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Abstract

The widespread applications of wireless services and dense devices access have trig-

gered huge energy consumption. Due to the environmental and financial considerations,

energy-efficient design in wireless networks has become an inevitable trend. Since the

macrocell cannot satisfy the increasing data requirements of users, heterogeneous small

cell network is one of the promising techniques to provide wireless service. However,

backhaul is the bottle neck in the deployment of heterogeneous small cell networks. To

address the challenges of backhaul design and energy efficiency, we study the energy-

efficient power allocation and wireless backhaul bandwidth allocation in orthogonal fre-

quency division multiple access heterogeneous small cell networks. Different from the

existing resource allocation schemes that maximize the throughput, the studied scheme

maximizes energy efficiency by allocating both transmit power of each small cell base

station to each user and unified bandwidth for backhauling, according to the channel

state information and the circuit power consumption. The problem is formulated as a

non-convex nonlinear programming problem and then it is decomposed into two con-

vex subproblems. A near optimal iterative resource allocation algorithm is designed to

solve the resource allocation problem. A suboptimal low-complexity approach is also

developed by exploring the inherent structure and property of the energy-efficient de-

sign. Simulation results demonstrate the effectiveness of the proposed algorithms when

compared with the existing schemes.
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Chapter 1

Introduction

1.1 Background and Motivation

The demand for information access promotes the development of communication

technology, and mobile communication technology enables users to get rid of the con-

straints of wire communications. Therefore, wireless communication is playing an im-

portant role in people’s everyday lives. Since Guglielmo Marconi’s research team suc-

cessively demonstrated the first radio transmission from the Isle of Wight to a tugboat

18 miles away in 1895 [2], the era of wireless communication had begun. The earliest

mobile communication system can be traced back to 1920s. In 1928, students from

Purdue University invented the super heterodyne radio receiver working at 2 MHz, and

Detroit police quickly installed that mobile receiver in police patrol cars for managing

traffic [3], which was the beginning of modern cellular mobile communication network.

A cellular network or mobile network is a kind of communication network where the last

link is wireless. A cellular network consists of cells and each cell is served by at least one

fixed location transceiver which is known as a base station (BS). The BS serves the users

for transmission of voice, data and others. The first generation (1G) mobile telecom-

munication technology for commercial use was invented in 1980s and three main analog

communication standards were introduced in those years. One standard is Nordic mobile

telephone (NMT), which was used in Nordic countries, Switzerland, the Netherlands,

Eastern Europe and Russia. Another two standards are the advanced mobile phone

system (AMPS) used in North America and Australia [4], and the total access commu-
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1.1. Background and Motivation

nications system (TACS) used in the United Kingdom. In 1991, the second generation

(2G) cellular telecommunication networks were commercially launched on the global

system for mobile communications (GSM) standard in Finland by Radiolinja [5]. While

radio signals on 1G networks are analog, radio signals on 2G networks are digital. Three

primary benefits of 2G networks over their predecessors are that phone conversations

were digitally encrypted; 2G systems significantly improved spectrum efficiency, which

means more mobile users were allowed in 2G systems; and 2G introduced data services

for mobile, such as short massage service (SMS). In order to satisfy the growing demand

for data service, several telecommunications companies introduced wireless mobile Inter-

net services in the third generation (3G) based on code division multiple access (CDMA)

technique [6]. There were three main standards proposed for 3G including wideband

code division multiple access (WCDMA), CDMA2000 and time division-synchronous

code division multiple access (TD-SCDMA) to improve system capacity and data rate

[7]. Due to the development of digital signal processing, integrated circuit technolo-

gy and other new technologies, mobile communication technology has made a rapid

progress. In 2011, the fourth generation (4G) of mobile telecommunications technology

was proposed. As opposed to earlier generations, all 4G candidate systems replaced

spread spectrum radio technology used in 3G systems by orthogonal frequency division

multiple access (OFDMA) multi-carrier transmission, making it possible to transmit

high bit rates despite extensive multi-path radio propagation. The peak data rate can

be further improved by smart antenna arrays for multiple-input multiple-output (MI-

MO) communications. For 4G systems, the 3rd Generation Partnership Project (3GPP)

proposed Long Term Evolution-Advanced (LTE-Advanced) [8] system and Worldwide

Interoperability for Microwave Access (WiMAX) Forum proposed WiMAX-Advanced

technology [9].

Wireless communication networks have experienced tremendous growth in the past

few decades, wireless service have migrated from the conventional voice-centric services

2



1.2. Literature Review

to data-centric services. It is obvious that one main target for modern wireless commu-

nication is to provide higher capacity wireless links for end-users. Since it is well known

that the achievable data rate is limited by transmit power and transmission bandwidth,

one straightforward way to meet the quality-of-service (QoS) demands of end-users is

to increase the transmit power and bandwidth. However, transmission bandwidth and

power are valuable and scarce resources in wireless mobile communication systems, and

one could never use those resources as much as he desires. To overcome such con-

tradiction, researchers have proposed techniques such as power allocation, subchannel

allocation and the heterogeneous network. Heterogeneous small cell network is a typical

multi-tier transmission scheme which can increase the mobile system capacity. OFDMA

can use the bandwidth more efficiently than those previous transmission schemes such as

CDMA and frequency division multiple access (FDMA) [10]. Therefore, heterogeneous

small cell network with OFDMA has been adopted by modern mobile communication

networks.

There are several key challenging problems associated with heterogeneous small cell

network systems: energy efficiency, power allocation, user association, bandwidth al-

location and backhauling. In this thesis, we will focus on the energy-efficient power

allocation and backhaul bandwidth allocation problem in heterogeneous small cell net-

works and study the optimization techniques for resource allocation in heterogeneous

small cell network with OFDMA.

1.2 Literature Review

With the explosive growth of wireless communications, it is shown that higher ca-

pacity wireless links are expected to meet the increasing QoS demands of multimedia

applications. These high data rate links also result in increasing device power consump-

tion. The next generation communication systems need to provide higher data rate

with limited power and bandwidth due to the rapidly increasing demands for multime-
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dia services and resource scarcity. Designing energy-efficient wireless communication

system becomes an emerging trend because of rapidly increasing system energy costs

and rising requirements of communication capacity [11–13]. According to [14] and [15],

the radio access part is a major energy consumer in conventional wireless cellular net-

works, which accounts for up to more than 70 percent of the total energy consumption.

It is reported that the total energy consumed by the infrastructure of cellular wireless

networks, wired communication networks, and Internet takes up more than 3 percent

of the worldwide electric energy consumption and the portion is expected to increase

rapidly in the future [16]. Therefore, increasing the energy efficiency of typical wireless

networks is important to overcome the challenges raised by the rising demands of energy

consumption. In recent years, energy-efficient system design has been received much

attention in academia. In [17], the impact of cell sizes on energy efficiency in cellular

networks was studied. Several cross-layer approaches were also developed to obtain

more gain over the independent layer design for energy efficiency [18].

With the exponential growth of mobile service requirements, macrocell network

cannot satisfy all users’ requirement for data service. In order to solve this problem,

heterogeneous small cell network has been proposed to provide higher system capacity

and data rates, and improve the system coverage with low infrastructure cost [19–

21]. Many important problems related to heterogeneous small cell networks such as

interference mitigation, resource allocation, and QoS provisioning were addressed to

reap the potential gains [22–24].

Resource allocation, such as power allocation and bandwidth allocation, has been

widely used to maximize the energy efficiency under power limit and QoS requirements

in heterogeneous small cell networks. Power allocation for energy efficiency has been

widely studied in the literature. The distributed power control game was studied in

[25] to maximize the energy efficiency of transmission for secondary users in cognitive

radio networks and an optimal power control problem was formulated as a repeated

4
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game. The authors in [26] studied energy-efficient power control and receiver design

in cognitive radio networks and a non-cooperative power control game for maximizing

energy efficiency of secondary users was considered with a fairness constraint and inter-

ference threshold. The authors of [27] formulated the energy-efficient spectrum sharing

and power allocation in heterogeneous cognitive radio networks with femtocells as a

Stackelberg game and they proposed a gradient based iteration algorithm to obtain

the Stackelberg equilibrium solution to the energy-efficient resource allocation problem.

Many works have been done to consider bandwidth allocation for energy efficiency. In

[28], the authors studied the joint service pricing and bandwidth allocation for ener-

gy and cost efficiency at the operator level in a multi-tier network where an operator

deploys heterogeneous small cell networks, and they formulated the problem as a Stack-

elberg game. The problem of joint link selection, power and bandwidth allocation for

energy efficiency maximization for multi-homing networks was investigated in [29]. A

new energy-efficient scheme was presented in [30] to statistically meet the demands for

QoS during the bandwidth allocation for wireless networks.

Convex optimization is one of the most effective mathematical modeling tools to ex-

plore resource allocation problem in wireless communication networks. The authors in

[24] proposed a resource allocation scheme for cochannel femtocells to maximize system

capacity under QoS and interference constraints. They formulated the power and sub-

channel allocation problem as a mixed-integer programming problem and transformed

it into a convex optimization problem, and the proposed problem was solved by the dual

decomposition method. In [31], the authors formulated the network resource allocation

problem as a convex optimization problem to maximize system throughput and mini-

mize delay under a variety of realistic QoS and fairness constraints in wireless cellular

and ad hoc networks. The globally optimal solutions were computed efficiently through

polynomial time interior point methods. In [32], the authors analyzed power control

problem in wireless cellular networks in high signal-to-interference ratio (SIR) and medi-
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um to low SIR regimes. In high SIR regime, the formulated non-convex problems were

transformed into convex optimization problems in the form of geometric programming

and were effectively solved for global optimality. In the medium to low SIR regime, the

problem could only be solved through the approach of successive convex approximation.

In this thesis, we define backhaul as the connection between macro BS and small

cell BSs, and it is necessary to jointly consider the backhaul and radio access network.

Several related works considered the backhaul to improve energy efficiency in wire-

less networks. The authors of [33] studied energy efficiency of resource allocation in

multi-cell OFDMA downlink networks where the limited backhaul capacity, the circuit

power consumption and the minimum required data rate were considered. The resource

allocation problem for energy-efficient communication with limited backhaul capaci-

ty was formulated. In [34], an energy-efficient model of small cell backhaul networks

with Gauss-Markov mobile models was proposed. In [35], the authors maximized sys-

tem energy efficiency in OFDMA small cell networks by optimizing backhaul data rate

and emission power, and they proposed a joint forward and backhaul link optimization

scheme by taking both the power consumption of forward links and the backhaul links

into consideration.

In this thesis, we study the energy-efficient power allocation and backhaul bandwidth

allocation in heterogeneous small cell networks. A near optimal iterative resource allo-

cation algorithm and a suboptimal low-complexity approach are proposed. Unlike the

existing works in the literature, we take power allocation for small cell BSs and band-

width allocation for backhauling together into consideration in heterogeneous small cell

networks to maximize energy efficiency of all small cell users.

1.3 Thesis Organization and Contributions

This thesis consists of six chapters. Chapter 1 presents background knowledge of

development and technologies for wireless communications and cellular networks. In

6
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modern mobile communications, increasing QoS demand is the main target of system

design, and therefore high transmit power and wider transmission bandwidth are de-

sired. However, power and bandwidth are scarce resource and are usually limited in

wireless communication system. Therefore, we focus on the energy-efficient resource

allocation in OFDMA based heterogeneous small cell network.

Chapter 2 provides detailed technical and knowledge background for the entire the-

sis. First, a heterogeneous small cell network is introduced and used to provide more

effective service than macrocell network. Second, resource management techniques,

such as energy efficiency and backhauling, are provided. Convex optimization was in-

troduced for resource management since it is an effective tool to solve the resource

allocation problem.

In Chapter 3, an energy-efficient OFDMA heterogeneous small cell optimization

framework is designed. The system model for power allocation and backhaul bandwidth

allocation in heterogeneous small cell network is proposed to maximize the downlink

energy efficiency for all small cell users. The corresponding problem is formulated as a

nonlinear programming problem, where maximum transmit power constraints of each

small cell BS to each small cell user, the downlink data rate constraint of small cell BSs

and the minimum data rate between each small cell BS and each of its corresponding

users are considered to provide reliable and low energy consumed downlink transmission

for small cell users.

In Chapter 4, the conditions for optimization are provided and energy-efficient re-

source allocation problems are solved. First, we show that the formulated problem in

Chapter 3 is a non-convex optimization problem and we can decompose it into two

convex subproblems: one for power allocation and one for unified wireless backhaul

bandwidth allocation. Second, we solve the subproblems of energy-efficient power allo-

cation and energy-efficient backhaul bandwidth allocation.

In Chapter 5, optimization algorithms are proposed and numerical results are pro-

7



1.3. Thesis Organization and Contributions

vided to demonstrate the effectiveness of the proposed algorithms. We first propose a

near optimal iterative resource allocation algorithm and a suboptimal low-complexity

approach to solve the resource allocation problem. Then we analyze the complexity for

those two proposed algorithms. Finally, we use simulation results to demonstrate the

effectiveness of the proposed algorithms when compared with the existing schemes.

Chapter 6 summarizes the entire thesis and lists our contributions in this thesis. In

addition, some future works related to our current research are suggested.

8



Chapter 2

Heterogeneous Small Cell

Networks and Resource

Management

In this chapter, we present background knowledge about energy-efficient resource

allocation in heterogeneous small cell networks. We first address the characteristic of

heterogeneous small cell network and the motivation that small cell network exits, and

then we introduce the basic concept of energy efficiency and backhaul. Finally, the basic

convex optimization knowledge related to resource allocation is presented.

2.1 Overview of Heterogeneous Small Cell Networks

With the development of mobile Internet and the explosive growth of wireless traffic,

macrocell networks face a series of challenges.

− The users’ demand of mobile service has a trend of exponential growth. With the

development of mobile Internet and cloud computing technology, users’ demand of

data service has risen rapidly. According to [36], the amount of global mobile data

traffic nearly tripled over three consecutive years from 2010 to 2012 and exceeded

the traffic on the entire global Internet in 2000. The development of the smart

phone technology promoted the mobile network services. Those services, such as

Internet video, mobile data and mobile voice, lead to an exponential growth of the

9



2.1. Overview of Heterogeneous Small Cell Networks

Figure 2.1: Traffic demand in terabits for North America [1].

demand for mobile data, which are shown in Fig. 2.1 [1]. The traditional cellular

network cannot keep pace with the data explosion through the previous expensive

and incremental methods such as increasing the amount of spectrum or deploying

more macro base stations [37].

− The demand for indoor communication service has increased dramatically, but

macrocell network has a limited coverage for indoor environment. According to

[38], over 50 percent of the voice traffic and 70 percent of the data traffic occur

in the indoor environment, and those figures seem to grow continually. Further-

more, 3G and 4G mobile communication systems are typically deployed at high

frequencies and the penetration loss is huge when signals transmit between walls.

Therefore, the data rate requirement of indoor users is a challenge for the coverage

of macrocell.

10



2.2. Resource Management

To offload the overloaded traffics in macrocells and to enhance the coverage and

capacity of the wireless networks, one method is to shorten the distance between the

macro BS and user equipments. Small cells (e.g., picocells, femtocells and relay nodes)

have been used to improve system capacity in hotspots for relieving the burden on over-

loaded macrocells, which is considered as a promising technique to provide an effective

solution for the challenges in current macrocells [19, 20]. Therefore, there is no doubt

that small cell has been paid much attention in recent years from academia and industry

because it can help the system spatially reuse spectrum with low power consumption

and improve the system coverage with low infrastructure cost deployment [21]. Hetero-

geneous small cell networks, where small cells are overlaid within a macrocell to improve

coverage and increase system capacity beyond the initial deployment of macrocells, have

been regarded as a promising approach to meet the increasing data traffic demand and

coverage requirements, and to reduce energy consumption. A heterogeneous small cell

network is shown in Fig. 2.2.

2.2 Resource Management

Since the demand for mobile service has an exponential growth and the scarcity of

resource, resource management has drawn much attention these days. In recent years,

energy-efficient system and backhauling have been proposed to help saving energy and

guarantee the QoS for multi-users. Convex optimization algorithms are used in resource

allocation problem for more efficient resource usage.

2.2.1 Energy Efficiency

During the past decades, much effort has been made to enhance network throughput.

However, high network throughput usually implies large energy consumption, which is

sometimes unaffordable for energy-aware networks or energy-limited devices. How to re-

duce energy consumption while meeting throughput requirements in such networks and

11



2.2. Resource Management

small cell

base station

small cell

user

macro cell

user
macrocell

base station

...

small cell

small cell

small cell

small cell

macrocell

Figure 2.2: Heterogeneous small cell network.

devices is an urgent task. Therefore, energy-efficient communication system becomes

an inevitable trend.

Over the past few decades, energy efficiency is commonly defined as information

bits per unit transmit energy, which has been studied from the information-theoretic

perspective for various scenarios [39]. For an additive white Gaussian noise (AWGN)

channel, it is well known that for a given transmit power, p, and system bandwidth, W ,

the achievable transmission data rate is r = W log2(1+
pg
σ2
0
) bits per second, where σ2

0 is

AWGN power and g is channel power gain between transmitter and receiver. We can

further write the transmission rate as r′ = log2(1 +
pg
σ2
0
) bits per second per Hertz. For

energy-efficient communication, it is desirable to send the maximum amount of data

with a given amount of energy. Given the energy ∆E consumed in duration ∆T , the

energy can be rewritten as

∆E = p∆T. (2.1)
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2.2. Resource Management

Therefore, we define the energy efficiency as the ratio of the amount of data r′∆T

transmitted in duration ∆T to the amount of the given energy ∆E, which is shown as

ηEE =
r′∆T

∆E
=

r′

p
(2.2)

bits per Hertz per Joule.

Except for transmit power, circuit power is also incurred by device electronics [40,

41]. Circuit power represents the additional device power consumption of devices during

transmissions [42], such as digital-to-analog converters, mixers and filters, and this

portion of energy consumption is independent of the transmission state. Denote the

circuit power as PC (typical value 0.1 W), thus the overall power assumption is PC + p.

Taking circuit energy consumption into consideration, energy efficiency needs to be

redefined as information bits per unit energy (not only transmit energy) [43], where

an additional circuit power factor, PC , needs to be added in the denominator of (2.2)

written as

ηEE =
r′∆T

∆E
=

r′

p+ PC
. (2.3)

2.2.2 Backhaul

In a heterogeneous network, the backhaul portion of the network comprises the

intermediate links between the core network or backbone network and the small cell

networks. Backhaul has responsibility to carry packets to and from the core network

and it acts as a bandwidth provider which guarantees QoS to the subnetwork users.

Generally, backhaul solutions can be roughly categorized into wired (leased lines, copper

or fiber) and wireless (point-to-point or point-to-multipoint over high-capacity radio

links). Wired solution is usually expensive and often impossible to be deployed in remote

areas, which makes wireless solution a more suitable and viable option. Heterogeneous

wireless architecture can overcome the hurdles of wired solutions to create efficient
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Figure 2.3: Backhaul.

large coverage areas and high capacity with relatively lower deployment cost. There is

a growing demand in emerging markets where cost is usually a major factor in deciding

technologies, a wireless backhaul solution is able to offer ‘carrier-grade’ services, whereas

this is not easily feasible with wired backhaul connectivity [44]. In this thesis, we define

that backhaul as the connection between macro BS and small cell BSs as shown in Fig.

2.3, and it is necessary to consider the joint design of backhaul and radio access network.

2.2.3 Convex Optimization based Resource Management

Mobile wireless networks are invented and act as essential means of communications

to provide reliable data transmission among many users. With the exponential increase

of users’ demand for mobile service, wireless communication system is hard to satisfy

all requests due to the resource scarcity. Therefore, managing available communication

resources, such as power and bandwidth, has drawn much attention. Many research
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2.2. Resource Management

efforts have been made in investigating effective methods to increase operation efficiency

and network capacity for the development of wireless communication systems. Convex

optimization is one effective mathematical modeling tool to explore resource allocation

problem in wireless communication networks. The convex optimization methods were

used extensively in modeling, analyzing and designing of communication systems [45,

46]. Theoretically, convex optimization is appealing since a local optimum is also a

global optimum for a convex problem.

According to the definition of convex function in [45], a function f : Rn → R is

convex if the domain of f , denoted by dom f , is a convex set1 and if for any two points

x1, x2 ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2). (2.4)

Geometrically, this inequality means that the line segment between (x1, f(x1)) and

(x2, f(x2)) lies above the graph of f , which is shown in Fig. 2.4. We say f is concave if

−f is convex. Convexity and concavity will be preserved under nonnegative weighted

summation, positive scaling, and pointwise maximum operation.

An optimization problem with arbitrary equality and inequality constraints can

always be written in the following standard form [45]

min f0(x)

s.t. fi(x) ≤ 0, i = 1, 2, ...,m

hi(x) = 0, i = 1, 2, ..., p

x ∈ S

(2.5)

to find x that minimizes f0(x) among all x values that satisfy the conditions fi(x) ≤ 0,

i = 1, 2, ...,m, hi(x) = 0, i = 1, 2, ..., p and x ∈ S, where f0 is called the objective

1If a set C is convex, the line segment between any two points in C lies in C.
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2.2. Resource Management

Figure 2.4: Graph of a convex function.
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2.2. Resource Management

function or cost function; fi(x) and hi(x) are the inequality and equality constraint

functions, respectively, and S is the constraint set. The domain of the objective and

constraint functions is defined as

D =

(
m
∩
i=1

dom fi

)
∩
(

m
∩
i=1

dom hi

)
∩ S. (2.6)

The problem in (2.5) is a convex optimization problem if the objective function and

the inequality constraint functions fi(x)(i = 1, 2, ...,m) are convex; equality constraints

hi(x)(i = 1, 2, ..., p) are affine functions2; and the set S is convex. Violating any one

of those conditions will result in a non-convex problem. A feasible x∗ ∈ D is said to

be global optimal if f0(x
∗) ≤ f0(x) for all x. Notice that when we want to find the

maximum value of the objective function, we can rewrite the formulation as

max f0(x)

s.t. fi(x) ≤ 0, i = 1, 2, ...,m

hi(x) = 0, i = 1, 2, ..., p

x ∈ S.

(2.7)

Problem (2.7) is still a convex optimization problem if the objective function is concave

and the other conditions are the same as problem (2.5).

When formulating the resource allocation problems in wireless networks, it often

happens that the formulated objective and constraint functions are non-convex. Thus,

the problem cannot be solved by a convex optimization method. Fortunately, many

optimization problems have hidden convexity and can be equivalently transformed into

convex problems. In this thesis, we first formulate the energy-efficient power allocation

and backhaul bandwidth allocation problem in heterogeneous small cell networks as a

non-convex problem, and then decompose it into two convex subproblems.

2The affine function can be represented by matrix equation Ax = b, where A is a matrix and b is
a vector of appropriate size.
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2.3. Summary

2.3 Summary

In this chapter, we presented the essential technical background knowledge for the

entire thesis. A brief description of heterogeneous small cell networks and the motiva-

tions of this kind of mobile network were provided. Then, the background knowledge

and basic concepts on energy efficiency and backhaul were introduced. Finally, the basic

knowledge about convex optimization were provided.
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Chapter 3

Resource Allocation Modeling

In this chapter, we design an energy-efficient OFDMA heterogeneous small cell op-

timization framework and propose a system model for power allocation and backhaul

bandwidth allocation to maximize the downlink energy efficiency for all small cell users.

We formulate the problem as a nonlinear programming problem under QoS, transmit

power and backhaul data rate constraints.

3.1 System Model

We consider a heterogeneous small cell network as shown in Fig. 3.1 with a single

macro BS, J small cells deployed within the macrocell range and K users randomly

located in each small cell.

The small cells share the same spectrum with macrocell. In this work, the uni-

fied wireless backhaul bandwidth allocation is investigated. The unified bandwidth

allocation factor β ∈ [0, 1], which is the fraction of bandwidth assigned for wireless

backhauling at all small cell BSs within a macrocell range. For simplicity, all small

cells are assumed to have the same bandwidth allocation factor. We assume that the

multiple antenna technology is used in the macro BS and each small cell corresponds to

a beamforming group, so the interference for wireless backhaul between different small

cells can be neglected. The antenna array size at macro BS is N , which is much greater

than the beamforming group size B and the number of small cells, N ≫ B and N ≫ J .

In this work, we also assume that B ≥ J . Each small cell BS is equipped with single
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Figure 3.1: Topology of a heterogeneous small cell network.
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3.2. Problem Formulation

antenna. OFDMA technology is used in each small cell to support the communication

between BS and users.

3.2 Problem Formulation

Our objective is to maximize downlink energy efficiency of all small cell users through

transmit power allocation and unified wireless backhaul bandwidth allocation in het-

erogeneous small cell networks. Let gj,k be the channel power gain between the jth

small cell BS and its kth user, and denote Gj as the channel power gain between macro

BS and the jth small cell BS, where j ∈ {1, 2, ..., J}, k ∈ {1, 2, ...,K}. Let pj,k denote

the transmit power from the jth small cell BS to its kth user, and let P = [pj,k]J×K

denote the power allocation matrix. Then the received signal-to-noise ratio (SNR) in

the wireless backhaul downlink of small cell j is given by

γj =
P0Gj

σ2
(3.1)

where P0 is the transmit power of the macro BS and σ2 is the AWGN power.

We assume that different users in each small cell use different subchannels and co-

channel interference between small cells as part of the thermal noise because of the

severe wall penetration loss and low power of small cell BSs [24]. The received signal-

to-interference-plus-noise ratio (SINR) of small cell user k associated with small cell j

is given by

γj,k =
pj,kgj,k
σ2+Ij,k

(3.2)

where Ij,k is the interference power introduced by macro BS Ij,k = P0Gj,k, where Gj,k

is the channel power gain between macro BS and the kth user in the jth small cell.

The achievable data transmission rate between the jth small cell BS and its kth user is
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3.2. Problem Formulation

determined by

rj,k =

(
1− β

K

)
log2 (1 + γj,k) . (3.3)

Therefore, we have the relation between rj,k and pj,k as

pj,k = (2
Krj,k
1−β − 1)

σ2+Ij,k
gj,k

rj,k =

(
1− β

K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
.

(3.4)

Except for transmit power, circuit power is also incurred by device electronics in

small cell BSs [40, 41]. Circuit power represents the additional device power consump-

tion of devices during transmissions [42], such as digital-to-analog converters, mixers

and filters, and this portion of energy consumption is independent of the transmission

state. If we denote the circuit power as PC , the overall power assumption of the jth

small cell BS to the kth user is PC + pj,k.

For energy-efficient communication, it is desirable to send the maximum amount of

data with a given amount of energy for small cell BSs. Hence, given the amount of energy

∆e consumed in a duration ∆t in each small cell BS to each user, ∆e = ∆t(PC + pj,k),

the small cell BSs desire to send a maximum amount of data bits by choosing the power

allocation matrix and unified backhaul bandwidth allocation factor to maximize

J∑
j=1

K∑
k=1

rj,k(β, pj,k)∆t

∆e
(3.5)

which is equivalent to maximizing

U(β,P) =

J∑
j=1

K∑
k=1

Uj,k(β, pj,k) (3.6)

where

Uj,k(β, pj,k) =
rj,k(β, pj,k)

PC + pj,k
. (3.7)
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U(β,P) is called energy efficiency for all small cell users and Uj,k(β, pj,k) is the energy

efficiency of the kth user in the jth small cell. The unit of the energy efficiency is bits

per Hertz per Joule, which has been frequently used in the literature for energy-efficient

communications [39, 47–49].

When the downlink channel state information is estimated by the small cell BSs, the

resource allocation is performed by each small cell BS under the following constraints.

− Transmit power constraint of each small cell BS to each user:

0 ≤ pj,k ≤ Pmax, ∀j, k (3.8)

where Pmax denotes the maximum transmit power of each small cell BS to each

user.

− The downlink data rate constraint of each small cell BS: the throughput of the

small cell is given by

Rj =

K∑
k=1

rj,k. (3.9)

According to [50], the capacity of the wireless backhaul downlink for small cell j

is

Cj = βlog2

(
1 +

N−B+1

B
γj

)
. (3.10)

The downlink wireless backhaul constraint requires

Rj ≤ Cj (3.11)

such that the downlink traffic of the jth small cell can be accommodated by its

wireless backhaul.

− Heterogeneous QoS guarantee: the QoS requirement Rt should be guaranteed for

each user in each small cell to maintain the performance of the communication
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system

rj,k ≥ Rt. (3.12)

Our target is to maximize the energy efficiency of power allocation and unified

bandwidth allocation for wireless backhauling in heterogeneous small cell networks un-

der power constraint and data rate requirements. Thus, the corresponding problem for

the downlink can be formulated as the following nonlinear programming problem

max
β,P

U(β,P) = max
β,pj,k

J∑
j=1

K∑
k=1

Uj,k(β, pj,k) (3.13)

s.t. C1 : 0 ≤ pj,k ≤ Pmax

C2 : Rj ≤ Cj

C3 : rj,k ≥ Rt

C4 : 0 ≤ β ≤ 1.

(3.14)

3.3 Summary

In this chapter, we proposed an energy-efficient OFDMA heterogeneous small cell

optimization framework. We established a system model for power allocation and back-

haul bandwidth allocation to maximize the downlink energy efficiency for all small cell

users. We formulated the problem as a nonlinear programming problem with the con-

sideration of maximum transmit power constraints of each small cell BS to each small

cell user, the downlink data rate constraints of small cell BSs and the minimum data

rate between each small cell BS and its corresponding users.
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Chapter 4

Energy-Efficient Resource

Allocation and Backhauling

In this Chapter, we present the conditions for proposed optimization problem and

design the mathematical approaches for resource allocation. We first prove that the

formulated problem in Chapter 3 is a non-convex optimization problem. We find that

the problem is separable, so we decompose it into two convex subproblems: one for power

allocation and another for unified wireless backhaul bandwidth allocation. Then, we

solve the subproblems of energy-efficient power allocation and energy-efficient backhaul

bandwidth allocation individually.

4.1 Conditions of Optimality

We can prove that the formulated objective function in (3.13) is not concave and

we notice that the continuous variable β and pj,k are separable in (3.13). A detailed

proof is given in Appendix A. The constraint C2 in (3.14) is a nonlinear non-convex

constraint. The detailed proof is shown in Appendix B. Therefore, the optimization

problem formulated in (3.13) and (3.14) is not convex. By fixing the transmit power

P, the constraint C2 in (3.14) becomes convex with the bandwidth allocation factor β.

Therefore, we consider a decomposition approach to solve the energy-efficient resource

allocation problem. We decompose the non-convex optimization problem into two con-

vex subproblems: one for energy-efficient power allocation and one for energy-efficient
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4.2. Energy-Efficient Power Allocation

wireless backhaul bandwidth allocation.

4.2 Energy-Efficient Power Allocation

Given a unique global bandwidth allocation factor β for wireless backhauling, we

demonstrate that optimal energy-efficient power allocation exists. The optimization

algorithm begins with the power allocation subproblem P1 which is formulated as

P1 : max
P

U(P) = max
pj,k

J∑
j=1

K∑
k=1

Uj,k(pj,k) (4.1)

s.t. C1 : 0 ≤ pj,k ≤ Pmax

C2 : Rj ≤ Cj

C3 : rj,k(pj,k) ≥ Rt

(4.2)

where

rj,k(pj,k) =

(
1− β

K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
(4.3)

is strictly concave and monotonically increasing with pj,k when rj,k(0) = 0 and pj,k = 0.

According to the concept of quasiconcavity defined in [51], a function f that maps

from a convex set of real n-dimensional vectors S′ to a real number is called strictly

quasiconcave if for any x1, x2 ∈ S′ and x1 ̸= x2, and λ with 0 < λ < 1, we have

f(λx1 + (1− λ)x2) > min{f(x1), f(x2)}. (4.4)

The optimal energy-efficient power allocation achieves maximum energy efficiency,

i.e.

P∗ = argmax
P

U(P). (4.5)

It is proved in Appendix C that U(P) has the following properties.
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Lemma 1. If rj,k(pj,k) is strictly concave in pj,k, Uj,k(pj,k) ∈ U(P) is strictly quasicon-

cave. Furthermore, Uj,k(pj,k) is first strictly increasing and then strictly decreasing in

any pj,k, i.e., the local maximum of U(P) for each pj,k exists at a positive finite value.

For strictly quasiconcave functions, if a local maximum exists, it is also globally

optimal [51]. Hence, a unique globally optimal transmit power matrix always exists and

its characteristics are summarized in Theorem 1 according to the proofs in Appendix

C.

Theorem 1. If rj,k(pj,k) is strictly concave, there exists a unique globally optimal trans-

mission power matrix P∗ = {p∗j,k; (j, k) ∈ J × K} for P∗=argmax
P

U(P), for each

element in P∗, p∗j,k=argmax
pj,k

Uj,k(pj,k) where p∗j,k is given by

∂Uj,k(pj,k)
∂pj,k

∣∣∣
pj,k=p∗j,k

= 0, f(pj,k) = 0,

i.e., Uj,k(p
∗
j,k) =

rj,k(p
∗
j,k)

PC+p∗j,k
=

∂rj,k(pj,k)
∂pj,k

∣∣∣
pj,k=p∗j,k

.

In order to solve the power allocation problem P1, we rewrite the objective function

in (4.1) as

max
pj,k

Uj,k(pj,k) = max
pj,k

rj,k(pj,k)

PC + pj,k
. (4.6)

If each small cell user could reach the maximum energy efficiency, the whole small cells

could reach the maximum energy efficiency. The total data rate in each small cell

could not exceed the capacity of the wireless backhaul downlink for small cell j, that

is, Rj ≤ Cj . We can approximate that the data rate for each user will be less than
Cj

K ,

rj,k(pj,k) ≤
Cj

K .

Thus, P1 is equivalent to

P1.1 : max
pj,k

Uj,k(pj,k) (4.7)
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4.2. Energy-Efficient Power Allocation

s.t. C1 : 0 ≤ pj,k ≤ Pmax

C2 : rj,k(pj,k) ≤
Cj

K

C3 : rj,k(pj,k) ≥ Rt.

(4.8)

We can rewrite C2 in (4.8) according to (3.4) as

pj,k ≤
(
σ2+Ij,k
gj,k

)(
2

(
β

1−β

)
log2

(
1+N−B+1

B

P0Gj

σ2

)
−1
)
. (4.9)

We can rewrite C3 in (4.8) according to (3.4) as

pj,k ≥
(
σ2+Ij,k
gj,k

)(
2

KRt
1−β −1

)
. (4.10)

Therefore,

Lj,k ≤ pj,k ≤ Hj,k (4.11)

where

Lj,k =

(
σ2+Ij,k
gj,k

)(
2

KRt
1−β −1

)
(4.12)

Hj,k = min

{(
σ2+Ij,k
gj,k

)(
2

(
β

1−β

)
log2

(
1+N−B+1

B

P0Gj

σ2

)
−1
)
, Pmax

}
(4.13)

only if the following inequality is satisfied

Lj,k ≤ Hj,k. (4.14)

The energy-efficient power allocation is given by

p̂∗j,k = argmax
pj,k

rj,k(pj,k)

PC + pj,k
(4.15)

subject to

Lj,k ≤ pj,k ≤ Hj,k. (4.16)
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We can solve (4.6) by using Theorem 1 to find the optimal power allocation solution.

We can also use the low-complexity iterative algorithms based on the gradient assisted

binary search (GABS) algorithm proposed in [52] to realize the energy-efficient power

allocation for the kth user in the jth small cell BS. The GABS algorithm is shown as

follows.

Algorithm Gradient Assisted Binary Search (GABS) Algorithm

1: Initialization: Each small cell BS allocates the same transmit power to each user,
pj,k > 0.

2: Then do p
(1)
j,k = pj,k, h1 ←

∂Uj,k(pj,k)
∂pj,k

∣∣∣∣pj,k=p
(1)
j,k

and c > 1 (let c = 2).

3: if h1 < 0 then
4: repeat

5: p
(2)
j,k ← p

(1)
j,k , p

(1)
j,k ←

p
(1)
j,k

c , and h1 ←
∂Uj,k(pj,k)

∂pj,k

∣∣∣∣pj,k=p
(1)
j,k

6: until h1 ≥ 0
7: else

8: p
(2)
j,k ← p

(1)
j,k × c and h2 ←

∂Uj,k(pj,k)
∂pj,k

∣∣∣∣pj,k=p
(2)
j,k

9: repeat

10: p
(1)
j,k ← p

(2)
j,k , p

(2)
j,k ← p

(2)
j,k × c and h2 ←

∂Uj(pj,k)
∂pj,k

∣∣∣∣pj,k=p
(2)
j,k

11: until h2 ≤ 0
12: end if
13: while no convergence do

14: p̂∗j,k ←
p
(1)
j,k+p

(2)
j,k

2 , h′ ← ∂Uj,k(pj,k)
∂pj,k

∣∣∣pj,k=p̂∗j,k

15: if h′ > 0 then
16: p

(1)
j,k = p̂∗j,k

17: else
18: p

(2)
j,k = p̂∗j,k

19: end if
20: end while
21: Output p̂∗j,k.

If the output p̂∗j,k satisfies the power constraint, i.e., p̂∗j,k=p∗j,k. Otherwise, we can

get the maximum Uj,k(pj,k) by

p∗j,k = Lj,k (4.17)

29



4.3. Energy-Efficient Wireless Backhaul Bandwidth Allocation

if p̂∗j,k < Lj,k, or we can get the maximum Uj,k(pj,k) by

p∗j,k = Hj,k (4.18)

if p̂∗j,k > Hj,k, since Uj,k(pj,k) is first strictly increasing and then strictly decreasing in

any positive finite pj,k.

4.3 Energy-Efficient Wireless Backhaul Bandwidth

Allocation

Once the optimal solution P∗ = {p∗j,k; (j, k) ∈ J × K} is obtained for the convex

subproblem P1 parameterized by β, it can be used in the following subproblem P2 for

the unified wireless backhaul bandwidth allocation

P2 : max
β

U(β,P∗) = max
β

J∑
j=1

K∑
k=1

Uj,k(β, p
∗
j,k) (4.19)

s.t. C1 : 0 ≤ β ≤ 1

C2 : Rj(β,P
∗) ≤ Cj(β,P

∗)

C3 : rj,k(β, p
∗
j,k) ≥ Rt

(4.20)

In order to obtain the solution to the original problem in (3.13) and (3.14), the two

subproblems P1 and P2 are solved iteratively until convergence.

Maximizing the objective function of P2 with respect to β is equivalent to maximiz-

ing (1− β) only, because (4.19) is a monotonically decreasing function of β. Problem

P2 reduces to a feasibility problem whose solution is the smallest feasible value of β

given constraints (4.20).
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According to C2 in (4.20), Rj(β,P
∗) ≤ Cj(β,P

∗), we have

β ≥

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) . (4.21)

According to C3 in (4.20), rj,k(β, p
∗
j,k) ≥ Rt, we have

β ≤ 1− KRt

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) . (4.22)

Therefore, we can get the optimal backhaul bandwidth allocation factor β written

as

β = max {ϕj , j ∈ J} (4.23)

where

ϕj =

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) (4.24)

only if Rt satisfies the following condition

Rt ≤ min {φj , j ∈ J} (4.25)

where

φj =
log2

(
1 + N−B+1

B
P0Gj

σ2

)
log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) . (4.26)

A detailed derivation of (4.25) can be found in Appendix D.
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4.4 Summary

In this chapter, we found the solutions to subproblems of energy-efficient power

allocation and energy-efficient wireless backhaul bandwidth allocation, respectively. We

first proved that the problem formulated in Chapter 3 is a non-convex optimization

problem and we found that the problem was separable. Therefore, we decomposed that

problem into two convex subproblems, which means we maximized energy efficiency

for power allocation and wireless backhaul bandwidth allocation separately. Then,

we designed mathematical approaches for energy-efficient power allocation and energy-

efficient backhaul bandwidth allocation.
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Chapter 5

Algorithm Design

In this chapter, we propose two optimization algorithms for resource management

and provide numerical results for the proposed algorithms. We first design a near

optimal iterative resource allocation algorithm and a suboptimal but low-complexity

approach to solve the resource allocation problem, and then we analyze the complexity

for those two proposed algorithms. Finally, we use simulation results to demonstrate

the effectiveness of the proposed algorithms when compared with the existing schemes.

5.1 Iterative Resource Allocation Algorithm

According to the analysis of power allocation and wireless backhaul bandwidth allo-

cation discussed in Chapter 4, we propose an iterative optimization algorithm as shown

in Algorithm 1.

In Algorithm 1, each small cell BS calculates ϕj according to (4.24) and then sends

ϕj to macro BS. The macro BS chooses the maximum ϕj to be the optimal bandwidth

allocation factor β and broadcasts β to all small cell BSs.

5.2 Low-Complexity Optimization Algorithm

To reduce the complexity of Algorithm 1, we propose a low-complexity optimization

algorithm where bandwidth allocation factor is calculated from the equal power alloca-

tion and we fix β to calculate the power allocation according to the scheme proposed

in Chapter 4. This low-complexity optimization algorithm is shown in Algorithm 2.
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Algorithm 1 Iterative Resource Allocation Algorithm
1: Initialization: Each small cell BS allocates the same transmit power to each user,

pj,k > 0 and set l = 1.
2: repeat
3: Backhaul Bandwidth Allocation
4: Compute optimum β according to (4.23).
5: Macro BS broadcasts the updated wireless backhaul bandwidth allocation factor

to all small cell BSs.
6: for each small cell BS do
7: for each small cell user do
8: Power Allocation
9: a) find p̂∗j,k = argmaxUj,k (pj,k) according to GABS;

10: b) check power constraint;
11: if Lj,k ≤ p̂∗j,k ≤ Hj,k then
12: p∗j,k = p̂∗j,k
13: end if
14: if p̂∗j,k < Lj,k then
15: p∗j,k = Lj,k

16: end if
17: if p̂∗j,k > Hj,k then
18: p∗j,k = Hj,k

19: end if
20: end for
21: end for
22: l = l + 1.
23: until total energy efficiency convergence or l = Lmax.

5.3 Complexity Analysis

Since the problem formulated in (3.13) and (3.14) is not convex, the only way to

get the optimal solution is to use the method of exhaustion. If we assume that it costs

P operations to calculate rj,k and it costs Q operations to calculate Cj , the complexity

of checking C2 and C3 in (3.14) entails KP +K +Q operations and P + 1 operations,

respectively. If we assume it costs S operations to calculate Uj,k, the complexity of

obtaining the total energy efficiency of all small cell users entails JKS+(J − 1) (K − 1)

operations. The total complexity of getting the value of objective function in (3.13)

under the constraints in (3.14) entails KP + K + P + 1 + JKS + (J − 1) (K − 1)
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Algorithm 2 Fixed β and Optimum Power Allocation Algorithm
1: Initialization: Each small cell BS allocates the same transmit power to each user,

pj,k > 0.
2: Backhaul Bandwidth Allocation
3: Compute optimum β according to (4.23).
4: Macro BS broadcasts the wireless backhaul bandwidth allocation factor to all small

cell BSs.
5: for each small cell BS do
6: for each small cell user do
7: Power Allocation
8: a) find p̂∗j,k = argmaxUj,k (pj,k) according to GABS;
9: b) check power constraint;

10: if Lj,k ≤ p̂∗j,k ≤ Hj,k then
11: p∗j,k = p̂∗j,k
12: end if
13: if p̂∗j,k < Lj,k then
14: p∗j,k = Lj,k

15: end if
16: if p̂∗j,k > Hj,k then
17: p∗j,k = Hj,k

18: end if
19: end for
20: end for

operations for specific pj,k and β values. If we assume the value of the step size for

pj,k is a and the value of the step size for β is b, there are 1
b

(
Pmax
a

)JK
choices for

the values of pj,k and β. Therefore, the complexity for the method of exhaustion is

O
(
JKS
b

(
Pmax
a

)JK)
.

In Algorithm 1, the worst-case complexity of calculating bandwidth allocation fac-

tor β from (4.23) entails J operations in each iteration. If we assume that it costs Ω

operations in each GABS to search the optimal power allocation without power con-

straint, then the worst-case complexity of finding the power allocation for every user in

each small cell entails JK (Ω+4) operations in each iteration. Suppose the Algorithm 1

requires ∆ iterations to converge, so the total complexity of Algorithm 1 is O (JKΩ∆).

Since iteration is not applied in Algorithm 2, the total complexity of Algorithm 2 is

O (JKΩ), which is less than that of Algorithm 1. In the simulation, the typical value
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for ∆ is around 16, the typical value for Ω is less than 500, and the typical values for

1
b and Pmax

b are both 100. So the complexities of Algorithm 1 and Algorithm 2 are

always less than that of the method of exhaustion. When the number of small cells J

and the number of users in each small cell K increase, the complexity of the method

of exhaustion increases exponentially, so the complexity of the method of exhaustion is

much larger than the complexities of proposed two algorithms.

5.4 Numerical Results

Simulation results are presented in this section to evaluate the performance of the

proposed power allocation and wireless backhaul bandwidth allocation algorithms. In

the simulations, it was assumed that small cells are uniformly distributed in the macro-

cell coverage area, and small cell users are uniformly distributed in the coverage area

of their serving small cell. AWGN power σ2=3.9811 × 10−14 W. The coverage radius

of the macrocell is 500 m, and that of a small cell is 10 m. The small cell BS has a

minimum distance of 50 m from the macro BS. The minimum distance between small

cell BSs is 40 m. We assume that the channel fading is composed of path loss, shad-

owing fading, and Rayleigh fading. The pathloss model for small cell users is based on

[53]. The shadowing between small cell BS and small cell users is 10 dB. At the macro

BS, we assume that transmit power is 33 dBm, the antenna array size N = 100 and

beamforming group size B = 20. We consider that all the small cell users have the same

QoS requirement.

Figure 5.1 shows the convergence in terms of the energy efficiency of all small cell

users for the proposed Algorithm 1 versus the number of iterations, where J = 5,

Rt = 0.01 bps/Hz, Pmax = 20 dBm. It can be observed that the proposed method

takes nearly 16 iterations before converging to the stable solution. This result, together

with the previous analysis, ensures that the proposed Algorithm 1 is applicable in

heterogeneous small cell networks.
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Figure 5.2 shows the total energy efficiency of all small cell users when the number

of users per small cell is increased from 2 to 10. The energy efficiencies of Algorithm 2

are shown when Pmax = 7 dBm, Pmax = 10 dBm and Pmax = 20 dBm, and the energy

efficiency of Algorithm 1 is shown when Pmax = 20 dBm. The simulation parameters are

set as J = 5, Rt = 0.01 bps/Hz. Fig. 5.2 shows that the energy efficiency performance

of Algorithm 1 is 20% higher than that of Algorithm 2. It also can be seen from Fig.

5.2 that the more number of users in small cell is, the better performance is obtained

because of the multi-user diversity.

Figure 5.3 shows the total energy efficiency of all small cell users when the number

of small cells is increased from 3 to 15. The energy efficiencies of Algorithm 2 are shown

when Pmax = 7 dBm, Pmax = 10 dBm and Pmax = 20 dBm, and the energy efficiency

of Algorithm 1 is shown when Pmax = 20 dBm. The simulation parameters are set

as K = 5, Rt = 0.01 bps/Hz. Fig. 5.3 indicates that more number of small cell is,

the better performance is obtained. It can also be seen from Fig. 5.3 that the energy

efficiency performance of Algorithm 1 is always better than that of Algorithm 2 and the

gap between them becomes larger when the number of small cells increases. The energy

efficiency performance of Algorithm 1 is 30% superior to that of Algorithm 2 when the

number of small cells is 10.

Figure 5.4 shows the total downlink capacity of all small cell users when the number

of users per small cell is increased from 2 to 10. The total downlink capacities of

Algorithm 2 are shown when Pmax = 7 dBm, Pmax = 10 dBm and Pmax = 20 dBm,

and the total downlink capacity of Algorithm 1 is shown when Pmax = 20 dBm. The

simulation parameters are set as J = 5, Rt = 0.01 bps/Hz. Fig. 5.4 shows that the total

downlink capacity of Algorithm 1 is more than 3 bps/Hz higher than that of Algorithm

2. It also can be seen from the Fig. 5.4 that the more number of users in small cell is,

the better performance is obtained due to the multi-user diversity. The total downlink

capacity of Algorithm 1 is 21% higher than that of Algorithm 2 when the number of
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users in each small cell is over 10.

Figure 5.5 shows the total downlink capacity of all small cell users when the number

of small cells is increased from 3 to 15. The total downlink capacities of Algorithm 2 are

shown when Pmax = 7 dBm, Pmax = 10 dBm and Pmax = 20 dBm, the total downlink

capacity of Algorithm 1 is shown when Pmax = 20 dBm. The simulation parameters

are set as K = 5, Rt = 0.01 bps/Hz. Fig. 5.5 illustrates that Algorithm 1 is superior

to Algorithm 2 in terms of the total downlink capacity and the gap between them

becomes larger when the number of small cells increases. The total downlink capacity

of Algorithm 1 is 29% larger than that of Algorithm 2 when there 14 small cells in the

heterogeneous network.

Figure 5.6 shows the total energy efficiency of all small cell users when using Algo-

rithm 2 for power constraint Pmax ranging from 0 dBm to 12.79 dBm where the number

of users in each small cell is 3, 4, 5. The simulation parameters are set as J = 5,

Rt = 0.01 bps/Hz. Fig. 5.6 presents that the more users in each small cell, the higher

total energy efficiency can be obtained, which has already been shown in Fig. 5.2. It

also can be seen from the Fig. 5.6 that the larger power constraint is, the better per-

formance is obtained. This is because the larger power constraint leads to the larger

region of the optimizing variable.

Figure 5.7 shows the total energy efficiency of all small cell users when the number of

users per small cell is increased from 2 to 10, for different algorithms. Algorithm 1 and

Algorithm 2 are the iterative optimization algorithm and the low-complexity optimiza-

tion algorithm, respectively. Algorithm 3 is an existing energy efficiency optimization

algorithm with equal power allocation and Algorithm 4 is an algorithm that uses the

optimal power allocation we proposed given a random β to optimize energy efficiency.

All the algorithms are under the setting of Pmax = 20 dBm. Fig. 5.7 indicates that

the more users in each small cell, the better performance can be obtained, which has

already been shown in Fig. 5.2. It also can be seen from Fig. 5.7 that Algorithm 1 has
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the best performance and then it follows by Algorithm 2, Algorithm 3 and Algorithm

4. The energy efficiency performance of Algorithm 1 is 30.5% and 56.6% higher than

that of Algorithm 3 and Algorithm 4, respectively.

Figure 5.8 shows the total energy efficiency of all small cell users when the number

of small cells is increased from 2 to 5, for the optimal solution and those two proposed

algorithms. Since the complexity of the method of exhaustion is very high, we only

consider the situation with small dimension where there are two users located in each

small cell, K = 2. All the algorithms are under the setting of Pmax = 20 dBm and

Rt = 0.01 bps/Hz. From Fig. 5.8, we can observe that the difference between the

optimal solution and Algorithm 1 in terms of energy efficiency is very slight, which

ensures the effectiveness of the proposed algorithms. The energy efficiency performance

of the optimal solution is only about 7% and 24% higher than that of Algorithm 1 and

Algorithm 2 when the number of small cells is 3, respectively.

5.5 Summary

In this chapter, we designed two optimization algorithms for resource management

and provided numerical results for the proposed algorithms. We first proposed a near

optimal iterative resource allocation algorithm and a suboptimal but low-complexity

approach to solve the resource allocation problem. Then we analyzed the complexity for

those two proposed algorithms. Finally, we used simulation results to demonstrate the

effectiveness of the proposed algorithms by comparing them with the existing schemes.
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Chapter 6

Conclusions

In this chapter, we conclude the thesis by summarizing the accomplished work and

suggest some potential further works.

6.1 Summary of Accomplished Work

In this thesis, we developed two optimization algorithms for energy-efficient power

allocation and backhaul bandwidth allocation in heterogeneous small cell networks. The

numerical results establish the effectiveness of proposed design when compared with

the existing schemes. To conclude the thesis, we summarize the accomplished work as

follows:

− In Chapter 2, we provided detailed technical and knowledge background for the

entire thesis. We first introduced heterogeneous small cell network which was used

to provide more effective service than macrocell network, and then we presented

some resource management techniques such as energy efficiency and backhaul-

ing. Convex optimization was introduced for resource management since it is an

effective tool to solve the resource allocation problem.

− In Chapter 3, we provided energy-efficient OFDMA heterogeneous small cell opti-

mization framework. The system model for power allocation and backhaul band-

width allocation in heterogeneous small cell network was proposed to maximize

the downlink energy efficiency for all small cell users. The corresponding prob-

lem was formulated as a nonlinear programming problem under the constraints of
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QoS, transmit power and backhaul date rate.

− Chapter 4 provided the conditions for optimization and mathematical approach-

es for transmit power allocation and backhaul bandwidth allocation. First, we

showed that the formulated problem in Chapter 3 is a non-convex optimization

problem and we decomposed it into two convex subproblems: one for power al-

location and another for unified wireless backhaul bandwidth allocation. Second,

we solved the subproblems of energy-efficient power allocation and energy-efficient

backhaul bandwidth allocation.

− In Chapter 5, suboptimal algorithms were designed and numerical results were

presented. We proposed a near optimal iterative resource allocation algorithm and

a suboptimal but low-complexity approach to solve the energy-efficient resource

allocation problem. Then, we analyzed the complexity for those two proposed

algorithms. Finally, we used simulation results to demonstrate the effectiveness

of the proposed algorithms by comparing them with the existing schemes.

6.2 Future Work

Although considerable research work on resource management have already been

proposed during the past few years, there are still some potential directions worth

further investigation.

− In this work, we considered the power allocation and backhaul bandwidth al-

location for energy efficiency. However, spectral efficiency is also an important

system performance indictor to be studied. Therefore, resource allocation with

backhauling for spectral efficiency is worth investigating in the future.

− For resource allocation, subchannel allocation is an important aspect. Therefore,

the joint energy-efficient subchannel allocation and power allocation are worth
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studying in the future.

− In this work, we considered the small cell BS with single antenna. It will be

interesting to investigate small cell BS with beamforming or precoding technology

using multi-antenna.
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Appendix A

In order to prove that the objective function in (3.13),
J∑

j=1

K∑
k=1

Uj,k(β, pj,k), is concave,

we first prove that function Uj,k(β, pj,k) is concave.

The energy efficiency function for each small cell user is

Uj,k(β, pj,k) =

(
1−β
K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
PC + pj,k

. (A.1)

The Hessian matrix for function Uj,k(β, pj,k) can be written as

Hes(Uj,k) =

 ∂2Uj,k

∂β2

∂2Uj,k

∂β∂pj,k

∂2Uj,k

∂pj,k∂β
∂2Uj,k

∂p2j,k

 (A.2)

where

∂2Uj,k

∂β2
= 0 (A.3)

∂2Uj,k

∂β∂pj,k
=

(
− 1

K

) PC+pj,k

(ln 2)

(
1+

pj,kgj,k

σ2+Ij,k

)
( gj,k

σ2+Ij,k

)
+
(
1
K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
(PC + pj,k)

2 (A.4)

∂2Uj,k

∂pj,k∂β
=

(
− 1

K

) PC+pj,k

(ln 2)

(
1+

pj,kgj,k

σ2+Ij,k

)
( gj,k

σ2+Ij,k

)
+
(
1
K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
(PC + pj,k)

2 (A.5)
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∂2Uj,k

∂p2j,k
=

( 1−β
K )

(
gj,k

σ2+Ij,k

)−(PC+pj,k)
(

gj,k

σ2+Ij,k

)

(ln 2)

(
1+

pj,kgj,k

σ2+Ij,k

)2


(PC+pj,k)

2

−
2( 1−β

K )

( 1
ln 2)

(
gj,k

σ2+Ij,k

) PC+pj,k

1+
pj,kgj,k

σ2+Ij,k

−log2

(
1+

pj,kgj,k

σ2+Ij,k

)
(PC+pj,k)

3 .

(A.6)

For simplicity, we denote that

M1 =
∂2Uj,k

∂β∂pj,k
=

∂2Uj,k

∂pj,k∂β
(A.7)

and

M2 =
∂2Uj,k

∂p2j,k
. (A.8)

Therefore, we can write the Hessian matrix for function Uj,k(β, pj,k) as

Hes(Uj,k) =

 0 M1

M1 M2

 . (A.9)

It is obvious that the Hessian matrix is not negative semi-definite, so the function

Uj,k(β, pj,k) is not concave and the objective function in (3.13),
J∑

j=1

K∑
k=1

Uj,k(β, pj,k), is

not concave. �
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In this Appendix, we prove the C2 in (3.14) is not a convex constraint. The C2 in

(3.14) can be written as

K∑
k=1

(
1− β

K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
≤ βlog2

(
1 +

N−B+1

B

P0Gj

σ2

)
. (B.0.1)

We denote function Z(β, pj,k) as

Z(β, pj,k) =

K∑
k=1

(
1− β

K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)
− βlog2

(
1 +

N−B+1

B

P0Gj

σ2

)
≤ 0.

(B.0.2)

The Hessian matrix for function Z(β, pj,k) can be written as

Hes(Z) =

 ∂2Z
∂β2

∂2Z
∂β∂pj,k

∂2Z
∂pj,k∂β

∂2Z
∂p2j,k

 (B.0.3)

where

∂2Z

∂β2
= 0 (B.0.4)

∂2Z

∂β∂pj,k
=

(
− 1

K

) ( gj,k
σ2+Ij,k

)
(ln 2)

(
1 +

pj,kgj,k
σ2+Ij,k

) (B.0.5)

∂2Z

∂pj,k∂β
=

(
− 1

K

) ( gj,k
σ2+Ij,k

)
(ln 2)

(
1 +

pj,kgj,k
σ2+Ij,k

) (B.0.6)

∂2Z

∂p2j,k
=
−
(
1−β
K

)(
gj,k

σ2+Ij,k

)2
(ln 2)

(
1 +

pj,kgj,k
σ2+Ij,k

)2 . (B.0.7)
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For simplicity, we denote that

M ′
1 =

∂2Z

∂β∂pj,k
=

∂2Z

∂pj,k∂β
(B.0.8)

and

M ′
2 =

∂2Z

∂p2j,k
. (B.0.9)

Therefore, we can write the Hessian matrix for function Z(β, pj,k) as

Hes(Z) =

 0 M ′
1

M ′
1 M ′

2

 . (B.0.10)

It is obvious that Hessian matrix is not positive semi-definite, so the function Z(β, pj,k)

is not convex and C2 in (3.14) is not a convex constraint. �
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In order to prove the properties of U(P) in Lamma 1, we first focus on Uj,k(pj,k)

and then we can get the properties of U(P).

According to [51], we denote the α–superlevel sets of Uj,k(pj,k) as

Sα = {pj,k ≥ 0|Uj,k(pj,k) ≥ α} (C.0.1)

where pj,k is nonnegative. Based on the propositions from [51], Uj,k(pj,k) is strictly

quasiconcave if and only if Sα is strictly convex for any real number α. In this case, when

α < 0, no points exist on the contour Uj,k(pj,k) = α. When α = 0, only pj,k = 0 is on the

contour Uj,k(0) = α. Hence, Sα is strictly convex when α ≤ 0. Now, we investigate the

case when α > 0. We can rewrite the Sα as Sα = {pj,k ≥ 0|αPC+αpj,k−rj,k(pj,k) ≤ 0}.

Since rj,k(pj,k) is strictly concave with respect to pj,k, −rj,k(pj,k) is strictly convex with

respect to pj,k. Therefore, Sα is strictly convex. Hence, we have the strict quasiconcavity

of Uj,k(pj,k).

Next, we can obtain the partial derivative of Uj,k(pj,k) with pj,k as

∂Uj,k(pj,k)

∂pj,k
=

(PC + pj,k)r
′
j,k(pj,k)− rj,k(pj,k)

(PC + pj,k)
2 =

f(pj,k)

(PC + pj,k)
2 (C.0.2)

where f(pj,k) = (PC + pj,k)r
′
j,k(pj,k) − rj,k(pj,k), r

′
j,k(pj,k) is the first partial derivative

of rj,k(pj,k) with respect to pj,k. If p∗j,k exists such that
∂Uj,k(pj,k)

∂pj,k

∣∣∣
pj,k=p∗j,k

= 0, it is

unique, i.e., if there is a p∗j,k such that f(p∗j,k) = 0. In the following, we investigate the

conditions when p∗j,k exists.
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The derivative of f(pj,k) is

f ′(pj,k) = (PC + pj,k)r
′′
j,k(pj,k) (C.0.3)

where r′′j,k(pj,k) is the second partial derivative of rj,k(pj,k) with respect to pj,k. Since

rj,k(pj,k) is strictly concave in pj,k, so r′′j,k(pj,k) < 0, f ′(pj,k) < 0. Hence, f(pj,k) is

strictly decreasing.

lim
pj,k→∞

f(pj,k) = lim
pj,k→∞

(
(PC + pj,k)r

′
j,k(pj,k)− rj,k(pj,k)

)
= lim

pj,k→∞

(
PCr

′
j,k(pj,k) + pj,kr

′
j,k(pj,k)− rj,k(pj,k)

) (C.0.4)

where

r′j,k(pj,k) =

(
1− β

K

)(
gj,k

σ2 + Ij,k

)(
1

ln 2

)(
1

1 +
pj,kgj,k
σ2+Ij,k

)
(C.0.5)

and

lim
pj,k→∞

r′j,k(pj,k) = 0 (C.0.6)

so we have

lim
pj,k→∞

PCr
′
j,k(pj,k) = 0. (C.0.7)

According to the L’Hopital’s rule, it is easy to show that

lim
pj,k→∞

pj,kr
′
j,k(pj,k) = lim

pj,k→∞

(
1− β

K

)(
gj,k

σ2 + Ij,k

)(
1

ln 2

)(
pj,k

1 +
pj,kgj,k
σ2+Ij,k

)

= lim
pj,k→∞

(
1− β

K

)(
gj,k

σ2 + Ij,k

)(
1

ln 2

)(
1

gj,k
σ2+Ij,k

)

= lim
pj,k→∞

(
1− β

K

)(
1

ln 2

)
(C.0.8)

lim
pj,k→∞

(−rj,k(pj,k)) = lim
pj,k→∞

[
−
(
1− β

K

)
log2

(
1 +

pj,kgj,k
σ2+Ij,k

)]
= −∞ (C.0.9)
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so

lim
pj,k→∞

f(pj,k) < 0. (C.0.10)

Besides,

lim
pj,k→0

f(pj,k) = lim
pj,k→0

(
(PC + pj,k)r

′
j,k(pj,k)− rj,k(pj,k)

)
= PCr

′
j,k(p

(0)
j,k)− rj,k(p

(0)
j,k)

(C.0.11)

where p
(0)
j,k denotes pj,k = 0

r′j,k(p
(0)
j,k) =

(
1− β

K

)(
gj,k

σ2 + Ij,k

)(
1

ln 2

)(
1

1 +
pj,kgj,k
σ2+Ij,k

)∣∣∣∣∣
pj,k=0

=

(
1− β

K

)(
gj,k

σ2 + Ij,k

)(
1

ln 2

) (C.0.12)

rj,k(p
(0)
j,k) = 0 (C.0.13)

lim
pj,k→0

f(pj,k) =

(
1− β

K

)(
PCgj,k
σ2 + Ij,k

)(
1

ln 2

)
> 0. (C.0.14)

Therefore, together with lim
pj,k→∞

f(pj,k) < 0, we obtain that p∗j,k exists and Uj,k(pj,k)

is first strictly increasing and then strictly decreasing in pj,k. After achieving the max-

imum energy efficiency of every user in each small cell, the total energy efficiency of all

small cells users can be maximized.

Lemma 1 is readily obtained. �
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From (4.21) and (4.22), we can get the interval for the wireless backhaul bandwidth

allocation factor β. Problem P2 can be solved only if the upper bound of β larger or

equal to its lower bound

1− KRt

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) ≥
K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) ≥ KRt

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)

Rt ≤
log2

(
1 + N−B+1

B
P0Gj

σ2

)
log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) .

(D.0.1)

Therefore, we have the condition for Rt to guarantee that the problem P2 is solvable

Rt ≤ min


log2

(
1 + N−B+1

B
P0Gj

σ2

)
log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
 . (D.0.2)

In order to facilitate the representation, we denote φj as

φj =
log2

(
1 + N−B+1

B
P0Gj

σ2

)
log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

)
Klog2

(
1 + N−B+1

B
P0Gj

σ2

)
+

K∑
k=1

log2

(
1 +

p∗j,kgj,k
σ2+Ij,k

) . (D.0.3)
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So (D.0.2) can be rewritten as

Rt ≤ min {φj , j ∈ J} . (D.0.4)
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