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Abstract 

 

High-throughput next-generation DNA sequencing has evolved rapidly over the past 20 years. 

The Human Genome Project published its first draft of the human genome in 2000 at an enormous cost of 

3 billion dollars, and was an international collaborative effort that spanned more than a decade. 

Subsequent technological innovations have decreased that cost by six orders of magnitude down to a 

thousand dollars, while throughput has increased by over 100 times to a current delivery of gigabase of 

data per run. In bioinformatics, significant efforts to capitalize on the new capacities have produced 

software for the identification of deviations from the reference sequence, including single nucleotide 

variants, short insertions/deletions, and more complex chromosomal characteristics such as copy number 

variations and translocations. Clinically, hospitals are starting to incorporate sequencing technology as 

part of exploratory projects to discover underlying causes of diseases with suspected genetic etiology, and 

to provide personalized clinical decision support based on patients’ genetic predispositions. As with any 

new large-scale data, a need has emerged for mechanisms to translate knowledge from computationally 

oriented informatics specialists to the clinically oriented users who interact with it.  

In the genomics field, the complexity of the data, combined with the gap in perspectives and 

skills between computational biologists and clinicians, present an unsolved grand challenge for 

bioinformaticians to translate patient genomic information to facilitate clinical decision-making. This 

doctoral thesis focuses on a comparative design analysis of clinical decision support systems and 

prototypes interacting with patient genomes under various sectors of healthcare to ultimately improve the 

treatment and well-being of patients. Through a combination of usability methodologies across multiple 

distinct clinical user groups, the thesis highlights reoccurring domain-specific challenges and introduces 

ways to overcome the roadblocks for translation of next-generation sequencing from research laboratory 

to a multidisciplinary hospital environment. To improve the interpretation efficiency of patient genomes 

and informed by the design analysis findings, a novel computational approach to prioritize exome variants 
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based on automated appraisal of patient phenotypes is introduced. Finally, the thesis research incorporates 

applied genome analysis via clinical collaborations to inform interface design and enable mastery of 

genome analysis. 
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Glossary 

 
CADD A tool for scoring the deleteriousness of single nucleotide variants as well as insertions and 
deletions in the human genome 
 
causal allele An allele that directly results in an observed phenotype, but may have incomplete 
penetrance. Causal alleles for severe monogenic disorders and rare, large-effect risk variants in complex 
disease are highly penetrant  
 
cloud computing A computing infrastructure based on the internet, where the computing and/or storage 
solutions are provided to the users via third-party data centers 
 
compound heterozygosity The situation where two or more mutations are present within the same gene 
(generally both heterozygous), resulting in the disease phenotype 
 
dbSNP The database of short genetic variations, including single nucleotide polymorphisms (SNPs), 
short deletions or insertions, microsatellites and short tandem repeats. Found at 
http://www.ncbi.nlm.nih.gov/projects/SNP/ 
 
ExAC A database of exomes from over 60,000 individuals sequenced as part of various disease-specific 
and population genetic studies. Found at http://exac.broadinstitute.org/ 
 
exome The part of the human genome formed by exons that remain within mature RNA after introns are 
removed by RNA splicing 
 
exome capture A method that employs probes (e.g. on a micro-array) to hybridize to known coding 
sections of the human genome and selectively retain them for high-throughput sequencing, while all other 
fragments are washed away 
 
exome variant server A database of over 6500 exomes from the NHLBI consortium to study the genes 
and mechanisms contributing to heart, lung and blood disorders. Found at 
http://evs.gs.washington.edu/EVS/ 
 
haplotype A combination of alleles at adjacent locations on the chromosome that are often transmitted 
together 
 
HGMD The Human Gene mutation Database, representing a curated collection of gene lesions 
responsible for inherited human diseases. Two versions are available: one is free for academic institutions 
(but not constantly updated), and the other is the more comprehensive professional version requiring a 
commercial license fee 
 
index The individual being studied or reported on. It is usually the first affected individual in a family 
who brings a genetic disorder to the attention of the medical community. A synonymous term often used 
in biomedical literature is proband 
 
mutation A heritable change in the structure of a gene. It does not infer a deleterious effect 
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missense variant A single nucleotide change that results in the codon of a protein coding gene to encode 
for a different amino acid. It is part of the category of non-synonymous variant 
 
NGS Next generation sequencing. Automated Sanger method is considered a “first-generation” 
technology, and newer methods are referred to as next-generation sequencing that can determine the 
sequence of DNA at a much higher throughput than Sanger sequencing, orders of magnitude faster, and 
exponentially cheaper per nucleotide 
 
non-genetic factors Environment and lifestyle are two issues that may influence whether a disease 
phenotype manifest or not 
 
nonsense variant A type of non-synonymous variant that results in changing a codon to a premature stop 
codon, resulting in a truncated protein product 
 
penetrance The proportion of individuals carrying a particular genotype that also expresses an associated 
trait 
 
personalized medicine A model in healthcare that provides medical decisions, practices, and/or products 
tailored to individual patient. Another term to refer to this is precision medicine 
 
polymorphism A DNA variation that differs from the human reference genome that is observed above a 
certain level of allelic frequency (typically 1%) in the human population, making it a common variation 
 
proband See definition of “index” 
 
rare mutation A variant that is observed with a frequency less than 1% across the matching population, 
or none at all 
 
read A portion of the DNA fragment that has been sequenced 
 
risk Presence of faulty genes do not always lead to the expected phenotype 
 
Sanger sequencing The modern version involves a chain termination method using a mix of 
deoxynucletides and four-color dideoxynucleotides that terminate polymerization when 
incorporated. DNA sequence is obtained by reading off the fragmentation patterns separated by 
size on a gel or in a capillary 
 
SNP Common variant observed across the population. Stands for single nucleotide polymorphism. I do 
not address novel variants as SNPs, but instead refer to them as single nucleotide variants (SNVs), which 
in my definition, also includes SNPs 
 
structural variant A variant which is 1kb or larger. Copy number variants (CNVs) are included under 
this category 
 
synonymous variant A substitution of one base for another in the exon of a gene coding for a protein that 
results in the same amino acid sequence. 
 
variant A change in DNA structure that differs from an accepted standard, typically against the human 
reference genome 
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whole genome The complete DNA sequence of an organism’s genome 
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Chapter 1: Introduction 

 

1.1 Biology background 

Over a 65-year period, genetics research has moved from Watson and Crick’s description 

of the DNA double helix to the development of high-throughput instruments capable of 

determining the 6 billion nucleotide sequence of an individual genome in a single day[1]. During 

this period, clinical genetics research has provided insights into genetic disorders and the types of 

mutations that arise with clinical phenotypes. The representative mutation classes are single-base 

substitutions, small insertions/deletions (<30bp), copy number variations (e.g. large deletions and 

duplications), and structural variations (e.g. translations, inversions). Figure 1-1 and 1-2 show 

common types of DNA variations and how they can disrupt gene sequences. Between 1980s-90s, 

dozens of disease genes were discovered, revealing a diverse range of genetic mechanisms and 

inheritance patterns, from autosomal dominant to X-linked recessive and mitochondrial 

inheritance (Table 1-1). One historical example was the cloning for the first human disease gene 

by Dr. Stuart Orkin, revealing a single base substation in X chromosome responsible for chronic 

granulomatous disease[2]. 
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Figure 1-1 Common classes of single nucleotide DNA variants. The dotted line marks the boundary of each codon. 

The uppermost portion of the figure shows a normal DNA sequence. The lower 3 portions show how codons are 

changed, depending on the type of mutation introduced. For simplicity, deletion and insertion are illustrated with 

removal/insertion of a single G-C respectively, but most insertions and deletions observed in human populations 

span beyond 1bp[3]. 
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Figure 1-2 Illustrative examples of copy number variations and structural variations. Each letter corresponds to a 

section in the chromosome. The categories highlighted here are not meant to be exhaustive. 

 
  Example disease Example gene Reference 
Autosomal 
dominant 

Hereditary nonpolypopsis colorectal cancer MSH2 [4] 

Autosomal 
recessive 

Cystic fibrosis CFTR [5] 

Sex-linked 
dominant 

Chronic granulomatous disease PHOX [6] 

Sex-linked 
recessive 

Duchenne muscular dystrophy DMD [7] 

Mitochondrial-
inherited 

Lebers hereditary optic neuropathy MT-ND6 [8] 

Table 1-1 Common inheritance patterns and a classical disease example for each. 

 
Common disorders such as heart disease, asthma, or diabetes are rarely caused by single 

gene defects, rather they arise from the combined effects of multiple genes (polygenic) 

interacting with environmental factors and lifestyle. Although polygenic disorders tend to cluster 
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in families, the pattern of inheritance is difficult to detect, as many do not conform to Mendelian 

patterns. Importantly, genetic penetrance of phenotype-causing variations varies widely, making 

interpretation of genomes more challenging. 

 

1.1.1 Technologies for DNA Analysis: 1980s-2015 

Molecular genetics advances have been catalyzed by a series of innovations. Over the 

past 35 years, improvements in DNA analysis approaches and technologies have enabled 

geneticists to transition from population-driven studies to pursue increasingly specific cases of 

rare diseases. In the 80s and 90s, the analysis largely focused upon screening for variations that 

eliminate or create restriction enzyme recognition sites via restriction enzymes, or analysis of 

varying fragment lengths in polymerase chain reaction (PCR)-amplified products[9]. Highly 

relevant to the current era are technologies for array-based high-throughput genotyping that can 

assess thousands of single nucleotide polymorphisms (SNPs) simultaneously throughout the 

genome. This provides the basis for genome-wide association studies (GWAS), in which cohorts 

of individuals are profiled across ~105 SNPs to reveal those statistically biased between cases and 

controls[10]. With such high-throughput genotyping technology, the International HapMap 

Project (http://hapmap.ncbi.nlm.nih.gov/) determined common allele segregation patterns 

through linkage analysis across different human populations, providing a haplotype map of the 

human genome. Using this map, it has been increasingly feasible to link chromosomal regions to 

complex disorders. Similarly, Array CGH (array-comparative genomic hybridization), a 

hybridization-based method capable of detecting genomic copy number variations (CNVs) 

across the whole genome with higher resolution (~104bp) than traditional chromosome 

karyotyping, has been used to study the frequency of CNVs between cases and controls[11, 12]. 
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Sanger’s Nobel prize-winning method for DNA sequencing with terminators, the 

technology that drove the Human Genome Project, has been accelerated by intermittent 

innovations to increase throughput and decrease cost[13]. The transition from radioactive 

terminators to dye-based terminators allowed single tube sequencing reactions, which have 

subsequently been moved into parallel reactions on a single surface, so called next generation 

sequencing (NGS). The overall cost per base pair has decreased substantially for the past 25 

years (Figure 1-3). The main advantage for NGS is the ability to produce enormous data at a 

relatively cheap cost in short periods of time[14]. While newer technologies such as single 

molecule sequencing are under development that may increase read length, sensitivity, accuracy 

and throughput[15], it is sufficient for this thesis to understand that the capacity now exists to 

sequence the full human genome for a reasonable cost.  

 
Figure 1-3 The cost of sequencing a human genome. Data from NHGRI Genome Sequencing Program, 

http://www.genome.gov/sequencingcosts/, on October 30, 2015. 
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Indeed, researchers are performing genome sequencing at a rapidly accelerating pace.  

The 1000 Genomes Project (http://www.1000genomes.org, [16]) is an international research 

effort to capture human genetic variation, but instead of focusing only on common variants like 

HapMap[17], it reveals rare variants with minor allele frequencies ≤ 1% by sequencing the 

genomes of upwards of 2000 individuals from various ethnic populations. At present it is the 

most detailed catalogue of human genetic variation in healthy populations of distinct ancestries, 

while databases such as ExAC (http://exac.broadinstitute.org) and UK10K 

(http://www.uk10k.org/data_access.html) are the current most comprehensive resources for 

allelic frequencies across an aggregated collection of large-scale sequencing projects in various 

disease-specific population studies. At the time of writing, the UK has announced intentions to 

sequence 100,000 genomes within its National Health Service, and NGS in Canada is rapidly 

moving from a research technology to a clinical standard[18]. 

 

1.1.1.1 Next-generation sequencing platform 

NGS technologies involve three stages of template preparation, massively parallel 

sequencing with image processing, and informatics processing of reads to identify variation from 

a reference genome (or perform de novo sequence assembly). Due to the dominant role Illumina 

(California, USA) currently plays within the NGS market, this section illustrates their Genome 

Analyzer sequencing protocol as an example of the steps involved in next-generation DNA 

sequencers[19]. After obtaining genomic DNA, the first stage is to fragment the molecules and 

recover pools of similar lengths. Fragmentation is performed using adaptive focused acoustics 

technology that focuses acoustic energy to create cavitation events within the DNA sample to 

disrupt molecular bonds. Oligonucleotide adaptors are added to the ends of the fragments size-
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filtered by agarose gel electrophoresis. The DNA is PCR-amplified and denatured to single-

strands. In a solid-phase amplification process, the strands are hybridized to a template 

oligonucleotide consisting of immobilized primers affixed to a surface. Subsequently, 

fluorescent-labeled dideoxynucleotides are added and incorporated one nucleotide at a time. 

Most Illumina machines use four-color method where each color represents one of the AGCT 

reversible terminating nucleotides, and the laser-triggered emitted fluorescence is captured by a 

high-resolution camera. The result is a series of digital images that are converted sequentially to 

DNA sequences for each discernable position across the surface. For more information, refer to 

Figure 1-4. 
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Figure 1-4 An overview of the Illumina sequencing protocol. In part A, input genomic DNA is randomly 

fragmented, and the fragments are ligated to adapter oligonucleotides on both ends. In part B, the single-stranded 

DNA-adapter complex hybridizes to the inner surface of the flow cell channels, which is coated with DNA primers. 

In part C, unlabeled nucleotides and DNA polymerase are added to construct a second “DNA bridge” which is 

complementary to the first. This is followed by denaturation to break up the bridge, leaving back to single-stranded 

templates anchored to the flow cell surface. Multiple iterations of this form clusters. Over 100-200 millions of such 

clusters are generated. This entire process here is called solid-phase bridge amplification. In part D, a four-color 

method is used where each color represents one of the AGCT nucleotides. Each type of this fluorescent nucleotide, 

called dideoxynucleotide, is added sequentially with one nucleotide incorporated at a time. A cleavage step removes 

the inhibiting group and the fluorescent dye. The four colors emitted by the incorporated nucleotides are detected by 
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a laser that excites the fluorescent molecule at a specific wavelength, and the emission signal is captured by a 

detector. The result is a series of images that when analyzed sequentially, convert to DNA sequences.  

 

1.1.1.2 Exome sequencing and whole genome sequencing 

Recent advances in NGS technology allow researchers to identify rare mutations within 

small families, reducing the need for large pedigrees or cohorts for causal gene discovery 

(although proving causality for the family-specific variants can be a challenge, as discussed later 

in the thesis) [20]. The technology accelerates genome analysis in clinical research for rare 

disorders, with more than 2400 clinical papers published, ranging from the discovery of genes 

responsible for Kabuki Syndrome to familial Parkinson’s Disease[21, 22]. As sequencing the 

whole genome was initially cost prohibitive, a DNA filtering procedure has commonly been 

applied to focus sequence production on protein encoding exons, a process called “exome” 

sequencing. As protein-altering mutations are most readily interpreted at present, exome analysis 

has been popular for the discovery of monogenic disease genes[23]. The workflow of exome 

sequencing is essentially the same as whole genome, with the exception of an exome capture and 

enrichment stage following library preparation prior to DNA sequencing (Figure 1-5). 

Enrichment strategies include PCR-based approach, molecular inversion probes, or array-

based/solution-based hybridization[24]. Each enrichment method has advantages and pitfalls; 

PCR has the highest specificity, but performs worse in terms of uniformity in target coverage. 

Hybridization-based methods hold the advantage of greater throughput, capturing large target 

regions in a single experiment, but requires expensive hardware and relatively large amounts of 

input DNA[24]. To illustrate how enrichment works, in aqueous-phase hybridization capture, the 

randomly shared DNA fragments are hybridized to biotinylated DNA or RNA baits. The 
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hybridized fragments are recovered by biotin-streptavidin-based pull-down, followed by 

amplification and next-generation sequencing (each protocol is platform dependent).  

 

 
Figure 1-5 The overview workflow of exome sequencing, based upon Shendure et al. [25]. 
 

The first major proof-of-principle for exome analysis was published by Shendure et al. in 

which they sequenced 12 exomes: 8 from HapMap individuals, and 4 with Freeman-Sheldon 

syndrome, an autosomal dominant disorder. They successfully identified variants in MYH3 

known to characterize this syndrome[26]. Miller syndrome is the first genetic disorder with its 

genetic etiology discovered by exome sequencing. Performed by the same research team, two 

previously unknown variants shared by four affected individuals in three independent kindreds 

were identified, affecting the gene DHODH that encodes a key enzyme in the pyrimidine de 

novo biosynthesis pathway[27]. The gene was confirmed to be disrupted in additional families by 

Sanger sequencing. While increasing numbers of high penetrance mutations have been 

discovered outside of protein-coding regions using whole-genome sequencing (WGS)[28], the 
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more limited interpretability of non-coding variants and their high volume remain a challenge for 

the field. Moreover, the greater financial cost and higher complexity of technological 

infrastructure required to process, analyze and store whole-genomes versus exomes have thus far 

limited WGS to select large-scale clinical centers, although at the time of thesis submission a 

transition from exome sequencing to WGS is clearly in process.  

 

1.1.1.3 Typical NGS bioinformatics pipeline 

The informatics workflow for processing genomic data consists of multiple steps. First, 

initial instrument images are processed to define the sequences. This varies by technology, and is 

often performed at the instrument level, as image data is too large for long-term retention with 

current storage technologies. The output from the sequencing machines are called “reads”, which 

are generally delivered in FASTQ format that consists of a read ID, the instrument-called DNA 

sequence, and a quality score for each position. Genomic aligners such as Bowtie2[29] and 

BWA[30] are used to map each read to a corresponding position in a human reference genome. 

See Table 1-2 for a selected list of alignment software. The typical output from the aligner is a 

BAM file, containing information about the qualities of sequence reads and the positions of their 

alignments. Post-alignment processing can be performed by tools such as Picard and Genome 

Analysis Toolkit (GATK)[31] to correct for possible misalignments, especially at extremity of 

reads.  The diverse software can return different results (Figure 1-6). To call variants and their 

genotypes, popular software includes SAMtools mpileup[32] and GATK UnifiedGenotyper)[31], 

which take in a BAM file and return variants that pass a designated mapping criterion and quality 

score. To attach a functional annotation to the variant, software such as SnpEff[33] and 

ANOVAR[34] assign labels to each variant, distinguishing coding variants from non-coding 
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variants, and separating coding variants into synonymous, missense, and nonsense categories 

(see glossary for their distinctions). Computational predictions on allele deleteriousness are 

generated by software such as SIFT[35], PolyPhen-2[36] and Combined Annotation Dependent 

Depletion (CADD)[37]. See Table 1-3 for a more complete list of variant callers and damage 

prediction tools. Evaluation of mapped reads can be manually performed with visualization 

software such as Integrated Genomics Viewer (IGV)[38]. 

 

 

Figure 1-6 Impacts on results from different software. Part A is an example of a deletion which GSNAP aligner is 

able to detect but Bowite2 pipeline cannot. The alignment here is visualized by IGV. Each horizontal grey bar 

represents one individual mapped read. Two panels are shown, separated by a horizontal divider. The upper panel 

shows the alignment with GSNAP, and the lower panel shows the alignment with Bowtie2. In this example, 

Bowtie2 fails to align the reads properly to allow the detection of the deletion, and instead returns 4 mismatches 

(TGAT) as shown by the bright red, orange and green colors in one of the reads. GSNAP is able to align the reads 

correctly, depicting the deletion of the 4-bases deletion while simultaneously avoiding false mismatches. This is 

only an anecdotal example and does not mean GSNAP is superior to Bowtie2. The accuracy of mapping in regions 

of insertions/deletions remains an ongoing research problem. Part B shows an example of a successful realignment 

correction by GATK local realignment function. The figure again is a screenshot of IGV. The upper panel shows the 

alignment by Bowtie2 without GATK correction. We see 3 of the 5 reads have 2 mismatches: an A at the end, and a 
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C 4 bases to the right. The bottom panel shows the same alignment after GATK local realignment. GATK correctly 

extends the 5’ ends of 3 reads with the mismatches so they all now instead show the 4-bases deletion. 

 
Name Method 
Bfast Hash the reference 
Bowtie/Bowtie2 FM-index 
BWA FM-index 
GSNAP Hash the reference 
MAQ Hash the reads 
Mosaik Hash the reference 
Novoalign Hash the reference 

Table 1-2 The current popular genomic aligners used for mapping short-read DNA sequences. 

 
Name Link 
SNVs and short 
InDels caller   

GATK 
HaplotypeCaller 

https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walk
ers_haplotypecaller_HaplotypeCaller.php 

GATK 
UnifiedGenotyper 

https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walk
ers_genotyper_UnifiedGenotyper.php 

SAMtools http://samtools.sourceforge.net/ 

VarScan http://varscan.sourceforge.net/ 

SVs caller   

Break Dancer https://github.com/kenchen/breakdancer 

Pindel http://gmt.genome.wustl.edu/packages/pindel/ 

SVMerge http://svmerge.sourceforge.net/ 

Predicting variant 
functional impacts   

B-SIFT http://research-pub.gene.com/bsift/ 

Name Link 
CADD http://cadd.gs.washington.edu/ 

MAPP http://mendel.stanford.edu/supplementarydata/stone_MAPP_2005 

PhD-SNP http://snps.biofold.org/phd-snp/phd-snp.html 
PolyPhen/PolyPhen
V2 http://genetics.bwh.harvard.edu/pph2/ 

SIFT http://blocks.fhcrc.org/sift/SIFT.html 

SNAP http://www.rostlab.org/services/SNAP 

SNAPper/Pedant http://pedant.gsf.de/snapper 
 

Table 1-3 The current popular variant calling software and variant functional impact prediction tools. 
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At this time, up to 500,0001 single nucleotide variants (SNVs) can be reported per exome, 

with some variance related to ancestry[39]. Filtration and prioritization is necessary to identify 

causal alleles for Mendelian traits. One approach is to look for novel or rare alleles based on 

databases like dbSNP, which catalog the observations of SNPs and short insertions/deletions 

(InDels; typically 1-30bp size range) submitted by large-scale sequencing projects (e.g. 1000 

Genomes Project[3]) and other sequencing centers around the world[40]. This builds on the 

assumption that the filter set(s) contains no alleles actually causing the phenotype being studied. 

This assumption may not be true because dbSNP holds a subset of cases derived from individuals 

with unreported phenotypes or unaffected carriers (e.g. variants with incomplete penetrance)[41]. 

Additional approach for linking variants to phenotypes is to screen for variants present in known 

disease databases such as Human Gene Mutation Database (HGMD), which is a manual 

compilation of published human inherited disease mutations. HGMD exists in two formats: an 

academic version (http://www.hgmd.org/) and a commercial version that is more comprehensive 

and more frequently updated. The third strategy is to detect relationships between the impacted 

gene and the observed phenotypes through automated literature analysis using gene-to-disease 

profile comparisons, such as enabled for MeSHOPs[42]. Tools such as MeSHOPs create a 

weighted linkage between a particular gene and a disease by extracting keywords (e.g. Medical 

Subject Headings) from peer-reviewed scientific literature about the gene, and performing 

statistical over-representation analysis to look for disease keywords that are over-represented in 

the gene-related literature versus a control set. Candidate alleles can be further stratified based on 

1 This number is dependent on the breadth of exon coverage for the employed exome capture kit, and the 
specific setups of the bioinformatics pipeline used to generate the data. 
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the predicted deleteriousness. Mode of inheritance can be used as a filter if exomes from related 

individuals are available. Parent-child trios are especially important for identifying de novo 

mutations (Figure 1-7). Sequencing and filtering for shared novel variations or genes across 

multiple unrelated affected individuals is another option, especially if the underlying genetic 

defect is expected to be similar. Section 1.1.2.1 describes why this approach is helpful, and 

section 4.1 discusses how this can be difficult to achieve for rare disorders and the implications. 

 
Figure 1-7 Selected filtering strategies for finding disease-causing variants using exome sequencing. Part A shows 

the 3 example Mendelian models evaluated in trio exome structure (e.g. father-mother-index). The leftmost figure is 

de novo dominant model, the middle one is homozygous recessive model, and the rightmost model is compound 

heterozygous. Part B shows a distinct strategy where the filtering is done by looking for shared mutations or shared 
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affected genes across multiple unrelated, affected individuals. Note: the pedigrees in the figure were drawn for 

illustrative purposes and are not meant to represent the pedigree rules used in clinical literature. 

 

Note 1: as an example of NGS analysis pipeline, Figure 1-8 describes a snapshot of the 

Wasserman lab NGS analysis pipeline as of November 2015. This is the pipeline that I helped 

assemble, and has been used to generate most of the datasets used for my thesis research 

(section 1.3). 

 

 
Figure 1-8 A snapshot of the Wasserman NGS pipeline in November 2015, and the tools involved. We feed the 

reads across a combination of different genomic aligners that align the reads to the human reference genome 

(GRCh37/hg19 and GRCh38/hg38 both available). Bowtie2 is used primarily as the first pass through the data, and 

if re-analysis of the data is needed, we try different aligners such as GSNAP, which is more flexible at detecting 

larger complex genomic variants (e.g. long insertions/deletions, splicing and gene fusions) than Bowtie2. Picard is 

next used to remove duplicate reads to correct for PCR amplification bias. GATK local realignment is used to ensure 
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the ends of the reads are aligned as accurately as possible. Samtools is used to call for SNVs and InDels. Pindel is 

used for whole-genomes to call for large structural variations (SVs; up to 10kb). The resulting variants are filtered 

and prioritized by selecting for variants that fit specific inheritance patterns (typically the classical Mendelian 

models), comparing against healthy and disease population databases, and assigning likelihood of deleteriousness to 

the remaining variants through in silico prediction software. 

 

1.1.2 Clinical diagnostics 

Clinical DNA-based diagnostics enable doctors to characterize an individual’s 

vulnerabilities to inherited diseases and to predict the influence of genetic variation on 

therapeutic response. DNA-based diagnostics in the past have largely focused on specific genes 

known to cause disorders (e.g. Sanger-based sequencing on BRCA1 for breast cancer[43]). When 

there are numerous genes to screen, such diagnostics are expensive to perform and time 

consuming to analyze. Presently, WGS is used in select cancer centers to help guide cancer 

treatment, and in certain medical centers for newborn screening, focusing on known severe 

childhood diseases. Within the coming decade, it is anticipated that full genome sequencing will 

be more widely adopted as the first-tier approach in place of specific gene tests[44].  

Note 2: while new variants are constantly being reported with associations to specific 

phenotypes, noise exists in the literature and only a fraction of informative variants are reliable 

predictors of phenotype[45]. 

Note 3: The application of genome sequencing brings many ethical questions forward to 

address. While these issues are critically important, they are beyond the scope of this thesis. 

 

1.1.2.1 Case studies with clinical exomes and whole genomes 

The previous sections of this introduction have provided a basis for understanding exome 
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and WGS sequencing, and how such data can be processed. To better demonstrate the clinical 

relevance of exome/whole genome sequencing and the resulting impact on patient treatment, in 

this section I highlight my selected co-authored publications of applied exomes and whole-

genomes in clinical collaborations. There are two additional purposes to this section: 1) to 

exemplify my doctoral contributions beyond the chapters included in the thesis, 2) to illustrate 

the various strategies applied to cases of successful clinical diagnosis with exomes and whole-

genomes. The studies below were initiated as part of the Treatable Intellectual Disability 

Endeavor in British Columbia and approved by the ethics committees of the University of British 

Columbia (Vancouver, Canada). 

Case report 1: Discovery of a rare missense mutation p.Ala458Ser in gene FAAH2 

(OMIM#300654)[46]. During the first round of analysis the team was restricted to a single 

exome for the index case, which did not highlight a causal model in the midst of 65 candidate 

mutations. The recruitment of additional family members (parents and siblings) led to a different 

conclusion because additional data allowed intersection analysis to be performed to narrow the 

candidate list from 65 to 11. The role of FAAH2 in the phenotype became more obvious when it 

was not buried among dozens of candidates. Biochemical and molecular modeling studies 

confirmed that the mutation resulted in a partial inactivation of FAAH2, leading to a disruption of 

the endocannabinoid signaling pathway. The molecular evidence was sufficient to suggest that 

phenotypically, this results in the manifestation of autistic features and associated movement 

abnormalities and learning disabilities as seen in the 2-year old male patient.  

Case report 2: RMND1 (OMIM#614917) deficiency is associated with congenital lactic 

acidosis, renal failure, deafness, and dysautonomia in neonates[47]. Through trio-exome 

sequencing on the parents and the index, we identified two heterozygous variants under a 
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compound heterozygous model where each variant was inherited from one parent[47]. One of the 

two variants had been previously found to be partially disruptive to the gene function by an 

external lab (data unpublished at the time), leading us to reach out for experimental 

collaboration. Even though the second of the two variants was predicted to be benign by 

computational software SIFT and PolyPhenV2, the experimental side found significant reduced 

levels of RMND1 in patient fibroblasts, the translation defect in these cells could be rescued with 

wild-type cDNA. The protein itself was almost undetectable by immunoblot analysis in patient 

muscle. The experience with this gene highlights the importance for research collaborations (we 

would not have pursued RMND1 if we had not known one of the two variants was being studied 

by a specialized lab) and the potential danger of over-reliance on computational predictions. If a 

stringent removal of all predicted-benign mutations was applied, RMND1 would never have 

made it into the candidate list. 

Case report 3: Homozygous missense mutation in ZFYVE20 (OMIM#609511) in a female 

patient with intractable seizures, dysostosis, macrocytosis and megalobastoid erythropoiesis[48]. 

The p.Gly425Arg mutation was identified through trio-sequencing on the parents and index, and 

later Sanger-confirmed to be absent in unaffected siblings. At the time of analysis, the gene was 

not known to cause any human disease, and our study was the first to associate the gene to a 

specific set of human phenotypes. We proposed that the mutation disrupted the endocytosis 

pathway, and consistent with our model, the mutant allele had a 50% decrease in transferrin 

accumulation (which was corrected by wild-type allele transfection), and patient’s fibroblasts 

displayed impaired proliferation rate, cytoskeletal and lysosomal abnormalities. The take-away 

message here is that by screening for variants beyond the known disease genes, one increases the 

likelihood for clinical diagnosis. While focusing on known disease genes may simplify the 
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interpretation and accelerate the analysis, it runs the risk to miss novel discoveries for advancing 

medical genetics. 

Case report 4: Second family with AIMP1 (OMIM#603605) deficiency[49]. Through 

trio-exome sequencing, we identified a homozygous nonsense variant resulting in a truncated 

AIMP1[49]. Previous studies on the gene had reported a Perlizaeus-Merzbacher-like phenotype, 

but our female patient instead showed early-onset developmental arrest, intractable epileptic 

spasms, and a rapid clinical course leading to premature death consistent with a primary neuronal 

degenerative disorder. Since AIMP1 has a known critical role in neurofilament assembly, its 

impairment would expectedly result in neuronal/axonal dysfunction. Our study therefore 

expanded the phenotype spectrum of a previously characterized disease gene, and shed light to 

the role of AIMP1 in differential diagnosis of infantile onset, progressive neurodegenerative 

disease. The phenotype spectrums are constantly being refined, and this is especially true for rare 

diseases with limited samples; AIMP1 would not have been selected if we had been overly 

stringent looking for complete phenotype matches with previous case reports. 

 

1.1.2.2 Challenges 

Several challenges remain for widespread incorporation of exome/whole-genome 

sequencing into clinical diagnosis and screening. One need is access to comprehensive 

annotations of variants discovered by diverse sequence collections to facilitate prioritization and 

filtering processes discussed in 2.2.3 and 2.3.1. Databases linking variants to diseases such as 

HGMD, CLINVAR, Human Variome Project (http://www.humanvariomeproject.org/) and 

GEN2PHEN (http://www.gen2phen.org) are efforts to compile comprehensive collections of 

validated variants, the later aiming to unify human and model organism genetic information to 
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expand Genotype-To-Phenotype(G2P) mapping. Strategies for interpreting variants and 

guidelines/standards for reporting results from genomic projects at a clinical setting need to be 

established. Effective means of delivering such genomic information and computational 

predictions to healthcare professionals have not been sufficiently developed. Tools to empower 

clinicians to interpret and identify candidate variants are a key need for the clinical 

implementation of WGS (see section 1.2.2 for selected tools). These translational informatics 

approaches to convey variant information and facilitate diagnosis or prioritization of candidates 

is an unmet challenge, with each user community needing specific capacities. These challenges 

are the elements I address as the main focus of my PhD thesis. 

 

1.2 Computer user-interface evaluation background 

As genomic data gets incorporated into patient care, we begin to witness a coalescence of 

bioinformatics and health informatics. The result is the emergence of a field called biomedical 

informatics, defined as the “interdisciplinary, scientific field that studies and pursues the 

effective uses of biomedical data, information, and knowledge for scientific inquiry, problem 

solving, and decision making, motivated by efforts to improve human health” (adapted from 

slides by EH Shortliffe, AMIA 2009).  

A challenge of biomedical informatics within genomic medicine is to integrate and 

analyze high-throughput data to elucidate the molecular basis of a disease, and translate this 

knowledge into clinical practice[50]. Genomic medicine holds many applications in healthcare, 

including personalized medicine based on one’s genetics, predictive methods for disease 

susceptibility and patient outcomes, and stratification. However, the advances in technology and 

computational methods can lead to a gap between information systems and clinicians, delaying 
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the therapeutic impact of new technologies. Venues such as AMIA Summit on Translational 

Bioinformatics are formed to bridge this recognized gap. A similar approach is pursued by the 

eMERGE (electronic Medical Records and Genomics) Network to explore the benefits of 

coupling DNA repositories to electronic medical record systems to further promote genome 

science[51]. This consortium focuses primarily on GWAS genotyping data, but as NGS cost 

continues to decrease, we will need clinical systems specifically targeted for interpreting NGS 

output for healthcare professionals. 

1.2.1 Clinical decision support systems 

The genomic output from any NGS pipeline is not clinically useful unless it is properly 

translated for clinicians or hospital staff working with such data. The translation system has to 

provide intelligently filtered, patient-specific information and advice(s) to clinicians at the 

appropriate time. In human computer interaction, computerized clinical decision support systems 

(CDSS) are designed to improve clinical decision making[52]. The motivation behind CDSS is 

the acknowledgement that humans cannot follow clinical protocols flawlessly, and many 

processes can be computerized and automated to minimize errors and speed up decision making 

time[52]. Automation takes advantage of databases where the vast amount of information stored 

is beyond what humans can commit to memory. CDSS is most effective when delivered 

automatically as part of clinician workflow that fits the time and location of decision making, 

with a computer-generated recommended course of action for clinician consideration[53]. 

Lobache et al. performed a systematic review of clinical decision support systems and found 

over 90% of CDSS evaluated in randomized controlled trials have significantly improved patient 

care[54]. 
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Such support systems have been implemented in numerous medical fields, including 

medicine, psychiatry, surgery, and pediatrics[55]. For instance, Emery et al. developed a 

decision support system for general practitioners to assess the genetic risk of breast and 

colorectal cancer by allowing doctors to create family-specific pedigree trees, report qualitative 

evidence for or against increased risk, and incorporate any rule-based genetic risk guideline. 

Much of the prior work has focused on gene-specific reporting. With the new genome-scale data 

comes a new set of challenges for the presentation of data to diverse clinician communities.    

 

1.2.2 Towards visualization and interpretation of sequence variation data 

The initial steps in designing genomics interpretation software have focused on users with 

a strong genetics background, from research biologists to clinical geneticists. Below I highlight a 

few key selected tools drawn from different software categories.  

The first category of tools allows non-computational scientists to process and analyze 

genomic data in a manner consistent with a typical NGS pipeline (section 1.1.2.3). NextGENe 

(http://www.softgenetics.com/NextGENe.html) is a self-contained commercialized software 

package that enables researchers without strong programming and database skills to process data 

from exome or whole-genome sequencing. Users supply raw sequenced reads and the program 

handles the mapping, the variant calling, and returns a list of SNVs/InDels discovered, along 

with annotations for each variant such as the gene that is impacted, the codon change, the 

genotype, as well as hyperlinks to dbSNP and GenBank. The software has built-in functions for 

filtering variants to generate specific subsets, such as variants predicted to be damaging, or 

variants predicted to fit a specific inheritance pattern based on a family pedigree. NextGENe also 
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has a built-in browser to browse the genomic window for a variant and see how the sequenced 

reads mapped at the location.  

While NextGENe is not freely accessible, open source academic software such as 

MagicViewer[56] also exists, with similar capabilities that allows users without in-depth 

computational skills to align genomic sequences, perform their own variant calling, attach 

annotations to the called variants, filter variants based on a set of user-defined criteria, and 

visualize sequence depth distribution of mapped reads along the reference genome (Figure 1-9). 

The Galaxy system[57] provides another open-source option for processing FASTQ data, and 

viewing the annotated sequence variants. Users interact with the whole pipeline via the Galaxy 

web browser, and unlike the previous two, it requires no local installation. The pipeline starts 

with quality control on the input dataset, displaying summary information such as per 

base/sequence quality scores, sequence length distribution, and GC content. This is followed by 

read mapping, and users have the option to incorporate command-line software such as GATK 

into Galaxy browser to interact with it graphically instead of via command-line terminal. While 

Galaxy offers greater flexibilities to incorporate a diversity of open source tools than NextGENe 

and MagicViewer, Galaxy has a more limited viewing option with less emphasis on filtering 

capabilities[58]. 
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Figure 1-9 Distinct interface designs for processing, manipulating, and displaying exome variants. Part A shows the 

interface of MagicViewer for uploading datasets, visualizing the alignment, and filtering for variants of interest. Part 

B shows an example output from VAAST, which focuses more on variant prioritization instead of visualization. Part 

C shows three separate views from VVAP, an in-house variant viewer and prioritization software developed by Dr. 

Jan Friedman’s laboratory at Child Family Research Institute in Vancouver, British Columbia, Canada. The left 

figure is the variant view of VVAP, displaying variant information in a format similar to Microsoft Excel. The 

information can be exported as a tab-delimited file. The figure in the middle shows how user can customize many 

aspects of the input file format by specifying which column in the input file corresponds to which information 

header. The rightmost figure shows the options for filtering, such as based on specific genomic position, genotype, 

gene ID, or expression levels. 
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Not all software is designed to cover the entirety of genome analysis. Some software has 

been developed with the assumption that the users will perform specific tasks in distinct 

packages, such as the generation of a list of variants.  In such cases, emphasis may be placed on 

assisting users to interpret the functional roles of the identified variants, and to prioritize them for 

candidate mutation identification. SVA[59] is a visualization tool specialized for assigning 

functional associations to each predicted variant and visualizing them in a browser. The method 

of annotation is primarily done by linking each variant to the gene that it is situated in; once the 

affected gene name is established, gene functions are compiled by integrating information from 

Ensembl core, gene ontology, HapMap, 1000 Genomes Project, and KEGG Pathways. As proof 

of concept, the developers analyzed a patient with metachondromatosis using SVA’s filtering 

function to filter for variants absent in dbSNP and absent in control genomes, and focused on 

protein-truncating variants. They identified an 11-bp frameshift deletion on PTPN11 gene known 

to cause metachondromatosis. Due to the diverse databases that SVA depend on, SVA requires a 

local memory of over 8.9Gb on the user’s machine in order to run, which may not be feasible in 

a typical clinical computing station.  

To bypass the need for high-end computational infrastructure, VarSifter[60] is a light-

weight software developed at NIH to allow biological investigators of varying computational 

skills to quickly sort, filter and sift through sequence variation data. The software takes in VCF 

files as input, and displays the variants in a GUI with each row representing a variant, and 

columns represent the annotations such as genotypes, quality scores, and read depth. Once input 

is loaded, users can setup customized hierarchical set of filtering criteria using logical 

“AND/OR/XOR” connections. The program supports regular expressions to add flexible text 

matching. To demonstrate Varsifter’s lightweight ability to run on a typical computing station, 
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the authors compared VarSifter to Microsoft Excel and found similar RAM (random access 

memory) usage, with a faster time to load the data. 

The last category of tools presented are those with built-in filtering statistical algorithms 

to return a list of candidate mutations to users without depending on user specification of 

filtering criteria. VAAST[61] is a probabilistic variant prioritization program that combines 

amino acid substitution effect with variant frequency data to identify causative mutations. While 

useful for identifying variants/genes involved in disease, this tool is not meant for visualizing 

alignment/variant data as a whole (Figure 1-9).  

With so many tools available, it is easy for a user to be overwhelmed and not certain 

which software is suitable for his/her research needs. Not all tools are designed to handle certain 

situations that may benefit by having the system generate a specific recommended course of 

action, or automatically flag information of interest. Furthermore, at the start of thesis research, 

no proper usability tests had been performed on existing systems to evaluate their usability and 

impact on workflow efficiency. Certain software, although claimed to address a certain task, may 

not actually deliver the expected results or may be too complicated for a user to follow. The main 

exploration of this thesis is the usability of software for applied clinical genome sequence 

interpretation, including the identification of strengths and weaknesses which impact the speed 

and accuracy of user decision making, ultimately seeking ways to enable the usage of full 

genome sequencing in healthcare. 

 

1.2.3 Usability in human-computer interaction 

Before deployment, it is essential for the usability of any CDSS to be comprehensively 

studied to ensure the system adds improvements, and does no harm to the patients (i.e. 
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technology-induced errors)[62]. Usability is defined as “the capacity of a system to allow the 

targeted users to carry out their tasks safely, effectively, efficiently and enjoyably”[63]. More 

specifically, it refers to how quickly the user can attain mastery on the tool, how much benefit 

and joy it brings to the user, and how error-prone the system is[38]. The vast number of health 

care information systems setup over the recent years highlights the need for effective ways to 

evaluate performance and impact to ensure these systems meet the requirements and 

computational needs for end users and health care organizations[64]. The traditional approaches 

to assessing information systems are focused on determining how well a system meets its set of 

pre-defined goals regarding functionality, safety, and impact on outcome measure such as cost 

and work efficiency. This is frequently performed at the conclusion of the software development 

cycle, when a complete functional system has been implemented and ideally ready to be shipped 

for deployment. However, a recent trend in the field of human computer interface has shifted 

towards the development of evaluation approaches that can be used during the software 

development stage[39]. The motivation of this approach is that obtaining iterative evaluations 

while the design is still in progress provides greater flexibility and time to improve the 

architecture design and deployment of the system (Figure 1-10). 

 

 

 

28 



 

 
Figure 1-10 Prototype design and evaluation. Part A shows the iterative systems development based on prototyping 

and iterative usability testing, adapted from [65]. Part B shows the basic setup of a simulation-based evaluation with 

screen capture and video recordings. Subjects are asked to perform particular tasks using the computer system, and 

both visual and audio data are captured. The analysis can be complemented by focus-group interviews, and surveys 

to provide both qualitative and quantitative data. 

 

1.2.3.1 Common methods for evaluating decision support systems 

The assessment of health information system involves characterizing a) how easily a user 

can carry out a task with the system, b) how quickly the user can attain mastery in using the 

system, c) what effects the system has on work practices and d) what problems exist for the users 

when interacting with the system[66]. The evaluation outcomes include numerical measurement, 

which is considered to be more precise, replicable and “objective” compared to subjective 

measurements[40]. Subjects that are selected to participate in the evaluation should consist of 
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representative target users of the system. Nielsen J. (1993) reports up to 80% of user-interface 

problems can be detected with as few as 8-12 evaluated individuals[67].  

One popular approach to evaluating decision support systems is questionnaire-based 

surveys[68]. In this scenario, numerical data is gathered from the questions, and simple statistical 

tests such as a T-test can be used to derive response differences between groups of users. Survey 

methods hold the advantages of being easy to distribute to large number of users (e.g. via the 

web), and can be fed into a pipeline for automated analysis of results[68]. Surveys such as 

Questionnaire for User Interaction Satisfaction (Table 1-4), serve as skeletal examples to test 

multiple dimension of usability. The main drawback for surveys is the items in the questionnaires 

are pre-determined and consequently are of limited value in identifying new or emergent 

issues[65]. Furthermore, it has been reported that people may recall their experience differently 

when rating a system using the questionnaire versus their experience captured in real-time[65]. 

Interviews and focus groups allow exploration of more open-ended questions and responses for 

unexpected aspects can be collected [65]. However, the “recollection problem” still applies when 

participants are asked to recall their experience with the system during interviews or focus 

groups.  Therefore evaluation performed in real-time while a subject uses software can be 

particularly valuable.  
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Examples of Questions Corresponding options 
How many operating systems have you 
worked with? none, 1, 2, 3-4, 5-6, more than 6 

How long have you worked on this system? less than 1 hour, 1 hour to less than 1 day, 1 day to 
less than 1 week…etc 

On average, how much time do you spend per 
week on this system? 

less than 1 hour, one to less than 4 hours, 4 to less 
than 10 hours…etc 

Rate your reactions to the system 1 to 9 (1=terrible, 9=wonderful) 
  1 to 9 (1=rigid, 9=flexible) 
Screen layouts were helpful 1 to 9 (1=never, 9=always) 
Sequence of screens 1 to 9 (1=confusing, 9=clear) 
Use of terminology throughout system 1 to 9 (1=inconsistent, 9=consistent) 
System keeps you informed about what it is 
doing 1 to 9 (1=never, 9=always) 

Learning to operate the system 1 to 9 (1=difficult, 9=easy) 
System speed 1 to 9 (1=too slow, 9=fast enough) 
Technical manuals are 1 to 9 (1=confusing, 9=clear) 
Quality of pictures/photographs 1 to 9 (1=bad, 9=good) 
Speed of installation 1 to 9 (1=slow, 9=fast) 
Customization 1 to 9 (1=difficult, 9=easy) 

Table 1-4 A few examples of usability assessment questions manually extracted from QUIS, a questionnaire 

developed at University of Maryland for assessing user’s subjective satisfaction with specific aspects of the human-

computer interface, including screen factors, terminology, system feedback, learning factors, system capabilities, 

software installation, and technical manuals. 

 

1.2.3.2 Evaluations via simulations 

Cognitive task analysis (CTA) is a real-time alternative approach to surveys/interviews 

that particularly addresses decision making and reasoning skills as users perform activities/tasks 

that involve handling complex information[69]. The first step in CTA is to develop a task 

hierarchy describing and cataloging the work activities that take place (e.g. physician entering 

patient data into an electronic health system). Then subjects are asked to perform specified tasks 

using the system while being recorded (Figure 1-10). The tasks should reflect the typical 

activities that a normal user would perform in a typical work routine. If the system is still under 
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development, the tasks may be specific to certain aspects of the system or user-system interaction 

that requires only a partially functioning prototype[69]. Subjects recruited for the simulation may 

already be experienced with the system, or may be given training on the system prior to or as part 

of the evaluation. Users ought not be given free-reign to explore the usability of a prototype, but 

instead be directed to explore specific functionalities or perform a specific task. In cognitive 

walkthrough, the users systematically step through a list of chosen tasks relevant to the specific 

system design. An example of a cognitive walkthrough was conducted by Currie et al. [70] on a 

decision support system intended for use in an intensive care setting. The study evaluated the 

system and assessed the cognitive processes required to prescribe antibiotics to premature infants 

- a complex clinical task that requires intimate knowledge about multiple patient parameters, yet 

the decision must be made rapidly and accurately due to high risk of morbidity and mortality 

associated with sepsis. 

Affordable equipment such as screen capture software, cameras, and microphone can 

record the totality of user-exhibited responses. Subjects can be encouraged to express their 

thoughts verbally so these can later be transcribed into text files. Such studies can reveal how 

user characteristics (e.g. differences in experience with computer) relate to usability. CTA can be 

complemented by interview/questionnaire-style questions at the end of the hands-on session. It 

can be useful to leave the audio recording running after the question period, as further 

spontaneous feedback is often offered at this point about some features of the system[66]. To 

compare between different system prototypes, the design of evaluation studies can be within 

group, where individuals are asked to try all prototype versions sequentially, or may be 

performed in time-series in which performance is tracked over time. Between-group testing 
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comparing multiple groups segregated in some manner can also be pursued (e.g. those highly 

computer literate versus those with little computer experience)[66]. 

 

1.2.3.3 Interpretation of usability data 

The advantage of video recordings in a human-computer interaction study is it captures 

the interaction real-time without depending on user’s recollections, and the same video recording 

can be examined and analyzed from multiple perspectives and re-analyzed with a range of 

methodological approaches. The visual and verbal data collected by simulations are best assigned 

to different coding categories to facilitate downstream analysis[41]. An example category 

scheme for categorizing subjects’ verbal comments may include: interface consistency, response 

time, comprehensibility of system messages, help availability, comprehension of graphs and 

tables, and challenges to entering data[41]. Additional code(s) can be created to address a 

particular task that fits under a specific analysis. To annotate video-based data, the coding 

scheme can include interface problems (e.g. data entry, provision of too much or too little 

information, navigation), content problems (e.g. certain information absent from the database, 

can user flag a certain field), and slips (errors made by the system, and whether user is able to 

notice this and correct)[71]. The verbal text files are annotated with the observed problem by a 

time-stamp that tells the time of occurrence and type of problem (e.g. 01:33 

COMMENT:CRITIQUE NAVIGATION)[41]. 

Once the data is annotated, it can be summarized in a number of ways. The topics to 

cover generally include task accuracy, user preference, time to complete a task, frequency and 

classes of problems encountered[72]. One way to present the evaluation is by a summary of 

types and frequency of problems detected when subjects interact with the system[42]. If the 
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evaluation involves an iterative cycle, this summary should be shared with system designers, 

then repeated to determine how the new software prototype performs compared to the old. If 

multiple prototypes are evaluated against each other, statistical tests such as a Chi-squared test 

can be applied to assess if one system outperforms another under a specific category. 

Usability testing method is not limited to recruiting representative end-users, but can also 

be performed with a usability analyst who notes the problems/cognitive issues as he/she steps 

through a system[65]. Such findings can then be compared against a pre-established principle of 

usability and good design. While relatively cost-effective, this type of method requires an analyst 

trained in human computer interaction (HCI) methodology. For my thesis research, my focus was 

placed on obtaining feedback directly from clinicians. 

 

1.3 Thesis structure 

For my thesis, I set out to apply the principles of software interface design and evaluation 

to the emerging problem of exome and genome sequence interpretation. The body of my thesis is 

divided into three themes. The first theme focuses upon software usability, where I evaluated the 

designs of existing software and prototypes for clinical genome analysis. This work spanned 

early approaches based on existing tools to concept design by users. Arising from the usability 

studies, one critical issue highlighted was a lack of clinical decision support tools for variant 

prioritization. To address the unmet needs, the second theme focuses upon development of a 

novel bioinformatics solution to improve the accuracy and efficiency in variant prioritization for 

exomes and whole-genome datasets. The third theme is a culmination of the interface design 

approaches and developed bioinformatics strategies applied on actual patient data. This work is 
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done in collaboration with a multidisciplinary team of healthcare professionals. Below, I break 

down to how the thesis is organized and what each chapter constitutes. 

 

1.3.1 Chapter 2 and Chapter 3: Usability evaluation on genomic interfaces 

The evaluation of genomic software is presented in two chapters. In chapter 2, cognitive 

task analysis combined with a think-aloud protocol was performed with clinical geneticists to 

evaluate the functionalities and usability of existing exome interpretation interfaces. There are 

two study objectives: 1) To ascertain the key features of successful user interfaces for clinical 

exome analysis software based on the perspective of expert clinical geneticists, 2) To assess user-

system interactions in order to reveal strengths and weaknesses of existing software, inform 

future design, and accelerate the clinical uptake of exome analysis. My work was the first 

published application of usability methods to evaluate software interfaces in the context of 

exome analysis. The results highlight how the study of user responses can lead to identification 

of usability issues and challenges and reveal software reengineering opportunities for improving 

clinical next-generation sequencing analysis.  

Chapter 3 addresses limitations of the earlier chapter and expands upon it. More 

specifically, chapter 2 only addressed existing software, thereby constraining user feedback. It 

was limited to clinical geneticists, failing to address involvement of other healthcare providers, 

e.g. genetic counselors. Chapter 3 employs a focus group approach, combined with cognitive 

walkthroughs on prototypes, to ascertain perspectives from healthcare professionals in distinct 

domains on optimal clinical genomic user interfaces, and digital prototypes that highlighted 

future software engineering opportunities were translated from users’ feedbacks without the 
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constraint of existing software architectures. Each group of users revealed distinct needs and 

desires. 

 

1.3.2 Chapter 4 and Chapter 5: Novel algorithm for gene-variant prioritization 

As rare/novel genetic variants continue to be uncovered, there is a major challenge in 

distinguishing true pathogenic variants from rare benign mutations. The efficiency and 

adoptability of exome analysis rests heavily on the ability for software to reliably distinguish 

pathogenic mutations from rare benign variants within a short amount of time. In chapter 4, 

through the analysis of public exome datasets, we show that some genes are frequently affected 

by rare, likely functional variants in general population, and are frequently observed in exome 

studies analyzing diverse rare phenotypes. We find that the rate at which genes accumulate rare 

mutations is beneficial information for prioritizing candidates, and propose that clinical reports 

associating any disease/phenotype to the frequently mutated genes be evaluated with extra 

caution.   

In chapter 5, I expand upon the variant prioritization challenge, presenting a novel 

method called Variant Prioritization Accelerator (VPA), which utilizes an ensemble machine 

learning approach trained on variant-level, gene-level and patient-level information for 

classifying rare variants according to likelihood of pathogenicity. The chapter discusses the 

advantages to the approach over existing methodologies, and its superior performance to 

correctly rank novel gene-disease and disease-phenotype associations, and thereby facilitate 

clinicians to achieve accurate diagnostic from exome data within a given limited amount of time.  
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1.3.3 Chapter 6 and Chapter 7: Collaborations in genomic projects 

The thesis research culminates in applied collaborative interpretive studies of patient 

genomes. The collaborations immersed the thesis research in the clinic-facilitated recruitment of 

subjects, and enabled me to envision system modifications likely to be impactful on users. Below 

I describe the main collaboration, OMICS2TREATID (http://omics2treatid.org), within which 

the thesis research was embedded.   

Spearheaded by Dr. Clara van Karnebeek, the project focuses upon prevention and 

treatment of intellectual disability, with specific emphasis on children with treatable genetic 

conditions called inborn errors of metabolism (IEM). While amenable to treatment2, many cases 

of IEM are unfortunately missed in clinical diagnosis due to limitations of karyotyping and 

arrayCGH, the clinical standard protocols for detection[73]), and a lack of standard protocols and 

systematic approach for IEM identification. My contribution to OMICS2TREATID includes the 

bioinformatics processing of patient DNA through the various stages of exome and genome 

analysis to generate the list of high-confidence variants, applying computational strategies to 

interpret variants by likelihood to being disease-causing candidates, and providing continuous 

communications between various domain-specific healthcare providers to decide the best course 

of action per patient. Chapter 6 describes our first successful discovery of a novel treatable 

neuro-metabolic disease where we characterized three independent families displaying 

hyperammonemia with CA5A gene defect. Chapter 7 provides an overview of 

OMICS2TREATID successes, achieved through a combination of deep clinical phenotyping 

with exome sequencing analysis via an unbiased semi-automated bio-informatics pipeline. Our 

2 Successful treatment is defined either by improvements in IQ/developmental scores, or biochemical 
signatures. See [49] for more details. 
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diagnostic yield and discovery rate exceeded expectation (with 43% exome diagnosis allowed for 

personalized medicine (or precision medicine, which in this thesis are treated the same), 

spanning from prevention and tailored symptom management to causal therapy). The results of 

these studies constitute the evaluative data used in Chapter 5. 

 

 
Figure 1-11 The process diagram illustrates the major components of a NGS analysis when looking for causal 

variants for rare disorders. The workflow is represented as 3 main stages: data generation that leads to the generation 

of sequenced reads in text format, data processing of the reads to detect variants, and results interpretation of the 

variants, ideally culminating in clinical decision-making. The general framework varies depending on the precise 

analytical application, and specific details are omitted for discussion later in the thesis, The colored cells to the right 
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illustrates which part of the workflow I contributed to and their corresponding chapters. The scale of color shows the 

level of details each chapter touches upon the components in the pipeline (e.g. the darker the shade, the more in-

depth the said component is addressed). 

 

1.4 Conclusion 

Figure 1-11 provides a schematic overview of the start to end processes involved in 

determining germline causal variants of rare diseases, with indication on the parts of workflow 

my contributors relate to and their corresponding chapters. Together the three components of the 

thesis come together to demonstrate how the design of clinical genome interpretation methods 

within biomedical informatics emerge from clinical software usability studies, both quantitative 

and qualitative. The importance of revealing the limitations of early approaches through direct 

engagement with clinical users, the response to the users through the creation of tools 

specifically tailored to meet their expressed needs, and the shared mission of bioinformaticians, 

biologists and clinicians to bring the power of the new technologies into clinical research.  
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Chapter 2: Usability study of clinical exome analysis software 

 

2.1 Synopsis 

Objectives: New DNA sequencing technologies have revolutionized the search for 

genetic disruptions. Targeted sequencing of all protein coding regions of the genome, called 

exome analysis, is actively used in research-oriented genetics clinics, with the transition to 

exomes as a standard procedure underway. This transition is challenging; identification of 

potentially causal mutation(s) amongst ~106 variants requires specialized computation in 

combination with expert assessment. This study analyzes the usability of user interfaces for 

clinical exome analysis software. There are two study objectives: 1) To ascertain the key features 

of successful user interfaces for clinical exome analysis software based on the perspective of 

expert clinical geneticists, 2) To assess user-system interactions in order to reveal strengths and 

weaknesses of existing software, inform future design, and accelerate the clinical uptake of 

exome analysis. 

Methods: Surveys, interviews, and cognitive task analysis were performed for the 

assessment of two next-generation exome sequence analysis software packages. The subjects 

included ten clinical geneticists who interacted with the software packages using the “think 

aloud” method. Subjects’ interactions with the software were recorded in their clinical office 

within an urban research and teaching hospital. All major user interface events (from the user 

interactions with the packages) were time-stamped and annotated with coding categories to 

identify usability issues in order to characterize desired features and deficiencies in the user 

experience. 

 

 

40 



 

Results: We detected 193 usability issues, the majority of which concern interface layout 

and navigation, and the resolution of reports. Our study highlights gaps in specific software 

features typical within exome analysis. The clinicians perform best when the flow of the system 

is structured into well-defined yet customizable layers for incorporation within the clinical 

workflow. The results highlight opportunities to dramatically accelerate clinician analysis and 

interpretation of patient genomic data. 

Conclusion: We present the first application of usability methods to evaluate software 

interfaces in the context of exome analysis. Our results highlight how the study of user responses 

can lead to identification of usability issues and challenges and reveal software reengineering 

opportunities for improving clinical next-generation sequencing analysis. While the evaluation 

focused on two distinctive software tools, the results are general and should inform active and 

future software development for genome analysis software. As large-scale genome analysis 

becomes increasingly common in healthcare, it is critical that efficient and effective software 

interfaces are provided to accelerate clinical adoption of the technology. Implications for 

improved design of such applications are discussed. 

 

2.2 Introduction 

The data output from exome sequencing is immense and computationally complex, and 

finding relevant sequence variations amongst the hundreds of thousands of variants in each 

individual remains an ongoing challenge[74-76]. Various software packages have been 

developed for visualization and interpretation of sequence variation data to address this 

challenge, but to date no comprehensive usability studies have been reported to identify and 

investigate user interface features required for efficient clinical work involving exome analysis. 
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Prior studies illustrate how a lack of systematic consideration of users, the tasks they are 

involved with, and their work environments can result in poorly designed user interfaces, leading 

to low adoption rates[77-79]. Such systems are likely to be abandoned[80, 81]. In healthcare 

systems, poorly designed systems may also jeopardize the quality of patient care, and pose a 

threat to patient safety and waste precious resources[82-84]. Usability studies in the field of 

health informatics focus on analyzing user behavior to reveal cognitive and behavioral patterns 

that may explain such suboptimal outcomes[85, 86], as well as reveal technological 

considerations that impede clinical translation of patient genomics[18-20]. 

In the context of usability studies in bioinformatics, Bolchini and colleagues have 

identified a need for the application of usability analysis to the evaluation of bioinformatics 

resources and tools[87]. However, there have been few published studies on the usability of such 

technologies. Usability analysis, involving standard usability testing techniques, have recently 

been described by Neri and colleagues in the analysis of a user interface for genetic results that 

are presented to healthcare providers for managing patient genetic profiles. Neri found that 

usability testing resulted in the identification of problems which were resolvable with simple 

alterations leading to substantial impact on the quality of user interactions[88]. 

The framework of our research study is based upon cognitive task analysis (CTA), a 

cognitive engineering technique that has been successfully applied in informing the design of 

systems across a variety of clinical domains[89-94]. In this paper, we present the first evaluation 

of the usability of next-generation sequencing interpretation software, exploring the impacts of 

different user interface designs on analysis workflows and outcomes. Our methodology builds 

upon well-established CTA to observe ten clinical geneticists examining two simulated scenario 

cases using think-aloud protocols[95] to assess end user cognitive behavior. Each subject worked 
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through two hypothetical exome analysis scenarios with two dissimilar exome analysis software 

interfaces. We highlight the top user desiderata to inform software developers working on the 

next generation of exome interpretation software, and to inform clinical users who are in the 

process of choosing a software from this domain. The discussion of this paper addresses 

recurring usability challenges to overcome and critical features that this class of analysis 

software should possess. We emphasize that the ultimate goal of the study is not the collection of 

software-specific usability analysis results, rather the intent is to highlight findings that 

generalize to all software geared for the clinical interpretation of exome and eventually whole 

genome sequencing data.  
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Figure 2-1 Overview of the evaluated software interfaces. A) The main layout of Varsifter. The left panel shows the 

tabular display of variations from the user-supplied input file, and the pre-built filters available as check-boxes on 

the right. The right panel shows the interface allowing users to design custom queries via graphical icons and logical 

connectors for designing filters that are not part of the pre-built check-boxes. B) The left panel shows the layout for 

the GUI command-line generator for KGGSeq which allows the users to specify the parameters visually before 

copying the text command-line to the terminal. The right panel shows the screenshot of the terminal output as 

KGGSeq is being executed. The bottom panel shows an example of the final output from KGGSeq, as displayed in 

Microsoft Excel. 
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2.3 Methods 

2.3.1 Study setting and participants 

The study took place within BC Children’s Hospital (Vancouver, Canada) from August 

2012 to March 2013. Since the goal of the study was to provide both insights and quantitative 

results addressing the evaluated systems, we sought to recruit as many test users as we could, 

given the limited numbers of specialists available. Ten clinical geneticists working at this 

institution with prior exposure to analyzing genomic data were recruited (Appendix A-1). 

Recruitment was done via email sent by CS at least one month prior to the testing to each of the 

twelve potential candidates with a response rate of 83%. None of the participating specialists had 

prior experience with either of the assessed interfaces. The study was approved by the UBC 

research ethics board. Each participant provided informed consent prior to the study. 

 

2.3.2 Materials 

2.3.2.1 Software 

We restricted to testing two software due to availability in time allowed from the 

participants. To decide on which two software to assess, a systematic literature review of 

available software for exome analysis of Mendelian disorder was conducted with PubMed in 

April 2012 using a combination of the relevant keywords. We excluded commercial systems to 

avoid legal/financial complications. Among the nine software that came up from the review, two 

software, Varsifter and KGGSeq, were chosen for their contrasting design architecture (e.g. GUI 

versus command-line) and popularity among the clinical research communities (as ranked by 

their research citations). Varsifter (version 1.5) was downloaded from the NHGRI website. 
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KGGSeq (version 0.2) was downloaded from developers’ website hosted by the University of 

Hong Kong. Figure 2-1 provides an overview of the interfaces for the two tools. 

 

2.3.2.2 Simulated data 

Two sets of simulated data were constructed to represent two clinical scenarios, covering 

tasks that commonly occur during exome analysis. Each clinical scenario presents a simulated 

patient suffering from a particular Mendelian disease. The patient’s clinical history was 

constructed based on the typical traits reported in the research literature. Exome results were 

provided as processed sequence variants as tabulated form and VCF. A bed file consisting of 

regions of homozygosity (ROH) was constructed to resemble typical ROH data from a 1st-

degree consanguineous family. In both scenarios, a disruptive mutation was embedded in the 

exome to represent the intended causal variant. The mutation was introduced in such a way that 

it would emerge as a top candidate after prioritizing through a list of specific instructed filters 

created by CS and approved by WWW (Appendix A-2).  

 

2.3.2.3 Non-simulated data 

A list of mitochondrial genes provided to the users was downloaded from the Mitocarta 

website[96] on 30 June 2012. 

 

2.3.2.4 Interviews and survey instruments 

Pre-evaluation semi-structured interviews solicited self-rated computational expertise and 

perspectives about ongoing challenges faced with sequencing analysis and sentiments towards 

next-generation sequencing data. The post-evaluation semi-structured interviews addressed 
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specific issues that came up during the evaluation (Appendix A-3). The quantitative questions 

used in the study are a validated survey called the Software Usability Measurement Inventory 

(SUMI) version 4.0[97-99]. 

 

2.3.3 Data collection equipment 

The evaluations were conducted on a 15-inch Macintosh MacBook Pro laptop (with Mac 

OSX Version 10.6.8, 2.16 GHz Intel Core Duo and 2GB DDR2 SDRAM) with the software pre-

installed. All computer screens and the surrounding audio were recorded using QuickTime 

software Version 10.0.  

 

2.3.4 Experimental procedure 

A one-on-one interview was conducted prior to the simulation session. To avoid order 

bias, for each scenario, we randomly assigned half of the users to utilize KGGSeq before moving 

on to Varsifter, and the other half to use Varsifter before KGGSeq. Clinicians were instructed to 

work through the first scenario with the two software packages before proceeding to the second 

scenario.  

At the beginning of each session, an initial 45 minutes were spent familiarizing the 

subject with the software and the data inputs. Appendix A-3 describes in details the breakdown 

of this 45-minute period. The 45-minutes introduction to the software packages was deemed 

sufficient to allow subjects to gain basic background required for interacting with the software 

(particularly as these domain experts had prior hands-on experience using similar analysis 

software and practical experience interpreting the results of exome sequencing data). 
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Following the introduction, the subjects were asked to interact with the simulated cases 

under a “think-aloud” protocol (Appendix A-3). The duration of these evaluation sessions ranged 

from 120-150 minutes. Scenarios finished only when either the clinicians found the embedded 

causal mutation, or if they voiced that the task is too difficult to proceed and they wished to stop. 

The SUMI survey was given after the simulation. A second one-on-one interview followed the 

SUMI survey, concluding the evaluation session. 

 

2.3.5 Data annotation and analysis 

The audio recordings were manually transcribed into transcripts as Microsoft Word files. 

Coding categories were assigned to usability issues identified in the transcripts, and further time-

stamped as observed from the screen recordings. The usability coding categories and higher-

level descriptive themes were developed by CS and AK prior to the analysis of the data, largely 

drawn from[100-102]. 

The raw SUMI questionnaire data for each individual was submitted to the Human 

Factors Research Group, which generated the numerical summaries and statistical evaluations 

using their SUMICO software. The questionnaires were statistically quantified into software 

“efficiency”, “affect”, “helpfulness”, “control”, “learnability”, and “global usability”[97, 99]. 

SUMICO calculates the probability from the chi-squared distribution that the subjects’ responses 

from the study differ from the expected values based upon the SUMI database (see [97, 99] and 

Appendix A-3). 

Non-parametric Mann-Whitney U test was used to calculate statistical significance for the 

observed quantifiable differences between the two software packages (for specific details see the 

results section). 
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2.4 Results 

In this section, the paper describes the quantitative and qualitative results obtained from 

the study that are specific to the evaluated two tools. Section 2.5 discusses the key findings that 

reveal broader themes critical for next generation variant interpretation domain. 

 

2.4.1 Overall performance 

Table 2-1 shows the number of clinicians able to identify the correct causal mutation in 

each scenario. In both scenarios, more clinicians were able to identify the causal mutation with 

Varsifter as compared to KGGSeq. Fewer clinicians were able to identify the causal mutation in 

the more complex second scenario as compared to the first scenario for both software packages. 

 
  Varsifter KGGSeq 
Clinical scenario #1 Successful completion? 10/10 8/10 
Clinical scenario #2 Successful completion? 6/10 5/10 

Table 2-1 The proportion of clinicians (n=10) who were able to successfully identify the causal mutation from 

scenario 1 and scenario 2. 

 

In both scenarios (Appendix A-3.1), the time was notably shorter with Varsifter (p< 0.05; 

1-tailed Mann-Whitney U-value = 9 for scenario 1 and U-value=1 for scenario 2). For the 

clinicians who were able to achieve successful completion on both software packages, all 

performed the work faster with Varsifter (8/8 for scenario 1, 5/5 for scenario 2, see Appendix A-

4.1). 

Appendix A-3.2 shows how the two tools were perceived differently by the clinical users 

based on SUMI. Below we highlight the attributes that, according to SUMICO, deviated 

significantly from the average score of 50 (SUMICO did not provide exact p-values). Varsifter 
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scored the lowest on “efficiency3” (score=40) but highest on “affect4” (score=58), revealing that 

despite finding the software difficult to work with, the users nonetheless finished the evaluations 

with a positive impression. KGGSeq scored the lowest on “helpfulness” (score=43) and 

“control” (score=40), which refer to the degree to which software is self-explanatory and the 

extent to which users feel in control of the software respectively. 

 

2.4.2 Descriptive findings from think-aloud content 

Table 2-2 show the breakdown of the encountered usability problems captured from 

think-aloud sessions into usability themes and the frequency of occurrences. Descriptive findings 

are categorized under twelve usability categories. These codes are further grouped into five 

major usability themes: (1) Visualization, (2) Information, (3) System response, (4) 

Functionalities, (5) Overall usability. Example comments that fall into these five categories are 

shown in Appendix A-4.2. A more in-depth description of the specific usability problems found 

for each software can be found in Appendix A-6.3. 

  

3 Efficiency measures the degree to which users feel the software assists them in their work 
4 Affect measures the user’s general emotional reaction to the software 
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  Varsifter KGGSeq 

  Positive Negative Positive Negative 

VISUALIZATION Navigation 1 21 2 3 

 Layout 0 8 1 11 

 
Operation 
consistency 0 13 0 1 

 Graphics 2 0 0 0 

INFORMATION Resolution 6 1 0 17 

 Label 0 7 0 19 

 System messages 1 3 3 1 

SYSTEM RESPONSE Response time 0 9 1 1 

 System status 0 2 1 3 

FUNCTIONALITIES Compatibility 2 7 1 2 

 
Scope of 
functionalities 0 19 1 20 

OVERALL 
USABILITY Overall usage 1 2 0 1 

 Total 12 92 10 79 
Table 2-2 A breakdown of detected usability issues by categories. We assigned the detected usability problems into 

5 main themes that are further subdivided into 12 categories. Example comments can be found in Appendix A-4.2. 

 

2.4.2.1 Visualization 

For Varsifter, every clinician complained that text or functions were hidden from view 

due to scrollbars and/or hidden panels. In one instance, 8/10 participants sought a button that 

they had observed in the tutorial video, but did not know that it was necessary to use the 

scrollbar to access the remainder of the options (e.g. “I remember seeing a button to click to exit 

this window, but I can’t find it”). The feedback about KGGSeq also indicated user concerns with 

incomplete display in the command-line generator GUI (e.g. “Some of the text descriptions and 
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buttons are not visible on the screen”)(Appendix A-4). One clinician commented “the scrolling 

means I have to remember what is hidden behind this panel and that is a pain”. The difficulty 

with accessing the needed functionalities indicate difficulty in function execution. In some cases, 

Varsifter’s dropdown menus in which similar functions are grouped together were perceived as 

offering better organization. However, in some cases users had differing views about the logic of 

the groupings (e.g. “The software should move this function out of ‘View’. It is organized very 

counter-intuitively”), and resulted in navigational difficulties. 

 

2.4.2.2 Information and system response 

Clinicians (6/10) indicated that Varsifter responded too slowly to inputs (e.g. “Is the 

software running? I am clicking this button multiple times but nothing happens”). The actual 

start up time for the program was a relatively short 7-25 seconds. However, at times the 

clinicians indicated that they did not know if the program was running, and ended up repeatedly 

clicking on buttons, which further slowed the program or introduced unwanted errors. As the 

analysis of large-scale exome data may require more time than is ideal for busy clinicians[42, 

43], software should provide an approximate processing time whenever possible and a clear 

indication of system status. For KGGSeq, there were multiple complaints regarding the use of 

bioinformatics jargons that the clinicians were not able to comprehend (e.g. “Do I want variants 

with a high [MutationTaster] score or low score?”). 17/79 comments further criticized the way 

the information was presented in the output, which the clinicians felt were too overwhelming 

(e.g. “I don’t know what this column means, and I can’t find the actual information that I want 

because there are too many things to look for here”).  
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2.4.2.3 Functionalities  

For both software packages, majority of functionality problems (16/19 for Varsifter, 

13/20 for KGGSeq) were related to the clinician’s inability to execute the software’s 

implemented function. For instance, 4 out of 10 clinicians were unable to filter variations for a 

particular Mendelian inheritance model in Varsifter (e.g. “The tutorial video showed me how to 

do it but I don’t know how to work it myself”, “I can see the button here, but I can’t press it. I 

don’t know why it isn’t letting me do it, and there is no instruction for how to get it working”). 

For KGGSeq, the clinicians were unfamiliar with the terminal-style interface (Appendix A-4). 

The command-line generator interface received some initial praise in the early stages of the tests 

(n=3; e.g. “I like how all the basic inheritances are already setup so I only have to click it”), but 

negative comments were subsequently expressed as the subjects realized that only a portion of 

the functions could be access through the graphical interface (n=20; e.g. “I can’t upload this gene 

file using this software”). 

 

2.4.2.4 Frequency of errors 

For Varsifter, the clinicians praised the software ability to revert filtered output to a 

previous unfiltered state (e.g. “I like how I can just uncheck this filter and get my previous result. 

It allows me to explore different filtering thresholds”). For KGGSeq there was no apparent 

capacity to revert from one state to a previous state, making it necessary for the user wishing to 

change a specific threshold for a filtering parameter to restart the entire analysis (e.g. select for 

variants with population frequency <1% versus <3%). The benefits for this are most apparent 

when comparing the frequency of errors made by the users when using the system. More 

 

 

53 



 

mistakes were resolved by Varsifter (12/15) compared to KGGSeq (11/26) because clinicians 

were able to view the results at each filter step (Appendix A-4.3). 

 

2.5 Discussion 

In this chapter, we performed an assessment of clinical genetics exome interpretation 

software, using a cognitive analysis approach to usability evaluation. The observations specific 

to clinical genetics and exome/genome analysis are the most important for consideration for 

future software development. Therefore, we will focus our discussion on the domain-specific 

lessons learned from the study, providing specific recommendations that could inform the design 

of future interfaces for clinical exome analysis software and informing clinicians on their choice 

for software selection. Ultimately the users feedback leads to a clear and concise inventory of 

features and characteristics desired of clinical exome interpretation software (Table 2-3). 

 

Clinical exome interpretation software user desiderata 

• Rich filter functionalities (i.e. variant calls with simple column-based filtering are 

insufficient) 

• Software design structured with focus on genetic models (e.g. Mendelian inheritance) 

• User defined workflow management with stepwise reports 

• Fast response time with estimates given for wait steps 

• Team support to allow multiple clinicians to annotate/review data 

• Interoperability with widely used online resources/databases and data formats 

• Frequent updating to support emerging tools, data standards and input types 

Table 2-3 Implications for new software design 
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2.5.1 Recurring domain-specific usability challenges need to be addressed 

We find that a major impediment for adoption of exome analysis software is a lack of 

clear presentation (organization), description and help messages for the provided functionalities. 

Non-computational healthcare professionals will not choose to adopt a software package unless 

the functionalities are easily executable and can fit into a clinician’s workflow. Table 2-4 

contains examples of problems frequently encountered in our evaluation and the 

recommendations from the clinicians to resolve them.  
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Usability issue Feedback and recommendation 

Navigation difficulties • Example problem: with so many filtering options available in the 
system, the user has problem finding the desired option 
• Suggested solution: organize the functionalities into themes as according 
to the type of analyses they belong to, and visualized as dropdown panels. 
The groupings should be intuitive to the user. Examples of groupings 
compiled based on users' feedbacks are given in Table 2-5. 

Execution difficulties • Example problem: user sees a GUI option to filter the variants by 
compound heterozygous model, but the function is disabled and it is not 
intuitive how to execute that function 
• Suggested solution: software should always provide an explanation as to 
why a function does not execute and guidance on how to fix it. This 
message should be easily accessed (e.g. display on mouse-over), along 
with links to further instructions. 

System logs • Example problem: when uploading a genome data or filtering multiple 
exomes, the user is uncertain if the system is in the middle of processing 
or merely stuck. 
• Suggested solution: system should indicate the current program status 
and expected run time whenever possible.  

Workflow integration • Example problem: for clinicians working with many families sharing 
similar inheritance patterns, certain filtering approaches should be 
automated. 
• Suggested solution: software is best organized into layers, with the 
ability to develop and save workflows for batch analysis. The layer-
structure allows clinicians to go back to previous output and compare the 
results at each stage of filtering. 

Interoperability and 
data standards 

• Example problem: system is unable to take in multiple VCFs (where 
each VCF contains the data for a distinct subject). Rather, the system 
forces the user to combine the input files in advance in order to conform 
to system rigidity. 
• Suggested solution: system needs to be compatible with standard data 
formats, and be able to integrate with external data resources (Appendix 
A-5.3). System must also anticipate minor/major updates to the data 
standards and external resources. 

Table 2-4 The top recurring usability problems observed, the features that are desired, and recommendations to 

developers. 

 

2.5.2 Design software structure with emphasis on genetic models and frequently 

encountered analytical themes 

A key observation from the study is the importance of supporting diverse workflows for 

the range of potential genetic hypotheses. Specifically, the system should be structured around 
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the commonly used analysis models, such as Mendelian recessive inheritance. Clinicians value 

such structured approaches, as they are expected to follow standardized protocols in their 

practice. The ability to develop and save common workflows is key for clinical groups working 

on many cases over time. There are unique cases, which require unusual analysis approaches. 

Therefore while the software should be structured around specific standard analysis models, it 

needs to remain flexible. We compiled a list of frequently employed tasks of clinical exome 

analysis, organized by the themes of analyses, that the software should be structured to address 

(Table 2-5).  
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Table 2-5 A list of frequently-employed tasks in clinical exome analysis, compiled based on review of PubMed 

literature and feedbacks captured in the simulations. 

 

2.5.3 Present variants in a tabular format but retain flexibility in layout 

Varsifter has a greater emphasis on the GUI while KGGseq is primarily intended for use 

via the command-line (albeit with an available interface). Our results confirm that clinicians 

Themes Category Example tasks 

Type of analyses 

Population 
studies 

• Look for recurring mutations/genes within a cohort versus control 
samples 
• Look for mutations shared by 80% of the affected individuals 

Mendelian 
inheritances 

• Filter the mutations by different classical Mendelian inheritance 
models 
• Provide flexibility to work with non-standard family structure (e.g. 
only exomes for mother and proband, or only exomes for multiple 
affected individuals) 

Area of interest 

Genomic 
coordinates 

• Retrieve mutations that fall within regions of homozygosity  
• Exclude mutations that fall outside of known regulatory regions 

Gene lists 
• Retrieve mutations that fall within known mitochondrial genes 
• Filter for mutations in genes that are abundantly expressed within a 
specific human tissue 

Mutation-level 

Conservation • Sort mutations by their evolutionary conservation score 

Mutation type • Retrieve all the nonsense, missense and splice-site mutations 

Predicted 
impact 

• Retrieve and rank mutations predicted to be damaging based upon 
scores from software such as SIFT or PolyPhenV2 

Frequency 
• Sort the mutations by their annotated frequencies from dbSNP, and 
filter out mutations present > 1% frequency. 

Disease 
databases 

• Retrieve mutations that have been reported as disease-causing in 
HGMD or ClinVar 

Technical-level 

Coverage 

• Retrieve a list of genes that have less than 2 reads covering any 
exonic regions 
• Obtain summary statistics on the depth of coverage present in the 
input dataset 

Collaboration 
• Add and share personal annotations to specific variations (e.g. 
PubMed literature, free text comments) 

Quality 
thresholds 

• Retrieve mutations that have a variant quality score of 30 or greater 
• Exclude mutations that have less than 2 reads harboring the 
mutations 

Workflows 
• Create a custom workflow to process multiple exome datasets, or to 
produce incidental findings (e.g. as proposed by American College 
of Medical Genetics) 
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benefited from and appreciated the fuller GUI, both for visualizing the data and performing 

analyses. Displaying the variations visually in a tabulated form with sortable columns allows the 

clinician users to browse and prioritize the data, a functionality that KGGSeq lacks. Another 

advantage of tabular structure is it is highly similar to Excel representation, a program that is 

frequently used by clinicians. A few clinicians from our study note that they would like the order 

of the columns to be adjustable so they can customize the type and order of information 

presented. 

 

2.5.4 Allow customizable filtering pipelines and prioritizing strategies  

Users expressed desire for a system to allow them to bifurcate in the workflow, exploring 

multiple approaches to processing the data at certain steps. While some workflow software 

platforms such as Taverna, SciTegic’s Pipeline Pilot[103, 104] and Galaxy[31] provide this 

functionality for general informatics work, most specialized exome processing tools have not 

incorporated the approach in a robust manner. A core component of exome and genome analysis 

is filtering and variant prioritization. The software should provide an intermediate output to 

evaluate the effectiveness of a particular filtering step, and the ability to return to the previous 

result or continue to the next depending on the context of that intermediate output. The iterative 

design feature not only reduced the amount of slips, but importantly allowed the users to 

investigate the data under different scenarios (Table 2-5). 

 

2.5.5 Support collaborations and team-based communications 

Most exome-sequenced families are examined by multiple clinicians. A consensus 

opinion about a causal gene candidate may arise from a series of email exchanges, face-to-face 
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meetings and sharing of references such as hyperlinks to scientific abstracts. From this study we 

learned that most exome analysis software, both free and commercial, do not provide suitable 

functionalities for facilitating multiple users to collaborate on the same data. Users expressed that 

an ideal system would allow users to attach notes, links to scholarly articles, as well as comments 

on individual genes or genetic variations, and that such information be available to multiple users 

in the same clinical setting. Software that empowers collaborative analysis would be well 

received.  

 

2.5.6 Maintain high interoperability to data standards 

The subjects identified input compatibility as a key factor for exome variant interpretation 

tools. Many of the filters and prioritization strategies used in exome analysis are built from 

standard outputs of academic and commercialized bioinformatics pipelines. Being interoperable 

with the data standards and currency with updates is important for widespread adoption, 

especially for non-computational clinicians who should not be expected to convert data formats.  

 

2.5.7 Maintain currency with online databases and critical resources 

The prioritization of genetic variants can be highly dependent upon accessing external 

resources such as biological annotations attached to a particular genomic coordinate or to a gene. 

At present many clinicians manually evaluate each variant by querying online resources (e.g. 

PubMed, OMIM, HGMD[105], CLINVAR[106]), which was reported to be amongst the most 

time-consuming steps in the interpretation process. The capacity of software to automate data 

mining of these resources may accelerate analysis and increase success rates. Appendix A-5.3 
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shows a list of common data formats for next-generation sequencing data, and the databases and 

external resources that clinicians indicated a desire to incorporate. 

 

2.6 Conclusions 

Software to support exome sequencing is a cost-effective technology increasingly 

incorporated in clinical genetics[107]. Without a reliable and practical clinical system, complex 

exome data cannot be processed by most clinicians. In this study we highlighted recurring 

usability problems, and reported user recommendations and requests for key functionality. Our 

findings point to the need for changes and/or updates to current exome interfaces. The results 

should further help clinical users who are choosing what analysis software would suit their 

needs.  

The user desiderata represent a key feature set for future systems to deliver. Our 

evaluations highlight the many types of filters and prioritization strategies that are needed by the 

clinicians, and the limitations of simple column-based filtering layouts. In addition, the software 

can accelerate analysis by reporting findings based on classical genetic models of inheritance 

where appropriate. The software should retain the ability for the users to define their own custom 

workflow, providing step-wise reports so the impact of each step can be assessed. As the 

community moves to whole genome data, the resulting size and complexity will exacerbate 

concerns about the speed of processing - thus it is critical for the software to provide time 

estimates whenever a job cannot be completed rapidly (i.e. >10 seconds). Since each case is 

rarely evaluated by only one specialist, the ability for clinical exome interpretation software to 

support team collaborations for collective annotation and review of data is desired. The users 
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indicated a need for the software to be compatible with multiple data formats used in the field, as 

well as providing connectivity to popular online databases and tools.   

 

2.6.1 Limitations of the study 

All of the subjects in the study worked within the same academic health research hospital.  

While this likely introduces bias, our subjects are clinical geneticists with prior experience with 

exome analysis that by nature are not to be found in a general healthcare facility. The focus on a 

single healthcare center offered advantages regarding the number of experts we were able to 

gather, and the time they were able to spend on the study. Most clinical exome analyses are 

currently performed in similar academic health centers, and therefore we anticipate that the 

results will have broad relevance to the field. Nonetheless, one future direction from this work 

would be to perform similar evaluations with clinicians from multiple centers.  

Each clinical geneticist was allotted 45 minutes to become acquainted with the software, 

which is a recognized constraint. However, all of the subjects had performed similar tasks as 

given in the simulations, and had worked with other exome interpretation software. Furthermore, 

based upon the nature of the software, and the type of analysis that we asked the clinicians to 

perform, the 45 minute training period was sufficient for subjects to gain a basic understand the 

basic functionalities for the purposes of conducting usability testing. 

The study was limited to two specific open-source software packages. One could argue for 

the inclusion of other tools, including commercial packages. We believe the two tested tools 

present a suitable range of features in order to gain general feedback about software in this 

specific field. Given the rapidly moving developments in the field, there will always be more 

new software emerging. We did query the subjects about their experience with other packages 
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throughout the evaluations, such that the user perspectives presented in this study are not 

restricted to the evaluated tools but also informed by exposure to various commercial and open-

source platforms. 

As access to low-cost DNA sequencing grows, it is anticipated that whole genome 

sequence analysis will become a standard diagnostic tool for many fields[108, 109]. The 

complexity of genome data and annotations will continue to increase as the technologies mature, 

making it imperative to develop better interfaces that streamline analyses and improve quality. 
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Chapter 3: Dynamic software design: insights from bioinformaticians, clinical 

geneticists and genetic counselors 

 

3.1 Synopsis 

Objectives With almost no previous research specifically assessing interface designs and 

functionalities of WES and WGS software tools, we set out to ascertain perspectives from 

healthcare professionals in distinct domains on optimal clinical genomics user interfaces. 

Methods A series of semi-scripted focus groups, structured around professional 

challenges encountered in clinical WES and WGS, were conducted with bioinformaticians (n=8), 

clinical geneticists (n=9), genetic counselors (n=5), and general physicians (n=4). 

Results Contrary to popular existing system designs, bioinformaticians preferred 

command line over graphical user interfaces for better software compatibility and customization 

flexibility. Clinical geneticists and genetic counselors desired an overarching interactive 

graphical layout to prioritize candidate variants – a ‘tiered’ system where only functionalities 

relevant to the user domain are made accessible. They favored a system capable of retrieving 

consistent representations of external genetic information from third-party sources. To streamline 

collaboration and patient exchanges, we identified user requirements towards an automated 

reporting system capable of summarizing key evidence-based clinical findings among the vast 

array of technical details. 

Conclusions Successful adoption of a clinical WES/WGS system is heavily dependent on 

its ability to address the diverse necessities and predilections among specialists in distinct 

healthcare domains. Tailored software interfaces suitable for each group is likely more 
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appropriate than the current popular “one size fits all” generic framework. Our study provides 

interfaces for future intervention studies and software engineering opportunities. 

 

3.2 Introduction 

At this early stage, clinical access to WES/WGS analysis occurs principally on a research 

basis in academic health research centers where informatics teams are available to assist with 

data analysis[110]. The prospect of full genome sequencing, compounded by the continual 

growth in genetic knowledge base, is overwhelming for the health care professional; 

computerized for interpreting and acting on this information is essential for clinician support and 

ultimately patient care[111]. For research-focused WES/WGS analysis, distinct software 

architectures with different engineering emphasis have been introduced, all ultimately sharing 

the same goal to assist in the identification of key gene(s)/variant(s). The nature of the analysis 

process includes 5 steps: (1) read mapping of short DNA sequences onto a reference genome, (2) 

identification of differences between the sample and reference, (3) quality control of candidate 

variants (including data visualization methods), (4) annotation of the properties of observed 

variations, (5) prioritization or filtering variations as candidates for the observed 

phenotype/disorder (reviewed in [110, 112]). Existing software programs address differing 

portions of the analysis process, with emphasis tending to fall either on categories 1-2, 3-4 or 5 

(example software discussed in Appendix B-1). 

Many of the early WES/WGS software packages placed greater emphasis on the 

computationally oriented users, as clinical use was rare[81, 113]. The previous chapter described 

how we evaluated the usability of exome analysis software based on think-aloud protocols in a 

study where participants were presented with simulated clinical cases to analyze[114]. While our 
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results highlighted deficiencies of the software for clinical geneticists, such users rarely work in 

isolation. An interdisciplinary team comprising of informaticians, clinical/biochemical 

geneticists, subspecialist pediatricians, laboratory scientists and genetic counselors are often 

involved. This is exemplified by two programs at the National Institutes of Health (Clinical 

Sequencing Exploratory Research and Clinical Center Genomics Opportunity), seeking to bring 

together clinicians, genomic researchers, bioinformaticians, and ethicists to tackle challenges in 

WES/WGS analysis[115, 116]. Despite the expectation of the groups working together, 

presumably through a shared computational framework, the diversity of perspectives and 

preferences regarding software design remains undetermined. As the community moves to 

adoption of WES/WGS as a standard clinical test, it is unclear if the design of analysis software 

needs to be tailored to domain-specific users.  

As far as we are aware, this work represents the first research looking at cognitive 

insights between distinct domains of medical professionals that most closely interact with 

genomic data. We surveyed three major groups of specialists that most closely interact with 

genomic data at the patient-oriented level: data-intensive informatics specialists (a newly 

emerging clinical role), clinical geneticists, and genetic counselors. In this report, we specifically 

addressed three key research questions:  

1) Are there major cognitive differences and patterns among different user groups?,  

2) What do the optimal designs envisioned by informaticians, clinical geneticists, genetic 

counselors and general physicians look like?, 

3) How do the designs desired by the different user groups compare with existing 

designs? 
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Bearing in mind of the broad range of clinical applications of genomic data, we focus our 

research questions primarily in the context of difficult to diagnose germline rare diseases, or 

diseases with suspected genetic etiology. Through narrative discussions and digital prototypes, 

we revealed major patterns that distinguish between classes of specialists. We identified 

properties perceived by users to play a critical role in determining efficacy and efficiency of an 

analysis software.  The results of the study will inform clinical interface design as WES/WGS 

move into the mainstream.  
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3.3 Methods 

3.3.1 Setting 

All focus groups were conducted in the Child and Family Research Institute at BC 

Children’s Hospital in Vancouver Canada. Sessions were conducted within a conference room 

with a round table, chairs, a white board with markers, a video recorder (a mounted Sony 

HandyCamHDR-SR1 + ECM-HW1R Wireless Microphone) and a digital projector connected to 

a Macbook Pro laptop. 

 

3.3.2 Recruitment 

Participants were recruited at least one month prior to the study via email and direct 

solicitations by CS (or email sent on behalf of CS by contacts reached out by CS) from across 

various institutions located within the greater Vancouver region. Twenty-six individuals from 

four different healthcare professions were recruited (crude response rate estimated to range 

between 20%-45%; Appendix B-2). Each individual was categorized into one of the four user 

classes: bioinformatician, clinical geneticist, genetic counselor, and non-specialist physician 

based on their professional and job title (see Appendix B-2). The first three user groups represent 

the current healthcare professionals that most closely interact with patient genomic data for 

clinical decision-making in precision medicine (we define precision medicine as ‘the ability to 

tailor diagnostic and treatment decisions for individual patients’, see [117]). The last group 

(general physicians) represents the baseline within clinicians that do not have experience 

working with genomic data. 
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3.3.3 Focus groups assignment 

Each homogenous focus group consisted of participants from the same professional 

category, and group sizes ranged from four to five. The rationale for the group size was to 

balance between having enough participants for interactions while not having too many 

participants in one setting such that not everybody got to express their opinion in the limited 

timeframe. There was no overlap between the group assignments such that each individual 

participated only once in a focus group. The participants for each group were randomly assigned. 

The focus groups were conducted in two rounds: six first round sessions took place between 

February and June of 2014, six second round sessions took place between September and 

October of 2014. 

 

3.3.4 Focus group structure 

Participants filled out a demographic survey and consented by signing a project 

participation form at the beginning of each focus group session. Each focus group lasted between 

90 to 120 minutes. The sessions were audio-recorded in their entirety and drawings made by 

participants on a whiteboard were digitally captured. Key matters that were repeatedly referred to 

in the focus groups were typed on a laptop by the moderator (CS) and projected on a big screen 

via a projector. Throughout the session, participants had access to drinks and snacks.  

The structure of the focus groups was built around the various processing stages of 

patient exome data (e.g. generation of alignment and variant calls, data annotation and 

visualization, variant/gene prioritizations). To guide the flow, many of the questions were 

structured around a hypothetical scenario involving a patient suffering from an undiagnosed rare 

metabolic disorder (See Appendix B-12 for discussion of study limitations), but participants 
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were encouraged to think and discuss beyond the scenario. Some parts of the focus groups were 

scripted to raise issues including examining data quality and screening for technical and/or 

biological abnormalities, filtering exome variant calls at the genetic level, prioritizing mutations 

at the gene level, and smoothing out the technical challenges when collaborating across multiple 

researchers, and sharing the clinical findings with patients (See Appendix B-3 for more details). 

 

3.3.5 Analysis 

Focus group transcripts were generated from recordings and notes and coded in Microsoft 

Word. Content analysis was conducted to describe participants’ views and perspectives on 

WES/WGS data[118, 119]. A set of initial codes was formulated based on the research questions 

and prior studies[65, 114, 120, 121]. Additional emergent themes and codes were identified from 

the data using an inductive approach[122-124]. The whiteboard drawings were analyzed from 

the video footages, and were digitally translated using GUI Design Studio Version 4.6. Themes 

and sub-themes identified from the coded transcripts were used to highlight key features on the 

digital prototypes. Findings were summarized through tables, figures and narrative discussion. 

 

3.3.6 Approvals 

This study was approved by the University of British Columbia Behavioural Research 

Ethics Board (H13-02034). 
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3.4 Results 

3.4.1  User groups demonstrate dissimilar focus in the analysis pipeline 

The diverse WES/WGS analysis software tends to emphasize specific points in the 

analysis pipeline, in a package specific manner. We sought to understand whether the focal point 

of the software packages tends to reflect distinct user community desires. To ascertain 

preferential starting points in WES/WGS analysis, participants were asked to choose between 

working with raw unaligned sequenced reads, or to work with variants called with an external 

informatics pipeline. These two choices represent typical options offered by sequencing centers 

and commercial companies[125, 126]. The preferences from each participant were immediately 

reflective of the domain they represented, and it was apparent that the same genomic data were 

treated differently by each of the three user classes (Figure 3-1). 

 

Figure 3-1 Distinct user preferences in genome analysis. Beginning with raw sequenced reads, the exome analysis 

pipeline can be conceptualized into four distinct compartments: generation of alignments and variant calls, 

assessment of data quality, filtering of variants based on genetic models, and prioritization of genes based upon 
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biological functions. The details of the components are annotated largely in the context of genetic diagnosis for 

rare/complex disorders (refer to Appendix B-12 for discussion on other clinical uses of genomic data). The bars 

above represent the intensity of user engagement at each step. Bioinformaticians preferred to be involved in every 

step, with equal attention devoted to all compartments. Clinical geneticist, despite placing heavier emphasis on the 

final two stages, indicated they would ideally like to be involved in every step too, but they faced difficulties in 

carrying out the first and second steps (e.g. pipeline execution and quality assessment), which may be attributed to 

software usability. Genetic counselors (and general physicians, not shown) indicated they would focus on the final 

output of candidate variants, to which they could apply their domain knowledge to select clinically relevant genes. 

The text in the lower portion of the figure highlights how the same step in the informatics pipeline (e.g. variant data) 

can be viewed differently across domain experts. 

 

Bioinformaticians desired to start with raw sequence data, but also indicated that having 

access to both raw data and externally-provided variant lists would be ideal: 

 
“I prefer to work with raw sequence data because it gives me greater flexibility. If I don’t see any 

interesting candidate from my output, I can re-analyze the data using different thresholds, or try a 

different genome aligner, or a different variant caller. Having the variant calls is a bonus -- I can go to 

the variants right away while the pipeline is still processing raw reads. This is especially important when 

I have multiple whole genomes where the processing time is expected to be long” [Bioinformatician 02] 

 
“Ideally I would like to have both [raw data and variant data]. But having the raw sequence data 

means I can go back and re-do the analysis as future algorithms improve, or as genome annotations get 

updated…or if I need to investigate other types of genetic variations like large structural inversions or 

deletions or duplications” [Bioinformatician 05] 

 
Similarly, clinical geneticists preferred both raw sequence data and variant calls, but with 

a stronger partiality for working with variant calls over raw reads because they believed working 
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with the already aligned and annotated data gave them a better chance to identify clear causal 

variants quickly.  

 
“If we are dealing with a recessive disorder, then mosaicism and de novo dominant models are 

less of a concern. I do not have to worry about twiddling different variant quality scores that is often so 

important when searching for bona fide heterozygous mutations.” [Clinical geneticist 05] 

 
“Starting with only the variant data generally means that the data I am given has already been 

filtered by some kind of threshold so I am restricted to play within the limit of that threshold. I have yet to 

find a user-friendly interface that would allow a non-computer savvy clinician such as myself to process 

an exome data from beginning to end. For now, I am limited to getting only the final sorted list from the 

bioinformaticians.” [Clinical geneticist 03] 

 
Genetic counselors and general physicians expressed no desire for raw sequences, 

indicating that they did not consider it as part of their professional role (Appendix B-4). There 

were also differences on the preferred file formats between bioinformaticians versus the 

geneticists and counselors (Appendix B-5). 

 

3.4.2 Separate interfaces required for data quality assessment 

3.4.2.1 Desired statistics 

Participants were asked to discuss issues regarding quality examination of WES/WGS 

dataset(s). Genetic counselors and general physicians stated this entire topic was of no relevance 

to their line of work.  
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“I don’t think it is up to me to inspect data quality. I don’t even know where to begin! That is not 

what I am trained to do. When I receive the data, I expect it to have already been quality-checked.” 

[Genetic counselor 02] 

 
There was a strong overlap between the bioinformaticians and clinical geneticists when 

commenting on the quality measures desired, and some mentioned quality measurements are not 

commonly available in current toolkits (Appendix B-6). Both user groups wanted to see a list of 

genes (or sub-segments of genes) whose exomes were not sufficiently covered, to compare 

against a list of genes relevant to their study. 

 
“It is important for me to know what genes are included in a capture kit so if there is an 

insufficient coverage for a set of genes, I can decide if simply re-sequencing the data with the same 

platform would guarantee more reads at those locations, or if I need to explore alternatives like whole 

genome sequencing.” [Bioinformatician 02] 

 
“I want to know what genes are not sufficiently covered in my exome because currently, all that is 

given to me is a list of variants. From that list, if I don’t see any mutations in those genes, I would be 

mistaken to think those genes are normal when they could be not.” [Clinical geneticist 04] 

 
3.4.2.2 Visual presentation 

While the desired metrics and functionalities overlapped highly between the 

bioinformaticians and clinical geneticists, the preferred methods of presentation differed between 

them. Figure 3-2 and 3-3 outline the key differences. 
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Figure 3-2 A graphical representation of key features desired by clinical geneticists for inspection of data quality. 

(A) Measurements associated with data quality should be grouped together into a common theme (e.g. a drop-down 

panel). Quality scores deviating from the norm should be automatically highlighted (e.g. exclamation mark). (B) 

Computational jargon (e.g. coverage) need to be appropriately explained to a non-computational user. (C) Details on 

different quality measurements should be displayed separately, but still contained within the same user interface. 

The example here uses tabs to access different perspective views. (D) Data are best represented both visually (e.g. as 

a graph) and numerically (e.g. summarized in tabulated form). Simply presenting the quality metrics is not 

sufficient, software must further describe the nature of the problem, and provide recommendations. (E) The user 

needs flexibility to explore the distribution of quality scores, and visualize how different thresholds impact the data 

results. Here, a bar representing the mapping threshold is introduced for the user to dynamically adjust, and the 

expectation is the interface will update the coverage accordingly. 
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Figure 3-3 A graphical representation of key features desired by bioinformaticians. A) Terminal interface is the most 

utilized environment, as it connects with many other command-line software and scripts. Tabulated data quality 

summaries are displayed directly on the terminal. B) Graphical summaries are also desired, but no intensive 

graphical user interface app is needed, as bioinformatics users tend to prefer features already available via the 

terminal display. 

 

3.4.3 Filtrations and prioritizations 

3.4.3.1 Variant-level filtration 

For genetic counselors and general physicians, there were few comments about filtering 

at the variant level. When the data reached their hands, they expected it to have been filtered 

based on specified genetic model(s) and allelic frequencies, allowing them to focus on 

prioritizing candidate genes. 
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We found a set of filters selected by both bioinformaticians and clinical geneticists, the 

majority commonly cited in the exome literature (e.g. sort alleles by allelic frequencies, mutation 

type, and impact prediction[127, 128]). The variants were preferred to be displayed within a 

table or spreadsheet – a design that is already implemented in many exome analysis systems. 

In accordance with how they inspected data quality, bioinformaticians preferred to prioritize 

variants within the terminal interface (Figure 3-4). Bioinformaticians also displayed the largest 

diversity in terms of what is desired about each variant (examples discussed in Appendix B-7). 

The diversity in which bioinformaticians interact with WES/WGS data likely explains why they 

preferred to work with a command-line rather than to be limited to a graphical tool where the 

functionalities are by nature more constrained and less flexible to be tailored to context-specific 

needs. 

In contrast, clinical geneticists preferred a graphical user interface that is highly dynamic 

and user-interactive (Figure 3-5). Microsoft Excel spreadsheets were the prevalent choice of 

clinical geneticists and genetic counselors for viewing variant lists, despite acknowledging it as 

not being optimized for the purpose. 

 
“The problem with Excel is it starts crashing when I try to feed in more than 65,000 rows of 

mutation, and that’s just with an exome.” [Clinical geneticist 01] 
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Figure 3-4 A graphical representation of the key features desired by bioinformaticians when visualizing/filtering 

variant sets. (A) Analyzing variants within a terminal environment by informaticians allows manipulation of the 

variant files via custom scripts and/or external command-line programs. (B) Variants are preferred to be visualized 

within a genome browser (e.g. UCSC Genome Browser[129]) where genomic neighborhood landmarks and any 

additional relevant biological information (e.g. SNPs, conservation) can be displayed alongside. 
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Figure 3-5 A graphical representation of the key features desired by clinical geneticists when performing variant 

visualization/analysis. Brown dotted arrows point to additional information from specific columns that is available 

when clicked upon. For instance, clicking the “mutation impact” column would reveal different impact predictions 

by mainstream prediction software and shows the level of congruency across multiple algorithms. (A) Classical 

Mendelian models should be built into the system with tabulated summaries automatically available. Outputs from 

each Mendelian model should be available under separate layouts (e.g. navigated by tabs). (B) Software should 

provide a quick explanation about the information contained within each column and how to interpret it. (C) The 

variant table needs to be ranked by evidence (e.g. clinically interesting variants appear at the top of the list). Variants 

with obvious pathogenic associations need to be automatically highlighted (e.g. flashing red notice). Aside from 

automated cues, clinical users wanted capabilities to highlight variants that were perceived to be of high interest, to 

store personal comments for specific variants (e.g. update if a variant is confirmed by Sanger sequencing), or to 

upload a scientific article related to a particular gene. (D) An integrated pedigree to visualize how the variants are 
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segregated across a given set of related exomes, and automatically updates the genotypes as users browse across 

different variants. (E) Hyperlinks that link to external databases should be discouraged. Geneticists complained that 

the current state of the software relies too much on external references where cross-referencing between different 

resources on separate interfaces is very distracting. Instead, key clinically relevant information (e.g. the phenotype 

of a gene knock-out experiment from animal model column) should be computationally compiled and presented 

within one interface, and only the technical details (e.g. how the experiment was performed) are directed to external 

sites. 

 

3.4.3.2 Gene-level prioritization 

This section discusses the desired prioritization strategies and executions for clinical 

exomes at the genic level (rather than variant level). 

All user groups emphasized a desire for informatics algorithms that conduct automated 

literature mining or pathway analysis (the overview of such algorithms are introduced in 

Appendix B-8). The core difference between the user groups is that bioinformaticians wanted 

such analysis to be integrated with the rest of their command-line based pipeline, while non-

computational users wished this functionality to be accessed graphically (Figure 3-6).  

Clinicians emphasized that while there are tools that offer online software applications to 

obtain candidate genes based upon keyword queries (e.g. MeSHOP[42], Genie[130], Ingenuity 

(http://www.ingenuity.com)), these capabilities are not consistently accessible to integrated 

WES/WGS analysis software and the output cannot be combined with exome data without 

additional manipulation. Expanding beyond keywords as input, clinicians further requested 

graphical search functionalities. One such request is the ability to filter by organ system visually 

where the user can click on the organ/system of interest in an anatomy diagram (Figure 3-6). 
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Finally, the clinicians expressed frustration that many gene-ranking software failed to provide 

the primary literature when returning the results (or it was difficult to retrieve that literature). 

 
“When the program predicts this gene to be related to this particular disease, I want to know how 

accurate it is. And not just from some kind of confidence score, but I want to see the primary literature. 

For instance, if the strength of association is based on GWAS literature, then I’m probably not going to 

treat it seriously.” [Clinical geneticist 08] 

 

 
Figure 3-6 A graphical representation of the key features desired by clinical geneticists for genetic and genic 

prioritizations. A) When the user fails to identify any variants of clinical interest, software should provide 

recommendations on alternative strategies based on what the user has already explored. B) The software should 

provide easy tracking of the filters currently applied and allow quick adjustments (in this case, via checkboxes to 

turn a filter on/off). C) Software should allow incorporation of external files containing either genomic coordinates 
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or list of genes to filter against variant set. D) Software with an embedded dynamic pedigree would allow clinicians 

to graphically upload multiple exomes (e.g. trio) and assign family memberships via the pedigree. Custom 

inheritance models could also be setup via the pedigree by specifying expected genotype in a given model. E) 

Ability to import free-text clinical descriptors, or access terms from a defined ontology (e.g. Human Phenotype 

Ontology) against which to filter for genes/variants that relate to the specified descriptions. Alternatively, a novel 

feature emerging from focus groups was the ability to prioritize based on organ systems. 

 

3.4.4 Data sharing with collaborators and patients 

A key bottleneck to routine clinical exome analysis was identified to be the preparation of 

clinical reports for inclusion in medical records and delivery to other physicians. Reports should 

be concise and automated as much as possible including only clinical information that can be 

directly extracted from exome data or external databases. Figure 3-7 illustrates an example report 

separating the clinical genetic findings from technical summaries. Additionally, to streamline 

exchanges with patients, clinicians wanted the ability to flag genes that have been disclosed by 

the patients as a set they do not need to be notified about.  
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Figure 3-7 An example of automated clinical reporting summarizing the clinical findings from WES/WGS. (A) The 

system should allow clinicians to save, edit text and insert custom images to the report. The report is designed to be 

a skeleton for clinicians to build on. (B) Key genetic findings related to the clinical phenotype should be stated right 

on the front page. These include known clinical relevance about the mutated gene (e.g. what is the biological role of 

the gene, what phenotype does a person exhibit when the gene is mutated) (C), the type and nature of the mutation 

(e.g. what is the genomic and transcript coordinate of the mutation, what type of mutation is it, has the mutation 

been previously reported in clinical literature, what is the allelic frequency, and how is it transmitted across the 

given family) (D). E) All other information not directly related to the key finding (e.g. the thresholds used by the 

bioinformatics pipeline that generated the dataset) should be discussed in subsequent pages. 
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3.5 Discussion 

Next-generation WES/WGS sequencing is revolutionizing the study of genetic disorders, 

with considerable potential for successful application in clinical practice. With large-scale 

sequencing projects like ClinSeq[131] and Exome Aggregation Consortium 

(http://exac.broadinstitute.org), and collaborative efforts of sequencing consortiums (e.g. Global 

Alliance for Genomics and Health, http://genomicsandhealth.org) underway, the global 

community is in the midst of a multi-year process that will ultimately transition WES/WGS from 

research labs to clinical labs[132-134]. Despite the continuous flow of new software to assist in 

the translation process, WES/WGS analysis software for clinical genetic diagnosis is not yet in 

widespread use[135, 136]. As bioinformaticians have been key processors of WES/WGS 

sequences in the research setting, they are starting to migrate into emerging clinical laboratory 

roles. The nature of an interdisciplinary healthcare team necessitates that the software systems 

and interfaces accommodate the greater diversity of participants to ensure the usability of health 

information and to provide the requisite utility to diverse clinical users[137, 138].  

This report initiates the comparative study of cognitive patterns between healthcare 

professionals that closely interact with genomic data from multiple domains. Excluding the 

general physicians included in this study as a control group, the specialist groups represent the 

three classes of healthcare professionals that currently most closely interact with patient genomic 

data at the clinical level. While previous focus groups have studied preferences within a general 

population for results delivery from WES/WGS[139, 140], in this study, we interviewed 

bioinformaticians, clinical geneticists, genetic counselors, and general physicians to study how 

domain knowledge influences the cognitive patterns for the analysis of WES/WGS data, and the 

consequent meaning for software design.  

 

 

84 

http://exac.broadinstitute.org/


 

Through a series of scenario-driven focus groups, we found that despite a common goal, 

the discovery of a causal candidate variant/gene, the user groups exhibit clear differences and 

divergent patterns among user behaviors. Table 3-1 summarizes and distinguishes the software 

requirements from each user group. 

  

 
Table 3-1 An overall summary of the desired software features and design architectures across bioinformaticians, 

clinical geneticists, genetic counselors and physicians. 

 

It is our interpretation that no single interface will adequately address the needs of all 

users, necessitating the capacity of future WES/WGS systems to provide interface options to best 

meet the needs and expectations of the diverse users. The existing academic and commercial 
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software (Appendix B-1) place emphasis upon graphical user interface that are viewed by 

bioinformaticians as too rigid and not customizable for distributed network analysis. While some 

tools may be designed to create user-friendly workflows, the lack of design-focus on clinical 

target users (i.e. geneticists and genetic counselors) impede their adoption in clinical settings 

(Appendix B-1). The importance of user-centric themes is consistent with emerging models of 

care and medical decision-making support systems, such as observed for breast cancer diagnosis 

and management[141, 142], early recognition of sepsis[143], antibiotics prescriptions[144, 145] 

and interpretation of medical images[146, 147] where extensive evaluations on physicians’ and 

nurses’ interactions in work practices reveal similar concepts surrounding issues of sharing 

information across collaborative settings, and tensions between integration and standardization.  

Given the complexities involved, software which attempts to address all possible tasks 

that arise in clinical genomics is less likely to be incorporated into practice than software specific 

to exome/whole-genome analytical tasks. To be successful, a medical decision support system 

should be compatible to an existing clinical workflow[148, 149], and actionable outputs 

intelligently filtered and presented at appropriate times[150, 151]. In WES/WGS, we found this 

workflow scope includes a system’s capacity to incorporate clinical keywords and genetic 

hypotheses pertinent to each unique patient (also cited in [152, 153]), and results delivered at 

specific workflow stages with respect to the disparate foci of counselors, physicians, geneticists, 

and bioinformaticians (e.g. Figure 3-1). Clinical geneticists expressed desire for an 

encompassing graphical design that gives them more control over the technical aspects of the 

pipeline, integrating genomic information with patient history but at the same time removes them 

from the realm of scripting and the command-line. Meanwhile, genetic counselors (and general 

physicians) wished to solely focus on gene prioritization and efficient delivery of final results 
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without distraction by functionalities irrelevant to their work processes. The results highlight a 

need for systems to facilitate the generation of clinical reports, including the appropriate 

distribution of technical versus clinical details, sharing of notes between clinical staff about 

specific variants, overview of genes not covered by WES, and the family structure. The format of 

the prioritized report (Figure 3-5) mirrors the precedent of prioritized information in other modes 

of clinical reports, e.g. a radiologist’s X-ray report separating clinical impressions from 

descriptive details of radiographic appearance of specific organs[154]. 

Strong community observations should be noted by system developers.  Our study 

confirms that an ultimate clinical WES/WGS systems will need to be well connected to online 

resources, such as animal model phenotypes[155, 156], biological system annotations[157, 158], 

and disease-focused databases[106, 159, 160]. This is concordant with earlier work that 

demonstrated the importance of rich access to external resources and databases[114, 161, 162]. 

The integration of metadata and diverse biological annotations to patient electronic health 

records will require strict compliance to standards (examples discussed in Appendix B-11). Our 

study further highlighted the need to integrate access within a single system, sparing users from 

mastering diverse interfaces.  

Our results suggest future software should provide separate interfaces for each target user 

group. One can envision ‘purpose-driven’ interface options, allowing users to focus on the aspect 

of the analysis and interpretation relevant to their duties. While the tailored software is fitted to 

individual domains, it must at the same time facilitate collaboration, as increasingly diverse 

expertise is key requirement for WES/WGS interpretation. The informatics specialists may be 

charged with reporting on data linking candidate genes to specific biological processes, clinical 

geneticists will evaluate specific mutations for a causal role in disease/phenotype, and genetic 
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counselors will indicate the variations that need to be conveyed.  These activities are interactive 

and may require cycles of expert attention. Insights to overcome socio-technical challenges can 

be drawn from research in Computer-Supported Cooperative Work (CSCW)[163], including 

themes surrounding information credibility[164], coping with narrative and numeric data[165], 

scalable methods for managing increasingly large data sets[166], and caution surrounding 

interpretation of automated systems[167] (discussed further in Appendix B-10). As WES/WGS 

analysis software matures it will empower clinicians with more automated procedures, which we 

anticipate will decrease dependency on bioinformaticians for data processing.  These experts will 

continue to be closely involved, developing and applying new approaches for the discovery and 

interpretation of additional genetic alterations. Advances over the coming years will result in 

new requirements for collaborative interactions, for instance as the current focus on alterations in 

protein coding sequences expands to include regulatory sequence alterations. Expansion of the 

cooperative capacity of the software will assist the diverse users as the field matures. 

 

3.5.1 Conclusions 

As high-throughput WES/WGS technologies continue to mature, healthcare providers 

need efficient software to facilitate interpretation for clinical decision-making. By conducting 

multiple focus groups of diverse healthcare classes active in clinical genetics, our present study 

reveals there are distinct types of WES/WGS analysis needs for different classes of domain 

specialists. The results presented illustrate the cognitive processes and tentative designs 

envisioned by the range of clinical professionals key to the process. A natural follow-up for 

future work is to implement the features into a prototype software package and conduct 
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intervention trials to evaluate effectiveness and performance within clinic sites. The limitations 

to this study are discussed in Appendix B-12. 
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Chapter 4: FLAGS, frequently mutated genes in public exomes 

 

4.1 Synopsis 

Background Dramatic improvements in DNA-sequencing technologies and 

computational analyses have led to wide use of whole exome sequencing (WES) to identify the 

genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with 

Mendelian inheritance patterns have been discovered through sequencing the exomes of just a 

few unrelated individuals or family members. As rare/novel genetic variants continue to be 

uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign 

mutations. 

Methods We used publicly available exome cohorts, together with the dbSNP database, 

to derive a list of genes (n = 100) that most frequently exhibit rare (<1%) non-

synonymous/splice-site variants in general populations. We termed these genes FLAGS for 

FrequentLy mutAted GeneS and analyzed their properties. 

Results Analysis of FLAGS revealed that these genes have significantly longer protein 

coding sequences, a greater number of paralogs and display less evolutionarily selective pressure 

than expected. FLAGS are more frequently reported in PubMed clinical literature and more 

frequently associated with diseased phenotypes compared to the set of human protein-coding 

genes. We demonstrated an overlap between FLAGS and the rare-disease causing genes recently 

discovered through WES studies (n = 10) and the need for replication studies and rigorous 

statistical and biological analyses when associating FLAGS to rare disease. Finally, we showed 

how FLAGS are applied in disease-causing variant prioritization approach on exome data from a 

family affected by an unknown rare genetic disorder. 
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Conclusions We showed that some genes are frequently affected by rare, likely 

functional variants in general population, and are frequently observed in WES studies analyzing 

diverse rare phenotypes. We found that the rate at which genes accumulate rare mutations is 

beneficial information for prioritizing candidates. We provided a ranking system based on the 

mutation accumulation rates for prioritizing exome-captured human genes, and propose that 

clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution. 

 

4.2 Introduction 

Rare Mendelian diseases are caused by altered function of single genes and individually 

have a low prevalence (fewer than 200,000 people in the United States, or fewer than 1 in 2,000 

people in Europe)[168] but collectively these affect millions of individuals worldwide[169]. The 

current best estimate on the number of rare genetic disorders is between 6,000 to 7,000 based on 

OMIM[170], and a comprehensive reference portal for rare diseases (Orphanet)[171]; however, 

taking into consideration that the human phenome is far from fully characterized[172] together 

with higher estimates on rare-disease-causing genes based on human mutation rate and the 

number of essential genes[173], the number of rare genetic disorders is likely higher. 

With the increasing rate of the discovery of rare genetic variants, whole exome 

sequencing (WES) has the potential to identify the majority of the remaining rare-disease-

causing genes in the near future. A major challenge in identification of the true pathogenic 

variants lies in the differentiation between a large number of non-pathogenic functional variants 

and disease-causing sequence variants in a studied family (in this study, the term “functional 

variant” is restricted to missense/nonsense and splice site variants). Current WES analyses of 

rare genetic disorders use similar approaches[113] to filter the observed variants to enrich for 
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potential causal genes. However, it is well established that a significant proportion of coding 

variants in each individual represent rare variants (absent from dbSNP or observed with 

frequency of ≤1%)[40], and that genomes of healthy individuals contain an average of ~100 loss-

of-function variants[174]. The analyst must further consider the possibility that non-coding 

variations (e.g. regulatory alterations) could be involved, thus the filtered results may not contain 

the causal gene. Thus, for many rare disorders, it is still challenging to separate the real disease-

causing variant from the prioritized set of rare, likely functional variants that are not accountable 

for the investigated phenotype. 

There are broadly used tools such as SIFT[175] and PolyPhen-2[176] that provide an 

interpretation of mutation impacts. Many of these tools focus on the individual variants. In the 

variant-focused studies, it has been noted that variants tend to arise more frequently in long 

genes (e.g. TTN and MUC16). In considering that researchers often focus their interpretation of 

exome data on the genic level initially, it might be advantageous to have methods and ranking 

systems that integrate the individual variants at the genic level more systematically to inform 

variant prioritization. While there are long-standing methods for ranking a set of genes based on 

their annotations[177], there has been limited work on rankings based on their characteristics 

from NGS studies such as WES. One ranking system based on the genic level is RVIS[178]. 

RVIS generates a score based on the frequencies of observed common coding variants compared 

to the total number of observed variants in the same gene. 

To further help in identification of disease-causing variants from families affected by rare 

Mendelian disorders, we expanded the current, common prioritization parameters that focus 

mainly on frequency at which variants themselves are seen in normal population, to include the 

frequency at which genes are found to be affected by rare, likely functional variants. Using rare 
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variations from dbSNP and EVS, we introduced the concept of FLAGS (FLAGS for FrequentLy 

mutAted GeneS). We showed that these genes possess characteristics that make them less likely 

to be critical for disease development, but are more likely to be assigned causality for diseases 

than expected for protein-coding genes in general. We further demonstrated FLAGS’ utility via a 

case study as well as literature review, and application in our in-house database. Finally, we 

provided a ranking system from FLAGS to assist in the prioritization of genes from 

exome/whole-genome clinical studies. 

 

4.3 Methods 

4.3.1 Terminologies used in this study 

In this study, the term “functional variants” refers to variants that are missense, nonsense 

or fall within a splice site window (see below for specifics). The length of a gene is defined to be 

the longest open reading frame (ORF) of the gene, thus excluding promoters, untranslated 

regions and introns. All genes are referred to by their HGNC (HUGO Gene Nomenclature 

Committee)[179] official gene symbol. 

 

4.3.2 Datasets 

In the following sections, we provide detailed descriptions of how the datasets were 

obtained or generated. Table 4-1 lists the size and descriptive nature of the datasets used in this 

study. Each gene list referred to in this report can be found online at BMC where the paper is 

published. 
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Name of 
datasets 

Size Description 

FLAGS 100 The top 100 of FrequentLy mutAted GeneS with rare (<1% allelic frequency) 
functional variants from dbSNPv138 and ESP6500 

OMIM 3099 The list of protein-coding genes associated with human diseases from Online 
Mendelian Inheritance in Man 

HGMD 2691 The list of protein-coding genes with damaging mutations (<1% allelic 
frequency) from Human Gene Mutation Database[160]. 

WES 300 Downloaded from Boycott et al. (2013)[180] - a list of novel genes implicated in 
human disorders based on whole exome sequencing studies, or novel/known 
pathogenic mutations discovered by whole-exome sequencing. 

Background 18580 The entire set of human protein-coding genes that have complete start and end 
translation annotations with a specified dN/dS ratio 

Table 4-1 Description of the datasets used in this study 

 

4.3.3 FrequentLy mutAted GeneS (FLAGS) 

Variations from EVS hosted on the NHLBI Exome Sequencing Project (ESP6500) were 

downloaded on February 2014. The criteria used to generate the variations are available online 

(http://evs.gs.washington.edu/EVS/). Variations from dbSNPv138 were downloaded from the 

NCBI website (version date 20130806). Genomic annotations were assigned to each variation 

using SnpEff v3.5g with the parameter –SpliceSiteSize 7 and human genome version 

GRCh37.75. Variants were filtered for allelic frequency <1% according to dbSNP’s overall 

frequency and EVS’s combined population frequency. Where a discrepancy in the reported 

frequency arose between the two resources, we took the higher frequency. Variants were further 

filtered for “functional” coding mutations that result in a change in the amino acid sequence (i.e. 

missense/nonsense), or mutations that reside within a putative splice site junction (with a 

window size of 7, as supplied in the parameter for SnpEff). The remaining mutations were 

excluded if they were observed more than 10 times within our in-house database consisting of 

150 exomes and 13 whole genomes. This last step was included because we noticed it is 

common to see polymorphic mutations from dbSNPv138 without an allelic frequency attached; 
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filtering against an in-house pipeline allowed us to remove polymorphic variants that do not have 

an annotated frequency. Among these remaining mutations, for each gene, we counted the 

number of mutations observed per gene. Only protein-coding genes with a fully annotated 

translation start and end, and a valid dN/dS ratio are included for consideration (see 

Methodology section “Gene length and dN/dS ratio”). From this ranked list, we selected the top 

100 genes (0.5% of the 19818 genes overlapping between dbSNP and EVS) with the most 

observed mutations as a focus for this study. This set will be referred throughout the manuscript 

as “FLAGS”. The entire ranked list is available online at BMC. 

 

4.3.4 Disease genes datasets 

To obtain a list of reliable disease-associated genes, we drew from multiple resources. 

The first list of disease-associated genes was downloaded from OMIM website on March 2014 

using the provided file “morbidmap”. This list will be referred throughout the manuscript as 

“OMIM genes”. A second list contains pathogenic variations downloaded from the HGMG 

professional version (file date 20130927)[160]. To focus on likely high-penetrance pathogenic 

alleles, we filtered the variations in this file by the same frequency criteria as we performed for 

obtaining FLAGS (see Methodology section “FrequentLy mutated GeneS”), and limited to only 

the mutations annotated as “DM” (damaging mutations). The affected genes from those 

remaining variations are compiled, and will be referred throughout this manuscript as “HGMD 

genes”. A third disease set was downloaded from the Supplemental file published by Boycott et 

al. (2013)[180], which provided a compiled list of novel genes and/or novel phenotypes 

associated with known disease-genes discovered through exome sequencing. For all three 

disease-associated-gene lists, we mapped the gene symbols to their official HGNC gene symbol 
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(and discarded the ones that could not be mapped), retained only protein-coding genes with a 

fully annotated translation start and end, and a valid dN/dS ratio. OMIM and HGMD (Human 

Gene Mutation database) overlap with the top 100 FLAGS by 42 and 37 genes respectively. 

 

4.3.5 Background dataset 

The complete list of human-coding genes was downloaded from Ensembl[181] Biomart 

on March 2014 using version Ensembl Genes 75 with genome version GRCh37.p13. Protein-

coding genes without HGNC gene symbol, a proper translation start and translation end 

annotation according to this genome version were discarded. Genes without a valid dN/dS ratio 

were removed (i.e. without any observed synonymous polymorphisms according to dbSNPv138 

and EVS). This last step was done for two reasons: 1) to ensure there is no bias when evaluating 

dN/dS ratio in our results, 2) to ensure the genes selected in this study have been covered in NGS 

studies, since any gene without at least one observed synonymous mutation is presumably not 

sufficiently captured in either exome or whole-genome studies. The Background set overlaps 

FLAGS completely. The comparison analyses in the Results section are done without removing 

the overlap between the gene datasets. 

 

4.3.6 Gene length and dN/dS ratio 

We calculated the selection pressures acting on genes by comparing non-synonymous 

substitution per non-synonymous site (dN) to the synonymous substitutions per synonymous site 

(dS). This ratio of the number of non-synonymous substitutions per non-synonymous site to the 

number of synonymous substitutions per synonymous site (dN/dS) was calculated using the 

formula 
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  [182].  
 

The number of possible synonymous and non-synonymous mutations was derived by 

examining the longest annotated coding transcript per gene (transcript length based upon 

Ensembl Biomart described above). Only transcripts with annotated start and end positions were 

considered. The number of observed synonymous and non-synonymous mutations was 

calculated from the same dbSNPv138 and EVS datasets as described above. We verified that our 

methodology provides a comparable dN/dS ratios to the ratios reported previously[182]. Gene 

length was derived by converting the same transcript that was used to calculate the dN/dS ratio 

into amino acid sequences. In this study, the term “gene length” is defined to be the ORF of the 

gene, thus excluding promoters, untranslated regions and introns. 

 

4.3.7 Paralogs 

The paralogous relationships for human genes were derived from the Ensembl 

Comparative Genomics API using version Ensembl Genes 75, GRCh37.p13. A custom Perl 

script was written to extract the paralogs for every gene. 

 

4.3.8 Gene-to-disease phenotypic terms 

We used MeSHOP software[42] to identify over-represented disease terms associated 

with each gene. MeSHOP returns a list of MeSH (Medical Subject Heading) terms for each gene 

with a p-value for each term. Each p-value was calculated by an over-representation (compared 

to control) of the MeSH terms assigned to the set of articles within PubMed that are associated 

#      
#      

#      
#      

of observed non synonymous substitutions
of possiblenon synonymous site

of observed synonymous substitutions
of possible synonymous substitutions

−
−
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with the gene (based on relationships defined in gene2pubmed; articles considered include up to 

March 2013). From this output, for each gene, the non-disease related MeSH terms were filtered 

out, and the remaining MeSH terms were selected for significance (using the Bonferroni 

correction and a significance threshold of 0.05). To derive gene-to-disease relationships with an 

independent source, we extracted phenotypic diseased terms per gene from Human Phenotype 

Ontology website[183] by downloading the file “genes_to_diseases.txt” (version April 2014). 

 

4.3.9 Publication record analysis 

For our publication analysis on the relationship between a gene and its frequency of 

citation(s) within biomedical literature, we used Gene Reference into Function (GeneRIF), a 

manually curated list of experimentally validated gene functions available as part of NCBI’s 

EntrezGene database. Each entry in GeneRIF contains a short description of a gene function and 

a PubMed identifier for the publication documenting the evidence of the described function. 

Therefore, we were able to count the number of papers published on a gene’s functionality by 

counting the number of PubMed records associated to the gene. The following are the detailed 

steps of our publication calculation. First, two flat files necessary for our analysis were 

downloaded via FTP from NCBI Gene on April 2014: GeneRIF (available at 

ftp://ftp.ncbi.nih.gov/gene/GeneRIF/generifs_basic.gz) and EntrezGene entries for human 

(ftp://ftp.ncbi.nih.gov/gene/DATA/Homo_sapiens.gene_info.gz). Second, because GeneRIF 

refers to each gene by its EntrezGene ID, we mapped the gene symbol of all genes on our lists 

(FLAGS, OMIM, HGMD, Background) to EntrezGene ID using EntrezGene entries downloaded 

in the previous step. Third, for each gene of interest, we counted the number of PubMed IDs 

(PMIDs) associated with its EntrezGene ID in GeneRIF. Because GeneRIF does not guarantee 
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one-to-one relationship between a GeneRIF entry and a PMID 

(http://www.ncbi.nlm.nih.gov/books/NBK3840/#genefaq.Why_does_the_number_of_GeneRIFs)

, we filtered out duplicates in the list of PMIDs linked to a gene. Last, to filter the PMIDs by 

their publication date, we collected the publication date of each PMID via queries into PubMed 

using the ESummary query provided within the Entrez Programming Utilities (E-utilities). 

 

4.3.10 Statistical analyses 

Unless stated otherwise, all statistical analyses and plots were carried out in R 

(https://www.r-project.org) version 2.15.3. Non-parametric Mann–Whitney U one-tailed test was 

executed by wilcox.test function with parameter exact = TRUE. Violin plots were generated with 

Vioplot package. 

 

4.3.11 Mutation Detection using WES – a case study 

A 3-year old female patient, born as an only child to non-consanguineous parents of 

Turkish descent after an uncomplicated pregnancy and delivery, presented with profound early-

onset developmental delay, microcephaly, seizures, dysmorphic features, myopia, bone marrow 

dysplasia with lymphopenia, neutropenia, aplastic anemia and combined immunodeficiency (B 

and T cell) was enrolled into the TIDEX gene discovery project, approved by the Ethics Board of 

the Faculty of Medicine of the University of British Columbia (H12-00067). 

Extensive clinical investigations were performed according to the TIDE diagnostic 

protocol[184] to determine the etiology of patient’s condition. These included: chromosome 

micro array analysis for copy number variants (CNVs) (Affymetrix Genome-Wide Human SNP 

Array 6.0); telomere length analysis; CT and MRI scans and comprehensive metabolic testing. 

 

 

99 



 

Genomic DNA was isolated from the peripheral blood of the patient as well as parents using 

standard techniques. Whole exome sequencing was performed for the index patient and her 

unaffected parents using the Ion AmpliSeq™ Exome Kit and Ion Proton™ System from Life 

Technologies (Next Generation Sequencing Services, UBC, Vancouver, Canada) at 120X 

coverage. An in-house designed bioinformatics pipeline (Appendix C-3) was used to align the 

reads to the human reference genome version hg19 and to identify and assess rare variants for 

their potential to disrupt protein function. The candidate variants were further confirmed using 

Sanger re-sequencing in all the family members. Primer sequences and PCR conditions are 

available on request. Deleteriousness of the candidate variants was assessed using Combined 

Annotation–Dependent Depletion (CADD) scores[37]. 

 

4.4 Results 

4.4.1 FLAGS: genes frequently affected by rare, likely-functional variants in public 

exomes 

It has been previously reported that TTN and MUC16 appear in multiple exome analyses 

due to their length[185, 186]; researchers are aware of these genes and are cautious when 

encountering rare likely functional (missense, nonsense, splice site) variants in WES 

analyses[187, 188]. In a study of 53 independent families suffering from distinct rare inborn 

errors of metabolism (comprising of 150 whole exomes and 13 whole genomes; 

http://www.tidebc.org; Appendix C-4), we confirmed that rare/novel, likely functional variants 

affecting TTN and MUC16 repeatedly passed all the prioritization steps of our pipeline and 

appeared in ~5% of our candidate disease-gene lists. However, other genes were repeatedly 
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observed in multiple families affected with different phenotypes (e.g. DST). This motivated us to 

compile a set of FLAGS (FrequentLy mutAted GeneS) to understand their properties and 

facilitate better interpretation of phenotypes associated with these variants. The FLAGS list was 

generated by ranking genes based on number of rare (<1%) functional variants affecting these 

genes in general populations (NHLBI Exome Sequencing Project (ESP6500) and dbSNPv138). 

As expected, TTN and MUC16 are the top two genes based on the number of rare functional 

variants; however, other genes that were frequently affected by rare, likely functional variants in 

multiple TIDE families with unrelated phenotypes were also observed to be frequently mutated 

in general population. To explore the properties of these frequently mutated genes, we focused 

our analysis on the top 100 from this ranked list, which we hereafter refer to as FLAGS (Figure 

4-1). 
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Figure 4-1 The word cloud of FLAGS. A text file was created using a custom Perl script to reflect the frequency of 

mutation per gene in FLAGS. The Tagxedo (http://www.tagxedo.com/) was then used to generate the word cloud. 

The size of the words reflects how frequently they are found to bear rare, likely functional variants in the general 

population. As expected TTN and MUC16 are the top two genes. 

 

4.4.2 FLAGS tend to have longer ORFs 

In this study, the assignment of gene length refers to the longest open reading frame. 

Genes with longer ORFs are expected to have more mutations than shorter genes. To confirm 

this, we determined the distribution of gene lengths based on the longest annotated open reading 

frame for each gene. FLAGS have an average length of 4653 ± 3605 aa (amino acids). The high 

variance is due to two genes (TTN and MUC16) having extremely long lengths (35992 and 

14508 aa respectively) compared to the rest of the protein coding genes. Excluding the 2 outlying 
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genes, the remaining FLAGS genes (n = 98) have an average ORF length of 4233 ± 1399 aa. 

Figure 4-2A shows the distribution of ORF lengths across different evaluated datasets (with 

outliers removed to show the distribution clearer). The entire FLAGS have overall much higher 

ORF length than HGMD, OMIM and Background (HGMD, OMIM comparisons each yield a p-

value <2.2e−16, Background comparison yields a p-value of 0.00027). This is aligned with our 

expectation that FLAGS are frequently mutated from exome analysis because they correspond to 

genes with long coding regions. 

 

Figure 4-2 Properties of FLAGS. (a) Violin distribution of open reading frame lengths across the evaluated gene 

sets. Y-axis shows the length defined in terms of amino acids for the longest annotated transcript per gene. Outliers 

are excluded from the plot. (b) Distribution of number of paralogs per gene across the evaluated gene sets. Y-axis 
 

 

103 



 

shows the violin distribution of paralogs based on Ensembl Compara database. Outliers are excluded from the plot. 

(c) Cumulative distribution of dN/dS ratio across the evaluated gene sets. X-axis is limited from 0 to 2, and Y-axis 

plots the corresponding probability according to the cumulative distribution function. 

 

4.4.3 FLAGS tend to have paralogs 

The presence of paralogs may increase tolerance for otherwise phenotype-inducing 

functional variations due to functional compensation[189]. We calculated the number of paralogs 

per gene reported by the Ensembl Compara database[181], and compared this property between 

different gene sets. FLAGS overall have an average of 4 paralogs per gene. Figure 4-2B shows 

the distribution of the number of paralogs across the different gene sets. Aligned with our 

expectation, FLAGS have more paralogs than genes from OMIM, HGMD and Background 

(OMIM p-value =7.2e−05, HGMD p-value =7.4e−05, Background p-value =8.1e−09). While the 

existence of paralogs may cause read mapping challenges that leads to an increased frequency of 

false variant predictions, most of these technical errors will be eliminated by a filter for variant 

frequency, as they will arise recurrently. 

 

4.4.4 FLAGS tend to have higher dN/dS ratios 

Genes which exhibit many functional genetic variations (missense/nonsense/splice site) 

may have a higher tolerance for variations and thus a reduced likelihood of phenotypes subject to 

negative selection. For each gene, we calculated the dN/dS ratio as a proxy indicator of the 

amount of selective pressure acting on protein-coding genes. FLAGS have an average dN/dS 

ratio of 0.65 ± 0.18. Overall these genes have significantly higher ratio compared to genes from 

HGMD, OMIM, and Background (each individual comparison yields a p-value <0.005). Figure 
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4-2C shows the relative densities from cumulative distribution functions for each gene set. The 

trend indicates that frequently mutated genes have higher dN/dS ratio on average than expected. 

 

4.4.5 Variants detected in FLAGS tend to be predicted as less deleterious 

We explored the possibility that the FLAGS genes are affected by less deleterious rare 

variants compared to other genes. If the variants in FLAGS were less likely to be involved in 

diseases, then we would expect the variants to have lower predicted damage scores. To calculate 

this, we used the Phred-scaled Combined Annotation Dependent Depletion (CADD) score 

developed by Kircher et al. (2014) to rank the deleteriousness of each single nucleotide 

variant[37]. The method objectively integrates diverse annotations into a single measurement for 

each variant by training upon ~15 million genetic variants separating humans from chimpanzees 

against a simulated set of variants not exposed to selection. This method was chosen over other 

variant prediction tools because of its superior performance[37] and its ability to quantify the 

severity of a variant by a ranking system. This ranking system compares the candidate variant 

against other possible variants in the genome and assigns it a score based on this comparison; 

other variant prediction tools do not take into account other possible mutations in the 

genome[190]. Also, the CADD method includes ranking of nonsense and splice site variants, 

while other tools only handle missense[37]. For each gene, we calculated the proportion of 

variants with CADD Phred-scaled score <10, between 10 and 20, and above 20. We found that 

FLAGS are more enriched for variants with low scores, compared to OMIM and HGMD (Figure 

4-3A; p-values =2.6e−11, 2.9e−12 respectively). Likewise, OMIM and HGMD are more 

enriched for variants with high impact score (>20) than FLAGS (Figure 4-3B; p-values 

=2.4e−09, and 1.2e−10 respectively). These results are aligned with our expectation. We 
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additionally analyzed the genic tolerance of FLAGS to functional genetic variants, using residual 

variation intolerance score (RVIS) published by Petrovski et al. (2013)[178] and observed trends 

in the same direction (Appendix C-2). 

 

Figure 4-3 FLAGS genes are affected by rare variants predicted to be less deleterious than the variants affecting 

known disease-genes. Left: A boxplot distribution of proportion of variants with CADD score <10. The Y-axis plots 

the proportion of variants within each gene set having a Phred-scaled CADD score of <10. The proportion was 

calculated per individual gene. Right: A boxplot distribution of proportion of variants with CADD score >20. The 

Y-axis plots the proportion of variants within each gene set having a Phred-scaled CADD score of >20. The 

proportion was calculated per individual gene. 

 

4.4.6 FLAGS tend to be reported in PubMed and associated with disease phenotypes 

We sought to determine if there is a publication bias for pathogenic mutations in the 

frequently mutated genes. For each gene, we calculated the number of publications related to 

human diseases and biological functions using GeneRIF annotations (Figure 4-4). FLAGS have 

an average of 51 articles per gene, which is lower than for genes from HGMD and OMIM 
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(OMIM p-value =0.00087, HGMD p-value =0.0035). However, FLAGS have more publications 

than the Background set (p-value =6.3e−12). 

 

Figure 4-4 Cumulative distribution of the number of publications per gene across the evaluated gene sets. X-axis 

plots the number of publications from GeneRIF per gene, and Y-axis plots the corresponding probability according 

to the cumulative distribution function. 

 

We next considered if the frequently mutated genes are associated with greater diversity 

of disease phenotypes compared to disease-associated genes. Our expectation is that if the 

frequently seen genes are arising as candidates in more studies, and are less likely to be truly 

pathogenic, then they could be associated to a wider range of phenotypes in the literature (we 

recognize the association could also be due to pleiotropy[191], see Limitations). To analyze if 

FLAGS have been frequently correlated to human diseases, we used two different computational 

resources (MeSHOP[42], HPO[183]) to extract known significant relationship(s) between genes 
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and human disease phenotypes based on published scientific articles. Figures 4-5A and B show 

the distribution of the number of disease terms from HPO and MeSHOP per gene within gene 

sets. From MeSHOP results, we see that FLAGS have slightly fewer MeSH diseased terms per 

gene than genes from OMIM (mean 8.1 vs. 10.2; p-value =0.013), and significantly fewer terms 

per gene than HGMD genes (mean 8.1 vs. 9.5; p-value =2.3e−12). FLAGS have more MeSH 

terms than Background genes (mean 8.1 vs. 3.1; p-value =1.3e−15). These observations are 

consistent with the results based on HPO annotations, where we again see that while FLAGS 

have fewer disease phenotypic terms than genes from OMIM and HGMD (mean 2.1 vs. 3.7 and 

3.8 respectively; p-values <0.0001), FLAGS exhibit more terms than the Background (mean 2.1 

vs. 0.6; p-value =3.7e−14). To adjust for the potential bias that genes with more articles are 

likely to have more MeSH and HPO terms attached, we repeated the analysis by normalizing the 

MeSH and HPO terms to the number of publications in GeneRIF. The normalized observations 

are consistent with the results if no normalization was applied (Appendix C-5). 

 

Figure 4-5 FLAGS tend to be associated with disease phenotypes. Left: Violin distribution of number of HPO 

disease terms across the evaluated gene sets. Y-axis is the violin distribution showing the number of HPO terms per 
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gene. Outliers are excluded from the plot. Right: Violin distribution of number of MeSH disease terms from 

program MeSHOP across the evaluated gene sets. Y-axis is the violin distribution showing the number of MeSH 

terms per gene. Outliers are excluded from the plot. 

 

4.4.7 FLAGS recently implicated in rare-Mendelian disorders 

We sought to determine which FLAGS have been reported with pathogenic mutations in 

NGS clinical studies. Boycott et al. (2013) provided a compilation of 178 novel genes discovered 

to be disease-associated through exome sequencing[180], of which three overlapped with 

FLAGS (KMT2D/MLL2, HERC2, and DST). To explore the properties of those 3 genes, we 

analyzed the ratio between number of rare variants and gene length, as well as presence of 

putative essential protein domains by assessing the distribution of rare variants across the gene. 

We found that among the FLAGS, KMT2D and HERC2 have the lowest ratios of number of rare 

variants compared to gene length, while DST is one of the three genes among the FLAGS set 

with significant non-uniform distribution of rare variants across the gene (p-value =1.2e-04; the 

other two are EPPK1 and HRNR; see Appendix C-1 for more details on methodology and 

rationale). If we were to expand this 178 novel-rare-disease gene list from Boycott et al. (2013) 

to include the exome studies reporting on already-known disease-associated genes with 

known/novel pathogenic mutations, then this expanded set (n = 300) overlapped FLAGS by an 

additional 7 genes (TTN, RYR1, PKHD1, RP1L1, ASPM, SACS, ABCA4). In the discussion we 

provide our thoughts and literature analysis on why these genes have been reported as disease-

associated despite being among the frequent genes to harbor rare functional variants. 
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4.4.8 Applying FLAGS to prioritize candidate variants: Case study 

To demonstrate a disease-causing variant prioritization approach using FLAGS and 

whole exome sequencing data, we selected one family from our TIDE cohort affected by an 

unknown rare genetic disorder. Through WES performed for the index and her unaffected 

parents (Methodology - Mutation Detection using WES – a case study), rare variants were 

identified and assessed for their potential to disrupt protein function. Only those variants 

predicted to be functional (missense, nonsense and frameshift changes, as well as in-frame 

deletions and splice-site effects) were subsequently screened under a series of inheritance 

models. In total, we identified six rare “functional” homozygous, and eight rare “functional” 

compound heterozygous candidates. Of those, only two genes affected by missense variants were 

considered functional candidates: 

(1) VPS13B gene (OMIM 607817) had been found to bear homozygous or compound 

heterozygous mutations in patients with Cohen syndrome (OMIM 216550). Cohen syndrome is 

characterized by developmental delay/intellectual disability, facial dysmorphism, microcephaly, 

neutropenia, and weak muscle tone (hypotonia). The features of Cohen syndrome vary widely in 

presence and severity among affected individuals. Additional features, perhaps patient-specific, 

appear in the reports; myopia and small hands and feet are observed in our patient. In our WES 

analysis, we identified two rare variants affecting this gene in the index, suggesting compound 

heterozygous inheritance. Neither of the variants was found in more than 160 in-house exomes; 

one of the variants was predicted to be deleterious using the CADD scores[37] with a score 

higher than 20, while the second variant was given the score of less than 5. Sanger re-sequencing 

confirmed that mother is a carrier of one variant, while the father is the carrier of the second 
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variant and the index is compound heterozygous making the VPS13B gene a candidate disease-

gene in this family. 

(2) SENP1 gene (OMIM 612157) product is one of the desumoylating enzymes[192] 

which is important for proper development and survival in mice. SENP1 was found to regulate 

expression of GATA1 in mice and subsequent erythropoiesis[193]. Furthermore, SENP1 was 

found to be essential for the development of early T and B cells through regulation of STAT5 

activation[194]. To date, germline mutations in SENP1 had not been described in any human 

diseases. Our WES analysis identified a rare missense homozygous variant in the index. The 

variant was not found in more than 160 in-house exomes and was predicted to be the most 

deleterious of all homozygous variants using the CADD scores[37]. The Sanger re-sequencing of 

the genomic DNA confirmed that index is homozygous for the variant, while both parents are 

carriers. 

To further prioritize between these two genes, we consider a FLAGS-based approach. 

The VPS13B gene is one of the FLAGS (top 100, rank 67) and is frequently seen to be affected 

by rare, likely functional variants in general population. On the other hand, SENP1 is rarely 

affected by functional variants in the general population (rank 11,947). In addition, VPS13B is a 

frequently seen in the TIDE cohort of patients, 22 of 160 individuals have rare, likely functional 

alleles in the VPS13B gene that pass our prioritization filters. In contrast, the family reported 

here is the only family from the TIDEX cohort of patients with a rare, likely functional variant 

affecting the SENP1. In none of the other 160 exomes did the variants in SENP1 pass our 

prioritization filters for rare, likely functional variants. Together with the fact that VPS13B does 

not fit well to her severe hematologic findings and bone marrow dysplasia, FLAGS helped us 

select SENP1 as candidate gene for our experimental validation studies. The case report will be 
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published separately. We further applied prioritization of FLAGS on an in-house WES/WGS 

database and illustrated how trio-based exome families have Mendelian recessive and dominant 

candidates overlapping with the FLAGS. The FLAGS ranking can be fed into the candidate 

identification process and highlight genes that should be considered as high-risk candidates for 

false positives. 

 

4.5 Discussion 

WES/WGS studies can identify hundreds to thousands of rare protein-coding mutations 

per individual. Genes vary in their frequency of appearance; genes that are more likely to harbor 

rare-coding variants by chance are less likely to be involved in human diseases, especially in the 

context of rare Mendelian disorders. Previous studies have reported that TTN and MUC16, the 

two longest genes in the human genome, should be interpreted with care due to their long 

lengths[185, 186]. Similar observations have been made in oncology, and methods have been 

developed for interpreting somatic variants across a population of tumours at the gene level, 

correcting for confounding co-variants that would lead to higher or lower background mutation 

rates[195, 196]. While the underlying principle is similar to our study, their utilities are limited 

for rare Mendelian disorders where it is not possible to obtain sufficiently large cohorts of 

germline mutations from individuals with the same disorder. In this study, we compiled a list of 

frequently mutated genes (FLAGS) based upon analysis of rare coding mutations from dbSNP 

and Exome Variant Server ESP6500. We compared the biological properties of FLAGS against 

genes from disease databases (HGMD, OMIM) that represent the currently best reliable curated 

resources for disease-associated genes. We further demonstrated the clinical utilities of FLAGS 
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as a gene prioritization tool. The discussion will illustrate additional clinical benefits of FLAGS, 

and conclude with ideas for future directions and project limitations. 

 

4.5.1 FLAGS are less likely to be disease-associated 

Consistent with our expectations, FLAGS have significantly longer coding lengths, 

higher average dN/dS ratios, and more paralogs than genes from OMIM and HGMD. Paralogs 

have been cited as capable to partially compensate for the loss of gene function[189], so the 

greater frequency of paralogs could mean that mutations are less likely to have a critical impact 

on phenotype. In the examination of the research literature for FLAGS, we observed fewer 

disease annotations compared to disease genes, but elevated rates compared to background 

genes, suggesting that FLAGS have been associated to human disease more frequently than the 

rest of the protein-coding genes. 

 

4.5.2 Clinical utilization of FLAGS for prioritization 

Prioritizing candidates in rare disease studies is important; as it takes substantial time of 

experts to review each gene[197], getting better specificity without loss of sensitivity has real 

value. We demonstrated the utility of FLAGS as a prioritization tool by overlapping FLAGS 

against candidates from clinical exomes in TIDE, without loss of ultimately identified causal 

genes. We further illustrated with a single clinical case how when multiple equally attractive 

candidates are under consideration, FLAGS provide a way for clinicians and researchers to 

decide which gene to focus on first. 
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4.5.3 Cautionary indicator 

While we are not claiming every gene in FLAGS is non-pathogenic, we do wish to make 

it clear that greater biological evidence is required when interpreting the functional impacts of 

rare variants in frequently mutated genes. Among the 300 genes with putative pathogenic 

mutations identified via exome sequencing compiled by Boycott et al. (2013)[180], ten genes 

intersected with FLAGS. We evaluated the gene-level and variant-level evidence for causality 

based upon the guideline for investigation of causality published by MacArthur et al. 

(2014)[174]. We found that many results are derived based upon single-gene sequencing, rather 

than taking the less biased exome or whole-genome approach[198, 199]. In addition, many 

studies reported the mutations as pathogenic simply due to segregation pattern within the family, 

rare allelic frequency and bioinformatics impact predictions[200, 201], thus lacking experimental 

validation at both the variant and gene levels. The screen for rare alleles is further complicated 

when some of the studies look at minor ethnic populations that are not well represented in the 

population databases[202, 203]. The evidence behind missense variants is especially doubtful 

when many missense variants are predicted by CADD[37] to be benign with a lower impact rank 

than the rare mutations observed from dbSNP and ESP6500. Altogether, these observations 

could explain why these genes harbor frequent rare functional variations despite being reported 

in diseases. To avoid false-positive reports of causality, especially for FLAGS, it will be very 

important for reports to follow the recently published guidelines[204] when assigning 

pathogenicity to new variants identified as well as additional variants identified in genes 

previously linked to a particular disease. An example of a good paper would be the one where 

the variant is identified in a genome-wide screening approach with statistical methods applied to 

compare the distribution of variants in patients against a large matched control cohorts, where 
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the evidence is assessed at both the candidate gene and candidate variant levels, and where the 

authors recognize the importance of combining both computational comparative approaches and 

experimental assays for validating the impact of the variant. 

 

4.5.4 Going beyond the top 100 and what the future entails 

Genes with frequent rare variants need to be appropriately ranked in order to reduce false 

associations and streamline clinical analysis. Our current results are limited to the top 100 

frequently mutated genes. While it may be insightful to study the characteristics of the genes at 

the other end of the spectrum (the bottom 100 or alternatively sets of genes with low mutation 

rates and gene-focused publications to exclude genes with poor coverage in exome capture kits), 

we perceive the greatest long-term utility to be in the incorporation of the complete set of 

rankings into the exome interpretation process. To make our prioritization ranking accessible to 

the broad research community, we provide the FLAGS ranking for the genes represented in both 

dbSNP and EVS. 

The novelty that we bring forth is a ranking that utilizes public control exomes/genomes, 

which clinicians can readily apply to their clinical cases. As discussed above, the ranking is 

correlated with gene length, evolutionary constraint, and paralogous gene counts. 

The high accumulation rate of mutations can be interpreted partially as genes being under 

less selective constraint. A utility of the FLAGS ranking is that it provides, albeit indirectly, a 

gene-level indication of the selective constraint upon a gene, while most existing metrics such as 

phastCons[205] or PhyloP[206] provide a position-specific value. While the FLAGS ranking is 

not a substitute for the more direct measures, the genic level information complements them. 
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Current prioritization tools lack the ability to evaluate at both genic and variant level 

simultaneously. Ultimately, a scoring mechanism integrating biological and technological 

features at both the genic and variant level should be developed. A future direction is to improve 

upon methodologies like RVIS[178] and expand beyond the rate of mutation by employing 

statistical machine learning techniques to incorporate the genic and allelic features as highlighted 

in this study and previous works to summarize them into a single computational score. Such a 

new quantitative measurement should improve the ranking of pathogenicity for each gene, and 

highlight skeptical candidates to accelerate the clinical translation of genomic research findings. 

The mechanism itself (e.g. the weights of features) would also shed light on the exact nature of 

the causes of excess mutation rates and facilitate better biological understanding. 

In the long-term, the accumulation of more exomes and whole genomes will provide an 

increasingly rich body of data for the generation of FLAGS rankings. 

 

4.5.5 Limitations 

In the study we relied upon manually-curated GeneRIFs to extract the publications for 

each gene. One could argue for more sophisticated PubMed queries in combination with 

semantic rules to increase the sensitivity for assigning human-disease related publications[207, 

208]. We also recognize that neither MeSHOP nor HPO capture gene-to-disease terms perfectly. 

A possible direction is to explore other gene-disease databases such as HuGE Navigator[209]. 

We further acknowledge that the interpretation of MesHOP and HPO could be influenced by 

pleiotropic genes. Similarly, we used Ensembl for extracting the paralogous relationships for 

each gene, but there are other available extraction algorithms and databases for inferring 

paralogy[210-212]. Additionally, our present study is restricted to genes with both an HGNC 

 

 

116 



 

symbol and a fully annotated translation start and end. We recognize that not all protein-coding 

genes fit these criteria, and we are excluding non-coding genes (as well as 5′ and 3′ UTRs of 

coding genes) from this analysis. 

 

4.6 Conclusion 

While most complex disorders generally can confirm the strength of their findings by 

comparing against a matched background cohort, the nature of studying rare monogenic 

disorders mean that there is often insufficient sample size to conduct a rigorous statistical 

analysis on the strength of the finding. In this study, we extracted a list of frequently mutated 

genes based on rare variants from dbSNP and Exome Variant Server. Our results revealed the 

biological properties of these genes that could explain why they are frequently mutated, and why 

extra discretion in statistical and biological interpretation needs to be taken when trying to relate 

these genes to clinical phenotypes. We propose that the ranking of how frequent a gene is 

mutated in next-generation sequencing studies is useful for the prioritization of candidate genes. 
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Chapter 5: An ensemble approach integrating variant and gene information 

and patient phenotype for prioritizing variants in exomes 

 
5.1 Synopsis 

While applications of exomes in clinical research for rare diseases have been broadly 

successful, clinical geneticists are frequently challenged with the identification of pathogenic 

mutations from amongst ~105 observed variations. Using now established strategies for filtering 

rare protein-coding mutations fitting specific Mendelian inheritance models, it is still common to 

observe ~20 to 100+ candidate variants requiring laborious manual review. We present a novel 

method called Variant Prioritization Accelerator (VPA), which utilizes an ensemble machine 

learning approach trained on variant-level, gene-level and patient-level information for 

classifying rare variants according to likelihood of pathogenicity. VPA prioritizes more diverse 

variant types than other methods, including splice sites and insertion/deletions. Additionally, 

VPA permits clinicians to describe patient phenotypes in either Human Phenotype Ontology 

(HPO) vocabulary, or in free-text format without confinement to strict standard vocabularies. 

Furthermore, VPA allows clinicians to rank each patient symptom to distinguish primary 

phenotypes from secondary observations. Finally, we compared VPA against published methods 

on simulated data and clinical cases, and demonstrated how the integration of disparate 

biological domains and patient phenotypic features resulted in better performance to detect novel 

gene-disease, disease-phenotype associations, and polygenic traits. 
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5.2 Introduction 

A single exome sequence can reveal over 350,000 variations5. Despite the common 

filtering strategies discussed in earlier chapters, the nature of rare diseases means clinicians 

typically work with single affected individuals (e.g. singletons) or small nuclear families, and it 

is still common to emerge from the automated procedures with 20-100+ variants remaining[213]. 

This creates a bottleneck in the analytical workflow, where a team of geneticists, biochemists 

and bioinformaticians may be engaged to laboriously review and derive a small list of prioritized 

candidates (e.g. one to three) based upon prior knowledge from literature[214]. 

Recently, a series of tools have been developed that incorporate patient phenotype to 

assist in the identification of disease-causing mutations in exomes. Below we briefly outline the 

methods of exemplar systems. eXtasy[215] prioritizes non-synonymous mutations by integrating 

variant deleteriousness scores from existing databases, gene haploinsufficiency scores, and 

disease genes related to Human Phenotype Ontology[216] (HPO) terms via Phenomizer[217]. 

Exomiser[218] allows prioritization of all coding mutations by similarly producing a variant 

deleteriousness score like eXtasy, and considers additional features including allelic frequency, 

and phenotypic similarity between patient and known diseases and animal models. Phevor[219] 

allows prioritization of all coding mutations by integrating knowledge from HPO, Mammalian 

Phenotype Ontology[220], Gene Ontology[158] and Disease Ontology[221]. 

Amid the plethora of such tools, there remain unresolved challenges, some of which we 

highlight below. Firstly, existing phenotype-driven tools typically do not score variants outside 

5 This number is dependent on the type of sequencing technology and the type of capture kit 
employed. Future exome capture kits that offer greater breadth of genome coverage and longer 
read lengths that allow mapping to previously unmappable regions would likely reveal more 
variants. 
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of protein-coding regions, such as splice site variants, and short insertions or deletions (InDels). 

Since these classes of mutations can be present in exome results[222], software unable to 

prioritize these types may be excluding important candidates[223, 224], and thus not fully 

realizing the clinical potential of the technology. The importance of annotating non-protein-

coding variants must be addressed, as whole-genome sequencing is gradually replacing 

exomes[225]. Secondly, existing prediction algorithms for coding variants tend to consider 

evolutionary conservation as a key measure, but a rapidly growing body of data has emerged 

providing functional annotation (e.g. data provided by the Encyclopedia of DNA Elements 

(ENCODE[226]) and FANTOM[227] consortiums) for such features as alternative start sites and 

alternative splice sites. Similarly, previous studies[178, 228] have shown the utility of 

accounting for genes that more frequently harbor rare benign protein-coding mutations, but such 

information is not explicitly incorporated into current variant prioritization methods. Fourthly, all 

the previously cited tools are constrained to a fixed ontology (largely HPO) as phenotypic inputs. 

In clinical practice, this is not ideal because it contrasts against how clinicians describe their 

patients, which is largely in free-text format (often derived by oral dictation)[229, 230]. An 

argument can be made that physician procedures should change, but in the near term it is our 

opinion that it is more viable to adapt the software. Finally, the existing methods consider all the 

patient phenotypes as equivalent. This is not reflective of actual clinical scenarios, where often 

some described traits are considered to be defining phenotypes while others are secondary[231, 

232]. Accounting for the varying importance of each phenotype has potential to improve the 

diagnostic process, as recently demonstrated in the context of patient phenotype matchmaking 

software[233]. 
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In this chapter, I present a novel method called Variant Prioritization Accelerator (VPA) 

which utilizes an ensemble machine learning approach trained on variant-level, gene-level and 

patient-level information (see Methodology section 2 for more details) for prioritizing rare 

variants in exomes. To assist the clinical interpretation for non-computational geneticists, VPA 

outputs the classification results according to clinical terminologies set by American College of 

Medical Genetics[234]: “Pathogenic”, “Likely Pathogenic”, “Variant of Unknown Significance 

(VUS)”, and “Benign”. Our method allows the prioritization of diverse classes of rare variants 

detected in exomes, including splice sites and InDels. Our method permits clinicians to input 

patient symptoms in either HPO terms or as free text. It allows clinicians to rank the importance 

of each input phenotype to separate distinguishing phenotypic features from secondary 

observations. We compared VPA against existing algorithms on simulated exomes and clinical 

cases, and demonstrated its capacity to better predict novel disease associations. 

 

5.3 Methodology 

This section includes: 1) a description of the datasets used for training and testing, 2) an 

explanation of the types of features considered and the methods used to incorporate them into the 

model, and 3) the performance evaluation procedure. 

 

5.3.1 Datasets 

5.3.1.1 Training set 

ClinVar[106] VCF (version 20140502) for human reference hg19 was downloaded from 

the ClinVar FTP server. To focus on rare diseases, only variants of germline origin, based on the 

“Origin” annotation, were considered in the downstream analysis. SnpEff[33](version 4.0) was 
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used to annotate each variant using GRCh37.75 as reference, with a splice site window of 7. 

Only variants marked by SnpEff as ‘HIGH’ or ‘MODERATE’ in the impact field were kept. A 

custom Perl script was written to categorize variants into ‘pathogenic’, ‘likely pathogenic’, 

‘variant of unknown significance (VUS)’, and ‘benign’ based on ClinVar’s CLNSIG annotations 

(Appendix D-1). The final training set included 2343 pathogenic mutations (in 1501 genes), 

1044 likely pathogenic mutations (in 877 genes), 5240 VUS (2399 genes), and 2203 benign 

variations (in 983 genes). 

 

5.3.1.2 Simulated test set 

Mutations annotated as “DM” or “DM?” in HGMD[160] Professional 2015 version 1 

were classified as pathogenic mutations. SnpEff was used to annotate the variants on 

GRCh37.75, and only coding mutations labeled as ‘HIGH’ or ‘MODERATE’ impact were kept. 

Mutations that overlapped with ClinVar training set were discarded, leaving 589 variants, 

corresponding to 374 genes. These mutations were embedded in simulated exomes comprising of 

data from 1000 Genome datasets[16] and NHLBI ESP6500 (http://evs.gs.washington.edu/EVS/). 

To simulate technical noise present in high-throughput sequencing, and in order to build 

simulations that were comparable to real exomes under singleton and trio structures, we 

randomly inserted rare coding mutations (missense/nonsense, <0.01% allelic frequency) to the 

simulated dataset until the number of rare coding variants in each simulation was comparable to 

actual clinical exomes (Appendix D-15). The randomly inserted mutations were drawn from an 

independent pool of 583 Ion TorrentTM exomes provided by Dr. Carles Vilarino-Guell 

(University of British Columbia). A total of 750 simulated cases were generated for singletons 

and trios respectively, and broken down as follows: 300 out of the 750 cases were embedded 
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with missense pathogenic mutations (equally divided to represent homozygous recessive model, 

compound heterozygous model, and de novo heterozygous model respectively), 150 cases were 

embedded with nonsense pathogenic mutations (equally divided to represent the three Mendelian 

models); the remaining 300 cases were embedded with randomly drawn pathogenic mutations 

from the entire pool without discrimination between missense versus nonsense classification 

(100 for homozygous recessive model, 100 for compound heterozygous model, and 100 for de 

novo model). 

 

5.3.1.3 Clinical test set 

The patient cohorts were drawn primarily from the Omics2TreatID project [Tarailo-

Graovac et al., manuscript accepted] as part of the TIDE-BC initiative (http://www.tidebc.org), 

and also included clinical cases from TIDEX, Care4Rare and FORGE Canada. Omics2TreatID 

focuses on patients with intellectual disability plus rare unexplained metabolic phenotypes. The 

study was approved by the Ethics Board of the Faculty of Medicine of the University of British 

Columbia (UBC IRB approval H12-00067); each family provided informed consent for 

publication of results. We selected families for which prior analyses of exomes led to genetic 

diagnosis, as identified by a team of overseeing clinical genetics, molecular biochemists and 

genetic counselors. 53 families were included in this test set (Appendix D-16). All the 

pathogenic6 variations from these families had been Sanger validated in index and available 

family members, and shown to be consistent with a determined mode of inheritance (including 

6 At the time of writing, the pathogenicity of these variants, if classified according to latest 
ACMG criteria (accessed July 2015), range from VUS, Likely Pathogenic, and Pathogenic, each 
with varying level of confidence. We addressed this issue in the Discussion section. 
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de novo mutations). In the majority of the cases the families had been informed of the diagnosis 

but the results were not yet published at the time of the analysis.  

 

5.3.2 Features 

In this section, we introduce the three hierarchical sets of features and describe the feature 

selection and model training process. Table 1 lists the features included in VPA after feature 

selection (Appendix D-2). Appendix D-17 provides the complete list of features considered. 

 
Type Granularity Features Source 
V 1 Frequency of seeing any mutation(s) at 

the given genomic position 
In-house database of 370+ exomes and whole-
genomes 

V 1 Frequency of seeing mutations within 
15bp window 

In-house database of 370+ exomes and whole-
genomes 

V 1 Number of overall homozygotes in 
ExAC 

ExAC: http://exac.broadinstitute.org 

V 1 Afr Freq ExAC: http://exac.broadinstitute.org 
V 2 Condel score CONDEL[235] 
V 2 FATHMM rankscore dbNSFP[236] 
V 2 Reliability index dbNSFP[236] 
V 2 VEST3 score dbNSFP[236] 
V 2 CADD raw CADD[37] 
G 3 dN/dS FLAGS[228] 
G 3 Gene length Ensembl[237] 
G 3 Paralogs FLAGS[228] 
G 3 Counts in literature FLAGS[228] 
G 3 Mutation counts FLAGS[228] 
G 4 RVIS RVIS[178] 
P 3 Free-text PubMed Presented in paper 
P 3 Ontology-search HPO Presented in paper 

Table 5-1 The list of features selected in the final model after hierarchical sampling plus hierarchical feature 

selection. In the first column, V=variant-level, G=gene-level, and P=patient-level. The second column corresponds 

to the level of hierarchy that the feature belongs to for constructing hierarchical tree during hierarchical feature 
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selection (see Methods). The third column contains the descriptive information about the feature, and the last 

column contains the source that was used to derive the feature. 

 

5.3.2.1 Variant-level features 

A feature was considered as “variant-level” if it refers to a specific DNA location. 

Broadly speaking, these features corresponded to: 1) allelic frequency in public genomic 

databases, 2) variant functional prediction score, and 3) evolutionary conservation score. 

Whenever possible, this information was extracted from dbNSFP[236] (version at the time of 

writing is 3.0b2c), but if a newer annotation was available in one of the source data collections of 

dbNFSP, then custom scripts and local MySQL databases were used to extract the information 

from the source. 

 

5.3.2.2 Gene-level features 

A feature was considered as “gene-level” if the information pertains to a gene rather than 

a specific position. These features corresponded to two main categories: 1) a report on a 

biological characteristic of a gene (e.g. gene length), or 2) a computational score computed for 

that gene (e.g. haploinsufficiency score). As for variant-level features, data were drawn from 

dbNSFP, with updated information from direct source databases. 

 

5.3.2.3 Patient-level features 

A feature was considered as “patient-level” if it describes the clinically reported 

phenotype(s) exhibited by the patient. Two features were considered in this category: an 

ontology-based matching score, and a free-text-based matching score. Both scoring systems take 
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in patient phenotypic terms as input and provide a similarity ranking of all protein coding genes  

(Appendix D-3).  

 

5.3.2.3.1 Phenotype match by ontology 

We adapted the GeneYenta[233] phenotype-matching algorithm to data mine patient 

phenotypes. In brief, GeneYenta is an online patient-matching system that allows clinicians to 

specify phenotypes of undiagnosed patients to match against patient cases stored in the database. 

In this study, rather than comparing patient phenotypes, we compared the index patient 

phenotypes against phenotype terms associated with genes. The probability of a gene given index 

phenotype was approximated as: 

𝑃𝑃(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔|𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝) ≈ � 𝑃𝑃(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) × 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

The first probability was obtained from DisGenet score in file “ALL gene-disease 

association” provided by DisGenet[238]. The score was extracted and normalized for each gene. 

The second probability was based on an adapted algorithm from GeneYenta using HPO 

annotations. The equation is as follow: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝑝𝑝𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑) =
∑ 𝑅𝑅𝑡𝑡 ×𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡′∈𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡, 𝑡𝑡′)𝑡𝑡∈𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝

∑ 𝑅𝑅𝑡𝑡 × 𝐼𝐼𝑡𝑡𝑡𝑡∈𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝
×  100 

where pat = patient, dis = disease in the HPO database, and I = information content. The 

information content score is based on a negative log function of the number of descendants in the 

HPO tree for a given HPO node plus 1 divided by the total number of unique HPO terms. The 

Sim(t,t’) is the similarity score between the two phenotype terms, derived from information 

content, and Rt is an importance ranking (Appendix D-4). 
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5.3.2.3.2 Phenotype match by free-text 

We used MedlineRanker[239] to derive a list of ranked publications based on phenotypic 

terms in free-text as input. This tool was chosen for three reasons: 1) to provide clinical free-text 

integration into the model as a proof-of-concept, 2) its API capacity for command-line 

incorporation, and 3) its convenient provision of a p-value for each ranked entry in the output 

list. Custom Perl script was used to connect to MedlineRanker’s SOAP API (version beta2). 

Each phenotypic descriptor was executed on MedlineRanker individually as a PubMed query, 

with the background set equal to be the entire MEDLINE database. The gene(s) associated to 

each article was/were derived from the MeSH (Medical Subject Headings) vocabulary attached 

to the article. If no known gene symbol were present in the MeSH list, the gene(s) was/were 

derived from the article abstract. The final probability score used in this feature is as follows: 

𝑃𝑃(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔|𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ≈ max  𝑅𝑅𝑡𝑡  ×  𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡) 

where Rt is the weight assigned by user for the phenotype term, and P(literature|phenotype) is 1 

minus the p-value derived from MedlineRanker. By default, Rt is assigned to value of 3 unless 

otherwise specified by the user. A similar approach was designed using PubMed API query to 

evaluate performance fluctuations when using a different gene-extraction tool (Appendix D-5). 

 

5.3.2.4 Feature selection and model training 

The variant-level and gene-level features reflect properties at different levels of 

resolution. Furthermore, some features were composite scores that were informed by other 

features in the collection (i.e. dependent upon them). Therefore we selected a procedure that 

could account for these data properties.  We took the pseudocode framework described in Moor 

et al. [240] and developed a combination of hierarchical sampling and hierarchical feature 
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selection using random forest (Appendix D-2). A total of 1000 trees were used to train the 

random forest based upon multiple training sets derived from hierarchical sampling to assure that 

no gene-level information would be over-represented in a single tree, and each tree was built 

based on a hierarchical structure using the hie-ran-forest package in R 3.2.0 to assure the 

compositions of scores were accounted for. A 10-fold cross-validation on the training set was 

applied to produce the final model. 

 

5.3.3 Performance evaluation 

The input to each evaluation was a VCF (Variant Call Format, version 4.1) file already 

annotated with SnpEff (GRCh37.75) and restricted to rare (≤ 1% in dbSNPv142) protein-

coding mutations (see [228] for a more in-depth description on the bioinformatics pipeline). We 

compared VPA against Exomiser version 6.0.0, eXtasy0.1, and CADD version 1.2. Based on 

benchmarking studies[218], Exomiser and eXtasy were selected for comparison as they had been 

reported as the top command-line accessible tools that incorporate patient phenotype information 

for gene variant prioritization. CADD scores (‘All possible SNVs’) were downloaded and stored 

locally.  Appendix D-6 describes how we extracted the predicted rank for the pathogenic 

mutations from each model.  

All ranking assessments were performed with the union of candidate variants from all 

genetic models for each subject. To quantify the performance, we defined a prediction as 

successful if the causal embedded mutation was among the top 3 predicted candidates per 

simulated/clinical case. While arbitrary, the focus on 3 was based on feedback from our clinical 

partners that they have limited time and would be unlikely to review more than 3 candidates in 

depth[114].   
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5.3.4 Web access 

A web access version of the final model is in progress. A downloadable version is in 

development and is planned for a future release. 

 

5.4 Results 

In section 1, we first describe VPA’s performance on simulated test sets and compared it 

against existing algorithms. In section 2, we extend the comparison to clinical cases. In section 3, 

we draw results from simulations and clinical examples to demonstrate the advantages of VPA 

over existing approaches. 

 

5.4.1 Evaluation on simulated test sets 

5.4.1.1 Characteristics of test sets and model classifications 

VPA classified each variant as either “Pathogenic”, “Likely pathogenic”, “Variant of 

unknown significance (VUS)”, or “Benign”. Figure 5-1 shows the average proportion of 

variations under each category on 750 simulated cases for trios and singletons respectively. On 

average, 6 mutations were predicted to be pathogenic from the trios, and 9 mutations were 

predicted to be pathogenic from the singletons. The “Likely pathogenic” class consistently had 

more variations than “Pathogenic” class. VUS made up the largest category in most of the cases, 

closely followed by “Benign” class. VPA was able to assign the embedded pathogenic variant as 

“Pathogenic” in 93% and 85% of the simulated exomes for trios and singletons respectively. 
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Figure 5-1 A summary of the classifications by VPA on simulated datasets, separated by family structures and 

genetic models. The top half shows the performance for trios, and the bottom half shows the performance for 

singletons. Each pie chart shows the proportion of each variant class with respect to the size of the starting input 

VCF (to see how many variants were present at the start of each simulated case, refer to Appendix D-15). Three 

genetic models were considered: homozygous recessive, compound heterozygous and de novo heterozygous. 

Throughout this paper, the category “Homozygous recessive” includes both homozygous recessive and hemizygous 

recessive models. In this study, we did not distinguish between autosomal mutations and mutations on the sex 

chromosomes, hence X-linked or other sub-types of Mendelian inheritance patterns were not explicitly discussed but 

instead incorporated as part of the broader types of Mendelian inheritance. 

 

5.4.1.2 Incorporating non-variant level features improves predictive performance 

We assessed VPA in comparison to CADD scores using simulated cases, to determine if 

the inclusion of additional features could boost the performance over CADD alone, and which 

features were most informative. The performance was evaluated either separately for missense 

variants and nonsense variants or collectively across distinct Mendelian models, and in different 

family structures. As expected (since VPA incorporates CADD scores), VPA outperformed 
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CADD across all considered scenarios, achieving an average successful prediction in 83% for 

trios and 71% for singletons, versus 42% for trios and 25% for singletons for CADD (Appendix 

D-14). The performance difference between VPA and CADD was more prominent for singletons 

than for trios. Both VPA and CADD achieved highest performance for cases reflecting 

homozygous recessive events, followed by compound heterozygous, and lowest for de novo 

events. Embedded causal nonsense mutations were ranked higher than cases involving missense 

mutations. To determine the most important features and their relative value, we retrained VPA 

without CADD scores and re-evaluated performance (Appendix D-7). In the absence of CADD 

scores, VPA dropped in overall performance by 19% in trios and 21% in singletons when 

considering missense and nonsense mutations, still higher than CADD’s performance. 

 

5.4.1.3 Comparisons against phenotype-based prioritization algorithms 

We compared VPA against Exomiser and eXtasy. eXtasy was restricted to evaluation of 

non-synonymous mutations due to its inability to process nonsense mutations. All phenotype-

informed algorithms outperformed CADD (Figure 5-2). Exomiser and eXtasy exhibited 

performance patterns similar to previous observations with respect to the drop in percentage of 

successful predictions between trios versus singletons, and decreased predictive power in 

detecting pathogenic variants under the dominant model versus recessive Mendelian models. 

VPA and Exomiser achieved comparable performance (83% versus 82% in trios, and 71% versus 

69% in singletons); VPA performed marginally better on missense mutations (85% versus 81%), 

and both models achieved near-identical performance when applied to nonsense mutations (98% 

versus 97%). VPA and Exomiser outperformed eXtasy, which had an overall missense 

performance of 67% in trios. To evaluate if Exomiser and eXtasy scores were providing 
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additional information not captured in VPA, we re-trained our model with Exomiser and eXtasy 

scores as additional features and found no substantial improvement (Appendix D-8). 

 

 
Figure 5-2 Performance on simulated exomes for VPA, CADD, Exomiser and eXtasy. The upper plot shows the 

performance on singleton cases, and the lower plot corresponds to the trio cases. Performance was separated into the 
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type of pathogenic mutations that were embedded (missense versus nonsense, or mixed), and the types of genetic 

models that corresponded to the pathogenic mutations. Y-axis corresponds to the % of simulations with a successful 

prediction, defined as being able to rank the pathogenic mutation(s) as among the top 3 candidates. The “All 

models” bars represent the average across the inheritance models in their respective mutation type. 

 

5.4.2 Evaluation on clinical cases 

The simulated cases were all derived from previously reported pathogenic mutations in 

clinical literature. To gather perspectives on novel mutations in patient cases whose phenotypes 

were not yet compiled in clinical and disease databases, we evaluated VPA and previous 

algorithms on a cohort of clinical exomes (n=53 families). Using the same performance criteria 

as defined earlier, VPA achieved successful prediction in 35 families (66%), compared to 29 

(55%) for Exomiser, 18 (36%) for eXtasy, and 13 (25%) for CADD. eXtasy could not be 

evaluated on 3 families because the pathogenic mutations were nonsense changes. The observed 

performance agreed with preceding simulation-based results, where all phenotype-driven models 

performed the best for homozygous recessive model (VPA achieved 81% success on families 

with homozygous recessive pathogenic variants), and achieved similar performances between de 

novo heterozygous and compound heterozygous models (VPA had 60% and 62% respectively). 

Due to the limited types of mutation eXtasy could classify, the remaining comparative analysis 

were centered on VPA, Exomiser and CADD. 
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5.4.3 Benefits of incorporating variant-level, gene-level and patient-level information 

In this section, we highlight scenarios where VPA demonstrated superior performance 

over existing methodologies. We present results from clinical families as illustrative evidence, 

complemented with simulations when applicable. 

 

5.4.3.1 Importance to include mutations beyond non-synonymous and nonsense 

categories 

Existing algorithms that incorporated patient phenotype information were restricted 

largely to non-synonymous and nonsense mutations. There were families that were not included 

in the previous section because the pathogenic mutations are located in splice site regions outside 

of exons, or are short InDels resulting in coding transcript frameshift that could not be scored by 

Exomiser or eXtasy. Illustrative clinical example of a novel 13bp heterozygous deletion is 

discussed in Appendix D-9. 

 

5.4.3.2 Unmappable clinical terms 

Among the 53 families with genetic diagnoses from exomes, 24 (45%) had one or more 

phenotypic terms that could not be mapped to Human Phenotype Ontology (HPO). These clinical 

descriptors were drawn from primary clinicians who referred the patients to the Omics2TreatID 

project and were assigned prior to this study. We excluded any unmappable clinical descriptors 

that represented secondary physical traits and only considered the keywords representing 

primary symptoms. To examine how much information was lost for clinical terms not mapped to 

HPO, we compared the rank of each pathogenic mutation in these families between VPA and 

Exomiser. VPA was found to provide a more accurate rank for the pathogenic mutation in 15 out 
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of these 24 (63%) families compared to Exomiser. The two models had equal performance in 3 

families, and Exomiser performed better in 6 families. Due to limited number of samples, we 

evaluated this property in simulated cases by randomly removing half of the HPO terms per 

input case. Comparable to performances from clinical test set, VPA demonstrated better 

resistance when faced with unmappable clinical terms (Figure 5-3), with an average performance 

of 78% and 63% in trios and singletons respectively, versus 72% and 49% for Exomiser. 

 

 
Figure 5-3 Simulations with unmappable phenotypes. To construct simulated cases in which clinical descriptors 

could not be mapped to HPO but are present in text descriptions, we took the same simulated dataset from earlier 

analysis and randomly masked supplied HPO terms (with the number of masked terms being 0.5 * the number of 

supplied HPO terms for each case). The remaining unmasked terms were then supplied to both models for 

phenotype-based matching via ontology. Y-axis plots the percentage of cases with the embedded pathogenic 

mutations as among the top 3 predictions per model. The figure shows the performance for singletons (left) and trios 

(right). A mixed of missense and nonsense pathogenic mutations were considered without discrimination. CADD 
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performance was not shown because it is not impacted in any way by this experiment. eXtasy was excluded because 

of its inability to handle nonsense mutations. 

 

5.4.3.3 Novel phenotypes 

From the 53 clinical families, we derived a subset of cases (n=16) where the patients 

harbored pathogenic mutations in previously characterized disease genes but exhibited novel 

phenotype(s) not yet reported in clinical literature. Out of these 16 families with novel phenotype 

associations, VPA achieved higher performance than existing algorithms in 8 families based on a 

comparison of the predicted ranks for pathogenic mutations. Exomiser performed better in one 

family and drew level with VPA on the remaining seven families. For a more rigorous 

assessment, we took the same simulated cases from earlier but added random HPO terms to the 

inputs acting as novel associations (Appendix D-10). While both tools dropped in performance, 

VPA was more resistant than Exomiser to the added noise (Figure 5-4). In the consideration of 

missense and nonsense mutations, VPA had a 6% drop versus 16% for Exomiser in trios, and 

11% versus 19% in singletons. The higher tolerance reflects a better capacity to connect to the 

causal gene with diverse clinical observations. In a similar exercise, we demonstrated that VPA 

was able to predict novel gene associations better than existing algorithms, discussed in 

Appendix D-11. 

 

 

 

136 



 

Figure 5-4 Performance on simulated exomes with random HPOs added to represent novel phenotypes. The 

introduced pathogenic mutations could be either missense or nonsense without discrimination. The left portion 

corresponds to singleton cases, and the right portion corresponds to trio cases. The blue bars and purple bars 

represent original performance without novel phenotypes introduced for VPA and Exomiser respectively, and the 

red bars and green bars represent the performance if novel phenotypes were fed as input. The Y-axis is the 

percentage of cases with the pathogenic variant(s) predicted to be among the top 3 candidates. 

 

5.4.3.4 Polygenic and oligogenic phenotypes 

Previous clinical reports have described polygenic/oligogenic diseases where multiple 

genes impacted by rare mutations can collectively contribute in the same patient; each affected 

gene is responsible for triggering a subset of the observed phenotypes. Among the 53 clinical 

families, 7 families displayed polygenic phenotypes. Among these cases, VPA was able to 

successfully identify one of the pathogenic mutations as among the top 3 candidates in 4 

families, and the second pathogenic mutation was predicted with an average rank of 5 (Appendix 
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D-19). Exomiser was able to predict the first pathogenic mutation in 3 families, but the second 

mutation was ranked lower with an average rank of 9.  

To complement clinical observations, we constructed 150 simulated cases where we 

embedded two causal mutations from two different genes (Appendix-12). Performances were 

evaluated on two-tiers: the ability to identify one of the two embedded pathogenic mutations as 

among the top 3 candidates, and the ability to identify the second pathogenic mutation as among 

the top 5 candidates. Across both singleton and trio structures, our model was able to rank these 

gene candidates higher than Exomiser (Figure 5-5). In trios, VPA achieved an average successful 

prediction in 73% for the first mutation (versus 69% for Exomiser and 42% for CADD), and 

63% for the second mutation (versus 42% for Exomiser and 38% for CADD). The performance 

distinction between VPA and existing software was more prominent when prioritizing the second 

mutation. While we observed that CADD was able to rank the two pathogenic mutations in close 

vicinity, since it was not influenced by the phenotypic diversity, both VPA and Exomiser 

outperformed CADD. 
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Figure 5-5 Performance on digenic simulations. A mixed of missense and nonsense pathogenic mutations were 

embedded per case without bias. The plot on the left corresponded to singletons, and the plot on the right 

corresponded to trios. The performance for the first mutation, shown in the left portion for each plot, was calculated 
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based upon the % of cases where the evaluated model was able to predict one of the two pathogenic mutations to be 

among the top 3 candidates. The performance for the second mutation, shown in the right portion for each plot, was 

calculated based upon the % of cases where the model was able to predict the second pathogenic mutation to be 

among the top 5 candidates. 

 

5.4.4 Phenotype ranking 

The previous performance results were produced under the naïve assumption that all 

reported phenotypic features for each patient case were equally important and equally clinically 

distinguishing. VPA allows user the ability to quantitatively rank physical traits from “most 

important” to “least important”. To assess the performance when such user-supplied ranking 

scheme is considered, we evaluated on clinical cases where keywords reflecting primary 

phenotypes were given a score of “5”, and keywords reflecting secondary physical traits were 

given a score of “1” (Appendix D-13). The assignments of primary versus secondary were 

provided by the clinicians. Out of 53 families, VPA with weighting-scheme incorporated 

performed better on 23 families versus VPA with default weights assigned. An overall 72% 

(n=38) success prediction of picking pathogenic mutation among the top 3 was achieved when 

phenotypes were clinically ranked, versus the previously reported 66% (n=35) without 

phenotype ranking. 

 

5.5 Discussion 

Clinical exome and whole genome sequencing are becoming preferred methods for 

clinical genetics, leading to a demand for improved automation for candidate variant 

prioritization[241]. In this report we introduce VPA, a new ensemble variant prioritization tool 
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based on a hierarchical sampling and feature selection procedure from variant-level, gene-level 

and patient-level features. The ensemble approach handles a more diverse range of variant types 

detected in exome data compared to existing methods. Using both simulated and real cases, we 

demonstrate that VPA outperforms existing tools in most contexts, and at least as well in all. 

When confronted with noise (unrelated/novel phenotypes and genes), VPA outperforms other 

patient phenotype-informed methods, and, relatedly, shows greater capacity to detect multiple 

contributing genes in oligogenic cases. VPA includes a novel clinician phenotype-weighting 

feature that leads to further performance improvement.   

A clinical tool needs to be compatible to existing clinical procedures to improve its 

usability[242]. VPA assigns clinical labels (“Pathogenic”, “Likely Pathogenic”, “Variant of 

Unknown Significance (VUS)”, or “Benign”) consistent with emerging practice in clinical 

genetics[243]. Furthermore, VPA’s inclusion of clinical free text provides better compatibility to 

current forms of clinical information, such as provided by dictation. While HPO and other 

controlled vocabularies are probably preferred in the long run, in our opinion software should 

reflect actual clinical workflow and not be restricted to the ideal. Due to the high level of noise 

and complexity in clinical observations, software should be able to handle novel phenotypic 

associations and limited availability/quality of annotations in disease databases. VPA is able to 

capture the continuously expanding phenotypic diversities in diseases, and displayed greater 

resistance to phenotypic noise. 

The applied performance evaluation has specific characteristics. Firstly, in addition to 

sampling from public genomic datasets, we introduced rare coding mutations to our simulated 

cases that include both true variants and technical noise. Genomic data obtained from projects 

such as the 1000 Genomes Project have removed most of the noise and therefore do not 
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necessarily reflect realistic test cases. Spiking in rare coding mutations also had the advantage of 

simulating a “true complete” exome, whereas older exomes cited in prior studies were often 

derived from outdated capture kits that covered a smaller percentage of the exons, and thereby 

reported fewer variants in the input sets. Second, we defined a successful prediction as a causal 

gene-variant pair appearing amongst the top 3 candidates. Previous studies have varied, ranging 

from top 1 to top 10[215, 218, 219]. Third, we do not restrict to a specific genetic model for 

inheritance. Published reports sometimes cited performance under the consideration of only 

particular inheritance model(s) and ignored the variants in other models[244]. 

There are limitations to this study that might be addressed in future work.  Since the 

ranking of phenotype weights were provided post hoc by the overseeing clinicians, there may 

have been unintentional bias introduced. Secondly, because result for the detection of novel 

genes is based upon limited cohort size and is not readily evaluated with simulated cases, 

additional validation would have to be pursued using a wider range of clinical cohorts. 

Moreover, we recognize there are more sophisticated literature-mining algorithms that directly 

extract over-represented genes from a trained list of articles[130, 153, 245, 246], and this could 

improve performance. Additionally, due to the ongoing experimental validations in many of the 

clinical cases used as test sets in this study, we recognized the possibility that some of the called 

pathogenic mutations may in turn be ruled out, depending on the outcome of those validations. 

Finally, for comparative purposes, in this paper we restricted our analysis primarily on non-

synonymous and nonsense mutations. Future exploration could focus on the performance 

analysis for splice site mutations and InDels, along with the consideration of variants in 

regulatory regions such as known promoters and enhancers[227]. In anticipation for the 

replacement of exomes with whole-genomes, we plan to broaden the types of information 
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considered from external non-coding variant scoring systems such as splice site prediction 

methodologies[247, 248] and regulatory variants prioritization software[249]. 

In summary, we describe VPA, a novel method that allows the prioritization of rare 

variants detected in exomes. VPA incorporates variant-level, gene-level and patient-level 

features to classify variants according to established clinical semantics. VPA allows both clinical 

free text as well as ontological keywords to describe patient symptoms, and takes advantage of 

clinicians’ assessment of the relative importance of each phenotype. VPA performs better than 

existing methods in most cases, and at least as well in all, for detecting novel gene-phenotype 

associations in prioritization of exome candidates in rare diseases. 
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Chapter 6: Mitochondrial carbonic anhydrase VA deficiency resulting from 

CA5A alterations 

 

6.1 Synopsis 

Four children in three unrelated families (one consanguineous) presented with lethargy, 

hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and 

early childhood. We identified and validated three different CA5A alterations, including a 

homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation 

(c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The 

deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by 

reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-

VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite 

profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired 

provision of bicarbonate to the four enzymes that participate in key pathways in intermediary 

metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, 

gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase 

(branched chain amino acids catabolism). In the three children who were administered carglumic 

acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle 

defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the 

differential diagnosis of hyperammonemia in the neonate and young child. 
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6.2 Introduction 

Hyperammonemia is a medical emergency that requires immediate and targeted 

treatment. Correct diagnosis is therefore essential, but it is challenging given heterogeneous 

etiologies, including genetic (inborn errors of metabolism), developmental (transient neonatal 

hyperammonemia), and environmental (infectious hepatitis, medication) causes[250]. Current 

practice for treating hyperammonemia consists of reducing catabolism and promoting anabolism 

by a protein-restriction diet and parenteral lipids administration after exclusion of fatty acid 

oxidation disorder. Ammonia scavenging drugs (sodium benzoate, sodium phenylbutyrate, and 

arginine hydrochloride) are at present considered the first-line drugs for the treatment of neonatal 

hyperammonemia[251]. Carglumic acid, a synthetic analog of N-acetylglutamate, is another 

first-line drug that is able to activate the enzyme of the first and rate-limiting step of the urea 

cycle. If the foregoing therapies fail to produce any appreciable change in blood ammonia level 

within a few hours, continuous venovenous hemofiltration is required[251]. We present four 

children from three unrelated families with infantile hyperammonemic encephalopathy and 

hyperlactatemia. The underlying cause in each of these children was deficiency of carbonic 

anhydrase VA (CA-VA) (CA5A [MIM 114671]), an inborn error of metabolism broadening the 

differential diagnosis for hyperammonemia. In this chapter, clinical details of the patients and 

biochemical interpretations of the validation assays were left out due to not being part of the 

thesis’s focus. Readers interested to read about those detail aspects should go to the published 

manuscript[252]. 

This study was initiated as part of the Treatable Intellectual Disability Endeavor in British 

Columbia and approved by the institutional review boards of BC Children’s Hospital and the 

University of British Columbia. Parents provided written informed consent. 
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6.3 Family 1 

In family 1, the female index (II-1 in Figure 6-3), her younger affected brother (II-2), and 

her unaffected sister (II-3) were born to healthy nonconsanguineous parents of Belgian-Scottish 

descent after uneventful pregnancies and deliveries. The index and her male sibling developed 

lethargy, tachypnea, hypoglycemia, hyperlactatemia, hypernatremia and hyperammonemia with 

respiratory alkalosis within the first days of life (Figure 6-1). Known urea cycle defects and 

primary causes of hyperlactatemia were excluded by sequencing and deletion/duplication 

analysis of N-acetylglutamate synthase (NAGS [MIM 608300]), carbamoylphosphate synthetase 

(CPS1 [MIM 608307), ATPase deficiency (TMEM70 [MIM 612418]), and pyruvate carboxylase 

(PC [MIM 608786]). Chromosomal microarray analysis (AffymetrixCytoscan HD) was 

unremarkable, and homozygosity analysis did not reveal evidence of consanguinity or 

uniparental disomy. 
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Figure 6-1 Overview of Biochemical Abnormalities Resulting from CA-VA Deficiency: In Theory and for the Index 

Cases for Families 1, 2, and 3. All values in urine are expressed as μmol/mmol of creatinine. Abbreviations are as 

follows: N, normal (within reference range); NA, not available; non-det, nondetectable. aIn each individual, the 

value with maximal deviation from normal during crisis is provided. Asterisks (*) indicate abnormal values. 

bNormal values differ for each family studied because values were measured in different laboratories. cQualitative 

assessment. 
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Figure 6-2 Family 1 with p.Ser233Pro Missense Variant. (A) Pedigree (black fill indicates clinically affected 

individuals, II-1 and II-2). (B) Sanger sequence of CA5A from index (II-1) and control (wild-type sequence; WT) 

subjects; the variant nucleotide position and the corresponding codon alteration (p.Ser233Pro) are indicated. (C) 

Immunoblot analyses by SDS-PAGE (ImageJ software) of WT and p.Ser233Pro (mutant; M) CA-VA protein levels 

in COS-7 cell lysates; the molecular weights (kDa) of protein standards are indicated on the left. (D) Thermal 

stability profiles for WT (red) and p.Ser233Pro mutant (green) CA-VA enzymes. Carbonic anhydrase II (CA2; blue) 

was used as a control. 

 

Clinical and metabolic findings normalized in both siblings with the administration of 

intravenous dextrose and bicarbonate, as well as enteral carglumic acid (Carbaglu). In our 

institution, carglumic acid is used to resolve hyperammonemia of unknown origin[251]. WES 

was performed for the two affected siblings and their unaffected parents via the Agilent 
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SureSelect kit and Illumina HiSeq 2000 (Perkin-Elmer). Rare variants were assessed for their 

potential to disrupt protein function and screened under a series of genetic models—primarily the 

Mendelian recessive mode of inheritance given the rarity of the phenotype and the pattern of 

inheritance of most IEMs. Approximately 99% of the observed variations were classified as 

common (Appendix E Figure 1). Eight rare candidate variants fit the autosomal-recessive model 

of homozygous (CA5A, ARSB [OMIM 611542], CDKN2B [OMIM 600431], CDKN2A [OMIM 

600160], OGG1 [OMIM 601982]) or compound heterozygous (GRK4 [OMIM 137026], SPG11 

[OMIM 610844], EPHX2 [OMIM 132811]) variants in the affected siblings. The final set of rare 

variants (mean average frequency < 1%) was assessed for the potential to disrupt protein 

function via the Sift and PolyPhen2 software systems. Of these, only one variant (c.697T>C; 

RefSeq accession number NM_001739.1) in CA5A on chromosome 16 was considered a 

functional candidate; this variant was not reported in dbSNP (version 137), NHLBI ESP, or our 

in-house genome database (comprising 100 exomes and 10 whole genomes; anno December 

2013). Integrative Genomics Viewer 2.0.34 was used to visualize the read alignment and assess 

variant quality prior to Sanger validation. Given the existence of a related pseudogene[253], the 

CA5A variant was confirmed by targeted Sanger sequencing via carefully designed primers to 

avoid amplification of the pseudogene sequences; this was achieved by review of paired-end 

sequence data and selection via a BLAST search of appropriate regions with least similarity, 

especially close to the 3′ end. Affected siblings are confirmed homozygous, whereas unaffected 

parents and the unaffected youngest female are heterozygous carriers (Figure 6-2). This variant 

corresponds to a Ser to Pro substitution at position 233 that is predicted to disrupt structure 

around the conserved Thr235 residue that forms part of the substrate-binding region of the 

enzyme (Figure 6-3). Indeed, the p.Ser233 residue is highly conserved evolutionarily across 

 

 

149 

http://www.ncbi.nlm.nih.gov/omim/611542
http://www.ncbi.nlm.nih.gov/omim/600431
http://www.ncbi.nlm.nih.gov/omim/600160
http://www.ncbi.nlm.nih.gov/omim/601982
http://www.ncbi.nlm.nih.gov/omim/137026
http://www.ncbi.nlm.nih.gov/omim/610844
http://www.ncbi.nlm.nih.gov/omim/132811
http://www.ncbi.nlm.nih.gov/nuccore/NM_001739.1


 

species and in all 12 active human carbonic anhydrase isoforms. Studies of human CA-II have 

demonstrated that mutations in this hydrophobic patch in the active site destabilize the structure 

around the substrate-binding region and dramatically reduce the activity of the mutant CA-

II[254]. 

 

 
Figure 6-3 Effect of Genetic Variants Identified in CA-VA. Shown is a schematic diagram of the 305 amino acid 

wild-type (WT) CA-VA. Residues 1–39 encode a mitochondrial translocation signal (green). Homology predictions 

indicate that histidine 155 binds a zinc ion (blue), tyrosines 164 and 167 are active site residues (black), and 

threonines 235 and 236 comprise a substrate-binding region (yellow). Shown in red are the deduced CA-VA variants 

identified in this study. The index and affected brother of family 1 has a nonsynonymous Ser to Pro mutation at 

residue 233, adjacent to the substrate-binding region. The index of family 2 has a deletion of residues 154–186 
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(exon 4), thereby missing the metal-binding and active-site residues. The index of family 3 has a deletion of residues 

207–258 (exon 6; the substrate-binding region), which results in absent protein. 

 

A marked reduction was observed in the steady-state levels of CA-VA p.Ser233Pro 

compared with wild-type protein despite similar transfection efficiencies (Figure 6-2C). CA-VA 

p.Ser233Pro-specific activity in total cell lysates is reduced to 20% of wild-type protein activity, 

whereas activities of the cotransfected marker enzyme β-glucuronidase were comparable. 

Thermal stability of mutant recombinant human CA-VA was compared with the WT CA-VA 

and recombinant human Carbonic Anhydrase II as an additional control (Figure 6-2D). After a 

30 min preincubation, the mutant enzyme had lost 80% of its activity at 30°C and almost all its 

activity at 40°C. By contrast, both WT CA-VA and human CA-II were much more stable at 

30°C and 40°C, retaining approximately 100% and 70% residual activity, respectively. 

 

6.4 Family 2 

In family 2, a male child (II-1 in Figure 6-4) was born spontaneously at gestational age 

36+2 weeks to nonconsanguineous Russian parents. On day 4 of life, he presented with lethargy, 

weight loss, jaundice, and tachypnea. Initial investigations showed hyperammonemia, 

hyperlactatemia, mild hypoglycaemia, metabolic acidosis, and ketonuria. Carglumic acid and 

biotin were initiated, along with protein-free formula and intravenous lipids; 12 hr later, the 

metabolic acidosis and hyperammonemia resolved. 
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Figure 6-4 Family 2 with Exon 4 Splice Deletion. (A) Pedigree (black fill indicates clinically affected individual). 

(B) Sanger sequencing of RT-PCR products generated in (B) with exons denoted by colors. Top: The CA5A 

structure (not to scale) and a schematic of the observed CA5A transcripts produced in a control subject and the 

index. Bottom: Sanger sequence of transcripts at exon 4 boundary in a control subject (+/+) and the index (−/−), 

along with WT CA5A cDNA sequence, color-coded as in the top panel. (C) RT-PCR of CA5A mRNA from white 

blood cells (WBCs) or cultured liver cells (HepG2). Arrows indicate the products of differing size amplified from 

control subject (WT sequence) and index (II-1) WBCs. As controls, reverse transcriptase was omitted from the 

reaction (no RT) and a control gene (β-actin) was amplified in separate lane on a different cell type (denoted by the 

line). 
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Sanger sequencing of all seven exons of CA5A in the index identified a synonymous 

c.555G>A transition (RefSeq NM_001739.1) at the final base of exon 4 (Figure 6-4B). Given 

that guanine is the most common nucleotide found at this end of an exon in vertebrate genes, RT-

PCR was undertaken to demonstrate an effect on mRNA splicing[255]. RT-PCR via primers 

designed to amplify exons 2–7 of CA5A generated distinctly different product sizes 

(approximately 550 bp and 650 bp, respectively). Sanger sequencing of the 550 bp band revealed 

an in-frame deletion of exon 4 from the index RNA (Figure 6-4C). Homology with carbonic 

anhydrase isoforms identifies three critical residues in the deleted CA-VA transcript (residues 

154–185): His155, which binds to a catalytically essential zinc molecule, and Tyr164 and 

Tyr167, which form part of the active site of the CA-VA enzyme[256]. Thus, this deletion is 

predicted to significantly impair CA-VA enzyme activity, if not lead to protein misfolding and 

degradation. 

 

6.5 Family 3 

In family 3, a male child (II-5 in Figure 6-5) was born at term by Caesarian section 

(because of placenta previa) as the youngest of five children to first-cousin consanguineous 

Pakistani parents. At admission, he was encephalopathic with hyperammonemia and 

hyperlactatemia with a compensated metabolic acidosis. Urea cycle defects (OTC [OMIM 

311250], CPS1 [OMIM 237300], NAGS [OMIM 237310] deficiencies) and PC (OMIM 266150), 

citrin (OMIM 605814), and biotinidase (OMIM 253260) deficiencies were excluded by 

molecular or enzymatic analyses. 
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Figure 6-5 Family 3 with Exon 6 Deletion. (A) Pedigree (black fill indicates clinically affected individual, II-5). (B) 

Top: Schematic representation of the 4,078 bp deletion that encompasses exon 6 of CA5A. Bottom: Sanger 

sequencing of PCR products generated from genomic DNA of the index (II-5) with a 21 bp repeated sequence (gray) 

at the breakpoint found in both intron 5 (green) and intron 6 (blue). (C) Immunoblot analyses of control subject 

(WT) and index (II-5) liver homogenates. 

 

Sanger sequencing of the CA5A exons for the index revealed a deletion of 4 kb 

encompassing exon 6 (Figure 6-5B). Absence of CA-VA protein was confirmed by immunoblot 

in existing liver biopsy tissue (Figure 6-5C). 
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CA-VA deficiency is a human inborn error of metabolism presenting with 

hyperammonemic encephalopathy in early life. Initial evidence of causality for the identified 

CA5A alterations is provided by their similar biochemical phenotypes during metabolic crises. 

Findings are consistent with dysfunction of all four enzymes to which CA-VA provides 

bicarbonate as substrate in mitochondria (CPS1 and three biotin-dependent carboxylases: 

propionyl-CoA [PCC], 3-methylcrotonyl-CoA [3MCC], and pyruvate carboxylase [PC]). 

Outside of acute events, biochemical parameters remained normal in all affected children 

except for mildly elevated blood lactate and/or ketonuria. We propose several explanations for 

the relatively benign clinical course in these individuals and lack of apparent phenotype in the 

oldest male sibling in family 3. First, overlapping function of CA-VB may help prevent 

deleterious sequelae of reduced CA-VA activity[257]. In the mouse, Car5A is mainly localized 

in liver and its deficiency results in profound hyperammonemia. Car5B, though almost 

undetectable in liver, is predominant in mitochondria of many other tissues. Nonetheless, Car5B 

deficiency alone has no obvious phenotype. However, when superimposed on Car5A deficiency 

in the doubly deficient mouse (Car5Adl1Sws/Car5Bdl1Sws), Car5B deficiency aggravated the 

hyperammonemia and hypoglycemia and shortened survival.18 Thus, Car5B does contribute to 

handling the metabolic load, though its action is evident only in the absence of Car5A. Second, 

although carbonic anhydrases accelerate the conversion of CO2 to HCO3− by 1,000-fold or 

greater, some bicarbonate is produced via the nonenzymatic reaction, even in the absence of 

carbonic anhydrases[258]. Sufficiency for the product of this limited nonenzymatic source of 

bicarbonate may differ for the four different bicarbonate-requiring enzymes depending on their 

individual Kms. 
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6.6 Conclusion 

Thus, CA-VA deficiency should be considered among urea cycle defects, organic 

acidurias, and PC deficiency in the differential diagnosis for hyperammonemia and 

hyperlactatemia in the neonate and young child. CA-VA deficiency expands the list of treatable 

inborn errors of metabolism potentially causing intellectual disability[73]. Effective therapy in 

the affected individuals comprised (1) preventive sick-day management during intercurrent 

illnesses, including a high-caloric, lipid-rich formula restricted in protein but normal in 

carbohydrates; and possibly (2) carglumic acid to enhance the activity of the first step in the urea 

cycle as a treatment for the hyperammonemia. 
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Chapter 7: Translational value of whole exome sequencing in intellectual 

developmental disorder patients with unexplained metabolic phenotypes 

 

7.1 Synopsis 

 

Background: Whole exome sequencing (WES) has transformed rare disease-gene 

discovery and diagnosis. Translation into disease-modifying treatments is challenging, 

particularly for intellectual developmental disorders (IDD).  Inborn errors of metabolism (IEMs) 

are the exception however; late in 2014, 89 were known to be responsive to causal therapy, i.e. 

targeting pathophysiology at molecular or cellular level. 

Methods: To uncover the genetic basis of potentially treatable IEMs, we combined deep 

clinical phenotyping with WES analysis via an unbiased semi-automated bio-informatics 

pipeline, in consecutively enrolled patients with IDD and unexplained metabolic phenotypes. 

Results: WES analysis was completed in 59 IDD patients (from 47 families); 8 patients 

were excluded due to other identified etiologies. The remaining 51 patients in 42 families were 

predominantly single cases born to non-consanguineous Caucasian parents. (Likely) Pathogenic 

variants were identified in probands of 38 families, in 43 different genes: 13 genes not previously 

linked to a human disease phenotype, 21 disease genes with novel patient phenotypes and 

9 genes with expected phenotypes. In 7 families, complex phenotypes were explained by two 

monogenic conditions. In 18 families the diagnosis significantly impacted management beyond 

genetic counseling, including the discovery of 5 novel IEMs potentially amenable to causal 

therapy. 
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Conclusions: Our diagnostic yield and discovery rate exceeded expectation, likely due to 

enrichment of our cohort for new IEMs and phenotypes, semi-automated bio-informatics 

pipeline and close collaboration between families, clinicians and scientists. In 43%, WES 

diagnosis allowed for precision medicine, varying from prevention and tailored symptom 

management, to causal therapy. 

 

7.2 Introduction 

 

Significant yield of whole exome sequencing (WES) is documented in patients with an 

unexplained intellectual developmental disorder (IDD)[259], a frequent and heterogeneous 

condition affecting an estimated 2.5 - 3% of the population worldwide (3x106 newborns per 

year)[260]. With co-morbidities ranging from epilepsy, psychiatric/behavioral disturbances, 

movement disorders, sensory deficits, to other organ dysfunction, IDD poses a significant 

emotional, functional and health-economic burden[261]. Aside from CNVs and methylation 

abnormalities, a multitude of single gene defects cause IDD with more to be discovered[262, 

263]. Diagnosis is essential for accurate genetic counseling, ending the diagnostic odyssey, 

informed decision-making by families and the health care team, and accessing medical support 

and services in the community, but does not easily translate into disease-modifying treatments. 

The exception is inborn errors of metabolism (IEMs), the largest group of genetic IDDs 

amenable to causal therapy, i.e. interventions directly targeting pathogenesis at the cellular and 

molecular level such as medical diets, vitamin supplements, medications, hematopoietic 

stem cell transplantations and gene therapy[264]. Since 2012, the number of treatable IEMs 

causing IDD has increased from 81 to 89[252, 264]. 
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Many metabolic pathways are yet to be associated with human disease, and thus 

additional treatable IDDs await discovery. Identification of a genetic basis of an IEM allows for 

insights into the affected pathway, which sometimes reveal treatment targets, as illustrated by 

ALDH7A1 (Lysine catabolism enzyme) causing pyridoxine-dependent epilepsy which allowed 

implementation of the lysine restricted diet and arginine supplementation to improve suboptimal 

neurodevelopmental outcomes on vitamin B6 alone[265]. 

To accelerate treatable IDD identification, we selected carefully characterized IDD 

patients with unexplained metabolic phenotypes for WES analysis, applying an unbiased semi- 

automated bioinformatics pipeline and a multi-disciplinary approach to causal variant 

identification and validation with a focus on translation of diagnosis into precision medicine. 

Here we report our diagnostic yield as well as novel gene discoveries, and highlight the overall 

impact on clinical management. 

 

7.3 Methods 

7.3.1 Participants 

The study was approved by the Ethics Board of the Faculty of Medicine of the University 

of British Columbia (UBC IRB approval H12-00067); each family provided informed consent 

for participation in the study and publication. Eligibility criteria included: confirmed IDD or 

potential for IDD (presence of toxic metabolites in the neonatal period known to cause brain 

damage) and ‘metabolic phenotype’ of unknown cause; any age; comprehensive clinical 

phenotyping with extensive previous metabolic / genetic testing. A metabolic phenotype was 

defined as one or more of (1) (pattern of) abnormal metabolites in urine, blood, CSF; (2) 

abnormal functional studies at a biochemical / cellular level (e.g. mitochondrial respiratory chain 
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complex deficiency); (3) abnormalities on clinical history (e.g. regression), physical exam (e.g. 

organomegaly), neuro-imaging/physiology (e.g. leukodystrophy), pathology (e.g. storage 

vacuoles) suggestive of neuro-metabolic disease. During the informed consent process, the risks 

and benefits of research-based WES analysis were explained to patient and family, and an option 

for disclosure of medically actionable incidental findings (IFs) provided. 

 

7.3.2 Sequencing and bioinformatics analysis 

We isolated genomic DNA using standard techniques from either peripheral blood or 

saliva for the proband, both parents, and all affected and unaffected siblings (if available). WES 

analysis was performed on the index as well as any affected siblings, and in the majority of 

families, parents as well, either using the Agilent SureSelect targeted capture kit on the Illumina 

HiSeq 2000 sequencer (Perkin-Elmer, Santa Clara, California, USA) or using the Ion 

AmpliSeq™ Exome Kit and Ion Proton™ System from Life Technologies (Next Generation 

Sequencing Services, UBC, Vancouver, Canada). 
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Figure 7-1 Workflow of semi-automated gene-discovery WES approach. CMA (chromosomal microarray analysis), 

mtDNA (mitochondrial DNA sequencing) 

 

We developed and applied a semi-automated gene-discovery pipeline (Figure 7-1), 

which takes advantage of minimal, but critical, manual quality inspection of the data as well as 

essential collaborative interactions between clinicians and bioinformaticians. The referring 

clinician provided a form populated with data on phenotype, family history with pedigree, 

ethnicity, prior diagnostic testing results, which was used for WES data interpretation by 
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bioinformaticians. Validation of pathogenicity (classified according recent ACMG Standards 

and Guidelines)[266]  and causality of variants in novel genes (previously unreported in 

human disease) were pursued according to recent guidelines (MacArthur et al 2014[267]; 

CCMG 25951830). 

 

7.4 Results 

 

7.4.1 Study group characteristics 

 

Between October 2012 and January 2015, we recruited and completed WES in 59 IDD 

patients (47 families), meeting selection criteria. Subsequently, 8 patients with negative 

WES results were excluded for the following reasons: the etiology was confirmed as: 

teratogen exposure (n=1), congenital infection (n=2), auto-immune disorder (n=3) or pathogenic 

chromosomal CNV (n=2).   The   51   remaining   patients   (in   42   families) comprised   

predominantly children (n=45[88%]) with age at enrollment ranging from 0.7 to 31 years 

(median 5.4 years); 21 females [41%] and 30 males [59%]); 22 with mild IDD; 17 with moderate 

IDD; and 12 with profound IDD) with a spectrum of additional clinical and biochemical 

manifestations (Table 7-1). The majority of patients are of European-Caucasian descent 

(n=32[63%]) born to non- consanguineous parents without family history (n=33[65%]). In all 

patients, biochemical testing according to a published diagnostic algorithm for treatable 

IDDs[268] had been performed along with a combination of clinical genetics tests without 

revealing a diagnosis, prior to recruitment for WES analysis (Table 7-1). 
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Table 7-1 Clinical characteristics of the 55 patients in 45 families. 
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7.4.2 Diagnostic yield 

 

WES identified the likely genetic diagnosis in 38 of 47 families enrolled, translating into 

a diagnostic yield of 90% after exclusion of 5 families with other etiology (Table 7-2). For the 

majority (n=29[69%]) of the 42 included families WES had been performed on the family trio 

(mother-father-index). 

In total, 59 diagnostic mutations were identified in 43 genes; all except the previously 

reported somatic KRAS mutations were germline. The majority of the mutations were classified 

as pathogenic (n=36[61%]) or likely pathogenic (n=21[36%]) according to recently published 

ACMG Standards and Guidelines (Appendix F Table 1). Most mutations (n=46[78%]) were not 

present in either our database of more than 350 individual exomes / genomes or dbSNP (version 

138), while 13 variants with dbSNP records were rare (average allele frequency 0.006). Eight 

diagnostic mutations (14%) were previously identified as pathogenic, which is comparable to 

previous reports[269]. When compared against Exome Aggregation Consortium  (ExAC), a 

database of 61,486 unrelated individuals, 32 [54%] mutations were novel, while 27 were rare 

(average allele frequency 0.004). The ExAC dataset includes patients with mental illnesses and 

thus variants potentially relevant to our cohort. For instance, two previously reported de novo 

pathogenic mutations, in CBL and PACS1 genes (Appendix F Table 1), have been observed in 

the ExAC population. 

The 59 diagnostic mutations consisted predominantly (n=52 [88%]) of single nucleotide 

variants (SNVs) (Table 7-2). These were further classified as missense (n=44[74%]), nonsense 

(n=4[7%]) or splice-site mutations (n=4[7%]). We identified InDels (Insertions and 

Deletions less than 20bp in length) that resulted in either a frameshift (n=3[5%]) or an in-frame 
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deletion of conserved amino acids (n=4[7%]). For the 43 identified genes, the main mode of 

variant inheritance is recessive (70%), including compound heterozygous (n=16[37%]), 

homozygous (n=8[19%]), and X-linked recessive (n=6[14%]) (Tables 6-2 and 6-3). Dominant 

mutations were identified in 30% of patients, including 12 de novo mutations (11 heterozygous 

and 1 mosaic) and a single familial autosomal dominant mutation with variable penetrance. 

 

 
Table 7-2 Diagnostic yield and summary of WES analysis. 
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Table 7-3 Inheritance patterns of the 46 genes identified in the study. 

 

7.4.3 Impact on clinical management 

 

Of all families in whom WES identified the (likely) causal gene(s), the novel diagnosis 

significantly impacted clinical management in 18 (47%) families: preventive measures such as 

regular malignancy screening and avoidance of disease triggers in 4 (CBL[270], SMAD4, MTO1, 

PRSS1), more precise symptomatic management such as neurotransmitter, serine, folinic acid 

supplementation in 6 (CKNSR2, SCN2A, ANO3, BRAF, ATP2B3, MeCP2), immune- modulating 

therapies such as chemotherapy or stem cell transplantation in 3 (SENP1, SYTL2, KRAS), and 

causal treatments targeting the pathophysiology at a cellular/molecular level in 5 (CA5A, ACC2, 

GOT2, PCK1, NANS) as further described below. 
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7.4.4 Illustrative cases 

 

7.4.4.1 Novel diseases amenable to causal therapy 

 

We identified 5 novel IEMs potentially amenable to dietary restriction, supplementation, 

and/or pharmacological interventions. 

The first discovery was carbonic anhydrase VA deficiency as already described in the 

previous chapter. The second discovery was a homozygous 12-bp deletion in PCK1 (OMIM 

614168), phosphoenolpyruvate carboxykinase, in a 3-year old boy with liver steatosis, and mild 

hypoglycemia, hyperammonemia, lactic acidosis, elevated tricyclic acid metabolites responding 

to a metabolic diet and emergency regimen (rich in complex carbohydrates); in vitro mutant 

enzymatic activity was significantly reduced. Third, in a 6-year old boy with acquired 

microcephaly, severe seizure disorder, spasticity, sleep disturbances, abdominal spasms, and 

low serine in body fluids, we identified mutations in GOT2 (OMIM 138150) encoding 

glutamate oxaloacetate transaminase[271]. The patient responded to oral serine and 

pyridoxine supplements with improved head growth, psychomotor development and seizure 

control. Fourth, compound heterozygous mutations and corresponding deficiency of NANS (n- 

acetylneuraminic acid phosphate synthase; OMIM 605202) in a 3-year old presenting with 

epileptic encephalopathy and dysmorphic features; targeted metabolomics techniques confirmed 

the increased concentration of the direct substrate of the enzyme in fibroblasts.  We have 

identified 8 probands in 6 unrelated families with similar phenotype but different alleles. 

Potential treatment strategies to restore the product of the defective enzyme, 5-neuraminic acid, 

are being investigated in patient fibroblasts and model organisms. Finally, validation of acetyl- 

coA carboxylase-beta deficiency as potentially novel treatable IEM is still underway. 
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7.4.4.2 Expansion of the phenotypic spectrum 

Aside from 8 additional novel human disease genes including Rabenosyn-5 deficiency 

(ZFYVE20; OMIM 609511)[272], we identified mutations in 21 genes previously reported to 

cause monogenic conditions, for which we observed novel / additional clinical symptoms. 

Hitherto unappreciated treatment targets can be revealed as part of the phenotypic delineation. 

An example in this study is an 8-year old boy with IDD, autism, movement disorder, intractable 

epileptic encephalopathy and persistently abnormal neurotransmitter profiles (low CSF 

homovanillic acid, 5HIAA, and neopterin) in whom WES identified a pathogenic splice site 

variant (resulting in a validated exon 14 deletion) in a voltage-sensitive sodium channel, SCN2A 

(OMIM 182390). We hypothesized that this channelopathy causes abnormal synaptic mono-

amine metabolite secretion / uptake via impaired vesicular release and imbalance in 

electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-

hydroxytryptophan, L- Dopa / Carbidopa, and a dopa agonist normalized the CSF profile and 

correlated with significant improvement in attention and mild improvement of seizure control, 

the latter most likely via dopamine and serotonin receptor activated signal transduction and 

modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. 

 

7.4.4.3 Combined phenotypes due to two monogenic defects 

Multiple genetic events leading to complex phenotypes may be mistaken for new 

disorders or novel phenotypes of a known disorder, and thus remind us that a layer of unbiased 

and systematic interpretation of NGS data is necessary in any clinical pipeline. In fact, recent 

NGS reports support the notion that blended phenotypes is an appreciable cause of disease[273]. 

This is demonstrated in our study group with 7 (18%) of 38 diagnosed families harboring 
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mutations at 2 distinct disease loci related to the phenotype (Appendix F Table 2). For instance, 

in a 19-year old, cognitively normal male born to non-consanguineous Filipino parents with 

progressive dilated cardiomyopathy and sensorineural hearing loss, WES revealed compound 

heterozygous rare, damaging mutations in NPL (OMIM 611412) encoding N-acetylneuroaminate 

pyruvate lyase that controls the final step of sialic acid metabolism. The deafness is attributed to 

a known homozygous mutation in GJB2 (connexin 26) (OMIM 121011). 

 

7.4.5 Medically actionable incidental findings (IF) 

In these 42 families, we identified only one medically actionable IF in CFTR (OMIM 

602421). Both alleles were previously reported as pathogenic: rs78655421 and rs121908745; 

however the family (whose clinical phenotype did not suggest cystic fibrosis) chose not to be 

informed in case of IF and thus the result was not disclosed. 

 

7.4.6 Discussion 

 

Our study reports an integrated deep phenotyping and customized WES bio-informatics 

approach to the discovery of novel neuro-metabolic conditions and phenotypes in 51 

patients from 42 IDD families, with a focus on therapeutic tractability. Overall, our approach 

achieved a molecular diagnostic yield of 90% in a highly selected group 42 IDD families with 

unexplained metabolic phenotypes, including 13 potential gene discoveries. Studies to validate 

causality in a subset are ongoing; we acknowledge this limitation and have thus provided 

extensive information on pathogenicity of variants using most current recommendations[266] 

as well as available experimental data to motivate our findings. Although our diagnostic rate 

exceeds that of most published studies applying NGS in rare diseases (16% - 73%)[274-
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277], the most important outcome of our genomics study is the significant impact of the WES 

findings on clinical management in half of our patients. One-third of the newly discovered 

human diseases are potentially amenable to pharmacological and/or dietary treatments. 

In IEMs, knowledge of the precise defect in a metabolic pathway provides the 

opportunity to modify disease using nutritional manipulation, which although under regulatory 

control and worthy of careful study before implementation, do not require the expensive and 

time-consuming trials inherent to orphan drugs. The discovery of GOT2 deficiency with severe 

neurologic symptoms amenable to oral serine and pyridoxine supplements (resp. its end product 

and cofactor), which are both affordable and previously used and deemed safe for other 

IEMs[278], nicely illustrates this advantage.  We report a single patient however, further 

highlighting the (ultra-) rare disease predicament – small patient numbers requiring global 

collaborations and use of matchmaking approaches[279] combined with novel trial 

methodologies to generate sufficient evidence for treatment effects. For more challenging 

interventions, such as replenishing the intracellular 5-neuraminic acid in NANS deficiency, 

testing of existing or novel treatments on cellular and model organisms is a crucial first step. 

Preventive measures such as metabolic   diets   and   emergency   regimens   to   respectively   

support   proper   somatic   and psychomotor development and avoid metabolic crisis, further 

illustrate precision medicine made possible by a genomic diagnosis (e.g. CA-VA and PCK1 

deficiency[280]). Notably, discovery of the first recessive germline mutation in the PCK1 gene 

in our study is a good example of the power of NGS advances to confirm a four-decade old 

hypothesis. Namely, in 1975, Sovik et al. described a patient with persistent neonatal 

hypoglycemia as a result of a defective gluconeogenesis due to abnormal subcellular distribution 

of PCK1[281]. Here, we provide evidence at the molecular and biochemical level that indeed 
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PCK1 deficiency results in this phenotype and suggest that the metabolic dysregulation is 

amenable to treatment. Finally, difficult decisions for invasive and costly procedures such as 

hematopoietic stem cell transplant or chemotherapy (e.g. SENP1 deficiency[282]) are enabled by 

a precise genetic diagnosis and understanding of pathophysiology; outcome reports of such cases 

in the literature is essential to help other clinicians faced with a similar challenge. 

Potential contributors to the high diagnostic success in this study include: restriction to 

patients with observed metabolic phenotype, a bioinformatics pipeline tied to close consultation 

with clinical specialists, the prevalence of recessive conditions in metabolic disorders. We also 

observed a higher portion (13%) with mutations at two distinct disease loci leading to blended 

phenotypes, compared to past studies reporting (6%)[273]  and (4.6%)[283]. This may be 

related to inclusion of two phenotypes in the patient selection criteria (metabolic and IDD). As a 

result, we strongly advocate unbiased analysis of NGS data for multiple “hits” in all patients. 

In 4 families, repeated semi-annual re-analysis of exome data failed to identify a genetic 

diagnosis (Table 7-2). Three of these 4 families were studied using proband-only WES, 

indicating a possibility that a pathogenic de novo variant was missed. In one trio-WES analysis 

family, the proband presented with neonatal hyperammonemia, hyperlactatemia, methylmalonic 

aciduria which resolved completely, showing normal development and metabolic profiles at age 

2 years; a large 600 gene panel and our WES did not yield disease-causing variants and 

possibly this child does not suffer from a rare monogenic disease but resolved immaturity of 

enzymes. In another family, WES quad analysis failed to identify a diagnosis due to lack of 

coverage, in 2 siblings presenting with neurodegenerative phenotype and neurotransmitter 

abnormalities, whose seizures responded to Levocarbidopa and 5OH-tryptophan. Subsequent 

WGS analysis revealed a previously described pathogenic mutation (c.10G>C [p.Gly4Arg]) in 
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the CSTB (OMIM 601145) resulting in Unverricht-Lundborg syndrome (OMIM 254800). WGS 

analysis of the remaining 2 families is underway. 

Finally, translational genomics requires collaborations between patients & families, a 

variety of subspecialist clinicians for careful phenotyping, expert bioinformaticians for accurate 

data-analysis, and basic scientists engaged in specific gene or pathway research. Data-

sharing and open communications are key to maximize NGS’ diagnostic potential and its clinical 

benefit to health outcomes in rare diseases. 
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Chapter 8: Conclusion 

8.1 Introduction 

The affordability of next-generation DNA sequencing (NGS) allows exploitation of the 

technology in specialized genetics clinics to uncover the genetic etiologies of diverse disorders. 

The new discipline that forms around it, genomic medicine, provides patients with personalized 

strategies for disease prevention, etiology identification, and therapeutic selection[284]. While 

clinical utility and revolutionary impacts have been demonstrated for classical Mendelian 

disorders and diverse cancers, ultimately genomic medicine will impact complex chronic 

disorders and thereby most individuals. Such a vision is embraced by both biomedical 

researchers and pioneering clinicians alike, as evident in emergent scientific funding programs 

such as Horizon 2020 (http://ec.europa.eu/programmes/horizon2020/) and Precision Medicine 

Initiative (https://www.nih.gov/research-training/precision-medicine-initiative). 

Clinical practice will be transformed by DNA sequencing. Initial signs of this 

transformation include the identification of therapeutic targets in individual cancer cases, specific 

risks for inherited cancers and common diseases, and personalization of drug choice and 

dosage[285, 286]. In this chapter, I conclude the thesis by exploring future challenges of 

genomic medicine, focusing on the roadblocks in the path to achieving the full potential. My 

exploration traverses 5 sections: section 1 explores ways to improve the diagnostic rate of 

exomes and whole-genomes; section 2 highlights the difficulties of incorporating multiple types 

of “omics” data; section 3 illustrates the ongoing evolution of hardware and software for efficient 

data interpretation and storage; section 4 highlights a need for better training programs for 

clinicians and patients; and section 5 summarizes ongoing ethical issues. Due to the multi-

“omics” direction that this field is heading (examined in section 2), the phrase “genomic 
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medicine” is used interchangeably with “personalized medicine” to better capture the types of 

data and knowledge involved. 

 

8.2 Improving next-generation sequencing diagnostic rate 

The current reported diagnostic rates from major consortiums using exomes and/or 

whole-genomes vary between 16% - 73%. Studies that focus on specialized patient populations 

(i.e. consanguineous populations) and/or stringent in-take criteria tend to have higher diagnostic 

rates. While these diagnoses represent a major advance for patients, there remain a large fraction 

of patients with unresolved diagnoses. In order to elevate the yield and to further promote high-

throughput sequencing to a routine clinical screening, greater attention will need to be placed 

upon the undiagnosed subset of patients.  If such cases were originally selected due to strong 

evidence for genetic etiology, there may be opportunities to resolve additional subsets by 

improved approaches. 

 

8.2.1 Resolution of detection 

The subset of the undiagnosed cases may be attributable to limitations of short-read NGS 

technology to detect pathogenic structural variations (SVs) and triplet repeat expansions[287]. 

Even with pair-end reads, the reliability of variant callers for such alterations appear limited to a 

maximum spacing change of 35-75bp[288, 289]. Complementary technological platforms such 

as arrayCGH lack adequate sensitivity and specificity to analyze SVs under 1kb[290]. Therefore, 

pathogenic SVs too large for NGS but too small for array probes are problematic. Longer read 

lengths promised by 3rd generation sequencing technologies will provide insights into how 

frequent such alterations are in the undiagnosed set of patients. For instance, companies such as 
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Ion Torrent and Pacific Biosciences can produce average read lengths up to 400bp and 15kb 

respectively[291, 292], which can theoretically overcome the limitations of the short-read data 

and provide insights into genomic regions that previously could not be investigated. Presently, 

relatively poor read qualities, low throughput and high cost prohibit such technologies for 

clinical adoption[293]. Yet a retrospective look at the historical development of preceding 

technologies suggest that the aforementioned technological challenges will eventually be 

overcome, and access to long reads for clinical genetics should be resolved within a few years. 

 

8.2.2 Variants of unknown significance (VUS) 

Clinical diagnosis is limited by our biological understanding of the molecular 

mechanisms within cells and tissues. Variants of unknown significance, VUS, constitute the 

largest category of rare variations in any WGS/WES output[294-296]. This holds true even when 

looking at well-annotated genes with known biological functions (e.g. BRCA family[297]). The 

latest guidelines from the American College of Medical Genetics indicate that VUS should be 

excluded from clinical decision-making[298]. To simplify interpretation, many clinical genetics 

interpretation procedures restrict focus to variants with obvious functional impacts (e.g. nonsense 

mutations) in genes for which different alterations are known to contribute causally to related 

phenotypes[294-296]. While the exclusion of VUS for clinical diagnosis is presently justified, an 

expanding population of sequenced individuals will allow for statistical correlation of VUS with 

related patient phenotypes for novel genes. Such advances will ultimately require connection of 

data from patients around the world for extremely rare conditions. 

Our inability to assess VUSs is especially problematic when concerning the analysis of 

regulatory and intronic variants.  Such potential regulatory alterations may be frequent in the 
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undiagnosed patients, as current interpretive analyses have largely been restricted to protein 

coding alterations. The HGMD (as of 2014) contained reports of more than 3000 such mutations 

as being pathogenic[299]. At present there is a robust global bioinformatics effort to develop 

approaches to study the impact of regulatory variants, but few tools are sufficiently mature to 

provide reliable predictions for clinical use. In part the limitation is due to the fact that WGS was 

very cost-prohibitive until recently, and WES technology does not have the capacity to 

systematically capture the regions that contain regulatory variants. Furthermore, the underlying 

data used to build the predictive models are drawn from limited selections of cell lines strongly 

biased to cancer cells (e.g. Encyclopedia of DNA Elements, ENCODE[300]). Both the 

compilation of large number of patient genomes and single cell studies of diverse tissues and 

cell-types will contribute to the capacity to detect causal regulatory alterations in the future.   

 

8.2.3 Promote collaborative exchange of data and knowledge 

The sharing of diagnosed genetic cases has been largely accomplished by initiatives such 

as ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) from ClinGen. For the undiagnosed cases, 

sharing data within a collaborative environment may be essential. GeneYenta[233] and 

Phenomizer[301] are matchmaking software tools that were developed to connect clinicians 

working on similar patients with similar disease phenotypes. GeneTalk (https://www.gene-

talk.de) is a web-based platform that allows clinical researchers to share potentially disease-

relevant sequence variants in a crowd-sourced database, and connect with experts working on the 

same variant(s)/gene(s). LOVD (http://www.lovd.nl/3.0/home) is an open-source gene-centric 

database within which users can submit both DNA variations and patient information, and allows 

browsing of submitted variants for a given gene. GenomeConnect 
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(https://www.clinicalgenome.org/genomeconnect/) from ClinGen is a portal that engages patients 

to participate in the sharing of their own de-identified genetic and health information to form 

connections between patients and the healthcare providers and researchers who wish to study it. 

At the moment, these tools allow for distinct component tasks that ultimately need to be united 

within an encompassing system. Having one centralized repository or a federation of data cross 

repositories would ensure better coverage on all the reported variants. The Global Alliance for 

Genetics Health (http://genomicsandhealth.org) has been working toward this aim.     

At the moment patient phenotype descriptions are manually entered, however the 

information overlaps with information within electronic healthcare records and therefore there 

may be opportunities to create appropriately controlled mechanisms (i.e. protective of patient 

privacy and permission) to unite such systems. Automated inclusion of digital health data would 

promote better adherence to standards and streamline clinical analysis. As a proof-of-concept, 

EHR4CR is a European consortium that utilizes the i2b2 infrastructure to incorporate electronic 

healthcare records for public health and research[302]. The organization specifically assesses the 

promises of re-using health records for identifying eligible patients for recruitments to clinical 

research.   

As the software and resources are changing rapidly, it is a challenge for analysts to keep 

up. Open forums such as SEQanswers (http://seqanswers.com) and BioStar 

(https://www.biostars.org) promote bioinformaticians to exchange experience and troubleshoot 

common errors, but they are done so in an unorganized manner. OMICStools 

(http://omictools.com) provides an easy portal for researchers to find the appropriate tool for 

their specialized needs, but its layout is not designed for users of a given tool to come together 

and discuss. Ultimately, a well-structured virtual toolshed is required to allow bioinformaticians 
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to discuss the strengths and weaknesses of tools and workflows for tackling specific problems, 

and the sharing of feedback to facilitate software development. 

 

8.2.4 Gene networks analysis 

Most variants from WES/WGS data are evaluated either at the individual variant/gene 

level, or based on inheritance pattern. Interactions between two genes may be contributing 

causally to a portion of unexplained cases, as the current focus on simple genetic models may not 

detect such cases. Network-based algorithms that capture biological pathways, systems or 

complexes could be helpful. For analogy, Ingenuity’s Pathway Analysis is a commercial 

software and database package that improves upon gene expression enrichment analysis tools by 

assessing expression data across pathways. Progress in pathway-based analysis has been made 

for cancer studies[303]. Standardization may help with broadening network analysis adoption, 

particularly for the visualization of networks.  

  

8.3 Integrating diverse “omics” data 

To understand complex biological interactions, the success of genomic medicine will be 

enabled by access to molecular profiling beyond the genome sequence. The varied “omics” 

profiles emerging across the life sciences include transcriptomics, proteomics, epigenomics, 

metagenomics, metabolomics, nutriomics, etc.  Metabolomics, for instance, is expected to bring 

increased diagnostic potential because metabolic markers represent the functional end point of 

physiological mechanisms[304]. While metabolic profiles have been produced in laboratory 

medicine for many years, the parallelization enabled by new technologies allows thousands of 

molecules to be assessed simultaneously. While the name of the detailed molecular analysis on a 
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per patient basis remains in flux (genomic medicine, personalized medicine, precision medicine, 

and more), it is clear that the revolution is not restricted to DNA sequence data.  

A key challenge is therefore to integrate the signals at these disparate levels. For instance, 

while current genetic testing may suggest that a drug is unsafe for an individual patient, such 

classification may be refined by better understanding of epigenetic influences or metabolic 

activities[305]. Additionally, there is the trend to move from static data towards dynamic 

profiling. Sequencing the whole genome of a newborn reveals some risk markers, but profiles of 

other “omics” data over time may provide enhanced resolution of disease risk. Virtual Liver[306] 

and the Physiome project[307] seek to integrate bioinformatic signals across distinct biological 

levels and temporal timeframes. To provide clinically useful information it will be necessary to 

combine a variety of distinct heterogeneous data sources (e.g. DNA, RNA, protein, metabolites, 

environment) while still addressing the limitations of sample size, cost and incorporating better 

phenomic profiles. 

 

8.4 Hardware and software revolution 

As high-throughput technologies mature, data generation concerns recede and data 

interpretation challenges remain. For many diseases (e.g. acute neurodevelopmental disorders) 

the ability to diagnose and provide treatment before the onset of symptoms is critical[308]. This 

is especially true for neurological disorders in which the damage resulting from inappropriate 

formation over key developmental periods or the death of essential cells is irreversible[308]. 

Thus a key long-term concern is minimization of the time to diagnosis. While the identification 

of early biomarkers and the capacity to collect data earlier are both contributors, increasingly the 

complexity of the analysis over diverse classes of data and prediction of complex effects of 
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changes are likely to result in computational time being amongst the greatest limitations, 

especially as technologies move into standard clinical practice and the number of deeply profiled 

patients grows by orders of magnitude. Specialized computational hardware may be required. 

Kingsmore et al. described a workflow requiring only 26 hours for providing diagnosis of 

genetic disorders using whole genome sequencing[309]. The reduced time is largely driven by 

the DRAGEN Bio-IT Processor, which adapts a graphical processing unit (GPU) via a PCIe 

form-factor card with accompanying analytical software. The graphics card can be integrated to 

next-generation sequencing servers, allowing the analysis of over 50 whole genomes from raw 

FASTQ data to VCF in a single day (http://www.edicogenome.com/dragen/). A similar study by 

Hall et al. published an open-source genome analysis platform that accomplishes alignment, 

variant detection and functional annotation of a 50X human genome in 13h on a low-cost server 

architecture[310]. In this case, the efficiency is achieved at the programming level via a superior 

processing of the alignment file and maximizing the simultaneous execution of nondependent 

pipeline components. As the technologies stabilize and the specific computational algorithms 

become standard, such hardware and software-based solutions become more practical. 

In the near-term, as most hospitals do not posses high-performance computational 

infrastructure, cloud computing is being adopted to close the gap between data generation and 

data analysis. The EasyGenomics (http://www.easygenomics.com) internet service provided by 

the Beijing Genomics Institute exemplifies such an approach. Bioinformatics methods 

developers will need to allow for such infrastructure for methods that will be broadly used in 

applied genetics. 
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8.4.1 The role of industry 

Throughout the thesis, much emphasis has been placed upon open-source software due to 

most commercial systems being unpublished and proprietary. Nonetheless, the role of industry in 

analyzing and interpreting variants is critical, with example applications such as Alamut 

(http://www.interactive-biosoftware.com/alamut-visual/) and Ingenuity Variant Analysis 

(http://www.ingenuity.com/products/variant-analysis). For a compilation of popular commercial 

applications, refer to table 4 by Klee et al[311]. Since the field of genomic medicine remains a 

highly dynamic area of research, multiple open source and commercial software solutions 

invariably exist for any single analysis step. The breadth of the field further means 

bioinformatics solutions are customized to perform under specific clinical contexts, the 

performance of pipelines becoming exquisitely sensitive to highly-tuned parameters. Presently, 

aside from the issue of cost and affordability, there is still a balance between innovation and 

stability when choosing between open-source bioinformatics software and commercial solutions. 

My research methodologies impact these efforts by placing emphasis upon software usability in 

the context of clinical users and their interactions with genomic data and related patient health 

information. In addition, my research results reveal that it is critical for software design to 

account for ever-growing multidisciplinary care team as healthcare industry shifts from single 

providers to integrative interpersonal networks. Finally, my research into variant prioritization 

model informs the NGS developers at large a need for better-automated clinical decision support 

in selecting candidate variant(s). Overall, the research presented in this thesis can inform 

industrial software development, informing developers that the design and implementation of 

systems need to take into account of human factors, with appropriate clinician involvement and 

attention to workflow and training. 
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8.5 Training clinicians to use genome sequence data  

While new technologies are embedded within research programs, highly specialized 

analysts work with the data. During the process of translating the methods into standard practice, 

it becomes imperative to provide streamlined analysis results to clinicians and therefore to 

develop sufficient capacities in the clinic. A hybrid education is necessary to train new 

generation of scientists and physicians that are capable to understand the underlying biological 

problem, the methods of data analysis, interpretation of the data, and the advantages and 

disadvantages of the new technologies and analytical approaches. While much of this thesis 

emphasized the need for user-friendly software, it is equally critical for users to have the 

necessary education. For example, the eMERGE network found that the education of providers 

about the tools for delivering results about genetic risk is important to ensure the tools are used 

effectively[312-314].  

 

8.5.1 Training programs 

It is reported that 90% of scientists are self-taught in programming, but they often lack 

basic practices such as task automation, code review, unit testing, version control, and issue 

tracking[315]. In a survey of 68 specialist healthcare providers, 42% did not believe they had 

adequate preparation to implement personalized medicine in the clinical setting[315]. This 

highlights a need for educational programs to bridge the disciplines. Improved understanding of 

how data is used in informatics can indirectly help transform clinical research and practice. For 

instance, when clinicians better understand the potential of electronic health records, they 

develop better appreciation to take the time to fill out the electronic forms[316, 317]. 

Developments of online webinars and podcasts can be useful for directing busy clinicians to 
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appropriate professional conferences and suitable primer literature. Due to the diverse 

multidisciplinary domains involved in the healthcare process, it is likely the training methods 

themselves would have to be tailored to each specialized domain. For instance, while online 

education methods may be preferred for meeting credential standards, behavioral strategies such 

as training in genetic counseling would not be conducive under distance-based methods. The 

training would also need to be tailored to particular user groups; for instance, the clinical 

geneticists and genetic counselors should receive training on the return of genomic results and 

secondary findings, while the effective use of clinical decisions support system for appropriate 

therapies should be more targeted towards nurses and primary physicians.  

 

8.5.2 Patient engagement 

The earlier chapters of the thesis highlight the need for usability analysis on healthcare 

providers interacting with genomics software to make treatment decisions based on the delivered 

outputs. A currently unexplored future direction is to include patients in the evaluation, instead 

of solely restricting the evaluation to healthcare providers. Engaging the patients in their 

healthcare can improve patient outcomes by reducing the imbalance of information that typically 

exists between healthcare providers and their patients. There are informatics opportunities to 

design systems to facilitate open communications between patients and clinicians. Outpatient 

portals such as Open Notes and BMT Roadmap demonstrate how software can facilitate 

engagement by delivering patient health records in a condensed, user-friendly format, improving 

the coordination of care and quality of patient-doctor communication[318]. 
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8.6 Ethics 

Thus far, this thesis has not touched upon the ethical considerations regarding genomic 

medicine. While the concept of personalized medicine is not new, the arrival of genomics and 

other high-throughput patient-specific data impacts social contexts in which the approach may be 

disadvantageous to some patients. Due to the large scope of the topic, I will point to key papers 

addressing major topics of exploration[319-325].  The responsibility for payment needs to be 

resolved, as there needs to be clear health benefit if insurers (or society) are to be obliged to 

provide for it.  Should insurers be allowed to include genetic information in the determination of 

rates or eligibility for certain policies? How should the privacy of personalized health data be 

protected? As genetic information can be relevant to multiple members of a family, should there 

be protections for untested individuals? Which incidental findings should be reported and to 

whom? How should information be regulated in light of concerns about eugenics? If testing is 

performed in the earliest days of life, what information should be reserved for when a subject 

becomes an adult and indicates a desire to obtain it? What is the appropriate interaction with 

patients who refuse certain testing based on religious or political grounds? While there are few 

simple answers and some of the questions have been explored robustly outside of the specific 

context of genome medicine, it should be clear that in the coming years there will be broad 

discussions around the globe to explore these topics and develop standards. As DNA sequencing 

technology has arrived to the clinic earlier than expected, much of the exploration will be 

concurrent with implementation.   
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8.7 Conclusion 

In the context of the Precision Medicine Initiative, United States President Barack Obama 

comprehensively observed: 

 “delivering the right treatments, at the right time, every time to the right person. And for 

a small but growing number of patients, that future is already here…So if we combine all 

these emerging technologies, if we focus them and make sure that the connections are 

made, then the possibility of discovering new cures, the possibility of applying medicines 

more efficiently and more effectively so that the success rates are higher, so that there’s 

less waste in the system, which then means more resources to help more people – the 

possibilities are boundless”  

To achieve these ambitious goals, computational improvements are necessary to integrate 

complex data and allow successful adoption of technologies within clinical settings. My thesis 

addresses this matter by tackling the usability challenges in genome analysis software targeted 

towards clinicians. Through a series of interface evaluation methodologies, my doctoral work 

presents various software interface prototypes desired by the clinical specialists to address 

domain-specific scenarios in the analysis of exomes and whole-genomes. Informed by the 

findings from design evaluations, I introduced a novel computational approach to better 

prioritize exome variants based on automated appraisal of patient phenotypes. The clinical 

impacts of my works can be seen in my clinical collaborations (achieving diagnosis rate of 38/47 

families; 81%), which show how considerations of the designs and visualization of genomic 

information and algorithmic improvements in variant prioritization come together for improving 

patient care. 
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The coming future will require new generations of multidisciplinary research teams to 

design, operate and evaluate user-tailored tools for clinical decisions supports between informed 

patients and their physicians. As with any historical major human landmark achievement, the 

overcoming of obstacles to personalized medicine will require a concerted community effort. My 

thesis represents an important piece of work in facilitating collaborations between fields and can 

be continued to expand upon the future as the fields evolve. 
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Appendices 

 

Appendix A  Chapter 2 

A.1 Preliminary survey 

To gather a brief initial perspective on how clinicians viewed next-generation sequencing 

(NGS), we conducted one-on-one free-style (i.e. unstructured) interview with ten clinical 

geneticists based within CFRI (Children and Family Research Institute). The interviews focused 

on three main issues: 1) how are they currently incorporate next-generation sequencing into 

clinical/research practice; 2) what interface they currently use; and 3) what challenges or 

difficulties they experience, whether interpreting the data, integrating to workflow, or using the 

interface. The interviews gathered personal background information such as the kind of 

computer-based work they perform, how much time they spend each week using computers, and 

their experience with computer programming. These ten clinical geneticists were the same 

representatives that were later recruited to the evaluation in the study. The interviews were done 

in May-June 2012 separately for each individual in their own respective offices, lasted around 20 

minutes per individual. Nine subjects lacked any fundamental computational training, while the 

remaining individual was proficient with programming in Visual Basic. All the interviewees 

have prior exposure to working with NGS data – 8/10 had worked with exome data, while the 

other two worked with targeted gene panels. We note that these two individuals later got exposed 

to working with exome datasets prior to the usability evaluation. Two subjects were only using 

NGS within genetics research projects, and expressed reservations about the current clinical 

utility due to poor specificity of results (a perceived high rate of false variants being reported). 

Another subject with experience using array-based genotyping for CNV analysis was more 
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enthusiastic about incorporating NGS into clinical practice. Six of the participants reported 

concerns with their current interface (NextGene), noting many key variant annotations such as 

type of codon change (synonymous versus nonsynonysmous) or the name of the impacted gene 

were missing without explanation. Five subjects had worked with GoldenHelix’s interface – 

three of which have also used NextGene before. Two subjects used Excel instead of the 

NextGene viewer due to prior familiarity with Excel interface, although the data they were 

reviewing was first generated from NextGene. When asked for what they desired from the 

software interfaces based on their current experience - the interviewees expressed the desire for 

more feature annotation for each variant in order to facilitate prioritization of candidate causal 

variants. Besides reporting quality scores, coverage, frequency in populations, presence in known 

disease database, evolutionary conservation, and predicted effect on proteins, they expressed 

desires for information about gene expression, characteristics of mouse models if any, and key 

terms mined from literature about that variant/gene. The latter is especially time-consuming and 

is currently done manually by the participating clinicians. 

 

A.2 Clinical scenarios 

For ethical reasons, the data provided in each scenario were aimed to be as clinically 

realistic as possible while avoiding the use of actual confidential patient data. As is the nature of 

any simulation studies, it is impossible to cover every task that may arise in the real world, but 

the scenarios were setup based upon a literature review of exome studies published as well as 

under the guidance and consultation of exome/genome analysis experts who were not recruited 

to the study. 
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In the first clinical scenario, a 1st-degree consanguineous family with a single case of 

mitochondrial disorder is presented. The user is presented with the exome variant calls and ROH 

for the index patient. The clinicians were presented with a basic biochemical patient background 

that justifies the prediction of a mitochondrial disorder. The report also states that no defects in 

mitochondrial DNA were observed. A disruptive mutation in gene SUCLA2 was embedded in 

the exome to represent the intended causal variant. The mutation was introduced in such a way 

that it would emerge as a top candidate by filtering for rare non-synonymous mutations present 

in the listed mitochondrial genes that fall within a region of homozygosity.  

In the second clinical case, a patient is described as having episodic muscle weakness and 

paroxysmal dystonia. Clinicians were supplied with a quartet of exomes corresponding to the 

unaffected parents, unaffected sibling, and affected proband. The subjects were first asked to 

conduct mutation analysis on two specific genes previously implicated in this type of disease, 

before searching for variations consistent with classical Mendelian inheritance models. To 

accelerate the analysis, the subjects were instructed to focus on de novo heterozygous model, 

through which they should identify a novel mutation disrupting the N-terminal domain of gene 

KCNJ18, a gene previously implicated to cause this type of disorder.  

In the sections below we provide details to the hypothetical scenarios that were provided 

to the clinicians during the usability evaluation. 

 

Hypothetical Scenario 1: 

Key disease trait:  

Multiple mitochondrial respiratory chain (MRC) enzyme deficiency, a biochemical signature due 

to diverse gene defects, including mtDNA or nuclear genes. 
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Data:  

• 1 exome sample corresponding to the proband. Parental exome not available. 

• Homozygosity mapping data for proband from SNP-array 

• A list of human mitochondrial genes from MitoCarta database. 

 
Patient background: 

• Male, currently 9 years old 

• European descent (France) 

• Parents are consanguineous, second-cousin 

• Normal pregnancy and delivery 

• During first months of life, see muscle hypotonia, failure to thrive, poor weight gain, 

frequent vomit 

• At 1 year of age, see good visual contact but marked axial hypotonia with absence of 

head control, poor active movements, brisk tendon reflexes. Put on nasogastric tube 

feeding because of severe dysphagia. 

• Neurosensory hearing loss abnormal. 

• Liver and kidney functions normal, but biochemical exams revealed increased levels of 

lactate and pyruvate in both plasma (3000 uM vs <2000 uM normal, 200 uM versus <140 

uM normal) and CSF (2300 uM vs <1800 uM normal, 155 uM vs <120 uM normal) 

• By age 2, see persistent lesions of bilateral abnormal signals in caudate and putamina 

nucleic, from brain MRI 
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• Clinical features progressively worsened, by 3 years old patient shows dystonic 

tetraparesis associated with bilateral ptosis and opthalmoparesis, and severe cognitive 

impairment with no verbal development 

• Despite severe clinical features, patient never presented with metabolic crisis and EEG 

was always normal 

• Last diagnosis is at age 6, showing severe bilateral ptosis, incomplete ophthalmoparesis, 

spastic-dystonic tetraparesis with absence of head control, scoliosis, and marked 

irritability. 

• Biochemical analysis revealed multi-enzymatic defect of mtDNA-dependent MRC 

activities in muscles and fibroblasts, pointing to a defect of mtDNA maintenance or 

expression. Sequence of entire mtDNA from skeletal muscle fail to show pathogenic 

mutations. 

 

Tasks: 

       1) Upload exome dataset (Proband_exome.txt) to the Varsifter software 

2) Retrieve the total number of mutations in this exome dataset 

3) Give the number of missense mutations, nonsense mutations, and InDels 

4) Filter the dataset against polymorphisms based on your desired choice of frequency 

threshold.  

5) From step 4, filter the remaining variations against homozygosity mapping data (provided 

as ROH_bed.bed) 

6) From step 5, give the list of variants predicted in silico to be damaging after homozygosity 

filtering. Save this list as a separate file. 
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7) From step 6, give the list of variants associated to mitochondrial genes (gene list provided 

as mitochondrial_gene_list.txt).  

8) Give a final list of variants that you deem worthy for validation and further follow-ups. 

 

Hypothetical Scenario 2: 

Key disease trait:  

Episodic muscle weakness and paroxysmal dystonia: an autosomal dominant disorder typically 

characterized by acute, episodic and usually flaccid loss of skeletal muscle tone in the context of 

low serum potassium (1-3 mmol/l). Age of onset varies between 5 to 20 years. Episodes can last 

hours to days, often precipitated by carbohydrate-rich meals and rest after prolonged exercise. 

Previous studies have shown 80% of such disease is caused by mutations in CACNA1S and 

SCN4A. 

 
Data:  

• 4 exomes in total: 2 exomes from healthy parents (non-consanguineous), 1 exome of 

unaffected sibling (brother, 2 years older), and 1 exome of female index. 

 
Patient background: 

• 5 year old female from Canada with EU ancestry with a 2-year history of episodic lower 

limb weakness, manifested as difficulty with weight bearing, stumbling and clumsiness 

and subjective descriptions of pain. Episodes occurred 2 to 3 times per week, lasting from 

30 min to 4h. 

• Also has early-onset scoliosis, high arched feet, lower limb hypertonia, clumsy gait, and 

frequent toe-walking 
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• Physically, non-dysmorphic with tight hell cords, pes cavus, increased plantar reflexes, 

lordosis, positive Gower sign, and stiff toe-walking and in-toeing of right foot 

• Clinical diagnose included testing for HypoKPP (primary hypokalemic periodic 

paralysis) based on evaluation of exon 5 and 13 for CACNA1S and exons 10, 15 and 21 

for SCN4A. Results were unrevealing. 

 

Tasks: 

1) Upload exome dataset (Family_exome.txt) into the software 

2) Get the total # of non-reference variations for each family member 

3) Identify mutations, if any that fall within CACNA1S and SCN4A. Decide if these are 

worthy candidates for additional follow-up. 

4) From the original list, perform intersection to obtain homozygous mutations in index, not 

homozygous in the other sibling, and heterozygous in both parents (i.e. recessive model). 

5) From the original list, perform intersection to mutations that are only present in the index 

and not in any other family members (i.e. de novo model). 

6) From the de novo mutation list (step 5), filter for heterozygous, nonsynonymous 

mutations. 

7) From step 6, filter against polymorphisms based a frequency threshold of your choice. 

8) Give the list of variant-gene pairs that you think are worthy for follow-up from the de 

novo hypothesis. 
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A.3 Additional details to methodology 

Study setting and participants (additional details) 

Each evaluation took place within the subject’s office, reflecting the typical environment 

in which the subjects analyze DNA sequencing data in real life. These selected experts are 

representative of the hospital’s medical specialists who most closely interact with patient exomes 

for clinical diagnosis.  There was no standard software established within the clinic at the time of 

testing, with the staff using a variety of self-selected packages for their own work. 

 

Experimental procedure (additional details) 

The breakdown of the 45-minute introductory period is as follow: a 10-minute tutorial 

video for both software was presented to each subject prior to the evaluation.  This video showed 

how each of the tasks that would arise in the simulated study can be accomplished using the 

software. Subsequently each of the subjects was initially given 30 minutes to work with the two 

software packages– including interacting with the software and/or reading the software manual. 

Afterwards, subjects were given approximately 5 minutes to familiarize themselves with the 

input data provided for each hypothetical clinical scenario, and to go over the tasks that were 

assigned within each scenario. Throughout the introduction session, participants were given 

opportunities to raise any questions they may have, and the experimenter (CS) provided answers 

as required for the subjects to progress through the simulations. 

Clinicians were instructed to “think-aloud” while they worked through the scenarios. If 

the clinicians remained silent for more than five seconds, they were reminded to “keep talking”. 

If the participant appeared confused or expressed frustration with the provided tool for more than 
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ten seconds, the experimenter (CS) provided tips on overcoming the specific challenges that they 

were facing. 

 

Interviews and surveys (additional comments) 

The pre-evaluation interviews occurred before the usability evaluation. They addressed 

the subject’s prior experience working with genomic data (e.g. “Please describe the type of 

analyses you have personally done with patient DNA data”, “what challenges have you faced 

when using next-generation sequencing in clinics”), and the amount of computational expertise 

that they have (e.g. “What software have you previously tried in exome or whole-genome 

analysis”, “are you familiar with any scripting or programming languages”). The post-evaluation 

interviews occurred immediately after the usability evaluation. They addressed specific issues 

that came up during the evaluation, and included pre-defined questions such as “what is the most 

useful function that you find about the software”, “what is the biggest flaw you find with this 

system?” -- questions that are pertinent to the scope of this research but could not be directly 

extracted from the screen capture data. While SUMI provided open-ended questions in addition 

to the 50 multiple-choice questions, we instead incorporated the 3 open-ended questions into the 

post-evaluation interview. Both interviews were meant to be brief, targeted to be less than 5 

minutes in duration. For the clinicians who had exposure to commercial platforms, they were 

asked if the challenges they faced during the evaluation had been encountered when using these 

other platforms. 
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SUMI (Software Usability Measurement Inventory (SUMI)) 

In this section, we provide the survey questionnaires provided to our subjects. For each 

question there are three responses: agree, undecided, and disagree. Open-ended questions at the 

end were incorporated to our post-evaluation interviews. More information on the construction 

of the survey can be found on the SUMI website7. Below are the questionnaires taken from 

SUMI: 

================================================================ 

This questionnaire has 50 statements. Please answer them all. After each statement there are 

three boxes. 

• Check the first box if you generally AGREE with the statement. 
• Check the middle box if you are UNDECIDED, or if the statement has no relevance to your 

software or to your situation. 
• Check the right box if you generally DISAGREE with the statement. 
In checking the left or right box you are not necessarily indicating strong agreement or 

disagreement but just your general feeling most of the time. 

  

7 Kirakowski, J. (1995), 'The Software Usability Measurement Inventory: Background and Usage.' In: P. Jordan, B. Thomas, & B. Weerdmeester 
(Eds.), Usability Evaluation in Industry. Taylor and Frances, London, UK. 
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Statements 1-10 out of 50 Agree Undecided Disagree 
This software responds too slowly to inputs.       
I would recommend this software to my colleagues.       
The instructions and prompts are helpful.       
This software has at some time stopped unexpectedly.       
Learning to operate this software initially is full of 
problems.       

I sometimes don't know what to do next with this 
software.       

I enjoy the time I spend using this software.       
I find that the help information given by this software 
is not very useful.       

If this software stops it is not easy to restart it.       
It takes too long to learn the software functions.       
Statements 11-20 out of 50 Agree Undecided Disagree 
I sometimes wonder if I am using the right function.       
Working with this software is satisfying.       
The way that system information is presented is clear 
and understandable.       

I feel safer if I use only a few familiar functions.       
The software documentation is very informative.       
This software seems to disrupt the way I normally 
like to arrange my work.       

Working with this software is mentally stimulating.       
There is never enough information on the screen 
when it's needed.       

I feel in command of this software when I am using 
it.       

I prefer to stick to the functions that I know best.       
Statements 21-30 out of 50 Agree Undecided Disagree 
I think this software is inconsistent.       
I would not like to use this software every day.       
I can understand and act on the information provided 
by this software.       

This software is awkward when I want to do 
something which is not standard.       

There is too much to read before you can use the 
software.       

Tasks can be performed in a straightforward manner 
using this software.       

Using this software is frustrating.       
The software has helped me overcome any problems 
I have had in using it.       

The speed of this software is fast enough.       
I keep having to go back to look at the guides.       
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Statements 31-40 out of 50 Agree Undecided Disagree 
It is obvious that user needs have been fully taken 
into consideration.       

There have been times in using this software when I 
have felt quite tense.       

The organization of the menus seems quite logical.       
The software allows the user to be economic of 
keystrokes.       

Learning how to use new functions is difficult.       
There are too many steps required to get something to 
work.       

I think this software has sometimes given me a 
headache.       

Error messages are not adequate.       
It is easy to make the software do exactly what you 
want.       

I will never learn to use all that is offered in this 
software.       

Statements 41-50 out of 50 Agree Undecided Disagree 
The software hasn't always done what I was 
expecting.       

The software presents itself in a very attractive way.       
Either the amount or quality of the help information 
varies across the system.       

It is relatively easy to move from one part of a task to 
another.       

It is easy to forget how to do things with this 
software.       

This software occasionally behaves in a way which 
can't be understood.       

This software is really very awkward.       
It is easy to see at a glance what the options are at 
each stage.       

Getting data files in and out of the system is not easy.       
I have to look for assistance most times when I use 
this software.       

 
#2: How important for you is the kind of software you have just been rating? (check the box on 

the right) 

Extremely important  
Important  
Not very important  
Not important at all  
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#3: How would you rate your software skills and knowledge? 

Very experienced and technical  
I’m good but not very technical  
I can cope with most software  
I find most software difficult to use  
 
3 open-ended questions: 

#1: what software have you tried out before? 

 

#2: What do you think is the best aspect of this software, and why? 

 

#3: What do you think needs most improvement, and why? 

 

================================================================= 

The data collected from SUMI survey were assessed using SUMICO software by the 

Human Factors Research Group (http://www.ucc.ie/hfrg/), which can be found on the SUMI 

website. As assessed using the SUMICO software, the two tools were perceived differently by 

the users (see Appendix A Figure 2). As a summary of the output from SUMICO, for each 

evaluated software, the usability is broken down into six categories: “efficiency”, “affect”, 

“helpfulness”, “control”, “learnability”, and “global usability”. Details to the descriptions of the 

meanings of these labels are discussed in the result section. For each category, SUMICO assigns 

a score that can range from 0 to 80. A score of 50 refers to a response score that is comparable to 

the expected values from the SUMI database. A value below 50 is colored as red and refers to a 

negative deviation away from the expected, and a value above 50 refers to a positive deviation 

away from the expected. The significance of each score is calculated based upon 95% confidence 
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intervals derived from SUMICO using the SUMI database. Interested readers can refer to the 

SUMI website for more information (http://sumi.ucc.ie/sumipapp.html#sumidev). For the 

quantified performance measures, Varsifter scored the lowest on efficiency, a measure of how 

users perceive that the software assists them in completing the given tasks. Regardless, Varsifter 

scored high on affect, revealing that despite the difficulties in using the software, the clinicians 

retained a favorable impression of the software. KGGSeq scored low in “Helpfulness” and 

“Control”, which respectively measure the degree to which the software is self-explanatory and 

the extent to which the user feels in control of the software, as opposed to being controlled by the 

software. While users apparently perceive Varsifter as being inefficient, the users preferred its 

interface and, as noted above, achieved better performance using it in terms of successful 

mutation discovery and time efficiency. 
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Appendix A Figure 1 Time required for clinicians to complete each scenario and successfully identify the embedded 

causal mutation. Panel A shows the time for scenario 1, and panel B shows the time for scenario 2. Y-axis plots the 

distribution of time (minutes, rounded) from the start on a scenario, and X-axis indicates the performance for each 

evaluated software. 
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Appendix A Figure 2. An overall summary of usability across 6 quantified attributes by SUMI. A deviation below or 

above the score 50 represents a negative or positive attitude on that particular usability category. The precise 

meaning of these subscales is given in the SUMI manual (http://sumi.ucc.ie/sumipapp.html). 

 

A.4 Performance data 

In the sections below, we provide the performance data, the additional relevant comments 

and feedbacks regarding the two software that were captured during the usability evaluation.  

 

Individual performances on clinical scenarios 

  Scenario 1 Scenario 2 
  Varsifter KGGSeq Varsifter KGGSeq 
Subject 1 19 41 21 33 
Subject 2* 37 56     
Subject 3 21 30 25 49 
Subject 4* 33       
Subject 5* 33       
Subject 6 33 44     
Subject 7* 29 33 26 41 
Subject 8 29 44 24   
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 Scenario 1 Scenario 2 
 Varsifter KGGSeq Varsifter KGGSeq 
Subject 9* 21 33 35 39 
Subject 10 20 41 22 38 

Appendix A Table 1. The time (minutes) of the performance for the ten evaluated clinicians. The time was rounded 

off to the nearest minute. The table is organized such that the first five subjects (subjects 1-5) used Varsifter first 

before using KGGSeq for scenario 1, and the remaining subjects used KGGSeq before Varsifter for scenario 1. The 

subjects with * marked (subjects 2,4,5,7,9) were selected to use Varsifter first before using KGGSeq for scenario 2, 

while the remaining subjects performed scenario 2 using KGGSeq before Varsifter. 

 
Themes Categories Example of comments captured 

VISUALIZATION Navigation "I don't see why compound heterozygous button is grouped under 
'View'. I would have expected it to be under 'Tools'" 

  Layout "I remembered seeing a 'finalize' [Finalize Query] button in the 
tutorial, but why is it not showing up on my screen?" 

  Operation 
consistency 

"This 'search' button is confusing. Most of the time the software 
refreshes the current screen, but in some cases it opens a new 
window.” 

  Graphics "I like how you can drag this [referring to the icon showing up during 
construction of custom query] around" 

INFORMATION Resolution "There is a lot of information in this file (referring to software 
output). I feel overwhelmed. I can't make sense out of it" 

  Label "What is SLR_test_statistics? What do all these other columns mean? 
I don't understand and I don't see any help pop-ups" 

  System 
messages 

"The error message says I am missing the sample ID, but doesn’t tell 
me how or where to specify it” 

SYSTEM RESPONSE Response 
time 

"The software is running, I can see that...but how long would it 
take?" 

  System status "I've clicked this button twice and I am not getting any response. Is it 
[the system] stuck?" 

FUNCTIONALITIES Compatibility 
"Is the software able to take in a list of genes commonly seen in 
exome studies? I have a list of commonly mutated genes in Excel but 
I don't know how to overlay that to the variants" 

  Scope of 
functionalities 

"No, I cannot do this task [select for homozygous recessive variants], 
it is too difficult for me to figure out. There needs to be an easier 
way" 

OVERALL 
USABILITY Overall usage 

"I do not see myself using this tool at this point. Perhaps if there is a 
hands-on session where someone can walk me through one of my 
datasets face-to-face..." 

Appendix A Table 2: We assigned the detected usability problems into 5 main themes that are subdivided into 12 

categories. These categories cover the visual representation of the system, the information presented by the system, 
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the response of the system, and the functionalities offered by the system. Example comments from each category are 

shown (emphasis on the negative, unless not available). 

 

In-depth analysis of feedback 

Visualization of features on the visible screen (additional comments) 

For Varsifter, 42/92 (46%) of the negative comments related to GUI design. For example, 

the default window size of the software failed to display all options and buttons, resulting in a 

portion of the screen requiring scrolling to access.  Every surveyed clinician complained that 

texts and/or functions were hidden from view. For example, in the window to create a custom 

query, 8 of the 10 participants sought a button that they had observed in the tutorial video, but 

did not know that it was necessary to use the scrollbar to access the remainder of the options. 

The feedback about KGGSeq also indicated concerns with incomplete display in the command-

line generator GUI. One clinician commented “the scrolling means I have to remember what is 

hidden behind this panel and that is a pain”. Even in cases where all buttons were displayed, 

usability problems were encountered in navigation and execution. For instance, the procedure to 

setup custom queries in Varsifter requires a series of clicks in the correct boxes, and every user 

reported difficulty in learning to use it. One clinician stated: “the way of how I imagine I would 

go about setting up a query is not the same as the way the software is setup”; A clinician who 

was proficient with databases and the use of structured query language (SQL) commands said “I 

know how to do this in SQL, but I cannot do it on here”.   
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Scope of functionalities (additional comments) 

While both software packages have a wide range of functionalities, they suffer both in 

terms of difficulty in executing the functions and relevance to clinical exome-analysis tasks 

(26/92 and 22/79 negative comments were captured). For both software, the majority of 

problems (16/19 for Varsifter, 13/20 for KGGSeq) related to software functions reflect the 

clinician’s inability to perform a task, rather than the absence of a functionality within the 

system. For instance, 4 out of 10 clinicians were unable to setup Varsifter’s custom query to 

filter variations for a particular Mendelian inheritance model. Although Varsifter does have a 

pre-set function to filter the data by Mendelian genetic models, those functions were not 

accessible through the GUI (there were indications on screen, but the functions were not active). 

For KGGSeq, the clinicians were unfamiliar with the terminal-style interface and had trouble 

knowing which parameters were required to setup a command, as well as how to provide them. 

The command-line GUI generator received some initial praise in the early stages of the tests, but 

negative comments were subsequently expressed as the clinicians realized only a portion of the 

functions could be access through the GUI. The remaining problems (3 for Varsifter, 7 for 

KGGSeq) reflected the absence of the necessary function to complete a task. For instance, in 

using KGGSeq, when trying to filter the variations by a list of genes, there is no easy way to 

upload a gene list. The program instead accepts a text string consisting of comma separated gene 

names; a format that is infeasible with a long gene list.   

In addition, the clinicians faced tasks that the software seemed incapable to address (3/19 

and 7/20 for Varsifter and KGGSeq respectively). For instance, the ability to identify compound 

heterozygous mutations (i.e. different mutations in the two copies of a gene) but limited to 

amino-acid changing or splice site mutations that arise infrequently across a population was 
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indicated as a desired trait, but was not achievable by the users. In support of the generalizability 

of the findings, many (n=6) clinicians commented how they were unable to carry out analyses 

using other exome analysis packages (recalling that all our recruits have had prior experience 

analyzing exome data, and there is wide diversity in software used by the specialists). In section 

4 and 5 of the main paper, we discuss in more details the nature of these important tasks and our 

design recommendations. 

The usability issues detected for Varsifter and KGGSeq were not similar (Table 2 in the 

main paper). For Varsifter, a total of 106 comments pertaining to usability were made (92 

comments were negative, 12 were positive, and 2 were neutral). For KGGSeq, a total of 90 

comments pertaining to usability were provided (79 comments were negative, 10 were positive, 

and 1 was neutral). From previous studies, it is expected that most comments are likely to be 

negative in think-aloud protocols involving evaluation of user interfaces[95]. Varsifter received 

the most negative comments about navigation and system layout, while KGGSeq received the 

most negative comments about the semantics and the depth of information contained in the 

output. Both software received criticism about the scope of functionality offered, reflecting those 

instances when the clinicians were either unable to find the desired function to complete a task, 

or did not know how to properly execute the function. 

In the study, we define a user-induced mistake that is not fixed by the user or the system 

as a slip, and a user-induced mistake that is caught and fixed by the user or the system as a near-

miss. More mistakes were resolved by Varsifter (12/15) compared to KGGSeq (11/26) because 

clinicians were able to view the results at each filter step. For instance, a comment about 

KGGSeq quoted “…I am looking at the output file and there is nothing here. Did I do something 

wrong? Or is this expected from the simulated data?”).   

 

 

231 



 

 

 
Appendix A Figure 3. The distribution of mistakes being caught by the user/system (near-miss) or uncaught (slips). 

Y-axis is the total number of user-induced mistakes encountered by each software. The iterative design of Varsifter 

enables fewer mistakes made by the users, and also a statistically significant greater proportion of mistakes to be 

caught (one-tailed chi-square test yields chi-square 4.0365, p-value < 0.05). 

 

A.5 Data formats and databases 

Common data formats for clinical genomic data analysis 

BAM (http://samtools.sourceforge.net/) 

BED (https://genome.ucsc.edu/FAQ/FAQformat.html) 

Fasta, Fastq (http://maq.sourceforge.net/fastq.shtml) 

GTF, GFF, GFV (https://genome.ucsc.edu/FAQ/FAQformat.html) 

TSV (http://www.cs.tut.fi/~jkorpela/TSV.html) 
VCF (and its many variations) 
(http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-
format-version-41) 
Relevant databases for clinical genomic data analysis 

1000 Genomes (http://www.1000genomes.org/) 

dbNSFP (http://varianttools.sourceforge.net/Annotation/DbNSFP) 
dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) 

Ensembl/UCSC (http://uswest.ensembl.org/index.html, http://genome.ucsc.edu/) 

Exome variant server (http://evs.gs.washington.edu/EVS/) 
Expression Atlas (http://www.ebi.ac.uk/gxa/) 
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Relevant databases for clinical genomic data analysis  
Gen2Phen (http://www.gen2phen.org/) 
GeneCards (http://www.genecards.org/) 

HapMap (http://hapmap.ncbi.nlm.nih.gov/) 

HGMD (http://www.hgmd.cf.ac.uk/) 

Human Variome Project (http://www.humanvariomeproject.org/) 

LOVD (http://www.lovd.nl/3.0/home) 

OMIM (http://www.ncbi.nlm.nih.gov/omim) 

Phenotips (http://phenotips.cs.toronto.edu/) 
Appendix A Table 3. A list of the commonly encountered data formats in patient genomic analysis, and the 

databases often explored by clinicians. 

 

A.6 Usability issues 

The raw lists of usability issues specific to the evaluated tools are available online[114]. 
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Appendix B  Chapter 3 

B.1 Example software for WES/WGS analysis 

Existing software programs address differing portions of the analysis process, with 

emphasis tending to fall either on categories 1-2, 3-4 or 5, discussed in the Introduction section 

of the main text. For example, Galaxy[326] and NextGENe software from Softgenetics 

(http://www.softgenetics.com/NextGENe.html) emphasize the read processing stages, allowing 

users to upload the individual DNA sequences (in the FastQ format) and perform both genomic 

alignment and variant calling. VariantDB[327], BiERapp[328], and FamANN[329] focus on 

variant interpretation, taking as input a set of called variants (in a VCF or BAM format) and 

providing users with annotations and filtering functions. KGGSeq[330], gNOME[331], and 

PhenoVar[332] address the annotation and prioritization stages through the integration of gene 

annotation from resources, such as OMIM[159], Gene Ontology[333] and KEGG[334] 

databases. MagicViewer[56], and IGV[335] address quality control changes using graphical 

visualization of reads aligned to the reference genome, while allowing for prioritization based on 

read qualities and mapping thresholds. It is possible to incorporate additional types of data, 

exemplified by the commercial SNP&Variation suite (GoldenHelix) that, in addition to the range 

of functionalities described above, allows users to filter variants based on regions of 

heterozygosity determined using arrayCGH methods. 

During this study’s focus group sessions, we asked the subjects to share perspectives on 

these existing tools, or similar tools designed for to accomplish the same analytical tasks. Out of 

our recruits, 8/8 bioinformaticians, 7/9 clinical geneticists, and 2/5 genetic counselors had prior 

experience. Based on user feedback, two re-occurring issues that inhibit the adoption of these 
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tools emerged: 1) incompatibility with an existing workflow, and 2) lack of focus on individual 

domain needs. Below we present examples from each user group for illustration. 

Bioinformaticians did not find graphical user interface (GUI)-based commercial systems 

useful due to lack of freedom for constructing custom pipelines, and for the incapacity to modify 

specific components as new methods emerge. GUI packages were challenging to link with 

computer networks and be fitted to existing informatics pipelines. One bioinformatician 

remarked “It takes me three times longer to process an exome using the commercial system 

installed on a single machine when I can process it much faster on my local network”. Clinical 

geneticists’ chief complaint was the steep learning curve required to operate the software, even 

among the users who attended tool-specific workshops. The extensive learning curve problem is 

compounded when considering their overloaded schedules, as one clinician stated, “If I have the 

time, I am sure I can learn it, but I simply don’t have that luxury”. Genetic counselors criticized 

the over-abundance of graphical buttons and functionalities that have no relevance to their line of 

work, and whose presence were distracting from the clinically relevant information (“It is not 

only visually distracting, but also makes the software a lot more difficult to master than it has to 

be”). Finally, all evaluated users felt the existing systems are restricted to single workplace 

setting, and there is a growing need for a network-based system structured around shared project 

data to better foster collaboration. One bioinformatician expressed frustration that “I have to first 

convert my data into Excel Spreadsheet for the clinicians, and that always take up a lot of my 

time”, and a geneticist recalled “when you have multiple versions of the same data floating 

around passing between different people, you can quickly loose track on what is the most current 

up-to-date analysis”. 
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B.2 Participants 

The study was approved by UBC research ethics board. Recruitments were conducted 

through emails and direct solicitations (crude response rate estimated to range between 20%-

45%, but this was a rough estimate due to the fact many emails were sent out to specialized 

mailing lists, rather than directly to individual accounts). The resulting number of recruits for this 

study is the number of sought participants who agreed to the study. Each participant signed 

informed consent prior to the study. All participants identified as bioinformaticians, clinical 

geneticists or genetic counselors had prior experience working with WES/WGS data. The 

assignment to each of the four categories was based upon their professional and job title. 

Appendix Table B-1 shows the demographic distributions of the participants, as well as 

experience with exome/whole-genome analysis and computer programming. 

Clinical geneticists were slightly skewed towards a higher age group, compared to 

bioinformaticians and genetic counselors. All user groups were composed of males and females 

except genetic counselors, which had only females as participants. Bioinformaticians had the 

highest self-rated competency in computer programming and greater experience with the various 

analytical steps within an exome pipeline, followed by clinical geneticists and genetic counselors 

respectively. As expected, non-specialist physician had the lowest amount of clinical experience 

with genomic data.  
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Appendix B Table 1. Demographic information and self-rated computational competencies on the recruited 

participants (n=26) segregated into four different professional domains. 

 

B.3 Additional details on focus group structure 

For each specific issue, participants were asked about the type of information they 

preferred to see, and the properties of user interface design desired. Participants were encouraged 

to collectively draw out their ideal envisioned user interface design(s) on the whiteboard. If the 

participants appeared stuck or confused, mock-ups prepared by the moderator (CS) were 

presented for inspiration to elicit further responses (see Supplementary PowerPoint online). 

Participants were further instructed to let the moderator know if a particular question/scenario 

presented was not relevant to their line of work. A second round of interviews were held with the 

same participants in the same group composition in order to ensure that the digital images 
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(translated from the drawings on the whiteboard) reflected the designs envisaged on the 

whiteboard. Each second round lasted less than 20 minutes. 

 

B.4 Perspectives from genetic counselors and general physicians on raw sequence data 

Genetic counselors and general physicians expressed no desire to access raw sequences, 

indicating that they did not consider it as part of their professional role. They described 

technological limitations that would preclude the data processing role in their perspective. 

 
“I don’t view myself qualified to process raw sequence data. Isn’t that supposed to be what 

bioinformaticians do?” [Genetic counselor 03] 

 
“Even if I know what to do with raw data, I doubt my computer can handle the processing of such 

large data!” [Genetic counselor 04] 

 

B.5 Preferred file formats 

There were contrasts between geneticists and genetic counselors versus the 

bioinformaticians regarding the preferred file formats. Bioinformaticians generally accepted 

diverse file formats (aside from technical complaints not directly related to WES/WGS, and lack 

of standardization of vocabularies across different institutions). Clinical geneticists and genetic 

counselors did not perceive canonical data formats (e.g. VCF, BAM) as being user friendly. 

 
“I absolutely hate working with VCF files. I always have difficulties trying to load them into 

Excel and getting them to display properly.” [Genetic counselor 01] 
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“I find it difficult to manipulate BAM files. I only use it to visualize the quality of alignment, but 

anything else is beyond my capabilities. And even after attending multiple workshops, I find there is too 

much of a learning curve for me to dive in.” [Clinical geneticist 04] 

 

B.6 Re-occurring desired quality measurements that are not commonly available in 

current toolkits  

There was a strong overlap between bioinformaticians and clinical geneticists when 

commenting on the quality measures desired, including such properties as average coverage, 

percentage of mapped reads, transition to transversion ratio, average read score.  They desired a 

clear indication of the parameters used in alignment and variant-calling. When uploading 

multiple exomes from a common pedigree, both user groups  (bioinformaticians and clinical 

geneticists) indicated a desire for the software to verify if the family assignment was correct 

based on the input exomes (e.g. ‘if an exome is assigned as “father”, does the underlying genetic 

data actually reflect this relationship?’). The ability to calculate degree of consanguinity from 

exome data was another attribute desired, as this information can be unreliable in patient 

testimony. 

 

B.7 Bioinformaticians desired diverse variant information  

When looking at a single nucleotide variation, while both clinicians and 

bioinformaticians would like to know the assembly version, genomic position, reference allele, 

alternative allele, genotype, and alignment quality, bioinformaticians further conveyed a desire 

for other information such as whether the variant overlaps a specific annotated feature type, such 

as a promoter sequence. 
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B.8 Automated literature mining or pathway analysis 

Text mining algorithms exist which operate based on user-supplied keywords reflecting 

patient phenotype or a biological process of interest.  They return a list of potentially relevant 

gene candidates, and are being more broadly incorporated into WES/WGS interpretation. This 

feature was desired by clinical geneticists and bioinformaticians. Since such algorithms are often 

based on mining a pre-compiled database, users indicated the importance of recording version 

numbers and dates of data updates, in order to assess the program’s adequacy in quarrying ever-

expanding clinical literature. 

 

B.9 Comparative analysis of genetic tests 

In this section, we summarize the variety of genetic tests employed in clinical diagnosis, 

and contrast them against WES/WGS. Traditional karyotyping had been the standard cytogenetic 

approach to detect large abnormal genomic deletions and duplications[336], but is gradually 

being superseded by array-based molecular techniques, which detect small genomic copy-

number variants (CNVs) that are not routinely detected with karyotyping[337]. Gene-panel and 

PCR-targeted studies provide enhanced resolution by enabling the detection of single-base 

substitutions, or small insertions and deletions within a small subset of selected clinically 

relevant and disease-focused genes[338].  

As the cost of DNA sequencing decreases, exome sequencing has become a clinical 

reality with potential as routine practice, with demonstrable successes in providing genetic 

diagnosis to rare, clinically unrecognizable, or puzzling disorders suspected to be genetic in 

origin[339]. Exomes are being considered for preventative medicine screening of healthy 

persons[340], as well as for individualized cancer therapy[341]. No exome capture kit reliably 
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captures every exon in the human protein-coding genes[342]. The breadth of coverage is 

nonetheless significantly larger than gene panel approaches (~100 genes in a typical panel versus 

20,000 captured protein-coding genes in an exome). Exome sequencing places less weight on the 

clinical assumptions of the patient’s genetic makeup, as clinicians who utilize panel sequencing 

have to assume the gene(s) selected are of clinical relevance. If no pathogenic mutations are 

observed from a panel, no reliable conclusion can be made for rest of the genes outside the panel.  

Exomes, however, still come with certain genetic presuppositions, the most critical being that 

pathogenic variant(s) of interest rest within the protein coding region (making up ~2-3% of the 

human genome[343]). Whole-genome sequencing is currently the least biased approach to 

genetic testing, making no assumption about the location of a causal alteration. Veltman et al. 

demonstrated the power of whole-genome sequencing through a cohort of patients with 

intellectual disability, where previous genetic tests (including exome sequencing) provided a 

diagnosis for 42 percent of the patients, versus a potential diagnostic yield of 62 percent from 

whole-genome sequencing[344]. However, overall the clinical utility of whole genomes is 

limited by our capacity to assign biological significances to most non-coding variants[345, 346].  

Exome sequencing and whole-genome sequencing do not yet replace array-based technologies, 

or traditional Sanger sequencing. The reliability and capacity of software to detect large genomic 

variations from sequencing data remains to be determined, while array comparative genomic 

hybridization (arrayCGH) is clinically confirmed for detection of large aberrations[347, 348]. 

Array-based methods also can reveal regions of homozygosity – information highly useful with 

patients of consanguineous background[276]. Therefore, current clinical workflows often include 

both arrayCGH and genome sequencing components to maximize the chance for successful 

genetic diagnosis[349]. The variant calls from exomes and whole-genomes have been unreliable 
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compared to variants called by targeted Sanger sequencing[350], thus it is a common practice in 

both research and clinical pipelines to rely on Sanger confirmation. 

From karyotyping to panels to arrays to whole-genomes, we see an exponential increase 

in computational complexity to generate, analyze, annotate, and store genomic data. An array 

panel of fifty genes may reveal ten polymorphisms, but a single exome can return over two 

hundred thousands variants, and a whole-genome returns variants reports millions[349]. These 

sociotechnical challenges when incorporating to clinical practice are discussed further in 

Appendix B-10. 

 

B.10 Insights from Computer-Supported Cooperative Work 

In this section, we highlight themes important that have emerged relative to past 

healthcare technology adoption in studies related to Computer-Supported Cooperative Work 

(CSCW). While not comprehensive, we seek to convey that certain workflow concepts across 

heterogeneous medical practices are applicable to clinical genomics. The perspectives from 

CSCW also serve as reminder that adoption of technical advances is hindered by inadequate 

consideration of the multidisciplinary team’s needs and interactions (with each other and with 

systems). 

Certain CSCW concepts may inform the process of assigning clinical importance to 

variants. One example is the need of methods for processing narrative and numeric data[351]. 

Our findings indicated the integration of patient phenotype that often comes in free-text narrative 

format is crucial for variant prioritization. Keeping in context of patient history is especially 

beneficial to assign clinical importance to a variant (e.g. a variant of unknown significance in 

MYH7 gene is unlikely to be important in a healthy individual, but highly significant in patient 
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with familial cardiomyopathy). Another CSCW theme is the importance of working with ‘lay’ 

concepts and language[352]. This draws parallel in the collaborative genomic environment, 

where certain vocabularies and jargon surrounding genomic data would need to be conveyed to 

clinicians to inform their decision if a particular variant is worthy for further clinical pursuit (e.g. 

a variant in MYH7 may not be selected as the first candidate for additional testing if the variant 

has low read coverage). 

CSCW cites themes concerning the multidisciplinary environment in collaborative 

healthcare practices. One example is the extension from single workplace to multi-workplaces 

setting. Various CSCW research studies emphasize the role of social networking to resolve 

individual problems, with examples primarily drawn from patients seeking other patients sharing 

similar problems[353, 354]. We perceive this to be relevant to genome interpretation for clinical 

professionals. Clinicians studying rare diseases often have to reach out to hospitals across 

boundaries. Through case matchmaking services like GeneYenta[355], clinical networks help 

clinicians connect and find patients with similar rare phenotypes and foster the compilation of 

deeper insight into disorders. Information credibility and interpretation of automated results has 

been addressed in CSCW studies[356]. In the context of WES/WGS, this aspect is apparent in 

the prediction of variants likely to disrupt a gene. The prioritization of variants requires a careful 

consideration of the aggregated meta-analysis of multiple outputs from different prediction 

programs or across an ensemble of biological features[357]. Therefore, it is critical that the 

limitation of each software and performance measurements such as sensitivity and specificity 

conveyed to the clinical user. 

On the analytical side, CSCW studies have addressed technical issues surrounding high-

throughput biological data. An example cited in Takacs et al is the need for scalable methods for 
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handling increasingly large data sets[358]. In the context of genomic medicine, the transition 

from WES to WGS put an exponential increase of computational burden on both the time it takes 

to process the data, as well as the hardware required to store and load data for clinical 

interpretation. CSCW further illustrated the need to consider patient privacy. Most current 

clinical pipelines are in-house, but interactions related to rare genetic disorders will need to be 

established. 

 

B.11 Standards for data incorporation into electronic health records (EHRs) 

In this section, we discuss standards and technical challenges that arise when integrating 

genomic information into electronic health records for clinical practice. Incorporating the new 

information and transitioning from older genetic analysis methods will require adjustment of the 

data infrastructure of diverse organizations.  The speed and ease of adoption can be improved by 

the establishment of standards for workflows and data formats. The workflow for processing 

genome sequence data is becoming more consistent across groups, but will have continuing 

volatility for several years.  Establishing standards now for the output of the workflows, will 

allow for the internal mechanisms to continue development while not hindering the clinical 

adoption process. 

The workflow for determining causal alterations and reporting the information is 

becoming standardized as well. Vassy et al. described a process where the ordering physicians 

would receive concise summaries of the key variants prepared by bioinformaticians, reviewed by 

geneticists and genetic counselors, and relayed to patients[359]. In figure 5, we highlighted an 

example of a concise report, similarly supporting the importance of down-weighting clinically 

non-relevant information from busy physicians and only report what are the most clinically 
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significant for the patient.  This maturation will allow for the key required advance of connecting 

the analysis results to health records. 

The challenges of integrating genomic data into EHRs remain ongoing. Various 

laboratories and organizations (e.g. HL7) have laid out roadmaps and technical desiderata that 

need to be achieved for successful integration. Levy et al. offered a technical approach to 

compactly and efficiently represent genome information in operational systems, citing seven 

different considerations including the support of lossless data compression from primary 

molecular observations to clinically manageable subsets, simultaneous support of human-

viewable formats and machine-readable formats for implementation of decision support rules, 

maintaining linkage of molecular observations to the laboratory methods used to generate them, 

and the anticipation of the continuously evolving understanding of human molecular 

variation[360, 361]. 

To date, no commercial EHR system has been described that systematically integrates 

genomic data. Electronic Medical Records and Genomics (eMERGE) is a consortium of nine 

institutions that has set out to provide pioneer experience using commercial prototypes and 

home-grown systems. Their experience, unexpectedly, overlapped with feedback from HL7[362, 

363], and revealed additional core EHR functions that are needed in order to incorporate 

genomic information. These include storing genetic information as structured data conforming to 

standards that allow information to be moved freely between EHR systems, phenotypic 

information must also be stored as structured data and be associated with relevant genetic 

information, and EHR system must be able to obtain and display the information needed by 

clinician to interpret genotypic and phenotypic data[364-366].  
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B.12 Limitations 

All of our subjects are employed within the same region, and therefore work within a 

single socialized medical system. Additional research with more participants within and beyond 

the current evaluated hospital/academic research centers would likely reveal additional insights. 

Secondly, our participants were self-motivated to enroll in the study. Even the non-specialist 

physicians had been exposed to WES/WGS and its utility.  Finally, due to time constraints, we 

could not cover the entire scope of analysis that arises during exome analysis, rather the study 

was limited to key issues. For instance, our study did not address pharmacogenomics and the 

types of interaction pharmacologists might have with genetics professionals. Our focus groups 

were further guided around the genetic diagnosis of rare diseases, or puzzling diseases with 

suspected genetic etiology. Other clinical utilities such as preventive healthcare in screening of 

health individuals and sequencing of cancer tumors to find somatic mutations for individualized 

cancer therapy were not explored. These limitations serve as opportunities for future research. 
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Appendix C  Chapter 4 

C.1 Distribution of variants across genes 

For each gene, only rare coding variants derived from dbSNPv138 and EVS (including 

short InDels) within the longest coding transcript that results in amino acid change were 

considered. Polymorphic alleles were excluded based on the same allelic frequency criteria as 

described above. The location of the affected amino acid was derived from annotation by 

SnpEff24 software (as described above). For InDels, only the first affected amino acid location 

was considered, such that if an InDel affected multiple amino acids, we only considered the 

location of the first one. To achieve meaningful statistical evaluations, any gene with < 20 

remaining variants was not included in this part of the analysis. For each gene with ≥ 20 

remaining variants, the same number of variants was randomly selected uniformly across the 

gene using Python version 2.7 random.randrange function. Mann-Whitney two-sided test was 

conducted between the locations of the observed mutations versus the locations from randomly 

selected ones using SciPy’s27 mannwhitneyu function. The p-value from this test was recorded, 

and the procedure repeated 20,000 times. Treating the p-value as a score, the p-value from this 

list corresponding to 99% statistical confidence was determined, reflecting how likely is the 

distribution of the observed variants to deviate from the uniform distribution. A Bonferroni 

multiple testing correction was applied when interpreting the significance of each p-value. 

 

C.2 RVIS 

Next, we analyzed the genic tolerance of the FLAGS gene set to variants. We expected 

FLAGS to be predicted to be more tolerant to variations and thus less likely to be impacted by 

pathogenic variants resulting in rare human diseases. To investigate this, we used a method 

 

 

247 



 

published by Petrovski et al. (2013)40 to assess the residual variation intolerance score (RVIS) 

for each gene based on their published supplementary dataset. This intolerance scoring system 

was developed by surveying whether a gene has relatively more or less functional genetic 

variation compared to the expected value based on neutral variations found in the same gene 

within the exomes from EVS. We chose this measurement because to our knowledge this is the 

only reliable published scoring system that is gene-centric rather than variant-centric. For each 

FLAGS gene, we extracted the relative rank based on the published intolerance score (the lower 

rank, the more intolerant the gene to variations), and we find that these FLAGS genes have a 

higher median score of 76 compared to OMIM, HGMD and Background which have medians of 

42, 41 and 50 respectively (Appendix C Figure 1). However, Mann-Whitney U one-tailed tests 

revealed no significant differences (p-value between 0.05 and 0.1), likely attributable to the 

bimodal distribution of the ranks within the FLAGS, as there are genes within the FLAGS that 

have low RVIS ranks (n=32 with rank < 20). While this supports our findings that majority of 

the genes in FLAGS are ranked as more tolerant to variations, there are FLAGS that are 

predicted not to tolerate variation well. We found that these genes tend to have greater proportion 

of rare functional mutations over polymorphic functional mutations (Online Supplemental Data), 

which may explain why they receive RVIS ranks of <20. Namely, RVIS methodology does not 

consider rare functional variations, it ranks those genes as intolerant to genetic variation, despite 

the presence of numerous rare functional variants. We believe this may be a limitation on RVIS, 

because if a gene is observed to be frequently mutated with rare functional mutations yet is 

highly ranked as pathogenic in RVIS system, then by expectation that gene should not be highly 

ranked. 
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Appendix C Figure 1. Distribution of gene ranking across gene sets. The Y-axis plots the boxplot distribution of 

gene rank based on RVIS score. 

 

C.3 In-house bioinformatics pipeline 

In this section we discussed briefly the bioinformatics pipeline that we have setup in-

house to process clinical exome data from TIDE-BC project. Because the project spans across 

multiple years, the software and genome versions have undergone various updates, so we will 

only provide the name of the software used but not the actual version. 

The pipeline starts with pair-end 100bp Illumina reads in FASTQ format. The coverage 

of each exome or whole-genome ranges from as low as 30X to as high as 150X. Reference 

genome is hg19. Reads are aligned with Bowtie2 aligner under default parameter settings in a 

cluster server maintained in-house with 13 compute nodes, each with 16 CPUs and 32Gb RAM 

available per node. Aligned reads are sorted and merged into BAM using Samtools. Reads with 
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< 20 mapping quality score are discarded. Picard adds the read group and library information to 

the BAM file. GATK performs local re-alignment on the BAM file. BCF file is called from the 

re-aligned BAM using Samtools. VCF is generated using vcfutils.pl varFilter with mapping 

quality score 20 and a minimum of 2 alternative bases. Variants from VCF with less than 20 SNP 

quality score are further filtered out. Variant annotation is done by SnpEff with parameter –

SpliceSiteSize 7 using always the latest available genomic annotation available at the time. 

Custom perl scripts are used to filter variants by Mendelian inheritance models (de novo 

dominant, homozygous recessive from either one or both parents, compound heterozygous), and 

filtering against dbSNP database (downloaded from UCSC Genome Browser) and ESP6500 

downloaded from Exome variant server, and against the in-house already processed VCFs. 

Genomic coverage is analyzed using GATK on all the known exons downloaded from Ensembl 

Biomart. Candidate variants selected for further follow-ups are first manually screened on IGV 

for quality inspection before Sanger confirmation. 

 

C.4 TIDE-BC 

Tide BC (http://www.tidebc.org) is a new collaborative care & research initiative with a 

focus on prevention and treatment of Intellectual disability (ID). We have shown that the ID seen 

in some children is due to treatable genetic conditions known as inborn errors of metabolism 

(IEM). Many of these IEM’s can be treated with diet or drugs. Presently, health care policy and 

institutional culture is still operating under the old premise that all ID is incurable and thus, many 

children born with treatable ID are at risk of not being treated. At BC Children’s Hospital 

(BCCH) in Vancouver, Canada, 1500 patients with ID are seen for diagnostic assessment per 

year by various services, such as neurology, medical genetics, biochemical diseases, 
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developmental pediatrics and child psychiatry. With the local expertise of all these specialists, 

existing diagnostic laboratory methods, and the major advances in diagnostic and therapeutic 

technologies, BCCH is the ideal academic location to implement our evidence-based protocol to 

identify treatable causes of ID. TIDEX was designed by TIDE-BC investigators to take 

advantage of new technologies to help crack the code for those families who have undergone the 

million dollar workup and are still unable to receive a diagnosis for their child’s debilitating 

condition. These technological advances, coupled with TIDE-BCs already proven approach, has 

every promise in providing much needed answers to help those families.  

In order to provide those answers, TIDE-BC investigators are presently looking for those 

undiagnosed patients who have some evidence of an interrupted metabolic pathway or enzyme 

deficiency. This may be abnormal chemicals in body fluids such as blood or urine or test results 

that provide a clue that a biochemical pathway may be altered. Then by comparing the protein 

coding regions or “whole exome” of DNA they hope to find the cause. As sequencing cost 

continues to decrease, the project now shifts more and more towards whole-genome sequencing, 

rather than only restricted to exomes. The additional sequencing of one or more healthy family 

members helps them to eliminate sequence variations that do not contribute to the disorder. The 

informatics team, based within Dr. Wyeth Wasserman lab, uses a new, CFI-funded 

computational system. It features high-capacity storage (~0.3 petabytes), a set of high-

performance servers supporting virtualized computing, a computing cluster with ~100 computing 

cores, and a tape system for long-term genome data archiving. The system is interconnected with 

10 gigabyte channels for efficiency. Once the genetic cause is found, this group of metabolic 

disorders are often amenable to simple and successful treatments, sometimes only involving 

dietary changes or dietary supplementation. 
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C.5 HPO and MeSH terms normalized to GeneRIF 

To adjust for the potential bias that genes with more articles are likely to have more 

MeSH and HPO terms attached, we repeated the analysis by normalizing the MeSH and HPO 

terms to the number of publications in GeneRIF. Appendix C Figure 2A and 2B show the violin 

distribution of HPO and MeSH terms per gene after normalization. 

 

 
Appendix C Figure 2A. The Y-axis plots the number of HPO disease terms per gene after normalizing to the number 

of entries from GeneRIF for the same given gene. FLAGS have significantly fewer terms than OMIM, HGMD and 

significantly more terms than Background (each p-value << 0.00001; Mann-Whitney 1-tailed test). 
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Appendix C Figure 2B. The Y-axis plots the number of MeSH disease terms per gene from MeSHOP after 

normalizing to the number of entries from GeneRIF for the same given gene. There are no significant differences 

observed between FLAGS and OMIM and HGMD, but FLAGS have significantly more terms than Background (p-

value << 0.00001; Mann-Whitney 1-tailed test) 

 

C.6 Application in in-house WES /WGS database 

To further demonstrate the utility of this study, we evaluated how frequently FLAGS 

appear as gene candidates in an in-house collection of 150 exomes and 13 whole genomes – 

comprising of 53 independent families suffering from distinct rare inborn errors of metabolism 

(IEM) (http://www.tidebc.org). These cases represent a collection of exome and whole genomes 

collected over a period of 3 years to study rare intellectual disorders exhibiting metabolic 

defects. Each family displayed a unique undiagnosed IEM, and the family structures range from 

singleton case (i.e. proband only) to paired (mother-proband; proband-affected sibling) to trio 

(father-mother-proband) to quartet (father-mother-proband-sibling) [for more details on exact 
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breakdown of family structure, see Appendix D Table 4]. In each family, rare functional variants 

falling into Mendelian inheritance patterns were extracted by Wasserman laboratory in-house 

pipeline, which we then overlapped against FLAGS. When focusing only on the top 100 

frequently mutated genes from FLAGS, on average across all 53 families, we see ~3 genes from 

the recessive models overlapping with the FLAGS per family, which is around ~8% of the 

recessive candidates per family. From the de novo dominant model, on average ~4 genes 

overlapped with FLAGS, which is around ~3% of the de novo candidates per family. This 

demonstrates that many top genes in FLAGS do indeed show up at a relatively frequent rate 

across exome families despite after applying rigorous canonical filtering at the variant level. 

While these results are drawn from data processed by an in-house pipeline based on a specific 

class of disorder, our processing methodology is built on popular tools setup in a workflow as 

recommended by Broad Institute (http://www.broadinstitute.org/gatk/guide/best-practices) using 

standard parameters and common filtering strategies such that they should be reproducible in 

other labs using a similar approach in studying other classes of rare Mendelian disorders. 

 

C.7 Supplementary tables 

The Supplementary tables referred to in this chapter are available online[228].  
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Appendix D  Chapter 5 

D.1 Classifying variants in the training set 

Each ClinVar variant was classified according to the following rules: ‘pathogenic’ if it 

had multiple independent reviewers reporting its pathogenicity (CLNSIG=5 in the CLNSIG 

attribute); ‘likely pathogenic’ if it had only one reviewer annotating the variant as pathogenic or 

likely pathogenic (CLNSIG=4), or if it had multiple reviewers but not all reviewers marked it as 

pathogenic; ‘VUS’ or ‘benign’ if the variation only had a score of 0 or 2 in CLNSIG attribute 

respectively. 

 

D.2 Additional details on feature selection and model building 

For each feature considered in this study, we assigned it to a hierarchy level within a 

hierarchical tree (Appendix D Table 5).  This assignment was done based on manual assessment 

of the primary literature behind each feature. A feature that was not dependent upon other 

features was placed at the bottom level, while a feature that built upon previous features was 

placed at a progressively higher level. Using the features ranked at the top of the hierarchy (e.g. 

coarsest domain), we divided the training set into 3548 distinct partitions with each partition 

corresponding to inputs sharing the same values at the coarsest domain. A total of 1000 trees 

were used to train the random forest. In each tree-building iteration, an input row from the data 

was randomly selected under uniform distribution until the number of selected rows equal to the 

number of partitions, and this training subset was used to train for that one particular tree. Each 

tree was trained using hie-ran-forest package in R 3.2.0 with number of clusters set to 6 using the 

hierarchy tree discussed earlier. This taking-one-example-per-stratum approach assured that no 

gene-level information would be over-represented in a single tree, and the hierarchical selection 
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during each tree construction ensured the compositions of scores were accounted for. Table S2.1 

summarizes the statistical performance on the training set after a 10-fold cross-validation. 

Overall, VPA achieved an 81.2% true positive rate, a 3.1% false positive, with a receiver 

operating characteristic area-under-the-curve (AUROC) of 0.912. Classification performance 

was best for “Pathogenic” variants, followed by “Likely pathogenic” variants, and then “Benign” 

variants. VUS got the lowest performance, which is not surprising given that VUSs were 

expected to display the greatest amount of heterogeneity in their biological characteristics. 

Appendix D Figure 1 shows the importance of each selected feature based on the 

MeanDecreaseGini value. The values were scaled to be between 0 and 1. Appendix D Figure 2 

shows the kernel density distribution of the probability assigned to each prediction. Appendix D 

Table 2 shows the overall statistical performance obtained from other explored machine-learning 

techniques. 

  TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

  0.941 0.027 0.894 0.941 0.896 0.908 0.986 0.93 Pathogenic 

  0.888 0.029 0.879 0.888 0.873 0.851 0.926 0.891 Likely pathogenic 

  0.713 0.034 0.765 0.713 0.777 0.737 0.869 0.698 VUS 

  0.872 0.031 0.794 0.872 0.827 0.796 0.929 0.808 Benign 

Overall 0.812 0.031 0.810 0.812 0.822 0.797 0.912 0.789   

Appendix D Table 1 Statistical performance on training set. 
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Appendix D Figure 1 Importance weight for the selected features. 

 
Appendix D Figure 2 Density plot of the probabilities assigned to each predicted mutation class. In this figure, the 

probabilities are plotted according to the variant class in which the variants are annotated in the training set. Red 
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corresponds to variants from the pathogenic class, green corresponds to the likely pathogenic class, blue corresponds 

to the VUS, and brown corresponds to the benign class. 

 
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

0.699 0.057 0.684 0.699 0.712 0.683 0.789 0.672 Decision tree 

0.753 0.039 0.779 0.753 0.743 0.729 0.858 0.737 

Random forest (without 
hierarchical feature 
selection) 

0.401 0.068 0.583 0.401 0.422 0.401 0.599 0.374 Naïve Bayes 

0.721 0.047 0.741 0.721 0.719 0.699 0.832 0.698 Multinomial logistic 

0.739 0.042 0.744 0.739 0.726 0.711 0.847 0.712  Multi-class SVM 
Appendix D Table 2 Statistical performances on other evaluated machine-learning methodologies. The algorithms 

were executed from the e1071 package in R. The numbers here represent the overall performance across all the 4 

mutation classes under 10-fold cross validation. Hierarchical feature selection was not applied to any of these 

methods. 

 

D.3 Constructing patient-level features 

In the simulated cases, the phenotypic terms were drawn directly from ClinVar if 

available, or were drawn from OMIM by first converting the ClinVar disease label to an OMIM 

entry, and mapped to the closest HPO vocabularies using WordNet word-to-word mapping 

implemented in SEMILAR (http://semanticsimilarity.org), taking the best hit using default 

threshold. Variants without clinical annotations in ClinVar (e.g. benign mutations) were 

randomly assigned clinical annotations drawn from a pool of phenotypic terms that were 

observed in the “Pathogenic” and “Likely Pathogenic” classes with a probability corresponding 

to each term’s observed frequency. In actual clinical sets, the terms were derived from clinicians’ 

input and mapped to HPO using the same approach as described above. In both simulated and 

real test sets, annotations that could not be mapped to HPO vocabularies were disregarded for 

ontology-based scoring, but kept for calculation of free-text-based scoring. The HPO OBO file 
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was incorporated using OntoCAT API (http://sourceforge.net/projects/ontocat/) by extracting the 

ancestral and descendent terms for each HPO term and writing to custom MySQL tables. 

 

D.4 Constructing Sim(t,t’) and Rt 

Part of the procedure was previously described in the GeneYenta publication (cited in the 

Main text) under the context of patient-to-patient matching, and is partially repeated here under 

the context of patient-to-gene matching for reader convenience.  Sim(t,t’) is equal to the 

information content for t if t is equal to t’ or if t is a member of the set of all ancestors of t’. 

Otherwise, sim(t,t’) returns the highest value score among the sets of ancestors for term t and t’. 

The matching algorithm essentially sums up the weighted similarities between each term in the 

patient set and the most similar term in the gene set, and then divides it by the highest possible 

score that could be associated with the terms in the patient set. In the patient phenotype set (pat), 

Rt is an importance-ranking integer specified by the user (e.g. clinicians) at the beginning as part 

of data input, ranging from 1 to 5, 1 = least important and 5 = most important. By default, Rt is 

assigned to value of 3 unless specified otherwise. Rt for the gene set (dis) was derived from HPO 

consortium’s annotation of frequency for observing a phenotype in a given disease. If a 

phenotype is annotated as “very rare”, “rare” or “occasional”, Rt was assigned a weight of 1, if 

“frequent” then 2, if “typical” or “variable” then 3, if “common” then 4, and if “hallmark” or 

“obligate” then 5. If frequencies were given instead of categorical words, then the assignment of 

Rt is as follow: <10% = 1, 10%-35% = 2, 35%-60% = 3, 60%-85% = 4, and 85%-100% = 5. If 

multiple phenotypes were assigned to the same gene with different Rt score, the higher one was 

taken. If no annotation was available for frequency of phenotype, then a default 3 was assigned. 
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These thresholds were arbitrarily assigned to reflect phenotype frequency, and in theory could 

have been allocated in multiple similar methodologies. 

 

D.5 Free-text matching using PubMed 

Custom Python scripts were written to extract genes returned by PubMed when searching 

for clinical keywords in the NCBI Gene database. The extraction was done through PubMed 

API, restricting to Homo sapiens as the species and sorting by relevance. The returned genes 

were ranked according to total number of genes returned minus the rank at which the gene 

appeared in the returned output plus 1, divided by the square of the total number in the returned 

list, and multiplied by the weight of clinical importance (default=3). For example, if the returned 

list has 10 genes, the gene at the top of the list would be assigned a rank of (10-1+1)/10^2*3.  If 

multiple clinical terms were provided per case, then each term was searched individually and 

multiplied by the clinical weight (which can be different for each term, if user specified), and if a 

gene had multiple scores from multiple results, then the max of that would be taken. 

Performance was compared between VPA + PubMed and VPA + MedlineRanker in the same 

way as described in the Results section. VPA + MedlineRanker displayed superior performance 

over VPA + PubMed query (Appendix Figure 3). This was expected given PubMed’s naïve 

implementation for gene query based on clinical descriptors, compared against MedlineRanker, 

which is a specialized tool developed for the purpose.  
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Appendix D Figure 3 Performance for singletons and trios between using MedlineRanker versus PubMed for free-

text matching. 
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D.6 Extracting variant-gene rank 

For Exomiser and eXtasy, the ranks of the pathogenic mutations were extracted directly 

from the software output under default thresholds. For VPA, each variant was assigned a score 

reflecting likelihood for pathogenicity. Each variant was classified individually without taking 

other variants into context, except for the variants in compound heterozygous model where the 

probabilities returned by VPA for variants affecting the same gene were summed and normalized 

before being assigned a final classification label. The compound heterozygous variants were 

ranked with respect to rest of the variants in other Mendelian models. For variants that were 

homozygous for the mutation, VPA took the score for the individual variant and multiplied it by 

2 to reflect the genotype. Ultimately, VPA ranked all the mutations across the genetic models 

collectively and mutations with the highest likelihood score were ranked at the top. To derive a 

rank from CADD, for compound heterozygous variants, CADD scores were summed up per 

gene and then ranked with all the other variants across the considered genetic models. CADD 

scores for variants of homozygous genotype were multiplied by 2. Variants (or gene-variant pairs 

for the compound heterozygous list) with the highest CADD score were returned at the top. The 

CADD scores for InDels were computed by first submitting to the CADD website, and storing 

the returned result in a custom MySQL table. 

 

D.7 Performance without CADD 

We first retrained our model with all the CADD-related scores removed from the list of 

features considered. In their absence, additional features were recruited after the hierarchical 

sampling + feature selection as described in the Methods: GERP++ NR, VEST3_score, and Fold 

degenerate. Below we compared the performance of VPA with CADD versus VPA without 
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CADD to see how much information is CADD bringing. The type of evaluation was the same as 

described in Methods. From Appendix D Figures 4, it became apparent that CADD was an 

important contributor to the overall performance, which is unsurprising given its demonstrated 

superiority over previous variant-level prediction methodologies, and its high feature weight 

assigned during cross-validation (Appendix D-2). 
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Appendix D Figure 4 Performance in singletons and trios for VPA with versus without CADD as a feature. 
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D.8 Including Exomiser and eXtasy as features 

Exomiser score was incorporated into VPA to evaluate how much additional information 

Exomiser supplies. The model was retrained and we found Exomiser was not selected from our 

feature list. Nevertheless, we still tried to see what are the performance differences by 

incorporating Exomiser via looking at the top 3 predictions that appeared in both software and 

testing the performance against VPA without Exomiser as a feature. Appendix D Figure 5 below 

shows the performance on the simulated dataset, evaluating the ability to predict embedded 

pathogenic mutations as among the top 3 predicted candidates based on the same methodology as 

previously described. We observed fluctuations in performance, where the incorporation of 

Exomiser sometimes improved predictions but in other cases it caused a decrease in the 

performance. Overall, for singleton cases we do not see any predictive improvement with 

Exomiser incorporated (both models achieved 71% averaging across all genetic models in the 

mixed mutations category). For trio cases, VPA with Exomiser incorporated saw a very slight 

increase in the overall performance (84% versus 83%). These observations agreed with the 

exclusion of the Exomiser score in the model.  A similar exercise was repeated for eXtasy score 

but as this feature did not make it past feature selection, we did not pursue it further. 
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Appendix D Figure 5 Performance in singletons and trios for VPA with versus without Exomiser as a feature. 
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D.9 Clinical example of mutation that is not missense/nonsense 

An illustrative example: a boy with a 13bp deletion in PLP1 (OMIM 300401) presenting 

with global developmental delay, spasticity, nystagmus, ataxia, and most notably severe 

hypomyelination of early myelinating structures (HEMS). Result is published in PMID 

26125040. VPA predicted the pathogenicity of the deletion with a rank of 4. Exomiser and 

eXtasy were not able to assign prediction to this illustrative mutation. 

 

D.10 Constructing simulations with novel phenotype associations 

In this section, we describe how we constructed simulations to represent cases with novel 

phenotype associations. The goal at this stage is to introduce phenotypic terms into each 

simulated case where the terms realistically represent novel disease phenotypes. The number of 

terms introduced is derived by taking the ceiling of the number of HPO terms that we started 

with per simulated case multiplied by 0.3. The newly introduced terms were selected based on 

three criteria: 1) they could not be one of the descendants from the already-included HPO terms 

in the current simulated case, 2) they could not be one of the ancestral nodes located on the 

shortest path from each of the included HPO terms to the root, and 3) they had to be within ±2 

hierarchical levels with respect to the HPO hierarchical tree with one of the already-included 

HPO nodes. These restrictions were imposed to ensure the randomly inserted phenotypes are still 

clinically realistic to represent novel phenotypes. 

 

D.11 Novel genes 

From the 53 clinical families, we derived a subset of clinical patients harboring 

pathogenic mutations in genes that had not been previously directly cited in clinical literature for 

 

 

267 



 

human diseases. Among 10 such families with novel gene associations, VPA achieved better 

performance in 9 families (the last family was a draw between VPA and Exomiser) based on the 

comparison on the predicted ranks for pathogenic mutations. At the time of writing, these 

families are described under a separate manuscript that is currently under review. We note that 5 

of 10 families had one or more primary keywords that could not be mapped to HPO, so the 

performance differences reported here could not be solely attributed to novel gene associations. 

 

D.12 Constructing simulations with polygenic/oligogenic phenotypes 

To construct simulations representing polygenic/oligeogenic phenotypes, we embedded 

two causal mutations in distinct genes into each simulation. Each causal mutation was randomly 

drawn from the pool of HGMD mutations as described in Methods, and each mutation has an 

attached set of HPO terms (derived by the protocols described in Methods). The final set of HPO 

terms that was fed into the predictive models was derived by first performing a union of HPO 

terms from the two causal mutations, and then randomly choosing 50% of these terms. Each 

model received the same final set of input terms. Performance was evaluated in two ways: 1) 

percentage of success to identify one of the two embedded pathogenic mutations as among the 

top 3 candidates, and 2) percentage of success to identify the second pathogenic mutation as 

among the top 5 candidates. 

 

D.13 Assigning clinical weights to each phenotypic term 

Keywords which could not be clearly distinguished between primary versus secondary 

were left with a score of “3” (the same default as used to produce the earlier results). These 
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assignments were provided by clinicians who oversaw the patients. They were the same 

healthcare providers who provided the original clinical descriptors for each family. 

 

D.14 VPA versus CADD on simulated test sets 

  
Appendix D Figure 6 Performance of VPA and CADD on 750 simulated exomes for singletons and trios, broken 

down by category of embedded pathogenic mutations that were either missense or nonsense or mixed, e.g. 
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missense/nonsense pathogenic mutations from HGMD were selected without discrimination of its type, and family 

structure (trios versus singletons). The Y-axis shows the percentage of cases where the embedded pathogenic 

mutation(s) were predicted to be among the top 3 candidates. The “All models” category shows the average 

performance across de novo, compound heterozygous and homozygous recessive for the given mutation type and 

family structure. We consider the “All models” under the “Mixed” category to be representative of the overall 

performance within each respective family structure. 

 

D.15 Size of simulated dataset 

Genetic models Numbers of mutations after standard filtering 

  Singleton - average Singleton - SD Trio - average Trio - SD 
Homozygous recessive (including 
hemizygous) 16 5 10 4 

Compound heterozygous 54 8 21 5 

De novo heterozygous 89 18 33 11 
Appendix D Table 3 The number of rare, protein-coding single nucleotide variants that remained on average across 

the evaluated simulated cases, broken down by family structure and genetic models, after filtering against 

dbSNPv142 for allelic frequency ≤ 1% in the general population, and focusing on protein-coding variants that result 

in a change in the sequence of the protein transcript. 750 cases were considered for each family structure. SD = 

standard deviation. 

 

D.16 Structure of clinical test set 

Family 
Number 

Genetic model that contains the 
pathogenic mutation(s) Family structure 

1 Compound Quart 
2 Homo Rec Trio 
3 Compound het Trio 
4 Compound het Trio 
5 Homo Rec Quart 
6 Homo Rec Trio 
7 Compound het Trio 
8 Compound het Trio 
9 De novo Trio 
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Family 
Number 

Genetic model that contains the 
pathogenic mutation(s) Family structure 

10 Homo Rec Singleton 
11 Homo Rec Trio 
12 Homo Rec Trio 
13 De novo Trio 
14 Compound het Quart 
15 Compound het Duo 
16 Compound het Trio 
17 Compound het Trio 
18 Compound het Singleton 
19 De novo Trio 
20 Compound het Quart 
21 Compound het Trio 
22 Homo Rec Duo 
23 De novo Trio 
24 De novo Duo 
25 De novo Quart 
26 De novo Trio 
27 Compound het Trio 
28 De novo Trio 
29 Homo Rec Duo 
30 Compound het Singleton 
31 Homo Rec Duo 
32 De novo Trio 
33 Compound het Trio 
34 Compound het Quart 
35 Compound het Trio 
36 De novo Trio 
37 Homo Rec Duo 
38 Homo Rec Quart 
39 Homo Rec Trio 
40 Compound het Trio 
41 De novo Trio 
42 Homo Rec Trio 
43 Compound het Singleton 
44 Compound het Duo 
45 Compound het Trio 
46 Compound het Trio 
47 De novo Singleton 
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Family 
Number 

Genetic model that contains the 
pathogenic mutation(s) Family structure 

48 Compound het Trio 
49 Homo Rec Trio 
50 Homo Rec Trio 
51 De novo Trio 
52 Homo Rec Duo 
53 Homo Rec Trio 

Appendix D Table 4 The first column contains the ID assigned to each clinical case. The second column contains 

the genetic model in which the pathogenic variant(s) was identified from. Homo Rec =homozygous recessive, De 

novo = de novo heterozygous, and Compound het = compound heterozygous. The last column contains the 

information on the availability of exomes in the family at the time of analysis that led to the identification of the 

pathogenic variant(s). The “Duo” category can refer to either exomes for index + one parent (typically the mom), or 

can refer to exomes on multiple affected individuals (e.g. siblings). 

 

D.17 Complete list of features considered 

Type Granularity Features Source 
V 1 In-house allelic frequency In-house database of 370+ exomes and 

whole-genomes 
V 1 Frequency of seeing any mutation at the 

given genomic position 
In-house database of 370+ exomes and 
whole-genomes 

V 1 Frequency of seeing mutations within 15bp 
window 

In-house database of 370+ exomes and 
whole-genomes 

V 1 Frequency of seeing mutations within 25bp 
window 

In-house database of 370+ exomes and 
whole-genomes 

V 1 Frequency of seeing mutations within 35bp 
window 

In-house database of 370+ exomes and 
whole-genomes 

V 1 Frequency in ExAC ExAC 
V 1 Number of overall homozygotes in ExAC ExAC 
V 1 Afr Freq ExAC 
V 1 Amr Freq ExAC 
V 1 Eas freq ExAC 
V 1 Fin freq ExAC 
V 1 Nfe freq ExAC 
V 1 Oth freq ExAC 
V 1 Sas freq ExAC 
V 1 Average # of reads covering the genomic 

position 
ExAC 
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Type Granularity Features Source 
V 1 Site quality ExAC 
V 2 SLR_test_statistic dbNSFP 
V 1 codonpos dbNSFP 
V 1 fold-degenerate dbNSFP 
V 2 SIFT_score dbNSFP 
V 2 SIFT_converted_rankscore dbNSFP 
V 2 Polyphen2_HDIV_rankscore dbNSFP 
V 2 Polyphen2_HVAR_rankscore dbNSFP 
V 2 PROVEAN score PROVEAN 
V 2 Condel score CONDEL 
V 2 LRT_score dbNSFP 
V 2 LRT_converted_rankscore dbNSFP 
V 2 MutationTaster_score dbNSFP 
V 2 MutationTaster_converted_rankscore dbNSFP 
V 2 MutationAssessor_score dbNSFP 
V 2 MutationAssessor_rankscore dbNSFP 
V 2 FATHMM_rankscore dbNSFP 
V 2 MetaSVM_score dbNSFP 
V 2 MetaSVM_rankscore dbNSFP 
V 2 MetaLR_score dbNSFP 
V 2 MetaLR_rankscore dbNSFP 
V 2 Reliability_index dbNSFP 
V 2 VEST3_score dbNSFP 
V 2 VEST3_rankscore dbNSFP 
V 2 CADD_raw CADD 
V 2 CADD_raw_rankscore CADD 
V 2 CADD_phred CADD 
V 2 GERP++_NR UCSC 
V 2 GERP++_RS UCSC 
V 2 GERP++_RS_rankscore UCSC 
V 2 phyloP46way_primate UCSC 
V 2 phyloP46way_primate_rankscore UCSC 
V 2 phyloP46way_placental UCSC 
V 2 phyloP46way_placental_rankscore UCSC 
V 2 phyloP100way_vertebrate UCSC 
V 2 phyloP100way_vertebrate_rankscore UCSC 
V 2 phastCons46way_primate UCSC 
V 2 phastCons46way_primate_rankscore UCSC 
V 2 phastCons46way_placental UCSC 
V 2 phastCons46way_placental_rankscore UCSC 
V 2 phastCons100way_vertebrate UCSC 
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Type Granularity Features Source 
V 2 phastCons100way_vertebrate_rankscore UCSC 
V 2 Presence in known regulatory regions FANTOM 
V 2 SiPhy_29way_logOdds dbNSFP 
V 2 SiPhy_29way_logOdds_rankscore dbNSFP 
V 2 LRT_Omega dbNSFP 
V 1 1000Gp1_AC ESP6500 
V 1 1000Gp1_AF ESP6500 
V 1 1000Gp1_AFR_AC ESP6500 
V 1 1000Gp1_AFR_AF ESP6500 
V 1 1000Gp1_EUR_AC ESP6500 
V 1 1000Gp1_EUR_AF ESP6500 
V 1 1000Gp1_AMR_AC ESP6500 
V 1 1000Gp1_AMR_AF ESP6500 
V 1 1000Gp1_ASN_AC ESP6500 
V 1 1000Gp1_ASN_AF ESP6500 
V 1 ESP6500_AA_AF ESP6500 
V 1 ESP6500_EA_AF ESP6500 
V 1 ARIC5606_AA_AC ESP6500 
V 1 ARIC5606_AA_AF ESP6500 
V 1 ARIC5606_EA_AC ESP6500 
V 1 ARIC5606_EA_AF ESP6500 
V 1 Average coverage at genomic position ESP6500 
V 1 COSMIC_CNT dbNSFP 
G 3 Mutation counts FLAGS 
G 3 dN/dS FLAGS 
G 3 dN/dS version 2 Ensembl 
G 3 Gene length Ensembl 
G 4 # of MeSH terms FLAGS 
G 4 # of HPO terms FLAGS 
G 3 Paralogs FLAGS 
G 3 Paralogs version 2 HOGENOM 
G 3 Counts in literature FLAGS 
G 3 # of mutations in HGMD FLAGS 
G 4 RVIS RVIS 
G 3 Interactions(IntAct) dbNSFP 
G 3 Interactions(BioGRID) dbNSFP 
G 3 Interactions(ConsensusPathDB) dbNSFP 

G 4 P(HI) dbNSFP 
G 4 P(rec) dbNSFP 
G 4 Known_rec_info dbNSFP 
G 4 Essential_gene dbNSFP 
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Type Granularity Features Source 
G 3 ZFIN_zebrafish_phenotype_tag dbNSFP 
G 3 Mouse phenotype entry MGI 
P 3 Free-text PubMed Presented in paper 
P 3 Ontology-search HPO Presented in paper 
P 4 eXtasy score eXtasy 
P 4 Exomiser score Exomiser 

Appendix D Table 5 A total of 103 features were considered. In the first column, V= variant-level, G = gene-level, P 

= patient-level. In the second column, “1” correspond to the bottom of the hierarchy, “4” is at the top of the 

hierarchy. The third column describes the property of the feature, and the last column shows the source in which the 

feature was derived from. Whenever possible, we used the latest command-line accessible version for each 

tool/database at the time of the analysis. ExAC version 0.3 was derived from http://exac.broadinstitute.org version 

0.3. dbNSFP was downloaded from https://sites.google.com/site/jpopgen/dbNSFP, version v3.0 beta2. PROVEAN 

version 1.1 was downloaded from http://provean.jcvi.org/downloads.php. CONDEL was downloaded from 

FannsDB version 2.0. CADD version 1.2 was downloaded from http://cadd.gs.washington.edu. UCSC refers to the 

data tables attached to reference genome GRCh37 on the UCSC Genome Browser. The data was downloaded using 

the Table Browser function. RVIS was downloaded from http://chgv.org/GenicIntolerance/ based on the 

unpublished version on ExAC sequencing datasets. eXtasy and Exomiser refer to the scores output from the 

respective software (software version cited in the Main text). ESP6500 was downloaded from 

http://evs.gs.washington.edu/EVS/ version V2. FLAGS was derived from our publication in 2014 BMC Medical 

Genomics, doi:10.1186/s12920-014-0064-y. Ensembl referred to the Ensembl databases version 80 accessed via 

Ensembl API. FANTOM data was accessed via collaboration with FANTOM5 consortium. MGI phenotype data 

was downloaded from Mouse Genome Informatics in April 2015. HOGENOM version 06 was downloaded from its 

home website. 

 

D.18 Diagnosis breakdown per family 

ID Nature of diagnosis Multiple genes Non-mappable words 
1 New phenotype     
2 New gene   Yes 
3 New gene 2 genes   
4 New phenotype     
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ID Nature of diagnosis Multiple genes Non-mappable words 
5 New gene     
6 New gene   Yes 
7 New phenotype     
8 New gene     
9 New phenotype   Yes 
10 New phenotype     
11 New phenotype     
12 New phenotype     
13 New phenotype     
14 New phenotype   Yes 
15     Yes 
16 New gene     
17 New gene     
18 New gene   Yes 
19 New phenotype   Yes 
20 New phenotype 2 genes   
21 New phenotype     
22     Yes 
23 New phenotype     
24       
25 New phenotype     
26 New phenotype     
27       
28 New gene   Yes 
29     Yes 
30     Yes 
31     Yes 
32       
33       
34     Yes 
35     Yes 
36 New phenotype   Yes 
37   2 genes   
38     Yes 
39   2 genes Yes 
40       
41     Yes 
42       
43   2 genes   
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ID Nature of diagnosis Multiple genes Non-mappable words 
44     Yes 
45 New gene   Yes 
46       
47       
48   2 genes Yes 
49   3 genes Yes 
50       
51     Yes 
52     Yes 
53       

Appendix D Table 6 The first column corresponds to the ID for each family. The second column indicates if the 

family harbored a novel/rare pathogenic variant(s) in a gene not previously reported in human diseases (e.g. novel 

gene-disease associations, referred in the column as “New gene”), or if the family harbored novel/rare pathogenic 

variant(s) in known disease genes but the patient(s) displayed symptoms not previously reported (e.g. novel disease-

phenotype associations, referred to as “New phenotype”). The assignments of novel associations were provided by a 

systematic review of literature by a team of clinical geneticists, molecular biochemists, bioinformaticians and 

genetic counselors involved in each clinical case. The third column corresponds to if the family contained multiple 

pathogenic variants in distinct genes. Six families had 2 impacted genes; one family had 3 impacted genes. The last 

column specifies if the clinical descriptors supplied by the clinicians prior to the exome analysis could be mapped to 

controlled terminologies in Human Phenotype Ontology (HPO). Only descriptors corresponding to the primary 

phenotypes were considered. 

 

D.19 Polygenic/oligogenic families 

Family 

Gene 1 Gene 2 Gene 3 

VPA Exomiser 
eXtasy CADD 

VPA Exomiser 
eXtasy CADD 

VPA Exomiser 
eXtasy CADD 

3 1 6 4 7 3 9 6 8         

20 1 5 3 4 6 10 5 10         

37 4 6 7 10 4 8 9 16         

39 1 3 7 9 3 7 9 9         

43 8 10 14 13 9 14 17 15         
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Family 
Gene 1 Gene 2 Gene 3 

VPA Exomiser eXtasy CADD VPA Exomiser eXtasy CADD VPA Exomiser eXtasy CADD 

48 5 7 13 9 8 NA NA 11         

49 2 5 8 11 4 6 NA 13 7 15 13 16 

Appendix D Table 7 The table displays the 7 families that possessed multiple pathogenic mutations hitting in 

distinct genes, contributing to blended phenotypes. We showed the performance capability to predict these 

mutations per family from VPA, Exomiser, eXtasy and CADD by displaying the predicted rank at which the 

diseased gene-variant appeared. Exomiser and eXtasy were unable to predict for family #48’s second pathogenic 

variant because the second variant is an insertion. eXtasy was unable to predict the variant in family #49 due to it 

being a nonsense mutation. The leftmost column corresponds to the family ID. The numbers in each subsequent 

column correspond to the rank assigned to the pathogenic variant(s) for each model. Only the last family (ID 49) had 

three disease genes impacted. 
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Appendix E  Chapter 6 

E.1 Coverage and variants of the exome dataset 

Appendix E Figure 1 A combination of Bowtie, BWA, and GSNAP were used to map the reads to the hg19 

reference genome, and Samtools was used to identify variants. SnpEff was used to assign annotations to the 

variations, with respect to the hg19 database. Allele frequency was assessed in dbSNP (version 137; downloaded 

from UCSC Table Browser “All SNPs(137”) on Feb 19, 2013. ESP data was downloaded from the NHLBI ESP 

server on June 2, 2013. The total number of starting reads for each individual is listed in the second column, and 

only reads with mapping quality of #20 are kept (percentage shown in third column). Coverage is shown in the 

fourth column, and is based on all known human exons compiled from Ensembl Biomart. The total number of 

variations, including InDels, is listed in the fifth column. The sixth column lists the number of variations that remain 

after filtering against intergenic or intronic variations, polymorphisms, and synonymous mutations. 

  

 

 

279 



 

Appendix F  Chapter 7 

F.1 Known pathogenic variants 

 
Appendix F Table 1. Known pathogenic variants. 
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F.2 Blended phenotypes resulting from two single gene defects 

 
Appendix F Table 2 Blended phenotypes resulting from two single gene defects 
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