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Abstract

Determining whether a number field admits a power integral basis is a classical

problem in algebraic number theory. It is well known that every quadratic number

field is monogenic, that is they admit power bases. However, when we talk about

cubic or higher degree number fields we may discover fields without power integral

bases. In 1878, Dedekind gave the first example of a cubic field without a power

integral basis. It is known that a number field is monogenic if and only if the

minimal index is one. In 1937, Hall proved that the minimal index of pure cubic

fields can be arbitrarily large. We extend this result by showing that the minimal

index of a family of infinitely many pure cubic fields have an element of index n

but no element of index less than n for a positive integer n.

iii



Preface

The main result in this thesis is written in the paper [16] accepted on August 30,

2015. All authors of [16] contributed equally.
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Chapter 1

Introduction and Historical
Remarks

Three positive integers a,b, and c do not satisfy the equation
an +bn = cn for any integer value of n greater than two.

— Pierre de Fermat (1637)

Algebraic number theory has been widely studied since 500 BC when the Pythagorean

theorem was first introduced. It was developed in two different ways. One for the

Fermat equations, and the other for class field theory. In either way, we have the

same purpose: solving Diophantine equations. A Diophantine equation (named af-

ter Diophantus of Alexandria) is a polynomial equation in two or more unknowns,

such that only the integer solutions are studied. One of the easiest Diophantine

equations we have is

X2 +Y 2 = Z2

which is related to the Pythagorean theorem. Infinitely many integral solutions

have been found for this equation such as

(3,4,5),(5,12,13),(8,15,17), ...

which we call them Pythagorean triples. One of the most famous and interesting
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Diophantine equations in the history of mathematics is

xn + yn = zn

where n is a positive integer. Pierre de Fermat claimed that there are no integral

solutions to the Diophantine equation above when n ≥ 3. This is called the “Fer-

mat’s Last Theorem.” This theorem was first conjectured in 1637. Fermat claimed

that he had a proof, but he did not show it to the public. This problem was left un-

solved for more than 350 years until the first successful proof was released in 1994

by Andrew Wiles. Hence Fermat’s Last Theorem shows that solving a Diophan-

tine equation can be extremely difficult. The best possible situation for solving

Diophantine equations is when we work over a unique factorization domain. The

complexity of calculation is simpler than the equations without unique factoriza-

tion domains. However, this only means that the calculation is simpler than the

other; it still can be extremely difficult.

We say an algebraic number field is a monogenic field if it posesses a power

integral basis, denoted by {1,θ ,θ 2, ...,θ n−1}, where θ is a root of a minimal poly-

nomial of degree n. It is well known that every number field has an integral basis.

The next question then might be “how can we decide whether a field is mono-

genic?” It is known that a field is monogenic if and only if the absolute value of the

index |I| = 1 is solvable, where I denotes the index form of the field. Using this,

one can get a measure of how far away from being monogenic the number field is.

Also, it is proven that the values of |I| can be arbitrarily large. In [1], Hall proved

that the minimal index of pure cubic fields can be arbitrarily large. The main aim

of this thesis is to develop Hall’s result so that we may construct an infinite family

of pure cubic fields with an element of index equal to a particular positive integer

n and we show the impossibility of the index being equal to any positive integers

less than n.
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Chapter 2

Number Theory Preliminaries

In this chapter, we review some of the basic definitions and theorems in elementary

number theory and abstract algebra courses. In particular, we focus on primes, con-

gruences, and cubic residues that are building blocks to the main result in chapter

5.

2.1 Elementary Number Theory
Definition 2.1.1. If a and b are integers with a 6= 0, we say that a divides b if there

is an integer c such that b = ac, and we write a | b. If a does not divide b, we write

a - b.

Definition 2.1.2. (Greatest Common Divisor) The greatest common divisor of two

integers a and b, which are not both 0, is the largest positive integer that divides

both a and b. It is written as gcd(a,b).

Definition 2.1.3. (Relatively Prime) The integers a and b, with a,b 6= 0, are rela-

tively prime if gcd(a,b) = 1.

Theorem 2.1.1. (Euclid) There are infinitely many primes.

Theorem 2.1.2. (Dirichlet’s Theorem on Primes in Arithmetic Progressions) Sup-

pose that a and b are relatively prime positive integers. Then the arithmetic pro-

gression an+b, n = 1,2,3....., contains infinitely many positive primes.
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Definition 2.1.4. Let m be a positive integer. If a and b are integers, we say that a

is congruent to b modulo m, denoted a ≡ b (mod m) if m | (a−b).

Example 2.1.1. We have 5 ≡ 2 (mod 3), since 3 | (5− 2). However, 8 6≡ 2

(mod 5) since 5 - (8−2).

Theorem 2.1.3. If a,b,c, and m are integers, with m> 0, such that a ≡ b (mod m),

then

(i) a+ c ≡ b+ c (mod m),

(ii) a− c ≡ b− c (mod m),

(iii) ac ≡ bc (mod m).

Theorem 2.1.4. If a ≡ b (mod m1),a ≡ b (mod m2), ...,a ≡ b (mod mk),

where a,b,m1,m2, ...,mk are integers with m1,m2, ...,mk positive, then

a ≡ b (mod [m1,m2, ...,mk]),

where [m1,m2, ...mk] denotes the least common multiple of m1,m2, ...,mk.

Theorem 2.1.5. (The Chinese Remainder Theorem) Let m1,m2, ...,mr be pairwise

relative prime positive integers. Then the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ar (mod mr)

has a unique solution modulo M = m1m2 · · ·mr.

Example 2.1.2. We solve the following system of congruences.

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

4



Let M = 3 ·5 ·7= 105, and M1 =M/3= 35,M2 =M/5= 21, and M3 =M/7= 15.

Now, we find y1,y2, and y3 such that

x≡ y1M1 +2y2M2 +3y3M3 (mod 3 ·5 ·7).

To do this, we set up a congruence like following. M1y1 = 35y1 ≡ 1 (mod 3).

Then we get 2y1 ≡ 1 (mod 3) by the replacement principle. Then, it is easy to see

that y1 ≡ 2 (mod 3). Similarly, y2 ≡ 1 (mod 5), and y3 ≡ 1 (mod 7). Hence,

x ≡ 1 ·35 ·2+2 ·21 ·1+3 ·15 ·1 ≡ 157 ≡ 52 (mod 3 ·5 ·7).

Lastly, we check if 52 satisfies the desired congruences. Indeed, 52≡ 1 (mod 3),52≡
2 (mod 5), and 52 ≡ 3 (mod 7). Therefore, we found the desired solution to the

system of congruences above.

Definition 2.1.5. (Euler φ function) Let n be a positive integer. The Euler phi-

function φ(n) is defined to be the number of positive integers not exceeding n that

are relatively prime to n.

Example 2.1.3. Consider φ(n) for 1≤ n≤ 12.

Table 2.1: The values of φ(n) for 1≤ n≤ 12

n 1 2 3 4 5 6 7 8 9 10 11 12
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4

Theorem 2.1.6. (Euler’s Theorem) If m is a positive integer and a is an integer

with (a,m) = 1, then

aφ(m) ≡ 1 (mod m).

We proceed to the notion of cubic residues since this concept will be needed to

prove Hall’s results [1].

Definition 2.1.6. Let p be a prime and let q be an integer not divisible by p. If

there is an integer x such that x3 ≡ q (mod p), then q is said to be a cubic residue

modulo p. If not, q is said to be a cubic non residue modulo p.
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Definition 2.1.7. Two integers a,b are equivalent mod p if

ax3 ≡ b (mod p)⇐⇒ y3 ≡ a2b (mod p)

is solvable.

Theorem 2.1.7. Let p be a prime with p ≡ 2 (mod 3). Then every integer is a

cube modulo p.

Proof. Suppose p ≡ 2 (mod 3). Set p = 3e+2 for some e ∈ Z. Clearly, p ≡ 0

(mod p). Consider the integers x, where x ∈ {1, ..., p−1}.
By Theorem 2.1.6,

xp−1 = x3e+1 ≡ 1 (mod p).

Thus,

x = 1 · x ≡ x3e+1x3e+2 ≡ x6e+3 ≡
(
x2e+1)3

(mod p)

This shows that every integer is a cube mod p.

The following example illustrates Theorem 2.1.7.

Example 2.1.4. Consider p = 11 ≡ 2 (mod 3).

Table 2.2: The cubic residues mod 11

x 1 2 3 4 5 6 7 8 9 10

x3 (mod 11) 1 8 5 9 4 7 2 6 3 10

But, choosing p ≡ 1 (mod 3) gives totally different result.

Example 2.1.5. Consider p = 13 ≡ 1 (mod 3).

Table 2.3: The cubic residues mod 13

x 1 2 3 4 5 6 7 8 9 10 11 12

x3 (mod 13) 1 8 1 12 8 8 5 5 1 12 5 12

6



We only obtained four integers mod 13 that are cubes mod 13. Let C1 be the

set of integers mod 13 that are cubes mod 13. In this case,

C1 = {1,5,8,12}

Define the set of integers cubic non residues mod 13 by

CNR = {2,3,4,6,7,8,10,11}.

CNR can be further divided into two sets C2 and C3. To do this, pick any element

in CNR, say 2. Then, calculate 2x3 (mod 13).

Table 2.4: C2 : a set of cubic non-residues mod 13

x 1 2 3 4 5 6 7 8 9 10 11 12

2x3 (mod 13) 2 3 2 11 3 3 10 10 2 11 10 11

Then set

C2 = {2,3,10,11}

We define C3, pick any element in CNR excluding C1 and C2, say 4. Then,

calculate 4x3 (mod 13).

Table 2.5: C3 : a set of cubic non-residues mod 13

x 1 2 3 4 5 6 7 8 9 10 11 12

4x3 (mod 13) 4 6 4 9 6 6 7 7 4 9 7 9

By Table 2.5, we find that

C3 = {4,6,7,9}

Observe that C1∪C2∪C3 gives every integer mod 13. By Definition 2.1.7, if we
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pick elements a,b where a ∈Ci and b ∈C j where i 6= j, then the modular equation

ax3 ≡ b (mod p)

is insolvable. Hall uses this argument in his main result, which will be discussed

in Chapter 6.

2.2 Abstract Algebra
In this section, we introduce basic definitions and theorems from abstract algebra.

2.2.1 Group Theory

Definition 2.2.1. (Group) A group 〈G,∗〉 is a set G, closed under a binary opera-

tion ∗, such that the following axioms are satisfied:

For all a,b,c ∈ G, we have

1. (a∗b)∗ c = a∗ (b∗ c) associativity of ∗
2. there exists e ∈ G, such that for all x ∈ G, e∗ x = x∗ e = x identity element e

3. For each a ∈ G, there exists a′ ∈ G such that a∗a′ = a′ ∗a = e inverse a′

Example 2.2.1. The integers modulo 3, denoted Z3 form a group under addition,

which is readily verified. We can describe all the elements in this group via a

group table as follows. Later, we see that more complicated groups admit more

Table 2.6: Group table for Z3 under addition

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

complicated group tables.

Definition 2.2.2. (Subgroup) A subset H of a group G, (denote H ≤ G) is a sub-

group of G if and only if

1. H is closed under the binary operation of G,

8



2. the identity element e of G is in H.

3. for all a ∈ H it is true that a−1 ∈ H also.

Definition 2.2.3. A group (G,∗) is called abelian (or commutative) if a∗b = b∗a

for all a,b ∈ G.

Definition 2.2.4. Let G be a group. The order of G is its cardinality. That is, the

number of elements in G. The order of an element a ∈ G, is the smallest positive

integer m such that am = e, where e denotes the identity element in G. If no such m

exists, then a is said to have infinite order.

Definition 2.2.5. A permutation of a set X is a function φ : X → X that is both one

to one and onto.

Definition 2.2.6. Let X be a set. SX := { f : X 7→X | f is a bijection}. Multiplication

is composition
SX ×SX 7→ SX

( f ,g) 7→ g◦ f .

In case X = {1,2, ...,n} for some n∈N, write Sn for SX (called a symmetric group).

If G≤ Sn for some n ∈ N, G is a permutation group of degree n.

Note that the order of Sn is n! = n · (n−1) · · ·2 ·1.

Definition 2.2.7. A given binary relation ∼ on a set X is said to be an equivalence

relation if and only if it is reflexive, symmetric and transitive. That is, for all a,b

and c in X ,

• a∼ b⇒ b∼ a. (Reflexivity)

• a∼ b. (Symmetry)

• If a∼ b and b∼ c then a∼ c. (Transitivity)

Lemma 2.2.1. Let σ be a permutation of a set A. For a,b ∈ A, we have a ∼ b if

and only if b = σn(a) for some integer n. Here, ∼ denotes an equivalence relation.

Definition 2.2.8. Let σ be a permutation of a set A. The equivalence classes in A

determined by the equivalence relation in Definition 2.2.7 are the orbits of σ .

9



Definition 2.2.9. A permutation σ ∈ Sn is a cycle if it has at most one orbit con-

taining more than one element. The length of a cycle is the number of elements in

its largest orbit.

Theorem 2.2.2. Every permutation σ of a finite set is a product of disjoing cycles.

Definition 2.2.10. A cycle of length 2 is a transposition.

Example 2.2.2. Consider the following permutation in S8.

σ =

(
1 2 3 4 5 6 7 8

3 8 6 7 4 1 5 2

)

First, we find the orbit containing 1. Applying σ repeatedly, we see that

1→ 3→ 6→ 1→ 3→ 6→ 1→ ··· .

This shows the orbit containing 1 is {1,3,6}. We now choose an integer from 1

to 8 not in the set {1,3,6}, say 2, and similarly find that the orbit containing 2

is {2,8}. Finally, we find that the orbit containing 4 is {4,7,5}. Since these three

orbits include all integers from 1 to 8, we see that the complete list of orbits of σ is

{1,3,6}, {2,8}, {4,5,7}.

Notice that the permutations corresponding to these three sets are cycles since

they contain more than one element and we write these cycles as (1 3 6),(2 8) and

(4 5 7) respectively. Since σ is a permutation in the finite set S8, Theorem 2.2.1

shows that it can be written as a product of disjoint cycles:

σ = (1 3 6)(2 8)(4 7 5).

Clearly, {1,3,6}∩{2,8}∩{4,7,5}= /0. Moreover, (2 8) is a transposition by Def-

inition 2.2.10.

Note that the sign of a permutation σ can be defined its decomposition into the

product of transpositions as

sgn(σ) = (−1)m,

10



where m is the number of transpositions in the decomposition. If sgn(σ) = +1,

then σ is even. If sgn(σ) =−1, then σ is odd.

Example 2.2.3. Consider the symmetric group on 3 letters, S3. Note that Sn has n!

elements. That means S3 = 3! = 6 elements. Table 2.7 shows all the elements in

S3. Note that the abbreviation “CCW” stands for counterclockwise.

Table 2.7: Elements of S3

Elements Standard Notation Mapping

ρ0

(
1 2 3

1 2 3

)
Identity

ρ1

(
1 2 3

2 3 1

)
Rotation by 120◦ CCW

ρ2

(
1 2 3

3 1 2

)
Rotation by 240◦ CCW

µ1

(
1 2 3

1 3 2

)
Reflection by fixing 1

µ2

(
1 2 3

3 2 1

)
Reflection by fixing 2

µ3

(
1 2 3

2 1 3

)
Reflection by fixing 3

Now, we calculate a few compositions of permutations in S3.

µ1 ◦ρ1 =

(
1 2 3

1 3 2

)(
1 2 3

2 3 1

)
= µ2

ρ1 ◦µ1 =

(
1 2 3

2 3 1

)(
1 2 3

1 3 2

)
= µ3

This reveals that S3 is not abelian. In other words, the elements in S3 do not

commute except for one special case, which will be discussed later. Continuing

with the similar calculations for all other compositions in the group, we obtain the

group table for S3 given below.
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Table 2.8: Group table for S3

◦ ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

Theorem 2.2.3. If n≥ 2, then the collection of all even permutations of {1,2,3, ...,n}
forms a subgroup of order n!/2 of the symmetric group Sn.

Definition 2.2.11. The subgroup of Sn consisting of the even permutations of n

letters is the alternating group An on n letters.

By Theorem 2.2.3, the order of An is n!/2, and we say An has index 2 in Sn

because intuitively “half” of the elements of Sn lie in An.

Example 2.2.4. Going back to Table 2.7,

ρ0 = (1)(2)(3), Even

ρ1 = (1 2 3), Even

ρ2 = (1 3 2), Even

µ1 = (1)(2 3), Odd

µ2 = (1 3)(2), Odd

µ3 = (1 2)(3), Odd

By Example 2.2.3, we showed that S3 is not abelian except in one special case.

That is, the elements ρ0,ρ1,ρ2 are commutative and these elements have an even

number of transpositions. Thus, by Definition 2.2.11, A3 = {ρ0,ρ1,ρ2}. The sub-

group diagram for S3 is constructed below in Figure 2.1. The number representing

each lines joining each subgroups is the order of the corresponding subgroups. For

example, the order of (1 2 3) is 3, where as the index of A3 in S3 is 2.

.

12



Figure 2.1: The lattice of subgroups diagram of S3

S3

〈2 3〉A3 =
〈1 2 3〉 〈1 2〉 〈1 3〉

{1}

32 3 3

3 2 2 2

Definition 2.2.12. In a group G, two elements g and h are called conjugate if

h = xgx−1

for some x ∈ G.

Definition 2.2.13. For an element g of a group G, its conjugacy class is the set of

elements

Cg = {xgx−1 | x ∈ G}.

We know that

S3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)}

Example 2.2.5. It is easy to see that g = (1) results in its own conjugacy class.

Thus, we set the first trivial conjugacy class as

C1 = {1}.

13



σ σ (1 2)σ−1 Cycle length

(1) (1 2) 2

(1 2) (1 2) 2

(1 3) (2 3) 2

(2 3) (1 3) 2

(1 2 3) (2 3) 2

(1 3 2) (1 3) 2

Thus, the conjugates of (1 2) are (1 2),(1 3), and (2 3). We define the second

conjugacy class of S3 as

C2 = {(1 2),(1 3),(2 3)}.

Similarly,

σ σ (1 2 3)σ−1 Cycle length

(1) (1 2 3) 3

(1 2) (1 3 2) 3

(1 3) (1 3 2) 3

(2 3) (1 3 2) 3

(1 2 3) (1 2 3) 3

(1 3 2) (1 2 3) 3

and we define the final conjugacy class of C3 as

C3 = {(1 2 3),(1 3 2)}.

Definition 2.2.14. (Cosets) Let H be a subgroup of a group G written multiplica-

tively. The subset aH = {ah | h ∈H} of G is the left coset of H containing a, while

the subset Ha = {ha | h ∈ H} is the right coset of H containing a.

Theorem 2.2.4. (Theorem of Lagrange) Let H be a subgroup of a finite group G.

Then the order of H is a divisior of the order of G.

Definition 2.2.15. (Homomorphism) A map φ : G→ G′, where (G,∗) and (G′,∗′)
are groups is called a group homomorphism if

φ(a∗b) = φ(a)∗′ φ(b)

14



for all a,b ∈ G.

Definition 2.2.16. (Normal Subgroup) A subgroup H of a group G is normal if

gH = Hg for all g ∈ G.

Theorem 2.2.5. (Factor Group) Let φ : G→ G′ be a group homomorphism with

kernel H. Then the cosets of H form a group called the factor group and denoted

G/H, where the group operation ∗ is given by (aH)∗ (bH) = (ab)H.

2.2.2 Ring Theory and Fields

Definition 2.2.17. (Rings) A ring 〈R,+, ·〉 is a set R together with two binary op-

erations + and ·, which we call addition and multiplication, defined on R such that

the following axioms are satisfied:

1. 〈R,+〉 is an abelian group. That is, a+b = b+a for all a,b ∈ R.

2. For all a,b,c ∈ R, (a ·b) · c = a · (b · c).

3. For all a,b,c ∈ R, a · (b+c) = (a ·b)+(a ·c) and (a+b) ·c = (a ·c)+(b ·c)
hold.

If a ·b = b ·a for all a,b ∈ R, we say R is commutative.

From here, we consider commutative rings with unity. That is, we only look at

commutative rings with multiplicative identity, 1R.

Example 2.2.6. Z,nZ,Zn,Z+Z
√

d, where d is squarefree integer, and Z+Zi are

examples of rings.

Definition 2.2.18. (Zero Divisors and Units) Let R be a ring.

1. A element a 6= 0 in R is called a zero divisor in R, if there exists b 6= 0 in R,

such that ab = 0.

2. Let R be a ring with the multiplicative identity 1. An element u ∈ R is called

a unit in R, if there exists v ∈ R such that uv = 1 = vu.

Definition 2.2.19. (Integral Domain) An integral domain is a commutative ring

that has a multiplicative identity 1, and has no divisors of zero.
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Example 2.2.7. Z,Q,R,Z+ Zi,Z+ Zω, where ω = −1+
√
−3

2 , and Z+ Z
√

m,

where m is a square free integer are examples of integral domain.

Definition 2.2.20. (Irreducible) A nonzero, nonunit element a of an integral do-

main D is called an irreducible, or said to be irreducible, if a = bc, where b,c ∈D,

implies that either b or c is a unit.

Definition 2.2.21. (Prime) A nonzero, nonunit element p of an integral domain D

is called a prime if p | ab, where a,b ∈ D, implies that p | a or p | b.

Definition 2.2.22. (Fields) Let R be a ring with unity 1 6= 0. If every nonzero el-

ement of R is a unit, then R is a division ring. A field is a commutative division

ring.

Example 2.2.8. Q,R,C and Zp, p is a prime are examples of fields.

Example 2.2.9. The ring Zn is of characteristic n, while Z,Q,R, and C all have

characteristic 0.

Definition 2.2.23. (Unique Factorization Domain) Let D be a factorization do-

main. Suppose that every nonzero, nonunit element a of D has a unique factoriza-

tion as a product of irreducible elements of D. Then D is called a unique factor-

ization domain.
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Chapter 3

Algebraic Number Theory

In this chapter, we start by introducing algebraic elements and algebraic integers.

Then we define the ring of algebraic integers in an algebraic number field. In

Section 3.2 and 3.4, we study integral bases of cubic fields. Further, we find ex-

pressions for the index forms of cubic fields in Section 3.5. Using the index form

of a number field, we are able to determine whether the field is monogenic or not.

3.1 Algebraic Number Fields
Definition 3.1.1. (Algebraic Numbers) An element α ∈ C is an algebraic number

if f (α) = 0 for some polynomial f (x) with rational coefficients.

Definition 3.1.2. (Algebraic Integers) An element α ∈ C is an algebraic integer

if f (α) = 0 for some monic polynomial f (x) with integer coefficients. A monic

polynomial is a polynomial in which the leading coefficient (the nonzero coefficient

of highest degree) is equal to 1.

Consider the following example.

Example 3.1.1. α =
√

3−
√

5 is an algebraic number as α is a root of the poly-

nomial f (x) = x4−6x2 +4 ∈Q[x]. Moreover, α is also an algebraic integer since

f (x) ∈ Z[x] is a monic polynomial.

Example 3.1.2. Let f (x) = x3− p2x−2p2, where p is an odd prime. We show that

17



if θ is a root of f (x), θ 2

p is an algebraic integer. Since θ is a root of f (x),

f (θ) = θ
3− p2

θ −2p2 = 0,

θ
3 = p2

θ +2p2. (3.1)

Let α = θ 2

p . We show that

α
3 +Aα

2 +Bα +C = 0,

where A,B,C ∈ Z. By (3.1), we can simplify the following expressions for α3,α2.

α
3 =

(
θ 2

p

)3

=
θ 6

p3 =
θ 3θ 3

p3 =
(p2θ +2p2)(p2θ +2p2)

p3 = p(θ 2 +4θ +4),

and

α
2 =

(
θ 2

p

)2

=
θ 3

p2 =
θθ 3

p2 =
θ(p2θ +2p2)

p2 =
p2(θ 2 +2θ)

p2 = θ
2 +2θ .

Thus,

α
3 +Aα

2 +Bα +C = 0

is equivalent to

p(θ 2 +4θ +4)+A(θ 2 +2θ)+B
(

θ 2

p

)
+C = 0.

Rearranging terms,(
A+

B
p
+ p
)

θ
2 +(2A+4p)θ +(4p+C) = 0.

Since {1,θ ,θ 2} is linearly independent over Q, each coefficient must vanish. Thus

A+ B
p + p = 0

2A+4p = 0

4p+C = 0

18



Three equations give C = −4p ∈ Z,A = −2p ∈ Z,B = p2 ∈ Z. Thus, we have a

polynomial g(x) = x3−2px2 + p2x−4p such that g(α) = 0. Since g(x) is a monic

polynomial with integer coefficients, Definition 3.1.2 tells us that α is an algebraic

integer.

We claim that C is a field. It is enough to say that for all z ∈ C, there exists

z−1 = z/|z|2 ∈ C such that zz−1 = 1 = z−1z ∈ C. We now define field extensions

and algebraic number fields that are stated on pages 98 and 109, [2].

Definition 3.1.3. (Field Extension) Let K be a subfield of C and let α ∈ C. Let

K(α) =
⋂
F

α∈F
K⊆F⊆C

F,

where the intersection is taken over all subfields F of C, which contain both K

and α. The intersection is nonempty as C is such a field. Since the intersection of

subfields of C is again a subfield of C,K(α) is the smallest field containing both K

and α. We say that K(α) is formed from K by adjoining a single element α. K(α)

is called a simple extension of K. If α1, ...,αk ∈ C for k ≥ 2, K(α1, ...,αk) is the

smallest subfield of C that contains both K and α1, ...,αk, and is called a multiple

extension of K.

Definition 3.1.4. (Algebraic Number Field) An algebraic number field is a subfield

of C of the form Q(α1, ...,αn), where α1, ...,αn are algebraic numbers.

Definition 3.1.5. (Irreducible Polynomials) Let K be a subfield of C. A non-

constant polynomial f (x) ∈ K[x] is irreducible over K if it cannot be factored into

the product of two nonconstant polynomials g(x) ∈ K[x] and h(x) ∈ K[x], where

deg(g(x)),deg(h(x))< deg( f (x)).

Theorem 3.1.1. (Eisenstein’s Irreducibility Criterion) Let

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0 ∈ Z[x].

If there exists a prime number p such that

1. p | ai, i = 0,1, ...,n−1
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2. p - an,

3. p2 - a0

then f (x) is irreducible over the rational numbers.

Example 3.1.3. Continue with Example 3.1.2. We show that the polynomial f (x)=

x3− p2x− 2p2 is irreducible over Q. We begin by finding the reverse polynomial

g(x) of f (x). Consider

f
(

1
x

)
=

(
1
x

)3

− p2
(

1
x

)
−2p2.

Then, multiply both sides by x3. We get

x3 f
(

1
x

)
= x3

(
1
x

)3

− p2
(

1
x

)
x3−2p2x3.

Then, the reverse polynomial of f (x) is

g(x) = 1− p2x2−2p2x3.

Now, set y = xp. Then,

g
(

y
p

)
= −2p2

(
y
p

)3
− p2

(
y
p

)2
+1

=
−2y3

p
− y2 +1.

Finally, multiplying both sides by p gives

h(y) =−2y3− py2 + p.

Since p does not divide −2, and p2 - p by Theorem 3.1.1, h(y) is irreducible

over Q. Because h(y) is related to g(x) by a linear change of variables, h(y) is

irreducible over Q implies that g(x) is also irreducible over Q. Note that if f (x)

has a nonzero constant coefficient, then f (x) is irreducible if and only if its reverse

polynomial is irreducible. This statement shows that f (x) is irreducible over Q.
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Theorem 3.1.2. (Minimal polynomial of θ over K) Let θ be an algebraic integer.

Then there exists a monic polynomial f (x) ∈ Z[x] of least degree such that f (θ) =

0. f (x) is called the minimal polynomial of θ with the following properties:

1. If g(x) ∈Q[x], then g(θ) = 0 if and only if f (x) divides g(x).

2. f (x) is the unique monic irreducible polynomial such that f (θ) = 0.

Note that the degree of K is equal to the degree of f (x), and denoted by

[K : Q] = deg( f (x)).

Definition 3.1.6. (Conjugates of α over K) Let α ∈C be algebraic over a subfield

K of C. The conjugates of α over K are the roots in C of the minimal polynomial

of α over K.

3.2 The Set OK

Definition 3.2.1. (The set OK) The set of all algebraic integers that lie in an alge-

braic number field K is denoted by OK , that is,

OK = Ω∩K

where Ω is the set of all algebraic integers in C. OK is called the ring of integers

of the algebraic number field K.

Theorem 3.2.1. Let K be an algebraic number field. Then OK is an integral do-

main.

Theorem 3.2.2. Let K be a quadratic field. Then there exists a unique squarefree

integer m such that K =Q(
√

m).

Theorem 3.2.3. Let K be a quadratic field. Let m be the unique squarefree integer

such that K =Q(
√

m). Then the set OK of algebraic integers is given by

OK =


Z+Z

√
m, if m 6≡ 1 (mod 4)

Z+Z
(

1+
√

m
2

)
, if m ≡ 1 (mod 4).
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Example 3.2.1. Consider α = 3
√

5 ∈ C. Let K = Q( 3
√

5). Then K is an algebraic

number field. Note that α is a root of the irreducible polynomial x3− 5, hence, it

is an algebraic integer. The set OK for K contains elements of the form:

a+bα + cα
2,

where a,b,c ∈ Z. We will show this in Section 3.4.

3.3 Discriminants
From high school, we know that the discriminant of a quadratic equation ax2 +

bx+ c is b2− 4ac. The discriminant of a polynomial of degree n is defined in the

following way.

Definition 3.3.1. (Discriminant of a polynomial)

Let f (x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 ∈ C[x], where n ∈ N and an 6= 0. Let

θ1, ...,θn ∈ C be the roots of f (x). The discriminant of f (x) is the quantity

disc( f (x)) = a2n−2
n ∏

1≤i< j≤n
(θi−θ j)

2.

Example 3.3.1. Consider f (x) = x2 + bx+ c, where b,c ∈ Z. Let θ1,θ2 ∈ C be

the roots of f (x). Then, f (x) = (x− θ1)(x− θ2) = x2 − (θ1 + θ2)x + θ1θ2. Set

b =−(θ1+θ2), and c = θ1θ2. By Definition 3.3.1, (θ1−θ2)
2 = θ 2

1 −2θ1θ2+θ 2
2 =

θ 2
1 +2θ1θ2 +θ 2

2 −4θ1θ2 = (θ1 +θ2)
2−4θ1θ2 = b2−4c, which confirms the dis-

criminant of a quadratic equation.

Definition 3.3.2. Let K be an algebraic number field of degree n. Let ω1, ...,ωn be

n elements of K. Let σk (k = 1,2, ...,n) denote the n distinct monomorphisms of

K in C. For i = 1, ...,n, let

ω
(1)
i = σ1(ωi) = ωi,ω

(2)
i = σ2(ωi), · · · ,ω(n)

i = σn(ωi)
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denote the conjugates of ωi. Then the discriminant of {ω1, ...,ωn} is

D(ω1, ...,ωn) =

∣∣∣∣∣∣∣∣∣∣
ω

(1)
1 ω

(1)
2 · · · ω

(1)
n

ω
(2)
1 ω

(2)
2 · · · ω

(2)
n

...
... · · ·

...

ω
(n)
1 ω

(n)
2 · · · ω

(n)
n

∣∣∣∣∣∣∣∣∣∣

2

.

It is known that if ω1, ...,ωn are all algebraic integers then D(ω1, ...,ωn) is a

rational integer.

Definition 3.3.3. (Discriminant of an element α) Let K be an algebraic number

field of degree n. Let α ∈ K. Then we define the discriminant D(α) of α by

D(α) = ∏
1≤i< j≤n

(α(i)−α
( j))2,

where α(1) = α,α(2), ...,α(n) are the conjugates of α . Note that if α is an alge-

braic integer in K, then the discriminant of α is the discriminant of the minimal

polynomial of α over K.

Example 3.3.2. Let K = Q(
√

2). The minimal polynomial of
√

2 over Q is given

by

f (x) = x2−2.

It is easy to check that the discriminant of f (x) is 8. We may also confirm this using

Definition 3.3.3. Since ±
√

2 are the roots of f (x),

D(
√

2) = (
√

2+
√

2)2

= (2
√

2)2

= 8.

3.4 Integral Basis
In section 3.2, we fully generalized the elements in the set OK for quadratic fields.

Recall Theorem 3.2.3, if K is a quadratic field, and m is a squarefree integer such

that K =Q(
√

m), then the set OK is described by
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OK =


Z+Z

√
m, if m 6≡ 1 (mod 4)

Z+Z
(

1+
√

m
2

)
, if m ≡ 1 (mod 4).

That is, every element in OK is an integer linear combination of the elements

in the following two sets.

{1,
√

m}, if m 6≡ 1 (mod 4){
1,
(

1+
√

m
2

)}
, if m ≡ 1 (mod 4).

For K = Q(
√

2), since 2 6≡ 1 (mod 4), the above observation implies that OK

can be generated by integral linear combinations of {1,
√

2}. For L = Q( 2
√

5) in

Example 3.2.1, we claimed that the elements in OL can be expressed as integer

linear combinations of {1, 3
√

5,( 3
√

5)2}. This phenomenon leads us to the notion of

an integral basis.

Definition 3.4.1. (Integral Basis) Let K be an algebraic number field of degree n

with ring of integers OK . An integral basis for OK is a set of n elements {η1,η2, ...,ηn}
of OK such that for any algebraic integer α ∈ OK ,

α =C1η1 +C2η2 + · · ·+Cnηn

where C1,C2, ...,Cn ∈ Z.

Theorem 3.4.1. Every number field K has an integral basis.

Theorem 3.4.2. Suppose {α1,α2, ...,αn} is a Q−basis for a number field K. If

D(α1, ...,αn) is squarefree, then {α1, ...,αn} is an integral basis.

Definition 3.4.2. Let K be a number field, with degree n and the ring of integers

OK . If OK =Z[α] for some α ∈OK , the set {1,α, ...,αn−1} is called a power basis.

Theorem 3.4.2 provides a sufficient condition for a set to be an integral basis.

But, the problem is this situation does not come up very often. It is also known that

every integral basis has the same discriminant. Maple will calculate an integral
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basis for a number field, but we will present an algorithm one can carry out by

hand that will give an integral basis. First, we need to define the norm and trace of

an element.

Definition 3.4.3. Let K be a number field of degree n. The norm of an element

α ∈ K is given by

N(α) =
n

∏
i=1

α
(i),

and the trace is given by

Tr(α) =
n

∑
i=1

α
(i),

where α = α(1),α(2), ...,α(n) are the conjugates of α. Note that N(α),Tr(α) ∈ Z
for any algebraic integer α.

Theorem 3.4.3. Let K be an algebraic number field of degree n. Let α,β ∈ K.

Then

Tr(α +β ) = Tr(α)+Tr(β ) and N(αβ ) = N(α)N(β ).

Theorem 3.4.4. Suppose that {α1, ...,αn} is a Q−basis for K consisting of alge-

braic integers, and let p be a prime such that p2 divides D(α1, ...,αn). Then there

is an algebraic integer of the form

1
p
(λ1α1 + · · ·+λnαn),

where 0≤ λi ≤ p−1, λi ∈ Z.

Now, we adapt the algorithm from Cook [18] to compute integral bases.

Let K =Q(α) be an algebraic number field.
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Table 3.1: Computing Integral Bases

Steps Description Mathematical Description

1 Set up a Q−basis for K.

{α1,α2, ...,αn}.

2 Calculate the discriminant of the set in
Step 1. If it is squarefree, then by Theo-
rem 3.4.2, process complete.

D(α1,α2, ...,αn).

3 Find all primes p such that p2 divides the
discriminant in Step 2. p2 | D(α1,α2, ...,αn).

4 Select one of the primes found in Step 3.
Define a new algebraic integer in the form
described in Theorem 3.4.4. Then com-
pute the trace of the element.

α
∗=

1
p
(λ1α1+ · · ·+λnαn), Find Tr(α∗).

5 Find the norm of α∗.

N(α∗).

6 Using the fact that the norm of an alge-
braic integer is a rational integer, check all
the cases of λi to see if α∗ is the algebraic
integer for the given prime.

See the examples below.

7 If all λis do not satisfy the conditions in
Step 6, then α∗ is not an algebraic integer.
Return to Step 3 and repeat the same pro-
cess by selecting the other primes. Other-
wise, proceed to Step 8.

See the examples below.

8 At this stage, α∗ is tested to be an alge-
braic integer in K. Adjoin the new alge-
braic integer to the basis in step 1. {α1,α2, ...,αn,α

∗}→ {β1,β2, ...,βn}.

9 Calculate the discriminant of the new ba-
sis in Step 8. If it is not squarefree, repeat
the same process from Step 3 until no new
algebraic integers are found.

D(β1,β2, ...,βn).
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Example 3.4.1. Let K =Q( 3
√

5).

Step 1. A natural guess for a Q−basis for K. That is, {1, 3
√

5,( 3
√

5)2}.

Step 2. Calculate the discriminant of the set in Step 1.

D(1, 3
√

5,( 3
√

5)2) =−3352.

Step 3. Find all primes p such that p2 divides the discriminant in Step 2. Hence,

p = 3,5.

Step 4. Select one of the primes found in Step 3. Define a new algebraic integer

in the form described in Theorem 3.4.4. Then compute the trace of the

element. As

α
∗ =

1
5
(λ1 +λ2

3
√

5+λ3(
3
√

5)2),

Tr(α∗) =
(

1
5

) 3

∑
i=1

α
(i) =

3λ1

5
,

where 0≤ λi ≤ 4, and since 3λ1
5 ∈ Z, it follows that λ1 = 0.

Step 5. Find the norm of α∗.

N(α∗) =
3

∏
i=1

α
(i) =

λ 3
2 +5λ 3

3
25

.

Step 6. Using the fact that the norm of an algebraic integer is a rational integer,

check all the cases of λi to see if α∗ is the algebraic integer for the given

prime. See Table 3.2.

Step 7. The algebraic integer α∗ in Step 6 is not in OK . Return to Step 3.

Step 8. Choose the other prime, which is p = 3. Repeating Steps 4 - 6, there is

no algebraic integers to be added in the basis described in Step 1. The

integral basis is

{1, 3
√

5,( 3
√

5)2}.
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Table 3.2: Examining α∗ ∈ OK

λ2 λ3 Divisible by 25? YES/NO
0 1 5 NO
0 2 40 NO
0 3 135 NO
0 4 320 NO
1 0 1 NO
1 1 6 NO
1 2 41 NO
1 3 136 NO
1 4 321 NO
2 0 8 NO
2 1 13 NO
2 2 48 NO
2 3 143 NO
2 4 328 NO
3 0 27 NO
3 1 32 NO
3 2 67 NO
3 3 162 NO
3 4 347 NO
4 0 64 NO
4 1 69 NO
4 2 104 NO
4 3 199 NO
4 4 384 NO

Example 3.4.1 is one where our natural guess of the integral basis turns out

to be the correct one. We now give an example due to Dedekind which is not as

simple as the previous one.

Example 3.4.2. Let K = Q(θ) where θ is a root of the polynomial f (x) = x3−
x2−2x−8 ∈Q[x]. We find the integral basis for K.

Step 1. A natural guess for a Q−basis for K. That is, {1,θ ,θ 2}.

Step 2. Calculate the discriminant of the set in Step 1.

D(1,θ ,θ 2) =−(2)2(503).
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Step 3. Find all primes p such that p2 divides the discriminant in Step 2. Hence,

p = 2.

Step 4. Select one of the primes found in Step 3. Define a new algebraic integer

in the form described in Theorem 3.4.4. Then compute the trace of the

element. As

θ
∗ =

1
2
(λ1 +λ2θ +λ3θ

2),

Tr(θ ∗) =
(

1
2

) 3

∑
i=1

α
(i) =

3λ1 +λ2 +5λ3

2
,

where 0≤ λi ≤ 1.

Table 3.3: Examining θ ∗ ∈ OK

λ1 λ2 λ3 3λ1 +λ2 +5λ3 Divisible by 2?

0 0 1 5 NO
0 1 0 1 NO
0 1 1 6 YES
1 0 0 3 NO
1 0 1 8 YES
1 1 0 4 YES
1 1 1 9 NO

The table above shows that we only need to test

(λ1,λ2,λ3) = (0,1,1),(1,0,1) and (1,1,0).

Step 5. Find the norm of θ ∗

N(θ ∗) =
1
8

∏
3
i=1 α(i)

=
λ 3

1 +8λ 3
2 +64λ 3

3 −2λ1λ 2
2 −12λ1λ 2

3 −16λ2λ 2
3 +λ 2

1 λ2 +5λ 2
1 λ3 +8λ 2

2 λ3−26λ1λ2λ3

8
.

Step 6. Check all the cases of λi to see if θ ∗ is the algebraic integer for the given

prime.
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Table 3.4: Examining θ ∗ ∈ OK

λ1 λ2 λ3 λ 3
1 +8λ 3

2 +64λ 3
3 −2λ1λ 2

2 −12λ1λ 2
3 −16λ2λ 2

3 +λ 2
1 λ2 +5λ 2

1 λ3 +8λ 2
2 λ3−26λ1λ2λ3 Divisible by 8?

0 1 1 64 YES
1 0 1 58 NO
1 1 0 8 YES

Step 7. Two algebraic elements are survived.

1+θ

2
,
θ +θ 2

2
.

The minimal polynomial of each elements are 4x3−8x2 +3x−4 and x3−
3x2− 10x− 8 respectively. Since the first one is not a monic polynomial,

(1+θ)/2 is not an integer in K.

Step 8. Adjoin any new algebraic integers to the original basis in Step 1.{
1,θ ,θ 2,

θ +θ 2

2

}
.

Observe that

θ
2 = 2

(
θ +θ 2

2

)
−θ ,

hence the Z−linearly independent basis is{
1,θ ,

θ +θ 2

2

}
.

Step 9. Calculate the discriminant of the new basis.

D
(

1,θ ,
θ +θ 2

2

)
= 503.

Since the discriminant D
(
1,θ ,(θ +θ 2)/2

)
is square free, we have found an inte-

gral basis for K. Therefore, we terminate this algorithm. The integral basis for K

is {
1,θ ,

θ +θ 2

2

}
.
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In Section 3.3, we discussed various kinds of discriminants. However, there

was one type of discriminant we didn’t mention, which we now define.

Definition 3.4.4. (Field Discriminant) Let K be an algebraic number field of de-

gree n. Let {η1, ...,ηn} be an integral basis for K. Then D(η1, ...,ηn) is called the

discriminant of K and is denoted by d(K).

The field discriminant is used to derive index forms. To compute the field

discriminant d(K) for a number field K, we obtain a integral basis for K first.

Then, use the determinant equation expressed in Definition 3.3.2.

The number field in Example 3.4.1 possesses a power basis, whereas the one

in Example 3.4.2 does not. Determining whether a number field admits a power

integral basis is a classical problem in algebraic number theory. Example 3.4.2

was the first example given of an algebraic number field without a power integral

basis. If number fields admit power bases, we call them monogenic fields. Number

theorists discovered a tool to measure how far a number field can be away from

being monogenic. We use indices of number fields to determine whether they are

monogenic or not. These will be discussed in the next section.

3.5 Index Forms and Minimal Indices
The minimal index of a number field measures how close it is to being monogenic.

If the minimal index is 1, then the corresponding number field is monogenic. We

will discuss how to find minimal indices in this section, but first we need a defini-

tion.

Definition 3.5.1. (Index of α) Let K be an algebraic number field. Let α ∈ OK

be such that K = Q(α). Then the index of α, written indα , is the positive integer

given by

D(α) = (indα)2d(K),

where D(α) is the discriminant of α defined in Definition 3.3.3, and d(K) is the

field discriminant defined in Definition 3.4.4. Equivalently, we may use the follow-

ing expression for the index of an element in K.
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indα =

√
D(α)

d(K)
.

Now we will calculate indices in some number fields, beginning with an ar-

bitrary quadratic field. In Theorem 3.2.3, we stated that the general elements in

the ring of integers of a quadratic field can be described by Z+Z
√

m if m 6≡ 1

(mod 4), or Z+Z(1+
√

m)/2 if m ≡ 1 (mod 4). By Alaca [2], we state another

important result about the field discriminant of a quadratic field.

Theorem 3.5.1. Let K be a quadratic field. Let m be the unique squarefree integer

such that K =Q(
√

m). Then the field discriminant d(K) of K is given by

d(K) =

4m, if m 6≡ 1 (mod 4),

m, if m ≡ 1 (mod 4).

Using this result, we are ready to compute the index of α ∈ OK for some

quadratic field K.

Example 3.5.1. Let K be a quadratic field. Then by Theorem 3.2.2, there exists a

unique squarefree integer m such that K =Q(
√

m). First, we assume that m ≡ 1

(mod 4). Then, the corresponding integral basis is
{

1, 1+
√

m
2

}
, with d(K) = m.

Pick α ∈ OK . Then

α = a+b
(

1+
√

m
2

)
, a,b ∈ Z.

Now, by Definition 3.3.2, we get

D(α) =

∣∣∣∣∣∣1 a+b
(

1+
√

m
2

)
1 a+b

(
1−
√

m
2

)∣∣∣∣∣∣
2

= (−b
√

m)2 = b2m.

Thus,

indα =

√
D(α)

d(K)
=

√
b2m
m

= |b|.

Now, if m 6≡ 1 (mod 4), then the integral basis is {1,
√

m} and d(K) = 4m. Fol-

lowing a similar process as the first case, we pick α ∈ OK . Then α = a+ b
√

m,
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where a,b ∈ Z. Then,

D(α) =

∣∣∣∣∣1 a+b
√

m

1 a−b
√

m

∣∣∣∣∣
2

= (−2b
√

m)2 = 4b2m.

Thus,

indα =

√
D(α)

d(K)
=

√
4b2m
4m

= |b|.

Here, the equation I(a,b) = indα = |b| is called the index form of the quadratic

field K in the previous example. This is the simplest index form we get for an

algebraic number field. The results in Example 3.5.1 show that the index form

of any quadratic field can be described by the positive integer |b|. Therefore, the

minimum of ind(α) is 1 for some α ∈ OK . Now, we consider finding the index

form of a cubic polynomial.

Example 3.5.2. Consider K = Q(θ), where θ is a root of f (x) = x3−3x+9. We

compute the index form, field index, and the minimal index of the field K.

An integral basis for K is
{

1,θ , θ 2

3

}
. Then,

OK =

{
a+bθ + c

(
θ 2

3

)
| a,b,c ∈ Z

}
.

Let α ∈ OK . Then α = a+ bθ + c
(

θ 2

3

)
, where a,b,c ∈ Z. The conjugates of α

over K are described below:

α
′ = a+bθ

′+ c
(

θ ′2

3

)
,

α
′′ = a+bθ

′′+ c
(

θ ′′2

3

)
.

Obeserve that f (x) = x3−3x+9 = (x−θ)(x−θ ′)(x−θ ′′), where, θ ′ and θ ′′ are

the other roots of f (x). Expanding and simplifying gives x3− (θ + θ ′+ θ ′′)x2 +

(θθ ′+θθ ′′+θ ′θ ′′)x−θθ ′θ ′′ Since the coefficient of x2 is zero, we have θ +θ ′+

θ ′′ = 0, and so we obtain α−α ′, α−α ′′, and α ′−α ′′ as follws:

α−α
′ = (θ −θ

′)
(

b+
c
3
(θ +θ

′)
)
= (θ −θ

′)
(

b− c
3

θ
′′
)
,
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α−α
′′ = (θ −θ

′)
(

b+
c
3
(θ +θ

′′)
)
= (θ −θ

′′)
(

b− c
3

θ
′
)
,

α
′−α

′′ = (θ ′−θ
′′)
(

b+
c
3
(θ ′+θ

′′)
)
= (θ ′−θ

′′)
(

b− c
3

θ

)
.

Hence, by Definition 3.3.3,

D(α) = (α−α ′)2(α−α ′′)2(α ′−α ′′)2

= (θ −θ ′)2(θ −θ ′′)2(θ ′−θ ′′)2
(
b− c

3 θ
)2 (b− c

3 θ ′
)2 (b− c

3 θ ′′
)2

= D(θ)

{( c
3

)3
f
(

3b
c

)}2

=−33 ·7 ·11
(

b3− bc2

3
+

c3

3

)2

=−3 ·7 ·11(3b3−bc2 + c3)2.

Therefore, the index form of the field K is

indα =

√
D(α)

d(K)
=

√
−3 ·7 ·11(3b3−bc2 + c3)2

−3 ·7 ·11
= |3b3−bc2 + c3|.

Now, we are ready to give two new definitions about the index forms.

Let K be an algebraic number field of degree n.

Definition 3.5.2. (Index of a field) The index of the field K is

i(K) = gcd{indα | α ∈ OK}.

Definition 3.5.3. (Minimal index of a field) The minimal index of K is

m(K) = min{indα | α ∈ OK}.

It is well known that the field index of a cubic field is either 1 or 2 (see [5]).

Referring back to Example 3.5.2, the field index of K is 1 as we have indα =

|3b3−bc2 +c3|= 1 if (b,c) = (1,−1). Hence, m(K) = 1. Similarly, we found that

the index form of any quadratic field can be expressed by |b|,b ∈ Z\{0}. Thus,

the field and minimal index of any quadratic field is equal to 1. There is a close

relationship between the minimal index and the integral basis.
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Theorem 3.5.2. Let K be an algebraic number field, Then m(K) = 1 if and only if

K possesses a power basis.

Proof. (⇒) Suppose m(K) = 1. Then there exists a generator α of K such that

ind α = 1. Hence, D(1,α, ...,αn−1)=D(α)= (ind α)2d(K)= d(K) so that {1,α, ...,αn−1}
is an integral basis for K. Hence, K possesses a power basis.

(⇐) Conversely, suppose K possesses a power basis, say {1,α, ...,αn−1}. Then

{1,α, ...,αn−1} is an integral basis for K and so D(1,α, ...,αn−1) = d(K). But,

D(1,α, ...,αn−1) = D(α) = (ind α)2d(K),

which forces ind α = 1 and hence m(K) = 1.
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Chapter 4

Galois Groups and Chebotarev
Density Theorem

For our discussion on Galois theory, we will restrict our attention to cubic polyno-

mials.

4.1 Galois Groups of Cubics
In Theorem 3.1.1, we introduced Eisenstein’s Irreducibility Criterion to test if a

polynomial is irreducible. There are more techniques for testing irreducibility of

polynomials. We begin this section by providing a few other techniques for irre-

ducibility.

Theorem 4.1.1. (Rational Root Theorem) Let

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0 = 0 ∈ Z[x],

where an,a0 6= 0. Then, each rational solution x, when written as a fraction x= p/q

with gcd(p,q) = 1, satisfies

• p is an integer factor of the constant term a0, and

• q is an integer factor of the leading coefficient an.
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Theorem 4.1.2. (Gauss) Let f be a polynomial over Z which is irreducible over

Z. Then f , considered as a polynomial over Q, is also irreducible over Q.

We demonstrate Gauss’s Lemma in the following example.

Example 4.1.1. Consider

f (x) = x2 + x+1 ∈ Z[x].

Since f (±1) 6= 0, f (x) is irreducible by the Rational Root Theorem. Hence, by

Theorem 4.1.2, f (x) is irreducible over Q.

Another type of irreducibility test is called the modulo p test. Let p be a prime

and suppose that f (x) = anxn +an−1xn−1 + · · ·+a1x+a0 ∈ Z[x] with the degree of

f (x), n≥ 1, and p - an. Let f (x) be the polynomial in Zp[x] obtained by reducing

the coefficients of f modulo p.

Theorem 4.1.3. If f is irreducible over Zp and the degree of f (x) equals the degree

of f (x), then f (x) is irreducible over Q.

Proof. By way of contradiction, suppose f (x) = g(x)h(x), where g,h ∈ Z[x], with

1≤ deg(g)≤ deg( f ) and 1≤ deg(h)≤ deg( f ). Define

Φp : Z[x]→ Zp[x]

by

f (x) =
n

∑
k=0

akxk 7−→
n

∑
k=0

akxk = f (x),

where ak = ak + pZ. Note that Φp is a ring homomorphism. Apply Φp to both

sides of the equation f (x) = g(x)h(x). Then we obtain

f (x) = g(x)h(x)

By the assumption, deg( f ) = deg( f ) which means p - an. Let

g(x) = brxr + (lowest terms)

h(x) = csxs + (lowest terms)
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Then, an = brcs. Since p is a prime such that p - brcs, by Euclid’s Lemma, p - br

and p - cs. This means deg(g) = deg(g), and deg(h) = deg(h). Hence, f (x) is

reducible over Zp. This is a contradiction to the assumption on f irreducible over

Zp. The irreducibility over Zp implies irreducibility over Z. By Gauss’ Lemma,

f (x) is irreducible over Q.

Symmetries of roots of polynomials is the main idea behind Galois theory. We

consider the following general cubic polynomial:

f (x) = x3 +a2x2 +a1x+a0.

Suppose that θ1,θ2, and θ3 are the roots of f (x). Then,

f (x) = (x−θ1)(x−θ2)(x−θ3)

= x3− (θ1 +θ2 +θ3)x2 +(θ1θ2 +θ2θ3 +θ1θ3)x−θ1θ2θ3.

For i = 1,2,3, define si(x1,x2,x3) as follows:

s1 = x1 + x2 + x3

s2 = x1x2 + x1x3 + x2x3

s3 = x1x2x3.

Then we see that evaluating each si at each of the roots of f gives us exactly the

three coefficients of f . Consider the symmetric group on 3 letters

S3 = {1,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)}.

Let σ ∈ S3. Then, we can easily compute that σ(si) = si for all i = 1,2,3. For

example, if σ = (1 2 3),

σ(s1) = s1(x3,x1,x2) = x3 + x1 + x2 = s1

σ(s2) = s2(x3,x1,x2) = x3x1 + x3x2 + x1x2 = s2

σ(s3) = s3(x3,x1,x2) = x3x1x2 = s3

Thus, σ(si) = si for all i = 1,2,3. Repeating the similar process for all σ ∈ S3,

we find that σ(si) = si for i = 1,2,3.

38



Definition 4.1.1. h(x1,x2, ..,xn)∈K[x1,x2, ...,xn] is called a symmetric polynomial

for x1,x2, ..,xn if for any σ in the symmetric group Sn,σ(h) = h.

Definition 4.1.2. The elementary symmetric polynomials in n variables x1, ...,xn,

written ek(x1, ...,xn) for k = 0, ...,n, are defined by

e0(x1,x2, ...,xn) = 1,

e1(x1,x2, ...,xn) = ∑1≤ j≤n x j,

e2(x1,x2, ...,xn) = ∑1≤ j<k≤n x jxk,

e3(x1,x2, ...,xn) = ∑1≤ j<k<l≤n x jxkxl,
...

en(x1,x2, ...,xn) = x1x2 · · ·xn

so that ek(x1, ...,xn) = 0 if k > n.

Theorem 4.1.4. (Fundamental Theorem of Symmetric Polynomials) Every sym-

metric polynomial f (x1,x2, ...,xn)∈K[x1, ...,xn] is a polynomial of elementary sym-

metric polynomials.

In section 5.1, we will use a symmetric polynomial to derive the discriminant

of a cubic polynomial.

Next, we state a series of definitions and theorems regarding field extensions,

automorphisms, splitting fields, separability, and normality.

In Theorem 3.1.2, we mentioned that the degree of the field K over the ground

field Q can be expressed as [K : Q] . In general, if K is a subfield of a field L, the

degree of L over K can be written as [L : K] .

Theorem 4.1.5. (Tower Law) Let K ≤ L≤M be field extensions. Then

[M : K] = [M : L][L : K].

Definition 4.1.3. L : K is called finite extension, if [L : K]< ∞.

Definition 4.1.4. L : K is called an algebraic extension if for all λ ∈ L,λ is a root

of some nonzero polynomial in K[x].
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Definition 4.1.5. An isomorphism σ is both one-to-one and onto map of a field K

with itself is called an automorphism of K. The collection of automorphisms of K

is denoted by

Aut(K) = {σ : K→ K | σ is an automorphism}.

Definition 4.1.6. An automorphism σ ∈ Aut(K) is said to fix an element α ∈ K

if σ(α) = α. If F ⊆ K then an automorphism σ is said to fix F if it fixes all the

elements in F. That is, σ(α) = α for all α ∈ F.

Observe that Aut(L) is a group under composition. It is easy to see that if

σ ,τ ∈ Aut(L),τ ◦σ ∈ Aut(L). Since σ is both one-to-one and onto, its inverse σ−1

is in Aut(L).

Definition 4.1.7. If K is a field and f is a polynomial over K, then f splits in K if

it can be expressed as a product of linear factors

f (x) = k(x−α1) · · ·(x−αn),

where k,α1,α2, ...,αn ∈ K.

Definition 4.1.8. (Splitting Fields) The field Σ is a splitting field for the polynomial

f over the field K if K ⊆ Σ and

1. f splits over Σ,

2. Σ = K(α1,α2, ...,αn), where α1,α2, ...,αn are the roots of f .

Definition 4.1.9. (Normality) An algebraic extension L : K is normal if every irre-

ducible polynomial f over K which has at least one zero in L splits in L.

Definition 4.1.10. (Separability) An irreducible polynomial f over a field K is

separable over K if it has no multiple zeros in a splitting field for K.

Definition 4.1.11. Let K be a field and let f (x),g(x) ∈ K[x]. A common divisor of

f (x) and g(x) is a polynomial c(x) ∈ K[x] such that c(x) | f (x) and c(x) | g(x). The

greatest common divisor (gcd) is a monic common divisor of the highest degree.
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Corollary 4.1.6. If L is the splitting field over Q of a separable polynomial f (x),

then L is normal.

Note that a Galois extension is an algebraic field extension K ≤ L that is normal

and separable. If K ≤ L is a Galois extension, then Aut(L/K) is called the Galois

group of L over K, and write Gal(L : K).

Let K ≤ L be a finite Galois extension with Galois group G, which consists of

all K-automorphisms of L. Let F be the set of intermediate fields, that is, subfields

M such that K ⊆ M ⊆ L, and let G be the set of all subgroups H of G. We have

defined two maps:
∗ : F → G

‡ : G →F

as follows: if M ∈F , then M∗ is the group of all M-automorphisms of L. If H ∈ G ,

then H‡ is the fixed field of H. We have observed that the maps ∗ and ‡ reverse

inclusions, that is, M ⊆M∗‡ and H ⊆ H‡∗. Now, we are ready to state the Funda-

mental Theorem of Galois Theory from [6].

Theorem 4.1.7. (Fundamental Theorem of Galois Theory) If L : K is a finite nor-

mal field extension inside C, with Galois group G, and if F ,G ,∗,‡ are defined as

above, then:

1. The Galois group G has order [L : K].

2. The maps ∗ and ‡ are mutual inverses, and set up an order-reversing one-to-

one correspondence between F and G .

3. If M is an intermediate field, then

[L : M] = |M∗| [M : K] = |G|/|M∗|

4. An intermediate field M is a normal extension of K if and only if M∗ is a

normal subgroup of G.

5. If an intermediate field M is a normal extension of K, then the Galois group

of M : K is isomorphic to the quotient group G/M∗.
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Theorem 4.1.8. Let K ≤ L be a field extension, where L is the splitting field of a

separable polynomial f ∈ K[x]. Then Gal(L : K) has order [L : K].

It is well-known that the Galois group Gal(L : Q) is a subgroup of the sym-

metric group Sn where n is the degree of an irreducible polynomial over Q. By the

Lagrange Theorem,
|Gal(L : Q)| | |Sn|

We now calculate the Galois group of some algebraic extensions. We consider

two examples in this section.

Example 4.1.2. Let α = 3
√

2. The minimal polynomial m(x) of α is

m(x) = x3−2 ∈Q[x].

The roots of m(x) are α,ωα,ω2α, where ω = cos 2π

3 + isin 2π

3 , and ω2 = cos 4π

3 +

isin 4π

3 . The splitting field of m(x) is Q(α,ω). Now, we investigate the number of

elements in the Galois group Gal(Q(α,ω) : Q). Observe that the field Q(α,ω) is

normal by Corollary 4.1.6. Also, since m(x) is an irreducible polynomial over Q,

we have [Q(α) : Q] = 3. Similarly, since ω is a root of the irreducible polynomial

x2 + x+1 over Q(α), we have [Q(α,ω) : Q(α)] = 2. By the Tower law described

in Theorem 4.1.5, we obtain the following

[Q(α,ω) : Q] = [Q(α,ω) : Q(α)] · [Q(α) : Q] = 6.

Since the field Q(α,ω) is the splitting field of a separable polynomial m(x)∈Q[x],

Q(α,ω) is normal. Thus,

|Gal(Q(α,ω) : Q)|= 6

Hence, Gal(Q(α,ω) : Q)' S3. Now, we explore the elements in Gal(Q(α,ω) : Q).
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Define
σ : Q(α,ω) −→ Q(α,ω)

α 7−→ ωα

ω 7−→ ω

τ : Q(α,ω) −→ Q(α,ω)

ωα 7−→ ω2α

α 7−→ α

Now, consider the following table.

Table 4.1: The elements in the Galois group of S3

Elements α ωα ω2α order

1 α ωα ω2α 1

σ ωα ω2α α 3

σ2 ω2α α ωα 3

τ α ω2α ωα 2

στ ωα α ω2α 2

σ2τ ω2α ωα α 2

Hence, Gal(Q(α,ω) : Q) = {1,σ ,σ2,τ,στ,σ2τ}. Lastly, we relate the sub-

group diagram in Figure 2.2 as follows:
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Figure 4.1: The lattice of subfields diagram of Q(α,ω) : Q

Q(α,ω)

Q(α)Q(ω) Q(ωα) Q(ω2α)

Q

23 2 2

2 3 3 3

Figure 4.2: The lattice of subgroups diagram of Gal(Q(α,ω) : Q)

{1}

〈τ〉〈σ〉 〈σ2τ〉 〈στ〉

G ' S3

23 2 2

2 3 3 3

Example 4.1.3. Consider the following polynomial

f (x) = x3−6717x−203749.

By Theorem 3.1.1, f (x) irreducible over Q as f (x) is 2239-Eisenstein. Let α1 be a
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root of f (x). The discriminant of f (x) is

∆[1,α,α2] = (3)6(5)2(2239)2 > 0,

which means all the roots α1,α2, and α3 of f (x) are real and distinct. Then, the

splitting field K =Q(α1,α2,α3) is normal. By Theorem 4.1.8,

|Gal(K : Q)|= [K : Q] = 3.

This implies that the Galois group is isomorphic to Z3.

4.2 The Chebotarev Density Theorem
Let f (x) be monic and irreducible polynomial over Q. Let p be a prime such that

p does not divide the discriminant of f (x). Using Galois theory, we investigate the

factorization of polynomials in finite fields Fp that is related to the elements of the

Galois group. Again, we restrict ourselves to the cubic and quartic polynomials in

this section. Consider the following example.

Example 4.2.1. Let f (x) = x3−5. Note that f (x) is irreducible over Q because it

is 5-Eisenstein. Let θ = 3
√

5 be a root of f (x). The discriminant

∆[1,θ ,θ 2] =−675 =−(3)3(5)2.

The splitting field of f (x) is

L =Q(θ ,ω),

where ω is a root of the polynomial x2 + x+ 1 = 0. We know that Gal(L : Q) is

isomorphic to a subgroup of S3. In fact,

Gal(L : Q)' S3

as [L : Q] = 6. We categorize the subgroups of Gal(L : Q) as follows.
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Table 4.2: Cycle types in S3

Cycle Type # Elements

Type 1 (1 2 3), (1 3 2)

Type 2 (1 2)(3), (1 3)(2), (1)(2 3)

Type 3 (1)(2)(3)

Now, choose primes p such that p - ∆[1,θ ,θ 2] = −(3)3(5)2. We choose p =

2,7,11,13,17,19, and check the factorization over the finite fields Fp with Maple.

Table 4.3: Polynomial factorization over Fp

p Factorization over Fp Cycle Type Type #

2 (x+1)(x2 + x+1) (1)(2 3) 2

7 x3 +2 (1 2 3) 1

11 (x2 +3x+9)(x+8) (1 2)(3) 2

13 (x+2)(x+5)(x+6) (1)(2)(3) 3

17 (x2 +11x+2)(x+6) (1 2)(3) 2

19 x3 +14 (1 2 3) 1

We notice that there are three types of factorizations of x3 − 5 over Fp for

the first 6 primes that do not divide the discriminant of f . If we associate each

type of factorization to a certain cycle type in S3, we see that the number of each

factorization type is equal to the number of each cycle type in S3.

Maybe this observation was merely a fluke. Let’s see what happens when we

try another polynomial, which gives Galois group of D4. The dihedral group Dn is

the symmetry group of an n-sided regular polygon for n > 1. The group order of

Dn is 2n. Dihedral groups Dn are non-abelian permutation groups for n > 2. The

elements in D4 can be expressed as follows.

D4 = {1,σ ,σ2,σ3,τ,στ,σ2
τ,σ3

τ}, |D4|= 8,
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satisfying the following property:

σ
4 = τ

2 = 1,τσ = σ
−1

τ.

Example 4.2.2. Let f (x) = x4−5. Clearly, f (x) is irreducible over Q. Let θ = 4
√

5

be a root of f (x). The discriminant

∆[1,θ ,θ 2,θ 3] =−32000 =−(2)8(5)3.

The roots of f (x) are θ = 4
√

5,− 4
√

5, i 4
√

5,−i 4
√

5. The splitting field of f (x) is L =

Q(θ , i). By Theorem 4.1.8, L is Galois, and so

|Gal(L : Q)|= [L : Q] = 8.

Define
σ : Q(θ , i) −→ Q(θ , i)

θ 7−→ iθ

i 7−→ i

τ : Q(θ , i) −→ Q(θ , i)

iθ 7−→ −iθ

θ 7−→ θ

It is easy to verify that σ3τ = τσ ,τσ2 = σ2τ, and τσ3 = στ. Hence,

Gal(L : Q)' D4.

We obtain the following cycle notations that are categorized in four different

types shown in Table 4.4.

47



Table 4.4: Cycle types in D4

Cycle Type # Elements

1 (1 2 3 4), (1 4 3 2)

2 (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

3 (1)(2 4)(3), (1 3)(2)(4)

4 (1)(2)(3)(4)

Now, choose primes that do not divide both 2 and 5. Say,

p = 3,7,11,13,17,19,23, and 29.

Table 4.5: Polynomial factorization over Qp

p Factorization over Qp Cycle Type Type #

3 (x2 +2x+2)(x2 + x+2) (1 2)(3 4) 2

7 (x2 +6x+4)(x2 + x+4) (1 2)(3 4) 2

11 (x+2)(x2 +4)(x+9) (1)(2 4)(3) 3

13 x4 +8 (1 2 3 4) 1

17 x4 +12 (1 2 3 4) 1

19 (x+3)(x2 +9)(x+16) (1)(2 4)(3) 3

23 (x2 +4x+8)(x2 +19x+8) (1 2)(3 4) 2

29 (x2 +18)(x2 +11) (1 2)(3 4) 2

We obtain 2/|D4| chances of the type 1, 4/|D4| chances of the type 2, 2/|D4|
chances of the type 3, and no chance of the type 4. To verify this phenomenon, we

used MAPLE to calculate the factorizations for a large number of primes p and we

achieved the following results.
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Cycle Pattern # of occurrences

(1 2 3 4) ≈ 2/8

(1 2)(3 4) ≈ 3/8

(1)(2 4)(3) ≈ 2/8

(1)(2)(3)(4) ≈ 1/8

Thus, there seems to be a close relationship between the factorization of poly-

nomials in finite fields and elements in their corresponding Galois groups. In [9],

Lenstra computes this behaviour for polynomials f1(X) = X4−X2−1 ∈ Z[x], and

f2(X) = X4−X −1 ∈ Z[x]. He finds 1000 primes that do not divide the discrimi-

nant of each polynomials f1 and f2. The details of this is shown below.

fi(X) p0 ∆( fi) # of p≤ p0 s.t. p - ∆( fi)

X4−X2−1 7933 −24 ·52 1000

X2−X−1 7927 −283 1000

Then, he finds how often each factorization occurs among all primes up to p0.

fi(X) 4 1,3 2,2 1,1,2 1,1,1,1

X4−X2−1 254 0 379 251 116

X4−X−1 258 337 117 253 35

The numbers in the header of the table above represent the factorization pattern.

For example, there are 254 primes p up to 7933 such that f = X4−X2−1 remains

irreducible modulo p. The pattern 1, 1, 2 represents that f splits into two linear and

one quadratic factors for 251 primes.

Note that Gal( f1(X))' D4 and Gal( f2(X))' S4. Thus, the probability of get-

ting each factorization matches with our results in the previous two examples. It

turns out that the elements in each type of cycle notation are related to one another

via conjugation in Sn. In Example 2.2.5, we showed that the elements in S3 can be

categorized in different conjugacy classes. We will make this result more precise

by considering the conjugacy classes of S3 and show that these exactly match with

the cycle types from Example 4.2.1.

Before we provide the Chebotarev Density Theorem, we summarize the previ-

ous result. Let f be a monic polynomial with integer coefficients with degree n.
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Write K =Q(α1,α2, ...,αn), where α1, ...,αn are the roots of f . The Galois group

G of f is the group of field automorphisms of K. We know that G is a subgroup

of Sn. Writing an element σ ∈ G as a product of disjoint cycles (including cycles

of length 1), we obtain the cycle pattern of σ , which is a partition n1,n2, ...,nt of

n. If p is a prime number not dividing ∆( f ), then we can write f modulo p as

a product of distinct irreducible factors over Fp. The degrees of these irreducible

factors form the decomposition type of f modulo p. The following theorem tells

us that the number of primes with a given decomposition type is proportional to

the number of σ ∈ G with the same cycle pattern.

Theorem 4.2.1. The density of the set of primes p for which f has a given decom-

position type n1,n2, ...,nt exists, and it is equal to 1/#G times the number of σ ∈G

with cycle pattern n1,n2, ...,nt .

We verify Theorem 4.2.1 by looking at the following example.

Example 4.2.3. Recall Example 4.2.1. We showed that the Galois group G of the

polynomial f (x) = x3− 5 is isomorphic to S3. The order of G is 6. Each of the

following subsets

C1 = {(1)(2)(3)}
C2 = {(1 2)(3), (1 3)(2), (1)(2 3)}
C3 = {(1 2 3), (1 3 2)}

form a different conjugacy classes. First, consider the cycle pattern with ni = 1

for i = 1,2,3. Only the identity permutation has this cycle pattern, which is in

C1. Hence, by Theorem 4.2.1, the set of primes p for which f modulo p splits

completely into three distinct linear factors has density 1/#G = 1/6. Similarly, the

cycle pattern with n1 = 2,n2 = 1 or n1 = 1,n2 = 2 corresponds to the elements in

C2. Again, using Theorem 4.2.1, the set of primes p for which f modulo p splits

into linear-quadratic factors has density (1/#G)× #C2 = 3/6. Similarly the set

of primes p for which f remains irreducible modulo p has density 2/6. These

statistics are also confirmed with our experiment in Table 4.3.

Theorem 4.2.2. (Chebotarev Density Theorem) Let K be an algebraic number field

of degree n over Q. Let C ⊂G = Gal(K : Q) be a conjugacy class. Then, the set of
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primes not dividing ∆(K : Q) has density #C/#G.

As a consequence of Chebotarev density theorem, for some polynomials, there

exist infinitely many primes p so that the polynomial does not factor over the finite

fields Fp.

Theorem 4.2.3. If n is an integer which is not a cube, then for f (x) = x3−n,

1. f (x) is irreducible over Q.

2. Gal( f )' S3

Theorem 4.2.4. (Cauchy’s Theorem) Let p be a prime. Let G be a finite group and

let p divide |G|. Then G has an element of order p and, consequently, a subgroup

of order p.

Theorem 4.2.5. Let f (x) ∈ Z[x] be a monic polynomial, irreducible over Q, and

having prime degree p. Then there exists a prime q such that f (x) is irreducible

mod q

Proof. Let deg( f (x)) = p, where p is a prime. Let L be a splitting field of f (x). It

is clear that

p | |Gal(L : Q)|

By Theorem 4.2.4, Gal(L : Q) has an element (a1,a2, ...,ap) of order p and con-

sequently, a subgroup of order p. This shows that there exists a prime q such that

f (x) is irreducible modulo q.

We immediately obtain the following corollary.

Corollary 4.2.6. Let n be an integer which is not a cube in Z. Then there exists

infinitely many primes q such that

f (x) = x3−n

is irreducible mod q.
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Chapter 5

Minimal Indices in Pure Cubic
Fields

In this Chapter, we will focus on analyzing pure cubic fields. In the first three

sections, we define pure cubic fields, and calculate an integral basis for them with

index forms. Then using the index form we prove the unboundedness of its minimal

index via Hall[1]. Furthermore, we construct infinitely many families of pure cubic

fields whose index equals a particular positive integer.

5.1 Pure Cubic Fields
We begin with the definition of pure cubic fields.

Definition 5.1.1. (Pure cubic field) A field K is said to be pure cubic field if there

exists a rational integer d, which is not a perfect cube, such that K =Q( 3
√

d).

Generally, we write pure cubic fields as K = Q(
3
√

ab2), where a,b are square-

free, and gcd(a,b) = 1. It is easy to see ab2 is cubefree, and that the minimal

polynomial of 3
√

ab2 is m(x) = x3−ab2 ∈ Z[x] so that 3
√

ab2 is an algebraic integer.

Let a = 2, and b = 1. Then, we have the pure cubic field K =Q( 3
√

2). Let α = 3
√

2.

Then, its minimal polynomial m(x) is

m(x) = x3−2 ∈ Z[x].
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Alaca (pg. 175, [2]) shows that K = Q(α) = Q(θ), where θ ∈ R is a root of the

irreducible polynomial given by

f (x) = x3 +6x+2.

This shows the existence of pure cubic fields of the form K = Q(θ), where θ 3 +

aθ + b = 0, a,b ∈ Z. We end this section by showing that the discriminant of

any polynomial of the form f (x) = x3 + px+ q is −4p3− 27q2, where p,q ∈ Z.
Furthermore, we show that if K =Q(θ), where θ is a root of f (x), is a pure cubic

field, then the discriminant of f (x) equals −3c2 for some positive integer c.

Example 5.1.1. We show that the discriminant of f (x) = x3 + px+q is

−4p3−27q2.

Let α,β ,γ be the three roots of f (x). Then,

f (x) = (x−α)(x−β )(x− γ),

where,
α +β + γ = 0

αβ +βγ +αγ = p

αβγ = −q

.

This is equivalent to

f (x) = x3− (α +β + γ)x2 +(αβ +βγ +αγ)x−αβγ.

By Definition 3.3.1, the discriminant of the polynomial is

∆( f ) = (α−β )2(β − γ)2(α− γ)2√
∆( f ) = (α−β )(β − γ)(α− γ).

Note that
√

∆( f ) can be computed by using the determinant of the following Van-
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dermonde matrix:

M =

 1 1 1

α β γ

α2 β 2 γ2

 .
Thus, ∆( f ) is equal to the determinant of MMT , where MT is the transpose of M.

That is,

det(MMT ) =

∣∣∣∣∣∣∣
1 1 1

α β γ

α2 β 2 γ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1 α α2

1 β β 2

1 γ γ2

∣∣∣∣∣∣∣ .
In Section 4.1, we discussed symmetric polynomials of a cubic polynomial. We

define
s1 = α +β + γ

s2 = αβ +αγ +βγ

s3 = αβγ.

We already mentioned that α + β + γ = 0 in the previous page. Thus, s1 = 0.

Similarly, we have s2 = p and s3 = −q. Using Newton’s identities, MMT can be

expressed as follows

MMT =

3 a b

a b c

b c d

 ,
where

a = s1 = 0

b = s2
1−2s2 =−2p

c = s1b− s2a+3s3 =−3q

d = s1c− s2b+ s3a = 2p2.

Therefore, the determinant of MMT is

det(MMT ) =

∣∣∣∣∣∣∣
3 0 −2p

0 −2p −3q

−2p −3q 2p2

∣∣∣∣∣∣∣=−4p3−27q2.
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Now, we prove that if θ is a root of f (t), and K = Q(θ) is a pure cubic field,

then its discriminant is −3c2 for some positive integer c.

Proof. Assume L = Q(θ) is a pure cubic field. Then there exist relatively prime

integers h,k such that K =Q(
3
√

hk2). By Definition 3.5.1, we get the following two

expressions for d(K).

d(K) =
−4p3−27q2

(ind(θ))2 ,

d(L) =
−27(hk2)2

(ind( 3
√

hk2))2
.

Since the two fields are equal, we obtain the following equality.

−4p3−27q2

(ind(θ))2 =
−27(hk2)2

(ind( 3
√

hk2))2
,

it follows that

−4p3−27q2 =
−27(hk2)2(ind(θ))2

(ind( 3
√

hk2))2

= −3

(
3ind(θ)(hk2)

ind( 3
√

hk2)

)2

.

Using a result of Dedekind (see [10]), the index of 3
√

hk2 is either 1,k, or 3k. In any

case, we take

c =
3ind(θ)(hk2)

ind( 3
√

hk2)
∈ Z,

which completes the proof.

5.2 Computing Index Forms
In 1900, Dedekind [10] was the first one to generalize the integral basis for the pure

cubic field K =Q(
3
√

ab2).

Theorem 5.2.1. Let d be a cubefree integer. Set d = ab2, where a,b are squarefree

integers and gcd(a,b) = 1. Let θ = 3
√

d and K =Q(θ). Then an integral basis for
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K is {
1,θ ,

θ 2

b

}
, if d2 6≡ 1 (mod 9){

1,θ ,
b2±b2θ +θ 2

3b

}
, if d ≡±1 (mod 9).

.

The field discriminant d(K) of K is given by

d(K) =

−27a2b2, if d2 6≡ 1 (mod 9)

−3a2b2, if d ≡±1 (mod 9).

Using this result, we derive the index form of pure cubic fields due to Hall.

Note that θ is a root of an irreducible monic polynomial x3− ab2 ∈ Z[x]. Also,

by Theorem 2.1.6 (Euler’s Theorem), a2 6≡ b2 (mod 9) corresponds to d2 6≡ 1

(mod 9). We obtain the following equations.

θ +θ ′+θ ′′ = 0

θθ ′+θθ ′′+θ ′θ ′′ = 0 (∗)
θθ ′θ ′′ = ab2.

Consider the case a2 6≡ b2 (mod 9). Let α ∈ OK be such that

α = x+ yθ + z
θ 2

b

α ′ = x+ yθ ′+ z
θ ′2

b

α ′′ = x+ yθ ′′+ z
θ ′′2

b
,

where x,y,z ∈ Z, and α,α ′,α ′′ are the conjugates of α with respect to K. Note that

α−α ′ = (θ −θ ′)

(
y− z

θ ′′

b

)
α−α ′′ = (θ −θ ′)

(
y− z

θ ′

b

)
α ′−α ′′ = (θ −θ ′)

(
y− z

θ

b

)
.
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By Definition 3.3.3, the discriminant of α is given by

D(α) = (α−α ′)2(α−α ′′)2(α ′−α ′′)2

=

[
(θ −θ ′)

(
y− z

θ ′′

b

)
(θ −θ ′)

(
y− z

θ ′

b

)
(θ −θ ′)

(
y− z

θ

b

)]2

= D(θ)

[(
y− z

θ ′′

b

)(
y− z

θ ′

b

)(
y− z

θ

b

)]2

= D(θ)

[
y3− y2z

b
(θ +θ ′+θ ′′)+

yz2

b
(θθ ′+θθ ′′+θ ′θ ′′)− z3 θθ ′θ ′′

b

]2

= D(θ)

[
y3− z3 ab2

b3

]2

=
D(θ)

b2 (by3−az3)2.

From Definition 3.5.1, we know that

indα =

√
D(α)

d(K)
.

The field discriminant d(K) is −27a2k2. The index of α is

indα =

√
−27a2b4

−27a2b4 (by3−az3)2

=
∣∣az3−by3

∣∣ .
We may denote the index form of the field K as I(x,y)

I(x,y) =
∣∣ax3−by3∣∣

for x,y∈Z. Repeating the similar process for the case a2 ≡ b2 (mod 9), we obtain

the corresponding index form as follows.

I(x,y) =
∣∣∣∣ax3−by3

9

∣∣∣∣ .
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5.3 Hall’s Theorem
We begin by considering a few examples.

Example 5.3.1. Let K = Q(
3
√

ab2) be a pure cubic field. Let a = 5,b = 1. Since

52 6≡ 12 (mod 9), the index form of this field is

I(x,y) = |2x3− y3|.

Choose x= 0,y=±1. The minimal index m(K)= 1. Then by Theorem 3.5.2, K pos-

sesses a power basis, {1, 3
√

5,( 3
√

5)2}, which verifies the result in Example 3.4.1.

The next example shows that the minimal index can be greater than 1.

Example 5.3.2. Let K =Q(
3
√

3 ·112). Since 32 6≡ 112 (mod 9), the corresponding

index form of K is

I(x,y) = |3x3−11y3|.

Clearly, the minimal index m(K) = 3 6= 1.

In fact, the minimal index of a pure cubic field can be arbitrarily large. The

following is a theorem due to Hall (see [1]).

Theorem 5.3.1. Given a large positive integer n, it is possible to find a cubic field

K =Q(
3
√

ab2) in which every integer has an index greater than n.

Proof. Let θ =
3
√

ab2, where a,b are relatively prime and squarefree. By Theorem

5.2.1, an integral basis for K is{
1,θ ,

θ 2

b

}
, if a2 6≡ b2 (mod 9){

1,θ ,
b2±b2θ +θ 2

3b

}
, if a2 ≡ b2 (mod 9).

The corresponding index forms are

I(x,y) =


∣∣ax3−by3

∣∣ , if a2 6≡ b2 (mod 9)

|ax3−by3|
9

, if a2 ≡ b2 (mod 9).
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It is sufficient to show that I(x,y)> 9n. Consider

a≡ 2 (mod 7) and b≡ 0 (mod 7).

Then

I ≡ 2x3 ≡ 0,±2 (mod 7).

This shows that I(x,y) 6=±1. We eliminate the possibility of I(x,y) =±2 by choos-

ing

a≡ 1 (mod 13) and b≡ 0 (mod 13).

Then

I(x,y) ≡ x3 ≡ 0,±1,±5 (mod 13).

This shows that I(x,y) 6=±2,±3,±4. We eliminate the possibility of I(x,y) =±5

by choosing

a≡ 1 (mod 19) and b≡ 0 (mod 19).

Then

I(x,y) ≡ x3 ≡ 0,±1,±7,±8 (mod 19).

This shows that I(x,y) 6=±5,±6. Continuing this process, the index is unbounded.

Take a sequence of primes

p1, p2, ..., p9n

of the form 3k + 1, where k ∈ Z. Due to the choice of these primes, we choose

integers a1, ...,a9n so that ai and n are not equivalent modulo pi as described in

Definition 2.1.7. That is,

a1x3 6≡ n (mod p1)

a2x3 6≡ n (mod p2)
...

...
...

a9nx3 6≡ n (mod p9n).

Define

b = p1 p2 · · · p9n.

59



We may find a by solving the following system of modular equations using the

Chinese Remainder Theorem.

a ≡ a1 (mod p1)

a ≡ a2 (mod p2)
...

a ≡ a9n (mod p9N).

Then, I(x,y) 6= ±N for all 1 ≤ n ≤ 9N. Thus, the minimal index of a pure cubic

field can be arbitrarily large.

5.4 Main Result
Motivated by Hall, we evaluate the minimal index for infinitely many pure cubic

fields. Before we state the main result, we may borrow a theorem from Erdös[11].

Let f (x) be a polynomial having integer coefficients with greatest common divisor

1. We assume that the coefficient of the leading term in f (x) is positive.

Theorem 5.4.1. If n≥ 3 and f (x) satisfies the conditions stated above, then there

are infinitely many positive integers x for which f (x) is (n−1)-th power free.

Example 5.4.1. Let p be a prime of the form 3k+ 1, where k is an integer and n

be an integer not divisible by p. We show that

f (x) = 27px3 +27px2 +9px+(p+9n)

is squarefree for infinitely many positive integers x.

Since gcd(27p,27p,9p, p+ 9n) = 1, and 27p is positive, we conclude that there

are infinitely many positive integers x for which f (x) is squarefree by Theorem

5.4.1.

We use the result from Section 5.2 about integral bases and the index form of

pure cubic fields except we give a small restriction on a,b. When we consider the

case a2 ≡ b2 (mod 9), we choose the signs of a and b so that a≡ b≡ 1 (mod 3).
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Then the corresponding integral basis is:{
1,θ ,

θ 2 +ab2θ +b2

3b

}
.

Consequently, the index form in this case is:

I(x,y) =
a(3x+ y)3−by3

9
.

We are now ready to state and prove the main result.

Theorem 5.4.2. Let n be a cubefree positive integer. Then there exist infinitely

many pure cubic fields with minimal index equal to n.

Proof. Let K = Q(
3
√

ab2) be a pure cubic field, where a, and b are squarefree

and such that gcd(a,b) = 1. Let θ =
3
√

ab2. Recall the index form I(x,y) for K. If

a2 6≡ b2 (mod 9), then

I(x,y) = ax3−by3. (5.1)

If a2 ≡ b2 (mod 9), then

I(x,y) =
a(3x+ y)3−by3

9
. (5.2)

Suppose that n = 1. Choose a = 3p for any prime p > 3. Then the family of pure

cubic fields

K =Q( 3
√

3p)

has minimal index m(K) = 1 since the index form of K is

I(x,y) = 3px3− y3,

so that

I(0,−1) = 1.

Now, suppose that n > 1 and cubefree. It is easy to see that the sequence

n2k for k = 1,2, ...,n−1,
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does not contain a perfect cube. Thus the cubic polynomials

fk(x) = x3−n2k, k = 1,2, ...,n−1,

are irreducible over Q. The Galois groups of the cubic polynomials fk(x) contain

an element of order 3 so that by the Chebotarev Density Theorem [9] and Theorem

4.2.5, we may select prime numbers pk, k = 1,2, ...,n− 1 such that fk(x) is irre-

ducible modulo pk. Suppose pk = 3. Then, fk(x) is clearly reducible over F3. Now

suppose, pk are of the form 3e+2, where e is an integer. Then

X3 ≡ n2k (mod pk)

is solvable by Theorem 2.1.7, which contradicts our choice of pk. Thus, pk are

of the form 3e+ 1. Define the positive integer b to be the product of the distinct

primes in the sequence

p1, p2, ..., pn−1.

By the choice of pk, gcd(n,b) = 1, and b is squarefree. Further, we have

b ≡ 1 (mod 3).

Let z be an integer. We define the integer a = a(z) by

a(z) = b(3z+1)3 +9n. (5.3)

We have shown that there are infinitely many integers z for which a is squarefree

in Example 5.4.1. We now have a family of pure cubic fields

K =Q(
3
√

ab2).

We will show that these fields have the property that m(K) = n. By (5.3), it is easy

to see that

a ≡ b (mod 9),

from which we deduce that we are using the index form given by equation (5.2).
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As b ≡ 1 mod 3, we clearly have a ≡ 1 (mod 3), so that we use the index form

I(x,y) =
(b(3z+1)+9n)(3x+ y)3−by3

9
.

A calculation shows that

I(−z,3z+1) = n.

If any of the equations

I(x,y) =±k, k = 1,2, ...,n−1

are solvable for integers x,y then at least one of the congruences

I(x,y) ≡ ±k (mod pk), k = 1,2, ...,n−1

is solvable. These congruences reduce to

n(3x+ y)3 ≡ ±k (mod pk),

implying that the congruence

X3 ≡ ±n2k (mod pk)

is solvable for X modulo pk for some k, which contradicts the choice of the pk.

Thus each of the infinitely many pure cubic fields K in this case satisfy

m(K) = n,

completing the proof.

We now give examples illustrating our main result.

Example 5.4.2. We show there exists infinitely many pure cubic fields K with

m(K) = 4.
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Begin by choosing primes pk, k = 1,2,3 such that the cubic polynomials

fk(x) = x3−42k, k = 1,2,3

are irreducible modulo pk. We find that we may choose p1 = p2 = 7 and p3 = 13.

Thus b = 7 ·13. Next we choose a positive integer z so that

7 ·13 · (3z+1)3 +4 ·9

is squarefree. We find the value z = 0 yields the squarefree integer 127. As in the

proof of our theorem, we have

a = 127 and b = 91.

The pure cubic field

Q
(

3
√

127 ·912
)

has index form

I(x,y) =
127(3x+ y)3−91y3

9
.

The cubic index form equations

I(x,y) =±k, k = 1,2,3

are insolvable by construction, but

I(0,1) = 4,

so that

m(K) = 4.

Next we consider an example which is not covered by our theorem.

Example 5.4.3. We give a pure cubic field K with m(K) = 8. Set

K =Q
(

3
√

23 ·152
)
.
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The index form for K is

I(x,y) = 23x3−15y3.

Using Magma, we find that the cubic index form equations

I(x,y) =±k, k = 1,2, ...,7

are all insolvable. However

I(1,1) = 8,

so that

m(K) = 8.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
This thesis extends Hall’s idea on the unboundedness of minimal indices of pure

cubic fields. Our main goal was to construct a family of infinitely many pure cubic

fields with the minimal index equal an arbitrary cubefree integer n. Chebotarev

Density Theorem held an important role in performing this construction. In fact,

we needed to choose proper primes so that we find the appropriate expressions for

the index forms for these fields and show that the solvability of the index I(x,y) =

1,2, ...,n−1 is impossible.

In Chapter 4, we observed that there was a special relationship between the

conjugacy class of a Galois group G and the factorization of polynomials over some

finite fields. By the Chebotarev Density Theorem, it turns out that the factorization

of polynomials of the form f (x) = x3−ab2 depends on the density |C|/|G| where

C is a conjugacy class of G. Further, the irreducibility of the polynomials f (x) over

Fp occurred for some primes of the form p = 3k+1.

In Chapter 5, we first introduced Dedekind’s result on integral bases of pure cu-

bic fields. Once the index forms were set up, we showed that the minimal indices

of pure cubic fields are unbounded by Hall [1]. In section 5.4, We have constructed

infinitely many pure cubic fields with minimal index equal to one. Then, we used

Erdös’ theorem on squarefree integers to set up appropriate expressions for each

parameters a,b of the standard form K = Q(
3
√

ab2). Finally, we used the Cheb-
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otarev Density Theorem to show that the index form does not equal any positive

integers less than the arbitrary cubefree integer n.

6.2 Future Work
We can apply our result to different algebraic number fields. Dummit and Kisilevsky

[7] and Huard [8] showed that the minimal indices of cyclic cubic fields are un-

bounded. Funakura[12] computed integral bases of pure quartic fields. Gaál, and

Petrányl [13] calculated the elements of minimal index in an infinite parametric

family of simplest quartic fields. Nakahara [14, 15] proved that the minimal index

is unbounded for bicyclic and cyclic quartic fields. The idea presented in this the-

sis can still be applied to these fields mentioned above. Our next goal is to extend

our result to some of these fields mentioned above. We finish our discussion with

providing some examples of the minimal indices of pure quartic and cyclic cubic

fields.

Example 6.2.1. Let K = Q( 4
√

2). Then θ = 4
√

2 is a root of the monic polynomial

f (x) = x4−2. The discriminant of θ is

D(θ) =−2048.

By the result in Funakura [12], an integral basis for K is

{
1,θ ,θ 2,θ 3} .

Thus, the most general element α in the ring of integers OK is expressed by

α = a+bθ + cθ
2 +dθ

4, where a,b,c,d ∈ Z.

By using Maple, we find that

D(α) =−2048{(−2d2 +b2)(4d4−16bc2d +8c4 +b4 +4b2d2)}2.

The Diophantine equation

(−2d2 +b2)(4d4−16bc2d +8c4 +b4 +4b2d2) = 1
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is solvable if (b,c,d) = (1,0,0). Hence, the minimal index m(K) = 1. Therefore, K

is a monogenic field.

Example 6.2.1 considers one particular pure quartic field, which possesses a

power basis. We immediately recognize that the index form is more complicated

compared to the case of pure cubic fields even though we are considering the sim-

plest pure quartic field. Finding a family of infinitely many of these fields with

minimal index equal to an arbitrary integer can be a challenging work. The first

step towards this problem would be to generalize the index forms of pure quartic

fields by considering all the necessary cases for integral basis computed by Fu-

nakura [12]. Lastly, we look at an example of cyclic cubic fields.

Example 6.2.2. Let K =Q(c,d) be a cyclic cubic field. We need to choose appro-

priate integers c and d so that every representation of

4m = c2 +27d2

characterizes a unique cyclic cubic field, where m is a product of distinct primes of

the form 3k+1. Let θ be a root of f (x) = x3−6717x−203749. An integral basis

for K is {
1,

2+θ

3
,
37+7θ +θ 2

45

}
.

By Example 4.1.3, we have shown that

Gal(K/Q)' Z3

as expected. The index form of K is

I(x,y) = 5x3−371y3 +7x2y−146xy2.

Magma shows that there is no integers x,y such that I(x,y) = 1,2,3, or 4. Since

the equation I(1,0) = 5,

m(K) = 5.

We made decent progress on constructing a family of infinitely many cyclic

cubic fields of index equal to n. Example 6.2.2 only shows one particular cyclic
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cubic field with the case n = 5 to confirm the progress. A lot of work has been

done with algebraic number fields of degree 3. However, there is a lot of work

waiting for us for higher degree number fields as mentioned above. There is huge

research potential exploring the minimal indices of these number fields.
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