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Abstract

This thesis contains three distinct chapters that contribute to our understanding of

how people respond, both theoretically and in controlled experimental environ-

ments, to uncertainty that results from the strategic decisions of others. The stan-

dard framework for studying strategic interactions involves agents with Subjective

Expected Utility preferences (Savage, 1954) interacting in an environment where,

in equilibrium, all strategies are known to all agents. This thesis studies the effects

of relaxing preferences to allow for ambiguity aversion, regret minimization, and

approximate optimization.

The first chapter experimentally investigates the role of uncertainty aversion

in normal form games. Theoretically, risk aversion will affect the utility value

assigned to realized outcomes while ambiguity aversion affects the evaluation of

strategies. In practice, however, utilities over outcomes are unobservable and the

effects of risk and ambiguity are confounded. This chapter introduces a novel

methodology for identifying the effects of risk and ambiguity preferences on be-

haviour in games in a laboratory environment. Furthermore, we also separate the

effects of a subject’s beliefs over her opponent’s preferences from the effects of her

own preferences.

The second chapter studies, experimentally, a simple dynamic entry game in

both continuous and discrete time. We introduce new laboratory methods that al-

low us to eliminate natural inertia in subjects’ decisions in continuous time exper-

iments. Using our novel continuous time setting and the standard discrete time

setting as benchmarks, we study the effects of inertia (caused by naturally occur-

ring reaction lags) on behaviour. We demonstrate that the observed patterns of be-

haviour are consistent with standard models of decision making under uncertainty,
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and that the degree of inertia affects subject responses to strategic uncertainty.

The third chapter examines, theoretically, the role of mixed strategies for agents

with ambiguity averse preferences. This chapter demonstrates how a well known

result from cooperative game theory, that a non-additive measure over a set of states

can be equivalently represented by an additive measure over the set of events, can

be used to introduce mixed strategies (in an equilibrium preserving fashion) to

existing pure strategy equilibrium concepts.
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Chapter 1

Introduction

Strategic uncertainty is a fundamental property of any strategic interaction between

agents. Different agents, in different situations, will respond to strategic uncer-

tainty in different fashions. An agent with subjective expected utility preferences

will always behave as if they can form a precise belief regarding the behaviour of

others. Other agents may be unable or unwilling to form such beliefs, and these

agents will necessarily have non-subjective expected utility preferences. This dis-

sertation studies such agents using both theoretical and experimental methodolo-

gies.

Chapter 2 is an experimental study of the effects of uncertainty aversion in

normal form games. The experimental design is straightforward: first risk and am-

biguity preferences, as well as beliefs regarding others’ preferences, are elicited via

a series of “classification” games. Second, subjects play a normal form “testing”

game. This structure allows us to directly observe the mapping between prefer-

ences, and beliefs over others’ preferences, to behaviour in a strategic setting. The

payoffs of the testing game are designed so that we can isolate the effects of pref-

erences from the effects of beliefs over preferences, thereby teasing apart two key

sources of strategic uncertainty.

The original contributions of Chapter 2 are threefold. First, we develop and

implement a procedure for measuring subject preferences and beliefs over others’

preferences in normal form games. Second, the chapter is the first paper to isolate

the effects of ambiguity from the effects of risk in a normal form game. Third, the
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chapter is the first to study the role of beliefs over others’ preferences for uncer-

tainty in a strategic environment.

Chapter 3 is a joint work with Ryan Oprea. This chapter studies the effects

of various timing protocols on behaviour in a simple dynamic entry game. The

chapter is made possible by an innovative experimental design which allows us

to implement the theoretical premises of a continuous time game directly in the

laboratory. Previous experimental studies of continuous time games have used set-

tings where subjects’ natural reaction lags drive a wedge between the experimental

setting and the theory of continuous time games (in which agents can respond in-

stantaneously to changes in their environment). Our innovation is to introduce what

we call the “freeze time protocol”, whereby the game clock is frozen at the moment

of entry. During the freeze other subjects can formulate their response to the entry,

and implement it, allowing for truly instantaneous responses as measured by the

game clock and satisfying key tenets of the theory.

Using our freeze time protocol as well as the standard discrete time protocol as

benchmarks, we study the effects of reaction lags on behaviour in our entry game.

The existence of reaction lags generates inertia in subject actions, and we manipu-

late the severity of inertia by speeding up and slowing down the game clock across

treatments. We propose ex-ante hypotheses motivated by ε-equilibrium in con-

tinuous time games (Simon and Stinchcombe, 1989; Bergin and MacLeod, 1993)

which are strongly borne out by the data. In our setting ε-equilibrium leads to a

large multiplicity of equilibria in most treatments, and this multiplicity motivated

an ex-post exploration of theories that were able to explain the data with greater

precision. The best descriptor of our data is a theory of strategic uncertainty known

as minimax regret aversion, which posits that when faced with an uncertain envi-

ronment a decision maker should seek to choose that strategy that minimizes their

maximal potential deviation from optimality. We find that changes in the degree

of inertia change the payoff effects of strategic uncertainty and that minimax re-

gret aversion captures subject responses to changing strategic uncertainty across

treatments very well.

Chapter 4 is a contribution to the theoretical literature of game theory with am-

biguity agents. In games with standard, subjective expected utility, agents there are

multiple interchangeable interpretations of mixed strategies. First, we may inter-
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pret agents as submitting explicitly mixed strategies to the game maker. Second,

we may restrict agents to pure strategies only, and then interpret a mixed strategy

equilibrium as an equilibrium in beliefs. Third, agents may use a pre-play random-

ization device before reporting a pure strategy to the game maker.

For games with ambiguity averse agents the different interpretations do not

generate observationally equivalent equilibrium because the agents may have a

strict preference for mixing. It has been demonstrated that the first and second

interpretations lead to different equilibrium: compare Lo (1996) to Dow and Wer-

lang (1994), for example. It is not, however, known how the third interpretation

of mixed strategies relates to the first two. The third interpretation is particularly

important for experiments with ambiguity averse agents, such as the one presented

in Chapter 2, given that subjects must enter a pure strategy into the experimental

interface but are free to randomize across their strategies before selecting a pure

strategy. Chapter 4 fills this gap in the literature by establishing conditions un-

der which the third interpretation of mixed strategies is equivalent to the second

interpretation.

1.1 Relationship to the Global Games Literature
The most common methodology for modeling strategic uncertainty is derived from

the literature on global games (Carlsson and van Damme, 1993; Morris and Shin,

2003). The nature of strategic uncertainty considered in this dissertation is distinct

from the strategic uncertainty considered in the global games literature.

In this dissertation, strategic uncertainty arises from agents not having a precise

belief regarding the strategic behaviour of their opponent. The strategic uncertainty

is first order strategic uncertainty (although higher order beliefs may also be im-

portant), it is Knightian uncertainty, and the uncertainty may exist even in games

of complete information. A necessary condition for such strategic uncertainty to

affect behaviour is that the agents have non-subjective expected utility preferences.

The area of study in this thesis is, therefore, strategic uncertainty in games of com-

plete information when agents have non-subjective expected utility preferences.

In the global games literature, strategic uncertainty arises from a relaxing of

complete information while maintaining subjective expected utility preferences.

3



The key insight of the global games literature is that when complete information

is relaxed then uncertainty is generated across the entire hierarchy of beliefs, and

beliefs about beliefs, and so on. In the limiting case as first order uncertainty

disappears, the effect of strategic uncertainty over the entire belief hierarchy can

still influence behaviour. This is, however, a very different mechanism to the one

studied in this dissertation.

Each approach has some advantages and disadvantages and it is important that

we understand the effect of each mechanism on behaviour. It is well established

that many people do not have subjective expected utility preferences (Table 2.4

confirms this to be true), and it is clearly also the case that many strategic inter-

actions involve incomplete information. By isolating, and studying, each cause of

strategic uncertainty we can generate a complete picture of the role of strategic

uncertainty in human decision making.

4



Chapter 2

Uncertainty Aversion in Game
Theory: Experimental Evidence

Strategic interactions are a source of subjective uncertainty for agents. A ratio-

nal agent must, necessarily, form subjective beliefs regarding their opponent’s be-

haviour. But what form do these beliefs take? The standard approach to modelling

strategic interactions, Nash equilibrium, resides on a bed of expected utility the-

ory: in an equilibrium each agent has a consistent and precise belief over other’s

behaviour, and the only remaining source of uncertainty is risk that stems from the

possible use of mixed strategies. This approach, however, fails to consider that

agents may retain some uncertainty regarding their opponent’s choice of (mixed)

strategy. We shall refer to this uncertainty over mixed strategies as strategic uncer-

tainty. Strategic uncertainty is the natural condition of real-world strategic interac-

tions.

There is a well-developed theoretical literature on ambiguity aversion in games

(see Lo (2009), Dow and Werlang (1994), Epstein (1997) or Eichberger and Kelsey

(2000), for example) that provide guidance on how agents should respond to strate-

gic uncertainty. But how do people respond to strategic ambiguity? Do people be-

have as if they have unique probabilistic beliefs over their opponent’s strategies, or

do they behave as if they are ambiguity averse (perhaps in a fashion consistent with

evidence found in individual decision making experiments)? Can people identify

when their opponent is facing strategic ambiguity and, if so, do they respond ra-
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tionally? If not, why not? We use experimental methods to provide answers to

these questions; answers that have important implications for both applications,

and development, of the theory of ambiguity aversion in games.

There is, however, a fundamental problem with direct inference of ambiguity

aversion from behaviour in games: risk aversion. How does a subject’s ambiguity

preference affect their behaviour in the presence of risk aversion? In theory, at

least, the separation is straightforward: for a game where subjects earn monetary

payoffs, we first take a monotonic transformation of the payoffs to move from a

money space to a utility space. Then, ambiguity aversion acts to affect the way in

which a subject evaluates her strategies which earn utility denominated payoffs. In

practice, however, the two affects are much more difficult to disentangle, and this

chapter is the first to tackle this separation in a game theoretic setting. Because

risk and ambiguity aversion have similar effects in games (making ‘safe’ strategies

appear relatively more attractive), and are positively correlated1, studies that focus

only on risk aversion or ambiguity aversion in games will be prone to omitted

variable bias.

To disentangle these effects we use a laboratory experiment to measure ambi-

guity and risk aversion in games, at the individual level, and study how behaviour

in a carefully chosen normal form “testing” game is related to these measures. The

testing game is designed so that the set of rationalizable strategies varies with pref-

erences, allowing for a partial separation of behaviour as a function of preferences.

The testing game also allows for a separation of the effects of ambiguity prefer-

ences from the effects of beliefs over an opponents’ ambiguity preferences. These

dual separations allow a detailed investigation of the role of uncertainty in normal

form games, providing answers to our primary research questions. In a follow up

treatment we allow a group of subjects to observe their opponents’ responses to the

preference measuring tasks, allowing us to study how subjects reason conditional

on their opponents’ preferences.

Subjects play 3 distinct games, and play each game as both the row player and

the column player. The first two games, the ‘classification’ games, are used to

measure ambiguity and risk preferences, respectively. The third game, the ‘test-

1Although there is some debate on this topic, risk and ambiguity aversion are correlated in the
data presented in this chapter. See footnote 22 for more details.
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ing’ game, is a 3×2 normal form game used to investigate the role of preferences

on strategic behaviour and strategic reasoning. Across the three games, the be-

haviour of row players is used to study the effect of preferences on behaviour in

normal form games. In comparison, the behaviour of column players across the

three games is used to study the effect of beliefs over opponents’ preferences on

behaviour in normal form games. Details on the structure of the games are pro-

vided in section 2.2. Importantly, preferences are measured using games, rather

than individual decision tasks, which allows the entire experiment to be conducted

in a game environment.

Consider the testing game used in this experiment, presented in figure 2.1. For

a risk neutral row player with subjective expected utility (SEU) preferences, C is

never a best response. Climbing the chain of rationalizability2, once C is eliminated

then Y is never a best response for the column player and once Y is eliminated B is

never a best response for the row player. The unique rationalizable outcome of the

game is (A,X). Naturally, (A,X) is also the unique Nash equilibrium of the game.

X Y
A 25,20 14,12
B 14,20 25,12
C 18,12 18,22

Figure 2.1: Testing game. Payoffs are in Canadian Dollars.

In contrast, consider an agent who is ambiguity averse, with the maxmin ex-

pected utility (MEU) preferences of Gilboa and Schmeidler (1989). For the row

player, C is now a best response for at least some feasible beliefs.3 To see this,

suppose that the row player faces complete uncertainty regarding her opponent’s

strategy. Then, applying MEU preferences, she evaluates strategy A by considering

the worst possible scenario (her opponent playing Y ) and values the strategy such

2Recall that the rationalizable set can be found via iterated elimination of never-best-response
strategies or, equivalently for two-player games, iterated elimination of strictly dominated strategies.
An implication of this is that if no strategies are strictly dominated then all strategies are rationaliz-
able.

3Under MEU preferences an agent has a set of beliefs, and evaluates the utility of a prospect
with respect to the worst possible belief in the set. MEU preferences are not critical here, any of the
standard models of ambiguity aversion could be used with only minor modifications throughout the
chapter.
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that U(A) = 14. Similarly, when evaluating B she considers the worst possible sce-

nario (her opponent playing X) so that U(B) = 14 as well. However, U(C) = 18

and therefore C is rationalizable for the row player. Obviously A and B are also

potential best responses (to the belief the column player is using pure X or pure Y ,

respectively), and both column player strategies are also potential best responses.

Therefore, under MEU preferences the rationalizable set is the full strategy set for

both players.

Finally, note that if the row player has SEU preferences with a high enough

level of risk aversion then the rationalizable set is also the complete set of out-

comes. For a subject with SEU preferences, C is never a best response to any

beliefs for the row player if and only if C is not a best response to an opponent

who mixes 50-50 over X and Y . When C is a best response to the 50-50 mix then

all strategies for both players are best responses to some beliefs and, therefore, all

strategies are rationalizable.

The size of the rationalizable set hinges critically on the row player’s prefer-

ences, but not the column player’s preferences: the rationalizable set is (A,X) if

and only if the row player can eliminate C in the first round. This provides the sep-

aration of the role of preferences and beliefs, which is one of the key innovations

of this chapter. If the row player has SEU preferences and low risk aversion then

she should never play C regardless of her beliefs regarding her opponent’s prefer-

ences. The column player should never play Y if he believes that his opponent has

SEU preferences and low risk aversion regardless of his own preferences. The sep-

aration of the role of preferences and beliefs is a novel design feature that allows

for an investigation of the structural underpinnings of ambiguity averse solution

concepts.

Preferences organize the data: in the game in figure 2.1 ambiguity neutral sub-

jects with low risk aversion play A more than twice as often as ambiguity averse

subjects with high risk aversion. On the other hand, measured beliefs over oppo-

nent’s preferences are independent of column player behaviour: amongst subjects

who passed a series of incentivized comprehension tasks, there is no difference in

behaviour between subjects who believe their opponent to be ambiguity neutral or

ambiguity averse: both groups play X approximately three-quarters of the time.

A follow-up treatment, where subjects were shown their opponents’ behaviour in

8



the classification games before playing the testing game, establishes that this null

result is not driven by an inability of subjects to use preference information to pre-

dict opponent behaviour. A subject that observes his opponent choosing options

consistent with ambiguity and risk neutrality in the preference measuring games

chooses X 100% of the time, while a subject who observes his opponent choosing

options consistent with ambiguity and risk aversion in the preference measuring

games chooses X 30% of the time.

Taken as a whole, our findings provide support for the claim that ambiguity

preferences are an important determinant of behaviour in games. However, the

data also suggest that mutual knowledge of preferences is not satisfied in the sub-

ject population and an intervention that provides credible preference information

to subjects induces large behavioural changes. Nash equilibrium, therefore, is re-

jected on two accounts. First, Nash fails to take account of ambiguity preferences.

Second, subjects do not appear to hold a consistent set of beliefs across games. Fur-

thermore, the results suggest that, empirically, both risk and ambiguity aversion are

important factors in determining how subjects respond to the natural uncertainty

that arises in strategic interactions.

There is a wealth of evidence, tracing back to Knight (1921) and Keynes (1921)

via Ellsberg (1961), of ambiguity affecting decisions in individual decision mak-

ing environments. The relative paucity of experimental evidence on the role of

ambiguity aversion in strategic environments was a key motivation for this study.

The previous literature provides a series of snapshots into how subjects behave in

the face of strategic uncertainty, and suggests that ambiguity aversion plays a key

role in strategic decision making. Camerer and Karjalainen (1994) provides evi-

dence that subjects, on average, prefer to avoid strategic uncertainty by betting on

known probability devices rather than on other subjects’ choices. Eichberger et al.

(2008) establish that subjects find grannies to be a greater source of strategic am-

biguity than game theorists. Kelsey and le Roux (2015a) find that subjects exhibit

higher levels of ambiguity aversion in games than in a 3-colour Ellsberg urn task.

This chapter is the first to give a complete picture of the role of uncertainty aver-

sion in games: we document the first-order (how do subjects respond to strategic

uncertainty?) and second-order (how do subjects respond to opponents who face

9



strategic uncertainty?) effects of both risk aversion and ambiguity aversion.4 This

chapter is also the first to provide a procedure for measuring preferences using dis-

crete choice tasks in a framing that is consistent with typical normal form game

experiments.5

This chapter proceeds as follows. Section 2.1 provides a brief overview of

some relevant theoretical considerations, while section 2.2 presents the experimen-

tal design in detail. Section 2.3 presents the experimental results, and section 2.4

presents an additional treatment motivated by these results. Section 2.5 provides a

discussion and conclusion. Appendix B presents additional results not included in

the main text as well as proofs and the instructions for subjects. Appendix A con-

tains some additional background on the theory of games with ambiguity averse

agents, a topic that is also explored in chapter 4.

2.1 Theoretical Considerations
The identification of the relationship between preferences and “reasonable” strate-

gies in the testing game can be motivated either using rationalizability arguments

or equilibrium concepts (i.e. Nash equilibrium for SEU subjects and an appropri-

ately chosen ambiguity averse equilibrium concept for ambiguity averse subjects).

We use rationalizability rather than equilibrium concepts in the body of the chapter

because of the stronger epistemic assumptions required to justify the use of equi-

librium; however, we provide two equilibrium derivations (in the style of Lo (2009)

and Dow and Werlang (1994)) in Appendix A for the interested reader.

Throughout we assume that subjects choose from a set of pure strategies, and

do not play mixed strategies. This is consistent with the experimental implemen-

tation where subjects were required to select a pure strategy choice for each game.

The reason for this choice, which is also common amongst the ambiguity aversion

in game theory literature, is that models of ambiguity aversion typically imply a

strict preference for mixed strategies or are not able to define a utility level for

4Interestingly, Ivanov (2011) asks the dual of our research question by estimating ambiguity
aversion from behaviour in games. A more detailed literature review can be found in appendix B.1.5.

5Heinemannn et al. (2009) also recognized the importance of using frame-consistent tasks to
measure preferences and strategic uncertainty. In their case, they used a modified coordination game
that was framed as a multiple price list to study strategic uncertainty through the lens of global games.
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mixed strategies at all. Chapter 4 and Eichberger and Kelsey (2000) contain ex-

tensive discussion on the role of mixed strategies in games with ambiguity averse

agents. As Chapter 4 demonstrates it is possible to extend the theory in this section

to allow for subjects to use mixed strategies if the mixed strategy randomization

device is resolved before the game is played. Therefore, a subject who rolls a dice

or otherwise randomizes their choice, before clicking on a pure strategy, could also

be accommodated by the theory described below.

2.1.1 Rationalizability

In this section we formalize the interactions between preferences and rationaliz-

ability in the game in figure 2.1. We use Epstein’s (1997) notion of rationalizabil-

ity, which allows for a generalization of SEU preferences to the MEU preferences

of Gilboa and Schmeidler (1989). Theorem 3.2 in Epstein (1997) establishes that

the set of rationalizable strategies can be found by iteratively eliminating all strate-

gies that are not best responses given the preferences of the agents, and therefore

generalizes the more familiar Pearce (1984)/Bernheim (1984) rationalizability for

two player games. The only conceptual difference between the Pearce-Bernheim

framework and the Epstein framework is the treatment of mixed strategies: Epstein

(1997) restricts the feasible set of strategies to consist only of pure strategies, al-

though agents may still hold beliefs over the mixed strategies of their opponents

(following a population or belief-based interpretation of mixed strategies).

Consider Gilboa and Schmeidler’s (1989) MEU preferences (for ambiguity

averse agents), in which an agent’s beliefs regarding her opponent’s strategy is

a closed and convex subset of probability measures over her opponent’s strategy

set. The agent then evaluates her utility for a given prospect with respect to her

‘worst case’ belief, and may use different beliefs to evaluate different prospects.

For example, in our game, the set of feasible row player beliefs is a subset of the

probability simplex (ΦR ⊆ ∆({X ,Y})) and, given ΦR, the row players’ preferences

can be represented by:

U(aR) = min
φR∈ΦR

∑
aC∈{X ,Y}

uR(mR(aR,aC))φR(aC) ∀aR ∈ {A,B,C} , (2.1)
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where uR(.) is the row player’s utility over monetary outcomes, mR(aR,aC) is

the monetary payoff for outcomes as shown in figure 2.1, and aR ∈ {A,B,C} and

aC ∈ {X ,Y}. Given these preferences, we interpret risk aversion, in the standard

manner, as curvature of the utility function. We model ambiguity aversion in a

binary fashion. For subjective expected utility subjects ΦR is constrained to be

a singleton (ΦR ∈ ∆({X ,Y})), while for ambiguity averse subjects ΦR is uncon-

strained (ΦR ⊆ ∆({X ,Y}). Column player preferences are defined analogously.

Proposition 2.1. Consider the normal form game in figure 2.1. If the row player

has preferences such that u(25) + u(14) > 2u(18) and ΦR is a singleton for all

feasible beliefs then the rationalizable set is {(A,X)}. If u(25)+ u(14) ≤ 2u(18)

or ΦR is unrestricted then all pure strategies are rationalizable.

Proof of proposition 2.1. See Appendix B.2.

The condition u(25)+u(14)≤ 2u(18) provides a necessary and sufficient con-

dition on the utility function of a SEU agent for C to be undominated.

Notice that proposition 2.1 does not restrict the column player’s preferences:

the column player’s preferences play no role in determining the size of the rational-

izable set. Also note that the use of MEU preferences to model ambiguity aversion

is not essential: any of the standard models of ambiguity aversion could be used.

We use MEU here because it is arguably the simplest model of ambiguity averse

preferences for this game. Furthermore, Epstein (1997) provides a fully worked

application of his rationalizability concept using MEU preferences, and it is also

the preference structure underlying Lo (2009) (which is discussed in detail in Ap-

pendix A). Alternatives such as Choquet Expected Utility (Schmeidler (1989)),

which underlies Dow and Werlang (1994) (also discussed in discussed in detail in

Appendix A), or Klibanoff et al.’s (2005) smooth ambiguity aversion preferences

would work just as well. In fact, in a recent working paper Battigalli et al. (2015)

independently6 establish a related result, illustrated using an example on a similar

6The experimental design in this chapter was created in late 2013, and experiments were con-
ducted in early 2014. The first version of this chapter that was circulated outside UBC was in
November 2014. The earliest version of Battigalli et al. (2015) available on Google Scholar is dated
September 2014, and the first version that I read was dated May 2015.
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game to the one studied here, for the case of smooth ambiguity aversion prefer-

ences. Their example also highlights and reaffirms that “the risk and ambiguity

attitudes of the (column player) are immaterial.”

For the remainder of the chapter, we shall restrict ourselves to four possible

preference types that can be held by the row player. The row player may either

satisfy or violate u(25)+u(14)> 2u(18) and the row player may either have SEU

or MEU preferences, as shown in table 2.1. Applying proposition 2.1 to this clas-

sification structure, it is immediate that the rationalizable set is {A,X} if and only

if the row player has Type 1 preferences.

SEU MEU
u(25)+u(14)> 2u(18) Type 1 Type 2
u(25)+u(14)≤ 2u(18) Type 3 Type 4

Table 2.1: The type space for preferences.

Implicit in proposition 2.1, because of the use of rationalizability as the so-

lution concept, is an assumption that the column player knows the row player’s

preferences. Under this assumption the column player has no role to play in de-

termining the rationalizable set. We can, however, relax the link between the row

player’s preferences and the column player’s beliefs by modeling the game as a

Bayesian game with one sided private information.7 Suppose there is a common

prior, α ∈ [0,1], that the row player has Type 1 preferences. The sum of the prob-

abilities of Type 2, 3 or 4 row players is, therefore, 1−α .8

Proposition 2.2. Consider the normal form game in figure 2.1. Suppose that the

game is a Bayesian game with one-sided private information and the row player

has Type 1 preferences with prior probability α ∈ [0,1]. It follows that:

1. if α > ᾱ , then the rationalizable set is {(A,X)},
7It is possible to relax the knowledge requirements even further by modeling the game as a Savage

game ala Grant et al. (Forthcoming), or by allowing both the row and column to have private prefer-
ence information. These richer models will generate a similar result, replacing the α > 5

9 condition
in the proposition with an object that is harder to interpret.

8Note that in this structure the prior is a singleton, and any ambiguity is captured through the
mapping from types to actions; that is, all ambiguity is ambiguity with respect to strategies while
types introduce only objective risk.
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2. if α ≤ ᾱ , then all actions are part of a rationalizable profile, but a Type 1

row player will never be observed to play C.

where ᾱ = u(22)−u(12)
u(22)+u(20)−2u(12) . ᾱ = 5

9 for a risk neutral column player. Furthermore,

ᾱ > 1
2 and is decreasing in the column player’s level of risk aversion.

Proof of proposition 2.2. See Appendix B.2.

The key implication of proposition 2.2 is that Y is not rationalizable for the

column player if α > 5
9 .

In the next section we shall discuss the procedure that was used to classify

subjects into types, and to elicit subjects beliefs regarding their opponent’s type.

We close this section by noting that although both risk aversion and ambiguity

aversion have identical effects on the rationalizable sets, there are some differences

in the effects of risk and ambiguity aversion in the equilibria of the game in figure

2.1. It is straightforward to establish that the Nash equilibrium set for SEU subjects

with high risk aversion (preferences that satisfy u(25)+u(14)< 2u(18)) includes

equilibria where the row player mixes over exactly two of their strategies. There

are no fully mixed equilibria, and no equilibria that involve pure C for the row

player. However, for ambiguity averse subjects there are fully mixed strategies

and, for some equilibrium concepts, pure C can be sustained in an equilibrium.

As demonstrated in Appendix A the equilibria of both Lo (2009) and Dow and

Werlang (1994) can support fully mixed equilibria and the latter may also support

equilibria where the column player plays pure C.9

2.2 Experimental Design
The experimental design involves 3 two-player normal form games10, with sub-

jects playing each of the games as both the row player and the column player. The

9I thank Simon Grant (private correspondence) for demonstrating that pure C can be supported
under ambiguity averse equilibrium concepts that do not impose consistency of the support of beliefs
with the support of the actions used, such as Eichberger and Kelsey (2000) and Dow and Werlang
(1994).

10Subjects were also presented with a fourth game, which was intended to be used as an additional
diagnostic test in the case of contingencies that did not arise in the data. The fourth game is available
in an earlier working paper version of this chapter.
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first two games were used to measure the risk and ambiguity preference of the row

player, and the column player’s beliefs regarding his opponent’s risk and ambiguity

preference; these games are referred to as the classification games. The remaining

game was then used to test whether the subject’s preferences and beliefs, cou-

pled with an appropriate solution concept, are associated with behaviour in normal

form games; this game is referred to as the testing game. The testing game was

constructed so that behaviour as the row player is expected to depend only on the

subject’s preferences (and not her beliefs regarding her opponent’s preferences)

and behaviour as the column player is expected to depend only on the subject’s

beliefs regarding his opponent’s preferences (and not his own preferences).

The experiment was designed to mitigate a number of factors that have been

identified as affecting the elicitation of ambiguity preferences. Recent research

has identified that subject confusion can significantly lower measured ambiguity

aversion (Chew et al. (2013)), that experiments with ambiguity can be particu-

larly susceptible to violations of incentive compatibility across tasks (Baillon et al.

(2014), Azrieli et al. (2014)) and that framing effects may be particularly strong

(Chew et al. (2013)). The experimental design presented here mitigates these fac-

tors by using extensive, incentivized, comprehension tasks to test for subject un-

derstanding, realizing objective randomizations prior to realizing subjective ran-

domizations, and presenting all tasks in a unified normal-form game framing. The

use of classification games to measure preferences, rather than more traditional in-

dividual preference measuring tasks, ensures that the measurement of preferences

is performed in the same domain as the testing game thereby reducing the chance

of framing effects across domains contaminating the data. This chapter is the first

to elicit ambiguity preferences in a framing that is consistent with normal form

games.

A range of other important, yet technical, experimental considerations, includ-

ing a description of both the random payment mechanism used and the detailed and

incentivized comprehension questions, are discussed in detail in the experimental

methodology appendix B.1.
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2.2.1 Classification games

There are two classification games. The first game elicits ambiguity preferences

(for row players) and beliefs regarding the opponent’s ambiguity preferences (for

column players), while the second game elicits risk preferences and beliefs regard-

ing the opponent’s risk preferences. In each game the row player selects between

a set of prospects, whose payoffs depend only on exogenous random events, while

the column player earns a positive payoff if and only if she correctly predicts the

row player’s choice.

The first (ambiguity) classification game is shown in figure 2.2. For the row

player, this game is isomorphic to a simplified version of the ambiguity elicitation

process used in Epstein and Halevy (2014).11 The game involves two ball draws,

one from the U urn (figure 2.3) and one from the K urn (figure 2.4). Therefore there

are four possible states of nature, but only two payoff tables. The left payoff table

represents the state red ball drawn from the U urn and yellow ball drawn from the K

urn: (RU ,YK). The right payoff table represents the state (YU ,RK). The payoffs for

state (RU ,RK) are found by adding the two payoff tables together, and the payoffs

in state (YU ,YK) are identically 0 for both players. The relationship between states

and payoffs was carefully explained to the subjects, and understanding was tested

via a series of comprehension questions that are discussed in detail in appendix

B.1.3.

S′ M′

S 30.1,15 30.1,0
M 0,0 0,15

Red ball drawn from U urn

S′ M′

S 0,15 0,0
M 30,0 30,15

Red ball drawn from K urn

Figure 2.2: Classification game 1. This game is used to measure the row player’s ambiguity
aversion and the column player’s belief of the row player’s ambiguity aversion.

Given that row player payoffs are independent of the column player strategy

choice, we can view the row player as facing a choice between a bet that pays

11Epstein and Halevy (2014) use four tasks to elicit ambiguity preferences, whereas we have
simplified this to one task. We assume symmetry of beliefs, as discussed below, which allows us
to drop two of the four tasks. Furthermore, we are only interested in ambiguity aversion here (and
not ambiguity seeking behaviour), allowing us to remove one additional task.
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Figure 2.3: U urn. The U urn consists

of 10 balls, each of which may be

either red or yellow. The total num-

ber of red balls in the urn lies be-

tween 0 and 10.

Figure 2.4: K urn. The K urn contains

5 red and 5 yellow balls.

$30.10 if a red ball is drawn from the U urn and a bet that pays $30 if a red ball is

drawn from the K urn. We assume that subjects hold symmetric beliefs about the

distribution of balls in the U urn, which appears reasonable because red and yellow

are interchangeable labels.12 If a subject has SEU preferences, then they should

strictly prefer strategy S (the bet on the U urn). A subject with ambiguity averse

preferences should prefer strategy M (the bet on the K urn). We note that because

the row player is indifferent to her opponent’s strategy, the existence of the column

player should have no effect on the row player’s choices.

Now, consider the column player in the game in figure 2.2. The column player

is tasked with predicting the row player’s action. If the outcome of the game is

(S,M′) or (M,S′) then the column player receives $0 in all states. So the rational

column player will play S′ if they believe that the row player is more likely to

choose S, and will play M′ if they believe that the row player is more likely to

choose M.

The second classification game is shown in figure 2.5 and has a very similar

structure to the first classification game, with the key difference being that the

state is now determined by a single draw from the K urn. The row player chooses

which risky prospect they would like to hold, and the column player attempts to

12Note that this is an assumption regarding the symmetry of beliefs, and not an assumption on the
subjects preferences regarding red or yellow balls. However, even if a subject does happen to prefer
red balls over yellow balls, for whatever reason, there are still no confounding effects. Subjects may
only bet on the red balls in this formulation, and a general preference for red would be equivalent to
increasing the prize paid on a red ball being drawn an equal amount for each urn.
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L′ I′ H ′

L 25,30 25,0 25,0
I 11,0 11,30 11,0

H 15,0 15,0 15,30

Red ball drawn from K urn

L′ I′ H ′

L 10,30 10,0 10,0
I 23,0 23,30 23,0

H 15,0 15,0 15,30

Yellow ball drawn from K urn

Figure 2.5: Classification game 2. This game is used to measure the row
player’s risk aversion and the column player’s belief of the row player’s
risk aversion.

predict the row player’s preferences. A highly risk averse row player will choose

H, while a risk neutral (or low risk aversion) row player will choose L. Subjects

with intermediate levels of risk aversion will choose I. Similarly, a subject that

chooses L′ believes his opponent to have low risk aversion, a subject that chooses I′

believes his opponent to have intermediate risk aversion, and a subject that chooses

H ′ believes his opponent to be rather risk averse.

We now consider the mapping from responses in the preference measurement

tasks to the type structure that was introduced in section 2.1.1. For an extensive

discussion of the auxiliary assumptions underlying the classification procedure see

Section B.1.2. The mapping is straightforward: a subject who selects S in the

game in figure 2.2 is considered to be ambiguity neutral and therefore is either

type 1 or type 3, and a subject who selects M is considered to be ambiguity averse

and therefore is either type 2 or type 4. A subject who selects L in the game in

Figure 2.5 is considered to have low risk aversion and therefore is either type 1 or

type 2, and a subject who selects H is considered to have high risk aversion and

is either type 3 or type 4. Subjects who selected I are not classified, on the basis

that their risk preferences are such that it is not possible to determine whether they

would prefer to play C or a 50-50 mix between A and B in the game in Figure 2.1.

Column players are classified in an analogous fashion.

Table 2.2 presents a summary of the mapping from row player choices in the

preference measuring games to types and table 2.3 presents a summary of the map-

ping for column players.
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Row Player Strategies S M

L
Type 1 Type 2
{A} {A,B,C}

I N/A N/A

H
Type 3 Type 4
{A,B,C} {A,B,C}

Table 2.2: The classification procedure for row players, as a function of re-
sponses to the classification games. Subjects that select I in the risk mea-
surement game are not classified. The rationalizable set in the testing
game for each type is also indicated.

Column Player Strategies S′ M′

L′
Type 1′ Type 2′

{X} {X ,Y}
I′ N/A N/A

H ′
Type 3′ Type 4′

{X ,Y} {X ,Y}

Table 2.3: The classification procedure for column players, as a function of
responses to the classification games. Subjects that select I′ in the risk
measurement game are not classified. A type 1′ subject believes that their
opponent is a type 1 subject. The rationalizable set in the testing game
for each type is also indicated.

2.2.2 Testing game

The testing game, reproduced in figure 2.6, is the same game that was introduced in

the introduction. To recap, the testing game will be used to test whether the strate-

gies played by subjects change with preferences (and beliefs) in the same manner

that the rationalizable set of strategies changes with preferences (and beliefs). For

row players, subjects who are classified as type 1 (low risk aversion and ambi-

guity neutrality) have a unique rationalizable set of {A} while for other subjects

all strategies are rationalizable. For column players, subjects who are classified as

type 1′ (believe their opponent to be type 1) have a unique rationalizable set of {X}
while for other subjects both strategies are rationalizable.

The interaction of risk and ambiguity preferences in the testing game is of a

precise nature: the row player needs only be sufficiently risk averse or ambiguity
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X Y
A 25,20 14,12
B 14,20 25,12
C 18,12 18,22

Figure 2.6: The testing game. The row player’s rationalizable strategy set varies with her
preferences. The column player’s rationalizable strategy set varies with his belief of the
row player’s preferences.

averse for the rationalizable set to be the complete action space. The hypothesis

of subject level behaviour are summarized in tables 2.2 and 2.3. For row players,

subjects that choose S and L in the classification games are uniquely expected to

play A, while all other subjects may play any of A, B or C. For column players,

subjects that choose S′ and L′ in the classification games are uniquely expected to

play X , while all other subjects may either of X or Y .

2.2.3 Experimental conditions

All sessions were held in the ELVSE lab at the Vancouver School of Economics.

There were 10 sessions held in March and April 2014, and a further 10 sessions

held in September 2014, with between 8 and 12 subjects per session. There were

some minor changes to the instructions made between the April and September

sessions, otherwise all sessions were identical. The September instructions are

included in the appendix. Sessions lasted between 60 and 90 minutes, and the

average payment was $26.60. Subjects were recruited from the ELVSE implemen-

tation of the ORSEE subject pool (Greiner (2015)), which is overwhelmingly made

up of UBC undergraduate students. The experiments were run using the Redwood

experimental software tool (Pettit et al. (2015)).

2.3 Results
This section presents the experimental results. We split this section in two: first

we present the results and discuss the statistical methods used to produce them.

Second, we discuss the economic implications of the results. There are three key

dimensions to the results presented in this section:

• Risk and ambiguity preferences are positively correlated;
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• Row player behaviour in the classification games is correlated with row

player behaviour in the testing game, as predicted by theory;

• Column player behaviour in the classification games is independent of col-

umn player behaviour in the testing game.

2.3.1 Preferences

We begin our tour of the results with a look at the preferences of our subjects.

Ambiguity preference
Neutral Averse
Type 1 Type 2

Low N=85 (E=75) N=36 (E=46) 121
Type 3 Type 4

Risk aversion

High N=30 (E=40) N=34 (E=24) 64
115 70 185

Table 2.4: Number of subjects, classified by type. Expected values, assuming independence
of risk and ambiguity preferences, are in brackets. The null of independence is rejected
at the 1% level, using Pearson’s χ2 test (p = 0.002).

Table 2.4 presents the classification of subjects into types based on their re-

sponses as row players in the preference measuring games. 38% of the subjects

were classified as ambiguity averse, a figure that is at the lower end of the level

of ambiguity aversion reported in previous papers, and lower than that measured

previously in 2-urn Ellsberg tasks.13 We find that 30% of subjects with low risk

aversion are ambiguity averse, while more than half of the subjects with high

risk aversion are also ambiguity averse.14 A Pearson’s χ2 exact test rejects the

13Chew et al. (2013) provide an overview of previous Ellsberg urn experimental results. For the 2-
urn case, as used in this chapter, previous studies have found that between 47% and 78% of subjects
are ambiguity averse (with a weighted mean of 66%). For the 1-urn (3-colour) Ellsberg task, previous
studies have found that between 79% and 8% of subjects are ambiguity averse (with a weighted mean
of 27%). Pilot sessions suggest that the framing of the decision problem in a bi-matrix format may
cause lower levels of ambiguity aversion to be measured, although this effect is mitigated by the use
of comprehension questions. This supports the conclusions of Chew et al. (2013), who argue that
less ambiguity aversion will be measured in more complex environments.

14Female subjects are significantly more likely to be risk averse than male subjects (Pearson’s χ2

p = 0.025). After conditioning on preferences, gender does not play a significant role in determining
behaviour and additional demographic analysis is relegated to the appendix. Due to a technology
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null hypothesis of independence of risk and ambiguity preference at the 1% level

(p = 0.002).15

Result 2.1. Risk and ambiguity preferences are positively correlated.

2.3.2 Row player behaviour

We now turn our attention to the testing game, beginning with row player behav-

ior in the game in figure 2.6. Recall that Type 1 subjects (low risk aversion and

ambiguity neutral) are expected to play the unique Bernheim/Pearce rationalizable

strategy of A, while for other subjects all strategies are rationalizable.

For this analysis, we restrict our sample to those subjects who “passed” the

comprehension tasks. A subject was considered to pass the comprehension task,

as a row player, if they answered the comprehension questions correctly on the

first attempt for all three games they played as the row player. This criteria was

determined ex-ante16, and if a subject made any mistakes they were considered to

have failed. While this criteria may seem rather harsh, it is important to note that

the study of ambiguity aversion in games prohibits the use of experience to train

subjects: if the subjects were to play the game repeatedly, even using a stranger

matching protocol, they would learn about the distribution of behaviour in the pop-

ulation and thereby reduce the degree of strategic ambiguity in later interactions.

Effectively, repeated play between ambiguity averse subjects can change the equi-

librium set even when there are no supergame effects present. A strict comprehen-

sion criteria is therefore used as a substitute for experiential learning to identify a

mishap, demographics were not collected for two sessions. The change in sample has a larger effect
on the results than controlling for demographic factors does, so demographic controls are not used in
the main analysis.

15The choice of statistical tests for categorical data is an oft-debated topic. Throughout this chap-
ter, every p-value could be calculated in multiple different ways, with the statistical inferences al-
most always being the same under all alternatives. A general preference for non-parametric tests
is displayed throughout, and regression (or logit) analysis is avoided in favour of χ2 tests over ap-
propriately defined sub-populations where possible. Fisher exact tests are used for cases where the
sample sizes are small or severeley unbalanced. An earlier version of the chapter used Fisher exact
tests throughout and generated the same conclusions.

16There are many different inclusion criteria that could be constructed from the comprehension
data. See appendices B.1.3 and B.3.3 for a discussion of the comprehension data and inclusion
criterion.
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sub-population of subjects that thoroughly understand the structure of the games

they are playing.

We present results for the full sample, as a robustness check, in appendix B.3.3.

Moving to the full sample strengthens the row player results presented in this sub-

section, because the subjects who failed the comprehension tests display approx-

imately the same effect of preferences on behaviour in the testing game and the

increased sample size helps with statistical power. We do not combine the two

samples, however, because subjects who failed the comprehension tests show a

statistically significant level effect: across all preference types, subjects who failed

the comprehension play A less often in the testing game.

Table 2.5 presents an aggregate view of the row player data, detailing the per-

centage of subjects that play A in the game in figure 2.6 as a function of their

preference type, for subjects who passed the comprehension tasks.

Type 1 Type 2 Type 3 Type 4 Total
LRA, AN LRA, AA HRA, AN HRA, AA

Pr(A) 0.74 (N=57) 0.58 (N=19) 0.61 (N=18) 0.41 (N=22) 0.63 (N=116)

Table 2.5: Proportion of subjects that play A in the game in figure 2.6 by preference type, re-
stricted to subjects that passed the comprehension tasks. LRA denotes low risk aversion,
HR denotes high risk aversion, AN denotes ambiguity neutral and AA denotes ambiguity
averse.

We now turn to analyzing the effects of preferences on the probability of a

subject playing A in the testing game. We focus on the choice of A because the

theory outlined in section 2.1.1 only provides predictions of A or not A and is

agnostic over the choice of B or C. We shall, however, let the data speak regarding

the choice of B or C in section 2.3.2.

Table 2.6 presents the estimates of the effects of preferences on behaviour in

the testing game. The top two lines present the average, unconditional, effects of

ambiguity aversion and risk aversion, respectively. The next four lines present con-

ditional effects of risk and ambiguity aversion, and the final line presents the joint

effect of both risk and ambiguity aversion (the difference in behaviour between

Type 1 and Type 4 subjects). All p-values are calculated non-parametrically using

Pearson’s χ2 test of independence.

As we can see from table 2.6 the average, unconditional, effect of both risk and
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Effect of Restricted to ∆Pr(A)
Ambiguity Aversion -0.22*

(0.020)
Risk Aversion -0.20*

(0.036)
Ambiguity Aversion LRA Subjects -0.16

(0.194)
Ambiguity Aversion HRA Subjects -0.20

(0.204)
Risk Aversion AN Subjects -0.13

(0.307)
Risk Aversion AA Subjects -0.17

(0.278)
Ambiguity Aversion & Risk Aversion -0.33**

(0.006)

Table 2.6: Change in proportion of subjects playing A in the testing game, as a function of
subject preferences,restricted to subjects that passed the comprehension tests. N = 116.
LRA denotes low risk aversion, HR denotes high risk aversion, AN denotes ambiguity
neutral and AA denotes ambiguity averse. Pearson’s χ2 p-value shown in brackets. *
indicates value is significantly different from 0 using a non-directional test at the 5%
level and ** indicates significance at the 1% level.

ambiguity on the probability of choosing A are negative, large and statistically sig-

nificant. These results are, however, biased estimates of the true effects: because

both effects are negative, and risk and ambiguity preferences are negatively cor-

related, they suffer from omitted variable bias. Nevertheless, we report them here

for comparison to other data sets that may not include measures of both risk and

ambiguity preference.

There is clear evidence in table 2.6 for a joint effect of risk and ambiguity pref-

erences on behaviour in the game in figure 2.6: the bottom row indicates that a

highly risk averse and ambiguity averse (Type 4) subject who passed the compre-

hension tests is 33 percentage points less likely to play A than a slightly risk averse

and ambiguity neutral (Type 1) subject who passed the comprehension tests. The

effect is large and highly statistically significant. Decomposing the joint effect into

the individual effect of risk and ambiguity aversion is more difficult, as the smaller
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sample sizes generate imprecise estimates of the effect size.17 The effect of ambi-

guity aversion conditional on low risk aversion is identified from the difference in

behaviour between Type 1 and Type 2 subjects, so that the small sample of 19 Type

2 subjects who passed the comprehension test reduces the power of the χ2 test of

independence.

Result 2.2. A joint measure of risk and ambiguity aversion is associated with a

lower probability of playing A in the game in figure 2.6.

While restricting our analysis to the choice of A or not A has strong theoretical

motivations, it does involve throwing away information regarding the choice of B

and C. The next section makes use of this information to investigate if there are

any differential effects of risk and ambiguity aversion in the testing game.

Analysing the choice between B and C

Table 2.7 breaks down the choice of “not A” and investigates how preferences

influence the decisions of subjects choosing between B and C. The point estimates

provided are mechanically equivalent to the point estimates from a multinomial

logit regression where A is specified as the base outcome.18 The p-values are

calculated non-parametrically, using either Pearson’s χ2 test for larger samples or

Fisher’s exact test for smaller samples (p-values that were calculated using Fisher’s

exact test are denoted with a F).19

The coefficients in table 2.7 are interpreted as follows. Consider the top left

estimate of 0.19: this indicates that an ambiguity averse subject is 19 percentage

17One potential method for decomposing the effects of risk and ambiguity aversion is to use an
ANOVA. The ANOVA yields a main effect of ambiguity aversion on behaviour that is statistically
significant at the 10% level (p = 0.07). The interpretation of this result is difficult, however. As
discussed in section 2.3.4 the theoretical effect of ambiguity aversion on the rationalizable set is only
identified for subjects with low risk aversion, which implies that any effect of ambiguity aversion for
high risk aversion subjects must be driven by a different mechanism. The ANOVA exercise conflates
these two different mechanisms.

18We specify A as the base outcome so that we can still interpret the decision as a choice between
A and something that isn’t A, keeping to the spirit of the theoretical predictions.

19A word of warning on sample sizes: only 11 of the 116 subjects who passed the comprehension
tests chose B in the testing game (32 chose C and the remainder chose A). However, more than a
quarter of Type 2 subjects (low risk aversion, ambiguity averse) chose B, and it is this effect which
drives the results presented below. We use Fisher’s exact test instead of Pearson’s χ2 test when
considering the choice of B because of its favorable small sample properties.
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points more likely to choose B, conditional on not choosing C, than an ambiguity

neutral subject. The results suggest that the effect of ambiguity aversion, partic-

ularly amongst low risk aversion subjects, is to move subjects away from A and

towards B: a Type 2 subject is 25 percentage points more likely to choose B, con-

ditional on not choosing C, than a Type 1 subject. The joint effect of risk and

ambiguity aversion, on the other hand, is to move subjects away from A and to-

wards C (see the bottom row of the table).20

Effect of Restricted to ∆
NB

NB+NA
∆

NC
NC+NA

Ambiguity Aversion 0.19* 0.16
(0.033)F (0.099)

Risk Aversion -0.02 0.24*
(1.000)F (0.011)

Ambiguity Aversion LRA Subjects 0.25* -0.01
(0.024)F (1.000)F

Ambiguity Aversion HRA Subjects 0.09 0.20
(0.590)F (0.231)

Risk Aversion AN Subjects 0.02 0.13
(1.000)F (0.341)F

Risk Aversion AA Subjects -0.13 0.34
(0.622)F (0.050)

Ambiguity Aversion & Risk Aversion 0.12 0.33**
(0.251)F (0.007)

Table 2.7: Change in the values of NB
NB+NA

and NC
NC+NA

in the testing game as a function of
subject type, where NA is the number of subjects selecting A. Restricted to subjects that
passed the comprehension tasks. N = 116. LRA denotes low risk aversion, HR denotes
high risk aversion, AN denotes ambiguity neutral and AA denotes ambiguity averse.
Figures in brackets are p-values calculated under a null hypothesis that the coefficient is
equal to zero under either Pearson’s χ2 test or a Fisher exact test (denoted by F). The
coefficients are equivalent to the probabilities implied by a saturated multinomial logit
regression with a choice of A denoted as the base outcome.

Result 2.3. A joint measure of risk and ambiguity aversion is associated with a

higher probability of playing C in the game in figure 2.6.

20An ANOVA on the choice between A and B finds a significant main effect of ambiguity aversion
(p = 0.041). An ANOVA on the choice between A and C finds a significant main effect of risk
aversion (p = 0.012). Again, care should be taken in interpreting the ANOVA results, see footnote
17.
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Result 2.4. There is evidence that ambiguity aversion is associated with a higher

probability of playing B in the game in figure 2.6, for low risk aversion subjects

who passed the comprehension tests.

2.3.3 Column player behaviour

We now turn our attention to column player behaviour in the game in figure 2.6.

Recall that Type 1′ subjects have a unique rationalizable action of X , while both X

and Y are rationalizable for all other subjects. We should therefore, expect subjects

who believe their opponent to be risk and ambiguity averse to play X less often

than subjects that believe their opponent to be ambiguity neutral and have low risk

aversion.

Type 1′ Type 2′ Type 3′ Type 4′ Total
Believe opponent to be LRA, AN LRA, AA HRA, AN HRA, AA

Pr(X) 0.74 (N=47) 0.83 (N=18) 0.65 (N=20) 0.59 (N=17) 0.72 (N=102)

Table 2.8: Proportion of subjects that play X in the game in figure 2.6, by belief type. LRA
denotes low risk aversion, HR denotes high risk aversion, AN denotes ambiguity neutral
and AA denotes ambiguity averse.

Table 2.9 shows the change in the proportion of subjects that play X as a func-

tion of preferences, restricted to subjects who passed the comprehension tests for

their three games as the column player. The model structure is analogous to Table

2.6. Interestingly, there is no evidence of any effect of beliefs regarding an oppo-

nent’s preferences on column player behavior in the testing game. In particular, the

point estimate of the average effect of a subject believing he is facing an ambiguity

averse opponent, relative to believing he is facing an ambiguity neutral opponent,

is 0 to two decimal places. Subject beliefs regarding their opponent’s preferences

are statistically independent of their behaviour as the column player in the testing

game.

Result 2.5. Neither beliefs over risk preferences nor beliefs over ambiguity pref-

erences explain behaviour for the column player in the game in figure 2.6.
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Effect of beliefs over opponent’s Restricted to subjects who believe their opponent is ∆Pr(X)

Ambiguity Aversion -0.00
(0.980)

Risk Aversion -0.15
(0.112)

Ambiguity Aversion Low Risk Aversion 0.09
(0.448)

Ambiguity Aversion High Risk Aversion -0.06
(0.699)

Risk Aversion Ambiguity Neutral -0.10
(0.431)

Risk Aversion Ambiguity Averse -0.25
(0.109)

Ambiguity Aversion & Risk Aversion -0.16
(0.226)

Table 2.9: Change in proportion of subjects playing X in the testing game, as a function
of reported beliefs over opponents’ preferences, restricted to subjects that passed the
comprehension tasks. N = 102. Pearson’s χ2 p-value shown in brackets. * indicates
value is significantly different from 0 using a non-directional test at the 5% level and **
indicates significance at the 1% level.

2.3.4 Discussion of results

Result 2.1 established a correlation between risk and ambiguity preferences.21 The

previous experimental literature on the correlation between risk and ambiguity

preferences has produced mixed results. Some studies have found positive cor-

relation, others have found no correlation, and others have found correlations un-

der some circumstances but not others, although the weight of evidence tends to

favour a correlation.22 From a theoretical viewpoint, axiomatic models of pref-

21The data also presents a strong relationship between a subject’s preferences and his beliefs re-
garding his opponent’s preferences. Further investigation of this relationship is relegated to appendix
B.3.2, however, as there is evidence (discussed in section 2.4) that subjects may have had a low level
of confidence in their predictions of their opponent’s behaviour. In this context of uncertainty, pro-
jecting their own preferences onto their opponent provides a sensible focal point that was followed
by most subjects.

22A non-exhaustive list of papers that have found a positive correlation between risk and ambiguity
aversion includes: Abdellaoui et al. (2011), Bossaerts et al. (2009) and Dean and Ortoleva (2014) . A
similar list on the other side of the debate includes: Curley et al. (1986) and Di Mauro and Maffioletti
(2004).
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erences (Schmeidler (1989) and Gilboa and Schmeidler (1989), for example) are

typically agnostic regarding the relationship between risk and ambiguity aversion.

There are, however, some non-axiomatic theoretical models of behaviour under

uncertainty that suggest a positive correlation between risk and ambiguity prefer-

ences (Halevy and Feltkamp (2005), for example). The evidence provided here is

of a very base variety - once the framing of the games is stripped away, subjects

were faced with either 2 or 3 element choice sets. Given that decisions over small

choice sets form the building blocks of decision theory under uncertainty, there is a

strong case to be made that decisions over small choice sets are the correct domain

for examining preferences.

In the context of measuring the effects of risk and ambiguity aversion in games,

correlation between risk and ambiguity preferences can lead to an omitted variable

bias if only one factor is considered. Given that the current chapter is the first to

consider the effects of both risk and ambiguity, we have evidence that previous es-

timates of risk aversion in games (Goeree et al. (2003), for example) and ambiguity

aversion in games (Kelsey and le Roux (2015a), for example) may overestimate ef-

fect sizes. This effect is demonstrated clearly in table 2.6. The unconditional effect

of risk aversion on the probability of playing A is estimated to be a statistically

significant −0.20. Because of the omitted variable bias, this figure is larger than

both the estimated effect of risk aversion for ambiguity neutral subjects (−0.13)

and the estimated effect of risk aversion for ambiguity averse subjects (−0.17).

Result 2.2 established a joint effect of risk and ambiguity preferences on be-

haviour in the testing game, but did not identify the effect of ambiguity aversion

separately from the effect of risk aversion. To understand why we do not try and

pull apart average affects of risk and ambiguity, recall table 2.2 which summarizes

the mapping from our Typology to rationalizable sets. The rationalizable sets dif-

fer between Type 1 subjects and subjects of any other Type. This generates a clear

prediction that we should expect different behaviour between Type 1 subjects and

Type 2 subjects (i.e. an effect of ambiguity aversion conditional on low risk aver-

sion). We do not, however, have a clear prediction of a difference in behaviour

between Type 3 and Type 4 subjects (i.e. an effect of ambiguity aversion condi-

tional on high risk aversion). This differential prediction means that many of the

standard statistical tests for categorical data of this nature, such as ANOVA, do not
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identify the effects that we are theoretically interested in here. The only theoreti-

cally motivated test for the effect of ambiguity aversion on behaviour is to test the

behaviour between Type 1 and Type 2 subjects (which is the test that is conducted

in the third row of table 2.5).

We have, so far, focused our analysis on the effect of type on behaviour in the

testing game. However, also of interest is the behaviour of Type 1 subjects (who

were measured to have low risk aversion and are consistent with ambiguity neu-

trality), who have a unique rationalizable strategy of A in the testing game. Table

2.5 shows that 26% of Type 1 subjects who passed the comprehension tasks, and

thereby demonstrated an understanding of the payoff structure of the games, failed

to play a rationalizable strategy. As discussed in appendix B.1.2 to the extent that

there is misclassification we expect to overclassify subjects as Type 1, which may

explain some of the non-rationalizable behaviour observed here: some of these sub-

jects may perceive their opponent to be a source of ambiguity but do not perceive

an Ellsberg urn to be a source of ambiguity.

Results 2.3 and 2.4 established that ambiguity aversion appears to be driving a

movement away from A towards B, and the joint effect of risk and ambiguity aver-

sion is a movement towards C. A choice of C is the natural ‘safe’ strategy in the

game in figure 2.6, and it is not surprising that risk and ambiguity averse subjects

show a strong affinity for choosing C. The choice of B amongst ambiguity averse

subjects, however, is more interesting. While any explanation of why ambiguity

averse subjects with low risk aversion have a tendency to choose B must be taken

with caution given the small sample sizes involved, we provide a speculative hy-

pothesis. Identifying and avoiding ambiguous prospects while being comfortable

to take on risks at small stakes is a sophisticated set of preferences for a subject to

hold.23 For an ambiguity averse subject, a choice of C in the testing game is the

obvious choice – perhaps a little too obvious. Expecting their opponent to best re-

spond to C, a sophisticated ambiguity averse subject may apply 2 levels of reason-

ing and best respond to the best response to C: a choice of B. There is no evidence

of such reasoning amongst high risk aversion subjects. An interesting hypothesis

23Chew et al. (2013) provide evidence that, in more complicated situations, the expression of
ambiguity aversion is more likely amongst sophisticated subjects precisely because sophistication is
required to identify and avoid ambiguity.
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for future work is, therefore: do ambiguity averse subjects with low levels of risk

aversion engage in higher levels of strategic reasoning than ambiguity neutral or

highly risk averse subjects?

Result 2.5 is perhaps the most intriguing result. Why are subjects, who demon-

strated a sound understanding of the games being played by passing the compre-

hension test, not behaving in a fashion that is consistent with their self reported

beliefs regarding their opponent’s preferences? There are at least three plausible

explanations. First, as discussed in section 2.1.1, subjects may have very impre-

cise beliefs regarding their opponents preferences. Second, subjects may be unable

to implement the higher order reasoning needed to understand the relationship be-

tween opponent preferences and opponent behaviour. Third, subjects might believe

that their opponents are not rational or do not understand the game structure.

There is evidence that the first explanation may hold. A natural reaction for

a subject who is very unsure about their opponent’s preferences is to imagine that

their opponent is just like them, and best respond to what they would play as the

other player. Given that we observe each subject play the game as both the row

and column player, we can check if this is the case. Table 2.10 presents the data

(for all subjects that are classified a type as both the row and column player) and

clearly demonstrates that column players have a tendency towards best responding

to their own row player action. Notice, however, that the effect does not appear to

be symmetric: if row players had a tendency to best respond to their own column

player action then we should expect to see more subjects in the {B,Y} cell, and

less subjects choosing C.24

X Y
A 85 16
B 7 8
C 28 30

Table 2.10: The number of subjects that chose each outcome, under the counter factual that
each subject was matched with themselves. Subjects who selected either I or I′ in the
risk measurement game are excluded. A Pearson’s χ2 test rejects the null hypothesis of
independence at the 1% level (p = 0.000).

24In fact, if subjects were always responding to what they would do in the other role then we would
see everyone playing the unique Nash equilibrium.
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In the next section, we introduce an additional treatment that tests between the

first two explanations. If subjects are unable to reason at a high enough level to

respond to their opponent’s preferences, then there are serious implications for the

standard set of game theoretic tools. To conduct this test, we provide subjects with

a signal about both their opponent’s preferences and comprehension scores.

2.4 Unpacking the Results: A New Treatment
In the previous section we provided evidence that subjects’ preferences affect their

behaviour in the main testing game in the direction predicted by theory but their

beliefs over their opponent’s preferences do not affect behaviour, thereby establish-

ing partial support for the role of ambiguity aversion in game theory. The data in

the previous section does not, however, allow us to identify the reason for the fail-

ure of beliefs over opponent’s preferences to affect behaviour. We hypothesize that

subjects have a low level of confidence in their reported beliefs and are, therefore,

essentially ‘guessing’ in the belief measuring games. An alternative explanation

is that subjects are unable to hold a consistent mental model of their opponent,

and therefore respond differently in different environments. The results presented

in this section, which are remarkably strong, support the former explanation of

behaviour in the testing game.

We propose a simple new treatment: instead of eliciting subjects’ beliefs over

their opponent’s preferences, we simply inform the subject of the choices that their

opponent made in the preference measuring games. If subjects use the signal of

their opponent’s preferences to inform their behaviour as the column player in the

testing game then we can conclude that subjects are able to form a coherent mental

model of their opponent, and that it was a lack of confidence in beliefs that was

driving behaviour in the original treatment. The results are stark: when a subject

has observed his opponent’s preferences, the opponent’s preferences are strongly

correlated with the subject’s behaviour as the column player in the main testing

game.

For the additional treatment, 130 new subjects were recruited and bought to the

ELVSE lab.25 The sessions lasted between 30 and 40 minutes and average earnings

25There were actually 131 subjects, but one subject had already participated in the original treat-
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Figure 2.7: The matching protocol diagram, as shown to subjects. The subject was des-
ignated ”You”, and the subject’s opponent was designated ”Counterpart”. Arrows are
used to represent strategic interactions: the originator’s choice influences the target’s
payoff. Note that the subjects were shown a transposed version of the game in figure
2.6, so the row and column labels are reversed.

were C$22.56. Each subject was matched with an opponent from the original ex-

perimental sessions, with the subject’s opponent being selected in a pseudo-random

fashion26.

91 subjects were shown the choice made by their opponent in both the risk

and ambiguity measuring games (i.e. their opponent’s choice as the row player

in the games in figures 2.2 and 2.5), while 39 subjects were shown only their op-

ponent’s choice in the ambiguity measuring game. Each subject was also given a

summary of his opponent’s performance on the comprehension tasks. The pool of

opponents was heavily skewed towards opponents who had performed well on the

comprehension tasks – the goal was not to investigate how a subject responded to

his opponent’s comprehension score, but rather to provide the subject with a credi-

ble signal that his opponent’s choices represent reasoned decisions and not random

behaviour generated by a poor understanding of the underlying game.

ment and was therefore excluded from the data. The subject had created two accounts in ORSEE,
which wasn’t noticed until after the session had finished. Given that there was no learning possible
in the experiment, and no subject could observe any other subject’s choices until after all decisions
were finalized, we are still able to use the other subject’s data from the offending session without fear
of contamination.

26The pool of subjects was chosen in a manner that was designed to provide better statistical power
than would have been provided using true random sampling. Subjects were informed that they were
to be matched with a previous experimental participant, but were not given any information regarding
how their opponent was selected.
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After subjects had viewed their opponent’s choices in the preference measur-

ing tasks, subjects were asked to play the main testing game as the column player

against this same opponent. The matching protocol was explained to subjects with

the aid of the diagram in figure 2.7: the subject is matched with a previous partici-

pant, and therefore the subject cannot influence the payoffs that are being awarded

to any other player. The subjects were also required to fill in the drop down menu

comprehension questions for their role as a column player, and could earn up to

a $1 bonus for completing the comprehension questions correctly (see appendix

B.1.3 for details). As in the main treatment, we exclude subjects who performed

poorly on the comprehension questions: 121 of the 130 subjects answered the com-

prehension questions correctly on their first attempt.27

The payoff structure that was used in the preference measuring games was de-

signed for the original treatment in which an unobserved variable (the subject’s true

preferences) was expected to influence behaviour in both the preference measuring

games and the testing game. As a consequence, we would expect the results in

the original treatment to persist independently of whether the subject understood

the relationship between the preference measuring games and the testing game. In

the new treatment, however, we will only observe the predicted effects when the

subject understands the relationship between games.

It is, of course, unrealistic to think that subjects will have knowledge of the

formal relationship between risk preferences, ambiguity preferences and solution

concepts across games. There are, however, some obvious and intuitive patterns

that subjects may recognize. For example, in the risk measurement game (figure

2.5) it is clear that, in laymen’s terms, strategies L and I are “dangerous”, and

strategy H is “safe”. In the testing game (figure 2.6) it is also clear that strategies

A and B are “dangerous”, and strategy C is “safe”. If an opponent is observed to be

willing to take risks in one situation, then it seems reasonable to suppose that they

might take risks in another situation.

The data for this new treatment is summarized in tables 2.11 and 2.12. Table

2.11 presents the data for subjects who observed both their opponent’s risk and

27For the comparable game in the main treatment 179 of 206 subjects answered the comprehension
questions correctly on the first attempt. The difference (93% vs. 87%) is not statistically significant.
See appendix B.3.3 for further details.
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ambiguity preferences. Remarkably, every single subject who observes a Type 1

opponent plays X , which is their unique rationalizable strategy. There is also a

large drop off in the proportion of subjects that play X , conditional on observing

a highly risk averse opponent (Type 3 or Type 4) which is also in concordance

with theory. Table 2.12 presents the data for subjects who observed only their

opponent’s ambiguity preferences.

Opponent type Type 1 Type 2 Type 3 Type 4 Total
Observed preferences LRA, AN LRA, AA HRA, AN HRA, AA

Pr(X) 1.00 (N=26) 0.92 (N=12) 0.56 (N=16) 0.30 (N=23) 0.69 (N=77)

Table 2.11: Percentage of subjects that play X in the game in figure 2.6, by opponents’
preference type, restricted to subjects who passed the comprehension task, for subjects
who observed both their opponents’ risk and ambiguity preference. LRA denotes low
risk aversion, HR denotes high risk aversion, AN denotes ambiguity neutral and AA
denotes ambiguity averse.

Opponent type Type 1 or 3 Type 2 or 4 Total
Observed preferences AN AA

Pr(X) 0.95 (N=22) 0.69 (N=16) 0.84 (N=38)

Table 2.12: Percentage of subjects that play X in the game in figure 2.6, by opponents’ pref-
erence type, restricted to subjects who passed the comprehension task, for subjects who
only observed their opponents’ ambiguity preference. AN denotes ambiguity neutral
and AA denotes ambiguity averse.

Table 2.13 presents a more detailed analysis of the results. The average effects

of observing a risk averse or ambiguity averse opponent are both large and signif-

icant although, again, they may be subject to omitted variable bias. In particular,

the average effect of observing an ambiguity averse opponent is overstated. The

conditional estimates demonstrate that the effect is working chiefly through the risk

aversion, rather than ambiguity aversion, channel. The effect of observing a risk

averse opponent is large and statistically significant whether we restrict the sample

to only ambiguity neutral or ambiguity averse opponents. On the other hand, the

effect of observing an ambiguity averse opponent, conditional on the opponent’s

risk aversion, is not significant. This may not be surprising given the difference in

payoff structures between the risk and ambiguity measurement tasks: the risk task

measures preferences over prospects with differences in expected values of a few
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dollars, while the ambiguity task measures preferences over prospects with differ-

ences in expected values of a few cents, implying that the signal of opponent’s risk

preferences is stronger than the signal of opponent’s ambiguity preferences.

It could also be the case, however, that subjects are able to identify and reason

about their opponent’s risk preferences, but are unable to identify or understand the

role of ambiguity preferences. Table 2.12 establishes that this is not the case: when

subjects observe only their opponent’s ambiguity preference they are more likely

to play X when facing an ambiguity neutral than ambiguity averse opponent. The

effect of ambiguity preferences is approximately half that of risk preferences, and

a Fisher exact test with a null hypothesis of no effect of an opponent’s ambiguity

preferences on behaviour generates a two-sided p-value of 0.06 and a one-sided

p-value of 0.04.

Effect of opponents Restricted to opponents who are ∆Pr(X)

Ambiguity Aversion -0.32**
(0.003)

Risk Aversion -0.56**
(0.000)

Ambiguity Aversion Low Risk Aversion -0.08
(0.316)F

Ambiguity Aversion High Risk Aversion -0.26
(0.107)

Risk Aversion Ambiguity Neutrality -0.44**
(0.000)F

Risk Aversion Ambiguity Aversion -0.61**
(0.001)

Ambiguity Aversion & Risk Aversion -0.70**
(0.000)

Table 2.13: Change in proportion of subjects playing X in the testing game, as a function
of opponent’s preferences, restricted to subjects that passed the comprehension tests.
N = 77. Pearson’s χ2 p-value shown in brackets. p-values denoted with an F are
calculated using Fisher’s exact test because of small or unbalanced samples. * indicates
value is significantly different from 0 using a non-directional test at the 5% level and
** indicates significance at the 1% level.

It is obvious that the results for subjects with Type 1 opponents are exactly

equal to the pure strategy Nash equilibrium of the game. A natural follow up ques-
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tion is: are the results for subjects with Type 3 opponents also rationalizable by a

Nash equilibrium?28 The answer is yes: the proportion of subjects playing X when

they observe their opponent to be ambiguity neutral but risk averse (9 out of 16

subjects, see Table 2.11) forms a Nash equilibrium of the game (where row players

mix between A and C) when the row player has a CRRA utility function with risk

aversion parameter β = 2.81. Given that the choice of C in the risk measurement

game implies β > 1.93 the results are consistent with potential equilibrium play at

reasonable levels of risk aversion.

Result 2.6. When a subject observes a signal of her opponent’s risk and ambiguity

preferences, her behaviour as the column player in the game in figure 2.6 is affected

by the signal in a fashion that is consistent with the theory of section 2.1.1.

2.5 Discussion
The data presented in sections 2.3 and 2.4 provides a clear picture of the role of

uncertainty aversion in games. A subject’s preferences over risk and ambiguity

are correlated with behaviour in our normal form testing game. There is no re-

lationship, however, for subjects that passed our comprehension tests, between a

subject’s beliefs over her opponent’s preferences and her behaviour in the testing

game. In a follow up treatment, where subjects were shown their opponent’s be-

haviour in the preference measuring tasks, a very strong relationship between the

opponent’s risk preferences and the subject’s behaviour was observed.

Uncertainty aversion is not the only alternative theory that has been able to

explain deviations from Nash equilibrium in previous work. Indeed, other models

such as the level-k model, quantal response equilibrium and other regarding pref-

erences can, to various extents, explain part of the data presented in this chapter.

There is, however, a key piece of the data that these other models cannot explain:

the relationship between ambiguity preferences in the classification game and be-

haviour in the testing game. One of the key motivations for the experimental design

implemented here was to isolate and identify the role of preferences independently

of these ‘other’ behavioural models. It may well be the case that a level-k (or

28Because of the very large range of mixed equilibrium probabilities for subjects with Type 2 or
Type 4 opponents, there is not much point in repeating the analyses for those subjects.
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quantal response, or other regarding preferences) model that is augmented with

heterogeneous uncertainty preferences will provide a highly predictive model of

strategic behaviour across a wide range of settings but these are not the focus of

this chapter. However, for this chapter, we invoke the principle of parsimony and

focus on isolating and identifying the role of strategic uncertainty in determining

behaviour in strategic settings.

The results presented here are in line with the results found in other recent

experimental papers that have, broadly speaking, taken an epistemic approach to

behaviour in games. The experimental epistemic games literature seeks to identify

the state of knowledge and modes of reasoning that are used by subjects in various

experimental environments, with a goal of understanding the process of subject

decision making via a convergence of theory and evidence.

Kneeland (2015) finds, in a paper that focuses on level-k reasoning (rather than

ambiguity aversion), using a novel ring-game structure, that while most subjects

(94%) are rational they do not form consistent conjectures regarding each other’s

behaviour. Kneeland also finds that a large proportion of subjects believe their

opponents are rational (72%) and that 44% have second-order beliefs regarding the

rationality of others.

The implications of the results in this chapter for subject rationality are broadly

comparable with those found by Kneeland. Amongst ambiguity and risk neutral

subjects, we find that 77% of subjects played an undominated strategy in the main

testing game, and therefore exhibit rational behaviour. While this is lower than the

94% found by Kneeland, it was easier for Kneeland’s subjects to identify dom-

inated strategies because they were dominated by a pure strategy (rather than a

mixed strategy as was the case in the game in figure 2.6). We find higher rates of

equilibrium play than Kneeland29, although the game in figure 2.6 is dominance

solvable and therefore requires weaker epistemic assumptions to justify equilib-

rium behaviour than in Kneeland’s game. Furthermore, the data in the treatment

presented in section 2.4, where subjects were able to observe their opponent’s be-

haviour in the classification games, can be interpreted as providing evidence that

most subjects believe that their opponents are rational.

29The equilibrium analysis is not included in the final published version of Kneeland (2015), but
can be found in earlier working paper versions.
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Healy (2013) also provides empirical evidence regarding the epistemic status

of laboratory subjects. One of his main finding is that subjects are generally poor

at estimating their opponent’s preferences over outcomes. Here, we find evidence

that subjects are very much aware that they are poor at estimating their opponent’s

preferences: subjects who observed their opponent’s behaviour in the classification

games exhibited markedly different behaviour than subjects in the baseline treat-

ment, and subjects responded to information about their opponent’s preferences in

a highly rational manner.

Esponda and Vespa (2014) find that, when subjects play a voting game against

computer agents with known strategies, subjects can correctly extract information

from the computers’ strategies much more often after observing the computers’

votes than they can extract information from a strategically equivalent simultane-

ous move game. Similarly, our subjects can extract information from their oppo-

nent’s behaviour in the classification games if they have observed their opponent’s

behaviour. However, when a subject only predicts, but does not observe, the oppo-

nent’s behaviour the subject does not behave as if her prediction of the opponent’s

preferences contains relevant information.

2.5.1 Conclusions

This chapter presents evidence that both risk and ambiguity preferences play a role

in determining behaviour in normal form games, but that beliefs over an opponent’s

preferences do not influence behaviour in games. As demonstrated in a follow

up treatment, subjects have a high level of uncertainty regarding their opponent’s

preferences; when informed of their opponent’s preferences, subjects behaved in

a fashion that is largely consistent with equilibrium play. The results suggest that

both strategic uncertainty and uncertainty regarding an opponent’s preferences play

an important role in determining behaviour in normal form games. Additionally,

this chapter presents evidence that ambiguity and risk preference are correlated in

the context of games.

The results in this chapter, and the previous research discussed above (Knee-

land (2015), Healy (2013) and Esponda and Vespa (2014)), provide some strong

suggestions for empirically founded models of strategic behaviour.
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Generally, assuming first order rationality of subjects appears to be a reason-

able assumption (particularly when dominance relationships are strict). However,

the standard game theoretic assumption of common knowledge of preferences is

soundly rejected by the data: even mutual knowledge of preferences is too strong.

Preference heterogeneity (across both risk and ambiguity dimensions) plays an im-

portant role in strategic behaviour, but subjects do not seem to have well calibrated

beliefs regarding the preferences of others. On aggregate, the evidence suggests

that preferences should be modeled as private information with diffuse or uncertain

priors. However, the evidence from the follow-up treatment presented in section

2.4 suggests that when subjects are informed of their opponent’s preferences (i.e.

when beliefs over preferences become ‘precise enough’) then it is reasonable to as-

sume that subjects will respond to this preference information in a rational fashion.

Grant et al. (Forthcoming) provides an important step towards synthesizing some

of these ideas in a general theoretical framework.

Furthermore, the results presented here suggest that studies that focus on either

ambiguity or risk preferences in strategic environments may overstate the effects

of risk or ambiguity preferences on behaviour via an omitted variable bias effect.

Unpacking the relationship between preferences and strategic uncertainty requires

a careful consideration of both risk and ambiguity aversion.
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Chapter 3

Continuity, Inertia and Strategic
Uncertainty: A Test of the Theory
of Continuous Time Games.

3.1 Introduction
In game theoretic models, players usually make decisions in lock-step at a prede-

termined set of dates – a timing protocol we will call “Perfectly Discrete time.”

Most real world interaction, by contrast, unfolds asynchronously in unstructured

continuous time, perhaps with some inertia delaying mutual response. Does this

difference between typical modeling conventions and real-world interactions mat-

ter? Theoretical work on the effects of continuous time environments on behavior

(developed especially in Simon and Stinchcombe (1989) and Bergin and MacLeod

(1993)) focuses on what we will call “Perfectly Continuous time,” a limiting case

in which players can respond instantly (that is with zero inertia) to one another,

and arrives at a surprising answer: Perfectly Discrete time and Perfectly Contin-

uous time can often support fundamentally different equilibria, resulting in wide

gaps in behavior between the two settings.

In this chapter we introduce new techniques that allow us to evaluate these the-

orized gaps in the laboratory directly and assess their relevance for understanding
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real world behavior. We pose two main questions. First, does the gulf between Per-

fectly Discrete and Perfectly Continuous time suggested by the theory describe real

human behavior? Though equilibria exist that produce large differences in behav-

ior (and authors such as Simon and Stinchcombe (1989) argue that these equilibria

should be considered highly focal), multiplicity of equilibrium in Perfectly Con-

tinuous time means that the effect of continuous time is, ultimately, theoretically

indeterminate. Second, we ask how empirically relevant these gaps are: can more

realistic, imperfectly continuous time games (games with natural response delays

that we call “Inertial Continuous time” games) generate Perfectly Continuous-like

outcomes? Nash equilibrium suggests not but, as Simon and Stinchcombe (1989)

and Bergin and MacLeod (1993) emphasize, even slight deviations from Nash equi-

librium assumptions (á la ε-equilibrium) allow Perfectly Continuous-like behavior

to survive as equilibria in the face of inertia, provided inertia is sufficiently small.

Recent experiments have begun to investigate the relationship between contin-

uous and discrete time behavior in the lab (e.g. Friedman and Oprea (2012) and

Bigoni et al. (2015))1 but have not yet directly tested the theory motivating these

questions for a simple reason: natural human reaction lags in continuous time set-

tings generate inertia that prevents a direct implementation of the premises of the

theory. These Inertial Continuous time settings are empirically important (and of

independent interest) but are insufficient for a direct theory test because they gen-

erate very different equilibrium behavior from the Perfectly Continuous time envi-

ronments that anchor the theory (a prediction we test and find strong though highly

qualified support for in our data). In our experimental design, we introduce a new

protocol (“freeze time”) that eliminates inertia by pausing the game for several sec-

onds after subjects make decisions, allowing them to respond “instantly” to actions

1Both Friedman and Oprea (2012) and Bigoni et al. (2015) report evidence from prisoner’s dilem-
mas played with flow payoffs in Inertial Continuous time (i.e. subjects in these experiments suffer
natural reaction lags that prevent instant response to the actions of others). While the Friedman
and Oprea (2012) design varies the continuity of the environment (discrete vs. continuous time in-
teraction) in deterministic horizon games, the Bigoni et al. (2015) design centers on varying the
stochasticity of the horizon (deterministic vs. stochastic horizon) in continuous time games. Other
more distantly related continuous time papers include experimental work on multi-player centipede
games (Murphy et al., 2006), public-goods games (Oprea et al., 2014), network games (Berninghaus
et al., 2006), minimum-effort games (Deck and Nikiforakis, 2012), hawk-dove games (Oprea et al.,
2011), bargaining games (Embrey et al., 2015) and the effects of public signals (Evdokimov and
Rahman, 2014).
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of others (i.e. with no lag in game time) and thus allowing us to test Perfectly

Continuous predictions. By systematically comparing behavior in this Perfectly

Continuous setting to both Perfectly Discrete time and Inertial Continuous time

settings we are able to pose and answer our motivating questions.

We apply this new methodology to a simple timing game similar to one dis-

cussed in Simon and Stinchcombe (1989) that is ideally suited for a careful test

of the theory.2 In this game, each of two agents decides independently when to

enter a market. Joint delay is mutually beneficial up to a point, but agents benefit

from preempting their counterparts (and suffer by being preempted). In Perfectly

Discrete time, agents will enter the market at the very first opportunity, sacrificing

significant potential profits in subgame perfect equilibrium. By contrast, in Per-

fectly Continuous time, agents can, in equilibrium, delay entry until 40% of the

game has elapsed, thereby maximizing joint profits.3 (Simon and Stinchcombe

(1989) emphasize this equilibrium and point out that it uniquely survives iterated

elimination of weakly dominated strategies, but many other equilibria – includ-

ing inefficient immediate-entry equilibrium – exist in Perfectly Continuous time.)

Importantly, Inertial Continuous time of the sort studied in previous experiments

leads not to Perfectly Continuous time-like multiplicity in equilibrium but only to

the inefficient instant entry predicted for Perfectly Discrete time – as Bergin and

MacLeod (1993) point out even a small amount of inertia theoretically erases all of

the efficiency enhancing potential of continuous time in Nash equilibrium.4

In the first part of our experimental design we pose our main question by com-

paring Perfectly Discrete and Perfectly Continuous time using a baseline set of

2Compared to, for instance, the continuously repeated prisoner’s dilemma, our timing game has
several advantages for a diagnostic test. First, the joint profit maximizing outcome predicted by
Simon and Stinchcombe (1989) is interior, meaning simple heuristics like “cooperate until the end
of the game” cannot be confused with equilibrium play. Second, the strategy space is considerably
simpler than the prisoner’s dilemma, making measurement of decisions and inferences about strate-
gies crisper. Finally, the prisoner’s dilemma frames the contrast between cooperation and defection
somewhat starkly and may therefore trigger social behaviors that have little to do with the forces we
designed our experiment to study – we speculated in designing the experiment that our timing game
would be somewhat cleaner from this perspective.

3More precisely, the agents are maximizing joint profits subject to playing non-strictly dominated
strategies in every subgame that is reached on the path of play.

4We note that all equilibria of the game we study in this chapter are subgame perfect and that
some of our proofs rely on backwards induction. In the remainder of the chapter, for readibility, we
omit the modifier “subgame perfect” when discussing equilibria of our game.
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parameters and 60 second runs of the game. In the Perfectly Discrete time proto-

col, we divide the 60 second game into 16 discrete grid points and allow subjects

to simultaneously choose at each grid point whether to enter the market. In the

Perfectly Continuous time protocol we instead allow subjects to enter at any mo-

ment but, crucially, eliminate natural human inertia by freezing the game after any

player enters, allowing her counterpart to enter “immediately” from a game-time

perspective if she enters during the ample window of the freeze. We find evidence

of large and extremely consistent differences in behavior across these two proto-

cols. Virtually all subjects in the Perfectly Discrete time treatment suboptimally

enter at the first possible moment while virtually all subjects in Perfectly Contin-

uous time enter 40% of the way into the period, forming a tight mode around the

joint profit maximizing entry time. The results thus support the conjecture of a

large - indeed, from a payoff perspective, maximally large – gap between Perfectly

Continuous and Discrete time behaviors.

In the second part of the design, we study how introducing realistic inertia into

continuous time interaction changes the nature of the results observed in our Per-

fectly Continuous time treatment. Though Nash equilibrium predicts that even a

tiny amount of inertia will force behavior back to Perfectly Discrete-like immediate

entry times, alternatives such as ε-equilibrium suggest that Perfectly Continuous-

like results may survive as equilibria at low levels of inertia. In Inertial Continuous

time treatments we replicate our Perfectly Continuous time treatment but remove

the freeze time protocol, thereby allowing natural human reaction lags to produce

a natural source of inertia. We systematically vary the severity of this inertia by

varying the speed of the game relative to subjects’ natural reaction lags and find

that when inertia is highest, entry times collapse to zero in continuous time as pre-

dicted by Nash equilibrium. However, when we lower inertia to sufficiently small

levels, we observe large entry delays that are nearly as efficient as those observed

in Perfectly Continuous time. Thus, realistic Inertial Continuous Time behavior is

well approximated by the extreme of Perfectly Discrete time when inertia is large

and better approximated by the extreme of Perfectly Continuous time when inertia

is small. While these patterns are inconsistent with Nash equilibrium, they are,

as both Simon and Stinchcombe (1989) and Bergin and MacLeod (1993) stress,

broadly consistent with ε-equilibrium.
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Though ε-equilibrium is consistent with our data, it also generates imprecise

predictions. In the final part of the chapter, we consider, ex post, explanations

that can more sharply organize our data in order to better understand how inertia

and continuity influence behavior. Recent experimental work on dynamic strategic

interaction (e.g. Dal Bo and Frechette (2011), Embrey et al. (2016), Vespa and Wil-

son (2016),Dal Bo and Frechette (2016)) has emphasized the crucial role strategic

uncertainty (assumed away in Nash equilibrium) plays in predicting both equilib-

rium selection and non-Nash equilibrium behavior, and has focused especially on

the predictive power of the basin of attraction of defection relative to cooperative

alternatives. We show that the basin of attraction becomes more hospitable to con-

tinued cooperation at each moment in time as inertia falls towards the continuous

limit and that measures of risk dominance starkly organize our data, tying our re-

sults directly in with this recent work.

We then consider more explicit ways of modeling subjects’ responses to strate-

gic uncertainty by studying simple (and parsimonious) heuristic rules (drawn from

Milnor, 1954) discussed in the literature on highly uncertain environments: max-

imin ambiguity aversion (MAA), minimax regret avoidance (MRA) and Laplacian

subjective expected utility (LEU). Of these, we find that the MRA decision rule

dramatically outperforms Nash equilibrium, making extremely accurate point pre-

dictions for our game. We show that MRA also organizes data in an additional pair

of diagnostic treatments that generate comparative statics unanticipated by Nash

equilibrium. Finally, we consider the relevance of this result to other common

continuous time games. In the online appendix we show theoretically that MRA

predicts a smooth approach to Pareto optimal, Perfectly Continuous-like play as

inertia falls to zero in an important, broad class of continuous time games under

empirically sensible restrictions on beliefs. We directly test this claim by showing

that MRA predictions almost exactly track data on behavior in continuous time

prisoner’s dilemma from previous work. Our analysis thus suggests that heuristic

responses to strategic uncertainty like MRA may be a productive way of organizing

and interpreting data in a wide range of dynamic strategic settings.

The results of our experiment suggest a role for Perfectly Continuous time the-

oretical benchmarks in predicting and interpreting real-world behavior, even if the

world is never perfectly continuous. Changes in technology have recently narrowed
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– and continue to narrow – the gap between many types of human interactions and

the Perfectly Continuous setting described in the theory. Constant mobile access to

markets and social networks, the proliferation of applications that speed up search

and the advent of automated agents deployed for trade and search have the effect

of reducing inertia in human interactions. Our results suggest, contra Nash equilib-

rium, that such movements towards continuity may generate some of the dramatic

effects on behavior predicted for (and observed in) Perfectly Continuous time even

if inertia never falls quite to zero. Guided by these results, we conjecture that the

share of interactions that are better understood through the theoretical lens of Per-

fectly Continuous time than that of Perfectly Discrete time will grow as social and

economic activity continues to be transformed by this sort of technological change.

The remainder of the chapter is organized as follows. Section 3.2 gives an

overview of the main relevant theoretical results that form hypotheses for our ex-

periment and section 3.3 describes the experimental design. Section 3.4 presents

our results, Section 3.5 interprets the results in light of metrics and models of

strategic uncertainty, and Section 3.6 concludes the chapter. Appendices collect

theoretical proofs and the instructions to subjects.

3.2 Theoretical Background and Hypotheses
In section 3.2.1 we introduce our timing game and in section 3.2.2 we state and

discuss a set of propositions characterizing Nash equilibrium and providing us with

our main hypotheses. In section 3.2.3 we consider alternative hypotheses motivated

by ε-equilibrium.

3.2.1 A diagnostic timing game

Consider the following simple timing game, adapted from one described in Simon

and Stinchcombe (1989). Two firms, i ∈ {a,b}, each choose a time ti ∈ [0,1] at

which to enter a market, perhaps conditioning this choice on the history of the

game.5 Payoffs depend on the order of entry according to the following symmetric

5To conserve notation, we normalize the length of the game to be 1 for the theoretical analysis.
In our experiment, we sometimes vary the length of the game (and with it the severity of inertia and
predicted time of entry) across treatments.

46



function:

Ua(ta, tb) =


1−tb

2

[
ΠD +(tb− ta)(1+ 2

1−tb
)ΠF

]
− c(1− ta)2 if ta < tb

1−ta
2 ΠD− c(1− ta)2 if ta = tb

1−ta
2 [ΠD− (ta− tb)ΠS]− c(1− ta)2 if tb < ta

(3.1)

with parameters assumed to satisfy 0 < 2c < ΠS ≤ ΠD < 4c and 4c
3 ≤ ΠF ≤ 4c.

Though the applied setting modeled by this sort of game matters little for our rel-

atively abstract experiment, we can interpret the model as one in which firms face

quadratic costs for time spent in the market (parameterized by c), earn a duopoly

flow profit rate of ΠD while sharing the market, earn a greater flow profit ΠF while

a monopolist and suffer a permanent reduced earnings rate (parameterized by ΠS)

proportional to the time one’s counterpart has spent as a monopolist.

Several characteristics of this game are particularly important for what follows.

First, firms earn identical profits if they enter at the same time and this simultaneous

entry payoff is strictly concave in entry time, reaching a maximum at a time t∗ =

1− ΠD
4c ∈ (0, 1

2). Second, if one of the firms instead enters earlier than the other

(at time t ′), she earns a higher payoff and her counterpart a lower payoff than had

they entered simultaneously at time t ′. The firms thus maximize joint earnings

by delaying entry until an interior time t∗ but at each moment each firm has a

motivation to preempt its counterpart and to avoid being preempted.

3.2.2 Discrete, inertial and perfectly continuous time predictions

What entry times can be supported as equilibria in this game? The key observation

motivating both the theory and our experiment is that the answer depends on how

time operates in the game. In this subsection we characterize equilibrium under

three distinct protocols: Perfectly Discrete time, Perfectly Continuous time and

Inertial Continuous time (here we only sketch the main conceptual issues, deferring

technical discussion to Appendix A).

We begin with Perfectly Discrete time, the simplest and most familiar case.

Here, time is divided into G+1 evenly spaced grid points (starting always at t = 0)
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on [0,1] and players make simultaneous decisions at each of these points. More

precisely, each player chooses a time t ∈ {0,1/G, ...,(G−1)/G,1} at which to en-

ter, possibly conditioning this choice on the history of the game, Ht at each grid

point. Earnings are given by equation 3.1 applied to the dates on the grid at which

entry occurred.6 As in familiar dynamic discrete time games like the centipede

game and the finitely repeated prisoner’s dilemma there is a tension here between

efficiency (which requires mutual delay until at least the grid point immediately

prior to t∗) and individual sequential rationality (which encourages a player to pre-

empt her counterpart). Applying the logic of backwards induction, strategies that

delay entry past the first grid point unravel, leaving immediate entry at the first grid

point, t = 0, as the unique subgame perfect equilibrium, regardless of G.

Proposition 3.1. In Perfectly Discrete time, the unique subgame perfect equilib-

rium is for both firms to enter at time 0, regardless of the fineness of the grid, G.

Proof. : See Appendix C.2.1.

At the opposite extreme, in Perfectly Continuous time players are not confined

to a grid of entry times but can instead enter at any moment ti ∈ [0,1] (again, possi-

bly conditioning on the history of the game at each t, Ht). Simon and Stinchcombe

(1989) emphasize the relationship between the two extremes, modeling Perfectly

Continuous Time as the limit of a Perfectly Discrete time game as G approaches

infinity. In this limit, players can respond instantly to entry choices made by oth-

ers: if an agent enters the market at time t her counterpart can respond by also

entering at t, moving in response to her counterpart but at identical dates. Since, in

our game, delaying entry after a counterpart enters is strictly payoff decreasing, no

player can expect to succeed in preempting her counterpart (or have reason to fear

being preempted). This elimination of preemption motives also protects efficient

delayed entry from unravelling and thus makes it possible to support any entry time

t ∈ [0, t∗] as an equilibrium.7

6For example, if firm a entered at the third grid point, and firm b entered at the fifth grid point,
the payoff for firm a is given by Ua(

2
G , 4

G ).
7Entry times greater than t∗ cannot be supported in equilibrium because they are always payoff

dominated by t∗. Notice that despite the symmetry of the (joint entry) payoff function around t∗, the
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Proposition 3.2. In Perfectly Continuous time, any entry time t ∈ [0, t∗] can be

supported as a subgame perfect equilibrium outcome.

Proof. We provide three proofs of this proposition. Appendix C.2.1 includes a

self-contained heuristic proof, a more formal proof that draws directly from Simon

and Stinchcombe (1989) and an alternative proof that instead follows the modeling

approach of Bergin and MacLeod (1993).

Though it is possible for Perfectly Discrete and Perfectly Continuous behaviors

to radically differ in equilibrium, this is hardly guaranteed. Because of multiplicity,

Perfectly Continuous behavior may be quite different or quite similar to Perfectly

Discrete behavior in equilibrium (t = 0 and t∗ are both supportable in equilibrium

in Perfectly Continuous time) depending on the principle of equilibrium selection

at work. This multiplicity is in fact a central motivation for studying these environ-

ments in the laboratory. Simon and Stinchcombe (1989) emphasize that t∗ is the

unique entry time to survive iterated elimination of weakly dominated strategies

in our game and they argue that this refinement is natural in the context of Per-

fectly Continuous time games. Evaluating the organizing power of this refinement

is another central motivation for our study.

Remark 3.1. In Perfectly Continuous time, joint entry at t∗ = 1− ΠD
4c is the only

outcome that survives iterated elimination of weakly dominated strategies.

Proof. A heuristic proof is provided in appendix C.2.1. For further details, see

Simon and Stinchcombe (1989).

Finally, Inertial Continuous time lies between the extremes of Perfectly Dis-

crete and Perfectly Continuous time, featuring characteristics of each. Here, as in

Perfectly Continuous time, players can make asynchronous decisions and are not

confined to entering at a predetermined grid of times. However, as in Perfectly

Discrete time, players are unable to respond instantly to entry decisions by their

counterparts. In Inertial Continuous time, inability to instantly respond is due to

what Bergin and MacLeod (1993) call inertia (here, simply response lags of ex-

equilibrium entry set is not symmetric around t∗ because of the temporal nature of the game.
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ogenous size δ ).8, 9 With inertial reaction lags, the logic of unravelling returns as

players once again have motives to preempt one another. As a result, the efficient

delayed entry supported in equilibrium in Perfectly Continuous time evaporates

with even an arbitrarily small amount of inertia. Theoretically then, even a tiny

amount of inertia pushes continuous time behavior to Perfectly Discrete levels.

Proposition 3.3. In Inertial Continuous time, only entry at time 0 can be supported

as a subgame perfect equilibrium regardless of the size of inertia, δ > 0.

Proof. See Appendix C.2.1.

Instead of modeling Perfectly Continuous time as a limit of Perfectly Discrete

time as the grid becomes arbitrarily fine as Simon and Stinchcombe (1989) do,

Bergin and MacLeod (1993) model it as the limit of Inertial Continuous time as

inertia approaches zero. This alternative method for defining Perfectly Continu-

ous time leads to an identical equilibrium set to the one described by Simon and

Stinchcombe (1989) for our game.

3.2.3 Alternative hypothesis: Inertia and ε-equilibrium

Continuous time can fundamentally change Nash equilibrium behavior but this

effect is extremely fragile: even a slight amount of inertia will eliminate any pro-

cooperative effects of continuous time interaction in games like ours. Since inertia

is realistic, this frailty in turn calls into question the usefulness of the theory for

predicting and interpreting behavior in the real-world. Perhaps for this reason both

Simon and Stinchcombe (1989) and Bergin and MacLeod (1993) motivate the the-

ory of continuous time explicitly with reference to the more forgiving alternative of

ε-equilibrium, emphasizing that any Perfectly Continuous time Nash equilibrium

is arbitrarily close to some ε-equilibrium of a continuous time game with inertia

(and vice versa).10 If agents are willing to tolerate even very small deviations from

8 Though, in the context of our experiment, inertia simply refers to natural human reaction lags,
Bergin and MacLeod (1993) point out that more general types of inertia are possible.

9Throughout the chapter we define inertia δ as the ratio of an agent’s reaction lag, δ0, to the total
length of the game, T (i.e. δ ≡ δ0/T ). Inertia is thus the fraction of the game that elapses before an
agent can respond to her counterpart.

10More precisely, Simon and Stinchcombe (1989) make this same point with respect to syn-
chronous, discrete time games with very fine time grids.
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best response, they can support Perfectly Continuous-like outcomes as equilibria

even in the face of inertia, provided inertia is sufficiently small. Indeed, in our

game, when inertia is large, ε-equilibrium coincides perfectly with Nash equilib-

rium, supporting only immediate entry and mirroring Perfectly Discrete time Nash

equilibrium. However when inertia falls below a threshold level (determined by ε)

the equilibrium set expands to support any entry time t ∈ [0, t∗], instead mirroring

Perfectly Continuous time Nash equilibrium. We formalize this in the following

proposition:

Proposition 3.4. Consider a game in inertial continuous time. For any ε > 0, there

exists δ̂ > 0 such that for all levels of inertia δ < δ̂ any entry time in [0, t∗] can be

sustained in a subgame perfect ε-equilibrium.

For any 0 < ε < ΠF − c there exists δ such that for all levels of inertia δ > δ

immediate entry is the unique subgame perfect ε-equilibrium.

Proof. See Appendix C.3.2.11

This result is useful because it emphasizes that even very small deviations from

the assumptions underlying Nash equilibrium – for instance small amounts of noise

in beliefs or imprecision in payoffs specified in the game – can make either Per-

fectly Discrete or Perfectly Continuous time benchmarks more predictive, depend-

ing on the severity of inertia.12 For this reason (and because of the important role

ε-equilibrium plays in the theory), we built our experimental design in part with

this alternative prediction in mind as an ex ante alternative hypothesis to Nash

equilibrium. In section 3.5, we consider, ex post, more specific interpretations for

the sort of non-Nash equilibrium behavior ε-equilibrium is capable of sustaining,

focusing on the role of strategic uncertainty in supporting non-Nash equilibrium

outcomes. By doing so we are able to more sharply organize our results and tie

our findings to important themes explored in recent, closely related literature on

dynamic strategic interaction.

11In Appendix C.3 we prove a set of propositions fully characterizing the ε-equilibrium sets for
our protocols.

12Generically, δ̂ < δ . However, when ΠF = 4c, as in our main treatments, δ̂ = δ which implies a
discontinuity in the equilibrium set. See proposition C.4 for further details regarding the continuity
(or otherwise) of the equilibrium set.
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Figure 3.1: Screen shot from Perfectly

Continuous and Inertial Continu-

ous time treatments (under the low-

temptation parametrization).

Figure 3.2: Screen shot from Perfectly

Discrete time treatments (under the

low-temptation parametrization).

3.3 Design and Implementation
In section 3.3.1 we discuss our strategy for implementing our three timing protocols

in the lab and present the experimental software we built to carry out this strategy.

In section 3.3.2 we present our treatment design.

3.3.1 Timing protocols and experimental software

We ran our experiment using a custom piece of software programmed in Redwood

(Pettit et al. (2015)). Figures 3.1 and 3.2 show screenshots. Using this software,

we implemented the three timing protocols described in Section 3.2 as follows:

Inertial Continuous time. Figure 3.1 shows an Inertial Continuous time screen-

shot. As time elapses during the period, the payoff dots (labeled “Me” and “Other”)

move along the joint payoff line (black center line) from the left to the right of the

screen. (In most treatments periods last 60 seconds meaning it takes 60 seconds for

the payoff dot to reach the right hand side of the screen.) When a subject is the first

player to enter the market, her payoff dot shifts from the black to the green line (the

top line), while her counterpart’s payoff dot (the dot of the second mover) shifts to

the red line (the bottom line).13 When the second player enters the market, period

13Because of the nature of the payoff function, the green and red line change throughout the period
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payoffs for both players are determined by the vertical location of each player’s

dot at the moment of second entry. Once both players have entered, they wait until

the remaining time in the period has elapsed before the next period begins (see the

instructions in Appendix B for more detail). Because subjects, on average, take

roughly 0.5 seconds to respond to actions by others, subjects have natural inertia in

their decision making that should theoretically generate Inertial Continuous time

equilibrium behavior.

Perfectly Continuous time. The Perfectly Continuous time implementation is

identical to the Inertial Continuous time implementation (as shown in Figure 3.1)

except that when either subject presses the space bar to enter the game freezes (we

call this the “Freeze Time” protocol) and the payoff dots stop moving from left

to right across the screen for five seconds. Subjects observe a countdown on the

screen and the first mover’s counterpart is allowed to enter during this time. If the

counterpart enters during this window, her response is treated as simultaneous to

her counterpart’s entry time and both players earn the amount given by the current

vertical location of their payoff dot. Otherwise, the game continues as in Inertial

Continuous time once the window has expired. Regardless, subjects must wait

until the remaining time in the period has elapsed before the next period begins.

The length of the pause was calibrated to be roughly 10 times longer than the

median reaction lag measured in Inertial Continuous time, giving subjects ample

time to respond, driving inertia to 0 and thus satisfying the premises of Perfectly

Continuous time models.14

Perfectly Discrete time. Figure 3.2 shows a screen shot for the Perfectly Dis-

crete treatments, which is very similar to the continuous time screen but for a few

prior to entry and stabilize once one player has entered.
14An alternative way of formally implementing Perfectly Continuous time is to allow subjects to

pre-specify an entry time and a stationary response delay (possibly set to zero). We opted to use
the Freeze Time protocol instead of this sort of strategy method for three reasons. First, employing
the strategy method would force us to substantially constrain subjects’ strategy space, eliminating
or limiting the dependence of strategies on histories. Second, using the “Freeze Time” protocol
allows us to directly compare entry decisions to inertia generated by naturally occurring reaction
lags in Inertial Continuous time – a central goal of the experiment that would be impossible using
the strategy method. Finally, for realism, we wanted subjects to actually see the unfolding of payoffs
and behavior in real time. Nonetheless, see Duffy and Ochs (2012) for evidence from a distantly
related entry game that simultaneous choice and dynamic implementations can generate very similar
results.
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changes. First, periods are divided into G = 15 subperiods, which begin at grid-

points t = {0,4,8, ...,56} (measured in seconds)15, each marked by a vertical gray

line on the subject’s screen. Instead of moving smoothly through time, as in the

continuous time treatments, the payoff dots follow step functions and “jump” to

the next step on the payoff functions at the end of each subperiod. Actions are

shrouded during a subperiod, so payoff dots will only move from the black to the

green (or red) payoff lines after the subperiod in which a subject chose to enter has

ended. Payoffs are determined according to equation (3.1), calculated at the grid

point that began the subperiod in which the subject entered.16

3.3.2 Treatment design and implementation

Our experimental design has three parts. In the first we implement 60 second

timing games using the parameter vector (c,ΠD,ΠF ,ΠS) = (1,2.4,4,2.16) under

the extremes of Perfectly Discrete and Perfectly Continuous time.17 We call these

Baseline treatments PD (Perfectly Discrete) and PC (Perfectly Continuous).

Second, we examine the effects of inertia on continuous-time decisions by run-

ning a series of Inertial Continuous time treatments using the same Baseline pa-

rameters. In the IC60 treatment we run periods lasting 60 seconds each (just as in

the PC and PD treatments). In the IC10 and IC280 treatments we repeat the IC60

treatment but speed up or slow down the clock so that periods finish in 10 or 280

seconds (respectively). By speeding up the game clock so that the game lasts only

10 seconds (the IC10 treatment) we dramatically increase the severity of inertia; by

slowing down the game so that it takes 280 seconds to finish (the IC280 treatment),

15We used the convention that any subjects who were yet to enter at the t = 56 subperiod will be
forced to enter at the t = 60 subperiod, which would result in a payoff of 0. In practice, however, no
subjects came close to waiting this long to enter.

16For example, if in our Baseline treatment a subject entered in the first subperiod and her counter-
part entered in the third subperiod, payoffs would be given by U(0, 2

15 ) for the subject and U( 2
15 ,0)

for his counterpart.
17To allow the entire payoff space to be shown on a single reasonably scaled plot we truncated the

maximum payment to be 75 points per period (for context U(t∗, t∗) was normalized to be 36 points).
This truncation (which subjects can clearly see on their screen) only affects the payoff of the first
mover under the unusual circumstance that her opponent delays entry for a significant amount of
time. Regardless, this design choice only affects payoffs that are well off the equilibrium path and
does not affect any of the equilibrium sets discussed in the chapter.
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we substantially reduce the severity of inertia.18

Finally, in the Low Temptation treatments (discussed in Section 3.5.2), we ex-

amine the robustness of explanations for our main results by changing the payoff

functions in Perfectly Continuous and Discrete time. In the L-PD (Low temptation

- Perfectly Discrete) and L-PC (Low temptation - Perfectly Continuous) treatments

we replicate the PD and PC treatments but lower the premium from preempting

one’s counterpart, ΠF , from 4 to 1.4. Changing ΠF has no effect on Nash equilib-

rium in either case but can have substantial effects in Perfectly Discrete time under

some alternative theories.

All treatments are parameterized such that t∗ occurs 40% of the way into the

period (the 7th subperiod in Perfectly Discrete time treatments).19

We ran the PD, IC, PC, L-PD and L-PC treatments using a completely between-

subjects design. In each case we ran 4 sessions with between 8 and 12 subjects

participating. Each session was divided into 30 periods, each a complete run of

the 60 second game, and subjects were randomly and anonymously matched and

rematched into new pairs at the beginning of each period. We ran the IC10 and IC280

treatments using a within-subject design consisting of 3 blocks each composed of

3 IC280 periods followed by 7 IC10 periods, for a total of 30 periods.20 Once again,

subjects were randomly and anonymously rematched into new pairs each period.

We conducted all sessions at the University of British Columbia in the Van-

couver School of Economics’ ELVSE lab between March and May 2014. We

randomly invited undergraduate subjects to the lab via ORSEE (Greiner (2004)),

assigned them to seats, read instructions (reproduced in Appendix B) out loud and

gave a brief demonstration of the software. In total 274 subjects participated, were

paid based on their accumulated earnings and, on average, earned $26.68 (includ-

18Recall that we define inertia δ as the ratio of an agent’s reaction lag, δ0, to the total length of the
game, T (i.e. δ ≡ δ0/T ).

19In 60 second period treatments this occurs 24 seconds into the period while in the IC10 and IC280
treatments this occurs after 4 or 112 seconds respectively.

20We used a within design for these treatments mostly because we were concerned that the ex-
treme duration of IC280 periods would cause boredom in subjects if repeated a number of times. By
interspersing these with fast-paced IC10 we were able to reduce this concern. During the experiment,
we revealed the next period’s treatment (IC280 or IC10) only after the conclusion of the previous
period.
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ing a $5 show up payment).21 Sessions (including instructions, demonstrations and

payments) lasted between 60 and 90 minutes.

3.4 Results
In section 3.4.1 we report results from the Baseline treatments, comparing Perfectly

Continuous and Perfectly Discrete time behaviors under identical parameters. The

data strongly supports Simon and Stinchcombe (1989)’s conjecture of a large gap

between Perfectly Continuous and Discrete time: PD subjects nearly always inef-

ficiently enter immediately while PC subjects nearly always delay entry until t∗,

the joint profit maximizing entry time. In section 3.4.2, we study the relationship

between the relatively realistic setting of Inertial Continuous time and the extremes

of Perfectly Continuous and Discrete time, varying the severity of subjects’ inertia

by varying the speed of an Inertial Continuous time game under Baseline param-

eters. We find that at high levels of inertia, behavior follows Nash equilibrium

predictions, collapsing to Perfectly Discrete levels. As inertia drops towards zero,

however, entry times approach Perfectly Continuous time levels, a result inconsis-

tent with Nash equilibrium.

Most of the distinctive predictions and comparative statics discussed in Sec-

tion 3.2 concern the timing of first entry and documenting first entry times will

be our primary focus in the data analysis. Before turning to this data, however,

it is useful to briefly document second mover behavior across treatments. Focus-

ing attention on behavior after the first 10% of periods (after subjects have had a

few periods to become comfortable with the interface), we find quite uniform and

sensible behavior across treatments: subjects almost universally enter as soon as

possible (given inertia or discretization) following a counterpart’s entry, meaning

that subjects constrain themselves to playing admissible strategies (strategies that

are weakly undominated, see Brandenburger et al. (2008)). In both Perfectly Con-

tinuous and Perfectly Discrete time, over 95% of second movers enter at the first

possible opportunity after their first-moving counterparts (immediately in PC and

no later than the very next sub-period in PD).22 In Inertial treatments we measure

21Funds for subject payments were provided by a research grant from the Faculty of Arts at the
University of British Columbia.

22About 5% of subjects in the PC protocol entered with a delay of exactly 0.1 seconds, which we
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Figure 3.3: (a) The left hand panel shows kernel density estimates of entry times (normal-

ized as fraction of the period elapsed) in the PD and PC treatments. For both treatments

t∗, which generates the maximal symmetric payoff, lies 40% of the way into the pe-

riod. (b) The right hand panel shows CDFs of subject-wise medians from product limit

estimates (Kaplan and Meier (1958)) of intended entry times.

the median subject’s reaction lag, δ0, at 0.5 seconds, closely matching reaction

lags documented in previous research (e.g. Friedman and Oprea, 2012). Given

the incentives in our game, these rapid responses strongly suggest that subjects

understood the structure and incentives of the game across treatments (as delay in

response is strictly dominated in each treatment in the experiment). Unless oth-

erwise noted, remaining references to entry times will refer to the timing of first

entry.
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3.4.1 Perfectly continuous and discrete time

Figure 3.3 (a) plots kernel density estimates of observed entry times for our PD (in

red) and PC treatments (in black). Figure 3.3 (b) complements the kernel density

estimates by plotting CDFs of subject-wise median entry times using product limit

estimation intended to minimize the potential downward bias introduced by first

movers preempting – and therefore censoring – the intended entry times of second

movers.23

The results are striking. In the PD treatment, virtually all subjects choose to

enter immediately as the theory predicts, generating highly inefficient outcomes.

The PC treatment, by contrast, induces radically different24 behavior: entry times

are tightly clustered near t∗, with subjects maximizing joint earnings by delaying

entry until about 40% of the period has elapsed. Recall that though t∗ is only one of

a continuum of equilibria in PC, it is the outcome uniquely selected by elimination

of weakly dominated strategy and is advanced as a focal prediction by Simon and

Stinchcombe (1989). The tightly clustered behavior in the PC treatments supports

this conjectured focality and suggests that equilibrium selection is very uniform in

Perfectly Continuous time. This pattern of behavior thus strongly supports the con-

jecture that Perfectly Discrete and Perfectly Continuous time induce fundamentally

different behaviors in otherwise identical games.

Result 3.1. Under Baseline parameters, Perfectly Continuous interaction induces

fundamentally different behavior from Perfectly Discrete interaction. While sub-

jects virtually always enter immediately in the PD treatment, they virtually always

delay entry until t∗ in the PC treatment.

believe is due to a rounding error by the software and which we treat as a zero second lag in this
calculation.

23Specifically we use techniques introduced by Kaplan and Meier (1958) to calculate non-
parametric, maximum likelihood estimates of each subject’s distribution of intended entry times in
the face of censoring bias introduced by counterpart preemption. The procedure uses observed entry
times to partially correct censoring bias introduced in periods in which the subject is preempted by
her counterpart. For each subject we estimate these distribution functions and then take the median.
Figure 3.3 (b) plots distributions (across subjects) of these medians.

24Mann-Whitney tests on session-wise median product-limit estimates of entry times allows us to
reject the hypothesis that PC and PD distributions are the same at the five percent level.
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Figure 3.4: CDFs of subject-wise product limit estimates of entry times in each of the main

treatments of the experiment.

3.4.2 Inertia and continuous time

Perfectly Continuous time generates a dramatic change in behavior, but environ-

ments with zero inertia are probably rare in the real world. How robust are these

extreme results to a re-introduction of inertia into the game? In order to study this

question we ran a series of Inertial Continuous time (IC) treatments, varying the

severity of inertia from very high to very low. In the IC60 treatment we duplicated

the PC treatment but eliminated the freeze time protocol, allowing subjects’ reac-

tion lags to generate natural inertia in the game. In the IC10 and IC280 treatments,

run within-subject, we sped up (IC10) or slowed down (IC280) the game clock rela-

tive to the 60 second IC60 periods, generating periods that lasted 10 or 280 seconds

respectively. Speeding up the game dramatically increases the magnitude of inertia

(defined, recall, as the ratio of reaction lags to game length) while slowing down

the game reduces inertia substantially.
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Figure 3.4 shows the results, plotting CDFs of subject-wise median product-

limit estimates of entry times for the IC10 (high inertia), IC60 (moderate inertia),

IC280 (low inertia) and the PC (zero inertia) treatments (for reference we also plot

the PD treatment in red). The results reveal dramatic and quite systematic effects

of inertia on continuous time behavior as inertia drops towards zero. First, the tight

optimal entry delays observed in the PC treatment almost completely collapse in

the high inertia case, generating Perfectly Discrete-like near-immediate entry as

predicted by Nash equilibrium. However, when we reduce the severity of inertia,

CDFs shift progressively to the right, with median entry times rising to t = 0.2 at

medium inertia and t = 0.3 (where subjects earn 95% of earnings available at t∗) at

low inertia and finally reach t = t∗ = 0.4 when inertia reaches zero.25 The results

thus show that entry times rise smoothly towards Perfectly Continuous levels as

inertia falls towards zero, providing us with a next result:

Result 3.2. High levels of inertia cause entry delay to completely collapse as Nash

equilibrium predicts. However as inertia falls towards zero, entry times approach

Perfectly Continuous levels.

The survival of high levels of cooperative delay in the face of small amounts

of inertia is starkly inconsistent with Nash equilibrium (which predicts a com-

plete collapse in cooperative delay with any inertia) but broadly consistent with

ε-equilibrium. Though the results are perfectly consistent with ε-equilibrium, the

smooth path of convergence is not explained by ε-equilibrium due to multiplicity

(once inertia falls enough to allow entry times later than t = 0, any entry time in

[0, t∗] is supportable in ε-equilibrium). In the next section we consider our results

in light of recent findings in the literature on dynamic strategic interaction and

develop a more satisfying, structured and precise explanation for these patterns.

3.5 Discussion: Strategic Uncertainty and Continuity
Why does inertia have a “smooth” effect on entry instead of causing the immediate

collapse in delay predicted by Nash? ε-equilibrium is broadly consistent with this

25An exact Jonckheere-Terpstra test allows us to reject the hypothesis that distributions of session-
wise median product limit estimates of entry times are invariant to inertia against the alternative
hypothesis that they are (weakly)monotonically ordered by inertia (p < 0.001).
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pattern but provides little insight into either its source or (due to multiplicity) its

precise shape. One appealing answer is that the rich dynamic environment of a

continuous time game makes it difficult to arrive at the sort of common knowledge

required to support Nash equilibrium, forcing subjects to grapple with unresolved

strategic uncertainty when making their decisions. Indeed, strategic uncertainty

has emerged as a central explanatory variable for cooperation in dynamic games

and both finitely and infinitely repeated prisoner’s dilemmas in prominent recent

work. To measure the strategic risk of cooperating, the literature typically restricts

attention to the strategies Always Defect and Grim Trigger and calculates the basin

of attraction of defection (hereafter, the BOA) – the minimal probability one must

assign to one’s counterpart playing Grim in order for Grim to be a best response.

Intuitively, the greater the basin of attraction, the more risky it is to attempt to coop-

erate: when the BOA is greater than 0.5 it becomes risk dominant to always defect.

Both prospective experiments (e.g. Dal Bo and Frechette (2011), Embrey et al.

(2016), Vespa and Wilson (2016)) and wide ranging retrospective meta-analyses

(Dal Bo and Frechette (2016), Embrey et al. (2016)) reveal that this simple short-

hand measure and corresponding notions of risk dominance have startlingly strong

predictive power for cooperation rates in both infinitely repeated games where co-

operation is an equilibrium and – importantly for our application – finitely repeated

games where it is not.

Importantly, this simple measure of strategic uncertainty, when adapted to our

game, also crisply organizes the large treatment effects of inertia we observe in

our data. To adapt this measure to our setting, we consider the strategies “enter

now at time t” and “wait to enter at t∗”– the closest analogues to Always Defect

and Grim Trigger for our game – and calculate the “enter now” BOA for each t

in [0, t∗], allowing us study how the strategic risk of entering immediately changes

as the game progresses.26 Figure 3.5 plots the BOA at each t for each of our

26Again, here and in the remainder of this section, we restrict attention to admissible strategies (a
strategy is admissible if it is not weakly dominated: see Brandenburger et al. (2008) for an extensive
discussion of the role of admissibility in games.). The main implication is that when a player chooses
“enter now” and the other “wait until t∗,” the second entrant responds to her counterpart by entering
as soon as possible (given the timing protocol). The strategy “wait until t∗” should therefore be read
as “enter at t∗ or as soon as possible after my opponent enters, whichever is earliest.” As emphasized
above, such admissible strategies are virtually universally employed in the data.
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continuous time treatments and plots portions of the BOA at which “enter now” is

risk dominant in red. Under high inertia (IC10) the BOA is always 1 and it is always

risk dominant to enter now27 while under zero inertia (PC) the BOA is always 0

and delay is risk dominant until t∗. In the two intermediate treatments IC60 and

IC280, the BOA changes over time, with immediate entry becoming risk dominant

at a different intermediate time in each case.

We make two observations. First, except where the measure reaches its bound-

ary of 1, the basin of attraction is smaller, at each t, in treatments with larger inertia,

suggesting that cooperation is indeed more strategically risky (relative to immedi-

ate entry) at higher levels of inertia. Second, the times at which immediate entry

becomes risk dominant almost perfectly corresponds to median entry times in all of

our treatments: BOA reaches 0.5 at times (0, 0.198, 0.308 and 0.4)28 in treatments

(IC10,IC60, IC280 and PC) and median product limit entry times track closely at

(0.022,0.188,0.325, 0.392). Thus, subjects enter in each treatment precisely when

immediate entry becomes risk dominant, suggesting that strategic uncertainty has

a strong role in shaping our treatment effects.

3.5.1 Three decision rules

The basin of attraction provides a convenient and easily interpretable measure of

strategic uncertainty and suggests a strong link between strategic uncertainty and

behavior in our data. It is, however, built on fundamental simplifications that make

it better suited to benchmarking levels of strategic uncertainty in our game than to

modeling exactly how subjects make decisions in the face of strategic uncertainty.

Can we put our findings on a firmer footing by considering specific heuristic re-

sponses to strategic uncertainty that generate point predictions against which we

can compare our data? Because we are conducting this exercise ex post, our aim is

to focus on parsimonious decision rules that put minimal structure on beliefs sub-

jects hold about their counterparts’ strategies, and are therefore difficult to adjust

to fit the data ex post. To achieve this parsimony we consider models that replace

Nash equilibrium’s extreme assumption that agents perfectly know one another’s

27The BOA is also always 1 in the PD treatment.
28Strictly speaking, the BOA never rises above 0 in the PC treatment but we describe the separatrix

as 0.4 to highlight the fact that even at times arbitrarily close to 0.4, entry is not risk dominant.
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sion (MMA) and Laplacian Ex-

pected Utility (LEU) models.

strategies with the opposite extreme assumption that agents are maximally uncer-

tain, weighting all counterpart strategies symmetrically ex ante.29, 30

In a classic paper, Milnor (1954) considers three non-parametric (and there-

fore highly parsimonious) decision rules for uncertain environments like this that

we can apply to our strategy set and compare to our data. The Laplacian31 Ex-

29See Stoye (2011a) and Milnor (1954) for descriptions of the symmetry axiom we have in mind.
See Arrow and Hurwicz (1972) for an argument that this type of symmetry is appropriate in models
of fundamental uncertainty.

30As in previous sections, we place only two restrictions on the set of priors: (i) we restrict to
admissible strategies and (ii) entry occurs in [0, t∗]. Both of these characteristics of strategies are
virtually universally observed in the data. In considering models of strategic uncertainty, we restrict
attention to simple decision rules and beliefs that are not disciplined by equilibrium, though several
authors have proposed equilibrium extensions of these rules (e.g. Renou and Schlag (2010), Halpern
and Pass (2012), Lo (2009)). While we avoid adopting the stronger assumptions and greater structure
required of these equilibrium concepts for this exercise, we note that many of these equilibrium
concepts generate identical predictions to those discussed below.

31So named for Laplace’s (1824) argument that uniform beliefs should be applied to unknown
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pected Utility (LEU) rule is the subjective expected utility response to this type

of strong uncertainty and models agents as simply choosing actions that constitute

best responses to a uniform (or “Laplacian”) distribution of entry times by their

counterparts on [0, t∗]. The Minimax Regret Avoidance (MRA) rule, first proposed

in Savage (1951) and axiomatized by Milnor (1954) and Stoye (2011a), results

from relaxing the independence of irrelevant alternatives axiom and specifies that

agents choose the action that minimizes the largest ex post regret (the difference

between earnings actually generated by a strategy choice and the earnings a dif-

ferent strategy choice might have generated given counterparts’ strategies) over all

strategies. Finally, the Maximin Ambiguity Avoidance32 (MAA) rule, proposed

by Wald (1950) and axiomatized by Milnor (1954), Gilboa and Schmeidler (1989)

and Stoye (2011b), relaxes the independence axiom in expected utility theory and

specifies that agents choose a strategy that yields the largest minimum payment

(over other subjects’ strategies) an agent could achieve.33

As we show in Online Appendix C.4.1, these decision rules make very different

predictions for the way inertia shapes decisions in continuous time games like ours.

The MAA rule predicts exactly what Nash equilibrium predicts: immediate entry at

t = 0 for any inertia greater than zero. The MRA and LEU rules, by contrast, each

predict a smooth pattern of progressively later entry as inertia falls towards zero,

terminating at t∗ when inertia is zero, though the rate of convergence is different in

each case. We calculate predictions for each of these rules for each treatment, and

present the results in Figure 3.6 along with medians of subject-wise product limit

estimates. Of the three heuristics, MAA does the worst by predicting exactly what

Nash equilibrium does for each treatment. Both MRA and LEU, by contrast, do an

excellent job of tracking the data but the MRA heuristic fits point estimates from

events due to the principle of insufficient reason (see e.g. Morris and Shin, 2003). Laplacian beliefs
have an important role in the literature on global games (see Morris and Shin (2003)).

32We deliberately avoid the more common MEU acronym for this decision rule to emphasize a
subtle difference in interpretation between the standard MEU model and our application. In the
standard MEU model, as in Gilboa and Schmeidler (1989), the set of priors is treated as endogenous
to the agent’s preferences. By contrast, we interpret MAA as a decision rule that is applied to an
exogenous set of uninformative beliefs (as in Stoye (2011b)).

33Milnor refers to these as the Laplace, Savage and Wald rules respectively. He also discusses a
fourth rule that he calls Hurwicz (commonly today called α-maxmin) which we reject because it has
a free parameter and therefore can be “tuned” to the data in an ex post exercise like this one.
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the data almost perfectly and is the most accurate of the three models. We report

this as our next result:

Result 3.3. Median entry times across treatment are almost perfectly organized by

predictions made by the MRA decision rule, suggesting that reactions to strategic

uncertainty are an important driver of behavior.

Our results suggest that assuming subjects are highly strategically uncertain

about their counterparts’ behavior can generate significantly better predictions than

making the opposite assumption that strategic uncertainty is eliminated in equilib-

rium. Interestingly evidence for such strategic uncertainty doesn’t seem to ease

much as subjects acquire experience in our data: median entry times in the final

period of play track MRA predictions across levels of inertia just as well as product

limit estimates do using data from the whole session (as visualized in Figure 3.6).

There is, moreover, no evidence of movement towards Nash equilibrium over time

in any of our continuous time treatments (except in IC10 where MRA actually pre-

dicts Nash-like outcomes), suggesting that strategic uncertainty continues to play

an essential role in determining behavior even after dozens of periods of play. As it

turns out, MRA predictions are surprisingly robust to the type of feedback subjects

acquire in dynamic settings like ours because most uncensored feedback subjects

receive via repeated play concerns whether counterparts tend to enter early in the

game. Since regret is primarily shaped by the possibility that one’s counterpart

will enter later in the game, MRA predictions change little when subjects learn

that early entry events by counterparts are unlikely. Consequently, MRA predic-

tions tend to be fairly durable in the face of experience, just as later entry times are

in our data.34

34Consider a subject who repeatedly enters at or near the MRA predicted entry time, tMRA. She will
learn the approximate distribution of entry times over the interval [0, tMRA], but because of censoring
she will not learn anything about the distribution of (intended) entry times over the interval [tMRA, t∗].
For all entry times t < tMRA the subject faces her maximal regret when her opponent enters at t∗ and,
because of censoring, she cannot rule out that her opponent may intend to enter at t∗. For entry times
t > tMRA she faces her maximal regret when her opponent slightly pre-empts her, which again she
cannot rule out. In other words, our MRA prediction is robust to a subject learning that some, or
even all, early entry times are never used. This is because early entry times do not cause large regret:
regret is maximized when opponent’s are either fully cooperative (enter at t∗) or enter immediately
prior to the subject’s intended entry time. Given that the MRA decision rule seeks to minimize
maximal regret, it is uncertainty over these later entry times that causes MRA deviations from Nash
equilibrium. See the proof in Online Appendix C.4.2 for more detail on the mapping between the set
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3.5.2 Validation using alternative comparative statics

We designed and ran two additional treatments to study whether our explanation

for the comparative static effect of inertia can also explain other, distinct compar-

ative statics. In the L-PD and L-PC treatments we replicate the Perfectly Discrete

and Perfectly Continuous treatments but dramatically lower the preemption temp-

tation parameter ΠF from 4 to 1.4. In the PC treatment, lowering this parameter

has no effect on strategic risk as measured by the basin of attraction and does not

change the MRA point prediction under Perfectly Continuous time protocols (the

prediction is t = 0.4 in either case). That is, under the class of explanations we’ve

considered thus far, the PC and L-PC treatments should generate identical behav-

iors.

By contrast, in Perfectly Discrete time protocols, strategic uncertainty changes

a great deal when we lower ΠF in the L-PD treatment: while immediate entry is al-

ways risk dominant in the PD treatment (under the simple BOA measures discussed

above) it becomes risk dominant only at an interior point in the L-PD treatment, as

of believed entry times and MRA predictions.
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in the IC60 and IC280 treatments, suggesting lowering ΠF may generate a later en-

try time in discrete time. Most importantly for our purposes, the MRA prediction

rises from 0 to 0.2 when we lower ΠF in the L-PD treatment.35

Figure 3.7 shows median subject-wise product limit estimates for the PD, L-

PD, PC and L-PC treatments and MRA point predictions. The results nearly per-

fectly track the point predictions provided by the MRA heuristic. Entry times rise

from 0 to 0.2 when we lower ΠF in the L-PD treatments but remain constant at

about 0.4 when we make the same parameter change in the L-PC treatments, just

as the MRA rule suggests.36

Result 3.4. Results from additional diagnostic treatments varying payoff param-

eters in discrete and continuous time are well organized by measures of strategic

uncertainty and point estimates are virtually identical to point predictions gener-

ated by the MRA rule.

3.5.3 Validation using other continuous time games

The MRA decision rule organizes behavior in our game remarkably well, predict-

ing, in particular, the smooth approach to Perfectly Continuous-like cooperative

benchmarks we observe as inertia falls to zero. How relevant are these sorts of

results for understanding behavior in other continuous time games? To find out,

we test the MRA rule against data from the continuous prisoner’s dilemma, the

simplest game in a broad and empirically important class of games in which ef-

ficient outcomes are in tension with individual incentives. The Grid-n treatment

in Friedman and Oprea (2012) studies 60 second prisoner’s dilemmas that are di-

vided up into 4, 8, 16, 32 and 60 Perfectly Discrete time subperiods, within subject.

This time protocol creates the equivalent of exogenous reaction lags in continuous

time lasting 50%, 25%, 12.5%, 6.6%, 3.3% and 1.6% of the game, respectively,

generating a similar effect to inertia in our Inertial Continuous time games.

35We originally designed these additional treatments to validate ε-equilibrium comparative statics
which are similar to and consistent with MRA predictions but are less precise, just as with treatments
from the main design.

36A Mann-Whitney allows us to reject the hypothesis that session-wise median product-limit es-
timates of entry times in the PD and L-PD treatments are from the same distribution (p = 0.017);
the same test does not allow us to reject the same hypothesis regarding the PC and L-PC treatments
(p = 0.183).
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In Figure 3.8 we plot median final mutual cooperation times (measured as a

fraction of the period) as a function of the number of grid points.37 Over this

we overlay MRA predictions38 for the earliest time at which mutual cooperation

can evaporate as a function of the number of grid points. (Any date after the times

plotted can be supported under the MRA). Strikingly, these earliest MRA defection

times nearly perfectly match median final cooperation times, converging towards

the Perfectly Continuous time limit of 1 (cooperation until the very end of the

period) as the number of grid points grow large and the forced reaction lag grows

small. The results thus provide strong out-of sample confirmation that the MRA

heuristic organizes convergence paths to Perfectly Continuous time benchmarks.39

Result 3.5. The earliest MRA defection time generates accurate point predictions

for convergence to continuity in the continuous time prisoner’s dilemma.

The prisoner’s dilemma is the simplest in a broad set of strategically similar

games that include important applications like Bertrand pricing, Cournot quantity

choice, public goods, and team production problems. Though, of course, we can-

not test every game in this class, the fact that MRA-predicted results like ours

extend to the continuous prisoner’s dilemma is strongly suggestive that such ef-

fects are relevant for a much larger set of strategically similar games. In Online

Appendix C.4.2 we provide some support for this intuition by showing that, under

plausible (and particularly empirically relevant) specifications of beliefs over the

strategy space, the MRA rule predicts similar convergence results for this broad

class of dilemma-like games. Combined, our results suggest that rules like the

37As in the other analyses in this chapter we use the full dataset in making these measurements.
Restricting attention to the final 2/3 of the session as Friedman and Oprea (2012) do generates similar
results.

38Calculated under restrictions on beliefs discussed in Online Appendix C.4.2.
39MRA also predicts the high rates of cooperation and low variation over parameters Friedman

and Oprea (2012) observe in their (Inertial) Continuous time treatments. These treatments study
60 second continuous time prisoner’s dilemmas – prisoner’s dilemmas with flow payoffs realized in
continuous time (though with subject-generated inertia). Friedman and Oprea’s (2012) design sets
mutual cooperation payoffs of 10 and “suckers” payoffs of 0 and varies the temptation payoff (x) and
defection payoff (y) cyclically over 32 periods over four parameterizations: Hard (x=18, y=8), Easy
(x=14, y=4), Mix-a (x=18, y=4), Mix-b (x=14, y=8). The median final time of mutual cooperation (in
60 second periods) are 59.6, 58.4, 58.44, 57.6 in the Easy, Mix-a, Mix-b and Hard treatments, which
are very tightly clumped near the Perfectly Continuous benchmark time of 60. This nearly perfect
cooperation and minimal variation over parameters is explained by MRA, which predicts earliest
collapse of cooperation at 58.9, 58.5, 56.5 and 55.5 seconds in these four treatments.
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MRA, founded in strategic uncertainty, provide an empirically plausible mecha-

nism by which we might expect nearly-Perfectly Continuous levels of cooperation

to emerge and persist even in the presence of realistic inertia.

3.6 Conclusion
Perfectly Continuous and Perfectly Discrete time are both idealizations but they

are illuminating ones, functioning as strategic analogues to vacuums in the physi-

cal sciences. Like vacuums, they are environments in which theoretical forces are

cast in particularly high relief and results can be crisply interpreted in the light of

theory. Although Perfectly Discrete time behavior has been exhaustively studied

in thousands of experimental investigations, Perfectly Continuous time has never

been studied before and for a very simple reason: natural frictions in human in-

teraction that loom especially large in the relatively fast pace setting of a labora-

tory experiment push strategic environments meaningfully away from the Perfectly

Continuous time setting described in the theory. Our chapter introduces a method-

ological innovation that eliminates these frictions, allowing us to observe, for the

first time, Perfectly Continuous behavior. By observing and comparing behavior

across these two “pure” environments and by comparing both to more naturalistic

protocols in between we learn some fundamental things about dynamic strategic

behavior.

Results from our initial baseline parameters are nearly perfectly organized by

benchmarks proposed in the literature. Though our game suffers from multiple

(indeed, a continuum of) equilibria in Perfectly Continuous Time, we observe en-

try times tightly clustered at the interior joint profit maximizing entry time under

this timing protocol. This decisive equilibrium selection strongly supports a weak

dominance refinement argued for by Simon and Stinchcombe (1989) for Perfectly

Continuous games. By contrast, under the exact same parameters, in Perfectly Dis-

crete Time we observe almost universal, highly inefficient first-period entry that is

perfectly in line with backwards induction. Thus our baseline results show strong

evidence of a large and economically significant gulf between Perfectly Discrete

and Perfectly Continuous time behaviors.

How do results from these artificial settings relate to more realistic strategic
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interactions? Most real human decisions are made neither perfectly synchronously

(as in Perfectly Discrete time) nor with instant response (as in Perfectly Contin-

uous time). More realistic are real time, asynchronous settings in which there is

some delay in mutual responses, even if small. Nash equilibrium predicts that even

a tiny amount of such inertia will be sufficient to erase all of the cooperative equi-

libria generated by Perfectly Continuous time. However ε-equilibrium suggests

that the correspondence between Inertial Continuous time behavior and the bench-

marks of Perfectly Discrete and Perfectly Continuous time depends crucially on

the size of inertia. While very high levels of inertia can cause ε-equilibrium sets to

coincide with Perfectly Discrete behavior (as suggested by Nash), very low levels

of inertia can push the ε-equilibrium set to coincide with the Perfectly Continuous

equilibrium set. We study such settings in our Inertial Continuous time treatments

in which subjects interact (under Baseline parameters) in continuous time but with

natural human reaction lags (clocked at roughly 0.5 seconds in our subjects). By

varying the speed of the game clock we are able to alter the severity of naturally

occurring inertia in subjects’ decision making and study the robustness of Perfectly

Continuous time behavior to multiple levels of inertia. Our results show that Nash

equilibrium-like collapses to Perfectly Discrete-like benchmarks occur in contin-

uous time when inertia is very high. But at low levels of inertia, subject entry

delays approach the efficient levels generated in (and predicted for) the Perfectly

Continuous treatment.

We close the chapter by considering sharper (psychologically) and crisper (pre-

dictively) explanations for our results than ε-equilibrium can provide. Recent re-

search on dynamic strategic interactions have amassed a great deal of evidence that

strategic uncertainty faced by attempting cooperation (as measured by the basin of

attraction for defection) and related notions of risk dominance have strong predic-

tive power for cooperation even in games in which cooperation is unsustainable as

a Nash equilibrium. Applying similar measures to our game, we find that strategic

uncertainty subjects face when attempting to cooperate rises sharply with inertia,

supporting a conjecture that strategic uncertainty shapes behavior in continuous

time games in a way that Nash equilibrium cannot capture.

Inspired by the organizing power of this measure in our (and other) data, we

consider a series of simple heuristics that replace Nash equilibrium’s extreme as-
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sumption that subjects perfectly know their counterparts’ strategies with the op-

posite extreme that subjects know very little about counterparts’ strategies. We

show that several such decision rules strongly outperform Nash equilibrium and

that one (the Maximin Regret Avoidance model) almost perfectly matches cross-

treatment point estimates from our data. To strengthen our analysis we expose

the MRA rule to an additional test using a pair of additional treatment and find

similarly strong evidence. Finally, we show that heuristics like the MRA generate

increasingly cooperative behavior as games grow more continuous in an important

class of empirically relevant games. We test this prediction on continuous time

prisoner’s dilemmas from past work and show, once again, that the MRA heuristic

nearly perfectly organizes both point predictions and treatment effects over which

Nash equilibrium makes starkly counterfactual predictions. The results suggest

that benchmarks that assume no knowledge of others’ strategies and impose little

structure on subjects’ beliefs do a better job of anticipating behavior (even behavior

of experienced subjects) than benchmarks that assume perfect knowledge. These

models also explain why, as in our data, Perfectly Continuous-like behavior persists

even in the presence of inertia.

The results from our experiment – and supporting theoretical benchmarks –

suggest an appealing framework for understanding the relationship between the

abstractions of Perfectly Discrete and Perfectly Continuous time and real world

behavior. Perfectly Discrete and Perfectly Continuous time predictions can be

thought of as polar outcomes that each approximate realistic (Inertial Continuous

time) behavior when inertia is either very high or very low, respectively. Indeed,

we can easily push real time (Inertial) behavior close to either Perfectly Discrete or

Perfectly Continuous time behavior simply by varying the severity of inertia. Con-

cretely, these sorts of results suggest that Perfectly Continuous time benchmarks

can, in some cases, be more empirically relevant than Discrete time benchmarks,

even if agents face frictions that should be sufficient to short circuit Perfectly Con-

tinuous time equilibria under standard theory. The rise of thick online global mar-

kets, always-accessible mobile technology, friction reducing applications and auto-

mated online agents have made strategic interactions more asynchronous and lags

in response less severe. These trends, which seem likely to intensify in the coming

years, have the effect of pushing many interactions closer to the setting of Perfectly

71



Continuous time. Though these technological changes may never drive inertia en-

tirely to the Perfectly Continuous limit of zero, our results suggest that behavior

can nonetheless come close to Perfectly Continuous levels as inertia falls. This de-

viation from standard theory in turn suggests that we might expect Perfectly Con-

tinuous time predictions to become an increasingly relevant way of understanding

economic behavior relative to the Perfectly Discrete predictions most often used in

economic models.
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Chapter 4

Mental Equilibrium and Mixed
Strategies for Ambiguity Averse
Agents

4.1 Introduction
Consider a game between two agents that is mediated by a game theorist. The

agents report their strategies to the game theorist, who then resolves the outcome

of the game and pays the agents their winnings (or collects their losses). The game

theorist may allow mixed strategy reports from the agents, and resolve the mixed

strategy herself, or she may require that the agents report a pure strategy. If the

game theorist requires pure strategy reports, as is the case in Chapter 2, then the

game theorist should be aware that the agents may still be using a mixed strategy

that they are resolving privately before reporting. Under the standard formulation,

where agents have expected utility preferences, the set of equilibrium under the

two reporting requirements will be indistinguishable.

However, when agents have ambiguity averse preferences then the different re-

porting requirements may induce different games with different equilibrium. Equi-

librium concepts such as Lo (2009), Dow and Werlang (1994) and Eichberger and

Kelsey (2000) enforce pure strategy reporting and generate larger equilibrium sets
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than Lo (1996) or Klibanoff (1996) which allow for mixed strategy reports. The

difference arises because ambiguity averse preferences are non-linear and agents

may have a strict preference for mixed strategies. The equilibrium concepts that

enforce pure strategy reporting assume that only pure strategies are available to

agents: they implicitly rule out private pre-play mixing. By its very nature, how-

ever, private pre-play mixing will be unobservable to the game theorist and cannot

readily be prevented.

How, then, does allowing for private pre-play mixing affect the equilibrium in

papers such as Lo (2009), Dow and Werlang (1994) and Eichberger and Kelsey

(2000)? The answer, provided for the first time in this chapter, is that allowing for

private pre-play mixing has no effect on the equilibrium set for agents with pref-

erences that lie in the intersection of Choquet Expected Utility (Schmeidler, 1989)

and Maxmin Expected Utility (Gilboa and Schmeidler, 1989). While this result

is of independent interest, it is particularly relevant for experimental tests of am-

biguity averse equilibrium concepts. Recent experiments1 have used equilibrium

concepts that restrict themselves to pure strategies, and thereby implicitly assume

that their subjects are using only pure strategies and are not engaging in pre-play

mixing. Given that it is not possible to actively prevent subjects from pre-play mix-

ing, the results in this Chapter are essential for a direct interpretation of the data in

the previous experimental literature using pure strategy solution concepts.

We establish our key result using an application of results from Gilboa and

Schmeidler (1994) for agents in individual decision making problems. The applica-

tion of Gilboa and Schmeidler (1994) to games yields two additional insights. First,

the technique allows for an extension of the static equilibrium concepts discussed

above into dynamically consistent extensive form equilibrium concepts. Second,

because the technique linearizes non-linear ambiguity averse preferences, it also

allows us to formulate the equilibrium set of a game with ambiguity averse agents

as the solution to a linear complementarity problem – thereby providing a simple

mechanical technique for solving games with ambiguity averse agents.

The rest of this chapter is organized as follows. Section 4.2 introduces the

mathematical tools from Gilboa and Schmeidler (1994) that are used in the rest

1See Section B.1.5 for an overview of the literature, that also includes Chapter 2 of this disserta-
tion.
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of the chapter. Section 4.3 introduces the notion of a game as a set of interacting

decision problems and presents the key idea of a “mental” state space. Sections 4.4

and 4.5 apply the structure of a “mental” state space to the equilibrium concepts

contained in Lo (2009) and Dow and Werlang (1994), respectively, and establishes

the key result of this Chapter. Section 4.6 demonstrates the extension of a “mental”

equilibrium to an extensive form game in a dynamically consistent fashion, using

the equilibrium concept from Lo (2009) as an example. Section 4.7 demonstrates

how the “mental” formulation of a game gives rise to a linear complementarity

program that can be easily solved to find the equilibrium of a normal form game.

Section 4.8 concludes, and proofs are relegated to Appendix D.

4.2 Preliminaries
Suppose that there exists a finite2 set of states of the world, ω ∈ Ω, and that an

act, f , maps each state to an outcome in R; that is f : Ω 7→ R. Choquet Expected

Utility (CEU), first introduced by Schmeidler (1989), generalizes Subjective Ex-

pected Utility by allowing a decision maker to hold non-additive beliefs which are

represented by a capacity, ν , defined over the set of events Σ = 2Ω. Suppose, with-

out loss of generality, that for a given act, f , the set of states can be ordered so

that f (ω1)≥ f (ω2)≥ . . .≥ f (ωn). A CEU agent calculates her utility of an act by

evaluating the (discrete) Choquet integral:

∫
f dν =

n

∑
i=1

f (ωi)
[
ν(∪i

m=1ωm)−ν(∪i−1
m=1ωm)

]
(4.1)

We shall assume throughout that the capacities, νi, are belief functions and we

use V to denote the space of all such capacities. That is, we assume that νi(Σi) =

1 and that νi is totally monotone.3 Under these assumptions it is also possible

to represent the agent’s preferences using Maxmin Expected Utility (Gilboa and

Schmeidler, 1989, 1994).

Throughout this chapter, we shall rely on two basic mathematical results that

are demonstrated in Gilboa and Schmeidler (1994). Firstly, the non-additive mea-

2Although the finiteness of the state space can be relaxed, we restrict attention to finite sets here
to mirror our later restriction to finite games.

3A totally monotone capacity is convex, but the converse need not hold.
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sure ν can be spanned by an additive measure over an appropriately defined (larger)

state space. Secondly, we can represent an agent with CEU preferences over Ω as,

equivalently, having SEU preferences over the larger state space with an appropri-

ately transformed set of acts.

Result 4.1 (Adapted from Gilboa and Schmeidler (1994)). For T,A ∈ Σ′ = Σ\{ /0},
define

eT (A) =

{
1 T ⊆ A

0 otherwise

Then the set {eT}T∈Σ′ forms a linear basis for V . The unique coefficients {αν
T }

satisfying

ν = ∑
T∈Σ′

α
ν
T eT

are given by

α
ν
T = ∑

S⊆T
(−1)|T |−|S|ν(S) (4.2)

Furthermore, if ν is totally monotone then αν
T ≥ 0 for all T ∈ Σ′ and if ν is

normalized then ∑T∈Σ′ α
ν
T = 1.

Result 4.1 provides the key building block for this chapter: any non-additive

measure over a state space can be spanned by an appropriately formed set of states

constructed from the power set of the original state space. Furthermore, when

the non-additive measure is a belief function then the spanning coefficients can

be interpreted as probabilities over the newly constructed state space. Note the

relationship between Result 4.1 and the proof of the representation theorem for

CEU in Schmeidler (1989). In Result 4.1, we begin with a non-additive measure

and ‘restore’ additivity by extending the state space. In Schmeidler (1989), the

primitive is a SEU representation with respect to an additive measure, which is then

extended to generate a CEU representation with respect to a non-additive measure.

This tight relationship between Choquet Expected Utility and Subjective Expected

Utility is formalized in the next result.

Recall that when ν is a belief function the core of ν is simply the set of prob-
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ability measures, p, such that p(A) ≥ ν(A) for all A ∈ Σ.4 We now state result

4.2.

Result 4.2 (Corollary 4.4 from Gilboa and Schmeidler (1994)). Suppose that ν is

a belief function. Then for every f ∈ F

∫
f dν = ∑

T∈Σ′
α

ν
T

[
min
ω∈T

f (ω)

]
(4.3)

= min
p∈Core(ν)

∑
ω∈Ω

p({ω}) f (ω). (4.4)

Result 4.2 demonstrates that an agent with CEU preferences with respect to a

belief function can have their preferences represented via either MEU or SEU pref-

erences. While this relation between MEU and CEU preferences is both straight-

forward and well known, the representation with SEU preferences requires the

formation of a new set of acts over the set Σ = 2Ω, with the outcome associated

with each new act defined by the min function in equation 4.3. We shall call these

acts “mental” acts, and will sometimes refer to the event space as the “mental”

state space. This terminology reflects that the event space may not be observable

to an external observer and may, therefore, represent the mental accounting of the

agent.5

Definition 4.1. A mental act, f ′ , is an extension of an act, f , defined over the event

space, Σ′, such that f ′ : Σ′ 7→ R with f ′(T ) = minω∈T f (ω) for all T ∈ Σ′.

It follows from result 4.2 that the preferences of an agent, with CEU prefer-

ences with respect to a belief function, can be written in the expected utility form

with respect to mental acts over the mental state space. Billot and Vergopoulos

(2014) generalize this result to a broader set of preferences than just CEU with

4Note that, because each p in the core is additive, the core can be equivalently defined to be the
restriction of this set of probability measures to an equivalent set of probability measures defined
over Ω. In some places we use core (ν) to denote this restriction, but this should be clear from the
context.

5The interpretation of the event space as a mental “state” space implies that the agent, at least
in his mental accounting, is not well calibrated about the nature of the world. In a sense, this is
precisely the trade-off that allows us to move from non-linear preferences in the observable state
space to linear preferences in the mental state space.
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respect to a belief function, and explore the implications of result 4.2 for problems

with a single decision maker in some detail. It is possible to generalize the re-

sults in this chapter to cover the broader class of preferences covered in Billot and

Vergopoulos (2014).

Before continuing with the substantive heart of the chapter, we first review why

the introduction of mixed strategies may change the equilibrium set in games with

ambiguity averse agents relative to a game where only pure strategies are available.

4.2.1 Mixing: Anscombe-Aumann vs. Savage interpretations of
uncertainty

Suppose that an agent, who may choose from a finite set of acts, obtains a mix-

ing device (a random number generator, say) and that they may condition their

choice of act on the output of the mixing device. How should we define a mix over

two acts, and how should the agent evaluate the payoffs that arise from these mixed

acts? It is well established in the literature (Seo, 2009; Eichberger et al., 2016) that,

for an ambiguity averse agent, the answer to these questions depends crucially on

the way that we model the mixing device. The two most common modeling strate-

gies originate with Anscombe and Aumann (1963) and Savage (1954). While both

Anscombe and Aumann (1963) and Savage (1954) developed an axiomatization of

additive expected utility preferences, our interest in these papers lies in the model-

ing frameworks rather than the representation theorems. Each of these frameworks

has been extended and adapted to formulate representations of non-additive Cho-

quet Expected Utility and Maxmin Expected Utility preferences; in what follows,

we illustrate the role of mixing with reference to various axiomatizations of CEU

preferences.

The Anscombe and Aumann (1963) model of decision making is a two stage

model.6 In the first stage the (uncertain) state of the world is resolved, and the

outcome of an act in a state is a (risky) lottery; this timing structure is some-

times referred to as a horse-roulette lottery. The second stage is the resolution

6In the original formulation the Anscombe and Aumann (1963) model had three stages. Here,
we refer to the cleaner two-stage adaptation of Anscombe and Aumann (1963) that was developed
in Fishburn (1970) and used in later works including Schmeidler (1989). Seo (2009) also uses the
three-stage formulation and provides a brief discussion.
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of the roulette lottery and, in the CEU model in an Anscombe-Aumann state space

(Schmeidler (1989)), the agent is assumed to have expected utility preferences over

roulette lotteries. The randomization device is therefore appropriately modeled

as acting state-by-state on the roulette lotteries: consider two acts, f and g and

their mixture β f +(1−β )g. For each state s, the mixed act is defined such that

(β f +(1−β )g)(s) = β f (s)+(1−β )g(s).

The Savage (1954) model of decision making is a one stage model. All uncer-

tainty, whether it is ambiguous or unambiguous, is resolved simultaneously. For

example, in the Sarin and Wakker (1992) axiomatization of CEU in the Savage

model there is a distinction between ambiguous and unambiguous states, while in

the Gilboa (1987) axiomatization no such distinction is made. In this framework

there is no clear meaning to the idea of mixing two acts; the object β f +(1−β )g

is simply not defined. The appropriate way to incorporate such an act in a Savage

framework is to enlarge the state space in such a way that the new act can be defined

in an appropriate fashion across each state. For example, each state, s, could be split

into a state s f and a state sg and then we would define (β f +(1−β )g)(s f ) = f (s)

and (β f + (1− β )g)(sg) = g(s), and if the agent understands that the states s f

and sg were realized with subjective probabilities in accordance with some mix-

ing device then we would expect their preferences to reflect this knowledge.7 As

discussed below this approach is not compatible with our interpretation, in Sec-

tion 4.3, of a game as a set of interacting decision problems.

As an example, consider the following setup. There are two states s = {A,B}
and two acts f and g, with payoffs given in table 4.1. For simplicity, assume that

the agent is risk neutral.

s = A s = B
f 20 10
g 10 20

Figure 4.1: An example with two acts and two states.

Suppose that the agent has CEU preferences with ν(A) = 0.4 = ν(B). The

agent therefore values both f and g such that U( f ) =U(g) = 14.

7See Klibanoff et al. (2005) for a formal exposition.
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Now, suppose that we are working in an Anscombe-Aumann framework, and

consider the prospect h = 1
2 f + 1

2 g. In the state s = A, h will generate a fifty-fifty

lottery of 20 and 10. In the state s = B, h will generate a fifty-fifty lottery of 10

and 20. Therefore, in each state, h generates a lottery which the agent will value

at 15.8 h produces a constant lottery in all states, and should therefore be valued

at the value of that lottery. Notice that this implies that, for our ambiguity averse

agent, h � f and h � g: the agent strictly prefers the mixed prospect h over the

prospects that form the support of h.

In the Savage framework there is only one resolution of uncertainty so we

cannot assign a lottery as an outcome; the outcome that occurs when a state occurs

after an act has been chosen must be real valued. So, what value should we assign

h in the state s = A? It is tempting to claim that this value should be 15, as in the

Anscombe-Aumann example. However, recall that our agent has CEU preferences

that represent pessimism. It seems reasonable that our agent may be pessimistic

and believe that they will hold g more often when s = A and hold f more often

when s = B; in essence, our state space is not rich enough to fully capture the

agent’s preferences.

The standard approach in the Savage framework is to expand the state space

by forming a new state space that is the cross product of the original state space

and the set of possible outcomes of the available randomization device. This is

precisely the approach outlined by Eichberger and Kelsey (1996), wherein they

establish an indifference to randomizations when the state space is expanded in this

fashion for the class of preferences considered in this chapter. We do not pursue

the Eichberger and Kelsey (1996) approach in this chapter because it is difficult

to reconcile this expanded state space with the interpretation of a game as a set of

interacting decision problems with pure strategies as the choice objects, as we seek

to do in Section 4.3.

As an alternative, we can use the results presented in section 4.2 to translate

the agent’s preferences into SEU preferences over the event space. To see this, we

introduce a new state s = {A,B} and form two new prospects f ′ and g′ (figure 4.2).

We call this the mental state space method, as the new state is a mental construct

8Recall that, in the CEU framework, the agent has standard SEU preferences over objective lot-
teries.
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of the agent.

s = A s = B s = {A,B}
f 20 10 ·
g 10 20 ·
f ′ 20 10 10
g′ 10 20 10

Figure 4.2: An example with two acts and two states extended into the event
space.

It is easy to see from Result 4.1 that αν
A = αν

B = 0.4 and αν

{A,B} = 0.2. Then

Result 4.2 allows us to write the agents preferences in an expected utility form, and

we conclude that we can form the prospect h′ = 1
2 f ′+ 1

2 g′ and that the agent must

have preferences such that U(h′) = 1
2U( f ′)+ 1

2U(g′) = 14. Furthermore, because

preferences are preserved in the mapping from the original acts to mental acts by

construction, we conclude that U(h) = 14.

It is also important to identify the timing of randomizations in each of the

models. In the Anscombe-Aumann model it is explicitly the case that the objective

mixing occurs after the subjective state is realized. In the case of a game, this

would be consistent with the case where agents submit mixed strategies to the

game theorist, the game theorist announces the mixed strategies and then resolves

the mixed strategies to reveal the outcome of the game. Alternatively, the game

theorist could simply announce the (pure) outcome of the game as a function of the

submitted mixed strategies. In the Savage model mixing, and by extension, mixed

strategies are not well defined. In this case, the only reasonable interpretation is

that agents use and report pure strategies to the game theorist.

The mental state space interpretation of mixed acts is that the mixing device

is resolved (weakly) before the resolution of the state. In this interpretation we

may model the resolution of uncertainty in two stages. Ex-ante, the agent has

SEU preferences over the mental state space and mental acts and, by extension,

any available mixing devices. At the interim stage, the mixing device has been

resolved and the agent is holding one of the original acts in the original state space

(over which there may be subjective uncertainty). Ex-post, all uncertainty has been

resolved and the agent receives the outcome associated with the realized state and
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act selected by the randomization device. In a game setting, this interpretation is

consistent with the agent using a private mixing device before reporting the pure

strategy realization of the mixing device to the game theorist.

The example presented above highlights the two main concerns for mixed

strategies in games with ambiguity averse agents (and also suggests a resolution).

If the game theorist models the game with an Anscombe and Aumann (1963) state

space then agents will have a strict preference for mixed strategies which, in many

cases, causes the behaviour of ambiguity averse agents to be indistinguishable from

standard Nash agents (Lo, 1996; Klibanoff, 1996). Alternatively, if the game the-

orist models the game with a Savage (1954) state space then the payoff for mixed

strategies is not well defined and the game theorist does best by restricting agents

to pure strategies. Each of these approaches is considered in the previous literature,

which is summarized in the appendix in Table A.1.

The resolution proposed in this chapter is to expand the game into the mental

state space, where mixed strategies are well defined provided that the mixing device

is realized before strategies are revealed.

The discussion so far is consistent with, and could also have been motivated

by, more recent literature on the timing of randomization in individual decision

problems. Seo (2009) demonstrates that, for agents who violate the reduction of

compound lotteries, the above argument hinges critically on whether the objective

randomization occurs before or after uncertainty is resolved. Furthermore, Halevy

(2007) provides experimental evidence that subjects who exhibit ambiguity aver-

sion overwhelmingly do not reduce compound lotteries. Therefore we conclude,

for ambiguity averse agents, that the order of realization of randomizations is im-

portant. Additionally, Eichberger et al. (2016) demonstrate that, for a dynamically

consistent agent, the agent will be indifferent between the randomization and the

initial prospects if the randomization occurs before the uncertainty is resolved , but

that a preference for randomization may exist if the randomization occurs after the

uncertainty is resolved.
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4.3 Games as Interacting Decision Problems
It is possible to reformulate a standard game as a set of interacting decision prob-

lems.9 Recall that a normal-form game is fully defined by the set of players, I, a

set of strategies, {Si}, for each player and a set of utility functions, {ui}. For each

agent we can formulate their decision problem as choosing from a set of acts over

states where the states are given by Ωi = {×S j 6=i} and fi(ω) = si(ω) = ui(si,ω) =

ui(si,s j 6=i).

4.3.1 Translating a game into the mental space

Any finite normal form game can be translated into a game played in the mental

state space via an application of result 4.2 and definition 4.1. Figures 4.3 and 4.4

provide an example for the 3×2 game studied in Chapter 2.10

X Y
A 25,20 14,12
B 14,20 25,12
C 18,12 18,22

Figure 4.3: An example game

X Y {X ,Y}
A 25,20 14,12 14,·
B 14,20 25,12 14,·
C 18,12 18,22 18,·

{A,B} ·,20 ·,12
{A,C} ·,12 ·,12
{B,C} ·,12 ·,12
{A,B,C} ·,12 ·,12

Figure 4.4: An example game in the mental state space with payoffs

The interpretation of figure 4.4 is that the row player perceives there to be an

9Aumann (1987) is the classic example.
10Groes et al. (1998) use a similar visual representation of extending a game into the event space,

although they allow for both optimism and pessimism when extending preferences into the extra
states, and exclude explicit randomizations. In contrast, the purpose of expanding the state space in
this Chapter is precisely to allow for the inclusion of mixed strategies.
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extra possible state, the state {X ,Y}. In this state, the row player is uncertain which

strategy the column player will play and evaluates their payoffs pessimistically. If

the row player forms beliefs that can be represented by the belief function νR in

the game in figure 4.3 then the row players beliefs over states are given by the α
νR
T

given by definition 4.1.

4.3.2 Mixed strategies

The interpretation of mixed strategies in a game with ambiguity averse agents

requires some care. Typically, the previous literature has taken one of two ap-

proaches: either use an Anscombe and Aumann (1963) interpretation of uncer-

tainty in which case mixed strategies are well defined but their inclusion renders

the behaviour of ambiguity averse agents as indistinguishable from SEU agents, or

use a Savage (1954) interpretation under which mixed strategies are not well de-

fined and therefore are excluded from the feasible set of strategies (mixed equilibria

are then interpreted using either a population interpretation or as an equilibrium in

beliefs). See table A.1 for a summary of the previous literature and their treatment

of mixed strategies.

Recently, the decision theory and experimental design literature has drawn a

distinction between the case where subjective uncertainty is resolved before objec-

tive risk and the case where risk is resolved before uncertainty (Seo (2009), Azrieli

et al. (2014), Baillon et al. (2014) and Eichberger et al. (2016)). The interpre-

tation of mixed strategies proposed here is closely related to this distinction: we

propose thinking of mixed strategies as a randomization over pure strategies that

occurs in an agent’s mental state space before the game is played. The implica-

tions for experimental implementations of games with ambiguity averse subjects

are two-fold. Firstly, if subjects must choose pure strategies (i.e. they must enter

a pure strategy choice into a computer which then matches the subject’s response

with another subject) then we are free to interpret the subject as playing an explic-

itly mixed strategy (where the subjects may resolve the randomization internally).

Given that, as demonstrated below, the introduction of mixed strategies does not

affect the equilibrium set this is purely a matter of interpretation. However, if pro-

viding subject’s with the ability to choose a mixed strategy (perhaps the subject is
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given the ability to choose a point in a simplex to represent their strategy) then it

is critically important to resolve the mixing device before the subject views their

opponent’s strategy choice.11

4.4 Lo-Nash Equilibrium
This section introduces Lo-Nash equilibrium, following Lo (2009) closely. Define

a set of players N = {1, . . . ,n}, let each player i ∈ N have a finite set of actions

Ai, and define A = ×i∈NAi and A−i = × j 6=i∈NA j. We shall endow each agent with

a Von Neumann-Morgenstern utility function u : A 7→ R. Suppose that an agent

has uncertainty regarding the strategy choices of their opponents, A−i. Then we

can regard a strategy, ai, as an act over the state space A−i generating a payoff

ui(ai,a−i) when the state a−i is realized.

In a manner consistent with Gilboa and Schmeidler (1989)’s MEU formula-

tion, we suppose that an agent’s beliefs regarding their opponents strategies are a

closed and convex set of probability measures Φi ⊆ ∆(A−i). Given Φi an agents

preferences are represented by

min
φ∈Φ

∑
a−i∈A−i

ui(ai,a−i)φi(a−i).

Furthermore, we use σ to denote a probability measure on A. We define

σAi(ai)=∑a−i∈A−i σ(ai,a−i) as the marginal distribution of σ on Ai and σA−i(a−i)=

∑ai∈Ai σ(ai,a−i) as the marginal distribution of σ on A−i. Then, in the usual fash-

ion we write σ(a−i|ai) =
σ(ai,a−i)

σAi (ai)
.

Finally, we write suppσ to denote the support of the probability distribution σ ,

and define suppΦi to be the union of the supports of the elements of Φi, and write

Φ to denote the profile (Φi)i∈N . We are now ready to define a Lo-Nash equilibrium.

Definition 4.2 (Lo-Nash equilibrium). A pair < σ ,Φ > forms a Lo-Nash equilib-

11Saito (2015) provides an alternative framework for understanding preferences for randomization
under uncertainty. In the Saito framework, a preference (or not) for randomization is an endogenous
feature of an agent’s preferences rather than simply a function only of the timing of realizations. In
Saito’s notation an agent with preference parameter δ = 0 is indifferent to randomization while an
agent with δ = 1 behaves as if a randomization device completely eliminates the effects of uncer-
tainty, and an agent may hold any δ ∈ [0,1].
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rium if it satisfies

σ(·|ai) ∈Φi ∀ai ∈ suppσ
Ai ,∀i ∈ N (4.5)

suppΦi =× j 6=isuppσ
A j ∀i ∈ N (4.6)

and

ai ∈ argmax
âi∈Ai

min
φi∈Φi

∑
a−i∈A−i

ui(âi,a−i)φi(a−i) ∀ai ∈ suppσ
Ai ,∀i ∈ N (4.7)

Equation 4.7 requires that all strategies that are played in an equilibrium are

best responses, with preferences defined as MEU preferences with respect to the

equilibrium conjectures Φ. Equations 4.5 and 4.6 are the consistency requirements:

equation 4.6 ensures that a strategy is played with a positive probability iff it is

expected to be played with a positive probability, and equation 4.5 forces actual

strategies to be contained in the belief sets. Note that 4.5 allows for conditioning

of σ on ai - this allows for strategies to be correlated, but the realized strategy

must lie within player i’s belief set for all ai. Nash equilibrium is a special case

of Lo-Nash equilibrium, thereby ensuring existence of Lo-Nash equilibrium for all

finite normal form games. Section A.1.1 presents a detailed example of Lo-Nash

equilibrium.

4.4.1 Formulating Lo-Nash equilibrium as a mental equilibrium

To introduce a mental version of Lo-Nash equilibrium we first need to extend the

state space into the event space and define preferences over the new state space.

In a Lo-Nash equilibrium, each agent i faces a state space A−i: their opponent’s

strategy space is their state space. We denote the extended state space for agent i

to be Σi = {2A−i/ /0}. Then we define an agents’ extended utility function, for all

T ∈ Σi, as:

u′(ai,T ) = min
a−i∈T

u(ai,a−i).

Notice that when T ∈ A−i then u′(ai,T ) = u(ai,a−i) so that the extended utility

function is consistent with the original utility function. We also define the natural

extension of σ over Σi: σ(ai,T ) = ∑a−i∈T σ(ai,a−i) for all T ∈ Σi. Finally we
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introduce the probability measure αi ∈ ∆(Σi) which can be interpreted as agent i’s

belief over the event space Σi. We write α to denote the profile (αi)i∈N .

We are now ready to define our Mental Lo-Nash equilibrium. In essence Men-

tal Lo-Nash equilibrium is simply an application of Result 4.1 to Lo-Nash equilib-

rium, as we establish in Theorem 4.1 below.

Definition 4.3 (Mental Lo-Nash equilibrium). A pair < σ ,α > form a Mental

Lo-Nash equilibrium if

σ(T |ai)≥ ∑
τ⊆T

αi(τ) ∀T ∈ Σi, ∀ai ∈ suppσ
Ai ,∀i ∈ N (4.8)

∑
{T :a−i /∈T}

αi(T ) = 1⇔∏
j 6=i

σ
A j(a j) = 0 ∀a−i ∈ A−i, ∀i ∈ N (4.9)

and

ai ∈ argmax
âi∈Ai

∑
T∈Σi

u′i(âi,T )αi(T ) ∀ai ∈ supp σ
Ai , ∀i ∈ N (4.10)

Remark 4.1. If we restrict α such that αi(T ) = 0 for all T /∈ A−i for all i then

Equation 4.8 reduces to

σ
A−i(T ) = αi(T ) ∀T ∈ A−i,∀i ∈ N (4.11)

and Equation 4.9 is redundant.

Equation 4.10 reduces to the standard Nash equilibrium best response condition

because ui(ai,T ) = u′i(ai,T ) for all T ∈ A−i.

Evidence. When αi(T ) = 0 for all T /∈ A−i then ∑T∈A−i αi(T ) = 1. Given that

∑T∈A−i σ(T |ai) = 1 because σ is a probability measure, Equation 4.8 implies that

σ(T |ai) = αi(T ) for T ∈ A−i for every ai. This ensures that the conditional distri-

butions of σ are equal, and that they must also be equal to the marginal distribution

– σ is a product measure. Equation 4.9 is then trivially satisfied.

Remark 4.1 implies that when beliefs are additive over the strategy space, then

Mental Lo-Nash equilibrium reduces to Nash equilibrium. We therefore do not

need to independently establish the existence of Mental Lo-Nash equilibrium: the

existence of Nash equilibrium guarantees the existence of Mental Lo-Nash equi-

librium. It is not, however, necessarily the case that there exists a Mental Lo-Nash
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equilibrium that is not a Nash equilibrium (the prisoner’s dilemma provides a sim-

ple counterexample).

Theorem 4.1. If < σ ,α > is a mental Lo-Nash equilibrium then there exists a Φ

such that < σ ,Φ > a Lo-Nash equilibrium. Conversely, if < σ ,Φ > is a Lo-Nash

equilibrium and Φi is the core of a belief function for all i then there exists an α

such that < σ ,α > is a mental Lo-Nash equilibrium.

The interpretation of a mental Lo-Nash equilibrium is straightforward when

σ is a product measure (i.e. strategies are uncorrelated). In this case, each agent

uses an independent pre-play mixing device yet may place a positive weight on

beliefs that imply correlation between their opponents, or even that their opponents

strategies may be correlated with their own strategy. Such beliefs may be justified

in cases where an agent believes that their opponents may be able to communicate,

or where they fear that their opponents may be able to see the agent’s strategy

choice (or a signal correlated with their strategy choice) before making a decision.

It is feasible that some subjects in a standard game theory experiment may not

trust the experimenter and may hold such concerns. It would also be possible for

an experimenter to cultivate such concerns (either deliberately or otherwise) via

the instructions given to subjects.12

When σ is not a product measure, the interpretation is more complicated. As

a potential example, imagine a Professor of business strategy who suggests that

their students use the positioning of a second hand on a clock face as a random-

ization device – when students of the same Professor play against each other in a

simultaneous game, this will be enough to induce correlated randomizations. It is,

therefore, the case that there exists mental Lo-Nash (and, also, Lo-Nash) equilibria

that involve correlated outcomes. However, as discussed by Lo (2009), Lo-Nash

equilibrium is distinct from Correlated Equilibrium.13

4.5 Equilibrium Under Uncertainty
Dow and Werlang (1994) introduce equilibrium under uncertainty, a belief based

12Any experiment that intended to investigate such concerns would need to be carefully designed
to avoid deceiving the subjects.

13Lo actually names his equilibrium concept “Correlated Nash equilibrium” to emphasize the
connection.
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equilibrium concept for two-player games that identifies only the set of (pure)

strategies that an agent believes their opponent will use. While equilibrium un-

der uncertainty is one of the earliest ambiguity averse equilibrium concepts (more

modern concepts allow for more sophisticated preferences and belief structures)14

we focus on it here as it allows for an interesting interpretation of equilibrium when

it is translated into the mental equilibrium framework outlined above. Specifically,

the equilibrium presented in Dow and Werlang’s lone theorem can be interpreted,

through the lens of mental equilibrium, as an equilibrium of a normal form game

with pre-play communication where pessimistic agents believe that their opponent

may deviate from their pre-agreed strategy. Alternatively, it may be modeled as a

correlated equilibrium where pessimistic agents believe their opponent’s may dis-

regard their signal with some positive probability.

4.5.1 Equilibrium under uncertainty

We focus on the special case where the belief functions take a particular form:

νi(T ) = (1− ci)π(T ) for all T ∈ Σ′ such that T 6= Ωi where π is an additive prob-

ability distribution.15 Dow and Werlang (1994) also consider a more general class

of capacities, but focus on and prove existence for the special case considered here.

Belief functions of this form exhibit constant ambiguity aversion, with the level of

ambiguity aversion parameterized by the variable ci, which we shall treat as an

exogenous parameter of the game.

Definition 4.4 (Adapted from Dow and Werlang (1994)). Consider a two player

game with N = {i, j}. Suppose that the agents have CEU preferences with respect

to a belief function, and that the belief functions are such that νi(T )= (1−ci)π j(T )

for all T ∈ Σ′i/Ωi and ν j(T ) = (1− c j)πi(T ) for all T ∈ Σ′j/Ω j and νi(Ωi) =

ν j(Ω j) = 1.16

14In particular Eichberger and Kelsey (2000) generalizes Dow and Werlang (1994) to allow for
n > 2 players.

15To be explicit, ν(Ω) = π(Ω) = 1. This formulation generates a simple set of αν : αν
T = (1−

ci)π(T ) for all singleton T ∈ Σ′, αν
Ω
= ci and αν

T = 0 otherwise. These belief functions are the
special case of neo-additive capacities introduces in Chateauneuf et al. (2007) restricted to ambiguity
aversion.

16Note the switch in subscripts between the belief function νi (denoting agent i’s beliefs) and π j
which, in the sequel, will be interpreted as agent j’s mixed strategy.
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Then {νi,ν j} form an equilibrium under uncertainty iff si ∈ argmaxs′i∈Si

∫
s′idνi

for all si ∈ supp(π j) and s j ∈ argmaxs′j∈S j

∫
s′jdν j for all s j ∈ supp(πi).

Notice that this definition of equilibrium is strictly an equilibrium in beliefs;

the equilibrium places no restrictions on strategies, but only restricts the beliefs

that each player may hold about their opponent’s strategies: beliefs must be mu-

tually consistent in the sense that every strategy that I believe my opponent might

play must be optimal for my opponent given their beliefs. An alternative definition

of equilibrium under uncertainty, using sub-additive probabilities instead of capac-

ities, is included, along with an example, in Section A.1.2. It is possible, however,

as formulated in section 4.5.2, to reformulate and reinterpret an equilibrium under

uncertainty as a mixed strategy equilibrium in the mental state space.

4.5.2 Mental equilibrium under uncertainty

A mental equilibrium under uncertainty is a pair of strategies and beliefs over the

mental state space such that the strategies are best responses given the beliefs, and

the beliefs are consistent with the strategies in the sense that no observable event

occurs less often than the beliefs suggest it should occur.

Definition 4.5 (Mental Equilibrium under uncertainty). A pair < σ ,α > form a

Mental equilibrium under uncertainty if

σ
A j(T )≥ ∑

τ⊆T
αi(τ) ∀T ∈ Σi, ∀i ∈ N (4.12)

and

σ
Ai ∈ arg max

σ̂∈∆(Ai)
∑

T∈Σi

u′i(σ̂ ,T )αi(T ) ∀i ∈ N (4.13)

The following theorem confirms that an equilibrium under uncertainty can be

rewritten as a mental equilibrium under uncertainty. We restrict attention to the

case of constant ambiguity aversion because of the interesting interpretation of

such equilibrium afforded by Definition 4.6 below. Dow and Werlang (1994) also

argue that constant ambiguity is the most interesting case because it allows the
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game to be parameterized by the degree of ambiguity exhibited by the agents. The-

orem 4.2 can be generalized to more general belief functions, given an appropriate

rewriting of Definition 4.4.

Theorem 4.2. Suppose that νi = (1−ci)σ
A j and ν j = (1−c j)σ

Ai . Define αi such

that

αi(T ) =


(1− ci)σ

A j(T ) if T ∈ A j

ci if T = A j

0 otherwise

If < νi,ν j > form an equilibrium under uncertainty, then <σ ,α > form a men-

tal equilibrium under uncertainty. Furthermore, for any σ ′A j such that σ ′A j(a j)≥
αi(a j) for all a j ∈ A j and supp σ ′A j = supp σA j , < σ ′,α > is also a mental equi-

librium under uncertainty.

If < σ ,α > form a mental equilibrium under uncertainty, then < νi,ν j > form

an equilibrium under uncertainty.

A mental equilibrium under uncertainty can also be interpreted in the same

way that we can interpret a mental Lo-Nash equilibrium: agents have access to a

pre-play mixing device that they consult before playing a pure strategy, and the

construction of the mixing device and the beliefs regarding the opponent’s mixing

device must satisfy the requirements of the relevant equilibrium. There is also an

alternative interpretation of a mental equilibrium under uncertainty.

Consider the following story that supports a mental equilibrium under uncer-

tainty. There are two agents, who are about to play a normal form game with each

other. Before the game commences the agents are allowed to communicate with

each other, and reach an agreement on which (potentially mixed) strategy they will

play.17 After the pre-play communication each agent retires to their own room to

decide their strategy in private. Once in their room, the agents may question the

sincerity of their opponents commitment; these doubts may be objectively justified

(as in Aumann (1990)) or may be purely subjective. The agent concludes that they

can trust their opponent to follow the agreement with probability 1− c and that

their opponent will deviate from the agreement with probability c.18 Furthermore,

17In the case of a mixed strategy, the agents are agreeing on the mixing device that they will consult
prior to selecting their pure strategy.

18We treat the parameter c as exogenous, but a richer model may seek to endogenize it.
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the agent is pessimistic in the sense of Maxmin or Choquet Expected Utility.

Some natural questions arise: Under what conditions will the agent be willing

to play their agreed strategy? Which pre-play commitments are self-enforcing in

this environment? The answers are straightforward: if the pre-play commitments

form a mental equilibrium under uncertainty then they will be self-enforcing and

the agents will be willing to play their agreed strategy.

Definition 4.6. If < σ ,α > form a mental equilibrium under uncertainty and

αi(T ) =


(1− ci)σ

A j(T ) if T ∈ A j

ci if T = A j

0 otherwise

then < σ ,α > form a c-robust agreement.

When c = 0, we recover a common justification for Nash equilibrium: if agents

believe that their opponent will follow their pre-play commitment with probability

1, then the strategies are self enforcing iff the strategies form a Nash equilibrium.

We illustrate c-robust agreements by presenting an example.

X Y
A 3,3 0,2
B 2,0 1,1

Figure 4.5: A normalized stag hunt game.

Consider the stag hunt game presented in figure 4.5 and the associated sym-

metric c-robust agreements:

• If c > 1
2 there is a unique robust agreement: {B,Y}.

• If c ≤ 1
2 there are three robust agreements: {B,Y}, {A,X} and the mixed

robust agreement σ(X) = σ(A) = 1
2(1−c) .

Notice that in the mixed robust agreement the weight placed on the ‘cooper-

ative’ strategy increases as the parameter c increases. Intuitively, in order for an

agent to be willing to mix (i.e. be indifferent between their strategies) against a

relatively untrustworthy opponent the agreement must be weighted more heavily
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towards ‘cooperation’. As the level of trust decreases, we find a point (c= 1
2 ) where

cooperation is no longer sustainable.

4.6 Extensive Form Games
Modeling extensive form games with ambiguity averse agents is a difficult task

given that ambiguity averse agents do not, in general, have dynamically consistent

preferences. One key implication of this is that Kuhn’s theorem (establishing the

equivalence of behavioral and mixed strategies) breaks down in games with ambi-

guity averse agents, thereby forcing the modeler to make difficult choices regarding

the structure of allowable strategies (Aryal and Stauber, 2014). The natural struc-

ture of a mental equilibrium provides a possible solution: because preferences have

a SEU representation in the mental state space Bayesian updating will produce dy-

namically consistent preferences in the mental state space. The only remaining

challenge is to determine when dynamically consistent preferences in the mental

state space map into dynamically consistent preferences in the observable game.

We begin by stating the formal requirements for dynamically consistent ob-

servable preferences, and then discuss the intuition behind the result.

Consider the standard formulation for an extensive form game < I,A,X ,n,H, ι ,u>,

where I is the finite set of players, X is the (partially ordered) finite set of nodes

(with x0 denoting the initial node), A(x) denotes the actions available at each node,

n(x,a) denotes the successor to node x when action a is played, ι(x) denotes the

player to move at node x, H(x) is an information partition such that if x′ ∈ H(x)

then ι(x) = ι(x′), A(x) = A(x′) and H(x′) = H(x), and u is a set of preferences over

outcomes. We write Ai,Hi and ui to denote the actions, histories and (Bernoulli)

utility function for player i. Xi denotes the nodes at which player i has the move.

We map the extensive form game into a mental extensive form game as follows.

As is standard, si : Hi 7→ Ai denotes a strategy for player i. The set of player i

strategies is Si, S =×i∈ISi and S−i =× j 6=iS j. Player i’s mental state space is given

by Σi = 2S−i/ /0.19 Beliefs over the mental state space are denoted by αi that are

formulated from beliefs over the observable game according to Result 4.1. Result

4.2 therefore implies that preferences have a SEU representation over the mental

19As for a normal form game, the mental state space is equivalent to the observable event space.
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state space. By assumption, beliefs over the mental state space are updated via

Bayesian updating.

Given X ,n and Hi we write ψi : Xi
⋃

x0 7→ S−i to denote the set of opponents

strategies that are consistent with play reaching node x∈ Xi. Note that ψi(x0) = S−i

for all i because the initial node is consistent with any feasible opponent strategy.

Assuming perfect recall, it is possible to build an ordered filtration of S−i using

ψi. First, note that the successor operator n defines a partial order over all nodes;

call this partial order�n. Define the total order�ψi to be an arbitrarily chosen total

order such that x�n x′ implies x�ψi x′ for all x,x′ ∈ {Xi
⋃

x0}. The total order �ψi

allows us to order the set {Xi
⋃

x0} as {x0,x1, . . .xn}. We are now ready to define

the filtration Ψi as follows:

Definition 4.7. Define Ψi = {Ψx0 ,Ψx1 , . . . ,Ψxn} to be a set of partitions. The

first partition is defined to be Ψx0 = Σi. Subsequent partitions are defined recur-

sively. Suppose that the m-th partition has k elements, so that it may be writ-

ten as Ψxm = {Ψ1
xm
, ...,Ψk

xm
}. Then the m+ 1-th partition is given by Ψxm+1 =

{Ψ1
xm
/ψ(xm+1), ...,Ψ

k
xm
/ψ(xm+1),ψ(xm+1)}, after discarding any Ψ

j
xm/ψ(xm+1)

that are empty. Finally, if Ψx = Ψx′ for any x,x′ ∈ {Xi
⋃

x0} then delete either

Ψx or Ψx′ from the set.20

Definition 4.8 (Filtration). Ψi = {Ψx0 ,Ψx1 , . . . ,Ψxn} is a filtration if each Ψxm is

a partition of A−i and for each Ψk
xm
∈ Ψxm there exists a Ψ

j
x′m
∈ Ψx′m such that

Ψk
xm
⊆Ψ

j
x′m

for all m,m′ with m > m′ . 21

Lemma 4.3. If the extensive form game satisfies perfect recall then Ψi is a filtration

for all i.

We are now ready to state the main result of this section, which provides con-

ditions on the agents’ beliefs such that the agent will exhibit dynamically consis-

tent preferences. The proof is borrowed directly from Eichberger et al. (2005).

The novelty of the result rests on using Result 4.1 as the vehicle that allows us

20Note that, by construction, Ψx = Ψx′ whenever x′ ∈ h(x).
21Note that the term filtration is used in slightly different forms in different literature. It is possible

to recover the most common definition (typically used in the mathematics literature) by completing
each Ψx j into a σ -algebra.
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to translate the Eichberger et al. (2005) result from an individual decision making

framework into a game theoretic setting.

Theorem 4.4. Consider an extensive form game in the mental state space. For

each player, write the final stage of their filtration as Ψi
xn
= {Ψi

1, ...,Ψ
i
k}. If

k

∑
κ=1

∑
s⊆Ψi

κ

αi(s) = 1 (4.14)

and the agent uses Bayesian updating to update α then agent i has dynamically

consistent preferences.

Furthermore, if Ψi
xn

is non-trivial (i.e. |Ψi
κ | ≥ 2 for all κ) and the agent believes

all nodes are reached with positive probability then

k

∑
κ=1

∑
s⊆Ψi

κ

αi(s) = 1

if and only if agent i has dynamically consistent preferences.

Proof. See Theroem 2.1 in Eichberger et al. (2005). Note that the condition ∑
k
κ=1 ∑s⊆Ψi

κ
αi(s)=

1 is equivalent to their condition ∑E∈E ν(E) = 1.

The practical implication of equation 4.14 is that the agent may only be un-

certain (i.e. have non-additive beliefs) regarding actions occur after the agents last

decision node on that branch, or regarding which node they are at within an infor-

mation set when there are no future nodes at which the agent has the move where

he learns which node he was previously at within the information set.22 This is

a reasonably restrictive condition, although as the theorem states this condition is

tight in a fully mixed equilibrium for dynamically consistent agents who are never

the last agent to act.

In a general framework, dynamic consistency will imply ambiguity neutrality

(via the tight connection between dynamic consistency and Savage’s P2 postulate).

That is, if we wish to impose dynamic consistency across all possible extensive

form games at the same time then the agents must necessarily be expected utility

22We conjecture that this condition implies that the agent’s beliefs must satisfy the rectangularity
condition of Epstein and Schneider (2003).
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maximizers. Here, however, we take a weaker stance of enforcing dynamic con-

sistency for a single, predefined, game tree. Any mental equilibrium of the normal

form game derived from the game tree such that equilibrium beliefs satisfy Equa-

tion 4.14 will be dynamically consistent. Checking whether equation 4.14 holds

for a given equilibrium is straightforward: the mental state space is already speci-

fied as part of the equilibrium so all that remains is to find the finest partition of the

filtration for each subject, which can usually be read directly off the game tree.

It is also straightforward to define a sub-game perfect refinement of mental

Lo-Nash equilibrium.

Definition 4.9 (Sub-game perfect mental Lo-Nash equilibrium). A pair <σ ,α > is

a sub-game perfect mental Lo-Nash equilibrium if it forms a Lo-Nash equilibrium

on every sub-game when restrictions of both σ and α to any sub-game are found

via Bayesian updating.

4.7 Computability
One natural concern with the use of ambiguity averse equilibrium concepts is that

they are difficult to calculate. In this section we demonstrate that the computational

complexity of the mental equilibrium concepts presented above are similar to the

computational complexity of finding a Nash equilibrium. The fact that mental

equilibrium consist of linear utility functions is the key feature that makes this

possible. Importantly, the mental equilibrium approach provides an algorithmic

methodology for solving for the equilibrium of either Dow and Werlang (1994) or

Lo (2009): first, find the mental state space and associated payoffs and then apply

the same techniques that are used for computing Nash equilibrium.

The textbook approach, which we present here following Shoham and Leyton-

Brown (2009), for computationally searching for Nash equilibrium involves for-

mulating the problem as a linear complementarity problem (LCP). The LCP can

then be solved as a feasibility program. The LCP for a two player game with finite

action sets is given by:

96



∑
ai∈Ai

u j(a j,ai)σ(ai)+ r(a j) =U j ∀a j ∈ A j (4.15)

∑
a j∈A j

ui(ai,a j)σ(a j)+ r(ai) =Ui ∀ai ∈ Ai (4.16)

∑
ai∈Ai

σ(ai) = 1, ∑
a j∈A j

σ(ai) = 1 (4.17)

σ(ai)≥ 0,σ(a j)≥ 0 ∀ai ∈ Ai,a j ∈ A j (4.18)

r(ai)≥ 0,r(a j)≥ 0 ∀ai ∈ Ai,a j ∈ A j (4.19)

r(ai)σ(ai) = 0,r(a j)σ(a j) = 0 ∀ai ∈ Ai,a j ∈ A j (4.20)

A solution to the LCP consists of a set of σ ,r and U such that the σ form a Nash

equilibrium, the U denote the equilibrium utility for each player and the r a set of

slack parameters that are set to 0 for any strategy that is used in the equilibrium.

The LCP can be solved using, for example, the Lemke-Howson algorithm.

We can also write a mental equilibrium under uncertainty as a LCP. We present

here the case considered in Theorem 4.2:

∑
a j∈A j

u′i(ai,a j)αi(a j)+u′i(ai,A j)α(A j)+ r(ai) =Ui ∀ai ∈ Ai (4.21)

∑
ai∈Ai

u′j(a j,ai)α j(ai)+u′j(a j,Ai)α(Ai)+ r(a j) =U j ∀a j ∈ A j (4.22)

∑
T∈A j

αi(T ) = ci, ∑
T∈Ai

α j(T ) = c j (4.23)

αi(A j) = 1− ci,α j(Ai) = 1− c j (4.24)

αi(Tj)≥ 0,α j(Ti)≥ 0 ∀Tj ∈ A j,∀Ti ∈ Ai (4.25)

r(ai)≥ 0,r(a j)≥ 0 ∀ai ∈ Ai,a j ∈ A j (4.26)

α(ai)r(ai) = 0,α(a j)r(a j) = 0 ∀ai ∈ Ai,a j ∈ A j (4.27)

This LCP solves for the beliefs of the agents (the α), but does not directly

provide us with the strategies (the σ ). However, the α bound a convex hull of

feasible σ and it is possible to write down a feasible σ directly from the output of

the LCP.
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When we view the values (ci,c j) as fixed parameters of the game, then the

(ci,c j) parameters and equation 4.24 drop out and the mental equilibrium under

uncertainty LCP is exactly as computationally difficult as the Nash equilibrium

LCP. If, on the other hand, we treat (ci,c j) as variables then we have 1 additional

parameter, and no additional equations, to calculate for each agent. Given that

increasing the strategy set for an agent in the Nash equilibrium LCP introduces

both an additional parameter and an additional equation, we conclude that solving

a k× k mental equilibrium under uncertainty is harder than solving a k× k Nash

equilibrium but easier than solving a (k+1)× (k+1) Nash equilibrium.

Mental Lo-Nash equilibrium is more computationally intensive because of the

stricter requirements on the supports of the strategies and the larger mental state

space. The mental Lo-Nash LCP is given by:

∑
T∈Σi

u′i(ai,T )αi(T )+ r(ai) =Ui ∀ai ∈ Ai (4.28)

∑
T∈Σ j

u′j(a j,T )α j(T )+ r(a j) =U j ∀a j ∈ A j (4.29)

∑
T∈Σi

αi(T ) = 1, ∑
T∈Σ j

α j(T ) = 1 (4.30)

∑
T :a j∈T

αi(T ) = I(a j) ∀a j ∈ A j (4.31)

∑
T :ai∈T

α j(T ) = I(ai) ∀ai ∈ Ai (4.32)

I(a j)≤ 1 ∀a j ∈ A j (4.33)

I(ai)≤ 1 ∀ai ∈ Ai (4.34)

αi(Tj)≥ 0,α j(Ti)≥ 0 ∀Tj ∈ Σi,∀Ti ∈ Σ j (4.35)

r(ai)≥ 0,r(a j)≥ 0 ∀ai ∈ Ai,a j ∈ A j (4.36)

(1− I(ai))r(ai) = 0,(1− I(a j))r(a j) = 0 ∀ai ∈ Ai,a j ∈ A j (4.37)

The first two equations contain 2k α parameters compared to k parameters

in the Nash case, and we have also introduced the I parameters which impose a

sub-constraint on the α parameters in addition to the standard requirements that
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the α form a probability distribution. While the problem has substantially more

parameters, it is not is any sense fundamentally different from the Nash equilibrium

LCP.

4.8 Conclusions
This chapter presents a methodology that extends static ambiguity averse equilib-

rium concepts that only allows for pure strategies to allow for mixed strategies,

as well as be extended into a dynamically consistent ambiguity averse equilibrium

concept for extensive form games. The technique is restricted to preference struc-

tures which allow only ambiguity aversion.23 Furthermore, an application of the

technique to Dow and Werlang’s (1994) equilibrium under uncertainty produces a

model of partially robust agreements.

The theoretical interest in the structure and interpretation of mixed strategy

equilibrium for agents with uncertainty averse preferences is readily apparent. Un-

like standard SEU agents, ambiguity averse agents are not necessarily indiffer-

ent between a mixed strategy and the pure strategy supports of the mixed strat-

egy. Considering this, some of the standard interpretations of mixed strategies

(via purification arguments or population interpretations of mixed strategies) may

not be appropriate in the context of ambiguity averse agents; indeed, a majority

of ambiguity averse equilibrium concepts explicitly restrict their analyses to pure

strategies. In this context, the methodology introduced here can be viewed as an

equilibrium-preserving interpretation of mixed strategies: when agents are ambi-

guity averse and have access to a mixing device that resolves before the strategic

interaction occurs then the agents will, in equilibrium, be indifferent between using

the mixing device or not. In this fashion the population interpretation of mixing

can be restored without the need to explicitly assume away the existence of mixing

devices.

A commonly held piece of folk wisdom is that people play pure strategies,

and do not use mixed strategies. Experimental evidence appears to contradict this,

23Preference structures that allow only for ambiguity seeking can also easily be accommodated by
defining the dual of eT (A) in theorem 4.1. Dealing with preferences structures that allow for either
ambiguity aversion or ambiguity seeking is a significantly more difficult proposition, although it may
be tractable under some (possibly unpalatable) restrictions.
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however, and indicates that a majority of subjects make use of randomization de-

vices when available in zero-sum games (see Schachat (2002) for example). Given

this evidence that mixed strategies are used when available, extending an equilib-

rium concept to allow for mixed strategies while preserving other features of the

equilibrium represents an improvement in the descriptive power of the equilibrium

concept.

The ubiquitous rise of the internet and digital communications has lead to a

proliferation of pre-programmed bots that are increasingly interacting in strategic

situations.24 In some cases bots that play pure strategies are exploitable, thereby

necessitating the use of randomization. In cases where the programmer has ex-

pected utility preferences over the outcomes produced by their bot there is no con-

ceptual problem with evaluating the (ex-ante) expected performance of differently

specified programs. However, in cases where the programmer has ambiguity averse

preferences the evaluation of such programs is a conceptually challenging task.

The theory presented in this chapter presents one potential way forward. Given

that current ambiguity averse equilibrium concepts that allow for mixed strategies

are observationally equivalent to Nash equilibrium for 2-player games, a theory

that allows for mixed strategy equilibrium that is distinct from Nash equilibrium is

necessary for ambiguity averse preferences to be a positive descriptor of behaviour

in games.

24Online pricing algorithms for concerts and sporting events interacting with automated purchas-
ing algorithms owned by scalpers are but one example.

100



Chapter 5

Conclusion

In this dissertation, I have contributed to the literature on strategic uncertainty in

games with non-Subjective Expected Utility agents.

Chapter 2 provides the most thorough and convincing evidence to date that

ambiguity preferences influence behaviour in normal form games. It also demon-

strates that the usual assumption of common knowledge of preferences does not

hold among a typical experimental population; even the much weaker mutual knowl-

edge of preferences fails to obtain. However, in an experimental intervention that

restored mutual knowledge of preferences, solution concepts that allow for ambi-

guity aversion perform remarkably well.

Chapter 2 introduces three experimental innovations. First, it introduces a

methodology for measuring risk and ambiguity preferences, and beliefs over op-

ponent’s preferences, using normal form games. Second, it identifies and separates

the effects of risk aversion and ambiguity aversion in a normal form game. Third,

it separates the effect of preferences on behaviour from the effects of beliefs over

opponent’s preferences in a normal form game.

Chapter 3 investigates the role of naturally occurring reaction lags in determin-

ing how subjects perceive and respond to strategic uncertainty. One key aspect

of the results is that when reaction lags are either very small or very large then

behaviour approximates predictions that are formed from models without strate-

gic uncertainty. This implies that in some settings with very large reaction lags

discrete time Nash equilibrium is a good approximation of behaviour and in other
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settings with very small reaction lags continuous time Nash equilibrium is a good

approximation of behaviour. We speculate that as technology improves and com-

munication and reaction lags shrink, continuous time models of behaviour will

become increasingly important in applications.

The original contributions of Chapter 3 have two main dimensions. First, we

introduce a new experimental technique that allows us to implement the premises of

the theory of continuous time games directly in the laboratory. Second, we identify

that theories of strategic uncertainty, particularly minimax regret theory, explain

the data collected in our experiment remarkably well. We further demonstrate that

minimax regret theory can also explain data from similar previous experiments,

and that a theoretical application of minimax regret theory generates plausible pre-

dictions across a broad class of dilemma-like games in inertial continuous time.

Chapter 4 provides a theoretical motivation for interpreting experiments with

ambiguity averse agents using solution concepts that restrict the action space to

pure strategies. The Chapter establishes that, for two key equilibrium concepts,

allowing pre-play mixing is equivalent to restricting to pure strategies. The theo-

retical results of Chapter 4 are essential for interpreting the experimental results of

Chapter 2. The key insight of the Chapter lies in identifying that the main result

of Gilboa and Schmeidler (1994) can be profitably applied to games with ambi-

guity averse agents: straightforward applications of Gilboa and Schmeidler (1994)

generate novel results relating to mixed strategies, dynamic consistency and com-

putability in games with ambiguity averse agents.
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Appendix A

A Brief Introduction to the
Theory of Games With
Ambiguity Averse Agents

This appendix provides a brief background on the theory of games with ambiguity

averse agents; it is particularly relevant for readers of both Chapters 2 and 4. Sec-

tion A.1 surveys the existing solution concepts for ambiguity averse agents. Sec-

tion A.1.1 re-introduces Lo-Nash equilibrium (originally previewed in Chapter 4)

and uses the game studied in Chapter 2 as an illustrative example. Section A.1.2

presents a slightly different formulation of equilibrium under uncertainty than that

presented in Chapter 4. A comparison of the differences in the equilibrium sets be-

tween Lo-Nash equilibrium and equilibrium under uncertainty highlights the role

that the different consistency conditions play across the two equilibria; in partic-

ular, (C,Y ) is an equilibrium of the testing game from Chapter 2 for equilibrium

under uncertainty but not for Lo-Nash equilibrium.

A.1 Theoretical Literature
There is a growing literature that models the extension of game theory to subjects

with non-neutral ambiguity preference. There is, however, surprisingly little agree-

ment on how to proceed. Should an ambiguity averse equilibrium concept maintain
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mutual knowledge of rationality? Should stochastic independence be preserved, or

should we allow for correlation between agent’s strategies? How much (if at all)

should consistency of beliefs be relaxed? Each of these questions could be used to

categorize the literature in various ways. We focus, instead, on the role of mixed

strategies.

To reiterate, there are three ways for the game theorist to deal with mixed strate-

gies. Either allow agents to hold strict preferences for mixed strategies, restrict the

strategy space to contain only pure strategies (and thereby avoid the issue alto-

gether), or to place restrictions on the model such that the agent does not have a

strict preference for mixed strategies. Models that fit the third category require

careful attention to be paid regarding the timing of realizations of randomization

devices. Currently, the only two papers that have used the third approach have not

been sufficiently careful (Rothe (2010) and Lehrer (2011)). Table A.1 provides a

summary of the state of the literature.

As can be seen in table A.1 a majority of the literature simply excludes mixed

strategies. The experimental design in Chapter 2 could be reinterpreted using any

of the equilibrium concepts that exclude mixed strategies, and this appendix in-

cludes the equilibrium derivations for Dow and Werlang (1994) and Lo (2009). It

is not, however, compatible with models that allow a strict preference for random-

ization, such as Lo (1996) or Bade (2011).1 For example, propositions 4 and 5 in

Lo (1996) imply that for two-player games with a unique strict pure strategy Nash

equilibrium, such as the game in figure 2.6 here, the only ambiguity averse equi-

librium is the Nash equilibrium – a conclusion that is rejected in our data. Bade

(2011) gives agents access to an ambiguous randomization device (i.e. agents can

condition their strategy on a draw from an Ellsberg urn, for example), but finds ob-

servational equivalence between Nash equilibria and ambiguity averse equilibria in

two-player games.

Returning to the questions raised in the opening paragraph of this section, in

the opinion of this author, the most convincing answers have been provided by Lo

1The experimental results presented in Chapter 2 could be interpreted as providing some evidence
against models such as Lo (1996) or Klibanoff (1996). An alternative viewpoint would be to argue
that a proper test of these papers would require an explicit mixing device be provided to subjects.
Similarly, a proper test of Bade (2011) would require subjects to have access to an ambiguous mixing
device.
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Paper Equilibrium concept Treatment of mixed strategies
Dow and Werlang (1994) Nash equilibrium under uncertainty Pure strategies only
Lo (1996) Belief equilibrium Strict preference for mixed strate-

gies allowed
Klibanoff (1996) Equilibrium with uncertainty aver-

sion
Strict preference for mixed strate-
gies allowed

Epstein (1997) Rationalizability Pure strategies only
Groes et al. (1998) Nash equilibrium with lower prob-

abilities
Pure strategies only

Marinacci (2000) Belief equilibrium Pure strategies only
Eichberger and Kelsey (2000) Equilibrium under uncertainty Pure strategies only
Lo (2009) Correlated Nash equilibrium Pure strategies only
Rothe (2010) Choquet Nash equilibrium Mixed strategies have payoffs that

are assumed to be linear in utility
Bade (2011) Ambiguous act equilibrium Strict preference for mixed strate-

gies allowed. Allows for ambigu-
ous strategies (using an ambiguous
mixing device)

Azrieli and Teper (2011) Ex-ante J equilibrium (games with
incomplete information)

Strict preference for mixed strate-
gies allowed.

Lehrer (2011) Partially specified equilibrium Mixed strategies have payoffs that
are assumed to be linear in utility

Grant et al. (Forthcoming) Savage games Pure strategies only
Eichberger and Kelsey (2014) Equilibrium under ambiguity Pure strategies only
Riedel and Sass (2014) Ellsberg equilibrium Strict preference for mixed strate-

gies allowed. Allows for ambigu-
ous strategies (using an ambiguous
mixing device)

Table A.1: This table contains summary of the treatment of mixed strategies in the literature
of ambiguity averse equilibrium concepts. Only papers that define and introduce equilib-
rium concepts are included, applications are not included. Note that the approach taken
by Lehrer (2011) and Rothe (2010), of assuming that the payoffs of mixed strategies are
linear in utility, raises some difficulties that are not addressed in either paper.
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(2009). Lo posits an epistemic approach to ambiguity averse game theory; begin-

ning with the epistemic conditions of Nash equilibrium, what are the consequences

of relaxing rationality to allow for ambiguity averse preferences? The resultant

equilibrium concept substantially relaxes stochastic independence2, allows agents

to hold set valued beliefs regarding their opponent’s strategies and requires actual

play to lie within the set of beliefs, and maintains mutual knowledge of rationality.

The only desiderata missing from Lo (2009) is that it does not allow for mixed

strategies; the strategy space is restricted to pure strategies, and a population inter-

pretation of mixing is invoked. Chapter 4 extends Lo (2009) to allow for mixed

strategies.

A.1.1 Lo-Nash equilibria

This section introduces Lo-Nash equilibrium, following Lo (2009) closely. Define

a set of players N = {1, . . . ,n}, let each player i ∈ N have a finite set of actions Ai,

and define A = ×i∈NAi and A−i = × j 6=i∈NA j. We shall endow each agent with a

Bernoulli utility function u : A 7→R. Suppose that an agent has uncertainty regard-

ing the strategy choices of their opponents, A−i. Then we can regard a strategy, ai,

as an act over the state space A−i generating a payoff ui(ai,a−i) when the state a−i

is realized.

In a manner consistent with Gilboa and Schmeidler (1989)’s MEU formula-

tion, we suppose that an agent’s beliefs regarding their opponents strategies are a

closed and convex set of probability measures Φi ⊆ ∆(A−i). Given Φi an agents

preferences are represented by

min
φ∈Φ

∑
a−i∈A−i

ui(ai,a−i)φi(a−i).

Furthermore, we use σ to denote a probability measure on A. We define

σAi(ai)=∑a−i∈A−i σ(ai,a−i) as the marginal distribution of σ on Ai and σA−i(a−i)=

∑ai∈Ai σ(ai,a−i) as the marginal distribution of σ on A−i. Then, in the usual fash-

ion we write σ(a−i|ai) =
σ(ai,a−i)

σAi (ai)
.

2In fact, Lo refers to his equilibrium as Correlated Nash equilibrium to emphasize the similar-
ities with Aumann’s Correlated equilibrium. We avoid using this name, and instead refer to the
equilibrium as Lo-Nash equilibrium, to avoid confusion between the two concepts.
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Finally, we write suppσ to denote the support of the probability distribution σ ,

and define suppΦ to be the union of the supports of the elements of Φ. We are now

ready to define a Lo-Nash equilibrium.

Definition A.1 (Lo-Nash equilibrium). A pair < σ ,Φ > forms a Lo-Nash equilib-

rium if it satisfies

σ(·|ai) ∈Φi ∀ai ∈ suppσ
Ai ,∀i ∈ N (A.1)

suppΦi =× j 6=isuppσ
A j ∀i ∈ N (A.2)

and

ai ∈ argmax
âi∈Ai

min
φi∈Φi

∑
a−i∈A−i

ui(âi,a−i)φi(a−i) ∀ai ∈ suppσ
Ai ,∀i ∈ N (A.3)

Equation A.3 requires that all strategies that are played in an equilibrium are

best responses, with preferences defined as MEU preferences with respect to the

equilibrium conjectures Φ. Equations A.1 and A.2 are the consistency require-

ments: equation A.2 ensures that a strategy is played with a positive probability iff

it is expected to be played with a positive probability, and equation A.1 forces ac-

tual strategies to be contained in the belief sets. Note that equation A.1 allows for

conditioning of σ on ai - this allows for strategies to be correlated, but the realized

strategy must lie within player i’s belief set for all ai.

Lo-Nash equilibrium: an example

Consider the normal form game presented in figure A.1. For this section, we shall

follow the standard game theoretic approach and assume that the payoffs in figure

A.1 are utility values, thereby abstracting from issues of risk aversion. Recall that

the game has a unique Nash equilibrium (A,X).

X Y
A 25,20 14,12
B 14,20 25,12
C 18,12 18,22

Figure A.1: Testing game
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In contrast, there are fully mixed Lo-Nash equilibria in this game. Intuitively,

this is easy to see. If the row player is uncertain about the column player’s strategy

choice, and the row player is ambiguity averse, then there are set-valued beliefs for

which C is a best response. There does not, however, exist a Lo-Nash equilibrium

where the row player plays C with probability 1. The consistency requirements

for Lo-Nash equilibria would then imply that the column player would know with

certainty that the row player will play C, so the unique best response for the column

player is Y . In this case, C is no longer the best response for the row player and

the equilibrium breaks down. It is the case, however, that C can be played with a

probability that is arbitrarily close to one. The full set of Lo-Nash equilibria for

this game is large.

Lemma A.1. The set of distributions, Σ, that can be supported as Lo-Nash equilib-

ria for the game in figure A.1 is Σ= {σ(A,X) = 1}
⋃
{σ : 0< σ(A), 0< σ(B), 0<

σ(C), 4
11 ≤ σ(X |·)≤ 7

11 }
⋃
{σ : σ(A) = 0, 0 < σ(C)< 1, σ(X |·)≤ 7

11 , σ(Y )<

1 }
⋃
{σ : σ(B) = 0, 0 < σ(C)< 1, 4

11 ≤ σ(X |·), σ(Y )> 0 }.

Proof of lemma A.1. We proceed case-by-case, considering each possible set of

pure strategy supports for the row player in turn. It follows directly from the def-

inition of Lo-Nash equilibrium that we can find the full set of equilibrium distri-

butions for each case by first identifying the largest feasible equilibrium sets of

beliefs.

It is straightforward to see that the only pure strategy Lo-Nash equilibrium is

{A,X}.
Next we consider equilibria that are fully mixed for the row player. The row

player will be indifferent between all three of their strategies only when ΦR = {φ :
4
11 ≤ φ(X)≤ 7

11}. This implies that the column player can play any mixed strategy

within this range. The largest set of beliefs such that the column player is indif-

ferent between both X and Y is beliefs of complete uncertainty. The consistency

requirements on the row player are therefore very weak, such that they need to use

each strategy with a strictly positive probability. Note that the equilibrium allows

for correlation between strategies.

Next, we consider equilibria where the row player does not play A. In such

cases, the largest feasible set of row player beliefs are given by ΦR = {φ : φ(X)≤
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7
11}. Consistency requirements restrict the column player’s beliefs to be ΦC = {φ :

φ(A) = 0,φ(B)> 0,φ(C)> 0}, which is also the largest feasible set of beliefs that

ensures column player indifference. Therefore the row player can play any mix

that places positive weight on both B and C. The correlation requirements allow

for equilibria that are arbitrarily close to pure {C,Y}. Consider the equilibrium

with σ(B,X) = 7ε , σ(B,Y ) = 4ε and σ(C,Y ) = 1− 11ε with all other outcomes

being assigned a probability of 0, and take ε to be arbitrarily small. The equilibria

where the row player does not play B are built in a similar fashion.

There are no equilibria where the row player mixes between only A and B. In

such a case, the column player must believe that φ(C) = 0 and therefore they have

a unique best response of X .

This example illustrates a key feature of Lo-Nash equilibrium. The source of

ambiguity is not from doubts over which Nash equilibrium is to be played, nor is

it over which strategy will be realized in a mixed strategy Nash equilibrium. The

source of ambiguity in this game is endogenous to the game structure and agent’s

preferences. The only requirement is that the row player has ambiguity averse

preferences, so that C is a best response for some potential row player beliefs and

thereby breaking the rationalizability chain required to produce the unique (A,X)

equilibrium.

As is always the case, the unique Nash equilibrium is also a Lo-Nash equi-

librium. Ambiguity averse preferences, on their own, need not necessarily affect

the play of a game if the agents still form point-valued conjectures. If an agent

believes, with certainty, that their opponent will play a particular (possibly mixed)

strategy then there is no role for their ambiguity to play as, subjectively, the agent

faces no ambiguity.

The other key feature of the game in figure A.1 is that equilibria other than

(A,X) exist iff the row player is ambiguity averse (lemmas A.2 and A.3). If the row

player has SEU preferences, then the column player’s ambiguity preference has no

effect on the equilibrium set. Using this result, we can differentiate the effect of a

players own ambiguity preference (which should affect row player behaviour only)

from the effect of a players beliefs about their opponent’s ambiguity preference

(which should affect column player behaviour only).
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Definition A.2. A Lo-Nash equilibrium is proper for agent i iff Φi is not a singleton.

A Lo-Nash equilibrium is proper iff it is proper for at least one agent.

Lemma A.2. All proper Lo-Nash equilibrium of the game in figure A.1 are proper

for the row player.

Proof of lemma A.2. From lemma A.1, all proper Lo-Nash equilibria involve the

row player mixing between C and at least one of A or B. If the row player has

singleton beliefs, then their set of best responses can never include C. Therefore,

any proper Lo-Nash equilibrium must be proper for the row player.

Lemma A.3. There exist proper Lo-Nash equilibrium of the game in figure A.1

that are not proper for the column player.

Proof. Consider the equilibrium where σ(A,X)=σ(A,Y )= 1
6 , σ(B,X)=σ(B,Y )=

1
9 , σ(C,X) = σ(C,Y ) = 2

9 , ΦR = {φ : 4
11 ≤ φ(X) ≤ 7

11} and ΦC = {φ : φ(C) =
4
9 ,φ(A) =

1
3 ,φ(B) =

2
9}.

A.1.2 Nash Equilibrium under uncertainty

In this section we describe Dow and Werlang’s (1994) Nash Equilibrium under

uncercainty. The analysis will follow Dow and Werlang (1994) very closely. We

begin by introducing the notion of a sub-additive probability, P, being a probability

which satisfies

P(A)+P(B)≤ P(A∩B)+P(A∪B).

The expected utility of an agent with respect to a sub-additive probability over

a non-negative random variable, X , is given by the Choquet integral

E(X) =
∫
R+

P(X ≥ x)dx.

In many cases this will be equivalent to calculating the Maxmin Expected Utility

with respect to the core of the sub-additive probability (see Gilboa and Schmeidler

(1994) for details).

Dow and Werlang define the support of a sub-additive probability to be an

event, A, such that P(Ac) = 0 and P(Bc)> 0 for all B⊂ A. We note that the support
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need not be unique, and that there are other reasonable definitions of the support of

a sub-additive probability that are not used here.

A Nash equilibrium under uncertainty is then simply the requirement that all

strategies that are in the support of an opponent’s beliefs are best responses for an

agent given the agent’s beliefs. Label the set of available strategies for player i as

Ai.

Definition A.3 (From Dow and Werlang (1994)). A pair (P1,P2) of non-additive

probabilities P1 over A1 and P2 over A2 is a Nash Equilibrium under Uncertainty

if there exist a support of P1 and a support of P2 such that

(i) for all a1 in the support of P1, a1 maximizes the expected utility of player

1, given that P2 represents player 1’s beliefs about the strategies of player 2; and

conversely,

(ii) for all a2 in the support of P2, a2 maximizes the expected utility of player 2,

given that P1 represents player 2’s beliefs about the strategies of player 1.

We refrain from giving the full set of equilibrium sub-additive probabilities, as

many of them produce observationally equivalent outcomes, but instead establish

two facts: that a fully mixed equilibrium can be supported, and that pure {C,Y}
can be supported, in a Nash Equilibrium under Uncertainty.

Lemma A.4. The pure strategy equilibrium {C,Y} can be supported by the equi-

librium sub-additive probability PC with PC(Y ) = 3
11 and PC(X) = 0 and additive

probability PR with PR(C) = 1.

Proof of lemma A.4. The support of PC is {Y} and the support of PR is {C}. It is

obvious that Y is the unique best response for the column player. The row player

evaluates their strategies as follows:

U(A) = 1∗14+0∗ (25−14) = 14

U(B) = 1∗14+
3

11
∗ (25−14) = 17

U(C) = 18

C is the unique best response.
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Lemma A.5. A fully mixed equilibrium can be supported by the equilibrium sub-

additive probability PC with PC(X) = PC(Y ) = 4
11 and additive probability PR with

PR(C) = 4
9 , PR(A) = 3

9 , PR(B) = 2
9 .

Proof of lemma A.5. The support of PR is {A,B,C} and the support of PC is {X ,Y}.
Given that PR is additive we can calculate the column player’s utility in the standard

fashion, and verify that U(X) =U(Y ) = 148
9 ∼ 16.4. The row player evaluates their

strategies as follows:

U(A) = 1∗14+
4

11
∗ (25−14) = 18

U(B) = 1∗14+
4

11
∗ (25−14) = 18

U(C) = 18

Therefore, both players are indifferent between all strategies in the supports of the

distributions.
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Appendix B

Appendix for “Uncertainty
Aversion in Game Theory:
Experimental Evidence”

B.1 Experimental Methodology Appendix
In every experimental design there are a myriad of decisions that the experimenter

must make. This section discusses some of the more important choices that were

made in the design of this experiment. The focus is on issues that are likely to be

less familiar to readers, rather than standard experimental practices such as ensur-

ing payments are anonymous.

B.1.1 Piloting and framing effects

This experiment has two distinct sections. First, we measure the subjects prefer-

ences and beliefs over their opponent’s preferences. Second, we give the subjects

a variety of normal form games. Normal form games are normally presented to

subjects in a bi-matrix format. In contrast, decision theorists use a range of pro-

cedures to measure preferences, none of which are bi-matrices. A natural concern

is that the framing of the task might affect the measurement (and it turns out that

this concern is well founded). In a series of pilot experiments, we observed that the
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proportion of subjects that display ambiguity aversion is significantly higher when

the task is presented as a worded decision problem (when compared to a bi-matrix

game).1

The existence of a framing effect precludes presenting the preference measure-

ment tasks and normal form games in differing formats. To resolve this problem,

we presented all tasks as games. As we are interested in measuring both a sub-

ject’s own preferences and their beliefs regarding their opponent’s preferences, we

formulate the decision problems as a game where the row player reveals their own

preferences and the column player attempts to predict the row player’s behaviour.

A natural concern is that, by moving the preference measurement tasks into

a game format, our preference measures will be distorted relative to previous re-

search on ambiguity aversion. The pilot experiments suggested that adding a series

of comprehension questions, as described in the next section, does a reasonable job

of reducing the gap between worded decision problems and bi-matrix games.2

B.1.2 Assumptions underlying the classification procedure

There are several assumptions underlying the classification procedure used in sec-

tion Section 2.2.1, which are discussed in this section. Briefly, the assumptions

are: source independence of ambiguity preferences; CRRA utility; and, for col-

umn players, a strength of beliefs assumption. The results are robust to varying the

CRRA utility assumption. The strength of beliefs assumption may be violated in

the data, and the additional treatments in Section 2.4 investigate this possibility.

Assumptions on ambiguity preferences

Underlying the classification mapping is an assumption that a subject will (sub-

jectively) view an Ellsberg urn as a source of ambiguity if and only if they view

1Similar evidence of framing effects for ambiguity aversion measurement can be found in Chew
et al. (2013).

2Despite the inclusion of the comprehension questions, the measured level of ambiguity aversion
is still slightly lower than that measured in previous 2-colour Ellsberg urn experiments. The results
reported here do appear to be consistent with recent evidence from Chew et al. (2013), who argue
that we should expect to measure less ambiguity aversion in more complex environments.
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their opponent’s strategy as a source of ambiguity.3 Using an Ellsberg urn to pro-

duce the classification provides a stable point of comparison to the vast literature

on ambiguity aversion in individual decision problems.

Furthermore, it is possible that some subjects who chose S in in the game in

figure 2.2 would switch to M if the payoff for S was lowered to, say, $30.01. Such a

subject has ambiguity averse preferences but would be classified as ambiguity neu-

tral given the payoff structure of my game. However, the results in previous work,

such as Epstein and Halevy (2014), suggest that this is not a significant source of

misclassification even when the payoff for S is as high as $31.00. Therefore, for

these two reasons, we conclude that our classification provides a lower bound on

the proportion of subjects who may exhibit ambiguity aversion with respect to their

opponent’s preferences.

Assumptions on risk preferences

The mapping from choices in the risk measurement game to types will depend on

the parameterization of the utility function. We consider two common utility func-

tions: constant relative risk aversion (CRRA, equation B.1) and constant absolute

risk aversion (CARA, equation B.2).4 Figures B.1 and B.2 present the implications

3Heath and Tversky (1991) were the first to provide evidence of differing source preferences for
ambiguity, comparing bets on political outcomes with bets on football matches. They found evidence
that subjects prefer betting on events for which they have a greater familiarity. While it is unlikely
that the subjects in this experiment were substantially more familiar with either the playing of normal
form games or betting on Ellsberg urns, it is still possible that source dependent preferences could
be present in the current environment. In particular, some subjects may find the Ellsberg urn to be
less ambiguous than their opponent’s behaviour because an Ellsberg urn is symmetric and determined
solely by ‘nature’, while an opponent has their own agency – an argument first put forward by Kelsey
and le Roux (2015a). To the extent that we mis-classify subjects, we should expect there to be some
subjects who are measured as ambiguity neutral with respect to the urn yet are ambiguity averse with
respect to their opponent’s action.

4The CRRA utility function is given by the equation

u(c) =
c1−β −1

1−β
(B.1)

and the CARA utility function by
u(c) = 1− e−ρc. (B.2)

Note the implicit assumption that subjects treat the experiment as an independent event, and do not
integrate their outside wealth into their utility functions. This is the standard approach in experi-
mental economics, although recently some authors have begun to consider partial wealth integration
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of the CARA and CRRA parameterizations, respectively.

Figure B.1: The role of risk aversion in the risk preference measuring game and the testing
game assuming SEU preferences with CARA utility: u(c) = 1− e−ρc. Subjects who
select L in the game in figure 2.5 have type 1 or 2 preferences, while subjects who
select H have type 3 or 4 preferences. Subjects who select I are of an indeterminate
type.

As can be seen from figure B.1, the CARA parameterization provides a clear

classification for subjects that choose either L or H, but is indeterminate for sub-

jects who choose I. Meanwhile, figure B.2 indicates that, under the CRRA param-

eterization, subjects that choose L and I should be pooled into a low risk category

while subjects who choose H should be considered high risk (although there is a

small region of misclassification for subjects that choose H). Given that both mod-

els essentially agree on the treatment of subjects that choose L and H, we shall

implement the CARA parameterization and remove subjects that selected I from

the data analysis. Robustness checks indicate that moving to a CRRA parame-

terization has no effect on the statistical inferences implied by the results, which

is unsurprising given that only 10% of subjects choose I in the risk measurement

game.

Additional assumptions on beliefs

The mapping for the column players is calculated analogously to the mapping for

row players, although it requires an additional assumption regarding the strength of

beliefs. The process for eliciting beliefs regarding opponent’s preferences elicits

the subject’s ‘best guess’ regarding his opponent. In the worst case scenario a

subject may be completely unsure about their opponent’s preferences, implying

(Holt and Laury (2014)). A theoretically more robust formulation would use u(c+w) where w is the
subjects initial wealth level, but we follow the experimental standard here. As suggested by Simon
Grant, readers who are troubled by this formulation should focus on the CARA utility parameteriza-
tion (and not the CRRA parameterization).
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Figure B.2: The role of risk aversion in the risk preference measuring game and the testing
game assuming SEU preferences with CRRA utility: u(c) = c1−β−1

1−β
. Subjects who

select L or I in the game in figure 2.5 have type 1 or 2 preferences, while subjects who
select H are likely to have type 3 or 4 preferences.

that their choices as the column player in the classification games may contain no

information. The hypothesis of a relationship between column player behaviour

in the classification games and the testing game can, therefore, be seen as a joint

test of the theory outlined in section 2.1 and the assumption that beliefs are strong

enough to be informative. Section 2.4 introduces an additional treatment in which

subjects are shown a signal of their opponent’s preferences, allowing us to separate

this joint hypothesis into its component parts.

B.1.3 Comprehension questions

On the experimental screen, underneath each of the normal form games, a series of

dynamic drop down menus were included for each game. Before a subject could

confirm their strategy choice in a game, they were required to fill in the drop down

menus correctly. To ensure that subjects took the drop down menus seriously they

were paid a bonus of $1 for each game where they filled in the drop down menus

correctly on their first attempt. Each incorrect attempt reduced the bonus payment,

for that game, by $0.25.

The drop down menus were designed in such a way that the subjects recreated

the worded decision problem that describes the relevant game. For example, for the

game in figure 2.2, the worded problem for option S would read “Your earnings for

this choice [are/are not] affected by your counterpart’s strategy. Your earnings for

this choice will be [$30.10/$30/$15/$0] if a red ball is drawn from the [U urn/K

urn] and nothing otherwise.” For each set of terms that are square bracketed, the

subjects were required to select the correct term (shown in bold here) from a drop
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down menu.

Subjects were required to fill in drop down menus that described the possible

outcomes for each of their strategies.5 The process of interpreting the bi-matrix

game and converting it into a worded decision problem helped to ameliorate the

framing effects induced by the bi-matrix game.

In addition, the drop down menus also served as a comprehension check. This

test of subject comprehension was quite stringent. There were a handful of subjects

who had extreme difficulty with the drop down menus, and only 25% of subjects

earned the maximum possible bonus payment of $7. We used the level of bonus

payment earned by the subject as a measure of comprehension, and removed sub-

jects who performed poorly from our sample.

Given the extensive piloting process and experimenter degrees of freedom in-

volved in using the comprehension data to exclude subjects, the possibility of data

mining for statistically significant results needs to be addressed. Two approaches

were taken to alleviate these concerns. First, pilot sessions were run using only the

classification games of section 2.2.1, and not the testing game of section 2.2.2.6

Second, the rules for excluding subjects from the data, based on comprehension

scores, were determined ex-ante rather than ex-post.

Two rules for excluding subjects were determined ex-ante. A strict rule, and a

relaxed rule. There was an expectation that the strict rule may be too strict, so the

relaxed rule was designed as a back up. The expectations were correct, and after

applying the strict rule only 8 ambiguity averse and risk neutral subjects remained

(and only 4 risk averse and ambiguity neutral subjects); therefore, the relaxed rule

was used. The comprehension data is reported in further detail in appendix B.3.3.

5In one set of pilot sessions subjects were required to fill in the drop down menu only for the
strategy that they selected. This approach was soon abandoned, as it turned out that subjects were
making their decisions without referring to the drop down menus, and then only filling in the drop
down menus after they had already come to a decision. The drop down menus thereby failed to break
down the framing effect of presenting the choices in a bi-matrix format. In the final experimental
design subjects were required to fill in the drop down menus before they could select a strategy.

6The only exceptions to this were the first two pilot sessions which used a 3-colour Ellsberg urn
instead of the 2-colour Ellsberg urn used in the final design. Only 1 out of 14 subjects was found to
be ambiguity averse, meaning that it was not possible to perform any tests on the effects of ambiguity
aversion on behaviour, and the 3-colour Ellsberg urn was removed from the design.
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B.1.4 Order of realization of randomizations

As discussed in section 2.1, many models of ambiguity aversion induce preferences

with a strict preference for randomization. In an experiment, such as this one,

where we are asking subjects to respond to multiple games there are two ways in

which a preference for randomization could undermine the incentive structure. In

both cases, however, the results of Eichberger et al. (2016) (and similar ideas found

in earlier papers, dating back to at least Kreps (1988)) can be used to overcome any

concerns: if objective randomizations occur before subjective states are realized

then dynamic consistency implies no preference for randomization.

The first difficulty, as discussed in Chapter 4, occurs within a game. If subjects

have a strict preference for randomization then the availability of mixed strategies

can change the equilibrium set (relative to the game where only pure strategies

are available). The strict preference for randomization can be negated via two

arguments. First, subjects were required to select pure strategies in each of the

games (i.e. the computer interface did not allow for mixed strategies to be chosen

explicitly). In order to play a mixed strategy subjects would need to provide their

own randomization device, whether it be a mental mixing, tossing of a coin or

rolling of a die.7 Second, following the arguments of Eichberger et al. (2016)

there should be no preference for randomization if a subjects own randomization

is resolved before they view their opponents strategy choice. This requirement

was satisfied during the experiment as a consequence of requiring subjects to enter

pure strategy choices into the computer, and not revealing their opponent’s strategy

choices until the end of the experiment.

The second difficulty occurs between games. If subjects have a strict prefer-

ence for mixing between games, then using a random payment mechanism8 will

provide the subject with an opportunity to hedge their ambiguity across games and

they will not treat each game as an independent decision problem. On the other

hand, paying subjects for their decisions in all games will obviously give rise to

hedging opportunities across games, particularly given that several of the games

7No subjects were observed to flip coins or roll dice during the experiment.
8A random payment mechanism chooses, at random, a subset of the tasks in the experiment to be

the tasks for which subjects are actually paid. Usually, the number of tasks that are selected is one,
and this is sometimes referred to as a “pay-one” incentive scheme.
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include a draw from an Ellsberg urn that determines the ‘play’ of nature. Baillon

et al. (2014) provides some solace, and a joint reading of Azrieli et al. (2014) and

Eichberger et al. (2016) reinforces this view. Baillon et al. (2014) demonstrate that

if objective randomizations are resolved after subjective randomizations then the

elicitation is not incentive compatible; if objective randomizations are realized first

then incentive compatibility may be restored. Azrieli et al. (2014) suggest that,

absent an assumption that subjects are indifferent between ex-ante and ex-post ran-

domizations, there are no strong objections to be made against using a random pay-

ment mechanism in an experiment of this nature. Following this, it is clear from

Eichberger et al. (2016) that the random payment mechanism should be resolved

prior to the resolution of play in the games. Furthermore, Johnson et al. (2014)

demonstrate experimentally that an elicitation process which they call PRINCE,

including this order of realizations, can improve the quality of elicited preferences.

Resolving the random payment mechanism prior to the resolution of play in the

games requires some care. It is obviously not appropriate to allow the subjects to

know which game will be chosen for payment before the subjects play the games.

The solution implemented here was as follows: when subjects entered the experi-

mental lab there were 7 flash cards stuck to one of the walls. On the front (visible

to subjects) side of the flash cards were the letters A through G, one letter per flash

card. On the back (not visible to subjects) were the numbers 1 through 7, one num-

ber per flash card. The matching of letters to numbers was randomly determined by

the experimenter.9 During the instructions, a subject was asked to choose a letter

from A to G, and the number was recorded. Subjects were informed that, at the

end of the experiment, the number on the back of the chosen letter would determine

which game would be paid. From the subjects perspective the choice of game was

then fixed, but unknown. At the end of the experiment, the letter was flipped over

to reveal the game to be paid before any balls were drawn from the urns.

All randomizations and ball draws were conducted using physical devices that

were as procedurally transparent as possible.

9There were actually two sets of flash cards, one with letters and one with numbers. Letter
flashcards were then randomly blu-tacked to number flashcards. This enabled the flash cards to be
easily re-randomized between sessions.
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B.1.5 Related experimental literature

There is very little experimental evidence regarding ambiguity aversion in game

theory. There are, as far as I am aware, only a handful of papers that have collected

experimental data that was designed to investigate ambiguity aversion in game the-

ory (Kelsey and le Roux (2015a), Kelsey and le Roux (2015b), Ivanov (2011),

Eichberger et al. (2008), Pulford and Colman (2007), and Camerer and Karjalainen

(1994)).10 Additionally, Eichberger and Kelsey (2011) re-analyses previous exper-

imental data and Heinemannn et al. (2009) study strategic uncertainty through the

lens of global games. We proceed chronologically.

Camerer and Karjalainen (1994) present evidence from 4 games. The first two

games are designed to replicate the standard Ellsberg tasks, but replacing the sub-

jective ball draw with a choice by an opponent. The third game requires subjects

to predict the outcome in a co-ordination game that had previously been played by

other subjects. In each of these games Camerer and Karjalainen found, on average,

a consistent yet small amount of ambiguity aversion along with a large amount of

heterogeneity between subjects. These games, however, do not really have strate-

gic interaction in a meaningful sense; in each game the strategic uncertainty only

affects one of the players.

The fourth game that Camerer and Karjalainen study is a matching pennies

game with an extra risky option for the row player. This is a very clever design

that allows the row player to, effectively, choose between a bet on their opponent’s

strategy choice or a bet on a random draw. Again, the average subject was mea-

sured to be ambiguity averse.

Pulford and Colman (2007) took an approach that is somewhat opposed to

that of Camerer and Karjalainen (1994). In Pulford and Colman (2007) subjects

faced either a complete information game where their opponent was completely

indifferent between all outcomes, or a game of incomplete information where their

opponent had one of two types and each type of opponent had a differing dominant

strategy. Pulford and Colman argue that the complete information game is a risky

game and the incomplete information game is an ambiguous game (when subjects

10Di Mauro and Castro (2011) study a voluntary contribution game where subjects play against
virtual agents. It is debatable whether this should be viewed as a game, or simply a specially struc-
tured decision problem.
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were not informed about the probability distribution of types).

Pulford and Colman argue, using the principle of insufficient reason, that the

only reasonable beliefs are that an opponent who is indifferent everywhere should

be expected to choose each strategy precisely half the time. This assumption is very

strong. A weaker, more reasonable, assumption would be that we require beliefs

in this case to be symmetric (but possibly non-additive). Under this alternative

assumption it becomes very difficult to interpret the results of Pulford and Colman

(2007).

Eichberger et al. (2008) is a very entertaining paper. Subjects played a variety

of normal form games against either a granny, a game theorist, or another sub-

ject. Eichberger et al. hypothesized, and it was confirmed in the data, that subjects

would view playing against the game theorist as being less ambiguous than play-

ing against the granny.11 There was no evidence of any differences in behaviour

between subjects playing against the granny or against another subject.

Eichberger et al. structured their games in a manner which allowed the am-

biguity involved in a game to be quantified. Fixing the identity of the opponent,

it was usually the case that subjects played the Nash equilibrium strategy less in

games with higher levels of ambiguity.12

The results in Eichberger et al. (2008) are clearly consistent with ambiguity

averse behaviour, although without observing individual level ambiguity measures

it is difficult to rule out other potential explanations of the data. Eichberger and

Kelsey (2011) revisit the data from Goeree and Holt (2001), and establish that the

data is also broadly consistent with ambiguity averse behaviour. The analysis in

both papers is, however, at the aggregate level, and given the large amount of be-

tween subject heterogeneity that has been observed in decision theory ambiguity

aversion experiments (see Halevy (2007) for example) it seems that tracking indi-

vidual subject level behaviour across games would be a natural next step.

Ivanov (2011) takes this next step. He uses a considerably more complicated

design, and makes extensive use of stated beliefs in his identification process.13

11Personally, I find this result to be surprising. My prior was that undergraduates would feel more
comfortable predicting the behaviour of a granny than a game theorist, given that most undergradu-
ates would presumably have spent more time interacting with grannies than game theorists.

12The exceptions occurred for subjects that were playing the game theorist.
13Eichberger et al. (2008) also asked for stated beliefs, but they did not put them to work in the
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First, subjects played a series of normal form games. Next, subjects were asked to

state their beliefs regarding their opponent’s behaviour in the normal form games.14

Finally, subjects were asked to choose between lotteries that were constructed from

their beliefs in part two and the payoffs from the games in part one.

The central question posed in Ivanov (2011) is quite different from the ques-

tions raised in this paper. Ivanov seeks to classify subjects as ambiguity averse/am-

biguity neutral/ambiguity loving using only their responses to normal form games;

the headline result is that 22/46/32 percent of subjects fall into each category, re-

spectively. Unlike Ivanov (2011), this paper does not consider ambiguity seeking

behaviour (ambiguity seeking subjects will be indistinguishable form ambiguity

neutral subjects given the experimental design in the current paper). On the other

hand, Ivanov (2011) requires an assumption that stated beliefs are equal to true

beliefs (troublingly, if we model ambiguity aversion using the MEU model, then

the notion of ‘true beliefs’ may not even be be well defined) in order to identify

ambiguity preference, whereas the current paper measures ambiguity preference

directly.

Kelsey and le Roux (2015a) is the only other papers that compares behaviour in

Ellsberg urn tasks to behaviour in normal form games at the individual level. The

results reported in Kelsey and le Roux (2015a) are mostly negative, however. They

find significant levels of ambiguity aversion in their normal form game (a battle

of the sexes game augmented with a safe option for the column player), but find

much less ambiguity aversion (and even some ambiguity seeking) in their Ellsberg

urn tasks. This contrasts with the results here, where Ellsberg urn behaviour was

correlated with behaviour in the game in figure 2.6.

There are three potential reasons for the differences in results between the two

papers. Firstly, Kelsey and le Roux (2015a) do not control for risk aversion. The

behaviour in their normal form game might be driven by risk aversion, rather than

ambiguity aversion. Secondly, Kelsey and le Roux (2015a) used a three-colour

Ellsberg urn, rather than the two-colour Ellsberg urn used here. Chew et al. (2013)

report that measured levels of ambiguity aversion are often much lower in two-

fashion of Ivanov.
14In one treatment beliefs were elicited at the same time as the games were played.
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colour rather than 3-colour Ellsberg tasks.15 The reasons for this difference are not

exactly clear, although Chew et al. argue that it is a confusion effect (that subjects

do not recognise the 3-colour urns as being ambiguous).

The third difference between Kelsey and le Roux (2015a) and the current paper

is the use of comprehension questions. The results of Chew et al. (2013) suggest

that, in some situations, subjects will have trouble recognizing and responding to

ambiguity. To ensure that this does not affect results, we used a series of drop down

menu comprehension questions to screen for understanding. Kelsey and le Roux

(2015a) did not use any tests for comprehension, and this may make it harder to

identify a relationship between ambiguity averse behaviour in the games and am-

biguity averse behaviour in the Ellsberg tasks.

The identification of the link between individual choice tasks and normal form

game behaviour is always going to be difficult because the Nash equilibrium re-

mains an equilibrium for ambiguity averse subjects. This implies that even in ideal

circumstances the power of a test to reject the null hypothesis of independence may

be low (particularly if the Nash equilibrium is focal). Although, as demonstrated

in this paper, the effect can be recovered with a clean experimental design. On

balance, the evidence strongly suggests that ambiguity aversion has an influence

on behaviour in normal form games.

Kelsey and le Roux (2015b) study games of public good provision. In the

‘best shot’ formulation of the game ambiguity averse subjects are expected to

over-contribute to the public good and in the ‘weakest link’ formulation ambiguity

averse subjects are expected to under-contribute. On aggregate the data supports

the hypothesis that ambiguity aversion is prevalent in the subject population, al-

though there is significant heterogeneity and no direct measures of ambiguity pref-

erences are reported. Kelsey and le Roux also hypothesized that British subjects

would behave in a more ambiguity averse fashion when paired with Indian subjects

(when compared to British subjects paired with other British subjects) although

they do not find evidence to support this in the data.

15In piloting for this experiment, two sessions were run using a 3-colour Ellsberg urn. Only 1 out
of 14 subjects was classified as being ambiguity averse. Given this extremely low observed rate of
ambiguity aversion, 3-colour Ellsberg urns were not used in any other sessions.
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B.2 Proofs
The proofs in this section use the method of iterated elimination of strategies that

are never a best response. This method produces the set of Pearce/Bernheim ratio-

nalizable strategies under SEU preferences, and produces the set of Epstein (1997)

rationalizable strategies under MEU preferences.

Proof of proposition 2.1. Suppose that the row player has preferences such that

u(25)+ u(14) > 2u(18) and ΦR is restricted to be a singleton. Then the best re-

sponse for the row player is A when Φ(X)R > 1
2 , is B when Φ(X)R < 1

2 and is either

A or B when Φ(X)R = 1
2 . C is never a best response.

Using the procedure of iterated elimination of never best response strategies,

we eliminate C. Now, in the reduced game, Y is never a best response for the

column player. Eliminate Y . Now B is never a best response.

Therefore {A,X} is the unique rationalizable strategy.

Now, consider the case where u(25)+u(14)≤ 2u(18). C is now a best response

to the belief set Φ(X) = {φ : φ(X) = 1
2}. A and B are both clearly best responses,

as are X and Y . Therefore all strategies are rationalizable.

Now, consider the case where Φ(X) may be set valued. C is now a best re-

sponse to the belief set Φ(X) = {φ : 0≤ φ(X)≤ 1}. A and B are both clearly best

responses, as are X and Y . Therefore all strategies are rationalizable.

Proof of proposition 2.2. We use iterated elimination of never best response strate-

gies.

In the first round, the type 1 row player eliminates C. All other strategies for

all other players are best responses.

In the second round, the payoff to the column from playing Y is increasing

in the probability that the row player plays C, and the payoff from playing X is

decreasing the in the probability that the row player plays C. Therefore, because

the largest probability that the column player can assign to the row player playing

C is α , Y can only be sustained as a best response whenever U(Y )−U(X) =

u(22)(1−α)+u(12)α−(u(12)(1−α)+u(20)α)> 0. Therefore, X dominates Y

whenever α > u(22)−u(12)
u(22)+u(20)−2u(12) = ᾱ , so that Y is eliminated as never being a best

response iff α > ᾱ .

134



A consequence of this is that no more strategies can be eliminated if α ≤ ᾱ . In

this case, both column player strategies enter the rationalizable set, as do all three

row player strategies, as all three strategies may be played by the non-type 1 row

player. The Type 1 row player may play either A or B.

If α > ᾱ , then we must consider the third round. In this case, Y has been

eliminated in the second round, and both types of row players now have a unique

best response of A. Therefore, {A,X} is the only rationalizable strategy when

α > ᾱ .

If we normalize the utility function so that u(22) = 1 and u(12) = 0 then we

have that ᾱ = 1
1+u(20) . It is clear that ᾱ is bounded below by 1

2 and is decreasing in

the degree of risk aversion.

B.3 Results Appendix

B.3.1 Demographic analysis

Table B.1 presents an analysis of the demographic data for row players. Speci-

fications are equivalent to those presented in table 2.6 in the main text, with and

without demographic controls: an indicator for female subjects, and an indicator

for STEM (plus economics) majors. The sample size is reduced from that in the

main text for two reasons: first, there were two sessions where software errors pre-

vented the recording of demographic information and, second, for some subjects

the self-reported major of study was not identifiable. As the table makes clear, nei-

ther gender nor area of study affects row player decisions in the testing game and

the inclusion of demographic controls does not change the estimates of the effects

of preferences on behaviour.

Table B.2 presents an analysis of the demographic data for column players.

As for the row player data, there is no effect of either gender or area of study on

behaviour in the testing game.

B.3.2 Preferences and beliefs

Table B.3 presents the relationship between a subject’s own ambiguity aversion and

their beliefs regarding their opponent’s ambiguity aversion. Again, the sample is
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Effect of Conditional on ∆Pr(A) ∆Pr(A) ∆Pr(A) ∆Pr(A)
Ambiguity -0.14 -0.15
Aversion (0.181) (0.165)

[0.10] [0.11]
Risk -0.13 -0.14

Aversion (0.224) (0.211)
[0.11] [0.11]

Ambiguity Aversion Low Risk Aversion -0.13 -0.13
(0.332) (0.332)
[0.14] [0.14]

Ambiguity Aversion High Risk Aversion -0.16 -0.17
(0.358) (0.313)
[0.17] [0.17]

Risk Aversion Ambiguity Neutrality -0.12 -0.12
(0.399) (0.413)
[0.14] [0.14]

Risk Aversion Ambiguity Neutrality -0.14 -0.16
(0.379) (0.336)
[0.16] [0.17]

Risk Aversion & Ambiguity Aversion -0.28* -0.29*
(0.040) (0.033)
[0.13] [0.14]

Female 0.02 0.02
(0.869) (0.876)
[0.10] [0.10]

STEM -0.08 -0.08
(0.454) (0.448)
[0.10] [0.10]

Table B.1: Change in proportion of subjects playing A in the testing game, restricted to
subjects that passed the comprehension tests and that have demographic information
recorded. N=100. All estimates calculated using a linear probability model, with p-
values in brackets and standard errors in square brackets. * indicates value is signif-
icantly different from 0 using a non-directional test at the 5% level and ** indicates
significance at the 1% level.

136



Effect of beliefs over Conditional on ∆Pr(X) ∆Pr(X) ∆Pr(X) ∆Pr(X)

Ambiguity 0.03 0.04
Aversion (0.740) (0.737)

[0.10] [0.10]
Risk -0.17 -0.17

Aversion (0.112) (0.104)
[0.10] [0.10]

Ambiguity Aversion Low Risk Aversion 0.12 0.11
(0.393) (0.422)
[0.14] [0.14]

Ambiguity Aversion High Risk Aversion -0.08 -0.07
(0.623) (0.672)
[0.16] [0.16]

Risk Aversion Ambiguity Neutrality -0.08 -0.09
(0.541) (0.496)
[0.14] [0.14]

Risk Aversion Ambiguity Aversion -0.28 -0.27
(0.083) (0.091)
[0.16] [0.16]

Risk Aversion & Ambiguity Aversion -0.16 -0.16
(0.216) (0.217)
[0.13] [0.13]

Female 0.09 0.08
(0.350) (0.410)
[0.10] [0.10]

STEM 0.00 0.01
(0.974) (0.903)
[0.10] [0.10]

Table B.2: Change in proportion of subjects playing X in the testing game, as a function of
beliefs over opponent’s preferences, restricted to subjects that passed the comprehension
tests and have demographic data recorded. N = 87. All estimates calculated using a lin-
ear probability model, with p-values in brackets and standard errors in square brackets.
* indicates value is significantly different from 0 using a non-directional test at the 5%
level and ** indicates significance at the 1% level.
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restricted to subjects who filled in the comprehension drop down menus correctly

on the first attempt; 95 of the 206 subjects failed this test, with most of those sub-

jects failing comprehension for the game that measured their beliefs. Table B.4

presents the relationship between a subjects own risk aversion and their beliefs re-

garding their opponents risk aversion. Only 35 subjects failed the comprehensions

tests for the risk games, leaving a sample size of 171 subjects.

The most striking feature of tables B.3 and B.4 is the extremely strong rela-

tionship between the subject’s own preferences and their beliefs regarding their

opponents preferences. On both the risk and ambiguity dimension the Fisher exact

test rejects the null hypothesis that preferences and beliefs are independent at all

reasonable significance levels.

The results in the main text suggest that subjects were not very confident in

their predictions of their opponent’s preferences, while the results here demon-

strate that subjects predicted their opponent to behave like themselves. A reconcil-

iation of these facts is that when faced with predicting behaviour in an uncertain

environment the subject’s own behaviour acts as a very strong focal point.

Predicted ambiguity preference
Neutral Averse

Neutral 63 4 67
Own ambiguity preference

Averse 12 32 44
75 36 111

Table B.3: Subject’s own ambiguity preferences crossed with subject’s predictions of their
counterpart’s ambiguity preferences, restricted to subjects who passed the comprehen-
sion test for the relevant games. Non-directional Fisher’s exact test p < 1×10−10.

Result B.1. Subjects believe that their opponents preferences are the same as their

own preferences.

B.3.3 Comprehension data

This section provides an analysis of the comprehension data, and a discussion of

the robustness of the results presented in the main body of the paper. Table B.5

presents the subjects comprehension scores broken down by game number, and ta-

ble B.6 presents the aggregated data. As the tables demonstrate, only about a quar-
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Predicted risk aversion
Low Med High

Low 73 6 19 98
Med 5 9 2 16Own risk aversion
High 9 2 46 57

87 17 67 171

Table B.4: Subject’s own risk aversion crossed with subject’s predictions of their counter-
part’s risk aversion, restricted to subjects who passed the comprehension test for the
relevant games. Non-directional Fisher’s exact test p < 1×10−10.

ter of the subjects answered all of the comprehension questions correctly on their

first attempt. Subjects performed better on the risk measurement game than the

ambiguity measurement game, and also performed better as the row player (mea-

suring their own preferences) than as the column player (measuring their beliefs

regarding their opponent’s preferences) in these games.

Figure number of game
Comp Score 2.2R 2.2C 2.5R 2.5C 2.6R 2.6C
1 159 131 196 177 168 179
0.75 26 39 5 18 32 21
0.5 7 13 2 5 2 4
0.25 9 4 0 1 1 0
0 5 19 3 5 3 2
Total 206 206 206 206 206 206

Table B.5: Number of subjects attaining each comprehension scores for each of the seven
games played. Subjects were awarded a comprehension score of 1 for answering the
comprehension questions correctly on the first attempt, and were penalized 0.25 for each
incorrect attempt. The column heading 2.2R (resp. 2.2C) indicates the responses to the
game in figure 2.2 as the row (resp. column) player.

There are obviously many different inclusion criteria that could be constructed

using the comprehension data. The results in this paper were not data-mined by

choosing the most convenient inclusion criteria. Ex-ante, two candidate inclusion

criterion were identified. One was the criterion used in the body of the paper.

The other criterion was to only use subjects who score a perfect 7 out of 7 on the

comprehension questions. The latter criterion was unable to be used because of

the small and unbalanced sample sizes that it produced. For example, of the 52
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Total Comp Score Number of Subjects
7 52
6.75 59
6.5 35
6.25 12
6 15
5.75 8
5.5 6
5.25 2
5 3
4.75 5
4.5 1
4.25 1
4 1
3.75 1
3.5 2
3.25 1
1.25 2
Total 206

Table B.6: Total comprehension score by subject. A score of 7 indicates that the subject
answered the comprehension questions correctly on the first attempt for each of the 7
games.

subjects who satisfied the criterion only 8 were risk neutral and ambiguity averse,

while only 4 were risk averse and ambiguity neutral. Therefore, this criterion was

rejected for not providing enough power, and the criterion in the main text was

adopted.

We also include, as an additional robustness check, the estimates of the main

tables on the full sample of subjects, including those who failed the comprehension

tests. Generally, the results do not differ markedly from those presented in the main

text. The largest differences occur for column player behaviour in the original

treatment in the main testing game, where subjects who failed the comprehension

tests show a much larger effect of beliefs over their opponents’ preferences on

behaviour than was presented in the main text. It is unwise to ascribe intentionality

to these subjects, given that they failed to demonstrate a sound knowledge of the

payoffs. Nevertheless, we report the estimates here for completeness.

Table B.7 is the full sample analogue of Table 2.6. The only difference in statis-
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tical inference between the two samples is a stronger effect of ambiguity aversion

conditional on high risk aversion.

Effect of Conditional on ∆Pr(A)
Ambiguity Aversion -0.21**

(0.005)
Risk Aversion -0.18*

(0.017)
Ambiguity Aversion Low Risk Aversion -0.12

(0.229)
Ambiguity Aversion High Risk Aversion -0.28*

(0.027)
Risk Aversion Ambiguity Neutrality -0.07

(0.485)
Risk Aversion Ambiguity Aversion -0.23

(0.051)
Ambiguity Aversion & Risk Aversion -0.35**

(0.001)

Table B.7: Change in proportion of subjects playing A in the testing game, as a function
of subject preferences. N = 185. Pearson’s χ2 p-value shown in brackets. * indicates
value is significantly different from 0 using a non-directional test at the 5% level and **
indicates significance at the 1% level.

Table B.8 is the full sample analogue of table 2.7. The effect of ambiguity

aversion being associated with a move from A to C amongst subjects with low risk

aversion is no longer apparent in the full sample. This change is caused by subjects

who failed the comprehension tests playing B with an essentially equal probability

across all subject Types.

Table B.9 is the full sample analogue of table 2.9. We see a strong effect

difference in behaviour between Type 1′ and Type 4′ subjects (bottom row of the

table) in the full sample. This effect is being driven almost entirely by subjects

who failed the comprehension tests, and therefore should be treated with caution.

B.4 Instructions
The instructions presented to subjects in the September sessions subjects are re-

produced below. The instructions in the March and April sessions had a different
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example game presented as “Game X”. Otherwise, the two sets of instructions were

identical. The instructions were originally written in HTML, CSS and Javascript

and were presented to students on their computer in an Internet browser. The in-

structions were interactive, and subjects could highlight strategies in the example

games and practice filling in the drop down menus for “Game X”. The instructions

presented below have been reformatted to meet the formating requirements of this

dissertation, but are materially the same as those presented to the subjects.
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B.4.1 Instructions

This is a research experiment designed to understand how people make economic

decisions. To assist with our research, we would greatly appreciate your full atten-

tion during the experiment. Please do not communicate with other participants in

any way and please raise your hand if you have a question.

You will participate in a series of 7 games. In each game you will make one

decision, and a subject you will be paired with, called your counterpart, will make

one decision. One, and only one of the games will be chosen, in a random fashion

described below, as the game for which you will be paid. The amount that you

earn will depend on a combination of your decision, your counterpart’s decision

and, for some games, the colour of a ball drawn from a bag. Your counterpart will

be one of the other participants in this room and the identity of your counterpart

has been randomly pre-determined.

How your payment will be determined

As mentioned above, only one game will be chosen as the game for which you will

be paid. Each of the 7 games is equally likely to be chosen. You will notice that

there are 7 pieces of paper labelled from ’A’ to ’G’ stuck to the wall. On the back

of each of them is a number. At this point, I would like to ask one of you to choose

one of the pieces of paper labelled from ’A’ to ’G’. The number that is written on

the back of the chosen piece of paper will determine which of the 7 games is chosen

for payment. Although the choice of game has already been fixed by the choice of

letter, we will not reveal the choice to you until the end of the experiment. This

procedure suggests that you should treat each game independently (i.e. as if it was

the only game in the experiment). After the experiment you may come and check

that each of the games actually is represented on the back of one of the cards.

Your payment may also depend on the colour of a ball drawn from a bag. In

some games there will no balls drawn, in some other games there will be only one

ball drawn from a bag, and in some games there will be two balls drawn (each from

a different bag). The ’Unknown’ bag (denoted by the letter U) will contain only

RED and YELLOW balls in an unknown ratio, while the ’Known’ (denoted by the

letter K) bag will contain RED and YELLOW balls in an equal ratio. The total
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number of balls in each bag will always be 10. A graphical representation of the

two bags is shown below.

Figure B.3: U bag. Figure B.4: K bag.

When you are playing the games there will be a picture of the relevant bag(s)

on the screen to remind you of the composition of the bag(s).

Before the experiment begun, I asked a graduate student in economics, who

has no knowledge of this experiment, to place 10 balls into the U bag. I instructed

the student to place exactly 10 balls in the bag, and that only RED and YELLOW

balls are to be placed in the bag. I have no knowledge of the composition of the

balls in the bag, other than what is described above. There might be 10 RED balls

and 0 YELLOW balls, or 9 RED balls and 1 YELLOW ball, or 8 RED balls and

2 YELLOW balls, and so on up to 0 RED balls and 10 YELLOW balls. After

the experiment you may come and check that the bag satisfies the requirements

outlined above.

I shall now create the K bag, by placing 5 RED balls and 5 YELLOW balls into

a second bag.

At the end of the experiment, after the chosen game has been revealed, I will

ask one of you to draw a ball from the K bag (if required), and another one of you

to draw a ball from the U bag (if required).

The combination of the game chosen, your choices, your counterpart’s choices

and the colour of the ball(s) will determine how much money you make during the

experiment. The amount that you make during the experiment will be added to

your $5 show up fee and will be paid to you, in cash, at the end of the experiment.

One of the conditions of the ethics approval for this experiment is that I do not

deceive the subjects (i.e. you). If you feel that I have deceived you in any way, you

may contact either my thesis supervisor or the UBC Behavioural Ethics Review
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Board to lodge a complaint. Their contact details are included on the consent form

that you have read and signed.

The structure of the games

In each game, you will need to make a choice of either A or B or C (in some games

you will only have 2 options, A and B). You may only ever choose one option per

game. Your counterpart will make a choice of either X or Y or Z (in some games

your counterpart will only have 2 options, X and Y). Your counterpart may also

only ever choose one option per game. The amounts that each of you can earn will

be presented to you in a table format, as seen below.

X Y Z
A 20,10 8,0 0,0
B 30,0 6,10 4,0
C 30,0 15,0 9,10

Your options will always be shown on the rows of the table. Your counterpart’s

options will always be shown on the columns of the table (the computer flips the

game so that everyone can look at the table from the same perspective). Within

each cell of the table your earnings will always be shown first, ¡b¿in bold¡/b¿, and

your counterpart’s earnings will always be shown second. Values shown are always

shown dollar amounts. For example, in the above game, if you chose action ’A’ and

your counterpart chose action ’Y’ then you would receive a $8 and your counterpart

would receive $0. On the other hand, if you chose ’A’ and your counterpart chose

’Z’ then you would each earn $0. Games that have only a single payoff table, like

the above example, do not require a ball to be drawn.

In other games, your earnings will also depend on the colour of a ball which

will be drawn from a bag after you have both made your decisions. These games

will have two tables, and the colour of the ball(s) will determine which table is

used to calculate your earnings. In the example given below, the left table will be

used if a RED ball is drawn and the right table will be used if a YELLOW ball is

drawn.

Suppose, in the above example, that you chose option ’B’ and your counterpart

chose option ’Y’. Then your payment will be $9 if the ball drawn is RED, and $4
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L′ I′

L 12,10 18,0
I 17,0 9,10

Red ball drawn from K bag

L′ I′

L 12,10 19,0
I 8,0 4,10

Yellow ball drawn from K bag

Figure B.5: K bag.

if the ball drawn is YELLOW. Your counterpart’s payment will be $10 if the ball

drawn is RED, and $10 if the ball drawn is YELLOW.

The game shown above was a K game. In a K game there is only one ball

drawn, from the K bag, and the colour of the ball will determine which table will

be used. There will also be U games, where there is also only one ball drawn, from

the U bag. The other type of game, a U and K game, is shown below. It will always

be clear which type of game you are playing from the labels on the tables and the

pictures of the bags underneath the game.

L′ I′

L 12,10 18,0
I 17,0 9,10

Red ball drawn from U bag

L′ I′

L 12,10 19,0
I 8,0 4,10

Red ball drawn from K bag

In a U and K game there will be two balls drawn - one from each of the bags.

If a RED ball is drawn from the U bag then you will be paid according to the left

hand table. If a RED ball is drawn from the K bag then you will be paid according

to the right hand table. It is also possible that a RED ball will be drawn from both

bags. In this case, you would be paid according to both tables (the payments will

be added together). However, it is also possible that a RED ball will not be drawn

from either bag. In this case you would receive no payment (other than the $5 show

up fee and any bonus payments you may earn).
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Figure B.6: U urn. Figure B.7: K bag.

Bonus payments and drop down menus

Before you can confirm your choices in the game itself, you will need to fill in a

series of dynamic drop down menus to confirm that you have understood the game.

You should pay careful attention to the drop down menus, becuase you will earn

bonus payments that depend on whether you have filled the drop down menus in

correctly.

For each game, you should fill in the drop down menus first. Once you are

happy that your choices adequately describe the game, you should click on the

”Check Description” button. If you fill in the drop down menus correctly on your

first attempt you will earn a $1 bonus for that game. As there are 7 games, you

may earn up to $7 in bonus payments. If you click ”Check Description”, but have

filled in the dropdown menus incorrectly or have not filled the dropdown menus in

at all, your bonus payment will decrease by $0.25. After four incorrect attempts

your bonus payment for only that game will reach zero.

WARNING: The bonus payment system relies on ’alerts’ that will pop up
on your screen. Sometimes the Chrome browser will give you option of turning
the alerts off. Do not do this; if you do then the computer may not record your
bonus payments. If you accidentally turn the alerts off then please raise your
hand and we will reset your browser.

Before we continue shall work through an example of the drop down menus

together.

Note that most of the games appear in pairs - each game has two players, and

you will play each game in each role. (Recall that there are seven games - the

seventh game does not have a pair). Below is an example of Game X (with the

drop down menus removed), viewed from the other role. Notice that while in
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Figure B.8: Game X.

Game X your earnings were not affected by your counterpart’s choices, in Game

XT your counterpart’s earnings are not affected by your choices.

How to use the game interface

Once your description of the game is correct (and you have verified this by clicking

the “check description” button) the drop down menus will inactivate, and the “lock”

button will activate. At this point you can enter your choice by clicking on the

desired option in the table. When you click on a choice, the computer will highlight

the row that you have chosen (you may try this in Game X above). If you want to
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X Y Z
A 10,9 0,4 0,12
B 0,9 10,4 0,12
C 0,9 0,4 10,12

Red ball drawn from K bag

X Y Z
A 10,9 0,15 0,6
B 0,9 10,15 0,6
C 0,9 0,15 10,6

Yellow ball drawn from K bag

Figure B.9: Game XT.

Figure B.10: K bag.

change your mind, you can simply click on a different choice. Once you are happy

with your choice you should click on the “lock” button before moving on to the

next game. If, later, you wish to change your mind you can always click on the

“unlock” button and then change your choice.

You may also highlight any of your counterpart’s options by clicking on the

label for that choice (as long as the game is unlocked) - this feature is provided

to you as a visual aid to assist in your decision making process, but will have no

impact on the earnings received by either you or your counterpart. There is another

decision making aid that has been provided to you: a textbox. In the past, some

subjects have found it useful to write down the reasoning behind their decisions.

You do not have to write anything in the textbox, and nothing you do write in the

textbox will be used in the determination of your earnings. Nothing you write will

be shown to your counterpart. Likewise, nothing your counterpart writes will be

shown to you. When you lock a game, the textbox associated with that game will

lock as well.

Once you have entered your choices for each of the 7 games, and locked each of

the 7 games, you can click the button to submit all of your answers. Once you have

pressed the “submit” button you can no longer go back and change your answers.

Once everyone has clicked submit, the computer will match your responses with
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your counterpart’s choices. The computer will not match you with your counterpart

until everyone has finished the experiment, so there is no advantage to rushing.

Take your time and make sure you are happy with your choices.

Summary of the order of events

• Read instructions, and choose a letter on the wall that will determine which

game will be paid.

• Play the 7 games. For each game, begin by filling in the drop down menus,

and then make your choice in the game. Lock each game after you have

made your choice. If you want to change your mind, you can always unlock

any game and change your choice.

• Once you are happy with all of your choices, press the ’submit’ button. Once

you have pressed the ’submit’ button your choices are final.

• Enter some demographic information into the computer.

• Reveal the game that will be paid.

• Draw ball(s) from the bag(s).

• Calculate your payment, based on the chosen game, colour of ball, your

action and your counterpart’s action.

• Receive payment and leave the experiment.
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Effect of Conditional on ∆
NB

NB+NA
∆

NC
NC+NA

Ambiguity Aversion 0.13 0.19*
(0.053) (0.013)

Risk Aversion -0.02 0.23**
(1.000)F (0.003)

Ambiguity Aversion Low Risk Aversion 0.12 0.06
(0.186)F (0.510)

Ambiguity Aversion High Risk Aversion 0.16 0.27*
(0.288)F (0.039)

Risk Aversion Ambiguity Neutrality -0.06 0.11
(0.675)F (0.269)

Risk Aversion Ambiguity Aversion -0.02 0.31*
(1.000)F (0.015)

Ambiguity Aversion & Risk Aversion 0.10 0.38**
(0.373)F (0.000)

Table B.8: Change in the values of NB
NB+NA

and NC
NC+NA

in the testing game as a function
of subject type, where NA is the number of subjects selecting A. N = 185 Figures in
brackets are p-values calculated under a null hypothesis that the coefficient is equal to
zero under either Person’s χ2 test or a Fisher exact test (denoted by F). The coefficients
are equivalent to the probabilities implied by a saturated multinomial logit regression
with a choice of A denoted as the base outcome.
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Effect of beliefs over opponent’s Conditional on ∆Pr(X)

Ambiguity Aversion -0.13
(0.069)

Risk Aversion -0.15*
(0.033)

Ambiguity Aversion Low Risk Aversion -0.06
(0.491)

Ambiguity Aversion High Risk Aversion -0.18
(0.111)

Risk Aversion Ambiguity Neutrality -0.09
(0.268)

Risk Aversion Ambiguity Aversion -0.21
(0.083)

Ambiguity Aversion & Risk Aversion -0.28**
(0.006)

Table B.9: Change in proportion of subjects playing X in the testing game, as a function of
reported beliefs over opponents’ preferences. N = 184. Pearson’s χ2 p-value shown in
brackets. * indicates value is significantly different from 0 using a non-directional test
at the 5% level and ** indicates significance at the 1% level.
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Appendix C

Appendix for “Continuity, Inertia
and Strategic Uncertainty: A Test
of the Theory of Continuous Time
Games”

C.1 Instructions to Subjects

Instructions
You are about to participate in an experiment in the economics of decision-making.

If you follow these instructions carefully and make good decisions, you can earn

a CONSIDERABLE AMOUNT OF MONEY, which will be PAID TO YOU IN

CASH at the end of the experiment.

Your computer screen will display useful information. Remember that the in-

formation on your computer screen is PRIVATE. To insure best results for yourself

and accurate data for the experimenters, please DO NOT COMMUNICATE with

the other participants at any point during the experiment. If you have any ques-

tions, or need assistance of any kind, raise your hand and the experimenter will

come and help you.
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In the experiment you will make decisions over several periods. At the end of

the last period you will be paid, in cash, the sum of your earnings over all periods.

The Basic Idea.

In each of several periods, you will be randomly matched with another partic-

ipant for 60 seconds and you will each decide when to Enter the market. If you

both enter at the same time, you will both earn the same amount, which will depend

on the time at which you both entered. If one player enters earlier than the other,

she will earn more money while her counterpart will earn less. The longer the sec-

ond player waits to enter after the first player enters, the greater the difference in

their earnings.

Screen Information.

A vertical dashed line marks the passage of time, moving from left to right over

the course of the period until both players have chosen to Enter the Market. A

dot moving left to right labeled ‘Me’ and another labeled ‘Other’ shows payment

information for each player, although before either player has entered the market

the two dots will be precisely on top of each other. The dots show the amount

of money each subject will earn if both players have entered now If nobody has

entered yet the dots (which are on top each other) show what will happen if both

enter now. If one player has entered already the dots (which are now separated)

will show the amount each player will earn if the second player enters the market

now.

You can choose to Enter the market at any time by pressing the space bar. The

time of entry will be shown on the screen as a dashed vertical line.

The screen gives you information on your potential earnings under three pos-

sible scenarios:

If you both enter in the same sub-period

If you and your counterpart enter at the same time, you will earn exactly the

same amount as your counterpart. The black line that looks like a hill shows
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Figure C.1: Nobody has entered. Figure C.2: One player has decided to

enter and the clock has frozen.

exactly what you and your counterpart would both earn if you both entered in each

moment of the period.

Notice that your joint earnings depend on when you both choose to enter in.

For example, if you and your counterpart both entered at time 0, you would both

earn 20 points. However, if you both entered at time 24, you would both earn

approximately 36 points.

If you enter first

If your counterpart enters later than you, she will earn less and you will earn

more than if she had entered at the same time you did. At every moment the screen

tells you what would happen if you entered now, and your counterpart entered at a

later time than you:

• The green line shows you what you would earn if you entered now and your

counterpart entered in each of the remaining moments in the period.

• The red line shows you what your counterpart would earn if you entered now

and she entered in each of the remaining moments in the period.
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Notice that the longer your counterpart waits to enter after you, the less she

earns. For instance in the example in Figure 1, if you entered now and your counter-

part entered 5 seconds later, you would earn approximately 38 points (the amount

on the green line 5 seconds later) and your counterpart would earn approximately

20 points (the amount on the red line 5 seconds later). If, instead, your counter-

part waited 10 seconds to enter, you would earn approximately 50 points and your

counterpart approximately 18 points.

Note that these lines will change as you move along: the green line will always

be above the current point on the black hill and the red line will always be be-

low, reflecting the fact that you earn more (and your counterpart less) than if your

counterpart entered when you did.

If you enter second

If you enter at a later time than your counterpart, you will earn less and your

counterpart more than if you had moved at the same time as your counterpart. Im-

portantly, these graphs and payoffs are symmetric: your counterpart sees the same

screen (at least prior to anyone entering) and faces the same payoff consequences

as you do. Thus it is also true that:

• The green line shows you what your counterpart would earn if (s)he entered

now and you entered later at a future time.

• The red line shows you what you would earn if your counterpart entered now

and you entered at a later time.

For instance in the example in Figure 1, if your counterpart entered now and

you entered in 5 seconds, your counterpart would earn approximately 38 points (the

amount on the green line 5 seconds to the right) and you would earn approximately

20 points (the amount on the red line 5 seconds to the right). If, instead, you waited

10 seconds to enter, you would earn approximately 18 points and your counterpart

approximately 50 points.

Time Freeze
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After a player first enters, the game will freeze for 5 seconds. During these 5

seconds the player’s counterpart can choose whether to enter too by pressing the

spacebar. If (s)he does, the software will treat both entry decisions as occurring

at the same time and both players will earn the exact same amount (the amount

shown on the black line at the moment of entry). If she does not choose to enter

during the time freeze, the clock will resume and her earnings will drop, following

the red line. The time freeze is demonstrated in Figure 2.

After Entry Occurs

If one player enters before the other, you will see a dotted green line mark the

time of first entry and you will see the dots separate, one following the green line

and the other red line. A label next to each dot will tell you which corresponds to

you (labeled “Me”) and which to your counterpart (labeled “Other”). A message

at the top of the screen will also remind you whether you were the first to enter

(in green) or the second (in red). If you were not the first to enter, the timing of

your entry decision will now determine both of your earnings. Figure 3 shows an

example.

After both players enter, horizontal lines will appear showing your earnings.

At the end of these lines (on the right side of the screen) you will see your and

your counterparts’ exact earnings (if you both entered at the same time, you will

both earn the same amount). Figure C.4 shows an example in which one player has

entered at time 10 and the other later at time 14. As a consequence the first to enter

(in green) earns 45.01 points and the second (in red) player earns 26.23 points.

Other Information and Earnings.

At the top of the screen you will see the current period number, the time re-

maining in the current period, the number of points you will earn this period based

on current decisions and the total number of points you have accumulated over all

periods so far. You will be paid cash for each total point you have earned at the end

of the experiment, at a rate given by the experimenter.
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At the beginning of each new period, you will be randomly matched with a

new participant from the room to play again. All matchings are anonymous – you

will never know who you were matched with and neither will they.

Summary

• Your and your counterparts’ earnings depend on the time you each decide to

Enter the market (by pressing the spacebar).

• When either player enters, the clock will freeze and her counterpart will have

the opportunity to enter too, at the same time.

– If you both enter at the same time, you will earn the same amount,

shown on the black hill-like line. As the black hill line shows, your

joint earnings depend on the time at which you both enter.

– If your counterpart enters at a later time than you, you will earn more

and she will earn less than if she had entered when you did. These

amounts are shown via the green and red lines.

– Likewise, if you enter at a later time than your counterpart, you will

earn less and your counterpart more than if you had entered when she

did.

• You will be paid based on the total number of points you earn, over all peri-

ods.
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Figure C.3: The green player has en-
tered but the red player has not.

Figure C.4: Both have entered.

C.2 Nash Equilibrium
In section C.2.1 we provide proofs for propositions stated in section 3.2.2 of the

main paper. In section C.3 we prove a set of propositions characterizing ε-equilibrium

for our games and provide proofs for propositions stated in section 3.2.3 of the main

paper.

C.2.1 Nash equilibrium

In subsection C.2.1 we prove proposition 3.1, which relies exclusively on standard

theoretical tools.

In subsection C.2.1 we provide more details on the theoretical schema of Simon

and Stinchcombe (1989) and provide a self contained heuristic proof of proposition

3.2 following the intuition of Simon and Stinchcombe (1989). We close the subsec-

tion by providing a full proof of proposition 3.2 that draws directly on theoretical

machinery developed in Simon and Stinchcombe (1989). Because this machin-

ery is substantial, this full proof is not self contained and relies on definitions and

lemmas developed in Simon and Stinchcombe (1989).

In subsection C.2.1 we provide some details on the theoretical apparatus of

Bergin and MacLeod (1993), an alternative way of modeling continuous time

games, and specialize it to our setting. We then re-prove proposition 3.2 using
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this method. Again, because the required tools are substantial, this proof is not self

contained but draws on definitions and results from Bergin and MacLeod (1993).

Finally, we use ideas from Bergin and MacLeod (1993) to prove proposition 3.3.

Proof of proposition 3.1

Proof of Proposition 3.1. We prove by contradiction. First, consider the case of

pure strategies: Suppose that there is an equilibrium where player i enters at a

weakly later grid point than player j, and that this is not the first grid point. Player

i has a profitable deviation, which is to enter one grid point before player j or at the

first grid point if there are no grid points before player j’s entry time. Contradiction.

The modification to allow for mixed strategies is straightforward. Call the

last grid point that player i places positive weight on ki. Suppose that there is

an equilibrium with ki ≥ k j and ki 6= 0 (where we are labeling t = 0 as the zeroth

grid point). Player i can improve their payoff by moving weight from entry at ki to

entry at the grid point identified by max{k j−1,0}.

Simon and Stinchcombe (1989)

In this section, following Simon and Stinchcombe (1989), we model our game

by considering a set of strategies that are unambiguously defined in the limit of a

discrete time grid as the grid becomes infinitely fine. Together, the two player game

generated by the utility function in equation 3.1, the histories Ht and strategies si

given below define what we call the Perfectly Continuous time game.1 We begin

by defining a history, and use the history to define a set of strategies.

In our timing game, a history consists of two pieces of information: the current

time, and a record of players that have already entered the market. Therefore, a

history at time t, Ht , is an object in [[0, t]∪{1}]2, where the first element denotes

the entry time for firm i, and the second element the entry time for firm j, with 1

indicating that a firm has not yet entered. For example, a history at time t = 0.5 can

be written H0.5 = {0.4,1}0.5, indicating that the first firm entered at time t = 0.4,

the second firm is yet to enter, and the subscript denotes the current time.

1The strategies also implicitly define the action sets and the allowable order of moves, and the
game is of complete and perfect information.
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Given this definition of histories, a strategy is a mapping si : Ht 7→ {0,1}, where

1 indicates an action of “enter” at that history. We fix si({t ′, ·}t)= 1 for all t ′< t (af-

ter a firm has entered they cannot leave the market again), require that si is a piece-

wise continuous function, and also require that if si({1, t ′}t) = 1 then si({1, t̂}t) = 1

for all t̂ ≤ t ′ (if, at time t, I wish to enter in response to an opponent who entered at

time t ′ then I must also enter in response to any opponent that entered prior to t ′).

Notice that these strategies satisfy assumptions F1 - F3 of Simon and Stinchcombe

(1989).2

Most of the technical complications that arise from modeling games in contin-

uous time are related to the “well-ordering paradox” that, in continuous time, the

notions of “the next moment” or “the previous moment” have no meaning. As Si-

mon and Stinchcombe (1989) point out this means that sensible sounding strategies

such as “I play left at time zero; at every subsequent time, play the action I played

last period” are not well defined. The approach that Simon and Stinchcombe take

is to restrict attention to strategies that are uniquely defined as the limit point for

any discrete time grid as the grid becomes arbitrarily fine; their conditions F1-F3

are designed to generate such strategies.

We present two proofs of proposition 3.2 in this section that follow this model-

ing approach. The first proof, which we call the “heuristic proof” does not directly

address many of the complexities associated with continuous time, other than to re-

strict the strategy set to the strategies defined above. The question of whether this

restriction is appropriate is not undertaken here. For this reason we also provide

an alternative proof, resting almost entirely on results in Simon and Stinchcombe

(1989), which demonstrates that our equilibria are sound. We also provide a heuris-

tic proof of remark 3.1.

Heuristic proof of proposition 3.2. Consider, the strategies:

st ′
i (Ht) =

{
0 if Ht = {1,1}t with 0≤ t < t ′ ≤ t∗

1 otherwise
(C.1)

2The conditions require a bounded number of changes in action for each player, piecewise con-
tinuity with respect to time and strong right continuity with respect to histories. The first two are
obviously satisfied here, and the requirement that si({1, t ′}t) = 1 then si({1, t̂}t) = 1 for all t̂ ≤ t
ensures strong right continuity with respect to histories.
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Each of these strategies generates simultaneous entry at t ′. To aid intuition,

we focus on these strategies precisely because they are strategies such that there

is no delay in responding to an opponent’s entry in any history. Such a delay is

(weakly) payoff decreasing, and certainly cannot be observed in an equilibrium.

More formally, this implies ruling out all strategies si(Ht) = 0 where Ht = {1, t ′}
for t ′ < t.

We claim that the strategies given in equation C.1 form a set of (symmetric)

equilibria. That is, the pair of strategies (st ′
i (Ht),st ′

j (Ht)) are an equilibrium of our

Perfectly Continuous time game. To see that this is true, consider two cases.

In the first case, consider a strategy that deviates from st ′
i (Ht) by replacing

st ′
i = 1 with s′t

′
i = 0 for some set of histories. Given our restriction that a firm

cannot re-enter after it has exited, this can only occur for histories in which the firm

has not yet entered. This implies that these must be histories in which either our

opponent has entered, or no one has entered. Histories in which no one has entered

at times after t ′ are off the equilibrium path, so the change in strategy profile has

no effect on payoffs. Histories in which the opponent has entered will either be off

the equilibrium path, or on a path for which U(st ′
i ,s

t ′
j )>U(s′t

′
i ,st ′

j ) (this is because

the payoff for the second entrant is a decreasing function of their entry time).

In the second case, consider a strategy that deviates from st ′
i (Ht) by replacing

st ′
i = 0 with s′t

′
i = 1 for some set of histories. It must be the case that at least one of

these histories is on the equilibrium path: s′ will cause the firm to enter before t ′.

Given the equilibrium strategies this deviation will generate an instantaneous reply

from the firm’s opponent. We shall now observe joint entry at some time prior to

t ′. Given that the payoff to joint entry is increasing on the interval [0, t∗], such a

deviation reduces the firms payoff.

Heuristic proof of remark 3.1. We proceed somewhat unusually and consider the

second round of iterated elimination of weakly dominated strategies first.

Consider the strategies used to build the equilibrium in the heuristic proof of

proposition 3.2. Given that we restrict attention to only these strategies, each of the

strategies of the type given in equation C.1 is weakly dominated by the strategy
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si(Ht) =

{
0 if Ht = {1,1} with 0≤ t < t∗

1 otherwise
(C.2)

which generates joint equilibrium entry at t∗.

We now show that any strategy not in equation C.1 is weakly dominated by a

strategy that is in equation C.1.

Consider the class of strategies that has si({1,1}t)= 0 for all t < t ′ and si({1,1}t ′)=

1. Each strategy in this class is weakly dominated by st ′
i as defined in equation C.1.3

If their opponent is yet to enter by t = t ′ then all strategies in the class provide the

same utility. The only way that strategies in the same class can differ is in how they

respond to entry from their opponent: because st ′
i responds instantly in all cases,

each other strategy in the class must have a delay in response for at least some

opponent entry time. Given that payoffs are decreasing in the entry time of the

second firm, the dominance relation is established.

All strategies must fall into one of the above classes.

The strategy in equation C.2 is therefore the unique strategy that survives iter-

ated elimination of weakly dominated strategies.

We conclude this section with a more formal (but less self contained) proof of

proposition 3.2, drawing more directly on definitions and results from Simon and

Stinchcombe (1989).

Formal proof of Proposition 3.2. The proof consists entirely of demonstrating that

Theorem 3 of Simon and Stinchcombe (1989) is applicable to our environment.

We begin by stating this theorem. The definitions of all relevant notation can be

found in Simon and Stinchcombe (1989).

Theorem C.1 (Theorem 3 from Simon and Stinchcombe (1989).). Consider a

continuous-time game with a dH-continuous valuation function. Let f be a continuous-

time strategy profile satisfying F1-F3. Suppose that there exists a sequence of δ n-

fine grids, (Rn), where δ n→n 0 and a sequence (gn, εn) such that εn→n 0 and for

each n, gn is an εn-SGP equilibrium for the game played on Rn. Further suppose

3Or, if t ′ > t∗ in violation of equation C.1, then the strategy is weakly dominated by st∗
i .
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that gn is defined by further restricting f|Rn to the R-admissible decision nodes.

Then f is an SGP equilibrium for the continuous time game.

We proceed in 5 steps:

1. The game has a dH-continuous valuation function because all games with in-

tegrable flow payoff functions, such as ours, have a dH-continuous valuation

function.

2. Label the strategy profile that induces entry at time t in equation C.1 as f (t).

f (t) satisfies Simon and Stinchcombe (1989)’s conditions F1-F3.

3. Take the sequence of grids to be grids with G = n uniformly spaced points.

4. Define g(t)n to be the strategy profile where each agent plays “enter” at all

grid points that occur (weakly) after t. At all grid points (strictly) before t,

each agent plays “wait” if both agents have played “wait” at all previous grid

points and otherwise they play “enter”. This strategy is the restriction f|Rn to

the R-admissible decision nodes.

5. It follows immediately from the proof of proposition C.3 that g(t)n forms

an ε(t)n-equilibrium where ε(t)n is defined by replacing the inequality in

equation C.4 with equality. Furthermore, ε(t)n→ 0 as G = n→ ∞.

We therefore conclude that f (t) is an equilibrium of the continuous time game.

We finish by noting that the strategy f (t) induces an outcome where both agents

enter at time t, and that the definition of f (t) allows 0 < t ≤ t∗. Joint entry at t = 0

is obviously also supported by an equilibrium (if your opponent enters at t = 0 then

your best response is also to enter at t = 0). Therefore, we can support entry at any

time t ∈ [0, t∗] as an equilibrium in the continuous time game.

Bergin and MacLeod (1993)

Bergin and MacLeod (1993) take an alternative approach to modeling continuous

time games by introducing a general notion of inertia and modeling continuous
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time as the limit as inertia disappears.4 In this subsection, we first formally de-

fine a narrower notion of reaction-lag-based inertia appropriate for the setting of

our experiment. We then prove proposition 3.3 which claims that short of the con-

dition limit (i.e. when inertia is greater than zero) firms must enter immediately

in equilibrium. Finally, we provide an alternative proof of proposition 3.2 using

proposition 3.3 and Bergin and MacLeod (1993)’s Theorem 3. By doing so, we

show that in our game the two approaches to modeling Perfectly Continuous time

– e.g. as the limit of Perfectly Discrete time á la Simon and Stinchcombe (1989)

or as the limit of Inertial Continuous time á la Bergin and MacLeod (1993) – make

identical predictions.5

We introduce a simplified version of Bergin and MacLeod (1993)’s definition

of inertia that is appropriate for our game, capturing the key idea of inertia as a

reaction lag.6

Definition C.1 (Inertia). Fix a time t̂ ∈ [0, t∗]. Suppose that si({1,1}t) = 0 for all

t < t̂ and that si({1,1}t̂) = 1. A strategy satisfies inertia if there exists a δ > 0 such

that si({1, t ′}t) = 0 for all t, t ′ such that t ′ ≤ t < min{t̂, t ′+δ}.
Our inertia condition prevents firms from responding immediately to the entry

decisions of their opponents - responses are delayed by at least δ > 0 of the game.7

We can think of t̂ as a firm’s planned entry time – if their opponent has not entered

yet, then the firm plans to enter at t̂. The inertial requirement then states that the

firm cannot enter within δ of their opponent’s entry time, unless they are entering

at their planned entry time.

We define Inertial Continuous time simply as Perfectly Continuous time re-

stricted to strategies that satisfy the inertia condition of definition C.1 and can use

4A key technical innovation of Bergin and MacLeod (1993) is that it allows one to model contin-
uous time in infinitely repeated games. Infinitely repeated games violate the Simon and Stinchcombe
(1989) assumption that an agent will change their behaviour a finite number of times.

5We conjecture that this is also true more generally, whenever the relevant conditions of both
Bergin and MacLeod (1993) and Simon and Stinchcombe (1989) are satisfied.

6Bergin and MacLeod (1993) assume that the action space is constant across time, violating a
condition in our experiment: we do not allow firms to exit the market once they have entered (i.e.
once a firm has exited their action space shrinks from two actions to only one action). This technical
problem can be neatly resolved by imposing an arbitrarily large amount of inertia to all histories in
which the firm has already entered.

7Recall that we define δ ≡ δ0
T , where δ0 is a subject’s natural reaction lag in real time and T is

the game length in real time.
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this to provide a proof of proposition 3.3.

Proof of proposition 3.3. The pure strategy case provides the intuition for the full

proof, so we first prove that there are no pure strategy equilibria with delayed entry.

We proceed by contradiction. Suppose that there is a pure strategy equilibrium

where the earliest entry is not at time 0. Without loss of generality assume that

firm i enters weakly before firm j at time t > 0. It is easy to verify that firm j has

a profitable deviation: entering at a point that is δ before t (or at 0 if t < δ ). This

contradicts the assumption that the strategies form an equilibrium.

To deal with mixed strategies, the proof by contradiction needs only minimal

changes. Write t j > 0 and ti for the latest entry time used by firms j and i in a

mixed strategy equilibrium for histories where their opponent has yet to enter. We

proceed by demonstrating that there is a strategy in the support of player j’s mix

that is not optimal.

Suppose that t j ≥ ti. Consider the history where we arrive at time max{ti−δ ,0}
and neither firm has entered yet. Clearly firm j’s strategy is not optimal: given firm

i’s strategy, and the fact that we reach the current subgame with positive probability,

firm j should enter immediately with certainty. This contradicts the assumption

that the strategies form an equilibrium.

The logic behind the proofs of propositions 3.1 and 3.3 does not apply to propo-

sition 3.2. The reason is that in continuous time a firm can respond instantaneously

to its opponent’s entry. The logic of the proof by contradiction thus does not hold:

firm j’s best response is no longer to preempt firm i, but to enter simultaneously

with firm i. We conclude the section with an alternative proof of proposition 3.2.

Alternative proof of Proposition 3.2 using Bergin and MacLeod (1993). The proof

consists entirely of demonstrating that Theorem 3 of Bergin and MacLeod (1993) is

applicable to our environment. There are some technical hurdles to be surmounted

as Bergin and MacLeod (1993) define strategies as being mappings from outcomes

to actions, rather than the more standard mappings from histories to actions. Fortu-

nately, in our game, there is a straightforward mapping from histories to outcomes

that simplifies matters greatly.

We first state Bergin and MacLeod’s Theorem 3:
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Theorem C.2 (Theorem 3 from Bergin and MacLeod (1993)). A strategy x ∈ S∗

is a subgame perfect equilibrium if and only for any Cauchy sequence, {xn} con-

verging to x, there is a sequence εn → 0, such that xn is an εn-subgame perfect

equilibrium.

To start, we note that although the theorem implies that all convergent Cauchy

sequences need to form a convergent sequence of ε-equilibrium it is clear from

Bergin and MacLeod’s proof that it is sufficient to find a single satisfactory se-

quence. Once a single sequence is found, part (b) of their proof implies that x is

an equilibrium and then part (a) of their proof implies that all other convergent

sequences must also have associated convergent ε paths.

We note again that Bergin and MacLeod (1993) use a special domain for their

strategies. The domain of x is the object (A,T ) where A = {ti, t j} is a set of out-

comes (one for each player) and T = [0,1] is the set of feasible entry times. Clearly,

we can translate each of our strategies into the Bergin and MacLeod (1993) formu-

lation. For example, the strategy that induces player i to enter at the earlier of time

τ and immediately after their opponent enters could be written as:

x1((·, t j), t) =

{
0 if t < τ and t < t j

1 otherwise
(C.3)

The set of strategies that satisfy our inertia condition (definition C.1) maps into

a subset of Bergin and MacLeod’s set of strategies S. If we add the set of strategies

that are formed in the limit as δ → 0, then we have a set of strategies that are a

subset of Bergin and MacLeod’s set of strategies S∗.8

Now, for each time τ ∈ [0, t∗], let x(τ)n be a sequence of strategies for both

players that satisfy definition C.1 with τ = t̂ and δ = δ n such that δ n→ 0. Then

x(τ)n Cauchy converges to the strategy given in equation C.3. Furthermore, from

the proof of proposition C.4, for each x(τ)n we can identify an εn, which is found

by replacing the inequality in equation C.7 with an equality, such that the strategies

form an εn-equilibrium. Clearly, the sequence εn→ 0 as δ n→ 0.

Therefore, we conclude that the strategy x(τ), which generates joint entry at

t = τ , forms an equilibrium of the continuous time game. Given that this is true for

8Note that the strategy presented in equation C.3 is in S∗ but not in S because it does not satisfy
the inertia condition.
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all τ ∈ [0, t∗], we can sustain all such entry times in equilibrium.

C.3 ε-equilibrium
In subsection C.3.1 we prove three propositions that completely characterize the ε-

equilibrium sets for each of our timing protocols. In appendix C.3.2 we use these

characterizations to prove comparative static propositions stated in section 3.2.3

that form the basis of alternative hypotheses for the experiment.

Following Radner (1980) we assume that players are willing to tolerate a pay-

off deviation from best response of size ε and treat their counterparts as having

the same tolerance. We can then form a set of propositions that provide alterna-

tive predictions to Nash equilibrium as a function of ε for each of our three main

protocols.

C.3.1 Characterization of ε-equilibrium sets

Again, we begin by considering Perfectly Discrete Time. Recall that for a game

with grid size G, dates begin at t =
{

0, 1
G ,

2
G , ...,1

}
(a total of G+ 1 dates). For

notational simplicity, assume that the grid is such that t∗ = 1− ΠD
4c lies exactly

on some grid point (this assumption simplifies the following expressions and is

imposed in the parameterization of our experiment), and label this gridpoint k
G .

Proposition C.3. Suppose that all agents enter at or before t∗.9 In a Perfectly

Discrete time game with G+ 1 periods, t∗ = k
G and tolerance ε the set of entry

times that can be sustained in a pure strategy sub-game perfect ε-equilibrium is

given by
{

0, 1
G , ...,

κ

G

}
where κ is the largest integer that satisfies 0≤ κ ≤ k and

1
G

[
3ΠF

2
− c(2+

1
G
)

]
+

κ

G2

[
2c− ΠF

2

]
≤ ε. (C.4)

If no non-negative integer satisfies equation C.4 then κ = 0 (i.e. the unique equi-

librium is immediate entry).
9If the ε-equilibrium set includes t∗, it is possible for entry times after t∗ to also be supported as ε-

equilibria. Such entry times never arise in the data and violate the conceptual spirit of ε-equilibrium
outlined by Radner and we assume them away purely to simplify the discussion and notation.
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Proof of proposition C.3. We begin with two assumptions. Firstly, we assume that

all firms enter at or before t∗. Secondly, when one firm enters the other firm shall

enter as soon as possible afterwards (in the next sub period). We shall demonstrate

at the end of the proof that the second assumption can be disposed of, but imposing

it simplifies the proof.

We proceed by backwards induction. Suppose that firms arrive at period k−1

and neither firm has entered yet. We are interested in determining whether cooper-

ation can be sustained for one more period. If it can, then the payoff to each firm

will be U( k
G ,

k
G). If, however, a firm defects and enters immediately then they will

earn U( k−1
G , k

G).

After some algebra, we see that U( k−1
G , k

G)−U( k
G ,

k
G) =

1
G

[3ΠF
2 − c(2+ 1

G)
]
+

k
G2

[
2c− ΠF

2

]
.

Therefore, we conclude that if neither firm has entered when firms arrive at

period k−1, then joint entry at period k can be sustained as an ε-equilibrium if

ε ≥U(
k−1

G
,

k
G
)−U(

k
G
,

k
G
). (C.5)

Now, rollback to period k− 2. Suppose that firms arrive at period k− 2 and

neither firm has entered yet. Can cooperation be sustained for one more period?

There are two cases.

In the first case equation C.5 holds, so that if both firms wait at period k−2 then

there is an equilibrium continuation where each firm earns U( k
G ,

k
G). If, however,

a firm enters at period k− 2 they will earn U( k−2
G , k−1

G ). Waiting can therefore

be sustained as an ε-equilibrium if ε ≥ U( k−2
G , k−1

G )−U( k
G ,

k
G). This inequality

must hold whenever equation C.5 holds because the utility function is increasing

in (joint delay of) entry times. We therefore conclude that if both firms may wait

in an ε-equilibrium at period k−1 then they may also wait in an ε-equilibrium at

period k−2 (and the same logic implies this must be true for any earlier period as

well).

In the second case equation C.5 does not hold. Therefore, if both firms wait

at period k−2 they must both enter at period k−1 and the continuation payoff is

U( k−1
G , k−1

G ) for both firms. Defecting to immediate entry will earn U( k−2
G , k−1

G ).

After some algebra, we see that U( k−2
G , k−1

G )−U( k−1
G , k−1

G )= 1
G

[3ΠF
2 − c(2+ 1

G)
]
+

169



k−1
G2

[
2c− ΠF

2

]
<U( k−1

G , k
G)−U( k

G ,
k
G).

Therefore, we conclude that if neither firm has entered when firms arrive at

period k−2, then joint entry at period k−1 can be sustained as an ε-equilibrium if

ε ≥U( k−2
G , k−1

G )−U( k−1
G , k−1

G ). Notice that the ε cutoff at period k−2 is less than

the cutoff at k− 1. Therefore, there are some ε values where co-operation can be

sustained at period k−2, but not at period k−1.

The proof continues by induction, rolling back one period at a time and noting

that U( k−n−1
G , k−n

G )−U( k−n
G , k−n

G ) is decreasing in n, and substituting n= κ delivers

the equation in the proposition.

We still need to demonstrate that relaxing our initial assumption that entry by

one firm would be immediately followed by entry from the other will not change

the equilibrium set found above. There are two concerns: firstly, that allowing

lengthier delays might destroy some equilibria described above and, secondly, that

allowing lengthier delay might create new equilibria.10

No equilibria can be destroyed. Take an equilibrium found above, and allow

an agent to unilaterally deviate to a strategy that involves lengthy delays after their

opponent’s entry (in at least some subgames). This deviation must weakly decrease

the agent’s payoff, so it is not a profitable deviation and the original equilibrium

survives.

New equilibria can be created, but none of these equilibria will involve an

initial entry time that is later than the set of entry times described in the proposition.

We demonstrate this with a proof by contradiction. For a given ε , define κ as given

by equation C.4. Now, suppose that there is an equilibrium with entry at the pair of

nodes (κ+ j
G , κ+ j+i

G ) with j≥ 1 and i≥ 2. Then, from the definition of ε-equilibrium

it must be the case that U(κ+ j−1
G , κ+ j

G )−U(κ+ j+i
G , κ+ j

G )≤ ε (otherwise the second

entrant would have a profitable deviation).

Now, it is also true that U(κ+ j−1
G , κ+ j

G )−U(κ+ j+i
G , κ+ j

G ) > U(κ+ j−1
G , κ+ j

G )−
U(κ+ j+1

G , κ+ j
G )≥U( κ

G ,
κ+1

G )−U(κ+2
G , κ+1

G )>U( κ

G ,
κ+1

G )−U(κ+1
G , κ+1

G )> ε .

The second inequality is demonstrated by writing out U( k−1
G , k

G)−U( k+1
G , k

G),

collecting terms and noting that the coefficient on k is 8c−(ΠF+ΠS)
2G2 > 0 (intuitively,

10Intuitively, one way to view this is to think of longer delays as being analogous to a game
where the grid becomes coarser after one player has entered. This increases returns to defection and
therefore shrinks the equilibrium set.

170



this is demonstrating that the payoff difference between preempting rather than be-

ing preempted is increasing in time). The final equality follows from the definition

of κ . This establishes the contradiction.

We now characterize the ε-equilibrium set for Inertial Continuous time.

Proposition C.4. Assume that both firms enter at some time t ≤ t∗.11 In an inertial

continuous time game with inertial delay δ , and tolerance ε , all entry times t ∈
(0, τ̄] can be sustained in a subgame perfect ε-equilibrium where τ̄ is the solution

to:

arg max
τ∈[δ ,t∗]

τ (C.6)

s.t. δ

[(
1− τ

2
+1
)

ΠF − c(2−2τ +δ )

]
≤ ε. (C.7)

If no such τ exists then the unique equilibrium is immediate entry.12

Proof of proposition C.4. The proof technique is the same as for proposition C.3.

Again, we begin by assuming immediate response (or as soon as possible given the

reaction lag) to an entry, and establish that it can be discarded ex-post.

Consider a strategy such that each firm enters at t = τ if their opponent has yet

to enter at τ , and they enter as soon as possible if their opponent enters before τ . A

best response to such a strategy is to to enter at τ−δ , and enter as soon as possible

if their opponent enters before τ−δ . Notice that entering in range (τ−δ ,τ) is not

a best response because of the assumption implicit in definition C.1 which tells us

that the opponent could still enter at τ in this case.

The payoff from waiting both firms waiting until τ is given by U(τ,τ), and the

best response strategy of entering at τ−δ earns a payoff of U(τ−δ ,τ).

11See Footnote 9.
12In our experimental implementation of inertial time immediate entry typically involved subjects

entering at δ , as it took subjects a reaction lag to respond to the start of the period.
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Observe that U(τ − δ ,τ)−U(τ,τ) = δ
[(1−τ

2 +1
)

ΠF − c(2−2τ +δ )
]
, and

that this expression is increasing in τ .

We therefore conclude that the strategy considered above can be sustained as

an ε-equilibrium if ε ≥ δ
[(1−τ

2 +1
)

ΠF − c(2−2τ +δ )
]
.

This establishes the proposition.

As dealt with in the proof of proposition C.3, it is possible to discard the as-

sumption of immediate response. Suppose that there is an ε-equilibrium where

there is a delay δ̂ > δ between entry times and that the first entry time occurs at

t > τ̄ where τ̄ is the largest solution to equation C.7. The payoff for the second

mover is then given by U(t + δ̂ , t). The assumption that this constitutes a subgame

perfect ε-equilibrium implies that U(t−δ , t)−U(t + δ̂ , t)≤ ε . But, we also have

U(t−δ , t)−U(t + δ̂ , t)>U(t−δ , t)−U(t +δ , t)>U(τ̄−δ , τ̄)−U(τ̄ +δ , τ̄)>

U(τ̄ − δ , τ̄)−U(τ̄ + δ , τ̄) > U(τ̄ − δ , τ̄)−U(τ̄, τ̄) = ε . Note that the second in-

equality follows from the derivative d(U(t−δ ,t)−U(t+δ ,t))
dt = δ

2 [8c− (ΠF +ΠS)]> 0,

and that the final equality follows from the definition of τ̄ . We have reached a

contradiction, and reject the existence of such equilibria.

Finally, we note that the central motivation for ε-equilibrium – that agents are

willing to tolerate small deviations from best response in order to achieve high,

cooperative payouts – loses its bite in Perfectly Continuous time where agents can

achieve these same payouts without deviating from best response at all. For com-

pleteness we state this as a final proposition.

Proposition C.5. Assume that all agents enter at or before t∗.13 In Perfectly Con-

tinuous Time, the set of first entry times that can be supported in Nash equilibrium

and the set of first entry times that can be supported in ε-equilibrium are identical

for any ε: any entry time t ∈ [0, t∗] can be supported in either case.

Proof of proposition C.5. The Nash equilibrium set is given by proposition 3.2. All

Nash equilibria are ε-equilibria, so all entry times t ∈ [0, t∗] can also be supported

13See Footnote 9.
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in an ε-equilibrium. The proposition rules out entry times after t∗ by assumption,

so the two sets are identical over the allowable range of entry times.14

C.3.2 ε-equilibrium: Proofs of propositions stated in section 3.2.3

In this subsection we use the preceding characterizations to prove propositions

from section 3.2.3.

Proof of proposition 3.4. Proposition 3.4 is an application of proposition C.4.

Substituting t∗ into equation C.7, we see that t∗ is an equilibrium for any ε > 0

when δ satisfies:

δ

[(
1− t∗

2
+1
)

ΠF − c(2−2t∗+δ )

]
≤ ε. (C.8)

Equation C.8 bounds a quadratic equation in δ with negative leading coeffi-

cient, so that any δ less than the smaller root will satisfy our requirements. Denote

this root by δ̃ and write b = (1−t∗
2 +1)ΠF − c(2−2t∗) for convenience. The ever-

handy quadratic formula delivers:

δ̃ =
b
2c
−
√

b2

4c2 −
ε

c

Noting that δ̃ is always positive whenever ε > 0 completes the proof of the first

part of the proposition.

For the second part of the proposition, note that because inertia cannot exceed

the total game length δ ≤ 1. Substituting τ = δ into equation C.7 we find that there

will exist no ε-equilibrium with delay if:

δ

[
3
2

ΠF −2c+δ (c− ΠF

2
)

]
> ε.

The left hand side of this equation is increasing in δ over the interval [0,1] and

clearly less than ε at δ = 0. We can therefore find a δ that satisfies the inequality

14Again, in Perfectly Continuous time, it is possible to support entry times after t∗ in an ε-
equilibrium. All such equilibria would, however, be ruled out by applying Simon and Stinchcombe’s
1989 iterated elimination of weakly dominated strategies argument.
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only if the inequality holds when δ = 1. When δ = 1 the inequality simplifies to

ΠF − c > ε .

The upper bound on ε in the second part of the proposition is a natural conse-

quence of the “thick” indifference curves that are associated with large values of ε .

For any game with bounded payoffs there will exist a ε large enough that an agent

is indifferent between all outcomes, and all outcomes may therefore be sustained

in a ε-equilibrium. The restriction on ε can therefore be viewed as a non-triviality

requirement.
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C.4 Decision Making Under Uncertainty
This appendix contains further information on the decision making under uncer-

tainty rules that are discussed in the main text. In section C.4.1 we give more

details on the three decision rules considered in section 3.5.1. Section C.4.2 pro-

vides a proposition showing that the asymptotic effect inertia has on cooperation

in our game under the MRA heuristic holds for a broader class of dilemma-like

games.

C.4.1 Three decision rules

In this section we give more details on the three non-parametric heuristics dis-

cussed in Milnor (1954) and examined in 3.5.1 of the body of the paper. Suppose

agents play trigger strategies15 where a trigger time t is the strategy that enters at

the earliest of time t and the soonest available entry time after their opponent enters.

We shall write Ū(t, t ′) to identify the payoff associated with agents using trigger

strategies with entry times t and t ′ so that, for example, Ū(t, t ′) = U(t, t + δ ) in

Inertial Continuous Time when t +δ < t ′. Notice that the payoffs associated with

a particular pair of trigger times will therefore vary with the continuity and inertia

of the game.

Our key assumption on beliefs is that agents assume that their opponent will

use a trigger strategy with t ∈ [0, t∗] but have complete uncertainty regarding which

trigger strategy within the set will be played (this uncertainty is imposed in Milnor

(1954) and (Stoye, 2011a) via a symmetry axiom argued for in Arrow and Hurwicz

(1972)).16 In order to maintain parsimony (particularly important here because we

are conducting this analysis ex post), we focus on simple applications of three

decisions rules without adding additional potentially ad hoc structure (for example

15For our game, a restriction to admissible strategies implies trigger strategies.
16We interpret the term “complete uncertainty” under a “no priors” interpretation (Stoye, 2011a).

In the context of our game this implies that the agent believes that any pure strategy in the set [0, t∗]
may be used, but the agent has no additional information. Alternatively, it would be possible to use an
“exogenous priors” interpretation (Stoye, 2011a) which allows for any probability distribution over
the set of states – a multiple priors framework. For our game, this interpretation requires the inclusion
of mixed strategy beliefs. It can be demonstrated, however, that the results are robust to introducing
beliefs over mixed strategies (e.g. see proposition 3.19 in Halpern and Pass (2012) for the MRA
case). As a consequence our predictions do not change under an exogenous priors interpretation of
beliefs.
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equilibrium structure).17

In a first model, which we call Laplacian Expected Utility, agents respond to

strategic uncertainty as if they are expected utility maximizers with uniform beliefs

over counterpart strategies. Milnor (1954) provides an axiomatization of this de-

cision model, showing that this representation is the result of combining expected

utility axioms with the symmetry axiom that underlies the type of extreme strategic

uncertainty we are considering here. In our case, the utility of an LEU agent can

be written as

ULEU(t) =
∫ t∗

0
Ū(t,s)ds,

and finding the LEU maximizing entry time is then straightforward.

A second model, Maximin Ambiguity Aversion (or Maxmin Expected Utility)

has been axiomatized for endogenous priors by Gilboa and Schmeidler (1989) and

for exogenous priors by Stoye (2011b). The model provides a straightforward

conservative heuristic for decision making under uncertainty. As with our other

decision rules, we assume complete uncertainty over the interval [0, t∗]. Adapted

to our setting, the maximin expected utility of an agent entering at time t can be

written as:

UMAA(t) = min
t ′∈[0,t∗]

Ū(t, t ′).

It is straightforward to see that the argument of the minimization can be taken

to be t ′ = 0 for all possible entry times t: having your opponent enter immediately

is (weakly) the worst possible thing that can happen for any strategy in every treat-

ment. The best response to t ′ = 0 is t = 0 so that the maximum of the minimum

17Though we do not impose equilibrium structure on our decision rules, we note that there exist
equilibrium concepts that produce predictions that are equivalent to our MRA and MAA decision
rules. For ambiguity averse agents, Lo (2009) introduces an equilibrium concept that generates iden-
tical predictions to our MAA decision rule. For agents with minimax regret preferences, the Halpern
and Pass (2012) equilibrium notion of “iterated regret minimization with prior beliefs” generates
the same predictions as our MRA decision rule when prior beliefs are restricted to trigger strate-
gies. While we elect to maintain parsimonious decision rules with exogenous beliefs, it is possible
to build equilibrium frameworks (with varying degrees of endogenous belief formation) that produce
the same behavioral predictions.
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payoffs is given by UMAA(0) =U(0,0).18

Finally, the third (and main) model discussed in the paper, Minimax Regret

Avoidance, can be traced back to Wald (1950) and Savage (1951) and was axiom-

atized by Milnor (1954) for the case of discrete states and by Stoye (2011a) for

the case of continuos states.19 Applied to a strategic setting, it is a decision rule

whereby agents choose a strategy that minimizes the worst case regret with respect

to the range of possible counterpart strategies. More formally, the regret between

two strategies, R(t, t ′), is the difference between the best response payoff and the

realized payoff, so that

R(t, t ′) = ( max
t̂∈[0,t∗]

Ū(t̂, t ′))−Ū(t, t ′).

The maximal regret associated with a strategy is then defined as

R(t) = max
t ′∈[0,t∗]

R(t, t ′).

Finally, the minimax regret strategy is the strategy that minimizes R(t). Writing t

for the minimax regret entry time20 we have

t = arg min
t∈[0,t∗]

R(t) = arg min
t∈[0,t∗]

max
t ′∈[0,t∗]

R(t, t ′). (C.9)

18Again, while we focus on a very simple application of maximin to the strategy space, predictions
reported in the text are unchanged in equilibrium variations. For example, applying the epistemically
founded equilibrium model of Lo (2009) we find that the unique equilibrium entry time is t = 0 for
all of our treatments (with the exception of PC where it also mirrors the Nash equilibrium), just as in
our simpler, non-equilibrium approach.

19Interest in minimax regret has increased in recent years with general theories of minimax regret
equilibrium provided by Renou and Schlag (2010) and Halpern and Pass (2012), and specific appli-
cations to bargaining in Linhart and Radner (1989) and monopoly pricing are found in Bergemann
and Schlag (2008) and Bergemann and Schlag (2011).

20Notice that there are two places in equation C.9 that we have implicitly restricted attention to
pure strategies. The first is in the max operator, where we consider only beliefs over pure strategies.
This restriction is without loss of generality because the regret maximizing strategy will always be a
pure strategy in our game (see Halpern and Pass (2012), particularly proposition 3.19, for a detailed
and general discussion). The second is in the argmin operator, where we require agents to select
a pure strategy. This deliberate modeling choice reflects the experimental design, where subjects
must implement a pure strategy. While the introduction of mixed strategies can affect the set of
regret minimizing strategies, it is not appropriate to allow for mixing in that fashion when modeling
experimental behavior with non-expected utility preferences.
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We calculate specific MRA predictions in the body of the paper numerically.21 In

section C.4.2, below, we show that for a broad class of games in trigger strategies

(including ours) the main effect of inertia observed in these calculations (and in

our experiments) must hold under the MRA decision rule.

C.4.2 Minimax regret in a broader class of games

In our experiment, behavior grows more efficient as inertia falls to zero, a result

that we show is consistent with subjects using a minimax regret avoidance rule

to choose among strategies. In this section we show that there is a general class

of dilemma-like inertial time games for which the minimax regret decision rule

generates very similar predictions: when inertia is large, minimax regret predicts

behavior that is bounded away from the socially optimal outcome and as inertia

shrinks towards 0 behavior approaches the socially optimal outcome. Our experi-

mental design can be rewritten as a special case of this result, as can the prisoner’s

dilemma, Bertrand competition, Cournot competition and public goods games.

We begin by defining the structure of the game and the assumptions on the

payoff functions that are necessary for the result to hold, and then define our class

of strategies. We restrict attention to trigger strategies, following a suggestion in

Halpern and Pass (2012), for both normative and positive reasons. On the pos-

itive side, trigger strategies are typically used by subjects in dilemma games, a

point emphasized in Friedman and Oprea (2012). On the normative side, allowing

for fully general strategies leads to agents using minimax regret decision rules to

21 Specifically, we define two types of regret: type 1 regret R1 from entering too early, and the
type 2 regret R2 from entering too late:

R1(t, t ′) =

{
R(t, t ′) if t < t ′−δ

0 if t ′−δ ≤ t
(C.10)

and

R2(t, t ′) =

{
R(t, t ′) if t ′−δ < t
0 if t ≤ t ′−δ .

(C.11)

We note that R1(t) = R(t, t∗) =U(t∗−δ , t∗)−U(t, t∗) and R2(t) = R(t, t−δ ) =U(t−2δ , t−δ )−
U(t, t−δ ), giving us each type of regret as a function of δ . Then, by noting that R1(t) is decreasing
and R2(t) is increasing, and noting that R(t) = max{R1(t),R2(t)}, we can find R(t) by solving the
equation R1(t) = R2(t). The resultant solution is a function of δ and it is then straightforward to
numerically compute minimax regret predictions.
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“believe” that their opponent is using strategies that are both non-admissible and

involve making large sacrifices with no hope of reciprocation.22

Suppose that we have a game being played in inertial continuous time between

two players on the interval [0,1]. Payoffs are defined via a symmetric flow utility

function. The (instantaneous) action space for both players is constant with rep-

resentative elements ai,a j ∈ A, and the flow utility is denoted by ut
i(ai,a j). We

identify some key action profiles, which shall be assumed to exist:

• argmaxa∈A ut(a,a) = ât , with ât unique for all t. We shall call ât the cooper-

ative action at time t. Furthermore, assume that ât is constant so that ât = â

for all t.23

• The instantaneous game at t has a unique Nash Equilibrium that is denoted

by a∗t . We shall call a∗t the Nash equilibrium action at time t. Furthermore,

assume that a∗t is constant so that a∗t = a∗ for all t.24

• If ut(ã, â) > ut(â, â), then we shall call ãt an exploitative action at time t.25

We shall assume that there exists at least one exploitative strategy at every t.

It will typically be the case that a∗ is an exploitative strategy.

We now define a class of generalized trigger strategies. Our trigger strategies

collapse to the equivalent of grim trigger in games with only two strategies. We

shall require that each trigger strategy uses a fixed, pre-determined and constant

exploitation strategy ã.26 A trigger strategy with trigger time t1 and a constant ã

satisfies the following conditions:

22As an example, consider a repeated prisoners dilemma in continuous time. Consider an agent
who believes that their opponent will respond to any defection with permanent defection unless
the initial defection occurs precisely

√
eπ seconds into the game, in which case the opponent will

continue to cooperate. Such an agent will experience extremely large regret unless they defect at
precisely

√
eπ . Restricting beliefs to trigger strategies removes such strategies from the consideration

set of agents when assessing regret.
23This final assumption is without loss of generality. For example, if we identify actions with

choosing a real number, we can simply relabel the cooperative action to be 1 at every instant.
24When a∗t 6= ât for all t, then this is also without loss of generality.
25Where it will not result in confusion, we will sometimes write ã instead of ãt .
26While this assumption seems quite restrictive it turns out not to affect outcomes very much.

The results presented below hold for any pair of exploitation strategies, and the difference in regret
minimizing trigger times for differing exploitation strategies is arbitrarily small for small δ .
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1. At time 0, play â.

2. At each time t < t1 if the history is such that both players have always played

â, or if the agent has always played â and the opponent has played â at all t ′

such that t ′ ≤ t−δ , then play â.

3. At each time t < t1 if the agent has played anything other than â then play a∗

at all remaining moments.

4. At each time t < t1, if the opponent has played anything other than â at any

time t ′ such that t ′ < t−δ then play a∗ at all remaining moments.

5. At time t1, if the history is such that both players have always played â at

all t < t1 then play ã over the period t ∈ [t1, t1 + δ ) followed by a∗ at all

t ≥ t1 +δ .

6. At time t1, if the history is such that the agent has always played â at all

t < t1 and the opponent played â at all t < t ′ with t1− δ ≤ t ′ and anything

other than â at t ′ then play ã over the period t ∈ [t1, t ′+δ ) and play a∗ at all

t ≥ t ′+δ .

We can therefore identify each trigger strategy by its trigger time and the ex-

ploitative strategy that it implements: a trigger strategy is a pair (t1, ã), although

we note again that because ã is fixed it is not a choice variable, and for this reason

we shall often refer to a trigger strategy solely by its trigger time. We will use the

expression U((t1, ã),(t ′1, ã
′)) or U(t1, t ′1) to denote the payoff induced by the use of

trigger strategies. We also interpret the reaction lag, δ , as being a fixed parameter

of the game rather than a strategic choice of the agents.

We shall impose the following assumptions on the instantaneous flow payoff

functions. While the assumptions may appear to be onerous, we shall demonstrate

that several standard applications satisfy them.

• ut(â, ã)≤ ut(a∗,a∗)< ut(â, â)< ut(ã, â) and ut(â, ã)≤ ut(ã, ã)< ut(â, â) for

all t and all ã, and that each of these flow payoff functions are continuously

differentiable in t. This can be interpreted as the game having a ‘dilemma’

structure at every instant.
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• We also have two conditions on the rate of change of the flow payoffs.

ut+t ′(a∗,a∗) < ut(â, â) and ut+t ′(ã, ã) ≥ ut(â, ã) for all t and all t ′ ≤ δ and

all ã. These rather weak conditions ensure that the ‘dilemma’ nature of the

game persists across every stretch of time that is less than or equal to one

reaction lag. A game with constant flow payoffs will trivially satisfy this

condition if it satisfies the previous dilemma conditions.

• dut(ã,â)
dt ≥ dut(ã,ã)

dt ≥ 0, dut(a∗,a∗)
dt ≥ 0, dut(â,ã)

dt ≤ 0 and dut(â,â)
dt ≤ 0 for all t and all

ã. Jointly, these conditions imply that playing the socially optimal strategy

becomes (weakly) less attractive as the game progresses.

We now proceed to our main result via a series of lemmas. Proofs are collected

in appendix C.4.3. Our first lemma and corollary clarify behaviour in the limiting

case as inertia approaches zero.

Lemma C.6. When δ = 0, trigger strategies are identified only by their trigger

time, and the class of trigger strategies with t = 1 is weakly dominant among the

class of all trigger strategies. Furthermore, a trigger strategy with a trigger time

t < 1 is not weakly dominant.

Corollary C.7. When δ = 0 any trigger strategy with a trigger time of t = 1 gen-

erates a regret of 0. Any trigger strategy with a trigger time of t < 1 generates

positive regret.

Next, we establish some useful properties of the best response function.

Lemma C.8. The best response trigger strategy t ′ to a trigger strategy t satisfies

t−δ ≤ t ′ ≤ t. Furthermore, the best response payoff, U(t ′, t) is increasing in t.

We shall now reintroduce our two types of regret. Type 1 regret is regret from

using a trigger time that is earlier than optimal, and type 2 regret is regret from

using a trigger time that is later than optimal. In our current setup, we define the

type 1 and type 2 regret between two strategies as:

R1(t, t) =

U(t ′, t)−U(t, t) if t < t ′

0 if t ′ ≤ t
(C.12)
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and

R2(t, t) =

U(t ′, t)−U(t, t) if t ′ < t

0 if t ≤ t ′.
(C.13)

We can also define the type 1 and type 2 regret of a trigger strategy as R1(t) =

maxt R1(t, t) and R2(t) = maxt R2(t, t), noting that typically the arguments of the

maxima will be different for R1(t) and R2(t). Finally, we can write R(t)=max{R1(t),R2(t)}.
Our next two propositions establish some facts about type 1 and type 2 regret.

Lemma C.9. Type 1 regret is strictly decreasing in trigger time over the interval

t ∈ [0,1−δ ) and is equal to 0 in the interval t ∈ [1−δ ,1]. Furthermore, R1(t) is

continuous.

Lemma C.10. Type 2 regret is weakly increasing in trigger time. Furthermore,

R2(t) is continuous and limδ→0 R2(t) = 0 for all t.

Finally, we arrive at the proposition that establishes that MRA behaviour sup-

ports greater cooperation as δ decreases, and that MRA behaviour converges to

fully cooperative play in the limit. The proof is a straightforward application of the

intermediate value theorem.

Proposition C.11. When δ > 0 the earliest entry time that minimizes regret, tδ , is

strictly less than 1. Furthermore, tδ is decreasing in δ and limδ→0 tδ = 1.

Examples

The following are examples that satisfy the requirements of our setup above.

1. Prisoner’s dilemma in inertial continuous time, such as Friedman and Oprea

(2012).

2. Oligopoly game with a constant flow rate of customers arriving every in-

stant. To illustrate, in the Bertrand case, suppose that the two firms have

zero marginal costs and each instant a mass 1 of customers arrives and de-

mand the quantity Q = 1− P from the lowest priced firm every instant.

In this case a∗ = 0 and â = 1
2 and take the exploitation strategy to be ã =
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0.49. The associated flow payoffs are u(â, ã1) = 0,u(a∗,a∗) = 0,u(ã, ã) =

0.12495,u(â, â) = 1
8 ,u(ã, â) = 0.2499.

3. Cournot oligopoly game. To illustrate suppose that the two firms have zero

marginal costs and each instant a mass 1 of customers arrives and demand

the quantity Q = 1−P from the lowest priced firm every instant. In this case

a∗ = 1
3 , â = 1

4 and an example exploitation strategy is ã = 3
8 . The associated

payoffs are u(â, ã) = 3
32 ,u(a

∗,a∗) = 1
9 ,u(ã, ã) =

3
32 ,u(â, â) =

1
8 ,u(ã, â) =

9
64 .

4. Public goods game in continuous time. At each instant each player may con-

tribute a ∈ [0,1] to the public good. The public good provides instantaneous

utility to each player that is equal to three-quarters of the total instantaneous

contribution. In this case a∗ = 0, â = 1 and an example exploitation strategy

is ã = 0. The associated payoffs are u(â, ã) =−0.25,u(a∗,a∗) = 0,u(ã, ã) =

0,u(â, â) = 0.5,u(ã, â) = 0.75.

C.4.3 Proofs

Proof of lemma C.6. When δ = 0, the class of trigger strategies becomes much

simpler. The trigger strategy with trigger time t ′ implements the following strategy.

At all t ≥ t ′ play a∗. At all t < t ′ play â if your opponent has played â at all s≤ t,

otherwise play a∗. Because there is no exploitation period trigger strategies can be

identified by their trigger time alone.

Compare two strategies with trigger times t1 and t2 with t1 < t2. Denote the

opponent’s trigger time by t3. If t3 ≤ t1 then both t1 and t2 earn the same payoff for

all t. If t3 > t1 then both t1 and t2 earn the same payoff on [0, t1] and [min{t3, t2},1]
but on the interval [t1,min{t3, t2}] then t1 earns flow payoffs ut(a∗,a∗) while t2
earns flow payoffs ut(â, â). Therefore t2 earns a strictly higher payoff against some

trigger strategies but the converse does not hold, so that t2 weakly dominates t1.

Proof of corollary C.7. A weakly dominant strategy generates 0 regret, and non-

weakly dominant strategies generate positive regret.

Proof of C.8. In the range t ′ > t +δ the payoff U(t ′, t) is independent of t ′.
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In the range t < t ′ ≤ t +δ we have

U(t ′, t) =
∫ t

0
us(â, â)ds+

∫ t ′

t
us(â, ã)ds+

∫ t+δ

t ′
us(ã, ã)ds+

∫ 1

t+δ

us(a∗,a∗)ds

(C.14)

which is decreasing in t ′ because ut(â, ã)< ut(ã, ã).

When t ′ < t−δ we have

U(t ′, t) =
∫ t ′

0
us(â, â)ds +

∫ t ′+δ

t ′
us(ã, â)ds +

∫ 1

t ′+δ

us(a∗,a∗)ds (C.15)

Taking the derivative with respect to t ′ yields

ut ′(â, â)+ut ′+δ (ã′, â)−ut ′(ã′, â)−ut ′(a∗,a∗)

which is strictly positive.

This establishes that, for any ã and any (t, ã), we must have t−δ ≤ t ′ ≤ t.

We can now, therefore, write down the functional form of the best response

payoff:

max
t ′

U(t ′, t)=max
t ′

∫ t ′

0
us(â, â)ds+

∫ t

t ′
us(ã, â)ds+

∫ t ′+δ

t
us(ã, ã)ds+

∫ 1

t ′+δ

us(a∗,a∗)ds

(C.16)

Now, applying the envelope theorem, we have

d maxt ′U(t ′, t)
dt

= ut(ã, â) − ut(ã, ã) > 0 (C.17)

if the constraints t−δ ≤ t ′ ≤ t are not binding.

If the constraints are binding we have either
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d maxt ′U(t ′, t)
dt

= ut(â, â) − ut(ã, ã) + ut+δ (ã, ã) − ut(a∗,a∗) > 0 (C.18)

or

d maxt ′U(t ′, t)
dt

= ut−δ (â, â) − ut−δ (ã, â) + ut(ã, â) − ut(a∗,a∗) > 0 (C.19)

We have therefore established that the best response payoff is increasing in the

opponent’s trigger time.

Proof of lemma C.9. We shall use t ′ to denote the best response trigger strategy to

the trigger t. The type 1 regret between two strategies can then be written as

R1(t, t) =

U(t ′, t)−U(t, t) if t < t ′

0 if t ′ ≤ t
(C.20)

The type 1 regret of an individual trigger strategy is defined by the maximum

of the regret between two strategies:

R1(t) = max
(t)

R1(t, t)

Now, we wish to establish that R1(t, t) is maximized when t = 1. When t > t+δ

it is clear that R1(t, t) is increasing in t as the positive part of equation C.20 is

increasing in t (as established in the proof of the previous lemma), and the negative

part of equation C.20 is independent of t. When t < t ′ ≤ t ≤ t +δ we have

U(t ′, t) =
∫ t ′

0
us(â, â)ds+

∫ t

t ′
us(ã, â)ds+

∫ t ′+δ

t
us(ã, ã)ds+

∫ 1

t ′+δ

us(a∗,a∗)ds

and

U(t, t) =
∫ t

0
us(â, â)ds+

∫ t

t
us(ã, â)ds+

∫ t+δ

t
us(ã, ã)ds+

∫ 1

t+δ

us(a∗,a∗)ds
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so that

U(t ′, t)−U(t, t)=
∫ t ′

t
us(â, â)ds+

∫ t ′

t
us(ã, â)ds+

∫ t ′+δ

t+δ

us(ã, ã)ds+
∫ t ′+δ

t+δ

us(a∗,a∗)ds

is independent of t. Therefore R1(t, t) is weakly increasing in t so that type 1 regret

is maximized when the opponent has a trigger time of 1. We can therefore write

the type 1 regret associated with a trigger strategy t as

R1(t) =
(

max
t ′

U(t ′,1)
)
−U(t,1)

whenever t < t ′. Because the maximization problem is independent of t, the

derivative with respect to t is simply

∂R1(t)
∂ t

=
∂ −U(t,1)

∂ t
=−ut(â, â)+ut(ã, â)−ut+δ (ã, â)+ut+δ (a∗,a∗)< 0.

We have therefore established that type 1 regret is decreasing in trigger time

when t < t ′.

We know from Lemma C.8 that U(t ′, t) must be maximized when 1−δ ≤ t ′ ≤
1. It is easily seen that t ′ = 1− δ because u(â, â) < u(ã, â). Therefore, t ≥ 1− δ

implies that t ≥ t ′, so that R1(t) = 0 whenever t ≥ 1−δ .

We now demonstrate the continuity of R1(t). U(t, t) is continuous because the

underlying flow payoff functions are assumed to be continuous, implying that the

derivatives of U(t, t) exist via the Leibniz integral rule which also implies continu-

ity. An application of Berge’s maximum theorem then establishes that maxt ′U(t ′, t)

is continuous in t, and a second application establishes that maxt(maxt ′(U(t ′, t))−
U(t, t)) is continuous in t.

Proof of lemma C.10. Type 2 regret between two strategies can be written as

R2(t, t) =

U(t ′, t)−U(t, t) if t ′ < t

0 if t ≤ t ′
(C.21)

We shall address three cases.
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Case 1 (t ′ = t < t):

We start by establishing that R2(t, t) is maximized at t = t−δ .

There are two sub cases. First, t < t ≤ t +δ .

In this case, R2(t, t) =
∫ t

t us(ã, ã)ds−
∫ t

t us(â, ã)ds. This is decreasing in t be-

cause ut(ã, ã)> ut(â, ã).

In the second sub case t +δ ≤ t.

In this case, R2(t, t) =
∫ t+δ

t us(ã, ã)−us(â, ã)ds which is weakly increasing in

t because ut(ã, ã) is weakly increasing in t and ut(â, ã) is weakly decreasing in t.

Therefore, the type 2 regret of trigger t is maximized when t = t−δ , so that

R2(t) =U(t−δ , t−δ )−U(t, t−δ ) (C.22)

=
∫ t

t−δ

us(ã, ã)−us(â, ã)ds (C.23)

which is weakly increasing in t.

Case 2 (t ′ = t−δ ):

We begin with two sub cases. In the first, t−δ < t ≤ t and R2(t, t) is decreasing

in t because, given the constraints, an increase in t pushes the actual entry time (t)

closer to the optimal entry time (t ′) which reduces regret.27

In the second sub case, t +δ ≤ t. In this case, R2(t, t) =U(t−δ , t)−U(t, t) =∫ t
t−δ

us(ã, â)−us(â, â)ds+
∫ t+δ

t us(a∗,a∗)−us(â, ã)ds which is weakly increasing

in t because the positive integrands are weakly increasing in time and the negative

integrands are weakly decreasing in time.

We have thus established that the t that maximizes R2(t, t) must satisfy t ≤ t ≤
t + δ . In this range we have dU(t,t)

dt ≤ 0. It is also the case that dU(t−δ ,t)
dt ≥ 0. It

must, therefore, be the case that

R2(t) =U(t−δ , t)−U(t, t) (C.24)

is weakly increasing in t.

27Alternatively, we could write out the payoff functions and note that the conditions on the payoff
function that cause t ′ = t−δ also imply that type 2 regret is decreasing in t.
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Case 3 (t−δ < t ′ < t)

In this case we can apply the unconstrained envelope theorem, which allows us

to write:

dR2(t)
dt

=
∂ −U(t, t)

∂ t
(C.25)

When t > t it is clear that U(t, t) is decreasing in t: the agent is being pre-

empted and benefits from reducing the period in which they are being exploited.

When t ≤ t the case for U(t, t) being decreasing is more subtle. Recall that t ′

is the best response to t and that t ′ < t. Furthermore, t ′ is strictly interior to the

interval t− δ < t ′ < t. Taken together, these imply that t lies in a region of the U

function that is decreasing.28

It is therefore true that in the third case we also have dR2(t)
dt ≥ 0.

The continuity of R2 can be established in the same fashion as the continuity

of R1.

From the above arguments it is clear that limδ→0 t = t. From Lemma C.8 we

see that limδ→0 t ′ = t so that limδ→0 t ′ = limδ→0 t = t. It is therefore true that

limδ→0U(t ′, t)−U(t, t) =U(t, t)−U(t, t) = 0.

Proof of proposition C.11. The proof is simply a matter of stitching together the

previous results.

Write T (t) = R1(t)− R2(t). T (0) > 0 and T (1− δ ) ≤ 0 and dT
dt < 0. By

the intermediate value function, there is a unique time, tδ ∈ [0,1− δ ], such that

T (tδ ) = 0. We argue that this is the earliest regret minimizing time. When t < tδ
we have R1(t)> R2(t) so that R(t) = R1(t). From Lemma C.9 we know that R1(t)

is decreasing, so that R(t) is decreasing as well. When t > tδ we have R2(t)> R1(t)

so that R(t) = R2(t). From Lemma C.10 we know that R2(t) is non-increasing, so

that R(t) is non-increasing as well. Therefore tδ must be a regret minimizing trigger

time, and must also be the smallest regret minimizing trigger time.

28 The first order condition for t ′ is that ut ′(ã, â)+ ut ′+δ (a∗,a∗) = ut ′(â, â)+ ut ′+δ (ã, ã) and the
assumptions on the rate of change of the flow payoff function assure that the second order condition
is satisfied globally.
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From Lemma C.10, we have that limδ→0 R2(t)= 0 for all t. Therefore limδ→0 T (t)=

R1(t) for all t. Furthermore, we have limδ→0 tδ = limδ→0 1− δ = 1 as R1(t) > 0

for all t < 1−δ and R1(1−δ ) = 0.
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Figure C.5: Median entry time (normalized to the percent of the period elapsed), by period,

across all treatments. IC60 and PC, PD, L−PD and L−PC treatments ran for 30

periods, while the IC10 and IC280 treatments were run within-session with three blocks

of 3 periods of IC280 followed by 7 periods of IC10. Grey horizontal lines for each

treatment mark the median final period entry time.

C.5 Time Series of Median Entry Times
Figure C.5 plots period-to-period time series of median raw, observed entry times

from all periods in each treatment. Note that unlike the analysis in the main text,

these period-to-period results have not been corrected for censoring bias using

product limit estimates (since such estimates, at the subject level, require multi-

ple observations per subject and therefore cannot be conducted for each period of

the dataset).

190



Appendix D

Appendix for “Mental
Equilibrium and Mixed
Strategies for Ambiguity Averse
Agents”

D.1 Proofs

D.1.1 Proof of theorem 4.1

Lemma D.1. Suppose that ν is a belief function and Φ = core (ν). Then A ∈
supp Φ if and only if ν(Ac)< 1.

Proof of lemma D.1. Suppose that A ∈ supp Φ. Therefore there exists a φ ∈ Φ

such that φ(A)> 0 and φ(Ac)< 1. Therefore there exists a p ∈ core (ν) such that

p(Ac)< 1. Therefore ν(Ac)< 1.

Suppose that A /∈ supp Φ. Therefore φ(A) = 0 for all φ ∈Φ. Therefore p(A) =

0 for all p ∈ core (ν). Therefore p(Ac) = 1 for all p ∈ core (ν). Note that there

always exists a p ∈ core (ν) such that p(Ac) = ν(Ac). Therefore ν(Ac) = 1.
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Lemma D.2 (Lo-Nash equilibrium). Consider a pair < σ ,Φ > such that Φi =

core νi for all i, where νi is a belief function. If σ and νi satisfy

σ(·|ai) ∈ core νi ∀ai ∈ suppσ
Ai ,∀i ∈ N (D.1)

νi(ac
−i) = 1⇔∏

j 6=i
σ

A j(a j) = 0 ∀a−i ∈ A−i, ∀i ∈ N (D.2)

and

ai ∈ argmax
âi∈Ai

∫
âidνi ∀ai ∈ suppσ

Ai ,∀i ∈ N (D.3)

then the pair < σ ,Φ > form a Lo-Nash equilibrium. Conversely, if < σ ,Φ > are

a Lo-Nash equilibrium then σ and νi satisfy equations D.1, D.2 and D.3.

Proof of Lemma D.2. We need to demonstrate that < σ ,Φ > is a Lo-Nash equilib-

rium.

Equation D.1 is equivalent to equation 4.5.

The equivalence of equation 4.7 and equation D.3 follows directly from Corol-

lary 4.4 of Gilboa and Schmeidler (1994).

∏ j 6=i σA j(a j)= 0⇔∃ j 6= i s.t. σA j(a j)= 0⇔ a−i /∈× j 6=i supp σA j and Lemma

D.1 establish that equation 4.6 and equation D.2 are contrapositives.

Proof of theorem 4.1. Given the above lemmas, it is sufficient to show an equiv-

alence between equations D.1 and 4.8, equations D.2 and 4.9, and equations D.3

and 4.10. We begin by noting that result 4.1 ensures that each αi can be associated

with a belief function νi (and vice-versa) and that Φi can be defined as the core of

νi.

The equivalence of equations D.3 and 4.10 follows from results 4.1 and 4.2.

The equivalence of equations D.1 and 4.8 is a consequence of the definition of

the core of a capacity and the fact that νi(B) = ∑T⊆B αi(T ) (which follows directly

from the definition of αi).

The equivalence of equations D.2 and 4.9 follows immediately from νi(ac
−i) =

∑T :a−i /∈T αi(T ) which again is an immediate consequence of the definition of αi.
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D.1.2 Proof of theorem 4.2

Proof of Theorem 4.2. Suppose that < νi,ν j > form an equilibrium. The αi de-

fined in the theorem is the αi derived from result 4.1. Given this, Result 4.2 and

Definition 4.4 implies that

si ∈ argmax
s′i

∑
T∈Σi

u′i(s
′
i,T )αi(T )

for all si ∈ supp σAi . Linearity of u′ then implies equation 4.13.

To establish equation 4.12, notice that νi is additive for all pairs of events that

do not form a partition of the state space. Therefore, σA j(T ) ≥ νi(T ) for all T ∈
Σ/Ω, and σA j(Ω) = νi(Ω) = 1. Recalling that νi(T ) = ∑τ⊆T αi(τ) establishes the

result.

For the converse, the linearity of preferences in the mental state space and

Equation 4.13 implies that every strategy in the support of σi is optimal for agent i

with respect to αi. Then Result 4.2 implies that every strategy in the support of σi

is also optimal with respect to νi.

D.1.3 Proof of lemma 4.3

Proof of Lemma 4.3. By construction each Ψxm is a partition.

Suppose that Ψi is not a filtration. Then there exists a Ψk
xm
∈Ψxm with at least

two elements s,s′ ∈Ψk
xm

such that s ∈Ψκ
xm′

, s′ ∈Ψκ ′
xm′

, s /∈Ψκ ′
xm′

and s′ /∈Ψκ
xm′

.

Furthermore we can, without loss of generality, choose m,m′ such that m =

m′ + 1. To see this, note that by construction Ψx0 and Ψx1 are admissible in a

filtration. Suppose that Ψxm is the first partition that is not admissible. Then it

must be that there is an event in Ψxm that is not a subset of any events in a previous

partition. Suppose that this previous partition is Ψxm−n with n > 1. But, all events

in Ψxm−1 are subsets of events in Ψxm−n , implying that there must also be an event

in Ψxm that is not a subset of any event in Ψxm−1 .

Therefore there exists an information set that precedes xm through which ex-

actly one of s or s′ passes (if s and s′ always passed through the same collection of

information sets then they would share an event in theΨxm′ partition) but both s and

193



s′ passes through xm. This violates perfect recall.
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