example, with our
Matlab implementation on a Windows 7 PC with a 3.4 GHz Intel Core i7
CPU, denoising of one projection from the rat scan takes approximately 33
seconds with the TV model and 46 seconds with the (TV + TV2) model.

The choice of algorithm parameters can significantly influence its perfor-
mance, as shown in our results in Figures 4.5 and 4.9. There are two sets of
parameters in the proposed algorithm. The regularization parameters, λ1

and λ2, control the degree of regularization. They must be selected accord-
ing to the desired quality of the final image. The Bregman parameters, µ1,
µ2, and µ3 mostly influence the convergence of the algorithm [117, 248]. The
simplified model with only first-order TV regularization has three parame-
ters, λ1, µ1, and µ2, which makes it easier to find good parameter values.
For the full model, too, one can first ignore the second-order differential
terms and find proper values for λ1, µ1, and µ2, and then proceed to find
good values for λ2 and µ3.
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A well-known method for selecting λ1 was proposed by Chambolle [46].
This method was proposed for the case of additive Gaussian noise. In our
experience this method works for the case of Poisson noise as well. For this
method to work, one needs to have a prior estimate of the noise level in the
image. If the average noise variance in the noisy image v is σ2, one starts
with an arbitrary value of the regularizarion parameter λ = λ0 and updates
λ as follows:

Repeat until convergence

uk = arg min
u

Ψ(u, v) + λk
∫

Ω
|∇u|

λk+1 = λk
(Nσ)

Ψ(uk, v)

end

The same strategy has been suggested for finding λ1 for Poisson denoising
in [112]. That paper has also developed an empirical equation relating the
regularization parameter λ1 and the Poisson noise variance, which has the
form: λ1 = 1/(72.4/σ + 97.7/σ2), where σ2 is the noise variance. This
equation can be very useful for choosing a good initial value for λ1, which
can then be improved using Chambolle’s method mentioned above. For the
simplified model, we found that choosing µ1 ≈ 10λ1 and µ2 ≈ 0.1λ1 lead to
good results. For the full model, we had good results with λ2 < λ1, usually
λ2 ≈ λ1/10, and µ3 ≈ λ2/10, which are not very different from the values
suggested for the inpainting problem in [249].

4.3 Approach 2- Locally adaptive regularization

4.3.1 The proposed algorithm

This approach is based on a comparison between the optimality conditions
for the TV denoising models for Gaussian and Poisson noises [175]:

{
Gaussian Eλ(u) = 1

2‖u− v‖
2
2 + λ

∫
Ω |∇u| (u− v) + λ p = 0

Poisson Eλ(u) =
∫

Ω(u− v logu) + λ
∫

Ω |∇u| (u− v) + (λu) p = 0

where p is a sub-gradient of
∫

Ω |∇u|. The only difference between the two
equations is the dependence of the regularization parameter on u in the
Poisson case. This suggests that a stronger smoothing must be applied
where the signal has larger values. This outcome agrees with what we expect
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since under the Poisson distribution the noise variance is proportional to the
signal intensity.

Minimization of the cost function in (4.4) is not a straightforward prob-
lem. One approach is to first replace |∇u| with

√
|∇u|2 + ε for a small ε > 0

and then to apply a gradient descent iteration [175]. Another approach,
suggested in [282], is to use a Taylor’s expansion of the data fidelity term
and to minimize this approximate model. Here, we use an algorithm that
was developed to solve the original ROF denoising problem for Gaussian
noise. However, we denoise each sinogram pixel separately by minimizing
Eλ(u) in a small neighborhood around that pixel, and with a regularization
parameter inspired by the optimality condition described above.

As we mentioned in the previous section, a heavily researched approach
to reducing the staircase effect is to replace the `1 norm of the gradient
with the `1 norm of higher-order differential operators. A less sophisticated
approach, but one that has a trivial implementation, is to perform the total
variation minimization locally. This approach has also been shown to allevi-
ate the staircase effect [195]. Moreover, with a local minimization strategy,
if the size of the neighborhood considered in minimization is small enough,
one can safely assume that the sinogram intensity and noise level are ap-
proximately constant. Therefore, a solution based on the ROF’s original
model will be a good approximation to the solution of the model based on
Poisson noise. This way, we can utilize efficient existing algorithms for the
ROF model while avoiding the staircase artifacts.

Since our approach is based on Chambolle’s famous algorithm [46], we
briefly describe this algorithm here. This algorithm minimizes the following
cost function, which is the same as the TV denoising model for Gaussian
noise that we described in Section 2.5.

Eλ(u) =
1

2
‖u− v‖22 + λ

∫
Ω
|∇u| (4.20)

If we denote by X and Y the space of the image u and its gradient, ∇u,
respectively, then an alternative definition of total variation of u is:∑

i,j

|∇u|i,j = sup {〈p,∇u〉Y : p ∈ Y, |pi,j | ≤ 1} (4.21)

Chambolle introduced the discrete divergence operator as the dual of the
gradient operator, i.e. 〈p,∇u〉Y = 〈−div p, u〉X . In the discrete image do-
main:

(div p)i,j = (p1
i,j − p1

i−1,j) + (p2
i,j − p2

i,j−1) (4.22)
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Because of the duality of the gradient and divergence operators, total
variation can also be written as:

∑
i,j

|∇u|i,j = sup
z∈K
〈z, u〉X K = {div p : p ∈ Y, |pi,j | ≤ 1} (4.23)

The minimizer of the cost function in (4.20) is then obtained by projecting
v onto the set λK:

u = v − πλK(v) (4.24)

which is equivalent to minimizing the Euclidian distance between v and
λ div p, and this can be achieved via the following iteration for computing p:

p0 = 0; pn+1
i,j =

pni,j + τ(∇(div pn − v/λ))i,j

1 + τ |(∇(div pn − v/λ))i,j |
(4.25)

where τ > 0 is the step size. For a small enough step size, τ ≤ 1/8, the
algorithm is guaranteed to converge [46].

Instead of a global solution, we minimize the cost function (4.4) in a
small neighborhood of each pixel. To this end, let us denote by ω the set of
indices that define the desired neighborhood around the current pixel. For
example, for a square neighborhood of size (2m+ 1)× (2m+ 1) pixels: ω =
{(i, j) : i, j = −m : m}. We also consider a normalized Gaussian weighting
function on this neighborhood:

W (i, j) = exp

(
−(i2 + j2)

h2

)
(4.26)

The local problem will then become that of minimizing the following
cost function:

Eλ,W (u′) =
1

2
‖u′ − vω‖2W + λ′

∫
ω
|∇u′| (4.27)

where ‖.‖2W denotes the weighted norm with weights W and vω and u′ are
images restricted to the window ω around the current pixel. The solution
of this local optimization problem will be similar to Chambolle’s algorithm
described above [195]. The only difference is in the update formula for p:

p0 = 0; pn+1
i,j =

pni,j + τ(∇(D−1div pn − v/λ′))i,j
1 + τ |(∇(D−1div pn − v/λ′))i,j |

(4.28)
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where D is a diagonal matrix whose diagonal elements are the values of W .
The regularization parameter, λ′, must be chosen according to (4.20).

The simplest approach is to set λ′ = λv(i, j), where λ is a global regulariza-
tion parameter and v(i, j) is the value of the current pixel in the noisy image.
Since v(i, j) is noisy, a better choice is to use a weighted local average as the
estimate of the intensity of the true image at the current pixel (note that
the maximum-likelihood estimate of the mean of a Poisson process from a
set of observations is the arithmetic mean of the observations). Therefore,
we suggest the following choice for the local regularization parameter.

λ′ = λ

∑
−a≤i′,j′≤aW

′(i′, j′)v(i− i′, j − j′)∑
−a≤i′,j′≤aW

′(i′, j′)

where W ′(i, j) = exp

(
−(i2 + j2)

h′2

) (4.29)

There are several parameters in the proposed algorithm. The global reg-
ularization parameter λ controls the strength of the denoising. It should be
set based on the desired level of smoothing. Parameter m sets the size of the
neighborhood considered around each pixel, which in this study was chosen
to be a square window of size (2m+ 1)× (2m+ 1). Numerical experiments
in [195] have shown that in total variation denoising, the influence map of
a pixel is usually limited to a radius of approximately 10 pixels for typical
values of the regularization parameter. Therefore, a good value for m would
be around 10, which is the value we used for all experiments reported in
this chapter. The width of the Gaussian weighting function W is adjusted
through h. We used h = 2m which we found empirically to work well. Sim-
ilarly, a and h′ in (4.29) determine the size of the window and the weights
used for determining the local regularization parameter. These have to be
set based on the noise level in the image; larger values should be chosen
when noise is stronger. We used a = 4 and h′ = 2a.

A simple implementation of the proposed algorithm can be computa-
tionally intensive because it will involve solving a minimization problem,
though very small, for every individual pixel in the sinogram. This will be
a major drawback because a big advantage of sinogram denoising methods,
compared to iterative image reconstruction methods, is the shorter compu-
tational time. To reduce the computational time, after minimizing the local
cost function (4.27) around the current pixel, we will replace the value of
all pixels in the window of size (2a+ 1)× (2a+ 1) around the current pixel,
instead of just the center pixel, and then shift the window by (2a+ 1). Our
extensive numerical experiments with simulated and real projections showed
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that with this approach the results will be almost identical to the case where
only one pixel is denoised at a time. This is the approach that we followed
in all experiments reported in this section.

We evaluated the proposed denoising algorithm on simulated projections
and two sets of real low-dose projections of the physical phantom and a rat
obtained using the micro-CT scanner. We compared the performance of our
proposed algorithm with two other methods:

1. The bilateral filtering algorithm described in Section 3.3. We applied
the bilateral filtering for several values of the bandwidth of P2, which
we denote with σ, in the range [0.7, 2.8] and applied the proposed
algorithm for several values of the regularization parameter, λ.

2. A nonlocal principal component analysis (NL-PCA) algorithm pro-
posed in [281]. In this method, patches of the image are first clustered
using the K-Means algorithm. For all patches in a cluster a Poisson
PCA (also known as exponential PCA) is performed to denoise them.
The PCA problem is solved using the Newton’s method. The denoised
patches are returned to their original locations and averaged (to ac-
count for the patch overlaps) in order to form the denoised image.
Patch-based methods are computationally very intensive. Therefore,
with this algorithm we used parameter settings that resulted in a rea-
sonable computational time.

4.3.2 Simulation experiment

We simulated 360 noisy cone-beam projections, from 0◦ to 359◦ from a 3D
Shepp-Logan phantom according to the model in (1.1). We used two values
of N i

0 = 500 and 2000 to simulate two sets of projections, which we will call
high-noise and low-noise, respectively. The phantom size was 512×512×512
voxels and the projections were each 700× 700 pixels in size.

Figure 4.10 shows one-dimensional profiles of the noisy and denoised
projections. The plots in this figure show that the proposed TV-based de-
noising significantly removes the noise and seems to be superior to bilateral
filtering and NL-PCA.

For quantitative comparison, we computed the Root Mean Square of the
Error (RMSE), where error is defined as the difference between the denoised
and the true (i.e., noise-free) projections, and the mutual information (MI).
Figure 4.11 shows the plots of RMSE and MI. For the proposed algorithm,
we have plotted these values for 10 logarithmically-spaced values of λ in
the range [0.01, 1], which we found to give the best denoising results. For
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Figure 4.10: Two typical one-dimensional profiles of the noisy and denoised
projections simulated from the Shepp-Logan phantom. The thin blue curve
in each plot shows the corresponding noise-free projection. The left column
is for the high-noise case and the right column is for the low-noise case. (a)
the noisy sinogram, and denoised using (b) bilateral filtering, (c) NL-PCA,
and (d) the proposed TV-based algorithm.
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bilateral filtering, following [219], we have plotted these values for 10 linearly-
spaced values of σ in the range [0.5, 3.2]. From these plots it is clear that the
proposed algorithm has achieved significantly better denoising results than
bilateral filtering and NL-PCA. Best results with the proposed algorithm
are achieved with λ values around 0.1 and the denoising is too strong for
λ > 1. For bilateral filtering, we found that best denoising results were
usually obtained for values of σ close to 3.0 and the performance did not
improve or slightly deteriorated when σ was increased beyond 3.2. The
solid squares on these plots show the optimum value of the corresponding
parameter (i.e., lowest RMSE or highest MI). The phantom profiles shown in
Figure 4.10 for the proposed algorithm and bilateral filtering were obtained
with the parameter values that resulted in the lowest RMSE.

Figure 4.11: Comparison between different denoising algorithms in terms
of RMSE and MI for the high-noise projections (top row) and low-noise
projections (bottom row) simulated from the Shepp-Logan phantom. Values
for the bilateral filtering algorithm are plotted as a function of σ (the bottom
horizontal axis), whereas the values for the proposed algorithm are plotted
as a function of the regularization parameter λ (the top horizontal axis).
The solid squares indicate the points of optimum.
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4.3.3 Experiment with real micro-CT data

Cone-beam projections were acquired from the physical phantom using the
Gamma Medica micro-CT scanner. Two scans of the phantom were gener-
ated:

1. Low-noise scan. Consisting of 720 projections of size 875×568 pixels
between 0◦ and 360◦ at 0.5◦ intervals. The tube voltage, tube current,
and exposure time were 70 kV, 40 mA, and 25 ms, respectively.

2. High-noise scan. Consisting of 240 projections of size 875×568 pixels
between 0◦ and 360◦ at 1.5◦ intervals. The tube voltage, tube current,
and exposure time were 50 kV, 32 mA, and 16 mAs, respectively.

We used the low-noise scan to reconstruct a high-quality reference im-
age of the phantom using the FDK algorithm. To evaluate the denoising
algorithms, we applied them on the high-noise projections, reconstructed
the image of the phantom from the denoised projections using the FDK al-
gorithm, and compared the reconstructed image with the reference image.
Similar to the experiment with the simulated projections, we performed the
denoising for 10 linearly-spaced values of σ in the range [0.5, 3.2] for bilateral
filtering. Similarly, we ran the proposed algorithm with 10 logarithmically-
spaced values of λ in the range [0.001, 0.1]. In order to assess the overall
quality of the reconstructed images, we computed the RMSE and SSIM. The
plots of RMSE and SSIM are shown in Figure 4.12. Compared with both
bilateral filtering and NL-PCA, the image reconstructed from projections
denoised using the proposed algorithm has a significantly lower RSME and
higher SSIM. Best results in terms of SSIM with the proposed algorithm are
obtained with λ = 0.0129 and for bilateral filtering algorithm with σ = 2.6.

Figure 4.13 shows two of the fine coils in the images of the phantom
reconstructed from noisy and denoised projections. These coils have thick-
nesses of 500 µm and 200 µm, corresponding to spatial resolutions of 1 and
2.5 line pairs per mm, respectively. The image shown for the proposed algo-
rithm corresponds to λ = 0.0129 and the image shown for bilateral filtering
corresponds to σ = 2.6. As we mentioned above, these parameter values
led to highest SSIM. The images show a marked improvement in the image
quality via sinogram denoising. It also seems that the proposed algorithm
leads to a smoother image without affecting the spatial resolution. In Figure
4.14 we have shown a profile through the center of the 500-µm coil for the
images reconstructed from noisy and denoised projections and also the dif-
ference between them and the reference image for a closer comparison. It is
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Figure 4.12: Performance comparison between different sinogram denoising
algorithms in terms of RMSE and SSIM on the scan of the physical phantom.
Values for the bilateral filtering algorithm are plotted as a function of σ (the
bottom horizontal axis), whereas the values for the proposed algorithm are
plotted as a function of the regularization parameter λ (the top horizontal
axis). The solid squares indicate the points of optimum.

clear from these profiles that the image reconstructed from the projections
denoised using the proposed algorithm are closer to the reference image.

In order to compare the denoising algorithms in terms of the trade-off
between noise and spatial resolution, we followed an approach similar to
that in Section 4.2. Specifically, we computed the following two numbers as
measures of spatial resolution and noise level in the reconstructed image of
the phantom:

Measure of spatial resolution. We estimated the MTF as described in
Section 4.2.3 and used the spatial frequency at which the normalized
MTF reached a value of 0.10 as a measure of spatial resolution.

Measure of noise level. We selected five cubes in the uniform polycar-
bonate disk in the phantom, each 10 × 10 × 10 voxels, at different
locations within this disk and computed the standard deviation of the
voxel values in each cube. We use the average standard deviation of
voxel values in these cubes as a measure of noise level.

In Figure 4.15, we have shown plots of these two values for the three
denoising algorithms. Note that a high spatial resolution and a low noise
level are desirable. Therefore, all three denoising algorithms have improved
the quality of the reconstructed image for the range of parameter values used
(except for λ = 0.1 with the proposed algorithm). Moreover, the proposed
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Figure 4.13: The 200-µm (top row) and 500-µm (bottom row) coils in the
images reconstructed from noisy and denoised projections of the physical
phantom; (a) the reference image, (b) without denoising, (c) bilateral filter-
ing, (d) NL-PCA, and (e) the proposed algorithm.

algorithm has achieved better results than bilateral filtering and NL-PCA.
Specifically, for λ ∈ [0.0077, 0.0359] the proposed algorithm has achieved
both higher spatial resolution and lower noise than bilateral filtering (for
any parameter value) and NL-PCA.

In Figure 4.15, we have also shown plots of the MTF obtained with the
three denoising algorithms. All three sinogram denoising algorithms have
led to an improvement in the spatial resolution in the reconstructed image.
The proposed algorithm has resulted in a higher MTF than bilateral filtering
and NL-PCA for all spatial frequencies.

A rat was scanned using the micro-CT scanner. Because the internal
organs of the rat constantly moved, it was not possible to create two identical
scans with different noise levels as we did for the phantom. Therefore,
the rat was scanned only once. The scan consisted of 720 projections of
size 875 × 568 pixels between 0◦ and 360◦ at 0.5◦ intervals with the tube
voltage, tube current, and exposure time equal to 70 kV, 32 mA, and 16 ms,
respectively. To create a high-quality reference image from the full set of 720
projections, we first reconstructed an initial image using the FDK algorithm.
Then, we used 50 iterations of MFISTA algorithm [17] to improve the quality
of the FDK-reconstructed image. We applied the denoising algorithms on
a subset of 240 projections of the same scan (projections at 1.5◦ intervals)
and reconstructed the image of the rat using the FDK algorithm.

Similar to the physical phantom experiment, we use RMSE and SSIM
as a measure of the overall closeness of the reconstructed images to the
reference image. Figure 4.16 shows these criteria for the three sinogram
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Figure 4.14: The left column shows a profile through the 500-µm coil in
the images of the physical phantom reconstructed from noisy and denoised
projections: (a) without denoising, (b) bilateral filtering, (c) NL-PCA, and
(d) the proposed algorithm. In these plots, the blue curve is the profile of
the reference image. The right column shows the difference between the
profiles shown in the left column and the profile of the reference image.
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Figure 4.15: Left: plots of the normalized MTF obtained by different sino-
gram denoising algorithms. Right: plots of noise level versus spatial resolu-
tion for different denoising algorithms. The dashed lines in this plot show
the corresponding values for the image reconstructed without sinogram de-
noising.

denoising algorithms. From this figure, denoising of the projections with
the proposed algorithm has lead to superior results in terms of RMSE and
SSIM compared to bilateral filtering and NL-PCA.

For a visual comparison, Figure 4.17 shows a 2D slice of the reconstructed
images. For the proposed algorithm and bilateral filtering, the images shown
in this figure were obtained using the parameter values that resulted in the
lowest SSIM, i.e., λ = 0.0129 and σ = 2.6 (see Figure 4.16).

The window of the linear attenuation coefficient, µ, used to display the
whole slices is [0, 0.55]. To allow a better visual comparison, we have selected
two regions of interest (ROI) within this slice and have shown them in
zoomed-in views and with narrower µ-windows. The ROI shown on the top
left of each slice contains fat surrounded with soft tissue; this ROI is shown
with a magnification factor of 1.5 and with a µ-window of [0.15, 0.20]. The
ROI shown on the top right of each slice contains bone surrounded with
soft tissue; this ROI is shown with a magnification factor of 2.0 and with
a µ-window of [0.18, 0.50]. These images show a strong positive effect for
sinogram denoising in terms of the visual quality of the reconstructed image.
Moreover, denoising with the proposed algorithm seems to have resulted in
a higher-quality image, especially in the soft-tissue ROI.
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Figure 4.16: Comparison of different sinogram denoising algorithms on the
rat scan.

Figure 4.17: A slice of the image of the rat reconstructed from noisy and
denoised projections: (a) the reference image, (b) without denoising, (c) bi-
lateral filtering, (d) NL-PCA, and (e) the proposed algorithm. The locations
of the selected ROIs have been marked on the reference image (a).
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Figure 4.18: Left: the ROI used to compute the noise level and spatial reso-
lution in the reconstructed images of the rat; the noise level was computed as
the standard deviation of voxel values in the cube C and the spatial resolu-
tion was computed as the maximum gradient along the line L. Right: plots
of noise level versus spatial resolution for the three denoising algorithms.
The dashed horizontal and vertical lines in this plot show the corresponding
values for the image reconstructed without sinogram denoising.

In order to compare the denoising algorithms in terms of the trade-off
between noise suppression and spatial resolution, we selected an ROI shown
in Figure 4.18 and computed the following measures of noise level and spatial
resolution:

Measure of spatial resolution. We compute the maximum absolute value
of the gradient (i.e., slope) along the line L marked in the ROI shown
in Figure 4.18 as a measure of spatial resolution.

Measure of noise level. We consider a cube of size 50×50×50 voxels, the
cross-section of which is shown in the displayed ROI. From the refer-
ence image, we identified this cube as being highly uniform. Therefore,
we computed the standard deviation of the voxel values in this cube
as a measure of noise level.

The results are plotted in Figure 4.18. This plot is very similar to the
plot shown for the physical phantom experiment in Figure 4.15. The main
observations are that all three sinogram denoising algorithms have improved
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the quality of the reconstructed image in terms of spatial resolution and noise
level, and that the proposed algorithm can outperform the bilateral filtering
algorithm and NL-PCA with the right selection of the regularization pa-
rameter. Specifically, with λ ∈ [0.0129, 0.0359], the proposed algorithm has
resulted in lower noise and better spatial resolution than bilateral filtering
(with any choice of σ) and NL-PCA.

4.3.4 Discussion

Overall, the results of our experiments show that the proposed algorithm
performs better than bilateral filtering. We should emphasize that it is likely
that NL-PCA can outperform our proposed TV-based denoising algorithm,
albeit at a much higher computational cost. In this study, for NL-PCA we
did not use the parameter values that the authors of [281] had suggested.
Instead, we chose parameter values that resulted in a relatively short com-
putational time. For example, the authors of [281] suggest patch sizes of
20× 20 pixels, but we used patches of size 8× 8 pixels.

In order to compare the computational time of the proposed algorithm
with that of bilateral filtering and NL-PCA, we considered the denoising of
240 projections of the rat scan. As we mentioned above, each projection in
this scan was 875 × 568 pixels. The proposed TV-based algorithm imple-
mented in Matlab version R2012b and executed on a Windows 7 PC with
16 GB of memory and 3.4 GHz Intel Core i7 CPU needed approximately
6 minutes to denoise all 240 projections. In comparison, bilateral filtering
and NL-PCA needed 8.5 minutes and 42 minutes, respectively, for the same
denoising task.

In general, our experience shows that the patch-based algorithm pro-
posed in Chapter 3 can achieve better results than the two TV-based al-
gorithms proposed in this chapter. Another advantage of the patch-based
denoising algorithm proposed in Chapter 3 is that it is less sensitive to
the choice of its parameters. Both algorithms proposed in this chapter will
perform poorly if their parameter(s) are not selected properly. Compared
with the algorithm proposed in this section that has only one parameter,
choosing the parameter values is much harder for the algorithm proposed
in Section 4.2 because the number of parameters is larger and their inter-
actions is complex. The advantage of the TV-based denoising algorithms,
compared with the patch-based algorithms, is that they are usually much
faster. Most of the computational time required by the dictionary-based
methods includes the time needed for learning the dictionary. The results
of Chapter 3 show that if the scan geometry does not change, there is no
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need to learn a new dictionary. However, if the scan geometry or the angular
spacing between successive projections change, a new dictionary will have to
be learned. Some other patch-based methods (such as NL-PCA algorithm)
learn the dictionary from the noisy sinogram. Therefore, such methods are
expected to be very computationally intensive.
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Chapter 5

Sinogram Interpolation

5.1 Introduction

As we mentioned previously in this dissertation, in practice there are two
basic ways to reduce the radiation dose used in CT imaging: (1) lowering the
x-ray photon current, and/or (2) reducing the number of projection mea-
surements taken. However, if filtered-backprojection methods are used to
reconstruct an image from such noisy and/or undersampled measurements,
the quality of the produced image will be very low. In this chapter, we pro-
pose a sinogram interpolation algorithm for cone-beam CT. Our algorithm
exploits both smoothness and self-similarity of the sinogram. We apply the
proposed algorithm on simulated and real cone-beam CT projections and
compare it with an algorithm that is based on learned dictionaries.

A schematic of the cone-beam CT and a sample sinogram of a brain
phantom are shown in Figure 5.1(a). The variation of the photon flux in-
cident on the detectors follows a Poisson distribution. As we mentioned
in Section 1.2, after the logarithm transformation the noise in the pro-
jection measurements follows approximately a Gaussian distribution with
signal-dependent variance. Specifically, let us denote the true line inte-
gral of the attenuation coefficient along the line from the x-ray source to
the detector indexed with (i, j) in the kth projection with yt(i, j, k). In
other words, i and j indicate the detector location on the detector plane
and k indicates the rotation angle angle, θ. Then the noisy measurement
yn(i, j, k) ∼ N (yt(i, j, k), σ2

ijk), where σ2
ijk ∝ exp(yt(i, j, k)). In this chapter

we use this Gaussian noise model because our experience shows that our
proposed interpolation algorithm works well with this noise model, even on
very low dose scans.

We assume that only a portion of the desired projections have been
directly measured and the rest are to be estimated (i.e., interpolated). Al-
though the algorithm that we propose can be applied on very general cases,
in order to simplify the presentation of the algorithm, here we consider
the case depicted in Figure 5.1(b). Specifically, we assume that only half
of the nθ desired projection views have been measured and the remaining
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Figure 5.1: (a) A schematic of cone-beam CT and sinogram of a brain phan-
tom, (b) A schematic representation of the sinogram interpolation problem.

half are to be estimated. In other words, the measured noisy sinogram is
yn ∈ Rnu×nv×nθ/2 and we would like to estimate the interpolated sinogram
y ∈ Rnu×nv×nθ . As we will explain later, even though our main goal is sino-
gram interpolation to estimate the missing projection views, the proposed
algorithm also has an excellent denoising effect. Therefore, we estimate the
full set of nθ projection views, not only the missing nθ/2 views.

Given a noisy sinogram yn, we propose to estimate the true sinogram y
by minimizing the following cost function:

J(y) = ‖My − yn‖2W + λsRs(y) + λhRh(y) (5.1)

The first term in J is obtained simply by maximizing the log-likelihood of
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the measurements. In this term, M is a binary mask matrix that removes
from y those projection views that have not been measured and W is a
diagonal weight matrix whose diagonal elements are inversely proportional
to the measurement variance. The regularization functionsRs andRh will be
explained in Subsections 5.2.1 and 5.2.2, respectively. Rs is a regularization
function in terms of nonlocal similarities, Rh is a regularization function in
terms of smoothness, and λs and λh are regularization parameters.

5.2 The proposed algorithm

5.2.1 Regularization in terms of sinogram self-similarity

In Section 2.2, we reviewed some of the applications of image processing
algorithms that are based on nonlocal patch similarities. Inspired by the
great success of these algorithms and because this type of self-similarity is
very abundant in sinogram (even more than in natural images, as can be
seen in the sample sinogram in Figure 5.1(a)), we suggest a similar form for
Rs:

Rs(y) = ‖y − y∗‖22 where:

y∗(i, j, k) =
∑

(i′,j′,k′)

Ga(z[i
′, j′, k′]− y[i, j, k])∑

(i′,j′,k′)

Ga(z[i′, j′, k′]− y[i, j, k])
z(i′, j′, k′) (5.2)

Computation of y∗ has a few differences with the basic NLM in Equation
(2.14). Firstly, we work with 3D blocks instead of 2D patches. We stack
the 2D projections to form a 3D image, as shown in Figure 5.1(b), and
work with small blocks of this image. This will allow us to exploit both
the correlation between adjacent pixels within a projection as well as the
correlation between pixels in adjacent projection views. Therefore, in the
above equation, y[i, j, k] is a small block centered on pixel y(i, j, k). Sec-
ondly, unlike Equation (2.14) where patch similarities in the same image are
exploited, in Equation (5.2) we use a second image, as shown in Figure 5.2.
This second image, denoted with z in Equation (5.2) and Figure 5.2 is built
by stacking the projections of the scan of a similar object. For instance,
this can be a previous scan of the same patient or of a different patient. We
will explain our justification for this choice below. Thirdly, for computing
y∗(i, j, k), we first find a small number of blocks in z that are very similar
to y[i, j, k] and use those blocks only, instead of all blocks in the image. In
other words, in Equation (5.2), both summations are over (i′, j′, k′) ∈ Ωi,j,k,
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where Ωi,j,k denotes the indices of these blocks. This is a necessary com-
promise to keep the computational time reasonable and it is followed by all
practical implementations of nonlocal patch-based methods.

Figure 5.2: Block matching between the noisy scan to be restored y and the
high-dose reference scan z.

Computation of Rs requires that for each pixel y(i, j, k) we consider a
small block around it, y[i, j, k], and find a set of blocks sufficiently similar to
y[i, j, k]. Even for medium-size 2D images, this can be very computationally
costly and many algorithms have been proposed for reducing the computa-
tional load. Here, we use the Generalized PatchMatch algorithm [12, 13] for
this purpose.

The Generalized PatchMatch algorithm is an iterative stochastic algo-
rithm for finding a set of k similar patches in xref for every patch in x.
Therefore, the goal of this algorithm is not to find the set of k most similar
patches, but only to find a set of k very similar patches. Let us denote
the set of indices of the k similar patches to x[i] in xref with Si. The al-
gorithm starts by random assignment; i.e., for each patch x[i], Si is chosen
to be k random patches in xref. This random assignment is then iteratively
improved via a set of very effective heuristics, called propagation, random
search, and enrichment. We describe these steps very briefly here; imple-
mentation details can be found in [12, 13]. In propagation, similar patches
are shared among neighboring pixels. In other words, the algorithm seeks
to improve Si by examining SNi , where Ni is the set of immediate neighbors
of x(i). In random search, the algorithm seeks to improve Si by examining
a window around the patches that have been identified as good matches.
In other words, the algorithm examines {j +M, ∀j ∈ Si}. Here, M is a
search window, whose size is exponentially reduced with more iterations. In
enrichment, good matches are propagated in the “patch space”. In other
words, the algorithm seeks to improve Si by examining {Sj , ∀j ∈ Si} or
{Sj , ∀i ∈ Sj}, called forward enrichment and inverse enrichment, respec-
tively. In forward enrichment the idea is that a patch that has been identified
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as similar to x[i] is likely to have, in its own set of similar patches, more
similar patches to x[i]. The intuition behind inverse enrichment is similar.

We follow this algorithm exactly as in [13], except that in the first iter-
ation we do not use a random neighborhood. Instead, to find blocks similar
to y[i, j, k], we search a neighborhood around z(i, j, k) because if y and z
are similar scans (e.g., scans of the same body part of the same patient or
different patients) similar blocks are likely to exist in similar spatial loca-
tions in the two scans. Our experience shows that with a proper choice of z,
this approach works much better than finding similar blocks from the same
image. We should also note that in finding similar blocks and in computing
the block differences in (5.2), we only include the pixels from projections
that have been directly measured.

5.2.2 Regularization in terms of sinogram smoothness

An important characteristic of sinogram is its smoothness. Inspired by the
success of the denoising algorithm that we proposed in Section 4.2, we model
this smoothness via the `1 norm of the Hessian of the sinogram. We suggest
the following form for Rh:

Rh(y) =
∑
i,j,k

(
|∇2

uvy(i, j, k)|+ |∇2
vθy(i, j, k)|+ |∇2

θuy(i, j, k)|
)

(5.3)

In other words, we compute the 2D Hessians in the three orthogonal
planes and add their `1 norms. We compute |∇2

uvy(i, j, k)| as:

|∇2
uvy(i, j, k)| =

(
Duuy(i, j, k)2 + 2Duvy(i, j, k)2 +Dvvy(i, j, k)2

)1/2
(5.4)

and similarly for |∇2
vθy(i, j, k)| and |∇2

θuy(i, j, k)|. The forward difference are
defined as in Equation (4.9). For pixels at the boundaries, we use periodic
boundaries as suggested in [248].

Therefore, the proposed cost function has the form below, where we have
dropped the pixel indices to simplify the expressions.

J(y) =
∑
i,j,k

(
‖My − yn‖2W + λs‖y − y∗‖22

+ λh

(
|∇2

uvy|+ |∇2
vθy|+ |∇2

θuy|
)) (5.5)
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In summary, the first term encourages consistency with the portion of the
sinogram that has been measured. The second term (Rs(y)) is the term that
actually performs the interpolation. It does so by matching blocks from a
similar scan. The last term (Rh(y)) promotes smoothness by penalizing the
`1 norm of the Hessian.

5.2.3 Optimization algorithm

An estimate of the interpolated (and denoised) projections is obtained as
a minimizer of J(y). To perform this minimization, we use the split Breg-
man iterative algorithm, which has much similarities with the algorithm
used for sinogram denoising in Section 4.2. The split Bregman method first
converts the unconstrained optimization problem of minimizing J(y) into a
constrained problem:

minimize
∑(

‖Mf − yn‖2W + λs‖f − y∗‖22
)

+ λh
∑
|g1|+ λh

∑
|g2|+ λh

∑
|g3|

subject to: f = y, g1 = ∇2
uvy, g2 = ∇2

vθy, g3 = ∇2
θuy

(5.6)

This constrained optimization problem is solved via Bregman iteration:

Initialize: y0 = yn, f
0 = yn, g

0
1 = ∇2

uvyn, g
0
2 = ∇2

vθyn, g
0
3 = ∇2

θuyn,

b01 = 0, b02 = 0, b03 = 0, b04 = 0

while ||yk − yk−1||22 > ε

[yk+1, fk+1, gk+1
1 , gk+1

2 , gk+1
3 ] =

arg min
u,f,g1,g2,g3

∑(
‖Mf − yn‖2W + λs‖f − y∗‖22

)
+ λh

∑
|g1|+ λh

∑
|g2|+ λh

∑
|g3|

+
µ1

2

∑
(f − y − bk1)2 +

µ2

2

∑
(g1 −∇2

uvy − bk2)2

+
µ2

2

∑
(g2 −∇2

vθy − bk3)2 +
µ2

2

∑
(g3 −∇2

θuy − bk4)2

bk+1
1 = bk1 + yk+1 − fk+1

bk+1
2 = bk2 +∇2

uvy
k+1 − gk+1

1

bk+1
3 = bk3 +∇2

vθy
k+1 − gk+1

2

bk+1
4 = bk4 +∇2

θuy
k+1 − gk+1

3

end
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The advantage of this reformulation is that the above minimization prob-
lem can be split into five smaller problems, one for each of the five variables
that can be solved more easily. Minimization with respect to f has a sim-
ple closed-form solution. Minimizations with respect to g1, g2, and g3 have
simple soft-thresholding solutions similar to that shown in Equation (4.17).
Minimization with respect to y is more difficult. We solve this optimiza-
tion approximately by considering each of the three Hessian terms in turn.
Each of these three sub-problems will involve a linear system which can be
approximately solved using the Gauss-Seidel method.

The regularization parameters λs and λh influence the recovered solution,
whereas µ1 and µ2 influence the convergence speed. We do not discuss the
effects of these parameters as their effects are very similar to the denoising
problem discussed in Section 4.2 and also in [248, 249]. In our experiments
we used λh = 0.0001, µ1 = µ2 = 0.001, and λs = 1.

5.3 Results and discussion

We applied the proposed algorithm on simulated and real cone-beam CT
projections. As mentioned previously in this chapter, unlike the iterative re-
construction methods that aim at reconstructing a high-quality image from
undersampled projections, our goal is to estimate the “missing” projections.
Therefore, in all of the experiments reported in this chapter, for image recon-
struction we used the FDK algorithm. We compare our algorithm with the
dictionary-based sinogram interpolation method proposed in [188], which
has been shown to be better than spline interpolation.

5.3.1 Experiment with simulated data

We first applied our algorithm on scans simulated from a brain phantom,
which we obtained from the BrainWeb database [63]. We simulated nθ
projections from this phantom, for two values of nθ = 1440 and 960. For
each nθ, we first reconstructed the image of the phantom from the full set of
nθ projections and from nθ/2 projections; we denote these images with xnθ
and xnθ/2, respectively. We then applied the proposed algorithm and the
dictionary-based interpolation algorithm to interpolate the subset of nθ/2
projections to generate nθ projections and reconstructed the image of the
phantom from the interpolated projections. We will denote these images
with xproposed

nθ/2
and xdict.

nθ/2
. We simulated two levels of noise in the projections

with different number of incident photons: N0 = 106 and N0 = 5× 104. We
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5.3. Results and discussion

will refer to these simulations as low-noise and high-noise, respectively. For
both simulations, we assumed the detector electronic noise to be additive
Gaussian with a standard deviation of 40. As we mentioned in Section 5.2.1,
for the block-matching required for computation of Rs, we use another scan
(denoted with z in Equation (5.2) and Figure 5.2), which can be the scan
of another object or a previous scan of the same object. In this experiment,
we used the simulated scan of a different brain phantom from the same
database.

We compared the reconstructed images with the true phantom image
by computing the root-mean-square of error (RMSE) and the Structural
Similarity (SSIM) index. The results of this comparison are presented in
Table 5.1. Sinogram interpolation with the proposed algorithm has resulted
in a large improvement in the objective quality of the reconstructed image.
The improvement is more substantial in the case of high-noise projections.
This is because, as we mentioned above, both regularization termsRs andRh
have excellent denoising effects. Therefore, the proposed algorithm results
in an automatic denoising. The proposed algorithm has also outperformed
the interpolation algorithm based on learned dictionaries. The objective
quality of xproposed

nθ/2
is very close to xnθ in the low-noise case and better than

xnθ in the high-noise case.

xnθ xnθ/2 xproposed
nθ/2

xdict.
nθ/2

nθ = 1440
Low-noise

RMSE 0.104 0.140 0.111 0.128
SSIM 0.745 0.683 0.726 0.705

High-noise
RMSE 0.124 0.157 0.121 0.136
SSIM 0.710 0.642 0.715 0.686

nθ = 960
Low-noise

RMSE 0.127 0.154 0.130 0.138
SSIM 0.708 0.640 0.691 0.671

High-noise
RMSE 0.143 0.164 0.136 0.144
SSIM 0.688 0.625 0.690 0.662

Table 5.1: Objective quality of the reconstructed images of the brain phan-
tom.

Figure 5.3 shows a slice in the reconstructed images of the phantom.
Interpolation of the sinogram with the proposed algorithm has resulted in
a substantial improvement in the visual quality of the reconstructed im-
age. Not only artifacts have been significantly reduced, noise has also been
decreased substantially.
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5.3. Results and discussion

Figure 5.3: A slice in the images of the brain phantom reconstructed from
the high-noise projections with nθ = 1440. (a) the true phantom, (b) xnθ ,

(c) xnθ/2, (d) xproposed
nθ/2

, (e) xdict.
nθ/2

.

5.3.2 Experiment with real CT data

We used micro-CT scans of a rat for this experiment. The scan consisted of
720 projections. We reconstructed a high-quality “reference” image of the
rat from all 720 projections using 25 iterations of MFISTA algorithm. Then,
we selected subsets of nθ projections from this scan for two values of nθ = 360
and 180. For each nθ, we reconstructed the image of the rat from nθ and
nθ/2 projections. We then interpolated the subset of nθ/2 projections using
the proposed algorithm and the dictionary-based interpolation algorithm
to obtain nθ projections and reconstructed the image of the rat from the
interpolated projections.

We will refer to the scan described above as normal-dose scan because
it was obtained at normal dose used in routine imaging. The same rat
was scanned at much reduced dose (by reducing the mAs setting to half of
that in routine imaging and using additional copper filtration) and the same
analysis as above was performed. We will refer to this scan as the low-dose
scan. For the block-matching in the computation of Rs we used the scan of
a different rat.

To assess the quality of the reconstructed images, we computed the
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xnθ xnθ/2 xproposed
nθ/2

xdict.
nθ/2

nθ = 720

Normal-dose
RMSE 0.0173 0.0222 0.0185 0.0191
SSIM 0.654 0.611 0.640 0.636
CNR 13.8 11.2 13.6 12.3

Low-dose
RMSE 0.0194 0.0236 0.0189 0.0199
SSIM 0.630 0.597 0.637 0.623
CNR 12.3 10.5 13.0 12.1

nθ = 360

Normal-dose
RMSE 0.0200 0.0238 0.0208 0.0216
SSIM 0.632 0.582 0.624 0.617
CNR 13.0 10.9 13.0 12.1

Low-dose
RMSE 0.0223 0.0250 0.0215 0.0229
SSIM 0.612 0.556 0.620 0.586
CNR 11.7 10.2 12.2 11.5

Table 5.2: Objective quality of the reconstructed images of the rat.

RMSE and SSIM with respect to the reference image as well as the contrast-
to-noise ratio (CNR). The results of this evaluation have been summarized in
Table 5.2. There is a substantial improvement in image quality metrics as a
result of sinogram interpolation with the proposed algorithm. The proposed
algorithm has led to much better image quality than the dictionary-based
sinogram interpolation. The gain in image quality is more pronounced in
the low-dose case. In fact, the objective quality of xproposed

nθ/2
is even better

than xnθ on the low-dose scan.
For a visual comparison, Figure 5.4 shows a slice from the reconstructed

images of the rat from the low-dose scan with nθ = 240. There is a remark-
able improvement in image quality as a result of sinogram interpolation with
the proposed algorithm. The visual quality of xproposed

nθ/2
seems to be better

than both xdict.
nθ/2

and xnθ .
Overall, our experiments show that the proposed sinogram interpolation

algorithm can lead to a large improvement in the quality of the reconstructed
image. Due to the additional denoising effect of both regularization func-
tions used by the proposed algorithm, this improvement is more significant
when applied on low-dose scans. This means that the proposed algorithm
is especially well-suited for sinogram restoration in low-dose CT. Our other
experiments, not reported here because of space limitations, also show that
the proposed algorithm can be used to effectively interpolate the sinogram
in more general cases, for example when the angular spacing of the missing
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5.3. Results and discussion

Figure 5.4: A slice in the images reconstructed from the low-dose scan of the
rat with nθ = 240. (a) the reference image, (b) xnθ , (c) xnθ/2, (d) xproposed

nθ/2
,

(e) xdict.
nθ/2

.

projection views is non-uniform or when some detector measurements are
corrupted.
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Chapter 6

Reducing Streak Artifacts
using Coupled Dictionaries

6.1 Introduction

As mentioned previously in this dissertation, a simple approach to reducing
the radiation dose is to reduce the number of projections. Unfortunately, the
images reconstructed by FBP-based methods from such few-view scans will
contain large amounts of streaking artifacts. This chapter proposes a novel
technique for suppressing these artifacts. Artifacts in CT may arise from
different causes and would therefore have different shapes and structures
[14, 231]. This chapter focuses on streak artifacts that occur in images
that are reconstructed by the FBP-based methods from a small number of
projections. In particular, the FDK algorithm that is commonly used for
image reconstruction in cone-beam CT requires several hundred projections
in order to produce artifact-free images. Reducing the number of projections
can result in severe streak artifacts. This chapter proposes an algorithm that
suppresses these artifacts without blurring or distorting the genuine image
features.

The proposed method is based on learning two dictionaries for sparse
representation of small blocks extracted from 3D CT images; one dictio-
nary is for artifact-full images and the other is for high-quality artifact-free
images. The proposed method employs a linear map that relates the repre-
sentation coefficients of the artifact-full and the artifact-free blocks in these
two dictionaries. This linear map is also learned from the training data.
The central idea is to use the representation coefficients of small blocks in
an artifact-full image to find the representation coefficients of the corre-
sponding artifact-free blocks, thereby recovering the artifact-free image.

As mentioned in Section 2.6.3, there are studies that have used patch-
based methods to suppress artifacts in CT. Some of these studies depend
on the existence of a high-quality prior image of the same patient or a rich
database of scans from a large number of patients [340, 341]. In many
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situations, however, one does not have access to a previous scan of the same
patient or a rich database of images. The method proposed in this chapter
does not rely on any such prior image or database. In order to compare our
algorithm with the previously-proposed algorithms, we consider the Artifact
Suppressed Dictionary Learning (ASDL) method proposed in [57], which
also does not require a prior image. We have briefly described ASDL in
Section 2.6.3.

6.2 Methods

6.2.1 The proposed approach

The proposed algorithm learns two separate dictionaries, one for artifact-
full images and another for high-quality images devoid of artifacts. These
two dictionaries are denoted, respectively, by Da (for artifact) and Dc (for
clean). We also denote an artifact-full image (reconstructed from a small
number of projection views) by xa and its corresponding high-quality im-
age (reconstructed from a very large number of projections) by xc. In the
training stage of the proposed algorithm, we extract small blocks from each
of these images and stack the vectorized versions of these blocks to create
two matrices, which we denote by Xa and Xc. The ith column of each
of these matrices are denoted by Xa

i and Xc
i . Given an artifact-full block,

Xa
i , we would like to recover its artifact-free version, Xc

i . Our approach
here is to use the sparse representation of Xa

i in Da to recover the sparse
representation of Xc

i in Dc. In other words, given an artifact-full block,
Xa
i , we first find the sparse representation vector Γai such that Xa

i
∼= DaΓai .

From Γai , we estimate Γci , the sparse code of the corresponding artifact-free
block in its dictionary. Finally, the estimate of the artifact-free block will
be X̂c

i = DcΓci .
A very important decision is the choice of the relation between the sparse

representation vectors, Γai and Γci . The simplest choice is an equality rela-
tion, i.e., Γai = Γci . This relation was suggested for image super-resolution in
[344, 345]. However, this relation is very restrictive and a more relaxed rela-
tion can provide a greater flexibility, hopefully leading to better results. For
super-resolution, for instance, as we explained in Section 2.1.3, improved re-
sults have been reported by using more relaxed relations. Therefore, in this
study we use a linear relation between Γai and Γci because such a model has
yielded very good results in image super-resolution, multi-modal retrieval,
and cross-domain image synthesis and recognition [132, 327, 362]. In other
words, we assume that the vector of representation coefficients of an artifact-

127



6.2. Methods

free block can be obtained from the vector of representation coefficients of
the corresponding artifact-full block using the equation Γci = PΓai , where P
is a linear map (i.e., a matrix) that is also estimated from the training data.

Throughout this chapter, N and n denote the number of projections
that we use to reconstruct the artifact-free and the artifact-full images, re-
spectively. In the experimental evaluations, N = 720 and n ≈ 100. For
image reconstruction we use the FDK algorithm. The goal of the proposed
algorithm is to suppress the artifacts in an image reconstructed from n pro-
jections so that it looks similar to the reference image reconstructed from
N projections.

Assuming for a moment that we have learned the dictionaries (Da and
Dc) and the linear map (P ), we now explain how an artifact-suppressed
image is produced by the proposed algorithm. The proposed algorithm is
shown as a schematic in Figure 6.1. As can be seen from this figure, the
algorithm starts by dividing the given set of n projections into two subsets of
odd and even projections, each containing n/2 projections, and reconstructs
two images using these two subsets of projections. The rationale behind this
approach is to better exploit the correlation in the projections. The images
reconstructed from each of these two subsets of n/2 projections will contain
more artifacts than an image reconstructed from n projections. However,
while the artifacts in these two images will be quite different, the genuine
image features will be shared between the two images. Therefore, we expect
that reconstructing two separate images using odd and even projections
should result in better results in terms of the quality of the final recovered
image. Our experience shows that this is indeed the case. It should be noted
that with the FDK algorithm the computational cost of reconstructing two
images each from n/2 projections is the same as that of reconstructing one
image from n projections. We should also note that (as it is commonly done
in this field) we work with mean-subtracted images. Later, the mean image
is added back to the final reconstructed image.

From each of the two artifact-full images, we extract small overlapping
blocks. In all of our experiments we used 83-voxel blocks with an overlap
of 5 voxels in each direction between neighboring blocks. The ith pair of
blocks extracted from the two artifact-full images are vectorized and stacked
in tandem to form one vector, Xa

i . The sparse representation of this vector
in Da is computed such that Xa

i
∼= DaΓai . Γai is then multiplied by the

matrix P to find the sparse code, Γci , of the corresponding artifact-suppressed

block. Finally, the artifact-suppressed block is estimated as X̂c
i = DcΓci .

This process is repeated for all pairs of overlapping blocks extracted from
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Figure 6.1: A schematic representation of the proposed algorithm. The steps
shown in the dashed box are performed for all extracted overlapping blocks.

the artifact-full images. The artifact-suppressed blocks are placed in their
correct locations (which is the same location where the artifact-full blocks
were extracted from) in the destination image and averaged to obtain the
final estimate of the artifact-suppressed image, x̂c. The averaging is to take
into account the fact that each voxel, except for the ones at the corners of
the image, participates in more than one block because we use overlapping
blocks. Mathematically, if Ri is the binary matrix that places X̂c

i in its
proper location, then x̂c is computed as:

x̂c =

(
K∑
i=1

RiX̂c
i

)
�

(
K∑
i=1

Ri1

)
(6.1)

where K is the total number of blocks, � indicates element-wise division,
and 1 ∈ R512 is a vector of ones.

6.2.2 The dictionary learning algorithm

In the above, we assumed that the two dictionaries, Dc and Da, and the lin-
ear map, P , were known and we described the steps taken to remove artifacts
from an artifact-full image. In this section, we present algorithms for learn-
ing Dc, Da, and P . The training data needed by the proposed algorithm
includes a set of artifact-full blocks and their corresponding artifact-free
blocks. To generate this data, we scan an appropriate object with a high
angular sampling rate so that the scan contains a very large number (N) of
projections. We reconstruct our artifact-free image using all N projections.
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We then choose n� N of these projections, divide them into odd and even
projections and reconstruct two artifact-full images from each subset of n/2
projections. Then, we extract random blocks from the artifact-free image,
vectorize and stack them as columns of a matrix Xc. From exactly the
same location as the blocks used to create Xc, we extract blocks from the
two artifact-full images reconstructed from n/2 projections and stack them
together to create a matrix Xa. We refer to columns of Xa and Xc as “the
training signals”. As we mentioned above, each pair of blocks extracted
from the same location in the artifact-full images are stacked in tandem as
a single column of Xa. Therefore, Xc and Xa have the same number of
columns, while each column of Xa is twice as long as each column of Xc.
Specifically in our experiments, Xc ∈ R512×K and Xa ∈ R1024×K , where
K is the number of extracted blocks. We will provide more detail on our
training and test data in Section 6.3.

Having generated our training data, Xa and Xc, we suggest to learn
the dictionaries Dc and Da and the linear map P by solving the following
optimization problem, which is very similar to the formulations suggested
for super-resolution and photo-sketch synthesis in [327]:

minimize
{Da,Γa,Dc,Γc,P}

(
‖Xa −DaΓa‖2F + ‖Xc −DcΓc‖2F

+ λa‖Γa‖1 + λc‖Γc‖1

+ α‖Γc − PΓa‖2F + β‖P‖2F
)

subject to: ‖Da
i ‖2 ≤ 1 & ‖Dc

i‖2 ≤ 1 ∀i

(6.2)

The first two terms in the objective function force the dictionariesDa and
Dc to accurately model the training signals in Xa and Xc, respectively. The
third and fourth terms encourage sparsity of these representations. These
four terms are reminiscent of the terms of the objective function in the basic
dictionary learning algorithm. The fifth term enforces the linear relation
between the vectors of sparse representation in the two dictionaries. The
last term penalizes the norm of P in order to avoid overfitting and numerical
instability.

The proposed objective function is not convex with respect to its five
variables simultaneously. However, it is convex with respect to each of the
variables if we fix the rest. Therefore, as it is common in dictionary learning,
we follow an alternating minimization scheme to find a stationary point of
this problem.
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Updating the dictionaries Da and Dc. With other variables being
fixed, minimization with respect to the dictionary atoms can be written as
the following two identical optimization problems.

minimize
Da

‖Xa −DaΓa‖2F subject to: ‖Da
i ‖2 ≤ 1 ∀i

minimize
Dc

‖Xc −DcΓc‖2F subject to: ‖Dc
i‖2 ≤ 1 ∀i

(6.3)

We use the efficient implementation of the K-SVD algorithm proposed in
[275] to solve these problems.

Updating the sparse representation matrices Γa and Γc. With all
other variables fixed, minimization with respect to Γa can be simplified as
follows:

minimize
Γa

‖Xa −DaΓa‖2F + α‖Γc − PΓa‖2F + λa‖Γa‖1

≡minimize
Γa

∥∥∥∥[ Xa
√
αΓc

]
−
[
Da
√
αP

]
Γa
∥∥∥∥2

F

+ λa‖Γa‖1
(6.4)

Similarly, minimization with respect to Γc can be written as:

minimize
Γc

‖Xc −DcΓc‖2F + α‖Γc − PΓa‖2F + λc‖Γc‖1

≡minimize
Γc

∥∥∥∥[ Xc
√
αPΓa

]
−
[
Dc
√
αI

]
Γc
∥∥∥∥2

F

+ λc‖Γc‖1
(6.5)

where I is the identity matrix of the right size.
The optimization problems in (6.4) and (6.5) are simple sparse cod-

ing problems. In our experience, greedy algorithms such as the orthog-
onal matching pursuit (OMP) [252] with a sparsity constraint work very
well on these problems. Therefore, we used OMP with sparsity constraints
‖Γc‖0 ≤ T c and ‖Γa‖0 ≤ T a to solve these problems. In other words, we
replace the `1-norm penalty with `0-norm constraints. We choose T c = 16
for artifact-free blocks as suggested in the context of denoising in [274]. For
artifact-full blocks we choose a higher sparsity level of T a = 20 because the
signals are longer and include artifacts too. This approach will also eliminate
the need to tune the parameters λa and λc.
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Updating the linear map P . Minimization with respect to P involves
solving the following problem:

minimize
P

α||Γc − PΓa||2F + β||P ||2F (6.6)

which has the following closed-form solution:

P ∗ = Γc(Γa)T
(

Γa(Γa)T +
β

α
I

)−1

(6.7)

Initialization and regularization parameter selection. We initialize
Da and Dc to the dictionaries learned with the basic dictionary-learning
scheme, Equation (2.1), from artifact-full and artifact-free images, respec-
tively. We used the K-SVD algorithm [2] to learn these initial dictionaries.
Of course, for Da we need to concatenate two such dictionaries to obtain
the right size. This initialization will help our learning algorithm converge
much faster than if we use an overcomplete DCT or wavelet basis as the
initial dictionary. The number of atoms in each dictionary was chosen to
be 1024. We initialize P to the identity matrix. Using OMP, we compute
the sparse representations of the training signals Xa and Xc in the initial
dictionaries Da and Dc, respectively, and use them as the initial values of Γa

and Γc. As mentioned above, our training strategy does not require knowing
the values of λa and λc. We used α = β = 0.1 for all experiments reported
in this chapter. We found empirically that these values work very well in
all our experiments. As mentioned above, the regularization term ‖P‖2F is
meant to avoid numerical instability. As suggested in [69], if the amount of
training data is not too small, numerical instabilities are unlikely to occur
and β can be set to a very small number.

After the above initializations, we alternately minimize the objective
function with respect to the five variables. For the stopping criterion, one
can adopt a cross-validation approach. Specifically, in this approach part of
the training data (Xa and Xc) can be set aside as the validation data. At
the end of each iteration of the learning algorithm, the learned parameters
(Da, Dc, and P ) are applied to reconstruct the artifact-free blocks in the
validation data set from their corresponding artifact-full blocks using our al-
gorithm as shown in Figure 6.1. The learning is stopped when an acceptable
level of accuracy in reconstructing the artifact-free blocks in the validation
data set is achieved. We should also mention that, instead of a straight-
forward application of the algorithm for reconstruction as shown in Figure
6.1, one can optimize the coefficients Γa and Γc simultaneously. The opti-
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mization steps will be similar to those presented for training above, except
that the parameters will be fixed and only Γa, Γc, and Xc are optimized. Al-
ternatively, one can stop the learning algorithm after a pre-specified number
of iterations, which is also very common in dictionary learning [2, 212]. In
the experiments reported in this chapter we stopped the learning algorithm
after 50 iterations, which we have found empirically to be sufficient.

6.3 Evaluation

The first scan consisted of N = 720 projections of a rat between 0◦ and 360◦

at 0.5◦ intervals. We used the full set of 720 projections to reconstruct a
very high-quality image of the rat. For this purpose, we first reconstructed
an image using the FDK algorithm, followed by 50 iterations of the MFISTA
algorithm. The resulting image, which we refer to as the reference image,
had a very high quality with no visible artifacts of any kind. To evaluate
our proposed algorithm, we used a subset of n = 120 projections from
this scan, i.e., projections at 3◦ intervals. As we mentioned above and
showed in Figure 6.1, the proposed algorithm divides the projections into
two halves, each containing n/2 = 60 projections (odd and even projections),
and reconstructs separate images from each set of 60 projections using the
FDK algorithm.

In this first experiment, we generated the training and test data from
the same images. Each reconstructed image was 880× 880× 650 voxels. We
divided each of the images into two halves (i.e., into two 880×880×325-voxel
images). We used one half for training, i.e., for learning the dictionaries Da

and Dc and the matrix P . Then, we applied our method as shown in Figure
6.1 to suppress the artifacts in the other half of the image.

Figure 6.2 shows the effect of applying the proposed algorithm for ar-
tifact suppression. In this figure, we have shown a typical slice of the ref-
erence image (reconstructed from 720 projections) and artifact-full image
(reconstructed from 120 projections), alongside the result of applying our
algorithm and ASDL with 120 projections. For a comparison, we have also
included the same slice in the image reconstructed with the FDK algorithm
from 240 projections. We have also shown, in part (f) of this figure, the
image obtained with total-variation (TV) denoising. We used Chambolle’s
famous algorithm for TV denoising.

The whole slice in Figure 6.2 is shown using a window of attenuation co-
efficient (µ-window) of [0, 0.40]. For a better visual comparison, we have se-
lected two regions of interest (ROIs) and have displayed them with narrower
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Figure 6.2: A typical slice of the images reconstructed from the first rat
scan. (a) the reference image reconstructed from 720 projections, (b) FDK-
reconstructed from 120 projections, (c) FDK-reconstructed from 240 pro-
jections, (d) the image produced from 120 projections using our proposed
algorithm, (e) the image reconstructed from 120 projections using ASDL,
(f) FDK-reconstructed from 120 projections followed by TV denoising. Two
ROIs are shown magnified on the top-left and top-right of the images. The
locations of these ROIs have been marked on the slice of the reference image.

134



6.3. Evaluation

µ-windows. One of these ROIs (shown on the top right of each image) con-
tains bone surrounded with soft tissue. We display this ROI with a µ-window
of [0.2, 0.5]. The second ROI contains fat surrounded with soft tissue, which
we display with a µ-window of [0.14, 0.23]. Both ROIs are displayed with
a magnification of 150%. This figure shows a marked improvement in the
quality of the reconstructed image as a result of applying the proposed al-
gorithm. The image reconstructed with the proposed algorithm (from 120
projections) has a much higher quality than the FDK-reconstructed image
from 120 projections and appears to be better than the FDK-reconstructed
image from 240 projections also. ASDL seems to have removed most of the
noise in the image without suppressing much of the artifact. The image
obtained via TV denoising has a low quality and all of the streak artifacts
have remained, even though much of the noise has been removed. This is
an expected result because denoising algorithms cannot distinguish between
true image features and streak artifacts. The TV denoising method, for
instance, is based on the prior assumption that the image has a sparse gra-
dient, encouraging piece-wise constant solutions. Although this approach is
effective for removing random noise, it cannot distinguish strong artifacts
from genuine image features.

For a more meaningful evaluation, we applied the dictionary and linear
map learned in the experiment described above to suppress the artifacts in
the image of a different rat. Similar to the above experiment, in this new
experiment the scan consisted of 720 projections. A reference artifact-free
image was reconstructed using all 720 projections. The proposed algorithm
and ASDL were applied to produce artifact-suppressed images from 120 pro-
jections. Figure 6.3 shows a typical slice in the images from this experiment.
We have included the two intermediate FDK-reconstructed images (from 60
even and odd projections) that were used in the proposed algorithm in parts
(g) and (h) of this figure. However, the image produced by the proposed
algorithm should be compared with the FDK-reconstructed image from 120
projections, shown in part (b) of this figure. This figure shows that the
proposed algorithm has successfully reduced the artifacts, significantly im-
proving the image quality. This is more visible in the two ROIs that are
re-displayed with narrow µ-windows. The µ-window for the whole slice is
[0, 0.40] and the µ-windows for the ROIs shown on the top-left and bottom-
right are [0.16, 0.21] and [0.2, 0.45], respectively. The proposed algorithm has
also produced an image that is markedly better than the image produced
by ASDL and slightly better than the FDK-reconstructed image from 240
projections. ASDL has not been very successful in reducing the artifacts in
this experiment.
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Figure 6.3: A slice from the reconstructed images of the second rat. (a)
the reference image, (b) FDK-reconstructed from 120 projections, (c) FDK-
reconstructed from 240 projections, (d) produced by the proposed algorithm
from 120 projections, (e) produced by ASDL from 120 projections, (f) FDK-
reconstructed image from 120 projections followed by K-SVD denoising, (g)-
(h) the intermediate images in the proposed algorithm (each reconstructed
with the FDK algorithm from 60 projections). The locations of the two
ROIs have been marked on the slice of the reference image.
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One of the reasons for the improved quality of the images produced by
the proposed algorithm is the noise reduction. Even though we designed our
algorithm for artifact reduction, it also leads to an automatic noise reduc-
tion, which is a free extra benefit. The reason for this automatic denoising
is that the output image of the proposed algorithm is created as a sparse
representation of blocks in the dictionary Dc. This is a successful denois-
ing strategy, as we explained in Section 2.1.3. Therefore, one may question
whether the improvement in the image quality by the proposed algorithm is
mostly due to its denoising effect, and not artifact-suppression as we have
claimed. To show that this is not the case, i.e., that our proposed algorithm
is indeed an artifact-suppression algorithm, we applied the K-SVD denois-
ing algorithm [100] to remove the noise in the image reconstructed with
the FDK algorithm from 120 projections. The resulting image is shown in
Figure 6.3(f). It is quite clear that dictionary-based denoising only removes
the noise and leaves the artifacts untouched. Therefore, our proposed algo-
rithm does indeed accomplish much more than a dictionary-based denoising
algorithm and is a true artifact-suppression algorithm.

For a more objective evaluation of the proposed algorithm, we compute
the root-mean-square of the error (RMSE), where we define the error as the
difference between the reconstructed image and the reference image, and
the structural similarity index (SSIM) between the reconstructed image and
the reference image. The results are presented in Table 6.1. The proposed
algorithm has clearly outperformed ASDL in terms of RMSE and SSIM.
Moreover, compared with the FDK-reconstructed image from 240 projec-
tions, the artifact-suppressed image produced by our proposed algorithm
from 120 projections is closer to the reference image in terms of both RMSE
and SSIM.

FDK-
120

FDK-
240

FDK-120 with
K-SVD

denoising

Proposed
algorithm -

120

ASDL -
120

RMSE 0.0206 0.0119 0.0165 0.0104 0.0147
SSIM 0.653 0.856 0.702 0.860 0.764

Table 6.1: RMSE and SSIM for the FDK-reconstructed images of the second
rat from 120 and 240 projections, FDK-reconstructed from 120 projections
followed by denoising using the K-SVD algorithm, and the images produced
from 120 projections by the proposed algorithm and ASDL.

In order to further evaluate the performance of the proposed algorithm,
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we applied it on a scan of the physical phantom. In order to test the gener-
alizability of the learned parameters (Da, Dc, and P ), we used those param-
eters that were learned from the rat scan described above to suppress the
artifacts in this experiment with the phantom. Similar to the scans of the
rat, the phantom scan consisted of 720 projections. All of the 720 projec-
tions were used to reconstruct a high-quality reference image. The proposed
algorithm was then used to produce an artifact-suppressed image from 120
projections.

In Figure 6.4 we show parts of two selected slices in the image of the
phantom. The µ-window used for displaying these figures is [0, 0.50]. It is
clear from this figure that the proposed algorithm has significantly reduced
the artifacts without degrading genuine image features. The right column in
this figure shows two of the resolution coils that have been included in this
phantom for the purpose of visual inspection of the spatial resolution. In the
FDK-reconstructed image from 120 projections, and to a lower degree also
in the FDK-reconstructed image from 240 projections, these coils have given
rise to ring-shape artifacts. While the proposed algorithm has substantially
reduced these and other artifacts, it has not blurred or degraded the fine
image features but seems to have improved them too. Compared with our
proposed algorithm, ASDL has been much less effective in removing these
artifacts. On the other hand, TV-based denoising seems to have had no
effect on the artifacts, although it has managed to reduce the noise.

Table 6.2 presents a quantitative evaluation of the quality of the images
reconstructed by different algorithms in this experiment. In addition to
RMSE and SSIM, we estimated the modulation transfer function (MTF)
using an approach similar to that in Chapters 3 and 4. The values reported
in Table 6.2 as spatial resolution are the spatial frequencies at which the
normalized MTF reached 0.1 in different images.

Reference
image

FDK-
120

FDK-
240

Proposed
algorithm-120

ASDL-
120

RMSE 0.0 0.022 0.010 0.0094 0.0137
SSIM 1.0 0.623 0.892 0.900 0.812
S.R. (mm−1) 4.39 3.66 3.98 3.98 3.76

Table 6.2: Quantitative comparison of the quality of the images of the phys-
ical phantom reconstructed with the FDK algorithm from 120 and 240 pro-
jections and the artifact-suppressed images produced using the proposed
algorithm and ASDL from 120 projections.
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Figure 6.4: Parts of two typical slices in the image of the phantom; (a)
the reference image, (b) FDK-reconstructed from 120 projections, (c) FDK-
reconstructed from 240 projections, (d) produced by the proposed algorithm
from 120 projections, (e) produced by ASDL from 120 projections, (f) FDK-
reconstructed from 120 projections followed by TV denoising.

As we mentioned above, the results shown in Figure 6.4 and Table 6.2
were obtained by using the parameters (i.e., Da, Dc, and P ) from the rat
experiment. Even though our results show that these parameters work very
well on the phantom image, one may wonder if we could have obtained
better results by learning a new set of parameters from a similar image.
In order to determine if learning a new set of parameters from a similar
image can improve the results, we performed a new experiment. In this
experiment, the physical phantom was scanned one more time and new
dictionaries (Da and Dc) and a new matrix (P ) were learned. We then
applied our algorithm with these parameters on the scan of the phantom
described above. The results of this experiment were very close to the results
shown in Figure 6.4 and Table 6.2. In particular, the values of SSIM and
spatial resolution shown for the proposed algorithm in Table 6.2 increased
slightly to 0.905 and 4.00, while the value of RMSE remained almost the
same. In our opinion, this means that the parameters learned from one
image can be used when applying the algorithm on a very different image,
even though slightly better results may be obtained if the parameters are
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learned from a similar image. This is because our proposed algorithm is
based on relating the sparse representations of artifact-full blocks with their
corresponding artifact-free blocks. Because of the small size of the blocks,
the learned parameters of the algorithm depend on the local shapes of these
artifacts, which does not depend much on the shape of large-scale features
of the image.

The above results indicate that the dictionaries and the linear map
learned from one image are applicable to another image. However, in the
above experiments we used the same number of projections (i.e., 120) for
both the rat and the phantom. It is well known that artifacts become
stronger and their angles change as the number of projections is reduced.
Therefore, parameters learned from one image may not work well when used
for artifact suppression in an image reconstructed from a different number
of projections. Moreover, as the number of projections decreases, it will be
more difficult to suppress the artifacts because they become much stronger.
Even though our algorithm was able to effectively suppress the artifacts in
the images reconstructed from 120 projections, it is expected that its per-
formance should decrease as the number of projections is reduced further.
Therefore, we face two important questions: 1) What is the limit of per-
formance of the proposed algorithm in terms of the number of projections
required? and 2) Is it possible to use the parameters learned from an exper-
iment with n1 projections for artifact suppression with a different number
of projections, n2 6= n1?

In order to answer these questions, we used the parameters learned from
the scan of the first rat to suppress the artifacts in the image reconstructed
from the scan of the second rat, but this time we used n = 90 projections. In
other words, Da, Dc, and P are learned on artifact-full images reconstructed
from 120 projections, and then they are applied to suppress the artifacts in
images reconstructed from 90 projections. The results of this experiment
are shown in Figure 6.5 and Table 6.3 and denoted as “Proposed Algorithm
- train:120 - test:90”. The µ-windows used for Figure 6.5 are the same as
those for Figure 6.3. For comparison, we also learned new dictionaries and a
linear map, this time from images reconstructed from 90 projections of the
scan of the first rat and used them to suppress the artifacts in the images
reconstructed from 90 projections of the scan of the second rat. The results
are also shown in Figure 6.5 and Table 6.3, denoted as “Proposed Algorithm
- train:90 - test:90”.

There are two main conclusions that can be drawn as answers to the
two questions that we posed above. First, Figure 6.5 and Table 6.3 show
a marked improvement in “train:90 - test:90” compared with “train:120 -
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Figure 6.5: A slice from the reconstructed image of the second rat; (a)
FDK-reconstructed from 90 projections, (b) FDK-reconstructed from 180
projections, (c) produced by the proposed algorithm from 90 projections
using the parameters learned on the image of the first rat with 90 projec-
tions, (d) produced by the proposed algorithm from 90 projections using the
parameters learned on the image of the first rat with 120 projections. (The
reference image for this figure is the same as Figure 6.3 (a)).

test:90”. Therefore, parameters learned for artifact reduction by the pro-
posed algorithm are no longer optimal if the number of projections changes
significantly. We think this is because the shape and the strength of the
artifacts change significantly when the number of projections changes sig-
nificantly. Secondly, the performance of our proposed artifact-suppression
algorithm was reduced compared to our experiments with 120 projections
that we reported earlier in this chapter. Figure 6.5(c), which corresponds to
“train:90 - test:90” is still better than the FDK-reconstructed image with
twice the number of projections shown in Figure 6.5(b). However, by com-
paring these results with those shown in Figures 6.3 and 6.4 and Tables 6.1
and 6.2, we see that the gain in the image quality is reduced. This is what we
should expect because as the number of projections is reduced, the artifacts
dominate the genuine image details and it should thus be more difficult for
the algorithm to remove them.

As we mentioned in Section 2.1.3, for image super-resolution and other
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FDK-90 FDK-180
Proposed

Algorithm -
train:120 - test:90

Proposed
Algorithm -

train:90 - test:90

RMSE 0.0259 0.0167 0.0172 0.0160
SSIM 0.531 0.730 0.705 0.741

Table 6.3: Comparison between the quality of the images of the second rat
reconstructed using the FDK algorithm with 90 and 180 projections and
the artifact-suppressed images produced by the proposed algorithm with 90
projections.

applications, various different models have been suggested for relating the
sparse representation coefficients of the source and the target images. Sim-
ilarly, many different models can be used for relating the sparse representa-
tions of artifact-full and artifact-free blocks. An investigation of all possible
models is beyond the limitations of this dissertation. However, one natu-
ral question is whether a simpler model than the linear model used in the
proposed algorithm would work equally well. To answer this question, we
applied our algorithm on the rat data by assuming that the sparse repre-
sentation coefficients are identical. This is the same as the assumption used
for image super-resolution in [345]. In terms of the notation used in this
chapter, this approach means setting P = I where I is the identity matrix
and Γc = Γa. The result of this experiment is presented in Figure 6.6. For
comparison, we have also shown the slice of the image reconstructed by the
proposed algorithm (with linear mapping). It is clear that this simplified
model is much less effective than the proposed model with the linear map-
ping. In fact, in terms of the RMSE and SSIM, the image produced by this
simplified model is slightly worse than the image produced by ASDL.

6.4 Discussion

Our results show that the proposed algorithm is very effective in suppressing
the streak artifacts that appear in CT images reconstructed from approxi-
mately 100 projections. In all of our experiments, the image reconstructed
by the proposed algorithm had a better quality than the image reconstructed
with the FDK algorithm from twice as many projections. The streak arti-
facts were largely removed in the images produced from 120 projections by
the proposed algorithm. There was also no visible blurring or distortion
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Figure 6.6: (a) Image reconstructed by assuming an identity relation be-
tween representation coefficients of artifact-full and artifact-free blocks. (b)
Image reconstructed by assuming a linear relation; this image is the same
as that in Figure 6.3(d).

of the true image features by the proposed algorithm. In addition to sup-
pressing the artifacts, the proposed algorithm effectively reduces the noise
also.

An important and promising behavior of the proposed algorithm is that
its parameters, i.e., the two dictionaries and the linear map, do not have
to be learned for every image, as long as the numbers of projections used
in the training and reconstruction stages are close. This is a very valuable
property because it means a substantial saving in the time and effort needed
for training. This behavior is due to the design of the algorithm. Specifically,
the algorithm is based on relating the sparse representations of small blocks
of the artifact-full and artifact-free images in the learned dictionaries. The
local structure of these artifacts does depend on the number of projections
used to reconstruct the artifact-full images, but it is, to a large degree,
independent of the shape of large image features. Therefore, the parameters
learned from one set of training images work well when the algorithm is
applied on a very different image as long as the number of projections does
not change much.

The theoretical underpinnings of the dictionary learning algorithms have
not quite matured yet. In fact, a complete theoretical analysis of dictionary
learning is still considered as an open problem [98]. Nonetheless, in recent
years these algorithms have been used in hundreds or thousands of studies
and have proven to be robust and reliable. The performance of these learned
dictionaries for different image processing tasks may depend on factors such
as the amount of training data and the scale and structure of features in the
image. These factors may also influence the performance of the algorithm
proposed in this study, but a detailed investigation of these factors is beyond
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the scope of this dissertation. Nonetheless, such studies can be very helpful
for the proper application of learned dictionaries in CT. We are aware of
only one such study [300], in which the effect of the scale and orientation of
features in the training data on the performance of dictionary-based iterative
CT reconstruction were analyzed. Similar studies can be very helpful for
better implementation of artifact-removal algorithms such as the algorithm
proposed in this chapter.

Our experience shows that the performance of the proposed algorithm
deteriorates when the number of projections is much less than 100. For
example, we have tried applying our algorithm with 70 projections with
very little success. Even though the proposed algorithm still suppresses
some of the artifacts when the number of projections is around 70, the
genuine image detail are distorted. This is simply because the artifacts are
very strong and overshadow the image features. Overall, our experience
shows that the gain in image quality obtained by our proposed algorithm
is most significant when the number of projections used is approximately
between 100 and 200.

There is also a slight blurring of a few of the image features in some of the
images reconstructed by the proposed algorithm. An example can be seen
in the bone structure shown in the top-right ROI in Figure 6.2. This blur-
ring can be reduced by increasing the number of atoms of the artifact-free
dictionary that are used in building each of the blocks of the reconstructed
image. In the proposed algorithm, this is controlled by parameter T c. As
we mentioned earlier in this chapter, we used T c = 16. We chose this value
because it was found to be a very good choice in the denoising of 3D CT
images in [274]. One can choose a larger T c to reduce the blurring. Increas-
ing the number of dictionary atoms that participate in the representation of
the image blocks will improve the reconstruction of image features, thereby
reducing the blurring. However, increasing the number of atoms may also
reduce the denoising effect of the proposed algorithm because some of the
added atoms will model the noise. The right value of T c will ultimately
depend on the desired trade-off between noise and spatial resolution. An-
other approach for reducing the blurring is to increase the block overlap. In
almost all applications of dictionary-based image processing, better results
are obtained by increasing the overlap between adjacent extracted blocks.
The downside of this approach is increased computation.

As we mentioned in the Introduction section, an important consideration
in learning and usage of overcomplete dictionaries is the computational time.
In most applications, the learning of the dictionary is more computationally
intensive than its later usage. This is also the case in the proposed algorithm.
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In our proposed learning algorithm, the most computationally expensive
part is the sparse coding steps required for updating Γa and Γc (Equations
(6.4) and (6.5)). As we mentioned, we used the OMP algorithm for solving
these equations. Given a dictionary D and a signal z, each iteration of
OMP selects a new atom from D and projects z onto the space of columns
selected so far. If we denote the sub-dictionary that contains the set of
columns that have been selected up to the current iteration by DS , the
bottleneck of the OMP algorithm is the computation of the pseudo-inverse
of DS . In a straight-forward implementation, this pseudo-inverse must be
computed at every step of OMP, i.e., every time a new dictionary atom is
selected. This computation can be avoided by using progressive Cholesky or
QR update strategy instead of explicit matrix inversion [30, 68]. Even faster
implementation is possible by avoiding explicit computation of the signal
residual at each iteration. This approach, which has been named Batch-
OMP in [275], can result in very large speed-ups when the number of training
signals is large. Of course, OMP is not the only tool for solving Equations
(6.4) and (6.5) and there are other alternative algorithms that have been
suggested for fast sparse coding of large numbers of signals [122]. The second
most computationally expensive step is the dictionary update in Equation
(6.3). In a straight-forward implementation of the K-SVD algorithm, the
main computational burden is associated with the SVD decomposition of
the error matrix. The implementation suggested in [275] avoids an explicit
SVD computation, making the update substantially faster. As suggested
in [274] even the computation of the error matrix is not necessary, making
the algorithm faster. The speedup strategies mentioned above have been
implemented in publicly-available software and they have been applied for
CT denoising in [15]. The last step in the proposed training algorithm
(update of P through Equation (6.7)) is computationally negligible. The
required number of iterations of the dictionary learning algorithm strongly
depends on the initialization. If some parameters (Da, Dc, and P ) have
already been learned on a different dataset, they can be used to substantially
reduce the required number of iterations of the learning algorithm. The time
required for the reconstruction of the final image from the artifact-full images
(once the algorithm parameters have been learned) is proportional to the
image size. For example, with our Matlab implementation, an image of size
200× 200× 100 voxels can be reconstructed in less than 15 minutes.

There are ways in which the performance of the proposed algorithm may
be improved. One of these ways, as we have mentioned previously in this
chapter, is to learn the algorithm parameters (i.e., the dictionary and the
linear map) from a training dataset that is similar to the image that we
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want to reconstruct. We have also observed that increasing the dictionary
size slightly improves the quality of the reconstructed images. Increasing
the number of atoms to 2048 (from 1024 used in the experiments reported
here) slightly improved the results. However, increasing the dictionary size
also increases the computational load. Another simple approach to improv-
ing the algorithm performance is to increase the amount of overlap between
the neighboring blocks. As we mentioned above, in all of the experiments
reported in this chapter we used an overlap of 5 voxels in each direction. In-
creasing the block overlap always improves the quality of the reconstructed
image at the cost of increased computational load. In patch-based process-
ing of 2D images it is common to use the maximum overlap (so that the
neighboring patches are shifted by only one pixel). However, for large 3D
images this may result in excessive computational load. For blocks of size
83 voxels used in this study, increasing the voxel overlap from 5 to the max-
imum possible overlap of 7 will increase the number of blocks by a factor of
27. However, in our experience this also improves the performance of the
proposed algorithm in terms of both artifact suppression and, especially,
denoising. Finally, it may also be possible to achieve improved image qual-
ity by using a more flexible model and more training data. For instance, a
more general model was proposed for image super-resolution, cross-view ac-
tion recognition, and sketch-to-photo face recognition in [132]. This model
includes two linear maps and has been shown to be successful in various
tasks. Training of more general models requires larger training data and
longer training times. More general models may also include additional pa-
rameters that need tuning. Nevertheless, when properly trained, they may
lead to improved results.

In recent years, several “iterative” dictionary-based CT reconstruction
algorithms have been proposed [11, 197, 301, 305, 339]. In general, these
algorithms have shown promising results. Therefore, an interesting question
is whether the algorithm proposed in this chapter can be turned into an it-
erative reconstruction algorithm. A first step towards this transformation is
to introduce a measurement misfit term into our objective function. Assum-
ing that the algorithm parameters have been learned, a potential approach
to recovering a high-quality image is by solving the following optimization
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problem:

minimize
{x,Γa,Γc}

(
λdata‖Ax− y‖2W +

∑
i

{
‖Rcix−DcΓci‖22 + λc‖Γci‖1

+ ‖Rai xa −DaΓai ‖2F + λa‖Γai ‖1
}

+ α‖Γc − PΓa‖2F
) (6.8)

In this equation, A is the projection matrix, y represents the sinogram
measurements, λdata is the regularization parameter for the measurement
misfit term, and ||.||2W is the weighted `2-norm that is preferred in CT re-
construction because the noise in y is signal-dependent. Rci is a binary
matrix that extracts the ith block from the image x, so that Rcix is the
vectorized block. The same comment applies to Rai x

a, except that, as we
explained earlier, two artifact-full images are reconstructed from odd and
even projections. However, here we have used the simple notation of Rai x

a to
avid a cluttered equation. The artifact-full image xa is reconstructed using
the FDK algorithm and the high-quality image is obtained as the solution
of the above optimization problem.

The optimization problem in (6.8) can be solved using alternating min-
imization. Minimization with respect to Γa and Γc will be similar to those
shown in Equations (6.4) and (6.5). Minimization with respect to x can be
performed, for example, using the separable paraboloid surrogate method
[101]. This is the method used in the iterative dictionary-based reconstruc-
tion method proposed in [339]. One problem with this approach is that
it requires access to individual elements of the projection matrix A. For
large 3D images this is impractical because the matrix A is too large to be
saved in the computer memory and with standard implementations of this
matrix it is not easy to access individual elements [152]. Another approach
to solving the minimization with respect to x is to use the conjugate gra-
dient method, as suggested in [305]. Another potential challenge in using
the iterative reconstruction method proposed in Equation (6.8) is the choice
of the regularization parameter. In general, the choice of the regulariza-
tion parameter is one of the critical aspects of regularized inverse problems
[8]. In most dictionary-based iterative reconstruction algorithms that have
been proposed for CT, this issue has not been properly addressed and the
regularization parameter has been selected empirically [305, 308, 339].
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Chapter 7

Two-Level Dictionary for
Fast CT Image Denoising
and Restoration

7.1 Introduction

As explained in Section 2.1.3, one of the major disadvantages of learned
overcomplete dictionaries is that they are much more computationally costly
than analytical dictionaries. Specifically, obtaining the sparse representation
of a signal in these overcomplete and unstructured dictionaries requires solv-
ing an optimization problem. Denoting the dictionary with D, the sparse
representation γ of a signal x in D will require solving:

minimize ‖γ‖0 subject to: ‖x−Dγ‖22 ≤ ε (7.1)

where ε depends on the noise variance. This problem is typically solved
by either using a greedy method such as the orthogonal matching pursuit
(OMP) or by a convex relaxation of the `0 norm to `1 norm and using
methods such as the basis pursuit [317–319].

The processing of large 3D images, in particular, is computationally
highly intensive because the number and dimensionality of blocks are very
high. Greedy methods, which are the focus of this chapter, may yield very
sub-optimal results because they choose the dictionary atoms one at a time.

In this chapter, we propose a structured dictionary for sparse represen-
tation of large signals. The proposed dictionary structure will speed up the
sparse coding by allowing multiple atoms to be selected in each iteration.
Moreover, by structuring the dictionary atoms into clusters, the proposed
dictionary structure will enable us to learn and effectively use a larger num-
ber of atoms, increasing the expressive power of the dictionary. In summary,
the proposed dictionary has two levels. The first level consists of an off-the-
shelf orthonormal basis while the second level consists of learned atoms that
are adapted to the signal class of interest. The signal is first decomposed in
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the first-level dictionary. Since the first-level dictionary is orthonormal, this
decomposition can be computed very efficiently. The decomposition in the
first-level dictionary is used to find the sparse representation of the signal
in the second-level dictionary, which consists of learned atoms. Therefore,
the proposed dictionary structure aims at combining the speed of analytical
dictionaries with the flexibility and representational power of overcomplete
dictionaries.

We will apply the proposed dictionary structure for removing noise and
ring artifacts from CT images. Unlike the streak artifact that we consid-
ered in Chapter 6, the noise and ring artifacts considered in this chapter
have a very different shape than the genuine image features. Therefore, our
approach to removing noise and ring artifacts in this chapter follows the
basic dictionary-based denoising method that we described in Section 2.1.3.
In other words, we assume that the true image features will have a sparse
representation in dictionaries trained on clean artifact-free images, whereas
noise and ring artifacts will not have a sparse representation in such dictio-
naries. Therefore, sparse estimation of image blocks in a dictionary learned
from clean images should lead to the suppression of noise and ring artifacts.

7.2 The proposed algorithm

We denote the image with x. We extract blocks of size 83 from this image
for processing. As is commonly done in dictionary-based image processing,
we vectorize each extracted block and refer to each vectorized block as a
“signal”. We also denote by X ∈ R512×N the matrix that contains the
vectorized blocks as its columns, with N being the total number of blocks.
Our choice of block size of 83 is to a large degree arbitrary and we made this
choice only to simplify the presentation of the proposed methods.

We propose a structured dictionary that consists of two levels. The top
level consists of a fixed orthonormal basis. To build this basis, we begin
with a 3D DCT basis of size 4 × 4 × 4 and upsample it by a factor of 2 in
each direction. The resulting dictionary will be still orthonormal, although
it will not be a basis because there will be only 64 basis vectors that cannot
span the space of R512. The second level consists of atoms that are learned
from training data as will be explained below. Figure 7.1 shows a schematic
of the proposed structured dictionary. We denote the top level dictionary
by Du and the second level dictionary by Dl. Each atom in Dl is grouped
under one of the atoms in Du that has the smallest Euclidean distance with
it. We write Dl(i) ∈ Du(j) to indicate that the atom i in Dl is grouped
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Figure 7.1: A schematic representation of the proposed dictionary structure.
The top level dictionary, Du, is an orthonormal basis such that the decom-
position of a signal in Du can be computed very efficiently. The second-level
dictionary, Dl, contains atoms that are learned from training data. The goal
is to find the sparse representation of a test signal in terms of atoms from
Dl. The first-level dictionary Du is used as a guide for selecting the most
informative atoms from Dl.

under atom j in Du.
To explain the rationale behind the proposed dictionary structure, we

must note that the most computationally demanding step in greedy sparse
coding algorithms is the identification of the most informative dictionary
atom. In each iteration of the standard greedy algorithms, such as OMP
presented in Algorithm 3, the inner product of the residual and every atom in
the dictionary is computed and the atom that has the largest inner product
is identified and added to the support (we assume that all dictionary atoms
have equal norms). This has to be performed in a straight-forward fashion
because the learned dictionary has no structure and there is no fast algorithm
for computing the coefficients. Moreover, the number of atoms in learned
overcomplete dictionaries is usually very large (usually at least twice the
length of the signal). Therefore, this step can be very computationally
demanding. This is especially the case when the length of the signal is
large, such as in 3D image processing.

As mentioned above, in the proposed two-level dictionary the learned
atoms are in Dl, which is the second level. Therefore, the goal is to find
the sparse representation of the signal in Dl. The first-level dictionary, Du,
is used as an aid in identifying those atoms in Dl that can potentially be
useful in sparse coding of the signal. Algorithm 4 shows how the sparse
representation of a signal x in Dl is computed.

In each iteration of the algorithm, we first apply Du on the residual and
identify the s largest coefficients. These are the s atoms in the orthonormal
dictionary Du that are most correlated with the signal residual. For each
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input : Dictionary D, the signal x, ε
output: c, sparse representation coefficient of x in D
r = x
c = 0
I = {}
while ‖r‖2F > ε do

k̂ = argmax k |〈r,Dk〉|
I = I ∪ k̂
c = (DT

I DI)
−1DT

I x
r = x−DIc

end
Algorithm 3: Greedy sparse coding of signal x in dictionary D using the
orthogonal matching pursuit (OMP) algorithm.

of these s atoms in Du, we separately search the atoms in Dl that are
grouped under them and find the atom most correlated with the residual.
These atoms are then added to the set of atoms that have been found in the
previous iterations to update the support of the signal. The signal is then
projected onto the space spanned by these atoms. Finally, the representation
is pruned to the s largest coefficients (in magnitude). This process can be
repeated for a predefined number of times or until the norm of the residual
falls below a threshold. If the sparsity level s is known, the loop may even
be performed only once because s atoms would have been already selected
in the first iteration.

So far we have assumed that we know the dictionary Dl. In practice,
this dictionary must be learned from the training data. To learn Dl, we
use the K-SVD algorithm [2] that we described in Section 2.1.2, with slight
modifications. The difference between our approach and K-SVD is that for
the sparse coding step we use Algorithm 4. In addition, after updating the
dictionary atoms in each iteration, we cluster them under Du by assigning
each learned atom to the closest atom in Du (in terms of the Euclidean
distance). Note that atoms with the smallest Euclidean distance are also
atoms with the largest inner product because atoms in Du and Dl have unit
norms. We then perform a pruning step on the dictionary atoms. We prune
each group of atoms (i.e., all atoms grouped under one of the atoms in Du)
by computing the inner product between all pairs of atoms in that group
and eliminating one of the atoms in each pair that have an inner product
more than 0.95. We also remove atoms that are used by less than a small
fraction (p) of the training signals, where we usually choose p to be between
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7.2. The proposed algorithm

input : Dictionaries Du and Dl and the signal x, sparsity level s
output: γ, vector of sparse representation coefficients of x in Dl

r = x
I = {}
γ = 0
while ||r||22 > ε do

w = DT
u r

J = supp(ws)
K = {}
for j ∈ J do

k̂ = argmax k |〈Dl(k), r〉| Dl(k) ∈ Du(j)
K = K ∪ k̂

end
I = K ∪ supp(γ)
β|I = ([Dl]

T
I [Dl]I)

−1[Dl]
T
I x

β|Ic = 0
γ = βs
r = x−Dlγ

end
Algorithm 4: Algorithm for greedy sparse coding in the two-level dic-
tionary. We use us to denote a vector u restricted to its s largest (in
magnitude) elements. In other words, us is equal to u at the location of
the s largest components of u and zero elsewhere. We write u|I to denote
vector u restricted to indices in the set I, i.e., u|I(i) = u(i) for all i ∈ I
and u|I(i) = 0 for all i ∈ Ic. For a matrix D we write [D]K to denote
this matrix restricted to its columns indexed by K. Also, supp(u) denotes
the support of u, which is the set of indices of its non-zero elements. We
borrow these notations from [319].
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10−3 and 10−2.

7.3 Results and discussion

We apply the proposed algorithm for denoising and restoration of FDK-
reconstructed images. We compare the proposed algorithm with the K-
SVD denoising algorithm [100] which has also been applied for denois-
ing/restoration of CT images [60]. For both the proposed algorithm and
K-SVD denoising, we use the simple one-step denoising method that we
described in Section 2.1.3.

7.3.1 Denoising

Figure 7.2 shows the performance of our algorithm and K-SVD denoising
on noisy images of a brain phantom. This phantom was obtained from the
BrainWeb database [63]. The noisy image was reconstructed from projec-
tions simulated with incident photon number of 105 and assuming additive
Gaussian noise with a standard deviation of 100. From Figure 7.2, the pro-
posed algorithm seems to have resulted in better denoising than K-SVD.
For an objective comparison, in Table 7.1 we have shown the RMSE, SSIM,
CNR, and computational time for two different dictionary sizes.

Dictionary size= 1024 Dictionary size= 4096
Proposed
algorithm

K-SVD
denoising

Proposed
algorithm

K-SVD
denoising

RMSE 0.067 0.067 0.061 0.066
SSIM 0.763 0.762 0.781 0.760
CNR 16.1 16.0 16.5 15.9
time (h) 0.11 0.20 0.19 0.66

Table 7.1: Denoising of the FDK-reconstructed image of a brain phantom
with the proposed two-level dictionary and K-SVD denoising.

The proposed algorithm has achieved comparable or better results than
K-SVD, while having a shorter computational time as well. Increasing the
dictionary size from 1024 to 4096 (that is, increasing the degree of over-
completeness from 2 to 8) has improved the performance of the proposed
algorithm, but it has had little influence on the performance of the K-SVD
denoising. We think that this is because the clustering of the atoms in the
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7.3. Results and discussion

Figure 7.2: Visual comparison of the proposed algorithm and K-SVD de-
noising on denoising of brain phantom images. (a) the true phantom, (b)
the noisy image, (c) denoised with K-SVD denoising, (d) denoised with the
proposed algorithm.

proposed dictionary structure allows much larger number of atoms to be
learned and effectively used during dictionary deployment.

We also applied the proposed algorithm for removing noise from a series
of 3D micro-CT images. Figure 7.3 shows a slice from the noisy image of
a rat and the images denoised with the proposed algorithm and K-SVD
denoising. For a quantitative comparison of the proposed algorithm and
K-SVD denoising, in Table 7.2 we have shown the RMSE, SSIM, CNR, and
the computation time for denoising of a rat image. The values of RMSE and
SSIM were computed by comparing the images with a reference image, also
shown in Figure 7.3, that was reconstructed with 25 iterations of MFISTA.
The proposed algorithm has achieved a slightly better image quality while
reducing the computational time by approximately a factor of 3.

7.3.2 Restoration

We applied the proposed algorithm for removing ring artifacts from a series
of 3D micro-CT images. The images used in this section contain substantial

154



7.3. Results and discussion

Figure 7.3: Visual comparison of the proposed algorithm and K-SVD de-
noising on noisy rat images. (a) the reference image, (b) the noisy image, (c)
denoised with K-SVD denoising, (d) denoised with the proposed algorithm.

amounts of ring artifacts that are caused by detector saturation. We show
some of our results as figures. Because we are unable to reconstruct high-
quality reference images in this experiment, we cannot provide a quantitative
evaluation.

Figure 7.4 shows some of our results from this experiment. The dic-
tionary is learned from a set of artifact-free training images. This learned
dictionary is then used for processing of images with ring artifacts. The ra-
tionale is simply that the learned dictionary will be adapted to representing
the image features and not the ring artifacts. Therefore, sparse represen-
tation of image blocks in the dictionary will lead to the suppression of the
artifacts. As can be seen in Figure 7.4, the proposed algorithm has resulted
in a substantial reduction of artifacts. In general, we observed that the
performance of the proposed algorithm in reducing these these artifacts is
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Proposed algorithm K-SVD Denoising

RMSE 0.0140 0.0144
SSIM 0.770 0.770
CNR 22.6 22.4
time (h) 1.3 3.4

Table 7.2: Denoising of the FDK-reconstructed image of a rat from real
micro-CT scan with the proposed two-level dictionary and K-SVD denoising.

slightly better than K-SVD, while being at least twice faster.
We should emphasize that the observed success of this simple strategy

in suppressing the ring artifacts is because of the shape of these artifacts.
Specifically, these artifacts have different shapes than the genuine image fea-
tures. Because we learn the dictionaries from clean (artifact-free) training
images, the dictionary atoms are adapted to representing the genuine im-
age features but they cannot represent the ring artifacts as well. Therefore,
sparse representation of image blocks in these dictionaries (which is equiv-
alent to shrinkage/thresholding of the coefficients) leads to suppression of
the artifacts. If the artifacts were similar in shape to the genuine image
features, this simple strategy would probably not be as effective.

There are two parameters that could impact the performance of the pro-
posed algorithm in suppression of ring artifacts. One of these parameters
is the dictionary size. As we saw from Table 7.1, compared with an un-
structured dictionary, the proposed structured dictionary has the potential
to effectively learn and use a larger number of atoms for the denoising task.
We would like to know how the dictionary size may influence the perfor-
mance of the proposed algorithm for artifact suppression. Another very
important setting is the sparsity level, i.e., the number of dictionary atoms
used to represent each of the image blocks. The sparsity has been denoted
with s in Algorithm 4.

In Figure 7.5 we have shown the performance of the proposed algorithm
for two different dictionary sizes (1024 and 4096) and three different sparsity
levels (2, 4, and 8). The results show a very slight improvement in the quality
of the resulting images with a dictionary of 4096 atoms, compared with a
dictionary with 1024 atoms. The sparsity level has a more significant effect
on the resulting image quality. As expected, smaller sparsity levels have led
to a stronger artifact suppression because a smaller number of atoms are used
in representing each image block and, hence, artifacts have a smaller chance
of being represented. On the other hand, this also results in a blurring of

156



7.3. Results and discussion

Figure 7.4: (a) A rat image with strong ring artifacts, (b) the same image
after being processed with a standard dictionary, (c) the same image after
being processed with the proposed algorithm.

true image features.
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7.3. Results and discussion

Figure 7.5: Effect of dictionary size and sparsity level on the performance
of the two-level dictionary for suppressing ring artifacts. (a) the original
artifact-full image. The second row shows the processed images with a
dictionary of 1024 atoms. The third row shows the processed images with a
dictionary of 4096 atoms. The sparsity levels are shown on each image.
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Chapter 8

TV-Regularized Iterative
Reconstruction

8.1 Introduction

8.1.1 Motivation and background

When the number of CT projection measurements is small and/or the mea-
surements are very noisy, statistical and iterative reconstruction methods
can lead to a much higher image quality compared to analytical reconstruc-
tion methods. Therefore, statistical and iterative methods can reduce the
amount of radiation used for imaging. Despite their high computational
requirements, iterative reconstruction methods have received increasing at-
tention in recent years. This revival of interest is due to several factors
including increased awareness of the health risks associated with exposure
to radiation, availability of faster computers, and algorithmic advancements.
In recent years, significant progress has been made in the development of CT
reconstruction algorithms. State-of-the-art CT reconstruction methods rely
on effective models of the image and use efficient optimization methods such
as accelerated first-order methods and variable-splitting algorithms. These
methods have led to very promising results in reconstructing high-quality
images from undersampled and noisy measurements [61, 160, 240, 251, 263].

Even though there has been significant progress in reducing the number
of measurements required for high-quality image reconstruction, the long
computational times can still be a major limiting factor in the adoption of
iterative algorithms in practice. Although new hardware options such as
GPU offer significant speedups, the size and resolution of the reconstructed
images also continue to grow and many clinical applications demand recon-
struction of high-quality images in very short times. Therefore, there is a
great need for algorithms that can converge to a high-quality image in a
small number of iterations. In this chapter, we propose a reconstruction
algorithm based on a new class of stochastic gradient descent methods. The
basic stochastic gradient descent method has been widely used in various
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applications in signal processing and machine learning for decades. How-
ever, it has a poor theoretical convergence rate and in practice it usually
fails to converge to an accurate solution. In recent years, new stochastic
gradient descent algorithms that overcome these shortcomings have been
proposed. We will review some of these algorithmic developments and pro-
pose an algorithm for image reconstruction for cone-beam CT. We will apply
our algorithm on simulated and real cone-beam projection data and compare
it with some of the state-of-the-art reconstruction algorithms.

8.1.2 Formulation of the problem

We consider a linear model for CT projection measurements:

ŷ = Âx+ v (8.1)

where Â represents the projection matrix, ŷ denotes the projection measure-
ments, x is the unknown image to be estimated, and v is the measurement
noise.

As mentioned in Section 1.2, the noise, v, in the sinogram (i.e., after
the log transformation) is very close to a Gaussian with zero mean and a
signal-dependent variance, σ2

i ∝ exp(ȳi), where ȳi is the expected value of
the sinogram at detector i. Therefore, following the maximum-likelihood
principle, it is natural to use a weighted least-squares cost function of the
following form:

F (x) =
1

2
‖Âx− ŷ‖2W =

1

2
(Âx− ŷ)TW (Âx− ŷ) (8.2)

where W is a diagonal matrix whose diagonal elements are proportional to
the inverse of the measurement variances, σ2

i . To simplify the notations, we
define A = W 1/2Â and y = W 1/2ŷ so as to transform the cost function (8.2)
into a standard least-squares cost function:

F (x) =
1

2
‖Ax− y‖22 (8.3)

It should be noted that the weight matrix W depends on the mean sino-
gram data, ȳ, as shown in Equation (1.4), but ȳ is not available in practice
because only one sinogram is measured. However, we can use the knowl-
edge that the sinogram is always smooth and slowly-varying. Therefore, we
smooth the measured sinogram and use it for computing the weights W .

Because the inverse problem of estimating x from the measurements y
is ill-posed, it is common to add a regularization term to F (x). Here we
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use a total variation regularizer and also write F (x) as an average over the
projection views. The resulting composite cost function is as follows:

Φ(x) =
1

n

n∑
i=1

1

2
‖Aix− yi‖22 + λTV(x) (8.4)

where n represents the number of projection views and λ is the regular-
ization parameter. Clearly, yi denotes the vector of measurements of the
ith projection view and Ai denotes the sub-matrix of A formed by keeping
only those rows that correspond to the measurements in yi. We will denote
the measurement inconsistency term for the ith projection view by fi, i.e.,
fi(x) = 1

2‖Aix− yi‖
2
2.

The algorithm proposed in this chapter makes use of the gradient of
F and the gradient of the component functions, fi. The gradient of the
complete measurement inconsistency term in Equation (8.4) is:

∇F (x) =
1

n
AT (Ax− y) (8.5)

Similarly, the gradient of a component function, fi, is:

∇fi(x) = ATi (Aix− yi) (8.6)

The gradient descent method for minimizing F (x) iteratively performs
the following update:

xk+1 = xk − αk∇F (xk) (8.7)

where αk is the step size.
To deal with the non-smooth regularization term, we use the proximal-

gradient method [66, 67], which is an extension of gradient descent method
in the following sense. It is easy to show that the update in (8.7) is equivalent
to the following problem:

xk+1 = arg min
x

{
F (xk) +∇F (xk)T (x− xk) +

1

2αk
‖x− xk‖22

}
(8.8)

where the expression being minimized is a quadratic approximation to F (x)
in the neighborhood of xk [43]. The proximal gradient methods account for
the non-smooth regularization term (TV(x) in our case) by simply adding
it to this approximation:

xk+1 = arg min
x

{
F (xk) +∇F (xk)T (x− xk) +

1

2αk
‖x− xk‖22 + TV(x)

}
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The corresponding update rule for the above problem is:

xk+1 = proxαkTV

(
xk − αk∇F (xk)

)
(8.9)

where the proximal operator or proximal map is defined as:

proxTV(x) = arg min
u

{
1

2
‖u− x‖22 + TV(u)

}
(8.10)

In this chapter, we use the algorithm proposed in [46] for solving the
proximal operation in (8.10). This step does not have to be solved to a great
accuracy. In our experience, one to three iterations of the algorithm in [46]
are sufficient for fast convergence of the algorithm proposed in this chapter.
Theoretically, it has been proven that if the error in the computation of
the proximal mapping decreases gradually, both the basic proximal gradient
method and the accelerated proximal gradient method achieve the same
convergence rate as in the error-free case [284].

Two properties of the objective function that are particularly important
to the performance of first-order methods are Lipschitz continuity of the
gradient and strong convexity. Function F (x) is said to have a Lipschitz-
continuous gradient if

‖∇F (x)−∇F (y)‖2 ≤ L‖x− y‖2 ∀x, y ∈ dom(F ) (8.11)

for some constant L. It is said to be strongly convex with parameter γ if

F (y) ≥ F (x) +∇F (x)T (y − x) +
γ

2
‖x− y‖22 ∀x, y ∈ dom(F ) (8.12)

For F (x) defined as (8.3), L and γ are equal, respectively, to the largest
and smallest eigenvalues of ATA, which can be found easily using power
methods [118]. Therefore, ∇F (x) and ∇fi(x) are Lipschitz continuous and
we will denote the Lipschitz constant of ∇fi(x) with Li. However, they are
not strongly convex because A (and therefore all Ai) have more columns
than rows; therefore γ = 0.

8.1.3 Stochastic gradient descent method

In many signal processing and machine learning problems, we are interested
in finding a minimizer of the sum (or the average) of a large number of
functions or the sum (or the average) of a function over a large number
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of training examples. An example is empirical risk minimization, which is
widely encountered in machine learning problems. In these applications, the
objective function F (x) can be written in terms of functions fi(x):

F (x) =
1

n

n∑
i=1

fi(x) (8.13)

The standard (full) gradient descent (FGD) method for minimizing F (x)
suggests an iteration of the form:

xk+1 = xk − αk∇F (xk) = xk − αk
1

n

n∑
i=1

∇fi(xk), (8.14)

where αk is the step size. The problem is that computing the full gradient
is usually very costly. On the other hand, there is usually a large amount
of correlation between the measurements. This implies that computation of
the full gradient is not necessary to make adequate progress. Instead, the
descent direction suggested by a small subset of the component functions,
{fi, i = 1 : n}, can lead to good progress. Because computing ∇fi is n
times faster than computing ∇F (x), this can be of significant practical value
when n is large, which is the case in many problems in machine learning and
signal processing. Image reconstruction in CT also fits this model very well.
Computing the gradients as shown in Equation (8.5) involves forward and
back-projection operations, which are the most expensive operations in CT
reconstruction. Also, the number of projections used for reconstruction is
usually very large (several tens or hundreds) and there is a large amount
of correlation between the measurements in different projection views. This
has long been recognized by researchers working on CT reconstruction. The
method of ordered subsets, which has been used to accelerate many of the
standard CT reconstruction algorithms, is based on this idea [104, 338, 360].

Among the standard methods for minimizing a function like (8.13) is the
stochastic gradient descent (SGD) method. SGD computes an update direc-
tion based on the gradient of one of the component functions, fi. Therefore,
each iteration of SGD has the following form:

xk+1 = xk − αk∇fik(xk) (8.15)

where the index ik is chosen from among the set {1, ..., n} based on some
probability distribution. The computational cost of each iteration of SGD
is 1/n that of FGD. However, although the expected value of the stochastic
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gradient directions, ∇fi(x), is equal to the full gradient, ∇F (x), their vari-
ance is very high. As a result, the convergence rate of SGD is much worse
than that of FGD. Specifically, for smooth functions the convergence rate of
FGD is O(1/k) [236], which can be improved to O(1/k2) using acceleration
methods [18, 235]. This O(1/k2) convergence rate is known to be optimal,
meaning that no first-order method can achieve a faster convergence [236].
On the other hand, the optimal convergence rate of SGD is O(1/

√
k) [233].

Furthermore, unlike FGD, the convergence rate of SGD does not improve
when the objective function has Lipschitz continuous gradient [173]. This
means that SGD does not exploit this important property, which is satisfied
by the measurement misfit term in CT (8.3). In practice, the basic SGD
algorithm has a very fast initial convergence speed and is a good method
for obtaining rough solutions to large-scale problems. However, obtaining
an accurate solution with SGD will require a very large number of iterations
and will demand that the step size be gradually reduced.

As mentioned above, the difference in the convergence rates of FGD and
SGD is due to the fact that the variance of the SGD directions does not di-
minish as the signal estimate gets closer to a solution. There has been much
research on improving the convergence behavior of the basic SGD algorithm
and a complete review of this immense literature is beyond the limitations
of this dissertation. Here, we mention some of the central ideas and main
approaches. A well-known approach to reducing the effect of large variance
of SGD directions is to use diminishing step sizes. There are various guide-
lines on how to gradually reduce the step size. Common choices include
exponential decay (αk = α0a

k) and inverse decay (αk = α0/(1 + aα0k))
[10, 31]. The problem with this approach is that it requires careful tuning of
the hyper-parameters (α0 and a) and it can only achieve a sublinear conver-
gence rate [26, 296]. Another natural approach to reducing the variance is
averaging. Different studies have used averaging of the gradient directions
(∇fik(xk)), averaging of the signal estimates (xk), or a combination of the
two [128, 238, 260, 288, 335]. In general, averaging will lead to faster conver-
gence rates and increased robustness of the convergence rate to the selection
of the step size. However, the improvement in the convergence speed ob-
tained by averaging is usually small. Some algorithms start by performing
simple SGD updates and gradually increase the number of functions involved
in the computation of the gradient directions so that the update directions
gradually approach the full gradient descent directions. Examples of these
type of methods, which are called hybrid methods, can be found in [25, 109].
With careful selection of the step size and batch size, these algorithms can
significantly improve the basic SGD method. However, these methods do
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not achieve the convergence rate of variance-reduced SGD algorithms that
we will describe below. Some studies have suggested SGD methods with
momentum [320]. In these algorithms, the SGD update in (8.15) is aug-
mented with a multiple of the previous update direction(s). However, these
momentum methods still require diminishing step sizes and achieve a small
improvement over the basic SGD algorithm.

8.1.4 Variance-reduced stochastic gradient descent

Although the modified SGD algorithms mentioned above can improve the
basic SGD method, our focus here is on a new class of SGD algorithms that
have been proposed very recently. The core idea in these methods is to
keep a copy of the full gradient direction or copies of the stochastic gradient
directions and use them in building the update directions. With this trick,
these methods achieve a linear convergence rate on strongly convex func-
tions. On smooth but not strongly convex functions, they achieve O(1/k)
convergence, which is a dramatic improvement over the O(1/

√
k) conver-

gence rate of the basic SGD. To the best of our knowledge, the first such
algorithm was the stochastic average gradient (SAG) algorithm proposed in
[177]. In our notation, the update suggested by SAG is as follows:

xk+1 = xk − αk
(
∇fik(xk)−∇fik(x̃) +∇F (x̃)

)
(8.16)

where x̃ is an old signal estimate for which we have stored the stochastic
gradient directions {∇fi(x̃), i = 1 : n}. Algorithms such as SAG have
been shown to be very successful on a variety of machine learning problems
in recent years [79, 165, 206, 241]. The reason for the success of these
algorithms lies in the fact that as the signal estimate becomes closer to
the solution, the variance of the update direction approaches zero. This is
because as xk and x̃ approach the optimal point x∗, ∇F (x̃) → 0, by the
definition of optimality. Now, if ∇fi(xk)→ ∇fi(x∗) and ∇fi(x̃)→ ∇fi(x∗)
(which is the case if fis have Lipschitz-continuous gradients), then:

∇fi(xk)−∇fi(x̃) +∇F (x̃)→ 0 (8.17)

Rigorous convergence proofs can be found in the original papers. For 3D
CT, the problem with SAG and many similar algorithms that have been
proposed recently (e.g., [79, 206]) is that they require that the most recent
copies of all stochastic gradients, ∇fi(x), to be saved. For reconstruction
of a 500 × 500 × 500 image from 100 projections, this will require at least
5003×100×4 bytes = 50 GB of memory. Therefore, we suggest an algorithm
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that only requires the saving of the full gradient direction, ∇F (x̃). The
algorithm that we will propose is similar to the stochastic variance-reduced
gradient (SVRG) algorithm [148] which we present below in Algorithm 5.

Data: x0

Result: xJ

for j ← 1 to J do
x̃ = xj−1 ;
µ̃ = ∇F (x̃) ;
x0
j = x̃ ;

for k ← 1 to K do
select an index ik from among the set {1, ..., n} ;

xk+1
j = xkj − α(∇fik(xkj )−∇fik(x̃) + µ̃) ;

end
xj = xKj ;

end
Algorithm 5: SVRG algorithm [148].

The SVRG update is similar in form to the SAG update. The difference
is that, unlike SAG, SVRG does not store copies of every ∇fi(x). Instead,
only the full gradient, ∇F (x̃), is computed and stored. The price that one
pays, on a general problem, is that every iteration will require evaluation
of two SGD directions, ∇fik(xkj ) and ∇fik(x̃). However, as we will see
below, this is not the case in our problem because the gradient is a lin-
ear function. Computation of ∇F (x̃) is followed by a large number (K in
Algorithm 5) of variance-reduced SGD updates, after which the algorithm
recomputes ∇F (x̃) and the process repeats. As for SAG, the reason for
SVRG’s effectiveness lies in the fact that the variance of the update direc-
tion, ∇fik(xkj )−∇fik(x̃)+µ̃, is very low compared to the update direction of
the basic SGD method, especially as we get close to the solution. As a result,
SVRG can work with a constant and large step size α that does not need
tuning and it can achieve significantly faster convergence rates [148, 336].

SVRG and its proximal version [336] are among the state-of-the-art
variance-reduced SGD algorithms. One of the aspects of SVRG that later
algorithms have tried to improve upon is the frequency of computation of
the full gradient, ∇F (x̃). In the original SVRG algorithm presented in Algo-
rithm 5, the full gradient is computed after a fixed number of SGD iterations.
It is suggested that ∇F (x̃) be recomputed after two SGD passes through the
entire data, i.e., K = 2n in Algorithm 5 [148]. Therefore, the computation
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of the full gradient can account for up to 1/3 of the total computational cost
of the SVRG algorithm. A few studies have tried to reduce the frequency
of computation of the full gradient. The MixedGrad algorithm suggested in
[206] reduces the number of computations of ∇F (x̃) to O(log(K)), where K
is the number of SGD updates. MixedGrad is based on the assumption that
as the signal estimate becomes closer to the solution, ∇F (x̃) changes less
significantly and it needs to be updated less frequently. Theoretical analysis
shows that MixedGrad has a convergence rate similar to that of SVRG, while
reducing the number of ∇F (x̃) updates. Another strategy was suggested by
S2GD algorithm [166]. In S2GD, the number of SGD updates after each
computation of ∇F (x̃) is a random variable following a specially-devised
probability distribution function and it gradually increases as we approach
a solution.

Below, we will propose an algorithm for image reconstruction in CBCT.
The core iteration in our algorithm consists of a variance-reduced SGD up-
date similar to SVRG. The main differences between our proposed algorithm
and those described above include: (1) we suggest a heuristic strategy for
deciding when to update the full gradient, ∇F (x̃), and (2) our algorithm
gradually increases the batch size and transforms into a limited-memory
quasi-Newton method as the algorithm approaches a solution. In this sense,
the proposed algorithm is similar to the hybrid methods that we briefly
described above.

8.2 Methods

8.2.1 The proposed algorithm

Our proposed algorithm is presented below (Algorithm 6). In this algorithm,
we use subscripts for the indices of the main loop (that updates µ̃ = ∇F (x̃))
and superscripts for the indices of the inner loop (involving SGD-type up-
dates). To make the algorithm easy to follow, we have omitted some of the
details that we will explain here and in the next subsection.

Our algorithm starts by running through all fis and performing a simple
proximal SGD update for each fi. It has been shown that performing a
basic SGD update during the first run through the data leads to much faster
convergence than an SVRG-type update [285, 287, 336]. Also, at the end of
each round of SGD-type updates, we return a weighted average of the T + 1
latest signal estimates, rather than only the last one. The weighting scheme
that we use here is similar to those used in [172] and in our experiments we
set T ≈ n/10 where n is the number of projection views. Another necessary
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Data: x0, {Li, i = 1, ..., n} , M = 1
x0

1 = x0

for k ← 1 to n do
select ik ∈ {1, ..., n}
δ = ATik(Aikx

k−1
1 − yik)

xk1 = proxλTV

(
xk−1

1 − αk
Lik

δ
)

end

x̃ = 2
(T+1)(T+2)

∑n
k=n−T (k − n+ T + 1)xk1

µ̃ = 1
nA

T (Ax̃− y))
for j ← 2 to J do

x0
j = x̃

for k ← 1 to nmax do
δold = δ
select set Sk of size M from {1, ..., n}
δ = 1

M

∑
i∈Sk A

T
i Ai(x

k−1
j − x̃) + µ̃

if M ≥ 5 then
d = Hkδ

else
d = δ

end

xkj = proxλTV

(
xk−1
j − αk

L d
)

if 〈δ, δold〉 < 0 & (∆Φ)k < ε1 then
break

end

end

x̃ = 2
(T+1)(T+2)

∑n
k=n−T (k − n+ T + 1)xkj

µ̃ = 1
nA

T (Ax̃− y))
if ∆Φ < ε2 then

M = 2×M
end

end
Algorithm 6: The proposed algorithm. (Li: Lipschitz constants, n: the
number of projection views, M ; the batch size, λ: the regularization pa-
rameter, α: the step size, T : number of latest signal estimates that are av-
eraged to find the new signal estimate at the end of each round of stochastic
minimization loops, H: inverse Hessian estimate.
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modification is that (because our cost function includes the non-smooth TV
regularization term) we use proximal stochastic gradient steps instead of
plain stochastic gradient steps.

Unlike SVRG (and more recent algorithms such as MixedGrad) that use
a pre-set and fixed update frequency for ∇F (x̃), our proposed algorithm
determines when ∇F (x̃) needs to be updated on the fly. Specifically, we
recompute µ̃ = ∇F (x̃) only if both of the following conditions are satisfied:
(1) the inner product of two successive descent directions (δ) is negative
(i.e., the two successive stochastic gradient directions make an angle larger
than 90◦), which is commonly taken as a sign that the quality of the update
directions is poor, and (2) if the decrease in the objective function Φ is below
a certain threshold, ε1. Although Algorithm 6 shows that these conditions
are checked after every iteration of the inner loop, this is not necessary.
Instead, one can check these conditions after, e.g., every 10 iterations of the
inner loop. Moreover, the change in the objective function (∆Φ)k used in
this step does not have to include the complete measurement misfit term,
but only those fis that are involved in the current iteration, i.e. {fi : i ∈ Sk},
making the computation of (∆Φ)k very cheap.

The other main feature of the proposed algorithm is that it gradually
increases the batch size (the number of fi used to calculate the update direc-
tion). This modification puts our algorithm in the class of hybrid methods
that we mentioned above. As we explained, hybrid methods gradually in-
crease the batch size in order to reduce the variance of the update directions
as the algorithm approaches a solution. However, this is not our goal since
our algorithm already uses variance-reduced update directions. Our goal is
to try to exploit the curvature information to make faster progress towards
a solution. When the batch size (M) is larger than 4, we use a quasi-Newton
method to compute the update direction. This allows the algorithm to use
the curvature information as the algorithms gets closer to a solution. We
have shown this procedure with a simple notation, d = Hkδ, in the algo-
rithm, where Hk denotes the current inverse Hessian estimate. In fact, we
use the limited-memory BFGS algorithm [243]. This algorithm uses an it-
erative procedure to compute d that only involves vector multiplications.
When M is too small, the direction d generated by this procedure is poor.

The algorithm starts with a batch size of M = 1 and doubles the batch
size every time the reduction in the objective function, ∆Φ, falls below
a threshold, ε2. Unlike the (∆Φ)k used for deciding whether or not to
update µ̃ as explained above, the ∆Φ used here will include the full mea-
surement misfit term, but this will not require much extra computation
because the projection Ax̃ is already computed in the previous step. A
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hybrid deterministic-stochastic algorithm is proposed in [109], in which the
authors show that exponentially increasing the batch size after every pass
through the data leads to good theoretical and practical convergence rates.
However, in our experience with CBCT projection data, it is usually much
better to increase the batch size very slowly. In fact, in all our experiments
at least for three passes through the data the batch size remained M = 1.
This is perhaps because in our application n is much smaller than in most
machine learning applications.

8.2.2 Implementation details

Sampling.
Sampling refers to the strategy for selecting a function fi at each step

of the stochastic gradient descent algorithm. Cyclic and uniformly ran-
dom sampling are the simplest and most widely used strategies. When the
component functions fi have Lipschitz gradients, choosing fi with a proba-
bility proportional to its Lipschitz constant, Li, leads to better theoretical
and practical convergence [43, 336]. It has recently been shown that this
strategy is a good approximation to the optimal sampling strategy for the
basic SGD algorithm [232, 357]. In machine learning applications, an ef-
fective strategy is to divide the data into small clusters such that there is
low within-cluster variance and use a stratified sampling strategy [356]. This
last strategy is similar to a sampling technique that is commonly used in the
implementation of the ordered subsets method for CT reconstruction: it is
common to adopt subset orderings that lead to large angles between succes-
sive projection views used by the algorithm [130, 159]. The idea behind this
method is that two projections that have a small angular spacing between
them include much redundant information; therefore, convergence should
be faster if successive projections are far apart. We use this ordering for
the initial stage of the algorithm (which consists of ordinary SGD updates).
However, for the rest of the algorithm we use a purely random sampling in
which each projection is sampled with a probability proportional to its Lip-
schitz constant. In our experience, this leads to a slightly faster convergence
in practice. We only make sure that a projection view used in the previous
iteration is not sampled again in the current iteration.

Step size.
Standard step sizes for convex and strongly convex problems with Lips-

chitz gradient are 1/L and 2/(γ + L), respectively [43, 236]. For the initial
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stage of the proposed algorithm that involves simple SGD updates, we found
that a more aggressive step size of 2/L leads to faster convergence. For the
next iterations we use a step size of 1/L. However, as we mentioned above,
when the batch size, M , is larger than 4, our algorithm transforms into a
quasi-Newton method. When this happens, we need to perform a line search
to find a suitable step-size. We used a backtracking line search with an initial
step size of 2/L and Armijo rule [243]. Interestingly, our experience shows
that we do not need to perform this line search at every iteration because
the step size does not change much between iterations. In our implementa-
tion, we perform this line search after every 10 iterations of the inner loop.
Moreover, the objective function used in the line search does not have to
include the complete measurement misfit term, F (x), but only those fi(x)
that are in the current batch, making the line search much cheaper.

Parameters ε1 and ε2 determine, respectively, how often the full gradient
(µ̃ = ∇F (x̃)) is recomputed and how fast the batch size (M) grows. These
parameters are not fixed, but they are updated during the iteration of the
algorithm. In fact, they should both gradually decrease because they are
thresholds on the reduction in the objective function and this reduction
is larger in the early iterations. We have developed heuristic methods for
updating ε1 and ε2 that we explain here. Every time we start a round of
updates in the inner loop, i.e., k = 1, we compute the reduction (∆Φ)k and
set ε1 = (∆Φ)k/2. The informal justification for this choice is that when
we start the iteration of the inner loop we have a fresh µ̃ = ∇F (x̃) and,
therefore, the reduction in the objective function, (∆Φ)k, must be large.
With more inner-loop iterations, the current estimate xkj departs further
away from x̃ and, hence, µ̃ = ∇F (x̃) will be less useful. When the reduction
in the objective function is less than 50% of that in the beginning of the
inner loop, we will decide that µ̃ = ∇F (x̃) needs to be updated. For ε2 we
follow a similar heuristic. Specifically, at the end of each iteration of the
outer loop, we expect that the reduction in the objective function, ∆Φ, be
at least half of that of the previous iteration. If this is not the case, we
double the batch size.

Study on the implementation of the system matrix
The implementation of the system matrix A is of critical importance be-

cause it can greatly influence the performance of any iterative reconstruction
algorithm. As we briefly mentioned in Section 1.2, in theory the elements
of A represent the intersection lengths of rays with voxels. However, this
simplified view does not consider important factors such as the size of the
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detector elements. Moreover, it is computationally very intensive. There-
fore, several algorithms have been suggested for efficient implementation of
the system matrix for cone-beam CT. Because A is too large to be saved
in the computer memory, these algorithms implement multiplication with
A and AT , which in CT are referred to, respectively, as forward-projection
and back-projection.

In brief, these efficient implementations of the system matrix represent
the image using some form of voxel basis function and compute the system
matrix by calculating the convolution of the footprints of these basis func-
tions with the surfaces of the detectors. Let µ(−→x ) denote the continuous 3D
map of attenuation coefficients, which is a function of the spatial location
−→x . When discretized, µ(−→x ) can be written in the general form shown below:

µ(−→x ) =
∑
j

µjb(
−→x −−→xj) (8.18)

where b(−→x ) is called the basis function and µj is the attenuation coefficient at
location −→xj . Common types of basis functions include cubic and spherically-
symmetric function [185, 193, 221]. The convolution of the footprints of
these basis functions on the surfaces of the detectors is related to the values
of the elements of A.

We performed a detailed study in which we considered three different
implementations of the system matrix:

• The distance-driven algorithm proposed in [78].

• The separable-footprints algorithm [193].

• The algorithm proposed in [363] that uses Bessel functions of order 2
as the voxel basis function.

• In addition to the above state of the art algorithms, we implemented a
simple forward and back-projection algorithm that projected only the
center of each voxel on the detector plane.

The main results of our study are as follows [152].

• As expected, there is a trade-off between speed and accuracy. More
accurate implementations are also more computationally demanding.

• Fast convergence of iterative image reconstruction methods requires
accurate implementation of forward and back-projection operations,
involving a direct estimation of the convolution of the footprint of the
voxel basis function with the surfaces of the detectors.
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• Reconstruction of the images of low-contrast objects needs more ac-
curate implementation of the system matrix.

• In iterative image reconstruction, implementations of the system ma-
trix that have a decent level of accuracy lead to faster convergence
than implementations that are either inaccurate or too accurate. In
our experiments, the implementation based on cubic voxels with sep-
arable footprints [193] resulted in the fastest convergence of iterative
reconstruction algorithms. Therefore, we used this implementation in
all experiments reported in this chapter and in the rest of this disser-
tation.

8.2.3 Evaluation

We applied the proposed algorithms on sets of simulated and real data de-
scribed below and compared it with the Monotone Fast Iterative Shrinkage
Thresholding Algorithm (MFISTA)[17], Nesterov’s third method [234], a
Gradient-Projection-Barzilai-Borwein (GP-BB) algorithm as suggested in
[251], and also the proximal version of the original SVRG algorithm as de-
scribed in [336]. All algorithms were implemented in Matlab version R2012b
running on a Windows 7 PC with 32 GB of memory and 3.4 GHz Intel Core
i7 CPU.

Simulated data Two sets of scans with average incident photon counts
of N0 = 2 × 103 and N0 = 2 × 104 were simulated from a 3D Shepp-Logan
phantom of size 256× 256× 256 voxels with isotropic voxels of 0.1× 0.1×
0.1 mm3. We will refer to these scans as high-noise and low-noise simulated
scans, respectively. Each of these scans consisted of 180 projections between
0◦ and 360◦ with uniform angular spacing. A flat detector of 360×360 pixels
was considered. The distances from the source to the detector panel and to
the axis of rotation were assumed to be 450 mm and 400 mm, respectively,
and the distance between the centers of adjacent pixels of the detector panel
was assumed to be 0.113 mm.

We used the original image of the phantom for evaluating the quality
of the reconstructed images. We used 30 uniformly-spaced projections for
reconstruction with the proposed algorithm and other iterative algorithms.
We also reconstructed the image of the phantom with the FDK algorithm
both using 30 projections and using all 180 projections.
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Real data We used micro-CT scans of the physical phantom and of a dead
rat. Each scan consisted of 720 projections at 0.50◦ intervals. The tube
voltage, tube current, and exposure time were 70 kV, 32 mA, and 16 ms,
respectively, for both scans. We used the full set of 720 projections with the
FDK algorithm to reconstruct high-quality images of the phantom and of the
rat. We will call these high-quality images “the reference image” and regard
them as the true images of the physical phantom and the rat. We used
120 equally-spaced projections from the phantom and 120 equally-spaced
projections from the rat for reconstruction with the proposed algorithm and
other iterative algorithms.

8.3 Results

8.3.1 Simulated data

Figure 8.1 shows the plots of RMSE and the objective function as a func-
tion of CPU time for different reconstruction algorithms for high-noise and
low-noise simulated data. The proposed algorithm shows a much faster
convergence rate than other algorithms on both low-noise and high-noise
projection sets. In particular, the convergence rate of the proposed algo-
rithm is very fast in the initial iterations. In Table 8.1, we have summarized
some of the image quality criteria for images reconstructed using different
algorithms. The values in this table correspond to images reconstructed af-
ter 1000 s. The images reconstructed using the proposed algorithm have a
much higher quality criteria and are very close to or slightly better than the
images reconstructed from 180 projections using the FDK algorithm.

For a visual comparison, in Figure 8.2 we have shown a central slice and
a central profile through the images of the phantom reconstructed from the
high-noise projections using the proposed algorithm and MFISTA (which
performed best among the other algorithms on this data). The image recon-
structed by the proposed algorithm includes all of the important features of
the phantom with very little artifacts and is much superior to the MFISTA-
reconstructed image.

8.3.2 Micro-CT scan of the physical phantom

Figure 8.3 shows the plots of RMSE, SNR, CNR, and SSIM for reconstruc-
tion of the image of the physical phantom using different algorithms. The
horizontal axis is labeled as “iteration number”. Here, one iteration means
one forward-projection and one back-projection involving all n projection
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Figure 8.1: Evolution of the reconstruction error (RMSE) and the objective
function for reconstruction of the Shepp-Logan phantom. (a) RMSE, low-
noise projections; (b) RMSE, high-noise projections; (c) objective function,
low-noise projections; (d) objective function, high-noise projections.

views. We use this more convenient measure of computation time because
for large images the computational time is dominated by the time required
for forward and back-projection. For all iterative algorithms in this study,
forward and back-projection accounted for more than 90% of the compu-
tation time. The RMSE plots in Figure 8.3 indicate that the proposed
algorithm converges to the reference image much faster than the other algo-
rithms, particularly in the initial iterations. The plots of SNR, CNR, and
SSIM in Figure 8.3 show that the objective image quality criteria improve
much faster with the proposed algorithm than with the other algorithms. In
Table 8.2 we have summarized the values of some of the image quality mea-
sures after 30 iterations of different algorithms. The image reconstructed
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Pro-
posed

Prox-
SVRG

Nes-
terov

MFI-
STA

GP-
BB

FDK-
30

FDK-
180

Low-noise

SSIM 0.741 0.696 0.661 0.643 0.619 0.546 0.730

MI 0.642 0.555 0.524 0.506 0.488 0.426 0.683
CNR 5.13 4.14 3.86 3.88 3.78 3.27 5.49

High-noise

SSIM 0.710 0.600 0.561 0.564 0.463 0.335 0.701

MI 0.627 0.523 0.500 0.494 0.426 0.389 0.667
CNR 4.81 4.17 3.74 3.74 3.45 2.960 4.99

Table 8.1: Image quality criteria for the images of the Shepp-Logan phantom
reconstructed from 30 projections using different algorithms. The numbers
next to FDK show the number of projections used with that algorithm.

using the proposed algorithm has higher quality criteria than the images
reconstructed using all other algorithms and it is also superior to the image
reconstructed using FDK with 240 projections.

Proposed
algorithm

Prox-
SVRG

Nes-
terov

MFI-
STA

GP-
BB

FDK-
120

FDK-
240

SSIM 0.747 0.716 0.695 0.696 0.675 0.499 0.703
MI 0.593 0.564 0.540 0.532 0.493 0.370 0.528
CNR 24.0 23.6 23.6 23.5 23.0 17.0 23.3
SNR (dB) 20.9 20.4 20.2 20.2 20.3 18.0 20.1

Table 8.2: Performance comparison between different algorithms in recon-
struction of the image of the physical phantom from real data after 30 iter-
ations. The numbers next to FDK indicate the number of projections used
with that algorithm.

The phantom includes a set of fine coils that are ideal for visual assess-
ment of the spatial resolution in the reconstructed images. In Figure 8.4,
we have shown slices through two of these coils in the images reconstructed
using different algorithms. Compared with the images reconstructed by
Nesterov’s algorithm and Prox-SVRG, the image reconstructed by the pro-
posed algorithm seems to be much closer to the reference image. For a closer
comparison, in the same figure we have also plotted the difference between
the reference image and the images reconstructed with the proposed algo-

176



8.3. Results

Figure 8.2: (a) The central slice and (b) the central profile of the Shepp-
Logan phantom reconstructed using MFISTA; (c) the central slice and (d)
the central profile of the Shepp-Logan phantom reconstructed using the
proposed algorithm.

rithm and Nesterov’s algorithm along a profile through the center of one of
these coils. These plots clearly show that the image reconstructed using the
proposed algorithm is closer to the reference image.

8.3.3 Micro-CT scan of a rat

Figure 8.5 shows the plots of RMSE, SSIM, MI, and CNR for different
algorithms for reconstruction of the image of the rat. The general trends
observable in this figure are very similar to those in Figure 8.3. What is
most important to us is that the convergence of the image reconstructed
with the proposed algorithm to the reference image is very fast. Also, all
objective image quality measures improve much faster with the proposed
algorithm. Prox-SVRG algorithm also has a fast initial convergence rate
but falls behind the proposed algorithm with more iterations.

Table 8.3 summarizes some of the image quality criteria for the recon-
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Figure 8.3: Plots of RMSE, SSIM, CNR, and SNR for reconstruction of the
image of the physical phantom from real CBCT projections using different
algorithms.
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Figure 8.4: Slices through two of the coils in the images of the physical phan-
tom: (a) the reference image, (b) reconstructed using Nesterov’s method,
(c) reconstructed using Prox-SVRG, (d) reconstructed using the proposed
algorithm. The plots show the difference between the reference image and
the images reconstructed using (e) Nesterov’s method and (f) the proposed
method along the vertical line shown in the image of the coil in the reference
image.
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Figure 8.5: Plots of RMSE, SSIM, CNR, and MI for reconstruction of the
image of the rat from real CBCT projections using different algorithms.
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Proposed
algorithm

Prox-
SVRG

Nes-
terov MFISTA

GP-
BB

FDK-
120

FDK-
240

SSIM 0.761 0.732 0.719 0.706 0.675 0.459 0.708
MI 0.478 0.454 0.452 0.450 0.444 0.355 0.459
CNR 22.9 22.5 22.2 22.2 22.1 17.7 22.3

Table 8.3: Performance comparison between different algorithms in recon-
struction of the image of the rat after 30 iterations. The numbers next to
FDK indicate the number of projections used with that algorithm.

struction with different algorithms after 30 iterations. A comparison of the
numbers in this table shows that the image reconstructed by the proposed
algorithm has a higher quality than those reconstructed by the other algo-
rithms. The image reconstructed by the proposed algorithm also has higher
quality criteria than the image reconstructed with the FDK algorithm using
240 projections.

For a visual comparison, in Figure 8.6 we have shown a representative
slice from the images of the rat reconstructed by different algorithms. For
a better visual comparison between the images reconstructed with different
algorithms, we have selected two regions of interest (ROI) and shown them
in zoomed-in views with a narrower window of linear attenuation coefficient,
µ. The µ-window for the entire slice is [0, 0.55]. The ROI shown on the lower
left includes fat surrounded by soft tissue; the µ-window used for displaying
this ROI is [0.14, 0.22]. The ROI shown on the lower right includes bone
surrounded by soft tissue; the µ-window used for displaying this ROI is
[0.15, 0.50]. It is quite clear, especially from the ROI displayed on the lower
left, that the image reconstructed by the proposed algorithm has a higher
quality that those reconstructed by the other algorithms.

8.4 Discussion

A comparison of the plots of RMSE and the objective function for our exper-
iments with simulated and real data shows that the proposed algorithm has
a much faster convergence to the true or reference image than the other algo-
rithms considered in this study. Plots of the objective image quality criteria
show that the proposed algorithm recovers a high-quality image much faster
than the other algorithms. In the experiments with the simulated data, the
proposed algorithm was able to reconstruct the Shepp-Logan phantom to
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Figure 8.6: A representative slice of the image of the rat reconstructed
using different algorithms: (a) The reference image, (b) reconstructed by
Prox-SVRG, (c) reconstructed by Nesterov’s method, and (d) reconstructed
by the proposed algorithm. The zoomed-in views re-displayed with a narrow
window of linear attenuation coefficient correspond to the rectangular ROIs
shown on the reference image.

a high accuracy from undersampled and noisy measurements. The images
reconstructed by the proposed algorithm were superior to the images recon-
structed by other algorithms in terms of visual quality and all quantitative
criteria used in this study. The same was true for our experiments with the
real CBCT projections.

An important observation was the very fast convergence rate of the pro-
posed algorithm in the early iterations. Moreover, the algorithm maintained
a good convergence rate with more iterations. In reconstruction from real
CBCT projections, the number of iterations of the proposed algorithm to
achieve a certain RMSE was approximately 1/3 the number of iterations re-
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quired by the other algorithms, as can be seen in Figures 8.3 and 8.5. This
can be of high practical value in clinical applications where a fast image
recovery is highly desirable.

The Prox-SVRG algorithm was better than MFISTA, the Nesterov’s
method, and GP-BB, which are all among the best methods for image re-
construction in 3D CT. As shown in Figures 8.3 and 8.5, Prox-SVRG had a
good start but its convergence quickly slowed down. Our implementation of
Prox-SVRG in this study was identical to that suggested in [336]. We have
found that this simple algorithm can be significantly improved if we slightly
reduced the step size or the regularization parameter with iteration number.
Overall, the performance of our proposed algorithm and Prox-SVRG in this
study suggests that variance-reduced SGD methods can form the basis of
successful algorithms for image reconstruction in CT.

The value of the regularization parameter λ has a significant influence
on the performance of the proposed algorithm as well as the performance
of other algorithms considered in this chapter. In general inverse problems,
and in CT reconstruction in particular, sometimes a trial-and-error method
is used to find a proper value for λ [8, 251]. However, this can be a drawback
in practice. There are also systematic methods for determining λ, but most
of them are computationally very expensive or apply to a very limited class
of problems [102, 323]. A heuristic approach that we followed in this study
was to choose a trial value for λ, apply a small number (e.g., 3 to 5) of
proximal SGD updates and monitor the change in the values of the two
terms of the objective function, i.e., the measurement misfit term and the
total variation. To avoid excessive computational costs, we only look at the
change in one of the n components of the measurement misfit term. For
values of λ that are far from the proper range of values, one or both of the
two terms decrease very little. Only for a relatively short range of λ do both
terms decrease consistently and we use a value towards the lower end of this
range. Even though this approach requires trying several different value of
λ, for each value only a small number of proximal SGD updates are applied.
Therefore, a range of possible values for λ can be found with relatively little
effort. For the low-noise data simulated from the Shepp-Logan phantom, for
example, the identified range was [50, 700] and we chose a value of 100. For
Prox-SVRG we used the same λ that we used for the proposed algorithm.
For MFISTA, Nesterov’s method, and GP-BB we started with the value of
λ that we used for the proposed algorithm as explained above, but then
tried several larger and smaller values and chose the value that gave the
best reconstruction results.

In addition to the regularization parameter λ, the proposed algorithm
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includes other parameters that can affect its performance and the quality of
the reconstructed image. The two most important of these are the step size
(α) and the batch size (M). For the step size, we provided a description of
the available guidelines in Section 8.2.2. As we mentioned there, for the first
phase of the algorithm we use step sizes that are inversely proportional to
the Lipschitz constants, L, which is known to be the optimal step size [236],
and for the second phase of the algorithm we use a backtracking line search
for step size selection. Since these guidelines are based on sound theory, we
do not discuss tuning of the step size. Therefore, we focus on λ and M .

In order to study the effect of the choice of λ and M on the algorithm
performance, we conducted an experiment on the scan of a rat obtained
with the micro-CT scanner. For this scan, a lower tube voltage of 50 kV
was used and a 2-mm copper filter was also used to increase the noise level.
We used 240 equally-spaced projections from this scan. We applied the
proposed algorithm with three different values of λ ∈ {75, 150, 350} and
three different values of M ∈ {1, 4, 10}. Note that the proposed algorithm
gradually increases the batch size. Therefore, by M here we mean the
batch size at the start of the algorithm. The results of this experiment
are presented in Figures 8.7 and 8.8.

In Figure 8.7 we have shown plots of RMSE, CNR, and SSIM for differ-
ent values of λ and M . In Figure 8.8 we have shown a slice of the image
reconstructed with different parameter values. In both of these figures, we
have shown the result obtained with the Nesterove’s algorithm for compar-
ison. On this dataset, Nesterov’e method performed better than MFISTA
and GP-BB and was very close to Prox-SVRG. There are important con-
clusions that can be drawn from these figures. As expected, the visual and
objective quality of the image reconstructed by the proposed algorithm is
influenced by the choice of the parameters. The choice of the regularization
parameter (λ) affects the convergence behavior of the proposed algorithm
and the visual quality of the reconstructed image. A larger λ leads to a
smoother image with stronger denoising but a simultaneous blurring and re-
duction in the sharpness of the edges. On the other hand, a smaller λ leads
to a slower convergence in terms of RMSE and reconstruction of an image
that is in general rougher. In terms of the batch size (M) the conclusion is
more straightforward: using M = 1 always lead to the best result. As we ar-
gued earlier in this chapter, this is because the projection measurements for
different view angles contain much shared information and, hence, the gra-
dient computed based on the projection measurements from different view
angles are also highly correlated. Therefore, in the early iterations of the
algorithm, it is much more efficient to compute the update directions based
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Figure 8.7: Plots of RMSE, SSIM, and CNR for different settings of the
regularization parameter, λ, and the batch size at the start of the algorithm,
M . The legend for all plots is similar to the one shown on the top-left plot.

on the gradient computed from one projection. Notwithstanding these in-
fluences, it is interesting to note that the proposed algorithm still recovers a
high-quality image that is visually and quantitatively better than the image
reconstructed with the Nesterov’s algorithm for a relatively wide range of
parameter values.

As we mentioned above, the most computationally expensive part of the
proposed algorithm is the forward and back-projection operations, which
we have denoted with Ai and ATi . These operations accounted for approx-
imately 91% of the computational time. The second most computationally
expensive operation was the computation of the proximal operators, denoted
with proxλTV(.) in Algorithm 6, which accounted for approximately 5% of
the computational time. As we mentioned in Section 8.1.2, we used the
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Figure 8.8: Effect of the choice of the regularization parameter, λ, and the
batch size at the start of the algorithm, M , on the visual quality of the re-
constructed image of a rat. (a) The reference image, (b) FDK-reconstructed,
(c) reconstructed using Nesterov’s algorithm, and the images reconstructed
using the proposed algorithm with different parameter values: (d) λ = 75,
M = 1, (e) λ = 75, M = 4, (f) λ = 75, M = 10, (g) λ = 150, M = 1, (h)
λ = 150, M = 4, (i) λ = 150, M = 10, (j) λ = 350, M = 1, (k) λ = 350,
M = 4, (l) λ = 350, M = 10.
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Chambolle’s well-known algorithm [46] to compute the proximal operations.
Although a large number of iterations of this algorithm can be applied to
compute the proximal operation to a high accuracy, we have found that one
to three iterations are enough to give the proposed algorithm a good behav-
ior. This experience of ours agrees with the theoretical results developed
in [284]. The third most computationally expensive part of the proposed
algorithm was the application of the limited-memory BFGS algorithm to
find the update direction, the step denoted with d = Hkδ in Algorithm 6.
This computation accounted for approximately 2% of the algorithm time.
The rest of operations accounted for approximately 2% of the computational
time.

Most of the variance-reduced SGD algorithms proposed in recent years
focus on strongly convex functions or have much higher theoretical con-
vergence rates for strongly convex functions [79, 148, 165, 177]. As we
mentioned above, when the number of projection measurements is less than
the number of unknown voxels (which is almost always the case in sparse-
view reconstruction), the CT reconstruction problem is not strongly convex.
Nonetheless, our experimental results show that variance-reduced SGD al-
gorithms can lead to efficient CT reconstruction algorithms. It is an open
question whether the convergence rate can be improved if the CT recon-
struction problem is formulated as a strongly convex optimization problem.
A simple approach, also suggested in [206], is to add an `2 regularization
term to the objective function and gradually reduce the strength of this
regularization with iterations. We applied this idea to CT reconstruction
but did not obtain good results. An entirely different possible approach to
improving the algorithm proposed in this chapter is to use acceleration tech-
niques, which have been shown to work well with ordered-subsets method
for CT reconstruction in recent years [159, 161].
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Chapter 9

Iterative Reconstruction
with Nonlocal Regularization

9.1 Introduction

The results of Chapter 8 showed that variance-reduced stochastic gradient
descent (VR-SGD) algorithms are a very suitable optimization approach for
CT reconstruction. Not only they show very good convergence behavior,
they do not need manual tuning of the step size, unlike the basic SGD
methods. The algorithm proposed in Chapter 8 improved the basic VR-
SGD algorithm by gradually increasing the batch size and exploiting the
curvature of the cost function as the image estimate approached a solution.
The focus of this Chapter is on the problem regularization. In chapter
8 we relied on TV regularization, which has been used by many studies
on CT reconstruction in the past decade. Recent studies, however, have
shown that patch-based regularization methods can outperform TV-based
regularization methods in image reconstruction. In this chapter, we consider
a nonlocal patch-based regularization.

Because the problem of estimating the CT image from few-view and
noisy projections is ill-posed, it is critical to properly regularize the recon-
struction problem. Most of the published reconstruction algorithms in the
past decade have used smoothness-promoting or edge-preserving regulariza-
tion functions. These regularizers span a wide range of complexity, from
simple roughness penalties to non-convex regularizations terms. In general,
these regularizers encourage smooth or piecewise-constant solutions by pe-
nalizing jumps between neighboring pixels. Algorithms that are based on
such regularizers have been successful, and their success has contributed sig-
nificantly to the growing interest in iterative CT reconstruction. However,
CT images usually include fine and texture-like features that are not suitable
for reconstruction with these regularizers. Such features usually get blurred
or are poorly reconstructed with these algorithms.

As we saw in the review of the literature in Chapter 2, research in the
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past ten years has shown that nonlocal patch similarities can be used to
devise very powerful models for natural images. Nonlocal patch similarities
have been successfully exploited in various image processing tasks. These
models are well known for preserving fine image features such as textures
and low-contrast edges even in the presence of strong noise. This is because
the redundant information in similar image patches will help preserve gen-
uine image features even when these features are not very strong or when
the amount of noise is substantial. As we described in Sections 2.2 and 2.6.2,
nonlocal patch-based similarities have also been successfully used to regular-
ize various inverse problems including CT reconstruction. Let us consider
the linear model with Gaussian noise that we described in Section 8.1.2,
i.e., y = Ax + w. In this model, y is the vector of sinogram data, A is the
projection matrix, and w is the additive noise. To estimate x, it has been
suggested to minimize a cost function of the form:

F (x) =
1

2
‖Ax− y‖22 +RNL(x) (9.1)

where the regularization term, RNL(x), penalizes the difference between the
pixel values based on their patch similarity. Various formulations have been
proposed for RNL(x). For example, two common formulations are the fol-
lowing [114, 194]:

RNL-TV(x) =
∑
i

1

C(i)

∑
j∈Si

Ga(‖x[j]− x[i]‖) · |x(j)− x(i)|

RNL-H1(x) =
∑
i

1

C(i)

∑
j∈Si

Ga(‖x[j]− x[i]‖) · |x(j)− x(i)|2
(9.2)

In the above equations, C(i) is a normalization constant, Ga is usually a
Gaussian function with bandwidth a, and Si is usually a window around the
current pixel, x(i), and x[i] is a patch centered on x(i).

Minimization of the cost function in Equation (9.1) is challenging, mainly
because of the dependence of the patch similarity weights on the image x.
Most of the proposed algorithms find an approximate solution by computing
the weights from an initial image estimate [194] or by iteratively updating
the weights from the latest image estimate [229, 354]. Moreover, many differ-
ent approaches have been proposed for minimizing (9.1), including gradient
descent [194], proximal gradient methods [255], majorization-minimization
[348], graph-cuts methods [114], and Bregman methods [354].
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In general, algorithms that include regularization functions that are
based on nonlocal patch similarities have been reported to outperform algo-
rithms based on smoothness-promoting regularizations. However, many of
the proposed algorithms that use nonlocal patch-based regularization have
the following issues:

1. They are only suitable for small-scale problems. In general, patch-
based image processing algorithms are known to be very computa-
tionally intensive. This is especially the case for processing of large
3D images. Existing approaches for iteratively updating the patch
similarity-based weights will be very costly when applied on large 3D
images.

2. For the minimization of the measurement misfit term, most of the
proposed algorithms use slow methods such as gradient descent or
conjugate gradient descent [146, 154, 155, 202, 353]. Hence, most
of the proposed algorithms have been evaluated on small 2D images
[133, 194, 353].

3. Another limitation of almost all proposed algorithms is that they com-
pute the patch similarity weights from a small window around each
pixel. For large 3D images, this window should be very small to keep
the computations manageable. However, this is not a good practice
because there may be no similar patches in this window, while many
similar patches may exist in other parts of the image.

In this chapter, we suggest an iterative CT reconstruction algorithm
with nonlocal patch-based regularization that tries to address some of the
shortcomings mentioned above. Unlike previous algorithms that use patches
from a small window in the same image, we use patches from a high-quality
reference image. In this respect, our approach is similar to that in Chapter
5, where we used a low-noise sinogram for interpolating noisy undersampled
projections. Moreover, we use a stochastic algorithm to find a small number
of similar patches that can come from any location in this reference image.
For minimization of the cost function we use a VR-SGD method as we did
in Chapter 8.
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9.2 Methods

9.2.1 Problem formulation

We propose to estimate the unknown image x as a minimizer of the following
cost function:

F (x) =
1

n

n∑
i=1

1

2
‖Aix− yi‖22 +

λNL

2
‖x− xNL‖22 + λTVTV(x) (9.3)

We have written the measurement misfit term (the first of the three terms
in the above objective function) as an average over the projection views,
similar to our approach in Chapter 8. In this term, yi denotes the vector
of sinogram measurements in the ith projection view and Ai denotes the
projection matrix for that projection view angle. In the first regularization
term, xNL is an estimate of x that is computed from a high-quality refer-
ence image using a patch-based approach similar to NLM denoising. The
second regularization term is the total-variation of x. By using both types
of regularizations, we will be able to study the effects of these two types of
regularizations separately and jointly.

We compute xNL using the following equation, which is the standard
NLM-type formulation.

xNL(i) =
1

C(i)

∑
j∈Si

Ga(‖x[i]− xref[j]‖2F ) · xref(j) (9.4)

Therefore, the regularization function that we suggest is slightly different
from the more commonly used forms shown in Equation (9.2). Nonetheless,
the justification behind this regularization is the same. Indeed, at least one
study has used a similar regularization for CT reconstruction [202].

As mentioned above, in most previous studies the patch similarity weights
are computed either from an initial image estimate or from the latest image
estimate on the fly. Moreover, the set of patches used to regularize the value
of the ith pixel, denoted with Si in Equations (9.2) and (9.4), is usually all
patches in a small window around that pixel. The proposed algorithm is
different in both aspects as we explain below.

Firstly, we compute the patch similarity weights from a high-quality ref-
erence image, denoted with xref in Equation (9.4). Images reconstructed
from low-dose scans usually contain much noise and streaking artifacts.
Therefore, an initial image estimate, which is usually reconstructed using
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a filtered backprojection algorithm, will be a poor choice for computing the
patch similarities. One may expect that iteratively updating the patch sim-
ilarities from the latest image estimate will gradually improve the patch
similarity estimates. However, the opposite may happen because strong
artifacts in the early image estimates can result in poor patch similarity
estimates, further amplifying the artifacts with more iterations of the algo-
rithm [229]. This can be avoided by estimating the patch similarity weights
from a high-quality reference image.

Secondly, it is very likely that no patches similar to patch x[i] exist in
a small window around the pixel xref(i) (or pixel x(i), for that matter).
Therefore, instead of defining Si to be a window around pixel xref(i), we
define it to be the set of indices of k patches from the image xref that are
similar to the patch x[i]. These patches can be located anywhere in xref.
Therefore, for each pixel x(i), we need to find a set of k patches similar to
x[i] in xref. Because of the very large size of the image, we cannot hope to
find the k most similar patches. Therefore, we use a stochastic approach
based on the Generalized PatchMatch algorithm [13]. We described the
main steps of this algorithm in Section 5.2.1.

We follow the Generalized PatchMatch algorithm, except that we do not
use random initializations. Instead, we use a more informed initialization
that can lead to much better matches in the early iterations of the algorithm.
As mentioned above, for block matching we use a high-quality prior image
as the reference image, denoted with xref in Equation (9.4). This can be the
image of the same patient (in situations where a patient is scanned several
times) or of a different patient from a database. Let us denote with Si the
indices of the k patches in xref that are similar to x[i]. If the locations of
the organs in the reference image and the image being reconstructed have
not shifted much, one can initialize Si to a set of random patches in a small
window around xref(i). However, this will not be a good strategy if the
organs have shifted significantly between x and xref, or if x and xref are
images of two very different patients. In that case, we suggest finding initial
values for Sis using the following two steps. Figure 9.1 shows these steps.

1. Partition x and xref into non-overlapping blocks and run several itera-
tions of the Generalized PatchMatch to find a set of at least k matches
in xref for each (non-overlapping) block in x. Let us denote each of
these non-overlapping blocks of x with xNO[j] and the indices of the
set of matching blocks for xNO[j] with SNO(j).

This step will determine the overall mapping of the location of match-
ing features between x and xref.
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2. For each overlapping block in x, initialize Si with the help of the
findings of the above step. Suppose that the pixel x(i) falls in xNO[ik].
Then, we can initialize Si to be a set of random pixels in SNO(ik).
Alternatively, we can do a search in blocks pointed to by SNO(ik) to
find a set of matching blocks. Our experience shows that the two
approaches lead to comparable results. We used the latter approach
in the experiments reported in this chapter.

Note that because in this initialization approach (specifically, in step 1
above) we run the Generalized PatchMatch for non-overlapping patches, its
cost will be very low.

Figure 9.1: The proposed initialization for the Generalized PatchMatch al-
gorithm. Step 1: The source image (left) and the reference image (right)
are partitioned into non-overlapping blocks. For each block in the source
image, at least k matching blocks are found in the reference image. Step
2: for each block in the source image, k matching blocks are found in the
reference image with the help of the mapping discovered in Step 1. In this
simple illustration, 5 matching blocks are found in Step 1 and then k = 3
blocks are identified in Step 2.
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9.2.2 Optimization algorithm

We start by rewriting the proposed cost function in Equation (9.3) as:

F (x) = G(x) +R(x) (9.5)

Assuming that xNL is constant, the first term, G(x) = 1
n

∑n
i=1

1
2‖Aix −

yi‖22 + λNL
2 ‖x−xNL‖22, is convex and differentiable. The second term, R(x) =

λTVTV(x), is convex but non-differentiable. We would like to minimize the
proposed cost function using a proximal VR-SGD approach. To this end,
we rewrite the cost function as:

F (x) =
1

n

n∑
i=1

gi(x) +R(x)

=
1

n

n∑
i=1

(
1

2
‖Aix− yi‖22 +

λNL

2
‖x− xNL‖22

)
+ λTVTV(x)

(9.6)

We suggest Algorithm 7 for minimizing this cost function. The update
direction in this algorithm is very similar to the basic VR-SGD update
that we described in Chapter 8. The only difference is that we weight the
full gradient direction (µ̃) using the average of the Lipschitz constants, as
suggested in [336]. We use the algorithm proposed in [46] for computing the
proximal operation for the TV regularization term.

In Algorithm 7, Li denotes the Lipschitz constant of gi, which is equal to
λi + λNL, where λi is the largest eigenvalue of ATi Ai. Lmean = λmean + λNL

denotes the average of Lis, where λmean is the average of the λis, and α is the
step size. Let us also denote the strong convexity parameter of the whole cost
function, F (x), with µ. This means that for all x and y in the domain of F
we have F (x) ≥ F (y)+zT (x−y)+ µ

2‖x−y‖
2
2, where z is any subgradient of F

at y. For the proposed cost function in Equation (9.6) we have µ ≥ λNL, and
in most cases of interest where A is a wide matrix (i.e., more unknown image
voxels than sinogram measurements) we have µ = λNL. From Theorem 1
in [336], if we choose α and λNL such that the value of r given below is less
than 1, then the proposed algorithm will have a geometric convergence with
rate r. This means that E(F (xn))− F (x∗) ≤ rn

(
F (x0)− F (x∗)

)
, where x∗

is the global minimizer of F .

r '
λmean
λNL

+ 1

2α(1− 4α)n
+

4α

1− 4α
(9.7)
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input : initial image estimate x0 (obtained using the FDK
algorithm).

output: final image estimate after N iterations, xN .
option 1: compute xNL based on x0 by performing several iterations
of the Generalized PatchMatch
for j ← 1 to N do

x̃ = xj−1

option 2: update xNL based on x̃ by performing one iteration of
the Generalized PatchMatch
µ̃ = 1

nA
T (Ax̃− y)) + λNL(x̃− xNL)

x0
j = x̃

for k ← 1 to 2n do

select ik ∈ {1, ..., n} with probability Li∑
i Li

xkj = proxαλTVTV

(
xk−1
j − α

(
1
Lik

ATikAik(xk−1
j − x̃) + 1

Lmean
µ̃
))

end
xj = x2n

j

end
Algorithm 7: The proposed proximal VR-SGD algorithm for CT recon-
struction by minimizing Equation (9.6).

It is always possible to choose α and λNL such that r < 1. However, the
step size suggested by this analysis is always less than 1/4, usually around
0.1 or smaller. As we will see later, our experiments show that larger step
sizes result in faster convergence in our application.

In the above analysis, we assumed that xNL was constant. In order to
obey this assumption, we can compute xNL from x0 using the Generalized
PatchMatch before the start of the algorithm. Alternatively, we can con-
tinually update xNL by performing one iteration of the Generalized Patch-
Match in each iteration of the proposed algorithm. Both of these options
have been shown in Algorithm 7, labeled Option 1 and Option 2, respec-
tively. The theoretical convergence rate mentioned above does not apply if
we choose Option 2, i.e., if xNL is updated based on the current estimate
of x. Nonetheless, Option 2 is intuitively better than option 1. This is be-
cause with more iterations of the main algorithm, noise and artifacts in the
image estimate are reduced and, therefore, xNL will be closer to the true
image. Therefore, it makes more sense to gradually improve xNL than to
spend much effort to estimate it from x0 at the algorithm start. Our results,
which we will present in the next section, support this intuition.
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9.3 Results and Discussion

9.3.1 Simulated data

We simulated 720 noisy projections from a digital brain phantom, which we
obtained from the BrainWeb database [63]. Figure 9.2(a) shows a slice of
this phantom. Figure 9.2(b) shows a slice from a different brain phantom,
obtained from the same database, which we used as xref for block matching
to compute xNL (see Equation (9.4) and Figure 9.1). The rest of the images
in Figure 9.2 show the images reconstructed with different algorithms. For
comparison, we have used FDK and MFISTA algorithms. For the proposed
algorithm, we have shown the reconstruction results with two different values
of λTV = {0, 200} and two different values of λNL = {0, 0.01}. The case with
λTV = 0 corresponds to using patch-based regularization only; similarly, the
case with λNL = 0 corresponds to using TV regularization only. We used
α = 1 in all experiments in this chapter.

A visual comparison of the reconstruction results in Figure 9.2 suggests
that both regularization terms contribute positively to the quality of the
reconstructed images. However, the patch-based regularization alone has
resulted in a better image than the TV regularization alone. In particular,
reconstruction with (λTV = 0, λNL = 0.01) seems to have better preserved
the image sharpness than reconstruction with (λTV = 200, λNL = 0). The
objective image quality criteria summarized in Table 9.1 supports this state-
ment. Figure 9.2 and Table 9.1 are for reconstruction after 15 iterations.

FDK MFISTA

Proposed
algorithm
λTV = 200
λNL = 0

Proposed
algorithm
λTV = 0
λNL = 0.01

Proposed
algorithm
λTV = 200
λNL = 0.01

RMSE 0.068 0.039 0.032 0.027 0.026
SSIM 0.710 0.745 0.750 0.785 0.785
CNR 14.6 19.3 21.0 21.2 21.3

Table 9.1: Image quality metrics for the experiment with simulated data.

Figure 9.3(a) shows the RMSE plots for different values of the regulariza-
tion parameters for up to 30 iterations. These plots show that patch-based
regularization results in much better convergence, especially as the number
of iterations increases. When λNL = 0.01, the presence of the TV regulariza-
tion leads to faster initial convergence, but has no significant added positive
effect after the first few iterations.
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Figure 9.2: Reconstruction results of the experiment with the brain phan-
tom. (a) the reference image, (b) a slice of the brain phantom used for
block matching, xref, (c) FDK, (d) MFISTA, (e) proposed algorithm with
(λTV = 0, λNL = 0), (f) proposed algorithm with (λTV = 200, λNL = 0),
(g) proposed algorithm with (λTV = 0, λNL = 0.01), (h) proposed al-
gorithm with (λTV = 200, λNL = 0.01), (i) proposed algorithm with
(λTV = 200, λNL = 0.01) with reconstruction of the patch-based image esti-
mate, xNL, at the start of the algorithm (Option 1 in Algorithm 7).
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The RMSE plots shown in Figure 9.3(a) and the images in Figure 9.2(e)-
(h) were obtained by using Option 2 in Algorithm 7. In Figure 9.2(i) we have
shown the image reconstructed using Option 1. This image clearly contains
artifacts that do not exist in Figure 9.2(e)-(h). To better understand why
Option 2 leads to better results, in Figure 9.3(b) we comparethe two options
in terms of the RMSE of the reconstructed image and the RMSE of xNL.
For Option 1, we applied 30 iterations of the Generalized PatchMatch algo-
rithm before the start of the algorithm, whereas for Option 2 we applied one
iteration of the Generalized PatchMatch at the beginning of each iteration
of the proposed algorithm. With Option 1, xNL is created from the initial
image estimate (x0) and, hence, its error is fixed. The quality of xNL gener-
ated in Option 1 is not very high, as indicated by its relatively high RMSE.
Therefore, patch-based regularization with Option 1 does not lead to fast
convergence. In fact, after the initial iterations, regularization in terms of
proximity with xNL hurts the algorithm convergence because it forces the
image estimate to remain close to xNL. On the other hand, the quality of
xNL generated with Option 2 continues to improve with more iterations of
the algorithm because it is updated using the latest image estimate. There-
fore, patch-based regularization with Option 2 constantly pushes the image
estimate towards a lower RMSE. In the experiments with real data reported
in the next section, we will only show the results obtained with Option 2.

Figure 9.3: (a) RMSE plots for reconstruction of the brain phantom. (b)
Comparison between the two approaches for estimating the nonlocal patch-
based image estimate, xNL; as shown in Algorithm 7, in Option 1 xNL is
estimated before the start of the image reconstruction algorithm, whereas
in Option 2 xNL is iteratively updated based on the latest image estimate.

198



9.3. Results and Discussion

9.3.2 Real data

We evaluated the proposed algorithm on the micro-CT scan of a rat. The
scan consisted of 720 projections, all of which were used to reconstruct a
reference image. The proposed algorithm was then applied to reconstruct
an image from a subset of 180 projections from this scan.

Figure 9.4 shows slices of the reconstructed image of the rat after 15
iterations of the proposed algorithm. In the same figure, we have also shown
two profiles, the locations of which have been marked with the line segments
L1 and L2 in Figure 9.4(a). This figure shows that the nonlocal patch-
based regularization has resulted in a marked improvement in the quality of
the reconstructed image, especially of the fine details. The plots of RMSE
for this experiment were very similar to that for the simulation experiment
shown in Figure 9.3, and hence they are omitted. Table 9.2 shows a summary
of the objective image quality for this experiment.

FDK MFISTA

Proposed
algorithm
λTV = 300
λNL = 0

Proposed
algorithm
λTV = 0
λNL = 0.04

Proposed
algorithm
λTV = 300
λNL = 0.04

RMSE 0.0170 0.0136 0.0122 0.0109 0.0105
SSIM 0.604 0.731 0.755 0.781 0.770

Table 9.2: Image quality metrics for the experiment with real data.

An important setting with the patch-based regularization is the value
of the regularization parameter, λNL. Our extensive experiments show that
this value should be approximately equal to or smaller than the smallest
λi. Recall that λi is the largest eigenvalue of Ai, the projection matrix
for the ith projection view. For our simulation experiment with the brain
phantom, for example, λi ranged from 0.32 (for projection view angles that
were integer multiples of π/2) to 0.43 (for projection view angles that were
odd multiples of π/4) and values of the regularization parameter in the
range λNL ∈ [0.05, 0.25] gave us good results. In the experiment with the
rat scan λi ranged between 0.087 and 0.124, and values of λNL in the range
[0.02, 0.06] gave us good results.

Overall, our experience with the algorithms proposed in Chapter 8 and
this chapter shows that when approximately 100 to 200 noisy projections
are used for reconstruction, TV regularization alone is enough to faithfully
reconstruct large image features, provided that a good value is selected for
the regularization parameter. On the other hand, using only TV regulariza-
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Figure 9.4: Reconstruction results of the experiment with the rat scan.
(a) the reference image, (b) the corresponding slice of the image used
for block matching, xref, (c) FDK- reconstructed, (d) MFISTA, (e) pro-
posed algorithm with (λTV = 0, λNL = 0), (f) proposed algorithm with
(λTV = 300, λNL = 0), (g) proposed algorithm with (λTV = 0, λNL = 0.04),
(h) proposed algorithm with (λTV = 300, λNL = 0.04). The lower panel
shows two small profile segments in the images reconstructed by the pro-
posed algorithm with three different regularization parameter settings. The
locations of these profiles have been marked in the reference image with
white line segments.
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tion, faithful reconstruction of fine image features is much more difficult and
sometimes impossible within a small number of iterations, even after careful
tuning of the regularization parameter. Such features can be reconstructed
by increasing the number of iterations. On the other hand, fine image fea-
tures are easier to reconstruct by using nonlocal patch-based regularization.
We showed an example of the effectiveness of patch-based regularization for
recovery of fine features in Figure 9.4. The success of patch-based regular-
ization in reconstructing fine features is because they exploit the redundant
information in similar patches, thereby preserving fine edges and textures
that are normally blurred by TV-based regularization. We can say that TV
is a global regularization function, treating all parts of the image with equal
strength, determined by the value of the regularization parameter. There-
fore, if we choose a sufficiently large regularization parameter to ensure
strong noise suppression, some fine image features could be lost. Nonlocal
patch-based regularization, on the other hand, treats each image location
differently by finding similar patches that can help preserve and amplify
the local features. Therefore, nonlocal patch-based regularization can re-
cover fine image features much easier than TV regularization. As expected,
this advantage of patch-based regularization comes with certain costs. In
particular, the additional computational and memory requirements can be
significant, especially for large-scale images. The algorithm proposed in this
chapter also requires a high-quality reference image, which is not always
available.
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Chapter 10

Conclusions

X-ray computed tomography (CT) has become one of the most essential and
widely-used tools in medicine. As its usage continues to increase, the need
to maintain the radiation dose at a reasonably safe level becomes even more
important. Therefore, in order for CT to fulfill the growing demands, the
image reconstruction and processing algorithms should be greatly improved.

This dissertation investigated the potential of some of the powerful con-
cepts and tools in image processing and optimization for image reconstruc-
tion and processing in CT. These included patch-based image models, total
variation, and variance-reduced stochastic optimization algorithms. We pro-
posed new algorithms for denoising and interpolation of CT measurements,
denoising and restoration of CT images, and for iterative CT reconstruction.
Experiments with simulated and real CT data showed that the proposed al-
gorithms can compete with, and often outperform, some of the state of the
art algorithms.

10.1 Contributions of this dissertation

This section summarizes the main findings and contributions of this disserta-
tion under three categories of pre-processing, post-processing, and iterative
reconstruction algorithms.

10.1.1 Pre-processing algorithms

Only a very small fraction of the published algorithms for CT have focused
on processing the measured CT projections (i.e., the sinogram). The results
of this dissertation show that denoising and interpolation of the CT projec-
tion measurements can result in substantial improvements in the quality of
the reconstructed CT images.

• The results of Chapter 3 show that patch-based methods can be used
to devise very effective sinogram denoising methods. To the best of
our knowledge, this is the first study that exploits both the nonlocal
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patch similarities and sparse representation in learned dictionaries for
sinogram denoising.

• The results of Chapter 4 show that effective sinogram denoising al-
gorithms can be designed based on total variation minimization. We
suggested two approaches to account for the signal-dependent nature
of the noise and the smooth nature of the projection measurements.
We are unaware of any previously-published studies to suggest any of
these approaches. Both of these approaches proved to be effective in
experiments with low-dose CT projections.

• In general, the patch-based method proposed in Chapter 3 leads to bet-
ter results than the TV-based algorithms proposed in Chapter 4. The
advantage of TV-based denoising methods is that they are in general
much faster than patch-based denoising methods. The patch-based
method proposed in Chapter 3 is fast but it can also include a dic-
tionary learning step that can add substantially to the computational
time. The dictionary has to be re-trained every time scan geometry
or the angular spacing between successive projections changes. On
the other hand, a shortcoming of the TV-based denoising algorithms
is that they involve regularization parameters that need to be tuned
carefully in order to obtain good results.

• Two very important properties of CT projection measurements are
smoothness and self-similarity. The results of Chapter 5 show that
these properties can be exploited to effectively interpolate and denoise
noisy undersampled projections, leading to a large improvement in
the quality of low-dose CT images. To the best of our knowledge, no
previous study has used nonlocal patch similarities for interpolation
of CT projections.

10.1.2 Post-processing algorithms

Post-processing of low-dose CT images is very challenging because of the
presence of artifacts and strong noise with unknown and spatially-varying
distribution. This dissertation focused on using sparse representation in
learned dictionaries for low-dose CT image denoising and restoration. Our
results show that learned overcomplete dictionaries are effective in denoising
and restoration of low-dose CT images.

• In Chapter 6, we proposed a method for removing streak artifacts that
arise in images reconstructed from a small number of projections. To
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the best of our knowledge, this algorithm is the first algorithm to use
coupled dictionaries for artifact suppression in CT images. The results
of that chapter show that the proposed algorithm substantially reduces
the artifacts without degrading the true image features.

• The two-level dictionary structure proposed in Chapter 7 aimed at
removing the noise or artifacts that had very different shapes than
the genuine image features, unlike the streak artifacts considered in
Chapter 6. This dictionary structure combined the advantages of an-
alytical and learned dictionaries. In our experiments, the proposed
dictionary structure effectively suppressed the noise and ring artifacts
in low-dose CT images, achieving results that were comparable with
or better than standard dictionary-based processing.

10.1.3 Iterative reconstruction algorithms

Two iterative reconstruction algorithms were proposed in this dissertation.
An important feature of both algorithms was the use of variance-reduced
stochastic gradient descent (VR-SGD) methods. To the best of our knowl-
edge, VR-SGD algorithms have never been used for CT reconstruction be-
fore. Our results show that VR-SGD algorithms can be used to build very
efficient CT reconstruction algorithms. Although the method of ordered
subsets has long been used for CT reconstruction, our results indicate that
VR-SGD algorithms show a very good convergence, especially as the image
estimate becomes close to a solution. Moreover, step size selection for VR-
SGD algorithms is much easier than for the ordered subsets method and
there is no need to reduce the step size or increase the batch size.

• The hybrid stochastic-deterministic algorithm that we proposed in
Chapter 8 further improved the VR-SGD method by exploiting the
curvature of the cost function as the image estimate became close to
a solution. Our results showed that this algorithm performed better
than the basic proximal VR-SGD.

• The results of Chapter 9 show that regularization in terms of nonlo-
cal patch similarities can be used to develop very effective CT recon-
struction algorithms. Algorithms that use patch-based regularization
are more computationally intensive than algorithms that use edge-
preserving regularizations, such as the algorithm proposed in Chapter
8. However, fine image features such as texture, small features, and
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low-contrast edges are much better preserved by exploiting nonlocal
patch similarities.

Implementation of forward and back-projection operations on GPU can
reduce the per-iteration cost of iterative reconstruction algorithms by large
factors. Nonetheless, in order to make the reconstruction time of large 3D
images clinically acceptable, the number of iterations needs to be reduced
too. This dissertation showed that VR-SGD methods offer an efficient ap-
proach towards achieving this goal.

10.2 Future work

The methods proposed in this dissertation can be improved in various ways.
There are also many related research directions that have not been explored
in this dissertation. In this section, some of these potential research topics
are pointed out.

10.2.1 Pre-processing algorithms

• The sinogram denoising and interpolation algorithms proposed in this
dissertation were based on simplified noise models. It is well known
that in low-dose CT, these models are less accurate. Therefore, it
will be very important to study how the performance of the proposed
algorithms is affected by the accuracy of the noise model.

• Some of the studies on patch-based Poisson denoising that we reviewed
in Section 2.4 have focused on extremely low Poisson counts. The
results of some of these studies have been very impressive. It would
be very interesting to investigate the significance of these results for
very low-dose CT.

• An important limitation of the image processing methods that are
based on nonlocal patch similarities is the computational cost of find-
ing similar patches. Therefore, most algorithms employ small patch
sizes to reduce the computational cost. As we showed in Chapter 3, for
CT projections it is possible to project large patches/blocks into much
smaller spaces. This possibility will pose several important research
questions. For example, it will be interesting to know how the perfor-
mance of patch-based denoising and interpolation algorithms such as
those proposed in this dissertation will be affected when much larger
patch sizes are used.
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10.2.2 Post-processing algorithms

• This dissertation uses learned dictionaries for suppressing two types of
artifacts, i.e., streaking artifacts that arise when the number of projec-
tions is small (Chapter 6) and ring artifacts (Chapter 7). Artifacts in
CT images can originate from various sources and have different shapes
[14]. These artifacts can be very strong and can thus significantly re-
duce the image quality. In many cases, artifacts have very different
geometrical and statistical properties than the true image features. In
that case, a simple algorithm such as the dictionary-based processing
method proposed in 7 may be able to significantly reduce the artifacts.
More often, however, artifacts have much similarities with the true im-
age features. For example, this is true for the streak artifacts that we
studied in Chapter 6. In such cases, more sophisticated algorithms
will be needed to suppress the artifacts without damaging the true
image features. The results of this dissertation suggest that learned
dictionaries may be able to reduce other types of artifacts also.

10.2.3 Iterative reconstruction algorithms

• All dictionary-based iterative CT reconstruction algorithms that we
are aware of, including all those reviewed in Chapter 2, have been pro-
posed for 2D CT. For reconstruction of large 3D images these methods
are not efficient because they require access to individual elements of
the system matrix and this is not possible to do efficiently for large
3D images because the system matrix will be too large to save in the
computer memory. Therefore, there is a need for efficient optimization
methods that can solve iterative dictionary-based reconstruction prob-
lems such as Equation (2.36) for large-scale 3D images. This topic was
not addressed in this dissertation. However, there are existing meth-
ods that could be employed for solving this problem, for example the
recently-proposed plug-and-play approach [271, 322].

• The method of ordered subsets, which is equivalent to incremental/
stochastic gradient descent, has long been used to accelerate various
iterative reconstruction algorithms in CT [150, 220]. In recent years,
this method has been employed in designing some of the state of the art
algorithms by combining it with other optimization techniques such as
momentum [160, 161, 240]. Our results show that VR-SGD has certain
important advantages over the method of ordered subsets. Therefore,
it would be very interesting to investigate whether VR-SGD methods
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could also be combined with other optimization techniques to achieve
faster reconstruction.
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