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Abstract

In this thesis, we investigate topics related to the Green-Tao theorem on arithmetic progression in primes in

higher dimensions. Our main tool is the pseudorandom measure majorizing primes defined in [51] concen-

trated on almost primes. In chapter 2, we combine the sieve technique used in constructing pseudorandom

measure (in this case, Goldston-Yildirim sum and almost primes) with the circle method of Birch to study the

number of almost prime solutions of diophantine systems (with some rank conditions). Our rank condition

is similar to the integer case, due to the heuristics that almost primes are pseudorandom. In chapter 3, we

investigate the generalization of Green-Tao’s theorem to higher dimensions in the case of corner configura-

tion. We apply the transference principle of Green-Tao (with hyperplane separation technique of Gowers) in

this setting. This problem is also related to the densification trick in [16]. In chapter 4, we extend the result

of Chapter 3 to obtain the full multi-dimensional analogue of the Green-Tao’s theorem, using hypergraph

regularity method by directly proving a version of hypergraph removal lemma in the weighted hypergraphs.

The method is to run an energy increment on a parametric weight systems of measures, rather than on a

single measure space, to overcome the presence of intermediate weights. Contrary to [110], [68] where the

authors investigate the problem using a measure supported on primes and infinite linear form conditions,

relying on the Gowers Inverse Norms Conjecture.
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Preface

This thesis is a combination of three manuscripts: Chapter 2 is based on [75] which is a joint work with A.

Magyar. Chapter 3 is based on [74] which is joint work with A. Magyar. Chapter 4 is based on [18] which

is a joint work with B. Cook and A. Magyar.
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Notations

Index Notations

• Write x = (x1, ..., xd),y = (y1, ..., yd) as vectors in dimension d. Write ω = (ω(1), . . . , ω(d)) ∈
{0, 1}d, and for each such ω, let Pω : Z2d

N → ZdN be the projection defined by

Pω(x,y) = u = (u1, ..., ud), uj =

xj if ωj = 0

yj if ωj = 1

• For each I ⊆ [d],xI = (xi)i∈I . We may denote x for x[d].

ωI means elements in {0, 1}|I|. Similarly we may write ω for ω[d]. We also define PωI (xI ,yI) in the

same way.

• ω|I denotes ω restricted to the index set I.

• For finite sets Xj , j ∈ [d], I ⊆ [d] then XI :=
∏
j∈I Xj and

PωI (XI , YI) =
∏
i∈I

Zi, Zi =

Xi, ωI(i) = 0

Yi, ωI(i) = 1

• If we want to fix on some positions, we can write, for example ω(0,[2,d]) means element in {0, 1}d

such that the first position is 0.

• For each ω, define y1(ω) ∈ {0, 1}d by

(y1(ω))i =

0 if ωi = 0

yi if ωi = 1
, 1 ≤ i ≤ d.

y0(ω) ∈ {0, 1}d is also defined similarly.
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Set Notations

[N ] := {1, 2, ..., N}, [M,N ] := {M,M + 1, ...,M +N}.
P denotes the set of primes. PN ,P[N ] := P ∩ [N ].

For any finite set X and f : X → R or C, and for any measure µ on X ,

Ex∈Xf(x) :=
1

|X|
∑
x∈X

f(x). Eµf(x),

∫
X
fdµ :=

1

|X|
∑
x∈X

f(x)µ(x).

Hypergraph Setting: Suppose we have a (d+ 1)−partite hypergraph with vertex sets V1, . . . , Vd+1.

For e ⊆ [d + 1], we may write Ve :=
∏
j∈e Vj . Let πe : V[d+1] → Ve be the natural projection. We

write Ae = {π−1
e (F ) : F ⊆ Ve} as subsets of V[d+1].

Other Notations

– Linear characters: for θ ∈ R/Z, e(θ) := e2πiθ.

– exp(x) = ex.

– Unless otherwise specified, the error term o(1) means a quantity that goes to 0 as N → ∞ (or

N,W →∞ in W−trick, see section 2.2).

– f(x) ≈ g(x) means there are absolute constants c, C such that cf(x) < g(x) < Cf(x).

– ZN ,Z/NZ,Z/N means additive group of integers (mod N).

– k − AP means arithmetic progression of length k. Is it nontrivial if the common difference is

not zero.

– Multiplicative difference: ∆hf(x) := f(x)f(x+ h). Additive difference ∆+
h f(x) := f(x +

h)− f(x).
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Chapter 1

Introduction: Szemerédi’s and
Green-Tao’s Theorem

On occasions a mathematician will have an insight that is ahead of the time in the sense that the
insight is not fully expressible in the mathematical theory and language developed at the moment.
For example the Poincaré Recurrence Theorem as first stated and proved by Poincaré was strictly
not meaningful. What was needed was the language of Lebesgue measure which came later.-Walter
Gottschalk

The main area of mathematics that is related to this thesis is additive combinatorics. Problems in

additive combinatorics usually ask to count or estimate additive structures in sets. This field has some

origins from additive number theory that has interested people since the ancient time. There are many

classical problems from this field, for example, what is the number of solutions in a given Diophantine

equation? Can every even integers n ≥ 4 be written a sum of two primes? Various methods such as

circle method first developed by Hardy-Littlewood and sieve theory are used to attack these problems.

We may also ask for properties of set addition e.g. if A ⊆ Z+, what is the size of A + A? When is

it small or when is it large? Usually studying problems like this involve studying two very different

operations: addition and multiplication. This sometimes make problems in this area hard, even with

current technology. Analogue problems may be asked in some abstract setting e.g. if we let A to be

a subset of arbitrary groups. Problems in additive combinatorics nowadays can be very abstract and

usually involves other area of mathematics other than purely number theory or combinatorics. Since

we usually ask to estimate the size of the sets, the tools from analysis (e.g. harmonic analysis) can be

handily adapted to our finite setting.

A problem posed by Erdős asking that if A ⊆ Z+ with
∑

a∈A 1/a = ∞ must contain a (non-trivial)

k−term arithmetic progression? This motivates the study of additive structures in a large subset of

Z where what we mean by large is indeed also a question. The famous result in this direction is the

Szemerédi’s Theorem and Green-Tao’s theorem discussed in the next few sections. This direction of
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research extends the area of additive combinatorics in touch with other area of mathematics such as

Ergodic theory and Lie Theory.

Green-Tao’s theorem generalizes Szemerédi’s Theorem to the case of primes. One of the main tech-

nique in proving these kinds of theorem is to decompose an arbitrary set to structural part and uni-

formity part (that does not correlate with the structures). What should be the notion of structures and

uniformity? How to measure them ? These are already hard and interesting questions. Green-Tao

managed to develop a tool to measure uniformity of primes that is sufficient to deduce results about

arithmetic progressions on them. In this thesis, we prove some results motivated from their work. In

chapter 2 we use the Goldston-Yildirim sieve used in the original proof of Green-Tao’s theorem [50]

combined with the circle method of Birch [11] to study number of solutions in almost prime of Dio-

phantine equations (with some rank conditions). In the next two chapters we prove analogue results

of Green-Tao’s Theorem in higher dimensions, Zd.

1.1 Szemerédi’s Theorem

One of the most important theorem in additive combinatorics is the Szemerédi’s Theorem. Informally,

Szemerédi’s theorem states that the sets of integers contains so many arithmetic progressions (or affine

copies of a finite set in Zd) that any subsets with positive density (see Definition 1.1.2) must contain

many of them. The point is that there is no assumption on the set A (other than its size), it could be

either purely random or supplied with some explicit structures, which we can show that they contain

arithmetic progressions with different reasons for each case. In general, we try to decompose arbitrary

sets into structured and random (or pseudorandom) parts where the techniques are already interesting

by themselves.

There are many approaches to Szemerédi’s Theorem. Basically, we are not going to find arithmetic

progressions but we will count them.

1. The first combinatorial approach due to Szemerédi [99] introduces the Szemerédi’s regularity

lemma which is a theorem describing the structure of a large graph. The Lemma became im-

portant in combinatorics and computer science. We will talk more about regularity lemma in

section 1.3.

2. There is a combinatorial Fourier analytic approach due to Gowers [36], [37] where he intro-

duces the Uniformity norms (of various degrees determined by the complexity of structures) to

measure uniformity or randomness of functions. A function which correlates with some kinds

of structures would be large in uniformity norms of appropriate degrees. The harder inverse the-

orem asks for the converse: if a function is large with a uniformity norm, what kind of structures

can the function be correlated with? An inverse theorem would make the uniformity norms an

effective tool in studying structures in sets. This is a generalization of arguments of Roth [91]

2



or 3-term arithmetic progressions. Roth observed that if a set A ⊂ ZN with density α > 0

has the Fourier coefficient bound ‖1̂A − α‖∞ sufficiently small (i.e. it does not correlate with

linear phase functions) then A contains many three terms arithmetic progressions comparable

to random sets. Otherwise A has a structure in the sense that it has increased relative density

in some long arithmetic progressions. Then we can do density increment (see section 1.1.4) to

obtain a structured subset of A which contains arithmetic progressions.

One may want to generalize this idea the four-term arithmetic progressions using exponent of

quadratic polynomials.1 However this turns out not to be the case (see example 1.1.12), in par-

ticular, quadratic functions on multi-dimension arithmetic progressions may not correlate with

quadratic polynomial phases (hence quadratic polynomial phases are not sufficient to describe

structural objects in this case). Gowers exploits tools from additive number theory such as

Frieman-Ruzsa Theorem (structure of sets with small sumsets in term of multi-dimension arith-

metic progressions) and Balog-Gowers-Szemerédi’s theorem (sets with many additive quadru-

ples have large subsets satisfy the conditions on Frieman’s theorem) to deal with objects like

multidimensional quadratic phase functions. Gowers managed to obtain a local version of the

inverse Uk norm theorem on ZN , meaning Gowers obtained correlations with many polynomial

phase functions, each on an arithmetic progression. These works also inspired many later works

such as studying global inverse theorem [59]. Full global inverse theorem as a direct generalized

of Roth’s argument would obtain later in [60] where obstructions are actually described in terms

of nilsequences2 (but not with a good bound and the proof is very long).

3. The next approach to Szemerédi’s Theorem is the ergodic theory approach initiated by Fursten-

berg and Katznelson (e.g. [33], [31]) where they transfer this Szemerédi-type problems (via

Furstenberg-corresponding principle, first formulated in [26]) to studying multiple recurrence in

a probability measure preserving system3. For example,to prove Szemerédi’s Theorem, one can

study
1

N

N∑
n=1

f1(Tnx)f2(T 2nx) . . . fk(T
knx) (1.1.1)

Here fi ∈ L∞(X) and T : X → X is measure preserving. This average is referred as mul-

tiple recurrence. To understand the limiting behavior (as N → ∞) of (1.1.1) , the key idea is

to understand the characteristic factor Z which is an invariant subsigma-algebra Z such that if

E(fi|Z) = 0 for some i then the limit of (1.1.1) would be 0 in L2 norm. Hence the explicit

description of characteristic factors is a useful tool to prove results on multiple recurrence like

(1.1.1). The question of finding the characteristic factor for a given multiple recurrence is a del-
1Indeed, we have a quadratic obstruction for four term arithmetic progressions x2 − (x+ d)2 + (x+ 2d)2 − (x+ 3d)2 = 0.

This is the only obstruction.
2These are technical objects and we will not define them here but we discuss a bit about them in the next paragraph.
3This means a set X together with a Borel σ−algebra B and a Borel probability measure µ and a measure preserving transfor-

mation T : X → X meaning µ(T−1A) = µ(A)∀A ∈ B.

3



icate one. Host and Kra [65] and independently Ziegler [115] are able to give a nice description

of the characteristic factor of (1.1.1) for any k in terms of nilrotation on nilmanifolds (this could

be considered as a generalization of abelian rotation on S1, the Kronecker’s factor) and Host-Kra

seminorm (an analogue of Gowers norm), see e.g. appendix A in [8] for a brief introduction to

these objects. Nilsequences [7] play a role as the obstruction to uniformity similar to linear ex-

ponentials in Roth’s theorem case. This motivated parallel work in additive combinatorics. The

motivation of why nilpotent groups arise is that in a k−step nilsystem, the first k−term of geo-

metric progressions will determine the rest, see [71] section 6.4. Ergodic theory is the method

that can attack most general kinds of patterns in this kind of problems. Let us state a theorem of

Furstenberg-Katznelson which is equivalent via corresponding principle to the multidimenisonal

Szemerédi’s theorem.

Theorem 1.1.1 (Furstanberg-Katznelson [31]). Let (X,B, µ) be a probability measure space

and T : X → X is a measure preserving transformation on (X,B, µ). Let A ∈ B, µ(A) >

0, k ∈ Z+ then ∃B ⊆ A,µ(B) > 0 and n ≥ 1 such that

TnB, T 2nB, . . . , T (k−1)nB ⊆ A.

i.e.

µ(
k−1⋂
j=0

T−jnA) > 0.

Tao gave finitary ergodic argument [101] where he discretized the ergodic argument and intro-

duce UAP -norm which is a counter part of uniformity norm.

Roth’s theorem also follows from studying eigenvalues (spectra) of graph using Cheeger-type

discrepancy bound, see [98]. Roughly speaking the largest second value of the adjacency matrix

is an analogue of the second largest Fourier coefficients of a dense set. Generalizing this theory

to spectra of hypergraphs seems challenging. Though, in ergodic setting, there is a description

of characteristic factor of (1.1.1) with k = 4 in terms of generalized eigenfunctions, see e.g.

[116].

4. Finally, there is a hypergraph regularity approaches due to Vojta Rödl, B. Nagel, M. Schacht, J.

Skokan [82],[83], [85] that generalize argument in [97] and also another hypergeaph approach

due to Gowers [35], [36]. These stronger hypergraph regularity lemma allow us to deduce the

multidimensional Szemerédi’s theorem. This exploited ideas in ergodic theory (energy incre-

ment) and conditional expectations on sigma-algebras to obtain the required decomposition. A

stronger functional version of hypergraph approach due to Tao [104], which will be the version

we generalize to prove the main result in Chapter 4.

Next we formally state Szemerédi’s theorem.
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Definition 1.1.2. Let A ⊆ N, we say A has positive upper density if lim supN→∞
|A∩[N ]|
N > 0,i.e.

there is a δ > 0, Nj ↗∞ such that |A∩[Nj ]|
Nj

≥ δ for all j. We say that A has positive upper Banach

density if there is a sequence of intervals Ij ⊆ N, |Ij | ↗ ∞ such that |A∩Ij ||Ij | ≥ δ for all j. A similar

notation may be similarly defined on Z or Zd using the Cartesian product of intervals.

Now we state two versions of Szemerédi’s Theorem in dimension 1.

Theorem 1.1.3 (Szemerédi’s Theorem; equivalent forms). 1.(Infinite Version) If A ⊆ N has positive

upper Banach density then for all k ∈ Z+, there exist x, t, t 6= 0 such that P := {x, x + t, ..., x +

(k − 1)t} ⊆ A
2.(Finite Version) Let δ > 0 then there is an N(k, δ) such that if N ≥ N(k, δ) then any A ⊆ [1, N ]

with |A| ≥ δN has some P = {x, x+ t, ..., x+ (k − 1)t, t 6= 0} ⊆ A.

The point is that N(k, δ) is independent of A. It is easy to check that these two statements are

equivalent. We may also replace the P with F ′ := x+tF for any finite set F , where F ′ = {x+tf, f ∈
F} is an affine copy of F .

Now we state the functional version of Szemerédi’s Theorem. Note that it is more convenient to work

in a more structured setting like in a group, e.g. ZN ′ (where N ′ is a prime much bigger than N ) and

there is a standard argument that deduces the result on [N ] from that, as we will do.

Theorem 1.1.4. Let f : ZN → [0, 1] with Ex∈ZN f(x) ≥ δ. Then there is a positive constant c(k, δ)

such that

Ex,t∈ZN f(x)f(x+ t)...f(x+ (k − 1)t) ≥ c(δ, k)− oδ(1). (1.1.2)

Theorem 1.1.4 implies the finite version by taking f to be the characteristic function on a set A

and using an average argument of Varnavides [114] stating about the conclusion in finite version of

Szemerédi’s theorem that we will have at least c(δ′, k)N2 of such progressions. Conversely the set

version also implies the functional version by considering sets of the form {x : f(x) ≥ δ/2} with a

simple average argument.

Theorem 1.1.5 (Varnavides’s Theorem [114]). The conclusion of Theorem 1.1.3 (finite version) may

be strengthened to conclude that A contains at least c(α, k)N2 k − AP (i.e. k−term arithmetic

progression).

Proof [114]: Consider N(k, δ) such that L ≥ N(k, δ) then any set A ⊆ {1, . . . , L} with density

≥ δ/2 must contains a nontrivial k−AP. This follows from the following observations:

– We work in Z/N . Consider a long L− arithmetic progression Sa,d = {a + d, . . . , a + Ld} ⊆
Z/N where a, d ∈ ZN , d 6= 0, L ≤ N . If Sa,d intersects A with at least δL/2 elements then

Sa,d ∩A contains a nontrivial k−AP.

5



– Consider all L−AP with a fixed common difference d 6= 0. Varying a, we have
∑

a |Sa,d∩A| =
L|A| ≥ δLN. Hence |Sa,d ∩A| ≥ (δ/2)L for at least (δ/2)N values of a.

Now vary d then |Sa,d ∩A| ≥ (δ/2)L for at least (δ/2)N(N − 1) values of a, d. Each of these

L−AP contains a nontrivial k−AP.

– We consider possible repetitions of arithmetic progressions counted. Observe that any nonrivial

k−AP could be contained in at most L(L−1) L−APs. ( punch line: for each k−AP, the indices

of the first two terms of this k−AP in the L−AP would determine the L−AP it is in ). Hence

the numbers of k−APs in A is at least

δ

2

N(N − 1)

L(L− 1)
&
δ

2

N2

L2
= c′(k, δ)N2

One may take e.g. (when k = 3) L = dexp(Cδ−1(log(1/δ)4))e according to Bloom [9].

Finally, let us remark a more general version of Szemerédi’s Theorem called Density Hales-Jewett’s

Theorem. This theorem implies Szemerédi’s theorem in finite group.

Theorem 1.1.6 (Density Hales-Jewett’s Theorem [29]). Let F ⊆ Z and 0 < δ < 1. IfN ≥ N(|F |, δ)
then for anyA ⊆ F d, |A| ≥ δ|F |d, A contains a set of the form {a+tr; t ∈ F, a ∈ Zd, r ∈ Zd, r 6= 0}.

Remark 1.1.7 (Quantitative Bound in Szemerédi’s Theorem). We have the following equivalent state-

ments of Szemerédi’s Theorem.

0 ≤ f ≤ 1,Ex∈Z/Nf(x) ≥ δ ⇒Ex,r∈Z/Nf(x)f(x+ r) . . . f(x+ (k − 1)r) ≥ c1(k, δ)

(N in term of δ) A ⊆ [N ], |A| ≥ δN,N ≥ c2(k, δ)⇒A contains some k−term arithmetic progressions.

(δ in term of N) A ⊆ [N ], |A| ≤ rk(N)⇒A contains no k−term arithmetic progressions.

Example: The original bound obtained by Roth [91] is given by c2(3, δ) > exp(exp(cδ−1)). This is

equivalent to r3(N) ≤ C N
log logN .

We have the following records

N2−
√

8 logN (O’Bryant [79]) ≤r3(N) ≤ C (log logN)4

logN
N (Bloom [9])

r4(N) ≤ C N

exp(C
√

log logN)
(Green-Tao [57])

r4(N) ≤ N

logcN
for some small constant c > 0 (Green-Tao [58]).
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For k > 4 we have the following bounds due to Gowers [39],

c1(k, δ) > 2−21/δck

, ck = 22k+9

c2(k, δ) > exp(exp((1/δ)ck))

CN exp(−N2
N−1

2 (logN)1/N +
1

2N
log logN)[79] ≤rk(N) ≤ C N

(log logN)2−2k+9 .

Improving quantitative bound of Szemerédi’s Theorem, even in the case k = 3, is an interesting

research problem. In a precedent work, Bourgain [12] obtains an upper bound of r3(N) by analyzing

the structure of Bohr sets (see section 1.1.3) and doing density increment on Bohr sets. Bloom [9]

obtains the bound by analyzing combinatorial properties of large spectrum set (the same to the recent

work on the bound of cap-set problem4 [3] on the size of subsets of Fnp not containing three term

arithmetic progressions, which isC3n/n1+ε). The lower bound of r3(N) first obtained by Behrend [5]

using the idea that there is no three-term arithmetic progressions on a sphere. There is no substantial

improvement and it might be the optimal shape. This turns out to be the case for Roth theorem in four

variables [93]. Much less quantitative results are known in higher dimensional cases.

1.1.1 Gowers Uniformity Norms

Definition 1.1.8 (Ud-norm and inner product). LetG be a finite abelian group define5 theUd−(generalized)

inner product of 2d functions fω, ω ∈ {0, 1}d,

〈(fω)ω∈{0,1}d〉Ud = Ex,h1,...,hd∈G
∏

ω∈{0,1}d
C |ω|f(x+ ω1h1 + · · ·+ ωdhd)

In particular when fω = f ∀ω, we have the following definition of Gowers uniformity norm

‖f‖2dUd = Ex,h1,...,hd∈G
∏

ω∈{0,1}d
C |ω|f(x+ ω1h1 + · · ·+ ωdhd)

where Cf := f is the complex conjugate and |ω| = ω1 + . . . ωd.

Lemma 1.1.9 (Basic properties of Gowers uniformity norms, see e.g. [109]). 1. If f is a bounded

function then6

‖f‖Ud ≤ ‖f‖ 2d

d+1

2. Gowers-Cauchy-Schwarz’s inequality |〈(fω)ω∈{0,1}d〉| ≤
∏
ω∈{0,1}d ‖fω‖Ud . In particular,‖ ·

‖Ud is indeed a norm.
4see [108] for a very recent improvement on this problem via polynomial method.
5We don’t actually need conjugates as we are working on real valued functions, these conjugated may be neglected later
6This is sharp as mentioned in [66], an easy application of Holder inequalities can give us easy looser bound.
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3. ‖f‖Ud ≤ ‖f‖Ud+1 .

The following recurrence relation is usually useful when working with higher uniformity norms

‖f‖2dUd = Eh‖fT hf‖2
d−1

Ud−1 (1.1.3)

Example 1.1.10. [116] Suppose f : ZN → {1,−1} is a random function with mean 0 then by the

law of large number, ‖f‖Uk = o(1) with high probability.

Remark 1.1.11. An analogue of Gowers uniformity norms called Host-Kra seminorms can in fact be

defined on general measure spaces [65] where they are in general seminorms. They are norms exactly

when they are defined on a nilmanifold.

When working in the uniformity norm, we are interested in proving an inverse theorem: Finding the

set of structure function Fd such that if f has a large uniformity norm of degree d then f correlate

with some elements of Fd, in other words, if f has small uniformity norm of degree d then f does

not correlate with any structures in Fd. From property (3) of Lemma 1.1.9, we see that functions with

small higher order Gowers norm will correlate with less structures i.e. Fd ⊆ Fd+1. We will prove

analogue properties of uniformity norm on more general weighted hypergraph.

For example as in the proof of Roth’s theorem, function with large U2 norm , due to relation ‖f‖U2 =

‖f̂‖4, will correlate with some linear exponents. In higher order uniform, however, we have the

following example.

Example 1.1.12. [[39], section 4.] Consider two-dimensional arithmetic profression in ZN , N is

prime: P = {x1 + Kx2 : −K/10 ≤ x1, x2 ≤ K/10,K = b
√
Nc} and f(x1 + Kx2) = e((x2

1 +

x2
2)/N)1P . The function φ(x1 +Kx2) = x2

1 + x2
2 is a quadratic function on P in the sense that

∆+
h1

∆+
h2

∆+
h3
φ(x) = 0 ∀x, h1, h2, h3 ∈ P.

and we can show that ‖f‖U3 � 1. On the other hand, we can do a calculation that |〈f, e(ψ)〉| =

O(N−c) for any quadratic phases ψ(x) = rx2/N + sx/N + t with r, s ∈ ZN , t ∈ R/Z. Hence the

exponent of quadratic polynomial function of this form is not the only quadratic obstruction of ‖ · ‖U3

norm.

1.1.2 Box Norm

Box norm is a more abstract version of the Gowers uniformity norms defined on hypergraphs i.e. on

a function f : X1 × · · · ×Xd → R.
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Definition 1.1.13 (Box norms). Let X1, . . . , Xd be finite sets. f : X1 × · · · ×Xd → R. Define the

box norm of order d,

‖f‖2d�d = Ex∈X1×···×Xd,
y∈Y1×···×Yd

∏
ω∈{0,1}d

f(Pω(x,y))

For e ⊆ {1, . . . , d}, we can define ‖f‖�e for f : Ve → R.

Example 1.1.14. ‖f‖4�2 = Ex∈X,x′∈X′,y∈Y,y′∈Y ′f(x, y)f(x′, y)f(x, y′)f(x′, y′).

On a hypergraph system (J = [d+1], (Vj)j∈J ,H)7, we put sigma algebras Be on each Ve =
∏
j∈e Vj .

We can also think ofBe as the σ−algebraAe on VJ whereAe = π−1
e (Be) for the projection πe : VJ →

Ve.

Lemma 1.1.15 ( [52], Gowers uniform functions are orthogonal to lower order sets, in other words,

there are no correlations between them). Given a hypergraph system (J = [d + 1], (Vj)j∈J ,H). Let

e ∈ H, |e| = d′, f : Ve → R.

1. ‖fg‖�e ≤ ‖f‖�e when g : Ve → R is independent of xj-variable for some j ∈ e.

2. Exe∈Vef(xe)
∏
e′(e 1Ee′ (xe′ ) ≤ ‖f‖�e

3. Suppose there exists sub-algebras Be′ ⊆ Ae′ with compl(Be′) ≤ M for any e′ ⊆ J with

|e′| < d, Then for any e ∈ H , let E′e ∈
∨
e′(e Be′ then

Ex∈VJ1E′e(x)f(πe(x)) = OM (‖f‖�e)

Proof. The first statement follows when we expand the LHS using the definition of box norm. The

second statement follows by iterated applications of the first statement, see the proof of Theorem 3.5.5

(on weighted hypergraph) for details. The last statement follows from the second statement, triangle

inequalities together with the fact that E′e is a union of OM (1) atoms of
∨
e′(e Be′ .

Definition 1.1.16. Given a hypergraph system (J, VJ ,H) and a σ−algebra B on VJ . and let e ∈ Hd.

Write ∂e = {f ⊆ e : |f | = |e| − 1}. Define the e−discrepancy ∆e(Ee|B) of the set Ee ∈ Be with

respect to B by8

∆e(Ee|B) := sup
Ef∈Af
∀f∈∂e

∣∣∣∣ ∫
VJ

(1Ee − E(1Ee |B))
∏
f∈∂e

1Efdµ

∣∣∣∣ (1.1.4)

Note that the largeness of ∆e(Ee|B) implies the largeness of ‖1Ee −E(1Ee |B)‖�e . To see this, write

F = 1Ee − E(1Ee |B). Let x′j ∈ Xj for 1 ≤ j ≤ d be fixed and y1, . . . , yd ∈ [0, 1]. For 1 ≤ i ≤ d,

7 See definition 4.1.4. Basically, J is a index set VJ := (Vj)j∈J and H ⊆
∏
j∈J Vj is a hypergraph. See section 1.1.5 for

relevant notions on σ−algebras.
8We could replace the product on f ∈ ∂e to f ( e or replacing 1Ee −E(1Ee |B) with a bounded function with the same proof.
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define

Ei = {(x[d]\{i}) :
∏
ω[i,d]

F (x1, . . . , xi−1, x
′
i, Pω[i,d]

(x[i,d])) ≥ yi} ∈ B[d]\{i}

Then by Fubini’s Theorem,

∆e(Ee|B) ≥
∫
VJ

F (x1, . . . , xd)1E1 · · · · · 1Eddµ

=

∫ 1

0
· · ·
∫ 1

0

∫
VJ

F (x1, . . . , xd)1E1 · · · · · 1Eddµ dy1 . . . dyd

=

∫
VJ

∫ 1

0
· · ·
∫ 1

0
F (x1, . . . , xd)1E1 · · · · · 1Eddy1 . . . dyd dµ

=

∫
VJ

∏
ωd

F (ω[d](x[d]))dµ

Taking average over x′1, . . . , x
′
d then ∆e(Ee|B) ≥ ‖F‖2d�d . Combining this with Lemma 1.1.15, we

conclude the relationships of the two quantities (in particular largeness of one implies largeness of the

other.)

‖1Ee − E(1Ee |B)‖�e ≥ ∆e(Ee|B) ≥ ‖1Ee − E(1Ee |B)‖2d�e (1.1.5)

1.1.3 Bohr Sets

Bohr sets can be regarded as an analogue of subspaces in integer setting where we can run density

increment. Given a finite abelian group G, it is not hard to construct a non-degenerate symmetric

bilinear form (x, y)→ x · y from G×G to R/Z (see [109], Lem. 4.3). For example, if G = ZN , we

can take x · y = xy
N . For each r ∈ Ĝ, the dual group of G. We can define the character on Ĝ to be the

function er(x) := e(r · x). We can identify Ĝ with the set of characters on G by taking r 7→ er. We

can define the Fourier transform of f ,

f̂ : Ĝ 7→ C, f̂(r) = Ex∈Gf(x)e(r · x)

We can think of the Fourier transform as the measurement of the correlation between f and the

character er. It is natural to put a uniform measure on f : G → C and put counting measure on

f̂ : Ĝ→ C i.e.

‖f‖p = Ex∈G|f(x)|p, ‖f̂‖p =
∑
r∈Ĝ

|f̂(r)|p.

We state the following basic properties which follow directly from direct calculations.

Lemma 1.1.17. 1. (Orthogonality) Ex∈Gf(x)e(r · x) =

0 if r 6= 0

1 if r = 0
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2. 〈f, g〉 = 〈f̂ , ĝ〉. In particular ‖f̂‖2 = ‖f‖2
3. f̂ ∗ g = f̂ ĝ.

4. ‖f‖U2 = ‖f̂‖4

Note that no analogue of property (4) for Uk, k ≥ 3 is known. It would be very useful if such a

formula is found.

Definition 1.1.18 (Bohr’s set). Given ρ > 0, S ⊆ Ĝ. Let ‖ · ‖ denote the distance to the nearest

integer. Define9

B(S, ρ) := {x ∈ G : ‖r · x‖ < ρ ∀r ∈ S}

S is referred as the frequency of B(S, ρ). |S| is called the dimension of B(S, ρ), ρ is the width of

B(S, ρ).

The notion of Bohr sets is an analogue object of subspaces10 in Z or ZN or in more general groups .

For example, it satisfies nearly closure properties (if it is regular, see [12].) Indeed it can be considered

as approximated subgroups [48]. It can also be thought as a metric ball of radius ρ and dimension |S|.

An important structural theorem of Bohr sets in ZN is that they look like multidimensional arithmetic

progressions. This is Bogolyubov’s lemma combined with geometry of numbers.

Definition 1.1.19 (Multidimensional arithmetic progression). A multidimensional arithmetic progres-

sion of dimension K with basis x1, . . . xK is a subset of ZN or Z of the form

{ K∑
i=0

lixi ; |li| ≤ mi.
}

Lemma 1.1.20 (see [109]). Let S be a nonempty subset of ẐN and ρ > 0. Then

– B(S, ρ) contains an arithmetic progression of size at least ρN1/|S| centered at 0.

– B(S, ρ) contains a proper multidimensional arithmetic progression of dimension |K| and has

size at least (ρ/|S|)|S|N.

1.1.4 Density Increment Method

Here we describe the density increment method, sometimes called L∞−increment method [105]. We

have to find a good notion of Structure (the set of structural objects in the set/space we considering)

and ‖ · ‖S (Uniformity norm, with respect to Structure ). Let S ∈ Structure and δS(A) denotes the

density of A on S. We want to have the following dichotomy:

– (generalized von Neumann 11) ‖1A−δS(A)‖S < c(α)⇒ A contains the required configurations.
9equivalently, we may define B(S, ρ) := {x ∈ G : |1− e(r · x)| < ρ}, using |e(t)− 1| ≤ 2| sin(πt)| ≤ 2π‖t‖R /Z.

10If G is a vector space then Bohr set is indeed a subspace, the annihilator of S.
11See [31], Lemma 3.1
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( structure of A can be described in term of ‖ · ‖S and A contains the required configurations).

– (density increment) ‖1A − δS(A)‖S > c(α)⇒ we can find S′ ∈ Structure, ω(S′) ≤ ω(S) + 1

, where ω here is the notion of complexity12 of structural sets and

δS′(A) > δS(A) + c(α)

for some positive absolute constant c(α) depending only on α.

‖·‖S should be strong enough (i.e. not too many objects with small ‖·‖S norm) to prove the generalized

von Neumann but weak enough (not too many objects with large ‖ · ‖S norm) to obtain the density

increment. To run the density increment method, suppose we cannot find the configurations in the

set then we can find S′ where A has increased density. However this cannot continue forever as the

density cannot exceed 1 So eventually, we arrive at the other case of the dichotomy and we must

be able to find the required configuration in the set. We give some examples of density increment

dichotomy below.

Example 1.1.21 ([46], Lemma 2.4). (Roth’s theorem in Finite field.) Let A ⊆ Fnp . If there is t 6= 0

such that 1̂A(t) ≥ α2/2 then there is a subspace of codimension 1 such that A has density on some

of its translate at least α+ α2/4.

In this case we may take Structure to be the set of subspaces of Fnp and ‖ · ‖S to be ‖̂·‖∞.

Example 1.1.22 (Roth’s Theorem.). Suppose 〈1A − α, e(x r
N )〉 � δ, this means 1A − α has a linear

bias in some direction. We can use equidistribution property13 of rx
N (mod 1) to partition [N ] (up

to small error) into long arithmetic progressions of length, say N t, t < 1 for which rx
N is almost a

constant (mod 1) on each of these progressions. Then our set will have increased density α + c(α)

on one of this progression. We could also do density increment in Bohr sets as in [12].

Example 1.1.23. (Rectangles, corners) Finding the correct notion of structures and uniformity norms

can be tricky. We may expect the ‖ · ‖�2 norm to control the number of rectangles to control the

number of rectangles. Assume ‖1A − α‖�2 is small and we want to show that A contains roughly

α4N4 rectangles. Expand

‖1A − α‖4�2 =Ex,x′∈X,y,y′∈Y 1A(x, y)1A(x′, y)1A(x, y′)1A(x′, y′)− αA3(x, x′, y, y′) + α2A2(x, x′, y, y′)

− α3A1(x, x′, y, y′) + α4

This first term is the number of rectangles (divided by N4). A1 is a sum of 4 terms of the form

Ex,x′,y,y′1A(x, y′) = α. The second term is 6 sums of the form Ex,y,x′,y′1A(x, y)1A(x, y′) =

12So S′ in some sense is not too small compared to S. For example, if S are subspaces of a given vector spaces, ω(S) could be
the codimension of S

13e.g. Dirichlet’s diophantine approximation theorem
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Ex(Ey1A(x, y))2 ≥ (Ex,y1A(x, y))2 = α2 by Cauchy-Schwartz’s inequality. However we want to es-

timate four terms inA3 like Ex,y,x′,y′1A(x, y)1A(x′, y′)1A(x′, y) or Ex,y,x′,y′1A(x, y)1A(x′, y)1A(x, y′)

to be≤ α3 but there is no reason for this to be true for general, apart from an insufficient trivial bound

of O(α2). Indeed, in Shkredov’s proof [96] of exponential bound in corner in dimension 2, he puts

some uniformity conditions on the structural objects E1 × E2 (with a method to uniformize general

product set E1 × E2) in a way that we can run the density arguments. This is still open in higher

dimension or in general.

1.1.5 Energy Increment Method

The energy increment method, first appeared in the context of graph theory in the proof of Szemerédi’s

Graph Regularity Lemma [99], gives analogue dichotomy argument as in density increment method.

However, this method uses the machinery of ergodic theory (factor) to read the structure in term of

σ−algebras, this is more flexible with the machinery of L2−space. For example, it is used in showing

the existence of prime arithmetic progressions [52] where there is no density argument proof of the

result available. Indeed, there are many results in density Ramsey theory where only ergodic proof is

known. We also use the energy increment method in chapter 4.

Definition 1.1.24 (Factor). Let X be a finite set, then a σ−algebra on X can be given by a (unique)

partition of X which partitions X into atoms. A sigma-algebra B on X is sometimes called a factor.

We say that a factor B′ is finer than B (or B is coarser than B′) if each atom of B can be written as a

union of atoms in B′. We say that f is measurable with respect to B if f is constant on each atoms of

B. Hence L2(B′) ⊆ L2(B).

Define compl(B), the complexity of B to be the smallest number of elements in B that can be used to

generate B. Note that the number of atoms is at most 2compl(B).

Finally define the join B ∨ B′ the least common refinement of B and B′, that is the sigma-algebra

whose atoms are given by the intersections A ∩A′ where A is an atom in B and A′ is an atom in B′.
If we are working on X × Y with B1 a σ−algebra on X and B2 a σ−algebra on Y . We have

B1
∨
B2 = {B1 × B2;B1 ∈ B1, B2 ∈ B2} is a factor on X × Y . We may also regard B1,B2 as

factors on X × Y in the trivial way and B1 ∨ B2 = {B1 ∩B2;B1 ∈ B1, B2 ∈ B2}.

Definition 1.1.25 (Conditional Expectation). For a function f : X → C we define the condition

expectation to be the function E(f |B) : X → C by

E(f |B)(x) :=
1

|B(x)|
∑

y∈B(x)

f(y),

where B(x) is the atom containing x.

We see that E(f |B) is constant on each atom of B. We can view E(f |B) as a version of f that could

be realized by B , in other words the information of f that is captured by B. Indeed, the conditional
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expectation E(f |B) is the orthogonal projection of L2(X) to L2(B) where L2(B) is the space of

functions in L2(X) which is B−measurable. This follows from the identity

〈f − E(f |B),E(f |B)〉 = 0.

Here 〈f, g〉 = Ex∈Xf(x)g(x). Hence f −E(f |B) is orthogonal to all structure given by B. Similarly,

if B ⊆ B′ then E(f |B) is the orthogonal projection of E(f |B′) to L2(B). Indeed, we have

〈E(f |B′)− E(f |B),E(f |B)〉 = 0.

Next, we define the term energy which the name “energy increment method” (or “energy boosting

argument” in computer science) comes from.

Definition 1.1.26 (Energy). Let f : X → C and B a factor then the energy of f with respect to B is

given by the L2−norm ‖E(f |B)‖22.

Energy increment method: Decompose f : X → C as

f = f1 + f2 + f3 (1.1.6)

where f1 = E(f |B) is the structural part described in terms of sigma-algebra. f2 = f − E(f |B) is

the pseudorandom part which is orthogonal to the structures given by B. We usually refer to such

decomposition as Koopman-von Neumann decomposition. Sometimes, we will also have f3, the the

error term which is small in size or , say, in L2 norm.

Example 1.1.27. LetBtriv = {∅, X} be the trivial sigma-algebra. Then for any x ∈ X,E(f |Btriv)(x) =
1
X

∑
x∈X f(x) := α is a constant function. If X is a dense truly random set then we expect

‖1X − α‖�d to be small. We may obtain the decomposition

1X = α+ (1X − α)

Example 1.1.28. [47] Let f : Fnp → [−1, 1], S := Specη(f) := {r : |f̂(r)| ≥ η}. Hence |S| ≤ 4δ2

(by Plancherel theorem). Let H = S⊥ be the annihilator of S and µH := 1H/E1H be the Haar

measure on H . Let B be the factor generated by the linear functions r(x) = rTx, r ∈ S. We calculate

f1(x) := f ∗ µH(x) =
1

|H|
∑

h∈H+x

f(h) = E(f |B)

f2(x) := f − f ∗ µH , |f̂2(r)| = |f̂(r)||1− µ̂H(r)| ≤ 2η.

The last inequality follows from the fact that µ̂ ∈ [0, 1] and r ∈ S ⇒ µ̂H(r) = 1.

14



Suppose we have the decomposition as (1.1.6) then we plug in into an average like (1.1.2) to prove that

the average is bounded above by a constant. With such a decomposition, we basically reduced to prov-

ing such estimate for general f to f1. Such a statement for f1 is sometimes called counting lemma.

In some context like Green-Tao’s Theorem, the counting lemma is just the ordinary Szemerédi’s the-

orem. The method that get rid of f2, f3 and allows us to work on only f1 is called transference
principle. The term f2 behaves randomly and are expected to cancel out in the average (1.1.2), so

that any term involving f2 giving only a small error term (this is called Generalized von-Neumann
theorem.). The remaining terms involving f3 are also expected to contribute only small error term,

this can be trickier to show.

Dichtomy for energy increment:
If ‖f − E(f |B)‖� > δ is large then f correlates with some structure in B and we can find a finer

factor B′ which incorporated some structure in B, with increased energy,

‖E(f |B′)‖22 = E(f |B)‖22 + c(δ). (1.1.7)

Here c(δ) is a fixed constant. Since the energy cannot exceed one, this process must stop and we must

arrive at a factor B such that ‖f − E(f |B)‖� is small.

1.2 Green-Tao’s Theorem

The motivation for Green-Tao’s theorem is that prime should behave randomly (this is basically still

open e.g. the prime tuples conjecture), hence it should contain many arithmetic progressions like a

random set.

1.2.1 Green-Tao’s Theorem

Theorem 1.2.1. [52] Let f : ZN → R≥0, f(x) ≤ ν(x) for some pseudorandom measure ν (satisfying

some pseudorandom conditions with parameter M , say) with Ex∈ZN f(x) ≥ δ then

Ex,y∈ZN f(x)f(x+ y)...f(x+ (k − 1)y) ≥ c(k, δ)− ok,δ,M (1).

where c(k, δ) is the same positive constant as in the Szemerédi’s Theorem (Theorem 1.1.2).

Note that if we can prove this for fixed k, y then the k−prime tuple conjecture would follow. We show

below (as in case of Szemerédi’s theorem) that this theorem implies the following

Theorem 1.2.2. If A ⊆ P has relative positive upper density i.e.

lim sup
N→∞

|A ∩ PN |
|PN |

> 0
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Then A contains infinitely many k-term arithmetic progressions.

Remark 1.2.3. A way to think of Theorem 1.2.1 in its relation to Theorem 1.2.2 is that we take f to be

(the characteristic functions of) a dense subset primes and ν is (a normalized function supported on)

the set of almost primes for which primes has positive density. If support of ν is sparse then ν would

be unbounded. The point would be that this set of almost primes has some pseudorandom property

which says something like “ν and 1 behave similarly” that will allow us to prove the theorem.

Theorem (1.2.1)⇒ Theorem (1.2.2). Suppose A ⊆ P with positive upper density α then there is

some14 b depending on N such that 1
N

∑
n≤N 1A(N)Λb(n) > cα.

Let [M, δN ] be in the support of the Green-Tao’s measure ν (see deinition 2.2.3). Consider δk = 2−k

then we have a partition

[M, δN ] = [M, δkδN ] ∪
k−1⋃
m=0

[2mδkδN, 2
m+1δkδN ]

so that there is some j such that 1
N

∑
n∈[2jδkδN,2j+1δkδN ] 1A(n)Λb(n) > cα,k. Define

f(n) =

ck1A(n)Λb(n) if 2jδkδN ≤ n ≤ 2j+1δkδN

0 otherwise

then there is a constant cα,k > 0 such that

En∈[1,2j+1δkδN ]f(n) > cα,k

for some j = j(N) and some N arbitrarily large. We can verify that f(n) ≤ ν(n) (see Chapter 2 for

definition of ν and the verification). Let B = {x ∈ [1, 2j+1δkδN ] : f(x) ≥ cα,k
2 } then |B| ≥ c′α,k

2 N

so by Theorem 1.2.1,B contains c2(α, k)N2 arithmetic progressionsQ = {x, x+y, ..., x+(k−1)y}
such that f(x)...f(x+ (k − 1)y) ≥ (

c′α,k
2 )k and so

1

N2

∑
x,y∈ZN

f(x)...f(x+ (k − 1)y) ≥ 1

N2

∑
x∈A,y∈ZN

f(x)...f(x+ (k − 1)y) ≥ c2(α, k)

(
c′α,k

2

)k
.

which is greater than 0. The contribution of trivial arithmetic progression (i.e. y = 0) is O( logk N
N ) =

o(1). Also if x, x + y, ..., x + (k − 1)y ∈ [2jδkδN, 2
j+1δkδN ] ⊆ ZN is an arithmetic progression

in ZN then they are genuine arithmetic progressions in Z. (xj + xj+2 − 2xj+1 ≡ (mod N) ⇒
xj + xj+2 − 2xj+1 = 0, ∀j.)

14See definition of Λb in Chapter 2, for now just think of it as the Mangoldt functions on primes
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In the original proof of Green-Tao’s Theorem [51], they decompose a function f majorized by ν using

the dual function (also referred as generalized character) Df defined by

〈f,Df〉 = ‖f‖2dUd (1.2.1)

For example, consider ‖ · ‖�3 (where we consider box norm instead, the Gowers norm on ZN could

be made in a similar form by a change of variable), we have

Df(x, y, z) = Ex′,y′,z′f(x, y, z′)f(x, y′, z)f(x′, y, z)f(x′, y′, z)f(x′, y, z′)f(x, y′, z′)f(x′, y′, z′)

Indeed functions with large Uk norm is then correlate with Df just by definition. The obvious

structure of Df we see is that they are composed of functions of lower complexity15 of the form

F (x, y)G(y, z)H(z, x) and we will use this obvious structures to decompose functions in the regular-

ity lemma using the machinery of sigma-algebras. It is much harder to see what these objects really

are; they are actually given by nilsequences. We don’t need this in soft inverse arguments as in [52]

but we need it if we want to give asymptotes for linear equation in primes [54].

A function g with ‖g‖∗
Ud

= O(1) is called anti uniform function which will be used to show uniform

distribution property: If f is uniform then 〈f, g〉 will be small. This can be regarded of a generaliza-

tion to uniformity in Roth’s theorem when g is taken to be linear exponentials. Hence anti uniform

functions can be used to measure the degree of structures in a function. In [52], they prove that these

dual functions satisfy the dual function estimate for fi bounded by ν

‖P (Df1, . . . ,DfK)‖∗Uk = OK,d,P (1) (1.2.2)

where P is a polynomial of K variables, degree d. K, d can be arbitrarily large. Correlation condition

is applied here in place of infinite linear forms condition which was not available at that time. See

section 3.3.

This estimate allows one to prove uniform distribution of ν with respect to these dual functions (Prop.

6.2 in [52]). The dual of Gowers uniformity norms are not algebra norm in general, but they are

majorized by BAC−norm (defined in [37]) which is a norm satisfying some algebraic properties

used in proving transference principle [37] and also in Chapter 3 of this thesis to prove a transference

principle. For example, the dual of ‖ · ‖∗U2 norm is not an algebra norm but is majorized by an algebra

norm16. Indeed, when f is a function on ZN , we have

‖f‖∗U2 = ‖f̂‖4/3 ≤ ‖f̂‖1
15Here, meaning they depend on less number of variables or constructed from functions which depend on less number of vari-

ables. This relates to the notion of relatively independent joining which is used in an explicit construction of Host-Kra factors;
characteristic factors for multiple recurrence in (1.1.1). See e.g. the appendix B of [8] or section 7 in [71] for expositions.

16meaning ‖fg‖ ≤ ‖f‖‖g‖
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Here ‖̂·‖1 is the Wiener norm which is an algebra norm by Young’s inequality. However it would not

be easy to show that ‖D̂f‖1 = O(1) when 0 ≤ f ≤ ν. A more general and systematic study of dual

norms and dual functions in this direction is taken in [66].

For the next step, Green-Tao employed the notions of factor and condition expectation machinery

from ergodic theory. They use the dual functions to define sigma-algebras, and use the energy incre-

ment (if there is a correlation, find dual functions DF with correlate with f and use it to refine the

factor B with increased energy) to prove estimate like (1.1.7) or (1.1.6) for 0 ≤ f ≤ ν. The sets

generated by these σ−algebras of DF is referred in Green-Tao’s paper [51] as generalized Bohr sets.

Now we state a transference principle which is later simplified in [37] and independently known in

language of computer science as dense model theorem [87]. The following version is taken from [88].

Theorem 1.2.4 (Transference Principle). Let ν be a pseudorandom measure. Suppose ‖ν − 1‖Uk ≤
ε′ := exp(−(1/ε)O(1)) then there exists f1, f2, f = f1 + f2, 0 ≤ f1 ≤ 2, ‖f2‖Uk ≤ ε. Furthermore,

Ex,rf(x)f(x+ r) . . . f(x+ (k − 1)r) = Ex,rf1(x)f1(x+ r) . . . f1(x+ (k − 1)r) +O(‖f2‖Uk)

with O(‖f2‖Uk) = O(ε).

We will prove a variant of this transference principle in Chapter 3 where we adapt the method in

[37]. The quantitative bound exp(−(1/ε)C) comes from the following fact17 (the explicit bound is

not important unless we are trying to extract a quantitative bound in the application):

Fact 1.2.5. (e.g.[16]) There is a polynomial P (x) = pdx
d + pd−1x

d−1 + · · ·+ p0 such that |p(x)−
x+| ≤ ε

8 for all x ∈ [−2/ε, 2/ε] such that

|pd|(2/ε)d + · · ·+ |p1|(2/ε) + |p0| ∼ exp(1/εC)

Now we demonstrate how to apply transference principle to give a quantitative bound for Green-Tao’s

Theorem, assuming the Szemerédi’s Theorem as a blackbox.

Claim 1.2.6. ‖ν − 1‖Uk = O(1/ω) +O(logω/
√

logR).

Proof of Claim. Recall that by linear forms condition (see section 2.2.2),

‖ν − 1‖2kUk =
∑

A⊆{0,1}k
(−1)|A|(1 + o(1)) = o(1)

17If we don’t need an explicit quantitative bound in the transference principle then we don’t need this fact in the proof of the
transference principle. See e.g. Appendix B of [] or [] for expositions.
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Hence the error term o(1) comes from the the error in the following linear forms estimate condition;

(
Cχ

φ(W )

W logR

)mEx∈BΛχ,R(θ1(x))2 . . .Λχ,R(θM (x))2 = 1 + o(1)

Using the estimate obtained in section 2.2, the o(1) term is given by

O(
1

ω
) +O(

logω√
logR

)

Here R is a small power of N .

Choose ω,N large enough so that ‖ν−1‖Uk ≤ ε′ = exp(−(1/ε)O(1)). Choose the ε in the error term

O(ε) (using the constant in the Remark 1.1.7 ) so that

ε < exp(−C exp((1/δ)Ck)) < C2(k, δ)

Hence (1/ε)C ≥ exp(exp(1/δCk)). As we chose ω ≥ exp(1/εC) and logN ≥ (logω) exp(1/εC)

so we choose N ≥ exp(exp(exp(1/εC))), hence we have the bound

N ≥ exp(exp(exp(exp(exp(1/δCk))))).

Note that there are other variants of transference principles. A natural question to ask would be the

properties of the weight ν required to obtain a transference principle or what would be the natural

condition of ν, as investigated18 in [16] in the context of Green-Tao’s Theorem. This can open a

wider applications of the transference principles. In the case of 3 term arithmetic progressions in the

primes, this question is first investigated by Green [45], to approximate f by a bounded function g.

In this case, ν is required to satisfy a restriction estimate and a Fourier decay property. A variant of

transference principle in this case is obtained in [63] where they approximate f by a function g which

is no longer assumed to be bounded but has bounded L2−norm. This price one pays is that ν need

satisfy some more properties such as correlation estimate and some estimate of its L2−norm. This

has applications in obtaining a better quantitative bound of Roth’s theorem in the primes. Naslund

[78] obtains a transference principle for lk-bounded function g with some stronger assumptions on ν

than [63]. See e.g. [80] for an exposition.
18With correlation conditions in the definition of pseudorandom sets, we expect relative Szemerédi’s Theorem to hold for pseu-

dorandom sets of density N−o(1). In [16], they remove the correlation conditions and obtain the results for pseudorandom subsets
of density N−ck .
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1.3 Szemerédi’s Regularity Lemma

The idea of regularity in graph is that the equally distribution of the edge density. Regularity lemma is

a kind of structural theorem. It says that up to small error, we can describe any dense graph with some

structure (partition of vertex sets which has about the same density), and apart from that information,

the graph is just behaves randomly. For a survey of basic properties and applications of this lemma,

see the survey [69].

1.3.1 Graph Regularity

Definition 1.3.1. A bipartite graph G(A,B) is ε−regular if for all A′ ⊆ A,B′ ⊆ B, |A′| ≥
ε|A|, |B′| ≥ ε|B| then ∣∣∣∣ |E(A′, B′)|

|A′||B′|
− |E(A,B)|
|A||B|

∣∣∣∣ ≤ ε (1.3.1)

Here we don’t assume regularity condition for a pair involving a small set. Equation (1.3.1) can be re

written as

|E(A,B) ∩ (A′ ×B′)| = |A
′ ×B′|
|A×B|

|E(A,B)|+O(ε|A×B|) (1.3.2)

This statement would be trivial for small A′ or B′. This is used in the functional version [103].

Theorem 1.3.2 (Basic properties of regular pairs; Most degrees into a large set are large [69]). Let

(A,B) be an ε−regular pair with density δ then Let Y ⊆ B, |Y | ≥ ε|B| then

∣∣{x ∈ A : deg(x, Y ) < (δ − ε)|Y |}
∣∣ < ε|A|

Proof. Let X = {x ∈ A : deg(x, Y ) < (δ − ε)|Y |}, expect Xnot to be too large. Trivially,

|E(X,Y )| < (δ − ε)|Y |. Suppose |X| ≥ ε|A| then by regularity, this is a contradiction.

Remark 1.3.3. Let us mention briefly a relation of the notion of graph regularity with the box norm.

Suppose ‖1G − E(1G|BX ∨ BY )‖� ≤ η with BX = X1 ∪ · · · ∪Xm, BY = Y1 ∪ · · · ∪ Yn. We have

E(1G|BX ∨ BY )(x, y) = |G∩(Xi×Yi)|
|Xi||Yi| := δij . By the definition of box norms we can find functions

U(x), V (y) such that

Ex,y(1G(x, y)− E(1G|Bx ∨ BY )(x, y))U(x)V (y) ≤ η.

Writing αi := |Xi|/|X|, βi := |Yi|/|Y | and let Ui := {U(x) : x ∈ Xi}, Vj := {V (y) : y ∈ Yj},
γi := ||G ∩ (Ui × Vj)| − δij |Ui||Vj || ≤ η. This implies, for example,∑

i,j:γij>
√
η

αiβj ≤
√
η

Hence we have many Xi, Yj with G
∣∣
Xi×Yj

is η−regular.
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Theorem 1.3.4 (Graph regularity lemma [99]). ∀ε > 0, ∃K(ε) independent of n with the following

property: Any graph Gn with n ≥ n0(ε) vertices can be partitioned into vertex classes V0, V1 . . . , VK

such that |V0| ≤ n/K, |Vi| = |Vj | for 1 ≤ i, j ≤ K and all but εK2(i, j) pairs give ε−regular

G(Vi, Vj).

The proof proceeds via the energy increment method on a partition of vertices, see e.g. Theorem 9.4.1

in [1]. Inspecting the proof, we would need n0(ε) to be a tower of height ε−5 to obtain an ε−regular

partition with K = ε−1. It was shown by Gowers [40] that this tower type bound is necessary. It

is true for applications of regularity method that we will have terrible bound. If we want a better

quantitative bound, we would need to avoid applying regularity lemma.

Now we illustrate a well known application of regularity lemma.

Theorem 1.3.5 (Triangle removal lemma; Ruzsa-Szemerédi [92]). ∀c > 0 ∃ε(c) > 0 with the follow-

ing property: If Gn is the union disjoint of cn2 edge-disjoint triangles then it must actually contains

at least ε(c)n3 triangles where ε→ 0 as c→ 0.

Remark 1.3.6. Trivially, the number of triangles would be at least cn2 triangle but this theorem says

that it contains much more especially when n is large. In fact, in a higher order of magnitude.

Thm 1.3.4⇒ Thm. 1.3.5. Take a random 3−partition on the vertices to obtain vertex setsW1,W2,W3.

By losing a positive fraction of the cn2 triangles, we can assume that Gn is tripartite. Choose ε, and

apply the regularity lemma (Theorem 1.3.1) to our graph, we obtain the regular partition with K

classes of vertices.

– Delete the edges between non ε− regular pairs, the number of edges deleted is less than εK2(n/K)2 =

εn2 edges.

– We will apply graph regularity lemma for pairs with density at least δ. Delete the edges between

pairs with density ≤ δ then we deleted less than K2δ(n/K)2 = δn2 edges.

Choose ε, δ much much smaller than c, hence we still have c′n2 triangles in our graph. We obtain a

simplified graph with the following property: If there is an edge between Vi and Vj then G(Vi, Vj) is

ε−regular and d(Vi, Vj) ≥ δ. Now we claim that the number of triangles is at least c(ε)n3.

Consider vertex sets V1 ⊆ W1, V2 ⊆ W2, V3 ⊆ W3 where each pair (Vi, Vj) is regular with density

≥ δ. Apply Theorem 1.3.2 to V2, at least (1 − 2ε)|V2| vertices has degree ≥ (δ − ε)|V1| to V1 and

degree ≥ (δ − ε)|V3| to V3. Pick one of such v and assume δ − ε ≥ ε. One has from the definition of

regular pairs,

|E
(
N(v)

∣∣
V1
, N(v)

∣∣
V3

)
| ≥ (δ − ε)|N(v)

∣∣
V1
||N(v)

∣∣
V3
| ≥ (δ − ε)

(
(δ − ε)n/K

)2 ≥ ε3(n/K)2.

This is a lower bound of number of triangles containing v. Since the number of such v is at least

(1− 2ε)|V2|, choosing δ = 2ε then the number of triangles is at least (1− 2ε)ε3n3/K(ε)3.
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Finally we state a functional version of graph regularity lemma [103]. We will prove analogue of this

lemma in the weighted hypergraph setting in the main text.

Theorem 1.3.7 (Functional graph regularity lemma [103]). Suppose f : V1 × V2 → [0, 1] is measur-

able wrt B1,max,B2,max and ε > 0. Let F = Fε : N → N be an arbitrary increasing function. Then

there exists M = OF,ε(1) and sigma-algebras Bi ⊆ B′i ⊆ Bi,max on Vi. We obtain the following

decomposition of f :

1. E(f |B1 ∨ B2), compl(B1), compl(B2) ≤M .

2. ‖E(f |B′1 ∨ B′2)− E(f |B1 ∨ B2)‖2 ≤ ε

3. ‖f − E(f |B′1 ∨ B′2)‖� ≤ 1/F (M).

Functional version (Theorem 1.3.7) implies graph version (Theorem 1.3.4): WriteE for the set of edges

between V1 and V2. Apply the Theorem 1.3.7 with ε replaced by ε3/2. By equation (1.1.5), the last

condition in Theorem 1.3.7 may be translated to

|(f − E(f |B′1 ∨ B′2))1A1×A2 | ≤ 1/F (M) ∀ A1 ∈ B′1, A2 ∈ B′2.

Let J = d2M/εe which is a large number and assume |V1|, |V2| > J where each B1,B2 contains at

most 2M atoms. Subdivide each of these atoms into sets of size b |Vi|
(1+O(ε))J c with possibly remaining

sets of size (error term) O(|Vi|/J) on each atom. Collect all error term into the set Vi,0, we obtain a

decomposition

Vi = Vi,0 ∪ Vi,1 ∪ · · · ∪ Vi,J

with |Vi,0| = O(ε|Vi|) + O(2M |Vi|/J) = O(ε|Vi|). Our goal is to show that (V1,j , V2,k) is a regular

pair for almost j, k ≥ 1. Consider the induced bipartite graph (V1,j1 , V2,j2 , E ∩ (V1,j1 × V2,j2)). Let

A1 ∈ B1, A2 ∈ B2 be atoms. We want to show

|E ∩ (A1 ×A2)| = |E ∩ (V1,j1 × V2,j2)|
|V1,j1 × V2,j2 |

|A1 ×A2|+O(ε|V1,j1 ||V2,j2 |). (1.3.3)

For this, it suffices to find d independent of A1, A2 such that

|E ∩ (A1 ×A2)| = d|A1 ×A2|+O(ε|V1,j1 ||V2,j2 |). (1.3.4)

(To see this, take A1 = V1,j1 , A2 = V2,j2 in (1.3.4) and substitute in (1.3.3)). Now A1 × A2 is in an

atom of B1 ∨ B2, one may take d = E(1E |B1 ∨ B2). This is equivalent to

E(x,y)∈V1×V2
(1E − E(1E |B1 ∨ B2))1A1×A2 = O(

ε|V1,j1 ||V2,j2 |
|V1||V2|

) = O(ε/J2)
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Now by our assumption (the conclusion of the functional graph regularity lemma),

E
[
1E − E(1E |B′1 ∨ B′2)1A1×A2

]
= O(1/F (M)).

Take F (M) := 22M/ε3 and since J = Oε(1), one has O(1/F (M)) = O(ε3/22M ) = O(ε/J2) =

Oε(1). Hence it suffices to show

E(

∣∣∣∣E(1E |B′1 ∨ B′2)− E(1E |B1 ∨ B2)

∣∣∣∣1V1,j1
×V2,j2

) = O(ε/J2) (1.3.5)

By Cauchy-Schwartz’s inequality, it suffices to show

E(

∣∣∣∣E(1E |B′1 ∨ B′2)− E(1E |B1 ∨ B2)

∣∣∣∣21V1,j1
×V2,j2

) = O(ε2/J2) (1.3.6)

We have from our assumption that

E
∣∣∣∣E(1E |B′1 ∨ B′2)− E(1E |B1 ∨ B2)

∣∣∣∣2 = O(ε3) (1.3.7)

So (ε2/J2)|{(j1, j2) : (1.3.6) fails}| ≤ ε3. Hence all but O(εJ2) pairs (j1, j2) that (1.3.6) fails.

We can prove the functional graph regularity lemma to prove functional triangle removal lemma stated

below. This theorem this says we can clean up a graph with a small number of triangles in a lower

complexity manner to make it triangle free.

Theorem 1.3.8 (Triangle Removal Lemma [100]). Let (X,µX), (Y, µY ), (Z, µZ) be probability spaces.

Suppose f1 : X × Y → [0, 1], f2 : Y × Z → [0, 1], f3 : X × Z → [0, 1] are measurable functions.

Let ε > 0. Suppose

Λ3(f1, f2, f3) :=

∫
X

∫
Y

∫
Z
f1(x, y)f2(y, z)f3(x, z)dµXdµY dµZ ≤ ε

Then we can find measurable functions f̃1 : X×Y → [0, 1], f̃2 : Y ×Z → [0, 1], f̃3 : X×Z → [0, 1]

such that ‖fi − f̃i‖1 = oε→0(1) for i = 1, 2, 3 such that f̃1f̃2f̃3 vanishes entirely, in particular

Λ3(f̃1, f̃2, f̃3) = 0.

Finally, let us remark that there is also an arithmetic regularity lemma for functions f : [N ] → [0, 1]

proved in [50] in terms of nilsequences. An application of this lemma in [50] is a proof of Bergelson-

Host-Kra’s conjecture [7]: If A ⊆ [N ] has density α and let ε > 0, then there exists�α,ε N choices

of h for which A contains at least (α4 − ε)N 4-AP. The case of 3-AP. is proved by Green [49] and it

is shown by Ruzsa in an appendix of [7] that the statement is false for 5-AP.
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1.3.2 Hypergraph Removal Lemma

Generalizing graph regularity to hypergraph regularity is not trivial. A strong version of hyper-

graph regularity lemma due to Vojta Rödl-B.Nagel-M.Schacht-J.Skokan [82, 83, 84, 85] and Gowers

[35, 36] allows one to prove hypergraph removal lemma and deduce multidimensional Szemerédi’s

theorem from that. The version we will use later is a stronger functional version due to Tao [104]. It

turns out that by consider a projection, we can deduce the general multidimensional Szemerédi’s the-

orem from the corner case (corresponding to d−regular hypergraph). This will not work for primes as

we don’t know if the projection of a prime point is still prime or not. Fortunately, we can use general

simplices in the prime cases, allowing us to apply the Linear forms conditions. In graph theoretical

term, as stated in [16]19, the Linear forms conditions say that our hypergraph has the asymptotically

correct count for any 2-blow-up of its subgraph.

Recall a non-degenerated corner is a configuration of the form

{(x1, . . . , xd), (x1 + s, x2, . . . , xd), . . . , (x1, x2, . . . , xd + s)}

with s 6= 0, we state the corner theorem.

Theorem 1.3.9. If A ⊆ Zd has positive upper density then A contains a non-degenerate corner.

The corner Theorem can be proved via the hypergraph removal lemma on (d+ 1)−partite d− regular

hypergraph. This is first observed by Solymosi in case d = 2 ( [97]). First note that in a (d+1)-partite

d-regular hypergraph with vertex set X1, ..., Xd+1, a simplex is a set of size d + 1 of d−hyperedges

{(xi)i∈[d+1]\{j}}1≤j≤d+1.

Lemma 1.3.10 (Hypergraph Removal Lemma [36]). In a (d+ 1)−partite d−uniform hypergraph H ,

for any ε > 0, there exists δ = δ(ε) > 0 where δ → 0 as ε → 0 with the following property: Let H

be a (d+ 1)−partite d−uniform hypergraph with vertex set X1, ..., Xd+1, |Xi| = Ni with sufficiently

large Ni. Suppose H contains ≤ δ
∏d+1
i=1 Ni simplices, then for each i ≤ d + 1, one can remove at

most ε
∏
j 6=iNi hyperedges of H from

∏
j 6=iXj in such a way that after the removals, one is left with

a hypergraph which is simplex-free.

Proof of Theorem 1.3.9 via Lemma 1.3.10. Let A ⊆ [N ]d, |A| ≥ αNd and consider the correspond-

ing hypergraph GA on (Z/N)d+1 (see section 3.1 for the construction with all weights are 1 in our

case here.) where we put a d-hyperedge (yi1 , .., yid) iff all the corresponding d hyperplanes intersects

at a point in A. Then we see that each simplex in GA will correspond to a corner.

Each corner may be degenerated to a single point in A but this can happen for only |A| = o(Nd+1)

of these simplices. Apply the hypergraph removal lemma with ε = αN−1d−1 → 0, as N → ∞.
19actually a special case of Linear forms conditions
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Suppose GA contains ≤ δ(ε)Nd+1 corners then for a sufficiently large N , ε < α
2d . So if A does

not contain a non-degenerated corner then by the Hypergraph Removal Lemma, we would be able to

remove less than αNd of d− hyperedges to make the hypergraph simplex-free but this is impossible

as |A| has size ≥ αNd.

Remark 1.3.11. We can ensure that the constant s in the corner can be choose to be positive by the

following trick due to Ben Green [36]: If we choose random point (x, y) from [−N,N ]2, since A has

upper density α, we have P((x, y) ∈ A∩[−N,N ]d) ≥ cα for some c > 0 and infinitely manyN . If we

select a (fixed) point (a, b) at random, letB = A∩(a, b)−A. Since |A∩((a, b)−A)| = 1A∗1A(a, b)

and20

1

N2

∑
(a,b)

1A ∗ 1A(a, b)1[−N,N ]d =
1

N2
(
∑
(a,b)

1A(a, b))21[−N,N ]d ≥ c2α2.

Hence if we replace A by B = A∩ ((a, b)−A) then B = (a, b)−B and still has positive density for

some (a, b) and B is symmetric around A.

Corner Theorem⇒ Multidimensional Szemerédi’s Theorem [36]. Suppose A ⊆ Zr has positive up-

per density. Consider the nontrivial case F ⊆ Zr, |F | = k+1 ≥ r+1. By the remark above one may

consider F which is symmetric about some point. Choose a point z such that F − z has one point

at the origin and A − z still has positive upper density. Also we may assume that span{F} = Zr:
Suppose span{F} ⊆ V , a vector space of dimension r − 1. Let er be a vector outside V then

F ∪ {er} ⊆ (V ∪A)× Z ⊆ Zr. which has positive upper density. Then we may add vectors to F so

that span(F ) = Zr without affecting the question.

Let {e1, ..., ek} the standard basis of Rk, and define a linear map Φ that maps bijectively from

{0, e1, ...ek} to F . Now suppose span{φ(e1), ..., φ(er)} = Zr and we can find infinitely many posi-

tive integersM = M(N)→∞ asN →∞ and Φ−1(A−z)× [M−1]k−r has positive upper density

η for some η = η(α, F ) > 0 and is mapped into A − z so we can find a large M with at least ηMk

points on [M − 1]k is mapped into A− z by Φ.

Now we may apply the corner theorem to conclude that Φ−1(A− z)× [M − 1]k−r contains a corner

w + c{0, e1, e2, ..., ek}, c > 0. So there is an affine image of F = z + Φ(w + c{0, e1, e2, ..., ek}) ∈
A.

20 if we choose (x, y), (a, b) independently, we can think of this as

P((x, y) ∈ B) = P((x, y) ∈ A)P((x, y)− (a, b) ∈ −A|(x, y) ∈ A) = P((x, y) ∈ A)P((a, b) ∈ (x, y)−A|(x, y) ∈ A) ≥ c2α2
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Chapter 2

Goldston-Yildirim’s Sieve and Almost
Prime Solutions to Diophantine
Equations

In this chapter we prove the main result , Theorem 2.4.2 in section 2.4. We develop some backgrounds,

motivations and necessary tools in section 2.1-2.3.

2.1 Backgrounds and Some Classical Results

2.1.1 Basic Prime Number Estimates

Some results on sums of primes may be derived from the Prime Number Theorem using partial sum-

mation to convert sums involving an arithmetic function to an integral (see appendix A in [77]). Given

N > 1, the set of almost prime Pε[N ] is defined to be the set of positive integers up to N which only

have large prime factors, bigger that N ε. Note that each integers in Pε[N ] can have at most b1/εc
prime factors.

Theorem 2.1.1 (Partial Summation Formula [77]). Let A(x) =
∑

1≤n≤x an then

N∑
n=1

anf(n) =

∫ N

0
f(x)dA(x) =

∫ N

1−
f(x)dA(x)

We collect some well-known facts from analytic number theory (See e.g. chapter 2 in [77])
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– Standard bound on the number of divisors:

d(n) ≤ exp(
log n

log logn
) = O(nε) ∀ε > 0 (2.1.1)

– The set of primes is dense in the set of almost primes1.∣∣∣∣ P ∩ [N ]

Pε ∩ [N ]

∣∣∣∣� ε (2.1.2)

– The Prime Number Theorem

π(x) = (1 + o(1))
x

log x
(2.1.3)

– The Prime Number Theorem, equivalent forms:∑
p<x

log p = x+ o(x),
∏
p≤ω

p = ew(1+o(1)) (2.1.4)

–
W =

∏
p≤ω

p⇒W/φ(W ) ≈ logω (2.1.5)

– ∑
p<x

1

p
= log log(10 + x) +O(1), x > 0 (2.1.6)

– ∑
p<x

logK p

p
�K logK(10 + x),K > 0, x > 0 (2.1.7)

– If <(s) > 1, s = 1 + o(1) then2

∏
p

(1− p−s) = (1 + o(1))(s− 1) (2.1.8)

2.1.2 Sieve Problems

We briefly describe what the sieve method is, however only for motivation purposes as this section is

not required in the main text. We follow closely [107] and [25] in this subsection. Let P =
∏
p≤z p be

a squarefree integer, and D = {p|P : p ≤ D} be a set of divisors of P . Let an be a finitely supported

sequence of nonnegative reals3. For each prime p, let Ep be a subset of integers such that for each

1We actually don’t need this estimate, just for motivation purpose.
2In Tao’s elementary approach with smooth compactly supported function χ ,which we employ here, we would only need

(2.1.8) from the Riemann Zeta’s function. In previous approach [51] or in more technical approach in [110], more information of
Riemann’s zeta function or the zero free region is still needed.

3e.g. an = 1[1,x)(n).
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d ∈ Z+, Ed := ∩p|dEp (with E1 = Z). Define Xd =
∑

n∈Ed an. We wish to estimate, that is to find

upper/lower bounds of ∑
n

an1n/∈∪p|PEp (2.1.9)

By the Inclusion-Exclusion Principle, we can write the sum in (2.1.9) as
∑

d|P µ(d)Xd. However,

it turns out that the number of terms in the sum is too large causing the error terms to accumulate

too quickly. One can do better by truncating the sum, working in a way that only Xd for d ∈ D are

known or exploited. This is a linear programming problem and one can restate the problem using the

so-called linear programming duality.

Problem 2.1.2 (Sieve Problem). Define an (normalized) upper bound sieve to be a function ν+ : Z→
R of the form ν+ =

∑
d∈D λ

+
d 1Ed for some λ+

d ∈ R, such that

ν+(n) ≥ 1n/∈∪p|PEp(n), (2.1.10)

then the supremum of (2.1.9), subject to the condition that only Xd, d ∈ D are known, equals to the

infimum of ∑
d∈D

λ+
d Xd, (2.1.11)

where the infimum is over (λ+
d ) that constitutes an upper bound sieve. Usually Xd will be of the form

g(d)X + rd where g is a multiplicative function, 0 ≤ g ≤ 1, X is a quantity independent of d and rd
is negligible when d is restricted to a small range D. Hence one is to minimize∑

d∈D
λ+
d g(d)

Observe that a sequence (λ+
d ) such that λ+

1 ≥ 1,
∑

d|n λ
+
d ≥ 0 ∀n|P will form an upper bound sieve.

Such a sequence is called upper bound sieve coefficients. Analogue problems for lower bound sieves

may be similarly stated.

Now an important kind of upper bound sieve is the Selberg’s upper bound sieve developed by Selberg

in 1940s, see e.g. [15] . The idea of Selberg’s upper bound sieve comes from observing that if P is

any squarefree number and (ρd)d|P are arbitrary real numbers with ρ1 = 1 then (
∑

d|P ρd1Ed)
2 is an

upper bound sieve as it is 1 outside
⋃
p|P Ep. Equivalently, the sequence

λ+
d =

∑
d1,d2

lcm[d1,d2]=d

ρd1ρd2 , where d|P (2.1.12)

is a sequence of upper bound sieve coefficients. Set D = R2 and we assume that ρd is supported

on D = {d|P : d ≤ D}. The key advantage of Selberg’s upper bound sieve is that (ρd)1≤d≤R are
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real numbers and the sieve problem reduced to problem of optimizing quadratic forms. It turns out

Selberg’s sieve usually already gives good results compared to harder optimizing general upper bound

sieve coefficients.

We study the following choice of ρd. The optimal Selberg’s weight is given by, roughly, by4 µ(d) log(R/d).

We will use the following variant obtained by Tao.

ρd := µ(d)χ(
log d

logR
) (2.1.13)

where χ is some smooth compactly supported function.

Finally we state an important lemma in sieve theory. This lemma may be used to derive formulas for

the number of solutions of various diophantine equations or counting patterns in almost primes, e.g.

one can prove the analogue of the Hardy-Littlewood almost prime tuples conjecture. See [107] for

details. One limitation of sieve method is that we can find asymptotic for system of linear equations

where the number of equations bounded by a set of parameters, contrary to more modern results

involving prime numbers[52].

Theorem 2.1.3 (The fundamental lemma of sieve theory ([107], Cor 19.)). Let z = D1/s for some

D, s > 1. Suppose g is a multiplicative function and κ > 1 (called sieve dimension) such that g obeys

the bound

g(p) ≤ κ

p
+Oκ(

1

p2
), g(p) ≤ 1− cκ.

for some small constant cκ. In particular, for 2 < ω < z,

V (ω) =
∏
p<ω

(1− g(p)) .κ

(
log z

logω

)κ
V (z)

Let Ep be a set of integers and (an)n∈Z be a finitely supported sequence of non-negative real such

that ∑
n∈Ed

an = Xg(d) + rd, X > 0, rd,∈ R, Ed = ∩p|dEp

for all squarefree d ≤ D. Then∑
n/∈

⋃
p≤z Ep

an = (1 +Oκ(e−s))XV (z) +O(
∑

d≤D;ν(d)2=1

|rd|).

4This is a form used by Goldston-Yildirim in their works on small gaps in the primes.
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2.2 A Pseudorandom Measure Majorizing the Primes

In this subsection we construct a pseudorandom measure ν similar that used in the original proof of

Green-Tao’s Theorem. This subsection is mostly for expositional purpose.

2.2.1 The W-Trick

The primes has the obvious structure that they can only live in some residue classes (for example,

no primes except 2 and 3 are in 2 (mod 6), 3 (mod 6) i.e. they are not uniformly distributed). Let5

W :=
∏
p≤ω p ≈ eω, consider

PW,b[N ] := {1 ≤ n ≤ N : Wn+ b ∈ P}

We can see from The Prime Number Theorem in arithmetic progressions that PW,b is uniformly

distributed among residue classes (mod p), for all p ≤ ω. Using the correspondence

A ⊆ P[N ]↔ A′′ := A ∩ PW,b[N/W ]

One is able to get rid of the local factors arising from small primes p ≤ ω while primes are much

more uniformly6. distributed on large residue classes.

There are two viewpoints one could think of W (see Theorem 2.2.1 below). First, we can think of W

as a function of x which goes to infinity sufficiently slowly. The error term in this case is of the form

ox→∞(1). Another viewpoint, we could also think of W as a fixed sufficiently large constant and

the error term would be of the form ow→∞,x→∞(1). The latter viewpoint is important in calculating

explicit bounds. To make this precise, we state the following theorem stated in [106].

Theorem 2.2.1 (Overspill Principle7[106]). Let F (w, x) : Z+ × R → R then the following are

equivalent:

1. For a fixed ε > 0 there exists wε such that for each fixed w ≥ wε

|F (w, x)| ≤ ε+ ow,x→∞(1) = oω→∞,x→∞(1)

2.

F (w, x) = ox→∞(1)

whenever w = w(x) ∈ Z is sufficiently slowly growing to infinity. (in the sense that there is a

function w0(x) : R+ → Z+ defined in the proof such that w(x) ≤ w0(x).)
5Indeed ω cannot be bigger than logN
6Up to error term oω→∞(1).
7The name comes from non-standard analysis. We write out explicitly the parameters in o(1) in the statement.
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Proof. Assume (1), then for each natural number n, and w ≤ n we can find xn such that

|F (w, x)| ≤ 2

n

for all x ≥ xn and n ≥ w ≥ w1/n. Define the function

wo : R+ → N, w0(x) :=

n where n is the largest integer such that xn ≤ x

1 if x < x1.

WLOG, we may choose xn in a way that it is increasing in n. Define

w(x) =

w1/n if xn+1 < x ≤ xn
1 if x < x1.

Hence w(x) ≤ w0(x). Also F (w, x) = o(1).

Conversely, assume (2) holds but (1) fails. Then there is an ε > 0 such that for any positive integer n,

there is wn ≥ n such that |F (wn, xn)| > ε for arbitrarily large xn. Letting wn going to infinity, we

can find a sequence {xn} going to infinity such that |F (wn, xn)| ≥ ε for all n. Since w(x) goes to

infinity, increasing xn as necessary, we can ensure that w(x) ≥ wn for all x ≥ xn and all n. We see

that |F (w, x)| ≥ ε at x = xn for all n which contradicts (2).

2.2.2 Pseudorandomness Conditions

In this section we construct a pseudorandom measure ν majorizing the Mangoldt function Λ concen-

trated on primes. We prove certain correlation conditions which is a bit more general than the ones

obtained in [51], [52](see also the exposition [17]), however the proof is essentially the same8.

We defined the following modified Mangoldt function corresponding to W-trick. LetW =
∏
p≤ω p, (b,W ) =

1. Define

Λ̃b(n) =


φ(W )
W log(Wn+ b) if Wn+ b is prime

0 otherwise.
(2.2.1)

The factor φ(W )/W is for normalized purpose; we have 1/N
∑

n≤N Λ̃b(n) = 1+o(1).We construct

a pseudorandom measure, by making use of the Goldston-Yildirim division sum [42]

ΛR(n) =
∑

d|n,d≤R

µ(d) log(R/d).

8A stronger analogue pseudorandom condition for ν is obtained in [110] in particular they need the polynomial to stay in the
length about N so the range average over t has to be of the form No(1). This is a nontrivial bound on the size of t.
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Note that if N ≥ n ≥ R is a prime or more generally if n has no prime factor ≤ R, then ΛR(n) =

logR & Λ̃(n) ; choosing R = Nη for some η > 0. We state below two technical results which show

that the function ΛR(n) is concentrated on the set of almost primes, i.e. numbers havong only large

prime factors. As we don’t need these facts for our main results, we omit the proofs.

Theorem 2.2.2. [81] Let N c0 < R ≤
√
N/q(logN)−C and q be a prime,q = Rβ, β < c0 where

c0, C are suitably chosen. Then

∑
N<n≤2N

q|n

ΛR(n)2 � β

q

∑
N<n≤2N

ΛR(n)2

In particular, if P (Nη) =
∏
p≤Nη p then

∑
N<n≤2N

gcd(n,P (Nη))>1

ΛR(n)2 � β

q

∑
N<n≤2N

ΛR(n)2

In [52], the following variant of ΛR is introduced,

Λχ,R(n) =
∑
d|n

µ(d)χ(
log d

logR
) (2.2.2)

The point is to replace log+(R/d) with a smooth approximation χ( log d
logR) where χ is a smooth com-

pact supported, bounded function. Then instead of using the contour integral, one can apply Fourier

transform. Then we can truncate the integrals over bounded interval obtaining error terms o(1) due

to smoothness of χ and rapid decay of its Fourier transform. We will follow this more elementary

approach as opposed to that of [42] based on evaluating certain contour integrals.

Definition 2.2.3 (Green-Tao measure). Let χ : R → [0, 1] supported on [−1, 1], χ(0) = 1, Cχ =∫ 1
0 |χ

′(t)|2dt which we may assume to be 1. Let R = Nk−12−k−5
, k ≥ 3. Let ε > 0 be a small

constant. Define νb : ZN → R+

νb(n) =


φ(W )
W

Λχ,R(Wn+b)2

Cχ logR if εN ≤ n ≤ 2εN

1 Otherwise
(2.2.3)

Remark 2.2.4. Note that νb = ν
(N)
b depends on N but we will not write script N for simplicity.

Sometimes we also drop the subscript b as all our estimates are independent of it.

We summarize important properties of ν:

– In general ν could become unbounded as N → ∞. However, by the so-called linear form
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conditions (see Definition 2.2.5 below)

Exν(x) = 1 + o(1).

– We have

Λ̃(n) .k ν(n).

To see this9, we may only check n for which Wn+ b is prime. Then Λχ,R(Wn+ b) = logR =

k−12−k−5 logN. Now assume N is sufficiently large (and ω is sufficiently slowly growing or

constant) then

k−12−k−5 logN ≥ k−12−k−6 log(WN + b).

Then

k−12−k−6φ(W )

W
log(Wn+ b) ≤ k−12−k−6φ(W )

W
log(WN + b) ≤ φ(W )

W
logR = ν(n).

– If Wn + b is prime in , say, [ε1N, ε2N ] then ν(n) ≈W logN . Here we may choose W to be a

(large) constant.

Now we describe the pseudorandom conditions we will need later. The first one roughly says that if

the linear forms Li are not rational multiple of each other then the events that Li(x) + bi are almost

primes are independent.

Definition 2.2.5 (Linear Forms Condition). Let m0, t0 ∈ N be parameters then we say that ν satisfies

(m0, t0)− linear form condition if for any m ≤ m0, t ≤ t0, suppose {aij}1≤i≤m
1≤j≤t

are subsets of

integers and bi ∈ ZN . Givenm (affine) linear forms Li : ZtN → ZN with Li(x) =
∑

1≤j≤t aijxj +bi

for 1 ≤ i ≤ m be such that each Li is nonzero and they are pairwise linearly independent over

rational. Then

Ex∈ZtN

∏
1≤i≤m

ν(Li(x) + bi) = 1 + oN→∞,m0,t0(1) (2.2.4)

This is a very general phenomena. Two important special cases are given below.

Example 2.2.6. ‖ν − 1‖2d
Ud

= o(1), where ‖ · ‖Ud is the uniformity norm discussed in section 1.1.1.

Example 2.2.7. If f ≤ ν then consider the dual function defined in (1.2.1) associated with ‖ · ‖U2

norm then

|D2f(x)| ≤ Ea,bν(x+ a)ν(x+ b)ν(x+ a+ b) = 1 + o(1)

This is referred as bounded dual condition10, saying that the structural component (used in [51]) in

the decomposition is bounded.
9W-trick is essential here, we don’t expect this to holds for prime itself with pseudorandom ν as primes are not uniformly

distributed among residue classes.
10 This is the only application of linear form conditions with nonzero constant terms in the original Green-Tao’s proof[51].
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Now we state the so-called correlation condition which control some kind of mild correlation of ΛR

by functions τ . τ itself may not be bounded but it has bounded moments. The proof of linear forms

condition and correlations for ν are not much different, this may be harder for primes. Roughly

speaking we have for h 6= 0,

Exν(x)ν(x+ h) ≤ τ(h) ≈ exp(
∑

p>ω,p|h

1/
√
h).

Note that if h has a large number of divisors then τ(h) can be arbitrarily large. As opposed, there is a

strong kind of correlation that we cannot control, i.e. higher moment of ν,

Exν(x)2 ∼ logN →∞.

Definition 2.2.8 (Correlation Condition). 11 We say that a measure ν satisfies (m0,m1, ...,ml2)−
correlation condition if there is a function τ : ZN → R+ such that

1. E(τ(x)m : x ∈ ZN ) = Om(1) for any m ∈ Z+

2. Suppose

– φi, ψ
(k) : ZtN → ZN (1 ≤ i ≤ l1, 1 ≤ k ≤ l2, l1 + l2 ≤ m0) are all pairwise linearly

independent linear forms over Q.

– For each 1 ≤ g ≤ l2, 1 ≤ j < j′ ≤ mg we have agj 6= 0, and a(g)
j ψ(g)(x)+h

(g)
j , a

(g)
j′ ψ

(g)(x)+

h
(g)
j′ are different (affine) linear forms.

then, we have

Ex∈ZdN

l1∏
k=1

ν(φk(x))

l2∏
k=1

mk∏
j=1

ν(a
(k)
j ψ(k)(x)+h

(k)
j ) ≤

l2∏
k=1

∑
1≤j<j′≤mk

τ

(
W (a

(k)
j′ h

(k)
j −a

(k)
j h

(k)
j′ )+(a

(k)
j′ −a

(k)
j )b

)
(2.2.5)

where W =
∏
p≤ω p.

Lemma 2.2.9. Let B ⊆ ZdN be a box of length ≥ R10M where M = m0m1 . . .ml2 , R = Nk−12−k−5

then

Ex∈B

m0∏
k=1

Λχ,R(Wφk(x) + b)2
l2∏
k=1

mk∏
j=1

Λχ,R(W · (a(k)
j ψ(k)(x) + h

(k)
j ) + b)2 (2.2.6)

= (1 +O(
logω√
logR

)) exp(Om(1/ω))(
W logR

φ(W )
)M

l2∏
k=1

∏
p|∆k

(1 +OM (p−1/2))

11This lemma is first invented in [51] to prove dual function estimates with K arbitrarily large.

34



where

∆k :=
∏

1≤j<j′≤mk

(
W · (a(k)

j′ h
(k)
j − a

(k)
j h

(k)
j′ ) + (a

(k)
j′ − a

(k)
j )b

)
and

M = m0 +m1 + · · ·+mj

[M ] =

m0⋃
j=1

Ij ∪
mj⋃
j=1

Imj , Ij = {j} for j ≤ m0, Imj = (Mj−1,Mj ]

ψ
(k)
i :=

φi if i ∈ Ij , j ≤ m0

ψ(k) if i ∈ Ik, k > m0

Now we verify this lemma as in [51] or [17]. Write

θi(x) =

Wφi(x) + b if i ∈ Ij , j ≤ m0

W (a
(k)
i ψ

(k)
i + h

(k)
i ) + b if i ∈ Imk ,mk > m0.

Expand LHS of (2.2.6)

Ex∈B

k∏
m0

∏
i∈Im

Λχ,R(θi(x))2 (2.2.7)

=
∑

a,b∈NM

( M∏
i=1

µ(ai)µ(bi)χ(
log ai
logR

)χ(
log bi
logR

)

)
Ex∈B

( M∏
i=1

1ai,bi|θi(x)(x)

)

Observe that only the last term depends on x. Recall D = lcm[a1, b1, . . . , aM , bM ] ≤ R2M and B

has each side of length ≥ R10M , we can approximate

Ex∈B

( M∏
i=1

1ai,bi|θi(x)(x)

)
= Ex∈ZtD

( M∏
i=1

1ai,bi|θi(x)(x)

)
+O(R−8M )

To see this, consider a slightly smaller box B′ whose the lengths of all its dimensions are all divisible

by D and the length of each side of B′ differs from the length of the corresponding side of B by

O(R2M ). The total error in 2.2.7 when changing average in B to average over B′ (which is the same

as the average in ZtD) is O( log2M R
R6M ).

For X ⊆ [M ], define the local factor

ωX(p) = Ex∈Ztp

∏
i∈X

1θi(x)≡0 (mod p),
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ωX = Ex∈ZtD

∏
i∈X

1ai,bi|θi(x), D = lcm[a1, b1, . . . , aM , bM ].

Let D = p1 . . . ph. Using the Chinese Remainder Theorem, we rewrite the system of equations

θi(x) ≡ 0 (mod ai), θi(x) ≡ 0 (mod bi), 1 ≤ i ≤ m

as

θi(x) ≡ 0 (mod pj), 1 ≤ i ≤ m, 1 ≤ j ≤ h.

Hence

ωX =
∏
p

ωX(p).

We have the following local factor estimate that will be used later.

Lemma 2.2.10. [Local factor estimate]

1. ω∅(p) = 1.

2. p ≤ ω,X 6= ∅ ⇒ ωX(p) = 0.

3. |X| = 1⇒ ωX(p) = 1.

4. Suppose p > ω and X ⊆ Ik, |X| > 1. If p|∆k and |X| = 2 then ωX(p) = p−1. If p|∆k and

|X| > 2 then ωX(p) ≤ p−1. If p - ∆k then ωX(p) = 0.

5. If p > ω and ∃k1 6= k2 such that X ∩ Ik1 , X ∩ Ik2 is nonempty then ωX(p) ≤ p−2.

Proof. (1) is trivial. (2) follows from the fact that if p ≤ ω, j ∈ X then W · (a(k)
j ψ

(k)
j + h

(k)
j ) + b ≡

b 6= 0 (mod p). To see (3), if p > ω,X ⊆ Ik, |X| = 1,say X = {j}, then we can write

ωX(p) = Ex∈Ztp1W ·(a(k)
j ψ(k)a

(k)
j +h

(k)
j )+b≡0 (mod p)

= p−1

To verify (4) and (5), assume |X| > 1 and j, j′ ∈ X since

p|W · (a(k)
j ψ

(k)
j + h

(k)
j ) + b, p|W · (a(k)

j′ ψ
(k)
j′ + h

(k)
j′ ) + b

Then p|W · (a(k)
j h

(k)
j − a

(k)
j h

(k)
j′ ) + (a

(k)
j′ − a

(k)
j )b so p|∆k. Hence p - ∆k ⇒ ωX(p) = 0.

Now assume p|∆k, then the condition that p|θi(x)∀i ∈ X and |X| = 2 could be reduced to p|θj(x)

for some j ∈ X if p > W, p > ai∀i ∈ X , which is true if ω is chosen sufficiently large. Hence

ωX(p) = Ex∈Ztp

∏
i∈X

1
W ·(a(k)

i ψ(k)a
(k)
i +h

(k)
i )+b≡0 (mod p)

= Ex∈Ztp1W ·(a(k)
j ψ(k)a

(k)
j +h

(k)
j )+b≡0 (mod p)

= p−1
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If |X| > 2 then we can crudely bound this by ω{j,j′} for some j, j′ chosen so that p divide the factor

in ∆ corresponding to j, j′.

Now we verify (5). Assume j ∈ X ∩ Ik1 , j
′ ∈ X ∩ Ik2 . For i = 1, 2, write

a
(ki)
j ψ

(ki)
j (x) =

t∑
s=1

Lki,sxs

as p -W , our condition becomes

t∑
s=1

Lki,sxs = −W−1b−W−1h
(ki)
ji

(mod p), i = 1, 2.

By our assumption that (Lk1,s)1≤s≤t, (Lk2,s)1≤s≤t are not rational multiple of each other, we claim

that they are also linearly independent over Zp. Assume indirectly that Lk1,s = rLk2,s (mod p) for

some rational r. Then

ai/bi = rci/di (mod p).

Hence for each 1 ≤ i ≤ t, λ = (aidi)(bici)
−1 (mod p), i.e. a1b1bici ≡ b1c1aidi (mod p). But if

ω is sufficiently large so that |ai|, |bi|, |ci|, |di| ≤ ω1/4

2 . then |a1d1bici − b1c1aidi| ≤ |a1d1bici| +
|b1c1aidi| < ω ≤ p. Hence a1d1bici = b1c1aidi ∀1 ≤ i ≤ t. This is a contradiction. Hence the

set of solutions of θj(x) = θk(x) ≡ 0 (mod p) is contained in the intersection of two skew-affine

subspaces of Ztp and hence has cardinality ≤ pt−2.

Now let ψ be the inverse Fourier transform of exχ(x) i.e.

χ(x) =

∫
R
ψ(t)e−x(1+it)dt

Since exχ(x) is smooth and has compact support, ψ is smooth and rapidly decays. In particular, for

any A > 0, |ψ(t)| = OA((1 + t)−A). Let I = [−
√

logR,
√

logR] then

χ(
log c

logR
) =

∫
I
c
− 1+it

logRψ(t)dt+O(c−1/ logR log−AR) (2.2.8)

for any A > 0. Observe that χ( log c
logR) = O(c

− 1
logR ), hence

M∏
j=1

χ(
log aj
logR

)χ(
log bj
logR

) =

∫
I
· · ·
∫
I

M∏
j=1

ψ(xj)ψ(yj)

a

1+ixj
logR

j b

1+ixj
logR

j

dxjdyj +OA(log−AR

M∏
j=1

(ajbj)
−1/ logR)

Substitute this into (2.2.7). The error term can be shown to be o(1) for large enough A. Indeed, using
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that Ex∈Ztp1aj ,bj |θj(x)∀j is 1 if aj , bj = 1∀j and ≤ 1/p otherwise. The error term is given by

∑
ai,bi∈N

squarefree

Ex∈ZtD1aj ,bj |θj(x)∀jOA(log−AR
M∏
j=1

(ajbj)
−1/ logR)

.A (logR)−A
∏
p

∑
ai,bi∈{1,p}

[
Ex∈Ztp1aj ,bj |θj(x) ∀j

] M∏
j=1

(ajbj)
−1/ logR

≤ (logR)−A
∏
p

(1 + p−1
∑

ai,bi∈{1,p}

(a1b1...aMbM )−1/ logR)

= (logR)−A
∏
p

[1 + p−1((p−1/ logR + 1)2M − 1)]

≤ (logR)−A
∏
p

(1− p−1−1/ logR)2M

(apply (2.1.8)) = (logR)−Aζ(1 + 1/ logR)2M = O(logR)−2M−A = o(1)

where A > 0 can be chosen arbitrarily large. Denote

x′j =
1 + ixj
logR

, y′j =
1 + iyj
logR

. (2.2.9)

The main term in (2.2.7) becomes

∫
I
· · ·
∫
I

∑
a,b∈NM

∏
p

(
Ex∈Ztp

M∏
i=1

1ai,bi|θi(x)(x)

) M∏
j=1

µ(xj)µ(yj)

a
x′j
j b

y′j
j

M∏
j=1

ψ(xj)ψ(yj)dxjdyj

where

∑
a,b∈NM

∏
p

(
Ex∈Ztp

M∏
i=1

1ai,bi|θi(x)(x)

) M∏
j=1

µ(xj)µ(yj)

a
x′j
j b

y′j
j

=
∏
p

∑
a,b∈{1,p}M

(
Ex∈Ztp

M∏
i=1

1ai,bi|θi(x)(x)

) M∏
j=1

µ(xj)µ(yj)

a
x′j
j b

y′j
j

:=
∏
p

Ep

is the Euler product, where the Euler factor is

Ep =
∑

a,b∈{1,p}M

(
Ex∈Ztp

M∏
i=1

1ai,bi|θi(x)(x)

) M∏
j=1

µ(xj)µ(yj)

a
x′j
j b

y′j
j

=
∑

I,J⊆[M ]

(−1)|I|+|J |ωI∪J(p)

p
∑
j∈I x

′
j+

∑
j∈J y

′
j
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Define a more convenient Euler’s factor

E′p =
m∏
j=1

(p1+x′j − 1)(p1+y′j − 1)

p(p1+x′j+y
′
j )

=
M∏
j=1

(1− p−1−x′j )(1− p−1−y′j )

1− p−1−x′j−y′j

From (2.1.8), we have ∏
p

E′p =
(1 + o(1))

logM R

M∏
j=1

(1 + ix′j)(1 + iy′j)

2 + ix′j + iy′j
.

Define Fp = Ep/E
′
p we have

Lemma 2.2.11.

∏
p

Ep =
∏
p

Fp
∏
p

E′p =
∏
p

Fp
1 + o(1)

logM R

M∏
j=1

(1 + ixj)(1 + iyj)

2 + i(xj + yj)

Next, we use that12

∫
R

∫
R

(1 + ixj)(1 + iyj)

2 + i(xj + yj)
ψ(xj)ψ(yj)dxjdyj =

∫
χ′(t)2dt := 1.

The main term becomes∫
I
· · ·
∫
I

∏
p

Fp

M∏
j=1

(1 + ixj)(1 + iyj)

2 + i(xj + yj)
ψ(xj)ψ(yj)dxjdyj(1 + o(1)) log−M R

= (1 + o(1))
∏
p

Fp log−M R
( ∫

I

∫
I

(1 + ixj)(1 + iyj)

2 + i(xj + yj)
ψ(xj)ψ(yj)dxjdyj

)M
= (1 + o(1))

∏
p

Fp log−M R
( ∫

R

∫
R

(1 + ixj)(1 + iyj)

2 + i(xj + yj)
ψ(xj)ψ(yj)dxjdyj + o(1)

)M
= (1 + o(1)) log−M R

∏
p

Fp

To find asymptotic of
∏
p Fp, we apply the local factor estimate.

Lemma 2.2.12 (Euler factor estimate for Linear forms condition). We have

Ep = (1 +O(p−2))E′p

12This follows from the identity
1

2 + ix+ iy
=

∫ ∞
0

e−(1+ix)te−(1+iy)tdt.
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and moreover13,∏
p≤ω

Fp = exp(Om(1/ω))(1+O(
logω√
logR

))(W/φ(W ))M = (W/φ(W ))M (1+OM (1/ω)1+O(
logω√
logR

)).

Proof. Recall notation x′j , y
′
j defined in (2.2.9).

Ep =
∑

I,J⊆[M ]

(−1)|I|+|J |ωI∪J(p)

p
∑
j∈I x

′
j+

∑
j∈J y

′
j

= ω∅(p)−
M∑
j=1

(
1

px
′
j

+
1

py
′
j

− 1

p1+x′j+y
′
j

)
+

∑
I,J⊆[M ],|I∪J |≥2

OM (p−2)

p
∑
j∈I x

′
j+

∑
j∈J y

′
j

= 1−
M∑
j=1

(
px
′
j + py

′
j − 1

p1+x′j+y
′
j

)
+OM (p−2)

Now recall |x′j |, |y′j | = O((logR)−1/2) and E′p =
∏M
j=1

(p
1+x′j−1)(p

1+y′j−1)

p
1+x′

j
+y′
j−1

. We compute

Fp = Ep/E
′
p =

(
1−

M∑
j=1

px
′
j + py

′
j − 1

p1+x′j+y
′
j

) M∏
j=1

(1− p−1−x′j−y′j )p−1(1− p−1−x′j )−1(1− p1−y′j )−1 +O(p−2)

= 1 +OM (p−2).

Now ∏
p>ω

(1 +OM (p−2)) = exp(OM (
∑
p>ω

p−2)) = exp(OM (1/ω)).

For p < ω,Ep = 1, whereas if |zj | = O(log−1/2R) then 1 − p−1−zj = 1 − p−1 exp(−zj log p) =

1− p−1(1 +O(|zj | log p)) = (1− p−1)(1 +O(
|zj | log p

p )), applying this with zj = xj , yj , xj + yj , we

have

∏
p≤ω

E′−1
p =

∏
p≤ω

M∏
j=1

1− p−1−x′j−y′j

(1− p−1−x′j )(1− p−1−y′j )
=
∏
p≤ω

M∏
j=1

1

(1− 1/p)(1 +O(|zj | log p
p ))

=
∏
p≤ω

[( p

p− 1

)M
(1 +O(

log p

p log1/2R
))

]

The Lemma follows by recalling that
∏
p≤ω(p/p− 1)M = (W/φ(W ))Mand

∏
p≤ω

(1 +O(
log p

p log1/2R
)) = exp(

1√
logR

O(
∑
p≤ω

log p

p
)) = exp(O(

logω√
logR

)).

13Here the term (W/φ(W ))M comes from primes p ≤ ω.
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Lemma 2.2.13 (Euler factor estimate for the correlation conditions).

Ep = (1 +O(p−2))E′p when p - ∆k for all k.

Ep = (1 +O(p−1/2))E′p when p|∆k for some k.∏
p

Fp = exp(OM (1/ω))(W/φ(W ))M (1 +O(
logω√
logR

))
∏

p|∆1...∆k

(1 +O(p−1/2))

Proof. The first statement is similar to the first part of Lemma 2.2.12. Assume p|∆k, using x′j , y
′
j =

o(1), and applying the local factor estimate (Lemma 2.2.10), we have

Ep = 1 +O(1/p)
∑

I,J⊆[M ],I∪J 6=∅

(−1)|I|+|J |

p
∑
i∈I x

′
j+

∑
j∈J y

′
j

= 1 +O(p−1/2)

E′p =
M∏
j=1

(p1+x′j − 1)(p1+y′j − 1)

p(p1+x′j+y
′
j − 1)

=
M∏
j=1

(1− p−1−x′j )(1− p−1−y′j )

1− p−1−x′j−y′j

=

M∏
j=1

(1− p−1−x′j )(1− p−1−y′j )(1 + p−1−x′j−y′j +O(p−3/2))

= 1 +O(p−1/2)

Now define τ = τM : ZN → R≥0, τ(0) := exp(CM logN
log logN ) so ‖ν‖M∞ ≤ τ(0). Define τ(n) =

OM (n)
∏
p|n(1 +O(p−1/2))OM (1). One estimates

∏
p|∆k

(1 +OM (p−1/2)) =
∏

1≤i<j≤mk

(
∏

p|W ·[(a(k)

j′ h
k
j−a

(k)
j hk

j′ )+(ak
j′−a

(k)
j )b]

(1 +OM (p−1/2))

≤
∏

1≤i<j≤mk

∏
p|W ·[(a(k)

j′ h
k
j−a

(k)
j hk

j′ )+(ak
j′−a

(k)
j )b]

(1 + p−1/2)OM (1)

≤ OM (1)
∑

1≤i<j≤M

∏
p|W ·[(a(k)

j′ h
k
j−a

(k)
j hk

j′ )+(ak
j′−a

(k)
j )b]

(1 + p−1/2)OM (1)

≤
∑

1≤i<j≤M
τ(W · ((a(k)

j′ h
k
j − a

(k)
j hkj′) + (akj′ − a

(k)
j )b).

Now we verify

Ex∈ZN τ(x)q = Oq(1)
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Since 1/
√
p→ 0, p→∞ then (1 +O(p−1/2))OM (q) ≤ 1 + p−1/4. for all but finitely many p.

E0<|n|≤N (
∏
p|m

(1 +O(p−1/2)))OM (q) ≤ OM,q(1)E0≤n≤N
∏
p|n

(1 + p−1/4) ≤ OM,q(1)E0≤n≤N (
∑
d|n

d−1/4)

= OM , q(1)
N∑
d=1

d−5/4 = OM,q(1).

Lemma 2.2.14. ν satisfies the pseudorandomness conditions (2.2.4), (2.2.5).

Proof. We follow the argument in [51]. First by clearing the denominator (in ZN , N is prime), we may

assume the linear forms have integer coefficients with coefficient bounds from k to k(k!) < (k + 1)!.

Choose ω sufficiently large so that (k + 1)! <
√

ω
2 . To prove (2.2.5), we just use the trivial bound

ν(x) ≤ 1 + φ(W )
W ΛR(θi(x)) and apply Lemma 2.2.9.

To deal with the two-part definition of ν and to get the asymptotic of the form 1+o(1), letQ = Q(N)

chosen to be a small power of N such that N/Q ≥ R10M , we subdivide ZtN into Qt roughly equal

sized boxes

Bu1,...,ut = {x ∈ ZtN : xj ∈ [bujN
Q
c, b(uj+1)N

Q
c]}, where u1, . . . , ut ∈ ZQ.

Then |Bu1,...,ut | = (N/Q+O(1))t = (N/Q)t(1 +O(Q/N)). Then

Ex∈ZtN ν(φ1(x)) . . . ν(φm(x)) =
1

Qt(N/Q)t

∑
(u1,...,ut)∈ZtQ

∑
x∈Bu1,...,ut

ν(φ1(x)) . . . ν(φm(x))

= (1 + o(1))E(u1,...,ut)∈ZtQEx∈Bu1,...,ut
ν(φ1(x)) . . . ν(φm(x))

We say that a box Bu1,...,ut is nice if φi(Bu1,...,ut) ⊆ [εkN, 2εkN ] ∀i. Since N/Q > R10M , applying

Lemma 2.2.12 (in particular, Lemma 2.2.9), we obtain

Ex∈Bu1,...,ut niceν(ψ1(x)) . . . ν(ψm(x)) = 1 +OM (1/ω)

(we could replace each ν with either 1 or φ(W ) logR
W Λ2

R).

Now we claim that the proportion of the number of boxes that are not nice is O(1/Q). Suppose

Bu1,...,ut is not nice then there is a linear formψ and x,y ∈ Bu1,...,ut such thatψ(x) ∈ [εN, 2εN ], ψ(y) /∈
[εN, 2εN ]. Hence by continuity, either a = 1 or 2, one has

aεN =

t∑
j=1

Ljb
Nuj
Q
c+ b+O(N/Q).
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Hence
t∑

j=1

Ljuj = aεQ+
bQ

N
+O(1) (mod Q).

For any choice of u1, . . . , ut−1, the number of choices of ut is O(1). Hence the number of non-nice

boxes is O(Qt−1). If Bu1,...,ut is not nice, then using the trivial bound ν(x) ≤ 1 + φ(W )
W ΛR(θi(x))2,

we obtain

Ex∈Bu1,...,ut not nice = exp(1/o(ω))(O(1) + o(1)).

Hence

Ex∈ZtN ν(θ1(x)) . . . ν(θM (x)) = Eu∈ZtQ

[
Ex∈Bu niceν(θ1(x)) . . . ν(θM (x)) + Ex∈Bu not niceν(θ1(x)) . . . ν(θM (x))

]
=

1

Qt

[
Qt(1 +O(1/ω) +O(logω/

√
logR)) +O(Qt−1) exp(OM (1/ω))(O(1) + o(1))

]
= 1 +O(1/ω) +O(logω/

√
logR) +O(1/Q(N)).

Here R is small power of N , Q(N) is a power of N . O(1/Q) may be neglected.

The correlation condition for ν can be verified in the same way from Lemma 2.2.13 (in particular

Lemma 2.2.9) and the definition and properties of τ .

2.3 Birch-Davenport’s Circle Method

The main objective of this section is to prove the Theorem 2.3.4 below whose proof is a simple

adaptation of arguments of Birch [11]. We may skip some details that are the same as in [11].

2.3.1 Set Up

Denote ‖x‖ the distance of x to the closest integer.

Let F = (F1, . . . , Fr) be a system of r homogeneous forms of degree k on Zd. We are particularly

interested in the case k ≥ 2. Let VF = {x : F(x) = 0} ⊆ Cd, we define V ∗F ⊆ VF , the singular

variety of F , to be the set of points such that JacF , the Jacobian of F , drops rank.

Let us introduce the notation

RN (v) = #{x ∈ [N ]d : F(x) = v}.

RN (M, s;v) := |{x ∈ [N ]d; x ≡ s (mod M), F(x) = v}|.

For a family of integral forms F = (F1, . . . , Fr) in variables xi ∈ Zd, write xi = (xi1, . . . , x
i
d) and

43



Fi(x
i
1, . . . , x

i
d) =

∑
0≤j1+···+jd≤k

cij1,...,jd(x
i
1)j1 . . . (xid)

jd (2.3.1)

We may write it as a symmetric form:

Fi(x
i
1, . . . , x

i
d) =

∑
0≤i1,...,il≤d

aii1,...,ikx
i
i1 . . . x

i
ik

with k!aii1,...,ik ∈ Z. Define a symmetric integral d−linear form on xi, . . . ,xk; xi = (xi1, . . . x
i
d):

Φi(x1, . . . ,xk) = k!
∑

0≤i1,...,il≤d
aii1,...,ikx

1
i1 . . . x

k
ik

(2.3.2)

Then

k!Fi(x) = Φi(x, . . . ,x). (2.3.3)

For α ∈ [0, 1]r, define the exponential sum

SN (M, s, α) :=
∑
x∈Zd

e2πiα·F((Mx+s))φN (Mx + s) (2.3.4)

where φN is the characteristic function of [0, N ]d. Recall the notation ∆+
h f(x) = f(x + h) − f(x)

then

k!∆+
hFi(x) = kΦi(x, . . . ,x,h) +Rk−2(x,h) (2.3.5)

where deg(Rk−2) (in x) ≤ k − 2. Hence

k!∆+
hk−1 . . .∆

+
h1Fi(x) = k!Φi(x,hk−1 . . . ,h1) +R0(h) (2.3.6)

Here

Φi(x,h1, . . . ,hk−1) =
∑

1≤j,i1,...,ik−1≤d
aij,i1,...,id−1

xjh
1
i1 . . . h

k−1
ik−1

:=
∑

1≤j≤d
xjΨ

i
j(h

1, . . . ,hk−1).

(2.3.7)

Definition 2.3.1 (Rank of F ; defined by Birch [11]). 14 Let F = (F1, . . . , Fr) be a system of r

homogeneous form of degree k. The Rank of F is the codimension of the singular variety V ∗F , the set

of points z ∈ Cd where the Jacobian ∂F/∂z drops rank.

We will write

K :=
codim(V ∗F )

2k−1

14There is also a notion of Schmidt rank [94]. Let F be a single homogeneous polynomial, the Schmidt rank is defined to
be the smallest integers h such that we can find homogeneous forms T1, . . . , Th, R1, . . . , Rh of positive degree such that Q =
T1R1 + · · ·+ ThRh. Note that if Q =

∑h
i=1 TiRi then V∇Q ≤ 2h.
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Example 2.3.2. If F (x) = Ax · x is a quadratic form i.e. A is an integral symmetric matrix, then

∇F (x) = Ax, V ∗F = Ker(A), codimV ∗F = rank(A).

2.3.2 The Circle Method

Theorem 2.3.3 (Birch’s Theorem). Let F be a system of r homogeneous integral forms of degree k

in d variables. Suppose K > (k − 1)r(r + 1), N > 1, then

RN (v) = Nd−krσ(v)J(N−kv) +O(Nd−kr−ε)

for some ε > 0, where

σ(v) =
∏

p prime

σp(v)

σp(v) = lim
r→∞

p−r(d−1)#{x ∈ (Z/p)d : F(x) = v (mod pr)}

J(u) = JF (u) is the singular integral defined in (2.3.31).

Recall from [11] that the singular series has a positive lower bound independent of u if we can find

nonsingular solutions (mod p) for every p. The singular integral J(u) ≥ c(δ) > 0 independently of

N , provided that the equation F(x) = u has a nonsingular real point in the cube [δ, 1− δ]d, see [94]

Section 9 and [11] Section 6.

Theorem 2.3.4. Let F = (F1, . . . , Fr) be a family of integral forms of degree k ≥ 2 satisfying the

rank condition

Rank(F) > r(r + 1)(k − 1)2k−1 (2.3.8)

and for given M ∈ N and s ∈ Zd, recall that

RN (M, s;v) := |{x ∈ [N ]d; x ≡ s (mod M), F(x) = v}|. (2.3.9)

Then there exists a constant δ′ = δ′(k, r) > 0 such that the following holds.

(i) If 0 < η ≤ 1
4r2(r+1)(r+2)k2 then for every 1 ≤M ≤ N

η
1+η and s ∈ Zd one has the asymptotic

RN (M, s;v) = Nd−rkM−d J(N−kv)
∏
p

σp(M, s,v) + O(Nd−rk−δ′M−d). (2.3.10)

(ii) Moreover if

Rank (F) >
(
r(r + 1)(k − 1) + rk

)
2k (2.3.11)
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then the asymptotic formula (2.3.10) holds for η ≤ 1
4r(r+2)k .

In the remaining if this subsecton, we describe the proof of Theorem 2.3.4.

Proof of Theorem 2.3.4

Recall that ‖x‖ is the distance of x to the closet integer. The first lemma is an exponential sum

estimate analogous to Lemma 2.1 in [11].

Lemma 2.3.5. Let 1 ≤M < N and s ∈ Zd. Then

|(N/M)−dSN (M, s, α)|2k−1
. (N/M)−kd

∑
h1,...,hk−1∈[−N/M,N/M ]d

d∏
j=1

min (N/M, ‖Mkxjα ·Ψj(h
1, . . . ,hk−1)‖)

where the ith component of the multi-linear form Ψj = (Ψi
j)
r
i=1 is given by

Ψi
j(x,h

1, . . . ,hk−1) = k!
∑

1≤j1,...,jk−1≤d
aij,j1,...,jk−1

h1
j1 . . .h

k−1
jk−1

.

Proof. We will invoke the following simple inequality: Let I be an interval of length at most N/M

and β ∈ R then

|
∑
x∈I

e2πiβx| ≤ min{N/M, ‖β‖−1} (2.3.12)

Write

F (Mx + s) = MkF (x) +GM,s(x), deg(Gd,s) < k (2.3.13)

and note that

|N−d
∑

x∈[N ]d

f(x)|2 = N−d|N−d
∑
x,h

f(x)f(x+ h)|

Applying this k − 1 times, we have

|(N/M)−dSN (M, s, α)|2k−1
=

∣∣∣∣(N/M)−d
∑
x∈Zd

e2πiα·F((Mx+s))φN (Mx + s)

∣∣∣∣2k−1

≤ (N/M)−(k−1)d
∑

h1,...hk−1

∣∣∣∣(N/M)−d
∑
x

e
2πiα·∆+

hk−1 ...∆
+

h1F(Mx+s)
∆hk−1 . . .∆h1φ(Mx + s)

∣∣∣∣
By (2.3.13) and (2.3.6), we calculate

∆+
hk−1 . . .∆

+
h1F(Mx + s) = Mk∆+

hk−1 . . .∆
+
h1F(x) = Mk

d∑
j=1

xjΨj(h
1, . . . ,hk−1)
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and one may verify that ∆hk−1 . . .∆h1φN (Mx + s) = 0 unless h1, . . . ,hk−1 ∈ [−N/M,N/M ]d.

Hence

|(N/M)dSN (M, s, α)|2k−1 ≤ (N/M)−kd
∑

h1,...hk−1∈[−N/M,N/M ]d

∣∣∣∣ d∏
j=1

(∑
xj

e2πiMk
∑r
i=1 αixjΨ

i
j(h

1,...,hk−1)

)∣∣∣∣
The result then follows from (2.3.12).

In the next step we will use the above lemma to divide S1 into major arc and minor arc. The argument

follows directly as in [11]. We sketch the argument below.

Given η, γ > 0, define the following sets

R((N/M)η, (N/M)−γ ;α)

:=
∣∣{(h1, . . . ,hk−1) : hi ∈ [−(N/M)η, (N/M)η]d; ‖Mkα ·Ψj(h

1, . . . ,hk−1)‖ ≤ (N/M)−γ ∀1 ≤ j ≤ d}
∣∣.

Now for fixed h2, . . . ,hk−1, consider the following map from Rd to Rd

h→ (Mkα ·Ψ1(h,h2, . . . ,hk−1), . . . ,Mkα ·Ψd(h,h
2, . . . ,hk−1)).

Define the following symmetric convex body

BQ,K = BQ,K,h2,...,hk−1 = {(x,y) : x ∈ [−Q,Q]d, |yj−Mkα·Ψj(x,h
2, . . . ,hk−1)| ≤ K−1 ∀1 ≤ j ≤ d}

We have R((N/M)η, (N/M)−γ ;α) =
∣∣{(x,y) ∈ Z2d : (x,y) ∈ B(N/M)η ,(N/M)−γ}

∣∣. Now we state

the following fact which says that this set is essentially d−dimensional object.

Lemma 2.3.6 (Davenport [21] Lemma 3.3, [22] Chapter 12). Let L > 1 then

|Z2d ∩BL−1N/M,L−1(N/M)−1 | & L−d|Z2d ∩BN/M,(N/M)−1 |

Applying this lemma repeatedly in hk−1, . . . ,h1 respectively (with other hi fixed at a time) with

L = (N/M)1−θ, 0 < θ < 1, one obtains

R((N/M)θ, (N/M)−k+(k−1)θ, α) & (N/M)−(k−1)d(1−θ)R(N/M, (N/M)−1, α) (2.3.14)

Now subdividing [−1
2 ,

1
2 ]d into small cubes

∏d
j=1[

ij
N/M ,

ij+1

N/M ] of size 1/(N/M). Observe that if two

points (
Mkα ·Ψ1(h1, . . . ,hk−1), . . . ,Mkα ·Ψd(h

1, . . . ,hk−1)
)
,(

Mkα ·Ψ1(h,h2, . . . ,hk−1), . . . ,Mkα ·Ψd(g,h2, . . . ,hk−1)
)
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are in the same cube, then one has

‖Mkα ·Ψj(h− g,h2, . . . ,hk−1)‖ ≤ 1

N/M
, 1 ≤ j ≤ d

Hence the number of h1, . . . ,hk−1 such that (Mkα·Ψ1(h1, . . . ,hk−1), . . . ,Mkα·Ψd(h
1, . . . ,hk−1))

are in a given cube is bounded above by R(N/M, (N/M)−1;α) for every cube. Hence

∑
h1,...hk

∣∣∣∣ d∏
j=1

(
e2πiMkxjα·Φj(h1,...,hk−1)

)∣∣∣∣ . ∑
h1,...hk

∣∣∣∣ d∏
j=1

min{N/M,
1

‖α ·Ψj(h1, . . . ,hk−1)‖
}
∣∣∣∣

(2.3.15)

. R(N/M, (N/M)−1;α)(
∑

1≤i≤N/2M

(1/i))d

. (log(N/M))dR((N/M), (N/M)−1;α) (2.3.16)

Combining Lemma 2.3.5, (2.3.14) and (2.3.15), one obtains that for 0 < θ < 1,

(
(N/M)−d|SN (M, s, α)|

)2k−1

. (N/M)−(k−1)dθ logd(N/M)× (2.3.17)

×
∣∣∣∣{h1, . . . ,hk−1 ∈ [−(N/M)θ, (N/M)θ]d : ‖Mkα ·Ψj(h

1, . . . ,hk−1)‖ ≤ (N/M)−k+(k−1)θ ∀1 ≤ j ≤ d}
∣∣∣∣

Now consider the inequality (2.3.17), suppose ∃h1, . . . ,hk−1 such that the matrix (Ψi
j)1≤i≤r,1≤j≤d

has rank r, i.e. there is a non vanishing r × r minor, which we may assume to be (Ψi
j)1≤i≤r

1≤j≤r
. Let q

denote the absolute value of the determinant of (Ψi
j)1≤i≤r

1≤j≤r
, since the degree of Ψi

j is k − 1, we have

1 ≤ q ≤ (N/M)r(k−1)θ. Then

‖qMkα ·Ψj(h
1, . . . ,hk−1)‖ ≤ q(N/M)−k+(k−1)θ ≤ (N/M)−k+(r+1)(k−1)θ

Then as in [11], we can find integers a1, . . . , ar such that for i = 1, . . . , r

|qMkαi − ai| ≤ (N/M)−k+(k−1)rθ

Now we divide the torus Tr = (R/Z)r into “Major arcs” and “Minor arcs”. The major arcs is defined

as

M(θ) =
⋃

1≤q≤(N/M)(k−1)rθ

⋃
(a,q)=1

Ma,q(θ).

Here (a, q) = gcd(a1, . . . , ar, q) and

Ma,q(θ) := {α ∈ [0, 1]r; |Mkαi − ai/q| ≤ q−1(N/M)−k+(k−1)rθ, ∀1 ≤ i ≤ r}.
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The minor arcs m(θ) is defined to be Tr\M(θ). The name comes from the fact that even though

minor arcs contributes most of the arcs on the “circle”, the contribution to the integral is small from

minor arc which we will verify now.

It is easy to see that Ψi
j(z, . . . , z) = (k− 1)!∂jFi(z). Define ∆ := {(z, · · · , z) : z ∈ Cd} ⊆ Cd(k−1)

which is isomorphic to Cd. Assume the first r − 1 columns of (Ψi
j)1≤i≤r

1≤j≤d
are linearly independent,

let WΦ ⊆ C(k−1)d be the locus of points satisfying the equations saying that the remaining d− r + 1

containing these r column is zero. Hence ∆ ∩ WΦ = V ∗F and hence codim(∆) + codimWΦ ≥
(k − 1)d− dim(V ∗F ) where codim(∆) = (k − 2)d, so

codim(WΦ) ≥ codim(V ∗F ).

Now if α /∈M(θ) then we estimate the size of the set on the RHS of (2.3.17) by

|Zd(k−1) ∩ [−(N/M)θ, (N/M)θ]d(k−1) ∩WΦ|,

which is |(N/M)−θZ)d(k−1) ∩ [−1, 1]d(k−1) ∩ WΦ| by homogeneousity. We estimate this by the

number of radius ρ = c(N/M)−θ needed to cover [−1, 1]d(k−1) ∩WΦ. We use the following lemma.

Lemma 2.3.7 ([34], Chapter 7). Let W ⊆ Cm be a homogeneous algebraic set of topological dimen-

sion l and 0 < ρ < 1. Then W ∩ [−1, 1]m can be covered by cρ−l balls of radius ρ.

We obtain the minor arc estimate

Lemma 2.3.8 ([11], Lemma 3.3). If {Mkα} /∈M(θ) then for every τ > 0,

|SN (M, s, α)| �τ (N/M)d−Kθ+τ (2.3.18)

Proof. This is similar to [11]. Suppose Mkα /∈M(θ) then by (2.3.17), we obtain

|(N/M)−dSN (M, s, α)|2k−1
. (N/M)−d(k−1)θ

∣∣[(−N/M)θ, (N/M)θ]d(k−1) ∩WΦ ∩ Zd(k−1)
∣∣ logd(N/M)

. (N/M)−d(k−1)θ(N/M)θdim(WΦ)+τ

= (N/M)−θcodim(V ∗F )+τ

as required.

Lemma 2.3.9. Let 0 < θ, ε < 1 and let 0 < η ≤ εr(1 − k−1)θ. Suppose M ≤ N
η

1+η then for

α /∈M(θ) one has uniformly in s ∈ Zd

|SN (M, s, α)| .τ (N/M)d−
K

1+ε
θ+τ ,∀τ > 0 (2.3.19)
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Proof. If Mkα ∈ Ma,q(θ) (mod 1) then there is q ≤ (N/M)r(k−1)θ and ai ∈ Z such that (ai, q) =

1 and |Mkαi − ai/q| ≤ q−1(N/M)−k+(k−1)rθ. Hence

|αi − a′i/q1| ≤ q−1
1 (N/M)−k+(k−1)rθ

for some q1 ≤Mk(N/M)(k−1)rθ and (a′i, q) = 1.

Now sinceM ≤ N
η

1+η ,we haveM ≤ (N/M)η hence q1 ≤ (N/M)kη+r(k−1)θ ≤ (N/M)(1+ε)r(k−1)θ.

This implies α /∈M((1 + ε)θ). By contrapositive and Lemma 2.3.8, one has (2.3.19).

The first application of Lemma 2.3.9 is the following estimate for Gauss sums.

Lemma 2.3.10 (Gauss sum estimate). Let q ∈ N and a ∈ Zr and (a, q) = 1 and s ∈ Zd. Define the

Gauss Sum
Sa,q(M, s) :=

∑
x∈Zdq

e
2πi

a·F(Mx+s)
q (2.3.20)

Then if 1 ≤M < q
ε
k , one has the following estimate

|Sa,q(M, s)| .τ qd−
K

(1+ε)r(k−1)
+τ

(∀τ > 0) (2.3.21)

In particular, taking M = 1, ε→ 0 in (2.3.21), one has

Sa,q(1, s) = sa,q(1, 0) .τ q
d− K

r(k−1)
+τ

Proof. Note that

Sa,q(M, s) = SMq(M, s,a/q)

Also, if r(k − 1)θ < 1 then for all 1 ≤ q′ ≤ qr(k−1)θ < q and (a′, q′) = 1,

∣∣a
q
− a′

q′
∣∣ ≥ 1

qq′
>

1

q′
q−k+r(k−1)θ

This implies a
q /∈M(θ). SinceM < qε/k, choose θ so that r(k−1)θ < 1 , sinceM ≤ (N/M)r(k−1)θ,

one has

M < q
ε
k < (N/M)εr(1−k

−1)θ

Hence M < (NM )η where η := εr(1− k−1)θ which is the assumption of Lemma 2.3.9. Applying this

lemma, we have for each τ > 0,

|Sa,q(M, s)| .τ qd−
K

1+ε
θ+τ .τ q

d− K
(1+ε)r(k−1)

+τ

50



Now we will show that the minor arcs contribute little to the integral; this holds if codim(V ∗F ) is large

enough which we will assume. We will apply Lemma 4.4 in [11] (see Lemma 2.3.11 below) to our

situation, we make the following assumption

K :=
codim(V ∗F )

2k−1
> (1 + ε)r(r + 1)(k − 1) (2.3.22)

Then we can choose small positive numbers δ, θ0 satisfying the conditions

δ + 2r(r + 2)θ0 < 1 (2.3.23)

2δθ−1
0 < K(1 + ε)−1 − r(r + 1)(k − 1) (2.3.24)

If θ is small enough so that k > 2r(k − 1)θ then, as in [11], we can verify the following facts from

the definition of the major arcs.

– If a/q 6= a′/q′ thenMa,q,Ma′,q′ are disjoint (from condition (2.3.23) ).

– |M(θ)| ≤ (N/M)−rk+r(r+1)(k−1)θ

We choose θ = θT < θT−1 < · · · < θ0 and write

M(θ)C =M(θ0)C ∪
T−1⋃
i=0

M(θi)\M(θi+1)

Using the two facts above and the size of SN (M, s, α) to bound the integral as in [11]. We use the

bound on SN (M, s, α) and (2.3.24) to show that integral overM(θ0) is O((N/M)d−kr−δ). We can

also show that the integral over M(θi)\M(θi+1) is O((N/M)d−rk−
3
2
δ), say, using the bound of

|M(θi)| and size of SN (M, s, α) onM(θi+1). Choose |θi+1 − θi| not too big and T �δ 1, see [11]

Lemma 4.3. We obtain

Lemma 2.3.11 ([11], Lemma 4.4). Let δ, θ0 satisfy (2.3.23)-(2.3.24) and 0 < η ≤ ε(1 − k−1)θ0.

Then for 1 ≤M ≤ N
η

1+η and s ∈ Zd, one has∫
α/∈M(θ0)

|SN (M, s, α)|dα .δ (N/M)d−Mr−δ

Additionally, if

η < δ/Mr (2.3.25)

which is equivalent to −δ + (Mr + δ)(1− 1
1+η ) < 0. Then as in the above lemma,

(N/M)d−Mr−δ = Nd−MrM−dN−δMMr+δ ≤ Nd−Mrd−nN−δ+(Mr+δ)η(1+η)−1 ≤ Nd−rM−δ′M−d
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for some δ′ > 0. Hence under assumptions of Lemma 2.3.11 and equation (2.3.25), one has

RN (M, s,v) =

∫
S1

e−2πiα·vSN (M, s;α)dα =

∫
M′(θ0)

e−2πiα·vSN (M, s;α)dα+O(Nd−rM−δ′M−d)

(2.3.26)

for any setM′(θ0) ⊇M(θ0). DefineM′(θ0) as follow:

M′(θ0) :=
⋃

1≤q≤(N/M)r(k−1)θ0

⋃
(a,q)=1

M′a,q(θ0) (2.3.27)

M′a,q(θ0) := {α ∈ [0, 1]r; |αi − ai/q| ≤ (N/M)−k+r(k−1)θ0 , 1 ≤ i ≤ r} (2.3.28)

Now for given α ∈M′a,q(θ0), we can write

α = a/q + β, |β|∞ ≤ |(N/M)|−k+r(k−1)θ0

Then if α ∈ M′a,q(θ0) we can give an estimation of SN (M, s;α) in terms of the singular series and

the singular integral.

Lemma 2.3.12. Let 0 < η ≤ 1
2 ,M ≤ N

η
1+η , s ∈ Zd. Then for α ∈M′a,q(θ0), we have

SN (M, s;α) = NdM−dq−dSa,q(M, s)I(Nkβ) +O(Nd−1+2η+r(k−1)θ0M−d) (2.3.29)

where

I(γ) :=

∫
Rd
e2πiγ·F(y)1[0,1]d(y)dy

Proof. Write x := qy + z with z ∈ [0, q)d. We have

SN (M, s, ;α) =
∑
z∈Zdq

e
2πi

a·F(Mz+s)
q

∑
y∈Zd

e2πiβ·F(qMy+Mz+s)1[0,N ]d(qMy +Mz + s) (2.3.30)

Now for t ∈ [0, 1]d, using that the arguments in the functions are bounded by . N and recall that

q ≤ (N/M)r(k−1)θ0 ,M ≤ (N/M)η, we have

|e(β · F(s +Mz + qM(y + t)))− e(β · F(s +Mz + qMy))|

. |β · (F(s +Mz + qMy + qMt)−F(s +Mz + qMy))|∞

.k |β|∞Nk−1qM

≤ (N/M)−k+(k−1)rθ0Nk−1(N/M)r(k−1)θ0(N/M)η

≤ N−k+(k−1)rθ0+(k−1)+r(k−1)θ0+η = N−1+2(k−1)rθo+η
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where we used N/M ≤ N . Now observe that

φN (s +Mz + qMy) 6= φ(s +Mz + qMy + qMt)

⇐⇒ y ∈ E :=

(
[0, N/qM ]d − (s +Mz)/qM

)
∆

(
[0, N/qM ]d − (s +Mz)/qM − t

)
.

Since we can write E as a union of d boxes with one side has length O(1), the number of y for which

φN (s +Mz + qMy) 6= φN (s +Mz + qMy + qMt) is bounded above by |E| . (N/qM)d−1.

Hence we can replace the inner sum with the integral, with the error∣∣∣∣ ∫
y∈Rd

e2πiβ·F(qMy+Mz+s)1[0,N ]d(qMy +Mz + s)dy −
∑
y∈Zd

e2πiβ·F(qMy+Mz+s)1[0,N ]d(qMy +Mz + s)

∣∣∣∣
=

∣∣∣∣ ∑
y∈Zd

∫
t∈[0,1]d

(
e(β · F(s +Mz + qMy + qMt))φN (s +Mz + qMy + qMt)

− e(β · F(s +Mz + qMy)φN (s +Mz + qMy)

)
dt

∣∣∣∣
.
∑
y∈E

1 +
∑
y/∈E

∣∣∣∣ ∫
t∈[0,1]d

(e(β · F(s +Mz + qMy + qMt)− e(β · F(s +Mz + qMy))dtφN (s +Mz +Mqy)

∣∣∣∣
. (N/qM)d−1 + (N/qM)dN−1+2r(k−1)θ0+η = O((N/qM)dN−1+2r(k−1)θ0+η).

By a change of variables N−1(qMy +Mz + s) 7→ y, we have∫
y∈Rr

e2πiβ·F(qMy+Mz+s)1[0,N ]r(qMy +Mz + s)dy = NdM−dq−dI(Nkβ)

Substituting the estimate in (2.3.30) and summing over z ∈ Zdq , we have (2.3.29).

The Singular Integral

Let µ ∈ Rr and Φ > 0. Recall I(γ) :=
∫
Rd e

2πiγ·F(y)1[0,1]d(y)dy, write

J(µ; Φ) =

∫
|γ|∞≤Φ

I(γ)e−2πiγ·µdγ

J(µ) := lim
Φ→∞

J(µ; Φ) (2.3.31)

Lemma 2.3.13 ([11], Lemma 5.2, Lemma 5.3, section 6). J(µ) exists, continuous and uniformly

bounded by ∫
Rr
|I(γ)|dγ <∞
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Furthermore if F(Mx + s) = v has a nonsingular real solutions in [δ, 1 − δ]d then J(N−kv) ≥
c(δ) > 0.

Proof. (Sketch): Let B be a box of size less than 1 and λ ∈ Rr. Define

I(B, λ) =

∫
B
e2πiλ·F(y)dy = (N/M)−d

∫
(N/M)B

e2πi(N/M)−kλ·F(y)dy

Then the claim in Lemma 2.3.13 follows from the bound

|I(B, λ)| . Cε(1 + |λ|∞)
− K

(k−1)r
+ε (2.3.32)

To see this bound, assume |λ|∞ > 1 in the I(B, λ). Let α = (N/M)−kλ and choose θ so that

|λ|∞ = (N/M)r(k−1)θ. Thus, we have α ∈ M′0,1(θ) is on the edge and α /∈ M(θ′) ∀θ′ < θ. Apply

the bound on minor arc of θ′ and use the fact that α ∈ M0,1(θ) with (2.3.29) to estimate the sum by

the integral. Note that r(k − 1)θ ≤ 1 if N/M ≥ |λ|2/k∞ . Since α /∈M(θ′), we have

|SN (M, s, α)| . (N/M)d+ε((N/M)k|α|∞)
− K

(k−1)r . (N/M)d+ε|λ|
− K

(k−1)r
∞

and as in the proof of Lemma 2.3.12,

|(N/M)dI(B, λ)− SN (M, s, α)| . (|α|∞(N/M)k−1)(N/M)d + (N/M)d−1 . (
|λ|∞
N/M

)(N/M)d.

Choosing large enough N that is N/M ≥ |λ|
1+ K

(k−1)r
∞ so that |λ|∞N/M ≤ |λ|

− K
(k−1)r
∞ , we obtain

|I(B, λ)| .ε |λ|
− K

(k−1)r
+ε

∞

To see that J(u) is positive, first consider the contribution of singular points; cover [0, 1]d with boxes

of sidelength δ. cover C = V ∗F ∩ [0, 1]d with. δ−dim(V ∗F ) cubes of size δ.We can show using (2.3.32)

that the contribution from these cubes is . δd−k−dim(V ∗F ) which is negligible if d > k + dim(V ∗F )

which can be verified. Now we consider only non-singular points y. Let B = [0, 1]d\C. Take local

coordinate ur+1, . . . , ud such that the Jacobian

|JacF | =
∣∣∣∣∂(f1, . . . , fr, ur+1, . . . , ud)

∂(x1, . . . xd)

∣∣∣∣
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is a nonzero. Following the calculations in [11] Lemma 6.3 (skipping some technical details),we have

J(u) =

∫
F(y)=u,y∈B

φ(y)dσ(y)

where dσF = dSF/|JacF |. Here dSF is the surface measure of F(y) = u.

Let Bδ be the closed ball, suppose y0 ∈ (0, 1)d,the interior of [0, 1]d, y0 + Bδ ⊆ [0, 1]d is such

that F(y0) = u, |JacF (y0)| 6= 0. Then |JacF (y)| ≥ c(δ,y0) > 0 for all y ∈ y0 + Bδ and

{F(y) = u} ∩ {y0}+Bδ is a d− r dimensional surface with positive measure. Hence

J(u) ≥
∫
{F(y)=u}∩{y0}+Bδ

dSF (y)

|JacF (y)|
≥ η(F ,y0) > 0.

To get the bound independent of y0, we need such non-singular y0 ∈ [δ, 1 − δ]d (a closed set in the

interior).

The Singular Series

We define the singular series

G(M, s;v) :=
∞∑
q=1

q−d
∑

(a,q)=1

e
−2πia·v

q Sa,q(M, s) (2.3.33)

We have by the assumption (2.3.24)

2δ

r(k − 1)θ0
<

K

(1 + ε)r(k − 1)
− r − 1

Then using the Gauss sum estimate (2.3.21) and recalling M ≤ N
η

1+η , one has

∑
q≥(N/M)r(k−1)θ0

∑
(a,q)=1

q−d|Sa,q(d, s)| .τ
∑

q≥(N/M)r(k−1)θ0

q
− 2δ
r(k−1)θ0

+τ
.τ (N/M)−2δ+τ .τ N

−2δ+δη+τ . N−δ

(2.3.34)

Hence the infinite sum defining G(M, s;v) is absolutely convergent.

Finally we analyze the singular series.To express it in terms of the density of solutions in Zpl .

Theorem 2.3.14 (Singular Series). Consider the singular series

G(M, s;v) :=

∞∑
q=1

∑
(a,q)=1

q−de
−2πia·v

q Sa,q(M, s), Sa,q(M, s) :=
∑
x∈Zdq

e
2πi

a·F(Mx+s)
q . (2.3.35)
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We have

G(M, s,v) =
∏

p prime

σp(M, s,v) where σp(M, s;v) = lim
l→∞

σ(l)
p (M, s;v)

where

σ(l)
p (M, s,v) = p−l(d−r)|{x ∈ Zdpl ;F(Mx + s) = v (mod pl)}|

The infinite product converges absolutely and uniformly in v and the singular series is positive if σp is

positive for all p. A sufficient condition is that F(Mx+s) = v has a non-singular solution (mod p)

for every p.

Proof. (Sketch) Since the summand

q−de
−2πia·v

q Sa,q(M, s)

is multiplicative in q (by multiplicativity of Gauss sum), we can formally write

G(M, s,v) =
∏

p prime

σp(M, s,v)

where

σp(M, s,v) =
∞∑
m=0

p−md
∑

(a,pm)=1

e
−2πi a·v

pm Sa,pm(M, s)

If p is sufficiently large,we may apply the Gauss sum estimate (2.3.21) together with assumption

(2.3.22), we have

σp(M, s,v) = 1 +
∞∑
m=1

O(p
(−1− 1

(1+ε)r(k+1)
+τ)m

) = 1 +O(p−δ
′
) (2.3.36)

for some δ′ > 1 and hence the product is absolutely and uniformly convergent in v. Finally, we do a

routine calculation as in [11],

σ(l)
p (M, s;v) =

l∑
m=0

p−md
∑

(a,pm)=1

e
−2πi a·v

pm Sa,pm(M, s)

= p−l(d−r)|{x ∈ Zdpl ;F(Mx + s) = v (mod pl)}| (2.3.37)

Now to verify positivity, by the bound (2.3.36), we have

|
∏
p≥P

σp(M, s,v)− 1| .
∑
p≥P
|σp(M, s,v)− 1| ≤ p−δ′′ , δ′′ > 0
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Next we check the positivity of σp(M, s,v) for small p if there is a nonsingular solution (mod p).

Arguing as in [11] or in the proof of Lemma 2.4.5 below shows us that this is indeed the case.

Now we can prove the main theorem of this section.

Proof of Theorem 2.3.4. First we claim that if 0 < ε ≤ 1 satisfies ε < K
r(r+1)(k−1) −1 and η > 0 such

that

η <
1

4r(r + 2)k
min {ε, K − (1 + ε)r(r + 1)(k − 1)

rk(1 + ε)
} (2.3.38)

then (2.3.10) holds for 1 ≤M ≤ N
η

1+η and s ∈ Zd.

If we have this claim, since K > r(r + 1)(k − 1) we have ε > K
r(r+1)(k−1) − 1 ≥ 1

r(r+1)(k−1) then

K − (1 + ε)r(r + 1)(k − 1)

rk(1 + ε)
≥ 1

rk

Hence choosing ε slightly larger than 1
r(r+1)(k−1) , one has η ≤ 1

4r2(r+1)(r+2)k2 by (2.3.38). Now

under assumption (2.3.11) that K > 2r(r + 1)(k − 1) + 2rk, we take ε slightly larger than 1 then

η ≤ 1
4r(r+2)k . So we now only need to verify the claim.

Set the parameters θ0 and δ as

θ0 :=
1

2r(r + 2)k + 1
, δ :=

θ0

2
min {1, K

1 + ε
− r(r + 1)(k − 1)}

Then θ0, δ satisfy (2.3.23), (2.3.24). Set η as (2.3.38) above. We have

η < ε(1− k−1)θ0 and η < δk−1r−1

Hence the condition of Lemma 2.3.11 and the condition (2.3.25) are satisfied. Also note that

2r(k − 1)θ0 + η ≤ k − 1

k(r + 2)
+

1

4r(r + 2)k
≤ 1

r + 2
(1− 3

4k
) <

1

3
.

Hence

|M′(θ0)| ≤ (N/M)(r+1)r(k−1)θ0−rk+rη ≤ N−rk+2/3 (2.3.39)

By (2.3.26) we have (for some δ′ = δ′(r, k) > 0) ,

RN (M, s,v) =
∑

q≤(N/M)r(k−1)θ0

∑
a,(a,q)=1

∫
M′(a,q)

e−2πiα·vSN (M, s;α)dα+O(Nd−rk−δ′M−d)
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By Lemma 2.3.12 and the size of major arc (2.3.39), this becomes

NdM−d
( ∑
q≤(N/M)r(k−1)θ0

q−de
−2πia·v

q Sa,q(M, s)

∫
|βi|≤(N/M)−k+r(k−1)θ0

e−2πiβ·vI(Nkβ)dβ+O(N rk− 1
3

+2r(k−1)θ0+η)

)

Rescaling β := Nkβ, this becomes

Nd−rkM−d
( ∑
q≤(N/M)r(k−1)θ0

q−de
−2πia·v

q Sa,q(M, s)J(N−kv;Mk(N/M)r(k−1)θ0) +O(N−δ
′
)

)

Applying (2.3.31) and (2.3.34) we have

RN (d, s,v) = Nd−rkM−dG(d, s;v)J(N−kv) +O(Nd−rk−δ′M−d) (2.3.40)

as required.

2.4 Almost Prime Solutions to Diophantine Equations

For 0 < ε < 1 and N ≥ 1 let Pε[N ] denote the set of natural numbers m ≤ N such that each prime

divisor of m is at least N ε. Note that each m ∈ Pε[N ] at most b1/εc prime factors. We call sets of

the form Pε[N ] “almost prime”. For given v ∈ Zd, let

Mε
F [N ] := |{x ∈ Pε[N ]d; F(x) = v}|,

denote the number of almost prime solutions x ∈ [1, N ]d to the system F(x) = v. Let Udpt denote

the multiplicative group of reduced residue classes (mod pt). Let M(pt,v) represents the number

of solutions to the equation F(x) = v in Udpt .

For each prime p, define the local density

σ∗p(v) := lim
t→∞

(pt)rM(pt,v)

φ(pt)d
(2.4.1)

provided the limit exists. As almost primes are concentrated in reduced residue classes, the general

local to global principle suggests that

Mε
F [N ] ≈ε Nd−kr (log N)−dJ(N−kv)

∏
p

σ∗p(v), (2.4.2)

as N →∞ where J(u) is the singular integral. Our main result in this section is the following.

Theorem 2.4.1. Let F = (F1, . . . , Fr) be a system of r integral forms of degree k ≥ 2 in d variables

such that
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Rank(F) > r(r + 1)(k − 1)2k−1. (2.4.3)

Then there exists a constant ε = ε(n, k) > 0 such that

Mε
F [N ] ≥ cd,k Nd−kr (log N)−dJ(N−kv)

∏
p

σ∗p(v). (2.4.4)

Moreover, if F(x) = v has a nonsingular solution in Up, the p-adic integer units, for all primes p,

then ∏
p

σ∗p(v) > 0.

The key to prove Theorem 2.4.1 is to study a weighted sum over the solutions with weights that are

concentrated on numbers having few prime factors. Such weights have been mentioned in section 2.2

which we recall here. For given 0 < η < 1, let R := Nη and χ is some smooth compactly supported

functions, define

ΛR(m) :=
∑
d|m

µ(d)χ(
log d

logR
).

We will also employ the “W -trick” to bypass the contribution of small primes in our initial asymptotic

formulas. Let ω = ωF > 1 be a fixed positive integer depending only on the system F and let

W :=
∏
p≤ω p, the product of primes up to ω. Note that if x ∈ Pε[N ]d and p|xi implies p ≥ N ε > ωF

for sufficiently large N , hence (xi,W ) = 1 for each 1 ≤ i ≤ d. We will write (x,W ) = 1 in this

case. Under the conditions of Theorem 2.4.1 our key estimates are the following

Theorem 2.4.2. Let F = (F1, . . . , Fr) be a system of r integral forms of degree k ≥ 2 in d variables

satisfying the rank condition (2.3.8). Let 0 < η < 1
4r2(r+1)(r+2)k(k+1)

, R = Nη and W =
∏
p≤ω p.

Then one has

∑
x∈[N ]d

(x,W )=1, F(x)=v

Λ2
R(x1x2 · · ·xd) = Nd−rk(log R)dJ(N−kv)

∏
p|W

σ∗p(v) (1 + oN,W→∞(1)),

(2.4.5)

moreover for given 0 < ε < η

∑
x∈[N ]d, x/∈Pε[N ]d

F(x)=v

Λ2
R(x1x2 · · ·xd) .

ε

η
Nd−rk(log R)dJ(N−kv)

∏
p|W

σ∗p(v). (2.4.6)

In the proof of Theorem 2.4.2 we will use the asymptotic for the number of integer solutions x ∈ [N ]d
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to F(x) = v subject to the congruence condition x ≡ s (mod M), where M is a small modulus

bounded by a sufficiently small power N This is summarized in Theorem 2.3.4.

2.4.1 Local Factors of Integral Forms

The following proposition summarizes the properties of the Euler factors we will need. Recall the

density of solutions in p-adic numbers,

σP (M, s,v) = lim
l→∞

σ(l)
p (M, s,v)

where

σ(l)
p (M, s,v) = p−l(d−r)|{x ∈ Zdpl : F(Mx + s) ≡ v (mod pl)}|

Define the Euler’s factor that will appear in the asymptotic of the sum of in (2.4.5).

γp(v) :=
p−d

σp(v)

∑
s∈Zdp

F(s)≡v (mod p)

1p|s1...sdσp(p, s,v)

The key property we will need is

Proposition 2.4.3. If F is a family of r integral forms of degree k such that rank(F) > r(r+ 1)(k−
1)2k then for all sufficiently large primes p > ωF we have

γp(v) =
d

p
+O(p−2) (2.4.7)

We start with a simple observation on the local densities of solutions.

Lemma 2.4.4. Let M,W be square free numbers such that (M,W ) = 1 and let p be a prime. If

(M,W ) = 1 then

σp(MW, t,v) = σp(v) (2.4.8)

If p|M and t ≡ s (mod M) then one has

σp(MW, t,v) = σp(p, t,v) = σp(p, s,v) (2.4.9)

The analogue statement indeed holds when we interchange M and W .

Proof. For any l ∈ Z+, since (pl,MW ) = 1, we have the transformation x 7→ MWx + t is a

bijection on Zd
pl
. Hence

|{x ∈ Zdpl : F(x) ≡ v (mod pl)}| = |{x ∈ Zdpl : F(MWx + t) ≡ v (mod pl)}|
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We have (2.4.8). Next assume p|M then M = pM ′ with (p,M ′W ) = 1 then one may write MWx+

t = p(M ′Wx) + t and note that x 7→M ′Wx is a bijection on Zd
pl

hence

|{x ∈ Zdpl : F(MWx + t) ≡ v (mod pl)}| = |{x ∈ Zdpl : F(px + t) ≡ v (mod pl)}|

which establishes the first equality in (2.4.9). To see the second equality of (2.4.9) we write py + t =

p(y + u) + s where y 7→ y + u is a bijection on Zd
pl
.

Recall that if the local factor σp(p, s,v) does not vanish then F(s) ≡ v (mod p). We call a point

s ∈ Zdp non-singular if the Jacobian JacF (s) has full rank r over Zp. We show that under this rank

condition, it is easy to calculate σ(l)
p (p, s,v) explicitly.

Lemma 2.4.5. Let s be a non-singular solution to F(s) ≡ v (mod p). Then for all l,

σ(l)
p (p, s,v) = pr

Proof. We do induction on l. For l = 1, we have F(px + s) ≡ F(s) ≡ v (mod p) for all x ∈ Zdp.

Hence σ(1)
p (p, s,v) = pr. For l = 2, we count x ∈ Zdp2 satisfying

F(px + s) ≡ F(s) + pJacF (s) · x ≡ v (mod p2).

Since F(s)− v = pu for some u ∈ Zdp, this is

JacF (s) · x ≡ −u (mod p).

Since JacF (s) has full rank, the above equation has pn−r solutions in Zdp and p2n−r solutions in Zdp2 .

Hence σ(2)
p (p, s,v) = pr.

For l ≥ 3, we show

σ(l)
p (p, s,v) = σ(l−1)

p (p, s,v)

Now if x ≡ y (mod pl−1) then px+s ≡ px+y (mod pl) then F(px+s) ≡ F(py+s) (mod pl).

For given y ∈ Zd
pl−1 , we can uniquely write y = pl−2u + z with z ∈ Zd

pl−2 and u ∈ Zdp. Then

F(py + s) ≡ F(pl−1u + pz + s) ≡ F(pz + s) + pl−1JacF (s) · u (mod pl) (2.4.10)

Hence F(py + s) ≡ v (mod pl) implies

F(pz + s) ≡ v (mod pl−1). (2.4.11)

The number of such z ∈ Zd
pl−2 is p−d × p(l−1)(d−r)σ

(l−1)
p (p, s,v). For a given z satisfying (2.4.10),
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write F(pz + s) = pl−1b + v, then (2.4.10) holds if and only if

JacF (s) · u ≡ −b (mod p) (2.4.12)

Since JacF (s) has full rank r over Zdp, the number of solutions of (2.4.12) is pd−r. Since the decom-

position y = pl−2u + z is unique it follows that

σ(l)
p (p, s,v) = p−l(d−r) × |{x ∈ Zdpl ;F(px + s) ≡ 0 (mod pl)}|

= p−l(d−r)pd × |{x ∈ Zdpl−1 : F(px + s) ≡ 0 (mod pl)}|

= p−l(d−r)pdp−dp(l−1)(d−r)σ(l−1)
p (p, s,v)pd−r

= σ(l−1)
p (p, s,v)

as required.

For singular values we can only obtain an upper bound for σp(p, s,v). If s = v = 0, we have

F(px) = pkF(x) ≡ 0 (mod pl) which has≈ p(l−k)(d−r)+kd solutions in Zd
pl

and hence σ(l)
p (p, s,v) ≈

pkr.

Lemma 2.4.6. Let F be a family of r integral linear forms of degree k, assume the rank condition

codim(V ∗F ) ≥ r(r + 1)(k − 1)2k + 1 (2.4.13)

then uniformly in l ∈ N and s ∈ Zdp, one has

σ(l)
p (p, s,v) . pr

2k (2.4.14)

Proof. By (2.3.37), we have

σ(l)
p (p, s,v) =

l∑
m=0

∑
b∈Zrpm

(bi,p)=1∃i

p−mde
2πi

b·F(px+s)
pm Sb,pm(p, s)

here Sb,pm is the exponential sum defined in (2.3.20). Ifm > rk then the Gauss sum estimate (Lemma

2.3.10) applied with ε = 1/r and K = codim(V ∗F )/2k−1 gives∑
m>rk

∑
b∈Zrpm

(bi,p)=1∃i

p−mn|Sb,pm(p, s)| .
∑
m>rk

pmrp
− mK

(r+1)(k−1)
+τ .

∑
m>rk

p−mτ/2 . 1

for sufficiently small τ = τ(r, k) := K
(r+1)(k−1) − r > 0 (i.e. sufficiently small V ∗F ). Here we apply
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the condition (2.4.13); here τ is the constant such that

codim(V ∗F ) = (r − τ)(r + 1)(k − 1)2k−1

Now using the trivial bound p−md|Sb,pm(p, s)| ≤ 1. We have

σ(l)
p (p, s,v) =

∑
m≤rk

∑
b∈Zrpm

(bi,p)=1∃i

p−mde
2πi

b·F(px+s)
pm Sb,pm(p, s) +O(1) ≤

∑
m≤rk

pmr . pr
2k

This proves (2.4.14).

2.4.2 Proof of Theorem 2.4.3

Since σp(v)−1 = 1 + O(p−2) for all sufficiently large prime p, it suffices to show that (2.4.7) holds

for σp(v)γp(v). Now use Lemma 2.4.5 to write

σp(v)γp(v) = p−d
∑

F(s)≡v (mod p)

1p|s1...sdσp(p, s,v)

= p−d
∑

F(s)≡v (mod p)

1p|s1...sdσp(p, s,v)

= p−d
∑

F(s)≡0 (mod s)
s non-singular

1p|s1...sdσp(p, s,v) + p−d
∑

F(s)≡0 (mod s)
s singular

1p|s1...sdσp(p, s,v)

= p−d+r
∑

F(s)≡0 (mod p)

1p|s1...sd − p
−d+r

∑
F(s)≡0 (mod p)

s singular

1p|s1...sd

+ p−d
∑

F(s)≡0 (mod p)
s singular

1p|s1...sdσp(p.s,v)

:= γ1
p(v) + γ2

p(v) + γ3
p(v)

Now we need the following facts from algebraic geometry on the singular variety when consider

reduced (mod p).

– [95] The codimension of singular variety does not change when the equation defining the va-

riety are considered (mod p). Let V ∗F (p) denote the locus of singular points s ∈ Zdp of the

(mod p)−reduced singular variety VF (p) = {s ∈ Zdp : F(s) = v} then

codim(V ∗F (p)) = codim(V ∗F )
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for all but finitely many primes p.

– ([61], Prop. 12.1) The number of points over Zp on a homogeneous algebraic set V is bounded

above by its degree times pdimV .

From these two facts, one has

|V ∗F (p)| . pd−codim(V ∗F )

where the implicit constant may depend on n, k, r. For sufficiently large p > ω. Also we state some

more facts from algebraic geometry which we use later.

Lemma 2.4.7 ([19] Cor 4.). If F is a system of r forms then for any subspace MJ of codimension |J |
one has

rank(F|MJ
) ≥ rank(F)− r|J |

Lemma 2.4.8 ([20], Prop 4.). Let v ∈ Frp and S = F−1(v) where F : Fdp → Frp is a homogeneous

polynomial map of degree k then

‖1S − p−r‖Uk ≤ (k − 1)2−kdp2−k(r−codim(V ∗F ))

In particular

|p−d|S| − p−r| = ‖1S − p−r‖U1 ≤ ‖1S − p−r‖Uk .k,d p2−k(r−codim(V ∗F )) (2.4.15)

Apply lemma 2.4.6 one has for i = 2, 3,

|γip(v)| . p−d+r2k
∑

F(s)≡0 (mod p)
s singular

1p|s1...sd . p
−d+r2kpd−codim(V ∗F ) . pr

2k−r(r+1)(k−1)2k−1−1 . p−2

For each J ⊆ [1, d] define the coordinate subspace MJ = {s = (s1, . . . , sd) ∈ Zdp : sj = 0 ∀j ∈ J}.
by inclusion-exclusion principle, one has

γ1
p(v) = p−d+r

d∑
j=1

(−1)j−1
∑
|J |=j

∑
s∈MJ

1F(s)=v (2.4.16)

From Lemma 2.4.7 and our assumption on the rank of the system F , one has that for 2 ≤ |J | ≤ r+1,

rank(F|MJ
)−r ≥ r(r+1)(k−1)2k−r(r+2) = r[(r+1)(k−1)2k−(r+2)]−r ≥ r2k (2.4.17)

Applying Lemma 2.4.8 to the system F restricted to the subspace Mj
∼= Zd−jp , then one obtains
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p−(d−j)+r|{s ∈MJ ;F(s) = v}| = 1 +Ok,d(p
−
rank(F|MJ )−r

2k
+r

) = 1 +O(p−ε
′
) (2.4.18)

for some ε′ ≥ 0. Hence from (2.4.16), we have

σ1
p(v) = p−d+r

d∑
k=1

∑
s∈M{k}

1F(s)=v + p−d+r
r+1∑
j=2

(−1)j−1
∑
|J |=j

∑
s∈Mj

1F(s)=v

+ p−d+r
d∑

j=r+2

(−1)j−1
∑
|J |=j

∑
s∈Mj

1F(s)=v

For the second term corresponding to 2 ≤ j ≤ r+ 1, by (2.4.18), the total sum contributes O(p−j) =

O(p−2). For the third term we use the the trivial fact |Mj | = pd−j ≤ pd−r−2 and hence the third term

also contributes O(p−2). Hence

σ1
p(v) = p−d+r

d∑
k=1

∑
s∈M{k}

1F(s)=v +O(p−2) =
d

p
+O(p−2)

as required.

2.4.3 Sums of Multiplicative Functions

Let (b,W ) = 1 and furthermore let us assume the conditions of Theorem 2.4.2 holds. Define

SN,W,b(v) :=
∑

x≡b (mod W )
F(x)=v

Λ2
R(x1x2 . . . xd)1[0,N ]d(x) (2.4.19)

and for a prime q > ω,

SN,W,b,q(v) :=
∑

x≡b (mod W )
F(x)=v

1q|x1...xdΛ
2
R(x1x2 . . . xd)1[0,N ]d(x) (2.4.20)

First we show that these sums could be written in terms of Euler factors and Goldston-Yidirim sums.

The proof invokes Theorem 2.3.4.

Lemma 2.4.9.

SW,b(N) = Nd−krJ(N−kv)W−dGW,b(v)
∑′

D;(D,W )=1

hD(R)γD(v) +O(Nd−rk−δ) (2.4.21)
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SW,q,b(N) = Nd−krJ(N−kv)W−dGW,b(v)
∑′

D;(D,W )=1

hD(R)γ[D,q](v) +O(Nd−rk−δ) (2.4.22)

where

GW,b(v) :=
∏
p|W

σp(p,b,v)
∏
p-W

σp(v) (2.4.23)

γD(v) := D−d
∑
s∈ZdD

F(s)≡v (mod D)

1D|s1...sd

∏
p|D

σp(p, s,v)

σp(v)
(2.4.24)

hD(R) :=
∑

[d1,d2]=D

µ(d1)µ(d2)χ(
log d1

logR
)χ(

log d2

logR
) (2.4.25)

Proof. By definition (2.4.19),

SW,b(N) : =
∑

x≡b (mod W )
F(x)=v

Λ2
R(x1x2 · · ·xd)1[0,N ]d(x)

=
∑

x≡b (mod W )
F(x)=v

1[0,N ]d(x)
∑′

d1,d2

[d1,d2]|x1···xd

µ(d1)µ(d2)χ(
log d1

logR
)χ(

log d2

logR
)

=
∑′

D

∑
d1,d2

[d1,d2]=D

µ(d1)µ(d2)χ(
log d1

logR
)χ(

log d2

logR
)

∑
x≡b (mod W )
F(x)=v

1D|x1···xd1[0,N ]d(x)

(2.4.26)

Since (b,W ) = 1, the inner sum of the last line of (2.4.26) is zero unless (D,W ) = 1 which we as-

sume from now on. The condition x ≡ b (mod W ) andD|x1 . . . xd depends only on x (mod DW )

thus one may write

∑
x≡b (mod W )
F(x)=v

1D|x1···xd1[0,N ]d(x) =
∑

t∈ZdDW ,t≡b (mod W )
F(t)≡v (mod DW )

1D|t1...td

∑
x≡t (mod DW )

F(x)=v

1[0,N ]d(x)

(2.4.27)
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Since D ≤ R2 ≤ N
η

1+η , apply Theorem 2.3.4,we can write (2.4.27) as

∑
t∈ZdDW ,t≡b (mod W )
F(t)≡v (mod DW )

1D|t1...td

(
Nd−kr(DW )−nJ(N−kv)

∏
p

σp(DW, t,v) +O(Nd−kr−δ′D−d)

)

(2.4.28)

First we estimate the contribution of error term in (2.4.28) to the sum SW,b(N). By the standard

number of divisors estimate, we have that the number of pairs d1, d2 such that [d1, d2] = D is .τ Dτ

for any τ > 0. Also since χ is supported on x ≤ 1, the sum in D is restricted to D ≤ R2. The

contribution of error term is given by

.τ N
d−kr−δ′W d

∑
D≤R2

Dτ . Nd−kr−δ′W dR2N τ . Nd−kr−δ′/2 (2.4.29)

for a sufficiently small τ . (here we may think of W as a fixed large constant.)

Now to calculate the main term using the Chinese Remainder Theorem. For each t ∈ ZdDW satisfying

t ≡ b (mod W ) , there is a unique s ∈ ZdD such that t ≡ s (mod D). Hence suppose F(b) ≡
v (mod D) then F(t) ≡ v (mod DW ) is equivalent to F(s) ≡ v (mod W ). Hence, applying

Lemma 2.4.4, we have

∑
t∈ZdDW ,t≡b (mod W )
F(t)≡v (mod DW )

1D|t1...td

∏
p|W

σp(p,b,v)
∏
p|D

σp(p, s,v)
∏
p-DW

σp(v)

=
∏
p|W

σp(p,b,v)
∏
p-W

σp(v)
∑
s∈ZdD

F(s)≡v (mod D)

1D|s1...sd

∏
p|D

σp(p, s,v)

σp(v)
(2.4.30)

Hence (2.4.19) follows from (2.4.26)-(2.4.30).

Now to show (2.4.20), we do the same calculation with D is replaced by Dq = [D, q] in (2.4.26).

Hence (2.4.27)-(2.4.30) remain valid with D replaced by [D, q]. Now we have to calculate (asymp-

totically) the sum

SW (f, γ) :=
∑′

D:(D,W )=1

γD(v)hD(R) (2.4.31)

This could be done by sieve methods, as in [42], [106]. We will follow the approach in [106] and then

adapt it to give the asymptotic for the sum

SW,q(f, γ) :=
∑′

D:(D,W )=1

γ[D,q](v)hD(R) (2.4.32)

which will be needed in the concentration estimate (2.4.5).
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Lemma 2.4.10 ([106], Proposition 10). Let γD(v) be a multiplicative function (in D) satisfying the

estimate (2.4.7). Let χ(x) = f(x) = (1− x)10d
+ then

SW (f, γ) = (
φ(W )

W
logR)−d

∫ ∞
0

f (d)(x)2 xd−1

(d− 1)!
dx+ oω→∞(1) (2.4.33)

Furthermore, for a prime q > ω,

SW,q(f, γ) =
d

q
(
φ(W )

W
logR)−d

∫ ∞
0

(f (d)(x)−f (d)(x+
log q

logR
))2 xd−1

(d− 1)!
dx+oω→∞(1) (2.4.34)

Proof. Since f(x) = (1 − x)10d
+ hence exf(x) is compactly supported and 10d − 1 continuously

differentiable. Denoted f̂(t) the Fourier transform of exf(x). Hence

|f̂(t)| . (1 + |t|)−10d

Recall the formula

d
− 1

logR f(
log d

logR
) =

∫
R
d
−it

logR f̂(t)dt.

Substitute this into (2.4.25), swapping the sum and integral due to rapid decay of f̂1,f̂2, one has

hD(R) =

∫
R

∫
R

∑
d1,d2

[d1,d2]=D

µ(d1)µ(d2)d
− 1+it1

logR

1 d
− 1+it2

logR

2 f̂(t1)f̂(t2)dt1dt2 =

∫
R

∫
R
gD(t1, t2)f̂(t1)f̂(t2)dt1dt2.

(2.4.35)

The function gD(t2, t2)γD(v) is multiplicative inD and by rapid decay of gD(t1, t2) in t1, t2, one has∑′

D:(D,W )=1

gD(t1, t2)γD(v) =
∏
p>ω

(
1 + gp(t1, t2)γp(v)

)
.

Substitute this into (2.4.31) gives

SW (f, γ) =

∫
R

∫
R

∏
p>ω

(
1− γp(v)

p
1+it1
logR

− γp(v)

p
1+it2
logR

+
γp(v)

p
2+it1+it2

logR

)
f̂(t1)f̂(t2)dt1dt2 (2.4.36)

Using the asymptote of γp(v) (2.4.7), one has the following estimate via Taylor’s series of log(1 + ε),

log

∣∣∣∣1− γp(v)

p
1+it1
logR

− γp(v)

p
1+it2
logR

+
γp(v)

p
2+it1+it2

logR

∣∣∣∣ ≤ 3dp
−1− 1

logR +O(p−2)
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Now by the well-known asymptotic15

∑
p

p
−1− 1

logR = log logR+O(1)

Hence the integrand in (2.4.36) is bounded by

C(logR)3d(1 + |t1|)−10d(1 + |t2|)−10d

Integrating over |t2| >
√

logR,∫
|t2|>

√
logR

∫
R

(logR)3d(1+|t1|)−10d(1+|t2|)−10ddt2 = O(log−dR

∫
|t2|>

√
logR

(1+|t2|)−2ddt2) = O(log−dR)

The same holds for |t1| >
√

logR. Hence

SW (f, γ) =

∫
|t1|≤

√
logR

∫
|t2|≤

√
logR

∏
p>ω

(
1− γp(v)

p
1+it1
logR

− γp(v)

p
1+it2
logR

+
γp(v)

p
2+it1+it2

logR

)
f̂(t1)f̂(t2)dt1dt2+O(log−dR)

(2.4.37)

For <s > 1, define

ζW (s) :=
∏
p>ω

(1− p−s)−1 = ζ(s)
∏
p≤ω

(1− p−s)

Apply (2.4.7) (asymptote for γp(v)), we have that

∏
p>ω

(
1− γp(v)

p
1+it1
logR

− γp(v)

p
1+it2
logR

+
γp(v)

p
2+it1+it2

logR

)
=
∏
p>ω

(
1− d

p1+s1
− d

p1+s2
+

d

p2+s1+s2
+O(p−2)

)
=
∏
p>ω

(
1− d

p1+s1
− d

p1+s2
+

d

p2+s1+s2

)
(1 +O(p−2))

=
∏
p>ω

(
1− d

p1+s1
− d

p1+s2
+

d

p2+s1+s2

)∏
p>ω

(1 +O(p−2))

=
ζW (1 + s1 + s2)d

ζW (1 + s1)dζW (1 + s2)d
(1 + oω→∞(1)) (2.4.38)

where s1 = 1 + 1+it1
logR , s2 = 1 + 1+it2

logR . On the range |t1|, |t2| ≤
√

logR, we have s = 1 +O( 1√
logR

).

15This can be seen by taking log of the following equation obtained from the simple pole with residue 1 at 1 of the Riemann’s
Zeta Function. ∏

p

(
1− 1

p
1+ 1

log R

)
=

1

ζ(1 + 1
logR

)
=

1

logR+O(1)
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For each fixed ω, letting N and hence R goes to infinity, we have

∏
p≤ω

(1− p−s) =
∏
p≤ω

(1− p−1) + o(1) =
φ(W )

W
+ o(1)

Hence using that ζ(s) = (s− 1)−1 +O(1)

ζW (s) =
∏
p≤ω

(1− p−s)ζ(s) =
(φ(W )

W
+ o(1)

)( 1

s− 1
+O(1)

)
=

1

s− 1

φ(W )

W
+ o(

1

s− 1
) +O(

φ(W )

W
) + o(1)

=
1

s− 1

φ(W )

W
(1 + ow→∞(1))

Substitute this into (2.4.38) and (2.4.37) gives

SW (f, γ) = (
φ(W )

W
logR)−d

∫
|t1|,|t2|≤

√
logR

(1 + it1)d(1 + it2)d

(2 + it1 + it2)d
(1 + oω→∞(1))f̂(t1)f̂(t2)dt1dt2 +O(log−dR)

= (
φ(W )

W
logR)−d

∫
|t1|,|t2|≤

√
logR

(1 + it1)d(1 + it2)d

(2 + it1 + it2)d
f̂(t1)f̂(t2)dt1dt2(1 + oω→∞(1))

= (
φ(W )

W
logR)−d

∫
R

∫
R

(1 + it1)d(1 + it2)d

(2 + it1 + it2)d
f̂(t1)f̂(t2)dt1dt2(1 + oω→∞(1))

= (
φ(W )

W
logR)−d

∫
R

∫
R

(1 + it1)d(1 + it2)d

(2 + it1 + it2)d
f̂(t1)f̂(t2)dt1dt2 + oω→∞(1) (2.4.39)

Here in the last line we use that f̂ is rapidly decays and extending the integral to R causes an error

term o(1). Now recall the value of the Gamma function at positive integers k:

(k − 1)! = Γ(k) =

∫ ∞
0

e−xxk−1dx

Since Γ is analytic on {z : <z ≥ 0} and e−zzk−1 decays for large <z. Hence we shift the contour

from R to (s+ it)R with s > 0, which are lines in the first quadrant with starting point at origin. That

is we have that for y = (s+ it)x,

(k − 1)! =

∫ ∞
0

e−yyk−1dy

That is

(s+ it)−k =

∫ ∞
0

e−x(s+it) xk−1

(k − 1)!
dx (2.4.40)
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In our case, we have

(2 + it1 + it2)−d =

∫ ∞
0

e−x(2+it1+it2) xd−1

(d− 1)!
dx (2.4.41)

Also recall the Fourier inversion formula

f(x) =

∫
R
e−(1+it)xf̂(t)dt

Differentiate n times, one get

f (d)(x) = (−1)d
∫
R
e−x(1+it)(1 + it)df̂(t)dt (2.4.42)

Hence one could write (2.4.39) as

SW (f, γ) = (
φ(W )

W
logR)−d

∫ ∞
0

f (d)(x)2 xd−1

(d− 1)!
dx+ oω→∞(1)

This shows (2.4.33).

Now we modify the above arguments to show (2.4.34). Fix a prime q > ω, we have

SW,q(f, γ) :=

∫
R

∫
R

∑′

D:(D,W )=1

γ[D,q](v)gD(t1, t2)dt1dt2 (2.4.43)

Now we separate the inner sum in D into cases q - D and q|D,

∑′

D:(D,W )=1

γ[D,q](v)gD(t1, t2) = γq(v)(1 + g1(t1, t2))
∑′

D,q-D,
(D,W )=1

gD(t1, t2)γD(v)

= γq(v)(1 + gq(t1, t2))
∏

p>ω,p6=q

(
1− γp(v)

p
1+it1
logR

− γp(v)

p
1+it2
logR

+
γp(v)

p
2+it1+it2

logR

)

=
γq(v)(1 + gq(t1, t2))

1 + gq(t1, t2)γq(v)

∏
p>ω

(
1− γp(v)

p
1+it1
logR

− γp(v)

p
1+it2
logR

+
γp(v)

p
2+it1+it2

logR

)

Hence this differs from the previous case in the sense that we have the additional factor γq(v)(1+gq(t1,t2))
1+gq(t1,t2)γq(v) .

Since we assume q > ω we have

γq(v) =
d

q
(1 + o(1))
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Using this estimate, we have

γq(v)(1 + gq(t1, t2))

1 + gq(t1, t2)γq(v)
=
d

q
(1− q−

1+it1
logR )(1− q−

1+it2
logR )(1 + o(1))

Hence we have analogue of (2.4.39),

SW,q(f, γ) =(
φ(W )

W
logR)−d

∫
R

∫
R

(1 + it1)d(1 + it2)d

(2 + it1 + it2)d

× (1− e−
(1+it1) log q

logR )(1− e−
(1+it2) log q

logR )f̂(t1)f̂(t2)dt1dt2 + oω→∞(1) (2.4.44)

Applying (2.4.41), we write (2.4.39) as∫ ∞
0

(∫
R

(e−x(1+it) − e−(x+ log q
logR

)(1+it)
)(1 + it)df̂(t)dt

)2 xd−1

(d− 1)!
dx

Applying (2.4.42), this becomes∫ ∞
0

(f (d)(x)− f (d)(x+
log q

logR
))2 xd−1

(d− 1)!
dx+ oω→∞(1)

as required.

2.4.4 Proof of the Main Theorem

Proof of Theorem 2.4.2. Let η ≤ η(r,k)
2(1+η(r,k)) where η(r, k) is as in the assumption of Theorem 2.4.2.

Then by (2.4.21) and (2.4.30), one has∑
x∈[N ]d

(x,W )=1, F(x)=v

Λ2
R(x1x2 · · ·xd) =

∑
b∈ZdW

(b,W )=1

SN,W,b(v)

= cd(f)Nd−krJ(N−kv)(logR)−dφ(W )−d(1 + oω→∞(1))
∑

b∈ZdW
(b,W )=1

GW,b(v) +O(Nd−kr−δ′)

(2.4.45)

By Lemma 2.4.4 and the Chinese Remainder Theorem,

φ(W )−d
∑

b∈ZdW
(b,W )=1

GW,b(v) =
∏
p|W

(φ(p)−d
∑
b∈Zdp

(b,p)=1

σp(p, b,v))
∏
p-W

σp(v) (2.4.46)

Recall that σp(v) = 1 +O(p−2), hence
∏
p-W σp(v) = 1 + oω→∞(1). For a fixed l ∈ N and primes
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p ≤ ω, one has16

φ(p)−dp−l(d−r)
∑

b∈Zdp,(b,p)=1

F(b)≡v (mod p)

|{x ∈ Zdpl ;F(px + b) = v|}|

= φ(p)−dp−l(d−r)pd|{y ∈ Zdpl ; (y, p) = 1,F(y) = v}|

=
prd

φ(pl)d
M(pl;v) (2.4.47)

where M(pl;v) is the number of solutions to F(y) ≡ v (mod pl) in the reduced residue class

y ∈ Zd
pl
, (y, p) = 1. Taking limit l→∞, one has

φ(p)−d
∑

b∈Zdp,(b,p)=1

F(b)≡v (mod p)

σp(p,b;v) = σ∗p(v)

and by (2.4.46), one has

φ(W )−d
∑

(b,W )=1
F(b)≡v (mod W )

GW,b(v) =
∏
p|W

σ∗p(v)(1 + oω→∞(1)) = G∗(v)(1 + oω→∞(1))

This proves (2.4.5).

Now we prove (2.4.6). Note that to estimate the sum over x ∈ [N ]d\Pε[N ]d under the restriction

(x,W ) = 1, we only need to sum over x = (x1, . . . , xd) for which q|x1 . . . xd for which q|x1 . . . xd

for some prime ω < q ≤ N ε. Hence∑
x∈[N ]d\Pε(N)d

(x,W )=1,F(x)=v

Λ2
R(x1 . . . xd) ≤

∑
ω<q≤Nε

∑
(x,W )=1
F(x=v)

1q|x1...xdΛ
2
R(x1 . . . xd)1[0,N ]d(x) =

∑
ω<q≤Nε

SW,q,b(N)

Now choose f(x) = (1 − x)10d
+ then recall an − bn = (a − b)(an−1 + an−2b + · · · + bn−1), we

observe directly that for 0 ≤ x, τ ≤ 1, we have

|f (d)(x)− f (d)(x+ τ)| ≤ τ |f (d+1)(x)| (2.4.48)

Then by estimates (2.4.22), (2.4.34), and (2.4.48),∑
ω<q≤Nε

SW,q,b(N)

16By pd to one correspondence between {px + b : x ∈ Zdpl , (b, p) = 1} and {y ∈ Zdpl : (y, p) = 1}.
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≤
∑

ω<q≤Nε

d

q
(
φ(W )

W
logR)−d

∫ ∞
0

(f (d)(x)− f (d)(x+
log q

logR
))2 xd−1

(d− 1)!
dx+ oω→∞(1) +O(Nd−kr−δ)

≤ d

q

(
log q

logR

)2

cd+1(f)Nd−kr(logR)−dG∗(N,v)(1 + oω→∞(1)) +O(Nd−kr−δ)

Write ε′ = ε/η so N ε = Rε
′

where R = Nη. Then using dyadic decomposition and the Prime

Numner Theorem, one can bound the sum over primes q, ω < q ≤ Rε′ ,∑
ω<q≤Rε′

q−1(log q)2 =
∑

ω≤2j<Rε′

∑
2j−1<q≤2j

q−1(log q)2

.
∑

ω≤2j<Rε′

(
2j

j
+ oω→∞(1))

j2

2j−1
≤ (2 + oω→∞(1))

∑
j≤ε′ logR

log 2

j ≤ 2(ε′)2

as required. We will choose ε > 0 to ensure that (2.4.5) dominates (2.4.6). for that we need to compare

c′d+1(f) with cd(f) defined in the Theorem. Here f(x) = (1− x)10d
+ so f (d)(x) = αd(1− x)9d

+ and

f (d+1)(x) = 9dαd(1− x)9d−1
+ with αd = (10d)!/(9d)!. By the beta function identity,∫ 1

0
(1− x)axbdx =

a!b!

(a+ b+ 1)!

we have

c′d+1(f) < 16d2cd(f)

Hence if

32d3(ε/η)2 ≤ 1

2
(2.4.49)

then for sufficiently large N,ω.

∑
x∈Pε(N)
F(x)=v

Λ2
R(x1 . . . xd)1[0,N ]d(x) ≥ cdNd−kr(logR)−dG∗(N,v) (2.4.50)

for some positive constant cd = cd(f) > 0.

Finally if x ∈ Pε[N ]d then each coordinate xi could have at most 1
ε prime factors. Hence

ΛR(x1 . . . xd) ≤ the number of squarefree divisors of x1 . . . xd ≤ 2d/ε.

Thus by (2.4.50), the numbers of solutions to F(x) = v with x ∈ Pε[N ]d satisfies

Mε
F (N) ≥ c(d, k, r)Nd−kr(logN)−dG∗(N,v)

where c(d, k, r) := cd2
−2d/ε for some ε = ε(d, k, r) > 0. In fact we may choose ε := (4d)−3/2η(r, k)
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to satisfy (2.4.49) with η(r, k) = (8r2(r+ 1)(r+ 2)k(k+ 1))−1 (chosen from conditions in Theorem

2.3.4). This proves Theorem 2.4.2.

2.5 Concluding Remarks

Some ideas from additive combinatorics are also used along this line where solutions are restricted to

some special sets like primes or almost primes. For example, Bourgain-Gamburd-Sarnak’s result [13]

on almost primes uses the idea of affine sieves. Their results are different from us that they give better

bound on ranks but only applicable to some classes of equations with high degrees of symmetry. This

is non generic. Cook-Magyar proves analogue result [19] on prime solutions to diophantine system

whose rank is tower-exponential with respect to its degree.

The first application of inverse Gowers norm theorem to number theory is to study the asymptotic

of the number of prime solutions of systems of linear equations of finite complexity by Green-Tao

[52]. Basically what is shown in [52] is that ‖Λ̃ − 1‖Uk is small where Λ̃ is W-tricked Mangoldt

function. To show this, one would need an explicit form of all structures that make the Uk norm

large; to apply the results of [53] [54]. We obtain a decomposition of Mangoldt function: Λ̃ =

Λ] + Λ[ Here Λ] =
∑

d|n,d≤R µ(d) log(n/d) with R a small power of N which will contribute to

the main term (major arc). Any term involving Λ[(sum over d > R) will be a small error term

(minor arc) that does not correlate with Uk−obstructions. This follows from smallness of ‖µ‖Us .
Recently, so-called nilpotent circle method where nilsequences could play a role of the linear phase,

is also used to find the asymptotic of average of f(L1(u, v)) . . . f(Lk(u, v)) for some classes of

arithmetic functions f and Lj are binary linear forms. Some arithmetic functions that are orthogonal

to polynomial nilsequences are studied in [76]. In [64] Frantzikinakis and Host prove a structure

theorem for bounded multiplicative functions using higher order Fourier analysis with some new

applications in number theory and Ramsey theory.
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Chapter 3

Corners in Dense Subsets of Primes via a
Transference Principle

Recall that a set A ⊆ Pd has upper relative density α if

lim sup
N→∞

|A ∩ PdN |
|PdN |

= α

Let us state our main result in this section.

Theorem 3.0.1. Let A ⊂ (PN )d of positive relative upper density α > 0. Then A contains at least

C(α) Nd+1

(logN)2d corners for some (computable) constant C(α).

Indeed this is not the most general known results and there are also other modern approaches to this

problem known as the densification trick [16]. We demonstrate the application the original approach

of Green-Tao [51] to attack this problem. This is the first result in the direction of extending the

theorem of Green and Tao to the multidimensional setting. The key ingredient is to move our set up

to translate the problem to the setting of a hypergraph system and to prove an appropriate version of

the so-called “correlation conditions” of Green and Tao.

In higher dimensions, the direct product of primes Pd is not a random subset of Zd and one reason is

the correlation from direct product structure. For example, if we want to count corners {(a, b), (a +

d, b), (a, b + d)} in P2 , suppose (a + d, b), (a, b + d) ∈ P2 then the remaining vertex (a, b) must

also be in P2. Thus the probability that all three vertices are in P2 (or in the direct product of the

almost primes) is not (log N)−6 as one would expect, but roughly (log N)−4. Due to this corre-

lation, the obvious generalization of ν, the d−folds tensor product ν ⊗ ν · · · ⊗ ν(x1, . . . , xd) =

ν(x1)ν(x2) . . . ν(xd), could not behaves pseudorandomly on its support Ad where A is the support
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of ν. For example in the corner P2, if we calculate

Ea,b,d(ν ⊗ ν)(a, b)(ν ⊗ ν)(a+ d, b)(ν ⊗ ν)(a, b+ d) = Ea,b,dν(a)2ν(b)2ν(a+ d)ν(b+ d),

we have to deal with higher moments of ν where we don’t have control. This happens exactly when

there is a correlation, that is there are points P1, P2 with a projection πi to a coordinate axis such that

πi(P1) = πi(P2). Such a correlation does not happen in the case of Gaussian prime ; a + ib, c + id

being Gaussian primes do not imply that a+ id is Gaussian prime (but there is a milder correlation to

its conjugate).

Our approach is transfer our problem to a corresponding problem in hypergraph to get rid of strong

correlation from direct product structure. This approach partly used already in [102], where one re-

duces the problem to that of proving a hypergraph removal lemma for weighted uniform hypergraphs.

Then we use an appropriate form of the so-called transference principle [37], [87] to remove the

weights and apply the removal lemmas for “un-weighted” hypergraphs, obtained in [36], [82], [104].

An interesting feature is that in our situation the so-called dual function estimates [50] are naturally

handled only by the linear forms conditions.

In our weighted setting, this method allows us to distribute the weights such that we can avoid dealing

with higher moments of the Green-Tao measure ν. We will define the notion of independent (pseu-

dorandom) weight systems on hypergraph which will be used to count prime configurations. The

reason that we cannot handle more general constellations is that we don’t quite have a suitable regu-

larity or removal lemma for general weight systems on non-uniform hypergraphs which allow us to

do transference arguments. We will apply different methods to overcome this difficulty in the next

chapter.

3.1 Hypergraph Setting and Weighted Hypergraph System.

First let us parameterize any affine copies of a corner as follow.

Definition 3.1.1. A non-degenerate corner is given by the following set of d−tuples of size d + 1 in

Zd (or ZdN ):

{(x1, ..., xd), (x1 + s, x2, ..., xd), ..., (x1, ..., xd−1, xd + s), s 6= 0}

or equivalently,

{(x1, ..., xd), (z−
∑

1≤j≤d
j 6=1

xj , x2, ..., xd), (x1, z−
∑

1≤j≤d
j 6=2

xj , x3, ..., xd), ..., (x1, ..., xd−1, z−
∑

1≤j≤d
j 6=d

xj)}

with z 6=
∑

1≤i≤d xi

77



Now to a given set A ⊆ ZdN , we assign a (d+ 1)− partite hypergraph GA as follows:

Let X1 = ... = Xd+1 := ZN be the vertex sets, and for 1 ≤ j ≤ d. Let an element a ∈ Xj represent

the hyperplane xj = a, and an element a ∈ Xd+1 represent the hyperplane a = x1 + .. + xd. We

join these d vertices (which represent d hyperplanes) if all of these d hyperplanes intersect in a single

point in A. Then a simplex in GA corresponds to a corner in A. Note that this includes trivial corners

which consist of a single point where they are negligible in order of magnitude.

For each I ⊆ [d+ 1] let E(I) denote the set of hyperedges whose elements are exactly from vertices

set Vi, i ∈ I . In order to count corners inA, we will place some weights on some of these hyperedges

that will represent the coordinates of the corner. To be more precise we define the weights on 1−edges:

νj(a) = ν(a), a ∈ Xj , j ≤ d, νd+1(a) = 1, a ∈ Xd+1,

and on d−hyperedges:

νI(a) = ν(ad+1 −
∑

j∈I\{d+1}

aj), a ∈ E(I), |I| = d, d+ 1 ∈ I

ν[1,d](a) = 1, a ∈ E([1, d])

In particular the weights are 1 or of the form νI(LI(xI)) where all linear forms {LI(xI)} are pair-

wise linearly independent. This is an example of what we will call independent weight system. The

parametrization of corner is indeed a special case of general parametrization (4.2.11) in next chapter

but let us just describe this explicitly here. Important special features here is that all linear forms either

depends on 1 or d variables.

V1

V2

V3

V4

weight for corner in Z3 on 4−partite 3−regular hypergraph:
ν(x4 − x1 − x2) on (x1, x2, x4)

ν(x4 − x2 − x3) on (x2, x3, x4)

ν(x4 − x1 − x3) on (x1, x3, x4)

ν(x1), ν(x2), ν(x3) on x1, x2, x3 respectively

Measure space (Ve, µe(xe)).

Ve =
∏
j∈e Vj , xe = (xi)i∈e

Figure 3.1: Weighted hypergraph system. In general, on each edge e of a hypergraph, we attach the
weight

∏
ν(Le) on e where the product is taking over all linear forms depending on exactly xe.

In our case, these linear forms will be pairwise linearly independent.

Definition 3.1.2 (Independent weight system). An independent weight system is a family of weights
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on the edges of a d+ 1−partite hypergraph such that for any I ⊆ [d+ 1], |I| ≤ d, νI(xI) is either 1

or of the form
∏K(I)
j=1 ν(LjI(xI)) where all distinct linear forms {LjI} 1≤j≤K(I) are pairwise linearly

independent, moreover the form LjI depends exactly on the variables xI = (xj)j∈I .

In fact for a weight system that arised from parametrizing affine copies of configurations in Zd, it

is easy to see from the construction that for any I ⊆ [d + 1], |I| = d all distinct linear forms

{LkJ}J⊆I,1≤k≤K(J) are pairwise linearly independent.

Now for each I = [d+ 1]\{j}, 1 ≤ j ≤ d let

fI = 1A(x1, ..., xj−1, xd+1 −
∑

1≤i≤d
i 6=j

xi, xj+1, ..., xd) · νI

and for I = [d], let fI = 1A(x1, ..., xd). As the coordinates of a corner contained in Pd are given by

2d prime numbers. Recall ν(p) ≈ logN if p is a prime in [ε1N, ε2N ] (in residue class b (mod W )).

We define a multi-linear form

Λ := Λd+1(fI , |I| = d) := Ex[d+1]

∏
|I|=d

fI

d∏
i=1

ν(xi) = N−d−1
∑

pi∈A,1≤i≤2d
(pi)1≤i≤2d constitutes a corner

2d∏
i=1

ν(pi)

≈ log2dN

Nd+1
|number of corners in A|

Hence Λ can be used to estimate the numbers of corners. Indeed if Λ ≥ C1 then

number of corners in A ≥ C2
Nd+1

log2dN
.

We define measure spaces associated to our system of measure as follows. For 1 ≤ i ≤ d, let

(Xi, µXi) = (ZN , ν) where ν is the Green-Tao measure, and let µXd+1
be the normalized counting

measure on Xd+1 = ZN . With this notation one may write

Λ := Λd+1(fI , |I| = d) =

∫
X1

· · ·
∫
Xd+1

∏
|I|=d

fI dµX1 · · · dµXd+1
.

We define a measure on XI , I ⊆ [d+ 1], |I| = d associated to our weight system by∫
XI

fdµXI := ExIfI ·
∏

J⊆I,|J |<d

νJ(xJ),

also on X[d+1] by ∫
X[d+1]

fdµX[d+1]
:= Ex[d+1]

f ·
∏

I⊆[d+1],|I|<d

νI(xI),
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and the associated multi-linear form by

Λ := Λ(fI , |I| = d) :=

∫
X[d+1]

∏
|I|=d

fIdµX[d+1]
(3.1.1)

Remark 3.1.3. For general configurations, we will use same weighted hypergraph to count the prime

configurations but will not attach weight to the function and so the measure space is constructed a

bit differently. For the corner case in this chapter, we will apply the transference principle technique

hence we will attach weights of size d to the functions, only weights of size 1 left on the hypergraph.

This strategy will not work in general in particular if there is an intermediate weight of size d′, 1 <

d′ < d. We don’t have an appropriate version of hypergraph removal for transference principle. If we

attach that weight to the function, then we don’t have control on the size of dual functions.

3.2 Weighted Box Norm and Weighted Generalized von-Neumann’s
Inequality

In this section we describe the weighted version of Gowers’s uniformity norm on (d + 1)−partite

hypergraph (box norms) and the so-called Gowers’s inner product associated to the hypergraph GA
endowed with a weight system {νI}I⊆ [d+1],|I|≤d. We describe the analogue properties of weighted

box norm as in unweighted case i.e. Gowers-Cauchy-Schwartz’s inequalities and generalized von-

Neumann inequalities in this setting. Here we may recall the index notations stated at the starting of

Chapter 1.

Definition 3.2.1. For each 1 ≤ j ≤ d, let Xj , Yj be finite set (in this thesis, we will take Xj = Yj :=

ZN ) with a weight system ν on X[d] × Y[d]. For f : X[d] → R, define

‖f‖2
d

�dµ
:=

∫
X[d]×Y[d]

∏
ω[d]

f(Pω[d]
(x[d],y[d]))dµX[d]×Y[d]

:= Ex[d]
Ey[d]

∏
ω[d]

f(Pω[d]
(x[d],y[d]))×

∏
|I|<d

∏
ωI

νI(PωI (xI ,yI))

and define the corresponding Gowers’s inner product of 2d functions,〈
fω, ω ∈ {0, 1}d

〉
�dµ

:=

∫
X[d]×Y[d]

∏
ω[d]

fω[d]
(Pω[d]

(x[d],y[d]))dµX[d]×Y[d]

:= Ex[d]
Ey[d]

∏
ω[d]

fω[d]
(Pω[d]

(x[d],y[d]))
∏
|I|<d

∏
ωI

νI(PωI (xI ,yI))

So
〈
f, ω ∈ {0, 1}d

〉
�dµ

= ‖f‖2
d

�dµ
.
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For each e ∈ H, we may define have a measure space on Ve with weighted from all edges f ⊆ e. We

can define the box norm ‖f‖�µe for f : Ve → R as well. If e is clear from the context, we may write

this as ‖f‖�d′µ where |e| = d′.

Remark 3.2.2. To prove weighted Cauchy-Schwartz’s inequality (Theorem 3.2.3) or Generalized von

Neumann’s theorem (Theorem 3.2.5) below. We will apply Cauchy-Schwartz’s inequality and linear

forms conditions. The way we apply linear forms condition we will only consider the set of variables

they depend on, and if they are different, linear forms condition is applicable. This will be how we

apply linear forms conditions here.

Theorem 3.2.3 (Gowers-Cauchy-Schwartz’s Inequality).

|
〈
fω;ω ∈ {0, 1}d

〉
�dµ
| ≤

∏
ω[d]

∥∥fω∥∥�dµ .
Proof. We will use Cauchy-Schwartz’s inequality and linear form condition. Write

〈
fω;ω ∈ {0, 1}d

〉
�dµ

= Ex[2,d],y[2,d]

[( ∏
|I|<d,1/∈I

∏
ωI

νI(PωI (xI ,yI))

)1/2

(
Ex1ν(x1)

∏
ω[2,d]

fω(0,[2,d])
(x1, Pω[2,d]

(x[2,d],y[2,d]))
∏

|I|<d−1,1/∈I

ν{1}∪I(x1, PωI (xI ,yI))

)

×
( ∏
|I|<d,1/∈I

∏
ωI

νI(PωI (xI ,yI))

)1/2

(
Ey1ν(y1)

∏
ω[2,d]

fω(1,[2,d])
(y1, Pω[2,d]

(x[2,d],y[2,d]))
∏

|I|<d−1,1/∈I

ν{1}∪I(y1, PωI (xI ,yI))

)]

Applying the Cauchy Schwartz inequality in the x[2,d],y[2,d] variables, one has

|〈fω;ω ∈ {0, 1}d〉�dµ |
2 ≤ A ·B

here,

A = Ex[2,d],y[2,d]

[ ∏
|I|<d,1/∈I

∏
ωI

νI(PωI (xI ,yI))

×
(
Ex1,y1ν(x1)ν(y1)

∏
ω[2,d]

fω(0,[2,d])
(x1, Pω[2,d]

(x[2,d],y[2,d]))fω(0,[2,d])
(y1, Pω[2,d]

(x[2,d],y[2,d]))

×
∏

|I|<d−1,1/∈I

∏
ωI

ν{1}∪I(x1, PωI (xI ,yI))ν{1}∪I(y1, PωI (xI ,yI))

)]
=
〈
f (0)
ω (Pω(x[d],y[d]))

〉
�dµ
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where f (0)
ω̃ = f(0,ω̃∩[2,d]) for any ω̃[1,d]. And,

B = Ex[2,d],y[2,d]

[ ∏
|I|<d,1/∈I

∏
ωI

νI(PωI (xI ,yI))

×
(
Ex1,y1ν(x1)ν(y1)

∏
ω[2,d]

fω(1,[2,d])
(x1, Pω[2,d]

(x[2,d],y[2,d]))fω(1,[2,d])
(y1, Pω[2,d]

(x[2,d],y[2,d]))

×
∏

|I|<d,1/∈I

∏
ωI

ν{1}∪I(x1, PωI (xI ,yI))ν{1}∪I(y1, PωI (xI ,yI))

)]
=
〈
f (1)
ω (Pω(x[d],y[d]))

〉
�dµ

where f (1)
ω̃ = f(1,ω̃∩[2,d])for any ω̃[1,d].

In the same way, we apply Cauchy-Schwartz’s inequality in (x[3,d],y[3,d]) variables to end up with

|〈fω;ω ∈ {0, 1}d〉�dµ |
4 ≤

∏
ω[0,1]

〈f
ω[1,2]
ω ;ω ∈ {0, 1}d〉�dµ

Continue applying Cauchy-Schwartz’s inequality consecutively in (x[4,d],y[4,d]), ..., (x[d,d],y[d,d]) vari-

ables, we end up with

|〈fω;ω ∈ {0, 1}d〉�dµ |
2d ≤

∏
ω[d]

〈fω, ..., fω〉�dµ , f
ω = fω

≤
∏
ω[d]

∥∥fω∥∥2d

�dµ

Corollary 3.2.4. ‖·‖�dµ is a norm for N is sufficiently large.

Proof. First we show nonnegativity. By the linear forms condition, ‖1‖�ν = 1 + o(1). Hence by the

Gowers-Cauchy-Schwartz inequality, we have ‖f‖�dµ & |〈f, 1, ..., 1〉�dµ | ≥ 0 for all sufficiently large

N . Now

‖f + g‖�dµ = 〈f + g, ..., f + g〉�dµ =
∑

ω∈{0,1}d
〈hω1 , ..., hωd〉�dµ , h

ω =

f , ω = 0

g , ω = 1

≤
∑

ω∈{0,1}d
‖hω1‖�dµ ... ‖h

ωd‖�dµ

= (‖f‖�dµ + ‖g‖�dµ)2d

Also it follows directly from the definition that ‖λf‖2
d

�dµ
= λ2d ‖f‖2

d

�dµ
. Since the norm are nonnega-
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tive, we have ‖λf‖�dµ = |λ| ‖f‖�dµ .

Now we will prove Generalized von Neumann inequalities. The generalized von-Neumann inequality

says that the average Λ := Λd+1,µ(fI , I ⊆ [d+ 1], |I| = d), see (3.1.1), is controlled by the weighted

box norm. We show this inequality in the general settings of an independent weight system.

Theorem 3.2.5 (Weighted generalized von-Neumann inequality for corner). Let I ⊆ [d + 1], |I| =

d, fI : XI → [0, 1] bounded by 1. Write fej = f[d+1]\{j}. Let ν be an independent system of measure

on X[d+1] that satisfies linear form conditions.1 then

|Λd+1,µ(fe1 , ..., fed+1
)| . min{‖fe1‖�µe1 , ..., ‖fed+1

‖�µed+1
} (3.2.1)

Proof of Weighted Generalized von Neumann. LetH′ = {f ∈ H; |f | < d}, and write the left side of

(3.2.1) as

Λd+1,µ = Ex∈VJ
∏
e∈Hd

fe(xe)νe(xe)
∏
f∈H′

νf (xf ).

Write ej := [d + 1]\{j}, 1 ≤ j ≤ d + 1 for the faces. The idea is to apply the Cauchy-Schwartz in-

equality successively in the x1, x2, . . . , xd variables to eliminate the functions2 and weights (fe1 , νe1), . . . , (fed , νed),

using the linear forms condition at each step, leaving fed+1
on RHS.

Write E := Λd+1,µ. To eliminate fe1 , νe1 we have

|E| ≤ Ex2,...,xd+1
νe1(xe1)

∏
1/∈f∈H′

νf (xf )
∣∣Ex1

∏
j 6=2

fej (xj)
∏

1∈f∈H′
νf (xf )

∣∣.
By the linear forms condition Ex2,...,xd+1

νe1(xe1)
∏

1/∈f∈H′ νf (xf ) = 1 + oN→∞(1), thus by the

Cauchy-Schwartz inequality

E2 . Ex2,...,xd+1
νe1(xe1)

∏
1/∈f∈H′

νf (xf ) Ex1,y1

∏
j 6=2

fejνej (x1, xej\{1})fejνej (y1, xej\{1}) (3.2.2)

×
∏

1∈f∈H′
νf (y1, xf\{1}) νf (x1, xf\{1})

This eliminates fe1 , νe1 and doubles the variable x1 to the pair of variables (x1, y1) and also doubled

each factor of the form Ge(xe) (which is either fe(xe) or νe(xe), for e ∈ H) depending on the x1

variable. To keep track of these changes as we continue with the rest of that variables, let us introduce
1This lemma indeed directly applicable to corner system where fI ≤ νI by reinterpreting the weight attached to fI as weight

attached to XI .
2Indeed, f is bounded by 1 an ν is positive so fe can be trivially eliminated but they are also naturally the same way as νe
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some notations. Let g ⊆ [d] and for a function Ge(xe) define

G∗e(xe∩g, ye∩g, xe\g) :=
∏

ωe∈{0,1}e∩g
Ge(ωe(xe∩g, ye∩g), xe\g). (3.2.3)

We claim that after applying the Cauchy-Schwartz inequality in the x1, . . . , xi variables we have3

with g = [i]

E2i . Ex[i],y[i],xJ\[i]

∏
j≤i

ν∗ej (x[i]∩ej , y[i]∩ej , xej\[i])
∏
j>i

f∗ejν
∗
ej (x[i]∩ej , y[i]∩ej , xej\[i]) (3.2.4)

×
∏
f∈H′

ν∗f (xf∩[i], yf∩[i], xf\[i]).

For i = 1 this can be seen from (3.2.2). Note that the linear forms appearing in any of these factors are

pairwise linearly independent. Assuming it holds for i separating the factors independent of the xi+1

variable, and eliminate fei+1 and applying the Cauchy-Schwartz inequality we double the variable

xi+1 to the pair (xi+1, yi+1) and each factor G∗e(xe∩[i], ye∩[i], xe\[i]) depending on it, to obtain the

factor

G∗e(xe∩[i+1], ye∩[i+1], xe\[i+1]),

thus the formula holds for i+ 1. After finishing this process we have

E2d . Ex[d],y[d]

∏
ω∈{0,1}d

fed+1
(ω(x[d], y[d]))νed+1

(ω(x[d], y[d]))
∏

f⊆[d],f 6=e0

∏
ωf∈{0,1}f

νf (ωf (xf , yf ))W(x[d], y[d]),

where

W(x[d], y[d]) = Exd+1

∏
d+1∈e∈H

∏
ωe∈{0,1}e∩[d]

νe(ωe(xe∩[d], ye∩[d], xe\[d])).

Thus to prove (3.2.1), it is enough to show that

Ex[d],y[d]

∏
f⊆[d]

∏
ωf∈{0,1}f

νf (ωf (xf , yf )) |W(x[d], y[d])− 1| = oN→∞(1).

This can be done with one more application of the Cauchy-Schwartz inequality in xd+1 variable lead-

ing to 4 terms involving the “big” weight functionsW andW2. Each terms is however 1 + oN→∞(1)

by the linear forms condition, as the underlying linear forms are pairwise linearly independent: the

forms Lf (ωf (xf , yf )) are pairwise independent for f ⊆ [d], and depend on a different set of vari-

ables then the forms Le(ωe(xe∩[d], ye∩[d], xe\[d])) for e * [d] defining the weight function W . The

new forms appearing inW2 are copies of the forms inW with the xd+1 variable replaced by a new

variable yd+1 hence are independent of each other and the rest of the forms. This proves the proposi-

3Noting that for j ≤ i : [i] ∩ ej = [i]\{j}. For j > i : [i] ∩ ej = [i].
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tion for fed+1
and we can prove for other fej in the same way.

3.3 Dual Function Estimates

Definition 3.3.1 (Dual Function). For f, g : ZdN → R define the weight inner product

〈f, g〉µ :=

∫
X[d]

f · gdµX[d]
= Ex∈ZdN

f(x)g(x)
∏
|I|<d

νI(xI).

Define the dual function of f by

Df = Dµf := Ey∈ZdN

∏
ω 6=0

f(Pω(x,y))
∏
|I|<d

∏
ωI 6=0

νI(PωI (xI ,yI))

So

‖f‖2
d

�µ = Ex∈ZdN
f(x)

[
Ey∈ZdN

∏
ω 6=0

f(Pω(x,y))
∏
|I|<d

∏
ωI 6=0

νI(PωI (xI ,yI))

] ∏
|I|<d

νI(xI)

= 〈f,Df〉µ

In this section we prove the dual function estimate in our hypergraph system. We uses product of

these dual functions as an uniformity obstruction in soft inverse theorem arguments as in [51], [36].

In [51], they allow K to be arbitrary large4 and employ the correlation condition to avoid the infinite

linear forms conditions which was not available at that time (this is the only place where they used

correlation condition in [51]). We only needs linear form condition here as the parameter K could be

arbitrarily finite but fixed constant, depending on α. This makes the number of linear form conditions

involved depends on α.

Theorem 3.3.2. For allK ≤ K(α) any independent measure system and any fixed J ⊆ [d+1], |J | =
d, let F1, ..., FK : XJ → R, Fj(xJ) ≤ νJ(xJ) be given functions. Then for each 1 ≤ K ≤ K(α) we

have that ∥∥ K∏
j=1

DFj
∥∥∗
�dµ

= Oα(1)

Proof. Denote by I the subsets of a fixed set J ⊆ [d+ 1], |J | = d. First, for each 1 ≤ j ≤ K, write

DFj(x) = Eyj∈ZdN

∏
ω 6=0

Fj(Pω(x,yj))
∏
|I|<d

∏
ωI 6=0

νI(PωI (xI ,y
j
I))

4In [50], K is the number of iterations in energy increment which is 22K

/ε.
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Now assume ‖f‖�dµ ≤ 1 then

〈
f,

K∏
j=1

DFj
〉
µ

= Ex∈ZdN
f(x)

K∏
j=1

DFj(x)
∏
|I|<d

νI(xI)

= Ex∈ZdN
f(x)Ey1,...yK∈ZdN

K∏
j=1

(∏
ω 6=0

Fj(Pω(x,yj))
∏
|I|<d

[ ∏
ωI 6=0

νI(PωI (xI ,y
j
I))

]
νI(xI)

)

We will compare this to the box norm to exploit the fact that ‖f‖�dν ≤ 1. To compare this to the

Gowers’s inner product, let us introduce the following change of variables:

For a fixed y ∈ ZdN , write yj 7→ yj + y for 1 ≤ j ≤ K then our expression takes the form

〈
f,

K∏
j=1

DFj
〉
µ

= Ey1,...,yKExf(x)

K∏
j=1

[ ∏
ω 6=0

Fj(Pω(x,y + yj))
∏
|I|<d

∏
ωI 6=0

[
νI(PωI (xI ,y

j
I + yI))

]
νI(xI)

]

Since ZdN is cyclic. This is equal to the average

Ey1,...,yK∈ZdN
Ex,y∈ZdN

f(x)
K∏
j=1

[ ∏
ω 6=0

Fj(Pω(x,y + yj))
∏
|I|<d

∏
ωI 6=0

[
νI(PωI (xI ,y

j
I + yI))

]
νI(xI)

]

For ω ∈ {0, 1}d, Y = (y1, . . . , yk) ∈ (ZdN )k. We will define functions Gω,Y (x) : ZdN → R such that

〈
f,

K∏
j=1

DFj
〉
µ

= Ey1,..,yK

〈
Gω,Y ;ω ∈ {0, 1}d

〉
�dµ

To do this, let G0(x) := f(x) and for each ω̃ 6= 0, Y , define

Gω̃,Y (x) :=
K∏
j=1

[
Fj(x + yj1(ω̃))

( ∏
|I|<d

νI((x + yj1(ω̃))
∣∣
I
)

) 1

2d−|I|
]
×
∏
|I|<d

νI(xI)
− 1

2d−|I|

Hence for ω̃ 6= 0

Gω̃,Y (Pω̃(x,y)) =
K∏
j=1

[
Fj(Pω̃(x,y+yj))

( ∏
|I|<d

νI((Pω̃((x,y+yj)
∣∣
I

) 1

2d−|I|

]
×
∏
|I|<d

νI(Pω̃(x,y)
∣∣
I
)
− 1

2d−|I|

Remark 3.3.3. For each I ⊆ [d] and fixed ωI , the number of ω[d] such that ω[d]|I = ωI is 2d−|I| and

Pω(x,y)|I = PωI (xI ,yI)⇐⇒ ω|I = ωI

86



Hence〈
Gω,Y ;ω ∈ {0, 1}d

〉
�dµ

= Ex,y∈ZdN

∏
ω

Gω,Y (Pω(x,y))×
∏
|I|<d

∏
ωI

νI(PωI (xI ,yI))

= Ex,y∈ZdN

∏
ω

[ K∏
j=1

[
Fj(Pω(x,y + yj))(

∏
|I|<d

νI(Pω((x,y) + yj1(ω))
∣∣
I
)

1

2d−|I|

]

×
∏
|I|<d

νI(Pω(xI ,yI)|I)
− 1

2d−|I|

]
×
∏
|I|<d

∏
ωI

νI(PωI (xI ,yI))

= Ex,y∈ZdN
f(x)

[ K∏
j=1

∏
ω 6=0

Fj(Pω(x,y + yj))

]
×
∏
|I|<d

[( K∏
j=1

∏
ωI 6=0

νI(PωI (xI ,y
j
I + yI))

)
νI(xI)

]

Hence we have

〈f,
K∏
j=1

DFj〉µ = Ey1,..,yK

〈
Gω,Y ;ω ∈ {0, 1}d

〉
�dµ

Then by Gowers-Cauchy-Schwartz’s and arithmetic-geometric mean inequality, we have

∣∣〈f, K∏
j=1

DFj〉µ
∣∣ ≤ Ey1,...,yK ‖f‖�dµ

∏
ω 6=0

∥∥Gω,Y ∥∥�dµ . Ey1,...,yK
(
1 +

∑
ω[d] 6=0

∥∥Gω,Y ∥∥2d

�dµ

)
Hence to prove the dual function estimate, it is enough to show that

Ey1,...,yK
∥∥Gω̃,Y ∥∥2d

�dµ
= O(1)

For any fixed ω̃ 6= 0. Now

Ey1,...,yK
∥∥Gω̃,Y ∥∥2d

�dµ
= Ey1,...,yKEx,y

∏
ω

Gω̃,Y (Pω(x,y))
∏
|I|<d

∏
ωI

νI(PωI (xI ,yI))

≤ Ey1,...,yKEx,y

∏
ω

K∏
j=1

[
ν[d](Pω(x,y) + yj1(ω̃))

∏
|I|<d

νI((Pω(x,y) + yj1(ω̃))
∣∣
I
)

1

2d−|I|

×
∏
|I|<d

νI(Pω(x,y)
∣∣
I
)
− 1

2d−|I|

]
×
∏
|I|<d

∏
ωI

νI(PωI (xI ,yI))

= Ey1,...,yKEx,y

K∏
j=1

[∏
ω

ν[d](Pω((x,y) + yj1(ω̃)

∣∣
I
))
∏
|I|<d

∏
ωI

νI(PωI (xI ,yI) + yj1(ω̃)

∣∣
I
)

]

by remark 3.3.3 above. As the linear forms appearing in the above expression are pairwise linearly

independent this is Oα(1) (in fact 1 + oα(1)) by the linear forms condition as required.
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3.4 Transference Principle

In this section, we will modify the transference principle in [37](see Theorem 3.4.6). We will work

on the set on which our functions have bounded dual, treating the contributions of the remaining set

as error terms.

We will work on functions f : XI → R, dominated by νI . WLOG I = [d]. Let 〈 · 〉 be any inner

product on F := {f : X[d] → R} written as 〈f, g〉 =
∫
f · g dµ for some measure µ on X[d]. In this

section we will need the explicit description of the set Ω(T ) that the dual function is bounded by T

and for this we will need correlation condition (in particular, Proposition 3.4.3 below. This is the only

place in this thesis that we will need correlation condition).

We will do this on the set on which our functions have bounded dual, and treat the contributions

of the remaining set as error terms. We will need the explicit description of the set Ω(T ) that the

dual function is bounded by T using the correlation condition (In particular, that this set is of lower

complexity, missing one of the variable). In general, T will depend on ε and T → ∞ as ε → 0 but

when we apply removal lemma we will choose ε to be some small number depending on α and hence

if α is fixed then we can regard ε as a fixed small constant and T as a fixed large constant.

Definition 3.4.1. For each T > 1 we have th set Ω(T ) and define the following sets

F := {f : X[d] → R}

FT := {f ∈ F : supp(f) ⊆ Ω(T )}

ST := {f ∈ FT : |f | ≤ ν[d](x[d]) + 2}

We define the following (basic anti-correlation) norm on FT

‖f‖BAC := ‖f‖BAC,µ = max
g∈ST

| 〈f,Dg〉µ | ≥ ‖f‖
2d

�µ .

If f ∈ ST , this norm measures how much the functions on FT correlate with function on ST and our

weighted box norm is denominated by this norm. This will allow us to work on BAC−norm (rather

than the box norm) which has some useful algebraic properties. Recall

Df = Ey

∏
ω 6=0

f(Pω(x,y))
∏
|I|<d

∏
ωI 6=0

νI(PωI (xI ,yI))

Also recall that LI(x) are linear forms appeared in the definition of νI . Write hωI = LI(x)|0(ωI)

hence using correlation condition (Definition 2.2.8), we have

|Df | ≤
∏

∅6=J⊆[d]

∑
(ωI1

,ωI2
)∈TJ

τ(W · (aωI1hωI1 − aωI2hωI2 ) + (aωI1
− aωI2 )b) (3.4.1)
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where for each J ( [d], J 6= ∅

TJ := {(ωI1 , ωI2), ωI1 , ωI2 6= 0, 1(ωI1) = 1(ωI2) = J : ∃c ∈ Q, LI1(y1(ωI1
)) = cLI2(y1(ωI2

))}

where aωIj ∈ Z. Define

ΩJ(T ) = {(x[d] :
∑

(ωI1
,ωI2

)∈TJ

τ(W · (aωI1hωI1 − aωI2hωI2 ) + (aωI1
− aωI2 )b)) ≤ T 1/2d} (3.4.2)

Ω(T ) =
⋂

∅6=J([d]

ΩJ(T ) (3.4.3)

So Df is bounded by T on Ω(T ) for any fixed T > 1. Indeed, when T is large, the set Ω(T ) 6= ∅.
Explicit description of Ω(T ) is only used in the proof of property 1 in Propposition 3.4.3 below.

Example 3.4.2. In 2-dimension corner, let f : X1 ×X2 → R, we have

Df(x1, x2) = Ey1,y2f(x1, y2)f(y1, x2)f(y1, y2)ν(y1)ν(y2)

≤ Ey1,y2ν(x2 − y1)ν(y2 − x1)ν(y2 − y1)ν(y1)ν(y2)

≤ τ(W · x1)τ(W · x2)

Then define Ω1(T ) := {(x1, x2) : τ(W · x2) ≤ T 1/2},Ω2(T ) := {(x1, x2) : τ(W · x1) ≤ T 1/2}. Let

Ω{1,2}(T ) := Ω1(T ) ∩ Ω2(T ) then Df is bounded by T on Ω1(T ) ∩ Ω2(T ).

We have the following basic properties of this norm.

Proposition 3.4.3. 1. g ∈ FT ⇒ Dg ∈ FT
2. ‖·‖BAC is a norm on FT and can be extended to be a seminorm on F . Furthermore, we have

‖f‖BAC =
∥∥f · 1Ω(T )

∥∥
BAC , f ∈ F .

3. Span{Dg : g ∈ ST } = FT
4. ‖f‖∗BAC = inf{

∑k
i=1 |λi|, f =

∑k
i=1 λiDgi; gi ∈ ST } for f ∈ FT . Hence the dual of BAC norm

measure how one can write f as a linear combination of Dgi; gi ∈ ST .

Remark 3.4.4. If f /∈ FT then supp(f) * Ω(T ) so f is not of the form
∑k

i=1 λiDgi; gi ∈ FT as RHS

is zero.

Proof. 1. Suppose (x̃1, ..., x̃d) ∈ Ω(T )C then there is an J ( [d] such that KJ(x̃[d]\J) > T where

KJ is the function in the definition of ΩJ(T ) for some J . Let g ∈ FT then g(x̃[d]\J ,xJ) = 0

for all xJ ∈ XJ So

Dg(x̃[d]\J ,xJ) = g(x̃[d]\J ,xJ)E(x) = 0

for some function E so Dg ∈ FT .
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2. It follows directly from the definition that ‖f + g‖BAC ≤ ‖f‖BAC + ‖g‖BAC and ‖λf‖BAC =

|λ| ‖f‖BAC for any λ ∈ R. Now suppose f ∈ FT , f is not identically zero then we need to

show that ‖f‖BAC 6= 0. Since f is defined on a finite set, we have that ‖f‖∞ < ∞. Let

g = γf where γ is a constant such that ‖g‖∞ < 2 then g ∈ ST and 〈f,Dg〉µ = 〈f,Dγf〉µ =

γ2d−1 〈f,Df〉µ > 0 so ‖f‖BAC > 0.

Now since supp(Dg) ⊆ Ω(T ) we have for any f ∈ F

‖f‖BAC = sup
g∈ST

| 〈f,Dg〉µ | = sup
g∈ST

|
〈
f · 1Ω(T ),Dg

〉
µ
| =

∥∥f · 1Ω(T )

∥∥
BAC

3. If there is an f ∈ FT , f is not identically zero and f /∈ span{Dg : g ∈ ST } So f ∈ span{Dg :

g ∈ ST }⊥ then 〈f,Dg〉 = 0 for all g ∈ ST . So ‖f‖BAC = 0 which is a contradiction.

4. This is a standard argument. Define ‖f‖D = inf{
∑k

i=1 |λi| : f =
∑k

i=1 λiDgi, gi ∈ ST }which

can be easily verified to be a norm on FT . Now let φ, f ∈ FT , f =
∑k

i=1 λiDgi, gi ∈ ST , then

| 〈φ, f〉 | =
k∑
i=1

|λi|| 〈φ,Dgi〉 | ≤ ‖φ‖BAC

k∑
i=1

|λi| ≤ ‖φ‖BAC ‖f‖D

so

‖f‖∗BAC ≤ ‖f‖D

Next for all g ∈ ST , we have ‖Dg‖D ≤ 1 then

‖f‖BAC = sup
g∈ST

| 〈f,Dg〉 | ≤ sup
‖h‖D≤1

| 〈f, h〉 | = ‖f‖∗D

so ‖f‖BAC ≤ ‖f‖
∗
D i.e. ‖f‖∗BAC ≥ ‖f‖D. So ‖f‖∗BAC = ‖f‖D.

Now let us prove the following lemma whose proof relies on the dual function estimate. From here

we consider our inner product 〈 · 〉µ and the norm ‖ · ‖�µ . This argument also works for any norm

for which one has the dual function estimate.

Lemma 3.4.5. Let φ ∈ FT be such that ‖φ‖∗BAC ≤ C and η > 0. Let φ+ := max{0, φ}. Then there

is a polynomial P (u) = amu
m + ...+ a1u+ a0 such that

1. ‖P (φ)− φ+‖∞ ≤ η

2. ‖P (φ)‖∗�dµ ≤ ρ(C, T, η)

where

ρ(C, T, η) := 2 inf RP (C)
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where the infimum is taken over polynomials P such that ‖P − φ+‖∞ ≤ η on [−CT,CT ] and

RP (x) =

m∑
j=0

C(j)|aj |xj , where C(m) is the constant in the dual function estimate

Proof. First, recall that if (x1, ..., xd) ∈ supp(Dgi) ⊆ Ω(T ) then

|Dg(x1, ..., xd)| ≤ T

Now suppose ‖φ‖∗BAC ≤ C then there exist g1, .., gk ∈ ST and λ1, ..., λk such that φ =
∑k

i=1 λiDgi
and

∑
1≤i≤k |λi| ≤ C. Hence applying the boundedness of the duals,

|φ(x1, ..., xd)| ≤ (
k∑
i=1

|λi|)( max
1≤i≤k

|Dgi(x1, .., xd)|) ≤ CT

Hence the Range of φ= φ(Ω(T )) ⊆ [−CT,CT ]. Then by Weierstrass approximation theorem, there

is a polynomial P (which may depend on C, T, η) such that RP (C) ≤ ρ and

|P (u)− u+| ≤ η ∀|u| ≤ CT

and so ‖P (φ)− φ+‖∞ ≤ η and we have (1).

Now using the dual function estimate, we have

‖φm‖∗�dµ ≤
∥∥(
∑

1≤i≤k
λiDgi)m

∥∥∗
�dµ
≤

∑
1≤i1≤...≤im≤k

|λi1 ...λim | ‖Dgi1 ...Dgim‖
∗
�dµ

≤ C(m)
∑

1≤i1≤...≤im≤k
|λi1 ...λim | ≤ C(m)(

∑
1≤i≤k

|λi|)m ≤ C(m)Cm

Hence ‖P (φ)‖∗�dµ ≤
∑d

m=0 |am|C(m)Cm ≤ ρ(C, T, η)

Now we are ready to prove the transference principle.

Theorem 3.4.6 (Transference Principle). Suppose ν gives an independent weight system. Let f ∈ F
and 0 ≤ f(x[d]) ≤ ν[d](x[d]), let η > 0. Suppose N ≥ N(η, T ) is large enough, then there are

functions g, h on X1 × ...×Xd such that

f = g + h on Ω(T ), 0 ≤ g ≤ 2 on Ω(T ),
∥∥h · 1Ω(T )

∥∥
�dµ
≤ η

Since h · 1Ω(T ) = f · 1Ω(T ) − g · 1Ω(T ), we have −2 ≤ h · 1Ω(T ) ≤ ν so |h · 1Ω(T )| ≤ ν + 2 so

h · 1Ω(T ) ∈ ST . Hence by the definifion of BAC-norm,

η ≥ ‖h · 1Ω(T )‖BAC ≥ 〈h · 1Ω(T ),D(h · 1Ω(T ))〉ν = ‖h · 1Ω(T )‖2
d

�dµ
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To prove Theorem 3.4.6, it suffices to show
∥∥h · 1Ω(T )

∥∥
BAC ≤ η1/2d (WLOG, replace η1/2d with η ).

Here the BAC-norm is the BAC-norm with respect to 〈 · 〉µ
The following lemma will be used in the next proof.

Lemma 3.4.7 (Finite dimensional Hahn-Banach’s Theorem). Let X = Rd be a norm space and

f ∈ X, ‖f‖ ≥ 1. Then there is a vector φ ∈ Rd such that 〈f, φ〉 > 1 and |〈g, φ〉| ≤ 1 whenever

‖g‖ ≤ 1. (i.e. ‖φ‖∗ ≤ 1)

The following lemma is an easy corollary of the Hahn-Banach’s theorem by considering the following

norm with given c1, c2 > 0: ‖f‖ = inf{c1‖f1‖1 + c2‖f2‖2; f = f1 + f2} with its dual ‖f‖∗ =

max{c−1
1 ‖f1‖∗, c−1

2 ‖f‖∗}.

Lemma 3.4.8 ([37], Cor. 3.2). Let K1,K2 be closed convex subsets of Rd, each containing 0 and

suppose f ∈ Rd cannot be written as a sum f1 + f2, f1 ∈ c1K1, f2 ∈ c2K2, c1 > 0, c2 > 0. Then

there is a linear functional φ such that 〈f, φ〉 > 1 and 〈f1, φ〉 ≤ c−1
1 for all f1 ∈ K1, 〈f2, φ〉 ≤ c−1

2

for all f2 ∈ K2.

Proof of Theorem 3.4.6: Define

K1 := {g ∈ F : 0 ≤ g ≤ 2 on Ω(T )}, K2 := {h ∈ F : ‖h‖BAC ≤ η}.

It is clear that K1,K2 are convex. (Also 0 ∈ K1, 0 ∈ Int(K2)). Assume that f /∈ K1 +K2 on Ω(T )

then by Lemma 3.4.8, there exists φ ∈ F such that

〈
φ, f · 1Ω(T )

〉
µ
> 1, 〈φ, g〉µ ≤ 1 ∀g ∈ K1, 〈φ, h〉µ ≤ 1 ∀h ∈ K2

First, we claim that φ ∈ FT . To see this, suppose g is a function whose supp(g) ⊆ Ω(T )C (i.e. g ≡ 0

on Ω(T ) so g ∈ K1.) Since g ∈ K1, 〈φ, g〉µ ≤ 1 but g could be chosen arbitrarily on Ω(T )C so we

must have φ
∣∣
Ω(T )C

≡ 0 and hence φ ∈ FT . Now let

g(x[d]) =

2 if φ(x[d]) ≥ 0

0 otherwise

then g ∈ K1 and

〈φ, g〉µ = 〈φ+, 2〉µ = 2 〈φ+, 1〉µ ≤ 1⇒ 〈φ+, 1〉µ ≤
1

2

Now we want to show that ‖φ‖∗BAC <≤ η−1. Since φ ∈ FT , h ∈ K2, ‖h · 1Ω(T )C‖BAC ≤ η then we

have

〈φ, ηh · 1Ω(T )C 〉µ = 〈φ, ηh〉µ ≤ 1.
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Hence if h′ ∈ FT and ‖h′‖BAC ≤ 1 then
∥∥h′ · 1Ω(T )

∥∥
BAC = ‖h′‖BAC ≤ 1 so

〈φ, h′〉µ ≤ η−1 ∀h′ ∈ FT ,
∥∥h′∥∥BAC ≤ 1

so ‖φ‖∗BAC ≤ η−1 as ‖ · ‖BAC is a norm on FT .

Now we want to invoke positivity of φ+. By the Lemma 3.4.5, there is a polynomial P such that

‖P (φ)− φ+‖∞ ≤
1

8
and ‖P (φ)‖∗�dµ ≤ ρ(C, T, η)

Then 〈P (φ), 1〉µ ≤ 〈P (φ)− φ+, 1〉µ + 〈φ+, 1〉µ ≤
1
2 + 1

8 Also, from the definition of the weighted

box norm and the linear form condition, we have

‖ν[d](x[d])− 1‖2d�dµ = oN→∞(1)

so suppose N ≥ N(T, η) then

〈P (φ), ν〉µ = 〈P (φ), 1〉µ + 〈P (φ), ν − 1〉µ ≤
1

2
+

1

8
+ ‖P (φ)‖∗�dµ ‖ν − 1‖�dµ ≤

1

2
+

1

4
=

3

4

| 〈ν, φ+〉µ | = | 〈ν, φ+ − P (φ)〉µ |+| 〈ν, P (φ)〉µ | ≤ ‖φ+ − P (φ)‖∞ 〈ν, 1〉µ+〈ν, P (φ)〉µ ≤
1

8
· 1
2

+
3

4

By positivity of φ+ we have 〈f, φ+〉µ ≤ 〈ν, φ+〉µ. Hence

〈
f · 1Ω(T ), φ

〉
µ

= 〈f, φ〉µ ≤ 〈f, φ+〉µ ≤ 〈ν, φ+〉µ ≤
3

4
+

1

10
< 1

which is a contradiction. Hence f ∈ K1 +K2 on Ω(T ).

Now we can rephrase Theorem 3.4.6 as follow:

Theorem 3.4.9 (Transference Principle). Suppose ν is an independent weight system. Let f ∈ F , 0 ≤
f ≤ ν and 0 < η < 1� T then there exists f1, f2, f3 ∈ F such that

1. f = f1 + f2 + f3

2. 0 ≤ f1 ≤ 2, supp(f1) ⊆ Ω(T )

3. ‖f2‖�dµ ≤ η, supp(f2) ⊆ Ω(T )

4. 0 ≤ f3 ≤ ν, supp(f3) ⊆ Ω(T )C , ‖f3‖L1
µ
. 1

T .

Proof. Let g, h be as in Theorem 3.4.6. Take f1 = g · 1ΩT , f2 = h · 1ΩT then f · 1ΩT = f1 + f2. Let
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f3 = f · 1ΩCT
. Now by the linear forms conditions,

‖f3‖L1
µ
≤ 1

T
Ex[d+1]\{d}f ·

∏
I⊆[d+1]\{d},|I|<d

νI(xI) · |Df | (since |Df | > T )

=
1

T
Ex[d+1]\{d}Ey[d+1]\{d}

∏
I⊆[d+1]\{d}

νI(L
I(xI))

∏
I⊆[d+1]\{d}

∏
ωI 6=0

νI((PωI (xI ,yI))) .
1

T
.

3.5 Relative Hypergraph Removal Lemma

First let us recall the statement of ordinary functional hypergraph removal lemma [104]. Recall the

definition of Λ in equation (3.1.1).

Theorem 3.5.1. Given probability measure spaces (X1, µX1), ..., (Xd+1, µXd+1
) and f (i) : XI →

[0, 1], I = [d + 1]\{i}. Let ε > 0, suppose |Λd+1(f (1), ..., f (d), f (d+1))| ≤ ε. Then for 1 ≤ i ≤ d,

there exists

Ei ⊆ X[d+1]\{i}

such that
∏

1≤j≤d+1 1Ej ≡ 0 and for 1 ≤ i ≤ d+ 1,∫
X1

· · ·
∫
Xd+1

f (i) · 1ECi dµX1 · · · dµXddµXd+1
≤ δ(ε)

where δ(ε)→ 0 as ε→ 0.

Remark 3.5.2. In fact the paper [104] proves this theorem only with the counting measure (with the

notion of e−discrepancy in place of Box norm). But the proof also works for any finite measure that

has direct product structure (with the notion of weighted Box Norm) as the energy increment as in

[104] or [18] would run through in the same way. See also [100] for the case of probability measures

in d = 2, 3. However we don’t know how to genralize this argument to arbitrary measure on the

product space. If we can prove this theorem for any measure µX1×...×Xd then we would be able to

prove multidimensional Green-Tao’s Theorem.

The proof of this removal lemma relies on the following regularity lemma.

Theorem 3.5.3 (Szemerédi’s Regularity (Tao) Lemma [104]). Let (X[d+1], µ) be a weighted hyper-

graph system with pseudorandom weight attached only on each edge of size 1. Let f : X[d+1] → [0, 1]

be measurable, let τ > 0 and F : N → N be arbitrary increasing functions (possibly depends on τ ).

Then there is an integer M = OF,τ (1), factors BI(I ⊆ [d+ 1], |I| = d) on XI of complexity at most

M such that f = f1 + f2 + f3 where
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– f1 = E(f |
∨
I⊆[d+1],|I|=d BI).

– ‖f2‖L2
µ
≤ τ.

– ‖f3‖�dµ ≤ F (M)−1.

– f1, f1 + f2 ∈ [0, 1].

Remark 3.5.4. A consequence from this theorem that we will use later is the following: since f1 is a

constant on each atom of
∨
|I|=d BI , we can decompose f1 as a finite sum with OM (1) terms of lower

complexity functions i.e.a finite sum of product
∏d+1
i=1 Ji where Ji is a function in x[d+1]\{i} variable

and takes values in [0, 1].

Theorem 3.5.5 (Weighted Simplex-Removal Lemma). Suppose f (i)(x[d+1]\{i}) ≤ ν[d+1]\{i}(x[d+1]\{i}).

Let ε > 0, Suppose |Λ| ≤ ε then there exist Ei ⊆
∏
j∈[d+1]\{i}Xj such that for 1 ≤ i ≤ d+ 1,

–
∏

i∈[d+1]

1Ei ≡ 0

–
∫
X1
· · ·
∫
Xd+1

f (i)1ECi
dµX1 · · · dµXd+1

= Ex[d+1]\{i}1ECi
f (i)(x[d+1]\{i})

∏
J([d+1]\{i} νJ(xJ) ≤

δ(ε)

where δ(ε)→ 0 as ε→ 0.

Proof. Using the transference principle (Theorem 3.4.9) for 1 ≤ i ≤ d+ 1, write f (i) = g(i) +h(i) +

k(i) where

1. f (i) = g(i) + h(i) + k(i)

2. 0 ≤ g(i) ≤ 2, supp(g(i)) ⊆ Ω(i)(T )

3.
∥∥h(i)

∥∥
�dµ
≤ η, supp(h(i)) ⊆ Ω(i)(T )

4. k(i) = f (i) · 1(Ω(i))C(T )

where

Ω(i)(T ) = {x[d+1]\{i} : |Df (i)| ≤ T}, 1 ≤ i ≤ d

Step 1: We will show that if T ≥ T (ε) is sufficiently large then5

Λd+1,µ(g(1) + h(1), ..., g(d+1) + h(d+1)) = Λd+1(f (1) − k(1), ..., f (d+1) − k(d+1)) . ε.

Proof of Step 1: For I ⊆ [d+ 1], the term on LHS can be written as a sum of the following terms:

Λd+1,I,µ(e(1), ..., e(d), e(d+1)), e(i) =

−k(i) if i ∈ I

f (i) if i /∈ I

5Λd+1 is indeed defined on our weighted measures.
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If I = ∅ then Λd+1,µ(f (1), ..., f (d), f (d+1)) ≤ ε by the assumption. Suppose I = {i1, ..., ir} 6= ∅
then

|Λd+1,I,µ(e(1), ..., e(d), f (d+1))| =
∣∣∣∣ ∫

X1

· · ·
∫
Xd+1

f (1) · · · f (d+1) ·
∏
i∈I

1(Ω(i))CdµX1 · · · dµXd+1

∣∣∣∣
≤ Ex[d+1]

∏
I⊆[d+1],|I|≤d

νI(xI)1(Ω(i1))C ∃i1 ∈ I

≤ 1

T
Ex[d+1]

Ey[d+1]\{i1}

∏
I⊆[d+1],|I|≤d

νI(xI)
∏
ωI 6=0

I⊆[d+1]\{i1}

νI(PωI (xI ,yI))

.
1

T
≤ ε

by linear form condition.

Step 2 We will show Λd+1,µ(g(1), ..., g(d+1)) . ε if η ≤ η(ε), N ≥ N(ε, η).

Proof of step 2: Write g(i) = g(i) + h(i) − h(i) = f (i) · 1Ω(i)(T ) − h(i) then we have

0 ≤ f (i) · 1Ω(i)(T ) ≤ νi, ‖h
(i)‖�dµ ≤ η

so by the weighted von-Neumann inequality and step 1 , we have

|Λd+1,µ(g(1), ..., g(d+1))| = |Λd+1,µ(g(1) + h(1), ..., g(d+1) + h(d+1))−
∑

ei=hi,∃i

Λd+1,µ(e(1), .., e(d), e(d+1))|

. ε+ η + oN→∞(1)

. ε

if 1/T ≤ ε, η ≤ ε,N ≥ N(ε) and the proof of step 2 is completed.

Now since 0 ≤ g(i) ≤ 2 then (after normalizing) using the ordinary hypergraph removal lemma(Theorem

5.1), we have

Fi ⊆ X[d+1]\{i} such that
∏

1≤k≤d+1

1Fk ≡ 0 and

∫
X1

· · ·
∫
Xd+1

g(i) · 1FCi dµX1 · · · dµXd+1 . δ(ε)

so∫
X1

· · ·
∫
Xd+1

f (i) · 1FCi dµX1 · · · dµXd+1
. δ(ε) +

∫
X1

· · ·
∫
Xd+1

h(i) · 1FCi dµX1 · · · dµXddµXd+1︸ ︷︷ ︸
(A)

+

+

∫
X1

· · ·
∫
Xd+1

f (i) · 1ΩCi (T )1FCi
dµX1 · · · dµXd+1︸ ︷︷ ︸

(B)
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Now for our purpose, it suffices to show (A), (B) . ε.

Estimate for (A) (error from uniformity function): By the assumption of complexity of σ−algebras,

the function 1FCi
could be written as a sum ofOM (1) of functions of the form

∏
j∈[d+1]\{i} v

(i)
j where

v
(i)
j is a [0, 1]- valued function in x[d+1]\{i,j}. We could write estimate each term with

∏
j∈[d+1]\{i} v

(i)
j

individually. Applying Cauchy-Schwartz’s inequality d times to estimate the expression (A) (here let’s

assume i < d, the case i = d is the same.) :

(∫
X1

· · ·
∫
Xd

∫
Xd+1

h(i) · 1FCi dµX1 · · · dµXddµXd+1

)2d

.

[(∫
X1

· · ·
∫
Xd

(∫
Xd+1

h(i)
∏

1≤j≤d
j 6=i

u
(i)
j dµXd+1

)
uid+1dµX1 · · · dµXddµXd+1

)2]2d−1

≤
[ ∫

X1

· · ·
∫
Xd

(∫
Xd+1

h(i)
∏

1≤j≤d−1
j 6=i

u
(i)
j dµXd+1

)2

dµX1 · · · dµXd

×
∫
X1

· · ·
∫
Xd

(
uid+1

)2
dµX1 · · · dµXd

]2d−1

.

[ ∫
X1

· · ·
∫
Xd

∫
Xd+1

∫
Yd+1

h(i)(x[d+1]\{i}, xd+1)h(i)(x[d]\{i}, yd+1)

∏
1≤j≤d
j 6=i

u
(i)
j (x[d]\{i}, xd+1)u

(i)
j (x[d]\{i}, yd+1)dµX1 · · · dµXd+1

dµYd+1

]2d−1

Continue applying Cauchy-Schwartz’s inequality this way. After d application of Cauchy-Schwartz’s

inequality, the positive function u(i)
j eventually disappears and we have this bounded by ‖h(i)‖2d�µ ≤ ε.

Estimate for (B) : Next we estimate the expression in (B),∣∣∣∣ ∫
X1

· · ·
∫
Xd+1

f (i) · 1(Ω(i)(T ))C · 1FCi dµX1 · · · dµXd+1

∣∣∣∣
≤
∫
X1

· · ·
∫
Xd+1

(ν[d+1]\{i}) · 1(Ω(i)(T ))CdµX1 · · · dµXd+1

≤ 1

T
Ex[d+1]

Ey[d+1]\{i}ν[d+1]\{i}(x[d+1]\{i})
∏
|I|≤d

νI(xI)
∏
ωI 6=0

I⊆[d+1]\{i}

νI(PωI (xI ,yI))

.
1

T
,
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by the linear forms condition. Hence if we choose sufficiently large T then∫
X1

· · ·
∫
Xd+1

f (i) · 1FCi dµX1 · · · dµXd+1
. δ(ε).

3.6 Proof of the Main Result

3.6.1 From ZN to Z

First, recall that νε1,ε2(n) ≈ φ(W )
W logN, ε1N ≤ n ≤ ε2N, ε1, ε2 ∈ (0, 1] for a sufficiently large

prime N in the residue class b (mod W ). Also Lemma 4.7.1 allows us to work in (Z/N ′)d for some

big prime N ′. By pigeonhole principle (see Lemma 4.7.2 in Chapter 4) we may choose b ∈ (Z/W )d

and small ε1, ε2 > 0 in the definition of ν and A′ such that

|A′| := |{n ∈ [1, N/W ]d; Wn+ b ∈ A} ∩ [ε1N
′, ε2N

′]d| ≥ α εd2
2

(N ′)dW d

(logN ′)d φ(W )d
.

Here we choose N ′ so that ε2N
′ = N/W (1 + oN,W→∞(1)).

3.6.2 Proof of the Main Theorem

To prove the theorem, suppose on the contrary thatA′ contains less than ε N ′d+1

(logN ′)2d corners.(ε = c(α))

then

Λd+1,µ(f (1), ..., f (d+1))

= (N ′)−(d+1)
∑
x[d+1]

∏
1≤i≤d

1A′(x1, ..., xi−1, xd+1 −
∑

1≤j≤d
j 6=i

, xi+1, ..., xd)νI1A′(x1, ..., xd) · ν(x1)...ν(xd)

≤ 1

N ′d+1

∑
pi∈A′,1≤i≤2d

that consitutes a corner

∏
1≤k≤d

1A′(p1, ..., pk−1, pd+k, pk+1, ..., pd)1A(p1, ..., pd)ν(p1)...ν(p2d)

.
1

N ′d+1

(
φ(W ) logN ′

W

)2d

× (The number of corners in A′)

≤ ε

Now assume that Λd+1,µ(f (1), ..., f (d), f (d+1)) . ε then by the relative hypergraph removal lemma

∃Ei, 1 ≤ i ≤ d+ 1, Ei ⊆ X[d+1]\{i} := X̃i,
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such that ∏
1≤i≤d+1

1Ei ≡ 0,

∫
X̃i

f (i)1ECi
dµX̃i . δ(ε)

where δ(ε)→ 0 as ε→ 0. LetA′ = A∩ [δ1N, δ2N ]d, z =
∑

1≤j≤d xj , gA′ := g ·1A′ for any function

g then

Λ̃ := N ′−d
∑

(x1,...,xd)∈A′
f

(1)
A′ (x2, ..., xd, z)f

(2)
A′ (x1, x3, ..., xd, z)...f

(d)
A′ (x1, x2, ..., xd−1, z)f

(d+1)
A′ (x1, ..., xd)

≥ N ′−d
∑

(x1,...,xd)∈A′
ν(x1)...ν(xd)

& (N ′)−d
(φ(W )

W
logN ′

)d · α · (N ′W )d

(φ(W ) logN ′)d
= α.

for arbitrarily large N ′. Now

Λ̃ = Ex[d]
(f

(1)
A′ 1E1 + f

(1)
A′ 1EC1

)...(f
(d+1)
A′ 1Ed+1 + f

(d+1)
A′ 1ECd+1

)

Now we have by the assumption Ex[d]
f

(1)
A′ · 1E1 ...f

(d+1)
A′ · 1Ed+1

≡ 0 so we just need to estimate each

other term individually.

Consider Ex[d]
f

(1)
A′ · 1EC1 f

(2)
A′ · 1E±2 ...f

(d+1)
A′ · 1E±d+1

, where F± can be either F or FC for any set F .

Now since

0 ≤ f (j)
A′ 1E±j

≤ ν(xj), d ≥ j ≥ 2 and 0 ≤ f (d+1)
A ≤ 1

We have

Ex[d]
f

(1)
A′ ·1EC1 f

(2)
A′ ·1E±1 ...f

(d+1)
A′ ·1E±d+1

≤ Ex[d]
f

(1)
A′ ·1EC1 ν(x2)...ν(xd) =

∫
X̃1

f (1)·1EC1 dµX2 · · · dµXd+1
. δ(ε).

In the same way, we have for any 1 ≤ i ≤ d+ 1,

Ex[d]
f

(i)
A′ · 1ECi

∏
1≤j≤d+1,j 6=i

(f (j) · 1E±j ) . δ(ε)

So if N ′ > N(α) then

Ex[d]
f

(1)
A′ (x2, ..., xd, u)f

(2)
A′ (x1, x3, ..., xd, u)...f

(d)
A′ (x1, ..., xd−1, u)f

(d+1)
A′ (x1, ..., xd) . δ(ε) = o(α)

This is a contradiction. Hence there are & ε N ′d+1

(logN ′)2d corners in A. Note that the number of degener-

ated corners is at most O( N ′d

(logN ′)d
) as the corner is degenerated (and will be degenerated into a single

point ) iff z =
∑

1≤j≤d xj .
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3.7 Further Remarks: Conlon-Fox-Zhao’s Densification Trick

One important feature that make the transference principle work is that we are working on a d−regular

hypergraph, this is also the same as in [52] , [16]. To prove a more general version of the theorem,

we have to consider more general version of hypergraph removal lemma, this will be discussed in the

next chapter.

A natural question in our method is that if the correlation condition is needed in our proof. In the set-

ting of Gaussian prime, the correlation condition was needed to deal with the fact that if p is a Gaus-

sian prime then its conjugate. p is also a Gaussian prime. Later, Conlon-Fox-Zhao [16] developed

the “densification technique” to prove a relatively Szemerédi’s Theorem like Theorem 1.2.1 but with

ν satisfies only certain linear form conditions. Densification trick allows one to replace a sparse edge

with a dense edge. No correlation conditions or bounded dual conditions are assumed as this tech-

nique allows most factors in correlation to be bounded. The question of simplifying the pseudorandom

conditions is an interesting and active research questions. Gowers [37] asked if ‖ν − 1‖Us = o(1) for

some large s = s(k) would allow us to deduce a relative k −AP Szemereédi’s theorem.

Definition 3.7.1 (Hr-linear forms condition). Consider a weight hypergraph system (J, Vj , Hr) with

weight system ν = {νe}e∈Hr . We say that ν satisfies Hr−linear forms condition if

Ex,y∈VJ
∏
e∈Hr

∏
ωe

νe(Pωe(x|e, y|e))ne,w = 1 + o(1)

Hence this linear forms condition is about counting the 2-blow up of Hr and any subgraph of this

blow-up.

This linear forms condition is the same that is used in [102] (Def. 2.8). However in [102], one assumes

the correlation condition and the bounded dual condition.

Theorem 3.7.2. [16] If S ⊆ ZN , ν = N
|S|1S satisfies

Ex,x′,y,y′,z,z′ν(x)ν(x′)ν(z−x)ν(z′−x)ν(z−x′)ν(z′−x′)ν(y)ν(y′)ν(z−y)ν(z′−y)ν(z−y′)ν(z′−y′) = 1+o(1).

or if the condition holds if one of the ν above is replaced by 1. Then a corner-free subset of S has size

o(|S|2)

The densification trick allows them to prove the counting lemma with only such linear forms con-

dition. This has application in simplifying many technical difficulties in previous results and one

can obtain a better quantitative result such as primes with narrow polynomial progressions [112]:

a+ P1(r), a+ P2(r), . . . , a+ Pk(r) with r ≤ logLN . We want to transfer the count in (pseudoran-

som) sparse setting to dense setting.
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We may try to transfer some this kind of the theorems similar to corners (for example, we may model

using d−regular hypergraph) we know in integer case to the prime case. An interesting problem would

be to find an analogue of Shkredov’s result [96] that is to obtain an exponential bound for corners in

dense subsets of P[N ]2 .
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Chapter 4

Weighted Simplices Removal Lemma and
Multidimensional Szemerédi’s Theorem
in the Primes

4.1 Introduction

The main objective of this chapter is to prove the following generalization of the main result in chapter

3.

Theorem 4.1.1. If A is a subset of Pd of positive upper relative density, then A contains infinitely

many non-trivial affine copies of any finite set F ⊆ Zd.

Note that it is enough to show that the set A contains at least one non-trivial affine copy of F , as

deleting the set F from A will not affect its relative density. Also, replacing the set F by F ′ =

F ∪ (−F ) one can require that the dilation parameter t is positive.

By lifting the problem to a higher number of dimensions, it is easy to see that one can assume that F

forms the vertices of a d-dimensional simplex1 (which will be important as the linear forms appeared

in the parametrization is pairwise linearly independent). Indeed, let F = {0, x1, . . . , xk}, choose a set

of k linearly independent vectors {y1, . . . , yk} ⊆ Zk, and define the set ∆ := {0, (x1, y1), . . . , (xk, yk), zk+1, . . . , zk+d} ⊆
Zk+d such that the vectors of ∆\{0} form a basis of Rk+d. If the set A′ = A×Pk contains an affine

copy of ∆ then clearly A contains an affine copy of the set π(∆) ⊇ F , where π : Rd × Rk → Rd is

the natural orthogonal projection.
1Unike integer case, it is not enough to lift to a corner as we don’t know if the projection used there will project prime corners

to prime points or not.
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In the case when ∆ = {v0, v1, . . . , vd} ⊆ Zd is a d-dimensional simplex, i.e. v1−v0, v2−v0, . . . , vd−
v0 are pairwise linearly independent, we prove a quantitative version of Theorem 4.1.1. To formulate

it we define the quantity

l(∆) :=
d∑
i=1

|πi(∆)|, (4.1.1)

πi : Rd → R being the orthogonal projection to the i-th coordinate axis.

Theorem 4.1.2. Let α > 0 and let ∆ ⊆ Zd be a d-dimensional simplex. There exists a constant

c(α,∆) > 0 such that for any N > 1 and any set A ⊆ PdN such that |A| ≥ α |PN |d, the set A

contains at least c(α,∆)Nd+1 (log N)−l(∆) affine copies of the simplex ∆.

The lower bound matches with the bound from the heuristic argument that primes is a random subset

of Zd with density 1/ logdN in [1, N ]d : there are ≈ Nd+1 affine copies x + t∆ of ∆ in [1, N ]d,

and for a fixed i the probability that all the i-th coordinates of an affine copy ∆ are primes is roughly

(logN)−|πi(∆)|. Thus if the prime tuples behave randomly, the probability that ∆ ⊆ Pd is about

(logN)−l(E).

Note that in Theorem 4.1.2 we do not require the copies of ∆ to be non-trivial, thus without loss of

generality, N can be assumed to be sufficiently large with respect to α and ∆. It is clear that Theorem

4.1.2 implies Theorem 4.1.1 as the number of trivial copies of ∆ in A (i.e. the one with t = 0) is at

most Nd (log N)−d.

In the contrapositive, Theorem 4.1.2 states that if a set A ⊆ PdN contains at most δNd+1(logN)−l(∆)

affine copies of ∆, then its relative density is at most ε,where ε = ε(δ) is a quantity such that ε(δ)→ 0

as δ → 0. As for a number of similar results on prime configurations [51], [102], [45].

Thus identifying [1, N ] with Z/NZ it is easy to show that Theorem 4.1.2 follows from

Theorem 4.1.3. Let ∆ = {v0, . . . , vd} ⊆ Zd be a d-dimensional simplex and let δ > 0. Let N be a

large prime and let A ⊆ ZdN such that

Ex∈ZdN ,t∈ZN

( d∏
i=0

1A(x+ tvi)

)
w(x+ t∆) ≤ δ (4.1.2)

then there exists ε = ε(δ) such that

Ex∈ZdN1A(x)w(x) ≤ ε(δ) + oN,W→∞; ∆(1)

Moreover ε(δ)→ 0 as δ → 0.

The objective of this chapter is to prove this theorem. As in Chapter 3, our result would follow if we

could prove the following version of simplices removal lemma (i.e. Lemma 4.1.7 below). Notice that
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the conclusion of the lemma does not hold in the same measure space but on a new one which is a

small perturbation of the original measure space.

We define weighted system of hypergraph as in section 3.1 of Chapter 3 but now we will do energy

increment so we will put sigma-algebras on our hypergraph. Hypergraph system can be considered

an as analogue of measure preserving system in ergodic theory.

We will use the construction of a weighted hypergraph associated to a set A ⊆ ZdN and a simplex

∆ = {v0, . . . , vd} given in the case of Gaussian Primes [102].

Definition 4.1.4. [Hypergraph System] Let J = {0, 1, . . . , d},H := {e : e ⊆ J} be the set of all

possible hyperedges, and for a set e ∈ H, let Ve = ZeN =
∏
j∈e ZN . Identify Ve as the subspace

of elements x = (x0, . . . , xd) ∈ VJ such that xj = 0 for all j /∈ e and let πe : VJ → Ve denote

the natural projection. For e = {j} we write Vj := V{j} and for a given H ⊆ H, we will call the

quadruplet (J, VJ ,H) a hypergraph system.

For each positive integers j denoteHj := {e ∈ H; |e| = j}. For e ∈ H, xe = (xj)j∈e.

For a given e ⊆ J and a collection of sets (edges) on Ve, defineAe = {π−1
e (F ) : F ⊆ Ve} considered

as corresponding sets on VJ .

Remark 4.1.5. For convenience, we identify Ve as a subset of VJ as the set of points in VJ where the

coordinates in J\e are allowed to be all possible values ( i.e. no restrictions on J\e). Hence we work

on a single ambient space.

Remark 4.1.6. We can think of a point xe, e ∈ Hd as a d-simplex with vertices {xj : j ∈ e}. A

set Ge ⊆ Ve then may be viewed as a d-regular d-partite hypergraph with vertex sets Vj (j ∈ e).

Similarly a point x ∈ VJ represents a (d+ 1)-simplex with d−faces xe, e ∈ Hd.

Theorem 4.1.7. (Weighted Simplex Removal Lemma) Let {νe}e⊆J , {µe}e⊆J be a system of weights

and measures associated to a well-defined, pairwise linearly independent and symmetric family of

linear forms L (as defined in (4.2.6)). Let Ee ∈ Ae, ge : Ve → [0, 1] be given for each e ∈ Hd. Then

for a given δ > 0 there exists an ε = ε(δ) > 0 such that the following holds: If

Ex∈VJ
∏
e∈Hd

1Ee(x)µJ(x) ≤ δ (4.1.3)

then there exists a well-defined, symmetric family of linear forms L̃ = {L̃ke ; e ∈ Hd, 1 ≤ k ≤ d},
such that the associated system of weights and measures {ν̃e}e⊆J , {µ̃e}e⊆J satisfy

Ex∈VJ
∏
e∈Hd

1Ee(x)µ̃J(x) = Ex∈VJ
∏
e∈Hd

1Ee(x)µJ(x) + oN,W→∞(1) (4.1.4)

and for all e ∈ Hd,
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Ex∈Ve ge(x)µ̃e(x) = Ex∈Ve ge(x)µe(x) + oN,W→∞(1) (4.1.5)

In addition there exist sets E′e ∈ Ae such that

⋂
e∈Hd

(Ee ∩ E′e) = ∅ (4.1.6)

and for all e ∈ Hd

Ex∈Ve1Ee\E′e(x)µ̃e(x) ≤ ε(δ) + oN,W→∞(1) (4.1.7)

moreover

ε(δ)→ 0, as δ → 0. (4.1.8)

Roughly speaking, if µ(∩e∈HdEe) < δ is small then we can modify each Ee slightly in the magnitude

of ε(δ) to obtain E′e such that
⋂
e∈Hd (Ee ∩ E′e) = ∅ i.e.

⋂
e∈Hd Ee ⊆

⋃
e∈Hd Ee\E

′
e meaning⋂

e∈Hd Ee actually has a very smaller measure than expected.

4.1.1 Parametric Weight System

Recall the weight version of �2
µ norm. Let f : X × Y → R, ν12(x1, x2) = ν(x1, x2).

‖f‖4�2
µ

= Ep∈X×Y Ex∈X×Y f(x1, x2)f(p1, x2)f(x1, p2)f(p1, p2)

× ν(x1, x2)ν(p1, x2)ν(x1, p2)ν(p1, p2)ν(x1)ν(x2)ν(p1)ν(p2)

If it is possible, we would like to proceed as in previous chapter with transference principle; writing

the weight appearing above in a form of direct product of measures, say

dµ(x)dµ(p)

with, say, dµ(x) = ν(x1, x2)ν(x1)ν(x2). However this is not possible due to cross terms like

ν(p1, x2), ν(x1, p2). More importantly, in higher order box norm, we would have weight in inter-

mediate order. Prohibiting us from working on regular hypergraph and application of transference

principle as in chapter 3.

The way we get around these difficulties is that we will reprove the removal lemma in our setting,

without using transference principle. To accomplish this, we need to introduce the parametric weight
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system. We could write

‖f‖4�2
µ

= Ep∈X×Y Ex∈X×Y f(x1, x2)f(p1, x2)f(x1, p2)f(p1, p2)

× ν(x1, x2)ν(p1, x2)ν(x1, p2)ν(x1)ν(x2)ν(p1, p2)ν(p1)ν(p2)

= Ep∈X×Y Ex∈X×Y f(x1, x2)f(p1, x2)f(x1, p2)f(p1, p2)dµp(x1, x2)dµ(p)

Here for each fixed p, dµp(x1, x2) = ν(x1, x2)ν(p1, x2)ν(x1, p2)ν(x1)ν(x2) is a measure in x1, x2−variables

depending on p which we regard as parameters. Later, we will regard µp as a parametric extension of

µ in the sense if we consider linear forms defining the measures as linear forms in p and x variables

then linear forms defining µp is the same as those defining µ.

Example 4.1.8. Consider the measure space
(
X1 ×X2, dµ(x1, x2) = ν(x1 + 2x2)ν(x2)

)
then

‖f‖4�2
µ

= Ep∈X1×X2Ex∈X1×X2f(x1, x2)f(p1, x2)f(x1, p2)f(p1, p2)

× ν(x1 + 2x2)ν(p1 + 2x2)ν(x1 + 2p2)ν(x1)ν(x2)ν(p1 + 2p2)ν(p1)ν(p2).

Working on µp would be hard as linear forms conditions may not apply. But if we average dµp over all

parameters p then linear form conditions do apply. In this regard, µp itself may not be pseudorandom

but upon averaging, there should be many µp that are pseudorandom. Also we will prove that most

µp is only a small perturbation of µ and still share many properties with µ.

4.1.2 Energy Increment in weighted setting.

Assume that there is an edge e, say e = (1, 2), so that the graph Ge = πe(Ee) is not ε-regular. This

means

‖F‖�µe ≥ ε, (4.1.9)

where F : V1 × V2 → R, F = 1Ge − µe(Ge)1Ve . In view of definition of the weight box norm, we

may write

‖F‖4�µe =

∫
Ve

∫
Ve

F (x)u1
q(x1)u2

q(x2)νe(x1, q2)νe(q1, x2) dµe(x) dµe(q) ≥ ε4 (4.1.10)

where x = (x1, x2), q = (q1, q2), we set u1
q(x1) = F (x1, q2), and u2

q(x2) = F (q1, x2)F (q1, q2). If

one defines the measures µq,e, depending on the parameter q, by

µq,e(x) := νe(x1, q2)νe(q1, x2)µe(x),
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then the inner expression in (4.1.10) can be viewed as the inner product

Γ(q) :=
〈
F, u1

q · u2
q

〉
µq,e

=

∫
Ve

F (x)u1
q(x1)u2

q(x2) dµq,e(x), (4.1.11)

on the Hilbert space L2(Ve, µq,e). Thus (4.1.10) translates to Eq∈Ve Γ(q)µe(q) ≥ ε4 while using the

linear forms condition it is easy to see that Eq∈Ve Γ(q)2 µe(q) . 1 thus, by averaging2,

Γ(q) & ε4, for q ∈ Ω, (4.1.12)

for a set Ω ⊆ Ve of measure µe(Ω) & ε8. As the functions uiq are bounded, hence without loss of

generality, using Fubini’s Theorem3, we may assume that they are indicator functions of sets U iq ⊆ Vi.

Let Bq = B1
q ∨ B2

q denote the σ-algebra on Ve generated by the sets π−1
i (U iq) (i = 1, 2), and let

Eµq,e(1Ge |Bq) be the conditional expectation function of 1Ge with respect to this σ-algebra and the

measure µq,e. Then, as u1
q u

2
q is measurable with respect to Bq, we have

〈1Ge − Eµq,e(1Ge |Bq) , u1
q u

2
q〉µq,e = 0.

This together with (4.1.11) and (4.1.12) implies for q ∈ Ω

〈Eµq,e(1Ge |Bq)− Eµe(1Ge |B0) , u1
q u

2
q 〉µq,e & ε4,

where B0 = {Ve, ∅} is the trivial σ-algebra, and Eµe(1Ge |B0) = µe(Ge)1Ve . Then by the Cauchy-

Schwartz inequality, we have

‖Eµq,e(1Ge |Bq)− Eµe(1Ge |B0)‖2L2(µq,e)
& ε8. (4.1.13)

Notice that the condition expectations above are on different measure spaces. To overcome this “dis-

crepancy”, using the linear forms condition, we can show that for given B ⊆ Ve one has

Eq∈Ve |µq,e(B)− µe(B)|2 µe(q) = oN,W→∞(1).

This in turn implies that for almost every4 q,

‖Eµq,e(1Ge |B0)− Eµe(1Ge |B0)‖L2(µq,e) = oN,W→∞(1) (4.1.14)

and

‖Eµe(1Ge |B0)‖L2(µe) = ‖Eµq,e(1Ge |B0)‖L2(µq,e) + oN,W→∞(1). (4.1.15)

2see e.g. arguments in the proof of Lemma 4.4.1.
3see e.g. calculations after (4.4.13).
4We will put a measure on the parametric space.
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By (4.1.14) and triangle inequality, we have

‖Eµq,e(1Ge |Bq)−Eµe(1Ge |B0)‖L2(µq,e) = ‖Eµq,e(1Ge |Bq)−Eµq,e(1Ge |B0)‖L2(µq,e) + oN,W→∞(1)

Now by the Pythagoras theorem, one would obtain the “energy increment”

‖Eµq,e(1Ge |Bq)−Eµq,e(1Ge |B0)‖2L2(µq,e)
= ‖Eµq,e(1Ge |Bq)‖2L2(µq,e)

−‖Eµq,e(1Ge |B0)‖2L2(µq,e)
& ε8.

(4.1.16)

(4.1.13), (4.1.15) and (4.1.16) give us that for almost every q ∈ Ω, that

‖Eµq,e(1Ge |Bq)‖2L2(µq,e)
≥ ‖Eµe(1Ge |B0)‖2L2(µe)

+ c ε8. (4.1.17)

If F : V → R is a function and (V,B, µ) is a measure space, recall that the quantity ‖Eµ(F |B)‖2L2(µ)

is referred to as the “energy” of the function F with respect to the measure space (V,B, µ), so (4.1.17)

is telling that if Ge is not ε-uniform with respect to the initial measure spaces (Ve,B0, µe) then its en-

ergy increases by a fixed amount when passing to the measure spaces (Ve,Bq,e, µq,e) for (almost) every

q ∈ Ω. One can iterate this argument to arrive to a family of measure spaces (Ve,Bq,e, µq,e)e∈Hd, q∈Ω

such that the atoms Gq,e ∈ Bq,e become sufficiently uniform, thus obtaining a parametric version

of the so-called Koopman- von Neumann decomposition. This can be further iterated to eventually

obtain a regularity lemma.

Remark 4.1.9. The number of linear forms defining the measures µq,e is increasing at each step of

the iteration, causing the linear forms condition to be used at a level depending eventually on the

relative density of the set A and not just on the dimension d. (This can me made independent of α in

dimension 1 in Colon-Fox-Zhao’s arguments [16].)

4.2 Weighted Hypergraph System

For a finite set S ⊆ Zd we attach the weight

w(S) :=
d∏
i=1

∏
y∈πi(S)

ν(y) (4.2.1)

where πi(S) is the canonical projection of S to the i-th coordinate axis. If S = {x} we write w(x) :=

w({x}) =
∏d
i=1 ν(xi). As in previous discussion, the weight ν is used to count configurations with

prime coordinates. If Wx+ b ∈ PdN (and x ∈ [ε1N, ε2N ]d ), then

w(x) ≈d,W (logN)d. (4.2.2)
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The implicit constant depends only on d and W which we will choose W sufficiently large but inde-

pendent of N .

In particular, for ∆ ⊆ [ε1N, ε2N ]d such that W∆ + b ⊆ A ⊆ PdN one has

w(∆) ≈ (logN)l(∆). (4.2.3)

Recall the definition of hypergraph system (Definition 4.1.4). For a given set A ⊆ ZdN and for

e = J\{j}, let

Ee = {x ∈ VJ :

d∑
i=0

xi(vi − vj) ∈ A} (4.2.4)

Note that Ee ∈ Ae for the collection Ae defined in Definition 4.1.4, as the expression in (4.2.4) is

independent of the coordinate xj . A point x ∈ Ee ⊆ Ve represents a vertex of an affine copy in A of

the simplex. A point x ∈
⋂
e∈Hd Ee represents an affine copy in A of the simplex.

Definition 4.2.1 (Weighted system). We will define now a family of functions νe : VJ → R+, µe :

VJ → R+. For e ∈ Hd, e = J\{j} and 1 ≤ k ≤ d. Write each vertex as

vj = (v1
j , v

2
j , . . . , v

d
j )

where vki denotes the kth−coordinate of the vector vi. Define

Lke(x) =
d∑
i=0

xi(v
k
i − vkj ) (4.2.5)

We partition the family of forms

L := {Lke ; |e| = d, 1 ≤ k ≤ d} :=
⋃
f∈H

Lf (4.2.6)

according to which coordinates they depend on. Here we write

– Lf for the set all linear forms (in x ∈ VJ variables) with variables depend exactly on xf .

– Lf for the set of linear forms (in x ∈ VJ variables) depending only on xg, g ⊆ f .

For this we define the support of a linear form L(x) =
∑d

k=0 akxk as supp(L) = {k : ak 6= 0}. For

a given e ⊆ J , define

νe(x) =
∏

L∈L,supp(L)=e

ν(L(x)) , µe(x) =
∏

L∈L,supp(L)⊆e

ν(L(x)), (4.2.7)

with the convention that νe ≡ 1 if {L; supp(L) = e} = ∅.
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Note that if ∆ = {v0, . . . , vd} is in general position, that is if vki 6= vkj for all i 6= j and k then

supp(Lke ) = e for all e ∈ Hd hence

µe(x) = νe(x) =
d∏

k=1

ν(Lke(x)).

Remark 4.2.2. As mentioned before, it is sometimes more convenient to think of µe as a measure on

VJ (rather than Ve) in the obvious way. In general for x ∈ VJ , we have µe(x) =
∏
f⊆e νf (x) and

also µe(x) = µe(πe(x)), that is µe is constant along the fibers of the projection πe hence we can

think of µe as a function on Ve as well. We will refer the functions νe and µe as weights and measures

respectively. To emphasize this point of view we will often use the integral notation and write∫
VJ

F (x) dµe(x) := Ex∈VJF (x)µe(x), and
∫
Ve

Fe(x) dµe(x) := Ex∈VeFe(x)µe(x),

for functions F : VJ → R and Fe : Ve → R. Thus we could think of µe as a measure on VJ or on the

subspace Ve, the exact interpretation will be clear from the context. Note that for Fe : Ve → [−1, 1],∫
VJ

Fe(πe(x))dµe(x) =

∫
Ve

Fe(x)dµe(x)

and it follows easily from the linear forms condition (see Lemma 4.2.3 below) that∫
VJ

Fe(πe(x))dµJ(x) =

∫
Ve

Fe(x)dµe(x) + oN,W→∞(1).

Now we prove in Lemma 4.2.3 below that measure µe and µJ are essentially probability measures and

in fact essentially the same measure and this supports the idea of identifying functions or sets on Ve
with functions or sets on VJ in the obvious way: consider sets Ge ⊆ Ve as sets Ge = π−1

e (Ge) ⊆ VJ ,

changing their measure only by a negligible amount

µJ(Ge) = µe(Ge) + o(1) (4.2.8)

The proof is a prototype of the arguments that are based on the Linear Forms Condition. Here, as in

previous chapter, we don’t need to analyze the structure of linear forms, only inspect that each linear

forms depend on different sets of variables and hence linearly independent.

Note that for any |e| = d we have that {Lke , 1 ≤ k ≤ d} are linearly independent which may be

inspected from (4.2.5). Alternately, since each linear form of this set represents a coordinate of a

vertex, the set of all normal vectors to each of face of the simplex (choose one vector from each face)

called {n1, . . . , nd+1}. Any d vectors chosen from this set are linearly independent. Recall that we

can parametrize affine copies of a simplex in ZdN by Zd+1
N : a point (x1, . . . , xd+1) ∈ Zd+1

N represents
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an affine copy of the simplex where the equation of the d + 1 planes that constitute the simplex are

p · ni = xi, 1 ≤ i ≤ d+ 1. Each vertex p = (p1, . . . , pd) of this affine simplex is obtained by solving

p ·m1 = y1

...

p ·md = yd

herem1, . . . ,md are d vectors chosen from {n1, . . . nd+1} and y1, . . . yd are chosen from {x1, . . . xd+1},
corresponding to choices of m1, . . . ,md. This means we solve Ap = (y1, ..., yd) for some invertible

matrix A hence p = A−1(y1, . . . , yd) so each pi is represented by a linear form in variables y1, . . . yd

and since A is invertible, these k linear forms are in fact linearly independent.

Lemma 4.2.3. For all e ∈ H we have that

µe(Ve) = 1 + o(1), (4.2.9)

moreover if g : Ve → [−1, 1],

Exe∈Ve g(xe)µe(xe) = Ex∈VJ g(πe(x))µJ(x) + o(1),

or equivalently ∫
Ve

g dµe =

∫
VJ

(g ◦ πe) dµJ + o(1). (4.2.10)

Proof. Note that the linear forms appearing on the right side of

µe(Ve) = Ex∈Ve
∏

supp(L)⊆e

ν(L(x))

are pairwise linearly independent, and as they are supported on e they remain pairwise independent

when restricted to Ve. Thus (4.2.9) follows from the linear forms condition.

To show (4.2.10), let e′ = J\e and write x = (xe, xe′) with xe = πe(x), xe′ = πe′(x). Then

E := Ex∈VJ (g◦πe)(x)µJ(x)−Exe∈Ve g(xe)µe(xe) = Exe∈Ve g(xe)µe(xe)Exe′∈Ve′ (w(xe, xe′)−1),

where w(xe, xe′) =
∏
f*e νf (xe∩f , xe′∩f ).

Now we consider E2 to get rid of g (using |g| ≤ 1). By (4.2.9) we have that µe(Ve) . 1, and

then apply the Cauchy-Schwartz inequality in xe variables,

|E|2 = Exe∈Veg(xe)µe(xe)
1/2 × Exe′∈Ve′µe(xe)

1/2(w(xe, xe′)− 1)
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. Exe∈VeExe′ ,ye′∈Ve′ (w(xe, xe′)− 1)(w(xe, ye′)− 1)µe(xe).

The right hand side of this expression is a combination of four terms and (4.2.10) follows from the fact

that each term is 1 + o(1). Indeed the linear forms appearing in the definition of the function µe(xe)

depend only on the variables xj for j ∈ e and are pairwise linearly independent. All linear forms

involved in w(xe, xe′) depend also on some of the variables in xj , j ∈ e′, while the ones in w(xe, ye′)

depend on the variables in yj , j ∈ e′, hence these forms depend on different sets of variables. Thus

the forms appearing in the expression µe(xe)w(xe, xe′)w(xe, ye′) are pairwise linearly independent

and (4.2.10) follows from the linear forms condition:

|E|2 .
(
1 + o(1)

)
−
(
1 + o(1)

)
−
(
1 + o(1)

)
+
(
1 + o(1)

)
= o(1)

Note that the estimate is independent on the function g.

Counting Prime Simplices.
To see how to use weighted hypergraph {νe}e∈H to count prime simplices we follow [102] to param-

eterize affine copies of ∆. Define the map Φ : Zd+1
N → Zd+1

N by

Φ(x) = (
d∑
i=0

xivi,−
d∑
i=0

xi) := (y, t) (4.2.11)

By (4.2.4) and (4.2.11) we have that x ∈ Ee for e = J\{j} if and only if y + tvj ∈ A thus

x ∈
⋂
e∈Hd Ee exactly when y + t∆ ⊆ A. Since {v1 − v0, . . . , vd − v0} is a linearly independent

family of vectors, we have that Φ is one to one. Hence, this gives a parametrization of all affine copies

of ∆ contained in A (mod N). Also for e = J\{j},

Lke(x) =
d∑
i=0

xi(v
k
i − vkj ) = πk(y + tvj) (4.2.12)

where πk is the orthogonal projection to the kth coordinate axis. This implies that

µe(x) =
∏

supp(L)⊆e

ν(L(x)) =

d∏
k=1

ν(Lke(x)) = w(y + tvj), (4.2.13)

and also

µJ(x) =
∏
L∈L

ν(L(x)) = w(y + t∆). (4.2.14)

In particular µJ(
⋂
e∈Hd Ee) counts the number of prime affine copies of ∆.

Next we observe that our linear forms do satisfy some useful properties which we will refer to later:
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Theorem 4.2.4 (Properties of a family of linear forms). Consider a family of linear forms L =

{Lke ; e ∈ Hd, 1 ≤ k ≤ d} associated with hypergraph. Our system of linear forms satisfies the

following properties.

– If e = J\{j}, e′ = J\{j′} then supp(Lke′) ⊆ e if and only if vkj = vkj′ (i.e. the kth coordinate of

vj , vj′ are the same). This is equivalent to Lke′ = Lke . We call such a family L well-defined.

– Since for a given e ∈ Hd, the forms Le = {Lke , 1 ≤ k ≤ d} are linearly independent. Any two

distinct forms of the family L are linearly independent. We will refer to such families of forms

as being pairwise linearly independent.

– Let M = {x ∈ VJ : x0 + . . . + xd = 0}. Then for any x ∈ M , from definition of the linear

forms, we have Lke(x) = Lke′(x) for all e, e′ ∈ Hd and k. We call a family of linear forms L
satisfying this property symmetric.5

Example 4.2.5 (Corners in Z2). Φ(x0, x1, x2) = (x1, x2,−x0 − x1 − x2); y − (x1, x2), t = −x0 −
x1 − x2.

y + tv1 = (x1, x2) + (−x0 − x1 − x2)(0, 0) = (x1, x2)

y + tv2 = (x1, x2) + (−x0 − x1 − x2)(1, 0) = (−x0 − x2, x2)

y + tv3 = (x1, x2) + (−x0 − x1 − x2)(0, 1) = (x1,−x0 − x1)

– Linear forms are x1, x2,−x0 − x2,−x0 − x1.

– Linear forms associated with (0, 1) are L1
(0,1)(x0, x1) = −x0− x1, L

2
(0,1)(x0, x1) = x1. Linear

forms associated with (0, 2) are L1
(0,2)(x0, x2) = −x2 − x0, L

2
(0,2)(x0, x2) = x2. Linear forms

associated with (1, 2) are L1
(1,2)(x1, x2) = x1, L

2
(1,2)(x1, x2) = x2.

– Examples of symmetric property: Let (x0, x1, x2) = M = {(x0, x1, x2) : x0 + x1 + x2 = 0}
then

−x0−x1 = L1
(0,1)(x0, x1, x2) = L1

(0,1)(x0, x1) = L1
(0,2)(x0,−x2−x0) = −x0−(−x2−x0) = x2 = L2

(0,2)(x0, x1, x2)

x1 = L2
(0,1)(x0, x1, x2) = L2

(0,2)(x0, x2 − x0) = −x2 − x0 = L1
(0,2)(x0, x1, x2).

5The set M correspond the degenerated copy x + t∆ with t = 0, saying that it should be degenerated to a single point. Given
f ∈ H with a set of linear forms Lf , we can have a process of symmetrization to obtain a system of linear forms defined on all
hyperedges which is symmetric such that the linear forms that only depend on variables in f is Lf . See section 4.3.2.
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4.3 Parametric Weight Systems: Extensions, Stability, and
Symmetrization.

Definition 4.3.1 (weight systems and associated families of measures depending on parameters.). Let

Lq := (L1(q, x), ..., Ls(q, x))

be a family of linear forms with integer coefficients depending on the parameters q ∈ ZR and the

variables x ∈ ZD. We call the family pairwise linearly independent if no two forms in the family are

rational multiples of each other (considered as forms over q and x). If N is a sufficiently large prime

with respect to the coefficients of the linear forms Li(q, x), then the forms remain pairwise linearly

independent when considered as forms over Z × V , Z = ZRN , V = ZDN . We refer to the set Z = ZRN
as the parameter space of the family Lq. We call the family of parametric forms Lq well-defined if

all forms Li(q, x) depend on some of the x-variables and there is measure on Z of the form

∫
Z
g(q) dψ(q) = Eq∈Z g(q)ψ(q), ψ(q) =

t∏
i=1

ν(Yi(q)), (4.3.1)

for a family of pairwise linearly independent linear forms Yi defined over Z.

If V = VJ then we define an associated system of weights {νq,e}q∈Z,e∈H and measures {µq,e}q∈Z,e∈H
as follows: For a form Lk(q, x) =

∑
i biqi +

∑
j ajxj define its x-support as suppx(L) = {j ∈

J ; aj 6= 0}. For e ⊆ J and q ∈ Z, let

νq,e(x) :=
∏
L∈Lq

suppx(L)=e

ν(L(q, x)), µq,e(x) :=
∏
L∈Lq

suppx(L)⊆e

ν(L(q, x)) (4.3.2)

We use the convention that νq,e ≡ 1 if there is no form L ⊆ Lq such that suppx(L) = e. Note that the

x-support partitions the family of forms Lq is independent of the parameters q, thus for given e ∈ H

µq,e(x) =
∏
f⊆e

νq,f (x), for all q ∈ Z.

A crucial observation is that many of the properties of the measure system {µe} still hold for well-

defined measure systems {µq,f} for almost every value of the parameter q ∈ Z. In order to formulate

such statements, we give the following definition.

Definition 4.3.2. We define the dimension of the space Z, the number of linear forms Lj(q, x), Yl(q).

We say that the familyLq has complexity at mostK if the dimension of the spaceZ and the magnitude

of their coefficients are all bounded by K.

Remark 4.3.3. The error terms in applications of the linear forms conditions will depend on quantity
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K.

We have the analogue of Lemma 4.2.3 for parametric weight system.

Lemma 4.3.4. Let {µq,e}e∈H,q∈Z be a well-defined parametric measure system of complexity at most

K.

For every e ∈ H there is a set Ee ⊆ Z such that ψ(Ee) = oK(1), and for every q /∈ Ee

µq,e(Ve) = 1 + oK(1). (4.3.3)

Moreover for every e ∈ H there is a set Ee ⊆ Z of measure ψ(Ee) = o(1), such the following holds.

For any function g : Z × Ve → [−1, 1] and for every q /∈ Ee one has the estimate

∫
Ve

g(q, xe) dµq,e(xe) =

∫
VJ

g(q, πe(x)) dµq,J(x) + oK(1). (4.3.4)

Proof. To prove (4.3.3), consider the quantity

Λe :=

∫
Z
|µq,e(Ve)− 1|2 dψ(q)

= Eq∈ZExe,ye(
∏

suppx(L)⊆e

ν(L(q, xe))− 1)(
∏

suppx(L)⊆e

ν(L(q, ye))− 1) dψ(q).

The above expression is a combination of four terms and note that the family of linear forms

{Yk(q), Li(q, xe), Lj(q, ye)}

is pairwise linearly independent in the (q, xe, ye) variables by our assumption on the linear forms.

Applying the linear forms condition gives that each term is 1 + oK(1) and so Λe = oK(1) and (4.3.3)

follows.

Now let e′ = J\e, write x = (xe, xe′) and arguing as in Lemma 4.2.3 we consider the difference

in (4.3.4),

Λ(q, e, g) :=
∣∣ ∫

VJ

g(q, πe(x))dµq,J(x)−
∫
Ve

g(q, xe)dµq,e(xe)
∣∣

= | Ex∈VJ g(q, πe(x))µq,J(x)− Exe∈Ve g(q, xe)µq,e(xe)|

= |Exe∈Ve g(q, xe)µq,e(xe)Exe′∈Ve′ (wq(xe, xe′)− 1)|

≤ Exe∈Ve µq,e(xe) |Exe′∈Ve′ (wq(xe, xe′)− 1)|,
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where wq(xe, xe′) =
∏
f*e νq,f (xe∩f , xe′∩f ).

Notice that the right hand side of the above inequality is independent of the function g; if we denote it

by Λ(q, e) then (4.3.4) (holds for almost every q) would follow from the estimate Eq∈Z Λ(q, e) dψ(q) =

oK(1). By the linear forms condition Eq,xe dψ(q) dµq,e(xe) = 1+oK(1) ≤ 2, forN sufficiently large

with respect to K. Then by the Cauchy-Schwartz inequality one has

(Eq∈Z Λ(q, e) dψ(q))2 . Eq∈ZExe∈Ve µq,e(xe)|Exe′∈Ve′ (wq(xe, xe′)− 1)|2 dψ(q)

. Eq∈Z, xe∈Ve Exe′ ,ye′∈Ve′ (wq(xe, xe′)− 1)(wq(xe, ye′)− 1) dµq,e(xe) dψ(q).

This is a combination of four terms, however each term again is 1+oK(1) as the linear forms defining

ψ depend on the variables q while the ones defining µq,e depend also on the xe variables. On the other

hand all linear forms appearing in the weight functions wq(xe, xe′) (respectively, wq(xe, ye′)) depend

on the xe′ (respectively, ye′) variables as well. Thus the family of all linear forms in the above

expressions is pairwise linearly independent in the (q, xe, xe′ , ye′) variables. The result follows from

linear forms condition.

4.3.1 Extension of Parametric Weight System, Stability and Symmetrization.

Energy increment argument involves iterations. In our setting, it turns out that when we do an iteration,

due to our averaging argument, we end up with a new parametric system of measure which is an

extension of the original measure system (in the sense that the weights in the definition of the original

measure are included in the definition of the new measure). The fact we will prove is that most of

these extensions are just a small perturbation of the original measure and still shares many important

properties with the original measure.

Definition 4.3.5 (Parametric Extension). Let

L1
q1 = {L1

1(q1, x), ..., Ls11 (q1, x)}, L2
q2 = {L1

2(q2, x), ..., Ls22 (q2, x)}

be two pairwise linearly independent families of linear forms defined on the parameter spaces Z1 =

Zk1
N and Z2 = Zk2

N . Let ψ1 and ψ2 be measures on Z1 and Z2 defined by the families of linear forms

{Y 1
1 (q1), . . . Y 1

s1(q1)} and {Y 2
1 (q2), . . . Y 2

s2(q2)}.
We say that the family L2

q2 is an extension of the family L1
q1 if Z1 ≤ Z2 (Z1 may be empty) and

the following holds: The family of forms Li2(q2, x), Y 2
j (q2) which depend only on the variables q1 =

π(q2) is exactly the family of forms Li1(q1, x), Y 1
j (q1), where π : Z2 → Z1 is the natural orthogonal

projection.

If V = VJ let µ1 := {µq1,e}q1∈Z1,e∈H and µ2 := {µq2,f}q2∈Z2,f∈H be the associated measure

systems as defined in (4.3.2). We say that the measure system µ2 is an extension of the system µ1.

116



Remark 4.3.6. Writing Z2 = Z1 × Z, Z = ZrN and q2 = (q1, q), we have

ψ2(q1, q) = ψ1(q1) · ϕ(q1, q) (4.3.5)

where ϕ(q, q1) =
∏t
i=1 ν(Yi(q1, q)). The linear forms Yi(q1, q) defining ϕ(q1, q) depend on some of

the variables of q = (qi)1≤i≤k and are pairwise linearly independent. Similarly one may write for

any e ∈ H
µ2

(q1,q),e
(xe) = µ1

q1,e(xe)we(q1, q, xe) (4.3.6)

where the linear forms Lj2(q1, q, xe) defining the function we(q, q1, xe) depend on (some of) the vari-

ables q as well as on all of the variables xe.

Next lemma, we prove Stability Property of a parametric extension. Saying that most extensions µq2
of µq1 is just a small perturbation of µq1 , by quantities that is independent of q2.

Lemma 4.3.7 (Stability property of measure). Let {µf}f∈H be a well defined measure system, and let

{µq,f}q∈Z,f∈H be a well-defined parametric extension of {µf}f∈H of complexity at mostK. Then for

any f ∈ H and for any function g : Vf → [−1, 1] there is a set Eg,f ⊆ Z of measure ψ(Eg,f ) = oK(1),

so that for all q /∈ Eg,f ∫
Vf

g dµq,f −
∫
Vf

g dµf = oK(1). (4.3.7)

Similarly if {µq1,f}f∈H,q1∈Z1 is a well-defined parametric system and if {µq2,f}f∈H,q2∈Z2 is an exten-

sion of complexity at most K2, then to any function g : Z1×Vf → [−1, 1] there exists a set Eg,f ⊆ Z2

of measure ψ2(Eg,f ) = oK2(1), such that for all q2 = (q1, q) /∈ Eg,f∫
Vf

g(q1, x) dµq2,f (x)−
∫
Vf

g(q1, x) dµq1,f (x) = oK2(1). (4.3.8)

Proof. As µq,f = µf (xf )wf (q, xf ), the left side of (4.3.7) may be written as

Λf,g(q) :=

∫
Vf

g(x)(wf (q, x)− 1) dµf (x).

Consider the average over q,

Λf,g :=

∫
Z
|Λf,g(q)|2 dψ(q).

which is non-negative. By expanding, we have

Λf,g =

∫
Z

∫
Vf

∫
Vf

(wf (q, x)− 1)(wf (q, y)− 1)g(x)g(y) dµf (x)dµf (y)dψ(q)

≤
∫
Vf

∫
Vf

∣∣∣∣∫
Z

(wf (q, x)− 1)(wf (q, y)− 1)dψ(q)

∣∣∣∣ dµf (x)dµf (y).
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Now the Cauchy-Schwartz inequality in Vf × Vf variables and (4.2.9) gives

|Λf,g|2 .
∫
Vf

∫
Vf

∫
Z

∫
Z

(wf (q, x)− 1)(wf (q, y)− 1)×

× (wf (p, x)− 1)(wf (p, y)− 1) dµf (x)dµf (y)dψ(q)dψ(p).

This last expression is a combination of 16 terms where each term is 1 + oK(1) by the linear form

conditions and their total contribution is o(1). Indeed the linear forms which can appear in any of

these terms are Yi1(q),Yi2(p),Li3(x),Li4(y), Li5(q, x), Li6(q, y), Li7(p, x), Li8(p, y). Note that the

last 4 terms depend on both sets of variables (for example Li(q, x) depends both on q ∈ Z and on

x ∈ Vf ), and hence the family of these forms are pairwise linearly independent in the (q, p, x, y)

variables. This Proves (4.3.7).

The proof of (4.3.8) is essentially the same. Set

Λf,g(q2) :=

∫
Vf

g(q1, x)dµq2,f (x)−
∫
Vf

g(q1, x)dµq1,f (x)

and

Λf,g :=

∫
Z2

|Λf,g(q2)|2 dψ2(q2).

where we write Z2 = Z1 × Z, Z = ZkN , and q2 = (q1, q) for q2 ∈ Z2. By (4.3.5) we estimate as

above

Λf,g .
∫
Vf

∫
Vf

∫
Z1

dψ1(q1)dµq1,f (x)dµq1,f (y) |Eq∈Z (wf (q1, q, x)− 1)(wf (q1, q, y)− 1)ϕ(q1, q)| .

The linear forms condition gives∫
Vf

∫
Vf

∫
Z1

dψ1(q1)dµq1,f (x)dµq1,f (y) = 1 + oK2(1),

so by Cauchy-Schwartz’s inequality, we have

|Λf,g|2 .
∫
Vf

∫
Vf

∫
Z1

Ep,q∈Z (wf (q1, q, x)− 1)(wf (q1, q, y)− 1)×

× (wf (q1, p, x)− 1)(wf (q1, p, y)− 1) ϕ(q1, q)ϕ(q1, p) dψ1(q1)dµq1,f (x)dµq1,f (y).

Now any linear form Lif (q1, q, x) depends both on the variables q and x. Thus again the left side

is a combination of 16 terms, each being 1 + oK2(1) by the linear forms condition as all the linear

forms involved in any of these expressions are pairwise linearly independent in the (x, y, q1, q, p)

variables.
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Next we will prove stability property of box norm with respect to an extension. Let g : Z1 × Ve → R
be a function and let e ∈ H, |e| = d′. For a given q1 ∈ Z1 recall the box norm of gq1(x) = g(q1, x)

∥∥gq1∥∥2d
′

�µq1,e
= Ep,x∈Ve

∏
ωe∈{0,1}e

g(q1, ωe(p, x))
∏
f⊆e

∏
ωf∈{0,1}f

νq,f (ωf (pf , xf )), (4.3.9)

where xf = πf (x), pf = πf (p), πf : Ve → Vf being the natural projection. Here we have a

parametric linear forms Lq1,e on Z1× Ve as in Definition 4.3.1. The inner product on the right side of

(4.3.9) is defined by the parametric family of forms (in (p, x)−variables)

L̃q1,e =
⋃
f⊆e
{L(q1, ωf (pf , xf )); L ∈ Lq1 , suppx(L) = f, ωf ∈ {0, 1}f}. (4.3.10)

Claim. L̃q1 is a pairwise linearly independent family of forms defined over Z1 × V (V = Ve × Ve).

Proof of Claim. Suppose we would have that

L′(q1, ω
′
f ′(pf ′ , xf ′)) = λL(q1, ωf (pf , xf )), (4.3.11)

then restriction both forms to the subspace {(p, x) ∈ Vf×Vf : p = x}would imply that L′(q1, xf ′) =

λL(q1, xf ) and hence f ′ = suppx(L′) = suppx(L) = f . Then, as L and L′ depend exactly variables

xj ,j ∈ f . For the equation (4.3.11) to hold, we should have ω′f = ωf and L = L′.

Lemma 4.3.8 (Stability Property of Box Norm). Let {νq1,f}f∈H,q1∈Z1 be a parametric weight system

with a well-defined extension {νq2,f}f∈H,q2∈Z2 of complexity at most K2. Then to any e ∈ H and to

any function g : Z1 × Ve → [−1, 1] there exists a set E = E(g, e) ∈ Z2 of measure ψ2(E) = oK2(1)

such that for all q2 = (q1, p) /∈ E

∥∥gq1∥∥�µq2,e =
∥∥gq1∥∥�µq1,e + oK2(1). (4.3.12)

Proof. Let

Gq1(p, x) :=
∏

ωe∈{0,1}e
g(q1, ωe(p, x)), (4.3.13)

and let {µ̃q1,e}q1∈Z1 denotes the associated system of measures on Z1 × Ve, then for given q1 ∈ Z1

(according to definition in the equation (4.3.9)), we can write

∥∥gq1∥∥2d
′

�µq1,e
= Ep,x∈VeGq1(p, x) µ̃q1,e(p, x). (4.3.14)

Now, if Lq2 is a well-defined parametric extension of Lq1 then (4.3.10) yields to a well-defined para-
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metric extension L̃q2 of the family L̃q1 . Then by Lemma 4.3.7, and the simple observation that

|a2d
′
− b2d

′
| ≤ ε implies6 |a− b| ≤ ε2−d

′
for a, b ≥ 0, we are done.

Finally we prove prove the stability of the conditional expectation, both with respect to L2 norm and

Box norm. Recall that if (V,B, µ) and g : V → R, we defined

Eµ(g|B)(x) =
1

µ(B(x))

∫
B(x)

g(y)dµ(y) :=
1

µ(B(x))
Ey∈V 1B(x)(y)g(y)µ(y),

where B(x) ∈ B is the atom containing x. If µ(B(x)) = 0 then we set Eµ(g|B)(x) = 1.

Lemma 4.3.9. Let (µq1,f )q1∈Z1,f∈H be a well-defined parametric measure system with a well-defined

extension (µq2,f )q2∈Z2,f∈H of complexity at most K2. For q1 ∈ Z1 and e ∈ H, let Bq1,e be a

σ−algebra on Ve such that compl(Bq1,e)≤ M for some fixed number M . For any function gq1 :

Z1 × Ve → [−1, 1] there exists a set E = E(Bq1,e, g) ⊆ Z2 of measure ψ2(E) = oM,K2(1) such that

for any q2 = (q1, q) /∈ E . We have

1. ∥∥Eµq2,e(gq1 |Bq1,e)− Eµq1,e(gq1 |Bq1,e)
∥∥2

L2(µq2,e)
= oM,K2(1) (4.3.15)

2. ∥∥Eµq2,e(gq1 |Bq1,e)∥∥2

L2(µq2,e)
=
∥∥Eµq1,e(gq1 |Bq1,e)∥∥2

L2(µq1,e)
+ oM,K2(1). (4.3.16)

Proof. Let m = 2M and enumerate the atoms of Bq1,e as B1
q1 , ..., B

m
q1 , allowing some of them to

possibly be empty. For a fixed 1 ≤ i ≤ m define the functions

bi(q1, x) := 1Biq1 (x) =

1 if x ∈ Bi
q1

0 otherwise

and for q2 = (q1, q) ∈ Z2 define the quantities

µi(q2, g) :=

∫
Ve

g(q1, x)bi(q1, x)dµq2,e(x), µi(q2) := µi(q2, 1) = µq2,e(B
i
q1),

µi(q1, g) :=

∫
Ve

g(q1, x)bi(q1, x)dµq1,e(x), µi(q1) := µi(q1, 1) = µq1,e(B
i
q1)

6Indeed |a2d′−1

− b2
d′−1

|2 ≤ |a2d′−1

− b2
d′−1

||a2d′−1

+ b2
d′−1

| = |a2d′
− b2

d′
| ≤ ε. Then we may argue by induction.
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By Lemma 4.3.7 we have that

µi(q2, g) = µi(q1, g) + oK2(1), µi(q2) = µi(q1) + oK2(1) (4.3.17)

for all q2 /∈ Ei where Ei ⊆ Z2 is a set of ψ2- measure oK2(1). Let E =
⋃m
i=1 Ei then ψ2(E) =

oK2,M (1). By definition, the left hand side of (4.3.15) takes the form

m∑
i=1

(
µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

)2

µi(q2), (4.3.18)

with the convention that if µi(q1) = 0 or µi(q2) = 0 then µi(q1, g)/µi(q1) := 1 or µi(q2, g)/µi(q2) :=

1.

If q2 = (q1, q) /∈ E then by (4.3.17)

ε = ε(N) :=

m∑
i=1

(
|µi(q2, g)− µi(q1, g)|+ |µi(q2)− µi(q1)|

)
= oK2,M (1) (4.3.19)

We split the sum in (4.3.18) in i into 2 parts:

– If µi(q1) ≤ 2ε1/4 then µi(q2) ≤ 3ε1/4 by (4.3.17) and we have the trivial bound(
µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

)2

≤ 22.

Hence the total contribution of such terms is bounded by 12mε1/4 = oK2,M (1).

– If µi(q1) ≥ 2ε1/4 then µi(q2) ≥ ε1/4, we have the estimate∣∣∣∣µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

∣∣∣∣ =

∣∣∣∣(µi(q2, g)− µi(q1, g))µi(q1)− µi(q1, g)(µi(q1)− µi(q2))

µi(q1)µi(q2)

∣∣∣∣
≤ ε · 2 + 2ε

µi(q1)µi(q2)
≤ 4ε

2ε1/2
= oK2,M (1).

This proves (4.3.15). The proof of inequality (4.3.16) proceeds the same way, here one needs to

estimate the quantity

m∑
i=1

∣∣∣∣µi(q2, g)2

µi(q2)
− µi(q1, g)2

µi(q1)

∣∣∣∣ =

m∑
i=1

∣∣∣∣(µi(q2, g)

µi(q2)

)2

µi(q2)−
(
µi(q1, g)

µi(q1)

)2

µi(q1)

∣∣∣∣ (4.3.20)

– If µi(q1) ≤ 2ε1/4 then µi(q2) ≤ 3ε1/4 for q2 = (q1, q) /∈ E . Since we have the trivial bounds

(µi(qj , g)/µi(qj))
2 ≤ 1 for j = 1, 2, the contribution of such terms to the right side of (4.3.20)
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is trivially estimated by

5mε1/4 = oM,K2(1)

– If µi(q1) ≥ 2ε1/4 then µi(q2) ≥ ε1/4, using∣∣∣∣(µi(q2, g)

µi(q2)

)2

µi(q2)−
(
µi(q1, g)

µi(q1)

)2

µi(q1)

∣∣∣∣ =

∣∣∣∣(µi(q2, g)2 − µi(q1, g)2)µi(q1)− µi(q1, g)2(µi(q1)− µi(q2))

µi(q1)µi(q2)

∣∣∣∣
then proceed as in the proof of (4.3.15),using |µi(q2, g)2−µi(q1, g)2| ≤ 2|µi(q1, g)−µi(q2, g)|
we have that these remaining terms are bounded by 8 ε1/2 and (4.3.16) follows.

Finally, we need an analogue of the above result when the ‖ · ‖L2(µq,e) norm is replaced by the more

complicated ‖ · ‖�µq,e norms.

Lemma 4.3.10. Let {νq2,f}q2∈Z2,f∈H be a well-defined extension of the parametric weight system

{νq1,f}q1∈Z1,f∈H, of complexity at most K2. For q1 ∈ Z1 and e ∈ H, let Bq1,e be a σ-algebra of

complexity at most M , for some fixed constant M > 0. Then

‖Eµq2,e(gq1 |Bq1,e)− Eµq1,e(gq1 |Bq1,e)‖�µq2,e = oM,K(1), (4.3.21)

for all q2 = (q1, q) /∈ E , where E = E(g,B) ⊆ Z2 is a set of measure ψ2(E) = oM,K2(1).

Proof. First we show that for any family of sets A = (Aq1)q1∈Z1 , Aq1 ⊆ Ve there is a set E1 =

E1(g,A) of measure ψ2(E1) = oK2(1) such that for all q2 = (q1, q) /∈ E1 we have

‖1Aq1‖
2|e|
�µq2,e

≤ µq2,e(Aq1) + oK2(1). (4.3.22)

To see this, first note that for q2 = (q1, q) ∈ Z2 one has

‖1Aq1‖
2|e|
�µq2,e

≤ Ex,p∈Ve1Aq1 (x)µq2,e(x)
∏
f⊆e

∏
ωf 6=0

νq2,f (ωf (pf , xf ))

= µq2,e(Aq1) + E(q2),

with

E(q2) ≤ Ex∈Veµq2,e(x)|Ep∈Ve(w(q2, p, x)− 1)|,

where

w(q2, p, x) =
∏
f⊆e

∏
ωf 6=0

νq2,f (ωf (pf , xf )).
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Arguing as in the proof of Lemma 4.3.7, we see that

Eq2∈Z2Ex,p,p′∈Ve ψ2(q2)dµq2,e(x) (w(q2, p, x)− 1)(w(q2, p
′, x)− 1) = oM,K2(1)

and (4.3.22) follows.

Now let {Bi
q1}

m
i=1 (m = 2M ) be the atoms ofBq1,e and define the quantities µi(q2, g), µi(q2), µi(q1, g), µi(q1)

as in Lemma 4.3.9. Using the facts that µi(q2, g) = µi(q1, g) +oK2(1) and µi(q2) = µi(q1) +oK2(1)

outside a set of measure oM,K2(1). Arguing as in Lemma 4.3.9, we obtain∣∣∣∣µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

∣∣∣∣ = oM,K2(1). (4.3.23)

The expression in (4.3.21) is then estimated :∥∥∥∥ m∑
i=1

(
µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

)
1Biq1

∥∥∥∥
�µq2,e

≤
m∑
i=1

∣∣∣∣µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

∣∣∣∣∥∥1Biq1∥∥�µq2,e
.

m∑
i=1

∣∣∣∣µi(q2, g)

µi(q2)
− µi(q1, g)

µi(q1)

∣∣∣∣ µq2,e(Bi
q)

2−d + oM,K2(1),

for q2 = (q1, q) /∈ E1, where E1 = E1(Bq1,e, g) is a set of measure oM,K2(1).

Now
m∑
i=1

µq2,e(B
i
q1) = µq2,e(Ve) = 1 + oK2(1),

In particular µq2,e(B
i
q1)2−|e| = OM,K2(1) and it follows from (4.3.23) that the above expression

(4.3.21) is oM,K2(1) . This completes the proof.

4.3.2 Symmetrization of Parametric Weight System

In this subsection we prove symmetric property of the parametric weight system.

Definition 4.3.11 (Symmetric of parametric weight system). For each e ∈ H, let

Lq,e = {L1
e(q, x), ..., Lse(q, x)}

be a pairwise linearly independent family of linear forms in x variables defined on V = VJ , depending

on parameters q ∈ Z, such that suppx(Lje) ⊆ e. We denote Lq =
⋃
f∈H Lq,f =

⋃
e∈Hd Lq,e

We say that the family of forms Lq is symmetric if Lje(q, x) = Lje′(q, x) for all q ∈ Z, x ∈M = {x :

x0 + · · ·+ xd = 0}, e, e′ ∈ Hd and 1 ≤ j ≤ s.
For any given e ∈ H we call Lq the symmetrization of the family Lq,e. The reason and validity of
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this later definition is the content of theorem 4.3.13 below.

Remark 4.3.12. Recall that our initial family of forms defined in (4.2.5) has this property.

Theorem 4.3.13. For a fixed e ∈ H, |e| ≤ d and pairwise linearly independent family Lq,e. There is a

unique symmetric family of linear formsLq defined above such thatLq,e = {L ∈ Lq; suppx(L) ⊆ e}.
Also Lq,e is a pairwise linearly independent

Proof. First assume |e| = d and suppose we have a family of pairwise linearly independent linear

forms Lq,e. Let M = {x : x0 + · · · + xd = 0} (which is isomorphic to Ve for any |e| = d) and

φe : Ve →M be the inverse of the projection πe restricted toM . Now for any e′ ∈ Hd, q ∈ Z, x ∈ VJ ,

define

Lje′(q, x) := Lje(q, φe′ ◦ πe′(x)) (4.3.24)

Note that φe′ ◦πe′(x) is an isomorphism (the identity map) betweenM and Ve. Hence suppxL
j
e′ ⊆ e

′.

Now if x ∈M then x = φe′ ◦ πe′(x) hence Lje′(q, x) = Lje(q, x), this shows symmetry of Lq.

Indeed, Lq,e ⊆ {L ∈ Lq; suppx(L) ⊆ e}. Next, we show Lq,e ⊇ {L ∈ Lq; suppx(L) ⊆ e}.
Suppose suppxL

j
e′ ⊆ e (so Lje′(q, φe ◦ πe(x)) is defined) then for all q ∈ Z1, x ∈ VJ , then by

symmetry property

Lje′(q, x) = Lje′(q, φe ◦ πe(x)) = Lje(q, φe ◦ πe(x)) = Lje(q, x) (4.3.25)

Finally, we verify that Lq is a pairwise linearly independent family by considering the set of variables

they depend on. Now all forms in Lq are constructed via (4.3.24), any two of them are either of the

form Lje(q, xe) or depends on different sets of variables, hence must be pairwise linearly independent.

Now suppose |f | < d and we have a family of linear forms Lq,f . We choose |e| = d with f ⊆ e

and we consider Lq,f as family of forms on Ve. This is independent of the choice of e since (by

well-definedness of the system) if f ⊆ e′ as well then Lje = Lje′ for all 1 ≤ j ≤ s(f) and we can do

the symmetrization as above.

4.4 Regularity Lemma for Parametric Weight Hypergraph

In this section we will prove a decomposition theorem for the functions on our hypergraph where we

will exploit the machinery of parametric weight system we developed.

4.4.1 A Koopman-von Neumann Type Decomposition for Parametric Weight System

Let e ⊆ J and let Bf be a σ-algebra on Vf for f ∈ ∂e, where ∂e = {f ⊆ e; |f | = |e|−1} denotes the

boundary of the edge e. Let B :=
∨
f⊆∂e Bf be the σ-algebra generated by the sets π−1

ef (Bf ) where
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πef : Ve → Vf is the canonical projection. The atoms of B are the sets G =
⋂
f⊆∂e π

−1
ef (Gf ) with

Gf being an atom of Bf . We may interpret G the collection of simplices x ∈ Ve whose faces xf are

in Gf for all f ∈ ∂e.

The first lemma we will prove says that if there is a large “bad” set Ω of parameters q for which the

set Gq,e is not sufficiently uniform with respect to the σ-algebra
∨
f∈∂e Bq,f , then the energy of the

set (with respect to the sigma-algebra) will increase by a fixed amount when passing to a well defined

extension {Bq′,f}, each has complexity increased at most 1 and {µq′,e} with complexity O(K). This

holds for all q′ = (q, p) ∈ Ω′ with positive measure.

Lemma 4.4.1 (Large Box Norm implies Structure and Energy Increment). For given e ⊆ J , |e| = d′,

let {µq,f}q∈Z,f⊆e be a well-defined family of measures of complexity at most K. For q ∈ Z let

Gq,e ⊆ Ve and {Bq,f}f∈∂e be a σ-algebra on Vf .

Assume that for all q ∈ Ω, where Ω ⊆ Z is a set of measure ψ(Ω) ≥ c0 > 0, we have

∥∥1Gq,e − Eµq,e(1Gq,e |
∨
f∈∂e
Bq,f )

∥∥2d
′

�µq,e
≥ η, (4.4.1)

for some η > 0.

Then for N,W sufficiently large with respect to the parameters c0, η, there exists a well-defined ex-

tension {µq′,f}q′∈Z′,f⊆e of the system {µq,f} of complexity K ′ = O(K), and a set Ω′ ⊆ Ω × Ve ⊆
Z ′ = Z × Ve such that all of the following hold.

1. (positive measure of parameter) We have

ψ′(Ω′) ≥ 2−4c2
0η

2, (4.4.2)

where ψ′ is the measure on the parameter space Z ′.

2. (complexity control) For all q′ = (q, p) ∈ Z ′ and f ∈ ∂e there is a σ−algebra Bq′,f ⊇ Bq,f of

complexity

compl(Bq′,f ) ≤ compl(Bq,f ) + 1. (4.4.3)

3. (energy increment) For all q′ = (q, p) ∈ Ω′, one has

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq′,f )

∥∥2

L2(µq′,e)
≥
∥∥Eµq,e(1Gq,e | ∨

f∈∂e
Bq,f )

∥∥2

L2(µq,e)
+ 2−2d−5 η2, (4.4.4)

4. (probability measure)

µq′,e(Ve) ≤ 2. (4.4.5)
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Proof. Let

gq := 1Gq,e − Eµq,e(1Gq,e |
∨
f∈∂e
Bq,f ). (4.4.6)

Then by definition in equation (4.3.9) we have for each q ∈ Ω,

∥∥gq∥∥2d
′

�µq,e
=

∫
Ve

〈gq,
∏
f∈∂e

uq,p,f 〉µ(q,p),e
dµq,e(p) ≥ η, (4.4.7)

where uq,p,f : Ve → [−1, 1] are functions in x−variables and dµq,e(p) is from terms without x

variables. {µ(q,p),e}(q,p)∈Z′ is the family of measures defined by

µ(q,p),e(x) =
∏
f⊆e

∏
ωf∈{0,1}f
ωf 6=0

νq,f (ωf (pf , xf )).

As explained after (4.3.2) the measures µ(q,p),e are defined by a pairwise independent family of forms

L(q,p),e depending on the parameters (q, p) ∈ Z × Ve, which is a well-defined extension of the fam-

ily Lq,e defining the measures µq,e. It is clear from (4.4.7) that the measure ψ′ on Z ′ has the form

ψ′(q, p) = µq,e(p)ψ(q) where ψ(q) is the product of terms without p variables.

For q′ = (q, p), let

Γ(q, p) := 〈gq,
∏
f∈∂e

uq,p,f 〉µq,p,f (4.4.8)

First, we show that there is a set Ω′1 ⊆ Ω× Ve of measure

ψ′(Ω′1) ≥ 2−3c2
0 η

2, (4.4.9)

such that for every (q, p) ∈ Ω′1 one has

Γ(q, p) ≥ η

4
. (4.4.10)

Indeed, by Lemma 4.3.4 we have that µq,e(Ve) = 1 + oK(1) ≤ 2 for q /∈ E1 where E1 ⊆ Ω is a set of

measure ψ(E1) = oK(1). Thus for q ∈ Ω\E1 = Ω1 we have by (4.4.7) that
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∫
Ve

1{Γ(q,p)≥η/4}Γ(q, p)dµq,e(p) ≥ η −
∫
Ve

1{Γ(q,p)<η/4}Γ(q, p)dµq,e(p) ≥ η −
η

4
(1 + o(1)) ≥ η

2
.

(4.4.11)

Now we use this fact to bound the L2−moment of Γ(p, q). By (4.4.7) and (4.4.8) we have

Γ(q, p) =

∫
Ve

gq(x)

( ∏
f∈∂e

uq,f

)
wq,p(x)dµq,e(x)

The function wq,p(x) is the product of weight functions of the form ν(L(q, p, x)) depending on both

p and x. Thus, using the bounds |gq| ≤ 1, |uq,p,f | ≤ 1, one has

∫
Z

∫
Ve

|Γ(q, p)|2dµq,e(p)dψ(q) ≤
∫
Z

∫
Ve

∫
Ve

∫
Ve

wq,p(x)wq,p(x
′)dµq,e(x)dµq,e(x

′)dµq,e(p)dψ(q)

(4.4.12)

= 1 + oK(1) ≤ 2

by the linear forms condition as the factors in the product depend on different sets of variables. Let

Ω′1 := {(q, p) ∈ Ω1 × Ve; Γ(q, p) ≥ η/4}. Thus by (4.4.11) and (4.4.12) over Ω1 with the Cauchy-

Schwartz inequality,

c2
0η

2

4
≤ ψ(Ω1)2η2

4
≤

(∫
Ω′1

Γ(q, p)dµq,e(p) dψ(q)

)2

≤
∫

Ω′1

Γ(q, p)2dµq,e(p) dψ(q)ψ′(Ω′1) ≤ 2ψ′(Ω′1).

This shows ψ′(Ω′1) ≥ 2−3c2
0η

2 as claimed.

Since |uq′,f | ≤ 1, decomposing of each function uq′,f into its positive and negative parts in (4.4.7)

yields that ∫
Ve

〈gq,
∏
f∈∂e

vq′,f 〉µq′,edµq,e(p) ≥ 2−d
′
η ≥ 2−dη

i.e.

〈gq,
∏
f∈∂e

vq′,f 〉µq′,e ≥ 2−d
′
η ≥ 2−dη (4.4.13)

for some q′ and functions7 vq′,f : Vf → [0, 1]. Now we obtained correlation with structures and we

7For each fixed f , take vq′,f (x) = maxu+
q′,f where u+

q′,f denotes nonnegative terms in the decomposition and the maximum
is taken over these nonnegative terms.
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will pass from structural functions to sets. For a given f ∈ ∂e and some 0 ≤ tf ≤ 1 , let

Uq′,tf := {xf ∈ Vf : vq′,f (xf ) ≥ tf}

be the level set of the functions vq′,f . That is, for each fixed xf ,

F (tf ) := 1Uq′,tf
(xf )⇒ F (tf ) =

1 if tf ≤ vq′,f (xf )

0 if tf > vq′,f (xf )

Then vq′,f (xf ) =
∫ 1

0 F (tf )dtf =
∫ 1

0 1Uq′,tf
(xf )dtf , and for each term in (4.4.13) we have by swap-

ping the integrals,

∫ 1

0
· · ·
∫ 1

0
〈gq,

∏
f∈∂e

1Uq′,tf
〉µq′,edt ≥ 2−dη,

where t = (tf )f∈∂e. By pigeonhole principle the integrand must be at least 2−dη for some value of

the parameter t.

Fix such a t = (tf ) ∈ [0, 1]d and write Uq′,f for Uq′,tf for simplicity of notation. For q′ = (q, p) ∈ Ω′1,

define Bq′,f to be the σ−algebra generated by Bq,f , and the Uq′,f . For q′ /∈ Ω′1, set Bq′,f = Bq,f .
The function

∏
f∈∂e 1Uq′,f is constant on the atoms of the σ−algebra

∨
f∈∂e Bq′,f , and therefore for

q′ ∈ Ω′1

〈
1Gq,e − Eµq′,e(1Gq,e |

∨
f∈∂e
Bq′,f ),

∏
f∈∂e

1Uq′,f
〉
µq′,e

= 0

for q′ ∈ Ω′1. Hence, by (4.4.6) and (4.4.13) it follows that

〈Eµq′,e(1Gq,e |
∨
f∈∂e
Bq′,f )− Eµq,e(1Gq,e |

∨
f∈∂e
Bq,f ),

∏
f∈∂e

1Uq′,f 〉µq′,e ≥ 2−dη (4.4.14)

By Lemma 4.3.4 there is a set E1 ⊆ Z ′ such that ψ′(E1) = oK(1) and

∥∥ ∏
f∈∂e

1Uq′,f
∥∥
L2(µq′,e)

≤ µq′,e(Ve)1/2 = 1 + oK(1) ≤ 2

for q′ ∈ Ω′1\E1 =: Ω′2. Then apply Cauchy-Schwartz inequality to (4.4.14),

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq′,f )− Eµq,e(1Gq,e |

∨
f∈∂e
Bq,f )

∥∥
L2(µq′,e)

≥ 2−d−1η,
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for q′ ∈ Ω′2. By (4.3.15) in Lemma 4.3.9 there is an exceptional set E2 ⊆ Z ′ of measure ψ′(E2) =

oK,M (1) such that for q′ = (q, p) ∈ Ω′3 := Ω′2\E2 we have

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq′,f )− Eµq′,e(1Gq,e |

∨
f∈∂e
Bq,f )

∥∥
L2(µq′,e)

≥ 2−d−1η − oK,M (1) ≥ 2−d−2η.

(4.4.15)

Since Bq,f ⊆ Bq′,f , for q′ = (q, p), applying Pythagorus’s Theorem, (4.4.15) is equivalent to

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq′,f )

∥∥2

L2(µq′,e)
−
∥∥Eµq′,e(1Gq,e | ∨

f∈∂e
Bq,f )

∥∥2

L2(µq′,e)
≥ 2−2d−4η2. (4.4.16)

Finally, an invocation of (4.3.16) in Lemma 4.3.9 there is a set E3 ⊆ Z ′ of measure ψ′(E3) = oK,M (1)

such that for q′ ∈ Ω′4 := Ω′3\E3 we have (for N,W sufficiently large)

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq′,f )

∥∥2

L2(µq′,e)
−
∥∥Eµq,e(1Gq,e | ∨

f∈∂e
Bq,f )

∥∥2

L2(µq,e)
≥ 2−2d−5η2. (4.4.17)

This proves the lemma choosing Ω′ = Ω′4.

Now for any given e ∈ H, we shall prove a Koopman-von Neumann type decomposition for 1Ge
for any Ge ∈ Bq,e . The will be done via iterations argument; repeated applications of lemma

4.4.1 and boundedness of the total energy of the hypergraph system. The total energy of the fam-

ily {Bq,e}e∈Hd′ with respect to a family of lower order σ-algebras {Bq,f}f∈Hd′−1
and a family of

measures {µq,e}e∈Hd′ is the quantity

Ed′({Bq,f}f∈Hd′−1
) =

∑
e∈Hd′ ,Ge∈Be

∥∥Eµe(1Ge | ∨
f∈∂e
Bq,f )

∥∥2

L2(µq,e)
≤ 2

(
d

d′

)
22Md′ . (4.4.18)

And the total energy of the hypergraph system is

E({Bq,f}f∈Hd′−1
) :=

∑
1≤d′≤d

Ed′({Bq,f}f∈Hd′−1
) (4.4.19)

Assuming the measures µe are normalized i.e. µe(Ve) = 1 + o(1) ≤ 2, a crude upper bound for the E
are 2d+122M = OM (1) is a universal bound, whereM is the complexity of the σ-algebras

∨
f∈H Bq,f .
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Lemma 4.4.2 (Koopman-von Neumann decomposition for Parametric Weight System). Let {µq,f}q∈Z,f∈H
be a well-defined, symmetric family of measures of complexity at most K. Let 1 ≤ d′ ≤ d, and let

{Bq,e}q∈Z,e∈Hd′ and {Bq,f}q∈Z,f∈Hd′−1
be families of σ-algebras of complexity at most Md′ and

Md′−1. Finally let Ω ⊆ Z with ψ(Ω) ≥ c0 > 0, and let δ > 0 be a constant. (In the iteration process,

these quantities in the assumption are obtained from the previous step of the iteration.)

Then for N, W sufficiently large with respect to the constants δ, c0,Md′ ,Md′−1 and K, Z ′ = Z ×V ,

there exists a well-defined, symmetric extension {µq′,f}q′∈Z′,f∈H of the system {µq,f}q∈Z,f∈H of

complexity at most K ′ = OMd′ ,K, δ(1) and a family of σ-algebras {Bq′,f}q′∈Z′,f∈Hd′−1
such that the

following hold.

1. For all q′ = (q, p) ∈ Z ′ and f ∈ Hd′−1 we have

Bq,f ⊆ Bq′,f , compl(Bq′,f ) ≤ compl(Bq,f ) +OMd′ , δ(1). (4.4.20)

2. There exists a set Ω′ ⊆ Ω × V ⊆ Z ′ of measure ψ′(Ω′) ≥ c(c0, δ,Md′) > 0 such that for all

q′ = (q, p) ∈ Ω′ and for all e ∈ Hd′ , for all Gq,e ∈ Bq,e one has

∥∥1Gq,e − Eµq′,e(1Gq,e |
∨
f∈∂e
Bq′,f )

∥∥
�µq′, e

≤ δ. (4.4.21)

and the stability property

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq,f )

∥∥2

L2(µq′,e)
=
∥∥Eµq,e(1Gq,e | ∨

f∈∂e
Bq,f )

∥∥2

L2(µq,e)
+ oMd′ ,K, δ(1),

(4.4.22)

Proof. Initially set Z ′ = Z, then (4.4.20) and (4.4.22) trivially holds for q′ = q. If there is a set

Ω1 ⊆ Ω of measure ψ(Ω1) ≥ c0
2 such that inequality (4.4.21) holds for all q ∈ Ω1 and Gq,e ∈ Bq,e

then the conclusions of the lemma hold for the initial system of measures and σ-algebras

({µq,f}q∈Z,f∈H, {Bq,e}q∈Z,e∈Hd′ , {Bq,f},q∈Zf∈Hd′−1
)

and the set Ω1.

Otherwise, for all sets Ω2 ⊆ Ω of measure ψ(Ω2) ≥ c0
2 such that for each q ∈ Ω2 there is an e ∈ Hd′

and a set Gq,e ∈ Bq,e for which the inequality (4.4.21) fails. Fix one of such Ω2. By the pigeonholing,

up to a factor of
(
d
d′

)
, we may assume that there is an e ∈ Hd′ that (4.4.21) fails for all q. Then

by Lemma 4.4.1, with η := δ2d
′
, there is a well-defined extension {µq′,f}q′∈Z′,f⊆e , a family of

σ-algebras {Bq′,f}q′∈Z′,f∈∂e and a set Ω′ ⊆ Ω2 of positive measure for which (4.4.2)-(4.4.4) hold.

Let {µq′,f}q′∈Z′,f∈H be the symmetrization of the system {µq′,f}q′∈Z′,f⊆e as described in section
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4.3.2, and set Bq′,f := Bq,f for q′ /∈ Ω′ or f ∈ Hd′−1, f * e or f ∈ Hd′ . By Lemma 4.3.9 and Lemma

4.4.1 one may remove a set E of measure ψ′(E) = oMd′ ,K(1) such that for all q′ ∈ Ω′\E , (4.4.20) and

(4.4.22) hold for the extended system ({µq′,f}q′∈Z′,f∈H, {Bq′,e}q′∈Z′,e∈Hd′ , {Bq′,f},q′∈Z′,f∈Hd′−1
),

whose total energy is at least 2−2d−5δ2d
′

larger than that of the initial system.

Based on the above argument we perform the following iteration. Let {µq′,f}q′∈Z′,f∈H be a well-

defined, symmetric extension of the initial system {µq,f}q∈Z,f∈H . Let {Bq′,f}q′∈Z′,f∈Hd′−1
be a

family of σ-algebras and let Ω′ ⊆ Ω× V ′ ⊆ Z ′ for which (4.4.20) and (4.4.22) hold. If there is a set

Ω′1 ⊆ Ω′ of measure ψ′(Ω′1) ≥ ψ(Ω′)/2 such that for all q ∈ Ω′1, e ∈ Hd′ and Gq,e ∈ Bq,e inequality

(4.4.21) holds, then the system ({µq′,f}q′∈Z′,f∈H, {Bq′,e}q′∈Z′,e∈Hd′ , {Bq′,f},q′∈Z′,f∈Hd′−1
) together

with the set Ω′1 satisfies the conclusions of the lemma. (Note that the family of sigma-algebras Bq′,e
is unchanged.)

Otherwise there is a well-defined, symmetric extension {µq′′,f}q′′∈Z′′,f∈H together with a family

of σ-algebras {Bq′′,f}q′′∈Z′′,f∈Hd′−1
and a set Ω′′ ⊆ Ω′ × Zd′N such that for all q′′ ∈ Ω′′ inequalities

(4.4.20) and (4.4.22) hold, and total energy of the system (µq′′,e,Bq′′,e,Bq′′,f ) is at least 2−2d−6δ2d
′

larger than that of the system (µq′,e,Bq′,e,Bq′,f ). Set Z ′ := Z, µq′,e := µq′′,e and Bq′,f := Bq′′,f . then

return to previous step.

As (4.4.18) is bounded by an absolute constant (as Bq,e, e ∈ Hd is never changed in the iteration)

the iteration process must stop in OMd′ ,δ(1) steps and the system obtained from the last step satisfies

(4.4.20)-(4.4.22).

4.4.2 Regularity Lemma

The shortcoming of Lemma 4.4.2 is that the complexity of the σ-algebras Bq,f might be very large

with respect to the parameter δ, which measures the uniformity of the graphs Gq,e. Hence it is not

a good tool to describe the structure. This issue can be taken care of with an iteration process using

Lemma 4.4.2 repeatedly, along the lines it was done in [104]. In the weighted settings we have to pass

to a new system of weights and measures at each iteration and have to exploit the stability properties

of well-defined extensions to show that the iteration process terminates.

In the first step, we will prove Preliminary Regularity Lemma which regularize only graphs onHd′ for

a fixed d′, as in Lemma 4.4.2. Then we prove a full regularity lemma which regularizes simultaneously

all elements of the hypergraph.
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Remark 4.4.3. In our energy increment process (last subsection), Bq,e is not changed in each step of

the iteration. So it is okay to write system as e.g.(µq′,f ,Bq,e,Bq′,f ).

Remark 4.4.4. In regularity lemma below, to obtain the extreme uniformity like (4.4.28), we would

need a pair of sigma algebras Bq,f ,B′q,f which are close in L2 norm in our decomposition. B′q,f
itself would not be able to play a role as the structure part since it has complexity OMd′−1,δ

(1) =

OMd′−1,F (1), due to choice of δ which we have no control as F can be chosen to be arbitrarily fast

growing.

This lemma, as a regularity lemma, is more widely applicable than Lemma 4.4.2 as the uniformity

of the hypergraphs Gq,e with respect to the (fine) σ−algebras B′q,f can be chosen to be arbitrar-

ily small with respect to the complexity of the (coarse) σ−algebras Bq,f , while the approximations

Eµq,e(1Gq,e |
∨
B′q,f ) and Eµq,e(1Gq,e |

∨
Bq,f ) stay very close in L2(µq,e). First, we start by regular-

izing hyperedges in a givenHd′ for some 1 ≤ d′ ≤ d.

Lemma 4.4.5 (Preliminary regularity lemma.). Let 1 ≤ d′ ≤ d and Md′ > 0 be a constant. Let

{µq,f}q∈Z,f∈H be a well-defined, symmetric family of measures of complexity at most K, and 1 ≤
d′ ≤ d and {Bq,e}q∈Z,e∈Hd′ be a family of σ−algebras on Ve so that for all q ∈ Z, e ∈ Hd′

compl (Bq,e) ≤Md′ . (4.4.23)

Let ε > 0 and F : R+ → R+ be a non-negative, increasing function, possibly depending on ε and

Ω ⊆ Z be a set of measure ψ(Ω) ≥ c0 > 0.

If N,W is sufficiently large with respect to the parameters ε, c0,Md′ ,K, and F , then there exists

a well-defined, symmetric extension {µq,f}q∈Z,f∈H of complexity at most OK,Md′ ,F, ε(1), and fami-

lies of σ-algebras Bq,f ,B′q,f , Bq,f ⊆ B′q,f defined for q ∈ Z, f ∈ Hd−1 and a set Ω ⊆ Z such that

the following holds.

1. We have that Ω ⊆ Ω × V ⊆ Z = Z × V where V = ZkN of dimension k = OMd′ ,F, ε(1).

Moreover

ψ(Ω) ≥ c(c0, F,Md′ , ε) > 0. (4.4.24)

2. There is a constant Md′−1 such that

F (Md′) ≤Md′−1 = OMd′ ,F,ε(1) (4.4.25)

and for all q ∈ Z and f ∈ Hd′−1 we have

compl(B′q,f ) ≤Md′−1. (4.4.26)

3. For all q = (q, p) ∈ Ω, e ∈ Hd′ and Gq,e ∈ Bq,e, we have
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∥∥Eµq,e(1Gq,e | ∨
f∈∂e
B′q,f )− Eµq,e(1Gq,e |

∨
f∈∂e
Bq,f )

∥∥
L2(µq ,e)

≤ ε (4.4.27)

and ∥∥1Gq,e − Eµq,e(1Gq,e |
∨
f∈∂e
B′q,f )

∥∥
�µq,e

≤ 1

F (Md′−1)
. (4.4.28)

Proof. Let {µq′,f}q′∈Z′, f∈H be a well-defined, symmetric extension of the initial system {µq,f}
defined on a parameter space Z ′ = Z × V ′ of complexity at most K ′. We start by putting trivial

sigma-algebra Bq′,f = {∅, VJ} on each f ∈ Hd′−1. Set

Md′−1 := max{F (Md′), sup
f∈∂Hd

compl(Bq′,f )} = OK,Md′ ,F (1), δ :=
1

F (Md′−1)
(4.4.29)

Indeed the point here is that Md′−1 (and later Md′−1) is OK,Md′ ,F (1). Set Bq′,e := Bq,e for q′ =

(q, p) ∈ Z ′, e ∈ Hd′ , and apply Lemma 4.4.2 to the system (µq′,e, Bq′,e, Bq′,f ), with δ = F (Md′−1)−1.

This generates a well-defined, symmetric extension {µq,f}q∈Z,f∈H and a family of σ-algebras {B′q,f}q∈Z,f∈Hd′−1

and a set Ω ⊆ Z satisfying the conclusion of that Lemma.

The new system (µq,f ,Bq,e,B′q,f ) satisfies (4.4.24)-(4.4.26) and (4.4.28). Note that the parameters

K ′, Md′−1 are of magnitude OK,Md′ ,F, ε(1). Set Bq,f := Bq′,f for q = (q′, p) ∈ Z, f ∈ Hd′−1.

To ensure L2−closeness property, we run the energy increment. There are two possibilities.

– Case 1: There exists a set Ω1 ⊆ Ω of measure ψ(Ω1) ≥ ψ(Ω)/2 such that (4.4.27) holds for all

q ∈ Ω1. In this case the conclusions of the lemma hold for the system (µq,e,Bq,e,B′q,f ) and the

set Ω1.

– Case 2: For every Ω1 ⊆ Ω, ψ(Ω1) ≥ ψ(Ω)/2, we have (4.4.27) fails for some q ∈ Ω1. Let

Ω2 := {q ∈ Ω : (4.4.27) fails}. Then Ω2 ⊆ Ω is of measure ψ(Ω2) ≥ 1
2ψ(Ω). Now, thanks

to the stability condition (4.4.22) and the fact that Bq′,f = Bq,f ⊆ B′q,f , we have for q ∈ Ω2,

q′ = π′(q), and q = π(q) where π : Z → Z, π′ : Z → Z ′ are projections, we have that

Ed′(B′q,f )− Ed′(Bq,f ) =
∑
e,Gq,e

∥∥Eµq,e(1Gq,e | ∨
f∈∂e
B′q,f )

∥∥2

L2
µq,e

−
∑
e,Gq,e

∥∥Eµq′,e(1Gq,e | ∨
f∈∂e
Bq′,f )

∥∥2

L2
µq′,e

≥
∑
e,Gq,e

(
∥∥Eµq,e(1Gq,e | ∨

f∈∂e
B′q,f )

∥∥2

L2
µq,e

−
∥∥Eµq,e(1Gq,e | ∨

f∈∂e
Bq′,f )

∥∥2

L2
µq,e

)− oMd′ ,K
′,F (1)
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=
∑
e,Gq,e

∥∥Eµq,e(1Gq,e | ∨
f∈∂e
B′q,f )− Eµq,e(1Gq,e |

∨
f∈∂e
Bq,f )

∥∥2

L2
µq,e

− oMd′ ,K
′,F (1)

≥ ε2 − oMd′ ,K
′,F (1), (4.4.30)

where the summation is taken over all e ∈ Hd′ and Gq,e ∈ Bq,e.
Thus, for sufficiently large N, W , we have for all q = (q, p) ∈ Ω2 that the total energy of the

system (µq,f , Bq,e, B′q,f ) is at least ε2

2 larger than that of the system (µq′,f , Bq′,e, Bq′,f ). In this

case, set Z ′ := Z, Ω′ := Ω3, µq′,f := µq,f , and Bq′,f := B′q,f and repeat the above argument.

The iteration process must stop in at most ε−222(Md′ )+1

2d+1 = OMd′ ,ε(1) steps, generating a system

(µq,f ,Bq,e,B′q,f ) which satisfies the conclusions of the lemma.

In order to obtain a counting and a removal lemma starting from a given measure system {µq,e} and

σ-algebras {Bq,e} we need to regularize the elements of the σ-algebras Bq,e for all e ∈ H with respect

to its lower order σ-algebras
∨
f∈∂e Bq,f . This is done by applying Lemma 4.4.5 inductively, and

provides the final form of the regularity lemma we need. Let us call a function F : R+ → R+ a

growth function if it is continuous, increasing, and satisfies8 F (x) ≥ 1 + x for x ≥ 0.

Theorem 4.4.6. [Full Regularity lemma.] Let 1 ≤ d′ ≤ d and Md′ > 0 be a constant. Let

{µq,f}q∈Z,f∈H be a well-defined, symmetric family of measures of complexity at mostK, and {Bq,e}q∈Z,e∈Hd′
be a family of σ−algebras on Ve so that for all q ∈ Z, e ∈ Hd′

compl (Bq,e) ≤Md′ . (4.4.31)

Let F : R+ → R+ be a growth function, and Ω ⊆ Z be a set of measure ψ(Ω) ≥ c0 > 0.

If N,W is sufficiently large with respect to the parameters c0,Md′ ,K, and F , then there exists a

well-defined, symmetric extension {µq,f}q∈Z,f∈H of complexity at most OK,Md′ ,F (1) on a paramet-

ric space Z, and families of σ-algebras Bq,f ⊆ B′q,f defined for q ∈ Z, f ∈ Hd′−1 and a set Ω ⊆ Z

such that the following holds.

1. We have that Ω ⊆ Ω×V ⊆ Z = Z×V where V = ZkN of dimension k = OMd′ ,F (1). Moreover

ψ(Ω) ≥ c(c0, F,Md′) > 0. (4.4.32)

2. There exist numbers

Md′ < F (Md′) ≤Md′−1 < F (Md′−1) ≤ · · · ≤M1 < F (M1) ≤M0 = OMd′ ,F (1) (4.4.33)

such that for all 1 ≤ j < d′, f ∈ Hj , and q ∈ Z,

8This condition is just for ensuring that Md, . . . ,M0 in (4.4.33) is a strictly increasing sequence of integers.
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compl(B′q,f ) ≤Mj . (4.4.34)

3. For all 1 ≤ j ≤ d′, e ∈ Hj , q = (q, p) ∈ Ω, and Gq,e ∈ Bq,e (with Bq,e := Bq,e, if j = d′),

one has

∥∥Eµq,e(1Gq,e | ∨
f∈∂e
B′q,f )− Eµq,e(1Gq,e |

∨
f∈∂e
Bq,f )

∥∥
L2(µq,e)

≤ 1

F (Mj)
(4.4.35)

and ∥∥1Gq,e − Eµq,e(1Gq,e |
∨
f∈∂e
B′q,f )

∥∥
�µq.e

≤ 1

F (M1)
. (4.4.36)

Proof. We proceed by an induction on d′. If d′ = 1 the statement follows from Preliminary Regularity

Lemma 4.4.5 with ε = 1
F (M1) , so assume that d′ ≥ 2 and the theorem holds for all j ≤ d′− 1. Apply

Lemma 4.4.5 on Hd′ with a very fast growing growth function F ∗ ≥ F (to be specified later 9) and

with ε = 1
2F ∗(Md′ )

. This gives a well-defined, symmetric extension {µq′,f}f∈H and a family of σ-

algebras Bq′,f ⊆ B′q′,f , f ∈ Hd′−1 defined on a parameter space Z ′ = Z × V , such that (recall the

definition of Md−1 in (4.4.29))

F (Md′) ≤ F ∗(Md′) ≤Md′−1 ≤ OK,Md′ ,F
∗(1) (4.4.37)

∥∥Eµq′,e(1Gq′,e | ∨
f∈∂e
B′q′,f )− Eµq′,e(1Gq′,e |

∨
f∈∂e
Bq′,f )

∥∥
L2(µq′,e)

≤ 1

2F ∗(Md′)
(4.4.38)

and ∥∥1Gq′,e − Eµq′,e(1Gq′,e |
∨
f∈∂e
B′q′,f )

∥∥
�µq′,e

≤ 1

F ∗(Md′−1)
, (4.4.39)

hold for all q′ = (q, p) ∈ Ω′, e ∈ Hd′ , and Gq′,e ∈ Bq′,e = Bq,e , where Ω′ ⊆ Ω× V ⊆ Z ′ is a set of

measure ψ′(Ω′) ≥ c(c0, F,Md′) > 0. With this system, apply the induction hypothesis to the system

{µq′,f}q′∈Z′,f∈H, {Bq′,f}q′∈Z′,f∈Hd′−1
,Md′−1 the growth function F , and the set Ω′, one obtains an

extension {µq,f}q∈Z,f∈H and families of σ−algebras {Bq,f ⊆ B′q,f}q∈Z, f∈Hj such that (4.4.34) -

(4.4.36) hold for j < d′ − 1, with constants

Md′−1 < F (Md′−1) ≤ · · · ≤M1 < F (M1) = OMd′−1,F (1). (4.4.40)

9F ∗ will be chosen depending on F and grows much faster than F so that F (Md′) < F ∗(Md′) < M0 = 1
2
F ∗(Md′−1) so F ∗

controls the size of M0 in terms of Md, F . F ∗ is also used in inductive argument to conclude that F (Md) < Md−1. We apply
preliminary regularity lemma to F ∗.
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For q = (q′, p) ∈ Z , f ∈ Hd′−1 set

Bq,f := Bq′,f , and B′q,f := B′q′,f . (4.4.41)

We show that inequalities (4.4.35) and (4.4.36) hold for j = d′. Indeed, by the stability property

(4.3.16), one has

∥∥Eµq,e(1Gq′,e | ∨
f∈∂e
B′q′,f )− Eµq,e(1Gq′,e |

∨
f∈∂e
Bq′,f )

∥∥
L2(µq,e)

=
∥∥Eµq′,e(1Gq′,e | ∨

f∈∂e
B′q′,f )− Eµq′,e(1Gq′,e |

∨
f∈∂e
Bq′,f )

∥∥
L2(µq′,e)

+ oK,Md′ ,F,F
∗(1)

≤ 1

2F ∗(Md′)
+ oK,Md′ ,F,F

∗(1), (4.4.42)

for all q = (q′, p) ∈ Ω\E1, e ∈ Hd′ , and Gq′,e ∈ Bq′,e. Here E1 ⊆ Ω is a set of measure

ψ(E1) = oK,Md′ ,F,F
∗(1).

Similarly using the stability properties (4.3.12) and (4.3.21) of the box norms (and also (4.4.41)),

we have

∥∥1Gq′,e − Eµq,e(1Gq′,e |
∨
f∈∂e
B′q′,f )

∥∥
�µq,e

=
∥∥1Gq′,e − Eµq′,e(1Gq′,e |

∨
f∈∂e
B′q′,f )

∥∥
�µq,e

+ oK,Md′ ,F,F
∗(1)

=
∥∥1Gq′,e − Eµq′,e(1Gq,e |

∨
f∈∂e
Bq′,f )

∥∥
�µq′,e

+ oK,Md′ ,F,F
∗(1) ≤ 1

2F ∗(Md′−1)
+ oK,Md′ ,F,F

∗(1),

(4.4.43)

for all q = (q′, p) ∈ Ω\E2, e ∈ Hd′ and Aq′,e ∈ Bq′,e = Bq,e , where E2 ⊆ Ω is a set of measure

ψ(E2) = oK,Md′ ,F,F
∗(1).

With F (M1) = OMd′−1,F (1). Now we link Md′ with (4.4.40). Choose (modify) the function

F ∗ = F ∗Md′ ,Md′−1,F
so that it grows fast enough that

– F ∗(Md′) < Md′−1.

– F (M1) < c(Md′ , F ) <
F ∗(Md′−1)

2 .

Then we have from (4.4.37) that

Md′ < F (Md′) ≤ F ∗(Md′) ≤Md′−1 < F (Md′−1) ≤ · · · ≤M1 < F (M1) ≤M0 = OMd′ ,F (1) :=
1

2
F ∗(Md′−1)

(4.4.44)
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Assuming N, W are sufficiently large with respect to Md′ and K, inequalities (4.4.35), (4.4.36) for

j = d′ and q ∈ Ω\(E1∪E2) follow from (4.4.38) and (4.4.39) and (4.4.44). The rest of the conclusions

of the theorem (4.4.32), (4.4.33), (4.4.34) are clear from the construction.

4.5 Counting Lemma

In this section we formulate a so-called counting lemma and show how it implies Theorem 4.1.7. Our

arguments will closely follow and are straightforward adaptations of those in [106] to the weighted

settings.

For e ∈ Hd let Ge ⊆ Ve be a hypergraph, and let Be = {Ge, GCe , ∅, Ve} be the σ−algebra generated

by Ge. Let {νe}e∈H and {µe}e∈H be the weights and measures associated to a well-defined, sym-

metric family forms L = {Lke ; e ∈ Hd, 1 ≤ k ≤ d}. Take Md > 0, F : R+ → R+ be a growth

function (F to be determined later) and apply Theorem 4.4.6 with d′ = d to obtain a well-defined,

symmetric parametric extension {µq,f}q∈Z,f∈H together with σ-algebras Bq,e,B′q,e, Bq,e ⊆ B′q,e and

a set Ω ⊆ Z such that (4.4.32)-(4.4.36) hold.10 Note that the complexity of the system as well as the

σ-algebras is OMd,F (1). We consider the system of measures µq,f and Bq,f , B′q,f , f ∈ H fixed for

the rest of this section.

It will be convenient to define all our σ-algebras on the same space VJ and eventually replace the

ensemble of measures {µq,e}e∈H with the measure µq := µq,J =
∏
f∈H νq,f . Thanks to the stability

conditions (4.3.3)-(4.3.4) this can be done at essentially no cost: Indeed for any e ∈ H there is an

exceptional set Ee ⊆ Ω of measure ψ(Ee) = oMd,F (1), such that for any family of sets Gq,e ⊆ Ve we

have that

µq(π
−1
e (Gq,e)) = µq,e(Gq,e) + oMd,F (1), (4.5.1)

uniformly for q ∈ Ω\Ee. Let E =
⋃
e∈H Ee, Ω′ := Ω\E , then (4.5.1) means that for any set Aq,e ∈ Ae

one has that µq(Aq,e) = µq,e(πe(Aq,e)) + oMd,F (1) uniformly for q ∈ Ω′. We will write

µq,e(Aq,e) = µq,e(πe(Aq,e))

for simplicity of notations.

Define the σ-algebras Bq,e := π−1
e (Bq,e), B′q,e := π−1

e (B′q,e) on VJ , and note that Bq,e = Be for

e ∈ Hd as the initial σ-algebras Be are not altered in Theorem 4.4.6. Let Bq :=
∨
e∈H Bq,e be the

σ-algebra generated by the algebras Bq,e, and define similarly the σ-algebra B′q. The atoms of Bq are

of the form Aq =
⋂
e∈HAq,e where Aq,e is an atom of Bq,e. In particular if Ee ∈ Be then

⋂
e∈Hd Ee

10The family {νe} can be considered as a parametric family of weights in a trivial way, setting Z = Ω = {0}, and ψ(0) = 1.
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is the union11 of the atoms of Bq.

Basically, the counting lemma says that as we decompose

1Aq,e = Eµq,e(1Aq,e |
∨
f∈∂e
Bq,f ) + bq,e + cq,e

where bq,e is small in L2 norm and cq,e is small is box norm. Our counting lemma says that for most

atoms, when we calculate the measure µq(Aq) = µq(∩f∈HAq,f ) we have

µq(∩f∈HAq,f ) =
∏
e∈H

Eµq,e(1Aq,e |
∨
f∈∂e
Bq,f )+small error =

∏
e∈H

µq,e(Aq,e ∩ ∩f∈∂eAq,f )

µq,e(∩f∈∂eAq,f )
+small error

That is most atoms can be approximated by its relative density with respect to one lower order atoms in∨
f∈∂eBq,f which comes from the main term of the decomposition. The terms bq,e, cq,e only contribute

to small error terms. To get rid of cq,e, we only need the usual Generalized von Neumann Inequality

argument. A bit more work will be needed to get rid of bq,e.

A consequence of the counting lemma is that one can show the measures of an atom that we are in-

terested is bounded below by a positive constant depending only on the initial data F and Md. If,

as in Theorem 4.1.7, one assumes that the measure of
⋂
e∈Hd Ee is sufficiently small then it cannot

contain most of the atoms (will be named regular atoms) thus removing the exceptional atoms from

the setsEe, the intersection of the remaining sets becomes empty, leading to a proof of Theorem 4.1.7.

To make this heuristic precise let us start by defining the relative density δq,e(A|B) := µq,e(A ∩
B)/µq,e(B) for A,B ∈ Bq,e, with the convention that δq,e(A|B) := 1 if µq,e(B) = 0.

Definition 4.5.1. Let Aq = ∩e∈HAq,e be an atom of Bq.For e ∈ Hj , 1 ≤ j ≤ d. We say that the atom

Aq is regular if the following hold.

1. For all atoms Aq,e the relative density is not too small12:

δq,e(Aq,e
∣∣ ⋂
f∈∂e

A′q,f ) ≥ 1

logF (Mj)
, (4.5.2)

2. It satisfies an regularity condition13:∫
Ve

∣∣Eµq(1Aq,e | ∨
f∈∂e
B′q,f )−Eµq(1Aq,e |

∨
f∈∂e
Bq,f )

∣∣2 ∏
f(e

1A′q,f dµq,e ≤
1

F (Mj)

∫
Ve

∏
f(e

1A′q,f dµq,e.

(4.5.3)
11Indeed,

∨
e∈Hd

Bq,e ⊆
∨
f∈H Bq,f

12Don’t take the log function too seriously.
13As mentioned in chapter 1, this is related to Box norm. The notation of regular atoms has some relations to (hyper-)graph

regularity
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This roughly means that all atoms Aq,e are both somewhat large and regular on the intersection of the

lower order atoms A′q,f , (f ∈ ∂e). Note that if |e| = 1 then ∂e = ∅ and by convention we define⋂
f∈∂eA

′
q,f = VJ , and the left side of (4.5.2) becomes µq,e(Aq,e).

Now we state the counting lemma

Proposition 4.5.2. [Counting lemma] There is a set E ⊆ Ω of measure ψ(E) = oN,W→∞;Md,F (1)

such that if q ∈ Ω\E and if Aq =
⋂
e∈HAq,e ∈

∨
e∈H Bq,e is a regular atom, then

µq(Aq) = (1 + oMd→∞(1))
∏
e∈H

δq,e(Aq,e
∣∣ ⋂
f∈∂e

Aq,f ) +OM1

(
1

F (M1)

)
+ oN,W→∞;Md,F (1).

(4.5.4)

An important corollary of the counting lemma is that each of the regular atoms is not too small in

measure and the total measures of all irregular atoms is small, if we assume F is sufficiently fast

growing, of exponential type.

Lemma 4.5.3 (Regular atoms). For F (M) ≥ 222M+3

and sufficiently large Md,

1. (Total measure of Irregular atoms is small) For each Aq,e ∈ Bq,e, define the set

Bq,e,Aq,ebe the union of all sets of the form
⋂
f(e

A′q,f for which (4.5.2) or (4.5.3) fails.

Note that if an atom Aq =
⋂
e∈HAq,e is irregular then Aq ⊆ Aq,e ∩ Bq,e,Aq,e for some e ∈ H.

Then for q /∈ E1, where E1 ⊆ Ω is a set of measure ψ(E1) = oMd,F (1). We have

µq(Aq,e ∩Bq,e,Aq,e) .
1

logF (Mj)
(4.5.5)

2. (A regular atom is large) For q ∈ Ω and a regular atom Aq = ∩f∈HAq,f ,

µq(Aq) ≥
1

F (M1)
> 0, (4.5.6)

Proof. First we show (4.5.5). Note that the measure µq can be replaced by the measure µq,e as they

differ by a negligible quantity on sets which belong to Ae. We estimate first the contribution of those

sets
⋂
f(eAq,f to the left side of (4.5.5) for which (4.5.2) fails. This quantity is bounded by

∑
{Aq,f}f(e, (4.5.2) fails

µq,e(Aq,e ∩
⋂
f∈∂e

Aq,f ) .d
1

logF (Mj)

∑
{Aq,f}f∈∂e

µq,e(
⋂
f∈∂e

Aq,f )
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≤ 1

logF (Mj)
µq,e(Ve) .

1

logF (Mj)
,

as the summation is taken over the disjoint atoms of the σ-algebra
∨
f∈∂e Bq,f .

Similarly, one estimates the total contribution of the disjoint atoms
⋂
f(eAq,f for which (4.5.3) fails

as follows.∑
{Aq,f}f(e, (4.5.3) fails

µq,e(
⋂
f(e

Aq,f )

≤ F (Mj)
∑

{Aq,f}f(e, (4.5.3) fails

∫
Ve

Eµq,e(1Aq,e |
∨
f∈∂e
B′q,f )− Eµq,e(1Aq,e |

∨
f∈∂e
Bq,f )|2

∏
f(e

1Aq,fdµq,e

≤ F (Mj)

∫
Ve

|Eµq,e(1Aq,e |
∨
f∈∂e
B′q,f )− Eµq,e(1Aq,e |

∨
f∈∂e
Bq,f )|2 dµq,e

≤ F (Mj)
1

F (Mj)2
=

1

F (Mj)
.

Since the sets Aq,e ∩ Bq,e,Aq,e contain all irregular atoms, and for given e ∈ Hj the number of all

atoms of the σ-algebra Bq,e is at most 22Mj , one estimates the total measure of all irregular atoms as

d∑
j=1

∑
e∈Hj

∑
Aq,e∈Bq,e

µq(Aq,e∩Bq,e,Aq,e) ≤
d∑
j=1

(
d

j

)
22Mj 1

logF (Mj)
≤

d∑
j=1

22Mj+d

logF (Mj)
≤ 1√

logF (Md)
≤ 2−2Md

(4.5.7)

Here the two last inequalities will follow if we choose Md sufficiently large and F sufficiently fast

growing: choose Md so that d2d22Mj ≤ 22Mj+1

and 222
Mj+3

≥ e22
Mj+2

for all j (Md ≥ 1 should

suffice here). Now choose

F (M) ≥ 222M+3

(4.5.8)

Then

d∑
j=1

22Mj+d

logF (Mj)
≤

d∑
j=1

22Mj+d√
22Mj+2

1√
logF (Mj)

=
d∑
j=1

22Mj+d

22Mj+1

1√
logF (Mj)

≤
d∑
j=1

1

d

1√
logF (Mj)

≤ 1√
logF (Md)

So (4.5.7) follows.

Now we use the counting lemma to show (4.5.6). Indeed by (4.5.2), (4.5.4), we have that for q ∈ Ω

and a regular atom Aq = ∩f∈HAq,f ,
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µq(Aq) ≥
∏
j≤d

∏
e∈Hj

1

F (Mj)1/10
−Od,M1

(
1

F (M1)

)
+ oMd,F (1)

≥ 1

F (M1)1/10

1

M
c(d)
1

−Od,M1

(
1

F (M1)

)
+ oMd,F (1) ≥ 1

F (M1)
≥ 1

F ∗(Md′−1)
= c(Md, F ) > 0,

(4.5.9)

as long as F is sufficiently rapid growing and Md is sufficiently large with respect to d, here we apply

(4.4.44) and (4.4.29).

4.5.1 Proof of the Counting Lemma.

We will in fact prove a stronger version of counting lemma for hypergraph bundle for which propo-

sition 4.5.2 is a special case. The reason is that when we try to eliminate the error term bq,e we will

apply Cauchy-Schwartz’s inequality to lower order graph, causing the double vertices which could

be described as lower order hypergraph bundle, allowing us to apply induction hypothesis from the

statement of counting lemma for hypergraph bundle.

Definition 4.5.4 (Weighted hypergraph bundles over H). Let K be a finite set together with a map

π : K → J , called the projection map of the bundle to the index set J . Let GK be the set of edges

g ⊆ K such that π is injective on g and π(g) ∈ H.

For any g ∈ GK , write

Vg := Vπ(g) =
∏
k∈g

Vπ(k),

and define the weights and measures νq,g, µq,g : Vg → R+ as

νq,g(xg) := νq,π(g)(xg), µq,g(xg) =
∏
g′⊆g

νq,g′(xg′).

The total measure measure µq,K on VK is given by

µq,K(x) =
∏
g∈GK

νq,g(xg).

A hypergraph G ⊆ GK which is closed in the sense that ∂g ⊆ G for every g ∈ G, together with the

spaces Vg and the weight functions νq,g for g ∈ G is called a weighted hypergraph bundle over H.

The quantity d′ = supg∈G |g| is called the order of G.
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Remark 4.5.5. The underlying linear forms defining the weight system {νq,g}q∈Z,g∈GK ,

L̄g(q, xg) = Lπ(g)(q, xg), suppx (Lπ(g)) = π(g)

are pairwise linearly independent. Indeed, if g 6= g′ they depend on different sets of variables, and for

a fixed sets of variables they are the same as the forms L(q, xg). What happens is that we sample a

number variables from each space Vj and evaluate the forms L(q, x) in the new variables. For exam-

ple if we have x1, x1′ ∈ V1 and x2, x2′ ∈ V2 then to the edge (1, 2) ∈ H there correspond the edges

(1, 2), (1, 2′), (1′, 2) and (1′, 2′) in G, and to every linear form L(q, x1, x2) there also correspond the

forms L(q, x1, x2′), L(q, x1′ , x2) and L(q, x1′ , x2′) defining the weights on the appropriate edges.

Proposition 4.5.6. [Generalized Counting Lemma] Let G ⊆ GK be a closed hypergraph bundle over

H with the projection map π : K → J , and d′ := supg∈G |g| be the order of G. Then, for F

growing sufficiently rapidly with respect to d and K, there exists a set E ⊆ Ω of measure ψ(E) =

oN→∞;Md,K,F (1) such that for q ∈ Ω\E we have

∫
VK

∏
g∈G

1Aq,π(g)
(xg) dµq,K(x) (4.5.10)

= (1 + oMd→∞,K(1))
∏
g∈G

δq,π(g)(Aq,π(g)|
⋂

f∈∂π(g)

Aq,f ) +OK,M1(
1

F (M1)
) + oN→∞,K,Md

(1).

Note that Proposition 4.5.2 is the special case when G = H and π is the identity map.

Proof. We use a double induction. First we induct on d′, the order of G (note that d′ ≤ d). Then,

fixing K and π, we induct on the number of edges r := |{g ∈ G : |g| = d′}|.

To start, assume that d′ = r = 1, so that G = {k} and j = π(k) ∈ J. The left hand side of

(4.5.10) becomes∫
Vk

1Aq,j (xk) dµq,k(xk) =

∫
Vj

1Aq,j (xj) dµq,j(xj) = µq,j(Aq,j) = δq,j(Aq,j | ∩f∈∂j Aq,f ).

Let {Aq,e}e∈H be a regular collection of atoms for q ∈ Ω, and define the functions bq,e, cq,e : Ve → R
for e ∈ H by

bq,e := Eµq,e(1Aq,e |
∨
f∈∂e
B′q,f )− Eµq,e(1Aq,e |

∨
f∈∂e
Bq,f ) (4.5.11)
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cq,e := 1Aq,e − Eµq,e(1Aq,e |
∨
f∈∂e
B′q,f ) (4.5.12)

and introduce the shorthand notation

δq,e = δq,e(Aq,e|
⋂
f∈∂e

Aq,f ).

Note that if x ∈ Aq,e
⋂
f∈∂eAq,f then

δq,e = Eµq,e(1Ae |
∨
f∈∂e
Bq,f )(xe), (4.5.13)

and thus one has the decomposition

1Aq,e(xe) = δq,e + bq,e(xe) + cq,e(xe) (4.5.14)

on the set Aq,e ∩
⋂
f∈∂eAq,f . To apply induction on r, let g0 ∈ G such that |g0| = d′ and use (4.5.14)

to write ∏
g∈G

1Aq,π(g)
(xg) = (δq,π(g0) + bq,π(g0)(xg0) + cq,π(g0)(xg0))

∏
g∈G\{g0}

1Aq,π(g)
(xg).

Consider the contribution of the terms separately:

Step1: Main term∫
VK

∏
g∈G

1Aq,π(g)
(xg)dµq,K(x)

=

∫
VK

(δq,π(g0) + bq,π(g0)(xg0) + cq,π(g0)(xg0))
∏

g∈G\{g0}

1Aq,π(g)
(xg)dµq,K(x)

= Mq + E1
q + E2

q (4.5.15)

For main term Mq, by the second induction hypothesis we have

Mq = δq,π(g0)

∫
VK

∏
g∈G\{g0}

1Aq,π(g)
(xg)dµq,K(x)
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= δq,π(g0) (1 + oMd→∞(1))
∏

g∈G\g0

δq,π(g) + OK,M1(
1

F (M1)
) + oN,W→∞;K,Md

(1),

and hence Mq agrees with the right side of (4.5.10).

Step2: We eliminate the error term cq,e by Generalized von Neumann’s Theorem argument.

E2
q =

∫
VK

cq,π(g0)(xg0)
∏

g∈G\{g0}

1Aq,π(g)
(xg)dµq(x) = Ex∈VK (cq,π(g0)νq,g0)(xg0)

∏
g∈G\{g0}

1Aq,π(g)
νq,g(xg)

= Ex∈VK
∏

|g|=d′,g∈G

fq,g(xg)
∏

g′∈G,|g′|<d′
νq,g′(xg′), (4.5.16)

where fq,g0 := cq,π(g0)νq,g0 and fq,g := hq,gνq,g, for g ∈ G, g 6= g0 and |g| = d′ for a function hq,g
of magnitude at most 1. Thus we have |fq,g| ≤ νq,g for all g ∈ G, |g| = d′. Applying the Cauchy-

Schwartz inequality d′ times successively in the variables xj , j ∈ g0 as in the proof of generalized

von Neumann’s theorem (Theorem 3.2.5), to clear all functions fq,g(xg), g 6= g0, which does not

depend on at least one of these variables, we obtain

|E2
q |2

d′
.
∥∥cq,π(g0)

∥∥2d
′

�νq,g0
+ Exg0 ,yg0 |Wq(xg0 , yg0)− 1|

∏
h⊆g0

∏
ω∈{0,1}h

νq,h(ωh(xh, yh)), (4.5.17)

where K ′ := K\g0 and

Wq(xg0 , yg0) = Ex∈VK′
∏

g∈G,g*g0

∏
ωg∩g0∈{0,1}g∩g0

νq,g(ωg∩g0(xg,∩g0 , yg∩g0), xg\g0
). (4.5.18)

Note that the first term on the right hand side of (4.5.17) is O(F (M1)−2d
′
) by (4.4.36) and (4.5.12).

To estimate the second term of (4.5.17) we apply the Cauchy-Schwartz inequality one more time

in xg0 , yg0 variables to see that it is oN,W→∞;Md,K,F (1) for q /∈ E1, where E1 is a set of measure

oN,W→∞;Md,K,F (1) using the fact that the underlying linear forms are pairwise linearly independent

in the variables (q, xg0 , yg0 , xK′).

144



Step3: We estimate the error term E1
q defined as

E1
q =

∫
VK

bq,π(g0)(xg0)
∏

g∈G\{g0}

1Aq,π(g)
(xg)dµq(x).

To apply induction hypothesis, take absolute values and discarding all factors 1Aq,π(g)
(xg) for |g| =

d′, g 6= g0 (this will be fine due to smallness of L2−norm of bq,g), one estimates

|E1
q | ≤

∫
Vg0

|bq,π(g0)(xg0)|
∏
g(g0

1Aq,π(g)
(xg)


×

ExK′
∏

g∈G′,|g|<d′
1Aq,π(g)

νq,g(xg)
∏

h∈G′,|h|=d′
νq,h(xh)

 dµq,g0
(xg0),

where G′ = {g ∈ G; g * g0} and recall that K ′ = K\g0. Writing A(xg0) for the expression in the

first parenthesis, and B(xg0) for the expression in the second parenthesis. Thus we have

|E1
q | ≤

∫
Vg0

A(xg0)B(xg0) dµq,g0
(xg0),

thus by the Cauchy-Schwartz inequality we get

|E1
q |2 .

(∫
Vg0

A(xg0)2 dµq,g0
(xg0)

)(∫
Vg0

B(xg0)2 dµq,g0
(xg0)

)
. (4.5.19)

Since νq,g0(Vg0) = 1 + oMd,K,F (1) outside a set E2 ⊆ Ω of measure ψ(E2) = oMd,K,F (1), the first

factor on the left side of (4.5.19) is estimated by

Exg0∈Vg0 bq,π(g0)(xg0)2
∏
g(g0

1Aq,π(g)
(xg)

∏
g⊆g0

νq,π(g)(xg). (4.5.20)

Let f0 = π(g0), since π : g0 → f0 is injective and Vg0 = Vf0 , we may write the expression in

(4.5.20), by re-indexing the variables xg to xf , f = π(g) for g ⊆ g0, as

∫
Vf0

bq,f0(xf0)2
∏
f(f0

1Aq,f (xf ) dµq,f0(xf0) .
1

F (Md′)

∫
Vf0

∏
f(f0

1Aq,f (xf )dµq,f0(xf0), (4.5.21)

where the inequality follows from by assumption (4.5.3) on regular atoms. By the induction hypoth-

esis we further estimate the right side (4.5.21) as
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1

F (Md′)
(1 + oMd→∞(1))

∏
f(f0

δq,f + OMd
(

1

F (M1)
) + oN,W→∞;Md,K,F (1). (4.5.22)

The second factor in (4.5.19) may be expressed in terms of a hypergraph bundle K̃ over K, by using

the construction given in [106]. Let K̃ = K0 ⊕g0 K, the set K × {0, 1} with the elements (k, 0) and

(k, 1) are identified for k ⊆ g0. Let φ : K̃ → K be the natural projection, and π ◦ φ : K̃ → J be the

associated map down to J . Recall G ⊆ GK is a closed subhypergraph.

Let G0 = {g ∈ G, g ⊆ g0} and G′ = {g ∈ G, g 6⊆ g0, |g| < d′} and define the hypergraph bundle

G̃ on K̃ to consist of the edges g × {0} and g × {1} for g ∈ G0 ∪ G′, two edges bing identified for

g ∈ G0. Define the following weights on VK̃

ν̃q,g×{i}(xg×{i}) := νq,g(xg×{i}), (4.5.23)

for q ∈ Z, g ∈ GK , i = 0, 1, ( i.e. for all edges g̃ ∈ GK̃), and let µ̃q,g×{i} be the associated family of

measures. Then we have for the second factor appearing in (4.5.19)

∫
Vg0

B(xg0)2dµq,g0
(xg0)

=

∫
Vg0

[ ∏
g∈g0

1Aq,π(g)
(xg)

][
Ex∈VK\g0

∏
g∈G\{g0}

1Aq,π(g)
νq,g(xg)

∏
h6⊆g0,|h|=d′

νq,h(xh)

]2

dµq,g0
(xg0)

=

∫
VK̃

∏
g̃∈G̃

1Aq,π◦φ(g̃)
(xg̃) dµ̃q,K̃(xK̃). (4.5.24)

Indeed, when expanding the square of inner sum in (4.5.24) we double all points in K\g0 thus we

eventually sum over xK̃ ∈ VK̃ , also double all edges g ∈ G̃ to obtain the edges g × {0}, g × {1}. As

for the weights, the procedure doubles all weights νq,g(xg) for g 6⊂ g0, g ∈ GK to obtain the weights

νq,g(xg×{i}) for i = 0, 1 while leaves the weights νq,g(xg) for g ⊆ g0 unchanged. The order of g̃ is

less than d′ thus by the first induction hypothesis, we have

∫
VK̃

∏
g̃∈G̃

1Aq,π◦φ(g̃)
(xg̃) dµ̃q,K̃(xK̃) =

= (1 + oMd→∞(1))
∏
g̃∈G̃

δq,π◦φ(g̃) +OK,M1(
1

F (M1)
) + oN,W→∞;,Md,K,F (1)

= (1 + oMd→∞(1))
∏
g∈G0

δq,π(g)

∏
g∈G′

δ2
q,π(g) +OK,M1(

1

F (M1)
) + oN,W→∞;Md,K,F (1), (4.5.25)
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for q /∈ EK̃,φ where EK̃,φ ⊆ Ω is a set of measure ψ(EK̃,φ) = oN,W→∞;Md,K,F (1). Note that there

are only OK(1) choices for choosing the set K̃ and the projection map φ : K̃ → K thus taking

the union of all possible exceptional sets EK̃,φ we have that (4.5.25) holds for q /∈ E ′K if measure

ψ(E ′K) = oN,W→∞;Md,K,F (1). Combining the bounds (4.5.22) and (4.5.25) we obtain the error

estimate

|E1
q |2 = (oF,Md→∞(1))

∏
g∈G

δ2
q,π(g) +OK,M1(

1

F (M1)
) + oN,W→∞;Md,K,F (1),

outside a set E ′K of measure oN,W→∞;Md,K,F (1). This closes the induction and the Proposition fol-

lows.

4.6 Proof of Weighted Simplices Removal Lemma

Proof of Theorem 4.1.7. Let δ > 0, Ee ∈ Ae and ge : Ve → [0, 1] for e ∈ Hd be given. Let E1 ⊆ Ω

be a set of measure ψ(E1) = oMd,F (1) so that (4.5.1), (4.5.7) and (4.5.9) hold for q ∈ Ω/E1. Also by

(4.3.8) conditions (4.1.4)-(4.1.5) hold for

µ̃J := µq,J and µ̃e := µq,e (e ∈ Hd), (4.6.1)

for q /∈ E2, for a set E2 ⊆ Ω be a set of measure ψ(E2) = oMd,F (1).

Now fix q /∈ E1 ∪ E2 and define µ̃J and µ̃e for e ∈ Hd as is (4.6.1). We claim that this system

of measures satisfy the conclusions of the theorem. By construction the system is symmetric so it

remains to construct the sets E′e and show (4.1.6)-(4.1.8) hold. For given e ∈ Hd define the sets

E′q,e = VJ\ (Bq,e,Ee ∪
⋃

f(e,Aq,f

(Aq,f ∩Bq,f,Aq,f )), (4.6.2)

where Aq,f ranges over the atoms of Bq,f . Hence E′q,e shpuld not contain a bad atom inside Ee
(excluding Ee itself). As we have Bq,e = Be, which is generated by a single set Ee, if

⋂
e∈Hd Ee

contains an atom Aq =
⋂
f∈HAq,f then Aq,e = Ee for e ∈ Hd. If such an atom Aq would be regular

then by (4.1.3), (4.5.9), its measure would satisfy

1

F ∗(Md−1)
≤ µ̃J (

⋂
e∈Hd

Ee ) = µJ (
⋂
e∈Hd

Ee ) + oMd,F (1) < 2δ.
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Choosing Md to be the largest positive integer so that

F ∗(Md−1) ≤ (2δ)−1 (4.6.3)

then we see that
⋂
e∈Hd Ee could contain only irregular atoms.

Also, from (4.6.2) and (4.5.7) we have

µ̃J (Ee\E′q,e) = µ̃J (
⋃

f⊆e,Aq,f

(Aq,f ∩Bq,f,Aq,f )) ≤ 2−2Md . (4.6.4)

Also, all irregular atoms Aq =
⋂
f∈HAq,f ⊆

⋂
e∈Hd Ee are contained in one of the sets Ee\E′q,e,

thus ⋂
e∈Hd

Ee ⊆
⋃
e∈Hd

(Ee\E′q,e)

so ⋂
e∈Hd

(Ee ∩ E′q,e) = ∅.

Finally, choosing ε := 2−2Md , (4.1.7) holds by (4.6.4). Moreover δ → 0 implies Md →∞ and hence

ε→ 0 showing the validity of (4.1.8). This proves Theorem 4.1.7.

4.7 Proof of the Main Theorem

Proof (Theorem 4.1.7 implies Theorem 4.1.3). By assumption (4.1.2) in Theorem 4.1.3 and by (4.2.14),

Ex∈VJ
∏
e∈Hd

1Ee(x) µJ(x) ≤ δ.

For a given e′ ∈ Hd define the function ge′ : Ve′ → [0, 1] as follows. Let φe′ : Ve′ → M be the

inverse of the projection map πe′ : VJ → Ve′ restricted to M , and y ∈ Ve′ let

ge′(y) :=
∏
e∈Hd

1Ee(φe′(y)).

Applying Theorem 1.4 to the system of weights {νe} and functions {ge} gives a system of measures

µ̃e and sets E′e ∈ Ae satisfying (4.1.4)-(4.1.8). By (4.2.11) we have that x ∈ M ∩
⋂
e∈Hd Ee if and

only if Φ(x) = (y, 0) with y ∈ A. Moreover in that case w(y) = µe(x) for all e ∈ Hd by (4.2.13),

thus for any given e′ ∈ Hd,

Ey∈ZdN1A(y)w(y) = Ex∈M
∏
e∈Hd

1Ee(x)µe′(x) = Ez∈Ve′ge′(z)µe′(z)
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= Ez∈Ve′ge′(z)µ̃e′(z) + oN,W→∞(1)

= Ex∈M
∏
e∈Hd

1Ee(x)µ̃e′(x) + oN,W→∞(1).

By (4.1.6),
∏
e∈Hd 1Ee ≤

∑
e∈Hd 1Ee\E′e . Then the symmetry of the measures µ̃e (i.e. the fact that

µ̃e(x) = µ̃e′(x) for x ∈M ), (4.1.7) and the fact that 1Ee\E′e is constant on the fibers π−1
e (x) implies

Ex∈M
∏
e∈Hd

1Ee(x)µ̃e′(x) ≤
∑
e∈Hd

Ex∈M1Ee\E′e(x)µ̃e′(x).

Changing the sum over M to sum over Ve, we obtain∑
e∈Hd

Ex∈M1Ee\E′e(x)µ̃e′(x) =
∑
e∈Hd

Ex∈Ve1Ee\E′e(x)µ̃e(x) ≤ (d+ 1) ε(δ) + oN,W→∞(1).

Choosing N,W sufficiently large with respect to δ gives

Ey∈ZdN1A(y)w(y) ≤ ε′(δ),

with, say ε′(δ) := (d+ 2)ε(δ).

First, let us identify [1, N ]d with ZdN and recall that constellations in ZdN defined by the simplex ∆

which are contained in a box B ⊆ [1, N ]d of size εN , are in fact genuine constellations contained

in B. Note that we can assume that the simplex ∆ is primitive in the sense that t∆ * Zd for any

0 < t < 1, as any simplex is a dilate of a primitive one. To any simplex ∆ ⊆ Zd there exists a

constant τ(∆) > 0 depending only on ∆ such that the following holds.

Lemma 4.7.1 (ZN to Z). Let ∆ ⊆ Zd be a primitive simplex. Then there is constant 0 < ε < τ(∆)

so that the following holds.

Let N be sufficiently large, and let B = Id be a box of size εN contained in [1, N ]d ' ZdN . If there

exist x ∈ ZdN and 1 ≤ t < N such that x ∈ B and x + t∆ ⊆ B as a subset on ZdN , then either

x+ t∆ ⊆ B or x+ (t−N)∆ ⊆ B, also as a subset of Zd.

Proof. Consider ∆ = {e1, . . . , ed} as an element of Zd2
where ei ∈ Zd. Define

τ(∆) = inf
m/∈{0,e},x∈[0,e]

|m− x|∞

Let 0 < ε < τ(∆). We may assume that the simplex is primitive. By our assumption, there is

x ∈ [1, N ]d, t ∈ [1, N − 1] such that x+ tej ∈ B+NZd for all 1 ≤ j ≤ d. Hence for each j, there is

mj ∈ Zd such that |tej −Nmj |∞ ≤ εN i.e. |(t/N)∆−m|∞ ≤ ε where m = (m1, . . . ,md) ∈ Zd2
.

Since 0 < t/N < 1 and ε < τ(∆) we have m = 0 or ∆. If m = 0 then |te|∞ ≤ εN . Since x ∈ B
we have x+ te ⊆ B ⊆ Zd. Similarly, if m = e then x+ (t−N)e ⊆ B ⊆ Zd.
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Lemma 4.7.2 (Pigeonhole Principle for W-trick). 14 Let A1 := {n ∈ [1, N/W ]d; Wn + b ∈ A}
and A′ = A1 ∩ [ε1N

′, ε2N
′]d. By the Prime Number Theorem there is a prime N ′ so that ε2N

′ =

N1(1 + oN1→∞(1)). We will work on Z/N ′. We can choose b ∈ Zd, ε1, ε2 in the definition of ν so

that

|A1 ∩ [ε1N
′, ε2N

′]d| ≥ α εd2
2

(N ′)dW d

(logN ′)d φ(W )d
.

Proof. Let N,W be sufficiently large positive integers and assume that |A| ≥ α |PN |d for a set

A ⊆ PdN . By the pigeonhole principle choose b = (bj)1≤j≤d so that bj is relative prime toW for each

j, and

|A ∩ ((WZ)d + b)| ≥ α Nd

(logN)d φ(W )d
, (4.7.1)

where φ is the Euler totient function. Set N1 := N/W and A1 := {n ∈ [1, N1]d; Wn + b ∈ A} .

Choose ε2 > 0 so that 2ε2 < τ(∆). Hence

α
W dNd

1

φ(W )d logd(WN1)
= α

εd2W
d(N ′)d

φ(W )d logd(ε2WN ′)
+oN,W→∞(1) = α

εd2(N ′)dW d

(logN ′)d φ(W )d
+oN,W→∞(1)

where we used that we choose Wε2 = O(1). We have from (4.7.1) that

|A1 ∩ [1, ε2N
′]d| ≥ α εd2

2

(N ′)dW d

(logN ′)d φ(W )d
. (4.7.2)

By Dirichlet’s theorem on primes in arithmetic progressions the number of n ∈ [1, N ′]d\[ε1N
′, N ′]d

for which Wn+ b ∈ Pd is of O(ε1
WN ′

φ(W ) log ε1WN ′ ×
(WN ′)d−1

φ(W )d−1(logWN ′)d−1 ) = O(ε1
N ′dW d

(logN ′)d φ(W )d
) ,

thus (4.7.2) holds for the set A′ := A1 ∩ [ε1N
′, ε2N

′]d as well, if ε1 ≤ cd ε
d
2α for a small enough

constant cd > 0.

Theorem 4.1.3 implies Theorem 4.1.2. If x ∈ A′ then ε1N
′ ≤ xi ≤ ε2N

′ and Wxi + bi ∈ P for

1 ≤ i ≤ d, thus by the definition of the Green-Tao measure νb : [1, N ′]→ R+, we have

w(x) =

d∏
i=1

νbi(xi) = cd

(
φ(W ) logN

W

)d
. (4.7.3)

as logN ′ − logN ≈ log( 1
ε2W

) = O(1), assuming N sufficiently large with respect to W . Thus

Ex∈Zd
N′
1A′(x)w(x) =

cd|A′|
(N ′)d

(
φ(W ) logN

W

)d
≥ c′dεd2α (4.7.4)

for some constant cd, c
′
d > 0. Applying the contrapositive of Theorem (4.1.3) for the set A′ with

14If we allow W to grow with N then the choice of b will depend on N ; b = b(N).
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ε := cdε
d
2α gives

Ex∈Zd
N′ , t∈ZN′

( d∏
j=0

1A′(x+ tvj)

)
w(x+ t∆) ≥ δ (4.7.5)

with a constant δ = δ(α,∆) > 0 depending only on α and the simplex ∆ = {v0, . . . , vd} and α→ 0

if δ → 0. Hence in our case δ is bounded above by a positive constant. Now we transfer (4.7.5) to

statement about numbers of prime simplices in A′. As in (4.7.3)

w(x+ t∆) ≤ Cd
(
φ(W ) log N

W

)l(∆)

, (4.7.6)

since all coordinates of x + t∆ are primes, bigger then R. Thus the number of copies ∆′ = x + t∆

which are contained in A′ as a subset of ZdN ′ is at least cNd+1 (log N)−l(∆), for some constant

c = c(α,∆,W ) > 0 depending only on the initial data α, ∆ and the number W . Since A′ ⊆
[ε1N

′, ε2N
′]d, by Lemma 4.7.1 at least half of the simplices ∆′ are contained in A′ as a subset of Zd,

and then the simplices ∆′′ := W∆′ + b are contained in A.

Now choose W = W (α,∆) large enough so that Theorem 4.1.3 holds for all sufficiently large

N , and then A contain at least c′(α,∆)Nd+1 (log N)−l(∆) similar copies of ∆ for some constant

c′(α,∆) > 0 depending only on α and the simplex ∆. This proves Theorem 4.1.2

4.8 Concluding Remarks

In this chapter, we obtain a more general version of the weighted hypergraph removal lemma. Our

analysis is a kind of averaging arguments. A more details analysis in these measure system may be an

interesting problem, given many recent developments e.g. citeTZ3 in the theory of uniformity norms

,say, in Zd.

As we have seen, Szemerédi’s theorem type problems in higher dimension are quite interesting. Our

method indeed give an explicit bound on the number of prime configurations but it is terrible (of tower

type) due to the application of the regularity lemma (This is necessary as demonstrated in [40] but it

may not be necessary in removal lemma or multidimensional Szemerédi’s theorem, see e.g. [24]).

Also we use the weight ν which we may obtain narrow progressions result similar to [113] but we

don’t know how to model such problems on graph. Another interesting question would also to prove a

polynomial progression in this setting or finding asymptotic of linear equation in primes [52] in higher

dimensions. There could be an interesting phenomena happen from the correlations of points. There

are other interesting modern approaches to multidimensional Szemerédi’s theorem in the primes by

Tao-Ziegler [111] and Fox-Zhao [68], both relied on the following more advanced tools, the inverse

Gowers norm theorem, which currently cannot give any quantitative bound.
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4.8.1 Inverse Gowers Norm Theorem and Infinite Linear Forms Condition

The very first application of the full inverse norm conjecture is used to find the asymptotic of number

of prime solutions to a system of linear equation of finite complexity [52]. Basically this means no

two linear parts of the system is a multiple of each other. The complexity basically measures how

many times you have to apply Cauchy-Schwartz’s inequality to obtain the generalized von Neumann

theorem. The notion of complexity is further discussed in [41].

Another number theoretical application is that we can now define a weight with more general linear

form conditions. Define a new weight

ν ′b,W (n) :=
φ(W )

W
(log n)1P ′(n) (4.8.1)

Then by a result of Green-Tao, we have the following infinite linear forms conditions. Due to the

technical restriction of the sieve method, we cannot get the infinite linear form conditions for ν in [51]

or [52].

Theorem 4.8.1 ([102], Thm. 5.1). Let (ψ1, . . . , ψt) : Zd → Zt be a system of linear forms (hence

ψi(0) = 0). Let K ⊆
[
b−N/W c, bN/W c

]d
be a convex body and b1, . . . , bt are coprime to W .

Then15

∑
n∈K∩Zd

∏
j∈[t]

ν ′bi,W (ψj(n)) = #{n ∈ K ∩ Zd : ψj(n) > 0 ∀j}+ o((N/W )d) (4.8.2)

This condition is used in [112] and [68] to give different proofs of the main result in this chapter.

In [110], they prove analogue of corresponding principle in ergodic theory to the weight setting that

allows them deduce this theorem from the analogue theorem in integer case. They constructed a Zd−
system (X,B, µ, (Th)h∈Zd) and they have to consider the measure of the form µ(Th1 ∩ · · · ∩Thk(A))

to shows the result. Here k can be arbitrarily large.

Proof in [68] using sampling argument and their method also gives a polynomial progression version

of this theorem if we assume the Bateman-Horn conjecture [4] on the asymptotic number of prime

points in a given set of polynomials.

Finally we state a nontrivial version of Inverse Gowers Norms conjecture [59].

Theorem 4.8.2 (U3−inverse theorem). Let T = R/Z andH be the Heisenberg group. Let N > 2 be

a prime and 0 < η < 1
2 and f : ZN → C, bounded by 1. Suppose ‖f‖U3 ≥ η. Then for some positive

integer m ≤ η−C , then is an N − th root of g ∈ Hm (i.e. gN ∈ Γ) and a continuous 1−bounded

15recall that ν ≥ 0.
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function F on Nm with Lipschitz constant at most exp(η−C) such that

En∈ZN f(n)F (gnΓm) ≥ exp(−η−C) (4.8.3)

The constant in (4.8.3) relies on Frieman’s theorem on sumset where the current best bound is due to

Sander [89]. It is also mentioned (e.g.in [48]) that the proof of the general Uk of this theorem is not

very conceptually explain the role of nilsequence and the bound in terrible (due to the use of ultrafilter

arguments). It is also mentioned in [48] also possible that we can use smaller class of nilsequences

such as eigenfunctions of the Laplacian on free nilpotent Lie group. Link to approximate subgroup of

Z may be a new interesting approach to inverse U3−theorem.
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Théorie des Nombres.18 (2006), 147-182.

[56] B. GREEN AND T. TAO, New bounds for Szemeredi’s theorem, Ia: Progressions of length 4 in
finite field geometries revisited. Preprint.

[57] B. GREEN AND T. TAO, New bounds for Szemeredi’s Theorem, II: A new bound for r4(N).
Analytic number theory: essays in honour of Klaus Roth, W. W. L. Chen, W. T. Gowers, H.
Halberstam, W. M. Schmidt, R. C. Vaughan, eds, Cambridge University Press, 2009. 180-204.

156



[58] B. GREEN AND T. TAO, New bounds for Szemeredi’s Theorem, III: A polylog bound for r4(N).
In preparation.

[59] B. GREEN AND T. TAO, An inverse theorem for the Gowers U3−norm, with applications Proc.
Edinburgh Math. Soc. 51, no. 1, 71-153.

[60] B. GREEN, T. TAO AND T. ZIEGLER, An inverse theorem for Gowers U s+1[N ]-norm. Annals.
of Math.(2) 176 (2) (2012), 1231-1372.

[61] S. GHORPAGE, T. TAO AND G. LACHAUD, Etale cohomology, Lefschetz theorems and number
of points on singuar varieties over finite fields Moscow. Math. J.(2)(2002), 589-631.

[62] R. HARTSHORNE, Algebraic geometry, Graduate Texts in Mathematics Vol. 52. Springer (1977)

[63] H. HELFGOTT, A. ROTON, Improving Roth’s Theorem in the Primes. Int. Math. Res. Not.
IMRN, (4) (2011), 767783.

[64] B. HOST, N. FRANTZIKINAKIS, Higher order Fourier analysis of multiplicative functions and
applications., preprint.

[65] B. HOST AND B. KRA, Non conventional ergodic averages and nilmanifolds. Annals. of Math.,
161 (2005) 398-488.

[66] B. HOST AND B. KRA, A point of view in Gowers uniformity norms. New York J. Math., 18
(2012), 213-248.

[67] L.K. HUA, Additive theory of prime numbers, Translations of Mathematical Monographs Vol.
13.” Am. Math. Soc., Providence (1965).

[68] J . FOX, Y. ZHAO, A short proof of multidimensional szemerédi’s theorem in the primes Ameri-
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[70] Y. KOHAYAKAWA, T. LUCZSAK, V. RÖDL, Arithmetic progressions of length three in subsets
of a random set, Acta Arith. 75 (1996), no. 2, 133-163.

[71] B. KRA, Ergodic methods in additive combinatorics,In Additive combinatorics, pages 69102.
Amer. Math. Soc., Providence, RI, 2007.

[72] J. LENZ, D. MUBAYI, The poset of hypergraph quasirandomness, Random Structures & Algo-
rithms. Volume 46, Issue 4, July 2015, 762800.

[73] J. LIU, Integral points on quadrics with prime coordinates, Monats. Math. 164.4 (2011): 439-
465.

[74] A. MAGYAR AND T. TITICHETRAKUN, Corners in dense subset of Pd. Preprint.

[75] A. MAGYAR AND T. TITICHETRAKUN, Almost prime solutions to diophantine equation of high
rank. Preprint.

[76] L. MATTHIESEN, Generalized Fourier coefficients of multiplicative functions , Preprint.

[77] H.L. MONTGOMERY AND R.C. VAUGHN, Multiplicative number theory I. classical theory. ,
Cambridge studies in advanced mathematics, 97, 2006.

[78] E. NASLUND, On improving Roth’s Theorem in the primes. Mathematica (61) , (2015), 49-62.

157



[79] K. O. BRYANT, Sets of integers that do not contain long arithmetic progressions. The Electronic
Journal of Combinatorics, Volume 18, Issue 1 (2011)

[80] S. PRENDIVILLE, Four variants of the Fourier-analytic transference principle, Preprint avail-
able at http://arxiv.org/abs/1509.09200.

[81] J. PINTZ, Are there arbitrarily long arithmetic progressions In the sequence of twin primes? An
irregular mind, Volume 21 of the series Bolyai Society Mathematical Studies, 525-559.
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