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Abstract

The focus of the present work is the study of laminar spiral multi-layer vis-

coplastic flow in annular geometries. The motivation for the present work

stems from an interest in utilizing such flow in fractionation of particle sus-

pensions. The work is presented in four studies.

In the first study we solve the fully developed condition of the flow

analytically. This solution is considered a reliable reference to validate the

remaining numerical studies. Also it provides a means to test the stability

of the flow.

The second study is related to the fractionation of particle suspensions

utilizing the solution demonstrated in the first study. We develop fractiona-

tion curves of particles of different sizes in fluids with different rheology. We

develop a code to simulate thousands of flow cases (a flow case has a unique

combination of streams flowrates) of known fluids properties. We predict the

fractionation operating window (some range of streams flowrates) needed for

successful fractionation.
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Abstract

In the third study, we examine the flow in the full annulus geometry

including the entrance region of the flow. Here, we estimate the flow entrance

length in order to design the length of the mixing zone of the two streams in

the continuous fractionation device. We study the effect of Kelvin-Helmholtz

and density current instabilities on the flow.

In the fourth study, we attempt to design the continuous fractionation

device in which we use the results of the first three studies together with

the analysis of the constraints imposed by the physical construction of the

device. We explore the flow behavior in the exit region of the device and

suggest some guidelines to achieve successful fractionation accordingly.

Results of this work show that spiral multi-layer Poisuille viscoplastic

flow can be stable and the range of stability expands with increasing fluids

yield stress. Gravity current instability is evident in density unstable cases

and the flow can be stabilized by increasing the fluids yield stress. Kelvin

Helmholtz instability was not found on conditions tested. Viscoplastic flow

entrance length was found to be shorter than the equivalent Newtonian one

for the same range of Reynolds number.
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Preface

Three chapters of this thesis will be submitted for publication in refereed

journals. Following are the detail of the submission:

1. Chapter three, Alshibl M. and Martinez D.M. Continuous fractiona-

tion of particle suspensions in a viscoplastic fluid using spiral multi-

layer Poiseuille flow. I solved the flow analytically, conducted the study

and wrote the paper under the supervision of Dr. Martinez.

2. Chapter four, Alshibl M. and Martinez D.M. Study of entrance region

spiral multi-layer Poiseuille flow of viscoplastic fluid in annular geome-

tries with density current effects. Dr. Martinez supervised the research

and I solved the flow numerically, validated the solution, planned and

performed the simulations.

3. Chapter five, Alshibl M. and Martinez D.M. Study of the operation

and efficiency of the continuous fractionation system of particle sus-

pensions in a viscoplastic fluid using spiral multi-layer Poiseuille flow.
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Chapter 1

Introduction

The focus of the present work is the study of laminar multi-layer viscoplastic

flow in annular geometries as shown in figure 1.1. This type of flow is used

in the novel fractionation process of particle suspensions that was advanced

by Madani et al. (2010b). They proved this new fractionation methodology

on a batch wise basis. The purpose of this work is to extend the new method

applicability to continuous fractionation for use in industrial applications.

Figure 1.1: A schematic of the geometry showing the fully developed region,

the annulus and the fractionation device.

The motivation for the present work stems from an interest in the frac-
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Chapter 1. Introduction

tionation of particle suspensions especially with papermaking fibre suspen-

sions. Fractionation is a vital part in papermaking process. It allows the

processing of low quality fractions of pulp suspensions to improve paper

quality and reduce the consumption of the required chemicals, energy or

assets.

Additionally, it enables papermakers to produce products over a wide

range of properties that can be used in different applications. To elaborate

more, if we fractionate a mixture of long and short pulp fiber suspension, we

are going to get a short fiber fraction that is known for having better print-

ing capabilities and a long fiber fraction that has a higher tensile strength.

In addition to that, we can blend these fractions at different ratios to get

different paper products with a variety of properties that can be used in

different paper applications.

We conducted four different but complementary studies to facilitate this

multi-layer flow in the continuous fractionation process, these studies are

carried out in order to design an industially applicable process. The first

study deals with the fully developed condition of the flow. This condition

allows us to solve the problem analytically and hence provide a reliable

reference to validate the remaining numerical studies. This solution also

provides a means to test the stability of the flow.
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Chapter 1. Introduction

The second study is related to the fractionation of particles in particles

suspensions utilizing the solution demonstrated in the first study. We de-

velop particle fractionation curves of particles of different sizes in fluids with

different rheology. We develop a code to simulate thousands of flow cases

(a flow case has a unique combination of streams flowrates) that we may

have for fluids of known rheology and for particles of different sizes. We pre-

dict the fractionation operating window (some range of streams flowrates)

needed for successful fractionation.

In the third study, we examine the flow in a full annulus geometry in-

cluding the entrance region of the flow. Here, we estimate the flow entrance

length in order to design the length of the mixing zone of the two streams in

the continuous fractionation device. We study the effect of Kelvin-Helmholtz

and density current instabilities on the flow.

In the fourth study, we attempt to design the continuous fractionation

device in which we use the results of the first three studies together with

the analysis of the constraints imposed by the physical construction of the

device. We explore the flow behavior in the exit region of the device and

suggest some guidelines to achieve successful fractionation accordingly.

This thesis is presented in 6 chapters. In chapter 1 we present the mo-

tivation of this work. Chapter 2 gives a background on the fractionation

3



Chapter 1. Introduction

methods, fractionation efficiency, presents the new fractionation principle

and the potential flow characteristics to be used in this new methodology.

The fully developed flow problem and particle fractionation studies are pre-

sented in chapter 3. We present the full annulus problem solution and

density current analysis in chapter 4 and the continuous fractionation de-

vice study in chapter 5. We end the work by conclusions in chapter 6 and

bibliography.
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Chapter 2

Background

In this chapter we will shed light on the available fractionation methods,

their efficiency and the need for a new fractionation technique. We will dis-

cuss in more detail particle motion with both Newtonian and non-Newtonian

suspensions as they are the core of the fractionation process. The proposed

continuous fractionation device that employs the new technique is explored

in terms of identifying the nature of the flow to be used.

2.1 The current pulp fractionation methods

Currently, there are two methods to fractionate pulp fibers: pressure screens

(figure 2.1) and hydro-cyclones (figure 2.2). In pressure screens, the fiber

suspension enters an annular gap between a rotor and an outer cylinder with

small openings (either slots or holes), separation is then achieved based on

the length of the fiber as small fibers pass through the openings. Pressure

screens usually are equipped with different types of rotors that continuously

5



2.1. The current pulp fractionation methods

disperse fibers to prevent them from accumulating on the screen surface. A

number of studies discuss pressure screens design and operation, for example,

Sloane (2000) and Julien Saint Amand and Perrin (1999) gave a general

review of pressure screening systems, their design and efficiency.

Figure 2.1: Schematic of a pressure screen.

On the other hand, hydrocyclones separate fibers based on their specific

surface or surface area per gram, resulting in separation of large diameter

thin walled fibers from small diameter thick walled ones. Hydrocyclones

are conical or partly cylindrical devices with no moving parts. Here the

pulp suspension flows into the hydrocyclone with a tangent angle creating

a swirling flow. Due to centrifugal force the dense materials are pushed to-

ward the outside and collected at the bottom of the hydrocyclone as rejects.

6



2.1. The current pulp fractionation methods

Figure 2.2: Schematic of a hydrocyclone.

Paavilainen (1992) studied experimentally the hydrocyclone operation and

showed that they are indeed able to fractionate fibers based on its specific

surface.

Despite the fact that pressure screens and hydro-cyclones are considered

the industrially approved methods, these methods have relatively low ef-

ficiencies. The flow within these devices is complex due to the stochastic

nature of turbulence, the presence of boundaries, and the long range hydro-

dynamic interactions between suspended fibers, Madani et al. (2010b). All

7



2.2. Particles motion in Newtonian suspensions

these facts have a negative impact on the efficiency of both pressure screens

and hydro-cyclones.

To address the problem of low efficiency of these devices, we will explore

fractionation efficiency in more detail. Fractionation efficiency is built upon

an understanding of the motion of different classes of particles in a flowing

Newtonian suspension. In the next section we briefly review a number of

studies on particle motion for the purpose of understanding why the effi-

ciency in these devices is low. Afterwards, we discuss particle behaviour in

viscoplastic fluids and how this behaviour makes utilizing viscoplastic fluids

in fractionation a wise decision.

The novel fractionation principle of Madani et al. (2010b) is then intro-

duced with some preliminary results from batchwise experiments. Following

that, the continuous fractionation method proposed by Madani et al. (2010b)

using viscoplastic fluids is then introduced. And we finalize this chapter with

an introduction to the academic problem.

2.2 Particles motion in Newtonian suspensions

The motion of particles in Newtonian suspensions is extremely complex.

Studies by Batchelor (1972), and more recently by Mackaplow and Shaqfeh

(1998) were concerned with the simplest case of settling of an isolated rod

8



2.2. Particles motion in Newtonian suspensions

in an unbounded fluid experiencing stokes flow described by the following

equation.

Vsed =
∆ρd2

16µ
[(ln 2r+0.193+O(ln 2r)−1)g+(ln 2r−1, 807+O(ln 2r)−1)(p.g)p]

(2.1)

where ∆ρ is the difference in density between the fibre density ρ and the

surrounding fluid density ρf ; r is the aspect ratio of the fibre defined by

l/d where d is the diameter of the fibre ; µ is the viscosity of the fluid ; g

is the acceleration due to gravity ; and p is the unit vector that indicates

fibre orientation.

They found that rods -based on their orientation- are subjected to lateral

movement while settling vertically under the effect of gravity with the drift

velocity strongly dependent on fiber orientation, this is not the case for

spheres.

On the other hand Jayaweera and Mason (1965) reported that orienta-

tion does not affect settling at low Re, (Re < 0.01) and cylinders fall with

the same altitude that they were released with. We conclude that there is

no unique terminal velocity for settling cylinders, and the terminal velocity

depends on the orientation and aspect ratio of the cylinder. This difference

in terminal velocities may give a basis for separating particles mechanically.
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In more realistic situations, i.e., higher concentration and Reynolds num-

bers, long range disturbances are introduced to the system resulting in a

distribution for the settling velocity. Disturbances are created by presence

of other particles and/or increasing the Reynolds number.

Let us start looking at the effect of the ‘wake of a moving particle in the

vicinity of another. In this regard, Happel and Brenner (1965) explained

that the physics becomes more complex as each individual fibre settles and

rotates under the influence of the ‘wakes’ or ‘long-range hydrodynamic dis-

turbances’ of the other settling particles. This in turn leads to inhomoge-

neous settling rates and local floc formation. Floc formation was observed

also by Kumar and Ramarao (1991) in monodisperse glass fibre suspensions.

In an interesting finding, Herzhaft and Guazzelli (1999) reported that in

the dilute regime, the ensemble-averaged settling velocity actually increases

with concentration and may exceed the velocity of an isolated particle. They

found also that most of the fibers are aligned in the direction of gravity under

these flow conditions.

Some numerical simulations conducted by (Mackaplow and Shaqfeh (1998);

Butler and Shaqfeh (2002); Koch and Shaqfeh (1989)) for the flow un-

der these conditions and in the limit of Re = 0, using slender body the-

ory, suggested that the settling suspension should segregate into particle
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2.2. Particles motion in Newtonian suspensions

clumps. The simulations were in good agreement with experimental results

of Herzhaft and Guazzelli (1999).

For higher Reynolds numbers which are more relevant to the paper-

making industry, Marton and Robie (1969) studied fibres settling in water.

It has been shown that, unlike in the Stokes’ regime, at Reynolds num-

bers Re ∼ O(1) isolated non-spherical particles tend to exhibit preferential

orientation during settling. The same conclusions were drawn by other in-

vestigations (Jayaweera and Mason (1965); Feng et al. (1994); Jianzhong

et al. (2003)) when studying flows at these Reynolds numbers, in the dilute

limit; they have shown that isolated non-spherical particles tend to exhibit

preferential orientation during settling.

The torque induced on thin cylinders causes the body to rotate into a

stable position with its symmetry axis aligned horizontally. In a relatively

recent work Holm et al. (2004) showed that at elevated concentrations, the

long range hydrodynamic interactions perturb the flow field to the point

where recirculation or swirling like structures are apparent.

In a later work Salmela et al. (2007) conducted a more comprehensive

study on the motion of settling particles as a function of concentration,

aspect ratio, fluid viscosity, and fibre length for both monodisperse and bi-

disperse suspensions and used a similar index of refraction matching tech-
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2.2. Particles motion in Newtonian suspensions

nique. They tracked the motion of tracer fibres in three-dimensions which

allowed them to study fibre fractionation in this equipment.

They reported a non-monotonic behaviour in the average settling velocity

as a function of concentration with the maximum velocity occurring at a

volume fraction of 0.05 % similar to that reported by Herzhaft and Guazzelli

(1999). Holm et al. (2004) also observed non-monotonic behaviour with the

maximum in the initial settling speed occurring at a crowding number of N

∼ 16 for papermaking fibres.

In terms of orientation behaviour, Salmela et al. (2007) showed com-

plex orientation behaviour for suspensions under these conditions. For low

concentration they showed that the suspension fibers tend to orient in the

horizontal state and then tend to align in the vertical state as concentration

increases.

One vital conclusion can be drawn from some unpublished results of

Salmela and his coworkers that gives a rise to an understanding of the pos-

sibility to fractionate based upon settling. Although not reported in Salmela

et al. (2007), they studied the motion of a bi-dispersed suspension comprised

of glass rods of two different aspect ratios r=23 and 50 and measured the

ensemble-averaged settling velocity of each class of particle.

They measured the settling velocity as a function of the initial suspension
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concentration. They found that under dilute conditions each fibre fraction

settles at statistically different velocities. This means that there is a possibil-

ity for fractionation in this regime. However, with increasing concentration,

the differences between the terminal velocities diminish until their difference

is indistinguishable and consequently deter the possibility of fractionation

in this regime.

In summary, from the above literature, we found that the settling velocity

of isolated particles in an unbounded fluid is dependent on density, diameter,

orientation and aspect ratio of the cylindrical particles. In the creeping flow

regime (Re� 1) separation of fibers based on difference in settling velocities

can be achieved only in extreme dilute suspensions and on condition that

the orientation distribution remains constant during descent.

However, at higher concentration for all Reynolds number ranges separa-

tion of particles cannot be achieved due to the long range hydrodynamic in-

teractions between particle that leads to floc formation and chaotic swirling

structures. Salmela et al. (2007) reported that there is no statistical differ-

ence between the settling velocities of particles in bi-disperse suspensions in

any reasonable concentrations.

We conclude from above review that particles motion in suspensions

with concentration Reynolds number relevant to the industrial suspensions
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2.3. Non-Newtonian fluids rheology

is extremely complex. Chaotic behaviour is evident due to long range hy-

drodynamic interactions between particles. This behaviour is observed in

the ideal lab situations, when it comes to the real life industrial equipment

like cyclones and pressure screens the flow is event more complex being

three-dimensional, time-dependent and turbulent in nature.

Now before we move on to discuss particles motion in viscoplastic fluids

(where the novel fractionation method is all about) it is a good idea to

introduce the difference between Newtonian and non-Newtonian fluids and

where viscoplastic fluids stand.

2.3 Non-Newtonian fluids rheology

Fluids are divided to Newtonian and non-Newtonian based on their behavior

in the basic shear diagram (shear stress versus shear rate). The Newtonian

fluids exhibit a linear relation between shear stress and shear rate with the

line passing through the origin.

τ = µγ (2.2)

Where τ is the shear stress, µ is a constant value of dynamic viscosity

and γ is the shear rate. A typical example of a Newtonian fluid is water. All

other types of fluids are non-Newtonian, meaning that either the relation
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between shear stress and shear rate is not linear or the line does not pass

through the origin or the material exhibits time-dependent behavior.

Non-Newtonian fluids are divided into several types: shear-thinning

fluids, shear-thickening fluids, yield stress (viscoplastic) fluids and time-

dependent fluids.

With the shear-thinning fluids, the shear stress - shear rate curve passes

through the origin and is concave downwards, with an increase in shear rate

resulting in a less than proportional increase in shear stress or in other words

the dynamic viscosity is not constant.

For the shear-thickening fluids, the shear stress - shear rate curve also

passes through the origin but is concave upwards, meaning that, an increase

in shear rate results in a more than proportional increase in shear stress

with a variable dynamic viscosity.

For time-dependent fluids, the shear stress versus shear rate data ob-

tained in ascending order of shear rate are different from those obtained in

descending order. If the latter is lower, the fluid is called time-dependent

shear-thinning (thixotropic), while if the data obtained in descending order

is higher, the fluid is called time-dependent shear-thickening (antithixotropic).

In yield stress fluids, the flow may not commence until a threshold value

of stress (τy, yield stress) is exceeded. A yield stress fluid with shear thinning
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2.3. Non-Newtonian fluids rheology

behavior is called Herschel-Bulkley fluid, while a yield stress fluid with a

linear shear-stress shear rate relation is called Bingham plastic fluid.

To be consistant with related previous studies in the literature, we uti-

lize the Bingham plastic model to describe viscoplastic fluids rheology. The

relevant mathematical formulations of Bingham plastic fluids are the consti-

tutive equation and the dimensionless Bingham number defined as follow:

τ = τy + µpγ (2.3)

B =
τyL

µpVo
(2.4)

where τ is the shear stress, γ the shear rate, µp the plastic viscosity, B

the Bingham number, L the length scale and Vo the velocity scale. If τ < τy

the Bingham plastic fluid behaves as a solid, otherwise it behaves as a fluid.

If τy = 0, this model reduces to the Newtonian fluid.

Now since the novel fractionation technique utilizes yield stress fluids as

the carrying medium, we need to know how particles behave or move in such

a medium. The next section will deal with the motion of particles in yield

stress fluids.
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2.4 Particle motion in viscoplastic fluids

Particle motion in viscoplastic fluid is more complex than that in Newtonian

fluid. If we consider the simplest case of one particle in an unbounded

viscoplastic fluid, here the particle has to overcome the force created by

the yield stress to start moving. If we denote the net force applied on the

particle by Fa , then there should be a critical force value that is required

to initiate motion (overcome the fluid yield stress resistive force).

To elaborate more, let us consider an example of a particle immersed in a

material having a yield stress τy. If Fa is not sufficient to overcome the yield

stress then the particle will be suspended indefinitely. Motion will commence

when Fa > τyAe, where Ae is the surface area over which the force due to

the yield stress is applied. The exact value for Ae however remains an open

question. The above relationship can be made dimensionless by scaling each

side by a characteristic area of the particle. In this case if we divide each

side of the equation by D2, where D is the diameter of thr particle, we can

define a dimensionless force ratio F which represents the criteria for motion:

F =
Fa
τyD2

>
Ae
D2

(2.5)

The bound where motion begins is defined as the critical force ratio Fc.
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The particle movement depends solely on determination of Ae. Several stud-

ies were conducted by researchers to determine Ae, Andres (1961) reported

that for spherical particles settling will start when Fc = 4.8. Beris et al.

(1985) on the other hand suggested that there are two yield surfaces around

the spherical particle; a surface with kidney shape away from the sphere

and two triangular shapes attached to the leading and trailing edges of the

sphere with critical force value of Fc ∼ 11 to start motion, figure 2.3 .

Figure 2.3: Schematic illustrating the yielded (region (1)-white) and un-

yielded flow regions (region (2)-blue) around a spherical particle in a yield

stress fluid, according to the numerical results by Beris et al. (1985). This

figure was reproduced from Putz et al. (2008).

Experimentally, Tabuteau et al. (2007); Jossic and Magnin (2001); Lax-

ton and Berg (2005) reported the critical force value for motion in the range

16 < Fc < 25 and Madani et al. (2010a) in the range 13 < Fc < 29. In
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the same work Madani et al. (2010a) reported Fc for cylinders and bent

cylindrical rods oriented in parallel and perpendicul to the direction of the

applied centrifugal force in the range of 28 < Fc < 517 and 87 < Fc < 423

respectively.

Chhabra (2006) gave a comprehensive summary of settling and sedi-

mentation in different fluids including viscoplastic fluids, he concentrated

on terminal velocity and drag coefficients values that are used usually in de-

sign purposes for engineering applications. Putz et al. (2008) experimentally

estimated the yield surface shape for settling spheres in carbopol solutions

by ovoid spheroid that has a major axis dimension of more than 5 times the

radius of the sphere.

To summarize, what is clear from this body of work is that during settling

the flow is confined in the vicinity of the particle within an envelope the size

of which is related to the yield stress of the material. For particles to settle,

a critical force must be applied to overcome the resistance created by the

yield stress. Relatively little is known about the shape of this surface and

the magnitude of the applied force to create motion. What can be said is

that the unyielded envelope is larger than the body itself but its shape has

yet to be determined rigorously.

With this understanding of particle behaviour in suspensions we are
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2.5. The novel fractionation method

ready now to introduce the novel fractionation technique developed by Madani

et al. (2010b) in the following section.

2.5 The novel fractionation method

In this section, we explain the new particle suspension fractionation method

through the work of Madani et al. (2010b). We explore the possible contin-

uous fractionation equipment and the flow associated with it. We introduce

the academic problem and state our aim and objectives in this project.

2.5.1 Fractionation principle

By understanding motion of particles in yield stress fluids, we can see that

the differences in particles static stability in yield stress fluids when sub-

jected to one applied force make a novel criteria for separation of particles.

It is informative at this point to present Madani et al. (2010a,b, 2011)’s re-

sults in this regard as they considered two different spherical particles groups

of equal dimensions but of different densities.

They rotated each particle in a centrifuge at exactly the same angular

velocity and at equal radial positions from the axis of rotation (both par-

ticle types experienced the same acceleration field). Particles with greater

density, experienced a larger centrifugal force as they have larger mass.
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Separation of these two particles types occurs when the centrifugal force

applied on type 1 particles, (F1) is greater than the critical force (τyAe)

and at the same time, this critical force is greater than the centrifugal force

applied on type 2 particles, (F2). Or in other words F1 > τyAe > F2.

Figure 2.4 shows the images of suspensions before and after rotation of

the centrifuge, the spheres with the higher density are shown in black and

that with the smaller density in red. Both sphere types are of same number

and distributed evenly throughout the centrifuge.

Figure 2.4: A demonstration of the fractionation of a bi-disperse suspension

of spherical particles. In (a), an image of the suspension is given before the

commencement of the centrifuge. (b) The state of the suspension after the

application of the centrifugal force. It should be noted that most of the

darker particles are on the periphery of the centrifuge. This figure was

reproduced from Madani et al. (2010a).
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Figure 2.5: A demonstration of the fractionation of a bidisperse suspension

of cylindrical particles. In (a) an image of the suspension is given before

the commencement of the centrifuge. (b) is the state of the suspension after

the application of the centrifugal force. This figure was reproduced from

Madani et al. (2010a).

They chose an appropriate rotation rate that led to separation (the

lighter particles were statically stable in the suspension while the heavier

particles moved to the periphery of the centrifuge).

Similar treatment was done to cylindrical rods as shown in figure 2.5.

Here the heavier (type1) rods migrated towards the periphery of the cen-

trifuge under the effect of the centrifugal force while lighter (type2) rods

stayed stable. Madani et al. (2011) performed more experiments on pa-

permaking fibre suspensions demonstrating the utility of this approach and

has shown that indeed separation may proceed based upon fibre length or
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coarseness; their work was however conducted on a batchwise process. The

purpose of this work is to advance this technology by demonstrating its

potential in an industrially relevant suspension, namely a papermaking sus-

pension.

2.5.2 Development of an efficient continuous fractionation

process

Madani et al. (2010b) has introduced a novel continuous fractionation method

based upon the principles described earlier. They consider a flow field in

which the particles translate in the axial direction which is perpendicular to

the motion induced by the centrifugal force. The axial motion is decoupled

from the radial (centrifugal) motion. In addition, they emphasise that a

significant portion of the flow to be unyielded. To acheive this type of flow,

they consider a pressure driven flow imposed onto solid body rotation.

A schematic of the continuous device that uses this method is shown in

Figure 2.6. Here particles, suspended in a viscoplastic fluid, are introduced

near the inner cylinder (inlet 1) and are transported axially towards the

exit; a similar viscoplastic fluid is introduced near the outer cylinder (inlet

2) but no particles are present in this fluid. The walls of each cylinder rotate

at the same angular speed and in the same direction. The size of the un-
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yielded portion of the flow is controlled by the pressure drop only allowing

the operator to control separation and production rates independently. The

device has two exits to collect the sorted particles streams.

Figure 2.6: A schematic cross section of the continuous fractionation device.

The entire device rotates and creates a centrifugal field during transport.

As described earlier, if an appropriate centrifugal force is selected, a certain

fraction of particles will migrate towards the periphery and exit near the

outer cylinder. Hence fractionation may occur. To date, the device has yet

to be built as more information is required about the details of the flow field.
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So basically we have two viscoplastic layers driven by axial pressure drop

and rotational angular velocity (solid body rotation), such a flow is referred

to as a multi-layer spiral Poiseuille viscoplastic flow.

It is the purpose of this work to develop the design criteria for a stable

rotating multi-layer flow. A review of this flow stability will follow in the

next section.

2.5.3 Introduction to the academic problem

The flow under consideration is a multi-layer spiral Poiseuille viscoplastic

flow in annular geometry that is utilized in the novel fractionation equip-

ment. The most important scientific question in designing such equipment

is its flow stability.

In this work we study the stability of the flow using the Bingham plastic

model in order to understand the instability bounds due to the presence of

different fluids yield stresses, centrifugal forces resulting from rotation and

presence of rigid walls containing the flow.

In the Bingham plastic constitutive model the flow may not commence

until a threshold value of stress (yield stress) is exceeded. Also, the fluid

in this model has a linear shear-stress shear rate relation. So basically this

multi-layer flow may have both yielded and un-yielded regions depending on
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the local shear stress values compared to each fluid unique yield stress value.

Unyielded regions behave like rigid bodies undergoing linear or rotational

motion.

We can think of three sources for instability in Poiseuille multi-layer

viscoplastic flow. First, is the instability caused by a yielded interface in the

event of having yielded velocity profiles of both fluids sharing the interface.

Second is the instability caused by Kelvin Helmholtz instability since we

have parallel multi-layer flow with different layer velocities.

The third instability may be caused by solid body rotation in the case of

density unstable multi-layer flow (having a heavier inner fluid that is closer

to the axis of rotation and a lighter outer fluid that is away from the axis of

rotation).

To adress the questions associated with these instabilities and the be-

haviour of the multi-layer annular flow in both the fully developed and entry

regions, we review the related literature in four categories: i) non-Newtonian

fluid flows in ducts and annular gaps, ii) entrance length, iii) interfacial sta-

bility and iv) density current instability.

Now let us start with the first catagory. Solutions of the steady non-

Newtonian fluid flow in ducts and annular gaps do exist in the literature for

iso-dense cases. Details can be gained from the work of Fredrickson and Bird
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(1958); Shul’Man (1970); Grinchik and Kim (1972); Anshus (1974); Hanks

(1979); Papanastasiou (1987); Fordham et al. (1991) . Some researchers like

Bittleston et al. (2002) and Pelipenko and Frigaard (2004) were interested in

displacement viscoplastic flows in annular gaps with emphasis on eccentricity

and annulus inclination.

When it comes to introducing wall rotation, Bittleston and Hassager

(1992) were one of the first researchers to study viscoplastic fluid flow in

ducts with rotation. They investigated the flow in a concentric annulus when

there is both axial and tangential flows. The tangent flow arises from the

rotation of the inner cylinder of the annulus. They used the Bingham plastic

model in their analysis. They solved the flow analytically by considering the

flow in a slot and solved the full problem numerically. They found the critical

rate at which the inner wall has to move to reduce the plug size to zero.

One of the few research groups that performed an analytical analysis in

addition to Bittleston and Hassager (1992) were Liu and Zhu (2010). They

studied the axial Couette Poiseuille flow of Bingham fluids through concen-

tric annuli and presented eight different forms of velocity profiles depending

on values of three dimensionless parameters: the Bingham, axial Couette

numbers and the radius ratio.

Some researchers used the Herschel-bulkley model in their analysis. For
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example Nouar (1998) in his work reported the critical wall movement rate

to reduce the plug size to zero and Escudier et al. (2002) who used the finite-

volume method to solve the flow for the fully developed laminar flow through

an eccentric annulus with inner cylinder rotation. Also, Meuric et al. (1998)

numerically solved the laminar flow in vertical concentric and eccentric an-

nuli for an imposed axial flow with inner wall rotation. They showed that

the inclusion of rotational effects, for a fixed pressure gradient, is likely to

increase the axial volumetric flow rate over non-rotating situations in con-

centric geometries. However, in eccentric annuli, the situation is reversed

and the flowrate gradually decreases as the rotation rate is increased.

Some of the researchers like Wang focused on tracking the yield surfaces

and mobile plug zones. In his work,Wang (1997) used the finite element

method to study Bingham fluid flow in eccentric annuli and in an L-shaped

ducts. He found the plug regions and tracked the yield surfaces in these

geometries. In a later work,Wang (1998) studied viscoplastic fluid flow in a

square duct using a finite-element method and tracked the yield surface and

mobile plug zones.

When it comes to studying the linear stability of the flow, insight can be

gained from the work of Peng and Zhu (2004) and Madani et al. (2013). Peng

and Zhu (2004) studied Bingham-plastic fluid flow between two concentric
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cylinders rotating independently and with axial sliding of the inner cylinder

(spiral Couette flow). They found that islands of instability, which are found

in the spiral Couette flow of Newtonian fluids, may not exist owing to the

effect of yield stress. Also they reported that both the rotation of the outer

cylinder and a decrease of the gap between the cylinders have stabilizing

effects.

Madani et al. (2013) investigated the linear stability of both Newtonian

and Bingham fluids in spiral Poiseuille flow in the annular gap between

two co-rotating cylinders. They found that solid body rotation increases

the margin of stability for both Newtonian and Bingham fluid flow cases.

Additionally, the flow is linearly stable for all B > 0 where B is Bingham

number.

In terms of the shape of axial velocity profiles they found that the steady,

fully-developed spiral Poiseuille flow consists of an unyielded region in the

center of the channel, for finite B (Bingham number) , bounded by two

yielded regions. The position of the yield surfaces was found as part of the

solution methodology reported by Liu and Zhu (2010) and is dependent only

on B; the swirl component does not affect the position of the plug.

What is clear from this body of literature is that besides previous works

there is few, if any, studies we could find in the literature addressing multi-
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layer flows in swirl, it is a relatively unexplored area. In related work, the

literature is both substantial and protracted for single-fluid viscoplastic flow

in annular gaps or in displacement flow, i.e. one fluid contacting another

fluid on a plane perpendicular to the axis of motion.

We continue the discussion by considering the entry region solutions in

the literature (second category). Perhaps among the first related studies for

Newtonian fluid flows are the work of Heaton et al. (1964) who reported the

hydrodynamic entry length for different annular geometries. Shortly after

that McComas (1967) reported the laminar hydrodynamic entrance length

for annular geometries. Shah (1978) explored more geometries including

circular and noncircular ducts, parallel plates, rectangular, equilateral tri-

angular, and concentric annular ducts. They proposed a correlation for

laminar hydrodynamic entry length for these geometries. After that, Feld-

man et al. (1982) extended the research to eccentric annular geometries and

estimated numerically the hydrodynamic entrance length.

In the most recent studies on Newtonian flows, Durst et al. (2005) es-

timated the entrance length for pipe flow of both laminar and creeping

regimes. Poole and Ridley (2007) modified the Newtonian entrance length

correlation proposed by Durst et al. (2005) to be applicable to power law

fluids. However, for annular geometries, entrance length was reported only
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for higher ranges of laminar regime by researchers like Maia and Gasparetto

(2003).

For viscoplastic fluid flows some researchers like (Chen et al. (1970);

Shah and Soto (1975); Nowak and Gajdeczko (1983); Vradis et al. (1993);

Min et al. (1997)) proposed correlations for the pipe flow enterance length

as a constant number times Reynolds number or (Le/Dh = CRe) in the

laminar regime ignoring the lower range of Reynolds number flows where

the entrance length collapse to zero based on their correlations. Here, Le

and Dh are the entrance length and hydraulic diameter respectively. This

probelm was addressed by Ookawara et al. (2000) and more recently by Poole

and Chhabra (2010) who took into consideration the effect of the diffusion

dominated (low Reynolds number) pipe flow in their correlations.

The general outcome of the literature in this subject is that the entrance

length for annular geometry Newtonian flows is usually shorter than the

corresponding ones of pipe flows for the same values of Reynolds numbers.

Also, there is little (if any) studies on entry region flows in lower ranges

of laminar and creeping regimes of annular flows for both Newtonian and

non-Newtonian fluids.

Let us now consider the third cateogry of this literature review, the

interfacial stability caused by a yielded velocity profile at the interface. A
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considerable amount of literature studies the interfacial instability of multi-

layer viscoelastic flows, in contrast, a few researchers like Frigaard (2001),

Moyers-Gonzalez et al. (2004) and Huen et al. (2007) studied this instability

in multi-layer viscoplastic flows. They reached to a conclusion that a stable

multi-layer viscoplastic flow is possible if we are able to preserve an unyielded

region at the interface. To do that, the applied shear stress at the interface

has to be less than that of the yield stress of one of the fluids that are sharing

this interface. So, effectively the velocity profiles are flat for at least one of

the fluids sharing the interface.

Now we turn our attention to the last category of the literature review,

the problem of density difference between layers. A density current or some-

times called gravity current is usually a horizontal flow in some gravitational

field that is driven by a density difference. Due to its wide existence in na-

ture, gravity currents were intensively investigated by researchers.

Let us start with studies involving Newtonian fluids. Benjamin (1968)

was one of the first people to study gravity currents mathematically. His

studies involved flows of moving heavy fluids with stagnant lighter fluids.

Before that, Abbott (1961) and Barr (1967) reported experimental results

about intrusions and collisions between fluids of differing density. In an

effort to do a comprehensive review of the literature, Simpson published
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some work (Simpson (1982), Simpson (1999)) summarizing the research in

the field of gravity currents with examples in the atmosphere and in the

ocean.

For non-Newtonian flows, the work is substantial and prolonged for

power law fluid flows. To mention some, Di Federico et al. (2012), Chowd-

hury and Testik (2012), Di Federico et al. (2006b), Di Federico et al. (2006a),

Longo et al. (2013), Vola et al. (2004), Gratton et al. (1999), Pascal (2003),

Longo et al. (2015), Longo et al. (2013) and Ciriello et al. (2015). Their

work was related to different studies like gravity currents in a porous layer,

creeping gravity currents and propagation of free-surface channelized viscous

gravity currents. They consider different geometries like horizontal rectan-

gular tanks, horizontal rigid plane and horizontal rectilinear channels for

both steady and unsteady flows.

It is clear that most of the gravity current literature is related to power-

law fluids in spreading flows of one fluid over another mostly in horizontal

planes or rectilinear channels, etc. To the best of author’s knowledge, the

problem of density current of two viscoplastic fluids in an annulus with solid

body rotation has not been explored previously.

To summarize, studies in the literature are few, if any, for: multi-layer

viscoplastic flows with swirl, or annular flows entrance length in lower ranges
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of laminar/creeping regimes for both Newtonian and non-Newtonian fluids,

and, density current instability in bounded multi-layer flows especially an-

nular flows. In related work the literature is substantial for: single fluid

viscoplastic flows/displacement flows, higher ranges of laminar pipe and an-

nular flows, and, density current studies of power law fluids spreading flows

in planes or rectilinear channels. For interfacial stability, a stable multi-layer

viscoplastic flow is possible if we maintain at least one velocity profile of the

fluids sharing the interface to be flat.

Based on this summary of the literature, our aim is to investigate the

multi-layer spiral Poiseuille viscoplastic fluid flow in annuli. We vary the

rheology of the fluid spatially in cross stream direction in order to allow us

study the layered annular flows. We explore the entrance length for both

Newtonian and viscoplastic fluids in lower ranges of laminar and creeping

regime. In addition we explore the effect of density difference between layers.

At this point let us define the objectives of this research. Our main goal

is to design a continuous fractionation equipment that employs the novel

fractionation method. To acheive this goal, we need to fulfill the following

objectives:

• To understand the stability of a multi-layer annular flows in which

the viscoplastic fluids are of different rheology. Here we will analyze
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2.5. The novel fractionation method

the stability of two fluids in contact, in swirling Poiseuille flow. We

solve analytically the fully developed problem of the Spiral Poiseuille

multi-layer flow for stability of the flow in the interface area.

• We will examine computationally (in a labrotary device using 2D ax-

isymmetric CFD simulation) the full annulus problem including esti-

mating the entrance length of the flow to predict the required axial

length of the fractionation device. In this simulation we will examine

the effect of the design and elongational stresses in the entry region,

on final interface position. In addition, we will explore the effect of

density current and Kelvin-Helmholtz instabilities on the flow stabil-

ity. We will benchmark this computational solution with the fully

developed analytical solution.

• Study computationally the continuous fractionation device including

the inlet and exit conditions. We will simulate the flow field in a

laboratory device using 2D axisymmetric CFD simulation. We will

compare the computational solution of the flow in the device with the

fully developed analytical solution.

There are some limitations to our analysis as this work is intended to

provide the theoretical basis to apply the novel fractionation principle on
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2.5. The novel fractionation method

continuous industrial applications and to provide a design for the fraction-

ation device. Additional experimental work is needed to validate the op-

eration and the efficiency of this new principle in a physical fractionation

process.

The first limitation is that we do not consider chemical reactions be-

tween fluid layers. As an example the fractionation efficiency in fluids with

different pH concentration need to be explored experimentally. In this work

we assume no chemical reactions between fluid layers.

The second limitation is that we do not consider diffusion between layers

due to particle movement between layers. As discussed earlier, the effect

of solid particles on the flow is limited to a small envelope surrounding

the particle especially in the laminar regime under consideration which has

typically a very large Peclet number. For large Peclet number, the diffusive

effects are usually expected to be limited over the simulations time scales.
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Chapter 3

The fully developed problem

and particle fractionation

We consider the fully developed fluid flow in an annular space formed be-

tween an inner and outer cylinders of radii r̂ ∈ [κR̂, R̂], where κ is a constant

defined in the interval (0, 1), figure 3.1. In this work we define the hatted

notation to represent a dimensional quantity.

Figure 3.1: A schematic of the model geometry.

The inner and outer cylinders rotate with the same angular speed ω̂. The
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Chapter 3. The fully developed problem and particle fractionation

flow is subjected to a constant pressure gradient Ĝ, in the axial direction.

We consider a multi-layer flow where two or more fluids flow with their

interface aligned parallel to the direction of flow.

Each individual fluid has its unique physical and rheological proper-

ties. To be consistent with the work of Bittleston and Hassager (1992) and

Madani et al. (2013) that considered a single viscoplastic fluid, we utilize

the Bingham plastic rheological model to describe multi-layer fluids rheology

with the apparent viscosity µ̂(k) and yield stress τ̂y
(k) defined for each fluid,

where k = 1, 2, 3...etc. The fluids are incompressible with the same density

ρ̂.

The location of each layer is defined apriori by the position of its upper

boundary r̂
(k)
l . Hence each layer is defined in the region (r̂

(k−1)
l , r̂

(k)
l ). For

simplicity in the analysis we will drop the superscript and assume that these

properties vary as a function of radial position.

To develop an appropriate model for the problem, we assume the flow

to be laminar, steady, and axisymetric, the fluids to be Non-Newtonian

(viscoplastic) with constant properties. In addition, we assume no chemical

reactions and the wall surfaces to be smooth and free from active impurities.

The flow in the previously described geometry is governed by the basic

partial differential equations which result from the consideration of both the
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Chapter 3. The fully developed problem and particle fractionation

conservation of mass principle (continuity equation) and the conservation of

momentum principle (Navier-Stokes equations). These equations are given

below for laminar, steady and incompressable flow.

∇.û = 0 (3.1)

ρ̂(û.∇) û = −∇p̂+∇.τ̂ (3.2)

where û is the velocity, p̂ the pressure and τ̂ the deviatoric stress tensor.

we non-dimensionalize the Navier-Stokes equations using a length scale of

R̂ and a viscosity scale of µ̂(1). We define a velocity scale Ûo, time scale t̂o

and pressure scale τ̂c of :

Ûo =

√√√√(κω̂R̂)2 +

(
ĜR̂2

µ̂(1)

)2

(3.3)

t̂o =
ρ̂R̂2

µ̂(1)
(3.4)

τ̂c =
µ̂(1)Ûo

R̂
(3.5)

Where Ĝ is the pressure drop per unit length. In the definition of Ûo,

the two terms reflect the effect of rotational speed ω̂ and pressure drop rate
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Chapter 3. The fully developed problem and particle fractionation

Ĝ on the flow cheracteristics.

Using these scalings, and omitting the hat notation for dimensionless

variables, the scaled constitutive equations for the fluid are:


τij =

(
µ(r) + B(r)

γ̇

)
γ̇ij ⇔ τ > B(r)

γ̇ij = 0⇔ τ ≤ B(r)

(3.6)

Where γ̇ and τ are the rate of strain and stress tensors, respectively and B

is Bingham number. These are defined by:

γ̇ =

(∑ 1

2
γ̇ij γ̇ij

) 1
2

(3.7)

τ =

(∑ 1

2
τijτij

) 1
2

(3.8)

where

γ̇ij = ∇(uij + uji) (3.9)

With these, we find that this flow is characterized by five dimensionless

groups, the axial and tangential Reynolds numbers, Rez and Reθ, the Bing-

ham number , B, the ratio of the swirl and axial velocities, ω, and the ratio

of the radii of the two cylinders, κ defined as :
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Chapter 3. The fully developed problem and particle fractionation

Rez =
ρ̂ÛoR̂

µ̂(1)

Reθ =
ρ̂ω̂R̂2

µ̂(1)

B(r) =
τ̂y(r)R̂

µ̂(1)Ûo

ω =
Reθ
Rez

κ =
R̂i

R̂

where R̂i is the inner radius of the annulus.

If fully developed, the equations of motion reduce to:

1

r

duθ
dθ

+
duz
dz

= 0 (3.10)

d

dr
(r2τrθ) = 0 (3.11)

1

r

d

dr
(rτrz) = G (3.12)

with

γ̇ =
1√
2

(
γ̇2rθ + γ̇2rz

) 1
2 (3.13)

τ =
1√
2

(
τ2rθ + τ2rz

) 1
2 (3.14)
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Chapter 3. The fully developed problem and particle fractionation

γ̇rθ = r
d

dr

(uθ
r

)
(3.15)

γ̇rz =
d

dr
(uz) (3.16)

Integrating the governing equations 3.11 and 3.12 leads to:

τrθ =
C1

r2
(3.17)

τrz =
Gr

2
+
C2

r
(3.18)

To advance, we need to eliminate γ̇. To do so, we first square the stress-

strain relationship. i.e.


τ2ij =

(
µ(r) + B(r)

γ̇

)2
γ̇2ij ⇔ τ > B(r)

γ̇2ij = 0⇔ τ ≤ B(r)

(3.19)

And then summing the terms,


∑
τ2ij =

(
µ(r) + B(r)

γ̇

)2∑
γ̇2ij ⇔ τ > B(r)

∑
γ̇2ij = 0⇔ τ ≤ B(r)

(3.20)
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Or


γ̇ = τ−B(r)

µ(r) ⇔ τ > B(r)

γ̇2 = 0⇔ τ ≤ B(r)

(3.21)

Substituting equations 3.15, 3.16, 3.17 and 3.18 into equation 3.21 yields the

final system of equations:

d

dr

(uθ
r

)
=
C1

r3
1

µ(r)

(
1− B(r)

τ

)
⇔ τ > B(r) (3.22)

d

dr
(uz) =

(
Gr

2
+
C2

r

)
1

µ(r)

(
1− B(r)

τ

)
⇔ τ > B(r) (3.23)

The governing Equations are subject to the following boundary conditions

including the walls non-slip conditions:

• At interface:

r = ri

• A per unit length pressure drop across the annulus of:

Ĝ
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3.1. Method of solution

• At the inner wall:

uz(κ) = 0

uθ(κ) =
κω̂R̂

Ûo

• At the outer wall:

uz(1) = 0

uθ(1) =
ω̂R̂

Ûo

3.1 Method of solution

Here, the final system of equations together with the boundary conditions

forms a boundary value problem. The equations are integrated and solved

using Matlab built-in program bvp4c. The program bvp4c uses a colloca-

tion method that results in a system of nonlinear algebraic equations that is

solved by a variant of Newtons method. This involves many partial deriva-

tives of several kinds. To make solving BVPs as easy as possible, the program

approximates these partial derivatives with finite differences, Shampine et al.

(2005).
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3.2. Validation

3.2 Validation

We compare the present model with the work of Madani et al. (2013) for

single viscoplastic fluid in a concentric annulus of 0.8 radius ratio. Validation

is carried out for two values of Bingham number, B = 0.5 and 0.3.

Figure 3.2 shows the calculated dimensionless axial velocity profile com-

pared to Madani et al. (2013) values. The agreement is very good with the

mean percentage difference falls below 1.5%.

Figure 3.2: Dimensionless axial velocity profile comparison between present

work and the work of Madani et al. (2013).
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3.3. Stability definition

3.3 Stability definition

As highlighted earlier, a stable multi-layer viscoplastic flow is possible if the

applied shear stress at the interface is less than that of the yield stress of

one of the fluids that are sharing this interface, (Frigaard (2001); Moyers-

Gonzalez et al. (2004); Huen et al. (2007)). Having the applied shear stress

below the yield stress means that the fluid will not deform and we will have

plug flow. This plug area is needed for the fractionated particles to penetrate

through in order to be separated from other particles in the suspension.

Here the force required for the targeted particles (of certain geometry

and density) to pass the plug region is known because we know the fluid

yield stress value that we need to overcome. But in the yielded region of

the flow on the other hand the applied stress on fluid is more than the yield

stress and all particles of different densities and geometries move with the

flow.

Based on the above definition of stability, the flow will be divided to the

following sub-categories with regard to stability:

• An unstable flow where the applied shear stress on both fluids at the

interface is higher than the yield stress of each fluid. Here, both fluids

are yielded at the interface, figure 3.3-a.
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• A stable flow. In this type, the applied shear stress at one or more

of the two fluids in the interface is lower than its yield stress value.

This situation makes the flow un-yielded on at least one side of the

interface. If the flow is un-yielded in the inner fluid region, we denote

the flow as inner stable flow, figure 3.3-b and if the flow is un-yielded

on the outer fluid region, we would call it an outer stable flow, figures

3.3-c.

3.4 Results

We study the effect of the yield stress, plastic viscosity and radius ratio

numbers defined respectively as follows:

τ (r)y =
τ̂
(r)
y

τ̂
(1)
y

µ(r) =
µ̂(r)

µ̂(1)

κ =
R̂i

R̂

where R̂i is the inner radius of the annulus.

The inner and outer fluids flow rates are defined respectively as:
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3.4. Results

Figure 3.3: Multi-layer flow stability categories: (a) an unstable flow, (b)

an inner stable flow and (c) an outer stable flow. The dashed lines are for

the inner fluid velocity profiles.

Q1 =
Q̂1

Q̂o

Q2 =
Q̂2

Q̂o

Where Q̂1 and Q̂2 are the dimensional inner and outer fluids flow rates.

Q̂o is the reference flow rate defined using the annulus cross-sectional area
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3.4. Results

Series τ
(1)
y τ

(2)
y µ(1) µ(2) κ

1 (0,1,2) 0.5 0.75 0.75 0.6

2 1 (0,0.5,2) 0.75 0.75 0.6

3 1 0.5 (0.375,0.75,1.5) 0.75 0.6

4 1 0.5 0.75 (0.375,0.75,1.5) 0.6

5 1 0.5 0.75 0.75 (0.6,0.8,0.9)

Table 3.1: A summary of the runs conditions simulated for each parameter:

inner and outer fluids yield stresses, plastic viscosities and radius ratio.

Âc and the reference speed Ûo:

Q̂o = ÂcÛo

The standard case has the following parameter values:

τ (1)y = 1, τ (2)y = 0.5, µ(1) = 0.75, µ(2) = 0.75, κ = 0.6

The detailed runs conditions are shown in Table 3.1.

One representative case is shown ,i.e. series 1 as defined in the table 3.1,

in figure 3.4. This figure outlines the flow state (contour) and defines the

pressure drop and interface position at different inlet flow rate conditions.

What is clear in this image is that stable flows are achievable and the region
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of stability grows with increasing yield stress.

Similar results can be found for the other cases considered (which are

shown in Appendix A). Our findings can be summarized into a number of

qualitative “rules of thumb”

(a) Increasing yield stress increases the region of stability while increasing

the pressure drop required to maintain the desired flow rate.

(b) The size of the stability window was fairly insensitive to the viscosity

ratio or channel size.

At this point we turn our attention to attempting to use these results

to estimate if separation is possible, given a stable flow field. We represent

this methodology as a toy problem to outline the key features required to

make such an estimate. This discussion is by no-means a complete analysis.

For separation to occur in the annulus, we need to know the difference

in start criteria, as given in figure 3.5, as an example, and the settling rate

of the particle introduced on the inner radius. The settling rate and the gap

size represent the settling time in the mixing zone which must be less than

the residence time in the device, figure 3.6.

As such we built a small algorithm to study the potential combination of

operating conditions to separate two particles for a given rheology of fluids.

Formally we seek a solution for the rotational rate and flowrates to separate
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particles in a known viscoplastic fluid, subject to the interface being stable

and the settling time being smaller than the residence time. The settling

rate of particles in a viscoplastic fluid where obtained from Derksen et al.

(2011).

The test case which we will discuss is similar to what we will conduct

on the laboratory device. Here, we will attempt to determine the flowrates

to separate a 2.5 mm steel spheres from a dilute suspension of spheres with

smaller diameter.

The spheres are suspended in a fluid with a yield stress of 1 Pa and is

layered onto another fluid with a yield stress of 0.5 Pa. The first step in this

analysis is to define the critical rotation rate to cause motion. We examine

the data from Madani and define the critical rotation rate, i.e.

ωc >

√
Fc

τyD2

∆ρV R

where Fc is the critical force as determined by Madani et al. (2010a) for

different particle sizes. ∆ρ is the difference between particle and suspension

densities, V is the volume of the spherical particle, R is the distance between

the particle and axis of rotation, τy is the suspension yield stress and D is

the particle diameter.

With this we solve equations 3.22-3.23, for the given fluid, and attempt
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3.4. Results

Figure 3.4: The solution of equations 3.22-3.23 for the conditions given as

series 1 in table 3.1. The colour map defines the stability of the flow state,

as given in figure 3.3. The dashed lines represent the interface position and

the solid lines represent the pressure drop rate: (a) τ
(1)
y = 0, (b) τ

(1)
y = 1,

(c) τ
(1)
y = 2.
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3.4. Results

Figure 3.5: Fractionation curves for spherical stainless steel particles in dif-

ferent yield stress fluids. The critical rotational speeds ω are denoted by

the colored lines and the black lines for the characteristic speed Uc. Radius

ratio, κ = 0.6 , outer radius, R = 0.127 m, plastic viscosity, µ = 1.0833

Pa.s, spheres density, ρs = 7800 kg/m3 and suspension density, ρf = 1000

kg/m3.

to find the subset of cases in which the settling time is smaller than the

residence time in a stable operating window. The results are shown in

figure 3.7. The blue lines in this case represent the ratio of residence to

settling times. When this ratio is greater than unity, we consider this to be

an acceptable solution.

A number of potential flow configurations are evident (stable, unstable

and operating window). The operating window configuration is defined as

a stable flow with at least 50% of the inner fluid region being unyielded.
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3.4. Results

Figure 3.6: Settling and residence rates in the mixing zone of the device.

If the inner fluid is mostly yielded, then there will be no enough space for

the targeted particles to penetrate through to the other layer and achieve

separation. In addition, the flow will be at risk of losing its stability.

In this chapter we solve analytically the fully developed region of the flow

of interest. We validate the solution against previous single fluid viscoplastic

analytical work. We categorize the stability of the flow based on the yielding

condition of the fluids sharing the interface. We present the effect of fluids

reheology on the flow stability.

In addition, we show that the novel fractionation method can be used

effectively to fractionate particles suspensions in continuous mode. We pro-

vide some useful curves and diagrams that characterise the flow with regards

to its stability and its ability to successfully fractionate particles suspensions.

To do so, we define the fractionation operating window, we present the crit-

ical rotational speed to fractionate particles of different sizes in fluids of

variable yield stress values.
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3.4. Results

Figure 3.7: Flow stability and operating diagram. Residence to settling time

ratio in blue lines, interface locations in black dashed lines and dimensionless

pressure drop rate in solid black lines. The annulus axial length L = 50 cm,

inner fluid yield stress τ
(1)
y = 1 Pa, outer fluid yield stress τ

(2)
y = 0.5 Pa,

radius ratio, κ = 0.6 , outer radius, R = 0.127 m, plastic viscosity, µ(1) =

µ(2) = 0.75 Pa.s, spheres density, ρs = 7800 kg/m3 and suspension density,

ρf = 1000 kg/m3, ω = 37.2 rad/s and pressure drop rate of (50−500) Pa.s.

Moreover, we develop a flow and stability diagram for a specific frac-

tionation case (known inner and outer fluids rheology, annulus geometry

and targeted particles size and density). In this diagram we show the areas

of stability, instability, operating window and other useful information to

the operator.
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Chapter 4

The full annulus problem

and density current effects

In the previous chapter we examined the fully developed solution of the

problem in order to have the first base for designing the continuous device.

The second base will be solving the entrance region of the multi-layer vis-

coplastic flow inside an annulus. This intermediate stage is needed primarily

to design the mixing point of the continuous device. In addition to our treat-

ment of the yielded interface instability in the previous chapter, we extend

the discussion to the Kelvin Helmholtz and density current instabilities in

our effort to address all aspects of the flow stability.

In this chapter, we aim at obtaining a numerical solution for the full

system of Navier stokes equations of the pressure driven laminar forced

multi-layer flow problem of an annulus with rotating walls of a constant

angular velocity. The layers are of viscoplastic fluids with variable density
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4.1. Mathematical modeling

and are aligned in parallel to the annulus axis.

4.1 Mathematical modeling

We consider the fluid flow in the annular space formed between an inner

and outer cylinders of radii r̂ ∈ [κR̂, R̂], where κ is a constant defined in

the interval (0, 1), figure 4.1. In this work we define the hatted notation to

represent a dimensional quantity.

Figure 4.1: A schematic of the model geometry.

The inner and outer cylinders rotate with the same angular speed ω̂. The

flow is subjected to a constant pressure gradient Ĝ, in the axial direction.

We consider a multi-layer flow where two fluids flow with their interface

aligned parallel to the direction of flow.

We follow the same mathematical modeling as highlighted in chapter

three taking into consideration that k is limited to k = 1, 2 since we have
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only two fluids. Here, 1 denotes the inner fluid and 2 denotes the outer

fluid. Both the inner and outer fluids enter the annulus with a uniform

velocity profile. In developing our model we assume the same assumptions

as we did in the previous study with the exception of the fully developed

flow assumption.

We utilize the concentration α1 to model the change in concentration

between pure fluids 1 and 2 with α1 ∈ (0, 1). After scaling , the non-

dimensional continuity and Navier-Stokes equations are

∇.u = 0 (4.1)

(1 + φAt)Rez(u.∇) u = −∇p+∇.τ (4.2)

where u is the velocity, p the pressure and τ the deviatoric stress tensor.

Here the function φ(α1) = 1 − 2α1 has the range of φ ∈ (−1, 1) for

α1 ∈ (0, 1). The additional dimensionless parameter is the Atwood number,

At which results from the variable density nature of the model. The Atwood

number is defined as

At =
ρ1 − ρ2
ρ1 + ρ2
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4.1. Mathematical modeling

where, ρ1 and ρ2 are the densities of the heavier and lighter fluids, respec-

tively.

It is imperative at this point to define the Richardson number since we

will explore the Kelvin Helmholtz instability of the flow. The Richardson

number (Ri) is the dimensionless number that expresses the ratio of the

buoyancy term to the flow gradient term.

Ri =
buoyancy term

flow gradient term
=
g

ρ

∇ρ
(∇u)2

where g , ρ and u are acceleration of gravity, density and velocity, respec-

tively.

In the current numerical solution, all control volumes are filled with one

or more of the phases (fluids). The κth fluids volume fraction in a control

volume is called ακ and we can have ακ = 0 if the control volume is empty

of the κth fluid, ακ = 1 if the control volume is full of the κth fluid and

0 < ακ < 1 if the control volume contains an interface between the κth fluid

and other fluids. Here, in each control volume, the volume fractions of all

phases sum to unity.
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4.1. Mathematical modeling

n∑
κ=1

ακ = 1 (4.3)

Where n is the number of phases.

All properties appearing in the continuity and momentum equations are

volume fraction averaged properties. For example, the volume fraction av-

eraged density is computed as follows

ρ =
n∑
κ=1

ρ(κ)ακ (4.4)

The governing equations are subject to the following inlet, outlet and

non-slip boundary conditions:

• At the inlet (z = 0):

A uniform velocity profile is used for the z-component of the fluids

velocity

uz1 =
uo1

Ûo

uz2 =
uo2

Ûo

while the r and θ components of the velocity are assumed to be zero.

• At the outlet (z = L):

We impose zero axial gradients at the outlet (outflow condition in

fluent).
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4.1. Mathematical modeling

• At the inner wall, we impose the non-slip condition:

uz(κ) = 0

uθ(κ) =
κω̂R̂

Ûo

• At the outer wall, we impose the non-slip condition:

uz(1) = 0

uθ(1) =
ω̂R̂

Ûo

We conduct different experiments to study the hydrodynamic entrance

length. Here we include reference to the Reynolds number based on the

hydraulic diameter and average velocity, Reh, to compare the current results

with previous literature work. Reh is defined as

Reh =
ρ̂(1)V̂avD̂h

µ̂(1)

where V̂av is the flow average velocity and D̂h is the annulus hydraulic

diameter. Details of entrance length study runs conditions are shown in table

4.1. Another set of runs are conducted to study the interface behaviour,

density current instability and Kelvin Helmholtz instability. These runs

conditions are detailed in table 4.2.
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Study Reh Rez B(1)

0.10 8.1 x 101 0.000

1.00 8.1 x 102 0.000

Newtonian 10.00 8.1 x 103 0.000

72.00 5.8 x 104 0.000

100.00 8.1 x 104 0.000

200.00 1.6 x 105 0.000

0.10 5.4 x 102 0.047

Viscoplastic 1.00 1.3 x 103 0.019

10.00 8.7 x 103 0.003

Table 4.1: A summary of the runs conditions simulated for the entrance

length study. Simulations are for single fluid of Newtonian or viscoplastic

behaviour.
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Study Rez Reθ At B(1) B(2)

Interface behaviour 4.4 x 102 8.70 0.00 0.058 0.035

8.2 x 102 8.70 0.00 0.031 0.019

4 x 102 0.00 0.20 0.00 0.00

Density current instability 4.2 x 102 166.00 0.20 0.00 0.00

2 x 104 166.00 0.20 0.062 0.062

3 x 104 166.00 0.20 0.064 0.064

Kelvin Helmholtz Instability 5.2 x 103 7.25 0.05 0.000 0.000

Table 4.2: A summary of the runs conditions simulated for each study:

Interface behaviour, Density current and Kelvin Helmoholtz instabilities.
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4.2 Method of solution

For this case we have to solve the flow in the entire annulus including the

entry region. This means that we have to deal with the full form of the

governing equations, there is no analytical means to solve the governing

equations and hence they will be treated numerically.

We solve the governing equations of the conservation of mass and mo-

mentum using a finite difference technique. A numerical algorithm will be

used to solve for the three velocity components and pressure of the solu-

tion domain. The problem under consideration is an axi-symmetric steady

laminar problem; the governing equations are solved numerically using the

FLUENT software. The numerical model uses a control-volume-based tech-

nique to convert the governing equations to algebraic equations that can be

solved simultaneously.

This control volume technique is based on discretizing the domain into

discrete control volumes using a computational grid. Then integrating the

governing equations about each control volume, yielding discrete equations

that conserve each quantity on a control-volume basis. After that the dis-

cretized equations are linearized. The resultant linear equation system is

solved to yield updated values of the dependent variables.

The differencing schemes used are both formally second-order in ac-
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curacy: central differencing is used for the diffusive terms and a second-

order up-winding scheme for the convective terms. Coupling of the pressure

and velocity was achieved using the well-known semi-implicit method for

pressure-linked equations (SIMPLE) implementation of Patankar (1980).

4.3 Grid independence test

To achieve grid independence, the solution was computed for different grid

sizes to assess the effects of mesh refinement. The grid sizes used were

100x266, 150x400 and 225x600 referred to as Grid-1, Grid-2, and Grid-

3 respectively. Figure 4.2 shows the volume fraction distribution inside the

annulus and the parameter used to check the grid independency. The param-

eter is the fully developed axial velocity. Percentage difference between all

grids falls below 1%. Consequently, it was concluded that Grid-1 (100x266)

is satisfactory and gives an accurate solution.

4.4 Validation

To check the adequacy of the present numerical solution, we compared the

fully developed axial velocity profile of the numerical solution with the cor-
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Figure 4.2: Full annulus model grid independence for Rez=437.17,

Reθ=8.7, At=0, B(1)=0.058 and B(2)=0.035 : (a) volume fraction distribu-

tion: the red and blue colors denote the inner and outer fluids, respectively.

(b) grid independence.

responding analytical solution as seen in figure 4.3. Here, the annulus has a

radius ratio of 0.8. The inner fluid enters the annulus in the lower quarter

of its gap.

Two cases (case1 and case2) were conducted to validate the numerical

code. For case 1, figure 4.3-c, the average percentage difference between the

numerical solution and the analytical solution lies within 2.8% difference

indicating good agreement.

For the other case or case 2, we increase the two streams flow rates to

test the code at different interface location. The comparison between the
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4.4. Validation

Figure 4.3: Full annulus model validation with analytical solution: (a)

volume fraction distribution for case 1, (b) volume fraction distribution for

case 2, (c) validation (case 1: Rez=437.17, Reθ=8.7, At=0, B(1)=0.058 and

B(2)=0.035) and (d) validation (case 2: for Rez=820.57, Reθ=8.7, At=0,

B(1)=0.031 and B(2)=0.019). The red and blue colors denote the inner and

outer fluids, respectively.
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fully developed axial velocity profile of the numerical solution with the cor-

responding analytical solution for this case is shown in figure 4.3-d. The

average percentage difference between the numerical solution and the ana-

lytical solution lies within 3% difference that reflects again a good agreement

between the solutions.

4.5 Results

In this subsection we estimate the entrance length for the flow under con-

sideration, track the interface location, look at the axial velocity profile

development, explore the Kelvin Helmholtz instability related to the flow

and present the results resulting from including the difference of density

between layers.

4.5.1 Entrance length

Entrance length (Le) for internal flow is the distance from inlet where the

flow no longer changes with axial direction and is said to be fully developed.

Downstream of entrance length, the velocity profile and wall shear are both

constant, and the pressure drops linearly with axial direction, White (2003).

We set a criterion to calculate the entrance length as: the location at

which the axial flow velocity reaches 98% of its fully developed value, figure
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4.4-c. The volume fraction distribution and axial velocity contours for the

same case are presented in parts a and b of figure 4.4, respectively.

We predict the entrance length of the Newtonian case for the creeping

and laminar flow regimes with Reynolds number in the range of Reh ∈

(0.1 − 200) and predict the entrance length of the viscoplastic case for the

creeping and laminar flow regimes with the value of Reynolds number in the

range of Reh ∈ (0.1− 10).

Our study results are represented together with previous results of the

literature (Poole and Chhabra (2010) for pipe flow, McComas (1967) and

Maia and Gasparetto (2003) for annular flow) in figure 4.4-d. A considerable

amount of information can be gained from this figure. Firstly, the annular

entrance length values are always considerably below the pipe values for the

same Reynolds number. There are noticeable differences between the values

reported in the literature for the same cases (same radius ratio and Reynolds

number) for the entrance length in the laminar regime. The Newtonian

fluid entrance length (Le/Dh) approaches to a unique value as the Reynolds

number goes to zero, the value is 0.28 in the case of radius ratio of 0.8.

Visco-plastic fluids were found to have shorter entrance length for the same

Reynolds number compared to Newtonian fluids in annuli.
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4.5. Results

Figure 4.4: Entrance length. a) Volume fraction distribution: the red and

blue colors denote the inner and outer fluids, respectively. b) axial velocity

contours with enlarged views of velocity vectors near the wall and in mid-

gap, c) Centerline velocity normalized with analytical fully developed value

versus axial location, d) Entrance length for Newtonian and viscoplastic

fluids in an annulus of radius ratio of 0.8.
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4.5.2 Tracking the interface location

Tracking the interface location is an important task especially when it comes

to fractionation efficiency. Figure 4.4-a shows the fluids volume fraction dis-

tribution in the flow, the sharp interface can be easily distinguished in the

fully developed region compared to entry region. This may be attributed to

the presence of transverse pressure in the inlet region. The fully developed

location of the interface was at a radial location of 0.95. We have an ex-

cellent agreement between the numerical and the analytical values with the

percentage difference falls below 1%.

4.5.3 Axial velocity profile development

Figure 4.5 shows the development of axial velocity profiles. The profiles at

the inlets are flats (uniform velocity) for both the inner and outer fluids. It

is clear that the flow is mostly yielded in the entrance region (z=0.05). This

fact may be attributed to two factors. Firstly, while boundary layer approx-

imation assumes constant lateral pressure (along each cross-section) in the

fully developed region of the flow, the actual flow has a strong transverse

pressure especially at inlets.

Only full elliptic equations can predict accurately the flow field charac-

teristics in the entrance region (differences between parabolic and elliptic
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differential equations are detailed in Appendix C). This behaviour was re-

ported by Vradis et al. (1993) who reported a yielded axial velocity profile in

the entrance region of a viscoplastic flow with a uniform inlet velocity profile.

The numerical code used in this study (Ansys Fluent) has the capability to

solve the full elliptic equations.

The second reason in our opinion for the flow to be yielded is something

related to multi-layer viscoplastic flow nature, here, the inner and outer

fluids compete in the entrance region exerting an additional pressure on

each other through the interface. Initially, the inner fluid fills only 1/5 of the

annular volume and is restricted by the inner wall. The only way to satisfy

the non-slip condition at the inner wall is to expand toward the outer wall

exerting more pressure on the outer fluid through the interface and leaving

less space for the outer fluid to occupy. Consequently, this condition leads

to more yielding in the outer fluid velocity profile.

4.5.4 Kelvin Helmholtz instability

When we consider parallel multi-layer flow with different layers velocities, it

is important to check the Kelvin Helmholtz instability. The Kelvin Helmholtz

instability occurs when there is a difference in velocity across the interface

between two fluids of different densities. To check this instability, we set the
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Figure 4.5: Axial velocity profile development: a) Axial velocity profiles at

inlets, entrance region and fully developed region. b) Axial velocity contours,

Rez=437.17, Reθ=8.7, At=0, B(1)=0.058 and B(2)=0.035.
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Richardson number to 0.08 which is way below the critical number according

to Richardson Number Criterion.

The criterion states that the inequality Ri < 1/4 is a necessary condi-

tion for linear instability of inviscid stratified parallel flows. However, the

criterion does not state that the flow is necessarily unstable if Ri < 1/4

somewhere, or even everywhere, in the flow.

Another requirement for this instability are Rayleighs inflection point

and Fjortofts stronger condition criteria. They states that a necessary (but

not sufficient) criterion for instability of an inviscid parallel flow is that the

basic velocity profile has a point of inflection and the flow should satisfy the

condition of (urr(u − ui) < 0) for all values of r, where urr is the second

derivative of velocity and ui is the velocity at the inflection points.

Please refer to figure 4.6 that shows the velocity profile at the inlet and

immediately after the contact of the two fluids. Here due to the non-slip

condition at the walls, mass continuity and the continuous nature of the

velocity profile at the interface, the multi-layer velocity profile behaves as

follow:

The slower stream (inner fluid) velocity profile adjusts instantaneously

so that the minimum is zero at the wall and the maximum is at the in-

terface. The faster stream (outer fluid) starts from zero value at the wall
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and increases to a maximum value (above the inlet velocity) somewhere be-

tween the wall and the interface and then decreases to a lower value at the

interface. So essentially a zero velocity slope happens only once in the flow.

Although the velocity profile has two inflection points at around r=

0.85 and again around r = 0.9, the flow does not satisfy Fjortofts stronger

critierion since (urr(u − ui) > 0). It is worth mentioning that the Kelvin

Helmholtz instability is based on the inviscid flow where bounding walls are

not in the picture. We can conclude that the presence of walls stabilizes the

flow.

Figure 4.6: Axial velocity profiles, Rez=5248, Reθ=7.25, At=0.05,

B(1)=B(2)=0 and Ri=0.08.
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In the following section we include the density difference effect on the

flow as this is the general case for the real (industrial) fluids densities.

4.5.5 Density difference effects

The previous results for both analytical and numerical solutions were pro-

duced based on the assumption of an iso-dense flow (which is most common)

but there are some cases where the flow contains fluids of different densities.

To address this, we set the Atwood number (At) to 0.2 to have the inner

fluid as the heavier one (density unstable) or having the outer fluid as the

heavier fluid (density stable). This value of Atwood number covers all ranges

of Atwood number for the practical (industrial) combination of liquids.

We study the effect of rotational Reynolds number Reθ and Bingham

number, B to see the effect of the yield stress on rotating flow stability. In

single fluid viscoplastic poisuielle flow in pipes and annuli, raising the yield

stress has a stabilizing effect on the flow by elevating the critical Reynolds

number, Rec where the laminar flow starts to change to the turbulent regime,

Hanks and Dadia (1971).

Figure 4.7 shows that Bingham number has a stabilizing effect on rotat-

ing flow. Here we do not have any mixing in the Newtonian case (B(1) =

B(2) = 0) for the flow without rotation (Reθ = 0) as shown in figure 4.7-a.
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When introducing the rotation (Reθ = 166) as shown in figure 4.7-b, and

due to the unstable density situation (heavier inner fluid), the Newtonian

case started to have some mixing. However, increasing Bingham numbers

to (B(1) = B(2) = 0062) seems to prevent the mixing and the flow tends

to be more stable, figure 4.7-c. Increasing further the Bingham numbers to

(B(1) = B(2) = 0064) as shown in figure 4.7-d leads to a fully stable flow

without any mixing.

For the density stable cases (with light inner fluid and heavy outer fluid)

or for iso-dense cases (both fluids have the same density), the simulations

showed that the flows are always stable.

In this chapter, we solve the spiral multi-layer viscoplastic flow inside

a full annulus including the entrance region. We report the hydrodynamic

entrance length for the flow in the lower range of laminar regime and the

creeping regime for both Newtonian and viscoplastic fluids. We found that

the entrance length of the viscoplastic flow is always smaller than the cor-

responding Newtonian flow for the same range of Reynolds number.

The Kelvin Helmholtz instability was not evident due to the presence

of the walls of this bounded flow. The flow was always found to be stable

for density stable or iso-dense cases. On the other hand, density unstable

cases destabilize the flow but the flow can be stabilized by increasing the
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Figure 4.7: Density difference effect: Volume fraction distribution for At

= 0.2 at: a) Rez = 403.26, Reθ = 0 and B(1) = B(2) = 0, b) Rez = 424.60,

Reθ = 166 and B(1) = B(2) = 0, c) Rez = 20467.47, Reθ = 166 and B(1) =

B(2) = 0.062, d) Rez = 30006.11, Reθ = 166 and B(1) = B(2) = 0.064. The

red and blue colors denote the heavy and light fluids, respectively.

Bingham number (or increasing the yield stress).
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Chapter 5

The continuous fractionation

device and fractionation

efficiency

Now with all information we conclude from the studies in the previous chap-

ters, i.e., the fully developed flow solution study, the full annulus solution

including the entrance region and the continuous fractionation study, we are

able to design the full continuous fractionation device. We solve the flow

inside the device and see the implications of the physical constraints of the

device parts on the device operating parameters.

Our aim is to obtain a numerical solution for the full system of Navier

stokes equations of the pressure driven laminar multi-layer viscoplastic fluid

flow problem inside the continuous fractionation device. The walls of the

device are rotating walls at a constant angular velocity.
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5.1 Mathematical modeling and method of

solution

We consider the fluid flow inside the continuous fractionation device geome-

try, figure 5.1. The dimensions were chosen based on the constraints resulted

from the consideration of the intended range of operation (fluids flow rates

and yield stresses values) and the available commercial pipe sizes.

Figure 5.1: A schematic of the continuous fractionation device model ge-

ometry.

We follow the same approach that we use for the full annulus study

(chapter 4) with the same assumptions and dimensionless groups. We fol-

low also the same method of solution to solve numerically the flow under

consideration. Same boundary conditions are defined with the exception of

the outlet and walls boundary conditions that are defined as follow:

• At the outlet (z = 0.3952m):
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We impose zero axial gradients at the (outflow condition in fluent).

• At the walls:

We impose the non-slip condition

uz = 0

uθ = ω̂r̂

We conduct several experiments to study the behaviour of the flow at

different zones of the device. Our main parameter is the fluid flowrate ratios

(Q1/Q2) that control the layers interface location, ri. The interface location

is a crucial factor that determines the efficiency of the fractionation as we

show shortly in the discussion of the results section. Details of the runs

conditions are shown in table 5.1.

5.2 Grid independence test

To achieve grid independence, the solution was computed for different grid

sizes to assess the effects of mesh refinement. The grid sizes used were

55,000 cells, 105,000 cells and 155,000 cells referred to as Grid-1, Grid-2,

and Grid-3 respectively. Figures 5.2 shows the parameter used to check

the grid independency. The parameter is the fully developed axial velocity.

Percentage difference between all grids falls below 1%. Consequently, it is
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Q1/Q2 ri

2.98 0.84

1.22 0.75

0.96 0.72

0.75 0.69

0.60 0.66

Table 5.1: A summary of the simulation runs conditions at: Rez = 149.3,

Reθ = 7.88, B(1) = 0.155 and B(2) = 0.093.

concluded that Grid-1 (105,000 cells) is satisfactory and gives an accurate

solution.

5.3 Validation

To check the adequacy of the present computer code, we compared the fully

developed axial velocity profile of the numerical solution with the corre-

sponding analytical solution as seen in figure 5.3. The average percentage

difference between the numerical solution and the analytical solution lies

within 2 percent difference reflecting a good agreement.
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5.4. Results

Figure 5.2: Fractionation device model grid independence for Rez = 149.3,

Reθ = 7.88, B(1) = 0.155 and B(2) = 0.093 : (a) volume fraction distribution

and (b) grid independence.

5.4 Results

In this section we track the development of the axial velocity profiles in

different regions of the fractionation device and estimate the entrance length

of the mixing region, we investigate the behaviour of the flow mainly the

interface in the exit region of the device and predict the implications of this

behaviour on the streams flowrates design and the size of the fractionation

operating window.
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Figure 5.3: Fractionation device model validation with analytical solution

at Rez = 149.3, Reθ = 7.88, B(1) = 0.155 and B(2) = 0.093. (a) volume

fraction distribution. (b) validation.

5.4.1 Axial velocity profile development and entrance

length

Tracking the axial velocity profiles development is important to make sure

that the flow reaches the fully developed condition early in the mixing zone

in order to allow sufficient space for fractionation to take place. The mixing

zone is the space where the two fluids meet between the inlet separator and
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the outlet separator. Figure 5.4 shows the development of axial velocity pro-

files at different locations before, inside and after the mixing zone. Although

the velocity profiles at the inlets are flat (uniform velocity), they develop

downstream and adapt to fulfill the non-slip condition at walls (zero axial

velocity at walls).

The velocity profiles reach the fully developed condition before and inside

the mixing zone in this case, however, in the exit region (after mixing zone)

and specifically the inner fluid stream outlet, the velocity profile do not reach

the fully developed condition because the axial distance was not sufficient

to cover the entrance length for that outlet.

The entrance length (Le/Dh) was estimated to be in the order of 0.32.

The value for the corresponding entrance length for a single viscoplastic fluid

with the same value of Reynolds number was found to be 0.20 as reported

in the previous chapter. This discrepancy is likely to be attributed to the

fact that the current simulation is for the flow of two viscoplastic fluids flow.

In either case the entrance length is way below the corresponding en-

trance length of a viscoplastic pipe flow for the same range of Reynolds

number. It is preferable to have a short entrance length as what we have

in this case. This is because the time scale for the particles residence time

in the entry region is small and the fractionation occurs solely in the fully
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developed region of the mixing zone.

Figure 5.4: Axial velocity profile development: (a) Volume fraction dis-

tribution, (b) axial velocity profile development (before, inside and after

mixing zone). Simulated at Rez = 149.3, Reθ = 7.88, B(1) = 0.155 and

B(2) = 0.093.

5.4.2 Outlet separator effects on interface

The presence of the outlet separator has an important effect on the flow

characteristics especially the interface location as shown in figure 5.5. In

the current simulation, the fluid interface in the fully developed region of
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the mixing zone is located at a radial distance slightly higher than the radial

distance of the outlet separator centerline. This situation makes the interface

move out towards the outer wall since the flow has to satisfy the no-slip

condition at the separator wall. Here, the interface tends to favor the areas

of low shear stress in somewhere around the middle of the outer fluid outlet

gap compared to the areas of high shear stress near the separator walls.

Figure 5.5: Fractionation device volume fraction distribution showing the

effect of outlet separator on interface location, Rez = 149.3, Reθ = 7.88,

B(1) = 0.155 and B(2) = 0.093.

This phenomenon may lead to poor fractionation as some of the non-

targeted particles may leave with the targeted (fractionated) particles through

the outer fluid outlet. The flow needs to be designed (choosing the two

streams flowrates) in a way that ensures that the interface of the fully devel-

oped region of the mixing zone is located radially below the outlet separator.

This selection of flowrates leads to a successful fractionation by making sure

that only targeted particles penetrate to the outer stream before they reach
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axially the outlet separator.

5.4.3 Flow rates design

Additional simulations were carried out to investigate the behaviour of the

flow at the exit region. Figure 5.6 shows the position of the interface for

four different cases (simulations) as a result of the presence of the outlet

separator. The separator physical location is bounded between the radial

locations of (0.74 - 0.81). In the first two simulations when the values of

the mixing zone fully developed interface were 0.84 and 0.75, the interface

diverged to the outer fluid outlet (a situation that potentially hinders the

fractionation efficiency).

Figure 5.6: Interface behaviour at the exit region, Rez = 149.3, Reθ = 7.88,

B(1) = 0.155 and B(2) = 0.093 at: (a) ri = 0.84, Q1/Q2 = 2.98, (b)

ri = 0.75, Q1/Q2 = 1.22, (c) ri = 0.72, Q1/Q2 = 0.96 and (d) ri = 0.69,

Q1/Q2 = 0.75.
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When we designed the flowrates to have the fully developed interface

be located at 0.72, we noticed that the interface diverged to the inner fluid

outlet (a favorable location in terms of fractionation efficiency) in close prox-

imity to the separator. An interface of 0.69 would continue and exit freely

the device through the inner fluid outlet.

We conclude that for this type of fractionation requirement and flu-

ids rheology, the fluids flowrates need to be designed to have the maxi-

mum bound of the mixing zone interface to be 0.72 which corresponds to a

flowrates ratio (Q1/Q2) of 0.96.

5.4.4 Exit region effects on fractionation diagram

To assess the device fractionation effectiveness especially with the distur-

bance in the exit region caused by the outlet separator, we demonstrate a

specific fractionation case. We use the fractionation code that was devel-

oped and presented in chapter three to generate the required fractionation

diagram.

In order to construct a fractionation diagram, we need to solve the flow

in thousands of cases (a flow case has a unique combination of streams

flowrates) in fluids of known properties. The analytical solution of chapter

three is a feasible way to accomplish this task.
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On the other hand, the numerical solutions as presented in chapters four

and five would require several days to solve only one flow case. I generate

a fractionation diagram for the case of fractionating a 2.5 mm sphere in a

viscoplastic fluid suspension. The properties of the fractionation case are

detailed in table 5.2. As shown in the fractionation diagram, figure 5.8,

the operating window occupies a noticeable area of the diagram giving the

operator flexibility with a wide range of flowrates to operate the device.

The time ratio in figure 5.8 is defined as the ratio between the residence and

the settling times. The settling rate is the rate at which the particle travels

radially across the gap, figure 5.7. This rate and the gap size represent the

settling time in the chamber. The residence time on the other hand is the

time spent as the particle travels axially through the mixing zone of the

device. For fractionation to take place, the time ration has to be greater

than unity.

When we include the effect of the outlet separator presence in the exit

region, figure 5.9, the operating window is affected drastically and its cover-

age area shrunk considerably limiting the range of operation of the device.

A relief of the operating window criterion from 50% (which is conservative in

our opinion) to 40 or 30% would result in expanding the operating window.

90



5.4. Results

Property Value Unit

Particles diameter 2.5 mm

Particles density 7800 kg/m3

Suspension density 1000 kg/m3

Annulus radius ratio 0.368 dimensionless

Annulus outer radius 0.0476 m

Inner and outer fluids plastic viscosity 1.083 Pa.s

Inner fluid yield stress 10 Pa

Outer fluid yield stress 6 Pa

Pressure drop/unit length range 750 to 5000 Pa/m

Rotation speed 40.22 rad/s

Table 5.2: fractionation case properties.

91



5.4. Results

Figure 5.7: Settling and residence rates in the mixing zone of the device.

This measure could be used if the operator elects to increase the range of

operation. The fractionation diagram will look like figures 5.10 and 5.11 if

the operating window criterion is reduced to 40% and 30%, respectively.

In this chapter we design the continuous fractionation device based on

the information we have from the fully developed, full annulus and contin-

uous fractionation model studies. We validate the current code with the

analytical solution. We track the velocity profile development to make sure

that the flow reaches the fully developed condition early in the mixing zone

to allow sufficient space for fractionation to take place. We study the exit re-

gion of the device and suggest certain guidelines to address the hurtful effect

of the outlet separator on the layers interface and fractionation efficiency.
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Figure 5.8: Fractionation diagram for the case detailed in table 5.2. Time

ratios in blue lines, interface locations in black dashed lines and dimension-

less pressure drop rate in solid black lines.

Figure 5.9: Fractionation diagram after including the effect of outlet sepa-

rator. Case properties are per table 5.2. Time ratios in blue lines, interface

locations in black dashed lines and dimensionless pressure drop rate in solid

black lines.
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Figure 5.10: Fractionation diagram for an operating window criterion of

40%. Case properties are per table 5.2. Time ratios in blue lines, interface

locations in black dashed lines and dimensionless pressure drop rate in solid

black lines.

Figure 5.11: Fractionation diagram for an operating window criterion of

30%. Case properties are per table 5.2. Time ratios in blue lines, interface

locations in black dashed lines and dimensionless pressure drop rate in solid

black lines.
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Chapter 6

Summary and conclusions

In this work we studied the application of the novel technology of particle

suspension fractionation that was proposed by Madani et al. (2010b) on the

continuous operation process. The flow that is suggested to be employed

in facilitating this new fractionation methodology is the spiral multi-layer

poisuille annular flow. Here we presented several studies of the flow in

different circumstances/states namely: fully developed region, annular entry

region and full fractionation device. We focused on the stability of the flow

in conjunction with the fractionation requirement.

We found that spiral multi-layer Poisuille viscoplastic flow can be stable

for both annulus and continuous fractionation geometries. The range of sta-

bility expands with increasing fluids yield stress as the yield stress supresses

the yielded interfacial instability.

Gravity current instability was found to be evident in density unstable

cases due to the centrifugal forces resulting from rotation and mixing can
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happen in these cases. However, the flow can be stabilized by increasing the

fluids yield stress (Bingham number). In the other hand, density current is

not a factor in density stable and iso-dense cases.

Kelvin Helmholtz instability was not found on conditions tested. The

presence of the walls in this internal flow has a stabilizing effect and prevents

the onset of Kelvin Helmholtz instability.

All annular flows entrance lengths were found to be shorter than the

corresponding ones of pipe flows for the same values of Reynolds number.

We reported the hydrodynamic entrance length for the creeping and low

range laminar flow regimes for annuli of both Newtonian and viscoplastic

fluids. The entrance length of the viscoplastic flow was found to be shorter

than the equivalent Newtonian flow for the same range of Reynolds number.

The disturbance to the flow at the exit region of the continuous frac-

tionation device hinders the fractionation process due to the presence of

the outlet separator. This situation adds more restriction to the fractiona-

tion operating window. In this regards, carful design of streams flowrates is

crucial to providing a successful fractionation process.
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Appendix A

Fluid rheology and stability

The following figures A.1, A.2, A.3 and A.4 show the effect of the outer fluid

yield stress, inner and outer fluids plastic viscosity and radius ratio on the

flow stability.

In addition, we present figure A.5 in which we specify the maximum flow

rate Q that may be reached while maintaining a successful separation or in

other words, having the residence to settling time ratio of unity.
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Appendix A. Fluid rheology and stability

Figure A.1: The solution of equations 3.22-3.23 for the conditions given as

series 2 in table 3.1. The colour map defines the stability of the flow state,

as given in figure 3.3. The dashed line represents the interface position and

the solid line represents the pressure drop rate: (a) τ
(2)
y = 0, (b) τ

(2)
y = 0.5,

(c) τ
(2)
y = 2.
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Appendix A. Fluid rheology and stability

Figure A.2: The solution of equations 3.22-3.23 for the conditions given as

series 3 in table 3.1. The colour map defines the stability of the flow state, as

given in figure 3.3. The dashed line represents the interface position and the

solid line represents the pressure drop rate: (a) µ(1) = 0.375, (b) µ(1) = 0.75,

(c) µ(1) = 1.5.

113



Appendix A. Fluid rheology and stability

Figure A.3: The solution of equations 3.22-3.23 for the conditions given as

series 4 in table 3.1. The colour map defines the stability of the flow state, as

given in figure 3.3. The dashed line represents the interface position and the

solid line represents the pressure drop rate: (a) µ(2) = 0.375, (b) µ(2) = 0.75,

(c) µ(2) = 1.5.
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Appendix A. Fluid rheology and stability

Figure A.4: The solution of equations 3.22-3.23 for the conditions given as

series 5 in table 3.1. The colour map defines the stability of the flow state,

as given in figure 3.3. The dashed line represents the interface position and

the solid line represents the pressure drop rate: (a) κ = 0.6, (b) κ = 0.8, (c)

κ = 0.9.
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Appendix A. Fluid rheology and stability

Figure A.5: Maximum allowable flow rates Q in (l/s) for different stainless

steel spherical particles in a fluid having a yield stress τy = 1 Pa. The

annulus axial length L = 50 cm, radius ratio, κ = 0.6 , outer radius, R =

0.127 m, plastic viscosity, µ = 1.0833 Pa.s, spheres density, ρs = 7800

kg/m3 and suspension density, ρf = 1000 kg/m3: a) fractionation curve, b)

maximum allowable flow rates.
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Appendix B

Fractionation computer

program operation

In order to find the operating curves for a specific case i.e. (specific fluids

rheology and geometries and properties of targeted fractionated particles),

we need to follow some steps to define these properties and parameters and

feed them to the program we developed in this concern:

Inputs:

• Set the annulus geometry parameters, radius ratio, κ (dimensionless)

and outer radius, R̂ (m).

• Set the rotational speed, ω̂ (rad/s) required to fractionate specific

particles that have their specific size, D̂ (m) and density, ρ̂s .

• Set the fluids physical and rheological properties, inner fluid yield

stress and plastic viscosity, τ̂y1 (pa) , µ̂(1) (Pa.s), outer fluid yield
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Appendix B. Fractionation computer program operation

stress and plastic viscosity, τ̂y2 (pa) , µ̂(2) (Pa.s) and fluids density ρ̂f .

• Set up ranges for independent variables, interface radius, ri (dimen-

sionless) and pressure drop, Ĝ (Pa/m).

• Run the program.

Outputs:

• Velocities profiles (axial and circumferential for both inner and outer

fluids).

• Flow rates.

• Stability conditions.

• The operating window.
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Appendix C

Parabolic equations versus

elliptic partial differential

equations

The following general second order partial differential equation can be classi-

fied as an elliptic or a parabolic partial differential equation based on the pa-

rameter (b2−4ac). The partial differential equation is classified as parabolic

if (b2 − 4ac) is zero and classified as elliptic if (b2 − 4ac) is negative.

auxx + buxr + curr + dux + eur + fu = g

Where (uxx, uxr and urr) are second order partial derivatives and (ux and

ur) are first order partial derivatives. (a, b, c, d, e, f and g) are constants or

functions of independent variables (x and r).

The governing equations of the present study are elliptic partial differ-
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Appendix C. Parabolic equations versus elliptic partial differential equations

ential equations because both second order partial derivatives (urr and uxx)

do exist. Elliptic partial differential equations govern the equilibrium prob-

lems in which the solution of the partial differential equations is desired in

a closed domain subject to a prescribed set of boundary conditions. In this

case, the solution of the partial differential equations at every point in the

domain depends upon the prescribed boundary condition at every point on

the boundaries.

Researchers mostly simplify the Navier stockes equations using the bound-

ary layer approximation. They neglect the second order partial derivative

(uxx) and the only second order partial derivative left in the equations was

(urr). This led to changing the elliptic nature of the partial differential

equation to a parabolic nature.

Parabolic partial differential equations govern the marching or propa-

gation problems where the solution of the partial differential equations is

required on an open domain subject to a set of initial conditions and a set

of boundary conditions. The solution must be computed by marching out-

ward from the initial data surface while satisfying the boundary conditions.
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