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Abstract

The subgradient projector plays an important role in convex optimiza-
tion, since the subgradient projection algorithm is a classical method for
solving convex feasibility problems. This motivates us to explore fundamen-
tal properties of the subgradient projector. One can define the subgradient
projector of a convex function via a selection of the subdi↵erential opera-
tor. This opens the door to define the subgradient projector of nonconvex
functions by using the Mordukhovich limiting subdi↵erential operator.

This thesis o↵ers a systematic study of the subgradient projector. First,
motivated by Polyak and Crombez, we present and analyze a more general
algorithm for finding a fixed point of a cutter which is assumed to have a
fixed point set with nonempty interior. Our results complement and extend
conclusions by Crombez for cutters and by Polyak for subgradient projectors.

We also present a comprehensive list of properties of the subgradient
projectors which complements work by Pauwels. Special attention is given
to continuity, nonexpansiveness and monotonicity. Finally, for subgradient
projectors associated with nonconvex functions, we obtain various charac-
terizations.
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Preface

This thesis is based on two published papers [12, 13] and two preprint
manuscripts [10, 11]. The papers [12, 13] form the basis of Chapters 3 and
4. Chapters 5 and 6 are based on manuscripts [10, 11], respectively. These
are joint works with my supervisors, Dr. Heinz H. Bauschke and Dr. Shawn
X. Wang, and also with Dr. Caifang Wang, a visiting scholar from Shanghai
Maritime University.

For all co-authored papers, each author contributed equally.
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Chapter 1

Introduction

The study of subgradient projectors and their properties is motivated by
a large number of problems, for example, convex feasibility problems. The
convex feasibility problem is to find a point x in the intersection of finitely
many convex subsets Ci of a Hilbert space H. A lot of algorithms have been
created to solve this problem by making use of subgradient projectors. The
most famous instance of such algorithms is Polyak’s subgradient projection
algorithm (see Theorem 3.1). Therefore, subgradient projectors are benefi-
cial to the study of the convex feasibility problem and we are encouraged to
obtain a more complete understanding of the subgradient projector.

On the other hand, we can formulate the convex feasibility problem as a
common fixed point problem, where each convex subset Ci = FixUi for some
operator Ui. If we are dealing with only one operator U , then our results
generalize works by Polyak [50] and by Crombez [31].

The majority of the theoretical background can be found in Bauschke
and Combettes’ Convex Analysis and Monotone Operator Theory in Hilbert
Spaces [7]; Cegielski’s Iterative Methods for Fixed Point Problems in Hilbert
Spaces [20]; Mordukhovich’s Variational Analysis and Generalized Di↵eren-
tiation I [40]; and Rockafeller and Wets’ Variational Analysis [53].

The rest of this thesis is organized as follows.
Chapter 2 gives basic background information on operators, convex anal-

ysis, and some related known results. Chapters 3-6 contain new results.
My contribution begins in Chapter 3, with a new method for finding a

fixed point of a cutter. Related properties are also identified. The material in
this chapter is based on [13], which appeared in the Journal of Optimization
Theory and Applications.

Chapter 4 provides fundamental properties of the subgradient projector,
such as continuity, nonexpansiveness and monotonicity. The Yamagishi-
Yamada operator is also discussed. Results in this chapter can be found in
[12], which appeared in the SIAM Journal on Optimization.

Chapter 5 is based on the manuscript [10]. In the previous chapter, we
consider the subgradient projectors associated with convex functions. Com-
plementarily for nonconvex functions, the associated subgradient projectors

1



Chapter 1. Introduction

also exist. In this part, we provide the basic theory of subgradient projectors
for possibly nonconvex functions.

Chapter 6 mainly focuses on charaterizations of linear subgradient pro-
jectors. We explicitly o↵er the closed expression of the subgradient pro-
jector, which itself is linear and symmetric. This chapter is based on the
manuscript [11].

Finally, the key results of my thesis and directions for future research
are presented in Chapter 7.

2



Chapter 2

Auxiliary Results

2.1 Overview

Throughout this thesis, we work with Hilbert spaces and Euclidean
spaces. This chapter contains some basic mathematical definitions and also
provides various examples and results, mostly from Convex Analysis and
Monotone Operator Theory [7].

2.2 Vector Spaces

Definition 2.1. A real vector space (also called linear space) is a set V of
vectors together with two operations: vector addition + : V ⇥ V ! V and
scalar multiplication · : R⇥ V ! V with the following properties:

(1) vector addition satisfies:

(i) (commutative law) 8u, v 2 V , then u+ v = v + u;

(ii) (associative law) 8u, v, w 2 V , then (u+ v) + w = u+ (v + w);

(iii) (additive identity) there exists a vector 0 2 V such that 8u 2 V ,
0 + u = u+ 0 = u;

(iv) (additive inverse) for 8u 2 V , there is a vector �u 2 V such that
u+ (�u) = 0;

(2) scalar multiplication satisfies:

(i) (distributive law for vectors) 8c 2 R, 8u, v 2 V , then c · (u + v) =
c · u+ c · v;

(ii) (distributive law for real numbers) 8a, b 2 R, 8u 2 V , then (a+b) ·u =
a · u+ b · u;

(iii) (associative law for real numbers) 8a, b 2 R, 8u 2 V , then a · (b · u) =
(a · b) · u;

3



2.2. Vector Spaces

(iv) (unitary law) there is a vector 1 2 V such that 8u 2 V , 1 · u = u.

Definition 2.2. [54, Definition 13.1] Let S be a set and suppose d : S⇥S !
[0,1) is a function on S satisfying

(i) d(x, x) = 0 for all x 2 S and d(x, y) > 0 for distinct x, y 2 S;

(ii) d(x, y) = d(y, x) for all x, y 2 S;

(iii) d(x, z)  d(x, y) + d(y, z) for all x, y, z 2 S.

Such a function d is called a metric on S. A metric space, denoted as (S, d),
is a set S together with a metric d on it.

Definition 2.3. [36] An inner product on a real vector space V is a function
on V ⇥ V ! R, (x, y) ! hx, yi with the following properties:

(i) (8x, y, z 2 V ) hx+ y, zi = hx, zi+ hy, zi;
(ii) (8a 2 R, 8x, z 2 V ) hax, zi = ahx, zi;
(iii) (8x, y 2 V ) hx, yi = hy, xi, 8x, y 2 V ;

(iv) (8x 2 V ) hx, xi � 0, and hx, xi = 0 , x = 0.

An inner product space, denoted as (V, h·, ·i), is a vector space with an inner
product defined on it.

Definition 2.4. [36, Definition 2.2-1] A norm on a real vector space V is
a real-valued function on V whose value at x 2 V is denoted by kxk and
which has the following properties

(i) (8x 2 V ) kxk � 0. kxk = 0 if and only if x = 0;

(ii) (8a 2 R, 8x 2 V ) kaxk = |a|kxk;
(iii) (8x, y 2 V ) kx+ yk  kxk+ kyk.
The normed space, denoted as (V, k·k), is a vector space with a norm defined
on it.

An inner product on V defines a norm on V which is given by

(8x 2 V ) kxk =
p

hx, xi (2.1)

A norm on V defines a metric d on V which is given by

(8x, y 2 V ) d(x, y) = kx� yk. (2.2)

Remark 2.5. [36] A norm on an inner product space given by (2.1) satisfies
the important parallelogram equality1. If a norm does not satisfy the paral-

1Parallelogram equality: kx+ yk2 + kx� yk2 = 2(kxk2 + kyk2)

4



2.2. Vector Spaces

lelogram equality, then it is not derived from an inner product by the use of
(2.1).

Definition 2.6. [7] A sequence (xn)1n=1

in an inner product space V is a
Cauchy sequence if 8✏ > 0, there exists N 2 N, when n,m > N , we have

d(xm, xn) < ✏. (2.3)

An inner product space V is complete if every Cauchy sequence in V
converges to a point in V .

Definition 2.7. [32, Definition 7.7.2] A real Hilbert space, H, is a complete
inner product space.

Example 2.8. [36] The space of square summable sequences,

`2 = {(xn)1n=1

:
1X

n=1

|xn|2 < 1}, (2.4)

with inner product hx, yi =P1
n=1

xnyn is a Hilbert space.

In Hilbert space H, the following is an important inequality we will use
frequently.

Fact 2.9. (Cauchy-Schwarz inequality) Let x, y 2 H. Then

|hx, yi|  kxkkyk. (2.5)

In a real Hilbert space H, a ball with centre x 2 H and radius ✏ > 0 is
given by

ball(x, ✏) = {y 2 H : ky � xk  ✏}. (2.6)

Definition 2.10. [36] We say a sequence (xn)1n=1

inH is bounded if (xn)1n=1

⇢
ball(x

0

, r) for some x
0

2 H and r > 0.

Definition 2.11. [36, Definition 1.4-1] A sequence (xn)1n=1

in a real Hilbert
space H is said to be convergent if there is an x 2 H, for 8✏ > 0, there is
N 2 N, when n > N , then

kxn � xk < ✏. (2.7)

x is called the limit of (xn)1n=1

and we write xn ! x.

5



2.2. Vector Spaces

Definition 2.12. (Weak convergence)[20] Let x 2 H and (xn)1n=1

be a
sequence in H. We say that (xn)1n=1

converges weakly to x, denoted as
xn * x, if

(8z 2 H) hxn, zi ! hx, zi. (2.8)

The following result is well known (see e.g. [36, Theorem 4.8-4(a)]); we
give its proof for completeness.

Fact 2.13. Every convergent sequence in H is weakly convergent.

Proof. Suppose (xn)1n=1

is a convergent sequence in H and x is its limit. For
every z 2 H, by the Cauchy Schwarz inequality, we have

0  |hxn, zi � hx, zi| = |hxn � x, zi|  kxn � xk|kzk ! 0. (2.9)

So (xn)1n=1

is weakly convergent to x.

The converse of Fact 2.13 is not true.

Example 2.14. Consider (en)1n=1

: e
1

= (1, 0, 0, 0, · · · ), e
2

= (0, 1, 0, 0, · · · ),
e
3

= (0, 0, 1, 0, · · · ), · · · , the sequence of standard unit vectors in `2. 8x 2 `2,
by Bessel inequality2, we have

1X

n=1

|hen, xi|2  kxk2. (2.10)

Thus the series
P1

n=1

|hen, xi|2 is convergent. Then its corresponding se-
quence (|hen, xi|2)1n=1

converges to 0, which implies

hen, xi ! h0, xi = 0 (8x 2 `2). (2.11)

Therefore, (en)1n=1

converges weakly to 0. Since ken � 0k = kenk = 1, we
deduce that en does not converge to 0.

The following result is well known (see e.g., [36, Theorem 4.8-4(c)]); we
give its proof for completeness.

Fact 2.15. A weakly convergent sequence of a finite dimensional space is
convergent.

2Bessel inequality: Let (e
n

)
n2N be the standard orthonormal basis of H, (8x 2 H), we

have
Phx, e

n

i2  kxk2.

6



2.2. Vector Spaces

Proof. Let (xn)1n=1

2 Rm, where xn = (xn(1), xn(2), · · · , xn(m)), converges
weakly to x 2 Rm, by definition of weak convergence, choosing z = ei,
i 2 {1, 2, · · · ,m}, a standard unit vector in Rm, then we have

hxn, eii �! hx, eii, (2.12)

which is equivalent to xn(i) ! x(i). Meanwhile,

xn(i) ! x(i) ) |xn(i)� x(i)| ! 0, (2.13)

) |xn(i)� x(i)|2 ! 0, (2.14)

)
mX

i=1

|xn(i)� x(i)|2 ! 0, (2.15)

) kxn � xk2 ! 0, (2.16)

) kxn � xk ! 0, (2.17)

) xn ! x. (2.18)

By the Uniform Boundedness Principle, we will see that a weakly con-
vergent sequence in a real Hilbert space is bounded. See Fact 2.24 below.

The following powerful notion of the Fejér monotone sequence is central
in the study of various iterative methods.

Definition 2.16. A sequence (xn)1n=1

in H is called Fejér monotone with
respect to a nonempty subset S of H if and only if for 8s 2 S, 8n 2 N,

kxn+1

� sk  kxn � sk. (2.19)

Example 2.17. [7, Example 5.2] Let’s assume that (xn)1n=1

in R is bounded
and monotonically increasing, i.e.,

(8n 2 N) xn  xn+1

 · · ·  � (2.20)

for some constant � > 0. Then sequence (xn)1n=1

is Fejér monotone with
respect to C ✓ [�,+1).

Clearly, every Fejér monotone sequence is bounded. Actually, if (xn)1n=1

is a Fejér monotone sequence with respect to a nonempty set C, then 8c 2 C,

kxn+1

� ck  kxn � ck  · · ·  kx
1

� ck. (2.21)

That is to say, (xn)1n=1

lies in ball(c, kx
1

� ck).

7



2.3. Operators

2.3 Operators

2.3.1 Linear Bounded Operators

Definition 2.18. [36, Definition 2.6-1] A linear operator T is an operator
such that

(i) the domain domT of T is a real vector space and the range ranT of
T lies in a real vector space;

(ii) for all x, y 2 domT and a, b 2 R,

T (ax+ by) = aTx+ bTy. (2.22)

Definition 2.19. [36, Definition 2.7-1] LetH
1

andH
2

be real Hilbert spaces
and T : domT ! H

2

a linear operator, where domT ⇢ H
1

. The operator T
is said to be bounded if there is a real number c such that for all x 2 domT ,

kTxk  ckxk. (2.23)

We denote B(H
1

,H
2

) the set of all linear bounded operators from H
1

to H
2

.

Definition 2.20. [36, page 92] The norm of operator T is defined as:

kTk = sup
kxk1

kTxk. (2.24)

Definition 2.21. [7] Let T 2 B(H
1

,H
2

), the adjoint of T is the unique
operator T ⇤ 2 B(H

1

,H
2

) that satisfies

(8x 2 H
1

)(8y 2 H
2

) hTx, yi = hx, T ⇤yi. (2.25)

Definition 2.22. [20, Definition 1.1.19] We say that a bounded linear op-
erator A : H ! H is self-adjoint if A⇤ = A.

Theorem 2.23. (Uniform Boundedness Principle) [36, Theorem 4.7-3]
Let (Tn) be a sequence of bounded linear operators Tn : X ! Y from a
Banach space X into a normed space Y such that (kTnxk) is bounded for
every x 2 X, say kTnxk  cx, where cx is a real number depends on x. Then
the sequence of the operator norms kTnk is bounded, that is 9c > 0 such that
kTnk  c.

Now let us prove that a weakly convergent sequence in a real Hilbert
space H is bounded.

8



2.3. Operators

Fact 2.24. Every weakly convergent sequence in a real Hilbert space H is
bounded.

Proof. Let xn * x. Then for every z 2 H, we have hxn, zi ! hx, zi. So
we have |hxn, zi| ! |hx, zi|. This implies (|hxn, zi|)n2N is bounded. Define
Tn : H ! R : y 7! hxn, yi. Then (Tn)1n=1

is pointwise bounded. By
the Uniform Boundness Principle, we deduce that (kTnk)1n=1

is bounded.
Finally, we show that kxnk = kTnk. Indeed,

kTnk = sup
kzk1

|hxn, zi|  sup
kzk1

kxnkkzk = kxnk. (2.26)

If xn = 0, then kxnk = 0 and so kTnk = 0. If xn 6= 0, we have

kTnk �
���hxn, xn

kxnki
��� =

kxnk2
kxnk = kxnk. (2.27)

Altogether, we have kTnk = kxnk.

2.3.2 Cutters

Definition 2.25. [20, Definition 2.1.30] We call T : H ! H a cutter if and
only if FixT 6= ? and for 8x 2 H, 8y 2 FixT ,

hy � Tx, x� Txi  0. (2.28)

Example 2.26. (Subgradient projector) Let f : H ! R be convex and
continuous such that {x 2 H : f(x)  0} 6= ?, and let s : H ! H be
a selection of @f (for definition of subgradient, see Definition 2.66), i.e.,
(8x 2 H) s(x) 2 @f(x). Then the associated subgradient projector, defined
by

(8x 2 H) Gfx =

8
<

:
x� f(x)

ks(x)k2 s(x), if f(x) > 0;

x, otherwise,
(2.29)

is a cutter. For details, see Fact 4.1 (iv).

The following fact says that a cutter is strongly Fejér monotone3 with
respect to the set of its fixed points, .

3(see [20, page 108]) We say an operator T : H ! H is strongly Fejér monotone with
respect to the set of its fixed points if there exists a constant ↵ > 0 such that

kTx� zk2  kx� zk2 � ↵kTx� xk2,
for all z 2 FixT .

9



2.3. Operators

Fact 2.27. Suppose that T : H ! H has a fixed point.

(i) A mapping T : H ! H is a cutter if and only if

(8x 2 H)(y 2 FixT ) kx� Txk2  kx� yk2 � kTx� yk2.

(ii) Let T : H ! H be a cutter. Then T is always continuous on FixT .

(iii) Let T : H ! H be a cutter. Then FixT is closed and convex.

Proof. (i) Let x 2 H, 8y 2 FixT .

kx� yk2 = k(x� Tx) + (Tx� y)k2
= kx� Txk2 + ky � Txk2 + 2hx� Tx, Tx� yi.

Thus we can conclude that

kx� Txk2 + ky� Txk2  kx� yk2 () hy� Tx, x� Txi  0. (2.30)

(ii) Suppose that T : H ! H is a cutter. Let y 2 FixT . From (i) we have

kTx� Tyk2 = kTx� yk2  kx� yk2 �kx� Txk2  kx� yk2. (2.31)

Now 8" > 0, let � = ". Then

kTx� Tyk  ". (2.32)

when kx� yk  �. Therefore T is continuous on FixT .

(iii) Suppose that T : H ! H is a cutter. By [20, Lemma 2.1.36], we have

FixT =
\

x2H
{y 2 H : hy � Tx, x� Txi  0}. (2.33)

Denote the right hand side of (2.33) as

S :=
\

x2H
{y 2 H : hx� Tx, y � Txi  0}. (2.34)

First we show S ✓ FixT . Indeed, let y 2 S, i.e., hx� Tx, y � Txi  0
for all x 2 H. If we take x = y, we get ky � Tyk2  0 and hence,
y = Ty, i.e., y 2 FixT . Conversely, let y 2 FixT . Since T is a cutter,
we have hx�Tx, y�Txi  0. Then y 2 S. Hence we have FixT = S.
Finally, we observe that S is the intersection of a family of sets that
are closed and convex, so is FixT .

10
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2.3.3 Single-valued and Set-valued Monotone Operators

Definition 2.28. [20, Definition 1.1.28] We say that an operator T : H ! H
is monotone if

(8x, y 2 H) hTx� Ty, x� yi � 0. (2.35)

The above definition is just for a single-valued operator. We now extend
this to multivalued or set-valued operators. Let A : H ◆ H i.e., (8x 2 H),
Ax ✓ H be a set-valued operator. The graph of A is defined by

graA = {(x, x⇤) 2 H⇥H : x⇤ 2 Ax}. (2.36)

Definition 2.29. [7] A : H ◆ H is monotone if 8(x, x⇤) (y, y⇤) 2 graA,

hx� y, x⇤ � y⇤i � 0. (2.37)

Let’s introduce the definition of maximally monotone operator.

Definition 2.30. [7] Let A : H ◆ H be monotone. Then A is maximally
monotone if B : H ◆ H is monotone and graA ✓ graB ) A = B.

2.3.4 Nonexpansive Mappings

Definition 2.31. Let T : H ! H. Then T is

(i) firmly nonexpansive if 8x, y 2 H
kTx� Tyk2 + k(Id�T )x� (Id�T )yk2  kx� yk2. (2.38)

(ii) nonexpansive if 8x, y 2 H,

kTx� Tyk  kx� yk. (2.39)

(iii) quasi-nonexpansive if 8x 2 H, 8y 2 FixT ,

kTx� Tyk  kx� yk. (2.40)

We record some properties of nonexpansive maps that are most useful for
us. It is clear that firm nonexpansiveness implies nonexpansiveness, which
itself implies quasinonexpansiveness. However, the converse is not true. See
following results and counterexamples.

Theorem 2.32. [20, Theorem 2.2.4] A firmly nonexpansive operator T :
H ! H is monotone and nonexpansive.

11
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Proof. Let T be firmly nonexpansive. Then

kTx� Tyk2 + k(Id�T )x� (Id�T )yk2  kx� yk2. (2.41)

k(Id�T )x� (Id�T )yk2 = k(x� y)� (Tx� Ty)k2 (2.42)

= kx� yk2 + kTx� Tyk2 � 2hx� y, Tx� Tyi.
(2.43)

Then we have

T is firmly nonexpansive , kTx� Tyk2  hx� y, Tx� Tyi (2.44)

By the Cauchy-Schwarz inequality, we have

kTx� Tyk · kx� yk � hTx� Ty, x� yi � kTx� Tyk2 � 0, (2.45)

for all x, y 2 H, which yields the monotonicity and the nonexpansivity of
T .

Actually, firmly nonexpansiveness is equivalent to monotonicity and non-
expansiveness on the real line. Indeed, necessity is obvious from the above
theorem. For su�ciency, let T : R ! R be a monotone and nonexpansive
operator. Then we have

(8x, y 2 R) (x� y)(Tx� Ty) � 0 and |Tx� Ty|  |x� y|. (2.46)

Then

|Tx� Ty|2 = |Tx� Ty||Tx� Ty| (2.47)

 |x� y||Tx� Ty| (2.48)

= |(x� y)(Tx� Ty)| (2.49)

= (x� y)(Tx� Ty). (2.50)

Thus, a monotone nonexpansive operator on the real line is firmly nonex-
pansive. However, if not on the real line, nonexpansivenss and monotonicity
will not imply firmly nonexpansiveness. See Example 2.35.

Lemma 2.33. [20, Lemma 2.1.20] A nonexpansive operator U : H ! H
with a fixed point is quasi-nonexpansive.

The converse of Lemma 2.33 is not true.
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Example 2.34. [20] Let T : R ! R,

Tx =

(
x2, if |x|  3

4

,

|x|� 3

16

, if |x| > 3

4

.
(2.51)

Then T is a continuous quasi-nonexpansive operator, but not nonexpansive.

Proof. (i) T is continuous at 3

4

as limx!(

3
4 )

+ Tx = limx!(

3
4 )

+ x� 3

16

= 9

16

,

limx!(

3
4 )
� Tx = limx!(

3
4 )
� x2 = 9

16

and T (3
4

) = 9

16

. Similarly, we have

T is continuous at �3

4

. Then T is continuous.

(ii) T is quasi-nonexpansive. It is easy to calculate that FixT = {0}.
If |x|  3

4

< 1, then

|0� Tx| = |Tx| = |x2|  |x| = |0� x|. (2.52)

If |x| > 3

4

> 3

16

, then

|0� Tx| =
����|x|�

3

16

���� = |x|� 3

16
< |x| = |0� x|. (2.53)

So T is quasi-nonexpansive.

(iii) T is not nonexpansive when x = 1

2

, y = 1. Indeed,

|Tx� Ty| =
����
1

4
� (1� 3

16
)

���� =
9

16
>

����
1

2
� 1

���� = |x� y|. (2.54)

Therefore T is a continuous quasi-nonexpansive operator but not non-
expansive.

The converse of Theorem 2.32 does not hold.

Example 2.35. [20] Let T : R2 ! R2,

Tx = (x
1

cos ✓ � x
2

sin ✓, x
1

sin ✓ + x
2

cos ✓) (2.55)

is nonexpansive and monotone for ✓ 2 (0, ⇡
2

], but T is not firmly nonexpan-
sive.

Proof. Let x = (x
1

, x
2

), y = (y
1

, y
2

) 2 R2, then

13
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(i) T is monotone. Since

Tx� Ty (2.56)

= ((x
1

� y
1

) cos ✓ � (x
2

� y
2

) sin ✓, (x
1

� y
1

) sin ✓ + (x
2

� y
2

) cos ✓) .
(2.57)

Therefore we have

hx� y, Tx� Tyi = (x
1

� y
1

)2 cos ✓ � (x
1

� y
1

)(x
2

� y
2

) sin ✓ (2.58)

+ (x
1

� y
1

)(x
2

� y
2

) sin ✓ + (x
2

� y
2

)2 cos ✓ (2.59)

=
�
(x

1

� y
1

)2 + (x
2

� y
2

)2
�
cos ✓. (2.60)

Since ✓ 2 (0, ⇡
2

], then cos ✓ > 0, so hx� y, Tx� Tyi � 0.

(ii) T is nonexpansive. Indeed,

kTx� Tyk2 (2.61)

= ((x
1

� y
1

) cos ✓ � (x
2

� y
2

) sin ✓)2 (2.62)

+ ((x
1

� y
1

) sin ✓ + (x
2

� y
2

) cos ✓)2 (2.63)

=(x
1

� y
1

)2(cos ✓)2 + (x
2

� y
2

)2(sin ✓)2 (2.64)

�2(x
1

� y
1

)(x
2

� y
2

) sin ✓ cos ✓ (2.65)

+(x
1

� y
1

)2(sin ✓)2 + (x
2

� y
2

)2(cos ✓)2 (2.66)

+2(x
1

� y
1

)(x
2

� y
2

) sin ✓ cos ✓ (2.67)

=(x
1

� y
1

)2 + (x
2

� y
2

)2 (2.68)

=kx� yk2. (2.69)

(iii) T is not firmly nonexpansive.
From (i), we have

hx� y, Tx� Tyi = �(x
1

� y
1

)2 + (x
2

� y
2

)2
�
cos ✓ = cos ✓kx� yk2.

(2.70)
From (ii), we have kTx� Tyk2 = kx� yk2.
Then kTx� Tyk2 > hx� y, Tx� Tyi for 8✓ 2 (0, ⇡

2

] and distinct x, y.
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2.4 Convex Analysis

2.4.1 Convex Sets

Definition 2.36. A subset C ofH is convex if for all x, y 2 C and � 2 (0, 1),

�x+ (1� �)y 2 C. (2.71)

(a) convex set, (b) nonconvex set.

Figure 2.1: Examples of convex and nonconvex sets

For example, a ball is convex. See Fig. 2.1 (a)

Definition 2.37. [7, Definition 3.3] Let C ⇢ H. The convex hull of C is the
intersection of all the convex subsets of H containing C, i.e., the smallest
convex subset of H containing C. It is denoted by convC.

Proposition 2.38. [7, Proposition 3.4] Let C ⇢ H. Then

convC =

(
X

i2I
↵ixi : I finite, (xi)i2I ⇢ C, (↵i)i2I ⇢ ]0, 1] ,

X

i2I
↵i = 1

)
.

(2.72)

A neighborhood of x 2 H, is an open ball of radius ✏, which is defined as

N✏(x) = {y 2 H : ky � xk < ✏}. (2.73)

The interior of C, is the set of all interior points of C, denoted as intC,

intC = {x 2 H : 9✏ > 0, N✏(x) ✓ C}, (2.74)

and is also the largest open set contained in C.
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Definition 2.39. [20] Let C ✓ H be a nonempty subset and x 2 H. If
there exists a point y 2 C such that

ky � xk  kz � xk (2.75)

for any z 2 C, then y is called a metric projection of x onto C and is denoted
by PCx (see Fig. 2.2).

Figure 2.2: Metric projection.

Fact 2.40. (Projection characterization) [7, Theorem 3.14] Let C be a
nonempty closed convex subset of H. Then for every x and p in H,

p = PCx if and only if (8z 2 C) hz � p, x� pi  0 and p 2 C.

Definition 2.41. [7] Let C ✓ H. We say C is a cone if

C = R
++

C. (2.76)

R
++

:= {⇠ 2 R : ⇠ > 0}.

Definition 2.42. [7, Definition 6.1] Let C be a subset of H. The conical
hull of C is the intersection of all the cones in H containing C, denoted by
coneC.
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Actually, from [7, Proposition 6.2], we have coneC = R
++

C.

Definition 2.43. [7, Definition 6.21] Let K be a subset of H. The polar
cone of K is

K = {u 2 H : suphK,ui  0}, (2.77)

and the dual cone of K is K� = �K . If K is a nonempty convex cone,
then K is self-dual if K = K�. If K is a nonempty closed convex cone in
H, K is acute if K ⇢ K�, and K is obtuse if K� ⇢ K.

Figure 2.3: Illustration of polar cone.

Example 2.44. Let H = R and K = R
+

,

K = {u 2 H : suphK,ui  0} (2.78)

= {u 2 R : y · u  0, 8y 2 R
+

} (2.79)

= R� (2.80)

= �K. (2.81)

By definitions above, we have

K� = �K = K. (2.82)

Since K = R
+

is a nonempty closed convex cone, then K = R
+

is a acute
cone and an obtuse cone as well.
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Definition 2.45. [7] The orthogonal complement of a subset C of H is
denoted by C?, i.e.,

C? = {u 2 H : hx, ui = 0, 8x 2 H}. (2.83)

Proposition 2.46. [7, Propostion 6.22] Let C be a linear subspace of H.
Then C = C?.

Definition 2.47. [7] Let D be a nonempty convex subset of X. The reces-
sion cone of D is

recD = {x 2 X : x+D ⇢ D}. (2.84)

Proposition 2.48. [7, Corollary 6.49] Let C be a nonempty closed convex
cone in H. Then recC = C.

Proposition 2.49. Let T : H ! H be a cutter. Then

ran(Id�T ) ✓ (rec(FixT )) . (2.85)

Consequently, when FixT is a linear subspace,

ran(Id�T ) ✓ (FixT )?. (2.86)

In other words,
ran(Id�T ) ✓ (ker(Id�T ))?. (2.87)

Proof. Let x� Tx 2 ran(Id�T ) and v 2 rec(FixT ). Then for every k > 0,
u 2 FixT , u+ kv 2 FixT . We have

hx� Tx, u+ kv � Txi  0 ) hx� Tx, u/k + v � Tx/ki  0. (2.88)

When k ! 1 this gives
hx� Tx, vi  0. (2.89)

Since v 2 rec(FixT ) was arbitrary, x� Tx 2 (rec(FixT )) .
When FixT is a linear subspace, FixT = rec(FixT ) and (rec(FixT )) =

(rec(FixT ))?.
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2.4.2 Convex Functions

Let f : H ! [�1,+1]. The function is proper if �1 /2 f(H) and
dom f 6= ?.

Definition 2.50. A function f : H ! ]�1,+1] is said to be convex if its
domain, dom f = {x 2 H : f(x) < +1} is a convex set and 8x, y 2 H,� 2
(0, 1),

f(�x+ (1� �)y)  �f(x) + (1� �)f(y). (2.90)

Definition 2.51. Let f : H ! ]�1,+1] be a proper function. Then f is
strictly convex if (8x 2 dom f)(8y 2 dom f)(8� 2 ]0, 1[),

x 6= y ) f(�x+ (1� �)y) < �f(x) + (1� �)f(y). (2.91)

Definition 2.52. A function f is lower semi-continuous if for every se-
quence (xn)1n=1

in H,

xn ! x ) f(x)  lim inf
n!1 f(xn). (2.92)

In [54], the limit inferior of sequence (sn) in R, is defined by

lim inf sn = lim
N!1

inf{sn : n > N}. (2.93)

The limit superior is defined by

lim sup sn = lim
N!1

sup{sn : n > N}. (2.94)

Example 2.53. The ceiling function f(x) = dxe = min{n 2 Z : n � x}
(see Fig. 2.4) is lower semicontinuous.

Figure 2.4: The graph of the ceiling function, an example of a lower semi-
continuous function.
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In the following, we define the infimal convolution operator. See [7] for
more details.

Definition 2.54. Let f and g be functions from H to ]�1,+1]. The
infimal convolution of f and g is

f⇤g : H ! ]�1,+1] : x 7! inf
y2H

(f(y) + g(x� y)). (2.95)

This operator gives us an alternative way to express certain functions,
for example the distance function.

The indicator function of a set C ⇢ H, is the function defined by

◆C : H ! [�1,+1] : x 7!
(
0, if x 2 C;

+1, otherwise.
(2.96)

Fact 2.55. The distance from x 2 H to a set C ✓ H is defined by

dC(x) = inf
y2C

kx� yk. (2.97)

Then we have dC(x) = (◆C⇤k · k)(x).

Proof. For x 2 H, we have

(◆C⇤k · k)(x) = inf
y2H

(◆C(y) + kx� yk) (2.98)

= inf
y2C

(◆C(y) + kx� yk) (◆C(y) = +1 for y /2 C) (2.99)

= inf
y2C

kx� yk (◆C(y) = 0 for y 2 C) (2.100)

= dC(x). (2.101)

Now let’s concentrate on a special case of infimal convolution, the Moreau
envelope, as it is from there that the proximal mapping is defined.

Definition 2.56. [7, Definition 12.20] Let f : H ! ]�1,+1] and let
� 2 R

++

. The Moreau envelope of f of parameter � is

�f = f⇤(
1

2�
k · k2). (2.102)
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The following is a simple example using the distance and the indicator
functions.

Example 2.57. [7, Example 12.21] Let C ⇢ H and let � 2 R
++

. Then
�◆C = 1

2�d
2

C .

Proof. For x 2 H, we have

�◆C(x) = inf
y2H

✓
◆C(y) +

1

2�
kx� yk2

◆
(2.103)

= inf
y2C

✓
◆C(y) +

1

2�
kx� yk2

◆
(◆C(y) = +1 for y /2 C) (2.104)

= inf
y2C

1

2�
kx� yk2 (◆C(y) = 0 for y 2 C) (2.105)

=
1

2�
d2C(x). (2.106)

Actually, the infimal convolution of a convex function with a power of
the norm has some particular porperties.

Remark 2.58. [7, Proposition 12.15] Let f be a proper lower semicontinuous
convex function on H, let � 2 R

++

and let p 2 ]1,+1[. Then the infimal
convolution

f⇤ 1

�p
k · kp : H ! ]�1,+1] : x 7! inf

y2H
f(y) +

1

�p
kx� ykp (2.107)

is convex, real-valued, continuous and exact4. Moreover, for every x 2 H,
the infimum in (2.107) is uniquely attained. Indeed, since 1

�pk · kp is stricly

convex and supercoercive5, then by [7, Corollary 11.15 (i)], we have shown
that the infimum is uniquely attained.

In the case p = 2, Remark 2.58 motivated the following definition.

Definition 2.59. [7, Definition 12.23] Let f be a proper lower semicontin-
uous convex function on H and let x 2 H. Then Proxf x is the unique point

4The infimal convolution is exact at a point x 2 H if (f⇤g)(x) = min
y2H f(y)+g(x�y),

i.e. there exists a point y 2 H such that (f⇤g)(x) = f(y) + g(x� y).
5Let f : H ! [�1,+1]. Then f is supercoercive if limkxk!+1

f(x)
kxk = +1.
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in H that satisfies

1f(x) = min
y2H

✓
f(y) +

1

2
kx� yk2

◆
= f(Proxf x)+

1

2
kx�Proxf xk2. (2.108)

The operator Proxf : H ! H is the proximal mapping of f .

Definition 2.60. [7] (Gâteaux di↵erentiability) Let f : C ! R, with C ✓
H, and let x 2 C be such that (8y 2 H)(9↵ 2 R

++

) [x, x + ↵y] ✓ C.
We say that f is Gâteaux di↵erentiable at x if there exists an operator
Df(x) 2 B(H,H), called the Gâteaux derivative of f at x, such that

(8y 2 H) lim
↵#0

f(x+ ↵y)� f(x)

↵
= Df(x)y. (2.109)

The Gâteaux derivative Df(x) in Definition 2.60 is unique whenever it
exists. Moreover, since Df(x) is linear, for every y 2 H, we have Df(x)y =
�Df(x)(�y), and we can therefore replace (2.109) by

(8y 2 H) lim
0 6=↵!0

f(x+ ↵y)� f(x)

↵
= Df(x)y. (2.110)

Remark 2.61. Let C be a subset of H, let f : C ! R, and suppose that f
is Gâteaux di↵erentiable at x 2 C. Then by Riesz-Fréchet representation6,
there exists a unique vector rf(x) 2 H such that

(8y 2 H) Df(x)y = hy,rf(x)i. (2.111)

We call rf(x) the Gâteaux gradient of f at x.

Definition 2.62. [7] (Fréchet di↵erentiability) Let x 2 H and let f : U !
]�1,+1] where U is a neighborhood of x. Then f is Fréchet di↵eren-
tiable at x if there exists an operator Df(x) 2 B(H,H), called the Fréchet
derivative of f at x such that

lim
0 6=kyk!0

kf(x+ y)� f(x)�Df(x)yk
kyk = 0. (2.112)

The Fréchet gradient of a function f : U ! R at x 2 U is defined as in
Remark 2.61.

6[7, Fact 2.17] Riesz-Fréchet representation: Let g 2 B(H,R). Then there exists a
unique vector u 2 H such that (8x 2 H) g(x) = hx, ui. Moreover, kgk = kuk.
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2.4. Convex Analysis

Fact 2.63. [20, Theorem 1.1.13, Theorem 1.1.14]

(i) If f is Fréchet di↵erentiable at x 2 H, then it is Gâteaux di↵erentiable
at x.

(ii) If f is Gâteaux di↵erentiable in a neighborhood of x and its Gâteaux
derivative is continuous (strong-to-strong) at x, then f is Fréchet dif-
ferentiable at x.

Remark 2.64. [16] For locally Lipschitz functions on Rn, Gâteaux and Fréchet
di↵erentiability coincide.

Example 2.65. [57, Example 1.1.2] Consider the function

f : R2 ! R : (x
1

, x
2

) 7!
8
<

:

x
1

x3
2

x2
1

+ x4
2

, if (x
1

, x
2

) 6= 0;

0, otherwise.
(2.113)

Then f is continuous and Gâteaux di↵erentiable at (0, 0), but not Fréchet
di↵erentiable at (0, 0).

Proof. Let x = (x
1

, x
2

). Observe that f(x) = 0 if x
1

x
2

= 0. Now assume
that x

1

6= 0 and that x
2

6= 0. Since

0  (|x
1

|� x2
2

)2 , 2|x
1

|x2
2

 x2
1

+ x4
2

, (2.114)

we estimate

|f(x)| = |x
1

||x
2

|3
x2
1

+ x4
2

 |x
1

||x
2

|3
2|x

1

|x2
2

=
|x

2

|
2

! 0 as x ! 0. (2.115)

Thus, f is continuous at (0, 0).

Let t 2 R
++

. If x
1

= 0, then f(tx)
t = 0; otherwise

f(tx)

t
=

f(tx
1

, tx
2

)

t
=

t4x
1

x3
2

t2x2
1

+ t4x4
2

=
t2x

1

x3
2

x2
1

+ t2x4
2

! 0 as t # 0. (2.116)

Thus f is Gâteaxu di↵erentiable at (0, 0), with rf(0, 0) = (0, 0).
It remains to show that f is not Fréchet di↵erentiable at (0, 0). Since

f(0, 0) = 0 and rf(0, 0) = 0, the quotient of interest is simply f(y)
kyk , where

y = (y
1

, y
2

) 6= (0, 0). We will show that this quotient does not tend to 0 as
y ! 0. Observe that

✓
f(y)

kyk
◆

2

=
y2
1

y6
2

(y2
1

+ y2
2

)(y2
2

+ y4
2

)2
, (2.117)
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which when y
1

= y2
2

leads to

y2
1

y6
2

(y2
1

+ y2
2

)(y2
2

+ y4
2

)2
=

y1
2

0

y2
2

(1 + y2
2

)4y8
2

=
1

4(1 + y2
2

)
! 1

4
as y

2

! 0. (2.118)

Hence lim
0 6=kyk!0

f(y)
kyk � 1

2

and therefore f is not Fréchet di↵erentiable at

(0, 0).

Definition 2.66. [7, Definition 16.1] Let f : H ! ]�1,+1] be a proper
convex function. The subdi↵erential of f is the set-valued operator

@f : H ! 2H : x 7! {u 2 H : hu, y � xi+ f(x)  f(y), 8y 2 H}. (2.119)

The elements of @f(x) are the subgradients of f at x.

Fact 2.67. [20, Theorem 1.1.57] A continuous convex function f : H ! R
is Gâteaux di↵erentiable at x 2 H if and only if its subdi↵erential @f(x)
consists of one point. In this case, @f(x) = {Df(x)} = {rf(x)}.
Example 2.68. (1) The absolute value f(x) = |x| is subdi↵erentiable at
every x 2 R. Precisely,

(8x 2 R) @f(x) =

8
><

>:

1, if x > 0,

[�1, 1], if x = 0,

�1. if x < 0.

(2.120)

(2) For a di↵erentiable function f(x) = x2 on R, then its subdi↵erential is
a singleton, which is the gradient of f , that is @f(x) = {rf(x)} = {2x} for
8x 2 R.
(3) The subdi↵erential of the Euclidean norm k · k on Rn has the form

(8x 2 Rn) @(kxk) =
8
<

:

⇢
x

kxk
�
, if x 6= 0,

ball(0, 1), if x = 0.
(2.121)

We have now covered the elementary results needed for the following
chapters of this thesis, including subgradient projectors and cutters. In the
next chapter, we present a new method for finding a fixed point of a cutter.
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Chapter 3

Finite Convergence Result of
a Projected Cutter Method

3.1 Overview

This chapter is based on the paper [13]. We obtain finite convergence
results for a general class of algorithms provided a constraint qualification
is satisfied. Our results complement and extend conclusions by Crombez for
cutters and by Polyak for subgradient projectors. Comparisons of our results
with existing algorithms are also included. We begin with the motivation
for this research.

Let a finite family of closed convex subsets Ci, i 2 I, of a Hilbert space H
be given. Denote C = \i2ICi. If C 6= ?, then the convex feasibility problem
is to find a point x 2 C. A particular way to solve the convex feasibility
problem is to express the solution set as the fixed point set of a proper
algorithmic operator. The most famous instance is Polyak’s subgradient
projector of a convex function.

Theorem 3.1. [50] (Polyak’s subgradient projection algorithm) Let C be
a nonempty closed convex subset of H. Let f : H ! R be a continuous
convex function. Assume argmin f = {x 2 H : f(x) = inf f(C)} 6= ?.
Without loss of generality, we assume min f(C) = 0. Assume @f is bounded
on bounded sets. Let (↵n) ✓ ]0, 2[ such that 9 ✏ > 0, ✏  ↵n  2 � ✏. Let
s 2 @f be a selection and define

xn+1

=

8
<

:
PC

✓
xn � ↵n

f(xn)

ks(xn)k2 s(xn)
◆
, if f(xn) > 0,

xn, if f(xn)  0.
(3.1)

Then (xn) converges weakly to a minimizer of f over C.

For the proof of this theorem, see [50].

Theorem 3.2. [20, Theorem 3.5.1] (Opial, 1967) Let C ✓ H be a nonempty
closed convex subset of a Hilbert space H and U : C ! C be a nonexpansive
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3.2. Basic Properties

and asymptotically regular operator with a fixed point. Then, for any x 2 C,
the sequence (Ukx)1k=1

converges weakly to a point z 2 FixU .
If the suitable algorithmic operator is nonexpansive and asymptotically

regular7, then Opial’s result implies that the iterates of the operator converge
weakly to a solution.

However, whether this solution can be reached within a finite number of
steps is not fully answered. Censor et al. [21] studied the modified cyclic
subgradient projection (MCSP) and provided finite convergence conditions
while Crombez [31] focussed on the iterations of a cutter whose fixed points
set contains a ball of a known radius. Unfortunately, this radius is not
necessarily known in practice.

3.2 Basic Properties

Given r � 0, we follow Crombez [31] and define the operator Ur : H ! H
at x 2 H by

Urx :=

8
<

:
Tx+

r

kTx� xk(Tx� x), if x 6= Tx,

x, otherwise.
(3.2)

Obviously, we can rewrite Urx as

Urx = x+
r + kTx� xk
kTx� xk (Tx� x) (3.3)

when x /2 FixT . When T is a subgradient projector, then Ur was also
studied by Polyak [50]. Note that FixUr = FixT .

Lemma 3.3. [13, Lemma 2.1] Let y 2 FixT , let r 2 R
++

, and suppose that
ball(y; r) ✓ FixT and that x 2 Hr FixT . Set

⌧x := hx� y,
x� Tx

kx� Txki �
�
r + kx� Txk�. (3.4)

Then the following hold:

(i) ⌧x � 0.

7An operator U : H ! H is called asymptotically regular if for all x 2 H, then we have

lim
k!1

kUk+1
x� U

k

xk = 0.
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3.2. Basic Properties

(ii) kUrx� yk2 = kTx� yk2 � r2 � 2r⌧x  kTx� yk2 � r2.

(iii) kUrx� yk2 = kx� yk2 � (r + kx� Txk)2 � 2⌧x(r + kx� Txk)
 kx� yk2 � (r + kx� Txk)2  kx� yk2 � r2 � kx� Txk2.

Proof. (i): Set z = y + r(x � Tx)/kx � Txk. Then z 2 ball(y; r) ✓ FixT .
Since T is a cutter, we obtain

0 � hz � Tx, x� Txi (3.5a)

= hy + r(x� Tx)/kx� Txk � Txx� Txi (3.5b)

= hy � Tx, x� Txi+ rkx� Txk (3.5c)

= hy � x, x� Txi+ kx� Txk2 + rkx� Txk. (3.5d)

Rearranging and dividing by kx� Txk yields

hx� y, (x� Tx)/kx� Txki � r + kx� Txk (3.6)

and hence ⌧x � 0.

(ii): Using (3.2), we derive the identity from

kUrx� yk2 (3.7a)

=
��x+ (kx� Txk+ r)/kx� Txk(Tx� x)� y

��2 (3.7b)

=
��(Tx� y) + r(Tx� x)/kTx� xk��2 (3.7c)

=kTx� yk2 + r2 + 2rh(Tx� x) + (x� y), (Tx� x)/kTx� xki (3.7d)

=kTx� yk2 + r2 + 2rkx� Txk � 2rhx� y, (x� Tx)/kx� Txki (3.7e)

=kTx� yk2 � r2 � 2r⌧x. (3.7f)

The inequality follows immediately from (i).

(iii): Using (ii), we obtain

=kUrx� yk2 (3.8a)

=k(x� y) + (Tx� x)k2 � r2 � 2r⌧x (3.8b)

=kx� yk2 + kx� Txk2 + 2hx� y, Tx� xi � r2 � 2r⌧x (3.8c)

=kx� yk2 � kx� Txk2 � 2(⌧x + r)kx� Txk � r2 � 2r⌧x (3.8d)

=kx� yk2 � (r + kx� Txk)2 � 2⌧x(r + kx� Txk). (3.8e)

The inequalities now follow from (i).
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3.2. Basic Properties

Example 3.4. (Ur need not be a cutter) [13, Example 2.2] Suppose that
H = R and that T is the subgradient projector associated with the function
f : R ! R : x 7! x2 � 1. Then FixT = [�1, 1]. Let

r 2 R
+

:= {⇠ 2 R : ⇠ � 0}. (3.9)

Then for 8x 2 Rr FixT , we have

Urx =
x

2
+

1

2x
� r sgn(x), (3.10)

where sgn(·) is the signum function defined as

sgn(x) :=

8
><

>:

1, if x > 0,

0, if x = 0,

�1, if x < 0.

(3.11)

Choosing y := 1 2 FixT and x := y + " /2 FixT , where " 2 R
++

and r = 1,
then

y � Urx = 1� (
1 + "

2
+

1

2(1 + ")
� 1) = 2� 1 + "

2
� 1

2(1 + ")
> 0, (3.12)

when " is su�cient small. And

x�Urx = 1+"�(
1 + "

2
+

1

2(1 + ")
�1) = 2+"� 1 + "

2
� 1

2(1 + ")
> 0. (3.13)

Then we have hy � Urx, x � Urxi > 0. By definition of a cutter, we can
easily check that Ur is not a cutter when " is su�ciently small.

The following result concerns a relaxed version of Ur.

Corollary 3.5. [13, Corollary 2.1] Let y 2 FixT , let r 2 R
++

, let ⌘ 2 R
+

,
and suppose that ball(y; r) ✓ FixT and that x 2 Hr FixT . Set

Ur,⌘x := x+ ⌘
r + kx� Txk
kTx� xk (Tx� x). (3.14)

Then the following hold

(i) Ur,⌘x = (1� ⌘)x+ ⌘Urx.

(ii) kUr,⌘x� yk2 = ⌘kUrx� yk2 + (1� ⌘)kx� yk2 � ⌘(1� ⌘)kx� Urxk2.
(iii) kUrx� xk = r + kx� Txk.
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3.2. Basic Properties

(iv) kUrx� yk2  kx� yk2 � (r + kx� Txk)2 = kx� yk2 � kx� Urxk2.
(v) kUr,⌘x� yk2  kx� yk2 � ⌘(2� ⌘)(r + kx� Txk)2

= kx� yk2 � ⌘�1(2� ⌘)kx� Ur,⌘xk2.
Proof. (i):

Ur,⌘x = x+ ⌘
r + kx� Txk
kTx� xk (Tx� x) (3.15)

= x+ ⌘(x+
r + kx� Txk
kx� Txk (Tx� x)� x) (3.16)

= x+ ⌘(Urx� x) (3.17)

= (1� ⌘)x+ ⌘Urx. (3.18)

(ii): Using (i), we obtain kUr,⌘x� yk2 = k(1� ⌘)(x� y) + ⌘(Urx� y)k2.
Now use [7, Corollary 2.14] to obtain the identity.

(iii): Since Urx = x+ r+kx�Txk
kx�Txk (Tx� x), then

Urx� x =
r + kx� Txk
kx� Txk (Tx� x). (3.19)

So we have
kUrx� xk = r + kx� Txk. (3.20)

(iv): Combine (iii) with Lemma 3.3 (iii).

(v): Combine (i)-(iv). Indeed, more precisely,

kUr,⌘x� yk2 (3.21)

=⌘kUrx� yk2 + (1� ⌘)kx� yk2 � ⌘(1� ⌘)kx� Urxk2 (3.22)

⌘(kx� yk2 � kx� Urxk2) + (1� ⌘)kx� yk2 � ⌘(1� ⌘)kx� Urxk2
(3.23)

=kx� yk2 � ⌘(2� ⌘)kx� Urxk2 (3.24)

=kx� yk2 � ⌘(2� ⌘)(r + kx� Txk)2. (3.25)

And by definition of Ur,⌘, we have kur,⌘x� xk = ⌘(r+ kx� Txk), therefore
kUr,⌘x� yk2  kx� yk2 � ⌘(2� ⌘)(r + kx� Txk)2 (3.26)

= kx� yk2 � ⌘(2� ⌘)(
1

⌘
kur,⌘x� xk)2 (3.27)

= kx� yk2 � ⌘�1(2� ⌘)kx� Ur,⌘xk2. (3.28)
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3.2. Basic Properties

Definition 3.6. We call Q : H ! H a quasi projector of C if and only if
ranQ = FixQ = C and for 8x 2 H, 8c 2 C

kQx� ck  kx� ck. (3.29)

Example 3.7. (Projectors are quasi projectors) [13, Example 2.3] PC is
a quasi projector of C. Since kPCx � xk = infc2C kx � ck  kx � ck and
ranPC = FixPC = C. More generally if R : H ! H is quasi nonexpansive,
i.e., 8x 2 H, 8y 2 FixR, then kRx � yk  kx � yk and C ✓ FixR, then
PC �R is a quasi projector of C. Indeed, for 8c 2 C ✓ FixR, then

kPC �Rx� ck = kPC �Rx� PCck  kRx� ck  kx� ck. (3.30)

And also we have ranPC �R = FixPC �R = C.

It can be shown (see [1, Proposition 3.4.4]) that when C is an a�ne
subspace (i.e., if C 6= ?, and 8� 2 R, C = �C + (1 � �)C), then the only
quasi projector of C is the projector. However, we will now see that for
certain cones there are quasi projectors di↵erent from projectors.

Proposition 3.8. (Reflector of an obtuse cone) [13, Proposition 2.1] Sup-
pose that C is an obtuse convex cone, i.e., R

+

C = C and C := {x 2 H :
suphC, xi = 0} ✓ �C. Then the reflector RC := 2PC � Id is nonexpansive
and ranRC = FixRC = C.

Proof. (i) ranRC = FixRC = C. For 8x 2 H,

RCx = 2PCx� x = 2PCx� (PCx+ PC x) (3.31)

= PCx� PC x (3.32)

2 C � C (3.33)

✓ C + C = C. (3.34)

So ranRC = C.
Let x = RCx, then x = 2PCx � x, which is equivalent to x = PCx,
then x 2 C. So we have FixRC = C.

(ii) Since PC is firmly nonexpansive, then 2PC � Id is nonexpansive. Then
inequality (3.29) is satisfied.

Therefore, the reflector of an obtuse cone is a quasi projector of C.

Corollary 3.9. [13, Corollary 2.2] Suppose that C is an obtuse cone and
let � : H ! [1, 2]. Then

Q : H ! H : x 7! �
1� �(x)

�
x+ �(x)PCx (3.35)

is a quasi projector of C.
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3.2. Basic Properties

Proof. Since, for every x 2 H, when �(x) = 1, then Q(x) = PCx, when
�(x) = 2, Q(x) = RCx. So we have Q(x) 2 [PCx,RCx]. Both PC and
RC are quasi projectors of C from Proposition 3.8. Therefore Q is a quasi
projector of C.

Example 3.10. [13, Example 2.4] Suppose H = Rd and C = Rd
+

. Then RC

is a quasi projector.

Proof. Referring to Example 2.44, we have C = �C. Then C is an obtuse
cone. The conclusion follows from Corollary 3.9 with �(x) ⌘ 2.

Remark 3.11. [13, Remark 2.1] A quasi projector need not be continuous
because we may choose � in Corollary 3.9 discontinuously. For instance, let
H = R, C = R

+

, from Example 2.44, we have C is an obtuse cone. Define

�(x) =

(
1, if x  �1,

2, if x > �1.
(3.36)

When x  �1, then �(x) = 1, PCx = 0. Then Q(x) = 0. When �1 < x < 0,
then �(x) = 2, PCx = 0. Then Q(x) = �x ! 1 (x ! �1+). Thus Q is
discontinuous at x = �1.

Fact 3.12. (Raik)[51] Let (xn)1n=1

be a sequence in H that is Fejér monotone
with respect to a subset S of H. If intS 6= ?, then

P
n2N kxn�xn+1

k < +1
and (xn)1n=1

converges strongly to some point in H.

Lemma 3.13. [13, Lemma 2.2] Suppose that H is finite-dimensional, let
f : H ! R be convex and Fréchet di↵erentiable such that inf f(H) < 0.
Then for every ⇢ 2 R

++

, we have

inf{krf(x)k : x 2 ball(0; ⇢) \ f�1(R
++

)} > 0. (3.37)

Proof. Let ⇢ 2 R
++

and assume to the contrary that the conclusion fails.
Since H is finite dimensional space, by Bolzano-Weierstrass Theorem8, then
there exists a sequence (xn)1n=1

in ball(0; ⇢) \ f�1(R
++

) and a point x 2
ball(0; ⇢) such that xn ! x and rf(xn) ! 0. Since f is Fréchet dif-
ferentiable, then rf is continuous. Then rf(xn) ! rf(x) = 0 and
f(xn) ! f(x) � 0. On the other hand, inf f(x) < 0 and rf(x) = 0,
then we have f(x) < 0, which is absurd.

8Bolzano-Weierstrass Theorem: In Rk, every bounded sequence has a convergent sub-
sequence.
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3.3. Finitely Convergent Cutter Method

3.3 Finitely Convergent Cutter Method

Assume that (rn)1n=1

is a sequence in R
++

such that rn ! 0 and (⌘n)1n=1

is a sequence in ]0, 2]. Let QC be a quasi projector of C. We further assume
that x

0

2 C and that (xn)1n=1

is generated by

xn+1

:=

(
QC

�
xn + ⌘n(Ur

n

xn � xn)
�
, if xn /2 FixT ,

xn, otherwise.
(3.38)

Note that (xn)1n=1

lies in C. Also observe that if xn lies in FixT , then so
does xn+1

.

Theorem 3.14. [13, Theorem 3.1] Assume that (rn)n2N is a sequence in
R
++

such that rn ! 0 and (⌘n)n2N is a sequence in ]0, 2]. Suppose that
int(C\FixT ) 6= ? and that

P
n2N ⌘nrn = +1. Then (xn)1n=1

lies eventually
in C \ FixT .

Proof. We argue by contradiction. If the conclusion is false, then no term
of the sequence in (xn)1n=1

lies in FixT , i.e., (xn)1n=1

lies in H r FixT .
By assumption, there exist z 2 C \ FixT and r 2 R

++

and such that
ball(z; 2r) ✓ C \ FixT . Hence

�8y 2 ball(z; r)
�

ball(y; r) ✓ C \ FixT. (3.39)

Since rn ! 0, there exists m 2 such that n � m implies rn  r. Now let
n � m and y 2 ball(z; r). Using the assumption that QC is a quasi projector
of C, that y 2 C, (3.39) and Corollary 3.5 (v), we obtain

kxn+1

� yk =
��QC

�
xn + ⌘n(Ur

n

xn � xn)
�� y

�� (3.40a)

 kxn + ⌘n(Ur
n

xn � xn)� yk (3.40b)

 kxn � yk. (3.40c)

Hence the sequence

(xm, xm + ⌘m(Ur
m

xm � xm), xm+1

, xm+1

+ ⌘m+1

(Ur
m+1xm+1

� xm+1

), . . .)
(3.41)

is Fejér monotone with respect to ball(z; r). It follows from Fact 3.12 and
Corollary 3.5 (iii) that

+1 >
X

n�m
⌘nkxn�Ur

n

xnk =
X

n�m
⌘n
�
rn+kxn�Txnk

� �
X

n�m
⌘nrn, (3.42)

which is absurd because
P

n2N ⌘nrn = +1.
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3.3. Finitely Convergent Cutter Method

Compared to Theorem 3.14, the following theorem has a less restric-
tive assumption on (FixT,C) but a more restrictive one on the parameters
(rn, ⌘n).

Theorem 3.15. [13, Theorem 3.2] Assume that (rn)n2N is a sequence in
R
++

such that rn ! 0 and (⌘n)n2N is a sequence in ]0, 2]. Suppose that
C \ int FixT 6= ? and that

P
n2N ⌘n(2 � ⌘n)r2n = +1. Then (xn)1n=1

lies
eventually in C \ FixT .

Proof. Similarly to the proof of Theorem 3.14, we argue by contradiction
and assume the conclusion is false. Then (xn)1n=1

must lie in HrFixT . By
assumption, there exist y 2 FixT and r 2 R

++

such that ball(y; r) ✓ FixT .
Because rn ! 0, there exists m 2 such that n � m implies rn  r. Let
n � m. Using also the assumption that QC is a quasi projector of C and
Corollary 3.5 (v), we deduce that

kxn+1

� yk2 = ��QC

�
xn + ⌘n(Ur

n

xn � xn)
�� y

��2 (3.43a)

 kxn + ⌘n(Ur
n

xn � xn)� yk2 (3.43b)

 kxn � yk2 � ⌘n(2� ⌘n)
�
rn + kxn � Txnk

�
2

(3.43c)

 kxn � yk2 � ⌘n(2� ⌘n)r
2

n. (3.43d)

This implies

kxm � yk2 �
X

n�m

�kxn � yk2 � kxn+1

� yk2� �
X

n�m
⌘n(2� ⌘n)r

2

n = +1,

(3.44)
which contradicts our assumption on the parameters.

Theorem 3.14 and Theorem 3.15 have various applications. Since every
resolvent of a maximally monotone operator (see [7, Definition 20.20]) is
firmly nonexpansive (see [7, Definition 4.1 (i)]) and hence a cutter, we obtain
the following result.

Corollary 3.16. [13, Corollary 3.1] Let A : H ◆ H be maximally mono-
tone, suppose that QC = PC , that T = (Id+A)�1, and that one of the
following holds:

(i) int(C \A�10) 6= ? and
P

n2N ⌘nrn = +1.

(ii) C \ intA�10 6= ? and
P

n2N ⌘n(2� ⌘n)r2n = +1.

Then (xn)1n=1

lies eventually in C \A�10.
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Proof. Let A be maximally monotone, T = (Id+A)�1, By Theorem 2.2.5
in [20], T is firmly nonexpansive, then T is a cutter. 8x 2 FixT , then
Tx = (Id+A)�1x = x, so (Id+A)x = x, we have Ax = 0, x 2 A�10.
Therefore FixT ✓ A�10. Similary proof for inverse. Then the conlusion
follows by Theorem 3.14 and Theorem 3.15.

Corollary 3.16 applies in particular to finding a constrained critical point
of a convex function. When specializing further to a normal cone operator,
we obtain the following result.

Example 3.17. (Convex feasibility) [13, Example 3.1] LetD be a nonempty,
closed and convex subset of H, and suppose that QC = PC , that T = PD,
and that one of the following holds:

(i) int(C \D) 6= ? and
P

n2N rn = +1.

(ii) C \ intD 6= ? and
P

n2N r2n = +1.

Then the sequence (xn)1n=1

generated by

xn+1

:= PC

✓
PDxn + rn

PDxn � xn
kPDxn � xnk

◆
(3.45)

if xn /2 D and xn+1

:= xn if xn 2 D, lies eventually in C \D.

Remark 3.18. (Relationship to Polyak’s work) [13, Remark 3.1] In [50],
B.T. Polyak considers random algorithms for solving constrained systems
of convex inequalities. Suppose that only one consistent constrained con-
vex inequality is considered. Hence the cutters used are all subgradient
projectors. Then his algorithm coincides with the one considered in this
section and thus is comparable. We note that our Theorem 3.14 is more
flexible because Polyak requires

P
n2N r2n = +1 (see [50, Theorem 1 and

Section 4.2]) provided that 0 < infn2N ⌘n  supn2N ⌘n < 2 while we require
only

P
n2N rn = +1 in this case. Regarding our Theorem 3.15, we note

that our proof essentially follows his proof which actually works for cutters
— not just subgradient projectors — and under a less restrictive constraint
qualification.

Remark 3.19. (Relationship to Crombez’s work) [13, Remark 3.2] In [31], G.
Crombez considers asynchronous parallel algorithms for finding a point in
the intersection of the fixed point sets of finitely many cutters — without the
constraint set C. Again, we consider the case when we are dealing with only
one cutter. Then Crombez’s convergence result (see [31, Theorem 2.7]) is
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similar to Theorem 3.15; however, he requires that the radius r of some ball
contained in FixT be known which may not always be realistic in practical
applications.

Actually, it is not too di�cult to extend Theorem 3.14 and Theorem 3.15
to deal with finitely many cutter. We have opted here for simplicity rather
than maximal generality.

3.4 Limiting Examples

In this section, we collect several examples that illustrate the boundaries
of the theory. We start by showing that the conclusion of Theorem 3.14 and
Theorem 3.15 both may fail to hold if the divergent-series condition is not
satisfied.

Example 3.20. (Divergent-series condition is important) Suppose thatH =
C = R, that f : R ! R : x 7! x2 � 1, and that T = Gf is the subgradient
projector associated with f . Suppose that x

0

> 1, set r�1 := x
0

�1 > 0 and
(8n 2 N) rn := r2n�1/(4(1 + rn�1)). Then (rn)n2N lies in R

++

, rn ! 0, andP
n2N rn < +1 and hence

P
n2N r2n < +1. However, the sequence (xn)1n=1

generated by (3.38) lies in ]1,+1[ and hence does not converge finitely to
a point in FixT = [�1, 1]. Furthermore, the classical subgradient projector
iteration (8n 2 N) yn+1

= Tyn converges to some point in FixT , but not
finitely when y

0

/2 FixT .

Proof. It is clear that FixT = [�1, 1]. Observe that (8n 2 N) 0 < rn 
(1/4)rn�1  (1/4)n+1r�1. It follows that rn ! 0 and that

P
n2N rn andP

n2N r2n are both convergent series. Now suppose that rn�1 = xn � 1 > 0
for some n 2 N. It then follows from Example 3.4 that

xn+1

=
xn
2

+
1

2xn
�rn =

(xn � 1)2

2xn
+1�rn =

r2n�1
2(1 + rn�1)

+1�rn = rn+1.

(3.46)
Hence, by induction, (8n 2 N) xn = 1 + rn�1 and therefore xn ! 1+.

As for the sequence (yn)n2N, it is follows from Polyak’s seminal work
(see [48]) that (yn)n2N converges to some point in FixT . However, by e.g.
[12, Proposition 9.9], (yn)n2N lies outside FixT whenever y

0

does.

The next example illustrates that in the context of Theorem 3.14 and
Theorem 3.15, we cannot expect finite convergence if the interior of FixT is
empty.
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Example 3.21. (Nonempty-interior condition is important) Suppose that
H = C = R, that f : R ! R : x 7! x2, and that T = Gf is the subgradient
projector associated with f . Then FixT = {0} and hence int FixT = ?. Set
x
0

:= 1/2, and set (8n 2 N) wn := (n+1)�1/2 and rn = wn if Uw
n

xn 6= 0 and
rn = 2wn if Uw

n

xn = 0. Then rn ! 0 and
P

n2N r2n = +1. The sequence
(xn)1n=1

generated by (3.38) converges to 0 but not finitely.

Proof. The statements concerning (rn)n2N are clear. It follows readily from
the definition that (8x 2 R)(8r 2 R

+

) Tx = x/2 and Urx = x/2� r sgn(x).
Since x

0

= 1/2, w
0

= 1, U
1

x
0

= �3/4 6= 0, and r
0

= w
0

= 1, it follows that
0 < |x

0

/2| < r
0

. We now show that for every n 2 N,

0 < |xn/2| < rn. (3.47)

This is clear for n = 0. Now assume (3.47) holds for some n 2 N.
Case 1: |xn| = 2wn.

Then Uw
n

xn = xn/2 � sgn(xn)wn = 0. Hence rn = 2wn and thus xn+1

=
Ur

n

xn = xn/2 � 2wn sgn(xn) = sgn(xn)wn � 2wn sgn(xn) = � sgn(xn)wn.
Thus 0 < |xn+1

/2| = wn/2 = 1/(2
p
n+ 1) < 1/

p
n+ 2 = wn+1

 rn+1

,
which yields (3.47) with n replaced by n+ 1.

Case 2: |xn| 6= 2wn.
Then Uw

n

xn = xn/2 � sgn(xn)wn 6= 0. Hence rn = wn and thus xn+1

=
Ur

n

xn = xn/2� rn sgn(xn). It follows that |xn+1

| = rn � |xn/2| > 0. Hence
0 < |xn+1

/2| and also |xn+1

| < rn = wn < 2wn+1

 2rn+1

. Again, this is
(3.47) with n replaced by n+ 1.

It follow now by induction that (3.47) holds for every n 2 N.

We now illustrate that when FixT = ?, then (xn)1n=1

may fail to con-
verge.

Example 3.22. Suppose that H = C = R, that f : R ! R : x 7! x2 + 1,
and that T = Gf is the subgradient projector associated with f . Let y

0

2 R
and suppose that (8n 2 N) xn+1

= Txn. Then (xn)n2N is either not well
defined or it diverges. Suppose that x

0

> 1/
p
3, set k

0

= x
0

� 1/
p
3 > 0

and (8n 2 N) kn+1

=
p
(n+ 1)/(n+ 2)kn. Suppose that

(8n 2 N) rn =
1

2

✓p
3 + 2kn+1

+ kn � 1

kn + 1/
p
3

◆
. (3.48)

Then rn ! 0+ and
P

n2N r2n = +1. Moreover, the sequence (xn)1n=1

gener-
ated by (3.38) diverges.
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Proof. Clearly, FixT = ? and one checks that

(8r 2 R
+

)(8x 2 Rr {0}) Urx =
x

2
� 1

2x
� r sgn(x). (3.49)

If some xn = 0, then the sequence (xn)n2N is not well defined.
Case 1 : (9n 2 N) xn = 1/

p
3.

Then xn+1

= Txn = U
0

xn = xn/2� 1/(2xn) = �1/
p
3 = �xn and similarly

xn+2

= �xn+1

= xn. Hence the sequence eventually oscillates between 1/
p
3

and �1/
p
3.

Case 2 : (9n 2 N) |xn| = 1.
Then xn+1

= 0 and the sequence is not well defined.
Case 3 : (8n 2 N) |xn| /2 {1, 1/p3}.

Using the Arithmetic Mean–Geometric Mean inequality, we obtain

|xn+1

� xn| =
����
xn
2

� 1

2xn
� xn

���� =
1

2

����xn +
1

xn

���� =
1

2

✓
|xn|+ 1

|xn|
◆

� 1

(3.50)
for every n 2 N. Therefore, (xn)n2N is divergent or not well defined.

We now turn to the sequence (xn)1n=1

. Observe that

0 < kn =
p
n/(n+ 1)kn�1 = · · · = k

0

/
p
n+ 1 ! 0+ (3.51)

and hence (kn)n2N is strictly decreasing. It follows that rn ! 0+ and that
rn > (2kn+1

+ kn)/2 > 3kn+1

/2 = 3k
0

/(2
p
n+ 2). Thus,

P
n2N r2n = +1.

Next, (3.49) yields

x
1

=
x
0

2
� 1

2x
0

� r
0

(3.52a)

=
k
0

+ 1/
p
3

2
� 1

2
�
k
0

+ 1/
p
3)

� 1

2

✓p
3 + 2k

1

+ k
0

� 1

k
0

+ 1/
p
3

◆

(3.52b)

= � 1p
3
� k

1

. (3.52c)

Hence x
1

< 0 and we then see analogously that x
2

= 1/
p
3 + k

2

> 0. We
inductively obtain

(8n 2 N) 0 < x
2n =

1p
3
+ k

2n and 0 > x
2n+1

= � 1p
3
� k

2n+1

. (3.53)

It follows that (�1)nxn ! 1/
p
3; therefore, (xn)1n=1

is divergent.
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3.5 Comparison

We assume that f : H ! R is convex and Fréchet di↵erentiable with a
level set {x 2 H : f(x)  0} 6= ? and that

T = Gf : H ! H : x 7!
8
<

:
x� f(x)

krf(x)k2rf(x), if f(x) > 0,

x, otherwise
(3.54)

is the associated subgradient projector. Then (3.2) turns into

Urx =

8
<

:
x� f(x) + rkrf(x)k

krf(x)k2 rf(x), if f(x) > 0,

x, otherwise
(3.55)

and (3.38) into

xn+1

=

8
<

:
QC

✓
xn � ⌘n

f(xn) + rnkrf(xn)k
krf(xn)k2 rf(xn)

◆
, if f(xn) > 0,

xn, otherwise.
(3.56)

In the algorithmic setting, Polyak uses ⌘n ⌘ ⌘ 2 ]0, 2[ , (e.g. ⌘ = 1.8; see
[50, Section 4.3]). In the present setting, his framework requires

P
n2N r2n =

+1. When C = H, one also has the following similar yet di↵erent update
formula

yn+1

=

8
<

:
yn � ⌘n

f(yn) + "n
krf(yn)k2rf(yn), if f(yn) > 0,

yn, otherwise,
(3.57)

where 0 < infn2N ⌘n  supn2N ⌘n < 2 and ("n)n2N is a strictly decreasing
sequence in R

++

with
P

n2N "n = +1. In this setting, this is also known
as the Modified Cyclic Subgradient Projection Algorithm (MCSPA), which
finds its historical roots in works by Fukushima [34], by De Pierro and Iusem
[47], and by Censor and Lent [22]. Note that MCSPA requires the existence
of a Slater point, i.e., inf f(H) < 0, which is more restrictive than our
assumptions (consider, e.g., the squared distance to the unit ball). Let us
now link the assumption on the parameters of the MCSPA (3.57) to (3.56).

Proposition 3.23. [13, Proposition 5.1] Suppose that H = C is finite-
dimensional, inf f(H) < 0, ⌘n ⌘ 1,

P
n2N rn = +1 and (8n 2 N) "n =

rnkrf(xn)k > 0. Then "n ! 0 and
P

n2N "n = +1.
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Proof. Corollary 3.5 (iv) implies that (xn)1n=1

is bounded. Because rf is
continuous, we obtain that � := supn2N krf(xn)k < +1. By Lemma 3.13,
there exists ↵ 2 R

++

such that if f(xn) > 0, then krf(xn)k � ↵. Hence

(8n 2 N) f(xn) > 0 ) 0 < ↵rn  krf(xn)krn = "n  �rn, (3.58)

and therefore
P

n2N "n = +1.

The following example shows that our assumptions are independent of
those of the MCSPA.

Example 3.24. [13, Example 5.1] Suppose that H = C = R, that f : R !
R : x 7! x2 � 1, that rn = (n + 1)�1 if n is even and rn = n�1/2 if n is
odd, and that ⌘n ⌘ 1. Clearly, rn ! 0 and

P
n2N r2n = +1. However,

("n)n2N := (rn|f 0(xn)|)n2N is not strictly decreasing.

Proof. The sequence (xn)1n=1

is bounded. Suppose that f(xn) > 0 for some
n 2 N. By Example 3.4,

xn+1

= Ur
n

xn =
xn
2

+
1

2xn
� rn sgn(xn). (3.59)

Assume that n is even, say n = 2m, where m � 2, and that 1 < x
2m <

(2m+ 1)/2. Then x
2m > 2x

2m/
p
2m+ 1 and

"
2m = r

2m|f 0(x
2m)| = 2r

2mx
2m =

2x
2m

2m+ 1
. (3.60)

Hence, using (3.59),

x
2m+1

=
x
2m

2
+

1

2x
2m

� r
2m >

x
2m

2
+

1

2m+ 1
� 1

2m+ 1
=

x
2m

2
, (3.61)

and therefore

2x
2m+1

> x
2m >

2x
2mp

2m+ 1
. (3.62)

Thus "
2m+1

= r
2m+1

|f 0(x
2m+1

)| = 2r
2m+1

x
2m+1

. It follows that

"
2m+1

=
2x

2m+1p
2m+ 1

>
2x

2m

2m+ 1
= "

2m (3.63)

and the proof is complete.

We conclude this chapter with a simple experiment.
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Remark 3.25. (Numerical experiment) We compare the performance of our
algorithm to Censor’s modified cyclic subgradient projection algorithm (MC-
SPA), which is another popular method and which has similar update for-
mulas. Suppose that H = C = R and that f : H ! R : x 7! x2 � 1. Let T
be the subgradient projector associated with f .

Then our algorithm (3.38) is reduced to

xn+1

=

(
xn � ⌘n

f(x
n

)+r
n

krf(x
n

)k
krf(x

n

)k2 rf(xn), if f(xn) > 0,

xn, otherwise.
(3.64)

Let ("n)1n=1

✓ R
+

be a monotonically decreasing sequence such that "n ! 0
and

P1
n=1

"n = +1. Censor’s MCSPA in [21] is defined by

xn+1

=

(
xn � ⌘n

f(x
n

)+"
n

krf(x
n

)k2rf(xn), if f(xn) > 0,

xn, otherwise.
(3.65)

We randomly choose 100 starting points in the interval [1, 106]. In the
following table, we record the performance of (3.64) and (3.65) with di↵erent
selections of parameters. The choices of (rn, ⌘n) are for (3.64), and "n is for
MCSPA. Mean and median refer to the number of iterations until the current
iterate is 10�6 feasible. See Table 3.1.

Table 3.1: Performance of the algorithm for f(x) = x2 � 1.

Algorithm for x2 � 1 Mean Median

(rn, ⌘n) =
�
1/(n+ 1), 1

�
11.49 13

(rn, ⌘n) =
�
1/(n+ 1), 2

�
2 2

(rn, ⌘n) =
�
1/
p
n+ 1, 1

�
10.83 12

(rn, ⌘n) =
�
1/
p
n+ 1, 2

�
2 2

"n = 1/(n+ 1) 11.81 13
"n = 1/

p
n+ 1 12.19 13

Now let us instead consider f : H ! R : x 7! 100x2�1. The correspond-
ing data are in the Table 3.2.
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Table 3.2: Performance of the algorithm for f(x) = 100x2 � 1.

Algorithm for 100x2 � 1 Mean Median

(rn, ⌘n) =
�
1/(n+ 1), 1

�
13.29 14

(rn, ⌘n) =
�
1/(n+ 1), 2

�
12 12

(rn, ⌘n) =
�
1/
p
n+ 1, 1

�
17.52 19

(rn, ⌘n) =
�
1/
p
n+ 1, 2

�
105 105

"n = 1/(n+ 1) 15.27 16
"n = 1/

p
n+ 1 15.76 17

We observe that both the step lengths rn and "n and the relaxation
parameter ⌘n have significant impact on the performance of the algorithms.

This chapter gave a new method for finding a fixed point of a cutter,
motivated by Polyak and Crombez’s works. More precisely, our assumptions
on the parameters are more general than existing results. Furthermore, we
provided limiting examples to illustrate that our assumptions can not be
weakened.
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Chapter 4

On Subgradient Projectors

4.1 Overview

This chapter is based on the paper [12]. Most results in this chapter
are new, and some are complementary to work of B. Pauwels [44]. The
results in this chapter are central for the understanding of the subgradi-
ent projector. Fundamental properties such as continuity, nonexpansiveness
and monotonicity are investigated. We also point out that the Yamagishi-
Yamada operator is a subgradient projector of another convex function. We
start with the definition of our key notion: subgradient projector.

Throughout this chapter, we assume that f : H ! R is convex and con-
tinuous, and C := {x 2 H : f(x)  0} 6= ?.

Unless stated otherwise, we assume that s : H ! H is a selection of @f ,
i.e., (8x 2 H) s(x) 2 @f(x). Then the associated subgradient projector is
defined by

(8x 2 X) Gf (x) =

8
<

:
x� f(x)

ks(x)k2 s(x), if f(x) > 0;

x, otherwise.
(4.1)

The subgradient projector is the key ingredient in Polyak’s seminal work
[48] on subgradient projection algorithms, which have since found many ap-
plications; see, e.g., [2] (which deals with subgradient algorithms viewed as
projection algorithms with variable supersets), [6] (which provides a frame-
work for transforming weakly into strongly convergent cutter methods), [20]
(which provides a very nice and recent monograph on cutters, subgradient
projectors and related algorithms), [22] (which introduces the cyclic sub-
gradient projections method for solving systems of convex inequalities), [23]
(which deals with an almost cyclic sequential algorithm for solving a com-
mon fixed point problem of cutters), [24] (which is a book that not only
features subgradient projection algorithms but it also won their authors the
INFORMS Computing Society prize), [26] (which presents a general frame-
work for algorithmically solving feasibility problems especially in signal pro-
cessing), [28] (which is a broad survey on subgradient projection algorithms
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for solving image recovery problems), [29] (which develops the mathematical
theory of the general and fast parallel projection method for image recovery
based on subgradient projectors), [30] (which presents an adaptive level set
method for constrained image recovery relying upon subgradient projectors),
[43] (which introduces a cut that is tighter than the subgradient projector cut
when applied to certain quadratic functions), [49] (which is a seminal book
that includes subgradient methods for the constrained minimization of nons-
mooth functions), [50] (which employs randomly chosen subgradient projec-
tors to solve convex inequalities), [55] (which provides an adaptive projected
subgradient method with applications to machine learning), [56] (which is
not only a review on subgradient projection algorithms for adaptive learn-
ing but it also won the IEEE Signal Processing Society Signal Processing
Magazine Best Paper Award), [58] (which presents a subgradient-projector
based method for solving robust adaptive signal processing problems), [59]
(which features a very general hybrid steepest descent for solving varia-
tional inequalities with applications to convex optimization via subgradient
projectors), [60] (which introduces an adaptive filtering algorithm based on
parallel subgradient projection methods), and the references therein. This
impressive body of (including even award-winning) research, which has also
attracted a significant number of citations and which clearly brought out the
importance of the subgradient projector as an algorithmic building block,
warrants a mathematical study of the subgradient projector and its proper-
ties.

4.2 Basic Properties

Let us record some basic results on subgradient projectors, which are
essentially contained already in [48] and the proofs of which we provide for
completeness.

Fact 4.1. Let x 2 H, and set

H = {y 2 H : hs(x), y � xi+ f(x)  0}. (4.2)

Then the following hold:

(i) f+(x) + hs(x), Gf (x)� xi = 0, where f+(x) = max{f(x), 0}.
(ii) FixGf = C ✓ H.

(iii) Gf (x) = PHx.
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(iv) (Gf is a cutter) (8c 2 C) hc�Gf (x), x�Gf (x)i  0.

(v) (8c 2 C) kx�Gf (x)k2 + kGf (x)� ck2  kx� ck2.
(vi) f+(x) = ks(x)kkx�Gf (x)k.

(vii) If x /2 C, then (8c 2 C) f2
(x)

ks(x)k2 + kGf (x)� ck2  kx� ck2.

(viii) f+(x)(x�Gf (x)) = kx�Gf (x)k2s(x).
(ix) Suppose that f is Fréchet di↵erentiable at x 2 H r C. Then g =

ln �f : H r C ! R is Fréchet di↵erentiable at x and Gf (x) = x �
rg(x)/krg(x)k2.

(x) Suppose that min f(H) = 0 and f is Fréchet di↵erentiable on H with
rf being Lipschitz continuous9 with constant L, that x /2 C, and that
there exists ↵ > 0 such that f(x) � ↵d2C(x). Then d2C(Gf (x)) 
(1� ↵2/L2)d2C(x).

(xi) Suppose that min f(H) = 0, that x /2 C, and that there exists ↵ > 0
such that f(x) � ↵dC(x). Then d2C(Gf (x))  (1� ↵2/ks(x)k2)d2C(x).

Proof. (i): This follows directly from the definition of Gf . Indeed, suppose
x /2 C, we have f(x) > 0, then f+(x) = f(x).

hs(x), Gf (x)� xi = hs(x),� f(x)

ks(x)k2 s(x)i = �f(x), (4.3)

therefore f+(x) + hs(x), Gf (x) � xi = 0. When x 2 C, we have Gf (x) = x
and f(x)  0, then f+(x) = 0, so f+(x) + hs(x), Gf (x)� xi = 0.

(ii): The equality is clear from the definition of Gf . Let z 2 C. By con-
vexity of function or definition of subgradient, we have hs(x), z�xi+f(x) 
f(z)  0 and hence z 2 H.

(iii): Assume first that x 2 C. Then x 2 FixGf ✓ H by (ii) and
hence Gf (x) = x = PHx. Now assume that x /2 H, then x /2 C. Then

9We say an operator T : H ! H is Lipschitz continuous with a constant L if 8x, y 2 H,

kTx� Tyk  Lkx� yk.
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0 < f(x) = f+(x) and s(x) 6= 0. Using the formula of projection onto a
half-space (see [7, Example 28.16]) we have

PHx = x� hs(x), xi � �hs(x), xi � f(x)
�

ks(x)k2 s(x) = x� f(x)

ks(x)k2 s(x) = Gf (x).

(4.4)
(iv): In view of (iii) and Fact 2.40, we have (8h 2 H) hh � PHx, x �

PHxi = hh � Gf (x), x � Gf (x)i  0. Now invoke (ii), for 8c 2 C ✓ H, we
have hc�Gf (x), x�Gf (x)i  0.

(v): This is equivalent to (iv) by definition of cutter.

(vi): Assume first that x 2 C. Then f(x)  0, i.e., f+(x) = 0, and
x = Gf (x) by (ii). Hence the identity is true. Now assume that x /2 C.

Then 0 < f(x) = f+(x) and x�Gf (x) =
f(x)
ks(x)k2 s(x). Taking the norm, we

learn that kx�Gf (x)k = f(x)
ks(x)k =

f+
(x)

ks(x)k .

(vii): Combine (ii), (v), and (vi). If x /2 C, then kx�Gf (x)k = f+
(x)

ks(x)k =
f(x)
ks(x)k . Substitute kx�Gf (x)k into (v).

(viii): This follows from (vi) and the definition of Gf . When x 2 C,
we have x = Gf (x), then equation in (viii) holds. When x /2 C, we have

f+(x) = f(x) > 0 and kx�Gf (x)k = f+
(x)

ks(x)k . By definition of Gf we have

f+(x)(x�Gf (x)) = f+(x)
f+(x)

ks(x)k2 s(x) = kx�Gf (x)k2s(x). (4.5)

(ix): The chain rule implies that rg(x) = rf(x)
f(x) . Hence krg(x)k2 =

krf(x)k2
f2

(x)
and thus x� rg(x)

krg(x)k2 = x� f(x)
krf(x)k2rf(x) = Gf (x).

(x): Let c 2 C. Then rf(c) = 0 and hence krf(x)k = krf(x) �
rf(c)k  Lkx � ck. Hence krf(x)k  LdC(x) and therefore, using (vii),
we obtain

kGf (x)� ck2  kx� ck2 � f2(x)

krf(x)k2  kx� ck2 � ↵2d4C(x)

L2d2C(x)
. (4.6)

Now take the minimum over c 2 C.
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(xi): Using (vii), we have

d2C(Gf (x))  kGf (x)�PCxk2  kx�PCxk2� f2(x)

ks(x)k2  d2C(x)�
↵2d2C(x)

ks(x)k2 .
(4.7)

The proof is complete.

Example 4.2. Suppose that f(x) = kxk, x 2 H. Then rf(x) = x
kxk and

Gf (x) = 0 when x 6= 0.

4.3 Calculus

We now turn to basic calculus rules. It is convenient to introduce the
operator G : H ◆ H, defined by

(8x 2 H) Gx = Gfx = {Gs(x) : s is a selection of @f}, (4.8)

where Gf is the operator occurring in (4.1) for a particular subgradient s.
When f is Gâteaux di↵erentiable outside C, then we will identify G with G.

Proposition 4.3 (Calculus). Let ↵ > 0, let A : H ! H be continuous and
linear such that A⇤A = AA⇤ = Id, and let z 2 H. Furthermore, let (fi)i2I be
a finite family of convex continuous functions on H such that

T
i2I Cf

i

6= ?.
Then the following hold:

(i) Suppose that g = ↵f . Then Cg = Cf and Gg = Gf .

(ii) Suppose that g = f � ↵ Id. Then Cg = ↵�1Cf and Gg = ↵�1Gf � ↵ Id.

(iii) Suppose that f � 0 and that g = f↵ is convex. Then Cg = Cf and
Gg = (1� ↵�1) Id+↵�1Gf .

(iv) Suppose that g = f �A. Then Cg = A⇤Cf and Gg = A⇤ � Gf �A.

(v) Suppose that g : x 7! f(x � z). Then Cg = z + Cf and Gg : x 7!
z + Gf (x� z).

(vi) Suppose that g = maxi2I fi. Then Cg =
T

i2I Cf
i

and if g(x) > 0

and I(x) = {i 2 I : fi(x) = g(x)}, then Gg(x) = {x � g(x)
kx⇤k2x

⇤ : x⇤ 2
conv

S
i2I(x) @fi(x)}.

(vii) Suppose that g = f+. Then Gg = Gf .
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(viii) (Moreau envelope) Suppose that min f(H) = 0 and that
g = f⇤(1/2)k · k2 is the Moreau envelope of f . Then Cg = Cf and

(8x 2 H) Gg(x) =

8
<

:
x� g(x)

kx� Proxf xk2 (x� Proxf x), if f(x) > 0;

x, if f(x) = 0.
(4.9)

Proof. Let x 2 H. We shall only prove one inclusion for the subgradient
projector as the remaining one is proved similarly.

(i): Since ↵ > 0, then g(x)  0 , f(x)  0, it follows that Cg = Cf .
Suppose that f(x) > 0. For sf (x) 2 @f(x), it is easy to have ↵sf (x) 2 @g(x),
we obtain

Gf (x) = x� f(x)

ksf (x)k2 sf (x) = x� g(x)

k↵sf (x)k2 (↵sf (x)). (4.10)

This implies Gf (x) ✓ Gg(x).

(ii): For 8x 2 Cg, then g(x) = f(↵x)  0, we have ↵x 2 Cf . On the
other side, for x 2 Cf , then f(x) = f(↵ x

↵) = g( x↵)  0, then x
↵ 2 Cg. So we

have Cg = Cf . Suppose that g(x) > 0, i.e., f(↵x) > 0. Then

↵�1Gf (↵x) = ↵�1(↵x� f(↵x)

ksf (↵x)k2 sf (↵x)) (4.11)

= x� ↵�1
f(↵x)

ksf (↵x)k2 sf (↵x) (4.12)

= x� f(↵x)

k↵sf (↵x)k2 (↵sf (↵x)) 2 Gg(x). (4.13)

Hence ↵�1Gf (↵x) ✓ Gg(x).

(iii): It is easy to check that Cg = Cf . Suppose that g(x) > 0. Then
f(x) > 0 and

↵�1(x�Gf (x)) = ↵�1
f(x)

ksf (x)k2 sf (x) (4.14)

=
f↵(x)

k↵f↵�1(x)sf (x)k2↵f
↵�1(x)sf (x) 2 x� Gg(x). (4.15)
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(iv): We have x 2 Cg , g(x) = f(Ax)  0 , Ax 2 Cf , A⇤Ax 2 A⇤Cf

, x 2 A⇤Cf . Suppose that g(x) > 0. Then f(Ax) > 0, for sf (Ax) 2
@f(Ax), we have A⇤sf (Ax) 2 @g(x) and

A⇤Gf (Ax) = A⇤(Ax� f(Ax)

ksf (Ax)k2 sf (Ax)) (4.16)

= x� f(Ax)

kA⇤sf (Ax)k2A
⇤sf (Ax) 2 Gg(x). (4.17)

The last equation is using kAxk = kA⇤xk = kxk. Since

kAxk2 = hAx,Axi = hA⇤Ax, xi = hx, xi = kxk2, (4.18)

kA⇤xk2 = hA⇤x,A⇤xi = hAA⇤x, xi = hx, xi = kxk2. (4.19)

(v): We have x 2 Cg , g(x) = f(x�z)  0 , x�z 2 Cf , x 2 z+Cf .
Suppose that 0 < g(x) = f(x� z). Then

z +Gf (x� z) = z +
⇣
x� z � f(x� z)

ksf (x� z)k2 sf (x� z)
⌘
2 Gg(x). (4.20)

(vi): This follows from the well known formula for the subdi↵erential of
a maximum; see, e.g., [45, Proposition 3.38].

(vii): This follows from (vi) since f+ = max{0, f}.
(viii): When x 2 Cf , then f(x)  0.

g(x) = inf
y2H

{f(y) + 1

2
kx� yk2}  f(x) +

1

2
kx� xk2 = f(x)  0.

Then x 2 Cg. On the other side, let x 2 Cg, g(x) = infy2H{f(y) +
1

2

kx � yk2}  0. For 1

2

kx � yk2, it attains its minimum at y = x, we
have infy2H{f(y) + 1

2

kx � yk2} = f(x)  0. So x 2 Cf . When g � 0,
rg = Id�Proxf (see, e.g., [7, Proposition 12.29]), and argmin g = argmin f
(see, e.g., [7, Corollary 17.5]).

4.4 Examples

In this section, we present several illustrative examples.

Example 4.4. Suppose that f = k · k2. Then rf = 2 Id and Gf = 1

2

Id.
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Example 4.5. Suppose that

(8x 2 H) f(x) =

(
1

2

kxk2, if x 2 ball(0; 1);

kxk � 1

2

, otherwise.
(4.21)

Then Gf = 1

2

P
ball(0;1)

and Gf is firmly nonexpansive.

Proof. Let x 2 H. By [9, Example 1.1.1], we have f = k ·k⇤(1/2)k ·k2 is the
Moreau envelope of the norm. Hence it follows from Proposition 4.3 (viii)
that

Gf (x) = x� f(x)

kx� Proxk·k xk2
(x� Proxk·k x) (4.22)

provided that x 6= 0, and Gf (x) = 0 = 1

2

P
ball(0;1)

x if x = 0. Using
[9, Example 1.1.1] and [7, Example 12.25], we have k · k⇤10 = ◆

ball(0;1)

and Proxk·k⇤ = P
ball(0;1)

. Therefore we have Proxk·k = Id�Proxk·k⇤ =
Id�Prox◆ball(0;1) = Id�P

ball(0;1)

. Thus, Id�Proxk·k = P
ball(0;1)

. Assume
now x 6= 0. If 0 < kxk  1, then

Gf (x) = x�
1

2

kxk2
kP

ball(0;1)

xk2Pball(0;1)

(x) = x� kxk2
2kxk2x = 1

2

x = 1

2

P
ball(0;1)

x;

(4.23)
and if 1 < kxk, then

Gf (x) = x� kxk � 1

2

kP
ball(0;1)

xk2Pball(0;1)

(x) (4.24)

= x� kxk � 1

2��x/kxk��2
x

kxk = 1

2

x

kxk = 1

2

P
ball(0;1)

x. (4.25)

Now P
ball(0;1)

is firmly nonexpansive, and hence so is Id�P
ball(0;1)

. It follows
that 2Gf � Id = �(Id�P

ball(0;1)

) is nonexpansive, and therefore that Gf is
firmly nonexpansive.

Proposition 4.6. Let (Ci)i2I be a finite family of closed convex subsets of
H such that C =

T
i2I Ci 6= ? and f = maxi2I dC

i

. Let x 2 H r C, set

10Let f : H ! [�1,+1]. The Fenchel conjugate of f is

f

⇤(u) = sup
x2H

(hx, ui � f(x)) .
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I(x) = {i 2 I : f(x) = dC
i

(x)}, and set Q(x) = conv{PC
i

x}i2I(x). Then

G(x) =
[

q(x)2Q(x)

⇢
x� f2(x)

kx� q(x)k2
�
x� q(x)

��
and Q(x) ✓ conv

�{x}[G(x)�.

(4.26)
If I(x) = {i} is a singleton, then G(x) = {PC

i

x}.
Proof. This follows from Proposition 4.3 (vi) and the fact that rdC

i

(x) =
(x�PC

i

x)/dC
i

(x) when x 2 HrCi. When q(x) 2 Q(x) = conv{PC
i

x}i2I(x),

Proposition 4.7. Let (Ci)i2I be a finite family of nonempty closed convex
subsets of H such that C =

T
i2I Ci 6= ?. Let (�i)i2I be a family in ]0, 1]

such that
P

i2I �i = 1. Let p � 1 and suppose that f =
P

i2I �id
p
C

i

. Set
(8x 2 H) I(x) = {i 2 I : x /2 Ci}. Then 8x 2 H

Gf (x) = x�
P

i2I(x) �id
p
C

i

(x)

p
��P

i2I(x) �id
p�2
C

i

(x)(x� PC
i

x)
��2

X

i2I(x)
�id

p�2
C

i

(x)(x� PC
i

x)

(4.27)
and if p = 2, we rewrite this as

Gf (x) =

8
><

>:

x�
P

i2I �ikx� PC
i

xk2
2
��P

i2I �i(x� PC
i

x)
��2
⇣
x�

X

i2I
�iPC

i

x
⌘
, if x /2 C;

x, otherwise.
(4.28)

Proof. Let x 2 H, and let i 2 I. Then rdC
i

(x) =
x�P

C

i

x

d
C

i

(x) if x /2 Ci and

0 2 @dC
i

(x) otherwise. Hence

rdpC
i

(x) = pdp�2C
i

(x)(x� PC
i

x) (4.29)

if x /2 Ci, and 0 2 @dpC
i

(x) otherwise. The result follows.

Example 4.8. Let p � 1 and suppose that f = dpC . Then

Gf = (1� 1

p) Id+
1

pPC .
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Proof. This follows from Proposition 4.7 when I is a singleton. More pre-
cisely, rf(x) = pdp�1C

x�P
C

x
d
C

x = pdp�2C (x� PCx). When x 2 H\C,

Gf (x) = x� dpC(x)

kpdp�2C (x� PCx)k2
pdp�2C (x� PCx)

= x� d2p�2C (x)

p2d2p�4C (x)kx� PCxk2
p(x� PCx)

= x� d2p�2C (x)

p2d2p�4C (x)d2C(x)
p(x� PCx)

= x� 1

p
(x� PCx)

= (1� 1

p
)x+

1

p
PCx.

Example 4.9. Suppose that u 2 H satisfies kuk = 1, and let � 2 R. Then
the following hold:

(i) If f : x 7! |hu, xi � �|, then C = {x 2 H : hu, xi = �} and Gf : x 7!
x� (hu, xi � �)u.

(ii) If f : x 7! hu, xi � �, then C = {x 2 H : hu, xi  �} and Gf : x 7!
x� (hu, xi � �)+u.

Proof. (i):By using the formula of projection onto a hyperplane in [7, Ex-

ample 3.21], then dC(x) = kx� PCxk = kx� (x� hu,xi��
kuk2 u)k = |hu, xi � �|,

so we have f = dC and hence Gf = PC by Example 4.8.
(ii): Note that f+ = dC and hence Gf = PC by Proposition 4.3 (vii) and
Example 4.8.

We now give an example in which Gf is positively homogenenous but
not necessarily linear.

Example 4.10. Let K be a nonempty closed convex cone with polar cone
K , and suppose that f : x 7! 1

2

hx, PKxi. Then Gf = Id�1

2

PK = PK +
1

2

PK .

Proof. By Moreau’s conical decomposition (see [7, Theorem 6.29]), let x 2
H, we have

x = PKx+ PK x and hPKx, PK xi = 0.
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Then
hx, PKxi = hPKx+ PK x, PKxi = kPKxk2.

So f(x) = 1

2

kPKxk2 = 1

2

kx � PK xk2 = 1

2

d2K (x). By using [7, Corollary
12.30] it follows that rf(x) = x� PK x = PKx. Then

Gf (x) = x� f(x)

krf(x)k2rf(x)

= x�
1

2

kPKxk2
kPKxk2 PKx

= x� 1

2
PKx

= (PKx+ PK x)�
1

2
PKx

= PK x+ 1

2

PKx.

A direct verification yields the following result which is known when
p = 2 (see [27] and [29]).

Proposition 4.11. Let Y be another real Hilbert space, let A : H ! Y be
continuous and linear, let b 2 Y , and let " � 0, and let p � 1. Suppose that
(8x 2 H) f(x) = kAx� bkp� "p and that C = {x 2 H : kAx� bk  "} 6= ?.
Then 8x 2 H

Gf (x) =

8
<

:
x� kAx� bkp � "p

pkAx� bkp�2kA⇤(Ax� b)k2A
⇤(Ax� b), if kAx� bk > ";

x, otherwise.
(4.30)

4.5 Continuity of Gf vs Fréchet di↵erentiability
of f

In this section, we investigate the continuity of Gf , which is a desir-
able property when Gf is used as an operator in an algorithm. It turns
out that strong-to-strong continuity of Gf corresponds precisely to Fréchet
di↵erentiability of f . We start with a technical result.

Lemma 4.12. Let (xn)1n=1

be a sequence in H converging weakly to x̄ such
that xn �Gf (xn) ! 0. Suppose that one of the following holds:
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4.5. Continuity of Gf vs Fréchet di↵erentiability of f

(i) there exists � > 0 such that (xn)1n=1

lies eventually in ball(x̄, �) and
� := sup k@f(ball(x̄; �))k < +1.

(ii) xn ! x̄.

(iii) f is bounded on every bounded subset of H.

Then x̄ 2 C.

Proof. If (i) is true : Without loss of generality, we assume that

(8n 2 N) ks(xn)k  �. (4.31)

Since f+ is weakly lower semicontinuous, by using Fact 4.1(vi), we have

f+(x̄)  lim inf f+(xn)  � lim inf kxn �Gf (xn)k = 0,

then f(x̄)  0, i.e., x̄ 2 C.
Suppose (ii) holds: Since xn ! x̄, by definition of convergence of the se-
quence, 8✏ > 0, there exists N 2 N such that

xn 2 ball(x̄, ✏) (4.32)

when n > N . Moreover, f is continuous at x̄, by using [7, Proposition
16.14(iii)], there exists � 2 R

++

such that @f(ball(x̄; �)) is bounded. In
(4.32), let ✏ = �, we have (ii) ) (i).
Assume (iii) holds: By assumption, (xn)1n=1

converges weakly to x̄. Fact 2.24
gives (xn) is bounded. Then there exists � > 0 such that xn 2 ball(x̄, �) be-
cause f is bounded on every bounded subset of H. Applying the equivalence
of (i) and (iii) in [7, Proposition 16.17], we have dom @f = H and @f maps
every bounded subset of H to a bounded set. For ball(x̄, �), it is a bounded
subset of H. Thus @f(ball(x̄; �)) is also bounded. Hence (iii)) (i).

Remark 4.13. Lemma 4.12 and Fact 4.1(ii) imply that Gf is fixed-point
closed at x̄ (see, e.g., also [20, Theorem 4.2.7] or [4]), i.e., if xn ! x̄ and
xn �Gf (xn) ! 0, then x̄ = Gf (x̄).

Proposition 4.14. Gf is continuous at every point in C.

Proof. Let x̄ 2 C, and let (xn)1n=1

be a sequence in H converging to x̄. The
result is clear if (xn)1n=1

lies in C, so we can and do assume that (xn)1n=1

lies in HrC. Then (8n 2 N) f(xn)  f(x̄)� hs(xn), x̄� xni  hs(xn), xn �
x̄i  ks(xn)kkx̄ � xnk. Hence 0 < f(xn)/ks(xn)k  kx̄ � xnk ! 0. By
Fact 4.1(vi), xn �Gf (xn) ! 0. Thus limGf (xn) = limxn = x̄ = Gf (x̄) by
using Fact 4.1(ii).
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The continuity of Gf outside C is more delicate.

Fact 4.15. (Smulyan) (See, e.g., [18, Proposition 6.1.4].) The following
hold:

(i) f is Fréchet di↵erentiable at x̄ , s is (strong-to-strong) continuous at
x̄.

(ii) f is Gâteaux di↵erentiable at x̄ , s is strong-to-weak continuous at
x̄.

Lemma 4.16. Suppose that x̄ 2 HrC, that Gf is strong-to-weak continuous
at x̄, but Gf is not strong-to-strong continuous at x̄. Then f is not Gâteaux
di↵erentiable at x̄.

Proof. There exists a sequence (xn)1n=1

in Hr C such that xn ! x̄,
Gf (xn)*Gf (x̄) yet Gf (xn) 6! Gf (x̄). It follows that

xn �Gf (xn)* x̄�Gf (x̄) and xn �Gf (xn) 6! x̄�Gf (x̄). (4.33)

By the Kadec–Klee property11ofH, kxn�Gf (xn)k 6! kx̄�Gf (x̄)k. Since k·k
is weakly lower semicontinuous, we assume (after passing to a subsequence
and relabeling if necessary) that

kx̄�Gf (x̄)k < ⌘ := lim
n2N

kxn �Gf (xn)k. (4.34)

Using Fact 4.1 (viii), it follows that

s(xn) = f(xn)
xn �Gf (xn)

kxn �Gf (xn)k2 (4.35)

* f(x̄)
x̄�Gf (x̄)

⌘2
(4.36)

6= f(x̄)
x̄�Gf (x̄)

kx̄�Gf (x̄)k2 (4.37)

= s(x̄). (4.38)

Thus, s is not strong-to-weak continuous at x̄. It follows now from Fact 4.15
(ii) that f is not Gâteaux di↵erentiable at x̄.

Theorem 4.17. Let x̄ 2 Hr C. Then the following are equivalent:

11 Kadec–Klee property is a sequence (y
n

)
n2N in H converges to ȳ if and only if y

n

* ȳ

and ky
n

k ! kȳk.
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4.6. Continuity of Gf vs Gâteaux di↵erentiability of f

(i) f is Fréchet di↵erentiable at x̄.

(ii) Gf is (strong-to-strong) continuous at x̄.

(iii) f is Gâteaux di↵erentiable at x̄ and Gf is strong-to-weak continuous
at x̄.

Proof. (i))(ii): By Fact 4.15 (i), s is continuous at x̄. It follows from the
definition of Gf that Gf is continuous at x̄ as well.

(i)((ii): In view of Fact 4.1 (viii), we have s(x) = f(x)(x�Gf (x))/kx�
Gf (x)k2 for all x su�ciently close to x̄. Hence s is continuous at x̄ and
therefore f is Fréchet di↵erentiable at x̄ by Fact 4.15 (i).

(i))(iii) and (ii))(iii): This is clear since (i),(ii) by the above.

(iii))(ii): Suppose to the contrary that Gf is not strong-to-strong con-
tinuous. Then, by Lemma 4.16, f is not Gâteaux di↵erentiable at x̄ which
is absurd.

Corollary 4.18. (continuity) Gf is continuous everywhere if and only if f
is Fréchet di↵erentiable on Hr C.

Proof. Combine Proposition 4.14 with Theorem 4.17.

Example 4.19. Suppose that H = R and that f(x) = max{�x, x, 2x� 1}
(8x 2 R). Then C = {0} and f is not di↵erentiable at 1; consequently, by
Corollary 4.18, Gf is not continuous at 1.

Remark 4.20. (weak-to-weak continuity) It is unrealistic to expect that Gf

is weak-to-weak continuous even when f is Fréchet di↵erentiable; see [4,
Example 3.2 and Remark 3.3.(ii)].

4.6 Continuity of Gf vs Gâteaux di↵erentiability
of f

In view of Fact 4.15 and Corollary 4.18, it is now tempting to conjecture
thatGf is strong-to-weak continuous if and only if f is Gâteaux di↵erentiable
on H r C. Perhaps somewhat surprisingly, this turns out to be wrong.
The counterexample is based on an ingenious construction by Borwein and
Fabian [15].
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4.6. Continuity of Gf vs Gâteaux di↵erentiability of f

Example 4.21. (Borwein–Fabian) (See [15, Proof of Theorem 4].) Suppose
that H is infinite-dimensional. Then there exists a function b : H ! R such
that the following hold:

(i) b is continuous, convex and min b(H) = b(0) = 0.

(ii) b is Fréchet di↵erentiable on Hr {0}.
(iii) b is Gâteaux di↵erentiable at 0, and rb(0) = 0.

(iv) b is not Fréchet di↵erentiable at 0.

Example 4.22. (lack of strong-to-weak continuity) Let b be as in Exam-
ple 4.21. Then there exists y 2 H such that rb(y) 6= 0. Suppose that

(8x 2 H) f(x) = b(x)� hrb(y), xi � 1

2

�
b(y)� hrb(y), yi�. (4.39)

Then the following hold:

(i) f is Gâteaux di↵erentiable (but not Fréchet di↵erentiable) at 0, and
Gf is not strong-to-weak continuous at 0.

(ii) f is Fréchet di↵erentiable on Hr{0}, and Gf is continuous on Hr{0}.
Proof. By Example 4.21 (iii), 0 2 ranrb. If {0} = ranrb, then we would
deduce that b is constant and therefore Fréchet di↵erentiable; in turn, this
would contradict Example 4.21 (iv). Hence {0} $ ranrb and there exists
y 2 H such that

v = rb(y) 6= 0. (4.40)

Now set
g : H ! R : x 7! b(x)� hv, xi. (4.41)

Then
(8x 2 H) f(x) = g(x)� 1

2

g(y), (4.42)

and g(0) = b(0) � hv, 0i = 0 by Example 4.21 (i). Example 4.21 (iii) and
(4.40) yield rg(0) = rb(0) � v = �v 6= 0 while rg(y) = rb(y) � v = 0.
Hence min g(H) = g(y) < g(0) = 0 and therefore

f(y) = min f(H) = min g(H)� 1

2

g(y) = 1

2

g(y) < 0 < 0� 1

2

g(y) = f(0).
(4.43)

Thus y 2 C while 0 /2 C.
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4.7. Gf as an accelerated mapping

(i): On the one hand, since b is not Fréchet di↵erentiable at 0 (Exam-
ple 4.21 (iv)), neither is f . On the other hand, since b is Gâteaux di↵eren-
tiable at 0 (Example 4.21 (iii)), so is f . Altogether, f is Gâteaux di↵eren-
tiable, but not Fréchet di↵erentiable at 0. Therefore, by Theorem 4.17, Gf

is not strong-to-weak continuous at 0.
(ii): Since b is Fréchet di↵erentiable on H r {0} (Example 4.21 (ii)), so

is f . Now apply Theorem 4.17.

4.7 Gf as an accelerated mapping

In this section, we consider the case when f is a power of a quadratic
form. We link Gf to the accelerated mapping corresponding to a linear
operator. This mapping can significantly speed up convergence of algorithms
(see [8]).

Proposition 4.23. Suppose that f : x 7! phx,Mxip, where p � 1 and
M : H ! H be continuous, linear, self-adjoint, and positive. Then Gf is
continuous everywhere and

(8x 2 H) Gf (x) =

8
<

:
x� hx,Mxi

pkMxk2Mx, if Mx 6= 0;

x, if Mx = 0.
(4.44)

Proof. Assume first that p = 1. Since M has a unique positive square root,
i.e., there exists12 B : H ! H such that B is continuous, linear, self-adjoint,
and positive, and kerB = kerM . Hence (8x 2 H) f(x) =

phx,Mxi =
kBxk so f is indeed convex and continuous. If x 2 H r kerM = H r
kerB, then f is Fréchet di↵erentiable at x with rf(x) = B⇤Bx/kBxk =
Mx/kBxk; hence,

Gf (x) = x� kBxk
kMxk2/kBxk2

Mx

kBxk = x� kBxk2
kMxk2Mx = x� hx,Mxi

kMxk2 Mx

(4.45)
and Gf is continuous everywhere by Corollary 4.18. If p > 1, then the result
follows from the above and Proposition 4.3 (iii).

12See, e.g., [36, Theorem 9.4-2], where this is stated in a complex Hilbert space; however,
the proof works unchanged in our real setting as well.
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4.7. Gf as an accelerated mapping

Example 4.24. Let A : H ! H be linear, self-adjoint, and nonexpansive.
Suppose that (8x 2 H) f(x) =

phx, x�Axi. Then Gf is positively homo-
geneous, continuous everywhere, and

(8x 2 H) Gf (x) =

8
<

:
x� hx, x�Axi

kx�Axk2 (x�Ax), if Ax 6= x;

x, if Ax = x.
(4.46)

Proof. Use Proposition 4.23 with M = Id�A and p = 1.

Remark 4.25. (accelerated mapping) Let A : H ! H be linear, nonexpan-
sive, and self-adjoint. In [8], the authors study the accelerated mapping13

of A, i.e.,

x 7! txAx+ (1� tx)x, where tx =

8
<

:

hx, x�Axi
kx�Axk2 , if x 6= Ax;

1, otherwise.
(4.47)

In view of the Example 4.24, the accelerated mapping of A is precisely the
subgradient projector Gf of the function x 7! phx, x�Axi. Now suppose
that H = `2(N), let (en)n2N be the standard orthonormal basis of H, and
suppose that

A : H ! H : x 7!
X

n2N

n
n+1

hen, xien. (4.48)

This A is linear, self-adjoint and nonexpansive. Indeed, linearity is obviously
from the constrcution of A. A is self-adjoint because (8x, y 2 H)

hAx, yi = h
X

n2N

n
n+1

hen, xien, yi =
X

n2N

n
n+1

xnyn = hx,Ayi.

For the nonexpansiveness of A, we will use Bessel inequality. For every

13In fact, the operator A in [8] need not necessarily be self-adjoint.
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4.8. Nonexpansiveness

x, y 2 H, then

kAx�Ayk2 = kA(x� y)k2 (since A is linear)

=

�����
X

n2N

n
n+1

hen, x� yien
�����

2

= h
X

n2N

n
n+1

hen, x� yien,
X

n2N

n
n+1

hen, x� yieni

=
X

n2N

⇣
n

n+1

⌘
2 hen, x� yi2


X

n2N
hen, x� yi2

 k(x� y)k2 (using Bessel inequality)

 kx� yk2.
Thus A defined in (4.48) is nonexpansive. By using Example 4.24, then Gf

is continuous; however, Gf is neither linear nor uniformly continuous (see
the [8, Remark following Lemma 3.8]).

4.8 Nonexpansiveness

We now discuss when Gf is (firmly) nonexpansive or monotone. These
properties occur when studying resolvents, subdi↵erentials and gradients.
For instance, every resolvent and every proximal mapping is firmly non-
expansive; subdi↵erential (or gradient) operators of convex functions are
monotone. However, these properties are not automatic for subgradient
projectors as we will see in this section.

Proposition 4.26. Suppose that f is Gâteaux di↵erentiable on HrC and
that Gf is firmly nonexpansive. Then Gg is likewise in each of the following
situations:

(i) ↵ > 0, and g = f � ↵ Id is convex.

(ii) f � 0, ↵ � 1, and g = f↵ is convex.

(iii) A : H ! H is continuous and linear, AA⇤ = A⇤A = Id, and g = f �A.

(iv) z 2 H and g : x 7! f(x� z).

The analogous statement holds when Gf is assumed to be nonexpansive.
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4.8. Nonexpansiveness

Proof. This follows from the corresponding items in Proposition 4.3, which
do preserve (firm) nonexpansiveness.

On the real line, we obtain a simpler test.

Proposition 4.27. Suppose that H = R and that f is twice di↵erentiable
on H r C. Then Gf is monotone. Moreover, Gf is (firmly) nonexpansive
if and only if

(8x 2 R) f(x)f 00(x)  �f 0(x)�2. (4.49)

Proof. By Corollary 4.18, Gf is continuous. Let x 2 Rr C. Then Gf (x) =
x � f(x)/f 0(x) and hence G0f (x) = f(x)f 00(x)/(f 0(x))2 � 0. It follows that
Gf is increasing on R r C and hence on R. Furthermore, Gf is (firmly)
nonexpansive if and only if G0f (x)  1, which gives the remaining character-
ization.

Example 4.28. Suppose that H = R, let ↵ > 0, and suppose that (8x 2 R)
f(x) = xn � ↵, where n 2 {2, 4, 6, 8, . . .}. Then Gf is firmly nonexpansive.

Proof. If x 2 R r C, then (f 0(x))2 � f(x)f 00(x) = nxn�2(↵n+ xn � ↵) > 0
and we are done by Proposition 4.27.

Example 4.29. Suppose that H = R and that f : x 7! exp(|x|)� 1. Then
(8x 2 H) Gf (x) = x� sgn(x)(1� exp(�|x|)) and G0f (x) = 1� exp(�|x|) 2
[0, 1[. It follows that Gf is firmly nonexpansive14.

Example 4.30. Suppose that H = R and that f : x 7! exp(x2) � 1. Then
Gf is not (firmly) nonexpansive. Indeed, we compute (f 0(x))2�f(x)f 00(x) =
4x2 exp(x2)+2 exp(x2)�2 exp(2x2), which strictly negative when |x| > 1.2.
Now apply Proposition 4.27.

Proposition 4.31. Suppose that H = R and that f is twice di↵erentiable,
that min f(H) = 0, that g = f⇤(1/2)| · |2, and that 2ff 00  (2 + f 00)(f 0)2.
Then Gg is firmly nonexpansive.

Proof. We start by observing a couple of facts. First,

g0 = Id�Proxf . (4.50)

14Since G is monotone by Proposition 4.27, its antiderivative x 7! 1
2x

2�|x|�exp(�|x|) is
convex — although this does not look like convex function on first glance! It is interesting
to do this also for other instances of f .
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4.8. Nonexpansiveness

Fix x 2 R. Recall y := Proxf (x) is a minimizer of

z 7! f(z) +
1

2
|x� z|2.

Then we have
0 2 @f(y)� (x� y).

Since f is di↵erentiable, so we have

x = y + f 0(y). (4.51)

Because (y+f 0(y))0 = 1+f 00(y) > 0. If we view x as a function of y in (4.51),
we have x(y) is di↵erentiable. By the Inverse Function Theorem15, we con-
clude that y as a function of x is di↵erentiable. Hence implicit di↵erentiation
gives

1 = y0(x) + f 00(y)y0(x) = y0(x)(1 + f 00(y(x))).

Hence y0 = 1

1+f 00(y(x)) and thus

g00(x) =
�
Id�Proxf

�0
(x) = 1� 1

1 + f 00(Proxf (x))
=

f 00
�
Proxf (x)

�

1 + f 00
�
Proxf (x)

� .

(4.52)
In view of Proposition 4.27 and because g(x) = f(Proxf (x)) + (1/2)(x �
Proxf (x))2 we must verify that gg00  (g0)2, i.e.,

�
f(Proxf (x)) +

1

2

(x� Proxf (x))2
�
f 00
�
Proxf (x)

�

1 + f 00
�
Proxf (x)

�  �x� Proxf (x)
�
2

.

(4.53)
Again writing y = Proxf (x) gives x � y = f 0(y) and so see that (4.53) is
equivalent to �

f(y) + 1

2

(f 0(y))2
�
f 00(y)

1 + f 00(y)
 �f 0(y)�2. (4.54)

Actually, (4.54) is equivalent to our assumption on f . Indeed, (8y 2 R)
15The Inverse Function Theorem: (see [33, Theorem 1A.1] on page 10) Let f : Rn !

Rn be continuously di↵erentiable on some open set containing x0. Suppose that the
determinant of Jacobian of f(x0) does not equal to 0. Then there exists an open set V

containing x0 and an open set U containing f(x0) such that f : V ! U ha a continuous
inverse f

�1 : U ! V which is di↵erentiable.
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4.9. The decreasing property

�
f(y) + 1

2

(f 0(y))2
�
f 00(y)

1 + f 00(y)
 �f 0(y)�2 (4.55)

,�f(y) + 1

2

(f 0(y))2
�
f 00(y)  (1 + f 00(y))(f 0)2 (4.56)

,f(y)f 00(y)  (1 +
1

2
f 00(y))(f 0(y))2 (4.57)

,2f(y)f 00(y)  (2 + f 00(y))(f 0(y))2. (4.58)

Therefore, by Proposition 4.27, Gg is firmly nonexpansive.

We conclude this section with a result on the range of Id�Gf .

Proposition 4.32. We have ran(Id�Gf ) ✓ cone ran @f ✓ (recC) .

Proof. Let y⇤ 2 ran @f . Then there exists y 2 dom @f such that y⇤ 2 @f(y).
Let c 2 C and x 2 recC. Then (c + nx)n2N lies in C. Hence (8n � 1)
0 � f(c+ nx) � f(y) + hy⇤, c+ nx� yi. Then

hy⇤, xi  hy⇤, y � ci � f(y)

n
! 0 as n ! +1. (4.59)

It follows that y⇤ 2 (recC) . Recall that recC is actually a cone. Thus,
cone ran @f ✓ (recC) . Let z 2 Hr C and z⇤ = s(z) 2 @f(z), we have

z �Gf (z) =
f(z)

kz⇤k2 z
⇤ 2 cone ran @f.

Therefore, ran(Id�Gf ) ✓ cone ran @f ✓ (recC) .

4.9 The decreasing property

We say that f has the decreasing property if

(8x 2 H) sup f(Gx)  f(x). (4.60)

This property is interesting in the context of applying subgradient projectors
as building blocks for algorithms. To investigate the decreasing property,
it su�ces to consider points outside C.

Proposition 4.33. If (8x 2 H) Gf (x) 2 conv({x} [ C), then f has the
decreasing property.
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4.9. The decreasing property

Proof. Let x 2 H r C. Then there exists c 2 C and � 2 [0, 1] such that
Gf (x) = (1 � �)x + �c. It follows that f(Gf (x))  (1 � �)f(x) + �f(c) 
(1� �)f(x)  f(x).

Lemma 4.34. Let (x, y, z) 2 R3 be such that x 6= z and (z� y)(x� y)  0.
Then y 2 conv{x, z}.
Proof. Suppose first that z < x. If y > x, then (z � y)(x � y) > 0 because
it is the product of two strictly negative numbers. Similarly, if y < z, then
(z � y)(x� y) > 0. We deduce that y 2 [z, x]. Analogously, when x < z, we
obtain that y 2 [x, z]. In either case, y 2 conv{x, z}.

The next result shows that G is particularly well behaved on the real
line.

Corollary 4.35. Suppose that H = R. Then f has the decreasing property.

Proof. Let x 2 R r C. Then x 6= PCx and, by Fact 4.1 (iv), (PCx �
Gf (x))(x � Gf (x))  0. Lemma 4.34 thus yields Gf (x) 2 conv{x, PCx}.
Hence Gf (x) 2 conv({x} [ C), and we are done by Proposition 4.33.

The next example shows that the decreasing property is not automatic.

Example 4.36. Suppose that H = R2, that C
1

= R ⇥ {0}, that C
2

=
{(⇠, ⇠) 2 H : ⇠ 2 R}, and that f = max{dC1 , dC2}. Then f does not have
the decreasing property.

Proof. Set x = (2, 1). Then, using Proposition 4.6, we obtain that Gf (x) =
(2, 0) and f(x) = 1 <

p
2 = f(Gf (x)).

We now illustrate that the su�cient condition of Proposition 4.33 is not
necessary:

Example 4.37. Suppose that H = R2 and that (8x = (x
1

, x
2

) 2 R2)
f(x) = |x

1

| + |x
2

|. Then f has the decreasing property, G2

f (x) = (0, 0) yet

Gf (x) /2 conv{(0, 0), x} for almost every x 2 R2. Furthermore, Gf is not
monotone.

Proof. We have lev
0

f = {(0, 0)} and

Gf (x1, x2) =

8
>>>>><

>>>>>:

⇣ |x1|�|x2|
2|x1| x

1

, |x2|�|x1|
2|x2| x

2

⌘
if x

1

6= 0, x
2

6= 0,
⇣
� s|x2|

s2+1

, s2

s2+1

x
2

⌘
if x

1

= 0, x
2

6= 0,
⇣

s2

s2+1

x
1

,� s|x1|
s2+1

⌘
if x

1

6= 0, x
2

= 0,

(0, 0) if x
1

= x
2

= 0,

(4.61)

63



4.9. The decreasing property

where s 2 [�1, 1] depends on x.
In particular, when x

1

x
2

> 0,

Gf (x1, x2) =

✓
x
1

� x
2

2
,
x
2

� x
1

2

◆

so it is a projection on R(1,�1).
When x

1

x
2

< 0,

Gf (x1, x2) =

✓
x
1

+ x
2

2
,
x
1

+ x
2

2

◆

so it is a projection on R(1, 1).

(i) f has the decreasing property.
When x

1

6= 0, x
2

6= 0, then

f(Gf (x1, x2)) = ||x
1

|� |x
2

||  |x
1

|+ |x
2

| = f(x
1

, x
2

).

When x
1

= 0, x
2

6= 0, we have

f(Gf (x1, x2)) =
|sx

2

|
s2 + 1

+
s2|x

2

|
s2 + 1

=
(|s|+ s2)|x

2

|
s2 + 1

 |x
2

| = f(0, x
2

).

When x
1

6= 0, x
2

= 0, we have

f(Gf (x1, x2)) =
(s2 + |s|)|x

1

|
s2 + 1

 |x
1

| = f(x
1

, 0).

(ii) Gf (x) /2 conv{(0, 0), x} for almost every x 2 R2.
Indeed, [(x

1

, x
2

), (0, 0)] = {�(x
1

, x
2

) : 0  �  1}.
When (x

1

, x
2

) 2 R2r
⇣
R(1, 0)[R(0, 1)[R(1, 1)[R(1,�1)

⌘
, we have

|x
1

| 6= |x
2

| so that

|x
1

|� |x
2

|
2|x

1

|
|x

2

|� |x
1

|
2|x

2

| < 0

then

Gf (x1, x2) =

✓ |x
1

|� |x
2

|
2|x

1

| x
1

,
|x

2

|� |x
1

|
2|x

2

| x
2

◆
62 [(x

1

, x
2

), (0, 0)].
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4.9. The decreasing property

Moreover,

G2

f (x1, x2) (4.62)

= Gf (Gf (x1, x2)) = (4.63)
0

BB@

���|x1|�|x2|
���

2

�
���|x2|�|x1|

���
2���|x

1

|� |x
2

|
���

|x
1

|� |x
2

|
2|x

1

| ,

���|x2|�|x1|
���

2

�
���|x1|�|x2|

���
2���|x

2

|� |x
1

|
���

|x
2

|� |x
1

|
2|x

2

|

1

CCA

(4.64)

= (0, 0). (4.65)

(iii) Gf is not monotone.
Let x = (�1, 3) and y = (1, 3). Referring to (4.61), we have

Gf (x) =

✓
1� 3

2
(�1),

3� 1

6
3

◆
= (1, 1)

and

Gf (y) =

✓
1� 3

2
,
3� 1

6
3

◆
= (�1, 1).

Hence hx � y,Gf (x) � Gf (y)i = h(�2, 0), (2, 0)i = �4 < 0, so Gf is
not monotone.

Remark 4.38. (infeasibility detection) Using the decreasing property, one
obtains a su�cient condition for infeasibility: Suppose that H = R and we
find a point x such that f(Gf (x)) > f(x). Then C must be empty because
of Corollary 4.35. For instance, suppose that f : x 7! x2 + 1. Then

(8x 2 Rr {0}) Gf (x) = (x2 � 1)/(2x). (4.66)

Now set x = 1/2. Then Gf (x) = �3/4 and f(Gf (x)) = 25/16 > 5/4 = f(x).
It is known since the 19th century that the concrete instance (4.66) exhibits
chaotic behaviour; see, e.g., [38, Problem 7-a on page 72].

Remark 4.39. (Newton iteration) Suppose that H = R and that f is di↵er-
entiable on X r C. Then

(8x 2 Rr C) Gf (x) = x� f(x)
�
f 0(x)

�
2

f 0(x) = x� f(x)

f 0(x)
(4.67)

is the same as the Newton operator for finding a zero of f !
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4.9. The decreasing property

The decreasing property is preserved in certain cases:

Proposition 4.40. Suppose that f has the decreasing property. Then the
following hold:

(i) If ↵ > 0, then ↵f has the decreasing property.

(ii) If ↵ � 1, then (f+)↵ has the decreasing property.

Proof. Let x 2 Hr C.
(i): Let ↵ > 0. (↵f)G↵f (x) = (↵f)Gf (x) and hence sup(↵f)(G↵f (x)) =
↵ sup f(Gf (x))  ↵f(x) = (↵f)(x) by Proposition 4.3 (i).

(ii): Set g = (f+)↵ and � = 1/↵. Then 0 < �  1 and Gg(x) =
(1��)x+�Gf (x) by Proposition 4.3 (iii). Hence sup g(Ggx)  (1��)g(x)+
� sup g(Gfx). On the other hand, since f has the decreasing property, then

f(Gfx)  f(x), then g(Gfx) =
⇣
f+(Gfx)

⌘↵ 
⇣
f+(x)

⌘↵
= g(x), thus

sup g(Gf (x))  g(x). Altogether, sup g(Ggx)  g(x), i.e., g is decreasing.

The following result is complementary to the decreasing property.

Proposition 4.41. Suppose that f is strictly convex at x 2 H and f(x) > 0.
Then f(Gf (x)) > 0.

Proof. Recall that f is strictly convex at x if (8y 2 H r {x}) (8� 2 ]0, 1[)
f((1��)x+�y) < (1��)f(x)+�f(y). Arguing as in [18, proof of Proposi-
tion 5.3.4 (a)], we see that 1

2

hs(x), Gf (x)�xi = hs(x), (1
2

x+ 1

2

Gf (x))�xi 
f(1

2

x+ 1

2

Gf (x))� f(x) < 1

2

f(x) + 1

2

f(Gf (x))� f(x) = 1

2

(f(Gf (x))� f(x)).
Therefore, f(Gf (x)) > f(x) + hs(x), Gf (x)� xi = 0 using Fact 4.1 (i).

Remark 4.42. Suppose that f is strictly convex. Then Proposition 4.41
shows that iterating Gf starting at a point outside C will never reach C
in finitely many steps. This is clearly illustrated by Example 4.8, which
shows that the function dC , even though it is neither strictly convex nor
di↵erentiable everywhere, performs best because Gf = PC yields a solution
after just one step.
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1

, x
2

) = |x
1

|p + |x
2

|p

4.10 The subgradient projector of
f(x1, x2) = |x1|p + |x2|p

This section contains a case study. It reveals that the various properties
of Gf can exhibit complicated behaviour.

The following result complements Example 4.37.

Proposition 4.43. Suppose that H = R2 and that f : (x
1

, x
2

) 7! |x
1

|p +
|x

2

|p, where p > 1, and let x = (x
1

, x
2

) 2 R2 r {(0, 0)}. Then Gf (x) is

 
x
1

�
�|x

1

|p + |x
2

|p�|x
1

|p�1 sgn(x
1

)

p
�|x

1

|2p�2 + |x
2

|2p�2� , x
2

�
�|x

1

|p + |x
2

|p�|x
2

|p�1 sgn(x
2

)

p
�|x

1

|2p�2 + |x
2

|2p�2�
!

(4.68)
and the following hold:

(i) If p � 2, then f(x) � f(Gf (x)) � (1� 2p�1)pf(x).

(ii) If 1 < p  2, then f(x) � f(Gf (x)) � 2�1(1� p�1)pf(x).

(iii) If 1 < p < 2, then Gf is not monotone.

Proof. The formula (4.68) is a direct verification. More precisely, since

rf(x
1

, x
2

) = (p|x
1

|p�1 sgn(x
1

), p|x
2

|p�1 sgn(x
2

)). (4.69)

When x
1

= 0, x
2

6= 0, we have rf(0, x
2

) = (0, p|x
2

|p�1 sgn(x
2

)) from above
formula, then we have

Gf (0, x2) = (0, (1� 1/p)x
2

).

As p > 1, so we have

f(Gf (0, x2)) = 0 + (1� 1/p)p|x
2

|p = (1� 1/p)pf(0, x
2

)  |x
2

|p  f(x
1

, x
2

).

The proof for x
1

6= 0 and x
2

= 0 is similar. Hence (i) (ii) hold when x
1

= 0
or x

2

= 0. Consequently, we assume that x
1

6= 0 and x
2

6= 0. Thus (4.69)
gives Gf (x), which is

 
x
1

�
�|x

1

|p + |x
2

|p�|x
1

|p�1 sgn(x
1

)

p
�|x

1

|2p�2 + |x
2

|2p�2� , x
2

�
�|x

1

|p + |x
2

|p�|x
2

|p�1 sgn(x
2

)

p
�|x

1

|2p�2 + |x
2

|2p�2�
!

(4.70)
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, x
2

) = |x
1

|p + |x
2

|p

Now (4.70) gives f(Gf (x1, x2)) =

|x
1

|p
����1�

(|x
1

|p + |x
2

|p)|x
1

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

+ |x
2

|p
����1�

(|x
1

|p + |x
2

|p)|x
2

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

.

(4.71)
Define

ci(x1, x2) =

�|x
1

|p + |x
2

|p�|xi|p�2
p
�|x

1

|2p�2 + |x
2

|2p�2� ,

for i = 1, 2.

(i): If p � 2. Note that

f(Gf (x)) = |x
1

|p��1� c
1

��p + |x
2

|p��1� c
2

��p. (4.72)

When |x
1

| � |x
2

|, we have

c
1

(x
1

, x
2

)  2|x
1

|p|x
1

|p�2
p|x

1

|2p�2 =
2

p
.

When |x
1

|  |x
2

|, because p � 2 we have |x
1

|p�2  |x
2

|p�2 so that

c
1

(x
1

, x
2

)  2|x
2

|p|x
2

|p�2
p|x

2

|2p�2 =
2

p
.

Similarly, we have

c
2

(x
1

, x
2

)  2

p
.

Thus, for i 2 {1, 2} we have

0 < ci(x1, x2)  2

p
.

Therefore,

0  1� 2

p
 1� ci(x1, x2)  1.

Together with (4.72), we obtain

✓
1� 2

p

◆p

f(x
1

, x
2

)  f(Gf (x1, x2))  f(x
1

, x
2

).
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2

) = |x
1

|p + |x
2

|p

(ii): If 1 < p  2. We assume that |x
1

|  |x
2

|, the other case is treated
analogously. Write f(Gf (x1, x2))

= |x
1

|p
����1�

(|x
1

|p + |x
2

|p)|x
1

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

+ |x
2

|p
����1�

(|x
1

|p + |x
2

|p)|x
2

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

(4.73)

= |x
2

|p
✓ |x

1

|p
|x

2

|p
����1�

(|x
1

|p + |x
2

|p)|x
1

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p◆

(4.74)

+ |x
2

|p
����1�

(|x
1

|p + |x
2

|p)|x
2

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

(4.75)

= |x
2

|p
����
|x

1

|
|x

2

| �
|x

1

|
|x

2

|
(|x

1

|p + |x
2

|p)|x
1

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

(4.76)

+ |x
2

|p
����1�

(|x
1

|p + |x
2

|p)|x
2

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2)
����
p

. (4.77)

Set t = |x
1

|/|x
2

|. Then 0 < t  1. Define

c
1

(t) =
|x

1

|
|x

2

| �
|x

1

|
|x

2

|
(|x

1

|p + |x
2

|p)|x
1

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2) = t� t2p�1 + tp�1

p(t2p�2 + 1)
,

c
2

(t) = 1� (|x
1

|p + |x
2

|p)|x
2

|p�2
p(|x

1

|2p�2 + |x
2

|2p�2) = 1� tp + 1

p(t2p�2 + 1)
.

Then
f(Gf (x1, x2)) = |x

2

|p(|c
1

(t)|p + |c
2

(t)|p). (4.78)

Since p� 2  0, we have tp�2 � 1 and tp > 0, hence

1 � c
2

� 1� 1 + tp

p
�
1 + tp

� = 1� 1

p � 0. (4.79)

Thus c
2

� 0. We now claim that

|c
1

|+ c
2

 1. (4.80)

This will implies |ci(t)|  1 (i = 1, 2) so that |ci(t)|p  |ci(t)| as p > 1. Then
from (4.78) we will have

f(Gf (x1, x2)) = |x
2

|p(|c
1

(t)|p + |c
2

(t)|p) (4.81)

 |x
2

|p(|c
1

(t)|+ |c
2

(t)|) (4.82)

 |x
2

|p (4.83)

 f(x
1

, x
2

). (4.84)
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Observe that (4.80) is equivalent to

c
1

+ c
2

 1 (4.85a)

�c
1

+ c
2

 1 (4.85b)

Since

c
1

+ c
2

= t� t2p�1 + tp�1

p(t2p�2 + 1)
+ 1� tp + 1

p(t2p�2 + 1)
.

Thus (4.85a) is equivalent to

t� t2p�1 + tp�1

p(t2p�2 + 1)
+ 1� tp + 1

p(t2p�2 + 1)
 1.

That is

t  (1 + tp)(1 + tp�1)
p(1 + t2p�2)

. (4.86)

And (4.85b) is equivalent to

�c
1

+ c
2

= �t+
t2p�1 + tp�1

p(t2p�2 + 1)
+ 1� tp + 1

p(t2p�2 + 1)
 1,

we have
tp�1(1 + tp)

p(1 + t2p�2)
 t+

1 + tp

p(1 + t2p�2)
. (4.87)

Now check that (4.86) holds by using tp�1  1 and the convexity of h : ⇠ 7!
1 + ⇠p, which implies h(t) � h(1) + h0(1)(t� 1), i.e., pt  1 + tp. Hence

t  tp + 1

p
 (tp + 1)(tp�1 + 1)

p(t2p�2 + 1)
.

Since 0 < tp�1  1 when 0 < t  1and 1 < p  2, this implies that

tp�1(tp + 1)

p(t2p�2 + 1)
 tp + 1

p(t2p�2 + 1)

from which (4.87) follows. Therefore, we have proved that |c
1

|+ c
2

 1 and
hence f has decreasing property.
Furthermore, using (4.78), (4.79) and the assumption that |x

2

| � |x
1

|, we
obtain

f(Gf (x)) � cp
2

|x
2

|p � �1� 1

p

�p|x
2

|p � �1� 1

p

�p |x
1

|p + |x
2

|p
2

=

�
1� 1

p

�p

2
f(x).

(4.88)
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(iii): Consider the points y = (1, ⇠) and z = (�1, ⇠), where ⇠ > 0. Then
y � z = (2, 0) and

Gf (y) =

✓
1� 1 + ⇠p

p(1 + ⇠2p�2)
, ⇠ � (1 + ⇠p)⇠p�1

p(1 + ⇠2p�2)

◆
(4.89a)

Gf (z) =

✓
�1 +

1 + ⇠p

p(1 + ⇠2p�2)
, ⇠ � (1 + ⇠p)⇠p�1

p(1 + ⇠2p�2)

◆
. (4.89b)

It follows that

hGf (y)�Gf (z), y � zi = 4

✓
1� 1 + ⇠p

p(1 + ⇠2p�2)

◆
< 0 as ⇠ ! +1 (4.90)

because lim⇠!+1 1+⇠p

p(1+⇠2p�2
)

= lim⇠!+1(2p� 2)�1⇠2�p = +1 using

l’Hôpital’s rule. Therefore, Gf is not monotone.

4.11 Gf and the Yamagishi–Yamada operator

In this last section we study the accelerated version16 of Gf proposed by
Yamagishi and Yamada in [61]. Their operator, which has shown improved
performance compared to Gf , is actually a subgradient projector of a variant
of f when H is the real line17. For fixed L > 0 and r > 0, we assume in
addition that

f is Fréchet di↵erentiable and rf is Lipschitz continuous with constant L,
(4.91)

and that
f is bounded below with inf f(H) � �⇢ (4.92)

where ⇢ > 0 and we set

(8x 2 H) ✓(x) =
krf(x)k2

2L
� ⇢. (4.93)

By [61, Lemma 1], we have
f � ✓. (4.94)

The Yamagishi–Yamada operator [61] is

Z : H ! H, (4.95)

16See also [43] for another accelerated version of G
f

.
17Unfortunately our proof does not seem to extend to H (e.g., the set D may not be

convex and there is no obvious counterpart to (4.98)).
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defined at x 2 H by

Zx =

8
>>>>>>><

>>>>>>>:

x, if f(x)  0;

x� rf(x)

krf(x)k2 f(x), if f(x) > 0 and ✓(x)  0;

x� rf(x)

krf(x)k2
⇣
f(x) +

�p
✓(x) + ⇢�p

⇢
�2⌘

, if f(x) > 0 and ✓(x) > 0.

(4.96)

Note that if f(x)  0 or ✓(x)  0, then Zx = Gf (x).
We now prove that if H = R, then Z is itself a subgradient projector.

Theorem 4.44. Suppose that H = R and that f is also twice di↵erentiable.
Then for every x 2 R, (4.96) can be rewritten as

Zx =

8
>>>>>>>><

>>>>>>>>:

x, if f(x)  0;

x� 1

f 0(x)
f(x), if f(x) > 0 and |f 0(x)|  p

2L⇢;

x� 1

f 0(x)

 
f(x) +

✓ |f 0(x)|p
2L

�p
⇢

◆2
!
, if f(x) > 0 and |f 0(x)| > p

2L⇢.

(4.97)

Set D = {x 2 R : ✓(x)  0} and assume that bdryD ✓ RrC. Then D is a
closed convex superset of C, and Z is a subgradient projector of a function
y, defined as follows. On D, we set y equal to f . The set RrD is empty, or
an open interval, or the disjoint union of two open intervals. Assume that
I is one of these nonempty intervals, and let q be defined on I such that

(8x 2 I) q0(x) =
1

x� Zx
. (4.98)

Now set d = PD(I) 2 D r C and

(8x 2 I) y(x) =
f(d)

eq(d)
eq(x). (4.99)

The so-constructed function y : R ! R is convex, and it satisfies Z = Gy.

Proof. It is easy to check that (4.97) is the same as (4.96). Let x 2 R such
that f(x) > 0 and ✓(x) � 0, and set

z(x) =
|f 0(x)|p

2L
�p

⇢ =
sgn

�
f 0(x)

�
f 0(x)p

2L
�p

⇢ =
p

✓(x) + ⇢�p
⇢ � 0.

(4.100)
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Then

z0(x) =
sgn

�
f 0(x)

�
f 00(x)p

2L
. (4.101)

Using the convexity of f , (4.94), (4.100), and (4.101), we obtain

0  f 00(x)
�
f(x)� ✓(x)

�
(4.102a)

= f 00(x)
✓
f(x)�

✓ |f 0(x)|p
2L

+
p
⇢

◆✓ |f 0(x)|p
2L

�p
⇢

◆◆
(4.102b)

= f 00(x)
✓
f(x) + z(x)

✓
z(x)� 2|f 0(x)|p

2L

◆◆
(4.102c)

= f 00(x)
✓
f(x) + z2(x)� 2z(x)

|f 0(x)|p
2L

◆
(4.102d)

= f 00(x)
�
f(x) + z2(x)

�� 2f 00(x)z(x)
|f 0(x)|p

2L
(4.102e)

= f 00(x)
�
f(x) + z2(x)

�� 2f 00(x)z(x)
sgn

�
f 0(x)

�
f 0(x)p

2L
(4.102f)

= f 00(x)
�
f(x) + z2(x)

�� f 0(x)2z(x)
sgn

�
f 0(x)

�
f 00(x)p

2L
(4.102g)

= f 00(x)
�
f(x) + z2(x)

�� f 0(x)
�
2z(x)z0(x)

�
. (4.102h)

Because x � Zx = f(x)+z2(x)
f 0(x) is continuous, it is clear that there is an an-

tiderivative q on I such that

q0(x) =
1

x� Zx
=

f 0(x)
f(x) + z2(x)

. (4.103)

Calculus and (4.102) now result in

q00(x) =
f 00(x)

�
f(x) + z2(x)

�� f 0(x)
�
f 0(x) + 2z(x)z0(x)

�
�
f(x) + z2(x)

�
2

(4.104a)

=
f 00(x)

�
f(x)� ✓(x)

�� �f 0(x)�2
�
f(x) + z2(x)

�
2

. (4.104b)

Observe that y is clearly continuous everywhere. Furthermore, y0(x) =
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f(d)

eq(d)
eq(x)q0(x) and hence, using (4.103), (4.104) and again (4.102), we obtain

y00(x) =
f(d)

eq(d)

⇣
eq(x)

�
q0(x)

�
2

+ eq(x)q00(x)
⌘

(4.105)

=
f(d)

eq(d)
eq(x)

⇣�
q0(x)

�
2

+ q00(x)
⌘

(4.106)

= y(x)
f 00(x)

�
f(x)� ✓(x)

�
�
f(x) + z2(x)

�
2

(4.107)

� 0. (4.108)

Hence y is convex on I. As x 2 I approaches d, we deduce (because d /2 C,

i.e., f(d) > 0) that q0(x) ! f 0(d)
f(d)+z2(d))

= f 0(d)
f(d) and hence that y0(x) !

f(d)

eq(d)
eq(d) f

0
(d)

f(d) = f 0(d). It follows that y is convex on R. Finally, if x /2 D,

then Gy(x) = x� y(x)/y0(x) = x� 1/q0(x) = x� (x� Zx) = Zx.

Example 4.45. Consider Theorem 4.44 and assume that f : x 7! x2 � 1,
that L = 3, and that ⇢ = 1. Then (4.97) turns into

Zx =

8
>>>>>><

>>>>>>:

x, if |x|  1;

x2 + 1

2x
, if 1 < |x|  p

6/2;

x2 + 2
p
6|x|

6x
, if |x| > p

6/2.

(4.109)

Hence D =
⇥�p

6/2,
p
6/2
⇤
. Using elementary manipulations, we obtain

(8x 2 RrD) q(x) = 6

5

ln
�
5

6

|x|�
p
6

3

�
; (4.110)

Indeed, since q0(x) is defined in I such that q0(x) = 1

x�Zx .

q0(x) =
1

x� Zx

=
1

x� x2
+2

p
6|x|

6x

=
6x

6x2 � x2 � 2
p
6|x|

=
6x

5x2 � 2
p
6|x|

=
1

5x
6

�
p
6

3

|x|
x

.
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When x < �
p
6

2

, then q0(x) = 1

5x
6 +

p
6

3

. When x >
p
6

2

, we have q0(x) =

1

5x
6 �

p
6

3

. Applying integration, we have

q(x) =

8
<

:

6

5

ln
���5
6

x+
p
6

3

��� , if x < �
p
6

2

;

6

5

ln
���5
6

x�
p
6

3

��� , if x >
p
6

2

.

=

8
<

:

6

5

ln
⇣
�5

6

x�
p
6

3

⌘
, if x < �

p
6

2

;

6

5

ln
⇣
5

6

x�
p
6

3

⌘
, if x >

p
6

2

.

Thus, we have

(8x 2 RrD) q(x) = 6

5

ln
�
5

6

|x|�
p
6

3

�
; (4.111)

By definition of function y in Theorem 4.44: on D, y = f ; on R r D, I is
one of two open intervals which are disjoint included in RrD,

(8x 2 I) y(x) =
f(d)

eq(d)
eq(x).

Recall that D =
h
�p6

2

,
p
6

2

i
. Then we have y(x) = x2 � 1 when |x| 

p
6

2

.

Now when |x| >
p
6

2

, we have x 2 I, thus d = PD(x) =
���
p
6

2

���.

y(x) =
f(d)

eq(d)
eq(x)

=
6

4

� 1

e
ln

⇣
5
6

p
6

2 �
p
6

3

⌘ 6
5
e
ln

⇣
5
6 |x|�

p
6

3

⌘ 6
5

=
1

2⇣p
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. Consequently, the function y,
given by
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8
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x2 � 1, if |x|  p
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721/5

6

�
5|x|� 2

p
6
�
6/5

, if |x| > p
6/2,

(4.112)

satisfies Gy = Z by Theorem 4.44.

This chapter gave a comprehensive study of properties of the subgradient
projector, which included calculus rules, characterization of strong-to-strong
and strong-to-weak continuity, nonexpansiveness, monotonicity and the de-
creasing property. We also considered the Yamagishi-Yamada operator and
discovered it is a subgradient projector of a di↵erent convex function.
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Chapter 5

Characterizations of
Subgradient Projectors

5.1 Motivation

This chapter is based on the manuscript [10]. The results in this chapter
extend some of those found in previous chapters. Chapter 4 mainly focuses
on the subgradient projector of a convex function. In this chapter, we want
to explore the subgradient projector of nonconvex functions. We investigate
when a subgradient projector is a cutter or when a mapping is a subgradient
projector of a convex function. Moreover, we present calculus rules for the
subgradient projector of nonconvex functions.

Studies of optimization problems and convex feasibility problems have
led in recent years to the development of a theory of subgradient projectors.
Rather than finding projections on the level sets of the original functions,
the iterative algorithms find projection on half spaces containing the former.
Polyak developed the subgradient projector algorithms for convex functions
[48–50]; this was further developed by Censor, Combettes, Yamada and
others, and also applied to optimization problems [19, 21, 22, 29, 30, 44, 58].

We want to extend the basic theory of subgradient projectors to non-
convex functions. As far as nonconvex functions are concerned, the cutter
theory or T -class operators developed by Cegielski [20] or Bauschke, Borwein
and Combettes [3] furnishes a new approach to subgradient projectors with-
out appealing to the existence theory of subgradient projectors for convex
functions.

5.2 Preliminary and definitions

Throughout the following two chapters, we assume

X = Rn
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5.2. Preliminary and definitions

and f : X ! ]�1,+1] is a lower semicontinuous function, its 0-level set
is denoted by

lev
0

f = {x 2 X : f(x)  0}. (5.1)

T : X ! X is a mapping.
To introduce subgradient projectors for possible non-convex functions,

we need the following subgradients [40, 42, 53].

Definition 5.1. Suppose that x̄ 2 X such that f(x̄) is finite. For a vector
v 2 X, one says that

(i) v is a regular subgradient of f at x̄, written v 2 @̂f(x̄), if

f(x) � f(x̄) + hv, x� x̄i+ o(kx� x̄k), (5.2)

(ii) v is a limiting (or Mordukhovich) subgradient of f at x̄, written v 2
@f(x̄), if there are sequences xn ! x̄, f(xn) ! f(x̄) and vn 2 @̂f(xn)
with vn ! v.

(iii) f is subdi↵erentially regular at x̄ if @̂f(x̄) = @f(x̄).

Remark 5.2. The regular subgradient inequality (5.2) in o form is shorthand
for the one-side limit condition

lim inf
x!x̄,x 6=x̄

f(x)� f(x̄)� hv, x� x̄i
kx� x̄k � 0. (5.3)

This is because if v satisfies (5.2), which is equivalent to

f(x)� f(x̄)� hv, x� x̄i � o(kx� x̄k), (5.4)

Dividing kx�x̄k on both sides of above inequality and applying the definition
of o form, we have (5.3). Conversely, suppose that v satisfies (5.3). Then
by definition of limit inferior, we have

f(x)� f(x̄)� hv, x� x̄i
kx� x̄k � �", (5.5)

where " is any positive number and x su�ciently close to x̄. Simplifying this
inequality, we have

f(x)� f(x̄)� hv, x� x̄i � �"kx� x̄k. (5.6)
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5.2. Preliminary and definitions

Let �(x) = min{f(x) � f(x̄) � hv, x � x̄i, 0}. Obviously, we have �(x)  0.
From (5.6) we have

�(x) = min{f(x)� f(x̄)� hv, x� x̄i, 0} � min{�"kx� x̄k, 0}. (5.7)

Dividing kx� x̄k on both sides of above equation, we have

�(x)

kx� x̄k � �". (5.8)

So we have

lim inf
x!x̄

�(x)

kx� x̄k � �". (5.9)

Letting " ! 0, then

lim inf
x!x̄

�(x)

kx� x̄k � 0. (5.10)

Moreover, �(x)  0, so

lim sup
x!x̄

�(x)

kx� x̄k  0. (5.11)

Then we have limx!x̄
�(x)
kx�x̄k = 0. Thus (5.2) holds.

Next, we provide an example and show how to calculate corresponding
subdi↵erentials for a specific function.

Example 5.3. Consider function f(x) = �|x| on R. Then

(i) @̂f(0) = ?.

(ii) @̂f(x̄) = {�1} if x̄ > 0; @̂f(x̄) = {1} if x̄ < 0.

(iii) @f(x) = {�1} if x > 0; @f(x) = {1} if x < 0.

(iv) @f(0) = {�1, 1}.
Proof. (i) We prove it by contradiction. Assume there exists v 2 @̂f(0)

such that v satisfying (5.2). Then we have

lim inf
x!0,x 6=0

�|x|� vx

|x| = lim inf
x!0,x 6=0

(�1� v sgn(x)) � 0. (5.12)

When x ! 0+, v must satisfy v  �1 such that (5.12) holds; when
x ! 0�, v has to be greater or equal to 1 such that (5.12) holds. Hence
here is no proper v such that (5.12) holds for any x 2 R. Therefore,
@̂f(0) = ?.
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5.2. Preliminary and definitions

(ii) Let x̄ < 0 and v 2 @̂f(x̄). Then we have

lim inf
x!x̄,x 6=x̄

✓ |x̄|� |x|
|x� x̄| � v sgn (x� x̄)

◆
� 0. (5.13)

When x ! x̄�, we have v � 1; when x ! x̄+, we have v  1. Therefore
@̂f(x̄) = {1}. The proof is similar when x̄ > 0.

(iii) It is clear from definition of limiting subdi↵erential.

(iv) From (ii), we can see when xn ! 0+, vn = �1 2 @̂f(xn) and xn ! 0�,
vn = 1 2 @̂f(xn). There are just two sides: lim vn = �1 and lim vn =
1. Thus @f(0) = {�1, 1}.

Definition 5.4. [53, Definition 9.1] We say f : X ! ]�1,+1[ is locally
Lipschitz continuous near a point x 2 X if 9⇢ 2 R

++

and L 2 R
+

such that

|f(y)� f(z)|  Lky � zk, (5.14)

for any y, z 2 ball(x, ⇢).

Remark 5.5. [53, Corollary 8.10] When f is lower semi-continuous, the set
of points at which @f is nonempty-valued is at least dense in the domain of
f . When f is locally Lipschitz, @f is nonempty-valued everywhere.

Remark 5.6. When function f is convex, recall v is a subgradient of f at x̄,
written v 2 @f(x̄), if

f(x) � f(x̄) + hv, x� x̄i. (5.15)

We use the same notation since all subdi↵erentials are the same for convex
functions. (For more details, see [40, Theorem 1.93].)

Definition 5.7. For a general lower semicontinuous function f : X !
]�1,+1], the subgradient projector of f is defined by

Gf : X ! X : x 7!
(
x� f(x)

ks(x)k2 s(x) if f(x) > 0 and 0 62 @f(x),

x otherwise,
(5.16)

where s : X ! X is a selection of @f with s(x) 2 @f(x).

Proposition 5.8. (i) When f is continuously di↵erentiable on X \ lev
0

f ,
Gf reduces to

Gf : X ! X : x 7!
(
x� f(x)

krf(x)k2rf(x) if f(x) > 0 and rf(x) 6= 0,

x otherwise.
(5.17)
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5.2. Preliminary and definitions

(ii) When f is convex and infX f  0, Gf reduces to

Gf : X ! X : x 7!
(
x� f(x)

ks(x)k2 s(x) if f(x) > 0,

x otherwise,
(5.18)

where s : X ! X is a selection of @f with s(x) 2 @f(x). Referring to
Lemma 3.13, f(x) > 0 automatically implies s(x) 6= 0.

Recall that the projection on half space:

Fact 5.9. ([7] or [20, page 133]) For the half space

H(a,�) := {z 2 X : ha, zi  �}, (5.19)

where a 2 X, a 6= 0 and � 2 R, its metric projection is given by

PH(a,�)x =

(
x� ha,xi��

kak2 a if ha, xi > �,

x if ha, xi  �.
(5.20)

Proposition 5.10. (i) For a locally Lipschitz f : X ! R, when f(x) > 0,
0 62 @f(x), we have

Gf (x) = PH(s(x),�(x))(x) (5.21)

where s(x) 2 @f(x) and the half space

H(s(x),�(x)) : = {z 2 X : f(x) + hs(x), z � xi  0} (5.22)

= {z 2 X : hs(x), zi  hs(x), xi � f(x)}. (5.23)

(ii) If f : X ! ]�1,+1], then

FixGf = {x 2 X : 0 2 @f(x)} [ lev
0

f. (5.24)

If f is locally Lipschitz, FixGf is closed.

(iii) If f : X ! ]�1,+1] is convex and infX f  0, then

FixGf = lev
0

f. (5.25)

Proof. (i): Apply Fact 5.9 with a := s(x),� := �(x) = hs(x), xi � f(x).
(ii): This follows from the definition of Gf . When f is locally Lipschitz,

@f is outer-semicontinuous, so {x 2 X : 0 2 @f(x)} is closed.18 Being a
union of two closed sets, FixG is closed.

18(See [53]) For the definition of outer-semicontinuity of subdi↵erentials (page 151). For
the relevant result, see Proposition 8.7 on page 302.
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5.2. Preliminary and definitions

(iii): When f is convex, 0 2 @f(x) gives f(x) = minX f , so f(x)  0.
Then

{x 2 X : 0 2 @f(x)} ⇢ lev
0

f. (5.26)

Thus (iii) follows from (ii).

Fact 5.11. [46, Proposition 1.6] If the convex function f is continuous,
then it is locally Lipschitz. Thus Proposition 5.10 is also true for convex
functions.

A simple example illustrates the di↵erence between convex and noncon-
vex case.

Example 5.12. Consider f : X ! R by f(x) = k

pkxk = kxk1/k where
k > 0. Then

(i) When k  1, f is convex, Gf = (1� k) Id is firmly nonexpansive.

(ii) When k > 1, f is not convex, Gf = (1�k) Id may be neither monotone
nor nonexpansive, e.g, k = 3.

Proof. This follows from definition directly or use Gf = (1 � k) Id+kGk·k
by Theorem 5.27 and Gk·k ⌘ 0. Indeed,

(i): If 0 < k  1. We want to show function f is convex. Define h(t) = t
1
k

where t 2 R. Then f(x) = h(kxk). Since h0(t) = 1

k t
1
k

�1 > 0 and h00(t) =
1

k (
1

k � 1)t
1
k

�2 > 0. Thus function h as defined is an increasing convex
function on the real line. Moreover, k · k is also convex. By [41, Proposition
1.39], we have f is convex. Notice that

kGf (x)�Gf (y)k2 = k(1� k)x� (1� k)yk2 (5.27)

= k(1� k)(x� y)k2 (5.28)

= (1� k)2kx� yk2, (5.29)

and

hx� y,Gf (x)�Gf (y)i = hx� y, (1� k)(x� y)i (5.30)

= (1� k)kx� yk2. (5.31)

Since 0 < k  1, then (1� k)2  (1� k), thus

kGf (x)�Gf (y)k2  hx� y,Gf (x)�Gf (y)i. (5.32)
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5.3. Calculus for subgradient projectors

Hence Gf is firmly nonexpansive.
(ii) Define � : R ! R with �(t) = f(td) where d is a direction with d 6= 0.

Then �(t) = |t| 1k kdk 1
k . Since kdk 1

k is a constant, we assume g(t) = |t| 1k .
Then g0(t) = 1

k |t|
1
k

�2t and g00(t) = 1

k |t|
1
k

�2( 1k � 1) < 0 when k > 1. Thus f
is not convex. Fig. 5.1(b) shows that f is not convex. For x, y 2 X, when
k > 1, we have

hx�y,Gf (x)�Gf (y)i = hx�y, (1�k)(x�y)i = (1�k)kx�yk2 < 0. (5.33)

Then Gf is not monotone when k > 1.
For x, y 2 X,

kGf (x)�Gf (y)k = k(1� k)(x� y)k = |1� k|kx� yk. (5.34)

When k > 2, it is obvious that Gf is not nonexpansive.

(a) Graph of f is defined when k =
1
3

(b) Graph of f is given when k =
3.

Figure 5.1: Illustration for Example 5.12

5.3 Calculus for subgradient projectors

We start with a stronger di↵erentiability than Fréchet di↵erentiability
(see Definition 2.62).
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5.3. Calculus for subgradient projectors

Definition 5.13. [40, Definition 1.13] A function f : X ! ]�1,+1] is
strictly di↵erentiable at x̄ 2 X if

lim
x!x̄,u!x̄

f(x)� f(u)�rf(x̄)(x� u)

kx� uk = 0, (5.35)

where rf(x̄) is gradient of f at x̄.

It is clear that when u = x̄, Definition 5.13 coincides with definition of
Fréchet di↵erentiability. However, Fréchet di↵erentiable functions are not
always strictly di↵erentiable, see the following example.

Example 5.14. A function f : R ! R is given by

f(x) =

(
x2 if x is rational,

0 otherwise.
(5.36)

Then f is Fréchet di↵erentiable but not strictly di↵erentiable at x̄ = 0.

Proof. Since x̄ = 0 is a rational number, so f 0(x̄) = 2x̄ = 0.

0  f(y)

|y|  |y|. (5.37)

Then no matter whether y is a rational or an irrational number, we still
have

lim
0 6=|y|!0

f(y)

|y| = 0, (5.38)

thus f is Fréchet di↵erentiable at x̄ = 0. It remains to show that f is not
strictly di↵erentiable at x̄ = 0. Let x > 0 be rational and set u = �⇡x2+x /2
Q. Note that if x ! 0+, then u ! 0+. Furthermore, since x� u = ⇡x2 > 0,
we have

f(x)� f(u)� 0 · (x� u)

|x� u| =
x2

|x� u| =
x2

⇡x2
=

1

⇡
6! 0 (5.39)

as x ! 0+. Therefore, f is not strictly di↵erentiable at x̄ = 0.

The following facts are crucial to study the calculus of subgradient pro-
jectors.

Fact 5.15. Assume that � : X ! X is locally Lipschitz at x̄ 2 X, and
� : X ! R be strictly di↵erentiable at �(x̄). Then for m(x) = �(�(x)), one
has

@m(x̄) = @h�0(ȳ),�i(x̄) with ȳ = �(x̄). (5.40)
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Proof. See [42, Theorem 6.5].

Fact 5.16. [53, Theorem 10.6] Suppose f(x) = g(F (x)) for a proper lower
semicontinuous g : X ! ]�1,+1] and a strictly di↵erentiable F : X ! X,
and let x̄ be a point where f is finite and the Jacobian rF (x̄) has full rank.
Then

@f(x̄) = rF (x̄)⇤@g(ȳ) with ȳ = F (x̄). (5.41)

Fact 5.17. Let fj : X ! R be locally Lipschitz at x̄ and J(x̄) = {j : fj(x̄) =
max{f

1

, f
2

}(x̄)}. Then

@max{f
1

, f
2

}(x̄) ✓ conv{@fj(x̄) : j 2 J(x̄)}, (5.42)

where the equality holds and max{f
1

, f
2

} is subdi↵erentially regular at x̄ if
the functions fj is subdi↵erentially regular at x̄ for j 2 J(x̄).

Proof. See [42, Theorem 7.5(ii)].

These facts allow us to establish a calculus of subgradient projectors.

Fact 5.18. Let f : X ! R be a lower semicontinuous function.

(i) If k > 0 then Gkf = Gf .

(ii) Let ↵ 2 R. Define Gf,↵ : X ! X as follow:

Gf,↵(x) :=

(
x� f(x)�↵

ks(x)k2 s(x) if f(x) > ↵ and 0 62 @f(x)

x otherwise.
(5.43)

Then Gf,↵ = Gf�↵.

(iii) Let ↵ > 0. Then

Gf�↵(x) =

(
Gf (x) +

↵s(x)
ks(x)k2 if f(x) > ↵ and 0 62 @f(x)

x otherwise.
(5.44)

Proof. (i) By [53, D. Rescaling 10(6)], we have @(kf) = k@f when k > 0.
Note that kf(x) > 0 if and only if f(x) > 0, and 0 62 @(kf)(x) if and only
if 0 62 @f(x). When kf(x) > 0 and 0 62 @(kf)(x), for s(x) 2 @f(x), we have
ks(x) 2 k@f(x) = @(kf)(x) so that

Gkf (x) = x� kf(x)

kks(x)k2ks(x) = x� f(x)

ks(x)k2 s(x) = Gf (x). (5.45)
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When kf(x)  0 or 0 2 @(kf)(x), we have f(x)  0 or 0 2 @f(x), so
Gkf (x) = x = Gf (x).

(ii) It su�ces to note that @(f � ↵) = @f . Indeed, let � = f and
�(x) = x � ↵. Applying Fact 5.15, we have @(f � ↵)(x) = @(�(�))(x) =
@h�0(y),�i(x) = @�(x) = @f(x), where y = �(x).

(iii) When f(x) > ↵ > 0 and 0 62 @f(x), we have f(x) > 0 and 0 62 @f(x).
For s(x) 2 @f(x), we have s(x) 2 @(f � ↵)(x). Then

Gf�↵(x) = x� f(x)� ↵

ks(x)k2 s(x) (5.46)

= x� f(x)

ks(x)k2 s(x) +
↵

ks(x)k2 s(x) (5.47)

= Gf (x) +
↵

ks(x)k2 s(x) (5.48)

When f(x)  ↵ or 0 2 @f(x), Gf�↵(x) = x by definition.

Remark 5.19. Fact 5.18 (i) is also true when f is convex. Some litera-
ture has already contained this result, like[12, Proposition 3.1 (i)] and [44,
Proposition 2.1].

Proposition 5.20. Assume that f
1

, f
2

: X ! R are locally Lipschitz and
subdi↵erentially regular. For the maximum function g = max(f

1

, f
2

), one
has

Gg(x) =

8
>>>><

>>>>:

Gf1(x) if g(x) > max(f
2

(x), 0), 0 62 @f
1

(x),

Gf2(x) if g(x) > max(f
1

(x), 0), 0 62 @f
2

(x),

s(x) if g(x) = f
1

(x) = f
2

(x) > 0, 0 62 conv{@f
1

(x), @f
2

(x)},
x if g(x)  0, or 0 2 conv{@f

1

(x), @f
2

(x)}
(5.49)

where

s(x) = x� fi(x)

kvk2 v (5.50)

with v 2 conv{@f
1

(x), @f
2

(x)}. In particular, when g(x) = f
1

(x) = f
2

(x) >
0 and 0 62 conv{@f

1

(x), @f
2

(x)}, one may choose s(x) = Gf1(x) or Gf2(x).
Consequently, one may think Gg as two piecewise defined function, namely,

Gg(x) =

8
>>>><

>>>>:

Gf1(x) if g(x) > max(f
2

(x), 0), 0 62 @f
1

(x),

Gf2(x) if g(x) > max(f
1

(x), 0), 0 62 @f
2

(x),

Gf1(x) if g(x) = f
1

(x) = f
2

(x) > 0, 0 62 conv{@f
1

(x), @f
2

(x)},
x if g(x)  0, or 0 2 conv{@f

1

(x), @f
2

(x)},
(5.51)
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or

Gg(x) =

8
>>>><

>>>>:

Gf1(x) if g(x) > max(f
2

(x), 0), 0 62 @f
1

(x),

Gf2(x) if g(x) > max(f
1

(x), 0), 0 62 @f
2

(x),

Gf2(x) if g(x) = f
1

(x) = f
2

(x) > 0, 0 62 conv{@f
1

(x), @f
2

(x)},
x if g(x)  0 or 0 2 conv{@f

1

(x), @f
2

(x)}.
(5.52)

Proof. When g(x) > 0, we consider three cases: (i) g(x) > f
2

(x); (ii) g(x) >
f
1

(x); (iii) g(x)  min(f
2

(x), f
1

(x)) which is g(x) = f
1

(x) = f
2

(x). Also
note that

@g(x) = conv(@f
1

(x), @f
2

(x)) (5.53)

when f
1

(x) = f
2

(x) by Fact 5.17.

Proposition 5.21. Assume that k 2 Rr {0}, and g(x) = f(kx). Then

Gg(x) =
1

k
Gf (kx) (5.54)

for every x 2 X. Moreover, FixGg = 1

k FixGf .

Proof. By Fact 5.16, @g(x) = k@f(y) where y = kx. Indeed, @g(x) =
@hk, fi(y) = k@f(y) where y = kx.

And 0 62 @g(x) if and only if 0 62 @f(y) with y = kx. When g(x) > 0 and
0 62 @g(x), we have f(kx) > 0 and 0 62 @f(kx). Suppose s(y) 2 @f(y) with
y = kx. Then ks(y) 2 k@f(y) = @g(x). Therefore

Gg(x) = x� f(kx)

kks(y)k2ks(y) = x� 1

k

f(kx)

ks(y)k2 s(y) (5.55)

=
1

k

✓
kx� f(kx)

ks(y)k2 s(y)
◆

=
1

k
Gf (kx) (5.56)

When g(x)  0 or 0 2 @g(x), we have f(kx)  0 or 0 2 @f(y) with
y = kx, thus

Gg(x) = x =
1

k
kx =

1

k
Gf (kx). (5.57)

This establishes the result.

Remark 5.22. Proposition 5.21 can be guaranteed if f is a continuous and
convex function, see [12, Proposition 3.1 (ii)].
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5.3. Calculus for subgradient projectors

For an operator A : X ! X, A⇤ is the adjoint of A.

Proposition 5.23. Assume that A : X ! X is unitary, i.e., A⇤A = Id,
and let b 2 X, f : X ! ]�1,+1]. Define x 7! g(x) := f(Ax+ b). Then

Gg(x) = A⇤
�
Gf (Ax+ b)� b

�
(5.58)

for every x 2 X. Furthermore,

FixGg = A⇤(FixGf � b). (5.59)

Proof. By Fact 5.16, @g(x) = A⇤@f(y) where y = Ax + b. As A is unitary,
8s(y) 2 @f(y), we have kA⇤s(y)k = ks(y)k. Indeed,
kA⇤s(y)k2 = hA⇤s(y), A⇤s(y)i = hs(y), AA⇤s(y)i = hs(y), s(y)i = ks(y)k2.

(5.60)
When g(x) > 0 and 0 62 @g(x), we have f(Ax + b) > 0 and 0 62 @f(y) with
y = Ax+ b. Let s(y) 2 @f(y), we have A⇤s(y) 2 @g(x).

Gg(x) = x� f(Ax+ b)

kA⇤s(y)k2A
⇤s(y) = A⇤

✓
Ax+ b� f(Ax+ b)

ks(y)k2 s(y)� b

◆

(5.61)

= A⇤(Gf (Ax+ b)� b). (5.62)

When g(x)  0 or 0 2 @g(x), we have f(Ax + b)  0 or 0 2 @f(y) with
y = Ax+ b, thus

Gg(x) = x = A⇤(Ax+ b� b) = A⇤(Gf (Ax+ b)� b). (5.63)

Hence (5.58) holds. Finally (5.59) follows from (5.58).

Remark 5.24. Combining [12, Proposition 3.1 (iii)] with [12, Proposition
3.1 (iv)], we have a result related to Proposition 5.23 if f is continous and
convex. For another similar result, see [44, Proposition 2.9]

Corollary 5.25. Let a 2 X, f : X ! ]�1,+1] and g(x) = f(x � a).
Then

(8 x 2 X) Gg(x) = Gf (x� a) + a. (5.64)

Moreover, FixGg = a+ FixGf .

Proof. Let A = Id in Proposition 5.23. The result is straightforward.

Remark 5.26. When f is a continuous convex function, Corollary 5.25 was
shown in [12, Proposition 3.1 (v)].
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5.4. Basic properties of subgradient projectors

Theorem 5.27. Assume that f � 0 and g = fk with k > 0. Then

Gg =

✓
1� 1

k

◆
Id+

1

k
Gf .

Proof. By Fact 5.15, @g(x) = kf(x)k�1@f(x) when f(x) � 0.
When g(x) > 0 and 0 62 @g(x), we have f(x) > 0 and 0 62 @f(x), therefore

(Id�Gg)(x) =
f(x)k

kkf(x)k�1s(x)k2kf(x)
k�1s(x) (5.65)

=
1

k

f(x)

ks(x)k2 s(x) (5.66)

=
1

k
(Id�Gf )(x) (5.67)

where s(x) 2 @f(x).
When g(x) = 0 or 0 2 @g(x), we have f(x) = 0 or 0 2 @f(x), thus

(Id�Gg)(x) = 0 = (Id�Gf )(x). (5.68)

Therefore, Id�Gg = 1

k (Id�Gf ) which gives Gg =

✓
1� 1

k

◆
Id+ 1

kGf .

Remark 5.28. If f and g are convex functions, the conclusion of Theorem
5.27 can be found in [12, Proposition 3.1 (iii)] and in [44, Corollary 2.3 ].

The following is immediate from the definition of subgradient projectors.

Theorem 5.29. Let f, g be two functions such that f ⌘ g on an open set
U ✓ X. Then Gf = Gg on U .

Remark 5.30. For calculus of subgradient projectors of convex functions, see
[12, 44].

5.4 Basic properties of subgradient projectors

Based on the definition of subgradient projector, we have the following
fundamental properties which give an alternative expression of Gf in terms
of g(x) = ln f(x).

Theorem 5.31. (i) We have

kx�Gf (x)k =
f(x)

ks(x)k and (5.69)
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5.4. Basic properties of subgradient projectors

x�Gf (x)

kx�Gf (x)k2 =
s(x)

f(x)
(5.70)

for every x satisfying f(x) > 0 and 0 62 @f(x). In particular, when f is
continuously di↵erentiable, one has

x�Gf (x)

kx�Gf (x)k2 = r(ln f(x)).

(ii) Set

g(x) =

(
ln f(x) if f(x) > 0,

�1 if f(x)  0.
(5.71)

Then g is lower-semicontinuous on the open set {x 2 X : f(x) > 0}. Then
whenever f(x) > 0 and 0 62 @f(x) we have

Gf (x) = x� c(x)

kc(x)k2 (5.72)

where c(x) 2 @g(x).
If f is continuously di↵erentiable on X \ lev

0

f , then

Gf (x) = x� rg(x)

krg(x)k2 ,

whenever f(x) > 0 and rf(x) 6= 0.

Proof. (i) When f(x) > 0 and 0 62 @f(x), let s(x) 2 @f(x), we have

x�Gf (x) =
f(x)

ks(x)k2 s(x).

Therefore,

kx�Gf (x)k =
f(x)

ks(x)k .

If follows that

x�Gf (x) =
f(x)2

ks(x)k2
s(x)

f(x)
= kx�Gf (x)k2 s(x)f(x)

. (5.73)

Hence
x�Gf (x)

kx�Gf (x)k2 =
s(x)

f(x)
.
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5.4. Basic properties of subgradient projectors

When f is continuously di↵erentiable, s(x) = rf(x). The result follows

as r(ln f(x)) = rf(x)
f(x) .

(ii) By Fact 5.15, we have @g(x) = 1

f(x)@f(x) when f(x) > 0. Then

c(x) =
s(x)

f(x)
2 @g(x)

because s(x) 2 @f(x). Since

1

kc(x)k2 =
f(x)2

ks(x)k2 ,

when f(x) > 0 and 0 2 @f(x). So we have

c(x)

kc(x)k2 =
s(x)

f(x)

f(x)2

ks(x)k2 =
f(x)

ks(x)k2 s(x).

Thus

Gf (x) = x� f(x)

ks(x)k2 s(x) = x� c(x)

kc(x)k2 , (5.74)

when f(x) > 0 and 0 /2 @f(x). Hence (5.72) is true.
When f is continuously di↵erentiable and f(x) > 0 and rf(x) 6= 0, the
result follows from

@g(x) =

⇢rf(x)

f(x)

�
) rg(x) = c(x) =

rf(x)

f(x)
.

From (5.74), we have

Gf (x) = x� rg(x)

krg(x)k2 ,

whenever f(x) > 0 and rf(x) 6= 0.

5.4.1 When is a mapping T a subgradient projector?

Theorem 5.32. A mapping T : X ! X is a subgradient projector Gf of a
locally Lipschitz function f : X ! R if and only if

x� Tx

kx� Txk2 2 @(ln f(x)) whenever f(x) > 0 and 0 62 @f(x), (5.75)

Tx = x whenever f(x)  0 or 0 2 @f(x). (5.76)

91



5.4. Basic properties of subgradient projectors

Proof. ): Suppose that T = Gf . Applying Theorem 5.31(i), we obtain
(5.75).

(: Assume that (5.75) and (5.76) hold. By Theorem 5.31(ii), @ ln f =
@f
f . When f(x) > 0 and 0 62 @f(x), (5.75) gives

1

kx� Txk =
ks(x)k
f(x)

i.e., kx� Txk =
f(x)

ks(x)k ,

where s(x) 2 @f(x). By (5.75), when f(x) > 0 and 0 62 @f(x), we have

x� Tx = kx� Txk2 s(x)
f(x)

,

so that Tx is equal to

x� kx� Txk2 s(x)
f(x)

= x�
✓

f(x)

ks(x)k
◆

2 s(x)

f(x)
= x� f(x)

ks(x)k2 s(x) = Gf (x)

when f(x) > 0 and 0 62 @f(x).

5.4.2 Recovering f from its subgradient projector Gf

Can one determine the function f if Gf is known?

Definition 5.33. A locally Lipschitz function f : X ! R is called essen-
tially strictly di↵erentiable on an open set A ⇢ X if f is strictly di↵erentiable
everywhere on A except possibly on a Lebesgue null set.

Such a class of functions has been extensively studied by Borwein and
Moors [17]. This class of functions include finite-valued convex functions,
Clarke regular locally Lipschitz functions, semismooth locally Lipschitz func-
tions, C1 functions and others, [17, pages 323-328]. If a locally Lipschitz
function is essentially smooth, then @f is single-valued almost everywhere.
Moreover, @f can be recovered by every densely defined selection s 2 @f .

Fact 5.34. Let f, g be locally Lipschitz on a polygonally connected19 and
open subset O of Rn. If rf = rg almost everywhere on O, then h := f � g
is a constant on O.

19 (See [35, Definition 2] on page 189) A set W ⇢ Rn is said to be polygonally connected
if given any two points x, y 2 W , there are points x0 = x, x1, · · · , xm

= y such thatS
m

i=1 xi�1xi

✓ W , where x

i�1xi

is the closed segment joining x

i�1 and x

i

.
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5.4. Basic properties of subgradient projectors

Proof. We prove this by contradiction. By the assumption, h is locally
Lipschitz and rh = 0 almost everywhere on O. Suppose that x, y 2 O and
h(x) 6= h(y). As O is polygonally connected, there exists z 2 O such that
either [x, z] ✓ O with h(x) 6= h(z) or [z, y] ✓ O with h(z) 6= h(y). Without
loss of generality, assume [z, y] ✓ O and h(z) 6= h(y). As h is di↵erentiable
almost everywhere, by Fubini’s Theorem [52, Theorem 6.2.2, page 110], we
can choose z̃ nearby z and ỹ nearby y so that both h is di↵erentiable and
rh = 0 almost everywhere on [z̃, ỹ] ✓ O, and h(z̃) 6= h(ỹ). Then

h(ỹ)� h(z̃) =

Z
1

0

hrh(z̃ + t(ỹ � z̃)), ỹ � z̃idt =
Z

1

0

0dt = 0

which contradicts h(z̃) 6= h(ỹ).

Theorem 5.35. Let T : X ! X be a subgradient projector. More precisely,
if

Gf = T = Gf1

and f, f
1

are essentially strictly di↵erentiable, then there exists k > 0 such
that

f = kf
1

on each polygonally connected component.

Proof. If Gf = T then dom f � domT . As T has full domain, we have
dom f = X. Assume that there exist two essentially strictly di↵erentiable
and locally Lipschitz functions such that T = Gf = Gf1 . By Theorem 5.32
(ii), we have

x� T (x)

kx� T (x)k2 2 @(ln f(x)) whenever f(x) > 0,

x� T (x)

kx� T (x)k2 2 @(ln f
1

(x)) whenever f
1

(x) > 0.

As f, f
1

are locally Lipschitz, both ln f, ln f
1

are locally Lipschitz on
X \ FixT . Then

@ ln f =
1

f
@f, @ ln f

1

=
1

f
1

@f
1

by Fact 5.15 or [25, Theorem 2.3.9(ii)]. Because f, f
1

are essentially strictly
di↵erentiable and locally Lipschitz, @f, @f

1

are single-valued almost every-
where [46], thus

@(ln f
1

(x)) =
x� T (x)

kx� T (x)k2 = @(ln f(x)) almost everywhere.
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5.4. Basic properties of subgradient projectors

By Fact 5.34, ln f � ln f
1

= c for some c 2 R, which implies that f
1

= kf
for some k > 0.

5.4.3 Fixed point closed property and continuity

Theorem 5.36. (fixed-point closed property) For a locally Lipschitz function
f , Gf is fixed-point closed at every x 2 Rn, i.e.,

ky �Gf (y)k ! 0 and y ! x ) x = Gf (x). (5.77)

Proof. Assume that a sequence (yn)n2 in X satisfies

kyn �Gf (yn)k ! 0 and yn ! x. (5.78)

Consider three cases.
Case 1: If there exists infinitely many yn’s, say (yn

k

)k2N, such that
0 2 @f(yn

k

). Since @f is upper semicontinuous, taking limit when k ! 1
gives 0 2 @f(x). Hence x = Gf (x).

Case 2: If there exists infinitely many yn’s, say (yn
k

)k2, such that
f(yn

k

)  0. Taking limit when k ! 1 and using the continuity of f at
x gives

f(x) = lim
k!1

f(yn
k

)  0.

Hence x = Gf (x).
Case 3: There exists N 2 N such that f(yn) > 0 and 0 62 @f(yn) when

n > N . Then by (5.69),

f(yn) = kyn �Gf (yn)kks(yn)k. (5.79)

As f is continuous at x, f is locally Lipschitz around x, so @f is locally
bounded around x. Therefore,

f(x) = lim
n!1 f(yn) = lim

n!1(kyn �Gf (yn)kks(yn)k) = 0

since kyn � Gf (yn)k ! 0. Hence x = Gf (x). Altogether, x 2 FixGf .
This establishes (5.77) because (yn)n2N was an arbitrary sequence satisfying
(5.78).

Theorem 5.37. Let f be a locally Lipschitz function and essentially strictly
di↵erentiable. Then Gf is continuous at x 2 X \ FixGf if and only if f is
strictly di↵erentiable at x.
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5.4. Basic properties of subgradient projectors

Proof. Let x 2 X \ FixGf .
(: Assume that f is strictly di↵erentiable at x. By [39, page 258], the
limiting subdi↵erential is reduced to the singleton. Thus we have rf(x) 6= 0
which is continuous at x. The result follows from the definition of Gf , which
is

y 7! Gf (y) = y � f(y)

krf(y)k2rf(y). (5.80)

): Assume that Gf is continuous at x. By (5.70),

s(y) = f(y)
y �Gf (y)

ky �Gf (y)k2 (5.81)

so s is (norm to norm) continuous at x. As s is a selection of @f and f is
essentially di↵erentiable, f is strictly di↵erentiable at x.

The following example illustrates that Gf cannot be continuous if f is
not di↵erentiable.

Example 5.38. Define

f(x) =

(
|x| if x  1,

2x� 1 if x > 1.
(5.82)

Then

Gf (x) =

8
><

>:

0 if x < 1,

1/2 if x > 1,

1� 1

s(x) where s(x) 2 [1, 2] if x = 1,

(5.83)

which is discontinuous at x = 1

Proof. When x < 0, Gf (x) = x � �x
(�1)2 (�1) = 0; When x = 0, f(0) = 0,

so Gf (0) = 0; When 0 < x < 1, Gf (x) = x � x
1

2 (1) = 0; When x > 1,
Gf (x) = x� 2x�1

2

2 2 = 1/2; When x = 1, @f(1) = [1, 2], so

Gf (x) = x� 1

s(x)2
(s(x)) = 1� 1

s(x)
(5.84)

where s(x) 2 [1, 2].

95



5.5. When is the subgradient projector Gf a cutter?

Figure 5.2: Graph of f , where f is defined in Example 5.38.

5.5 When is the subgradient projector Gf a
cutter?

Our first result characterizes the class of functions f for which its Gf is
a cutter.

Theorem 5.39. (level sets of tangent plane including the target set) Let
f : X ! R be locally Lipschitz. Then Gf is a cutter if and only if whenever
x satisfies f(x) > 0, 0 62 @f(x) and u satisfies f(u)  0 or 0 2 @f(u) one
has

f(x) + hs(x), u� xi  0, (5.85)

where s(x) 2 @f(x). That is, when f(x) > 0 and 0 62 @f(x),

{u 2 X : f(u)  0 or 0 2 @f(u)} ✓ {u 2 X : f(x) + hs(x), u� xi  0}.
(5.86)

Proof. When f(x)  0 or 0 2 @f(x), x = Gfx, then Gf satisfies the in-
equality in the definition of cutter. Assume that f(x) > 0, 0 62 @f(x) and
s(x) 2 @f(x), u 2 FixGf . We have

hx�Gfx, u�Gfxi = h f(x)

ks(x)k2 s(x), u� x+
f(x)

ks(x)k2 s(x)i (5.87)

=
f(x)

ks(x)k2 hs(x), u� xi+ f2(x)

ks(x)k2 (5.88)

=
f(x)

ks(x)k2
�
f(x) + hs(x), u� xi�. (5.89)
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5.5. When is the subgradient projector Gf a cutter?

As f(x) > 0,

hx�Gfx, u�Gfxi  0 , f(x) + hs(x), u� xi  0. (5.90)

Remark 5.40. When function f is locally Lipschitz (not necessarily convex),
if it satisfies

{u 2 X : f(u)  0 or 0 2 @f(u)} ✓ {u 2 X : f(x) + hs(x), u� xi  0},
(5.91)

when f(x) > 0 and 0 /2 @f(x). By Theorem 5.39, we have Gf is a cutter.
Moreover, if the interior of lev

0

f is nonempty, we take T = Gf into finite
convergent algorithm in [13], where f is locally Lipschitz. Then the sequence
generated by Gf will converge finitely.

Theorem 5.41. Let k � 1 and f : X ! [0,+1) be locally Lipschitz. If
g = fk and Gf is a cutter, then Gg is a cutter.

Proof. By Theorem 5.27, Gg = (1�1/k) Id+1/kGf . As Id and Gf are both
cutters, and FixGf \ Fix Id = FixGf 6= ?, being a convex combination of
cutters, Gg is a cutter by [20, Corollary 2.1.49, page 62].

Theorem 5.42. Assume that A : X ! X is unitary, i.e., A⇤A = Id, and
let b 2 X, f : X ! ]�1,+1]. Define x 7! g(x) := f(Ax + b). If Gf is a
cutter, then Gg is a cutter.

Proof. Let x 2 X, u 2 FixGg. Proposition 5.23 gives

Gg(x) = A⇤
�
Gf (Ax+ b)� b

�
(5.92)

and Au+ b 2 FixGf . Since A is unitary and Gf is a cutter, we have

kx�Gg(x)k2 = kx�A⇤
�
Gf (Ax+ b)� b

�k2 (5.93)

= kAx+ b�Gf (Ax+ b)k2 (5.94)

 kAx+ b� (Au+ b)k2 � kGf (Ax+ b)� (Au+ b)k2 (5.95)

= kx� uk2 � kGf (Ax+ b)�Au� bk2 (5.96)

= kx� uk2 � kA⇤�Gf (Ax+ b)� b
�� uk2 (5.97)

= kx� uk2 � kGg(x)� uk2. (5.98)

Hence Gg is a cutter by Fact 2.27(i).
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5.5. When is the subgradient projector Gf a cutter?

Theorem 5.43. Assume that R 3 k 6= 0, and g(x) = f(kx). If Gf is a
cutter, then Gg is a cutter.

Proof. Proposition 5.21 gives Gg(x) = 1

kGf (kx), and FixGg = 1

k FixGf .
Let x 2 X and u 2 FixGg, we have ku 2 FixGf . Then

hx�Gg(x), u�Gg(x)i = hx� 1

k
Gf (kx), u� 1

k
Gf (kx)i (5.99)

=
1

k2
hkx�Gf (kx), ku�Gf (kx)i  0 (5.100)

since Gf is a cutter. Therefore, Gg is a cutter.

It is easy to show that

Fact 5.44. [20, Corollary 4.2.6] Let f : X ! R be convex and lev
0

f 6= ?.
Then Gf is a cutter. Consequently, Gf is continuous at every x 2 lev

0

f .

Proof. As lev
0

f 6= ?, FixGf = lev
0

f . Assume that f(x) > 0. For u 2
FixGf , f(u)  0. By the convexity of f we have

f(x) + hs(x), u� xi  f(u)  0.

Hence Theorem 5.39 applies. Therefore, Gf is a cutter. The remaining
result follows from Fact 2.27(ii).

Remark 5.45. If the functions f defined in Theorems 5.41, 5.42 and 5.43 are
convex, then functions g are also convex, respectively. By [13, Example 2.1],
we have Gf and Gg are cutters. Moreover, one more result [13, Proposition
5.3] supports Fact 5.44.

In Fact 5.44, lev
0

f 6= ? is required, as the following example shows.

Example 5.46. (1). Let f : R ! R be defined by

f(x) = exp |x| 8 x 2 R.

Then lev
0

f = ? and

Gf (x) =

8
><

>:

x� 1 if x > 0,

0 if x = 0,

x+ 1 if x < 0.
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5.5. When is the subgradient projector Gf a cutter?

In particular, this Gf is discontinuous at x = 0 and not a cutter. Moreover,
Gf is not monotone.

(2). Consider
x 7! f(x) = exp(kxk2/2).

We have lev
0

f = ? and

Gf (x) =

(
x� x

kxk2 if x 6= 0

0 if x = 0.

In particular, Gf is not continuous at 0, so not a cutter.

One might ask: If each function fi : X ! R has Gf
i

being a cutter,
must the maximum g := max{f

1

, f
2

} has Gg being a cutter? The answer is
negative as the following example shows.

Example 5.47. Let f
1

(x) = 1 + x and f
2

(x) = 1 � x on R. Each Gf
i

is a
cutter by Fact 5.44. The function g(x) := max{f

1

(x), f
2

(x)} has

Gg(x) :=

8
><

>:

�1 if x > 0,

0 if x = 0,

1 if x < 0

which is not continuous at x = 0, so Gg is not a cutter.

Another question that may arise is if the convexity of the function is
necessary for Gf to be a cutter? Following examples illustrate that the
convexity of the function is independent of Gf to be a cutter.

Example 5.48. If f is not convex, Gf need not be a cutter. Consider
f : R ! R defined by R 3 x 7! f(x) = 1� exp(�x2). Then the subgradient
projector of f is

Gf (x) =

(
x� ( 1

2x exp(�x2
)

� 1

2x) if x 6= 0,

0 if x = 0
(5.101)

and FixGf = {0}. However Gf is not a cutter.

99



5.5. When is the subgradient projector Gf a cutter?

Indeed, when |x| > p
2 we have

f(x) +rf(x)(0� x) = 1� exp(�x2) + (2x exp(�x2))(0� x) (5.102)

= 1� 1 + 2x2

exp(x2)
(5.103)

=
exp(x2)� (1 + 2x2)

exp(x2)
(5.104)

� 1 + x2 + x4

2

� (1 + 2x2)

exp(x2)
(5.105)

=
x2(x2 � 2)

2 exp(x2)
> 0. (5.106)

By Theorem 5.39, Gf is not a cutter.

Example 5.49. Even when f is not convex, Gf may still be a cutter. Define
f : R ! R by

f(x) =

8
>>>><

>>>>:

0 if x  0,

x if 0  x  20/7,

8(x� 2.5) if 20/7  x  3,

2(x� 1) if x > 3.

(5.107)

Then f is not convex since f 0(x) is not monotone on [20/7,+1). However,
its subgradient projector

Gf (x) =

8
>>>>>>>>><

>>>>>>>>>:

x if x  0,

0 if 0 < x < 20/7,
20

7

� 20

7

1

s(x) if x = 20/7, where s(x) 2 [1, 8],

2.5 if 20/7 < x < 3,

3� 4

s(x) if x = 3, where s(x) 2 [2, 8],

1 if x > 3.

(5.108)

is a cutter.

To see this, by Theorem 5.39, it su�ces to consider zero level sets of
tangent planes. Indeed, Let f(u)  0, i.e., u  0. When x

0

> 3,

f(x
0

) + s(x
0

)(u� x
0

) = 2(u� 1)  0; (5.109)

when x
0

= 3,

f(x
0

) + s(x
0

)(u� x
0

) = 4 + s(3)(u� 3)  4 + 2(u� 3)  0; (5.110)
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5.6. Characterization of subgradient projectors of convex functions

where 2  s(3)  8; when 20/7 < x
0

< 3,

f(x
0

) + s(x
0

)(u� x
0

) = 8(u� 2.5)  0; (5.111)

when x
0

= 20/7,

f(x
0

) + s(x
0

)(x� x
0

) = 20/7 + s(20/7)(u� 20/7)  u  0; (5.112)

where 1  s(20/7)  8; when 0 < x
0

< 20/7,

f(x
0

) + s(x
0

)(u� x
0

) = u  0. (5.113)

Remark 5.50. Note that even if Gf is continuous, it does not mean that Gf

is a cutter, e.g., see Example 5.12(ii). (See Corollary 6.14(ii) for an example
on R2). In [20], Cegielski developed a systematic theory for cutters. The
theory of cutters can be used to study the class of functions (Theorem 5.39)
whose subgradient projectors are cutters.

5.6 Characterization of subgradient projectors of
convex functions

The following result is of independent interest.

Proposition 5.51. Assume that C ✓ X is closed and convex. The function
f : X ! R satisfies

(i) f � 0 on X \ C;

(ii) f is convex on every convex subsets of X \ C;

(iii) lim y!x

y2X\C,x2C
f(y) = 0, i.e., limi!1 f(yi) = 0 whenever (yi)1i=1

is a

sequence in X \ C converging to a boundary point x of X \ C.

Define

g(x) =

(
f(x) if x 62 C

0 if x 2 C.

Then g is convex on X.

Proof. Let x, y 2 X, 0  �  1. We consider three cases.

(i) If [x, y] ✓ X \ C, g = f is convex on [x, y] by assumption.
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5.6. Characterization of subgradient projectors of convex functions

(ii) If �x+ (1� �)y 2 C, then

g(�x+ (1� �)y) = 0  �g(x) + (1� �)g(y)

since g(x), g(y) � 0.

(iii) �x+(1��)y 62 C and [x, y]\C 6= ?. In particular, both x, y cannot
both be in C. We consider two subcases. (1). x 2 C and y 62 C. We need
to show

g(�x+ (1� �)y)  �g(x) + (1� �)g(y).

As y 62 C, there exists z 2 bdry(C) such that

�x+ (1� �)y 2 [z, y] ⇢ X \ C and f(z) = 0.

As
�x+ (1� �)y = ↵z + (1� ↵)y for some 0  ↵  1.

and f is convex on [z, y], we have

f(�x+ (1� �)y) = f(↵z + (1� ↵)y)  ↵f(z) + (1� ↵)f(y) = (1� ↵)f(y).
(5.114)

Now
z = �x+ (1� �)y for some 0  �  1,

�x+ (1� �)y = ↵z + (1� ↵)y = ↵(�x+ (1� �)y) + (1� ↵)y

give � = ↵�. Therefore, by (5.114), g(x) = 0 and g(y) = f(y) � 0,

g(�x+ (1� �)y) = f(�x+ (1� �)y) (5.115)

 (1� ↵�)f(y) = (1� �)g(y) + �g(x). (5.116)

(2). x 62 C and y 62 C. We need to show

g(�x+ (1� �)y)  �g(x) + (1� �)g(y).

There exists z 2 bdry(C) such that

�x+ (1� �)y 2 [z, y] or �x+ (1� �)y 2 [x, z],

say �x+ (1� �)y 2 [z, y]. Then

�x+ (1� �)y = ↵z + (1� ↵)y for some 0  ↵  1.
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5.6. Characterization of subgradient projectors of convex functions

As f is convex on [z, y], f(z) = 0,

g(�x+ (1� �)y) = f(↵z + (1� ↵)y)  ↵f(z) + (1� ↵)f(y) = (1� ↵)f(y).
(5.117)

Now
z = �x+ (1� �)y for some 0  �  1,

�x+ (1� �)y = ↵z + (1� ↵)y = ↵(�x+ (1� �)y) + (1� ↵)y

give � = ↵�. Then by (5.117), using g(x) = f(x) � 0, g(y) = f(y) � 0,

g(�x+ (1� �)y)  (1� ↵�)f(y) = (1� �)f(y) (5.118)

 (1� �)f(y) + �f(x) (5.119)

= (1� �)g(y) + �g(x). (5.120)

Combining (i)–(iii), we conclude that g is convex on X.

Theorem 5.52. Let T : X ! X and

C := {x 2 X : Tx = x}.

Then T is a subgradient projector of a convex function f : X ! R with
lev

0

f = C if and only if there exists g : X ! [�1,+1) such that g :
X \ C ! R is locally Lipschitz, g(x) = �1 for every x 2 C, and

(i) for every x 2 X \ C, x�Tx
kx�Txk2 2 @g(x);

(ii) The function defined by

f(x) :=

(
exp(g(x)) if x 62 C,

0 if x 2 C

is convex.

In this case, T = Gf .

Proof. ): Assume that T is a subgradient projector, say T = Gf1 with
f
1

: X ! R being convex and lev
0

f
1

= C. Then f = max{0, f
1

} is convex
and Gf = Gf1 . Put g = ln f and C = lev

0

f . Since f is locally Lipschitz, g is
locally Lipschitz on X \C. Note that @g(x) = (@f(x))/f(x) when f(x) > 0.
Apply Theorem 5.31(i) to obtain (i).
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5.6. Characterization of subgradient projectors of convex functions

(: Assume that (i), (ii) hold. When x 62 C, (i) and (ii) give

kx� Txk =
1

kc(x)k , @g(x) =
@f(x)

f(x)

where c(x) 2 @g(x). Using (i) again, we have

Tx = x� kx� Txk2c(x) = x� c(x)

kc(x)k2 = Gf (x) (5.121)

by Theorem 5.31(ii). Moreover, when x 2 C, Tx = x = Gf (x). Hence
T = Gf .

Theorem 5.53. Let T : X ! X be di↵erentiable and

C = {x 2 X : Tx = x}

be closed and convex. Define T
1

: X \ C ! X by

x 7! T
1

(x) =
x� Tx

kx� Txk2 .

Then T is a subgradient projector of a convex function f : X ! R with
lev

0

f = C and being di↵erentiable on X \ C if and only if

(i) For every x 2 X \ C,

T
1

(x)(T
1

(x))⇤ +rT
1

(x) ⌫ 0

i.e., positive semidefinite.

(ii) There exists a function g : X ! [�1,+1] such that

(8 x 2 X \ C) rg(x) = T
1

(x),

(8 x 2 C) lim
y!x

y2X\C
g(y) = �1,

and
(8 x 2 C) g(x) = �1.

Proof. ): Assume that T = Gf with f being convex and lev
0

f = C. By
Theorem 5.31(i), we can put g = ln f to obtain (ii). Indeed, for x 2 X \ C,

T
1

(x) =
x� Tx

kx� Txk2 =
x�Gf (x)

kx�Gf (x)k2 = r(ln(f(x))) = rg(x). (5.122)
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5.6. Characterization of subgradient projectors of convex functions

For x 2 C, we have f(x)  0. Moreover, let (yn) ✓ X \C and yn ! x. Then
f(yn) > 0. Since f is continuous, thus we have f(yn) ! f(x) � 0. Therefore
f(x) = 0 and ln(f(x)) = �1 for x 2 C. By Theorem 5.52, g = ln(f) is
locally Lipschitz, thus we have

lim
y!x

y2X\C
g(y) = lim

y!x

y2X\C
ln(f(y)) = �1. (5.123)

Furthermore, when x 2 C, f(x)  0 and f(x) = exp(g(x)) � 0 as well. Thus
f(x) = exp(g(x)) = 0 when x 2 C. Therefore g(x) = �1 when x 2 C. As
f = exp(g), for every x 62 C we have

rf(x) = eg(x)rg(x) = eg(x)T
1

(x),

r2f(x) = eg(x)T
1

(x)(T
1

(x))⇤+eg(x)rT
1

(x) = eg(x)
�
T
1

(x)(T
1

(x))⇤+rT
1

(x)
�
.

Since f is convex, r2f(x) ⌫ 0, and this is equivalent to

T
1

(x)(T
1

(x))⇤ +rT
1

(x) ⌫ 0

which is (i).
(: Assume that (i) and (ii) hold. Put f = exp(g). Then lev

0

f = C.
Indeed, let x 2 lev

0

f , we have f(x) = exp(g(x))  0. That is g(x) = �1.
If x /2 C, by (ii), we have rg(x) = T

1

(x). This is not true when g(x) = �1.
Thus x 2 C. So lev

0

f ✓ C. Conversely, let x 2 C, from (ii), we have
g(x) = �1. Hence f(x) = exp(g(x)) = 0. So x 2 lev

0

f . Then C ✓ lev
0

f .
For x 2 X \ C,

rf(x) = eg(x)rg(x) = eg(x)T
1

(x),

r2f(x) = eg(x)T
1

(x)(T
1

(x))⇤+eg(x)rT
1

(x) = eg(x)
�
T
1

(x)(T
1

(x))⇤+rT
1

(x)
�
.

(i) and (ii) imply that f is di↵erentiable and convex on convex subsets of
X \ C, and f ⌘ 0 on C. By Proposition 5.51, f is convex on X.

Moreover, when x 6= Tx we have

Gf (x) = x�
✓

f(x)

krf(x)k
◆

2rf(x)

f(x)
= x� T

1

(x)

kT
1

(x)k2 (5.124)

= x�
x�Tx
kx�Txk2✓

1

kx�Txk

◆
2

= x� (x� Tx) = Tx. (5.125)

Let’s reduce X = Rn to the real line R.
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5.6. Characterization of subgradient projectors of convex functions

Corollary 5.54. Let T : R ! R be di↵erentiable and

C = {x 2 R : x = Tx}

be a closed interval. Then T is a subgradient projector of a convex function
f : R ! R with lev

0

f = C and being di↵erentiable on R \ C if and only if

(i) T is monotonically increasing on convex subsets of R \ C;

(ii) The function

g(x) =

Z x

a

1

s� Ts
ds

satisfies
lim

x#sup(C)

g(x) = �1

for some a > sup(C); and

lim
x"inf(C)

g(x) = �1

for some a < inf(C).

Proof. Define n : R ! R by x 7! n(x) = x � Tx. Then for every x 62 C,
T
1

(x) = 1

n(x) . Theorem 5.53 (i) is equivalent to

1

n2(x)
� n0(x)

n2(x)
� 0.

This is the same as n0(x)  1, which implies that T 0(x) � 0. Conclusions in
(ii) are actually equivalent to Theorem 5.53(ii).

Corollary 5.55. Let T : R ! R be di↵erentiable and

C = {x 2 R : x = Tx}

be a closed interval. Define N : R ! R by

x 7! N(x) := x� Tx.

Suppose that

(i) N is nonexpansive;
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5.6. Characterization of subgradient projectors of convex functions

(ii) The function

g(x) =

Z x

a

1

s� Ts
ds

satisfies limx#sup(C)

g(x) = �1 for some a > sup(C); and
limx"inf(C)

g(x) = �1 for some a < inf(C).

Then T is a subgradient projector of a convex function f : R ! R with
lev

0

f = C and being di↵erentiable on R \ C. In particular, the assumption
(i) holds when T is firmly nonexpansive.

Proof. It su�ces to observe that

T = Id�N.

Since N is nonexpansive, T is monotone. Also note that T is firmly nonex-
pansive if and only if N is. Moreover, N 0(x)  1 is equivalent to T 0(x) � 0.
Thus (i) is the same as Corollary 5.54 (i).

We illustrate Corollary 5.54 with three examples. They demonstrate
that both conditions (i) and (ii) in Corollary 5.54 are needed. More pre-
cisely, (i) is for convexity of function f ; (ii) is for lev

0

f = C.

In the first example, T fails to be monotone but verified condition (ii)
in Corollary 5.54. Then T is not the subgradient projector of a convex
function.

Example 5.56. Define T : R ! R by

T (x) :=

(
x�p

x+
p
xe�2

p
x if x > 0,

x if x  0.

Then T is a subgradient projector of the nonconvex function f : R ! R
given by

f(x) :=

(
e2
p
x � 1 if x > 0

x if x  0

In this case, T fails to be monotone nor to be a cutter, but T verifies con-
dition (ii) of Corollary 5.54.

Proof. When x > 0, f 0(x) = e2
p
xx�1/2, so that f 00(x) =

e2
p
x

⇣
1� 1

2
p

x

⌘

x . Since
f 00(x) < 0 when 0 < x < 1/4, f is not convex on R. Now we show that (i)
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5.6. Characterization of subgradient projectors of convex functions

T fails to be monotone. This is equivalent to verify that for some x we have
N 0(x) > 1 where N(x) = x� Tx. Indeed,

N 0(x) =
✓p

x�
p
x

e2
p
x

◆0
=

1

2

e2
p
x � 1

e2
p
x
p
x

+ e�2
p
x.

L’Hospital rule gives limx!0

+
e2
p
x�1

e2
p
x

p
x
= 2, so limx!0

+ N 0(x) = 2. Therefore,

T is not monotone.
(ii) T fails to be a cutter. From the definition of T , we have FixT = R�.

Let x = 1

4

and u = 0 2 FixT , then

hx� Tx, u� Txi ⇡ (
1

4
� (�0.066))(0� (�0.066)) ⇡ 0.020856 > 0.

(iii) T verified condition (ii) of Corollary 5.54. For x > 0,

N(x) =
e2
p
x � 1

e2
p
xx�1/2

.

With a > 0, we have

g(x) =

Z x

a

1

N(s)
ds =

Z x

a

e2
p
xx�1/2

e2
p
x � 1

dx = ln(e2
p
x � 1)� ln(e2

p
a � 1).

Clearly, limx!0

+ g(x) = �1. Hence (ii) holds.

(a) Nonconvex function f . (b) The plot of T which is not
monotonically increasing.

Figure 5.3: Illustration for Example 5.56
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In the following example, both two T s are the subgradient projectors of
convex functions but T s do not satisfy Corollary 5.54(ii).

Example 5.57. (1) Define T : R ! R by

x 7! T (x) =

8
><

>:

x� 1 if x > 0,

0 if x = 0,

x+ 1 if x < 0.

Then T = Gf where the convex function f : R ! R is defined by

x 7! f(x) = e|x|.

However, lev
0

f = ? but FixT = {0}. In this case, in Corollary 5.54 condi-
tion (i) holds but condition (ii) fails.

(a) curve of convex function f . (b) the plot of T which is not
monotonically increasing.

Figure 5.4: Illustration for Example 5.57 (1)

(2) Define T : R ! R by

x 7! T (x) =

(
x� 1

2x if x 6= 0

0 if x = 0.

Then T = Gf where f : R ! R is given by

x 7! f(x) = ex
2
.
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However, lev
0

f = ? but FixT = {0}. In this case, in Corollary 5.54 condi-
tion (i) holds but condition (ii) fails.

(a) convex function f . (b) the plot of T which is not
monotonically increasing.

Figure 5.5: Illustration for Example 5.57 (2)

Proof. (1) We have

N(x) = x�Gf (x) =

8
><

>:

1 if x > 0

0 if x = 0

�1 if x < 0.

Let a > 0. For x > 0 we have

g(x) =

Z x

a

1

N(s)
ds =

Z x

a
1ds = x� a.

Thus, limx!a+ g(x) = 0. Therefore, (ii) of Corollary 5.54 fails.

(2) We have

N(x) = x� T (x) =
1

2x

and N 0(x) = � 1

2x2 . Therefore, T is monotone on (0,+1) and (�1, 0). This
says that condition (i) of Corollary 5.54 holds.
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However, when a > 0, for x > 0 we have

g(x) =

Z x

a

1

N(s)
ds =

Z x

a
2sds = x2 � a2.

Then limx!0

+ g(x) = �a2, so condition (ii) of Corollary 5.54 fails.

Note that T defined in Example 5.57(1) is a subgradient projector of
a convex function, but is not a cutter. Actually, it is easy to see that
FixT = {0}. Let x = 1

2

> 0, we have Tx = x� 1 = �1

2

. Let 0 = y 2 FixT ,
we have

hx� Tx, y � Txi = h1
2
� (�1

2
), 0� (�1

2
)i = 1

2
> 0. (5.126)

Then T is not a cutter.

Remark 5.58. Example 5.57(1) gives us an example of a subgradient pro-
jector of a convex function which is not a cutter. On the other hand, there
is an example. f(x) = 1. f is convex on X. By Proposition 5.8(i), we have
the subgradient projector of f is identity, which is a cutter. Thus we cannot
conclude that the subgradient projector of a convex function is a cutter if
we don’t have condition of lev

0

f 6= ?.

Example 5.59. Define T : R ! R by

x 7! T (x) =

8
><

>:

x�p
x if x > 0

0 if x = 0

x�p�x if x < 0

(5.127)

Then T = Gf where the nonconvex function f : R ! R is given by

x 7! f(x) =

(
e2
p
x if x � 0

e�2
p�x if x < 0.

(5.128)

However, lev
0

f = ? but FixT = {0}. In this case, both conditions (i) and
(ii) in Corollary 5.54 fail.

Proof. f(x) = e2
p
x is nonconvex on [0,+1), see Example 5.56. Gf = T

follows by direct calculations.
Condition (i) of Corollary 5.54 fails: T is not monotonically increasing

on [0,+1) since T 0(x) = 1� 1

2

p
x
< 0 when x > 0 is su�ciently near 0.
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Condition (ii) of Corollary 5.54 fails. Indeed,

N(x) = x� T (x) =
p
x (5.129)

when x � 0. When a > 0, for x > 0 we have

g(x) =

Z x

a

1p
s
ds = 2

p
x� 2

p
a, (5.130)

so that limx!0

+ g(x) = �2
p
a.

(a) Plot of nonconvex function f . (b) The plot of T which is not
monotonically increasing.

Figure 5.6: Illustration for Example 5.59.

This chapter presented basic properties of subgradient projectors of non-
convex functions. We also investigated when a subgradient projector is a
cutter and when a mapping is a subgradient projector of a convex function.
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Chapter 6

Linear Subgradient
Projectors

6.1 Overview

In this chapter, based on the manuscript [11], we mainly focus on the
properties of Gf when it is linear. We characterize symmetric linear sub-
gradient projectors and obtain a closed form. It turns out that the set of
subgradient projectors is not convex.

6.2 Characterizations of Gf when Gf is linear

Proposition 6.1. Let T be a linear operator. Then T is a cutter if and
only if T is firmly nonexpansive.

Proof. ): Assume that T is a cutter. Then for every x 2 X and u 2 FixT ,

hx� Tx, u� Txi = hTx� x, Tx� ui  0. (6.1)

Put u = 0. Since T is linear, thus T mapps 0 to 0. Then 0 2 FixT . So

hTx� x, Tx� 0i  0 ) kTxk2  hx, Txi. (6.2)

By (2.44), T is firmly nonexpansive.
(: Assume that T is firmly nonexpansive. Let u 2 FixT . Then Tu = u

and

hTx� x, Tx� ui = hTx� x, Tx� Tui (6.3)

= hTx� Tu+ Tu� x, Tx� Tui (6.4)

= kTx� Tuk2 + hTu� x, Tx� Tui (6.5)

= kTx� Tuk2 � hx� u, Tx� Tui  0. (6.6)

Hence T is a cutter.
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The following example says that Proposition 6.1 fails if T is not linear.

Example 6.2. Define a continuous nonlinear T : R ! R by

T (x) =

8
>>>><

>>>>:

x/2 if �2  x  2,

3� x if 2  x  3,

�(3 + x) if �3  x  �2,

0 otherwise.

(6.7)

Then T is a cutter but not firmly nonexpansive as T is not monotone (re-
ferring to Theorem 2.32).

Proof. (i) It is easy to obtain that FixT = {0}. This means that T is a
cutter if and only if (T (x))2  xT (x).
When �2  x  2, we have

(T (x))2 =
x2

4
 x

x

2
= xT (x); (6.8)

When 2  x  3, we have

(T (x))2 = (3� x)2 = (3� x)(3� x)  x(3� x); (6.9)

when �3  x  �2, we have

(T (x))2 = [�(x+ 3)]2 = [�(x+ 3)][�(x+ 3)]  x[�(x+ 3)]; (6.10)

when |x| > 3, we have

(T (x))2 = 0 = xT (x). (6.11)

Hence T is a cutter.

(ii) T is not monotone. Actually, 8x, y 2 [2, 3], the following is true.

hTx� Ty, x� yi = h(3� x)� (3� y), x� yi = �(x� y)2  0. (6.12)

Therefore we conclude that T is not monotone, either firmly nonex-
pansive.
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Figure 6.1: Graph of T defined in Example 6.2.

Observe that Example 6.2 is much simpler than [20, Example 2.2.8, page
68].

Theorem 6.3. Let a > 0 and B 6= 0 being an n⇥n symmetric and positive
semidefinite matrix. Consider the function

(8x 2 X) f(x) = (x|Bx)1/(2a) (6.13)

(i) We have

Gf (x) =

(
x� a x|Bx

kBxk2Bx if Bx 6= 0,

x if Bx = 0.
(6.14)

(ii) Gf is linear if and only if B = �PL where � > 0 and L ✓ X is a
subspace. In this case

kerB = L?, (6.15)

f(x) = �1/(2a)
�
dL?(x)

�
1/a

and (6.16)

Gf = Id�aPL = (1� a) Id+aPL? . (6.17)

(iii) Assume that Gf is linear. Then Gf is a cutter if and only if 0 < a  1.

Proof. (i) As B is positive semidefinite, i.e., (8x 2 X) x|Bx � 0. f(x)  0
if and only if f(x) = 0, which is equivalent to Bx = 0. Gf follows from
direct calculations.
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6.2. Characterizations of Gf when Gf is linear

(ii) ): Assume that Gf is linear. The mapping

x 7! T
1

(x) := a�1
�
x�Gf (x)

�
=

(
x|Bx
kBxk2Bx if Bx 6= 0

0 if Bx = 0
(6.18)

is linear. Let �i be eigenvalues of B, where i = 1, 2. Assume that �
1

,�
2

> 0.
We want to show that �

1

= �
2

. We prove it by contradiction. Suppose that
�
1

6= �
2

. Take unit length eigenvector vi associated with �i. Note that
hv

1

, v
2

i = 0, Bvi 6= 0 and B(v
1

+ v
2

) = �
1

v
1

+ �
2

v
2

6= 0. As T
1

is linear, we
have T

1

(v
1

+ v
2

) = T
1

v
1

+ T
1

v
2

. Now

T
1

(v
1

+ v
2

) =
(v

1

+ v
2

)|B(v
1

+ v
2

)

kB(v
1

+ v
2

)k2 B(v
1

+ v
2

) (6.19)

=
(v

1

+ v
2

)|(�
1

v
1

+ �
2

v
2

)

k�
1

v
1

+ �
2

v
2

)k2 (�
1

v
1

+ �
2

v
2

) (6.20)

=
�
1

v|
2

v
1

+ �
2

v|
2

v
2

+ �
1

v|
1

v
1

+ �
2

v|
1

v
2

�2

1

+ �2

2

(�
1

v
1

+ �
2

v
2

) (6.21)

=
�
1

+ �
2

�2

1

+ �2

2

(�
1

v
1

+ �
2

v
2

), (6.22)

T
1

v
1

+ T
1

v
2

=
v|
1

Bv
1

kBv
1

k2Bv
1

+
v|
2

Bv
2

kBv
2

k2Bv
2

(6.23)

=
�
1

kv
1

k2
k�

1

v
1

k2�1

v
1

+
�
2

kv
2

k2
k�

2

v
2

k2�2

v
2

(6.24)

= v
1

+ v
2

(6.25)

As {v
1

, v
2

} are linearly independent, the above gives �
1

= �
2

which con-
tradicts �

1

6= �
2

. Therefore, all positive eigenvalues of B have to be equal.
Hence, we have

B = �U|
✓
Id 0
0 0

◆
U (6.26)

where U is an orthogonal matrix, � > 0, Id is an m⇥m identity matrix for
some m � 0. The matrix

U|
✓
Id 0
0 0

◆
U (6.27)

is idempotent20 and symmetric, so it is a matrix associated with an or-
thogonal projection on a closed subspace, say PL, [37, page 430, page 433].
Hence

B = �PL (6.28)

20We sayA is an idempotent operator if and only if AAx = Ax for x 2 X.
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6.2. Characterizations of Gf when Gf is linear

which implies that Bx = 0 if and only if PLx = 0, i.e., kerB = L?. Then
when PLx 6= 0,

T
1

(x) =
x|Bx

kBxk2Bx =
�x|PLx

x|�PL�PLx
�PLx =

�x|PLx

�2x|PLx
�PLx = PLx; (6.29)

when PLx = 0, T
1

x = 0 = PLx. Hence T
1

= PL. It follows that

Gf = Id�aT
1

= Id�aPL = (1� a) Id+a(Id�PL) = (1� a) Id+aPL? .
(6.30)

We proceed to find the expression of f(x):

f(x) = (x|Bx)1/(2a) = (x|�PLx)
1/(2a) (6.31)

= �1/(2a)(x|PLPLx)
1/(2a) = �1/(2a)(kPLxk2)1/(2a) (6.32)

= �1/(2a)(kx� PL?xk2)1/(2a) = �1/(2a)(dL?(x)
2)1/(2a) (6.33)

= �1/(2a)
�
dL?(x)

�
1/a

(6.34)

(: Assume that B = �PL for � > 0 and some subspace L ✓ X. The
assumption gives

f(x) = �1/(2a)
�
dL?(x)

�
1/a

. (6.35)

By Fact 5.18,
Gf = G�

d
L

?
�1/a . (6.36)

By Theorem 5.27,

G�
d
L

?
�1/a = (1� a) Id+aGd

L

? . (6.37)

By Fact 6.5,
G�

d
L

?
�1/a = (1� a) Id+aPL? . (6.38)

Since PL? is linear as L? is a subspace. Hence Gf is linear.
(iii) ): Assume that Gf is a linear cutter. By Fact 6.1, Gf is firmly

nonexpansive, so is Id�Gf . By (ii), Id�Gf = aPL, aPL has to be nonex-
pansive. Take 0 6= x 2 L. The nonexpansiveness requires

kaPLx� aPL0k = kaxk  kxk (6.39)

so that a  1.
(: Assume that 0 < a  1. Since x 7! (x|Bx)1/2 is convex, and the

function
[0,+1) 3 t 7! t1/a (6.40)
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6.2. Characterizations of Gf when Gf is linear

is convex and inceasing when 0 < a  1. By [41, Proposition 1.39], we have
that

x 7! f(x) =
�
(x|Bx)1/2

�
1/a

(6.41)

is convex. By Example 2.26, we have Gf is a cutter.

We illustrate Theorem 6.3(iii) with the following example.

Example 6.4. Let a > 1. Consider

X 3 x 7! f(x) = (x|x)1/(2a) = kxk1/a. (6.42)

Then f is not convex, and

Gf (x) = (1� a)x (6.43)

for every x 2 X. Although Gf is linear, but it is not a cutter since it is not
monotone, see, e.g., Proposition 6.1.

For a set C ⇢ X, its distance function dC : X ! [0,+1) is defined by

X 3 x 7! dC(x) := inf{kx� yk : y 2 C}. (6.44)

Fact 6.5. ([5]) Let C ✓ X be closed and convex, and f = dC . Then
Gf = PC .

The following result completely characterizes symmetric and linear sub-
gradient projectors.

Theorem 6.6. Assume that T : X ! X is linear and symmetric. Then the
following are equivalent.

(i) T is a subgradient projector of a convex function.

(ii) T = Gf where f : X ! R is given by

f(x) = K(x|PLx)
1/(2�) = K

�
dL?(x)

�
1/�

(6.45)

where 0 < �  1, K > 0 and L ✓ X is a subspace. In this case,
Gf = (1� �) Id+�PL? .

Proof. (i))(ii): Assume that T = Gf for some convex function. Since T
is linear and a cutter, T is firmly nonexpansive by Proposition 6.1. Then
T
1

= Id�T is firmly nonexpansive. We consider two cases.
Case 1: int lev

0

f 6= ?. Let x
0

2 int lev
0

f , i.e., there is " > 0 such that
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6.2. Characterizations of Gf when Gf is linear

ball(x
0

, ") ✓ lev
0

f . We now show that T
1

⌘ 0 on ball(x
0

, "). Actually,
8b 2 X with kbk  ", we have x

0

+ b 2 ball(x
0

, ") ✓ lev
0

f , thus T (x
0

+
b) = x

0

+ b, so T
1

(x
0

+ b) = 0. Moreover, since T is linear, so is T
1

, thus
T
1

(b) = T
1

(x
0

+ b) � T
1

(x
0

) = 0. Then T
1

⌘ 0 on ball(0, "). Next we
show T

1

⌘ 0 outside of ball(0, "). Indeed, let x 2 X \ ball(0, "). Then
x
kxk" 2 ball(0, "), thus we have T

1

( x
kxk") =

"
kxkT1

(x) = 0. Therefore T
1

⌘ 0

on X. Thus, T = Id on X. Then T = Gf with f ⌘ 0. This that means (ii)
holds with L = {0}, � = 1 and K > 0.

Case 2: int lev
0

f = ?. As T
1

is continuous, we only need to consider

T
1

(x) =
f(x)

krf(x)k2rf(x) when f(x) > 0. (6.46)

Then

kT
1

(x)k =
f(x)

krf(x)k (6.47)

and rf(x)

f(x)
=

T
1

(x)

kT
1

(x)k2 . (6.48)

Since T is symmetric, T
1

is symmetric, so there exists an orthogonal matrix
Q such that Q|T

1

Q = D where D is an diagonal matrix and Q| denotes the
transpose of Q. Put g = ln f and x = Qy. We have

(rg)(Qy) =
T
1

Qy

kT
1

Qyk2 . (6.49)

Multiplying both sides by Q| and using Q| being an isometry (i.e., kQ|zk =
kzk for every z 2 X) give

Q|(rg)(Qy) =
Q|T

1

Qy

kT
1

Qyk2 =
Dy

kQ|T
1

Qyk2 =
Dy

kDyk2 . (6.50)

If we put h = g �Q, then rh(y) = Q|rg(Qy) for every y 2 X, so

rh(y) =
Dy

kDyk2 . (6.51)

Write

D =

0

BBB@

�
1

0 · · · 0
0 �

2

· · · 0
...

...
. . .

...
0 0 · · · �n

1

CCCA
(6.52)

119



6.2. Characterizations of Gf when Gf is linear

When �
1

= · · · = �n = 0, this is covered in Case 1. We can assume that
T
1

6⌘ 0. As T
1

is monotone, we can and do assume that �
1

, · · · ,�m > 0 and
�m+1

= · · · = �n = 0. Then

rh(y) =

✓
�
1

y
1Pm

k=1

�2

ky
2

k

, · · · , �mymPm
k=1

�2

ky
2

k

, 0, · · · , 0
◆
. (6.53)

Since h has continuous second order derivatives,

@2h

@yi@yj
=

@2h

@yj@yi
(6.54)

which gives
�2�j�2

i yiyjPm
k=1

�2

ky
2

k

=
�2�i�2

jyiyjPm
k=1

�2

ky
2

k

(6.55)

when 1  i, j  m, i 6= j. As int lev
0

f = ?, (6.55) holds on open subset of
X, so we have �i = �j . Because 1  i, j  m were arbitrary, we obtain that
�
1

= · · · = �m. Hence

T
1

= Q

✓
� Idm 0
0 0

◆
Q| = �Q

✓
Idm 0
0 0

◆
Q| = �PL (6.56)

where L ✓ X is a linear subspace, see [37, page 430]. Namely, T
1

is a positive
multiple of an orthogonal projector.

Now T
1

is firmly nonexpansive and T |
1

= T
1

, this implies that

T
1

+ T |
1

2
� T |

1

T
1

= T
1

� T 2

1

= Q

✓
(�� �2) Id 0

0

◆
Q (6.57)

is positive semidefinite, so 0  �  1. As T
1

6= 0 in this case, 0 < �  1.
Therefore,

r ln f(x) =
T
1

x

kT
1

xk2 =
�PLx

k�PLxk2 =
1

�

PLx

kPLxk2 . (6.58)

Note that P |
L = PL, P 2

L = PL,

r ln kPLxk =
1

kPLxkrkPLxk =
1

kPLxkP
|
L

PLx

kPLxk =
PLx

kPLxk2 . (6.59)

It follows that

r ln f(x) =
1

�
r ln kPLxk = r ln kPLxk1/� (6.60)
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6.2. Characterizations of Gf when Gf is linear

which is equivalent to

ln f(x) = ln kPLxk1/� + c (6.61)

for some constant c 2 R. Taking exp both sides gives

f(x) = KkPLxk1/� = K(kPLxk2)1/(2�) = K(x|PLx)
1/(2�) (6.62)

where K = exp(c) > 0. As PL = Id�PL? ,

f(x) = Kkx� P?xk1/� = K(dL?(x))
1/�. (6.63)

Finally,

T = Gf = Id�T
1

= Id��PL = Id��(Id�PL?) = (1� �) Id+�PL? .
(6.64)

Theorem 6.7. Subgradient projectors of convex functions are not closed
under convex combination.

Proof. Let L := {0} ⇥ R ✓ R2 and M := {(x, y) 2 R2 : h

x
y

�
,


1
1

�
i = 0}.

Define two functions

(8x 2 R2) f(x) = K
1

�
dL?(x)

�
1/�1 , g(x) = K

2

�
dM?(x)

�
1/�2 (6.65)

where 0 < �
1

6= �
2

< 1. By Theorem 6.6, we have

Gf = (1� �
1

) Id+�
1

PL? , Gg = (1� �
2

) Id+�
2

PM? . (6.66)

Now consider �
3

Gf + (1� �
3

)Gg where 0 < �
3

< 1,�
3

6= �
1

,�
2

. Then

�
3

Gf + (1� �
3

)Gg (6.67)

=�
3

�
(1� �

1

) Id+�
1

PL?
�
+ (1� �

3

)
�
(1� �

2

) Id+�
2

PM?
�

(6.68)

=(1� �
2

+ �
2

�
3

� �
1

�
3

) Id+�
1

�
3

PL? + �
2

(1� �
3

)PM? (6.69)

If �
3

Gf + (1� �
3

)Gg is a subgradient projector, by Theorem 6.6, there
are 0 < � < 1 and S which is a subspace of R2 such that

�
3

Gf + (1� �
3

)Gg = (1� �) Id+�PS? . (6.70)

Therefore we have

(1� �
2

+ �
2

�
3

� �
1

�
3

) Id+�
1

�
3

PL? + �
2

(1� �
3

)PM? = (1� �) Id+�PS? .
(6.71)
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6.2. Characterizations of Gf when Gf is linear

Natually, the set of fixed points of left-hand side is equal to the set of fixed
points of right-hand side. Thus we have

Fix ((1� �) Id+�PS?) (6.72)

=Fix ((1� �
2

+ �
2

�
3

� �
1

�
3

) Id+�
1

�
3

PL? + �
2

(1� �
3

)PM?) . (6.73)

By [7, Proposition 4.34], we have

Fix ((1� �
2

+ �
2

�
3

� �
1

�
3

) Id+�
1

�
3

PL? + �
2

(1� �
3

)PM?) = L? \M?.
(6.74)

Also,
Fix ((1� �) Id+�PS?) = S?. (6.75)

Hence

{(0, 0)} = L? \M? (6.76)

= Fix ((1� �
2

+ �
2

�
3

� �
1

�
3

) Id+�
1

�
3

PL? + �
2

(1� �
3

)PM?)
(6.77)

= Fix ((1� �) Id+�PS?) (6.78)

= S? (6.79)

Therefore S? = {(0, 0)}, it imples S = R2. Now we view a projection
operator as a matrix. Then we have

PL? =


1 0
0 0

�
, PM? =


1

2

1

2

1

2

1

2

�
, PS?


0 0
0 0

�
. (6.80)

So we can see that PL? , PS? are diagonal matrices, but PM? is not. Hence,
(6.71) is not true. This means �

3

Gf + (1 � �
3

)Gg is not a subgradient
projector.

Theorem 6.8. Assume 0 < �
1

< 1, 0 < �
2

< 1, 0 < � < 1. Suppose that
L,M are linear subspaces of X satisfying L = M?,M = L? and L,M are
not {0} nor X. Let

Gf = (1� �
1

) Id+�
1

PL? , Gg = (1� �
2

) Id+�
2

PM? . (6.81)

If 1��
� 6= �2

�1
, then (1��)Gf +�Gg is not a subgradient projector of a convex

function.
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6.2. Characterizations of Gf when Gf is linear

Proof. We have

(1� �)Gf + �Gg (6.82)

=(1� �) ((1� �
1

) Id+�
1

PL?) + � ((1� �
2

) Id+�
2

PM?) (6.83)

= [(1� �)(1� �
1

) + �(1� �
2

)] Id+�
1

(1� �)PL? + ��
2

PM? (6.84)

=� Id+(1� �)(�PL? + (1� �)PM?) (6.85)

where � = (1 � �)(1 � �
1

) + �(1 � �
2

) and � = �1(1��)
1�(1��)(1��1)��(1��2)

. We

next show that 0 < � < 1 and � 6= 1

2

. To see this,

0 < � = (1� �)(1� �
1

) + �(1� �
2

) < (1� �) + � = 1. (6.86)

Also,

� =
1

2
(6.87)

() �
1

(1� �)

1� (1� �)(1� �
1

)� �(1� �
2

)
=

��
2

1� (1� �)(1� �
1

)� �(1� �
2

)
(6.88)

()�
1

(1� �) = ��
2

(6.89)

()1� �

�
=

�
2

�
1

. (6.90)

By the assumption: 1��
� 6= �2

�1
, so � 6= 1

2

. Since Gf , Gg are linear and
symmetric, so is (1� �)Gf + �Gg.
If (1 � �)Gf + �Gg is a subgradient projector of a convex function, by
Theorem 6.6, we have

(1� �)Gf + �Gg = (1� ↵) Id+↵PS? (6.91)

where 0 < ↵ < 1 and S is a subspace of X. Note that Gf , Gg are averaged
mapping21, so is (1� �)Gf + �Gg. As

FixGf = L?, FixGg = M?. (6.92)

By [7, Proposition 4.34], we obtain

Fix((1� �)Gf + �Gg) = FixGf

\
FixGg = L?

\
M? = {0}. (6.93)

21(See [7, Definition 4.23]) Let t 2 ]0, 1[ and T : X ! X. Then T is averaged with
constant t if there exists a nonexpansive operator N such that T = (1� t) Id+tN .
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6.2. Characterizations of Gf when Gf is linear

As
Fix((1� ↵) Id+↵PS?) = S?. (6.94)

Thus we have S? = {0}. Therefore, refer to (6.91), we have

(1� �)Gf + �Gg = (1� ↵) Id . (6.95)

Equivalently,

� Id+(1� �)(�PL? + (1� �)PM?) = (1� ↵) Id . (6.96)

We proceed to analyze ↵,�. Take x 2 M,x 6= 0. Then PM?x = 0, PL?x =
PMx = x. (6.96) gives

�x+ (1� �)(�x) = (1� ↵)x. (6.97)

It implies
� + (1� �)� = 1� ↵. (6.98)

Take x 2 L, x 6= 0. Then PL?x = 0, PM?x = PLx = x. (6.96) gives

�x+ (1� �)(1� �)x = (1� ↵)x. (6.99)

It implies
� + (1� �)(1� �) = 1� ↵. (6.100)

Substracting (6.98) from (6.100), we have

(1� �)(1� 2�) = 0 (6.101)

which implies � = 1 or � = 1

2

. This contradicts the choices of �,�
1

,�
2

.

Question: Why must Gf be symmetric when Gf is linear and f is
convex? When f is not convex, we know that Gf can be nonsymmetric, see
Example 6.14 (2).

Proposition 6.9. Let M : X ! X be linear, monotone and

(8 x 2 X with Mx 6= 0) rh(x) =
Mx

kMxk2 (6.102)

where the function h : {x 2 X : Mx 6= 0} ! R. If dim ranM 6= 2, then M
is symmetric.
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6.2. Characterizations of Gf when Gf is linear

Proof. If dim ranM = 0, then M = 0, so it is symmetric. Let us assume
that dim ranM > 0 and dim ranM 6= 2. Since h has continuous mixed
second order derivatives at x whenever Mx 6= 0, the Hessian matrix r2h(x)
is symmetric. As

r2h(x) =
kMxk2M �Mx(rkMxk2)|

kMxk4 =
kMxk2M � 2Mxx|M|M

kMxk4 ,

(6.103)
the symmetric property means that

kMxk2M � 2Mxx|M|M = (kMxk2M � 2Mxx|M|M)| (6.104)

= M|kMxk2 � 2M|Mxx|M| (6.105)

whenever Mx 6= 0. Put y = Mx. The above is simplified to

M �M|

2
=

yy|

kyk2M �M| yy|

kyk2 . (6.106)

Denote the projection operator on the line spanned by {y}, span(y), by
Py = yy|

kyk2 . We have

(8 y 2 ranM)
M �M|

2
= PyM �M|Py. (6.107)

Since M is monotone, ranM = ranM|, see, e,g, [14, Theorem 3.2]. Let
{ei : i = 1, . . . ,m} be an orthonormal basis of ranM . Then

P
ranM =

mX

i=1

eie
|
i . (6.108)

Note that

M|P
ranM = M|P

ranM| = M|(P
ranM| + P

(ranM|
)

?) = M| (6.109)

because M|P
(ranM|

)

? = 0. To see this, let y 2 (ranM|)?. For every z 2 X,

hM|y, zi = hy,Mzi = 0 (6.110)

because Mz 2 ranM = ranM|. As z 2 X was arbitrary, we must have
M|y = 0. Since

M �M|

2
= Pe

i

M �M|Pe
i

(6.111)
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by (6.107), summing up (6.111) from from i = 1 to i = m, followed by using
(6.108) and (6.109), we obtain

m

2
(M�M|) = (

mX

i=1

Pe
i

)M�M|(
mX

i=1

Pe
i

) = P
ranMM�M|P

ranM = M�M|,

(6.112)
that is,

(
m

2
� 1)(M �M|) = 0. (6.113)

Hence M �M| = 0, and so M is symmetric.

Proposition 6.9 fails when dim ranM = 2 as the following example shows.

Example 6.10. When dim ranM = 2, although M : R2 ! R2 is linear,
monotone and

(8 Mx 6= 0) rh(x) =
Mx

kMxk2 , (6.114)

one cannot guarantee that M is symmetric.

Let x = (x, y)| 2 R2.
(1). Define

M =

✓
0 �1
1 0

◆
. (6.115)

Then M is linear, monotone, dim ranM = 2 and

r arctan(y/x) =

✓�y
x

◆

x2 + y2
=

Mx

kMxk2 (6.116)

whenever x 6= 0. However, M is not symmetric.
(2). Define

M =

✓
1/2 �1/2
1/2 1/2

◆
. (6.117)

Then M is linear and monotone and

r
✓
ln(x2 + y2)

2
+ arctan(y/x)

◆
=

✓
x� y
y + x

◆

x2 + y2
=

Mx

kMxk2 (6.118)

whenever x 6= 0. However, dim ranM = 2 and M is not symmetric.
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6.3. A complete analysis of linear subgradient projectors on R2

Conjecture: Let M : Rn ! Rn be linear, monotone and

(8 x 2 Rn with Mx 6= 0) rh(x) =
Mx

kMxk2 (6.119)

where the function h : {x 2 Rn : Mx 6= 0} ! R. If dim ranM = 2 and
exp(h) is convex on convex subsets of {x 2 Rn : Mx 6= 0}, then M is
symmetric.

Combining Theorem 6.6 and Proposition 6.9, we obtain the following
characterization of linear subgradient projectors.

Theorem 6.11. Assume that T : X ! X is linear and dim ran(Id�T ) 6= 2.
Then the following are equivalent.

(i) T is a subgradient projector of a convex function.

(ii) T = Gf where f : X ! R is given by

f(x) = K(x|PLx)
1/(2�) = K

�
dL?(x)

�
1/�

(6.120)

where 0 < �  1, K > 0 and L ✓ X is a subspace. In this case,
Gf = (1� �) Id+�PL? .

Proof. (i))(ii): Assume that T = Gf for some convex function. Then T
is a cutter by Fact 5.44. As T is linear, in view of Proposition 6.1, T is
firmly nonexpansive, so M := Id�T is firmly nonexpansive, in particular,
monotone. By Theorem 5.31,

rh(x) =
Mx

kMxk2 (6.121)

where h(x) = ln f(x), f(x) > 0. This is equivalent to

rh(x) =
Mx

kMxk2 (6.122)

whenMx 6= 0. Proposition 6.9 shows thatM is symmetric, so is T = Id�M .
It su�ces to apply Theorem 6.6 to obtain (ii).
(ii))(i): Clear.

6.3 A complete analysis of linear subgradient
projectors on R2

We start with a simple result about essentially strictly di↵erentiable
functions (for definition, see Definition 5.33).
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6.3. A complete analysis of linear subgradient projectors on R2

Lemma 6.12. Let O ✓ X be a nonempty open set and f : O ✓ X ! R
be an essentially strictly di↵erentiable function. If there exists a continuous
selection s : O ! X with s(x) 2 @f(x) for every x 2 O, then f is strictly
di↵erentiable on O.

Proof. By [17, Theorem 2.4, Corollary 4.2], f has a minimal Clarke subd-
i↵erential @cf , and @cf can be recovered by every dense selection of @cf .
Since s(x) 2 @f(x) ⇢ @cf(x), and s is continuous on O, we have @cf(x) =
@f(x) = s(x) for every x 2 O, which implies that f is strictly di↵erentiable
at x. Hence f is strictly di↵erentiable on O.

We consider linear operator in R2:

T =

✓
1� a �b

�c 1� d

◆
(6.123)

where a2 + b2 + c2 + d2 6= 0. Note that when a = b = c = d = 0, T = Gf

with f ⌘ 0.

Theorem 6.13. Let T be given by (6.123). Then T is a subgradient pro-
jector of an essentially strictly di↵erentiable function on R2 \ FixT if and
only if one of the following holds

(i) (1) a = b = c = 0, d 6= 0: T = Gf where f(x
1

, x
2

) = K|x
2

|1/d for
some K > 0;

(2) b = c = d = 0, a 6= 0: T = Gf where f(x
1

, x
2

) = K|x
1

|1/a for
some K > 0;

(3) b = c = 0, a = d 6= 0: T = Gf where f(x
1

, x
2

) = K(x2
1

+ x2
2

)
1
2a

for some K > 0.

(ii) a 6= 0, b = c, d = c2/a: T = Gf where f(x
1

, x
2

) = K|ax
1

+cx
2

|a/(a2+c2)

for some K > 0.

(iii) a = d 6= 0, b = �c 6= 0: T = Gf where

f(x1, x2) =

8
>><

>>:

K(x2
1 + x

2
2)

a
2(a2+c2) exp

⇣
� c

a

2+c

2 arctan
⇣

x1
x2

⌘⌘
if x2 6= 0,

0 if (x1, x2) = (0, 0),

K|x1|
a

(a2+c2) exp
⇣
� |c|

a

2+c

2
⇡

2

⌘
if x1 6= 0, x2 = 0,

(6.124)

for some K > 0, and f is lower semicontinuous. In particular, when
c 6= 0, f is nonconvex since f is not continuous when x

1

6= 0 and
x
2

= 0.
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6.3. A complete analysis of linear subgradient projectors on R2

Proof. Assume that T is a subgradient projector. By Theorem 5.31 and
Lemma 6.12, we can find a di↵erentiable function g : X ! R such that

for every x 2 X,
x� Tx

kx� Txk2 = rg(x).

As

x� Tx =

✓
a b
c d

◆✓
x
1

x
2

◆
=

✓
ax

1

+ bx
2

cx
1

+ dx
2

◆
,

we have

@g

@x
1

=
ax

1

+ bx
2

(ax
1

+ bx
2

)2 + (cx
1

+ dx
2

)2
,

@g

@x
2

=
cx

1

+ dx
2

(ax
1

+ bx
2

)2 + (cx
1

+ dx
2

)2
.

Since

@2

@x
1

@x
2

g(x
1

, x
2

) (6.125)

=� (a2c+ c3)x2
1

+ (cd2 � b2c+ 2abd)x2
2

+ 2(c2d+ a2d)x
1

x
2

((ax
1

+ bx
2

)2 + (cx
1

+ dx
2

)2)2
, (6.126)

@2

@x
2

@x
1

g(x
1

, x
2

) (6.127)

=� (a2b� bc2 + 2acd)x2
1

+ (b3 + bd2)x2
2

+ 2(ab2 + ad2)x
1

x
2

((ax
1

+ bx
2

)2 + (cx
1

+ dx
2

)2)2
(6.128)

on a nonempty open set of R2. Then we have

@2

@x
1

@x
2

g(x
1

, x
2

) =
@2

@x
2

@x
1

g(x
1

, x
2

).

This leads to
8
<

:

a2b� bc2 + 2acd = a2c+ c3, (1)
b3 + bd2 = cd2 � b2c+ 2abd, (2)

ab2 + ad2 = c2d+ a2d. (3)

Now a ⇤ (2)� b ⇤ (3) ) (ad� bc)(ab+ cd) = 0. It follows that
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6.3. A complete analysis of linear subgradient projectors on R2

(A) If ad = bc. (1) implies (b � c)(a2 + c2) = 0. Then the following two
case could happen.

i. b = c = 0. Then (3) ) ad(a� d) = 0. That means

a = b = c = 0, d 6= 0,

or
b = c = d = 0, a 6= 0,

or
a = d 6= 0, b = c = 0.

ii. b = c 6= 0 and d = c2/a.

(B) If ab+ cd = 0. (1) implies (b+ c)(a2 + c2) = 0. We only consider the
case b = �c 6= 0. Then (2) and (3) implies a = d.

Thus we get the following three cases.

(i) a = b = c = 0, d 6= 0. Then we get

g(x
1

, x
2

) =
ln |x

2

|
d

+ C
1

, if x
2

6= 0.

Figure 6.2: Graph of function g.
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6.3. A complete analysis of linear subgradient projectors on R2

f(x
1

, x
2

) = K|x
2

|1/d for some K > 0.

Figure 6.3: Graph of function f .

Or b = c = d = 0, a 6= 0. Then we get

g(x
1

, x
2

) =
ln |x

1

|
a

+ C
1

, if x
1

6= 0.

Figure 6.4: Graph of function g.
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6.3. A complete analysis of linear subgradient projectors on R2

f(x
1

, x
2

) = K|x
1

|1/a for some K > 0.

Figure 6.5: Graph of function f .

Or a = d 6= 0, b = c = 0. Then we get

g(x
1

, x
2

) =
1

2a
ln (x2

1

+ x2
2

) + C
1

, if x
1

6= 0 and x
2

6= 0.

Figure 6.6: Graph of function g
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6.3. A complete analysis of linear subgradient projectors on R2

f(x
1

, x
2

) = K(x2
1

+ x2
2

)
1
2a for some K > 0.

Figure 6.7: Graph of function f

(ii) a 6= 0, b = c 6= 0, d = c2/a. Then we get

g(x
1

, x
2

) =
a

a2 + c2
ln |ax

1

+ cx
2

|+ C
2

, if ax
1

+ cx
2

6= 0.

Figure 6.8: Graph of function g
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6.3. A complete analysis of linear subgradient projectors on R2

f(x
1

, x
2

) = K|ax
1

+ cx
2

|a/(a2+c2) for some K > 0.

Figure 6.9: Graph of function f

(iii) a = d 6= 0, b = �c 6= 0. Then we get

g(x
1

, x
2

) =
a

2(a2 + c2)
ln(x2

1

+x2
2

)� c

a2 + c2
arctan

✓
x
1

x
2

◆
+C

3

, (6.129)

if x
2

6= 0. Since g = ln f , we obtain f = exp(g) by using (i) and (ii).
For (iii), we obtain

f(x
1

, x
2

) = K(x2
1

+ x2
2

)
a

2(a2+c

2) exp

✓
� c

a2 + c2
arctan

✓
x
1

x
2

◆◆
if x

2

6= 0

(6.130)
for some K > 0.

134



6.3. A complete analysis of linear subgradient projectors on R2

(a) Graph of function g. (b) Graph of function f .

Figure 6.10: Plots of g and f when a = 1, c = 1 and K = 1 in Theo-
rem 6.13(iii).

However, when c 6= 0, f is not continuous at (x̄
1

, 0) with x̄
1

6= 0 since

⇡

2
= lim

x1!x̄1,x2#0
arctan

x
1

x
2

6= lim
x1!x̄1,x2"0

arctan
x
1

x
2

= �⇡

2
. (6.131)

The function given by (6.124) is lower semicontinuous but not continuous at
every (x̄

1

, 0). Moreover, f is not convex on R2 since a finite-valued convex
function is continuous.

It is natural to ask for what selection s 2 @f , we have Gf = T on R2.
On R2 \ {(x

1

, x
2

) : x
2

6= 0}, one clearly chooses s = rf . It remains to
determine the subgradient of f at (x̄

1

, 0). Indeed, when x
2

6= 0, f(x
1

, x
2

) =
exp(g(x

1

, x
2

)), so that rf(x
1

, x
2

) = f(x
1

, x
2

)rg(x
1

, x
2

), i.e.

rf(x1, x2) (6.132)

=K(x2
1 + x2

2)
a

2(a2+c2) exp

✓
� c

a2 + c2
arctan

✓
x1

x2

◆◆
1

a2 + c2
(ax1 � cx2, ax2 + cx1)

x2
1 + x2

2

.

(6.133)

When (x
1

, x
2

) ! (x̄
1

, 0), cx
1

/x
2

> 0, we have

f(x
1

, x
2

) ! K|x̄
1

|
a

(a2+c

2) exp

✓
� |c|
a2 + c2

⇡

2

◆
= f(x̄

1

, 0) (6.134)
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and

rf(x
1

, x
2

) ! K|x̄
1

|
a

(a2+c

2) exp

✓
� |c|
a2 + c2

⇡

2

◆
1

a2 + c2

✓
a

x̄
1

,
c

x̄
1

◆
. (6.135)

Therefore, by the definition of limiting subdi↵erential (see Definition 5.1),

K|x̄
1

|
a

(a2+c

2) exp

✓
� |c|
a2 + c2

⇡

2

◆
1

a2 + c2

✓
a

x̄
1

,
c

x̄
1

◆
2 @f(x̄

1

, 0). (6.136)

Hence we can choose s(x̄
1

, 0) to be the limiting subgradient given by (6.136).

Corollary 6.14. (1). Define

T =

✓
0 �1
1 0

◆
(6.137)

The skew linear mapping T is not firmly nonexpansive, so not a cutter.
However, T is a subgradient projector of a nonconvex, discontinuous but
lower semicontinuous function f given by

f(x, y) =

8
><

>:

(x2 + y2)1/4 ⇤ exp(�(1/2) ⇤ arctan(x/y)) if y 6= 0,

0 if (x, y) = (0, 0),

|x|1/2 exp(�⇡/4) if x 6= 0, y = 0.

(6.138)

Figure 6.11: Graph of f defined in (6.138).
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6.3. A complete analysis of linear subgradient projectors on R2

(2). The linear mapping

T :=

✓
1/2 1/2
�1/2 1/2

◆
(6.139)

is firmly nonexpansive and a cutter. However, T is a subgradient projector of a
nonconvex, discontinuous but lower semicontinuous function f given by

f(x, y) =

8
><

>:

(x2 + y2)1/2 ⇤ exp(� arctan(x/y)) if y 6= 0,

0 if (x, y) = (0, 0),

|x| exp(�⇡/2) if x 6= 0, y = 0.

(6.140)

Figure 6.12: Graph of f defined in (6.140).

By Theorem 5.35, there exists no continuous convex function f such
that Gf = T in either case. Corollary 6.14 says that T = Gf being linear
and firmly nonexpansive does not implies that f is convex. A key point
below is that if T = Gf is linear and f is convex, then T has to be firmly
nonexpansive and symmetric.

Corollary 6.15. Let T be given by (6.123). Then T is a subgradient pro-
jector of a convex function if and only if one of the following holds
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(i) a = b = c = 0, d 6= 0, 0 < d  1: T = Gf where f(x
1

, x
2

) = K|x
2

|1/d
for some K > 0; or b = c = d = 0, a 6= 0, 0 < a  1: T = Gf where
f(x

1

, x
2

) = K|x
1

|1/a for some K > 0.

(ii) a 6= 0, b = c, d = c2/a, a � a2 + c2: T = Gf where f(x
1

, x
2

) =

K|ax
1

+ cx
2

|a/(a2+c2) for some K > 0.

(iii) a = d, b = c = 0, 0 < a  1: T = Gf where f(x
1

, x
2

) = K(x2
1

+ x2
2

)
1
2a

for some K > 0.

In this chapter, we not only characterized symmetric linear subgradient
projectors (see Theorem 6.6), but also provided a criterion when a linear
monotone operator is a subgradient projector (see Theorem 6.11).
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Chapter 7

Conclusion

7.1 Key Results

This thesis has provided a complete study of charaterizations of sub-
gradient projectors, as well as a new method for finding a fixed point of a
cutter. Let us list the key results and some crucial examples.

Theorem 3.14 gives a finite convergence result provided that int(C \
FixT ) 6= ? and

P
⌘nrn = +1.

Theorem 3.15 shows the finite convergence is also true if we have a less
restrictive assumption on (FixT,C) but a more restrictive one on parameters
(rn, ⌘n).

Example 3.20 and Example 3.21 show that both the divergent-series
condition and the nonempty-interior condition are necessary and cannot be
omitted for Theorem 3.14 and Theorem 3.15.

Theorem 4.17 lists the corresponding relationship between the continuity
of subgradient projectors and Fréchet di↵erentiability of the function f .

Example 4.22 provides an example that subgradient projectors lack strong-
to-weak continuity when the function f is only Gâteaux di↵erentiable.

Example 4.24 links the subgradient projector to the accelerated mapping
corresponding to a linear operator when the function f is a power of a
quadratic form.

Proposition 4.43 exhibits surprisingly complicated properties of the sub-
gradient projector of the function f(x

1

, x
2

) = |x
1

|p + |x
2

|p with di↵erent
choices of the parameter p � 1.

Theorem 4.44 shows that, on the real line, the Yamagishi-Yamada oper-
ator is actually a subgradient projector of another convex function.

Theorem 5.32 gives a criterion when a mapping is a subgradient projec-
tor.

Theorem 5.39 characterizes the class of functions f for which its subgra-
dient projector is a cutter.

Theorem 6.3 lists several interesting results of subgradient projectors of
functions defined by a symmetric, positive semidefinite matrix. We obtained
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that its subgradient projector is linear if and only if the involved matrix can
be represented as a positive multiple of the projector onto a linear subspace.

Theorem 6.6 completely characterizes symmetric linear subgradient pro-
jectors.

It is known that the set of cutters is convex. Even though subgradient
projectors are cutters, the set of subgradient projectors is not convex: see
Theorem 6.7 and Theorem 6.8.

Proposition 6.9 provides a criterion when a linear monotone operator is
a subgradient projector.

7.2 Future Work and Open Questions

7.2.1 Open Questions

(1) Consider Theorem 6.6. Suppose the subgradient projector of a convex
function is linear. Must it be symmetric?

(2) Consider Theorem 6.11. Suppose that the rank of the displacement
matrix is equal to 2. What conditions are su�cient to guarantee that
the original matrix is a subgradient projector of a convex function?

7.2.2 S-cutter

In this section, we consider a new operator: S-cutter.

Definition 7.1. Let S be a nonempty subset of FixT . We call T : H ! H
a S-cutter if for 8x 2 H, 8y 2 S,

hy � Tx, x� Txi  0. (7.1)

Clearly, if S = FixT , then the definition of S-cutters matches the definition
of cutters.
In [20], there is a systematic study of the properties of cutters. A nat-
ural question is: which properties of cutters also hold for S-cutters? For
example, [20, Theorem 2.1.39] shows the relationship between cutters and
strongly quasi-nonexpansive operators. It would be interesting to find con-
nections between S-cutters and strongly quasi-nonexpansive operators, and
to consider the following list of questions:

(1) Is the set of S-cutters closed under convex combinations and compo-
sitions?

140



7.2. Future Work and Open Questions

(2) What desirable properties do the relaxations of S-cutters have?

(3) In [20, Theorem 3.4.3], we see that a strongly quasi-nonexpansive op-
erator with a fixed point is asymptotically regular. If there is some
relation between S-cutters and strongly quasi-nonexpansive operators,
does a similar property hold for S-cutters? That is: are S-cutters or
their relaxations asymptotically regular? If so, what is the consequence
of [20, Theorem 3.5.2] when applied to S-cutters?

(4) Considering [20, Corollary 3.7.1, Corollary 3.7.3], what are the Opial-
type theorems for S-cutters?

(5) In [13], Theorems 3.1 and 3.2 hold if the interior of FixT is nonempty.
If S ✓ FixT , we may ask: do Theorems 3.1 and 3.2 hold for S-cutters
under some su�cient conditions?

7.2.3 Analysis of Parameters

From the numerical experiments at the end of Chapter 3, we can see
that the selection of parameters is crucial and plays an important role in the
performance of algorithms. A question for future work is how to predefine
parameters so that our algorithm will perform better.

7.2.4 Generalized Monotonicities

Chapters 4–6 provide some properties and characterizations of subgradi-
ent projectors. During the last twenty-five years, generalized monotonicities
have been studied a lot. They play an important role in variational inequal-
ity problems. Let C ✓ H be closed convex and F : H ! H. The variational
inequality problem is to find x 2 C such that

hFx, y � xi � 0 (7.2)

holds for all y 2 C. It would be interesting to investigate the generalized
monotonicities of subgradient projectors in the context of solving the varia-
tional inequality problem.

7.2.5 Recognition Convexity of f from Gf

In Section 6.3, we provide a complete analysis of linear subgradient pro-
jectors on R2. Outside R2, is it possible to detect convexity of f from Gf?
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Appendix A

Maple Code

A.1 Code to verify Remark 3.24 when
f(x) = x

2 � 1

f := x 7! x2 � 1

df := D (f)

Gf := x 7! x� 1/2
x2 � 1

x

r
1

:= n 7! 1p
n+ 1

r
2

:= n 7! (n+ 1)�1

⌘
1

:= 1

⌘
2

:= 2

✏
1

:= n 7! 1p
n+ 1

✏
2

:= n 7! (n+ 1)�1

U [1] := (x, r) 7! piecewise(f(x)  0, x, f(x) > 0, x +
⌘1 ⇤ (r + |G[f ](x)� x)| ⇤ (G[f ](x)� x)

|G[f ](x)� x| )

U [2] := (x, r) 7! piecewise(f(x)  0, x, f(x) > 0, x +
⌘2 ⇤ (r + |G[f ](x)� x)| ⇤ (G[f ](x)� x)

|G[f ](x)� x| )

T [1] := y 7! piecewise(f(y)  0, y, f(y) > 0, y � f(y) + ✏
1

(n)

df(y)
)

T [2] := y 7! piecewise(f(y)  0, y, f(y) > 0, y � f(y) + ✏
2

(n)

df(y)
)
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with(RandomTools)

with(Statistics)

with(LinearAlgebra)

M := 100

h := V ector(M)

g := V ector(M)

k := V ector(M)

l := V ector(M)

u := V ector(M)

p := V ector(M)

SetState(state = 12345)

for v from 1 by 1 to M do

x[0] := Generate(float(range = 1 .. 1000000));

y[0]:= x[0]; z[0]:= x[0]; w[0] := x[0]; a[0] := x[0]; b[0] := x[0];

n := 0; m := 0; i := 0; j := 0; s := 0; q := 0; ;

while f(x[n]) > 10�6
do x[n+ 1] := evalf(U [1](x[n], r[1](n))); n := n+ 1; end do

while f(y[m]) > 10�6
do y[m+ 1] := evalf(U [1](y[m], r[2](m))); m := m+ 1; end do

while f(z[i]) > 10�6
do z[i+ 1] := evalf(U [2](z[i], r[1](i))); i := i+ 1; end do

while f(w[j]) > 10�6
do w[j + 1] := evalf(U [2](w[j], r[2](j))); j := j + 1; end do

while f(a[s]) > 10�6
do a[s+ 1] := evalf(T [1](a[s])); s := s+ 1; end do
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while f(b[q]) > 10�6
do b[q + 1] := evalf(T [2](b[q])); q := q + 1; end do

h[v] := n; g[v] := m; k[v] := i; l[v] := j; u[v] := s; p[v] := q

meanU1(x,r1) := Mean (h)

10.8300000000000

mn
1

:= evalf
�
meanU1(x,r1), 4

�

10.83

meanU1(x,r2) := Mean (g)

11.4900000000000

mn
2

:= evalf
�
meanU1(x,r2), 4

�

11.49

meanU2(x,r1) := Mean (k)

2.0

mn
3

:= evalf
�
meanU2(x,r1), 4

�

2.0

meanU2(x,r2) := Mean (l)

2.0

mn
4

:= evalf
�
meanU2(x,r2), 4

�

2.0

meanT1 := Mean (u)

11.8100000000000

mn
5

:= evalf (meanT1 , 4)

11.81

meanT2 := Mean (p)

12.1900000000000

mn
6

:= evalf (meanT2 , 4)

12.19

medianU1(x,r1) := Median (h)

12.0

d
1

:= evalf
�
medianU1(x,r1), 4

�

12.0

medianU1(x,r2) := Median (g)

13.0

d
2

:= evalf
�
medianU1(x,r2), 4

�
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13.0

medianU2(x,r1) := Median (k)

2.0

d
3

:= evalf
�
medianU2(x,r1), 4

�

2.0

medianU2(x,r2) := Median (l)

2.0

d
4

:= evalf
�
medianU2(x,r2), 4

�

2.0

medianT1 := Median (u)

13.0

d
5

:= evalf (medianT1 , 4)

13.0

medianT2 := Median (p)

13.0

d
6

:= evalf (medianT2 , 4)

13.0
N := Matrix(6, 2, [mn[2], d[2],mn[4], d[4],mn[1], d[1],mn[3], d[3],mn[5], d[5],mn[6], d[6]])

N :=

2

666666666664

11.49 13.0

2.0 2.0

10.83 12.0

2.0 2.0

11.81 13.0

12.19 13.0

3

777777777775
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A.2 Code to verify Remark 3.24 when
f(x) = 100x2 � 1

f := x 7! 100 ⇤ x2 � 1

df := D (f)

Gf := x 7! x� 100 ⇤ x2 � 1

200 ⇤ x
r
1

:= n 7! 1p
n+ 1

r
2

:= n 7! (n+ 1)�1

⌘
1

:= 1

⌘
2

:= 2

✏
1

:= n 7! 1p
n+ 1

✏
2

:= n 7! (n+ 1)�1

U [1] := (x, r) 7! piecewise(f(x)  0, x, f(x) > 0, x +
⌘1 ⇤ (r + |G[f ](x)� x)| ⇤ (G[f ](x)� x)

|G[f ](x)� x| )

U [2] := (x, r) 7! piecewise(f(x)  0, x, f(x) > 0, x +
⌘2 ⇤ (r + |G[f ](x)� x)| ⇤ (G[f ](x)� x)

|G[f ](x)� x| )

T [1] := y 7! piecewise(f(y)  0, y, f(y) > 0, y � f(y) + ✏
1

(n)

df(y)
)

T [2] := y 7! piecewise(f(y)  0, y, f(y) > 0, y � f(y) + ✏
2

(n)

df(y)
)

with(RandomTools)

with(Statistics)

with(LinearAlgebra)

M := 100
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h := V ector(M)

g := V ector(M)

k := V ector(M)

l := V ector(M)

u := V ector(M)

p := V ector(M)

SetState(state = 12345)

for v from 1 by 1 to M do

x[0] := Generate(float(range = 1 .. 1000000));

y[0]:= x[0]; z[0]:= x[0]; w[0] := x[0]; a[0] := x[0]; b[0] := x[0];

n := 0; m := 0; i := 0; j := 0; s := 0; q := 0; ;

while f(x[n]) > 10�6
do x[n+ 1] := evalf(U [1](x[n], r[1](n))); n := n+ 1; end do

while f(y[m]) > 10�6
do y[m+ 1] := evalf(U [1](y[m], r[2](m))); m := m+ 1; end do

while f(z[i]) > 10�6
do z[i+ 1] := evalf(U [2](z[i], r[1](i))); i := i+ 1; end do

while f(w[j]) > 10�6
do w[j + 1] := evalf(U [2](w[j], r[2](j))); j := j + 1; end do

while f(a[s]) > 10�6
do a[s+ 1] := evalf(T [1](a[s])); s := s+ 1; end do

while f(b[q]) > 10�6
do b[q + 1] := evalf(T [2](b[q])); q := q + 1; end do

h[v] := n; g[v] := m; k[v] := i; l[v] := j; u[v] := s; p[v] := q

meanU1(x,r1) := Mean (h)

17.5200000000000

mn
1

:= evalf
�
meanU1(x,r1), 4

�
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17.52

meanU1(x,r2) := Mean (g)

13.2900000000000

mn
2

:= evalf
�
meanU1(x,r2), 4

�

13.29

meanU2(x,r1) := Mean (k)

105.0

mn
3

:= evalf
�
meanU2(x,r1), 4

�

105.0

meanU2(x,r2) := Mean (l)

12.0

mn
4

:= evalf
�
meanU2(x,r2), 4

�

12.0

meanT1 := Mean (u)

15.2700000000000

mn
5

:= evalf (meanT1 , 4)

15.27

meanT2 := Mean (p)

15.7600000000000

mn
6

:= evalf (meanT2 , 4)

15.76

medianU1(x,r1) := Median (h)

19.0

d
1

:= evalf
�
medianU1(x,r1), 4

�

19.0

medianU1(x,r2) := Median (g)

14.0

d
2

:= evalf
�
medianU1(x,r2), 4

�

14.0

medianU2(x,r1) := Median (k)

105.0

d
3

:= evalf
�
medianU2(x,r1), 4

�

105.0

medianU2(x,r2) := Median (l)

12.0
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d
4

:= evalf
�
medianU2(x,r2), 4

�

12.0

medianT1 := Median (u)

16.0

d
5

:= evalf (medianT1 , 4)

16.0

medianT2 := Median (p)

17.0

d
6

:= evalf (medianT2 , 4)

17.0
N := Matrix(6, 2, [mn[2], d[2],mn[4], d[4],mn[1], d[1],mn[3], d[3],mn[5], d[5],mn[6], d[6]])

N :=

2

666666666664

13.29 14.0

12.0 12.0

17.52 19.0

105.0 105.0

15.27 16.0

15.76 17.0

3

777777777775
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