A Multidimensional Szemerédi’s Theorem in the Primes

by

Tatchai Titichetrakun

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Mathematics)

The University of British Columbia

(Vancouver)
July 2016

(© Tatchai Titichetrakun, 2016



Abstract

In this thesis, we investigate topics related to the Green-Tao theorem on arithmetic progression in primes in
higher dimensions. Our main tool is the pseudorandom measure majorizing primes defined in [51] concen-
trated on almost primes. In chapter 2, we combine the sieve technique used in constructing pseudorandom
measure (in this case, Goldston-Yildirim sum and almost primes) with the circle method of Birch to study the
number of almost prime solutions of diophantine systems (with some rank conditions). Our rank condition
is similar to the integer case, due to the heuristics that almost primes are pseudorandom. In chapter 3, we
investigate the generalization of Green-Tao’s theorem to higher dimensions in the case of corner configura-
tion. We apply the transference principle of Green-Tao (with hyperplane separation technique of Gowers) in
this setting. This problem is also related to the densification trick in [16]. In chapter 4, we extend the result
of Chapter 3 to obtain the full multi-dimensional analogue of the Green-Tao’s theorem, using hypergraph
regularity method by directly proving a version of hypergraph removal lemma in the weighted hypergraphs.
The method is to run an energy increment on a parametric weight systems of measures, rather than on a
single measure space, to overcome the presence of intermediate weights. Contrary to [110], [68] where the
authors investigate the problem using a measure supported on primes and infinite linear form conditions,

relying on the Gowers Inverse Norms Conjecture.
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Preface

This thesis is a combination of three manuscripts: Chapter 2 is based on [75] which is a joint work with A.
Magyar. Chapter 3 is based on [74] which is joint work with A. Magyar. Chapter 4 is based on [18] which
is a joint work with B. Cook and A. Magyar.
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Notations

Index Notations

e Write x = (21,...,24),y = (Y1, -..,yq) as vectors in dimension d. Write w = (w(1),...,w(d)) €
{0,1}4, and for each such w, let P, : Z3% — Z4% be the projection defined by

a;j if wj = 0
P,(x,y) =u= (u1,...,uq),uj =
y; if w;=1

e Foreach I C [d],x; = (%;)ic;. We may denote x for xg.
w; means elements in {0, 1}‘1 |. Similarly we may write w for wiq- We also define P, (x7,yr) in the

same way.
e w|; denotes w restricted to the index set I.

e For finite sets X;,j € [d], I C [d] then X} :=[]..; X, and

Jjel

Xi, w;(e
Po, (X1, Y1) =1 %, zi=4"" *I(,)
el }/:iu g[(z):

e If we want to fix on some positions, we can write, for example wq [, 4) means element in {0,1}4

such that the first position is 0.

e For each w, define y; () € {0,1}% by

0 if wi:0
1

IN
IN
IS8

(Yiw)i = . :
yp if w; =1

Yo(w) € {0,1}%is also defined similarly.
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Set Notations

[N] .={1,2,..,N},[M,N]:={M,M +1,...,.M + N}.
P denotes the set of primes. Py, P[N] := P N [N].
For any finite set X and f : X — R or C, and for any measure ; on X,

Boex /() = 07 3 @) Buf@), [ fdni= 2 3 f@uto)

zeX zeX

Hypergraph Setting: Suppose we have a (d + 1)—partite hypergraph with vertex sets V1, ..., Vgi1.
For e C [d + 1], we may write Ve := [];., V;. Letme : Vg11) — Ve be the natural projection. We
write Ac = {m; 1(F) : F C V.} as subsets of Vig1).

Other Notations

— Linear characters: for § € R/Z, e(6) := 2%,

- exp(z) = e”.

— Unless otherwise specified, the error term o(1) means a quantity that goes to 0 as N — oo (or
N, W — oo in W —trick, see section 2.2).

- f(x) = g(x) means there are absolute constants ¢, C' such that cf(z) < g(z) < C f(z).

- Zn,Z/NZ,Z/N means additive group of integers (mod N).

— k — AP means arithmetic progression of length k. Is it nontrivial if the common difference is

not zero.

— Multiplicative difference: Ay f(z) := f(z)f(z + h). Additive difference A} f(z) := f(z +
h) — f(x).
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Chapter 1

Introduction: Szemereédi’s and

Green-Tao’s Theorem

On occasions a mathematician will have an insight that is ahead of the time in the sense that the
insight is not fully expressible in the mathematical theory and language developed at the moment.
For example the Poincaré Recurrence Theorem as first stated and proved by Poincaré was strictly
not meaningful. What was needed was the language of Lebesgue measure which came later.-Walter
Gottschalk

The main area of mathematics that is related to this thesis is additive combinatorics. Problems in
additive combinatorics usually ask to count or estimate additive structures in sets. This field has some
origins from additive number theory that has interested people since the ancient time. There are many
classical problems from this field, for example, what is the number of solutions in a given Diophantine
equation? Can every even integers n > 4 be written a sum of two primes? Various methods such as
circle method first developed by Hardy-Littlewood and sieve theory are used to attack these problems.
We may also ask for properties of set addition e.g. if A C Z., what is the size of A + A? When is
it small or when is it large? Usually studying problems like this involve studying two very different
operations: addition and multiplication. This sometimes make problems in this area hard, even with
current technology. Analogue problems may be asked in some abstract setting e.g. if we let A to be
a subset of arbitrary groups. Problems in additive combinatorics nowadays can be very abstract and
usually involves other area of mathematics other than purely number theory or combinatorics. Since
we usually ask to estimate the size of the sets, the tools from analysis (e.g. harmonic analysis) can be
handily adapted to our finite setting.

A problem posed by Erdds asking that if A C Z with ), 1/a = oo must contain a (non-trivial)
k—term arithmetic progression? This motivates the study of additive structures in a large subset of
Z where what we mean by large is indeed also a question. The famous result in this direction is the

Szemerédi’s Theorem and Green-Tao’s theorem discussed in the next few sections. This direction of



research extends the area of additive combinatorics in touch with other area of mathematics such as

Ergodic theory and Lie Theory.

Green-Tao’s theorem generalizes Szemerédi’s Theorem to the case of primes. One of the main tech-
nique in proving these kinds of theorem is to decompose an arbitrary set to structural part and uni-
formity part (that does not correlate with the structures). What should be the notion of structures and
uniformity? How to measure them ? These are already hard and interesting questions. Green-Tao
managed to develop a tool to measure uniformity of primes that is sufficient to deduce results about
arithmetic progressions on them. In this thesis, we prove some results motivated from their work. In
chapter 2 we use the Goldston-Yildirim sieve used in the original proof of Green-Tao’s theorem [50]
combined with the circle method of Birch [11] to study number of solutions in almost prime of Dio-
phantine equations (with some rank conditions). In the next two chapters we prove analogue results

of Green-Tao’s Theorem in higher dimensions, Z.

1.1 Szemerédi’s Theorem

One of the most important theorem in additive combinatorics is the Szemerédi’s Theorem. Informally,
Szemerédi’s theorem states that the sets of integers contains so many arithmetic progressions (or affine
copies of a finite set in Z?) that any subsets with positive density (see Definition 1.1.2) must contain
many of them. The point is that there is no assumption on the set A (other than its size), it could be
either purely random or supplied with some explicit structures, which we can show that they contain
arithmetic progressions with different reasons for each case. In general, we try to decompose arbitrary
sets into structured and random (or pseudorandom) parts where the techniques are already interesting

by themselves.

There are many approaches to Szemerédi’s Theorem. Basically, we are not going to find arithmetic

progressions but we will count them.

1. The first combinatorial approach due to Szemerédi [99] introduces the Szemerédi’s regularity
lemma which is a theorem describing the structure of a large graph. The Lemma became im-
portant in combinatorics and computer science. We will talk more about regularity lemma in

section 1.3.

2. There is a combinatorial Fourier analytic approach due to Gowers [36], [37] where he intro-
duces the Uniformity norms (of various degrees determined by the complexity of structures) to
measure uniformity or randomness of functions. A function which correlates with some kinds
of structures would be large in uniformity norms of appropriate degrees. The harder inverse the-
orem asks for the converse: if a function is large with a uniformity norm, what kind of structures
can the function be correlated with? An inverse theorem would make the uniformity norms an

effective tool in studying structures in sets. This is a generalization of arguments of Roth [91]



or 3-term arithmetic progressions. Roth observed that if a set A C Zy with density o > 0
has the Fourier coefficient bound || lj—\aHoo sufficiently small (i.e. it does not correlate with
linear phase functions) then A contains many three terms arithmetic progressions comparable
to random sets. Otherwise A has a structure in the sense that it has increased relative density
in some long arithmetic progressions. Then we can do density increment (see section 1.1.4) to

obtain a structured subset of A which contains arithmetic progressions.

One may want to generalize this idea the four-term arithmetic progressions using exponent of
quadratic polynomials.! However this turns out not to be the case (see example 1.1.12), in par-
ticular, quadratic functions on multi-dimension arithmetic progressions may not correlate with
quadratic polynomial phases (hence quadratic polynomial phases are not sufficient to describe
structural objects in this case). Gowers exploits tools from additive number theory such as
Frieman-Ruzsa Theorem (structure of sets with small sumsets in term of multi-dimension arith-
metic progressions) and Balog-Gowers-Szemerédi’s theorem (sets with many additive quadru-
ples have large subsets satisfy the conditions on Frieman’s theorem) to deal with objects like
multidimensional quadratic phase functions. Gowers managed to obtain a local version of the
inverse U* norm theorem on 7, meaning Gowers obtained correlations with many polynomial
phase functions, each on an arithmetic progression. These works also inspired many later works
such as studying global inverse theorem [59]. Full global inverse theorem as a direct generalized
of Roth’s argument would obtain later in [60] where obstructions are actually described in terms

of nilsequences” (but not with a good bound and the proof is very long).

3. The next approach to Szemerédi’s Theorem is the ergodic theory approach initiated by Fursten-
berg and Katznelson (e.g. [33], [31]) where they transfer this Szemerédi-type problems (via
Furstenberg-corresponding principle, first formulated in [26]) to studying multiple recurrence in
a probability measure preserving system’. For example,to prove Szemerédi’s Theorem, one can

study

N
% > AT D) foT ) ... fi(TH" ) (1.1.1)
n=1

Here f; € L*>°(X)and T : X — X is measure preserving. This average is referred as mul-
tiple recurrence. To understand the limiting behavior (as N — o0) of (1.1.1) , the key idea is
to understand the characteristic factor Z which is an invariant subsigma-algebra Z such that if
E(f;|Z) = 0 for some i then the limit of (1.1.1) would be 0 in L? norm. Hence the explicit
description of characteristic factors is a useful tool to prove results on multiple recurrence like

(1.1.1). The question of finding the characteristic factor for a given multiple recurrence is a del-

'Indeed, we have a quadratic obstruction for four term arithmetic progressions 2> — (z + d)? 4 (z + 2d)* — (z + 3d)?> = 0.
This is the only obstruction.

These are technical objects and we will not define them here but we discuss a bit about them in the next paragraph.

3This means a set X together with a Borel o—algebra /8 and a Borel probability measure 1 and a measure preserving transfor-
mation T : X — X meaning u(T'A) = u(A)VA € B.



icate one. Host and Kra [65] and independently Ziegler [115] are able to give a nice description
of the characteristic factor of (1.1.1) for any & in terms of nilrotation on nilmanifolds (this could
be considered as a generalization of abelian rotation on S, the Kronecker’s factor) and Host-Kra
seminorm (an analogue of Gowers norm), see e.g. appendix A in [8] for a brief introduction to
these objects. Nilsequences [7] play a role as the obstruction to uniformity similar to linear ex-
ponentials in Roth’s theorem case. This motivated parallel work in additive combinatorics. The
motivation of why nilpotent groups arise is that in a k—step nilsystem, the first k—term of geo-
metric progressions will determine the rest, see [71] section 6.4. Ergodic theory is the method
that can attack most general kinds of patterns in this kind of problems. Let us state a theorem of
Furstenberg-Katznelson which is equivalent via corresponding principle to the multidimenisonal

Szemerédi’s theorem.

Theorem 1.1.1 (Furstanberg-Katznelson [31]). Letr (X, B, i) be a probability measure space
and T : X — X is a measure preserving transformation on (X, B, ). Let A € B, u(A) >
0,k € Zy then 3B C A, ;(B) > 0 and n > 1 such that

"B, T>B,..., T* "B C A.

k-1
p(()T77"A) > 0.
j=0
Tao gave finitary ergodic argument [101] where he discretized the ergodic argument and intro-

duce U AP-norm which is a counter part of uniformity norm.

Roth’s theorem also follows from studying eigenvalues (spectra) of graph using Cheeger-type
discrepancy bound, see [98]. Roughly speaking the largest second value of the adjacency matrix
is an analogue of the second largest Fourier coefficients of a dense set. Generalizing this theory
to spectra of hypergraphs seems challenging. Though, in ergodic setting, there is a description
of characteristic factor of (1.1.1) with £k = 4 in terms of generalized eigenfunctions, see e.g.
[116].

4. Finally, there is a hypergraph regularity approaches due to Vojta Rodl, B. Nagel, M. Schacht, J.
Skokan [82],[83], [85] that generalize argument in [97] and also another hypergeaph approach
due to Gowers [35], [36]. These stronger hypergraph regularity lemma allow us to deduce the
multidimensional Szemerédi’s theorem. This exploited ideas in ergodic theory (energy incre-
ment) and conditional expectations on sigma-algebras to obtain the required decomposition. A
stronger functional version of hypergraph approach due to Tao [104], which will be the version

we generalize to prove the main result in Chapter 4.

Next we formally state Szemerédi’s theorem.



\Aﬂ[ IS oie.

il > for all j. We say that A has positive upper Banach

density if there is a sequence ofmtervals I; € N,|I;| / oo such that | ‘ﬁ”l > 6 forall j. A similar
J

Definition 1.1.2. Let A C N, we say A has positive upper density if lim sup n_, .
thereisaé > 0,N; / oo such that \Am[

notation may be similarly defined on 7. or 7% using the Cartesian product of intervals.

Now we state two versions of Szemerédi’s Theorem in dimension 1.

Theorem 1.1.3 (Szemerédi’s Theorem; equivalent forms). I.(Infinite Version) If A C N has positive
upper Banach density then for all k € Z., there exist x,t,t # 0 such that P := {x,x + t,....x +
(k—1)t}C A

2.(Finite Version) Let § > 0 then there is an N (k,6) such that if N > N (k,6) then any A C [1, N|
with |A| > 6N has some P = {z,z +t,...,x + (k — 1)t,t # 0} C A.

The point is that N(k,d) is independent of A. It is easy to check that these two statements are
equivalent. We may also replace the P with F’ := z:+tF for any finite set F', where F' = {x+tf, f €
F'} is an affine copy of F.

Now we state the functional version of Szemerédi’s Theorem. Note that it is more convenient to work
in a more structured setting like in a group, e.g. Zy (where N’ is a prime much bigger than N) and

there is a standard argument that deduces the result on [N] from that, as we will do.

Theorem 1.1.4. Let f : Zy — [0, 1] with Eycz,, f(x) > 0. Then there is a positive constant c(k, 0)
such that

Ey iz f(@)f(@ + 1) f (@ + (k= 1)t) > c(8, k) — 05(1). (112)

Theorem 1.1.4 implies the finite version by taking f to be the characteristic function on a set A
and using an average argument of Varnavides [114] stating about the conclusion in finite version of
Szemerédi’s theorem that we will have at least c(&’, k) N2 of such progressions. Conversely the set
version also implies the functional version by considering sets of the form {z : f(z) > 6/2} with a

simple average argument.

Theorem 1.1.5 (Varnavides’s Theorem [114]). The conclusion of Theorem 1.1.3 (finite version) may
be strengthened to conclude that A contains at least (o, k)N? k — AP(i.e. k—term arithmetic

progression).

Proof [114]: Consider N(k, ) such that L > N(k, ) then any set A C {1,..., L} with density

> §/2 must contains a nontrivial k—AP. This follows from the following observations:

- We work in Z/N. Consider a long L— arithmetic progression S, ¢ = {a + d,...,a + Ld} C
Z/N where a,d € Zy,d # 0,L < N. If S, q intersects A with at least 6L /2 elements then

Sa,a M A contains a nontrivial k—AP.



— Consider all L—AP with a fixed common difference d # 0. Varying a, we have ) [S, 4NA| =
L|A| > 0LN.Hence |SqqN Al > (6/2)L for at least (§/2) N values of a.
Now vary d then |S, 4 N A| > (§/2)L for at least (§/2)N (N — 1) values of a, d. Each of these
L—AP contains a nontrivial k—AP.

— We consider possible repetitions of arithmetic progressions counted. Observe that any nonrivial
k—AP could be contained in at most L(L — 1) L—APs. ( punch line: for each k— AP, the indices
of the first two terms of this k—AP in the L—AP would determine the L—AP it is in ). Hence
the numbers of k—APs in A is at least

SN(N-1) S N?

2
S _1) ~arz ~ CRON

One may take e.g. (when k = 3) L = [exp(C3~1(log(1/6)*))] according to Bloom [9].

O]

Finally, let us remark a more general version of Szemerédi’s Theorem called Density Hales-Jewett’s

Theorem. This theorem implies Szemerédi’s theorem in finite group.

Theorem 1.1.6 (Density Hales-Jewett’s Theorem [29]). Let F' C Zand0 < 6 < 1. If N > N(|F|,0)
thenforany A C Fe |A| > 6|F|?, A contains a set of the form {a+tr;t € F,a € Z%,r € Z%,r # 0}.

Remark 1.1.7 (Quantitative Bound in Szemerédi’s Theorem). We have the following equivalent state-

ments of Szemerédi’s Theorem.

0<f<LEseznf(®)>6=Es ezynf(@)f(x+7)... flx+ (k—1)r) > c1(k,6)
Nintermofd) A C[N],|A| > N, N > c3(k,0) =A contains some k—term arithmetic progressions.
( prog
(0intermof N) A C [N],|A| <1, (N) =A contains no k—term arithmetic progressions.

Example: The original bound obtained by Roth [91] is given by co(3,5) > exp(exp(cd—1)). This is

_ N

equivalent to r3(N) < C -7

We have the following records

log log N)*
N2~VBReN (0 Bryant [79]) <rs(N) < C%N (Bloom [9])
o
ry(N) < C N (Green-Tao [57])
! —  exp(Cy/loglog N)
N
r4(N) < o N for some small constant ¢ > 0 (Green-Tao [58]).



For k > 4 we have the following bounds due to Gowers [39],

91/8k 9k+9

Cc1 (k, (5) > 27

ca(k, d) > exp(exp((1/8)*))
N

(loglog N)

7ck:2

~ 1
C’Nexp(—N2¥(log N)YN 4 N loglog N)[79] <ri(N) < C

2,2k+9 °

Improving quantitative bound of Szemerédi’s Theorem, even in the case £ = 3, is an interesting
research problem. In a precedent work, Bourgain [12] obtains an upper bound of r3(NV) by analyzing
the structure of Bohr sets (see section 1.1.3) and doing density increment on Bohr sets. Bloom [9]
obtains the bound by analyzing combinatorial properties of large spectrum set (the same to the recent
work on the bound of cap-set problem* [3] on the size of subsets of [F;; not containing three term
arithmetic progressions, which is C3" /n!*¢). The lower bound of r3(N) first obtained by Behrend [5]
using the idea that there is no three-term arithmetic progressions on a sphere. There is no substantial
improvement and it might be the optimal shape. This turns out to be the case for Roth theorem in four

variables [93]. Much less quantitative results are known in higher dimensional cases.

1.1.1 Gowers Uniformity Norms
Definition 1.1.8 (U%-norm and inner product). Let G be a finite abelian group define’ the U%—(generalized)

inner product of 2% functions f.,,w € {0,1}4,

(fo)wetonyt)vd =Bonongec [ C¥fla+wihy + -+ + wihg)
we{0,1}4

In particular when f,, = f Yw, we have the following definition of Gowers uniformity norm

d
11174 = Eahy...haec H CHl f(z + wihy + -+ + waha)
wed{0,1}4

where C'f := f is the complex conjugate and |w| = w1 + . . . wy.

Lemma 1.1.9 (Basic properties of Gowers uniformity norms, see e.g. [109]). 1. If f is a bounded

function then®
[fllera < AN o2
d+1

2. Gowers-Cauchy-Schwarz’s inequality |((fu)wefoay0)| < Tlueqonyd | follpa. In particular,

|74 is indeed a norm.

4see [108] for a very recent improvement on this problem via polynomial method.

>We don’t actually need conjugates as we are working on real valued functions, these conjugated may be neglected later
SThis is sharp as mentioned in [66], an easy application of Holder inequalities can give us easy looser bound.
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3o [ fllya < [ f s

The following recurrence relation is usually useful when working with higher uniformity norms

9d—1

1F120 = Bl FT F1|20 (1.1.3)

Example 1.1.10. [116] Suppose f : Zn — {1, —1} is a random function with mean O then by the

law of large number, || f||;x = o(1) with high probability.

Remark 1.1.11. An analogue of Gowers uniformity norms called Host-Kra seminorms can in fact be
defined on general measure spaces [65] where they are in general seminorms. They are norms exactly

when they are defined on a nilmanifold.

When working in the uniformity norm, we are interested in proving an inverse theorem: Finding the
set of structure function F; such that if f has a large uniformity norm of degree d then f correlate
with some elements of g, in other words, if f has small uniformity norm of degree d then f does
not correlate with any structures in F;. From property (3) of Lemma 1.1.9, we see that functions with
small higher order Gowers norm will correlate with less structures i.e. Fy C Fgi1. We will prove

analogue properties of uniformity norm on more general weighted hypergraph.

For example as in the proof of Roth’s theorem, function with large U2 norm , due to relation || f||;2 =
|| fll4, will correlate with some linear exponents. In higher order uniform, however, we have the

following example.

Example 1.1.12. [/39], section 4.] Consider two-dimensional arithmetic profression in Zy, N is
prime: P = {x1 + Kxo : —K/10 < 1,29 < K/10, K = |V N|} and f(x1 + Kx3) = e((x? +
23)/N)1p. The function ¢(z1 + Kxa) = 22 + 23 is a quadratic function on P in the sense that

AzlAIQAZ?)@(IL‘) = 0Vx,hi,ho,hg € P.

and we can show that || f||;;s > 1. On the other hand, we can do a calculation that |(f,e(y))| =
O(N~°) for any quadratic phases 1)(z) = rax®/N + sx/N + t withr,s € Zy,t € R/Z. Hence the
exponent of quadratic polynomial function of this form is not the only quadratic obstruction of || - ||

normi.

1.1.2 Box Norm

Box norm is a more abstract version of the Gowers uniformity norms defined on hypergraphs i.e. on

afunction f: X1 x -+ x Xg — R.



Definition 1.1.13 (Box norms). Let X1, ..., Xy be finite sets. f : X1 X --- X Xq — R. Define the

box norm of order d,

11120 = Exexyxxxa, || FPo(x,¥))

yeY1 X XYy wef0,1}4

Fore C {1,...,d}, we can define || f||ge for f : Ve — R.

Example 1.1.14. HfHé]Q = ExEX,x’EX’,yEY,y’GY’f(xv y)f(x,7 y)f(xa y/)f(l‘/, y/)-

On a hypergraph system (J = [d+1], (V;);ec, H)’, we put sigma algebras B, on each V, = [le Vs
We can also think of B, as the o —algebra A, on V; where A, = 1 (B.) for the projection ¢ : Vi —
Ve.

Lemma 1.1.15 ( [52], Gowers uniform functions are orthogonal to lower order sets, in other words,
there are no correlations between them). Given a hypergraph system (J = [d + 1], (V) es, H). Let
ecH,lel=d, f: Ve =R

1. || fglloe < || flloe when g : Ve — R is independent of x j-variable for some j € e.
2' ExeGVef(xe) He’ge 1EG/($6/) S ||f”Ele

3. Suppose there exists sub-algebras By C Ao with compl(Be) < M for any ¢’ C J with
le'| < d, Then forany e € H, let E, € \/ ;. Be' then

Evev, e () f(me(2)) = On (|| flloe)

Proof. The first statement follows when we expand the LHS using the definition of box norm. The
second statement follows by iterated applications of the first statement, see the proof of Theorem 3.5.5
(on weighted hypergraph) for details. The last statement follows from the second statement, triangle
inequalities together with the fact that E, is a union of Op/(1) atoms of \/,,c, B O

Definition 1.1.16. Given a hypergraph system (J,V;, H) and a c—algebra B on V. and let e € Hq.
Write e = {f C e : |f| = |e| — 1}. Define the e—discrepancy A¢(E.|B) of the set E. € B with
respect to B by®

BEIE) = sup | [ (1.~ B I5) ] Le,du (1.14)
Vfede

Note that the largeness of A.(E,|B) implies the largeness of |15, —E(1g,|B)||ge. To see this, write
F'=1p, — E(1g,|B). Letz; € X; for1 < j < dbe fixedand y1,...,y4 € [0,1]. For 1 <7 < d,

7 See definition 4.1.4. Basically, .J is a index set Vy := (V});es and H C HjeJ V; is a hypergraph. See section 1.1.5 for
relevant notions on o —algebras.
8We could replace the product on f € deto f C e or replacing 15, — E(1 5, |B) with a bounded function with the same proof.



define
Ei = {(xiany) : [] Flon o micnal Pog y (wpa)) 2 0} € By

“i,d]

Then by Fubini’s Theorem,

A (E|B) > / F(zi,...,2q)1p, -+ - 1g,dp
Vi

1 1
:/ / / F(acl,...,a:d)lEl-~---1Edd,udy1...dyd
0 0 Vi
1 1
:/ / / F(zy,...,2q)1p, -+ - 1g,dyr ... dyq dp
V;Jo 0

/VJ [ F (@ (xa)de

Wa

Taking average over x, ...,/ then A.(E,|B) > |]F||2Ddd. Combining this with Lemma 1.1.15, we
conclude the relationships of the two quantities (in particular largeness of one implies largeness of the
other.)

115, — E(15,|B)llo: > Ac(EelB) > |15, — E(1, |B)| (1.1.5)

1.1.3 Bohr Sets

Bohr sets can be regarded as an analogue of subspaces in integer setting where we can run density
increment. Given a finite abelian group G, it is not hard to construct a non-degenerate symmetric
bilinear form (z,y) — = - y from G x G to R/Z (see [109], Lem. 4.3). For example, if G = Zy, we
can take z - y = /. Foreach r € G, the dual group of G. We can define the character on G to be the
function e, () := e(r - ). We can identify G with the set of characters on G by taking r — e,. We
can define the Fourier transform of f,

~ A~ ~

f:G—C, f(r)=Eieaf(x)e(r-x)

We can think of the Fourier transform as the measurement of the correlation between f and the
character e,. It is natural to put a uniform measure on f : G — C and put counting measure on
f: G — Cie.

1£llp = Ezeal F@)P, I Fllp =D |F(r)

reG
We state the following basic properties which follow directly from direct calculations.

0 ifr#0
1 ifr=0

Lemma 1.1.17. 1. (Orthogonality) E,cq f(z)e(r - x) =

10



2. (f,9) = (,9). In particular ||f||> = || f 2

3. fxg=Ffg
4. [ flloz = Iflla

Note that no analogue of property (4) for U*,k > 3 is known. It would be very useful if such a

formula is found.

Definition 1.1.18 (Bohr’s set). Given p > 0,5 C G. Let | - || denote the distance to the nearest
integer. Define’
B(S,p) ={xeG:|r-z| <pVreS}

S is referred as the frequency of B(S, p). |S| is called the dimension of B(S, p), p is the width of
B(S, p).

The notion of Bohr sets is an analogue object of subspaces'” in Z or Z or in more general groups .
For example, it satisfies nearly closure properties (if it is regular, see [12].) Indeed it can be considered

as approximated subgroups [48]. It can also be thought as a metric ball of radius p and dimension |S|.

An important structural theorem of Bohr sets in Z y is that they look like multidimensional arithmetic

progressions. This is Bogolyubov’s lemma combined with geometry of numbers.

Definition 1.1.19 (Multidimensional arithmetic progression). A multidimensional arithmetic progres-

sion of dimension K with basis 1, ... Ty is a subset of Zx or Z of the form

K
{Zlﬂi s |l < ma.}
=0

Lemma 1.1.20 (see [109]). Let S be a nonempty subset of Z;V and p > 0. Then

- B(S, p) contains an arithmetic progression of size at least pN YIS centered at 0.

- B(S, p) contains a proper multidimensional arithmetic progression of dimension |K| and has
size at least (p/|S])I°IN.

1.1.4 Density Increment Method

Here we describe the density increment method, sometimes called L°°—increment method [105]. We
have to find a good notion of Structure (the set of structural objects in the set/space we considering)
and || - ||s (Uniformity norm, with respect to Structure ). Let S € Structure and ds(A) denotes the
density of A on S. We want to have the following dichotomy:

— (generalized von Neumann ') |1 4—65(A)||s < c¢(a)) = A contains the required configurations.

%equivalently, we may define B(S, p) := {z € G : |1 — e(r - )| < p}, using |e(t) — 1| < 2| sin(nt)| < 27||t[|x /2.
OIf G is a vector space then Bohr set is indeed a subspace, the annihilator of S.
"'See [31], Lemma 3.1

11



('structure of A can be described in term of || - ||s and A contains the required configurations).

— (density increment) |14 — ds(A)|ls > c¢(a) = we can find S’ € Structure, w(S’) < w(S) + 1
, where w here is the notion of complexity'” of structural sets and

dg/(A) > ds(A) + c(a)

for some positive absolute constant ¢(«) depending only on c.

||-||s should be strong enough (i.e. not too many objects with small ||-||s norm) to prove the generalized
von Neumann but weak enough (not too many objects with large || - ||s norm) to obtain the density
increment. To run the density increment method, suppose we cannot find the configurations in the
set then we can find S’ where A has increased density. However this cannot continue forever as the
density cannot exceed 1 So eventually, we arrive at the other case of the dichotomy and we must
be able to find the required configuration in the set. We give some examples of density increment

dichotomy below.

Example 1.1.21 ([46], Lemma 2.4). (Roth’s theorem in Finite field.) Let A C ). If there is t # 0
such that ﬁ(t) > a?/2 then there is a subspace of codimension 1 such that A has density on some
of its translate at least o + o /4.

In this case we may take Structure to be the set of subspaces of ¥}y and || - ||s to be ||*|| -

Example 1.1.22 (Roth’s Theorem.). Suppose (14 — o, e(x 7)) > 6, this means 14 — o has a linear
bias in some direction. We can use equidistribution property'> of "¢ (mod 1) to partition [N] (up
to small error) into long arithmetic progressions of length, say N',t < 1 for which N is almost a
constant (mod 1) on each of these progressions. Then our set will have increased density o + ¢(«)

on one of this progression. We could also do density increment in Bohr sets as in [12].

Example 1.1.23. (Rectangles, corners) Finding the correct notion of structures and uniformity norms
can be tricky. We may expect the || - ||g2 norm to control the number of rectangles to control the
number of rectangles. Assume |14 — «||g2 is small and we want to show that A contains roughly

a*N* rectangles. Expand

H 14— a”4|:|2 :Ex,x’eX,y,y’EYlA(xa y)lA(lJa y)]-A(xa y/)]-A(x,v y,) - OéAg(SC, l‘/, Y, y/) + QQAQ(x, 33,7 Y, y,)
- O[3Al($7 .’17,, Y, y,) + Oé4

This first term is the number of rectangles (divided by N*). A; is a sum of 4 terms of the form
Ey o yyla(z,y') = a. The second term is 6 sums of the form By 1a(x,y)1a(z,y’) =

280 S’ in some sense is not too small compared to S. For example, if .S are subspaces of a given vector spaces, w(.S) could be
the codimension of S
B¢ .g. Dirichlet’s diophantine approximation theorem
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Ey(Eyla(z,v))? > (Ezyla(z,y))? = o? by Cauchy-Schwartz’s inequality. However we want to es-
timate four terms in Az like By y o o La(x,y)1a(x’,y)La(2',y) or By y 2l a(z,y)La(a’, y)1a(z,y)
to be < a3 but there is no reason for this to be true for general, apart from an insufficient trivial bound
of O(a?). Indeed, in Shkredov’s proof [96] of exponential bound in corner in dimension 2, he puts
some uniformity conditions on the structural objects F/y x Eo (with a method to uniformize general
product set E1 x FEs) in a way that we can run the density arguments. This is still open in higher

dimension or in general.

1.1.5 Energy Increment Method

The energy increment method, first appeared in the context of graph theory in the proof of Szemerédi’s
Graph Regularity Lemma [99], gives analogue dichotomy argument as in density increment method.
However, this method uses the machinery of ergodic theory (factor) to read the structure in term of
o —algebras, this is more flexible with the machinery of L?—space. For example, it is used in showing
the existence of prime arithmetic progressions [52] where there is no density argument proof of the
result available. Indeed, there are many results in density Ramsey theory where only ergodic proof is

known. We also use the energy increment method in chapter 4.

Definition 1.1.24 (Factor). Let X be a finite set, then a c—algebra on X can be given by a (unique)
partition of X which partitions X into atoms. A sigma-algebra B on X is sometimes called a factor.
We say that a factor B' is finer than B (or B is coarser than B') if each atom of IB can be written as a
union of atoms in B'. We say that f is measurable with respect to B if f is constant on each atoms of
B. Hence L*(B') C L?(B).

Define compl(B), the complexity of BB to be the smallest number of elements in BB that can be used to
generate B. Note that the number of atoms is at most gcompl(B),

Finally define the join B\ B’ the least common refinement of B and B, that is the sigma-algebra
whose atoms are given by the intersections A N A’ where A is an atom in B and A’ is an atom in BB
If we are working on X x Y with By a c—algebra on X and By a o—algebra on' Y. We have
B1\/ By = {B1 x By; By € By,By € Ba} is a factor on X X'Y. We may also regard By, By as
factors on X XY in the trivial way and B1 V Bo = {B1 N By; By € By, By € Ba}.

Definition 1.1.25 (Conditional Expectation). For a function f : X — C we define the condition
expectation to be the function E(f|B) : X — C by

E(IB) (@) = e S (),

where B(x) is the atom containing .

We see that E( f|B) is constant on each atom of B. We can view E( f|B) as a version of f that could
be realized by B, in other words the information of f that is captured by B. Indeed, the conditional

13



expectation E(f|B) is the orthogonal projection of L?(X) to L?(B) where L?(B) is the space of
functions in L?(X) which is B—measurable. This follows from the identity

(f —E(f1B),E(f[B)) =

Here (f,g) = Eyex f(2)g(x). Hence f — E(f|B) is orthogonal to all structure given by 3. Similarly,
if B C B’ then E(f|B) is the orthogonal projection of E(f|B’) to L?(B). Indeed, we have

(E(fI1B") — E(f|B),E(f|B)) =

Next, we define the term energy which the name “energy increment method” (or “energy boosting

argument” in computer science) comes from.

Definition 1.1.26 (Energy). Let f : X — C and B a factor then the energy of f with respect to B is
given by the L?>—norm ||E(f|B)|3.

Energy increment method: Decompose f : X — C as

f=fH+fo+fs (1.1.6)

where f; = E(f|B) is the structural part described in terms of sigma-algebra. fo = f — E(f|B) is
the pseudorandom part which is orthogonal to the structures given by B. We usually refer to such
decomposition as Koopman-von Neumann decomposition. Sometimes, we will also have f3, the the

error term which is small in size or , say, in L? norm.

Example 1.1.27. Let B, = {0, X } be the trivial sigma-algebra. Then for any x € X, E(f|Bui)(z) =
% Y ozex f(x) = ais a constant function. If X is a dense truly random set then we expect

|1x — a||ge to be small. We may obtain the decomposition
1y =a+ (]_X — a)

Example 1.1.28. [47] Let f : Fj — [-1,1], S := Spec,(f) = {r: |f(7")| > n}. Hence |S| < 442
(by Plancherel theorem). Let H = S+ be the annihilator of S and juy; = 15 /Ely be the Haar

T

measure on H. Let BB be the factor generated by the linear functions r(z) = r* x,r € S. We calculate

fi(@) = [ po (e Z f(h) = E(f|B)
h6H+a:

fa(@) = f = f* pa, |f2(7“)| = [f(")I1 = 4 (r)] < 20,

The last inequality follows from the fact that i € [0,1] andr € S = ag(r) = 1.
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Suppose we have the decomposition as (1.1.6) then we plug in into an average like (1.1.2) to prove that
the average is bounded above by a constant. With such a decomposition, we basically reduced to prov-
ing such estimate for general f to f;. Such a statement for f; is sometimes called counting lemma.
In some context like Green-Tao’s Theorem, the counting lemma is just the ordinary Szemerédi’s the-
orem. The method that get rid of f2, f3 and allows us to work on only f; is called transference
principle. The term f5 behaves randomly and are expected to cancel out in the average (1.1.2), so
that any term involving f5 giving only a small error term (this is called Generalized von-Neumann
theorem.). The remaining terms involving f3 are also expected to contribute only small error term,

this can be trickier to show.

Dichtomy for energy increment:
If ||f — E(f|B)||o > 9 is large then f correlates with some structure in B and we can find a finer

factor B’ which incorporated some structure in B, with increased energy,
IE(f1B)13 = E(f|B)[13 + <(9). (1.1.7)

Here ¢(9) is a fixed constant. Since the energy cannot exceed one, this process must stop and we must
arrive at a factor B such that || f — E(f|B)||g is small.

1.2 Green-Tao’s Theorem

The motivation for Green-Tao’s theorem is that prime should behave randomly (this is basically still
open e.g. the prime tuples conjecture), hence it should contain many arithmetic progressions like a

random set.

1.2.1 Green-Tao’s Theorem

Theorem 1.2.1. [52] Let f : Zn — R>q, f(x) < v(x) for some pseudorandom measure v (satisfying

some pseudorandom conditions with parameter M, say) with Eqycz,, f(x) > § then

Boyezy f(2)f (@ +y)...f(z + (k= 1)y) > c(k, ) — ops.m(1).
where c(k, ) is the same positive constant as in the Szemerédi’s Theorem (Theorem 1.1.2).

Note that if we can prove this for fixed k, y then the k—prime tuple conjecture would follow. We show

below (as in case of Szemerédi’s theorem) that this theorem implies the following

Theorem 1.2.2. [f A C P has relative positive upper density i.e.

. |ANPy|
lim sup

— >0
Nooo  |Pn|
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Then A contains infinitely many k-term arithmetic progressions.

Remark 1.2.3. A way to think of Theorem 1.2.1 in its relation to Theorem 1.2.2 is that we take f to be
(the characteristic functions of) a dense subset primes and v is (a normalized function supported on)
the set of almost primes for which primes has positive density. If support of v is sparse then v would
be unbounded. The point would be that this set of almost primes has some pseudorandom property

which says something like “v and 1 behave similarly” that will allow us to prove the theorem.

Theorem (1.2.1) = Theorem (1.2.2). Suppose A C P with positive upper density « then there is
some'* b depending on N such that 3 Y-y Ta(N)Ay(n) > ca.

Let [M, § N] be in the support of the Green-Tao’s measure v (see deinition 2.2.3). Consider &y = 2~k

then we have a partition

k—1
[M,6N] = [M,6:6N]U | ] [2™6:6N, 27 645 N]
m=0

so that there is some j such that + D onepisuon,2i+15.6N] 1a()Ap(n) > cq k. Define

) crla(n)Ay(n) if 26,0N <n < 2TL5 6N
n)=

0 otherwise

then there is a constant ¢, ; > 0 such that

En6[1,2j+16k6N]f(n) > Cak

for some j = j(IN) and some N arbitrarily large. We can verify that f(n) < v(n) (see Chapter 2 for
definition of v and the verification). Let B = {z € [1,2/T1§,6N] : f(z) > 4%} then |B| > C/“T”“N
so by Theorem 1.2.1, B contains ¢z (o, k) N? arithmetic progressions Q = {z,z+v, ...,z +(k—1)y}
such that f(z)...f(z + (k- 1)y) > (Ci"T")k and so

J k
% 3 f(a;)...f(m—i—(k—l)y)z% > f(w)---f(x+(k—l)y)262(a,k><(;’k>-

T, YELN rEAYELN

which is greater than 0. The contribution of trivial arithmetic progression (i.e. y = 0) is O(%) =
o(1). Also if z,z + y,...,x + (k — 1)y € [290,6N, 2716, 5N] C Zy is an arithmetic progression
in Zy then they are genuine arithmetic progressions in Z. (z; + zj42 — 22j41 = (mod N) =

Tj+Tjpo — 2wj41 = 0,V7.) O

14See definition of A, in Chapter 2, for now just think of it as the Mangoldt functions on primes
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In the original proof of Green-Tao’s Theorem [51], they decompose a function f majorized by v using

the dual function (also referred as generalized character) D f defined by

(£, Df) = | flIZ 1.2.1)

For example, consider || - |53 (where we consider box norm instead, the Gowers norm on Zy could

be made in a similar form by a change of variable), we have

Df(z,y,2) =By o f(x,y, 2 ) f(@, ), 2) [ (& y, 2) f (', 2) f (@ y, ') f a9, 2) f (2, 2)

Indeed functions with large U* norm is then correlate with Df just by definition. The obvious
structure of Df we see is that they are composed of functions of lower complexity'® of the form
F(x,y)G(y, z)H(z, z) and we will use this obvious structures to decompose functions in the regular-
ity lemma using the machinery of sigma-algebras. It is much harder to see what these objects really
are; they are actually given by nilsequences. We don’t need this in soft inverse arguments as in [52]

but we need it if we want to give asymptotes for linear equation in primes [54].

A function g with [|g||7;s = O(1) is called anti uniform function which will be used to show uniform
distribution property: If f is uniform then (f, g) will be small. This can be regarded of a generaliza-
tion to uniformity in Roth’s theorem when g is taken to be linear exponentials. Hence anti uniform
functions can be used to measure the degree of structures in a function. In [52], they prove that these

dual functions satisfy the dual function estimate for f; bounded by v

IP(Dfr,.. ., Df)lljn = Ok.a,p(1) (1.2.2)

where P is a polynomial of K variables, degree d. K, d can be arbitrarily large. Correlation condition
is applied here in place of infinite linear forms condition which was not available at that time. See
section 3.3.

This estimate allows one to prove uniform distribution of v with respect to these dual functions (Prop.
6.2 in [52]). The dual of Gowers uniformity norms are not algebra norm in general, but they are
majorized by BAC' —norm (defined in [37]) which is a norm satisfying some algebraic properties
used in proving transference principle [37] and also in Chapter 3 of this thesis to prove a transference
principle. For example, the dual of || - [|7,2 norm is not an algebra norm but is majorized by an algebra

norm'®. Indeed, when f is a function on Zy, we have

1152 = 1 Fllays < 1LFlh

SHere, meaning they depend on less number of variables or constructed from functions which depend on less number of vari-
ables. This relates to the notion of relatively independent joining which is used in an explicit construction of Host-Kra factors;
characteristic factors for multiple recurrence in (1.1.1). See e.g. the appendix B of [8] or section 7 in [71] for expositions.

“meaning || gl <[ fIlllgll
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Here ||°||; is the Wiener norm which is an algebra norm by Young’s inequality. However it would not
be easy to show that ||1/7Tf||1 = O(1) when 0 < f < v. A more general and systematic study of dual

norms and dual functions in this direction is taken in [66].

For the next step, Green-Tao employed the notions of factor and condition expectation machinery
from ergodic theory. They use the dual functions to define sigma-algebras, and use the energy incre-
ment (if there is a correlation, find dual functions DF" with correlate with f and use it to refine the
factor B with increased energy) to prove estimate like (1.1.7) or (1.1.6) for 0 < f < v. The sets

generated by these o—algebras of DF is referred in Green-Tao’s paper [51] as generalized Bohr sets.

Now we state a transference principle which is later simplified in [37] and independently known in

language of computer science as dense model theorem [87]. The following version is taken from [88].

Theorem 1.2.4 (Transference Principle). Let v be a pseudorandom measure. Suppose ||v — 1||;x <
' == exp(—(1/2)°W) then there exists f1, fo, f = f1 + f2,0 < f1 <2, || follpr < €. Furthermore,

Eorf(x)f(x+7)... flz+ (k=1)r) =Eepfi(@) fi(z+ 7). fi(z + (k= 1)r) + Ol fallyn)
with O([| fal[yx) = O(e).

We will prove a variant of this transference principle in Chapter 3 where we adapt the method in
[37]. The quantitative bound exp(—(1/¢)¢) comes from the following fact'” (the explicit bound is
not important unless we are trying to extract a quantitative bound in the application):

Fact 1.2.5. (e.g.[16]) There is a polynomial P(z) = pgx® + pg_12%~1 + - - + po such that |p(z) —
vy | < g forallx € [-2/e,2/e] such that

[pal(2/€)" + - + [p1](2/€) + [pol ~ exp(1/¢)

Now we demonstrate how to apply transference principle to give a quantitative bound for Green-Tao’s

Theorem, assuming the Szemerédi’s Theorem as a blackbox.
Claim 1.2.6. ||v — 1|;» = O(1/w) + O(log w/+/log R).

Proof of Claim. Recall that by linear forms condition (see section 2.2.2),

I =17 = > (~DMI+0(1) = o(1)

AC{0,1}k

If we don’t need an explicit quantitative bound in the transference principle then we don’t need this fact in the proof of the
transference principle. See e.g. Appendix B of [] or [] for expositions.

18



Hence the error term o(1) comes from the the error in the following linear forms estimate condition;

(0, 2W)

XW)mExeBAx,R(91(m))2 A m (O ()2 =1+ o(1)

Using the estimate obtained in section 2.2, the o(1) term is given by

0() +0(E)

Here R is a small power of N. 0

Choose w, N large enough so that || — 1||;x < € = exp(—(1/€)?M)). Choose the € in the error term
O(e) (using the constant in the Remark 1.1.7 ) so that

e < exp(—C exp((1/8)°%)) < Cy(k, )

Hence (1/€)¢ > exp(exp(1/6°%)). As we chose w > exp(1/e) and log N > (logw) exp(1/e%)
so we choose N > exp(exp(exp(1/£))), hence we have the bound

N > explexp(exp(exp(exp(1/39))))).

Note that there are other variants of transference principles. A natural question to ask would be the
properties of the weight v required to obtain a transference principle or what would be the natural
condition of v, as investigated'® in [16] in the context of Green-Tao’s Theorem. This can open a
wider applications of the transference principles. In the case of 3 term arithmetic progressions in the
primes, this question is first investigated by Green [45], to approximate f by a bounded function g.
In this case, v is required to satisfy a restriction estimate and a Fourier decay property. A variant of
transference principle in this case is obtained in [63] where they approximate f by a function g which
is no longer assumed to be bounded but has bounded L?—norm. This price one pays is that  need
satisfy some more properties such as correlation estimate and some estimate of its L?—norm. This
has applications in obtaining a better quantitative bound of Roth’s theorem in the primes. Naslund
[78] obtains a transference principle for I*-bounded function ¢ with some stronger assumptions on v/

than [63]. See e.g. [80] for an exposition.

'8With correlation conditions in the definition of pseudorandom sets, we expect relative Szemerédi’s Theorem to hold for pseu-
dorandom sets of density /N —oM) In [16], they remove the correlation conditions and obtain the results for pseudorandom subsets
of density N~ .
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1.3 Szemerédi’s Regularity Lemma

The idea of regularity in graph is that the equally distribution of the edge density. Regularity lemma is
a kind of structural theorem. It says that up to small error, we can describe any dense graph with some
structure (partition of vertex sets which has about the same density), and apart from that information,
the graph is just behaves randomly. For a survey of basic properties and applications of this lemma,
see the survey [69].

1.3.1 Graph Regularity

Definition 1.3.1. A bipartite graph G(A, B) is e—regular if for all A’ C A,B" C B,|A'| >
elAl|,|B’'| > ¢|B| then
|[E(A',B)|  |E(A, B)|

Se (1.3.1)
|A'l|B'] Al Bl
Here we don’t assume regularity condition for a pair involving a small set. Equation (1.3.1) can be re
written as
oy o 1A X B
|E(A,B)N (A" x B')| = W|E(A,B)|—|—O(6|AXB|) (1.3.2)

This statement would be trivial for small A’ or B'. This is used in the functional version [103].

Theorem 1.3.2 (Basic properties of regular pairs; Most degrees into a large set are large [69]). Let
(A, B) be an e—regular pair with density 0 then Let Y C B, |Y'| > ¢|B| then

{z € A:deg(z,Y) < (0 —¢)|Y[} < elA|

Proof. Let X = {z € A : deg(z,Y) < (6§ — ¢)|Y|}, expect Xnot to be too large. Trivially,
|E(X,Y)| < (6 —¢)|Y|. Suppose | X| > ¢| A| then by regularity, this is a contradiction. O

Remark 1.3.3. Let us mention briefly a relation of the notion of graph regularity with the box norm.
Suppose |1 — E(1g|Bx V By)|lo < nwithBx = X1 U---UX,,, By =Y U---UY,. We have
E(1g|Bx V By)(z,y) = W := 0;j. By the definition of box norms we can find functions
U(z),V(y) such that

Ery(lo(z,y) —E(1g|B: V By)(z,y))U(2)V (y) < 1.

Writing o; = | X;|/| X[, B; == |[Yi|/|Y] and let U; :== {U(z) : z € X;},V; == {V(y) : y € Y;},
vi = ||G N (Us x Vj)| = 0i5|Us|| V|| < . This implies, for example,

> aiBi< Vi

6,JYi5 >/
Hence we have many X;,Y; with G’Xiij is n—regular.
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Theorem 1.3.4 (Graph regularity lemma [99]). Ve > 0,3K (¢) independent of n with the following
property: Any graph G, with n > ng(€) vertices can be partitioned into vertex classes Vo, V1 ..., Vi
such that |Vo| < n/K,|Vi| = |V;| for 1 <i,j < K and all but eK*(i, j) pairs give e—regular
G(Vi, V)

The proof proceeds via the energy increment method on a partition of vertices, see e.g. Theorem 9.4.1
in [1]. Inspecting the proof, we would need n(¢) to be a tower of height £~ to obtain an e—regular
partition with K = =1, It was shown by Gowers [40] that this tower type bound is necessary. It
is true for applications of regularity method that we will have terrible bound. If we want a better

quantitative bound, we would need to avoid applying regularity lemma.

Now we illustrate a well known application of regularity lemma.

Theorem 1.3.5 (Triangle removal lemma; Ruzsa-Szemerédi [92]). Ve > 0 3e(c) > 0 with the follow-
ing property: If G, is the union disjoint of cn’® edge-disjoint triangles then it must actually contains

at least e(c)n? triangles where ¢ — 0 as ¢ — 0.

Remark 1.3.6. Trivially, the number of triangles would be at least cn? triangle but this theorem says

that it contains much more especially when n is large. In fact, in a higher order of magnitude.

Thm 1.3.4 = Thm. 1.3.5. Take arandom 3—partition on the vertices to obtain vertex sets Wy, Wy, W3s.
By losing a positive fraction of the cn? triangles, we can assume that G, is tripartite. Choose ¢, and
apply the regularity lemma (Theorem 1.3.1) to our graph, we obtain the regular partition with K
classes of vertices.

— Delete the edges between non e— regular pairs, the number of edges deleted is less than e K2(n/K)? =
en? edges.

— We will apply graph regularity lemma for pairs with density at least §. Delete the edges between
pairs with density < & then we deleted less than K26(n/K)? = dn? edges.

Choose ¢, much much smaller than c, hence we still have ¢'n? triangles in our graph. We obtain a
simplified graph with the following property: If there is an edge between V; and V; then G(V;, V) is
e—regular and d(V;, V;) > 6. Now we claim that the number of triangles is at least c(g)n>.

Consider vertex sets Vi C Wy, Vo C Wa, V3 C W3 where each pair (V;, V;) is regular with density
> 0. Apply Theorem 1.3.2 to V5, at least (1 — 2¢)|V5| vertices has degree > (6 — ¢)|V;| to V; and
degree > (§ — €)|V3] to V3. Pick one of such v and assume § — & > . One has from the definition of

regular pairs,

B(N @)y N@)|y )| > (6= )N @)y, [IN(0)],| > 6= )((5 = £)n/K)? > 4 (n/ K.

v

This is a lower bound of number of triangles containing v. Since the number of such v is at least
(1 — 2¢)|V4|, choosing & = 2¢ then the number of triangles is at least (1 — 2¢)e3n3 /K (¢)3. O
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Finally we state a functional version of graph regularity lemma [103]. We will prove analogue of this

lemma in the weighted hypergraph setting in the main text.

Theorem 1.3.7 (Functional graph regularity lemma [103]). Suppose f : Vi x Vo — [0, 1] is measur-
able wrt B1 max, B2 max and € > 0. Let F' = F, : N — N be an arbitrary increasing function. Then
there exists M = Op.(1) and sigma-algebras B; C B, C B; max on Vi. We obtain the following

decomposition of f:
1. E(f|B1V Ba),compl(By), compl(Bs) < M.
2. |E(f1ByV By) —E(f|IB1V Ba)lla < e
3. 1f —E(fIBy V By)|lo < 1/F(M).

Functional version (Theorem 1.3.7) implies graph version (Theorem 1.3.4): Write E for the set of edges
between V; and Va. Apply the Theorem 1.3.7 with e replaced by £3/2. By equation (1.1.5), the last

condition in Theorem 1.3.7 may be translated to

|(f —E(fIBLV By))Layxa| < 1/F(M)V Ay € By, Ay € By

Let J = [2™ /] which is a large number and assume |V;|,|Va| > J where each By, By contains at

most 2M atoms. Subdivide each of these atoms into sets of size L%

sets of size (error term) O(|V;|/J) on each atom. Collect all error term into the set V; o, we obtain a

| with possibly remaining

decomposition
Vi=VioUVipU---UV

with |V; | = O(e|Vi|) + O(2M|V;]/J) = O(g|V;]). Our goal is to show that (V1 j, Vax) is a regular
pair for almost j, & > 1. Consider the induced bipartite graph (V7 ;,, Va j,, E N (Vi j, x Vaj,)). Let
Aq € By, Ay € By be atoms. We want to show

. |Eﬂ (Vle X ‘/27]'2)|

|Eﬂ (A1 X A2)| = |V1 Vo | |A1 X A2| + O(€|V17jl||‘/2’j2|). (1.3.3)
»J1 »J2

For this, it suffices to find d independent of Ay, A5 such that
‘E n (Al X AQ)‘ = d‘Al X AQ’ + O(glvl,jl"‘/?,j2|)' (1.3.4)

(To see this, take A1 = V1 j,, Aa = V3 j, in (1.3.4) and substitute in (1.3.3)). Now A; x Ajisin an
atom of By V Bg, one may take d = E(1g|B; V Bg). This is equivalent to

Vi Va5

_ 2
v = O

E(oevisva(1e =~ E(LpIBLV B2))1ayx, = O
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Now by our assumption (the conclusion of the functional graph regularity lemma),
E{1p — E(1g|By V By)1a, xa,] = O(1/F(M)).

Take F'(M) := 2*M /3 and since J = O(1), one has O(1/F(M)) = O(3/2?M) = O(¢/J?) =
Oc(1). Hence it suffices to show

E(‘E(1E|B/1 \Y 8/2) - E(1E|Bl V Bg) 1V1,1'1 ><V2,j2) = O(E/JQ) (1.3.5)
By Cauchy-Schwartz’s inequality, it suffices to show
2
E(‘E(1E|B’1 V BS) —E(1g|B1V Ba)| 1y, xvs,,) = O(e*/.J7) (1.3.6)
We have from our assumption that
2

E‘E(lE‘Bll V Bé) — E(lE’lgl vV Bg) = 0(63) (1.3.7)

So (£2/J%){(j1, jo) : (1.3.6) fails}| < e3. Hence all but O(eJ?) pairs (j1, j2) that (1.3.6) fails. [

We can prove the functional graph regularity lemma to prove functional triangle removal lemma stated
below. This theorem this says we can clean up a graph with a small number of triangles in a lower

complexity manner to make it triangle free.

Theorem 1.3.8 (Triangle Removal Lemma [100]). Let (X, ux), (Y, puy), (Z, puz) be probability spaces.
Suppose f1 : X xY — [0,1], fa: Y x Z — [0,1], f3: X x Z — [0, 1] are measurable functions.
Let ¢ > 0. Suppose

As(f1, fa, f3) 1:/X/Y/Zfl(CUay)fz(y,z)fs(ﬁﬂ,Z)d,uxd,uyduzSE

Then we can find measurable functions f1 : X xY — [0,1], fo: Y xZ — [0,1], f3: X x Z — [0,1]
such that || f; — szl = 0:0(1) for i = 1,2,3 such that f1fafs vanishes entirely, in particular

As(f1, fa, f3) = 0.

Finally, let us remark that there is also an arithmetic regularity lemma for functions f : [N] — [0, 1]
proved in [50] in terms of nilsequences. An application of this lemma in [50] is a proof of Bergelson-
Host-Kra’s conjecture [7]: If A C [N] has density « and let € > 0, then there exists >, . N choices
of h for which A contains at least (a* — ) N 4-AP. The case of 3-AP. is proved by Green [49] and it
is shown by Ruzsa in an appendix of [7] that the statement is false for 5-AP.
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1.3.2 Hypergraph Removal Lemma

Generalizing graph regularity to hypergraph regularity is not trivial. A strong version of hyper-
graph regularity lemma due to Vojta Rodl-B.Nagel-M.Schacht-J.Skokan [82, 83, 84, 85] and Gowers
[35, 36] allows one to prove hypergraph removal lemma and deduce multidimensional Szemerédi’s
theorem from that. The version we will use later is a stronger functional version due to Tao [104]. It
turns out that by consider a projection, we can deduce the general multidimensional Szemerédi’s the-
orem from the corner case (corresponding to d—regular hypergraph). This will not work for primes as
we don’t know if the projection of a prime point is still prime or not. Fortunately, we can use general
simplices in the prime cases, allowing us to apply the Linear forms conditions. In graph theoretical
term, as stated in [16]'”, the Linear forms conditions say that our hypergraph has the asymptotically

correct count for any 2-blow-up of its subgraph.

Recall a non-degenerated corner is a configuration of the form

{(z1,...,2q), (X1 + 8,22, ..., 2q), ..., (T1,Z2,...,xq+ 5)}
with s # 0, we state the corner theorem.

Theorem 1.3.9. If A C Z¢ has positive upper density then A contains a non-degenerate corner.

The corner Theorem can be proved via the hypergraph removal lemma on (d + 1)—partite d— regular
hypergraph. This is first observed by Solymosi in case d = 2 ([97]). First note that in a (d+ 1)-partite
d-regular hypergraph with vertex set X1, ..., X441, a simplex is a set of size d + 1 of d—hyperedges

{(@i)iclaringyh<j<d+

Lemma 1.3.10 (Hypergraph Removal Lemma [36]). In a (d + 1)—partite d—uniform hypergraph H,
for any € > 0, there exists 6 = §(g) > 0 where § — 0 as € — 0 with the following property: Let H
be a (d + 1)—partite d—uniform hypergraph with vertex set X1, ..., Xq11, | Xi| = N; with sufficiently
large N;. Suppose H contains < § Hfill N; simplices, then for each i < d + 1, one can remove at
most €[ | ot N; hyperedges of H from [ | ki X in such a way that after the removals, one is left with

a hypergraph which is simplex-free.

Proof of Theorem 1.3.9 via Lemma 1.3.10. Let A C [N]¢,|A| > aN? and consider the correspond-
ing hypergraph G4 on (Z/N)®*! (see section 3.1 for the construction with all weights are 1 in our
case here.) where we put a d-hyperedge (i, , .., i, ) iff all the corresponding d hyperplanes intersects

at a point in A. Then we see that each simplex in G4 will correspond to a corner.

Each corner may be degenerated to a single point in A but this can happen for only |A| = o( N¢+1)
of these simplices. Apply the hypergraph removal lemma with ¢ = aN~'d=! — 0, as N — oc.

Yactually a special case of Linear forms conditions
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Suppose G4 contains < &()N¥+! corners then for a sufficiently large N, € < 5q- So if A does
not contain a non-degenerated corner then by the Hypergraph Removal Lemma, we would be able to
remove less than aN¢ of d— hyperedges to make the hypergraph simplex-free but this is impossible

as | A has size > aN¢. O

Remark 1.3.11. We can ensure that the constant s in the corner can be choose to be positive by the
following trick due to Ben Green [36]: If we choose random point (x,vy) from [—N, N2, since A has
upper density o, we have P((z,y) € AN[—N, N|%) > ca for some ¢ > 0 and infinitely many N. If we
select a (fixed) point (a,b) at random, let B = AN (a,b) — A. Since |AN((a,b)— A)] = 14%14(a,b)
and”” ) )
W Z 1A * 1A(a, b)]‘[—N,N]d = W(Z 1A(CL, b))zl[_N’N]d Z C2C¥2.
(a,b) (a;b)
Hence if we replace Aby B = AN ((a,b) — A) then B = (a,b) — B and still has positive density for

some (a,b) and B is symmetric around A.

Corner Theorem = Multidimensional Szemerédi’s Theorem [36]. Suppose A C 7" has positive up-
per density. Consider the nontrivial case F' C Z", |F'| = k+ 1 > r+ 1. By the remark above one may
consider F' which is symmetric about some point. Choose a point 2z such that ¥' — z has one point
at the origin and A — z still has positive upper density. Also we may assume that span{F'} = Z":
Suppose span{F'} C V , a vector space of dimension » — 1. Let e, be a vector outside V' then
FuU{e.} C(VUA)xZ CZ". which has positive upper density. Then we may add vectors to F’ so
that span(F') = Z" without affecting the question.

Let {e1,...,e;} the standard basis of R”, and define a linear map ® that maps bijectively from
{0, e1,...e;} to F'. Now suppose span{¢(e1), ..., ¢(e,)} = Z" and we can find infinitely many posi-
tive integers M = M (N) — ocoas N — oo and @~ (A — 2) x [M — 1)*~" has positive upper density
n for some 1 = n(a, F) > 0 and is mapped into A — z so we can find a large M with at least nM*
points on [M — 1]* is mapped into A — z by ®.

Now we may apply the corner theorem to conclude that ®~!(A — 2) x [M — 1]*~" contains a corner
w + {0, ey, e, ...,ex}, ¢ > 0. So there is an affine image of F' = z + ®(w + {0, e1, €9, ...,ex}) €
A. O

20 if we choose (z, ), (a, b) independently, we can think of this as

P((z,y) € B) = P((z,y) € A)P((z,y) — (a,b) € —Al(z,y) € A) =P((z,y) € AP((a,D) € (z,y) — Al(z,y) € A) > ’a”
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Chapter 2

Goldston-Yildirim’s Sieve and Almost
Prime Solutions to Diophantine

Equations

In this chapter we prove the main result , Theorem 2.4.2 in section 2.4. We develop some backgrounds,

motivations and necessary tools in section 2.1-2.3.

2.1 Backgrounds and Some Classical Results

2.1.1 Basic Prime Number Estimates

Some results on sums of primes may be derived from the Prime Number Theorem using partial sum-
mation to convert sums involving an arithmetic function to an integral (see appendix A in [77]). Given
N > 1, the set of almost prime P-[N] is defined to be the set of positive integers up to N which only
have large prime factors, bigger that N¢. Note that each integers in P-[N] can have at most |1/¢]

prime factors.

Theorem 2.1.1 (Partial Summation Formula [77]). Let A(z) =), <n<z On then

1-

N N N
St = [ fwaa@) = [ i
n=1 0

We collect some well-known facts from analytic number theory (See e.g. chapter 2 in [77])
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Standard bound on the number of divisors:

d(n) < exp(—28"™ ) — O(nF) Ve > 0

loglogn

The set of primes is dense in the set of almost primes'.

’PO[N]

PN ‘ >

The Prime Number Theorem

m(2) = (1+0(1))

log

The Prime Number Theorem, equivalent forms:

Z logp = = + o(x), H p = ev(iFo))

p<z p<w

W = Hp:> W/p(W) = logw

p<w

1
Z — =loglog(10 +z) + O(1),z >0

p<zx

1 K
S P 1og" (10 +2), K > 0,2 > 0
p<z

If R(s) > 1,5 = 1+ o(1) then?

[Ta-p) =@ +o(1))(s—1)

p

2.1.2 Sieve Problems

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)

We briefly describe what the sieve method is, however only for motivation purposes as this section is

not required in the main text. We follow closely [107] and [25] in this subsection. Let P = [ |

p<z

p be

a squarefree integer, and D = {p|P : p < D} be a set of divisors of P. Let a,, be a finitely supported

sequence of nonnegative reals’. For each prime p, let E, be a subset of integers such that for each

"We actually don’t need this estimate, just for motivation purpose.

In Tao’s elementary approach with smooth compactly supported function y ,which we employ here, we would only need
(2.1.8) from the Riemann Zeta’s function. In previous approach [51] or in more technical approach in [110], more information of

Riemann’s zeta function or the zero free region is still needed.
Ye.g. an = 1j1,5)(n).
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deZs, Eg = NpjaLop (With By = 7). Define Xy = ZnEEd an. We wish to estimate, that is to find
upper/lower bounds of

> anlugs, o, (2.1.9)

By the Inclusion-Exclusion Principle, we can write the sum in (2.1.9) as >~ p u(d) Xq. However,
it turns out that the number of terms in the sum is too large causing the error terms to accumulate
too quickly. One can do better by truncating the sum, working in a way that only X, for d € D are
known or exploited. This is a linear programming problem and one can restate the problem using the

so-called linear programming duality.

Problem 2.1.2 (Sieve Problem). Define an (normalized) upper bound sieve to be a function vt : 7. —
R of the form v+ = > dep )\led for some )\;l" € R, such that

vt (n) > Lngu, pi, (7)), (2.1.10)

then the supremum of (2.1.9), subject to the condition that only X4, d € D are known, equals to the
infimum of

> M Xq, (2.1.11)
deD

where the infimum is over (/\3) that constitutes an upper bound sieve. Usually X ; will be of the form
g(d)X + rq where g is a multiplicative function, 0 < g < 1, X is a quantity independent of d and r,

is negligible when d is restricted to a small range D. Hence one is to minimize

> Mg(d)

deD

Observe that a sequence (\}) such that A\f” > 1,3 din Ay > 0Vn|P will form an upper bound sieve.
Such a sequence is called upper bound sieve coefficients. Analogue problems for lower bound sieves

may be similarly stated.

Now an important kind of upper bound sieve is the Selberg’s upper bound sieve developed by Selberg
in 1940s, see e.g. [15] . The idea of Selberg’s upper bound sieve comes from observing that if P is
any squarefree number and (pq)4) p are arbitrary real numbers with p; = 1 then (}_ dp PdlE )2 is an

upper bound sieve as it is 1 outside Upl p E,. Equivalently, the sequence

M= > papa, whered P (2.1.12)

dy,d2
lem[dy,d2]=d

is a sequence of upper bound sieve coefficients. Set D = R? and we assume that p, is supported
on D = {d|P : d < D}. The key advantage of Selberg’s upper bound sieve is that (pg4)1<q<r are
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real numbers and the sieve problem reduced to problem of optimizing quadratic forms. It turns out
Selberg’s sieve usually already gives good results compared to harder optimizing general upper bound

sieve coefficients.

We study the following choice of p4. The optimal Selberg’s weight is given by, roughly, by* 1u(d) log(R/d).
We will use the following variant obtained by Tao.

logd
log R

pa = p(d)x( ) (2.1.13)

where y is some smooth compactly supported function.

Finally we state an important lemma in sieve theory. This lemma may be used to derive formulas for
the number of solutions of various diophantine equations or counting patterns in almost primes, e.g.
one can prove the analogue of the Hardy-Littlewood almost prime tuples conjecture. See [107] for
details. One limitation of sieve method is that we can find asymptotic for system of linear equations
where the number of equations bounded by a set of parameters, contrary to more modern results

involving prime numbers[52].

Theorem 2.1.3 (The fundamental lemma of sieve theory ([107], Cor 19.)). Let z = D/s for some
D, s > 1. Suppose g is a multiplicative function and k > 1 (called sieve dimension) such that g obeys
the bound

K 1
g(p) < p + OH(I;), g(p) <1—cy.

for some small constant c,. In particular, for 2 < w < z,

v = [0 - o) % (122) ves

o log w

Let E,, be a set of integers and (an)necz be a finitely supported sequence of non-negative real such
that

> an=Xg(d)+r4, X >0, rg,€R, Eg=y4E,

neky

for all squarefree d < D. Then

Yo an=1+0(NXV()+0( Y |rdl).

ngU,<, Ep d<D;v(d)?=1

“This is a form used by Goldston-Yildirim in their works on small gaps in the primes.
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2.2 A Pseudorandom Measure Majorizing the Primes

In this subsection we construct a pseudorandom measure v similar that used in the original proof of

Green-Tao’s Theorem. This subsection is mostly for expositional purpose.

2.2.1 The W-Trick

The primes has the obvious structure that they can only live in some residue classes (for example,
no primes except 2 and 3 are in 2 (mod 6),3 (mod 6) i.e. they are not uniformly distributed). Let’

W :=1],<,p = e*, consider
PwaplN]:={1<n<N:Wn+becP}

We can see from The Prime Number Theorem in arithmetic progressions that Py is uniformly

distributed among residue classes (mod p), for all p < w. Using the correspondence
ACP[N] + A" := AN Py, [N/ W]
One is able to get rid of the local factors arising from small primes p < w while primes are much

more uniformly®. distributed on large residue classes.

There are two viewpoints one could think of W (see Theorem 2.2.1 below). First, we can think of W
as a function of x which goes to infinity sufficiently slowly. The error term in this case is of the form
0z—00(1). Another viewpoint, we could also think of W as a fixed sufficiently large constant and
the error term would be of the form 0,—00 z—00(1). The latter viewpoint is important in calculating

explicit bounds. To make this precise, we state the following theorem stated in [106].

Theorem 2.2.1 (Overspill Principle’[106]). Let F(w,x) : Zy x R — R then the following are

equivalent:

1. For a fixed € > ( there exists we such that for each fixed w > w.

|F(w,a:)] <e+ Ow,x—wo(l) = 0w—>oo,:v—>oo(1)

F(w,x) = 0z00(1)

whenever w = w(x) € Z is sufficiently slowly growing to infinity. (in the sense that there is a
Sfunction wy(x) : Ry — Z defined in the proof such that w(zx) < wy(x).)

3Indeed w cannot be bigger than log N
6Up to error term 0y — o0 (1).
"The name comes from non-standard analysis. We write out explicitly the parameters in o(1) in the statement.
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Proof. Assume (1), then for each natural number n, and w < n we can find z,, such that

2
F < —
[Fw,2)] < =

forallx > x, andn > w > w; /n- Define the function

n  where n is the largest integer such that z,, < z
wo: Ry = N; wp(x) :=
1 ifx < a2

WLOG, we may choose x,, in a way that it is increasing in n. Define

w(z) = W1/n ifzp1 <z <y
1 ifx <.

Hence w(z) < wo(x). Also F(w,x) = o(1).

Conversely, assume (2) holds but (1) fails. Then there is an € > 0 such that for any positive integer n,
there is w,, > n such that |F'(wy,, x,)| > € for arbitrarily large x,,. Letting w,, going to infinity, we
can find a sequence {x, } going to infinity such that |F'(wy, z,)| > € for all n. Since w(x) goes to
infinity, increasing x,, as necessary, we can ensure that w(x) > w,, for all z > x,, and all n. We see
that |F'(w, x)| > € at x = x,, for all n which contradicts (2). O

2.2.2 Pseudorandomness Conditions

In this section we construct a pseudorandom measure v majorizing the Mangoldt function A concen-
trated on primes. We prove certain correlation conditions which is a bit more general than the ones

obtained in [51], [52](see also the exposition [17]), however the proof is essentially the same®.

We defined the following modified Mangoldt function corresponding to W-trick. Let W = [, p, (b, W) =
1. Define

o) 1, - s ori
~ g(Wn+0b) if Wn + bis prime
Ap(n) =4 "

0 otherwise.

(2.2.1)

The factor ¢(W)/W is for normalized purpose; we have 1/N > Ay(n) = 1+0(1). We construct

a pseudorandom measure, by making use of the Goldston-Yildirim division sum [42]

Ap(n)= 3" pu(d)log(R/d).

dln,d<R

8A stronger analogue pseudorandom condition for v is obtained in [110] in particular they need the polynomial to stay in the
length about N so the range average over ¢ has to be of the form N°). This is a nontrivial bound on the size of ¢.
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Note that if N > n > R is a prime or more generally if 7 has no prime factor < R, then Ag(n) =
log R 2 A(n) ; choosing R = N for some 7 > 0. We state below two technical results which show
that the function Ar(n) is concentrated on the set of almost primes, i.e. numbers havong only large

prime factors. As we don’t need these facts for our main results, we omit the proofs.

Theorem 2.2.2. [81] Let N < R < \/N/q(log N)=C and q be a prime,q = R?,3 < co where

co, C' are suitably chosen. Then

> Ag(n) 2 0 > Ar(n

N<n<2N q N<n<2N
qln

In particular, if P(N") = [« nu p then

ZA<<—ZAR

N<n<2N 1 Nin<on
ged(n,P(N™))>1

In [52], the following variant of A is introduced,

log d
Ayr(n) = p(d)x( 1§gg ) 22.2)

din

The point is to replace log, (R/d) with a smooth approximation X(1284) where y is a smooth com-

log R
pact supported, bounded function. Then instead of using the contour integral, one can apply Fourier
transform. Then we can truncate the integrals over bounded interval obtaining error terms o(1) due
to smoothness of y and rapid decay of its Fourier transform. We will follow this more elementary

approach as opposed to that of [42] based on evaluating certain contour integrals.

Definition 2.2.3 (Green-Tao measure). Let x : R — [0, 1] supported on [—1,1],x(0) = 1,C, =

fo I (£)|2dt which we may assume to be 1. Let R = N¥'2"° | > 3. Let¢ > 0 be a small

constant. Define vy : Zny — R

d(W) A\, r(Wn+b)? .
vp(n) = W) X(};X 1023 ifeN <n<2N 023
1 Otherwise

Remark 2.2.4. Note that v, = I/ISN) depends on N but we will not write script N for simplicity.

Sometimes we also drop the subscript b as all our estimates are independent of it.

We summarize important properties of v:

— In general v could become unbounded as N — oco. However, by the so-called linear form

32



conditions (see Definition 2.2.5 below)
Eyv(z) =1+ 0(1).

— We have
A(n) <k v(n).

To see this”, we may only check n for which Wn + b is prime. Then A, g(Wn +b) = log R =
k~=127%k=5]og N. Now assume N is sufficiently large (and w is sufficiently slowly growing or
constant) then

k712 %5 log N > k7127 Clog(WN +b).

Then

W W W
k_12_k_6¢(vv) log(Wn +b) < k:_12_k_6¢(vv) log(WN +b) < ¢(VV) log R = v(n).

— If Wn + bis prime in, say, [e1N,e2N]| then v(n) ~y log N. Here we may choose W to be a

(large) constant.

Now we describe the pseudorandom conditions we will need later. The first one roughly says that if
the linear forms L; are not rational multiple of each other then the events that L;(z) + b; are almost

primes are independent.

Definition 2.2.5 (Linear Forms Condition). Let myg,tg € N be parameters then we say that v satisfies

(mo,to)— linear form condition if for any m < mg,t < to, suppose {a;j}1<i<m are subsets of
1<j<t

integers and b; € Zn. Given m (affine) linear forms L; : Z; — Zy with L;(x) = Zl<j<t ai;x;+b;
for 1 < ¢ < m be such that each L; is nonzero and they are pairwise linearly independent over

rational. Then

Brezt, [ v(Li(%) +b:) = 14 0n00moo(1) (2.2.4)
1<i<m

This is a very general phenomena. Two important special cases are given below.
Example 2.2.6. ||v — 1||?]dd = o(1), where || - ||;7a is the uniformity norm discussed in section 1.1.1.

Example 2.2.7. If f < v then consider the dual function defined in (1.2.1) associated with || - ||;r2
norm then
Do ()] < By + )+ Bwla +a+b) = 1+ of1)

This is referred as bounded dual condition'’, saying that the structural component (used in [51]) in

the decomposition is bounded.

9W-trick is essential here, we don’t expect this to holds for prime itself with pseudorandom v as primes are not uniformly
distributed among residue classes.
1 This is the only application of linear form conditions with nonzero constant terms in the original Green-Tao’s proof[51].
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Now we state the so-called correlation condition which control some kind of mild correlation of Ag
by functions 7. 7 itself may not be bounded but it has bounded moments. The proof of linear forms
condition and correlations for v are not much different, this may be harder for primes. Roughly

speaking we have for h # 0,

Eyv(z)v(z+ h) < 7(h) =~ exp( Z 1/Vh).

p>w,plh

Note that if h has a large number of divisors then 7(h) can be arbitrarily large. As opposed, there is a

strong kind of correlation that we cannot control, i.e. higher moment of v,
E,v(z)? ~log N — oc.

Definition 2.2.8 (Correlation Condition). '! We say that a measure v satisfies (mg, m1, ..., my,)—

correlation condition if there is a function T : Z — R such that
1. E(m(2)™ :x € Zn) = Opm(1) forany m € Z.
2. Suppose

- ¢, P cZ = Zn(1 <@ <, 1 <k <ol + 1o < myg) are all pairwise linearly
independent linear forms over Q.
- Foreach1 < g <l3,1 < j < j" < 'mgwe have a? + O,andagg)@b(g)(x)—i-h(.g) a(.,g)¢(g)(x)+

J 7
hgf? ) are different (affine) linear forms.

then, we have

la my

Hmk T < [ 3 T<w<agf>hg.k>_agk>hgé>>+<agif>_agk>>b)

k=1j=1 k=11<j<j5'<my,
(2.2.5)
where W =11, p.
Lemma 2.2.9. Let B C 74, be a box of length > R'M where M = momy ... my,, R = Nk
then
TRy (@ (k)
Exer H A g (x) + ) T TT AWV - (a5 ™ (x) + 1) + b)? (2.2.6)
k=1 k=1j=1

— (14 OB ) exp(On(1/)) (5 2 T T+ 0wt
k=1p|Ag

"'"This lemma is first invented in [51] to prove dual function estimates with K arbitrarily large.
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where
Ay = H (W . (ag-]f)h(-k) — a§k)h§-l,€)) + (ayg) - a(k))b)
1<5<y/ <my

and
M =mog+mq+---+m;

mo mj
M) = J LU In,, I =44} forj <mo, I, = (Mj_1, Mj]
j=1 j=1
i ifielj,j<mg

»®) =
' W& if e Ik > mg

Now we verify this lemma as in [51] or [17]. Write

W(Z)Z'(X)—I—b ifiEIjajSmQ
bilx) = (]) () | (k)
Wia; ;" +h;”)+b if i € Iy, ,my > mo.
Expand LHS of (2.2.6)
k
Exen H H Ax,R(ei(X))2 2.2.7)
mo 1€l
M loga;.  logb; M
= Z HM(Gi)M(bz‘)X( ) x( l))ExeB(Hlai,biéi(x)(x)>
abenM < paie} log R log R Py
Observe that only the last term depends on x. Recall D = Iem|ay, by, ..., ax, by < R?M and B

has each side of length > R1°M | we can approximate
g pp

M M
EXEB < H 1ai,bi‘9i (x) (X)) = EXEZE (H 1ai,bi|9¢(x) (X)> + O(R_SM)
=1 i=1

To see this, consider a slightly smaller box B’ whose the lengths of all its dimensions are all divisible
by D and the length of each side of B’ differs from the length of the corresponding side of B by
O(R?*M). The total error in 2.2.7 when changing average in B to average over B’ (which is the same
as the average in Z,) is O(IO%QGJZR)

For X C [M], define the local factor

wx (p) = Bxezs, [ [ Losx0=0 (mod p)»
iex
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wx = EertD H lahbiwi(x), D= lcm[al,bl, .. .,CLM,bM].
1€X

Let D = p; ... pp. Using the Chinese Remainder Theorem, we rewrite the system of equations
0;(x) =0 (mod a;), 6;(x)=0 (modb;), 1<i<m

as

0i(x) =0 (mod p;), 1 <i<m,1<j<h.

Hence

wx = wa(p).

We have the following local factor estimate that will be used later.

Lemma 2.2.10. [Local factor estimate]

1. wy(p) = 1.

2 p<w, X #0=wx(p)=0.

3. X[ =1=wx(p) =1

4. Suppose p > wand X C I, |X| > 1. If p|Ay and | X| = 2 then wx (p) = p~ . If p|Ay and
| X| > 2 then wx (p) < p~ L. Ifpt Ay, then wx (p) = 0.

5. Ifp > w and 3k # ko such that X N Iy, X N I, is nonempty then wx (p) < p~2.

Proof. (1) is trivial. (2) follows from the fact thatif p < w,j € X then W - (agk) wj(-k) =+ hg-k) )+b=
b# 0 (mod p). Tosee (3),if p > w, X C I}, |X| = 1,say X = {j}, then we can write

-1

p

wx(p) = Exezg1W.(a§k>¢<k>agk>+h§.’“>)+bzo (mod p) —

To verify (4) and (5), assume |X| > 1 and j, ;' € X since

pIW - (a6 + 2) 4 b, plw - (@S + h) + b

Then p|W - (a§-k)h§-k) — aﬁk)hg.]f)) + (agp — aﬁk))b so p|Ay. Hence pt A, = wx(p) = 0.
Now assume p|Ay, then the condition that p|#;(z)Vi € X and |X| = 2 could be reduced to p|6;(x)
for some j € X if p > W, p > a;Vi € X, which is true if w is chosen sufficiently large. Hence

wX(p) - EXEZZ H 1W~(a§k)1/1<k)a§k)+h§k))+bEO (mod p)
eX

— _ 1

o EXEZ;1W-(a;k)w(k)agk)Jrh;k))erEO (mod p) p
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If | X| > 2 then we can crudely bound this by wyj,;) for some j, 4" chosen so that p divide the factor

in A corresponding to 7, j'.

Now we verify (5). Assume j € X N 1,,5' € X N1,. Fori = 1,2, write
1 2

t
aff M (x) = 7 Ly e
s=1

as p { W, our condition becomes
t
ZLki,sxs =W lp— W_lhg-fi) (mod p), i=1,2.

By our assumption that (Ly, s)1<s<t, (Lk,,s)1<s<¢ are not rational multiple of each other, we claim
that they are also linearly independent over Z,. Assume indirectly that Ly, ¢ = L, s (mod p) for
some rational r. Then

ai/bi =re;/d;  (mod p).
Hence for each 1 < i < t, A = (a;d;)(bic;)™" (mod p), i.e. aibibic; = biciaid; (mod p). But if

wl/4

w is sufficiently large so that |a;|, |b;], |c;|,|di| < “5—. then |a1dibc; — biciaid;| < |aydibici| +

|bicra;d;| < w < p. Hence a1dib;ic; = bicia;d; Y1 < ¢ < t. This is a contradiction. Hence the
set of solutions of #;(x) = ;(x) = 0 (mod p) is contained in the intersection of two skew-affine

subspaces of Z!, and hence has cardinality < p'~2. O

Now let ¢ be the inverse Fourier transform of e®x(x) i.e.

:/¢(t)€_w(1+it)dt
R

Since e*y(x) is smooth and has compact support, ¢ is smooth and rapidly decays. In particular, for

any A > 0, [¢(t)| = Oa((1 +t)~4). Let I = [—/Iog R, v/Iog R] then

log ¢

X(

1OgR) /c s 74 (1)dt + O(c™ /108 R log=4 R) (2.2.8)
I

for any A > 0. Observe that x (53 loge 7)) = O(cfﬁ), hence

M
log a] logb ()P (y;) A ~1/log R
H logR logR / /H Ltia; 1+zz dl’ady + Oa(log™ RH ajb;) /08

j=1 logRblogR Jj=1

Substitute this into (2.2.7). The error term can be shown to be o(1) for large enough A. Indeed, using
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that Exezt 1o, 5,10, (x)

x)v; i8 1if a;,b; = 1Vj and < 1/p otherwise. The error term is given by

M
—A —1/1o
D Baery Lo, b,00,0v0i0alog™* R [ (a;05) /18 )
ai,biEN j=1
squarefree
M
S/A (log R)_A H Z [ExGZ’;laj,bj\Gj(w) Vj H —1/lg R
P a;,bie{1,p} Jj=1
< (logR)_AH(l +pt Z (a1by...aprbyr)~ Y 108 Y
p ai7bie{17p}
= (log R)™* [t +p7 (/8% + 1)*M — 1)]
p
< (log R)fA H(l _pflfl/logR)2M
p
(apply (2.1.8)) = (log R)~“¢(1 4 1/log R)*™ = O(log R)~2M~4 = o(1)
where A > 0 can be chosen arbitrarily large. Denote
14 iz 1ty
L= Loy = o 2.2.
i~ logR "’ log R 2:2.9)

The main term in (2.2.7) becomes

/ /Z H(er’fﬂla“bwm )

a,bcNM p
where
M
> TT (s Tt T #2202
a,beNM p i=1 j=1

is the Euler product, where the Euler factor is

>

a,be{1,p}M

By

i @)

Jj=1

M
(EXGZé H ]'(Zi ,bi |01
i=1
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Define a more convenient Euler’s factor

m

I
E, =

(P — 1)(p" Y — 1) ﬁl— (1 —p ')

1+z! 4y’ —1 z -y
7j=1 p(p J J j=1 J

From (2.1.8), we have

, (1+0(1) 1 (1+ia)) (1 + i)
l;IEp_ H 2+mj+zyj]'

Define F}, = E,/ E,, we have

Lemma 2.2.11.

B B 1+o(1 —i—zx] 1+iy‘)
e

Next, we use that!?

// 1 —|—’L$j +iyj)¢(wj)1/1(yj)d$jdyj = /X,<t)2dt = 1.
R

2+ i(xj +yj)

The main term becomes

f /TI Ill*”% (03] i oy ez (1 4 0(1) o™ R

2+i(zj +y;)
1 )Y 5
)T £ 1os™ //*“%ngmwwmmW
p
(1 +ix;) (1 + iy,
DI Fylos ™ //Qﬁ%+$%mwmmm+mwf

= (1+0(1))log™™ RH F,

p

To find asymptotic of ]_[p F,, we apply the local factor estimate.

Lemma 2.2.12 (Euler factor estimate for Linear forms condition). We have

B, =(1+0(p™?))E,

2This follows from the identity

.1 _ /Oo o~ (L)t ,—(L+iy)t gy
24T + 1y 0

39



and moreover'3,

logw M logw
Fp = exp(Om (1/w)) (14+0(—==)) W/ (W N = (W/p(W))M (140 (1/w)1+0( ))-
pl;{) P Viog R Vieg R
Proof. Recall notation z7, y; defined in (2.2.9).
B= Y (=)o (p)
’ 1,JC[M] poer Tt iies Vs
i 11 1 5 Om(p™)
= wy(p) — <z1+/—x//>+ - 7
pr i I A e tTiN M AR
M r/‘ /.
_ PP +ph —1 —2
- _Z< i)+ O
N 12 14 = O((log R)-1/2) and E/ — [TM @706 —1)
ow recall [z}, [y;| = O((log R)™"/*) and E, = [, N We compute
M M
P 4% — 1 - —1-af I _
Fp:Ep/Ez/?:( — 1+a:+y 1_[1 )p 1(1—2?1 )" (1_ o Y) 1+O(P 2)
j= j=

=1+ OM(p72).

Now

[T +0m»™?) = exp(On (D p7?) = exp(On(1/w)).

p>w p>w

For p < w, E, = 1, whereas if |2;| = O(log™"/? R) then 1 — p~'=% = 1 — p~'exp(—2z;logp) =
1= p~ 1 (14 0(|z;|logp)) = (1 = p~1)(1 + O(ZLEL)) applying this with 2; = x;, 1, 25 +y;, we

have
—1-af—y; 1
E/ 1 -p J
1 HH A=) HH (1= 1/p)(1 +0(1=]5%)
logp
pll [ (plogl/QR))

The Lemma follows by recalling that [ [, ,(p/p — DM = (W/p(W))Mand

H(1+O(pl(l)(:gg1/p2R)) :eXp(\/ljﬁO(Z logp)) — exp(O( log w ).

p<w

3Here the term (W/¢(W))™ comes from primes p < w.
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Lemma 2.2.13 (Euler factor estimate for the correlation conditions).
E,=(1+ O(p_Q))E;D when pt Ay for all k.
E,=(1+ O(p_l/Q))E]’D when p|Ay, for some k.

[1 5 = exp(Ou(1/w))(W/o(W))M (1 + O ) I a+oe™?)

p plAIAk

Proof. The first statement is similar to the first part of Lemma 2.2.12. Assume p|Ag, using x;., y} =
o(1), and applying the local factor estimate (Lemma 2.2.10), we have
(-1) [+

_ _ ~1/2
EP =1+ O(l/p) Z Ziel x;'_"ZjeJy; =1+ O(p / )
1,JC[M],1UT#0 P

M / / M 1! 11—
PR ) R R S ) )
" j=1 p(p1+$9+y9 -1)

j=1
=1+0(p %)
O
Now define 7 = 7y : Zy — Rx0,7(0) := exp(Tq2d) so [v][4 < 7(0). Define r(n) =
On(n) [Ty (1 + O(p~1/%))9m() One estimates
[Ta+oue?)=" 1] ¢ 11 (1+Om(p~/%)
plAk ISISISM pw.[(aly) R —al* B, )+ (ak, —a) o]

IN

H H (1 +p71/2)0M(1)

<i<jy< k k k
LSI<TSme - [(a) Rk —af k) + (0%, —al) o]

<ou(1) Y 11 (14 p~1/2)0u )

<3< 1< k k k
LSI<I<M pw [0l hE—a 1k,) +(ak, —a{)p)

k k k
< N rW-(@Prk — ok + (ah — o).
1<i<j<M

Now we verify



Since 1/,/p — 0,p — oo then (1 + O(p~1/2))Om(@) < 1 4 p~1/4 for all but finitely many p.

Eocpnj<n (] J(1 +0(p7172)))% @ < O g(DEocnn [[(1+27*) < Orrg(DEo<n<n (> d ™)

plm pln din

N
= Ou, (1) Y d™* = Onrg(1).
=1

Lemma 2.2.14. v satisfies the pseudorandomness conditions (2.2.4), (2.2.5).

Proof. We follow the argument in [51]. First by clearing the denominator (in Zy, IV is prime), we may
assume the linear forms have integer coefficients with coefficient bounds from & to k(k!) < (k + 1)
Choose w sufficiently large so that (k + 1)! < /5. To prove (2.2.5), we just use the trivial bound
viz) <1+ %AR(&(X)) and apply Lemma 2.2.9.

To deal with the two-part definition of  and to get the asymptotic of the form 1+ o0(1), let @ = Q(NV)

chosen to be a small power of N such that N/Q > R'®M we subdivide Z'; into Q' roughly equal

sized boxes

uiN - (ujr1) N
Q Q

Then |Buy,....u | = (N/Q + O(1))" = (N/Q)'(1 + O(Q/N)). Then

ut:{er’}V:xje[L

Ll

|1}, where u, ..., u € Zg.

-----

1

Exezt, 1(91(x) - v(6m(X)) = Groray > Y v(1®). . v(dn(x)
(u1,...,ut)€Z€Q XEBuq,...uy

.....

up is mice if ¢;(By, . u,) C [exN, 26, N| Vi. Since N/Q > R'M applying
Lemma 2.2.12 (in particular, Lemma 2.2.9), we obtain

We say that a box B,

-----

up nicey(¢1(x)) s V(¢m(X)) =1+ OM(l/w)

,,,,,

(we could replace each v with either 1 or %A%).

Now we claim that the proportion of the number of boxes that are not nice is O(1/Q). Suppose
u, 18 not nice then there is a linear form ¢y and x,y € By, .4, suchthaty(x) € [eN,2eN], 9 (y) ¢

-----

[eN,2eN]. Hence by continuity, either « = 1 or 2, one has

t
aeN = ZLJ»L]\S”J +b+O(N/Q).
j=1
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Hence

t
b
Z Lju; = as@Q + FQ +0(1) (mod Q).
j=1
For any choice of u, ..., us—1, the number of choices of u; is O(1). Hence the number of non-nice

boxes is O(Q'~1). If By, .4, is not nice, then using the trivial bound v(z) < 1 + %AR(&(X))Q,
we obtain
uy DOt nice = exp(l/o(w))(O(l) + 0(1))

.....

Hence
Exezi v(01(x)) ... v(0m(x)) = Euezé [ExeBu nice”(01(x)) ... v(00(x)) + ExeBy notnice?(01(x)) ... v(0a1(x))

= 515 [Qt(l + O(1/w) + O(logw/+/log R)) + O(Qt_l) exp(Onr(1/w))(O(1) + of1
— 14 0(1/w) + O(logw/\/Iog R) + O(1/Q(N)).

Here R is small power of N, Q(N) is a power of N. O(1/Q) may be neglected.

The correlation condition for v can be verified in the same way from Lemma 2.2.13 (in particular

Lemma 2.2.9) and the definition and properties of 7.
O

2.3 Birch-Davenport’s Circle Method

The main objective of this section is to prove the Theorem 2.3.4 below whose proof is a simple

adaptation of arguments of Birch [11]. We may skip some details that are the same as in [11].

2.3.1 SetUp

Denote ||z|| the distance of x to the closest integer.

Let F = (Fy,..., F,) be a system of » homogeneous forms of degree k on Z?. We are particularly
interested in the case k > 2. Let Vr = {x : F(x) = 0} C C?, we define Vi C Vg, the singular
variety of F, to be the set of points such that Jacr, the Jacobian of F, drops rank.

Let us introduce the notation
Ry (v) = #{x € [N]?: F(x) = v}.

Ry (M,s;v) := |{x € [N]%; x =s (mod M), F(x) =v}|.

For a family of integral forms 7 = (Fy, ..., F,) in variables x’ € Z4, write x* = (2%, ...,2%) and
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Fi(zh, ... o) = Z cé-h___,jd(xil)jl () (2.3.1)
0<ji+-+ja<k

We may write it as a symmetric form:

Fl(xll,,a;fi) = Z aﬁl’m’ikm’él :cik
0<i1,...,i1<d
with k!aél,...,ik € Z. Define a symmetric integral d—linear form on x%, ..., x*; x = (21,...2%):
di(x!, ... xF) = k! Z aﬁhn_’ikxill . xfk (23.2)
0<i1,...,i1 <d
Then
EFy(x) = ®'(x, ..., x). (2.3.3)
For a € [0, 1]", define the exponential sum
Sn(M,s, @) =Y 2mal(Mxt=)g\ (Mx + ) (2.3.4)

x€Z4

where ¢ is the characteristic function of [0, N]¢. Recall the notation A} f(x) = f(x + h) — f(x)
then
KIALFi(x) = k®'(x,...,x,h) + Ry_a(x,h) (2.3.5)

where deg(Ry_2) (in x) < k — 2. Hence

RIAL LA Fi(x) = K19 (x,h" . h') + Ro(h) (2.3.6)
Here
d'(x,h!, ... hF 1 = > ab; o wihd . BETL =N (! e,
1< i15eyik—1<d 1<j<d
(2.3.7)

Definition 2.3.1 (Rank of F; defined by Birch [11]). '* Let F = (F,...,F,) be a system of r
homogeneous form of degree k. The Rank of F is the codimension of the singular variety V£, the set
of points z € C? where the Jacobian OF |0z drops rank.

We will write
codim(V%)

K = o1

“There is also a notion of Schmidt rank [94]. Let F be a single homogeneous polynomial, the Schmidt rank is defined to
be the smallest integers h such that we can find homogeneous forms 77, ...,Th, R1,..., Ry of positive degree such that ) =
TiRy + - -+ Ty Ry,. Note that if Q = Y./ T;R; then Vyg < 2h.
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Example 2.3.2. If F'(x) = Ax - x is a quadratic form i.e. A is an integral symmetric matrix, then
VF(x) = Ax, Vi = Ker(A), codimVj = rank(A).

2.3.2 The Circle Method

Theorem 2.3.3 (Birch’s Theorem). Let F be a system of r homogeneous integral forms of degree k
in d variables. Suppose K > (k — 1)r(r +1),N > 1, then

RN (V) = NTF o (v)J(N~Fv) + O(N4F=¢)
for some € > 0, where

o(v)= ] o)

p prime

lim p_r(d_l)#{x € (Z/p)d : F(x)=v (mod p")}

O-p(v) - 7—00

J(u) = Jx(u) is the singular integral defined in (2.3.31).
Recall from [11] that the singular series has a positive lower bound independent of u if we can find
nonsingular solutions (mod p) for every p. The singular integral .J(u) > ¢(d) > 0 independently of

N, provided that the equation F(x) = u has a nonsingular real point in the cube [5, 1 — §]%, see [94]
Section 9 and [11] Section 6.

Theorem 2.3.4. Let F = (Fy,..., F,) be a family of integral forms of degree k > 2 satisfying the
rank condition
Rank(F) > r(r 4+ 1)(k —1)2~! (2.3.8)

and for given M € N and s € 7%, recall that

Ry (M,s;v) := |{x € [N]%; x =s (mod M), F(x) =v}|. (2.3.9)

Then there exists a constant &' = §'(k,r) > 0 such that the following holds.

(i) If0<n< m then for every 1 < M < N and's € Z% one has the asymptotic
Ry (M,s;v) = N M4 J(NTFv) ] op(M,s,v) + O(NTH0 M), (2.3.10)
P
(ii) Moreover if
Rank (F) > (r(r + 1)(k — 1) + rk)2" (2.3.11)
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then the asymptotic formula (2.3.10) holds for n < m

In the remaining if this subsecton, we describe the proof of Theorem 2.3.4.

Proof of Theorem 2.3.4

Recall that ||x|| is the distance of x to the closet integer. The first lemma is an exponential sum

estimate analogous to Lemma 2.1 in [11].
Lemma 2.3.5. Let 1 < M < N and s € Z%. Then
k—1 d
[(N/M) =4SN (M, s,0)* " < (N/M)~* > [ min (N/M, [ M*zj0- W0, 051
hl,.. . hk=1l¢[-N/M,N/M]dj=1

where the it" component of the multi-linear form ¥ j= (\Ifé)f:l is given by

i 1 k—1y _ 1.1 i 1 k—1
Vi(x,h', .. h" ) = k! E AT Y SRR | b
1<g1,jk—1<d

Proof. We will invoke the following simple inequality: Let I be an interval of length at most N/M
and S € R then

1> e < min{N/M, ||8]| 7"} (2.3.12)
zel
Write
F(Mx +s) = MFF(x) + Gars(x), deg(Gas) < k (2.3.13)

and note that

N f@)P =NTINT de f(z+h)

z€[N]4
Applying this k£ — 1 times, we have

2]@*1
(N/M)=4S (M, 5, )2 ](N/M 3 Eria (M) (M + 5)

x€Z4

(N/M)™ Y b B PN L Ay g(Mx +5)

< (N/a)~bd S

hl,. hk-1

By (2.3.13) and (2.3.6), we calculate

ZX+

d
P ALF(Mx 4 8) = MFAL AL F(x) = MFY 2050 kT
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and one may verify that Ayi—1 ... Apign(Mz + s) = Ounless h',... h*~! ¢ [-N/M, N/M]%.
Hence

. d
2k—1 H

j=1

(N/M)ASN (M5, 0)* " < (N/M)~™ >,

h',..hk—1e[—N/M,N/M]d

< Z e2m’M"’ S airj\Il;(hl,A..,hk_l)> ‘
T

The result then follows from (2.3.12). ]

In the next step we will use the above lemma to divide S* into major arc and minor arc. The argument

follows directly as in [11]. We sketch the argument below.

Given 7,y > 0, define the following sets

R((N/M)", (N/M);q)
= {0, B b e [N/, (/M) [ MEa Wy W) < (N/M)TT V< G < dY.

Now for fixed h?, ..., h*~! consider the following map from R? to R?
h — (MFa - U (h,h2, ... h* Y, .. Mo Ty h? .. h* ).
Define the following symmetric convex body
Box = Bg gz, ni—1 = {(6,y) 1 x € [-Q, Q) [y—M*a- U (x,h?,... W )| < K~'V1 < j < d}

We have R((N/M)", (N/M)™";a) = |{(x,y) € Z** : (x,y) € B(N/M)WV(N/M)ﬂ}‘. Now we state
the following fact which says that this set is essentially d—dimensional object.

Lemma 2.3.6 (Davenport [21] Lemma 3.3, [22] Chapter 12). Let L > 1 then
122" OV Br-inr -y vyt | 2 L7220 Byag(vjany -1 |

Applying this lemma repeatedly in h*~1 ... h' respectively (with other h’ fixed at a time) with
L= (N/M)'=% 0 < 0 < 1, one obtains

R((N/M)?, (N/M)~F 09 ) > (N/M)~E=DI0-OR(N/M, (N/M) ) (23.14)

Now subdividing [—3, $]¢ into small cubes H;lzl [Nl/—JM, ;\%1/[] of size 1/(N/M). Observe that if two

points
(ng Wl(hl’ o ‘7hk71)7 o 7MkQ \Ild(hlg .. -,hkil))a

(M*a - @y(h,h? ... W5 Y, o MPa - Ty(g, b2, ... hP )
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are in the same cube, then one has

1
Mfa-Wjh—gh? . . W< ——1<j<d
H a ]( g ’ ) )H—N/Mv =]
Hence the number of h!, ... h*~!suchthat (M*a-Wy(h!,... h* 1), ... MFa-Uy(ht,... hF 1))
are in a given cube is bounded above by R(N/M, (N/M)~!; a) for every cube. Hence

d

f (o s) s 5

j=1 hl, . hFk

! }
la ;L 0F )|

d
H min{N/M,

i=1

>

hl,. .h*

(2.3.15)
S RIN/M, (N/M)"5a) (> (1/0)"

1<i<N/2M
< (log(N/M)?R((N/M),(N/M) ';0)  (2.3.16)

Combining Lemma 2.3.5, (2.3.14) and (2.3.15), one obtains that for 0 < 6 < 1,

(/M) |Sn(M,s, ) < (N/M)~ D9 106 (N /M) x (23.17)

x [{h',... hF "t e [—(N/M)?, (N/M))? . | MFa - T (ht, ... Y| < (V/M)TFHEDI v < 5 < a)

Sexlhlxsj >

has rank 7, i.e. there is a non vanishing r x r minor, which we may assume to be (\Ilé»)lgigr. Let g
1<j<r

denote the absolute value of the determinant of (\P;)lgigr, since the degree of \I/; is k — 1, we have
1<5<r

1 <q < (N/M)"* =10 Then
Hqug . \I’j(hl, o 7hk—l)H < q(N/M)—k—l-(k—l)@ < (N/M)—k+(r+1)(k—1)9
Then as in [11], we can find integers ay, ...,a, such thatfori =1,...,r

‘quai . ai| < (N/M)kar(kfl)rH

Now we divide the torus T" = (R/Z)" into “Major arcs” and “Minor arcs”. The major arcs is defined

as

M(0) = U U May(0).

1<g<(N/M)(E=1)r0 (a,q)=1

Here (a, q) = gcd(aq, ..., ar,q) and
Meag(0) :={a € [0,1]"; |M*a; — a;/q| < ¢~ (N/M)FHED w1 <4 <)
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The minor arcs m(#) is defined to be T"\ M (¢). The name comes from the fact that even though
minor arcs contributes most of the arcs on the “circle”, the contribution to the integral is small from

minor arc which we will verify now.

It is easy to see that \Iié-(z, ...,2) = (k—1)19;F;(z). Define A := {(z,--- ,2z) : z € C?} C C4*~1)

which is isomorphic to C9. Assume the first » — 1 columns of (q/;-)lgigr are linearly independent,
1<5<d

let Wg C C*~14 be the locus of points satisfying the equations saying that the remaining d — 7 + 1
containing these r column is zero. Hence A N Wg = V7 and hence codim(A) + codimWg >
(k —1)d — dim(V£) where codim(A) = (k — 2)d, so

codim(Wg) > codim(VE).

Now if a ¢ M () then we estimate the size of the set on the RHS of (2.3.17) by
ZAE=D A [=(N/M)? (N/M)P1 D 0 W,

which is |(N/M)~0Z)4 k=1 0 [—1,1]* =1 N W | by homogeneousity. We estimate this by the
)"

-
number of radius p = ¢(N/M)~? needed to cover [—1, 1]“*~1) N Wg. We use the following lemma.

Lemma 2.3.7 ([34], Chapter 7). Let W C C™ be a homogeneous algebraic set of topological dimen-
sionland 0 < p < 1. Then W N [—1,1]™ can be covered by cp~" balls of radius p.

We obtain the minor arc estimate

Lemma 2.3.8 ([11], Lemma 3.3). If {M*a} ¢ M(0) then for every T > 0,
1SN (M, s, )| < (N/M)*= R0 (23.18)

Proof. This is similar to [11]. Suppose M*a ¢ M (6) then by (2.3.17), we obtain

(N/M)~Sn(M,s,a)|* S (N/M)~ D0 [(=N/M)° (N/M)* 170D 0 W 0 290D g (N/M)
S (N/M)fd(szl)e(N/M)Gdim(Wq>)+T
_ (N/M)—Ocodim(V]’_i)-i-T

as required. O

Lemma 2.3.9. Let 0 < 0,e < landlet0 < n < er(1 — k= 1)0. Suppose M < Nt then for
a ¢ M(0) one has uniformly ins € 74

1S (M, s, 0)] <r (N/M)* 14947 wr > 0 (2.3.19)
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Proof. If M*a € M, 4(f) (mod 1) then there is ¢ < (N/M)"*~1 and a; € Z such that (a;, q) =
1and |M*a; — a;/q| < ¢~ (N/M)~*+(E=Dr0 Hence

o — /1| < g H(N/M) TR0

for some q; < M*(N/M)®* =179 and (a, q) = 1.

Now since M < N T+7,we have M < (N/M)"hence q; < (N/M)kmtrk=10 < (N /pp)(Ate)rk=1)0,
This implies o ¢ M((1 + €)8). By contrapositive and Lemma 2.3.8, one has (2.3.19). O

The first application of Lemma 2.3.9 is the following estimate for Gauss sums.

Lemma 2.3.10 (Gauss sum estimate). Let g € Nanda € Z" and (a,q) = 1 and s € Z%. Define the

Gauss Sum
.a-F(Mx+s)
Sag(M,s) =Y ™ 0 (2.3.20)
xeZd
Thenif1 < M < qi, one has the following estimate
d————5K 47
|Saq(M,s)| $7 ¢ TFarGE=DT" (Y7 > 0) (2.321)

In particular, taking M = 1,¢ — 0 in (2.3.21), one has
d——Es+r
Saq(1,8) = sa4(1,0) Sy ¢" 70D
Proof. Note that
Saq(M,s) = Suq(M,s,a/q)

Also, if r(k — 1)8 < 1then forall 1 < ¢ < ¢"*=V¢ < gand (a’,¢') = 1,

2 i’\ L O )
/1 — / /q
g ¢'"qd ¢

This implies & ¢ M(). Since M < q¢/*, choose 6 so that r(k—1)0 < 1, since M < (N/M) k=1
one has
M < qi < (N/M)er(l—k71)9

Hence M < (%)’7 where 7 := er(1 — k~1)# which is the assumption of Lemma 2.3.9. Applying this

lemma, we have for each 7 > 0,

|Saq(M, )] Sr ¢! T4 <, g TG T
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Now we will show that the minor arcs contribute little to the integral; this holds if codim(V%) is large
enough which we will assume. We will apply Lemma 4.4 in [11] (see Lemma 2.3.11 below) to our

situation, we make the following assumption

codim(VF)

K= 2k—1

> (14 e)r(r+1)(k—1) (2.3.22)

Then we can choose small positive numbers 9, 8y satisfying the conditions

54 2r(r+2)8 < 1 (2.3.23)

200, < K(14+e) ' —r(r+1)(k—1) (2.3.24)

If 0 is small enough so that & > 2r(k — 1)6 then, as in [11], we can verify the following facts from
the definition of the major arcs.

- Ifa/q # d' /¢’ then My 4, My o are disjoint (from condition (2.3.23) ).
_ |M(9)| < (N/M)—rk+r(r+1)(k—1)6

We choose 0 = O < O0r_1 < --- < 0y and write

T-1
MO = M) U | MON\MG1)

=0
Using the two facts above and the size of Sy (M, s, ) to bound the integral as in [11]. We use the
bound on Sy (M, s, ) and (2.3.24) to show that integral over M () is O((N/M)4=*7=%). We can
also show that the integral over M (0;)\ M (0;+1) is O((N/M)d_rk_%‘;), say, using the bound of
|M(6;)| and size of Sn(M,s, ) on M(0;41). Choose |0;1+1 — 6;] not too big and T" <5 1, see [11]
Lemma 4.3. We obtain

Lemma 2.3.11 ([11], Lemma 4.4). Let 6, 0q satisfy (2.3.23)-(2.3.24) and 0 < n < e(1 — k™).
Then for1 < M < Nﬁ and s € 7% one has

/ Sn(M, 5, ) dax g (N/M)Mr=0
ag¢M(0)

Additionally, if
n<o6/Mr (2.3.25)

which is equivalent to —d + (Mr +9)(1 — ﬁ) < 0. Then as in the above lemma,

(N/M)d—Mr—§ _ Nd—MTM—dN—éMMT—I-(S < Nd—]\/[rd—nN—é—l—(Mr—i-ﬁ)n(l—&—n)*l < Nd—rM—(S’M—d
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for some 0’ > 0. Hence under assumptions of Lemma 2.3.11 and equation (2.3.25), one has

Ry (M,s,v) = / e MV G (M, s; a)da = / e~V G (M, s; ) da+O(NETM =9 pp—d)
S1 M’(Qo)
(2.3.26)
for any set M'(6p) 2 M (6y). Define M’ (6y) as follow:
M (6y) = U L) M, (60) (2.3.27)
1<g<(N/M)rk=1D0% (a,q)=1
M ,(00) = {a € [0,1]"; e — a;/q| < (N/M)~FFrE=D 1 < j < p} (2.3.28)

Now for given o € M;, (o), we can write

a= a/q+é7 |ﬁ|oo < |(N/M)|_k+r(k_1)90

Then if o € My ,(0o) we can give an estimation of Sy (M, s; «) in terms of the singular series and

the singular integral.

Lemma 2.3.12. Let 0 <n < 3, M < N s € 74, Then for o € My ,(60), we have

Sn(M,s;0) = NOM~q=28, ,(M,s)[(N*3) + O(NI-1+2ntr(k=1)0 p—dy (2.3.29)

where

I(y) := /Rd e%ilf(y)l[o,l]d(Y)dy

Proof. Write x := qy + z with z € [0, ¢)%. We have

-a-F(Mz+s)

Sn(M,s,;a) = Z 2 Z ezwz‘g-F(ny+Mz+s)1[07N]d(ny +Mz+s) (2.3.30)
z€Zd yezd

Now for t € [0, 1], using that the arguments in the functions are bounded by < N and recall that
q < (N/M)"®k=Db N < (N/M)", we have

le(B- F(s+ Mz +qM(y +1t))) —e(f- F(s+ Mz +qMy))|
S8 (F(s+Mz+ qMy + gMt) — F(s + Mz + ¢My))|o
Sk ’/B‘OONkilqM

< (]\?/M)kar(kfl)ngNkfl(N/M)r(kfl)eo (N/M)"

< N-kHE=D)r00+(k=1)+r(k=1)00+n _ n—142(k—1)r00+n
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where we used N/M < N. Now observe that

ON(s+ Mz + gMy) # ¢(s+ Mz + ¢My + gMt)

< yeFE:= <[O,N/qM]d — (s—l—Mz)/qM)A([QN/qM]d — (s—i—Mz)/qM—t).

Since we can write E as a union of d boxes with one side has length O(1), the number of y for which
oN(s+ Mz + gMy) # ¢n(s + Mz + gMy + gMt) is bounded above by |E| < (N/gM)? 1.

Hence we can replace the inner sum with the integral, with the error

‘/ . 627rigf(ny+Mz+s)1[07N]d(QMy + Mz +s)dy — Z e?mﬁ-}—(ny-l-Mz-%S)]_[O,N]d(ny + Mz +s)
MAS d
YEZL

> / o (e(ﬁ.f(s+Mz+ny+th))¢N(s+Mz+ny+th)
yeZd te N

- e(ﬁ-f(s+Mz+ny)¢N(s+Mz+ny)>dt‘

DS

yeE Y¢E

S (N/qM)dfl + (N/qM)dN71+2r(k71)90+17 — O((N/qM)dN71+2r(k71)90+7])'

/ [ }d(e(é-]-"(s—l—Mz—Fny—qut) - e(ﬁ-]:(s—i-Mz+ny))dt¢N(s+Mz+qu)‘
tef0,1

By a change of variables N~!(¢My + Mz +s) — y, we have
/ ) eQWiB'F(ny+MZ+S)1[07N]T(ny + Mz +s)dy = NdM_dq_dI(Nké)
yeR”

Substituting the estimate in (2.3.30) and summing over z € Z¢, we have (2.3.29). 0

The Singular Integral

Let 4 € R" and ® > 0. Recall I(7) := [pa eZWil'F(Y)1[071}d(y)dy, write

J(p; @) = / I(y)e ™2 kdy
|'Y|oo§q>

J(p) := lim J(u; @) (2.3.31)

d—oo

Lemma 2.3.13 ([11], Lemma 5.2, Lemma 5.3, section 6). J(u) exists, continuous and uniformly
bounded by

| iy <0
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Furthermore if F(Mx +s) = v has a nonsingular real solutions in [5,1 — 6]% then J(N~*v) >
c(0) > 0.

Proof. (Sketch): Let B be a box of size less than 1 and A € R". Define
I(B,)) = / e2TAFY) gy = (N/M)d/ 2miN/M)"EXF(Y) gy
B (N/M)B
Then the claim in Lemma 2.3.13 follows from the bound
L te
[I(B,A)] S Co(14 |A|oo) ®-Dr (2.3.32)

To see this bound, assume |A|o, > 1 in the I(B, ). Let & = (N/M)~*) and choose 6 so that
Aoo = (N/M)"* =18 Thus, we have o € M 1(0) is on the edge and o ¢ M(0') V&' < 6. Apply
the bound on minor arc of 6" and use the fact that & € M 1 (6) with (2.3.29) to estimate the sum by
the integral. Note that r(k — 1)§ < 1if N/M > mié’“ Since o ¢ M(#'), we have

__ K
1Sn (M, 5,0)] < (N/M)™(N/M)¥lafoc) T < (N/M)TH AT

and as in the proof of Lemma 2.3.12,

(N/MYHT(B, A) — Sy (M,5,0)] < (Jaloe(N/MEY(N/M) + (N/MY! < <]'§/‘§><N/M>d.

. , I ~ o .
Choosing large enough N that is N/M > |Ao V" so that % < Ao """, we obtain

__K
[I1(B,))| < \A\oo““*”"‘ﬁ
O

To see that .J(u) is positive, first consider the contribution of singular points; cover [0, 1]¢ with boxes
of sidelength 8. cover C' = VN[0, 1]% with < §=%™(VZ) cubes of size 6. We can show using (2.3.32)
that the contribution from these cubes is < 6¢~#=4"(VZ) which is negligible if d > k + dim(V3)
which can be verified. Now we consider only non-singular points y. Let B = [0, 1]%\C. Take local

coordinate 1,41, . . ., uq such that the Jacobian

O(f1y-eoy frotlrg1y. -, uq)
8(1’1,. . .:vd)

|Jacr| =
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is a nonzero. Following the calculations in [11] Lemma 6.3 (skipping some technical details),we have

s = [ emety)

where dor = dSr/|Jacr|. Here dSr is the surface measure of F(y) = u.

Let Bs be the closed ball, suppose yo € (0,1)%the interior of [0,1]¢, yo + Bs C [0,1]% is such
that F(yo) = u,|Jacr(yo)| # 0. Then |Jacz(y)| > ¢(d,yo) > 0 forally € yo + Bs and
{F(y) =u}n{yo} + Bsis a d — r dimensional surface with positive measure. Hence

dSr(y)
N (Fy)=uin{yo}+B; |Jacr(y)| (F,30)

To get the bound independent of y(, we need such non-singular yo € [6,1 — §]? (a closed set in the
interior).
The Singular Series

We define the singular series

S(M,s;v) =D g4 D e Saq(M,s) (2.3.33)
q=1

(a,9)=1
We have by the assumption (2.3.24)

26 K
rk—Df " A+ or(k—1)

—r—1

Then using the Gauss sum estimate (2.3.21) and recalling M < N ﬁ, one has

2
> Y a7 Saq(d ) Sr > g TR S (N/M) TR S N o N

g>(N/M)rk=1f (a,q)=1 ¢>(N/M)r(k=1)0
(2.3.34)

Hence the infinite sum defining &(M, s; v) is absolutely convergent.

Finally we analyze the singular series.To express it in terms of the density of solutions in Z.
Theorem 2.3.14 (Singular Series). Consider the singular series

cav a-F(Mx+s)
&(M,s;v) = Z N eI S g(M,s), Sag(M,s)= Y M@ L (23.39)

q=1 (a,q)=1 x€Ld
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We have
| | op(M,s,v) where o,(M,s;v) = llim aj(ol)(M,s; V)
—00

&(M,s,v)
p prime
where
a}ﬁ(M, s,v)=p W |{x e Zgl; F(Mx+s)=v (modp")}|

The infinite product converges absolutely and uniformly in v and the singular series is positive if oy, is
positive for all p. A sufficient condition is that F (M x+s) = v has a non-singular solution (mod p)

for every p.
Proof. (Sketch) Since the summand

q*def%i% Saq(M,s)

is multiplicative in ¢ (by multiplicativity of Gauss sum), we can formally write

&(M,s,v) HapMsv

p prime
where
(0. ]
. oAy
op(M,s,v) = g p~md E e T Sa pm (M, 's)
m=0 (apm)=1

If p is sufficiently large,we may apply the Gauss sum estimate (2.3.21) together with assumption

(2.3.22), we have

op(M,s,v) =1+ Z O(p(

m=1

I mEE ™ = 1 0(p?) (23.36)

for some ¢’ > 1 and hence the product is absolutely and uniformly convergent in v. Finally, we do a

routine calculation as in [11],

l
( (M, s;v) :Zp Z e_2m’”Sap (M,s)
m=0 (a,pm)=1
! (2.3.37)

pil (d—r) |{X c Zzl;}“(Mx—i—s) =V (modp )}|

Now to verify positivity, by the bound (2.3.36), we have

‘ H UP(M7S’V) - 1| SJ Z ‘O-P(M7S7V) - 1| <p

p=>P p>P

7675//>0
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Next we check the positivity of o,,(M, s, v) for small p if there is a nonsingular solution (mod p).

Arguing as in [11] or in the proof of Lemma 2.4.5 below shows us that this is indeed the case. O

Now we can prove the main theorem of this section.

Proof of Theorem 2.3.4. First we claim that if 0 < ¢ < 1 satisfies € < W —1andn > 0such
e 1 K~ (Lt r(r+ (k1)
— L 4e)r(r+ —
< ————— min {¢, 2.3.38
1S G ok e k(1 E o) s (2:3:39)
then (2.3.10) holds for 1 < M < N7 and s € Z°.
If we have this claim, since K > r(r 4+ 1)(k — 1) we have € > W -1> m then
K—-(Q+er(r+1)(k-1) S 1
rk(l+€) ~rk
Hence choosing € slightly larger than Mm, one has n < m by (2.3.38). Now

under assumption (2.3.11) that K > 2r(r + 1)(k — 1) + 2rk, we take e slightly larger than 1 then

n < m. So we now only need to verify the claim.

Set the parameters 6 and ¢ as

1 6

g = —— §H:=
O (r+2)k+ 1 2

K
Toe r(r+1)(k—1)}

Then 6, § satisfy (2.3.23), (2.3.24). Set 7 as (2.3.38) above. We have

n<el—k1)0 and n < k™1t

Hence the condition of Lemma 2.3.11 and the condition (2.3.25) are satisfied. Also note that

k—1 1 1 3 1
2r(k—1)6 < < 1— )< =
rk=Dbo+ns e T hrror S et W <3
Hence
‘MI(Ho)’ < (N/M)(T+1)T‘(k‘fl)90*7‘k+r’l7 < Nfrk+2/3 (2.3.39)
By (2.3.26) we have (for some §' = ¢'(r, k) > 0),
Rn(M,s,v) = Z Z / e~V G (M, s; a)da + O(NFTF=9 pr=d)
g<(N/M)" D% (ag)=1 "M (24)
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By Lemma 2.3.12 and the size of major arc (2.3.39), this becomes

NdM—d< Z q—de—Qﬂia'Tv Sa,q(Ma S) / e—27rié-vI(Nké)d§+O(Nrk—%+2r(k—1)00+:

q<(N/M)'r(k—1)90 |ﬂi‘S(N/M)_k+T(k_1)GO

Rescaling 8 := N k 3, this becomes
Nd”“Md< ST e S g (M, )T (N TRy ME(N /M) D00y O(Nﬁ’)>
g<(N/M)rk=10%

Applying (2.3.31) and (2.3.34) we have

Ry(d,s,v) = N©* MG (d, s; v)J(NFv) + O(N*=9 pr=2y (2.3.40)

as required. O

2.4 Almost Prime Solutions to Diophantine Equations

For0 < e < 1and N > 1 let P.[N] denote the set of natural numbers m < N such that each prime
divisor of m is at least N°. Note that each m € P.[N] at most |1 /| prime factors. We call sets of
the form P.[N] “almost prime”. For given v € Z9, let

ME[N] = [{x € P:[N]%; F(x) = v},

denote the number of almost prime solutions = € [1, N]? to the system F(x) = v. Let sz denote
the multiplicative group of reduced residue classes (mod p'). Let M (p', v) represents the number

of solutions to the equation F(x) = v in Ugt.

For each prime p, define the local density

(2.4.1)

(V)= B

provided the limit exists. As almost primes are concentrated in reduced residue classes, the general

local to global principle suggests that

ME[N] ~e N©H (log N)~ I (NFv) [[ o5 (v), (2.4.2)
p

as N — oo where J(u) is the singular integral. Our main result in this section is the following.

Theorem 2.4.1. Let F = (F1,..., F,) be a system of r integral forms of degree k > 2 in d variables
such that
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Rank(F) > r(r 4+ 1)(k — 1)2~ 1, (2.4.3)
Then there exists a constant € = £(n, k) > 0 such that

ME%[N] = cq, N*F (log N)"LI(N"*v) [ [ o5 (v). (2.4.4)
p

Moreover, if F(x) = v has a nonsingular solution in U,, the p-adic integer units, for all primes p,

Ha;(v) >0
p

then

The key to prove Theorem 2.4.1 is to study a weighted sum over the solutions with weights that are
concentrated on numbers having few prime factors. Such weights have been mentioned in section 2.2
which we recall here. For given 0 < 1 < 1, let R := N" and x is some smooth compactly supported

functions, define low d
0g

Ar(m) = d .

r(m) = ul )x(logR)

dlm

We will also employ the “W -trick” to bypass the contribution of small primes in our initial asymptotic
formulas. Let w = wr > 1 be a fixed positive integer depending only on the system F and let
W :=[],<,, p, the product of primes up to w. Note thatif x € P, [N] and p|x; implies p > N > wr
for sufficiently large N, hence (z;, W) = 1 foreach 1 < i < d. We will write (x, W) = 1 in this
case. Under the conditions of Theorem 2.4.1 our key estimates are the following

Theorem 2.4.2. Let F = (F1,..., F,) be a system of r integral forms of degree k > 2 in d variables

satisfying the rank condition (2.3.8). Let 0 < n < 4r2(r+1)(7"1+2)k(k:+1) ,R=NTand W = Hp<w
Then one has
Z A%%(iﬁlﬂéé e xg) = N Tk(log R H o, L+ onw—oo(1)),
x€[N)4 pIW
(x,W)=1, F(x)=v
(2.4.5)
moreover for given ) < € < n
Z AL (zyxg - xq) S — ° Ni- *(log R)? H o, (2.4.6)
x€[N]4, x¢Pe[N]4 " pIW

F(x)=v

In the proof of Theorem 2.4.2 we will use the asymptotic for the number of integer solutions x € [N]¢
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to F(x) = v subject to the congruence condition x = s (mod M), where M is a small modulus

bounded by a sufficiently small power N This is summarized in Theorem 2.3.4.

2.4.1 Local Factors of Integral Forms

The following proposition summarizes the properties of the Euler factors we will need. Recall the

density of solutions in p-adic numbers,

op(M,s,v) = lim Uz()l)(M,S,V)

[—o00

where
o(M,s,v) =p " {x € 2 : F(Mx+s)=v (modp')}|

Define the Euler’s factor that will appear in the asymptotic of the sum of in (2.4.5).

’YP(V) = ) Z 1p\31...sd0p(p7sav)
sczd
F(s)=v (pmod D)

The key property we will need is

Proposition 2.4.3. If F is a family of r integral forms of degree k such that rank(F) > r(r+1)(k —
1)2’“ then for all sufficiently large primes p > wr we have

d
(V) = ot O(p~?) (2.4.7)

We start with a simple observation on the local densities of solutions.

Lemma 2.4.4. Let M, W be square free numbers such that (M, W) = 1 and let p be a prime. If
(M, W) =1 then
op(MW,t,v) = op(v) (2.4.8)

If p|M and t = s (mod M) then one has
op(MW,t,v) = op(p, t,v) = op(p,s, V) (24.9)
The analogue statement indeed holds when we interchange M and W'.

Proof. For any | € Zy, since (p', MW) = 1, we have the transformation x + MWx + t is a
bijection on Z;fl. Hence

Hx € Zzl :F(x)=v (modp)} =|{xe Zgl cF(MWx+t)=v  (mod p)}|
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We have (2.4.8). Next assume p|M then M = pM’ with (p, M'W) = 1 then one may write M Wx +
t = p(M'Wx) + t and note that x — M'Wx is a bijection on Zgl hence

{x € Z]‘jl cF(MWx+t)=v  (mod ph)} = |{x e Zzl cFpx+t)=v (mod p)}|

which establishes the first equality in (2.4.9). To see the second equality of (2.4.9) we write py +t =
p(y +u) + s where y — y + u is a bijection on Z;ll. O

Recall that if the local factor o, (p, s, v) does not vanish then F(s) = v (mod p). We call a point

s € Zg non-singular if the Jacobian Jacr(s) has full rank r over Z,. We show that under this rank

condition, it is easy to calculate az(ol) (p, s, v) explicitly.

Lemma 2.4.5. Let s be a non-singular solution to F(s) = v (mod p). Then for all |,

r

o (p,s,v)=p

Proof. We do induction on [. For I = 1, we have F(px +s) = F(s) = v (mod p) for all x € Zg.

Hence aél)(p, s,v) =p". Forl = 2, we count x € ZZQ satisfying

F(px +8) = F(s) + pJacr(s) -x =v (mod p?).
Since F(s) — v = pu for some u € Z¢, this is
Jacr(s) - x = —u (mod p).

Since Jacx(s) has full rank, the above equation has p™~" solutions in Zg and p?"~" solutions in ZZZ.
Hence 02(72) (p,s,v) =p".
For | > 3, we show

o(p,s,v) = ol V(p,s,v)

Now if x =y (mod p!~!) then px +s = px+y (mod p') then F(px+s) = F(py +s) (mod p).
For giveny € Zﬁl_l, we can uniquely write y = p'2u + z with z € ZZZ_Q and u € ZZ. Then

Flpy +s)=F@p'" tu+pz+s) = F(pz+s) +p' Jacr(s)-u  (mod p') (2.4.10)
Hence F(py +s) = v (mod p') implies
Flpz+s)=v (mod p'™t). (2.4.11)

The number of such z € Zﬁ,_g is p~® x p(lfl)(d”)azgl_l)(p, s, v). For a given z satisfying (2.4.10),
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write F(pz +s) = p'~'b 4 v, then (2.4.10) holds if and only if
Jacr(s)-u=—b (mod p) (2.4.12)

Since Jacz(s) has full rank r over Zg, the number of solutions of (2.4.12) is p?~". Since the decom-

-2

position y = p'~“u + z is unique it follows that

al(,l) (p,s,v) =p 4 x |{x € Zzl;}"(px +s)=0 (mod pH}
=p ld=pd » |{x € Zzl,l : Fpx+s)=0 (mod p")}|
= pUd=n)pdy=dp(i=Dd=1) G 1=1) (g )=

=ol"V(p,s,v)

as required.

O]

For singular values we can only obtain an upper bound for o,(p,s,v). If s = v = 0, we have
F(px) = p*F(x) = 0 (mod p') which has ~ p{t=F)(d=7)+kd solutions in ZZl and hence a;(,l)(p, s, V) &

kr
.

Lemma 2.4.6. Let F be a family of r integral linear forms of degree k, assume the rank condition
codim(VE) > r(r+1)(k —1)2% +1 (2.4.13)
then uniformly inl € Nand s € Zg, one has
ngl) (p,s,v) < pr% (2.4.14)
Proof. By (2.3.37), we have

b-F(px+s)
m

Sb,pm (p7 S)

l
VAT SR SR

(bi,p)=13i

here Sy, ,m is the exponential sum defined in (2.3.20). If m > rk then the Gauss sum estimate (Lemma
2.3.10) applied with € = 1/r and K = codim(V})/2k~1 gives

SOY p M Shm(pes)| S S g T TS ST 2 <

m>rk bEZ;m m>rk m>rk
(bi,p)=13i

for sufficiently small 7 = 7(r, k) := (

% — 1 > 0 (i.e. sufficiently small V7). Here we apply
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the condition (2.4.13); here 7 is the constant such that
codim(V3) = (r — 7)(r + 1)(k — 1)2F 1
Now using the trivial bound p~™4|S}, ,m (p, s)| < 1. We have

_ 2 -b»]—'(;r;rachrs) 2
oV ps,v)=Y" > p e Sym(ps) O < > p SpF
m<rk bEZ;m m<rk
(bi,p)=13i

This proves (2.4.14).

2.4.2 Proof of Theorem 2.4.3

Since 0,(v) ™! = 1+ O(p~2) for all sufficiently large prime p, it suffices to show that (2.4.7) holds
for o, (v)vp(v). Now use Lemma 2.4.5 to write

(V) =p " D 0508 V)
F(s)=v (mod p)

- p_d Z 1p|51_,_5d0p(p, S, V)
F(s)=v (mod p)

= p_d Z 1p|51...sdap(pas7v) +p_d Z 1p|51...sdap(p7 S,V)

F(s)=0 (mod s) F(s)=0 (mod s)
s non-singular s singular
_ o —d+r —d+r
=p Z 1p|51...sd -Dp Z 1p\s1...sd
F(s)=0 (mod p) F(s)=0 (mod p)
s singular

+p7d Z 1p‘51...5d0p(p's7v)

F(s)=0 (mod p)
s singular

=7 (V) + 7, (V) + 7, (v)

Now we need the following facts from algebraic geometry on the singular variety when consider

reduced (mod p).

— [95] The codimension of singular variety does not change when the equation defining the va-
riety are considered (mod p). Let V(p) denote the locus of singular points s € Z¢ of the
(mod p)—reduced singular variety Vr(p) = {s € Zg : F(s) = v} then

codim(VZ(p)) = codim(VF)
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for all but finitely many primes p.

— ([61], Prop. 12.1) The number of points over Z, on a homogeneous algebraic set V' is bounded

above by its degree times pdi™ V',

From these two facts, one has
V()] S pi=ertim(V)

where the implicit constant may depend on n, k, r. For sufficiently large p > w. Also we state some

more facts from algebraic geometry which we use later.

Lemma 2.4.7 ([19] Cor 4.). If F is a system of  forms then for any subspace M j of codimension |J|
one has
rank(F|a,) > rank(F) —r|J|

Lemma 2.4.8 ([20], Prop 4.). Letv € Fj and S = F ~L(v) where F : IF'g — [, is a homogeneous
polynomial map of degree k then

H]-S o pirHU’“ < (l{i - 1)2_kdp2_k(rfcodim(v]’f-))
In particular

_ _ _ _ —k(p_ : *
=Sl =p " = l11s —p " lor < 11s = p " s Skap® MY (2.4.15)

Apply lemma 2.4.6 one has for i = 2, 3,

i —d+r2k —d+r2k, d—codim(V: 2k— 1)(k—1)2k-11 —2
(V) Sp ) Ljsy.sq S p 4t kptmeodim(VE) < prikmr(r ) (k1) Sp
F(s)=0 (mod p)
s singular

For each .J C [1, d] define the coordinate subspace My = {s = (s1,...,5sq) € Z : s; =0Vj € J}.

by inclusion-exclusion principle, one has
d .
BV =Y Y Y Ty (24.16)
j=1 | J|=j s€M,
From Lemma 2.4.7 and our assumption on the rank of the system F, one has that for2 < |J| < r+1,

rank(Fla,) —r > r(r+1)(k—=1)2F —r(r+2) = r[(r4+1)(k—1)2" — (r+2)] = r > 2% (2.4.17)

Applying Lemma 2.4.8 to the system F restricted to the subspace M; = Zg_j , then one obtains
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rank(]—'\]\/[J)fr

P s e My F(s) =Vl = 14 Opalp # 0 T) =140 Q418)

for some &’ > 0. Hence from (2.4.16), we have

d r+1
(M) =p Y Y Lreg T Y T Y Y Lreey
k=1 SEM{k} j=2 |J|=7 s€M;
d
R 2D DECS VD B D FIRE.
J=r+2 |J|=j s€M;

For the second term corresponding to 2 < j < r+ 1, by (2.4.18), the total sum contributes O(p_j ) =
O(p~2). For the third term we use the the trivial fact |M;| = p?~/ < p?="=2 and hence the third term

also contributes O(p~2). Hence

d
—ddr -~ d _
(V) =p" "> Y 1rgv + 0@ ) ==+ 0(p?)
k:1SEM{k} p

as required.

2.4.3 Sums of Multiplicative Functions

Let (b, W) = 1 and furthermore let us assume the conditions of Theorem 2.4.2 holds. Define

SNwp(v) = S AR(m@a. . wa)lp Nja(x) (2.4.19)
x=b (mod W)
F(x)=v
and for a prime ¢ > w,
SN,VV,b,q(V) = Z 1q|x1...di%%($1x2 s xd)l[o,N]d(X) (2.4.20)
x=b (mod W)
F(x)=v

First we show that these sums could be written in terms of Euler factors and Goldston-Yidirim sums.

The proof invokes Theorem 2.3.4.

Lemma 2.4.9.

/
Swp(N) = N IINTFW S wn(v) > hp(R)yp(v) + O(NT %) (2.4.21)
D;(D,W)=1
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Swab(N) = N I(N W 96wp(v) Y hp(R)ypg(v) + O(N9) (2.422)

D;(D,W)=1
where
Swp(v) == [[ op(p.b,v) [] op(v) (2.4.23)
pIW ptW
_ op(p,s, v
IYD(V) =D d Z ]‘D‘Sl...Sd H pgp(v)) (2424)
sezd, plp P
F(s)=v (mod D)
logd;, logds
= 24.2
ho(R):= > wld)p(d)x(G X G 7) (2.4.25)
[d1,d2]=D
Proof. By definition (2.4.19),
SW,b(N) = Z A%(I1$2 cee xd) 1[0’N}d(x)
x=b (mod W)
F(x)=v
B / logdy,  logds
= S 1paa®) D p(di)u(da) x( log R Ix( logR)
x=b (mod W) d1,ds
F(x)=v [d1,do]|x12q
/ logdy,  logds
= Z Z p(dr)p(dz) x( )x( ) Z 1pjeyzq 10,34 (X)
D di,da log I log It x=b (mod W)
[d1,d2]=D F(x)=v

(2.4.26)
Since (b, W) = 1, the inner sum of the last line of (2.4.26) is zero unless (D, W) = 1 which we as-

sume from now on. The condition x = b (mod W) and D|x; ...z, depends only on x (mod DW)

thus one may write

Z 1Dz zq Lo, n1e(X) = Z 1ppt ..ty Z L1, N (x)

x=b (mod W) tezd, t=b (mod W) x=t (mod DW)
F(x)=v F{#)=v (mod DW) F(x)=v
(2.4.27)
O
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Since D < R? < N#, apply Theorem 2.3.4,we can write (2.4.27) as

Z 1D|t1...td (Nd—kr(DW)—nJ(N—kv) H Up(DVV, t, v) + O(Nd—k:r—d’D_d)>

teZdy, t=b  (mod W) p
F(t)=v (mod DW)
(2.4.28)

First we estimate the contribution of error term in (2.4.28) to the sum Sy (/N). By the standard
number of divisors estimate, we have that the number of pairs d;, dg such that [dy,d3] = D is <, D7
for any 7 > 0. Also since  is supported on 2 < 1, the sum in D is restricted to D < R?. The

contribution of error term is given by

ST Nd*k?“*(slwd Z DT 5 Nd*k?“*(slwdRQNT S Nd*kT*(S//Q (2429)
D<R?

for a sufficiently small 7. (here we may think of WW as a fixed large constant.)

Now to calculate the main term using the Chinese Remainder Theorem. For each t € Z%W satisfying
t = b (mod W) , there is a unique s € Z% such that t = s (mod D). Hence suppose F(b) =
v (mod D) then F(t) = v (mod DW) is equivalent to F(s) = v (mod W). Hence, applying

Lemma 2.4.4, we have

Z ]-D\t1...td H Up(pa b,V)HO’p(p,S,V) H O'p(V)

t€Z%, t=b  (mod W) pIW plD pDW
F(t)=v (mod DW)

= o(p.b.v) [[ on(v) > | (w (2.4.30)
pw P

pIW sez4, p|D
F(s)=v (mod D)
Hence (2.4.19) follows from (2.4.26)-(2.4.30).

Now to show (2.4.20), we do the same calculation with D is replaced by Dg = [D, ¢ in (2.4.26).
Hence (2.4.27)-(2.4.30) remain valid with D replaced by [D, q]. Now we have to calculate (asymp-
totically) the sum

Sw(f,v) = Z/ p(V)hp(R) (2.431)
D:(D,W)=1

This could be done by sieve methods, as in [42], [106]. We will follow the approach in [106] and then

adapt it to give the asymptotic for the sum

Swy(fiv) == ZI YD,q (V)hp(R) (2.4.32)
D:(D,W)=1

which will be needed in the concentration estimate (2.4.5).
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Lemma 2.4.10 ([106], Proposition 10). Let yp(v) be a multiplicative function (in D) satisfying the
estimate (2.4.7). Let x(x) = f(z) = (1 — )10 then

W o0
Sw(r) = (S o) [T 02 e b o) 243
Furthermore, for a prime q > w,
_d . o(W) “d [T @ @ logq .o ¢!
Swie(fs) = q( W log R) /0 (f\“DNz)—f (x—i—logR)) = 1)!ciac—i—ow_>(>o(1) (2.4.34)

Proof. Since f(z) = (1 — x)wd hence e” f(x) is compactly supported and 10d — 1 continuously
differentiable. Denoted f () the Fourier transform of e” f (z). Hence

@] S @+t~

Recall the formula

Substitute this into (2.4.25), swapping the sum and integral due to rapid decay of fl, fg, one has

1+7,t1 1+ito .
p(R) = /R/R D uld)ulda)d, T dy EE f(1) f(t2)dtrdts = / / gp(t1,ta) f(t1) f (t2)dtydts.
drd

[d1,d2]=D

(2.4.35)
The function gp(te, t2)yp (V) is multiplicative in D and by rapid decay of gp(t1,t2) in t1, t2, one has

ST an(t )i (v) = [ (1 + gt t2)7p(v)).-

D:(D,W)=1 p>w

Substitute this into (2.4.31) gives

w (o) = / / H( )2l l@fﬁtz)ﬂtl)ﬂw)dtldta (2.436)

p>w log R p log R p log R

Using the asymptote of vy, (v) (2.4.7), one has the following estimate via Taylor’s series of log(1 +¢€),

W) W), W) S i
IOg 1- 11)+it1 - Il)+it2 + 2+[:t1+it2 < 3dp log it - O(p )
p log R p log R p log R
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Now by the well-known asymptotic '

Zpil*ﬁ = loglog R + O(1)
p

Hence the integrand in (2.4.36) is bounded by
C(log R)* (1 + [t1]) 1L + [t2]) 71
Integrating over |t2| > v/log R,

/ / (log RY¥(1-+]t1]) 01+ |t]) %t — O(log— R / (1+|t2])~2dts) = O(log— R)
[t2|>+/Iog R JR [t2]>+/log R

The same holds for |¢;| > /log R. Hence

Vv Vv Vv ~ ~ _
Swir = [ / (1—”%’&-3 ), ) )f<t1>f<t2>dt1dt2+o<log 1R)
|t1\§\/logR \t2|§\/long>w plogR plogR P log R
(2.4.37)
OJ

For s > 1, define

Gw(s)=[[—p)" =) [TA-97)

p>w p<w

Apply (2.4.7) (asymptote for v,(v)), we have that

L) ) ) N
H 1+ity 1+ity + 24ity fitg |

p>w p log R p log R p log R

d d d 9
<1 o p1+51 o p1+52 + p2+51+52 + O(p )>

d d d _9
(1 5 = ot + s )14 067%)

d d d »
(1 B p1+s1 B p1+52 + p2+51+52) H(l + O(p ))

p>w

w

=
Vv

3
V
€

ks
vV

w451 +s2)?
w1+ s1)%Cw (1 + s2)¢

(1+0useo(l))  (2438)

where s = 1+ %:;%752 =1+ }:gig. On the range [t1], [t2| < v/log R, we have s = 1+ O( 1olgR)'

3

5This can be seen by taking log of the following equation obtained from the simple pole with residue 1 at 1 of the Riemann’s
Zeta Function.

H(l— 1 )Z 1 _ 1
preir ) 1+ pig)  logR+0(1)

P
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For each fixed w, letting NV and hence R goes to infinity, we have

[T0-»=TTa - +om = 1o
p<w p<w
Hence using that ¢(s) = (s — 1)~" + O(1)
w(s) = T =) = (B 1 o(1) (1 + o)
p<w
= LA o o) o)
A+ 1)

Substitute this into (2.4.38) and (2.4.37) gives

w 1+ it (1 + itg)?
w(f,v) = (¢(W,)logR / ( . 1.) ( ! 2)
] ltal<viog B (24 ity + it2)

(1+ 0ws00(1)) f(t1) f (t2)dtrdty + O(log™* R)

o QZ)(W) _ (1 + itl) (1 + ltz) ~

a (7 N R) [t1],|t2]<+log R (2 + ity + Zt?)d f(tl)f(tQ)dtldtQ(l - Ow—>00(1))

= ( / / a ;_1:1“1 j_;:;)tz) F(t1) f(ta)dtrdta(1 + 0ys00(1))
P ory [ [ 6 'gflm i;)t” F(t) F(t)dtadty + 0pse(l)  (2:439)

Here in the last line we use that f is rapidly decays and extending the integral to R causes an error

term o(1). Now recall the value of the Gamma function at positive integers k:
oo
(k=1 =T(k) = / e Txhldz
0

Since I is analytic on {z : Rz > 0} and e=?2*~! decays for large Rz. Hence we shift the contour
from R to (s + it)R with s > 0, which are lines in the first quadrant with starting point at origin. That
is we have that for y = (s + it)z,

(k—1)!= / e Yy tdy
0

That is

(s4it)F = / " malein L dzx (2.4.40)
0 (k—1)!
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In our case, we have

0 ) ) d—1
(2 + ity +ity) ™% = / e—vtititits) L g, (2.4.41)
0 (d—1)!
Also recall the Fourier inversion formula
fo) = [ 00 feyar
R
Differentiate n times, one get
fD(z) = (-1)¢ / e~ (1 4 n)d f(t)dt (2.4.42)
R
Hence one could write (2.4.39) as
p(W) —d /Oo @2 2!
= 1 w oo 1

This shows (2.4.33).

Now we modify the above arguments to show (2.4.34). Fix a prime ¢ > w, we have

/
Sw,q(f7) 12// Z VD,q (V)gD(t1, t2)dt1dtz (2.4.43)
RIR p.(p,w)=1

Now we separate the inner sum in D into cases ¢ { D and ¢|D,

Z, YD,q (V)gD(t1,t2) = 7¢(V)(1 + g1(t1, t2)) Z/ gp(t1,t2)vp(v)

D:(D,W)=1 DD,
(D,W)=1
V) W) | wv)
=Yq(V)(1 + gq(t1,12)) H (1 - 11)+it1 - €+iz2 + 2+€t1+it2
p log R p log R p log R

P>w,pF#q
~ (W) (A + gg(ta, t2)) ~wv) w(v) (V)
1 + 24ty +it
14 gq(t1,t2)v4(v) Pow iR

1+itg 1+ity
p log R p log R p log R

Hence this differs from the previous case in the sense that we have the additional factor 22V U+gg(ta.t2))
1+gq(t1,t2)7q (V)

Since we assume ¢ > w we have
d
V() = 5(1 +0(1))
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Using this estimate, we have

Yq(V) (1 + gq(t1,t2)) _d. _% =t .
1+ gq(t1,t2)vq(v) _q(l q )1 —q )(1+o0(1))

Hence we have analogue of (2.4.39),

1—|—Zt1 +it2)d
- )
Swq(f,7) ( og )~ // 2+zt1+zt2)

(1+ity)logg (1+itg)logg

x(1—e TR Y(1—e 1er )f(t1)f(t2)dtrdls + 0proo(1)  (2.4.44)

Applying (2.4.41), we write (2.4.39) as
0 o ) . 2 d-1
(e 20+t _ o~ @rg Oty L ind fpyar) 5 dg
0 R (d—1)!
Applying (2.4.42), this becomes

d—1

Z @ () _ )y o 108D 2 @
| 0@ = 1w+ B e+ o (1)

as required.

2.4.4 Proof of the Main Theorem

Proof of Theorem 2.4.2. Let n < % where 7(r, k) is as in the assumption of Theorem 2.4.2.

Then by (2.4.21) and (2.4.30), one has

Z A%(I‘lfﬁz ceexg) = Z SNwb(V)

x€[N]¢ bezg,
(x,W)=1, F(x)=v (b,W)=1
= cq(f)NF J(N7*v)(log R) ~4o(W) "1 4 0ps00(1)) Z Gwp(v) + O(Nd—kr=')
bezy,
(b,W)=1
(2.4.45)
By Lemma 2.4.4 and the Chinese Remainder Theorem,
> Swn) = [[0@ 0 > op.bv) [[opv) (2.4.46)
bez, plW bezd ptW

(b,W)=1 (bp)=1

Recall that 0,(v) = 1+ O(p~?2), hence [L,w op(v) =1+ 0w—oo(1). For afixed I € N and primes
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p < w, one has'®

o)~ p N {x e Z4; Flpx +b) = v|}
bezd,(b,p)=1
F(b)=v (mod p)

= o(p) p "p Yy € Z4; (y.p) = 1, F(y) = v}

prd .

where M(p';v) is the number of solutions to F(y) = v (mod p') in the reduced residue class

y € Zgl, (y,p) = 1. Taking limit [ — oo, one has

o(p) ¢ > op(p, b;v) = 0, (V)
beZd,(b,p)=1
F(b)=v (mod p)

and by (2.4.46), one has

p(W)~4 > Swp(v) = [[ o5 (V)1 + 0ws00(1)) = &*(V)(1 + 0ys00(1))
b,W)=1 p|W
F(b)=v (mod W)

This proves (2.4.5).

Now we prove (2.4.6). Note that to estimate the sum over x € [N]?\P¢[N]¢ under the restriction
(x, W) = 1, we only need to sum over x = (z1,...,zq) for which g|z; ... x4 for which q|z1 ... x4

for some prime w < ¢ < N°€. Hence

> Az < D> D> Lge e AR@ 2l ae(x) = D Swgnl

xE[N]4\Pe(N)? L«J<q<N6 (x,W)= w<g<Ne
(x,W)=1,F(x)=v F(x= v)

Now choose f(z) = (1 — )1 then recall a” — b" = (a — b)(a" ' + a"2b + -+ + "), we

observe directly that for 0 < x, 7 < 1, we have

1D (@) — f D +7)| <7D (@) (2.4.48)

Then by estimates (2.4.22), (2.4.34), and (2.4.48),

> Swen(N

w<q<N€

1By p? to one correspondence between {px +b : x € ZZ,, (b,p) =1} and {y € Zzl :(y,p) =1}
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d—1

d o(W) —d [T @y @ log q x4
< ¥ e | @ - 1+

< d(logq

2
T logR> car1 ()N (log R) 18" (N, v)(1 + 0-500(1)) + O(N*F7)

Write ¢ = €/n so N¢ = R¢ where R = N". Then using dyadic decomposition and the Prime

Numner Theorem, one can bound the sum over primes q,w < q < RE/,

> atlogg)?= > > q'(ogg)

w<q<Re w<2<Re' 297 1<q<27
97 2 .
S Y Gtoma)gn <@4omx(l) Y j<2A)
w<2i <R’ jSe’M

log 2

as required. We will choose € > 0 to ensure that (2.4.5) dominates (2.4.6). for that we need to compare
1 (f) with cq(f) defined in the Theorem. Here f(z) = (1 — 7)1 s0 £ (z) = ag(1 — x)%% and
) (z) = 9dag(1 — a;)id_l with ag = (10d)!/(9d)!. By the beta function identity,

1 b!
/ (1 —z)%bdx = a'b!
0

(a+b+1)!
we have
Ca1 (f) < 16d%cq(f)
Hence if .
32d3(e/n)* < 3 (2.4.49)
then for sufficiently large NV, w.
> AR(zr. . 2g)1g nja(x) = gN (log R) ™6™ (N, v) (2.4.50)
x€PE(N)
F(x)=v

for some positive constant c; = c4(f) > 0.

Finally if x € P¢[N]¢ then each coordinate ; could have at most % prime factors. Hence
AR(z1...24) < the number of squarefree divisors of z1 ... x4 < 2d/e.
Thus by (2.4.50), the numbers of solutions to F(x) = v with x € P¢[N]? satisfies
M%E(N) > ¢(d, k, ) NT* (log N)~9&*(N, v)
where ¢(d, k, ) := ¢4272¥< for some € = €(d, k,r) > 0. In fact we may choose € := (4d)~%/%n(r, k)
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to satisfy (2.4.49) with n(r, k) = (8r%(r +1)(r +2)k(k +1))~* (chosen from conditions in Theorem
2.3.4). This proves Theorem 2.4.2.

2.5 Concluding Remarks

Some ideas from additive combinatorics are also used along this line where solutions are restricted to
some special sets like primes or almost primes. For example, Bourgain-Gamburd-Sarnak’s result [13]
on almost primes uses the idea of affine sieves. Their results are different from us that they give better
bound on ranks but only applicable to some classes of equations with high degrees of symmetry. This
is non generic. Cook-Magyar proves analogue result [19] on prime solutions to diophantine system

whose rank is tower-exponential with respect to its degree.

The first application of inverse Gowers norm theorem to number theory is to study the asymptotic
of the number of prime solutions of systems of linear equations of finite complexity by Green-Tao
[52]. Basically what is shown in [52] is that H]\ — 1|+ is small where A is W-tricked Mangoldt
function. To show this, one would need an explicit form of all structures that make the U* norm
large; to apply the results of [53] [54]. We obtain a decomposition of Mangoldt function: A =
Af 4+ A° Here Af = din,a<r #(d)1og(n/d) with R a small power of N which will contribute to
the main term (major arc). Any term involving Ab(sum over d > R) will be a small error term
(minor arc) that does not correlate with U*—obstructions. This follows from smallness of ||1|¢s.
Recently, so-called nilpotent circle method where nilsequences could play a role of the linear phase,
is also used to find the asymptotic of average of f(Li(u,v))...f(Lg(u,v)) for some classes of
arithmetic functions f and L; are binary linear forms. Some arithmetic functions that are orthogonal
to polynomial nilsequences are studied in [76]. In [64] Frantzikinakis and Host prove a structure
theorem for bounded multiplicative functions using higher order Fourier analysis with some new

applications in number theory and Ramsey theory.
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Chapter 3

Corners in Dense Subsets of Primes via a
Transference Principle

Recall that a set A C P? has upper relative density o if

ANPy
limsup| v N =«
N—00 ‘,PN|

Let us state our main result in this section.

Theorem 3.0.1. Let A C (Pn)? of positive relative upper density o > 0. Then A contains at least
Cla)

(b];d% corners for some (computable) constant C(cv).

Indeed this is not the most general known results and there are also other modern approaches to this
problem known as the densification trick [16]. We demonstrate the application the original approach
of Green-Tao [51] to attack this problem. This is the first result in the direction of extending the
theorem of Green and Tao to the multidimensional setting. The key ingredient is to move our set up
to translate the problem to the setting of a hypergraph system and to prove an appropriate version of

the so-called “correlation conditions” of Green and Tao.

In higher dimensions, the direct product of primes P? is not a random subset of Z? and one reason is
the correlation from direct product structure. For example, if we want to count corners {(a, b), (a +
d,b), (a,b+ d)} in P? , suppose (a + d,b), (a,b + d) € P? then the remaining vertex (a,b) must
also be in P2. Thus the probability that all three vertices are in P2 (or in the direct product of the
almost primes) is not (log N)~% as one would expect, but roughly (log N)~*. Due to this corre-
lation, the obvious generalization of v, the d—folds tensor product v ® v--- @ v(x1,...,2q) =

v(z1)v(x2) ... v(zq), could not behaves pseudorandomly on its support A% where A is the support
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of v. For example in the corner P2, if we calculate
Eapa(v @ v)(a,b)(v @ v)(a+d,b)(v @v)(a,b+ d) = Eqpav(a)’v(b)*v(a + d)v(b+ d),

we have to deal with higher moments of v where we don’t have control. This happens exactly when
there is a correlation, that is there are points P;, P> with a projection 7; to a coordinate axis such that
m;(P1) = m;(P2). Such a correlation does not happen in the case of Gaussian prime ; a + ib, ¢ + id
being Gaussian primes do not imply that a + ¢d is Gaussian prime (but there is a milder correlation to

its conjugate).

Our approach is transfer our problem to a corresponding problem in hypergraph to get rid of strong
correlation from direct product structure. This approach partly used already in [102], where one re-
duces the problem to that of proving a hypergraph removal lemma for weighted uniform hypergraphs.
Then we use an appropriate form of the so-called transference principle [37], [87] to remove the
weights and apply the removal lemmas for “un-weighted” hypergraphs, obtained in [36], [82], [104].
An interesting feature is that in our situation the so-called dual function estimates [50] are naturally

handled only by the linear forms conditions.

In our weighted setting, this method allows us to distribute the weights such that we can avoid dealing
with higher moments of the Green-Tao measure v. We will define the notion of independent (pseu-
dorandom) weight systems on hypergraph which will be used to count prime configurations. The
reason that we cannot handle more general constellations is that we don’t quite have a suitable regu-
larity or removal lemma for general weight systems on non-uniform hypergraphs which allow us to
do transference arguments. We will apply different methods to overcome this difficulty in the next

chapter.

3.1 Hypergraph Setting and Weighted Hypergraph System.
First let us parameterize any affine copies of a corner as follow.

Definition 3.1.1. A non-degenerate corner is given by the following set of d—tuples of size d + 1 in
Z4 (or Zﬁl\, ):

{(z1, ey q), (T1 + 8,22, ey Tg)y ooy (T1, oeey Tg—1, Tq + S), 8 # 0}

or equivalently,

{(z1, ..., xq), (z— Z Tj, T2, ..., xq), (1,2 — Z Lj L3y ey Td)y ooy (L1 eey Tg—1, 2 — Z z;)}

1<j<d 1<j<d 1<j<d
71 772 j#d

with 2 # 3 1 cicq Ti
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Now to a given set A C Z%;, we assign a (d + 1)— partite hypergraph G4 as follows:

Let X; = ... = X441 := Zx be the vertex sets, and for 1 < j < d. Let an element a € X represent
the hyperplane z; = a, and an element a € X4, represent the hyperplane a = z1 + .. + z4. We
join these d vertices (which represent d hyperplanes) if all of these d hyperplanes intersect in a single
point in A. Then a simplex in G4 corresponds to a corner in A. Note that this includes trivial corners

which consist of a single point where they are negligible in order of magnitude.

For each I C [d + 1] let E(I) denote the set of hyperedges whose elements are exactly from vertices
set V;, i € I. In order to count corners in A, we will place some weights on some of these hyperedges

that will represent the coordinates of the corner. To be more precise we define the weights on 1—edges:
vi(a) =v(a),a € X;,j <d, vgyi(a) =1, a € Xgy1,
and on d—hyperedges:

vi(a) =v(agy — Y. a;), a€BI), [I|=d, d+1€T
jen\{d+1}

V[Ld](a) =1,ac¢ E([l,d])

In particular the weights are 1 or of the form v;(L;(x;)) where all linear forms {L;(x;)} are pair-
wise linearly independent. This is an example of what we will call independent weight system. The
parametrization of corner is indeed a special case of general parametrization (4.2.11) in next chapter
but let us just describe this explicitly here. Important special features here is that all linear forms either

depends on 1 or d variables.

weight for corner in Z3 on 4—partite 3—regular hypergraph:
(ac4 — T — 1‘2) (331, o, 1‘4)
(4 — 2 — x3) On (72, 3, 4)

v(zy — 21 — x3) on (x1,x3,14)

v(z1),v(x2), v(x3) on x1, z2, x3 respectively

vix

W

Va Measure space (Ve, fie(xe)).
Ve = HjEe ‘/}71'6 = (l‘i)z’ea

Vs

Figure 3.1: Weighted hypergraph system. In general, on each edge e of a hypergraph, we attach the

weight] [ (L) on e where the product is taking over all linear forms depending on exactly x..
In our case, these linear forms will be pairwise linearly independent.

Definition 3.1.2 (Independent weight system). An independent weight system is a family of weights
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on the edges of a d + 1—partite hypergraph such that for any I C [d + 1), |I| < d, vi(Xy) is either 1

or of the form HjK:(f)

independent, moreover the form L]I' depends exactly on the variables x; = (x;)jer.

V(L?(XI)) where all distinct linear forms {LJI} 1<j<K(I) are pairwise linearly

In fact for a weight system that arised from parametrizing affine copies of configurations in Z, it
is easy to see from the construction that for any I C [d + 1],|I| = d all distinct linear forms
{L%Y jcra<n< K () are pairwise linearly independent.

Now foreach I = [d + 1]\{j},1 < j < dlet

fr=1a(z1, ... zj-1,Ta41 — Z Tis Tjt1, -y Td) " VI
1<i<d
i#]
and for I = [d], let f; = 14(z1,...,m4). As the coordinates of a corner contained in P? are given by
2d prime numbers. Recall v(p) ~ log N if p is a prime in [e1N, e2N] (in residue class b (mod W)).
We define a multi-linear form

d 2d
A= Agn (fr 1] = d) = BEuyyyyy [] fi[[v(@:) = N4 > v
lI|=d i=1 pi€A,1<i<2d i=1
(pi)1<i<2q constitutes a corner

log?¢ N )
~ % |[number of corners in A|
Hence A can be used to estimate the numbers of corners. Indeed if A > C7 then

Nd+1

number of corners in A > CQT.
log“* N

We define measure spaces associated to our system of measure as follows. For 1 < i < d, let
(Xi, px,;) = (Zn,v) where v is the Green-Tao measure, and let 1 x, ., be the normalized counting

measure on X471 = Zy. With this notation one may write

A:Ad+1(f1,!f|=d)=/ / 11 frdux, - dpx,,,-
X1 Xat1

I|=d

We define a measure on X7, C [d + 1],|I| = d associated to our weight system by
[t =B fi [ witxa)
X JCI|J|<d

also on X4,4] by

/ fpxiy =Bxuy £ 11 v,
X(a+1]

IC[d41],]T|<d
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and the associated multi-linear form by

=A(fr,|I| =d) = /X 11 frdexp., (3.1.1)

[d+1] |I|=d

Remark 3.1.3. For general configurations, we will use same weighted hypergraph to count the prime
configurations but will not attach weight to the function and so the measure space is constructed a
bit differently. For the corner case in this chapter, we will apply the transference principle technique
hence we will attach weights of size d to the functions, only weights of size 1 left on the hypergraph.
This strategy will not work in general in particular if there is an intermediate weight of size d',1 <
d' < d. We don’t have an appropriate version of hypergraph removal for transference principle. If we

attach that weight to the function, then we don’t have control on the size of dual functions.

3.2 Weighted Box Norm and Weighted Generalized von-Neumann’s
Inequality

In this section we describe the weighted version of Gowers’s uniformity norm on (d + 1)—partite
hypergraph (box norms) and the so-called Gowers’s inner product associated to the hypergraph G4
endowed with a weight system {v7};c [d+1],7]<d- We describe the analogue properties of weighted
box norm as in unweighted case i.e. Gowers-Cauchy-Schwartz’s inequalities and generalized von-
Neumann inequalities in this setting. Here we may recall the index notations stated at the starting of
Chapter 1.

Definition 3.2.1. For each 1 < j < d, let X;, Y} be finite set (in this thesis, we will take X; =Y; :=
ZN) with a weight system v on Xg X Yig. For [ : Xq) — R, define

112 = / LT/ P a0 e

d) % ¥[a) wig
Ex ,E Hf wi (X[d)s Y[a))) % I 1P, (xr,90))
Wid) [I|l<d wr

and define the corresponding Gowers’s inner product of 2¢ functions,
<fgag € {0, 1} / XYVl H fw[d X[d] Yid ]))d:uX[d]XY[d]
[ w

= EX[d]E V(d] Hfou [d] W[d Y[d] H HVI wr XIaYI))

[I|<d @1

S0 (f € (0,1} = 112
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For each e € H, we may define have a measure space on V, with weighted from all edges f C e. We
can define the box norm || f||g,, for f : V. — R as well. If e is clear from the context, we may write

this as || f|| 5o where |e| = d'.
m

Remark 3.2.2. To prove weighted Cauchy-Schwartz’s inequality (Theorem 3.2.3) or Generalized von
Neumann’s theorem (Theorem 3.2.5) below. We will apply Cauchy-Schwartz’s inequality and linear
forms conditions. The way we apply linear forms condition we will only consider the set of variables
they depend on, and if they are different, linear forms condition is applicable. This will be how we

apply linear forms conditions here.

Theorem 3.2.3 (Gowers-Cauchy-Schwartz’s Inequality).
(fowe 0,10 1< T IMellny -
ug i) H

Proof. We will use Cauchy-Schwartz’s inequality and linear form condition. Write

1/2
<fw;w e {0, 1}d>|:|d = Expp 4y [< H HVI(P"JI(XI’YI))>

|I|<d,1¢T w;

<E$1V(x1) H fg(oy[gydn('xlapg[g,d] (X[Q,d}7y[2,d})) H V{l}u](l’l,Pgl (XLYI)))

“(2,d] |I|<d—1,1¢1
1/2
X ( H H vi(By, (X1, YI>)>
|I|<d,1¢I W

(Eyl v(y) 1 foupm @ PopyFearyea)  TI vogor(o, Po, (x1, YI))>]

“[2,d] |I|<d—1,1¢T

Applying the Cauchy Schwartz inequality in the X5 4, y[2 4 Variables, one has
({fusw e {0,1}) e <A B

here,
A - Ex[2,d] »Y[2,d] |: H H VI(PQI (XI, yI))
I|<d,1¢1 w;

X <E:c1,y1V($1)V(y1) H fﬂ(o,[Q,d]) (1’1, Pﬂ[Q,d] (X[Q,d] y Y[Q,d]))fg(o,p’d]) (yla PQ[Q,d] (X[2,d} ’ y[2,d]))

“[2,d]

X H H vinur (1, Po, (X0, y1))viyur (1, Po, (%1, W)))]

|[I|<d—1,1¢1 wr

= <f$)(Pg(X[d}>Y[d]))>Dd
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where fg)) = f0.an[2,q4)) for any @y 4. And,

B = EBxy v { H H vi(Py, (x1,y1))

[Il<d1¢l wr

X <Ex1,y1V(l’1)V(yl) I foi oy (@10 Pag o K2, YD) Fiois po.apy W15 P oy (X2 Yi2,)

Yi2,d]

< 1 HV{l}UI(xlaPwl(xbyf))’/{l}ul(ylaPw[(XIaYI))>]
I|<d,1¢T w;
= (S (Pulxiayyia)))

d
mh

1 -
where fé ) = J.an2,q) for any W1,
In the same way, we apply Cauchy-Schwartz’s inequality in (x[3 4, ¥[3,4)) variables to end up with

(fusw € {0,1}) g < T (S50 € {0, 1)) g

“[0,1]

Continue applying Cauchy-Schwartz’s inequality consecutively in (X4, 4, Y(4,d]); -+ (X[d,d)» ¥ [d,q]) Vari-
ables, we end up with

[(fuiw € {0, 13D < TT 0% s f00 0 14 = fuo

Yq)

d
A
w

(d]

Corollary 3.2.4. ||-||14 is a norm for N is sufficiently large.
m

Proof. First we show nonnegativity. By the linear forms condition, ||1||5, = 1 + o(1). Hence by the
Gowers-Cauchy-Schwartz inequality, we have || f HD;{ 2 (f 1, 1>Dﬁ | > 0 for all sufficiently large
N. Now

w w w f ’WZO
If +gllgg = (F + 9, f +9)g = > (W s R0y B =
we{0,1}4 g ,w=1
< Y Il - Il
we{0,1}4

d
= (1l + gl )?

Also it follows directly from the definition that ||\ f Hédd =\ ||f HQDdd. Since the norm are nonnega-
n W
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tive, we have [ \f[lg = [ | flloy - 0

Now we will prove Generalized von Neumann inequalities. The generalized von-Neumann inequality
says that the average A := Ag1,(fr,1 C [d+1],|I| = d), see (3.1.1), is controlled by the weighted

box norm. We show this inequality in the general settings of an independent weight system.

Theorem 3.2.5 (Weighted generalized von-Neumann inequality for corner). Let I C [d + 1],|I| =
d, fr : X1 — [0, 1] bounded by 1. Write f.; = fiay1)\(;}- Let v be an independent system of measure

on Xiqy) that satisfies linear form conditions." then

’Ad-‘rl,u(fep ey f6d+1)| 5 min{”fm ||DH51 IERED) ”f€d+1 ”D“ed+1 } (3.2.1)

Proof of Weighted Generalized von Neumann. Let H' = {f € H; |f| < d}, and write the left side of
(3.2.1) as

Aday1, = Egev, H Je(@e)ve(we) H vi(zy).

e€Hgq feH

Write e := [d + 1]\{j},1 < j < d+ 1 for the faces. The idea is to apply the Cauchy-Schwartz in-
equality successively in the 1, 9, . . ., 24 variables to eliminate the functions” and weights (fe,, Ve, ), - - -, (feys Vey)s

using the linear forms condition at each step, leaving f., , on RHS.

Write £ := Ag11 . To eliminate f.,,v., we have

|E|§E$2,~~~,$d+1yel($61) H Vf(xf)‘Erm erj(xj) H Vf(xf)"

1¢feH! G#2 lefeH!

By the linear forms condition Ey, . 4, Ve, (Ze,) ngéfeH' vi(zs) = 1+ onoo(l), thus by the
Cauchy-Schwartz inequality

E? S B wginVer@er) [ vr(@s) By [ fesve, (@, wep 1) fesve, 01 T 1y) - (3:2:2)
1¢feH! J#2

X H Vf(ylyl"f\{l})Vf(xbwf\{l})
lefeH’

This eliminates f,, v, and doubles the variable x; to the pair of variables (x1,y;) and also doubled
each factor of the form Ge¢(z.) (which is either f.(x.) or ve(z.), for e € H) depending on the x;
variable. To keep track of these changes as we continue with the rest of that variables, let us introduce

!'This lemma indeed directly applicable to corner system where f; < vy by reinterpreting the weight attached to f as weight
attached to X7.
*Indeed, f is bounded by 1 an v is positive so f. can be trivially eliminated but they are also naturally the same way as v,
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some notations. Let g C [d] and for a function G.(z.) define

G: (xeﬂgv Yeng> xe\g) = H Ge (we (xeﬂgv yeﬂg)v xe\g)- (323)
we€{0,1}eNg
We claim that after applying the Cauchy-Schwartz inequality in the x1,...,z; variables we have’
with g = [i]

E* S By e L] Ve @ine, Yine, Tepa) L] £ e @i, Viire, » Te;\a) (3.2.4)
j<i j>i

< 1T vi(@ s o @ p)-
feH’

For ¢ = 1 this can be seen from (3.2.2). Note that the linear forms appearing in any of these factors are
pairwise linearly independent. Assuming it holds for i separating the factors independent of the ;1
variable, and eliminate f., , and applying the Cauchy-Schwartz inequality we double the variable
T;it1 to the pair (7,41, yi+1) and each factor G (zeni), Yen[i), Te\[;)) depending on it, to obtain the
factor

Ge (ifem[z'+1} y Yen[i+1]> xe\[z’+1])7

thus the formula holds for ¢ 4+ 1. After finishing this process we have

EQdSEx[d],y[d] I ferr @@ va)) e @@ ) |] T vrwr@ny)) Wa, ya),
we{0,1}4 fCld], f#eo wye{0,1}f

where

W@ ya) =EBeap || I vewe@ena: Ve zeria)-
d+1€e€H w c{0,1}eNld]

Thus to prove (3.2.1), it is enough to show that

Eeywa LI TI  vrwr@run) W, yag) — 1 = onoeo(1).
fCld]wyef{0,1}f

This can be done with one more application of the Cauchy-Schwartz inequality in z 441 variable lead-
ing to 4 terms involving the “big” weight functions W and W?2. Each terms is however 1 + 0,00 (1)
by the linear forms condition, as the underlying linear forms are pairwise linearly independent: the
forms Ly(wys(xyf,yr)) are pairwise independent for f C [d], and depend on a different set of vari-
ables then the forms Le(we(Ten(d]s Yen(d], Te\[q))) for € ¢ [d] defining the weight function W. The
new forms appearing in V2 are copies of the forms in W with the x4, variable replaced by a new

variable y41 hence are independent of each other and the rest of the forms. This proves the proposi-

3Noting that for j < i : [i] Ne; = [i]\{j}. Forj >i: [i] Ne; = [i].
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tion for fe,,, and we can prove for other f; in the same way. O

3.3 Dual Function Estimates

Definition 3.3.1 (Dual Function). For f, g : Zﬁl\, — R define the weight inner product

/ f ngX[d] - Exezd f H VI XI

[Il<d

Define the dual function of f by

Df =Duf = Eyeza [ f(Putey) [T 11 wi(Po (x1,31))

w0 I|<dw;#0

So

Hf||2mdH = Eyeza f(x [ yezd, 1T rraxy) IT 11 VI(PwI(XI,YI))} I v

w0 |I|<d w;#0 [7]<d

In this section we prove the dual function estimate in our hypergraph system. We uses product of
these dual functions as an uniformity obstruction in soft inverse theorem arguments as in [51], [36].
In [51], they allow K to be arbitrary large* and employ the correlation condition to avoid the infinite
linear forms conditions which was not available at that time (this is the only place where they used
correlation condition in [51]). We only needs linear form condition here as the parameter /K could be
arbitrarily finite but fixed constant, depending on «v. This makes the number of linear form conditions

involved depends on «.

Theorem 3.3.2. Forall K < K («) any independent measure system and any fixed J C [d+1],|J| =
d let F1,...,Frg : X7 = R, Fj(x7) < vj(x7) be given functions. Then for each 1 < K < K (o) we
have that

K
ITIPE L, = 0ut)

j=1

Proof. Denote by I the subsets of a fixed set J C [d + 1], |.J| = d. First, for each 1 < j < K, write

DFj(x) = Eyicze ] Fi(Pulx,y?) [T T1 wi(Po, (x1,5))

w#0 |[I|<dw;#0

*In [50], K is the number of iterations in energy increment which is 2% /e.
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Now assume || f||5« < 1 then
m
Jo)

N

vaDFD = Eyepg, [(x H (x) [ vr(xr)
Jj=1 [Il<d
K B .
= Eyezg F(OBy1 yrez || <H Fj(Pu(xy") 11 [ 1T vr(Pe, (xr.39))
w0 Tj<d bw,#0

—

We will compare this to the box norm to exploit the fact that || f||5« < 1. To compare this to the

Gowers’s inner product, let us introduce the following change of variables
For a fixed y € Z4,, write y/ — y7 + y for 1 < j < K then our expression takes the form
[VI oy (X1, Y7 + YI))} VI(XI)]

I ety +v) TT T

(x,y + y
w#0 [I]<dw;#0

K K
11 DFy), = Ey1__yxExf 11
j=1

[VI o (X0, YT+ YI))} VI(XI)}

T

Since Zﬁl\, is cyclic. This is equal to the average
X Y+ Y
[I]<dw;#0

N
(Z4,)*. We will define functions Gy, y (x) : Z4, — R such that

J=1 ~w#0

K
Ey17“ yKezd, EX yezd, f H

:(y17"’7y)

m

For w € {0,1}4,
K
LTIPE), = By yx (Guyiw € {0,1}9)

< I o) 5

J
To do this, let Go(x) := f(x) and for each @ # 0, Y, define
K
. F( i j HV((X+ j )‘ od— \I\
=] | Bty g V@)
[7|<d |I|<d
)_Qdilll

Gy (x) :
j=1

2 (% y+y)) ([T vr((Pal(x, y+y7)],) 2™ "'] II »(®
[Il<d

v (Ps(x,y)) [
[Il<d

Gy,
Remark 3.3.3. For each I C [d] and fixed wy, the number of wg such that wig|r = wy is 241 and
P,(x,y)|l1 = Po,(x1,¥1) == w|1 = w;

Hence for @ # 0

ij
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Hence

(Guriwe {0,1)7) | =Byyen HGW ¢.v) % [T T]vr(Pe, k2. 310))

” [I|<d wr

a 1
:Ex,yeZ‘va [H {FJ(P X .'Y+y H vi(P,((x,y) —|—y1( ))‘ )lefl}

w btj=1 |I|<d
X H vi(Po(xr,yr)|r) 241 '”} H HVI 2w (X1,51))
|[Il<d [I|<d wr
K
=By £09| [T TT ey +97)| < T] [(11 TT vr(P ) ) Yot
J=1lw#0 [I]<d = *j=1lw;#0

Hence we have

n

K
_ . d
<f7 1_IlDFj>M = Eylwyx <G£,y,g S {0, 1} >Dd
]:

Then by Gowers-Cauchy-Schwartz’s and arithmetic-geometric mean inequality, we have

K
d
LTI PFl < Byr oy fllmg TT G oy S Byrye (14 D (1G5
j=1 w#0 / w(g 70 l
Hence to prove the dual function estimate, it is enough to show that

2d
I[E’yl,...,yK HGQ»YHDg =0(1)

For any fixed @ # 0. Now

2d

By yx||Gay||lge =Eyr. KExyHGwy ) TT TTv(Pay (x1,v1))
' |T|<d wr
1
< Eyi KExyHH [V[d] (x,¥y) +y1 H vi(Pu(x,y) +y1( ))} )24 1T
w j=1 |I|<d

XHMMWMWﬂxHHmmmw>

[Il<d |[I|<d wr

=Eyi yxBxy [] [H Vg (Pu((%,y) +y1(w N I []vi P xryr) +y) @l

j=1' w 1I|<d w;

by remark 3.3.3 above. As the linear forms appearing in the above expression are pairwise linearly

independent this is O, (1) (in fact 1 + 0,(1)) by the linear forms condition as required. O
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3.4 Transference Principle

In this section, we will modify the transference principle in [37](see Theorem 3.4.6). We will work
on the set on which our functions have bounded dual, treating the contributions of the remaining set

as error terms.

We will work on functions f : X; — R, dominated by v;. WLOG I = [d]. Let ( - ) be any inner
producton F := {f : X|g — R} written as (f, g) = | f - g dp for some measure 4 on X[g- In this
section we will need the explicit description of the set (7") that the dual function is bounded by T
and for this we will need correlation condition (in particular, Proposition 3.4.3 below. This is the only

place in this thesis that we will need correlation condition).

We will do this on the set on which our functions have bounded dual, and treat the contributions
of the remaining set as error terms. We will need the explicit description of the set {2(7") that the
dual function is bounded by 7" using the correlation condition (In particular, that this set is of lower
complexity, missing one of the variable). In general, 7" will depend on € and 7' — oo as € — 0 but
when we apply removal lemma we will choose € to be some small number depending on « and hence

if v is fixed then we can regard € as a fixed small constant and 7" as a fixed large constant.

Definition 3.4.1. For each T' > 1 we have th set Q)(T") and define the following sets

F = {f : X[d} —>R}
Fr={f € F :supp(f) C UT)}
Sr={f € Fr:|f] < vqg(xq) + 2}

We define the following (basic anti-correlation) norm on Fr
— _ 2d
11| pac = ||f||BAC,M = ;2%3; | {f Dg)u\ 2 ||f||D,L~

If f € Sy, this norm measures how much the functions on F correlate with function on St and our
weighted box norm is denominated by this norm. This will allow us to work on BAC'—norm (rather

than the box norm) which has some useful algebraic properties. Recall

Df =By [] £Putey) TT T vs(Poy(xriy1))

w#0 |T|<dw;#0

Also recall that L’ (x) are linear forms appeared in the definition of v;. Write h,, = L’ (x)low,)
hence using correlation condition (Definition 2.2.8), we have

Dri< ] Do W (aw, huy, = tw, hw, )+ (aw, — aw, )b) (3.4.1)
0#JCld] (wy, wr,)ETs
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where for each J C [d], J # ()

Ty := {(&117£[2)7Q117Q[2 # 0, 1(&11) = 1(&[2) =J:dce QaLh(yl(gll)) = CLIQ(Yl(g,J)}

where ay,, € Z. Define
I

Q(T) = {(xpq) : Z (W (C@Il hgzl — Qwy, hgzz) + (C@Il - agzz)b)) < Tl/zd} (3.4.2)

(wr, wr,)ETy

A7) = () () (3.4.3)
0£7C[d]

So Df is bounded by T on Q(T) for any fixed 7' > 1. Indeed, when T is large, the set Q(T') # 0.
Explicit description of 2(7) is only used in the proof of property 1 in Propposition 3.4.3 below.

Example 3.4.2. In 2-dimension corner, let f : X1 X X9 — R, we have

Df(x1,72) = Eyy yo f (21, 92) f (1, 2) f (1, y2)v (y1)v (y2)
<Ky pov(@e —y1)v(y2 — 21)v(y2 — y1)v(y1)v(ye)
<T(W-z)1(W - 29)

Then define Q0 (T) := {(z1,x2) : T(W - 23) < TY2}, Qo(T) := {(x1, x2) : T(W - 1) < TY?}. Let
Qp1,2)(T) == 0 (T) N Q(T) then Df is bounded by T on Q1 (T') N Qa(T').

We have the following basic properties of this norm.

Proposition 3.4.3. 1. g€ Fr = Dg € Fr

2. ||llgac is @ norm on Fr and can be extended to be a seminorm on F. Furthermore, we have

1fllgac = If - Lol gac- € F
3. Span{Dg : g € Sr} = Fr
4 HfH;AC _ inf{Zle N, f = Zle AiDgi; gi € St} for f € Fr. Hence the dual of BAC norm

measure how one can write f as a linear combination of Dg;; g; € Sp.

Remark 3.4.4. If f ¢ Fp then supp(f) € QUT) so [ is not of the form Zle AiDgyi; gi € Fr as RHS

is zero.

Proof. 1. Suppose (i1, ...,Z4) € Q(T) then there is an J C [d] such that K j(X(gp\s) > T where
K is the function in the definition of 2;(T") for some J. Let g € Fr then g(X(g)p\ s, %) = 0
forall x; € X So

Dg(Xap\ g, %7) = 9(Xap\g,xs)E(z) =0

for some function F so Dg € Fr.
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2. It follows directly from the definition that || f + gllgac < [|fllgac + l9llgac and A fllgac =
Al fllgac for any A € R. Now suppose f € Fr, f is not identically zero then we need to
show that || f||gac 7 0. Since f is defined on a finite set, we have that || f||,, < oo. Let
g = ~vf where 7 is a constant such that ||g||,, < 2 then g € Sz and (f, Dg)u = (f, D7f>u =

VLD, > 050 | llpac > 0.
Now since supp(Dg) C Q(T') we have for any f € F

= ,D = ]_ ,D - 1
I fllpac gS;S%Hf 9),1 gSGUSI;|<f QT) g>u’ | f Q(T)HBAC

3. If there is an f € Fp, f is not identically zero and f ¢ span{Dg : g € Sr} So f € span{Dyg :
g € St} then (f,Dg) = 0 forall g € Sr. So || f|| pac = 0 which is a contradiction.

4. This is a standard argument. Define || f||;, = inf{>>F_, [\i| : f = 32, \Dg;, 9 € St} which
can be easily verified to be a norm on Fr. Now let ¢, f € Fr, f = Zle AiDgi, g; € St, then

k

k
(@, F) 1 =D Nl (6. Dgi) | < [ llpac Y 1Ml < dllgac /1

i=1 i=1
SO

[ fllgac < IflIp

Next for all g € St, we have ||Dg||, < 1 then

1flgac = sup [(f;Dg)| < sup [{f,h)|=Ifllp
9€ST Al p<t

50 || fllgac < [1£1Ip 1e- [ fllac = Ifllp- So [l fllsac = £l -

O]

Now let us prove the following lemma whose proof relies on the dual function estimate. From here
we consider our inner product { - ), and the norm || - [|;,. This argument also works for any norm

for which one has the dual function estimate.

Lemma 3.4.5. Let ¢ € Fr be such that ||¢||psc < C andn > 0. Let ¢ := max{0, ¢}. Then there
is a polynomial P(u) = a,u™ + ... + aju + ag such that

1 [|P(¢) = d1lloe <1
2. |P(@)llcg < p(C,T,m)

where

p(C,T,n) :=2inf Rp(C)
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where the infimum is taken over polynomials P such that |P — ¢ ||, < non[—CT,CT] and
m .
= Z C(j)|aj|x’, where C(m) is the constant in the dual function estimate
=0

Proof. First, recall that if (x1, ..., 24) € supp(Dg;) C Q(T) then
|Dg(z1,...,zq)| < T

Now suppose ||¢||zac < C then there exist g1, .., g € Sy and Ay, ..., Ag, such that ¢ = Zle AiDg;
and ;.. |\i| < C. Hence applying the boundedness of the duals,

p(21, .y 2q)] < Zm max ]Dgz(xl,.., D) <CT

Hence the Range of ¢ = ¢(QU(T)) C [-CT,CT). Then by Weierstrass approximation theorem, there
is a polynomial P (which may depend on C, T, n) such that Rp(C) < p and

P(u) —us < V| < COT

and so |[|P(¢) — ¢+, < nand we have (1).

Now using the dual function estimate, we have

||¢m||*mg < |( Z )\z‘DQi)mH*Dg < Z [Ady - Ai| HDQn-.-DQimHEg

1<i<k 1<i1 <. <im <k
<Cm) D Pl <Cm)(OY ] D™ < Cm)c™
1<i1 <. <im<k 1<i<k
Hence || P(¢)|5 < Y7o lam|C(m)C™ < p(C, T, 1) O

Now we are ready to prove the transference principle.

Theorem 3.4.6 (Transference Principle). Suppose v gives an independent weight system. Let f € F
and 0 < f(xiq) < vig(X[q), let 1 > 0. Suppose N > N(n,T) is large enough, then there are
functions g, h on X1 X ... X Xg such that

f=g+honQT), 0<g<20nUT), |h- 1Q(T||Dd—

Since h - 1) = [~ 1oy — 9 - Loy, we have =2 < h- 1oy < vso |h- 1o < v +2s0
h - 1q(r)y € Sr. Hence by the definifion of BAC-norm,

n > |lh-L1omllsac = (h- Loy, D(h- 1om))w = b - 1o H

91



To prove Theorem 3.4.6, it suffices to show Hh 1o HBAC < nl/Qd (WLOG, replace n1/2d with ).
Here the BAC-norm is the BAC-norm with respect to ( - ),

The following lemma will be used in the next proof.

Lemma 3.4.7 (Finite dimensional Hahn-Banach’s Theorem). Let X = R? be a norm space and
f € X, |Ifll > 1. Then there is a vector ¢ € R? such that (f,$) > 1 and |(g,#)| < 1 whenever
lgll < 1. (e [¢]" < 1)

The following lemma is an easy corollary of the Hahn-Banach’s theorem by considering the following
norm with given c¢1,co > 0: ||f|| = inf{ci||f1ll1 + c2llf2ll2; f = f1 + f2} with its dual || f||* =

max{cy | fl*, 17

Lemma 3.4.8 ([37], Cor. 3.2). Let K1, K5 be closed convex subsets of RY, each containing 0 and
suppose f € R? cannot be written as a sum f1 + fa, fi € 1K1, fa € coKa,¢1 > 0,¢9 > 0. Then
there is a linear functional ¢ such that (f,¢) > 1 and (f1,¢) < ;' forall f; € Ky, (fa, ) < c5*
for all fo € Kos.

Proof of Theorem 3.4.6: Define
Ki:={geF:0<9g<2omQT)}, Kr:={heF:|hlgac <n}

It is clear that K, K are convex. (Also 0 € K1,0 € Int(K>3)). Assume that f ¢ K; + K3 on Q(T)
then by Lemma 3.4.8, there exists ¢ € JF such that

(6.f o)), > 1, (b.9), <1 Vg€ Ky, (ph), <1 Vheks

First, we claim that ¢ € Fr. To see this, suppose ¢ is a function whose supp(g) € Q(T)° (i.e. g =0
on )(T) so g € Ky.) Since g € Ki,(¢,g), < 1but g could be chosen arbitrarily on Q(T)C so we
must have qb‘Q T)c = 0 and hence ¢ € F7. Now let

2 if g(xpq) 20
9(x[q) = _
0 otherwise

then g € K and

DN |

<¢’g>ﬂ = <¢+’2>N = 2<¢+7 1># S 1= <¢+7 1>M §

Now we want to show that [|¢||; 4 << 1~". Since ¢ € Fr,h € Ky, ||h- 1gpycllsac < 7 then we

have
(&, nh - Lorye)u = (@, nh)y < 1.
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Hence if b’ € Fp and ||1/||gpc < 1 then || - 1Q(T)HBAC = ||A'||gac < 1s0

(o, W) <™t VK € Fr,||W <1

lpac <

1

30 ||¢]lgac < n 'as || -||Bac is a norm on Fy.

Now we want to invoke positivity of ¢. By the Lemma 3.4.5, there is a polynomial P such that
1 *
1P(9) = ¢+l < g and [[P(P)lly < p(C,Tm)

Then (P(¢),1), < (P(¢) — ¢4,1) + (¢4,1), < + + 1 Also, from the definition of the weighted
p ot totp =278

box norm and the linear form condition, we have
d
v (X)) — 1Héﬁ = ON—oo(1)

so suppose N > N(T',n) then

1 1 1 1 3

(P().0),, = (P(9). 1), + (P(@),v = 1), < 5+ g +IP@5g v~ Uigy < 5+ 5 =7
11 3
{0,640, = 10,61 = PO, [+ (0 PO}, | < 194 — P(O) e (v L b0 PO, < 55

By positivity of ¢ we have (f, ¢4), < (v, ¢4),. Hence
3
(f Loy, 8), = (£,0), < (F01), < (1), < Z+%<1

which is a contradiction. Hence f € K; + K5 on Q(T). O

Now we can rephrase Theorem 3.4.6 as follow:

Theorem 3.4.9 (Transference Principle). Suppose v is an independent weight system. Let f € F,0 <
f<vand 0 <n < 1<KT then there exists f1, fo, f3 € F such that

L f=fhH+fatfs

2. 0< f1 <2, supp(fr) € QUT)

3. N f2llng < m, supp(f2) € (T)

4. 0 < f3 <w, supp(fs) C QT)°, 1f3llzy < ol

Proof. Let g, h be as in Theorem 3.4.6. Take f1 = g - 1o,, fo = h-1q, then f-1q, = fi + fo. Let
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fs=1r1- 19%. Now by the linear forms conditions,

1 .
1f3llzy, < FBxiaripgay £ I1 vi(xg) - |Df| (since [Df[ > T)
IC[d+1]\{d} T <d

1 1
= TEX[d+1]\{d}]EY[d+1]\{d} H VI(LI(XI)) H H vi((Pu, (x1,¥1))) < T
IC[d+11\{d} IC[d+1\{d} w70

O]

3.5 Relative Hypergraph Removal Lemma

First let us recall the statement of ordinary functional hypergraph removal lemma [104]. Recall the

definition of A in equation (3.1.1).

Theorem 3.5.1. Given probability measure spaces (X1, pix,), -, (Xay1, txy,,) and @ X —
0,1],1 = [d + 1)\{i}. Let € > 0, suppose |Ag1(fD, ..., f( D, fl+))| < €. Then for 1 < i < d,
there exists

Ei © Xjaran\{iy

such that H1§j§d+1 1g; =0andfor1 <i<d+1,

X3 Xay1
where §(e) — 0 as e — 0.

Remark 3.5.2. In fact the paper [104] proves this theorem only with the counting measure (with the
notion of e—discrepancy in place of Box norm). But the proof also works for any finite measure that
has direct product structure (with the notion of weighted Box Norm) as the energy increment as in
[104] or [18] would run through in the same way. See also [100] for the case of probability measures
ind = 2,3. However we don’t know how to genralize this argument to arbitrary measure on the
product space. If we can prove this theorem for any measure |ix, x...x x, then we would be able to

prove multidimensional Green-Tao’s Theorem.

The proof of this removal lemma relies on the following regularity lemma.

Theorem 3.5.3 (Szemerédi’s Regularity (Tao) Lemma [104]). Let (X{q41], 1) be a weighted hyper-
graph system with pseudorandom weight attached only on each edge of size 1. Let f : X{q1) — [0,1]
be measurable, let T > 0 and F' : N — N be arbitrary increasing functions (possibly depends on 7).
Then there is an integer M = Op (1), factors By(I C [d + 1],|I| = d) on X of complexity at most
M such that f = f1 + fa + f3 where
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= J1 =E(fIViciat1),j11=a Br)-

= [lfellpz <

- sl < Fa).

- fi, i+ f2€0,1].
Remark 3.5.4. A consequence from this theorem that we will use later is the following: since f1 is a
constant on each atom of \/‘ I|=d B, we can decompose fi as a finite sum with O (1) terms of lower

complexity functions i.e.a finite sum of product Hfill Ji where J; is a function in X[441)\ {4} variable

and takes values in [0, 1].

Theorem 3.5.5 (Weighted Simplex-Removal Lemma). Suppose f() (Xpar1\{ir) < Viae\ iy (K[d+1)\{4})-
Let € > 0, Suppose |A| < € then there exist E; C Hje[d+1]\{i} X such that for1 <i < d+1,

- H 1Ei =0
1€[d+1]

- fxl o fxd+1 f(i)lEiCdﬂXl el g, = ]E'x[dJrl]\{i}1Eicf(i)(x[d+1]\{i}) HJg[dH}\{i} vy(xs) <
6(€)

where §(e) — 0 as e — 0.

Proof. Using the transference principle (Theorem 3.4.9) for 1 < i < d+ 1, write ) = g 4 p(0) 4
k@) where

1. f@O = g® 4 p) 4 O

3. [l gg <, supp(n) € 2O(T)

i

4. kO = f@). Lomye )

where
QON(T) = {xpgyp i IDFP|<T) 1<i<d

Step 1: We will show that if T > T'(e) is sufficiently large then’

Ad+1,u(g(1) + r(, ...,g(d+1) + h(d+1)) — AdH(f(l) — kM), m’f(d+1) _ k(d+1)) < e,

~

Proof of Step 1: For I C [d + 1], the term on LHS can be written as a sum of the following terms:

Agirr,(eD, . el eldtD) 9D if el
) fO it gl

)

>Ag4y1 is indeed defined on our weighted measures.
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If I = 0 then Agyq,,(f1), ..., f(@, fl4+1)) < ¢ by the assumption. Suppose I = {i1,...,i,} # )
then

|Ad+171,u(e(1),...,e(d),f(d“))I:'/ / JICRFICEIN | EPRR P
X1 Xa+1 iel

S EX[d+1] H VI(XI)].(Q(zl))C 311 & I
IC(d+1),11<d

1
B0 By iy I wexo I wPexiy))

IC[dt1])1]<d w20
IC[d—H]\{zl}

IN

ST <S¢

1
T
by linear form condition.

Step 2 We will show Agy1 (g™, ..., gl ) e ifn <n(e), N > N(e,n).
Proof of step 2: Write g(*) = ¢g() 4 p() — p() = £(0) . Lo ) — h(") then we have

0 < fY 1gu ) < vi Hh(i)”Dg <1

so by the weighted von-Neumann inequality and step 1, we have

|Ad+1,u(g(1)7 ""g(d+1))| = |Ad+1,u(g(1) + h’(l)a .- g(d+1) + h d+1) Z Ad—i—l,u 7--a (d)a e(d+1))|
=ht i
Se+n+onseo(l)
<e

if1/T <e,n<e¢e, N> N(e)and the proof of step 2 is completed.
Now since 0 < ¢( < 2 then (after normalizing) using the ordinary hypergraph removal lemma(Theorem

5.1), we have

F; C X[d+1]\{z} such that H 1Fk =0 and
1<k<d+1

/ .. / g(l) . 1Fl_c dMXl Tt d:uXdJrl 5 5(6)
X1 Xas1

SO
/ / f(i) “1pcedux, - dMXd+1 ~ / / 1Fc dpx, - dpx,dpxy,, +
X1 Xat1 ' X Xan
(A4)
X1 X1
(B)
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Now for our purpose, it suffices to show (A), (B) < e.

Estimate for (A) (error from uniformity function): By the assumption of complexity of o—algebras,
the function 1 FC could be written as a sum of O (1) of functions of the form [ | jeld+1\{i} v ]( " where
vj( Disa [0, 1]- valued function in X[ 1)\ ;.71 We could write estimate each term with [ | jeld+1\{i} v j( g
individually. Applying Cauchy-Schwartz’s inequality d times to estimate the expression (A) (here let’s
assume 7 < d, the case i = d is the same.) :

2d
</ / / 1FC d:uX1 dMde:U*XdH)
X1 Xag v Xgq1
) (4) ) 2424
S (/ / (/ Kt H ujZ dllj’XdJrl)ua—f—ldHXl”'d:U’de:uXdJrl> :|
L\ Jx, Xa \JXui1 :

1<j<d
i

- 2
h® uDdpx > dpx, - dpx
_/X1 /Xd </Xd+1 H j d+1 1 d

1<j<d—1
i

></ / (U’;z+1)2duxl~-duxd]
X1 Xa

[/ / / / B (g iy ar )P (< g3y )
X1 XaJXap1 JYaqq

2(i—l

—1

IN

9d—1

N

H ug-i)(x[d]\{i},de) gl)(x[d]\{z} yd+1)dﬂX1 d:U*XdeMYdH
1<j<d
J#i

Continue applying Cauchy-Schwartz’s inequality this way. After d application of Cauchy-Schwartz’s

(%)

inequality, the positive function u; "~ eventually disappears and we have this bounded by || R HD <e.

Estimate for (B): Next we estimate the expression in (B),

'/ / 1(Q()(T))C 1FCdMX1' 'dMXd+1
X1 Xa+1

/X / Via+1)\(i}) - Lo (o dix, - - dpix g,
1

< TE xiain By Marn g asny) T[T vy [T vr(Po, (ryn)
l1]<d wr#0
IC[d+1\{i}

AN
=) -
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by the linear forms condition. Hence if we choose sufficiently large 1" then

/ / 1FCdMX1 dlu’Xd+1 S 5(6)
X1 Xat1

3.6 Proof of the Main Result

3.6.1 From Zy to Z

First, recall that v, .,(n) ~ %W) log N,egtN < n < e3N,e1,e9 € (0,1] for a sufficiently large
prime N in the residue class b (mod W). Also Lemma 4.7.1 allows us to work in (Z/N’)? for some
big prime N’. By pigeonhole principle (see Lemma 4.7.2 in Chapter 4) we may choose b € (Z/W )¢
and small £1, 2 > 0 in the definition of  and A’ such that

asd (V)L

N d. / nd
A1 = H{n € [LN/W]% Wntbe A} 0[N 2N > =2 G- S ama

Here we choose N’ so that eoN' = N/W (1 + on w00 (1)).

3.6.2 Proof of the Main Theorem

. d
To prove the theorem, suppose on the contrary that A’ contains less than e% corners.(e = c¢(a))
then

Ad+1,,LL(f(1)7 7f(d+1))
N’ (d+1) Z H 1A’ L1y ooy Lj—1,Td+1 — Z sy Lj41yeey T V]lA/(xl,..., d)-l/(xl)...y(a;d)

X[d+1] 1<i<d 1<j<d
i#i
1
< W Z H ]-A’(pla"’apk‘—lvpd-‘rkvpk-‘rla"'apd)lA(pla"'apd)y(pl)"'y(p2d)

pi€A’1<i<2d 1<k<d
that consitutes a corner

1 ¢(W)log N’
~ N/d+1 W

2d
) X (The number of corners in A’)

<e

Now assume that Agy1,,(f(V), ..., f@, f{@D) < ¢ then by the relative hypergraph removal lemma

dE;,1<i<d+1,FE; C X[d-i—l}\{i} = X,
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such that

I 1z=o / Fpedug, < 6(e)
X, ¢ ‘

1<i<d+1

where §(€) — Oas e — 0. Let A’ = AN[§1 N, 5aN]4, z = > 1<j<aTj» gar = g-1u for any function
g then

A= N4 Z fé%)(xg,...,a:d,z)fg)(xl,xg,...,:cd,z)...fzgcf)(azl,xg,...,xd_l,z)fif,lﬂ)(:zl,...,$d)

(21 5ees YeA!
> N’ Z v(zy)..v(xq)
(z1,exg)EA’
g, DWW , - (N'W)?
@ ) O o) =

for arbitrarily large N’. Now

:Ex[d](ff(“ll)lEl +f(1’)1E )-- (fA/H)l Eq+1 +f(d+1 EC )

d+1
: (1) (d+1) _ . .
Now we have by the assumption Ex[ 4 fa’ 1g,.fy 7 - 1E,,, = 0so we justneed to estimate each
other term individually.
Consider Ex[d]f(l,) . 1E10 fﬁf,) : f(dJrl E:l: K where F'* can be either F' or FC for any set F.
Now since
() , : (d+1)
0< U1, <v(w;),d>j>2 and 0< fiY <
J
We have
d+1 1
fA’) 1ch,(4’ 1(4’ )‘1Edi+1 = Ex[d]f,(év)'lElCV(@)---V(iUd) = < f(l)‘lElchXz cedpxy, S 0(e).
1

In the same way, we have forany 1 <1:¢ < d+ 1,

Exy /3 -1pe I (/9 154) 609

1<j<d+1,j4i

Soif N > N(«) then

Ex,, fgl,)(xg, ...,xd,u)fg)(m,xg, ...,xd,u)...fX,l)(xl, ...,xd_l,u)fgc,lﬂ)(ml, v g) S 0(€) = o(a)

d+1 .
(hﬁgﬂw corners in A. Note that the number of degener-
as the corner is degenerated (and will be degenerated into a single

This is a contradiction. Hence there are 2 €
ated corners is at most O( -

point) iff z = >y ., z;.

(lo gN’) 7)
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3.7 Further Remarks: Conlon-Fox-Zhao’s Densification Trick

One important feature that make the transference principle work is that we are working on a d—regular
hypergraph, this is also the same as in [52] , [16]. To prove a more general version of the theorem,
we have to consider more general version of hypergraph removal lemma, this will be discussed in the

next chapter.

A natural question in our method is that if the correlation condition is needed in our proof. In the set-
ting of Gaussian prime, the correlation condition was needed to deal with the fact that if p is a Gaus-
sian prime then its conjugate. p is also a Gaussian prime. Later, Conlon-Fox-Zhao [16] developed
the “densification technique” to prove a relatively Szemerédi’s Theorem like Theorem 1.2.1 but with
v satisfies only certain linear form conditions. Densification trick allows one to replace a sparse edge
with a dense edge. No correlation conditions or bounded dual conditions are assumed as this tech-
nique allows most factors in correlation to be bounded. The question of simplifying the pseudorandom
conditions is an interesting and active research questions. Gowers [37] asked if ||v — 1||ys = o(1) for

some large s = s(k) would allow us to deduce a relative k — AP Szemereédi’s theorem.

Definition 3.7.1 (H,-linear forms condition). Consider a weight hypergraph system (J, V;, H,) with

weight system v = {Ve }eep,. We say that v satisfies H.—linear forms condition if

Esyev, H HVE(Pwe (x]e,yle)) @ =14 o(1)

e€H, Wwe
Hence this linear forms condition is about counting the 2-blow up of ‘H, and any subgraph of this

blow-up.

This linear forms condition is the same that is used in [102] (Def. 2.8). However in [102], one assumes

the correlation condition and the bounded dual condition.

Theorem 3.7.2. [16]If S C Zn,v = %15 satisfies
Ep ity V(@) (@ v (z—2)v (2 —2)v(z—a" v (2 =2 )v(y)v (Y v (z—y)v (2" —y)v(z—y (' ~y')

or if the condition holds if one of the v above is replaced by 1. Then a corner-free subset of S has size

o(|SI?)

The densification trick allows them to prove the counting lemma with only such linear forms con-
dition. This has application in simplifying many technical difficulties in previous results and one
can obtain a better quantitative result such as primes with narrow polynomial progressions [112]:
a+ Pi(r),a+ Py(r),...,a+ Py(r) with < log” N. We want to transfer the count in (pseudoran-
som) sparse setting to dense setting.
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We may try to transfer some this kind of the theorems similar to corners (for example, we may model
using d—regular hypergraph) we know in integer case to the prime case. An interesting problem would
be to find an analogue of Shkredov’s result [96] that is to obtain an exponential bound for corners in
dense subsets of P[N]? .
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Chapter 4

Weighted Simplices Removal Lemma and
Multidimensional Szemerédi’s Theorem

in the Primes

4.1 Introduction

The main objective of this chapter is to prove the following generalization of the main result in chapter
3.

Theorem 4.1.1. If A is a subset of P? of positive upper relative density, then A contains infinitely

many non-trivial affine copies of any finite set F C 7.2,

Note that it is enough to show that the set A contains at least one non-trivial affine copy of F), as
deleting the set F' from A will not affect its relative density. Also, replacing the set F' by F’ =

F U (—F) one can require that the dilation parameter ¢ is positive.

By lifting the problem to a higher number of dimensions, it is easy to see that one can assume that F'
forms the vertices of a d-dimensional simplex' (which will be important as the linear forms appeared
in the parametrization is pairwise linearly independent). Indeed, let ' = {0, x1, ..., x}, choose a set
of k linearly independent vectors {y1, . .., yr} C ZF, and define the set A := {0, (21,Y1), - - -, (T, Yk )s Zht1s - - - » Zhte
7F+4 such that the vectors of A\{0} form a basis of R**%. If the set A’ = A x P* contains an affine
copy of A then clearly A contains an affine copy of the set 7(A) O F, where 7 : R? x RF — R?is

the natural orthogonal projection.

"Unike integer case, it is not enough to lift to a corner as we don’t know if the projection used there will project prime corners
to prime points or not.
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In the case when A = {vg, v1,...,vq} C Z%is a d-dimensional simplex, i.e. v1 —vg, V2 =0, . . . , Vg—
vg are pairwise linearly independent, we prove a quantitative version of Theorem 4.1.1. To formulate

it we define the quantity

d
IA) = |mi(A)], (4.1.1)
i=1

7; : R% — R being the orthogonal projection to the i-th coordinate axis.

Theorem 4.1.2. Let o > 0 and let A C 7% be a d-dimensional simplex. There exists a constant
c(a,A) > 0 such that for any N > 1 and any set A C P% such that |A| > o |Py|% the set A
contains at least c(o, AN (log N)~H2) affine copies of the simplex A.

The lower bound matches with the bound from the heuristic argument that primes is a random subset
of Z® with density 1/log? N in [1, N]? : there are &~ N1 affine copies = + tA of A in [1, N]%,
and for a fixed i the probability that all the i-th coordinates of an affine copy A are primes is roughly
(log N)~Im(A)l Thus if the prime tuples behave randomly, the probability that A C P¢ is about
(log N)~HE),

Note that in Theorem 4.1.2 we do not require the copies of A to be non-trivial, thus without loss of
generality, N can be assumed to be sufficiently large with respect to « and A. It is clear that Theorem
4.1.2 implies Theorem 4.1.1 as the number of trivial copies of A in A (i.e. the one with ¢ = 0) is at
most N¢ (log N)~¢.

In the contrapositive, Theorem 4.1.2 states that if a set A C P, contains at most SN+ (log N) &)
affine copies of A, then its relative density is at most €, where € = €(¢) is a quantity such that ¢(§) — 0
as 0 — 0. As for a number of similar results on prime configurations [51], [102], [45].

Thus identifying [1, N| with Z/NZ it is easy to show that Theorem 4.1.2 follows from

Theorem 4.1.3. Let A = {vy,...,vq} C Z% be a d-dimensional simplex and let § > 0. Let N be a
large prime and let A C Zfl\, such that

d

Epezd tezy (H 1a(x+ tvﬁ)w(az +tA) <6 (4.1.2)
i=0

then there exists € = €(0) such that
]E:BGZ‘j’lV 1A(.’E)’U)(.’E) < 6(5) + 0N,W—>oo;A(1)

Moreover €(6) — 0as § — 0.

The objective of this chapter is to prove this theorem. As in Chapter 3, our result would follow if we

could prove the following version of simplices removal lemma (i.e. Lemma 4.1.7 below). Notice that
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the conclusion of the lemma does not hold in the same measure space but on a new one which is a

small perturbation of the original measure space.

We define weighted system of hypergraph as in section 3.1 of Chapter 3 but now we will do energy
increment so we will put sigma-algebras on our hypergraph. Hypergraph system can be considered

an as analogue of measure preserving system in ergodic theory.

We will use the construction of a weighted hypergraph associated to a set A C Z‘]i\, and a simplex

A = {vp,...,vq} given in the case of Gaussian Primes [102].

Definition 4.1.4. [Hypergraph System] Let J = {0,1,...,d},H = {e : e C J} be the set of all
possible hyperedges, and for a set e € H, let V, = 75 =11 jee Ln- Identify Ve as the subspace
of elements x = (xo,...,xq) € Vj such that x; = 0 for all j ¢ e and let 7, : Vj — V. denote
the natural projection. For e = {j} we write V; := Vi;y and for a given H C H, we will call the
quadruplet (J,V;, H) a hypergraph system.

For each positive integers j denote H;j := {e € H;|e| = j}. Fore € H,xe = (xj)jce-

For a given e C J and a collection of sets (edges) on V., define A. = {n;}(F) : F C V.} considered

as corresponding sets on V.

Remark 4.1.5. For convenience, we identify V, as a subset of Vj as the set of points in Vy where the
coordinates in J\e are allowed to be all possible values ( i.e. no restrictions on J\e). Hence we work

on a single ambient space.

Remark 4.1.6. We can think of a point x., e € Hq as a d-simplex with vertices {x; : j € e}. A
set Go C 'V, then may be viewed as a d-regular d-partite hypergraph with vertex sets V; (j € e).
Similarly a point x € Vj represents a (d + 1)-simplex with d—faces ¢, e € Hg.

Theorem 4.1.7. (Weighted Simplex Removal Lemma) Let {ve}cc g, {ite }ec s be a system of weights
and measures associated to a well-defined, pairwise linearly independent and symmetric family of
linear forms L (as defined in (4.2.6)). Let E, € Ae, ge : Ve — [0,1] be given for each e € H,4. Then
for a given 6 > 0 there exists an € = €(§) > 0 such that the following holds: If

Ecev, H 1g. (z)ps(x) <6 (4.1.3)
ecHy

then there exists a well-defined, symmetric family of linear forms L= {E’;, e € Hygl <k <d},

such that the associated system of weights and measures {Ue }eC j, { [le }eC s Satisfy

Eecv, [] 15 (2)iis(2) = Esev, [] 1e.(@)ns(x) + onw-soo(1) (4.1.4)
eEHy e€Hy

and for all e € Hg,
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Ezev, ge(@)fie(r) = Ezev, ge(@)pe(x) + on,w—o00(1) (4.1.5)

In addition there exist sets E!, € A, such that

() (B.nE) =0 (4.1.6)
e€Hy
and for all e € Hy
E:EEVelEe\Eg(x)ﬂe(x) < €(d) + onwoo(l) 4.1.7)
moreover
€(0) =0, as 6 — 0. (4.1.8)

Roughly speaking, if p(Necpy, Ee) < 0 is small then we can modify each E, slightly in the magnitude
of £(d) to obtain E such that () ¢y, (Ee N Ep) = Die. Noeyy, Be © Ueep, Be\E. meaning
ﬂeeﬂd F actually has a very smaller measure than expected.

4.1.1 Parametric Weight System

Recall the weight version of DZ norm. Let f : X XY — R, via(x1,x2) = v(z1, 22).

Hf||é3 = Epc xxvEzexxy f(@1,22) f(p1, 22) f (21, p2) f (P1, P2)

x v(xy, x2)v(p1, v2)v(x1, p2)v(p1, p2)v(z1)v(z2)v(pr)v(p2)

If it is possible, we would like to proceed as in previous chapter with transference principle; writing

the weight appearing above in a form of direct product of measures, say

dp(x)dp(p)

with, say, du(x) = v(x1,ze)v(z1)v(x2). However this is not possible due to cross terms like
v(p1,x2), (1, p2). More importantly, in higher order box norm, we would have weight in inter-
mediate order. Prohibiting us from working on regular hypergraph and application of transference
principle as in chapter 3.

The way we get around these difficulties is that we will reprove the removal lemma in our setting,

without using transference principle. To accomplish this, we need to introduce the parametric weight
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system. We could write

Hf||é5 = EpexxyEsexxy f(21,22) f(p1, 22) f (21, p2) f (D1, P2)
X v(1, x2)v(p1, x2)v (21, p2)v(z1)v(22)v(p1, p2)v(P1)v(p2)
= EpexxyEoexxy f(z1,22) f(p1, 22) f (21, p2) f (D1, P2) dpp (21, 22)dpu(p)
Here for each fixed p, dyy,(x1, x2) = v(z1, 22)v(p1, x2)v (21, p2)v(x1)v(z2) is a measure in 1, xp—variables
depending on p which we regard as parameters. Later, we will regard 11, as a parametric extension of

w in the sense if we consider linear forms defining the measures as linear forms in p and z variables

then linear forms defining 41, is the same as those defining .

Example 4.1.8. Consider the measure space (X1 x Xo, du(z1,z2) = v(z1 + 232)v(22)) then

Hf”ég = Epcxyx X2 Boexy xxo f (21, x2) f(p1, 22) f (21, p2) f (P1, 2)

X v(x1 + 2x2)v(p1 + 2z2)v (21 + 2p2)v(z1)v(z2)v(p1 + 2p2)v(p1)v(p2).

Working on 1, would be hard as linear forms conditions may not apply. But if we average dy,, over all
parameters p then linear form conditions do apply. In this regard, s, itself may not be pseudorandom
but upon averaging, there should be many i, that are pseudorandom. Also we will prove that most

f4p 1s only a small perturbation of 1 and still share many properties with .

4.1.2 Energy Increment in weighted setting.

Assume that there is an edge e, say e = (1, 2), so that the graph G, = 7.(E,) is not e-regular. This

means

1Flm,, =& (4.1.9)

where F': Vi x Vo = R, F = 1¢g, — pe(Ge) 1y,. In view of definition of the weight box norm, we

may write
171, = [ [ e a0t el ) de defo > @110
Ve J Ve

where © = (21,22), ¢ = (q1,q2), we set uj(x1) = F(x1,q2), and uZ(22) = F(q1,22)F(qu, q2). If

one defines the measures fi4 ., depending on the parameter g, by

Pg.e(x) = Ve(z1, @2)Ve(q1, T2) pre (),
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then the inner expression in (4.1.10) can be viewed as the inner product
I'(q) := (F, ué : ug>ﬂq.e = / F(x) u;(ml)u?](ajz) dpig.e(z), (4.1.11)

on the Hilbert space L?(V, f14.¢). Thus (4.1.10) translates to E ey, I'(¢) pe(q) > €* while using the

linear forms condition it is easy to see that E,cv, I'(q)? pe(g) < 1 thus, by averaging?,
I'(q) 2 &', for ¢ €9, (4.1.12)

for a set  C V, of measure j1.(Q) > . As the functions Ué are bounded, hence without loss of
generality, using Fubini’s Theorem®, we may assume that they are indicator functions of sets U, g cV.

Let B, = B} V B2 denote the o-algebra on V, generated by the sets 7;° 1(Ué) (i = 1,2), and let

E,,.(1c.|B,) be the conditional expectation function of 1¢, with respect to this o-algebra and the
1,2
u

measure fig.. Then, as u, ug

is measurable with respect to ,, we have
(1g, — Euq,e<1Ge ’Bq) ) Ué u2>uq,e =0.
This together with (4.1.11) and (4.1.12) implies for ¢ € )
<Euq,e(1Ge ‘Bq) - E/—LE(]‘G5|BO) ) U; U?, >uq,e 2 547

where By = {V¢, 0} is the trivial o-algebra, and E,, (1¢,|Bo) = pe(Ge) 1y,. Then by the Cauchy-

Schwartz inequality, we have

By e (L By) = By (L [Bo)lIZ2 ) 2 €™ (4.1.13)

Notice that the condition expectations above are on different measure spaces. To overcome this “dis-

crepancy”’, using the linear forms condition, we can show that for given B C V, one has
Eqev. |tg.e(B) = te(B)I* pe(q) = onw—oo(1).
This in turn implies that for almost every* ¢,
Bpg.c (LeelBo) = Bpue (16.1Bo) || 2 (uy.0) = ON.W—00(1) (4.1.14)

and
1B (LeBo)llL2(ue) = 1Eug,. (Lo Bo)ll22(uy.c) + ONW—00(1)- (4.1.15)

%see e.g. arguments in the proof of Lemma 4.4.1.
3see e.g. calculations after (4.4.13).
“We will put a measure on the parametric space.
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By (4.1.14) and triangle inequality, we have
sy, (L6 1Bg) = Bpue (Lae 1B 22 (1g.0) = 1Bg.e (L6 1Bg) = By (L [Bo) |12 pug,e) + 0N W —s00(1)

Now by the Pythagoras theorem, one would obtain the “energy increment”

HEqu<]‘G ’B ) Hq, e(]‘G ‘BO>HL2(M HEﬂq,e<1Ge’BQ)H%Q(M%E)_HEN%@(1Ge|BO)H%2(M%E) 288'
(4.1.16)

(4.1.13), (4.1.15) and (4.1.16) give us that for almost every ¢ € (2, that

sy e (e Bl Z2gu,.0) = 1B (L 1Bo)llZz(,,,) +ce™ (4.1.17)

If F': V — Ris afunction and (V, B, i) is a measure space, recall that the quantity ||EM(F|B)H%Q(H)
is referred to as the “energy” of the function F’ with respect to the measure space (V, B, i), so (4.1.17)
is telling that if G is not e-uniform with respect to the initial measure spaces (V, By, p) then its en-
ergy increases by a fixed amount when passing to the measure spaces (Ve, By ¢, ftq,c) for (almost) every
q € 2. One can iterate this argument to arrive to a family of measure spaces (Ve, By.c, tg.c)ecty, qc0
such that the atoms G,. € B, . become sufficiently uniform, thus obtaining a parametric version
of the so-called Koopman- von Neumann decomposition. This can be further iterated to eventually

obtain a regularity lemma.

Remark 4.1.9. The number of linear forms defining the measures jiq . is increasing at each step of
the iteration, causing the linear forms condition to be used at a level depending eventually on the
relative density of the set A and not just on the dimension d. (This can me made independent of « in

dimension 1 in Colon-Fox-Zhao’s arguments [16].)

4.2 Weighted Hypergraph System

For a finite set S C Z< we attach the weight

w(S) ::H II »w (4.2.1)

where 7;(.5) is the canonical projection of S to the i-th coordinate axis. If S = {z} we write w(x) :=
w{z}) = HZ 1 v(z;). As in previous discussion, the weight v is used to count configurations with
prime coordinates. If Wz + b € P]Cf, (and z € [e1N,eoN ]d ), then

w(z) ~gw (log N)<. (4.2.2)
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The implicit constant depends only on d and W which we will choose W sufficiently large but inde-

pendent of V.
In particular, for A C [N, e2N]? such that WA +b C A C P]‘f[ one has

w(A) = (log N)! &), (4.2.3)

Recall the definition of hypergraph system (Definition 4.1.4). For a given set A C Z‘f\, and for
e =J\{j} let
d
Bo={ze€V;:> mi(vi—v;) € A} (4.2.4)
i=0
Note that £, € A, for the collection A, defined in Definition 4.1.4, as the expression in (4.2.4) is
independent of the coordinate ;. A point x € E. C V. represents a vertex of an affine copy in A of

the simplex. A point z € mee?{d E. represents an affine copy in A of the simplex.

Definition 4.2.1 (Weighted system). We will define now a family of functions v, : V; — Ry, pe :
Vy = Ry Fore € Hg,e = J\{j} and 1 < k < d. Write each vertex as

vj = (vjl-,vjz,...,v;l)

where vf denotes the k" —coordinate of the vector v;. Define

d
LF(z) = sz(vf - Uf) (4.2.5)
i=0
We partition the family of forms
L:={Lle|=d,1<k<d}:= ] Ly (4.2.6)

FeH
according to which coordinates they depend on. Here we write

- L 1 for the set all linear forms (in x € V; variables) with variables depend exactly on x .

— Ly for the set of linear forms (in x € V variables) depending only on x4, g C f.

For this we define the support of a linear form L(x) = Zi:o arxy as supp(L) = {k : ar # 0}. For
a given e C J, define

ve() =[] vZ@), pelz)= I v, (4.2.7)

LeL,supp(L)=e LeL,supp(L)Ce

with the convention that ve = 1 if {L; supp(L) = e} = 0.
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Note that if A = {vp,...,vq} is in general position, that is if v¥ # vf for all ¢ # j and k then
supp(L’g) = e for all e € H, hence

d
pe() = ve(w) = [ [ v(Le(@)).
k=1

Remark 4.2.2. As mentioned before, it is sometimes more convenient to think of . as a measure on
Vy (rather than V) in the obvious way. In general for x € V;, we have pie(z) = [];c, vf(z) and
also pe(x) = pe(me(x)), that is e is constant along the fibers of the projection 7. hence we can
think of . as a function on V, as well. We will refer the functions v. and p. as weights and measures

respectively. To emphasize this point of view we will often use the integral notation and write

F(@) dpe (&) = Buey, (o) (), and [ Fo(o) dpe(e) = Brey, (o) (),
VJ e

for functions F' : Vy — R and Fy : V. — R. Thus we could think of (. as a measure on Vj or on the

subspace V., the exact interpretation will be clear from the context. Note that for F, : V., — [—1,1],

/ Fu(me(@))dpe(z) = [ Fule)dpe()
% Ve

and it follows easily from the linear forms condition (see Lemma 4.2.3 below) that

| Fmla)dusta) = [ Fu@)dela) + onpr-n (1)
1%

. Ve

Now we prove in Lemma 4.2.3 below that measure p and p; are essentially probability measures and
in fact essentially the same measure and this supports the idea of identifying functions or sets on V.
with functions or sets on V; in the obvious way: consider sets G, C V, as sets G, = T, 1(G’e) CcVy,

changing their measure only by a negligible amount
MJ(ée) = Me(Ge) + 0(1) (4.2.8)

The proof is a prototype of the arguments that are based on the Linear Forms Condition. Here, as in
previous chapter, we don’t need to analyze the structure of linear forms, only inspect that each linear

forms depend on different sets of variables and hence linearly independent.

Note that for any |e| = d we have that {L¥ 1 < k < d} are linearly independent which may be
inspected from (4.2.5). Alternately, since each linear form of this set represents a coordinate of a
vertex, the set of all normal vectors to each of face of the simplex (choose one vector from each face)
called {n1,...,n4+1}. Any d vectors chosen from this set are linearly independent. Recall that we

can parametrize affine copies of a simplex in Z%, by Z%™: a point (21,...,2441) € Z%* represents
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an affine copy of the simplex where the equation of the d + 1 planes that constitute the simplex are

p-n; = x;, 1 <i <d+ 1. Each vertex p = (p1, ..., pq) of this affine simplex is obtained by solving

p-mi1 =1y

p-mg =1Yd
here m1, ..., mgy are d vectors chosen from {n1,...ng41} and y1, . .. yq are chosen from {x1, ... z441},
corresponding to choices of myq, ..., mg. This means we solve Ap = (y1, ..., yq) for some invertible
matrix A hence p = A~! (y1,--.,Yaq) so each p; is represented by a linear form in variables y1, ...y

and since A is invertible, these & linear forms are in fact linearly independent.

Lemma 4.2.3. For all e € ‘H we have that

1e(Ve) = 1+ o(1), (4.2.9)

moreover if g : Vo, — [—1,1],

Egzeev, g(me) Ne(xe) = Ezev, g(ﬂ'e($)) :UJ(‘T) + 0(1)7

or equivalently

[ gdu. - /V (9.0 me) dpey + o(1). (4.2.10)

Proof. Note that the linear forms appearing on the right side of

ne(Ve) =Eeev,  []  v(L(2))

supp(L)Ce

are pairwise linearly independent, and as they are supported on e they remain pairwise independent
when restricted to V.. Thus (4.2.9) follows from the linear forms condition.

To show (4.2.10), let ¢’ = J\e and write x = (x¢, xe/) With ze = Te(x), e = Ter(z). Then
E = Egev, (gome) (@) s (2) —Eaev. 9(xe) pe(ze) = Egoev, 9(Te) pe(ze) Ez,ev, (W(Ze, wer)—1),
where w(xe, zo) = ]_[fge Vi(Zenf, Terng)-

Now we consider E? to get rid of g (using |g| < 1). By (4.2.9) we have that (V) < 1, and

~

then apply the Cauchy-Schwartz inequality in z. variables,

|E1|2 = EmeEVEg(xe)ﬂe($e)1/2 X EmE/EVE//Le(Qje)l/Q(W(:ﬁea xe’) - 1)
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5 EmQEVEEaﬁe/,ye/GVe/ (W(‘Tea $6’) - 1)(W($e, ye’) - 1) Me(xe)-

The right hand side of this expression is a combination of four terms and (4.2.10) follows from the fact
that each term is 1 4 o(1). Indeed the linear forms appearing in the definition of the function p(x.)
depend only on the variables z; for j € e and are pairwise linearly independent. All linear forms
involved in w(z., z./) depend also on some of the variables in z;, j € €/, while the ones in w(z, ye’)
depend on the variables in y;, j € €', hence these forms depend on different sets of variables. Thus
the forms appearing in the expression jie(ze)W(xe, Te )W (e, yer) are pairwise linearly independent

and (4.2.10) follows from the linear forms condition:
B2 S (1+0(1) = (1+0(1)) = (1+0(1) + (1 +0(1)) = o(1)
Note that the estimate is independent on the function g. O

Counting Prime Simplices.
To see how to use weighted hypergraph {v.} 3 to count prime simplices we follow [102] to param-

eterize affine copies of A. Define the map ® : Z4™ — Z%! by
d d
O(x) = (O mivi, — Y wi) = (y,1) 4.2.11)
i=0 i=0

By (4.2.4) and (4.2.11) we have that € E, for e = J\{j} if and only if y + tv; € A thus
T € ﬂeGHd E. exactly when y + tA C A. Since {v; — vg,...,vq — vp} is a linearly independent
family of vectors, we have that ® is one to one. Hence, this gives a parametrization of all affine copies
of A contained in A (mod N). Also fore = J\{j},

d

LF(z) = Z zi(vF — vé"’) = (Y + tvy) (4.2.12)
i=0

where 7, is the orthogonal projection to the k" coordinate axis. This implies that

d
pe(@) =[] v@@)=]]vEi) =wly+tv)), (4.2.13)

supp(L)Ce k=1

and also

pi(z) =[] v(L(x) = wly +tA). (4.2.14)
LeLl

In particular .7 ([) ceHy E.) counts the number of prime affine copies of A.

Next we observe that our linear forms do satisfy some useful properties which we will refer to later:
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Theorem 4.2.4 (Properties of a family of linear forms). Consider a family of linear forms £ =
{LFe € Hq,1 < k < d} associated with hypergraph. Our system of linear forms satisfies the

following properties.

- Ife=J\{j}, ¢ = J\{j'} then supp(L%) C e if and only ifv§-c = vf, (i.e. the k" coordinate of
vj,vj are the same). This is equivalent to L’;, = ng. We call such a family L well-defined.

— Since for a given e € Hy, the forms L. = {L’g, 1 < k < d} are linearly independent. Any two
distinct forms of the family L are linearly independent. We will refer to such families of forms

as being pairwise linearly independent.

—Let M = {x € Vj:x9+ ...+ x4 = 0}. Then for any x € M, from definition of the linear
forms, we have LF(z) = L’;, (x) for all e,€’ € Hq and k. We call a family of linear forms L
satisfying this property symmetric.’

Example 4.2.5 (Corners in Z2). ®(xq, x1,22) = (21,22, —Tg — 1 — 22);y — (T1,22),t = —x0 —

r1 — T2.

y+tvg = (xl,xg) + (—xo e :L'Q)(O,()) = (xl,xg)
y+ tve = (1, 22) + (—xo — w1 — 22)(1,0) = (—z¢ — T2, 22)
y+tug = (21, 22) + (—xg — 21 — 22)(0,1) = (21, —x0 — 1)

— Linear forms are x1,x2, —xg — T2, —Xy — T1-

— Linear forms associated with (0, 1) are L%O’l)(xo, x1) = —x0 — X1, L%OJ)(JT(), x1) = x1. Linear
forms associated with (0,2) are L%O 0y (70, T2) = =2 — o, L%O 2) (x0,x2) = x2. Linear forms
associated with (1,2) are L%l 2) (z1,22) = 271, L%l %) (r1,22) = x2.

— Examples of symmetric property: Let (xo,x1,22) = M = {(x0,x1,22) : 9 + 1 + 22 = 0}
then

—T0—T] = L%O,l)(xo,xl, x9) = L%O’l)(xo,xl) = L%O’Q) (xo, —wo—x0) = —x0—(—22—2T0) = T2 = L%oz) (xo,x

21 = L 1y (w0, @1, 22) = L 5 (w0, 22 — 20) = —w2 — 20 = L{g 9 (w0, 21, 22).

5The set M correspond the degenerated copy x + tA with ¢ = 0, saying that it should be degenerated to a single point. Given
f € H with a set of linear forms Ly, we can have a process of symmetrization to obtain a system of linear forms defined on all
hyperedges which is symmetric such that the linear forms that only depend on variables in f is L. See section 4.3.2.
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4.3 Parametric Weight Systems: Extensions, Stability, and
Symmetrization.

Definition 4.3.1 (weight systems and associated families of measures depending on parameters.). Let

Ly = (L'(q,2),...,L%(q, x))

be a family of linear forms with integer coefficients depending on the parameters q € 7% and the
variables = € 7. We call the family pairwise linearly independent if no two forms in the family are
rational multiples of each other (considered as forms over q and x). If N is a sufficiently large prime
with respect to the coefficients of the linear forms L(q, ), then the forms remain pairwise linearly
independent when considered as forms over Z XV, Z = 7RV = Z][\),. We refer to the set Z = Zﬁ
as the parameter space of the family L,. We call the family of parametric forms L, well-defined if

all forms L'(q, x) depend on some of the x-variables and there is measure on Z of the form

/Z 9(0) 40(0) = Byez 9(@) vla), () = [[v(¥ila)), @3.0)

for a family of pairwise linearly independent linear forms Y; defined over Z.

IfV =V then we define an associated system of weights {v, ¢} qc z,ect and measures {jiq ¢ }qc z,ecn
as follows: For a form L*(q,z) = Y, biq; + Zj ajx; define its x-support as supp,(L) = {j €
J; aj #0}. Fore C Jandq € Z, let

vgelw) =[] vlg2), pel@):= J[ v(Zigx) (4.3.2)
LeL LeL,
SUsz(Lq)=e suppaz(L)Ce

We use the convention that vq . = 1 if there is no form L C L such that supp, (L) = e. Note that the
x-support partitions the family of forms L, is independent of the parameters q, thus for given e € H

Hge(z) = H vg f(x), forall g€ Z.
fCe

A crucial observation is that many of the properties of the measure system {y.} still hold for well-
defined measure systems {1, s} for almost every value of the parameter ¢ € Z. In order to formulate

such statements, we give the following definition.

Definition 4.3.2. We define the dimension of the space Z, the number of linear forms L’ (q, z), Y;(q).
We say that the family L, has complexity at most K if the dimension of the space Z and the magnitude
of their coefficients are all bounded by K.

Remark 4.3.3. The error terms in applications of the linear forms conditions will depend on quantity
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K.

We have the analogue of Lemma 4.2.3 for parametric weight system.

Lemma 4.3.4. Let {{ig.c}ectt qez be a well-defined parametric measure system of complexity at most
K.
For every e € H there is a set E, C Z such that (E.) = ok (1), and for every q ¢ E.

Mq,e(%) =1+ OK(l)' (4.3.3)

Moreover for every e € H there is a set E. C Z of measure ¢(E.) = o(1), such the following holds.
For any function g : Z x V., — [—1, 1] and for every q ¢ &, one has the estimate

| 90w dngewo) = [ ata.me(w) dig (@) +oxc(1). (43.4)

e J

Proof. To prove (4.3.3), consider the quantity

L _ 2
A, = /Z ige(Ve) — 112 dib(q)
—FgerBay( [ v(E(g20) - 1)( V(L(g,v0)) — 1) dib(g).

suppz(L)Ce suppa(L)Ce

The above expression is a combination of four terms and note that the family of linear forms

{Yi(a): L'(q, ), I (4, e ) }

is pairwise linearly independent in the (g, ., y.) variables by our assumption on the linear forms.
Applying the linear forms condition gives that each term is 1 + ox (1) and so A, = ok (1) and (4.3.3)
follows.

Now let ¢ = J\e, write © = (x., z./) and arguing as in Lemma 4.2.3 we consider the difference
in (4.3.4),

A(g, e, 9) :—}/V g(q,ﬂe(w))duq,J(fv)—/ 9(q, xe)dpg e ()|

Ve

= | Ezev, 9(q, me(2)) p1q,0(z) — Bz cv, 9(q; Te) Hge(Te)]
= |EzeEVe g(‘]vxe) Mq,e(xe) Exe/GVE/ (Wq(xevxe’) - 1)|

IN

]EIEEVE ,qu,e(we) |E1’E/€VE/ (Wq(x&xe’) - 1)‘7
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where Wq(l’e, xe/) = Hfge Vq,f(xeﬂf7 xe’ﬁf)-

Notice that the right hand side of the above inequality is independent of the function g; if we denote it
by A(g, e) then (4.3.4) (holds for almost every ¢) would follow from the estimate E,c 7z A(q, €) d(q) =
ok (1). By the linear forms condition E .., dv/(q) dpge(xe) = 140K (1) < 2, for N sufficiently large
with respect to K. Then by the Cauchy-Schwartz inequality one has

(Eqez Alg, e) d¢(Q))2 S EgezEz ev., /‘q,e($e)|Exe/€Ve/ (Wq(we, Ter) — 1)|2 di(q)
S Egez,zcev. E:fce/,ye/EVe/ (Wo(Ze, Ter) = 1)(Wo(Te, Yer) — 1) dptge(we) dip(q).

This is a combination of four terms, however each term again is 1+ oz (1) as the linear forms defining
1 depend on the variables ¢ while the ones defining 1, . depend also on the x. variables. On the other
hand all linear forms appearing in the weight functions w(z., z.) (respectively, wq(x., ye’)) depend
on the x.s (respectively, y./) variables as well. Thus the family of all linear forms in the above
expressions is pairwise linearly independent in the (g, z¢, z./, yer) variables. The result follows from

linear forms condition. O

4.3.1 Extension of Parametric Weight System, Stability and Symmetrization.

Energy increment argument involves iterations. In our setting, it turns out that when we do an iteration,
due to our averaging argument, we end up with a new parametric system of measure which is an
extension of the original measure system (in the sense that the weights in the definition of the original
measure are included in the definition of the new measure). The fact we will prove is that most of
these extensions are just a small perturbation of the original measure and still shares many important

properties with the original measure.

Definition 4.3.5 (Parametric Extension). Let

£(111 = {L%(QDIB)? ~-‘7Li1(Q171’)}7 £(212 == {L%(QQ7$)7 ~-‘7L§2(QQ71’)}

be two pairwise linearly independent families of linear forms defined on the parameter spaces Z1 =
Zlf\} and Zy = Zlf\?. Let 11 and )9 be measures on Zy and Zo defined by the families of linear forms
{Yi' (@), ... Y (@)} and {Y{(q2), - .- Yii (a2)}-

We say that the family E22 is an extension of the family Eél if Z1 < Zo (Z1 may be empty) and
the following holds: The family of forms L}(qa, z), Y]?(CIQ) which depend only on the variables q1 =
7(q2) is exactly the family of forms L% (q1,x), le (q1), where w : Zy — Z is the natural orthogonal
projection.

IV = Vylet it == {ug etqezicen and p? := {fig, faoczs. e be the associated measure
systems as defined in (4.3.2). We say that the measure system ji° is an extension of the system .
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Remark 4.3.6. Writing Zo = 7y x Z, Z = 7L and g2 = (q1,q), we have

Ya(q1,q) = ¥i(q1) - (a1, 9) (4.3.5)

where p(q,q1) = Hle v(Yi(q1,q)). The linear forms Y;(q1,q) defining v(q1,q) depend on some of

the variables of ¢ = (q;)1<i<k and are pairwise linearly independent. Similarly one may write for
anye € H
e ar.e(Te) = g o(e)Welqr, ¢, Te) (4.3.6)

where the linear forms Lé (q1,q, ze) defining the function w.(q, 1, x.) depend on (some of) the vari-

ables q as well as on all of the variables x,.

Next lemma, we prove Stability Property of a parametric extension. Saying that most extensions i,

of 14, 1s just a small perturbation of 1, , by quantities that is independent of g.

Lemma 4.3.7 (Stability property of measure). Let {11} rey be a well defined measure system, and let
{tq.f }qez, rem be a well-defined parametric extension of { i} re of complexity at most K. Then for
any f € H and for any function g : Vy — [—1,1] thereisaset £, C Z of measure )(Eq ¢) = ok (1),
so that forall ¢ & £, 5

/V gdpig.f —/ gdps = ok (1). 4.3.7)

. Vi

Similarly if {jiq, t} fer,q1c 2, is a well-defined parametric system and if { {14, } e, qoc 2, IS an exten-
sion of complexity at most Ks, then to any function g : Z1 x Vi — [—1,1] there exists aset £, 5 C Zo
of measure (&, r) = 0K, (1), such that for all go = (q1,q) ¢ Eg.5

/ 9(a1, 2) dpigy () — / 9(a1, %) dig 5 () = 01 (1). (43.8)
Vi Vy

Proof. As pig r = pg(xy)ws(q, xy), the left side of (4.3.7) may be written as

Agyla) = / 9(2)(wy(g,2) — 1) dpig (z).

Vy

Consider the average over ¢,
Moi= [ sl dvto)

which is non-negative. By expanding, we have

Agg = /Z/Vf /Vf<Wf(‘Z= z) — 1) (wr(g,y) — Dg()g(y) dppy(z)dpys(y)di(q)

“J. 1,

/Z(Wf(% z) — 1) (wplg,y) — D)dy(q)| dus(x)dpg(y)-
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Now the Cauchy-Schwartz inequality in Vy x V variables and (4.2.9) gives

Aggl? S /V f /V f /Z /Z (w(q,2) — 1)(wy(g,y) — 1)x

x (wi(pyz) — D(we(pyy) — 1) dug(x)dps(y)dy(q)di(p).

This last expression is a combination of 16 terms where each term is 1 + ox (1) by the linear form
conditions and their total contribution is o(1). Indeed the linear forms which can appear in any of
these terms are Y;, (q),Y:, (p),L% (2),L*(y), L*(q,z), L (q,y), L' (p, ), L*(p,y). Note that the
last 4 terms depend on both sets of variables (for example L’(q,z) depends both on ¢ € Z and on
x € V), and hence the family of these forms are pairwise linearly independent in the (g, p, z,y)
variables. This Proves (4.3.7).

The proof of (4.3.8) is essentially the same. Set

Agg(q2) == /V 9(qr, z)dpg, f(x) — /V 9(ar, z)dpg, ()
f f

and

Mgy = /Z 1Ay (a2)? diha(a2).

where we write Zo = Z1 X Z, Z = Z?V, and g2 = (q1,q) for g2 € Zy. By (4.3.5) we estimate as

above
Ay < /V /V /Z (1) dptgy (@) dbtgy. 1) [Egez (wilqn @, 2) — 1)(ws(q,a0y) — Diplar,q)]-
f f 1

The linear forms condition gives

/ / / A (1) dptgy (@)t 1 (y) = 1+ 0, (1),
v Jve Sz,

so by Cauchy-Schwartz’s inequality, we have

Apgl® S /Vf /Vf /Zl Epgez (Wi(qr, ¢, x) — 1)(wy(qr,¢,y) — 1)x
x (Wilqr,p,z) = 1)(wrlq,p,y) — 1) wlqr, @) e(qr, p) dipr(qr)dpg,, f(2)dpg, 1 (y)-

Now any linear form L’; (q1,4, =) depends both on the variables ¢ and z. Thus again the left side
is a combination of 16 terms, each being 1 + ox, (1) by the linear forms condition as all the linear
forms involved in any of these expressions are pairwise linearly independent in the (x,y,q1,q,p)

variables. O
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Next we will prove stability property of box norm with respect to an extension. Let g : Z; x V., - R

be a function and let e € H,

e| = d'. For a given ¢; € Z; recall the box norm of g, () = g(q1, )

2d'
loall5,,  =FEpweve I glavwewa)) [T 11 var(wslos.zp)), (4.3.9)
v wee{0,1}¢ fCe wpef0,1}f
where x; = mg(x), py = 7p(p), 7y : Ve — Vj being the natural projection. Here we have a
parametric linear forms £, . on Z1 x V, as in Definition 4.3.1. The inner product on the right side of

(4.3.9) is defined by the parametric family of forms (in (p, x) —variables)

Loe= U{L(ql,wf(pf,:cf)); L€ Ly, supp:(L) = f, wy € {0,1}7}. (4.3.10)

fCe

Claim. qu is a pairwise linearly independent family of forms defined over Zy x V (V. =V, x V).
Proof of Claim. Suppose we would have that

L’(ql,w}/(pf/, xf/)) = /\L(ql,wf(pf, .Tf)), (4.3.11)

then restriction both forms to the subspace {(p, z) € Vy x V} : p = '} would imply that L' (q1, zy) =
AL(q1,x5) and hence f' = supp,(L') = supp,(L) = f. Then, as L and L’ depend exactly variables
xj.j € f. For the equation (4.3.11) to hold, we should have w} = wyand L = L. O

Lemma 4.3.8 (Stability Property of Box Norm). Let {vg, f} tem,qez, be a parametric weight system
with a well-defined extension {vg, §} e q,cz, 0f complexity at most K. Then to any e € H and to
any function g : Zy x Vo — [—1, 1] there exists a set € = E(g,€) € Za of measure 2(E) = ok, (1)
such that for all go = (q1,p) ¢ €

l9a: 1, = llgallg,, . +ora(D)- (43.12)
Proof. Let
Gu )= [ 9lar,welp,x)), (43.13)
we€{0,1}¢

and let {fiq, ¢}q ez, denotes the associated system of measures on Z; x V, then for given ¢; € Z;

(according to definition in the equation (4.3.9)), we can write

ol = Erwcv.Goy (0. 2) gy o). (43.14)

Now, if L, is a well-defined parametric extension of £, then (4.3.10) yields to a well-defined para-
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metric extension ENqQ of the family [’,ql. Then by Lemma 4.3.7, and the simple observation that

d’ d’ . . —d’
|[a®** — b*" | < e implies® |a — b| < &2 " for a,b > 0, we are done.

O]

Finally we prove prove the stability of the conditional expectation, both with respect to L? norm and
Box norm. Recall that if (V, B, ) and g : V — R, we defined

1 1
E0lB)(@) = g /B S0 = s B L (g (),

where B(z) € B is the atom containing . If y(B(x)) = 0 then we set E,,(g|B)(x) = 1.

Lemma 4.3.9. Let (f1q,.)q e 2., re1 be a well-defined parametric measure system with a well-defined
extension (fig, f)g.cz,.fen Of complexity at most Ko. For 1 € Zy and e € H, let By, . be a
o—algebra on V, such that compl( By, )< M for some fixed number M. For any function gq, :
Zy x Ve — [—1,1] there exists a set £ = E(By, e, 9) C Zz of measure () = onr K, (1) such that
forany g2 = (q1,q) ¢ E. We have

1.
2
HEuqz,e (9611 ‘the) - Euql,e(gql‘BqLE)HLz(M%E) = OM,Kz(l) (4.3.15)

HE#qg,e (QQ1|BQ1,8)Hi2(uq27e) - HE#ql,e (gql‘Bql,e)Hi2(M%e) + OM,KQ(l)' (4-3‘16)

m

Proof. Let m = 2™ and enumerate the atoms of By, e as B(}l, s Bql,

allowing some of them to

possibly be empty. For a fixed 1 < ¢ < m define the functions

1 if z€ Bé1
bi(gr, @) := 1p; () = .
0 otherwise

and for g2 = (q1,q) € Z5 define the quantities

MZ(QQ?Q) ::/ g(q1,x)bi(q1,$)dﬂq27e($), IU’Z(QQ) = ,LLZ'(QQJ 1) = MqQ,e(Bél)v

1i(q1,9) ::/Vg(Qhx)bi(be)dMQLE(x)v piqr) = pi(q1, 1) = pg, (BY,)

d' —1 d' —1 d' -1 d' —1 d' —1 d' -1 d’ d’ . .
SIndeed |a* v 2 <d? — % ||a? +b* | =]a® —b* | <e. Then we may argue by induction.
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By Lemma 4.3.7 we have that

1i(q2,9) = pi(qr, 9) + o, (1), pi(g2) = pi(q1) + ok, (1) 4.3.17)

for all o ¢ & where & C Z is a set of 1p- measure og, (1). Let £ = (J*, & then o(E) =
0K, M (1). By definition, the left hand side of (4.3.15) takes the form

o (pila9)  mila9)\*
;( wi(e) ) ) pi(g2), (4.3.18)

with the convention thatif y1;(¢1) = 0or p1;(g2) = O then (g1, 9)/pi(q1) := Lor pi(g2, 9)/pi(g2) ==
1.

If ¢ = (g1, q) ¢ € then by (4.3.17)

m

e=¢e(N):= Z <|Mz’((J2,g) — pi(qr, 9)| + |pi(q2) — Mz‘(Q1)|> = 05y, m (1) (4.3.19)
i=1

We split the sum in (4.3.18) in ¢ into 2 parts:

- If pi(qr) < 2e1/4 then wi(q2) < 3el/4 by (4.3.17) and we have the trivial bound

1i(g2, 9) _ (g1, 9) ? 2
< 1i(g2) pi(q1) > =%

Hence the total contribution of such terms is bounded by 12me'/* = o KoM (1).

- If pi(qr) > 2¢1/4 then wi(q2) > e1/4 we have the estimate

pi(g2,9) Mz’(CJLg)‘ _ ‘(Mz’(fm,g) — 1iq1,9))pi(qr) — pilar, 9)(pi(qr) — pi(gz))

1i(ge) 1i(q1) 1i(q1)1i(g2)
€24 2¢ 4e (

= pilq)pi(gz) — 2el/2 0x,,m (1)

This proves (4.3.15). The proof of inequality (4.3.16) proceeds the same way, here one needs to

estimate the quantity

>

i=1

m

-

i=1

pila2, 9)*  pilar, 9)*
1i(q2) piq1)

(W>2qu) - <M>2m(q1) (4.3.20)

1i(q2) wi(q)

— If pi(q1) < 2% then p;(g2) < 3¢/ for o = (q1,q) ¢ & . Since we have the trivial bounds
(1i(g5,9)/1i(q;))* < 1 for j = 1,2, the contribution of such terms to the right side of (4.3.20)
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is trivially estimated by

5mel/t = oM, K, (1)

= If pi(q1) > 2¢"/ then pu;(qa) > €'/4, using

‘ (Mz‘((J2,9)>2M(QQ)_ (M)2Mi(Q1)

_ ‘ (i(gz, 9)* — palar, 9)*)wi(qr) — pilqr, 9)* (milqr) — pilq2))
i(q2) wi(q1)

1i(q1) pi(g2)

then proceed as in the proof of (4.3.15),using | (g2, 9)* — pi(q1, 9)*| < 2|pi(qr, 9) — pig2, 9)|
we have that these remaining terms are bounded by 8 £1/2 and (4.3.16) follows.

O]

Finally, we need an analogue of the above result when the || - [|2(,, .) norm is replaced by the more

complicated | - |, , norms.

Lemma 4.3.10. Let {vy, t}q,cz,. fen be a well-defined extension of the parametric weight system
{vgr tYaiezn, fens of complexity at most K. For q1 € Zy and e € H, let By, . be a o-algebra of
complexity at most M, for some fixed constant M > 0. Then

HEﬂqQ,e (gth |Bque) - E,qul,e (glh |Bq176)||Duq2,e = 0M7K(1)7 (4321)
forall o = (q1,q) ¢ € where £ = E(g,B) C Zy is a set of measure 12(E) = onm, i, (1).

Proof. First we show that for any family of sets A = (Ag,)qez, Agy € Ve there is a set & =
&1(g, A) of measure 15(E1) = ok, (1) such that for all g2 = (q1,¢q) ¢ €1 we have

el
||1A¢Z1 ||%uq2,e S /j’q27e(AQ1) + OKQ(l)' (4322)

To see this, first note that for g2 = (¢1,¢q) € Z5 one has
olel
1144, 115,,,. < EBepevilay, (2) gy e() 1T I1 veer(wsos,2p)
fCews#0

= lgye(Agy) + E(q2),
with
E(q2) < Ezev. figs.e()|Epev, (W(g2, p, ) — 1)],

where

w(g,p, ) = [ TI vawsr@r(os, )

fCewy#0
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Arguing as in the proof of Lemma 4.3.7, we see that

EQ2€Z2E$1P7P/€Ve wQ(qQ)dMQze(a:) (W<QQ7p7 .CU) - 1)(W(QQ,])I,J}) - 1) = OM,K2(1)

and (4.3.22) follows.

Now let {Bg1 ™ (m = 2M)be the atoms of B, . and define the quantities 11;(g2, g), 1i(q2), i(q1, 9), pi(q1)
as in Lemma 4.3.9. Using the facts that 1;(¢2, 9) = pi(q1,9) + 0k, (1) and p;(g2) = pi(q1) + 0k, (1)
outside a set of measure oy, x, (1). Arguing as in Lemma 4.3.9, we obtain

o) - B <o

The expression in (4.3.21) is then estimated :

m m
<Ni(QQ»9) _m(ql,g)>1 _ <y Nz(QZa 3 (rh, 'H N
1i(g2) 1i(q1) g, .~ Sl mile) 11 B 04,
- u(q  pilg1,9)
Y|l L) (B o)
N; /,,LZ q2 /.,Ll(ql) Q% 82

for go = (q1,q) ¢ &1, where & = £1(By, ¢, g) is a set of measure oar,k, (1).
Now

> tane(Bl) = gse(Ve) = 1+ 0x, (1),

In particular uq%e(Bél)T‘e‘ = Oum, Kk,(1) and it follows from (4.3.23) that the above expression
(4.3.21) is opr, K, (1) . This completes the proof. O

4.3.2 Symmetrization of Parametric Weight System
In this subsection we prove symmetric property of the parametric weight system.

Definition 4.3.11 (Symmetric of parametric weight system). For each e € H, let

Eq,e = {Lé(% :E)a ceey Lg(‘]a :E)}

be a pairwise linearly independent family of linear forms in x variables defined on V = V;, depending
on parameters q € Z, such that supp, (L) C e. We denote Lqg=Usen Laf = Ueen, Lae

We say that the family of forms L is symmetric if L.(q, z) = L?,(q,z) forallg € Z, v € M = {x :
xo+--+xg=0} e e €Hygand1 < j<s.

For any given e € H we call L, the symmetrization of the family L, .. The reason and validity of

123



this later definition is the content of theorem 4.3.13 below.
Remark 4.3.12. Recall that our initial family of forms defined in (4.2.5) has this property.

Theorem 4.3.13. For a fixed e € H, |e| < d and pairwise linearly independent family L . There is a
unique symmetric family of linear forms L, defined above such that L, . = {L € Ly; supp,(L) C e}.

Also L is a pairwise linearly independent

Proof. First assume |e| = d and suppose we have a family of pairwise linearly independent linear
forms Lge. Let M = {x : k9 + --- + x4 = 0} (which is isomorphic to V, for any |e| = d) and
¢e : Ve — M be the inverse of the projection 7 restricted to M. Now forany ¢’ € Hy,q € Z,x € V,
define

L7, (q,2) := Li(q, b © mer (1)) (4.3.24)
Note that ¢, o7/ () is an isomorphism (the identity map) between M and V.. Hence suppri, ce.
Now if z € M then x = ¢ o Ter(x) hence Lz,(q7 ) = Li(q, x), this shows symmetry of Ly.

Indeed, L,. C {L € Ly; suppy(L) C e}. Next, we show L,. O {L € Ly; suppy(L) C e}.
Suppose supszi, C e (so Lg, (q, e © Te(x)) is defined) then for all ¢ € Z1,x € Vj, then by

symmetry property
L,(g,0) = LL(q, $e 0 me(@)) = Li(q, de 0 me(x)) = Li(g, @) (4.3.25)

Finally, we verify that £, is a pairwise linearly independent family by considering the set of variables
they depend on. Now all forms in £, are constructed via (4.3.24), any two of them are either of the

form L (g, x.) or depends on different sets of variables, hence must be pairwise linearly independent.

Now suppose |f| < d and we have a family of linear forms £, ;. We choose |e| = d with f C e
and we consider L, ¢ as family of forms on V,. This is independent of the choice of e since (by
well-definedness of the system) if f C e’ as well then L= Lg, forall 1 < j < s(f) and we can do

the symmetrization as above. O

4.4 Regularity Lemma for Parametric Weight Hypergraph

In this section we will prove a decomposition theorem for the functions on our hypergraph where we
will exploit the machinery of parametric weight system we developed.

4.4.1 A Koopman-von Neumann Type Decomposition for Parametric Weight System

Lete C J and let B be a o-algebra on Vy for f € Oe, where 0e = {f C e; |f| = |e| —1} denotes the
boundary of the edge e. Let B := \/;,, By be the o-algebra generated by the sets W;fl (Bf) where
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Tef © Ve — Vj is the canonical projection. The atoms of B are the sets G = () ;cg, we_fl(G ) with
Gy being an atom of B;. We may interpret G the collection of simplices € V,, whose faces x are
in Gy forall f € Oe.

The first lemma we will prove says that if there is a large “bad” set {2 of parameters g for which the
set G is not sufficiently uniform with respect to the o-algebra \/ Fede By, s, then the energy of the
set (with respect to the sigma-algebra) will increase by a fixed amount when passing to a well defined
extension {By ¢}, each has complexity increased at most 1 and {1y .} with complexity O(K). This
holds for all ¢ = (¢, p) € Q' with positive measure.

Lemma 4.4.1 (Large Box Norm implies Structure and Energy Increment). For given e C J,

el =d,
let {jiq. £ qez,rce be a well-defined family of measures of complexity at most K. For q € Z let
Gge C Veand {By s} fcoe be a o-algebra on V.

Assume that for all q € Q, where Q C Z is a set of measure 1)(€) > ¢y > 0, we have

o
H]'GII,G - ]Eﬂfq,e(le,c’ \/ Bq7f)”2|]#q,e Z m, (441)
f€de

for some n > 0.

Then for N, W sufficiently large with respect to the parameters cy,n, there exists a well-defined ex-
tension {jiq ¢}y cz . fce of the system {pq ¢} of complexity K' = O(K), and a set ) C Q x V, C
7' = Z x V, such that all of the following hold.

1. (positive measure of parameter) We have
() > 274en?, 4.4.2)
where 1)’ is the measure on the parameter space Z'.
2. (complexity control) For all ¢ = (q,p) € Z' and f € Oe there is a c—algebra By y O Bg 5 of

complexity
compl(By ) < compl(Bg ) + 1. (4.4.3)

3. (energy increment) For all ¢ = (q,p) € Y, one has

1B, . (Lc,.| \/ Bq’,f)”iz(uq/e) > By, (Lc,| \/ Bq,f)H;(uq,e)+272d757727 (4.4.4)
fede ’ fede

4. (probability measure)
g e(Ve) < 2. (4.4.5)
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Proof. Let

90 =1, — By, (1a,.| \/ Bys)- (4.4.6)
feoe

Then by definition in equation (4.3.9) we have for each g € €2,

od’

Duq,e

lgqllp, = / (g T vawtdugy. Hg.e() >, (4.4.7)

Ve fe€oe

where ugp, ¢ : Vo — [—1,1] are functions in xz—variables and djiq(p) is from terms without x

variables. {1t(qp) e }(q,p)ez is the family of measures defined by

“(q,p),e(x):H H Va,r(wr(ps,xp))-

fCe wa{O,l}f
ws#0

As explained after (4.3.2) the measures /(4 ) . are defined by a pairwise independent family of forms
L (q.p),e depending on the parameters (¢,p) € Z x Ve, which is a well-defined extension of the fam-
ily £, . defining the measures fi4 .. It is clear from (4.4.7) that the measure ¢/’ on Z’ has the form

V' (q,p) = p1q.e(p) ¥ (q) where 1(q) is the product of terms without p variables.

For ¢’ = (¢, p), let

F(Q?])) = <gq7 H uq,p,f>,u,q’p‘f (448)
f€0e

First, we show that there is a set 2} C Q x V, of measure

v ) = 27 G, (449
such that for every (¢, p) € ] one has
T(q,p) > g. (4.4.10)

Indeed, by Lemma 4.3.4 we have that 11, .(Ve) = 1+ ox (1) < 2for g ¢ £ where & C Qs a set of
measure 1)(€1) = ok (1). Thus for ¢ € Q\E = Q1 we have by (4.4.7) that
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n n
/v Lir(gp) >/ (¢, P)dpge(p) > n — /v 1{r(q,p)<n/a3 L (@, P)dpig.e(p) > 1 — 1(1 +o(1)) > 5
‘ ‘ (4.4.11)

Now we use this fact to bound the L?—moment of I'(p, ¢). By (4.4.7) and (4.4.8) we have

)= | 00 TT s ) wao)igo(o)

feoe

The function w () is the product of weight functions of the form v(L(q, p, z)) depending on both
p and x. Thus, using the bounds |g,| < 1, Jugp, r| < 1, one has

2 / /
/Z [ 100 g ) 000) < /Z / e / e / a0y 0 g ) e ())
4.4.12)
=1+ o0x(1) <2

by the linear forms condition as the factors in the product depend on different sets of variables. Let

Q) :={(q,p) € Q1 x Vg; T'(¢q,p) > n/4}. Thus by (4.4.11) and (4.4.12) over ; with the Cauchy-
Schwartz inequality,

02 2 2,2 2
o VETT ( / ,r<q,p>duq7e<p>dw<q>> < [ T i) doa) v'(9%) < 20/())

1 1

This shows ' (Q}) > 273cZn? as claimed.

Since |ugy ¢| < 1, decomposing of each function uy ; into its positive and negative parts in (4.4.7)

yields that
/ (9q; H Vg fug Age(p) = 27%p>2""
Ve feoe
ie.
(9o [ vofduy . =27 n>2"" (4.4.13)
feoe

for some ¢’ and functions’ vy ¢ : V; — [0, 1]. Now we obtained correlation with structures and we

"For each fixed f, take Vg, £(x) = max uq*, 7 Where u;r/. # denotes nonnegative terms in the decomposition and the maximum
is taken over these nonnegative terms.
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will pass from structural functions to sets. For a given f € Je and some 0 < ¢ F<1,let

Uy, ={zp € Vitog p(ap) > tr}

be the level set of the functions v, ¢. That is, for each fixed x ¢,

1 if tf S Uq',f(xf)

F(tf) = 1Uq’,z (a;f) = F(tf) = )
! 0 if ty > vy r(xy)

Then vy f(xy) fo tf dty = fo 1u g (a?f)dtf, and for each term in (4.4.13) we have by swap-
ping the integrals,

/ / g(leL{/t uq edt>2 777

fe€oe

where ¢ = () fepe- By pigeonhole principle the integrand must be at least 2%y for some value of

the parameter ¢.

Fixsuchat = (t) € [0,1]% and write Uy ¢ for Uy , ; for simplicity of notation. For ¢’ = (¢, p) € €1,

define By ¢ to be the o—algebra generated by B, 7, and the Uy ¢. For ¢’ ¢ ), set By § = By ¢.

The function | | fede 1uq, ; is constant on the atoms of the o —algebra \/ fede B, ¢, and therefore for
/ /

q €

<1Gq,e - Eﬂq/ye(le,e‘ \/ Bqlvf)7 H 1Mq’,f>'u,q/£ =0

feoe feoe

for ¢’ € Q). Hence, by (4.4.6) and (4.4.13) it follows that

By eyl \ Bop) = Bup. Lyl \ Bop)s T1 ey oy, =27 (4.4.14)
feode fcoe fede

By Lemma 4.3.4 there is a set & C Z’ such that ¢)'(£1) = ok (1) and

H H 1uq”fHL2(Nq/ e) S 'LL‘ZC@(VE)I/Q =1+ OK(l) <2
f€le ”

for ¢’ € Q)\& =: Q. Then apply Cauchy-Schwartz inequality to (4.4.14),

‘ Ky, e q5| \/ B 7f qu 1Gq8| \/ Bf]f HLQN/e 2 27(171777
f€oe f€0e
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for ¢ € Q). By (4.3.15) in Lemma 4.3.9 there is an exceptional set &2 C Z’ of measure ¢'(E2) =
or v (1) such that for ¢ = (¢,p) € Qf := Q)\E we have

B, (L, \/ By.g) = Epy (e, \/ Bq,f)HJﬂ(u )2 27"y —og (1) = 27972,
f€0e fede a,
(4.4.15)

Since B, ¢ C By ¢, for ¢ = (¢, p), applying Pythagorus’s Theorem, (4.4.15) is equivalent to

B, (L, \/ Bq’,f)”i2(#q,e) — B, (L, \/ Bq,f)”iz(”q,e) > 920402 (4416)
fede ’ feoe ’

Finally, an invocation of (4.3.16) in Lemma 4.3.9 there is a set £3 C Z’ of measure ¢'(£3) = ox m(1)
such that for ¢’ € ) := Q5\ &3 we have (for N, W sufficiently large)

HEﬂq/’e(le,J \/ Bqlaf)Hi?(Mq,e) - HEuq,e(le,e‘ \/ Bq’f)||i2(ﬂq,e) > 2_2d_5772- (4417)
feoe ’ feoe

This proves the lemma choosing ' = ). O

Now for any given e € H, we shall prove a Koopman-von Neumann type decomposition for 14,
for any G. € B,. . The will be done via iterations argument; repeated applications of lemma
4.4.1 and boundedness of the total energy of the hypergraph system. The fotal energy of the fam-
ily {By.c}eet,, with respect to a family of lower order o-algebras {By ¢} re1, , and a family of

measures {fiq.c}ectt,, is the quantity

2 d M
Eo{Bostreny, )= >,  |BuQel\ Bo 2y gz(d,>22 T (44.18)
e€H y,GeEBe f€0e

And the total energy of the hypergraph system is

E{Bostrerny )= Ea{Bystren, ) (4.4.19)
1<d’'<d

Assuming the measures ji are normalized i.e. p.(Ve) = 1+ 0(1) < 2, a crude upper bound for the £

are 241122 = O (1) is a universal bound, where M is the complexity of the o-algebras \/ sen Ba.f
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Lemma 4.4.2 (Koopman-von Neumann decomposition for Parametric Weight System). Let {114 }qez, ren
be a well-defined, symmetric family of measures of complexity at most K. Let 1 < d' < d, and let
{Byetqezeen, and {Bystqez ren, _, be families of o-algebras of complexity at most My and
Mg 1. Finally let Q C Z with¢(2) > ¢g > 0, and let § > 0 be a constant. (In the iteration process,

these quantities in the assumption are obtained from the previous step of the iteration.)

Then for N, W sufficiently large with respect to the constants 0, co, My, My_1and K, Z' = Z x V,
there exists a well-defined, symmetric extension {jiq t}qycz ten of the system {jiq ¢}tecz rem of
complexity at most K' = Om, K, s(1) and a family of o-algebras {Bq’,f}q’ez’,feHd/,l such that the
following hold.

1. Forallq = (q,p) € Z' and f € Hy_1 we have

Byy € By, compl(By 5) < compl(By ) + Onr, (1) (4.4.20)

2. There exists a set ' C Q x V C Z' of measure 1)’ (Y) > ¢(co, 6, My) > 0 such that for all
¢ = (¢,p) € ¥ and forall e € Hy, for all G4 € By one has

6, =By, (el \ Byplln, <o (4.4.21)
feoe e

and the stability property

HEqu’,e(leae‘ \/ quf)”ilz(“q/e) == HE‘uq’s(le,e‘ \/ quf)”ilz(“q’e) +0Md/,K,5(1)7
fede ’ feode

(4.4.22)

Proof. Initially set Z/ = Z, then (4.4.20) and (4.4.22) trivially holds for ¢ = ¢. If there is a set
1 C Q of measure 9(£21) > 9 such that inequality (4.4.21) holds for all ¢ € ©; and Gy € By,

then the conclusions of the lemma hold for the initial system of measures and o-algebras

<{Nq,f}q€Z,f€Ha {Bq,e}qEZ,ee’r’-ﬂd/ ’ {Bq,f},qGZfGHd/_l)

and the set 4.

Otherwise, for all sets Q2o C 2 of measure 1)(€2) > %0 such that for each g € )y thereisan e € Hy
and a set G4 . € B, . for which the inequality (4.4.21) fails. Fix one of such 2. By the pigeonholing,
up to a factor of (%), we may assume that there is an e € Hp that (4.4.21) fails for all . Then
by Lemma 4.4.1, with n := 52d/, there is a well-defined extension {jiy f}qcz rce » a family of
o-algebras {By r}qyez rese and aset ' C o of positive measure for which (4.4.2)-(4.4.4) hold.

Let {{1g f}qrcz. fen be the symmetrization of the system {jq ¢}qcz rce as described in section
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4.32,andset By =By forq ¢ Qorf € Hy_1,f L eor f € Hy. By Lemma4.3.9 and Lemma
4.4.1 one may remove a set £ of measure ¢’ (£) = o, i (1) such that for all ¢ € Q'\&, (4.4.20) and
(4.4.22) hold for the extended system ({11g/ f}qrcz’ fen, {Bq’,e}q’eZ’,eeHdn 1Byt aez fery )

!
whose total energy is at least 9—2d-552 larger than that of the initial system.

Based on the above argument we perform the following iteration. Let {1y f}ycz ren be a well-
defined, symmetric extension of the initial system {114, f}qez rer - Let {By rtyez fen, , bea
family of o-algebras and let ' C Q x V' C Z’ for which (4.4.20) and (4.4.22) hold. If there is a set
Q) C Q' of measure ¢/ (2}) > (') /2 such that for all ¢ € Qf, e € Hy and Gy . € B, inequality
(4.4.21) holds, then the system ({1t ¢ torez e { By e} g ezt cetty» ABat f }arez fen, ) together
with the set Q] satisfies the conclusions of the lemma. (Note that the family of sigma-algebras By .

is unchanged.)

Otherwise there is a well-defined, symmetric extension {11,/ ¢}q7czr ey together with a family
of o-algebras {By s }grezn fen,, , and aset Q" C Q' x Z% such that for all ¢ € Q" inequalities
(4.4.20) and (4.4.22) hold, and total energy of the system (jiq o, Byr e, By 7) is at least 2-24-6452"
larger than that of the system (pg/ ¢, By e, By ). Set Z' := Z, piy ¢ = piqr.c and By  := By ¢. then

return to previous step.

As (4.4.18) is bounded by an absolute constant (as By ., e € Hq is never changed in the iteration)
the iteration process must stop in Oy, 5(1) steps and the system obtained from the last step satisfies
(4.4.20)-(4.4.22).

O

4.4.2 Regularity Lemma

The shortcoming of Lemma 4.4.2 is that the complexity of the o-algebras B, y might be very large
with respect to the parameter ¢, which measures the uniformity of the graphs G, .. Hence it is not
a good tool to describe the structure. This issue can be taken care of with an iteration process using
Lemma 4.4.2 repeatedly, along the lines it was done in [104]. In the weighted settings we have to pass
to a new system of weights and measures at each iteration and have to exploit the stability properties

of well-defined extensions to show that the iteration process terminates.

In the first step, we will prove Preliminary Regularity Lemma which regularize only graphs on #H y for
afixed d’, as in Lemma 4.4.2. Then we prove a full regularity lemma which regularizes simultaneously

all elements of the hypergraph.
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Remark 4.4.3. In our energy increment process (last subsection), B, . is not changed in each step of

the iteration. So it is okay to write system as e.g.(jig f, Bq.es By 1)-

Remark 4.4.4. In regularity lemma below, to obtain the extreme uniformity like (4.4.28), we would
need a pair of sigma algebras By ¢, 827 ¥ which are close in L? norm in our decomposition. 5’27

itself would not be able to play a role as the structure part since it has complexity Oy, | s(1) =
O, _,,7(1), due to choice of § which we have no control as F' can be chosen to be arbitrarily fast

growing.

This lemma, as a regularity lemma, is more widely applicable than Lemma 4.4.2 as the uniformity
of the hypergraphs G, . with respect to the (fine) o—algebras B% 7 can be chosen to be arbitrar-
ily small with respect to the complexity of the (coarse) o —algebras By ¢, while the approximations
Epe(lc, . |V B, ;) and Eyp (1, |V By r) stay very close in L?(jig.e). First, we start by regular-
izing hyperedges in a given H for some 1 < d' < d.

Lemma 4.4.5 (Preliminary regularity lemma.). Ler 1 < d' < d and My > 0 be a constant. Let
{ttg.fYqez ren be a well-defined, symmetric family of measures of complexity at most K, and 1 <
d < dand {By.}qez.cem, beafamily of o—algebras on V, so that forall q € Z, e € Hy

compl (Bge) < My (4.4.23)

Lete > 0and F : Ry — Ry be a non-negative, increasing function, possibly depending on ¢ and
Q C Z be a set of measure () > ¢y > 0.

If N, W is sufficiently large with respect to the parameters €,co, My, K, and F, then there exists
a well-defined, symmetric extension {(ig, f}éez sen of complexity at most Ok w,, F, (1), and fami-
lies of o-algebras By s, B, ;, By ¢ C By ; defined forq € Z, f € Hq—1 and a set Q@ C Z such that
the following holds.

1. We have that Q C QxV C Z = Z xV where V = Z?V of dimension k = OMd,,F,E(l).

Moreover

D(Q) > c(co, F, My,e) > 0. (4.4.24)

2. There is a constant My _1 such that
F(Mg) < My_1 = Ong, (1) (4.4.25)
and forall G € Z and f € Hqy_1 we have
compl(B'q’f) < My_q. (4.4.26)

3. Forallg = (q,p) €Q, e € Hy and Gy € By, we have
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BV Bp)~ Bl V Bl < 4427
feoe feoe

and

1
H]'que - E,“@,e(]‘Gq,e| \/ B%’f)HD/LEe S m (4428)
f€0e ’ -

Proof. Let {ug f}qycz fen be a well-defined, symmetric extension of the initial system {xq, ¢}
defined on a parameter space Z' = Z x V' of complexity at most K’. We start by putting trivial
sigma-algebra By = {0, V;} oneach f € Hy_1. Set

1

Mgy == max{F(Mg), sup compl(By )} = Ok nm, r(l), 0= - (4.4.29)
feot, F(My 1)

Indeed the point here is that My 1 (and later Mg 1) is Ok v, #(1). Set By o = By, for qJ =

(¢,p) € Z', e € Hy, and apply Lemma 4.4.2 to the system (g ¢, By e, By ), withd = F(Mg_1)~!

This generates a well-defined, symmetric extension {4z, f }2c7 ;e and a family of o-algebras {B} ;}-.7 ; Hy
and a set ) C Z satisfying the conclusion of that Lemma.

The new system (ug, 7> Bges B’@ f) satisfies (4.4.24)-(4.4.26) and (4.4.28). Note that the parameters
K', Mg 1 are of magnitude O a1, ,c(1). Set By ¢ := By s forg = (¢',p) € Z,f€Hy_1.

To ensure L?—closeness property, we run the energy increment. There are two possibilities.

— Case 1: There exists a set 2] C Q of measure 1/(Q1) > ¥(2)/2 such that (4.4.27) holds for all
G € Q. In this case the conclusions of the lemma hold for the system (Kg.es Bge, Blﬁ, f) and the
set )7.

— Case 2: For every Q1 C Q,9(Q;) > ¥(Q)/2, we have (4.4.27) fails for some g € Q;. Let
Oy = {g € O : (4.4.27) fails}. Then Qs C ) is of measure ¢(€2) > 1¢)(Q). Now, thanks
to the stability condition (4.4.22) and the fact that By f = Bg s C B . We have for g € o,
q¢ = '(q),and ¢ = 7n(q) where 7 : Z — Z, ' : Z — Z' are projections, we have that

Sd’(B ) gd’ Z HEuqe 1qu \/ B HL2 Z HEuq e 1qu| \/ Bq of HL2

e,Gq,e f€oe ¢ Gy feode

=z Z (HEH@EGG%J \/ B%,f)Hi{ ’Euqe lg,.| \/ By ¢ HL2 OMd’vKlvF(l)
e,Gg.e f€oe fae feoe ©
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= Z H]ENE,E(le,e’ \/ Bla,f) _Eﬂﬁ,c(lcq,e’ \/ B@f)Hi%, _OMd’vKlvF(l)
e,G’q,e fe€ode fede Hg,e

>e” — o, k(1) (4.4.30)

where the summation is taken over all e € Hgy and G € By .

Thus, for sufficiently large N, W, we have for all § = (¢,p) € Q5 that the total energy of the
system (ug,r, Bge, By ;) is at least % larger than that of the system (pq r, By e, By r). In this
case, set Z' := Z, QV := O3, pg ¢ = pgy. and By ¢ = B’q,f and repeat the above argument.

ona Mg+
222 d’ 2d+1

The iteration process must stop in at most € = O, (1) steps, generating a system

(11g,£, Bg,e, By ;) which satisfies the conclusions of the lemma. O

In order to obtain a counting and a removal lemma starting from a given measure system {/, .} and
o-algebras { B, .} we need to regularize the elements of the o-algebras By . for all e € H with respect
to its lower order o-algebras \/ Feode B, r. This is done by applying Lemma 4.4.5 inductively, and
provides the final form of the regularity lemma we need. Let us call a function F' : Ry — R a

growth function if it is continuous, increasing, and satisfies® F (£) > 1+ z forz > 0.

Theorem 4.4.6. [Full Regularity lemma.] Let 1 < d < d and My > 0 be a constant. Let
{tq,1 Yqez ren be awell-defined, symmetric family of measures of complexity at most K, and {By ¢ } g 7,ce 1,
be a family of c—algebras on V, so that forall q € Z, e € Hy

compl (Bge) < My (4.4.31)

Let F : Ry — Ry be a growth function, and Q C Z be a set of measure 1)(2) > co > 0.

If N,W is sufficiently large with respect to the parameters co, My, K, and F, then there exists a
well-defined, symmetric extension {jig, f}ﬁez sen of complexity at most Og r(1) on a paramet-
ric space Z, and families of o-algebras By y C B%’f definedforge Z, f € Hy_1andaset ) C Z
such that the following holds.

1. Wehavethat Q C QxV C Z = ZxV whereV = Z’f\, of dimension k = Oy, 7(1). Moreover

() > c(co, F, Mg) > 0. (4.4.32)

2. There exist numbers
My < F(Md/) < My_1< F(Md’—l) < <M< F(Ml) < My = OMd/,F(l) (4.4.33)

such that forall1 < j < d', f € Hj,andq € Z,

8This condition is just for ensuring that My, . .., Mo in (4.4.33) is a strictly increasing sequence of integers.
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compl(Bg ;) < M;. (4.4.34)

3. Forall 1 <j<d,ecHjq=I(qp) €Q, and Gz € Bge (with Bz := By, if j = d'),

one has
1
B el Bgp) = Eug (Lol Bapll o, < FOOT) (4.4.35)
feoe f€oe
and ,
Leg B; < 4.4.36
H Gae ™ qu qe‘fé/ae HDuq.e B F(Ml) ( )

Proof. We proceed by an induction on d’. If d’ = 1 the statement follows from Preliminary Regularity
Lemma 4.4.5 withe = % , so assume that d’ > 2 and the theorem holds for all j < d’ — 1. Apply
Lemma 4.4.5 on Hy with a very fast growing growth function F* > F (to be specified later ) and
with € = m This gives a well-defined, symmetric extension {/iy ¢} re3 and a family of o-
algebras By C B;, Iz f € Hqg_1 defined on a parameter space Z' = Z x V, such that (recall the

definition of M;_1 in (4.4.29))

F(Mg) < F*(Myg) < Myg_1 < OK,Md,,F*(l) 4.4.37)
1
H Hl, At ‘ \/ B uq ( | \/ By ¢ HL2#,6 W (4.4.38)
f€de f€0e
and .
I1c,, —Eu, . (1c,. \/ Bl s HEIH LS lel) (4.4.39)
feoe

hold for all ¢’ = (q,p) € V,e € Hy,and Gy o € By . = By, where ' C Q x V C Z'is a set of
measure 1)’ () > ¢(cg, F, Mg) > 0. With this system, apply the induction hypothesis to the system
{ug Yqez serABy fYocz fer, »Ma—1 the growth function F', and the set ', one obtains an
extension {/ig,f}4c7 ey, and families of o—algebras {Bg s C B; ;}oc7. fen, Such that (4.4.34) -
(4.4.36) hold for j < d’ — 1, with constants

My_1 < F(Md’—l) < <M< F(Ml) = OMd/,l,F(l)' (4.4.40)

°F* will be chosen depending on F' and grows much faster than F' so that F'(My ) < F*(Mg) < Mo = L F*(My_1) so F*
controls the size of My in terms of Mg, F. F™ is also used in inductive argument to conclude that F'(Mg) < Mg—_1. We apply
preliminary regularity lemma to F™*.
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For §=(¢,p) € Z.f € Hay_1 set
B@f = Bq/J, and Bff = B (4.4.41)

We show that inequalities (4.4.35) and (4.4.36) hold for j = d’. Indeed, by the stability property
(4.3.16), one has

HEua,e(le/,e‘ \/ Brlz’,f) _Eua,e(leae‘ \/ BQCf)HL?(%e)

f€de feoe
= ||E g (ay | \/B B, .(lc, | \/B ' f HL2 ) T orMy FF «(1)
feoe feoe
1
< «(1 4.4.42
= 9F () M () (44.42)

forallg = (¢,p) € Q\&1, e € Hy, and Gy € By Here &4 C Q is a set of measure
P(&1) = ok, pre(1).

Similarly using the stability properties (4.3.12) and (4.3.21) of the box norms (and also (4.4.41)),

we have
Hle/,e — By, (1 | \/ By q.f HEI;L, - HlG/e Euy. o ’ \/ By a\f HD +OK7M4/7F’F*(1)
feoe feoe
1
=|1c, , — B, (1g,.] \/ By s HD +0K,Md,,F,F*(1) < SF My + ok, my F e (1),

feoe
(4.4.43)

forallg = (¢/,p) € O\E2, e € Hy and Ay . € By = By , where E2 C Q is a set of measure
P(&2) = ok ary pre(1).

With F(M1) = On, ,,r(1). Now we link My with (4.4.40). Choose (modify) the function

F* = Fj\}d“ My_,,F SO that it grows fast enough that

- F*(Md/) < Mg _;.

— F(My) < (Mg, F) < Z0a=0)

Then we have from (4.4.37) that

Md/ < F(Md/) < F*(Md/) < Md/_1 < F(Md/_l) <... <M< F(Ml) < M() = OMd/,F(l) =
(4.4.44)
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Assuming N, W are sufficiently large with respect to My and K, inequalities (4.4.35), (4.4.36) for
j =d andg € Q\(£1UE>) follow from (4.4.38) and (4.4.39) and (4.4.44). The rest of the conclusions
of the theorem (4.4.32), (4.4.33), (4.4.34) are clear from the construction. ]

4.5 Counting Lemma

In this section we formulate a so-called counting lemma and show how it implies Theorem 4.1.7. Our
arguments will closely follow and are straightforward adaptations of those in [106] to the weighted

settings.

For e € Hy let G, C V. be a hypergraph, and let B, = {G., G, 0, V.} be the o —algebra generated
by Ge. Let {ve}een and {pe}eep be the weights and measures associated to a well-defined, sym-
metric family forms £ = {L¥: e € H4, 1 < k < d}. Take My > 0, F : R, — R, be a growth
function (F' to be determined later) and apply Theorem 4.4.6 with d’ = d to obtain a well-defined,
symmetric parametric extension {/i¢, f }qez, ren together with o-algebras By ., B ., By € B, . and
a set Q C Z such that (4.4.32)-(4.4.36) hold.!” Note that the complexity of the system as well as the
o-algebras is Oz, 7(1). We consider the system of measures jiq ¢ and B s, Btlz,f’ f € H fixed for
the rest of this section.

It will be convenient to define all our o-algebras on the same space V; and eventually replace the
ensemble of measures {/q.¢ ey With the measure (g := g7 = [ ;e Vg,r- Thanks to the stability
conditions (4.3.3)-(4.3.4) this can be done at essentially no cost: Indeed for any e € H there is an
exceptional set & C € of measure 1(E.) = onr,, r(1), such that for any family of sets Gy . C V. we
have that

11g(75 H(Gye)) = tg.e(Ge) + onryr(1), (4.5.1)

uniformly for g € Q\&,. Let £ = [,y Ee. Q' := Q\E, then (4.5.1) means that for any set A, . € A
one has that 114(Age) = pig,e(me(Age)) + onr,,r (1) uniformly for g € €. We will write

Hq,e (Zq,e) = Hg,e(Te (Zq,e))

for simplicity of notations.

Define the o-algebras B, . := w1 (B,.), B

e

;76 := 7, *(B],) on V;, and note that B, . = B, for
e € Hq as the initial o-algebras B, are not altered in Theorem 4.4.6. Let By := \/, 4, By, be the
o-algebra generated by the algebras B, ., and define similarly the o-algebra E;. The atoms of B, are

of the form Ay = (.cy Ag,e Where Ay is an atom of B .. In particular if E, € B, then Neen, Ee

'%The family {v.} can be considered as a parametric family of weights in a trivial way, setting Z = Q = {0}, and 1)(0) = 1.
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is the union'! of the atoms of Bq.

Basically, the counting lemma says that as we decompose

1Aq,e = Eﬂq,e(lAmJ \/ Eq,f) + bq,e + Cqe
feoe

where b, . is small in L? norm and ¢, is small is box norm. Our counting lemma says that for most

atoms, when we calculate the measure 1i4(Aq) = pg(NrenAq,r) we have

(Age NNfepeA
pg(NperAq r) H Eu,.(1a,.| \/ By, £)+small error = H HoelAge 0 OreoeAes) +small error
e€H feoe ecH Haye (mféaeAq,f)

That is most atoms can be approximated by its relative density with respect to one lower order atoms in
Ve 9B, ; which comes from the main term of the decomposition. The terms b, ¢, ¢4, only contribute
to small error terms. To get rid of ¢4 ., we only need the usual Generalized von Neumann Inequality
argument. A bit more work will be needed to get rid of by ..

A consequence of the counting lemma is that one can show the measures of an atom that we are in-
terested is bounded below by a positive constant depending only on the initial data ' and M. If,
as in Theorem 4.1.7, one assumes that the measure of [ e, Pe 18 sufficiently small then it cannot
contain most of the atoms (will be named regular atoms) thus removing the exceptional atoms from

the sets E, the intersection of the remaining sets becomes empty, leading to a proof of Theorem 4.1.7.
To make this heuristic precise let us start by defining the relative density §q.(A|B) = pge(AN
B)/uq.e(B) for A, B € By ., with the convention that d, ¢ (A|B) := 1 if yiq.(B) = 0.

Definition 4.5.1. Let Ay = NeeyAg e be an atom of By.Fore € Hj;,1 < j < d. We say that the atom
A, is regular if the following hold.

1. For all atoms Ay e the relative density is not too small'?:
1

Age| () Abp) 2 =57+ 4.5.2)
fede log F'(Mj;)’

2. It satisfies an regularity condition':

/‘Eﬂq 1Aqe‘\/8qf By, 1Aqe‘\/8qf HlA qu—F/ HlA i e-

f€de fede fCe Ve fce
4.5.3)

11 7 7
Indeed, \/ ¢y, Ba.e © Ve Bas
2Don’t take the log function too seriously.
'3 As mentioned in chapter 1, this is related to Box norm. The notation of regular atoms has some relations to (hyper-)graph
regularity
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This roughly means that all atoms A, . are both somewhat large and regular on the intersection of the
lower order atoms A;’ s> (f € de). Note that if le] = 1 then Qe = () and by convention we define
nfeae Afo =V, and the left side of (4.5.2) becomes 14 (Aqgc).

Now we state the counting lemma

Proposition 4.5.2. [Counting lemma] There is a set £ C § of measure ¥(E) = oON,W—o00:M,,F(1)

such that if g € Q\E and if Aq = (\.cy Age € Veey By, is a regular atom, then

tq(Aq) = (14 omy—00(1)) H 5(1,6(‘4(1,6‘ m Agr) + Oy

1
<F(Ml)> + ONW—00;M,, 7 (1)
e€H feoe

(4.5.4)
An important corollary of the counting lemma is that each of the regular atoms is not too small in

measure and the total measures of all irregular atoms is small, if we assume F' is sufficiently fast

growing, of exponential type.
M+3
Lemma 4.5.3 (Regular atoms). For F(M) > 22* and sufficiently large My,

1. (Total measure of Irregular atoms is small) For each A, . € By, define the set

By e,a, .De the union of all sets of the form ﬂ A'q,f for which (4.5.2) or (4.5.3) fails.
fGe

Note that if an atom Aq = (\,cy Ag,e is irregular then Ay C Age N Bye,a, . for some e € H.
Then for q ¢ &, where £, C Q) is a set of measure (E1) = onr,,7(1). We have

1
A,eNB < — 4.5.5
/’LQ( q,€ Q:S:Aq,e) ~ IOgF(MJ) ( )
2. (A regular atom is large) For q € §) and a regular atom Ay = NyeyAq s,
Ag) > >0, 4.5.6

Proof. First we show (4.5.5). Note that the measure 1, can be replaced by the measure i, . as they
differ by a negligible quantity on sets which belong to .A.. We estimate first the contribution of those
sets [ ;e Ag,r to the left side of (4.5.5) for which (4.5.2) fails. This quantity is bounded by

1
Z fg.e(Age N ﬂ Agr) Sd m Z Hage( ﬂ Agr)

{Aq,f}fgev (4.5.2) fails feBe {Aq,f}feae feae
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1 1
e flge(Ve) S s
= log F(M;) Mo (Ve) 5 log F (M)

as the summation is taken over the disjoint atoms of the o-algebra \/ Fede E% I

Similarly, one estimates the total contribution of the disjoint atoms () fce A, ¢ for which (4.5.3) fails

as follows.
E Mflve(ﬂ Aq7f)
{Aq.r}fce, (45.3) fails fce
< F(Mj) Z / pae (14, ] \/ qu E,,.(14,.] \/ Bos)l? H 14, diige
{Aq Y fce, (45.3) fails fede fede fce
/ “Ellqe 1Aqe’ \/B qu 1Aqe| \/qu| duqe
fEDe fede
1 1
< F(M;j) =

- F(Mj;)?2  F(Mj)

Since the sets Ag . N By a ... contain all irregular atoms, and for given e € H; the number of all

%) . ]\/[ j . .
atoms of the o-algebra B, . is at most 2277 one estimates the total measure of all irregular atoms as

d d d
d M; 22 li+d 1 M
A, .NB < J122 < 927
PP IS >_2<3) R 5 <3 merar) < VEerOT
- quBq,e 1= —
(4.5.7)

Here the two last inequalities will follow if we choose M, sufficiently large and F sufficiently fast
M;+3 M,

growing: choose M, so that d2d22Mj < 22Mj o and 2%° > 2’ a for all 7 (My > 1 should
suffice here). Now choose
F(M) >

(4.5.8)

j d M M,
22 J4+d 22 J+d 1 22 J+d 1

d d d
- < = <
; log F/(Mj) — ; /22" %2 | /log F(M;) Z:: 92"+t w/logF z:: logF /log F(M,)

So (4.5.7) follows.

Now we use the counting lemma to show (4.5.6). Indeed by (4.5.2), (4.5.4), we have that for ¢ € (2
and a regular atom Ay, = Nyey Ay fs
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pe(Aq) = I H 1/10 — Od,m, <F(1M1)> + ony,r (1)

j<de€cH;
1 1 1 1
> -0 —_ 1) > > =
= FQI)TI0 ype@ Ot (Famy) *omer 2 gy 2 Foy

c(Mg, F) > 0,
4.5.9)

as long as F'is sufficiently rapid growing and My is sufficiently large with respect to d, here we apply
(4.4.44) and (4.4.29). O

4.5.1 Proof of the Counting Lemma.

We will in fact prove a stronger version of counting lemma for hypergraph bundle for which propo-
sition 4.5.2 is a special case. The reason is that when we try to eliminate the error term b, . we will
apply Cauchy-Schwartz’s inequality to lower order graph, causing the double vertices which could
be described as lower order hypergraph bundle, allowing us to apply induction hypothesis from the

statement of counting lemma for hypergraph bundle.

Definition 4.5.4 (Weighted hypergraph bundles over H). Let K be a finite set together with a map
7w : K — J, called the projection map of the bundle to the index set J. Let G be the set of edges
9 C K such that 7 is injective on g and 7(g) € H.

For any g € Gk, write

Vo = Vai = [ [ Vo
keg

and define the weights and measures Vg g, fig o : Vg — Ry as

Va,g(Tg) = Vgn(g)(Tg), Hgg(Tg) H Va.g (Zg)
/Cg

The total measure measure [i, i on Vi is given by

Hq, K H Vg,g(2g).

9€lK
A hypergraph G C Gy which is closed in the sense that 0g C G for every g € G, together with the

spaces Vy and the weight functions Uy 4 for g € G is called a weighted hypergraph bundle over H.
The quantity d' = sup,cg |g| is called the order of G.
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Remark 4.5.5. The underlying linear forms defining the weight system {Uq g} qe 7,gcG

Lg(Qa xg) = Lfr(g) (Qa xg)7 SUPPx (Lﬂ(g)) = TF(g)

are pairwise linearly independent. Indeed, if g # ¢’ they depend on different sets of variables, and for
a fixed sets of variables they are the same as the forms L(q,xz,). What happens is that we sample a
number variables from each space V; and evaluate the forms L(q, x) in the new variables. For exam-
ple if we have x1,x1 € Vi and x4, € Vs then to the edge (1,2) € H there correspond the edges
(1,2),(1,2"),(1,2) and (1,2') in G, and to every linear form L(q, x1, x2) there also correspond the
forms L(q,x1,29), L(q, 1/, 22) and L(q, x1/, xo/) defining the weights on the appropriate edges.

Proposition 4.5.6. [Generalized Counting Lemma] Let G C G be a closed hypergraph bundle over
‘H with the projection map © : K — J, and d' := SUPgeg lg| be the order of G. Then, for F
growing sufficiently rapidly with respect to d and K, there exists a set £ C Q of measure Y(E) =
ON—o00;M,.K,F (1) such that for ¢ € Q\E we have

/ L1 14,00 () g 1 () (4.5.10)
Vi geg
1
= (14 0ny—o0,x (1)) H Sq,(9) (Ag,r(9)] m Agf) + O vy (577 ) + ON—so0, kM, (1)
F(M)
9€9 feon(g)

Note that Proposition 4.5.2 is the special case when G = H and = is the identity map.

Proof. We use a double induction. First we induct on d’, the order of G (note that d’ < d). Then,
fixing K and 7, we induct on the number of edges r := [{g € G : |g| = d'}|.

To start, assume that ' = r = 1, so that G = {k} and j = w(k) € J. The left hand side of
(4.5.10) becomes

/V 1a,;(zk) diig i (z1) = /V 1a,,(@)) dpiq,j(25) = 1g,j(Aqj) = 0q,j(Aqil Nreaj Ag,r)-
. ‘

J

Let {Ag.c}cen be aregular collection of atoms for ¢ € €2, and define the functions by, cqc : Ve — R
for e € H by

bge =By, (La,.| \/ Bhp) = Euy.(La,.| \/ Boy) (4.5.11)
feoe feoe
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Cge=1a,, —Ep, (1a,.] \/ By) (4.5.12)
feoe

and introduce the shorthand notation

5q,6 = 5q,e (Aq,e

m Aq,f)-

feoe
Note that if © € Ag e (e, Ag,f then
Sge = Eppe(a] \/ Byg)(ze), (4.5.13)
f€oe
and thus one has the decomposition
14, .(we) = 0g.c + bge(xe) + cqe(Te) (4.5.14)

on the set Age N[ ¢, Aqg,f- To apply induction on 7, let go € G such that |go| = d’ and use (4.5.14)

to write

H 1Aq,7r(9) (3;9) = (5‘17ﬂ'(90) + b‘lvﬂ'(go)(xgo) + Cq,ﬂ'(go)(xgo)) H 1Aq,7r(g) ($g>
9€g 9€G\{go}

Consider the contribution of the terms separately:

Step1: Main term

| Tty ()i ()
Vi geg
= / (8g,7(g0) + ba,m(g0) (Tg0) + Cqm(g0) (Tg0)) H 1a, .00 (zg)dpty k (x)
Vie 96\ {90}
=My, +E, + E] (4.5.15)

For main term M, by the second induction hypothesis we have

Mq = 6(],71'(90) / H 1Aq,7r(g) (xg)dﬁqu (x)
VK 9eG\{g0}
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1
= 0g.n(go) (1 + 0My—00(1)) H Sqr(g) T OK’Ml(W) + ONW—so0;, M, (1),
9€G\g0

and hence M, agrees with the right side of (4.5.10).

Step2: We eliminate the error term ¢, . by Generalized von Neumann’s Theorem argument.

Eq2:/ Cq,ﬂ(go)($go) H 1Aq,w(g)($g)dﬁq(x):EerK(Cq77r(go)fq7go)(xgo) H 1Aq,ﬁ(g)vq,g(xg)
Vi 9€G\{g0} 9€G\{g0}

= Ezevy H fa.9(g) H Vg (Tg), (4.5.16)

lg|=d’,g€G g'€qg,lg'|<d

where fq g0 = Cqn(g0)Pq.90 AN fq g := hqgVq,g, for g € G,g # go and |g| = d' for a function Ay,
of magnitude at most 1. Thus we have |f, 4| < 7y, forall g € G, |g| = d'. Applying the Cauchy-
Schwartz inequality d’ times successively in the variables z;, j € go as in the proof of generalized
von Neumann’s theorem (Theorem 3.2.5), to clear all functions f, 4(x4), g # go, which does not

depend on at least one of these variables, we obtain

od’

Dﬁq,go

B2 < leman]
q ~ |1€q,m(g0)

+Ewg07ygo|Wq(xgo=ygo) -1 H H vq,h(wh(ﬂfhuyh))’ (4.5.17)
hCgo we{0,1}7

where K’ := K\ go and

Wq (xgov ygo) = Ea:EVK/ H H yq,g (wgﬂgo (:Ugﬂgm ygﬁgo)a xg\go)- (4-5~18)
9€G,9¢g0 wgngy€{0,1}9790

Note that the first term on the right hand side of (4.5.17) is O(F(Ml)_Qd/) by (4.4.36) and (4.5.12).

To estimate the second term of (4.5.17) we apply the Cauchy-Schwartz inequality one more time
in xg,, g, variables to see that it is on,w—oo;n,,k,F(1) for ¢ ¢ £, where &; is a set of measure
ON,W—so0;M,, K, (1) using the fact that the underlying linear forms are pairwise linearly independent

in the variables (¢, Zg,, Ygo, TK")-
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Step3: We estimate the error term E; defined as
By = [ burtantam) T Lay (o) )
Vi 9€9\{g0}

To apply induction hypothesis, take absolute values and discarding all factors 14, _ () for |g| =
d', g # go (this will be fine due to smallness of L?—norm of bg,¢), One estimates

|Eq1‘ </v |bq,ﬂ(go)(x90)‘ H 1Aw(g> (zg)

90 9% 90

X Ewm H 1Aq,7‘r(g)ﬁQ7g(xg) H Vg,n(Th) dﬁq,go(xgo)7

g€g’,|gl<d’ heg’,|h|=d’
where G’ = {g € G; g € go} and recall that K’ = K\ go. Writing A(z,) for the expression in the
first parenthesis, and B(xz, ) for the expression in the second parenthesis. Thus we have

Bl < /V A(g0)B(g0) iy (o).
90

thus by the Cauchy-Schwartz inequality we get

B < ( /V Agy)? dnq,go<xgo>> ( /V

90

B(wg,)” dfig g, (;ngo)> : (4.5.19)

Since g g, (Vy,) = 1 4 onr,, i, 7 (1) outside a set E5 C Q of measure ¢(E2) = onr, k.7 (1), the first
factor on the left side of (4.5.19) is estimated by

Exgoevgob(17ﬂ(go)($90)2 H 1Aq,7r(g) (xg) H v ,w(g)($9)~ (4.5.20)

9%90 9<g0

Let fo = m(go), since m : go — fo is injective and Vg, = V},, we may write the expression in
(4.5.20), by re-indexing the variables x4 to ¢, f = 7(g) for g C go, as

1
/ boso(50)” [] 1a,, (x5) digpo(2s0) S F(M)/ 1T 14, @p)dug s (2s,), (45.21)
Vio f<ho ) IV50 1o

where the inequality follows from by assumption (4.5.3) on regular atoms. By the induction hypoth-

esis we further estimate the right side (4.5.21) as
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1 1
F(Mdr) (1 + OMd—>oo(1)) fl;J[ 5q7f + OMd(m) + 0N,W—>oo;Md,K,F(1)- (4.5.22)
Cfo

The second factor in (4.5.19) may be expressed in terms of a hypergraph bundle K over K, by using
the construction given in [106]. Let K = Ko @,, K, the set K x {0, 1} with the elements (k, 0) and
(k, 1) are identified for & C go. Let ¢ : K — K be the natural projection, and w o ¢ : K — J be the
associated map down to J. Recall G C G is a closed subhypergraph.

LetGo ={9€G,gCgotand G = {g € G,g Z go,|g9| < d’'} and define the hypergraph bundle
G on K to consist of the edges g x {0} and g x {1} for g € Gy U G, two edges bing identified for
g € Go. Define the following weights on V-

Ug.gx (i} (Tgx(iy) = Vg,g(Tgx(i})s (4.5.23)

forqg€ Z, g € Gk,1= 0,1, (ie. forall edges g € G), and let fig 4 ;) be the associated family of

measures. Then we have for the second factor appearing in (4.5.19)

/V Blagy)2dfi, 4, (2g0)

90

2
- /V' |: H 1A‘L7"(9) (xg>:| [EmGVK\QQ H 1Aq,7r(g)qug(xg) H quh(‘rh):| dﬁq,go(‘rgo)

90 ~g€g0 9€G\{g0} hZgo,|h|=d’

= / 11 24, e (29) dity () (4.5.24)
VE Geg

Indeed, when expanding the square of inner sum in (4.5.24) we double all points in K\ g thus we
eventually sum over xz € V}z, also double all edges g € G to obtain the edges g x {0}, g x {1}. As
for the weights, the procedure doubles all weights 7 4(z4) for g ¢ go, g € Gk to obtain the weights
Vqg(Tgxqiy) fori = 0,1 while leaves the weights 7, 4(wy) for g C go unchanged. The order of § is

less than d’ thus by the first induction hypothesis, we have

H 1Aq,ﬂo¢(§) (x!?) dﬁqj((xf() -
Vi geg

1
= (1+ onty—00(1)) [ ] dgmoni) + Orcy (m) + ON,W—s00;, Mg, K,F (1)

geg
1
2
= (1 +0p,-00(1)) gg 0g,m(g) gle_g, Ogm(g) + OK,M1(W) + ONWooiMy K, (1), (4.5.25)
0
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for g ¢ € , where £, C Qs a set of measure ¥(E ;) = ON,W—o0;M,,K,F(1). Note that there
are only O (1) choices for choosing the set K and the projection map ¢ : K — K thus taking
the union of all possible exceptional sets £ o We have that (4.5.25) holds for ¢ ¢ &} if measure
Y(E) = ON,W—oo:M,,k,F(1). Combining the bounds (4.5.22) and (4.5.25) we obtain the error

estimate

1
12 _ 2
[Eql™ = (0Fn-00(1)) lggéqm(g) + OK,Ml(F(Ml)) + ON,W—o0; My, K, F (1),
g

outside a set 5}( of measure oy, w000, k,7(1). This closes the induction and the Proposition fol-

lows. O

4.6 Proof of Weighted Simplices Removal Lemma

Proof of Theorem 4.1.7. Let§ > 0, E, € A. and g. : V. — [0,1] for e € Hgy be given. Let & C Q
be a set of measure ¢ (£1) = o, (1) so that (4.5.1), (4.5.7) and (4.5.9) hold for ¢ € Q/&;. Also by
(4.3.8) conditions (4.1.4)-(4.1.5) hold for

fog = gy and fie = g (€ € Ha), (4.6.1)

for g ¢ &, for aset & C ) be a set of measure ¢(E2) = o, r(1).

Now fix ¢ ¢ & U & and define jiy and i, for e € Hy as is (4.6.1). We claim that this system
of measures satisfy the conclusions of the theorem. By construction the system is symmetric so it

remains to construct the sets £/ and show (4.1.6)-(4.1.8) hold. For given e € H; define the sets

E} . =V,\(Bgen U U (A N By s, ;) (4.6.2)
f§€7 Aq,f

/
q,€

(excluding E, itself). As we have B, . = B., which is generated by a single set E,, if ﬂeeHd E,

where A, ; ranges over the atoms of B, y. Hence E; . shpuld not contain a bad atom inside E,
contains an atom A = () ;cy Ag,r then Ay = E for e € Hy. If such an atom A, would be regular
then by (4.1.3), (4.5.9), its measure would satisfy

1

mgﬂj( m Be) = p( ﬂ Ec )+ on,r(1) < 20.

ecHy ecHy
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Choosing M, to be the largest positive integer so that
F*(Mg_y) < (20)7" (4.6.3)

then we see that ﬂeeHd FE could contain only irregular atoms.
Also, from (4.6.2) and (4.5.7) we have

- - _ oM,
l"LJ (Ee\ElI],e) = ,"LJ( U (A(Lf m Bq7f7Aq,f)) S 2 2 d' (4'6'4)
fg67 Aq,f
Also, all irregular atoms Ay = (9 Ag.f C (Neepy, Ee are contained in one of the sets E\Ey
thus

ﬂ Ee g U (Ee\E/,e)

e€Hy e€Hgq

SO

) (B.nE],) = 0.

e€EHy

Finally, choosing € := 9-2"d, (4.1.7) holds by (4.6.4). Moreover  — 0 implies My — oo and hence
€ — 0 showing the validity of (4.1.8). This proves Theorem 4.1.7. 0

4.7 Proof of the Main Theorem

Proof (Theorem 4.1.7 implies Theorem 4.1.3). By assumption (4.1.2) in Theorem 4.1.3 and by (4.2.14),

Eeev, [] 1E.(2) ps(z) <6
e€EHy

For a given ¢’ € H, define the function g : V,r — [0,1] as follows. Let ¢ : Vo — M be the
inverse of the projection map 7./ : V; — Vs restricted to M, and y € V. let

ge’(y) = H 1Ee(¢€/(y))'

ecHy

Applying Theorem 1.4 to the system of weights {v,} and functions {g.} gives a system of measures
fie and sets E! € A, satisfying (4.1.4)-(4.1.8). By (4.2.11) we have that x € M N meeHd FE. if and
only if ®(x) = (y,0) with y € A. Moreover in that case w(y) = p.(x) for all e € Hy by (4.2.13),
thus for any given ¢’ € H,,

EyeZ‘]i\, 1a(y)w(y) = Egem H 1g, (z)pe (z) = EzeVe/ge’(Z)Me’(Z)
eEHy
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= EZEVe/gel(z)ﬂel(Z) + ON,W%oo(l)

—Boenr [ L (0)iier () + onapool1):
eEHy

By (4.1.6), HeeHd 1p, < Zee?—[d 1p,\g;- Then the symmetry of the measures fi. (i.e. the fact that
fie(x) = fier (x) for € M), (4.1.7) and the fact that 1\ g is constant on the fibers 7 ! (z) implies

Eeerr [ 16 ()i (2) <> Eeenrlpp (2)jie (x).
ecHy e€Hy

Changing the sum over M to sum over V., we obtain

Z Evermlp\g ()fe () = Z Evev.1p\ g (T)fie(7) < (d+1)€(0) + on,w—oo(1)-
e€EHy e€Hq

Choosing N, W sufficiently large with respect to § gives

E,eza La(y)w(y) < €(0),
with, say €(0) := (d + 2)e(9). O

First, let us identify [1, N]¢ with Zﬁl\, and recall that constellations in Z‘]i\, defined by the simplex A
which are contained in a box B C [1, N]? of size N, are in fact genuine constellations contained
in B. Note that we can assume that the simplex A is primitive in the sense that tA ¢ 7% for any
0 < t < 1, as any simplex is a dilate of a primitive one. To any simplex A C Z¢ there exists a

constant 7(A) > 0 depending only on A such that the following holds.

Lemma 4.7.1 (Zy to Z). Let A C Z% be a primitive simplex. Then there is constant 0 < £ < 7(A)
so that the following holds.

Let N be sufficiently large, and let B = I% be a box of size eN contained in [1, N]d ~ Zﬁi\,. If there
exist x € Z‘fv and 1 < t < N such that v € B and x + tA C B as a subset on 7%, then either
r+tAC Borx+ (t — N)A C B, also as a subset of Z°.

Proof. Consider A = {ej,...,eq} as an element of 7% where e; € 7% Define

T(A) = inf Im — x|
m¢{0,e},x€[0,e]
Let 0 < ¢ < 7(A). We may assume that the simplex is primitive. By our assumption, there is
z €[1,N]4,t€[1,N—1]suchthatz +te; € B+ NZ%forall 1 < j < d. Hence for each j, there is
m; € Z4 such that [te; — Nmj|oo < eNice. [(t/N)A —m|o < & where m = (my, ..., my) € A
Since 0 < t/N < lande < 7(A) we have m = 0 or A. If m = 0 then |te|c < eN. Since z € B
we have = + te C B C Z%. Similarly, if m = e thenz + (t — N)e C B C Z¢. O
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Lemma 4.7.2 (Pigeonhole Principle for W-trick). '* Let A; := {n € [1, N/W]%, Wn +b € A}
and A’ = Ay N [e1N',eoN"|%. By the Prime Number Theorem there is a prime N' so that egN' =
N1(1 4 ony—00(1)). We will work on Z./N'. We can choose b € 7%, 1, €5 in the definition of v so

that
= (N

/ nd >
| A1 N [e1N', e2N'7| > 2 (log N")d p(W)d

Proof. Let N, W be sufficiently large positive integers and assume that |A| > «|Py|¢ for a set
AC Pj‘f,. By the pigeonhole principle choose b = (b;)1<j<q so that b; is relative prime to W for each
7, and

N
(log N)@ p(W)¢*
where ¢ is the Euler totient function. Set Ny := N/W and A; := {n € [1, Nq]; Wn +b € A}.
Choose €2 > 0 so that 25 < 7(A). Hence

AN ((WZ)?+b)| > a (4.7.1)

Wde de N’ d
L =« SWIAN) +onwoeo(l) =a

N ed(N)? wd
d(W)elog(WNy)  ¢(W)log?(e2 W N)

(log N")* ¢(W)

d +0N,W—>OO(1)

where we used that we choose Wey = O(1). We have from (4.7.1) that

acd (NI wd
2 (log N')4 p(W)4

|A; N [1,e9N"%) > (4.7.2)

By Dirichlet’s theorem on primes in arithmetic progressions the number of n € [1, N']%\[¢; N’, N']¢
i d WN' (WN")d-1 _ N'dpyd

for which Wn +b € P? is of O(e; ST log e W7 X ¢>(W)d—1(logWN')d—1) O(ElW),

thus (4.7.2) holds for the set A’ := A1 N [e1N',eoN']¢ as well, if &1 < cge%a for a small enough

constant cg > 0. ]

Theorem 4.1.3 implies Theorem 4.1.2. If x € A’ then ey N’ < x; < eoN’ and Wx; + b; € P for
1 < i < d, thus by the definition of the Green-Tao measure v, : [1, N'] — R, we have

d d
w(z) = [[ v, (2:) = ca <¢(W)MiogN) : (4.7.3)
-1

aslog N/ —log N =~ log(QlW) = O(1), assuming N sufficiently large with respect to 1. Thus

Al (d(W)logN\? _
ExezldvllA/(x)w(a;) :E?\L’)d <¢( I)/Vog ) > ceda 4.7.4)

for some constant cg, c;{ > 0. Applying the contrapositive of Theorem (4.1.3) for the set A’ with

"“If we allow W to grow with N then the choice of b will depend on N;b = b(N).
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£ := cqeda gives

d
EzeZ%uteZN/ (1_[0 La(z + t”j)) w(z+tA) >0 (4.7.5)
]:
with a constant § = d(a, A) > 0 depending only on « and the simplex A = {vp,...,v4} and @ — 0

if 6 — 0. Hence in our case ¢ is bounded above by a positive constant. Now we transfer (4.7.5) to

statement about numbers of prime simplices in A’. As in (4.7.3)

(4.7.6)

(W) log N\" &
L)

w(z +tA) < Oy (

since all coordinates of = + tA are primes, bigger then R. Thus the number of copies A" = = + tA
which are contained in A’ as a subset of Zf\,, is at least ¢ N1 (log N)~/ &), for some constant
¢ = c¢(a, A,W) > 0 depending only on the initial data o, A and the number W. Since A" C
[e1N',e2N’]%, by Lemma 4.7.1 at least half of the simplices A’ are contained in A’ as a subset of Z¢,
and then the simplices A” := WA’ + b are contained in A.

Now choose W = W(a, A) large enough so that Theorem 4.1.3 holds for all sufficiently large
N, and then A contain at least ¢/ (a, A) N1 (log N)~“4) similar copies of A for some constant
(o, A) > 0 depending only on « and the simplex A. This proves Theorem 4.1.2 O

4.8 Concluding Remarks

In this chapter, we obtain a more general version of the weighted hypergraph removal lemma. Our
analysis is a kind of averaging arguments. A more details analysis in these measure system may be an
interesting problem, given many recent developments e.g. citeTZ3 in the theory of uniformity norms

,say, in VA

As we have seen, Szemerédi’s theorem type problems in higher dimension are quite interesting. Our
method indeed give an explicit bound on the number of prime configurations but it is terrible (of tower
type) due to the application of the regularity lemma (This is necessary as demonstrated in [40] but it
may not be necessary in removal lemma or multidimensional Szemerédi’s theorem, see e.g. [24]).
Also we use the weight v which we may obtain narrow progressions result similar to [113] but we
don’t know how to model such problems on graph. Another interesting question would also to prove a
polynomial progression in this setting or finding asymptotic of linear equation in primes [52] in higher
dimensions. There could be an interesting phenomena happen from the correlations of points. There
are other interesting modern approaches to multidimensional Szemerédi’s theorem in the primes by
Tao-Ziegler [111] and Fox-Zhao [68], both relied on the following more advanced tools, the inverse

Gowers norm theorem, which currently cannot give any quantitative bound.
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4.8.1 Inverse Gowers Norm Theorem and Infinite Linear Forms Condition

The very first application of the full inverse norm conjecture is used to find the asymptotic of number
of prime solutions to a system of linear equation of finite complexity [52]. Basically this means no
two linear parts of the system is a multiple of each other. The complexity basically measures how
many times you have to apply Cauchy-Schwartz’s inequality to obtain the generalized von Neumann

theorem. The notion of complexity is further discussed in [41].

Another number theoretical application is that we can now define a weight with more general linear

form conditions. Define a new weight

vy (n) = (ﬁ(MV/V) (logn)1p/(n) (4.8.1)

Then by a result of Green-Tao, we have the following infinite linear forms conditions. Due to the
technical restriction of the sieve method, we cannot get the infinite linear form conditions for v in [51]
or [52].

Theorem 4.8.1 ([102], Thm. 5.1). Let (1, ...,9;) : Z¢ — Z! be a system of linear forms (hence
d

¥i(0) = 0). Let K C [L—N/WJ, |N/W || be a convex body and by, ..., b; are coprime to W.

Then'"

S T v @) = #{n € KNZ 2 4(n) > 0V} + o((N/W)?) (4.8.2)

n€KNZ je(t]

This condition is used in [112] and [68] to give different proofs of the main result in this chapter.
In [110], they prove analogue of corresponding principle in ergodic theory to the weight setting that
allows them deduce this theorem from the analogue theorem in integer case. They constructed a Z—
system (X, B, f1, (Th)ez¢) and they have to consider the measure of the form p (75, N--- N T}, (A))

to shows the result. Here % can be arbitrarily large.

Proof in [68] using sampling argument and their method also gives a polynomial progression version
of this theorem if we assume the Bateman-Horn conjecture [4] on the asymptotic number of prime

points in a given set of polynomials.
Finally we state a nontrivial version of Inverse Gowers Norms conjecture [59].
Theorem 4.8.2 (U3 —inverse theorem). Let T = R/Z and H be the Heisenberg group. Let N > 2 be

aprimeand 0 < n < % and f : Zn — C, bounded by 1. Suppose || f||;s > 1. Then for some positive
integer m < n~C, then is an N — th root of g € H™ (i.e. g € T') and a continuous 1—bounded

Brecall that v > 0.
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function F on N™ with Lipschitz constant at most exp(n‘c) such that
Enezy f(n)F(g"T™) > exp(—n~©) (4.8.3)

The constant in (4.8.3) relies on Frieman’s theorem on sumset where the current best bound is due to
Sander [89]. It is also mentioned (e.g.in [48]) that the proof of the general UF of this theorem is not
very conceptually explain the role of nilsequence and the bound in terrible (due to the use of ultrafilter
arguments). It is also mentioned in [48] also possible that we can use smaller class of nilsequences
such as eigenfunctions of the Laplacian on free nilpotent Lie group. Link to approximate subgroup of

7 may be a new interesting approach to inverse U?—theorem.
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