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Abstract

Online platforms, such as Meetup and Plancast, have recently become popular for

planning gatherings and event organization. However, there is a surprising lack

of studies on how to effectively and efficiently organize social events for a large

group of people through those platforms. This thesis provides the first systematic

study on key computational problem involved in organization of social events. We

understand the Social Event Organization problem as assigning a set of events for

a group of users to attend, where the users are socially connected with each other

and have innate levels of interest in those events. We then introduce a set of formal

definition of a restricted version of the problem and show that it is NP-hard and is

hard to approximate. We propose efficient heuristic algorithms that improve upon

simple greedy algorithms by incorporating the notion of phantom events and by us-

ing look-ahead estimation. Using synthetic datasets and three real datasets includ-

ing those from the platforms Meetup and Plancast, we experimentally demonstrate

that our greedy heuristics are scalable and furthermore outperform the baseline

algorithms significantly in terms of achieving superior social welfare.
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Chapter 1

Introduction

The problem of organizing social events for a large group of people can resonate

with the academic community: we are all familiar with the “canned” social events

offered by conference organizers, which are often a simple list of activities to

choose from and attendance at each event is organically decided by people at the

conference based on who they know and how interested they are in the events.

More broadly, event organization is one of the most important social activi-

ties online, with many companies, established giants and startups alike, such as

Meetup1 and Plancast2, offering platforms for their users to plan and organize

events. The social networks data and the data indicating the interests of the users

on these platforms offer a rich setting in which events can be organized effectively

and efficiently. Existing academic studies on this topic only focuses on specific

area such as event detection through time series analysis (e.g., burst detection). The

goal of this thesis is to provide a first systematic study on the problem of Social

Event Organization, provide principled definitions and a platform of algorithmic

solutions for addressing this problem.

The tasks of organizing various social events share many common characteris-

tics. First, each individual user often has his or her unique preference for the events

being offered, a numerical measure which we call a user’s innate affinity towards

an event. Innate affinities can be stated explicitly. For example, a user can mark his

1http://www.meetup.com
2http://www.plancast.com
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preference for a game of chess as 9 out of 10. Or they can be categorically stated by

the users and computed by the organizer. For example, a user can list outdoor ac-

tivities in her profile and the organizer can deduce that she will likely prefer hiking

to playing chess. Finally, they can be computed based on the past events that the

user has participated in and enjoyed. Regardless of how innate affinities are com-

puted, they are one of the two key ingredients for users’ happiness, for purposes of

successful organization of social events.

The other key ingredient is the social connections among users – individuals

often enjoy an activity more if they attend it along with their friends or others

whom they would like to be around with. This connection is often defined between

a pair of users and we call this pairwise social affinity. Similar to innate affinities,

social affinities can be stated explicitly by the users. For example, users on social

networks explicitly provide their friendship connections. They can also be deduced

based on users’ interests or past activities. For instance, two users who share lots

of interests and past activities are more likely to enjoy each other’s company. Thus,

similar to innate affinity, social affinity is represented by a numerical measure.

Importantly, in real world situations, events typically come with natural car-

dinality constraints. For example, most sports activities need a certain number of

participants: two or four for tennis, two for chess, and two to nine for poker games.

We illustrate aforementioned characteristics more concretely through the fol-

lowing motivating examples.

Example 1 (Convention Social Events). Academic conferences and business con-

ventions often provide networking opportunities for attendees by offering social

events. Planning them involves gathering individuals with similar interests to fa-

cilitate interactions as well as ensuring that they have a good time. The current

practice is to offer these events as a “canned” list of options: e.g., everybody se-

lects from a small set of event choices based on their interests, perhaps uses ad

hoc conversations among friends for coordination. Being able to automatically as-

sign people to events from a large list of options, in a centralized manner, based

on users’ interests and friendships will likely lead to people enjoying those events

more.

Example 1 illustrates the core technical challenge inherent in event organiza-
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tion, viz., the assignment problem, where the system has to assign a given set

of users to events, with the goal of making users happy. Other examples in this

category include organization activities at a reunion party, corporate activity day,

community fund raising, or volunteering gatherings. Event organization is by no

means restricted to conventions, as the next example illustrates.

Example 2 (Wide Area Events). In event organization platforms like Plancast and

Meetup, users across a wide area register their interests in themes or topics. Users’

social information is also available, e.g., their friendships in popular social net-

works can be supplied to these platforms. Events are started by end users through

the specification of the activity, capacity, etc. The platforms use known metadata

to make ad hoc recommendations of events to users. As the platforms get utilized,

information from past event attendance can be leveraged to estimate user’s interest

in future ones. In place of ad hoc recommendations, these platforms can make

centralized assignments for all events planned in a local wide area (e.g., a city), to

maximize the “social welfare” of users.

As the first systematic study towards Social Event Organization, we understand

the problem on the assignment procedure illustrated by the two examples above.

Specifically, we are given a set of users, who are socially connected and have in-

herent interests in the events being offered. We need to assign users to events so as

to maximize the “overall happiness” of the users, while respecting the event car-

dinality constraints (minimum and maximum). In event organization over a wide

area, in addition to cardinality constraints, time and location also play a role. E.g.,

user’s proximity to the event’s location may affect the user’s innate affinity for the

event. A similar remark holds for the time at which the event is organized. In order

to allow us to focus on the key technical problem of assignment, we assume that

users’ proximity to the location of events as well as availability of users for the

events are factored in while determining the innate affinity of a user to an event.

Consequently, our focus is squarely on finding good assignments of users to events

as opposed to scheduling of events.

One critical aspect of the solution is to define the overall happiness as a com-

bination innate and social affinities. We provide an intuitive definition of social

welfare, which is the sum of the total innate affinities enjoyed by the users to the
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events they are assigned, and the aggregate social affinities enjoyed by pairs of

users who are assigned to the same event. The exact definition will be provided

later. This focus allows us to cast the Social Event Organization problem as a

constrained discrete optimization problem, for which we can explore algorithmic

solutions.

Our event organization problem has close connections with several major bod-

ies of work generalized assignment problem (GAP) [8, 9, 15, 25], a family of

two-sided matching problems including the National Resident Matching Problem

(NRMP) [24], and community-search problems [26]. We depart from them by

taking both innate and social affinities into account and solving the event organiza-

tion problem under a unified framework. A detailed comparison with these related

works appears in Chapter 2.

Our event organization problem has close connections with two major bod-

ies of work—generalized assignment problem (GAP) and a family of two-sided

matching problems including the so-called college admission problem and the Na-

tional Resident Matching Problem (NRMP) . While a detailed comparison with

this and other related work appears in , we note here that in all these problems so-

cial affinity is not a concern. Taking social affinity into account raises a significant

computational challenge as we shall show.

Specifically, we make the following contributions.

• We formally define social event organization as a constrained discrete opti-

mization problem that asks for an assignment with maximum social welfare

while respecting cardinality constraints of events (Chapter 3.1).

• The problem is shown to be NP-hard. Given this, we analyze its approx-

imability: we establish close connections between restricted versions of our

problem and the SUBSET-SUM problem and DENSE k-SUBGRAPH prob-

lem. We exploit these connections to offer strong evidence that the problem

is hard to approximate (Chapter 3.2).

• We then develop several heuristics including a greedy hill-climbing strat-

egy and several improvements. Our improvements are based on a notion of

“phantom events” which refer to tentatively scheduled events which have yet
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to meet their lower cardinality constraint, and a look-ahead based technique

(Chapter 4).

• We conduct a comprehensive experimental study on both synthetic and real

data sets from Plancast, Meetup and SIGCOMM 2009. Our results show that

our methods with look ahead estimation far exceed the baseline methods in

the value of social welfare attained. Furthermore, our most sophisticated

algorithm completes event assignments on a dataset consisting of 100,000

users and 500 events in under 17 minutes (Chapter 5).

Finally, Chapter 6 concludes the thesis and summarizes interesting directions

for future work.
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Chapter 2

Related work

Our event organization framework coincides with two traditional research direction

on the general problem of assigning elements to a number of sets. One of the major

direction on this area is the generalized assignment problem (GAP) [8, 9, 15, 25],

which generalizes knapsack and bin packing problems: there are multiple bins

with capacity (maximum size) constraints, multiple objects with a size and a profit

for placing an object in a bin; the problem is to find an assignment of objects to

bins respecting capacity such that the total profit is maximized. In a special case,

all objects have the same size and capacity is replaced by (maximum) cardinal-

ity. There are two major differences between GAP and event organization. Firstly,

events typically also have lower bound constraints on their cardinality. For exam-

ple, a game of Mahjong cannot be played by fewer than four people. Those lower

and upper cardinality constraints must be respected by the solutions we propose.

Very recently, lower bound constraints have been studied in the context of GAP

[15], and the precise relationship between event organization and GAP with lower

bound constraints will be made clear in Section 3.2. Secondly, social affinity is

not considered in GAP, whereas it is one of the key ingredients in social event

organization.

The other major research direction on the assignment problem is the National

Resident Matching Problem (NRMP) and the related two-sided matching prob-

lems such as college admissions [6, 10, 11, 24], where medical school graduates

are matched with medical residency programs offered by hospitals throughout the
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Tennis Movie
Alice 1 5
Bob 5.01 2.01
Charlie 5.02 1.02
Denny 5.03 1.03
Eddie 3.01 3

Table 2.1: Innate affinity for Example 3

United States, and subsequently adopted by other countries. The differences with

event organization are three-fold. First, graduates choose residency programs as in-

dividuals, and social affinity is almost never a concern, except in rare cases where

two graduates are a couple. Second, in NRMP, every graduate provides a rank or-

der list of programs she’d like to join and and every program has its own preference

list over graduates. Stability is an important concern. A matching is stable if there

is not a pair of a graduate and a resident program such that they both prefer each

other over the resident program or graduate they are currently assigned to. Such a

pair is called a blocking pair. When stable matchings exist, they focus on finding an

optimal stable matching where no graduate is worse off than she would be in any

other stable matching. When stable matchings don’t exist as in [6, 11], they focus

on finding matchings that minimize the number of blocking pairs. While stability

is similar in spirit to avoiding regrets (i.e., assigning a user to an event she does

not enjoy) in event organization, the notion of “stability” in event organization is

not important as events treat all users alike! Third, in contrast to the objectives

in NRMP and college admissions, our goal is to maximize the social welfare (de-

fined in Section 3.1) of the assignment, taking both innate and social affinities into

account, while respecting the cardinality constraints of events.

We use a concrete example to illustrate the difference between the our social

event organization (SEO) problem, the GAP problem and the NRMP problem.

Example 3 (SEO, GAP and NRMP). Imagine a scenario of 5 people deciding

between 2 events, where the innate affinity between each person and each events

are shown in Table 2.1, and each event, happens to have the lower bound capacity

constraint of 2 and upper bound capacity constraint of 3, the social affinity between

each pair of persons are 0 except good friends Alice and Bob, who have an affin-
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ity value of 10. The SEO, GAP and NRMP treats this scenario in distinct ways.

Starting with the simple one, the GAP would only consider the innate affinity and

capacity constraint, assigning Alice and Eddie to Movie and the others to Tennis.

The NRMP is also ignorant to social affinity between Alice and Bob, creating a as-

signment the same as above. The above scenario is ”stable” in the sense that Movie

event would prefer to leave the 3 spots to Bob, Charlie, Denny since they enjoy it

more than the other two, leaving Alice and Eddie to the Tennis event, would hap-

pens to prefer them over the rest 3. Finally, the SEO problem, taking account into

both the innate affinity and the social affinity between Alice and Bob, would gen-

erate an ideal assignment where Alice and Bob happily stay togther for Movie, and

the rest three go the Tennis, which they would also enjoy very much, achieving an

optima in a globale sense.

In Section 4, we adapt the NRMP solution to solve our problem, and empiri-

cally compare it in Section 5.

Beyond the traditional research In a sense, event organization can be seen as

being akin to group recommendations: so long as we know which set of users

will attend the same event, i.e., group memberships, but not which one, we can, in

principle, determine that event using group recommendations [2]. However, we do

not know these groups and part of the challenge is to determine them. Besides, our

assignment of users (and hence of groups) to events is more “holistic” in taking not

just innate affinity, but also social affinity into account. It is their combination that

drives our assignment. Thus, group recommendations cannot handle our problem.

In team formation in social networks [3, 16], they assume that for each user a

set of skills is available and additionally, a measure of compatibility between pairs

of users is also known. The problem is to put together teams that satisfy the skill

requirements of a given task while minimizing the communication overhead of

the team, e.g., the diameter or weight of the minimum spanning tree of the graph

of the formed team. Variants of the problem include ones where different cost

models are used and ones where the tasks arrive online and the team formation

has to keep the workload of users balanced. The problem is NP-hard and many

of the works resort to approximation algorithms. Superficially, the team formation

problem seems similar to ours. However, while social affinity has a counterpart
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in compatibility, there is no direct innate affinity between users and tasks, except

indirectly via skills. Furthermore, and more important, cardinality constraints in

event organization make the problem significantly more challenging. Finally, a

user may be assigned to more than one task whereas users are assigned to at most

one event in our problem.

Also relevant to our work is the community search problem [26], where given a

set of query nodes, the task is to find a community containing the query nodes that

maximizes the overall social affinity, subject to a maximum cardinality constraint.

However, there is no notion of events, nor users innate affinities towards events in

[26]. In contrast, our problem involves a combination of social and innate affinities

and thus a holistic approach is needed which at once pays attention to the innate

aspect (matching quality) and the social aspect. There have also been studies on

geo-social query processing [4]. Though both our problem and theirs consider

social effects, the SEO problem is inherently an assignment problem and cannot be

solved by issuing queries.

Yet another related research direction is social graph partition and more for-

mally ”Uniform Metric Labeling”[5, 14], which is an optimization problem that

assigns group labels to nodes in the graph to minimize, incorporating both the

”innate affinity”, the cost of assigning specific labels to nodes, and the ”social

affinity”, the cost of assigning friends to different groups. Similarly to the team

formation problem, social graph partition does not consider cardinality constraints

in event organization, which is one of central element of hardness results and algo-

rithm design.

9



Chapter 3

Social event organization

In this chapter, we formulate the assignment variant of the Social Event Organiza-

tion problem, the focus of our research, and study its hardness and approximation.

3.1 Problem definition

Consider a setting where organizers of a large gathering (e.g., an international con-

ference or a company-wide retreat) are planning social activities for the conference

attendees. Or a scenario in which or an event planning platform (e.g., Meetup) is

being used to plan social events for its users over a wide local area such as a city.

In both cases, there is a set of users U who must be assigned to events or activities

from a given set of possible events A. We assume the presence of a social network,

through which the friendships among those users can be obtained. Let G = (U,E)

be the friendship graph induced on U . Each event a ∈ A is associated with a min-

imum cardinality bound γa and a maximum cardinality bound δa, as motivated in

Section 1.

There is a function σ : U ×A→ R+ such that for each user u and event a,

σ(u,a) models the user’s innate affinity for the event. We often denote σ(u,a) as

σu,a for simplicity. As mentioned in the introduction, we assume that the innate

affinity σu,a factors in u’s proximity to a’s location and u’s availability w.r.t. the

time at which a is held. In addition to their innate affinity to events, users have pair-

wise social affinity with each other, and we capture this by a function w : U×U →
R+, such that w(u,v) is the social affinity between u and v. Both innate affinity

10



to events and social affinity to other users attending the same event contribute to a

user’s sense of “utility” for attending an event. Note that as discussed in Section 1,

social affinity is important because an individual may enjoy an event more when

she is joined by her friends. We assume in this paper that social affinity is non-

negative and that social affinity values are symmetric, i.e., w(u,v) = w(v,u), for all

u,v ∈U .

Suppose a set of users S⊂U is assigned to an event a∈ A. We define the utility

of this assignment as:

µ(S,a) = ∑
u∈S

σu,a + ∑
u,v∈S,u6=v

w(u,v). (3.1)

That is, the overall utility of the set of participants of an event is the sum of the

total innate affinity of the participants for the event and the total social affinity of

all pairs of participants. As a special case, we define µ( /0,a) = 0: when nobody is

assigned to an event, it results in zero utility. As mentioned in the introduction, both

innate affinity σu,a and social affinity w(u,v) can be provided by the users explicitly

through stated interests and friendships. However, in case such explicit information

is not available, those values can be estimated from a user’s implicit interests and

past activities. For example, social affinity can be computed using well-studied

social distance measures (e.g., graph distance, Katz, or hitting time) [18]. We defer

the details to Section 5.

An assignment is a (possibly partial) function M : U → A. For a ∈ A, we de-

note by M−1(a) the (possibly empty) subset of users assigned to a, i.e., M−1(a) =

{u ∈ U | M(u) = a}. An assignment M is said to be feasible provided all car-

dinality constraints are satisfied, i.e., ∀a ∈ A for which M−1(a) 6= /0, we have

γa ≤ |M−1(a)| ≤ δa, in words, for all events to which at least one user is assigned,

the number of users assigned to that event lies within its lower and upper bounds.

Notice that owing to the cardinality constraints and the number of users and events

in an instance of the assignment problem, it may not be possible to find a feasible

assignment that covers all users: e.g., we may have 10 users and 1 event such that

the event can accommodate at most 5 people. This is the reason we allow partial

functions above. Similarly, not all events may be scheduled by an assignment, i.e.,

M need not be onto. We define the social welfare of a feasible assignment M as

11



ω(M) = ∑
a∈A

µ(M−1(a),a). (3.2)

The overall social welfare of an assignment is thus determined by the sum of

utilities of the assignments made to each event. Our objective is to find a feasible

assignment that maximizes the overall social welfare. Our definition of overall so-

cial welfare reflects the following intuition. A user’s personal utility for an assign-

ment increases with her innate affinity for the event, as well as the social affinity

she has toward other users attending the same event. Besides, the more such fellow

attendees, the higher her utility. The definition of overall social welfare is a simple

extension of this intuition. Note that other definitions of social welfare, using other

aggregate functions, are possible: we prefer to use a simple definition here that

captures the intuition above. We formally define the Social Event Organization

(SEO) problem as follows.

Problem 1 (Social Event Organization (SEO)). Given a set U of users and the

induced social graph G=(U,E), a set A of events where each a∈A has a minimum

and maximum cardinality bound, denoted γa ∈ N and δa ∈ N respectively (γa ≤
δa), innnate affinity function σ(·, ·), and social affinity function w(·, ·), produce a

feasible assignment of M : U → A that has the maximum overall social welfare

ω(M), i.e., find

M∗ = arg max{ω(M) |M is feasible}.

The number of scheduled events (i.e., those have at least one user assigned and

cardinality constraints satisfied) is not fixed in advance, but rather determined by

the solution, in which some events may receive zero users. However, the cardi-

nality constraints for each event that has non-zero participants assigned must be

respected. It is possible to have multiple groups performing the same event, e.g.,

there may be four groups of two participants each that are suggested the event of

playing chess. This is easily handled by technically treating different instances of

a given event as different events. We can consider weighting the two terms

in Eq. 3.1, corresponding to the innate and social contributions to social welfare,

differently. Our results in the next section show that the problem remains hard
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regardless of the weights chosen.

3.2 Hardness results

Not surprisingly, our first result is that Social Event Organization is NP-hard. Our

reduction is from the recently studied Seminar Assignment Problem (SAP). SAP is

obtained by adding lower bound constraints to a restricted version of GAP where

all objects have the same size, and is formally stated as follows. Given a set of n

students and and a set of m seminars with maximum cardinality B1,B2, . . . ,Bm ∈N
and minimum cardinality q1,q2, . . . ,qm ∈ N, qi ≤ Bi, a profit pi, j ∈ N by assigning

student i to seminar j, we want to find an assignment of students to seminars that

satisfies the cardinality constraints and maximizes the total profit. Krumke and

Thielen [15] recently showed that this problem is NP-hard. We have the following

easy result:

Theorem 1. The decision version of Social Event Organization is NP-complete.

Proof. Clearly, SAP is isomorphic to a restricted version of SEO where all innate

affinities are natural numbers and all social affinities are zero. The NP-hardness

of SEO follows from this. Membership in NP is straightforward: given an assign-

ment, both checking its feasibility and whether its social welfare exceeds a given

threshold can be done in polynomial time.

Next, we analyze how hard it is to approximate SEO. Our analysis involves two

special cases of the problem, one with only innate affinities (which is isomorphic

to the SAP problem) and the other with only social affinity.

Special Case 1: Innate Utility Only. In this case, we only consider problem

instances of which w(u,v) = 0, for all users u and v. Thus, the problem is to find a

feasible assignment M : U → A that maximizes the social welfare, which is solely

determined by innate affinities. We call this restricted version SEO-Innate.

Theorem 2. It is NP-hard to approximate SEO-Innate within a factor of (1−1/n+

ε) (∀ε > 0) in polynomial time, where n is the number of users.

Proof. We prove the result by showing that if such an algorithm existed, it could

solve the SUBSET-SUM problem, an NP-complete problem, in polynomial time.

13



Since this is impossible unless P = NP, the theorem follows. Consider an arbitrary

instance I of SUBSET-SUM consisting of a set of integers T = {t1, t2, . . . , tN} and

a target number τ . We must find out if there is a subset of T whose elements sum

to exactly τ . Algorithm B first creates an instance J of the SEO problem with τ

users and N events, and for each event a∈ [1,N], it sets γa = δa := ta. Also, σu,a = 1

for all u ∈U,a ∈ A and w(u,v) = 0 for all u,v ∈U . Then B runs A on J , and

outputs YES (indicating there is a subset of T summing to exactly τ) if and only if

A outputs an assignment with social welfare τ . We next prove that algorithm B

can correctly distinguish between the YES- and NO-instances of SUBSET-SUM.

If I is a YES-instance, then by the above reduction, OPTJ = τ , i.e., the

maximum possible social welfare of any feasible assingment on instance J is τ .

By assumption, A will output an assignment with welfare ≥ (1− 1/τ + ε)τ >

τ−1. Since all utility values are 1, the output of A will be exactly τ , and thus B

answers correctly: YES.

If I is a NO-instance, then for J , by construction, not all users can be fit

into an event, implying OPTJ < τ . Since the output of A is always ≤ OPTJ ,

it will be surely < τ . Again, algorithm B answers correctly: NO. This was to be

shown.

We note that complementarily, Krumke and Thielen [15] show that it is NP-

hard to approximate SAP within a factor of 1− ε0/3 even when all profits are

in {0,1}, where ε0 > 0 is a constant associated with the hardness gap of the 3-

Bounded 3-Dimensional Matching problem [21]. As a consequence, they show

that SAP does not admit PTAS (polynomial time approximation scheme). This

hardness is clearly inherited by SEO-Innate as well. Note that both 1− ε0/3 and

(1−1/n) are close to 1 (the latter when n is large). This raises the question whether

coarser approximations exist for SEO. Our result in the next section suggests it is

unlikely.

Special Case 2: Pair-wise Affinity Only. In this case, we restrict attention to

instances of SEO where σu,a = 0 for all users and all events. We refer to this

restricted version of SEO as SEO-Social. We show that this restricted problem is

hard to approximate within any constant factor under hardness assumptions about

certain combinatorial problems. Specifically, our result is achieved by a reduction
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from the DENSE k-SUBGRAPH problem. That problem, given a graph G= (V,E)

and a parameter k, asks to find a subgraph G′ of G induced by k nodes such that

average degree of nodes in G′ is maximum. The average degree of a node in G′ =

(V ′,E ′) is given by 2|E ′|/|V ′|. By assuming the hardness of a conjecture known

as Unique Games with Small Set Expansion Conjecture [13], Raghavendra and

Streurer [23] show that DENSE k-SUBGRAPH is hard to approximate within any

constant factor. We “lift” this to show a similar hardness of approximation of SEO-

Social. For lack of space, we refer the reader to [23] for details and history of this

conjecture.

Theorem 3. Assuming the Unique Games with Small Set Expansion Conjecture,

it is NP-hard to approximate SEO-Social within any constant factor in polynomial

time.

Proof. Given an instance I of DENSE k-SUBGRAPH defined by G = (V,E) and

a positive integer k, create an SEO instance J by setting A = {a}, γa = δa = k,

and U = V . That is, there is just one event whose lower and upper bound on

cardinality is k and there is a user corresponding to each node of G. For all u ∈U ,

set σu,a = 0, and for all u,v∈U , w(u,v)= 1. By construction, OPTI =OPTJ , that

is, the maximum social welfare of a feasible assignment on instance J is identical

to the maximum average degree of a k-vertex induced subgraph of G in instance

I . Suppose there is a polynomial-time algorithm A approximating SEO within a

factor of c ∈ (0,1). Then, B can approximate DENSE k-SUBGRAPH within the

same factor by converting I to J as above, running A on J , and outputting

the nodes corresponding to the users chosen by A to attend event a. This is not

possible unless the Unique Games with Small Set Expansion Conjecture does not

hold.

To conclude this section, not only is SEO NP-complete, it is also made up of

two hard subproblems. Our results show that it is unlikely to be approximable

within any constant factor in polynomial time, unless some hardness assumptions

about important combinatorial problems break down. By Theorems 2 and 3, this

statement is obvious regardless of the weights chosen for the two terms in Eq. 3.1.
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Chapter 4

Proposed solutions

Given that SEO is NP-hard to even approximate, we propose a variety of heuristics

that give emphasis to different aspects of the problem, such as the social affinity,

the innate affinity, and the cardinality constraints. Before diving into the details of

the algorithms, it is important to first understand what constitutes a feasible (valid)

solution to the SEO problem.

Characterizing Feasible Solutions. For any event, if the event has reached its

minimum cardinality, we refer to it as a real event; otherwise, we call it a phan-

tom event. For example, a tennis or chess game with only one player is a phantom

event, that will become real only after one other person is assigned to the event.

An event is open and can accept more participants if the maximum cardinality has

not been reached yet, otherwise it is declared closed. By definition, all phantom

events are open. However, a real event can be either open or closed. A user u is

available if u has not been assigned to a real event yet. A user-event assignment

is valid if it involves an available user and an open event. During the assignment

process, if the event to which a user was assigned becomes real, then the user’s as-

signment is fixed, and she is marked unavailable. Consequently, all other previous

and future assignments involving that particular user are deemed invalid. Recall

that the final solution must be feasible, i.e., respect cardinality constraints. As

shown in Section 3, in some instances it is not possible to find an assignment for

every user, so the assignment function may be partial. In practice, we can deal with

this by supposing that there are sufficiently many events with large capacity such
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as movies or theatrical shows to which users left unassigned by the algorithm may

be assigned.

Notice that each assignment decision impacts the utility received from future

assignments, due to the coupling effect with other users in the form of social affin-

ity. Therefore, it is non-trivial to achieve a (feasible) solution to SEO that achieves

a high social welfare.

Solution Template. In the remainder of this chapter we discuss a variety of al-

gorithms. At a high level, each algorithm (except Random and NRMP+) follows

the following template. First, a sorted list L of potential assignments of users to

events is generated. The additional contents of the list may vary depending on the

algorithm. This list may be updated and re-ordered several times during a run of the

algorithm. Second, users are assigned to events by making one pass on this list, and

the “state” of users (available, unavailable), and events (phantom, real open, real

closed) is updated appropriately. In particular, it marks an event a as “real” when

it reaches its minimum cardinality γa, and “closed” when it reaches its maximum

cardinality δa. These assignments are tentative and are recorded by membership in

the “S” sets, e.g., u ∈ Sa means u is tentatively assigned to event a, and possibly

to other events. All events are “open” and “phantom” to start with. Once an event

a becomes real, the users in the set Sa are marked “unavailable” for future assign-

ments and we set M(u) = a,∀u ∈ Sa. Additionally, the algorithm invalidates any

previous and future assignments of each user u∈M−1(a), by cleaning up other “S”

sets as needed. Finally, the algorithm performs post-processing to ensure that the

output is a feasible solution, i.e., no phantom events are left behind.

4.1 Baselines

In this section, we present a set of intuitive baseline solutions, in increasing level

of sophistication. We build on these baselines and present our proposed algorithms

in Section 4.2.

Random

Our first baseline is called Random, which randomly assigns users to events while

respecting the cardinality constraints. Specifically, the algorithm first shuffles the

17



Algorithm 1 Dynamic Greedy (U,A,σ ,w)

1: M(u)←⊥,∀u ∈U ; Sa← /0,∀a ∈ A
2: for all (u,a) ∈U×A s.t. σu,a > 0 do
3: g(u,a | Sa)← σu,a

4: L .insert(〈u,a,g(u,a | Sa)〉)
5: while 〈u,a,g(u,a | Sa)〉 ←L .pop() do
6: if M(u) =⊥ and |Sa|< δa then
7: Sa← Sa∪{u}
8: if |Sa|> γa then
9: M(u)← a

10: for all a′ ∈ A s.t. a′ 6= a∧u ∈ Sa′ do
11: Sa′ ← Sa′−{u}
12: if |Sa|= γa then
13: for all v ∈ Sa do
14: M(v)← a
15: for all a′ ∈ A s.t. a′ 6= a∧ v ∈ Sa′ do
16: Sa′ ← Sa′−{v}
17: for all v : (w(u,v)> 0∧M(v) =⊥) do
18: L .update(〈v,a,g(v,a | Sa)〉) // Using Equation 4.1
19: Reassign available users {u|M(u) =⊥}
20: return M

list L containing tuples 〈u,a〉 of user-event pairs randomly. It then traverses the

list and at each tuple 〈u,a〉 assigns user u to event a if u is available and a is open. It

appropriately marks an event as real when it reaches its minimum cardinality con-

straint. Clearly, this is a “straw man” approach, which does not take into account

the “utility” of any assignment.

NRMP+

Given the connection between SEO and NRMP, a natural question is whether we

can leverage algorithms developed for NRMP. We next describe an adaptation of

the NRMP algorithm [10] for handling the lower bound constraints present in SEO.

In this adaptation, called NRMP+, we cast SEO in the NRMP framework by asso-

ciating a preference list of events for each user, ordered by the innate affinity, and
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a preference list of users for each event, ordered by the innate affinity.1

NRMP+ repeats the following procedure until each user is either “accepted”

by an event or is “rejected” by all events she applied to. Initially, all users are

unassigned and no acceptance or rejection has been made yet. In each round,

each unassigned user “applies” to the most preferred event that has not rejected

her. Each event a then picks the δa most preferred users who applied to it, or all

applicants if there are fewer than δa of them, and puts them on a waiting list. Users

who failed to get on the waiting list are rejected and are thus unassigned after this

round. After this iterative process stops, we check if there exists any phantom

event. If yes, redistribute users assigned to phantom events to existing real open

events in a greedy manner, based on innate affinity. After that, either no user is left

unassigned or there are no real events to which unassigned users can be assigned,

and we stop.

It is unclear how NRMP can be directly adapted to take social affinity into

account in deciding acceptances. In Section 5, we empirically compare NRMP+

with the more sophisticated baselines we develop next, as well as with our main

algorithm.

Static Pairwise Greedy

Our next baseline, called Static Pairwise Greedy (SG), assigns pairs of users to

events, taking into account both innate event and pairwise social affinities. Specifi-

cally, a sorted list L containing tuples 〈u,v,a〉 representing potential assignment of

pairs of users to events is generated. The list is ordered by non-increasing potential

gain (of “utility”), defined as

g((u,v),a) = σu,a +σv,a +2 ·w(u,v).

The list is traversed and at each tuple 〈u,v,a〉 users u and v are assigned to event

a if both users are available, and a is open with at least two spots. User and event

states are appropriately updated. Finally, any users that are in phantom events at

the end of one pass over the list L are redistributed greedily among remaining

open events. We call this a static approach as the function g is computed only

1Events don’t have independent preference lists: we do this for the sake of simulation of NRMP.
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once. Therefore, the partial ordering of the L is static, and it only incurs deletions

(with some assignments being invalidated). Therefore, the assignment of a pair of

users to an event is oblivious to which users are already assigned to that event.

Dynamic Greedy

Our next algorithm, called Dynamic Greedy (DG), is more sophisticated. It updates

its estimation of the “utility” a user will attain from an assignment, based on the

current set of assignments. To achieve this, the algorithm updates the list L at

each assignment, where L is composed of tuples 〈u,a,g(u,a|Sa)〉, Sa = /0 initially,

and the potential gain g is

g(u,a | Sa) = σu,a + ∑
v∈Sa

w(u,v). (4.1)

Clearly, when no users are assigned to an event a, g(u,a | /0) = σu,a. Algorithm 1

presents the pseudocode for the DG method. At each step, the assignment that

gives the largest potential gain g(.) is performed. Let Nu be the set of users v:

wu,v > 0. Now, whenever a user u is assigned to an event a, we need to recompute

the potential gain g(v,a | Sa) for all neighbors v∈Nu of user u in the network, since

their utility for event a increases after the assignment of u to that event. In practice,

the algorithm maintains the list L as a priority queue of tuples in non-increasing

order of g(u,a | Sa). We use the notation M(u) = ⊥ to denote that the user u is

available. We remark that the update operation (line 18) is in charge of not only

updating the existing entries in the priority queue but also checking whether the

pair (v,a) is already in the heap and if not, adding it.

The post-processing in Line 19 is done in a greedy manner. Let A′ be the set

of currently open real events, i.e., A′ = {a | γa ≤ |Sa| < δa} and U ′ be the set of

users assigned to phantom events. The list L is re-constructed with users from

U ′ and events from A′, and we rerun the DG algorithm over this list. This process

can be repeated as needed. The post-processing stops when either all users are

assigned or there are not enough real events (i.e., all real events are closed). In the

latter case, from a practical perspective, the remaining users may be assigned to

new events with a large capacity, e.g., watching a movie or a theatrical show.
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Implementation Notes and Time and Space Complexity. We remark that in our

implementation, we optimize the algorithm for better performance. In particular,

we tune our implementation to suit a Fibonacci heap based realization of the pri-

ority queue. Specifically, we commit to making an assignment for new users right

after line 7. This allows us to avoid assigning users to multiple phantom events.

Thus, when the priority queue is updated, “decrease key” operation will not be

needed, permitting us to implement the priority queue using a Fibonacci heap. We

note, however, in this case the assignment function M no longer corresponds to

only real events since some phantom events may be left behind by the algorithm at

termination. For ease of exposition, we have chosen to present our algorithm in a

conceptually simpler way.

When the priority queue L is implemented using a Fibonacci heap, then for

each assignment (u,a), the algorithms performs O(|Nu|) update operations (Line 18),

each of which is constant time. Summing over all users, the total running time of

all update operations is O(|E|), where E is the edge set of the social network of

users, or more precisely the set of pairs (u,v) with wuv > 0. Next, since the number

of all possible (u,a) pairs is bounded by |L |, we need at most that many pop oper-

ations, which in total takes O(|L | log(|L |)) time. In addition, insertion is constant

time for Fibonacci heaps so the initialization step takes O(|L |). Hence, the total

time complexity for Dynamic Greedy is O(|L | log(|L |)+ |E|). Finally, the space

complexity is Ω(|L |+ |E|).

4.2 Greedy with look ahead estimation

The Dynamic Greedy algorithm is intuitive: it tries to make assignments based on

the largest estimated gain, given the current state of the assignment. However, it

has its limitations: (i) it is oblivious to which events a user’s friends are likely to

be assigned; (ii) the first pass may result in a large number of phantom events as it

is ignorant of which events are likely to materialize. To address these limitations,

we propose the Phantom- and Community-Aware Dynamic Greedy or PCADG. A

key feature of this algorithm is that it looks ahead at the forthcoming assignments

to inform the decision at each step.

Community Awareness. The earlier algorithms do not take into account the po-
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Algorithm 2 Phantom- and Community-Aware Dynamic Greedy (U,A,σ ,w)

1: M(u)←⊥,∀u ∈U ; Sa← /0,∀a ∈ A; P ← /0
2: deficit← 0; V ←U
3: for each (u,a) ∈U×A s.t. σu,a > 0 do
4: g(u,a | Sa)← σu,a

5: L .insert(〈u,a,g(u,a | Sa)〉)
6: while 〈u,a,g(u,a | Sa)〉 ←L .pop() do
7: if M(u) =⊥ and |Sa|< δa then
8: if |Sa|= 0 then
9: if deficit+ γa ≤ |V | then

10: deficit← deficit+ γa−1
11: P ←P ∪{a}
12: else
13: continue
14: else
15: if a ∈P then
16: deficit← deficit−1
17: Sa← Sa∪{u}
18: V ←V \{u}
19: if |Sa|> γa then
20: M(u)← a
21: for all a′ ∈ A s.t. a′ 6= a∧u ∈ Sa′ do
22: Sa′ ← Sa′−{u}
23: if |Sa|= γa then
24: P ←P \{a};
25: for all v ∈ Sa do
26: M(v)← a
27: for all a′ ∈ A s.t. a′ 6= a∧ v ∈ Sa′ do
28: Sa′ ← Sa′−{v}
29: for all v : (w(u,v)> 0∧M(v) =⊥) do
30: L .update(〈v,a,g(v,a | Sa)〉) // Using Equation 4.2
31: return M

tential gain that future assignments of friends to an event may bring to a user. In

our Phantom- and Community-Aware Dynamic Greedy algorithm, the awareness

of friends’ potential assignments is incorporated into the decision making process.
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More specifically, here, the potential gain g is defined as

g(u,a|Sa) =σu,a + ∑
v∈Sa

w(u,v)

+(δa−|Sa|) ∑
v∈V

w(u,v)/(|V |−1). (4.2)

Notice that the first two terms in this equation are identical to the two terms in

Equation 4.1 of the Dynamic Greedy method. The third term corresponds to the

“look-ahead” whereby it is optimistically assumed that the remaining spots in the

event a will be filled with friends of u, with an average social affinity toward u.

The average is computed over users who are not assigned to any event yet. While

the first two terms are based on the current membership of Sa, the third term is

based on anticipation. Thus, this algorithm gives equal importance to both innate

affinity and social affinity in gauging the potential gain that could come from an

assignment. Other variants can be easily designed to weigh the importance of the

innate and social affinities differently.

Phantom Awareness. Another observation about Dynamic Greedy is that it tends

to be somewhat indiscriminate in the creation of phantom events: it never restricts

the creation of new events as the condition |Sa| < δa (line 6 of Algorithm 1) will

always be true for new events, for which |Sa|= 0 by definition. All phantom events

that are left behind after a pass over the list L have to be cleaned up later. PCADG

tries to limit the creation of phantom events, by employing a stronger condition

for phantom event creation. Accordingly, it keeps track of phantom events as it

proceeds, and procrastinates on creating new events if the number of unassigned

users is less than the currently unfilled spots in existing phantom events that need to

be filled in order for the events to materialize. To this end, the algorithm maintains

a variable called deficit, computed as,

deficit= ∑
a∈P

(γa−|Sa|).

where P is the set of phantom events and Sa is the set of users assigned to event

a. In addition, the algorithm maintains the set of users V that have not yet been
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assigned to any event, phantom or real. Specifically,

V = {u | u ∈U ∧M(u) =⊥∧u 6∈
⋃
a∈A

Sa}.

The pseudocode for Phantom- and Community-Aware Dynamic Greedy is pre-

sented in Algorithm 2. At the beginning of the algorithm, when P = /0, deficit=

0 and V = U . The size of V is non-increasing throughout the algorithm. For any

assignment being considered 〈u,a,g(u,a | Sa)〉 for an available user u and open

event a, if a is a new event with no users, i.e., if |Sa|= 0, deficit is incremented

by γa− 1, else deficit is decremented by 1. Furthermore, u is removed from

V , if u ∈ V before this assignment. Using deficit and V , the algorithm limits

the creation of new phantom events. If deficit> |V |, there will be at least one

phantom event at the end of one pass over L , thus requiring reassignment. The

algorithm performs an assignment based on a list tuple 〈u,a,g(.)〉 only if it does

not push deficit over |V | (Line 9). If the condition is not met, it continues to

the next tuple from the list L .

It is worth noting that PCADG may consider user-event combinations for which

the innate affinity may be zero, as this assignment may potentially result in a large

gain owing to the social affinity with other users assigned to this event, as per Equa-

tion 4.2. This is in keeping with our stated objective of maximizing social welfare.

Therefore, it is possible that some users may be assigned to low innate affinity

events as a result. We measure this tradeoff empirically in Section 5 by measuring

the “regret ratio” (defined in Section 5) of the assignment returned by the various

algorithms.

In order to explicitly study the impact of community and phantom awareness,

we will compare PCADG with a lesser variant called Phantom-Aware Dynamic

Greedy (PADG) that only takes into account phantom awareness. As such, the

PADG algorithm is identical to Algorithm 2, with the one change that the potential

gain is defined using Equation 4.1 instead of Equation 4.2. In Section 5, we com-

pare the running times and scalability of different proposed algorithms, in addition

to comparing them on their quality.

We close this section by noting that the time and space complexity of the

PCADG algorithm is the same as that of DG (and PADG) except that the size
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of the list L may potentially become O(|U |× |A|) in the worst case. Also, while

DG may incur multiple iterations owing to redistribution, the two algorithms have

the same worst case time complexity.
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Chapter 5

Experimental analysis

We evaluate our Phantom- and Community-Aware Dynamic Greedy (PCADG)

method against Phantom-Aware variant (PADG) and the baselines described in

Section 4.1, i.e., Random, NRMP+, Static Greedy (SG) and Dynamic Greedy

(DG).

Evaluation Metrics. The most natural evaluation metric is the total social wel-

fare, ω(M) defined in Equation (3.2). In addition, since optimal or near-optimal

solution cannot be found in polynomial time, we measure the effectiveness of each

algorithm “indirectly” by comparing the utility a user gets against a coarse upper

bound, which is the maximum utility she could have enjoyed by going to her fa-

vorite event with her best friends. Formally, we define the regret ratio for a user u,

denoted ρ(u), to be

ρ(u) = 1−
σu,M(u)+∑v∈SM(u)

w(u,v)

maxa∈A
(
σu,a +∑v∈Bu w(u,v)

) , (5.1)

where M is the assignment made by an algorithm, and Bu⊆Nu is the set of top-Ku,a

friends of u in terms of social affinity w(u,v), and Ku,a = min{|Nu|,δa−1}.
Ideally an algorithm that performs well w.r.t. this metric should assign users to

events in such a way that many users experience low regret in the assignment made.

Note that ∑u∈U maxa∈A
(
σu,a +∑v∈Bu w(u,v)

)
is guaranteed to be greater than the

optimal social welfare, except when the favorite event of all users are the same,

in which case the optimal welfare reaches this quantity. Moreover, ρ is a very
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pessimistic ratio, as the denominator is an upper bound on the maximum possible

utility that the user can achieve. Also, it is worth pointing out that our algorithms

are not designed to directly minimize individual regrets of users, but rather social

welfare that is the overall utility enjoyed by all users. The purpose here is to gain

some insights about to what extent our algorithms would lead to a compromise

w.r.t. regret.
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Figure 5.1: Effects of parameter choices on the performance of PADG and
PCADG

5.1 Experiments on synthetic datasets

First, to better understand the impact of various parameters on our proposed algo-

rithms, we first perform rigorous evaluation on synthetically generated data. We

also conduct scalability tests on large synthetic data to demonstrate that our algo-

rithms are scalable and efficient.

For all events a ∈ A, δa is sampled from a normal distribution with mean 20

and variance 10, and given that, γa is sampled uniformly at random from the in-

terval [1,δa]. The social network G = (U,E) is generated by a random power-law

graph model with a power-law exponent of 1.5 [1]. The data generated has 500

users and 50 events. A user is interested in an event with probability 0.05, and thus

the average number of events he is interested is 2.5. For each (u,v) ∈ E, the social

affinity value is sampled from a normal distribution with mean 1.5 and variance 3,

so are innate utilities σu,a for all (u,a) pairs in the user-event relation. All values

less than 10−5 are set to be zero, and hence all affinity values are non-negative.

This gives the default setting for the parameters used to generate the data, however,

throughout this section, we vary these parameters to understand their effect on the

performance of our three dynamic greedy methods, DG, PADG and PCADG. Fig-

ure 5.1 shows the social welfare achieved by these algorithms with three types of
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comparisons: minimum cardinality constraints, total number of events, and density

of the social network graph.

Effect of Minimum Cardinality. The first test is to alter minimum cardinality

constraint (γ) and evaluate its effect on PADG and PCADG. We keep the maximum

cardinality constraint δas unchanged from the basic setting for each event a ∈ A,

and vary their γas. We generate three groups of data, by sampling the minimum

cardinality constraint γa uniformly at random from [δa/2,δa] (low mean), [δa−
δa/4,δa] (medium mean), and [δa−δa/8,δa] (high mean) respectively. As seen in

Figure 5.1(a), there is a noticeable improvement in social welfare for PADG and

PCADG over DG (which does not account for phantom events). As γ increases,

more phantom events may be created, which increases the gain of PADG methods

over DG.

Effect of the Number of Events. In the second test, we vary the number of events

as 10, 25 and 35, for a 500 user dataset. Figure 5.1(b), shows the social welfare

of the three dynamic greedy algorithms. As the number of events increases, each

event needs to accommodate fewer users and thus the effect of social affinity de-

creases. Clearly, with fewer events, PCADG is at an advantage over PADG and

DG, as it is community aware and takes into account social affinity values by look-

ing ahead.

Effect of Graph Density. Next, we test various graph densities of the underly-

ing social network graph by generating four different graphs using Erdős-Rényi

model G(500, p) where the edge existence probability being p = 0.001, 0.01, 0.1,

and 1 respectively. For denser graphs, more social affinity values are present and

hence we observe that the margin between PCADG and the rest two is higher (Fig-

ure 5.1(c)) in comparison with sparse graphs.
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Algorithm |U | Number of Events
50 100 150 200 500

PADG 1K 0.085 0.085 0.108 0.152 0.187
10K 0.343 0.435 0.572 1.54 1.6
100K 2.75 4.61 6.63 15.0 27.1
1K 0.315 0.759 1.46 3.17 9.05

PCADG 10K 2.09 10.07 14.47 32.1 77.2
100K 22.10 64.50 166 207 1085

Table 5.1: Running time (in seconds) of PADG and PCADG

Random NRMP+ SG DG PADG PCADG
Time (s) 0.98 0.14 12.7 0.31 0.43 10.1

Table 5.2: Running time (in seconds) of all algorithms with 10K users and
100 events

Running Time. Finally, we evaluate the scalability of the algorithms by varying

the number of users (1K, 10K and 100K) and events (50, 100, 150, 200, and 500).

We maintain the default settings for all other parameters. Table 5.1 shows the run-

ning time of PADG and PCADG. Overall, both algorithms achieve good efficiency,

finishing within seconds or minutes in all cases, and PADG always runs faster than

PCADG. As the trend is similar, we show the running time comparison with Ran-

dom, NRMP+, SG, and DG for one case of 10K users and 100 events. Random,

DG, and SG takes 0.98, 0.31, and 12.7 seconds to finish, while PADG takes 0.43

and PCADG takes 10.07 seconds respectively (see Table 5.2). SG was consistently

the slowest algorithm in all cases that we tested. For our largest simulation of 100K

users and 500 events, PCADG takes 20 mins. This is a reasonable for large scale

event organization, where real-time response is not critical.

NRMP+ SG DG
PADG

PCADG

NYC

0

4

8

12

16

ω
(M

a
lg
o
)/
ω

(M
R
a
n
d
om

)

NRMP+ SG DG
PADG

PCADG

SFO
NRMP+ SG DG

PADG
PCADG

CHI
NRMP+ SG DG

PADG
PCADG

SEA
NRMP+ SG DG

PADG
PCADG

SIG

Figure 5.3: Improvement of social welfare yielded by various algorithms
over Random
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Figure 5.4: CDF showing regret ratio ρ for different algorithms.

5.2 Experiments on real event datasets

Data Description and Preprocessing

We evaluate our algorithms on the following three real datasets. Plancast and

Meetup are local event organization websites that allow groups of users to interact

and plan events. We make use of the datasets1 released by Liu et al. [19]. Since in

Plancast and Meetup users and events are from all over the world, we select several

big cities and project the data to these specific locations. Our third dataset is SIG-

COMM2009 (referred to as SIG), collected by Pietilainen et al. [22] and contains

the bluetooth traces and social profiles (friends and interests) of 76 participants of

a mobile application during the SIGCOMM conference at 2009. The following

pre-processing was performed on the datasets to match our problem setting.

Plancast. We extract two subsets from the Plancast dataset in [19] corresponding

to users and events in the vicinity of Chicago (CHI) and Seattle (SEA). The two

datasets CHI and SEA have 2338 and 2327 users, and 339 and 360 events, respec-

tively. For computing the innate affinity, we set σu,a to 1 for events located within

0.01 units of Euclidian distance from the user’s geolocation. Plancast allows users

to subscribe to each other and receive updates on friends’ activities, which gives us

a ground-truth social network. We compute the Katz distance [12] from each user

on the subscription graph to learn social affinity w(u,v)’s. By definition of Katz,

we have

w(u,v) :=
∞

∑
`=1

α
` · |P(`)

u,v |,

where P(`)
u,v is the set of paths of length ` between u and v in the graph, and α is a

1http://www.largenetwork.org/ebsn
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damping factor so that the measure counts short path more heavily, which is set to

0.01 in our case. Higher Katz scores intuitively implies that two nodes are more

connected, and hence gives a higher social affinity value for our purpose.

Meetup. Similarly, we project Meetup data from [19] on events and users located

in San Francisco and New York City and refer to these datasets as SFO and NYC.

SFO contains 6438 users and 59 events, while NYC contains 10328 users and 127

events. Meetup allows users to create and participate in groups, which in turn or-

ganize events. For both locations, we consider the labeled heterogeneous tripartite

graph between users, groups, and events, with edges labeled by the relation that

connects the pairs of nodes: e.g., if user u is a member of group g that organized

event a which the user attended, we draw edges (u,g) and (g,a). We then define

σu,a as the Katz distance between the user node u and event node a in the heteroge-

neous graph. where higher Katz score indicating higher affinity. For social affinity

between users, we utilize tags provided in the data. More specifically, users on

Meetup can attach tags in their profiles to indicate preferences and interests. Intu-

itively, users share common interests may enjoy being with each other in activities

they both like. Thus, for each (u,v) ∈ E, we compute w(u,v) as the Jaccard simi-

larity coefficient of u’s tag sets and v’s tag sets:

w(u,v) :=
|Tu∩Tv|
|Tu∪Tv|

,

where Tu and Tv is are sets of tags of u and v respectively. Note that users without

any tags in their profile have been filtered out.

SIGCOMM2009. This is a small dataset with 76 users, and 11 events, collected by

a mobile application that records bluetooth device discovery information. Users’

innate utility for events is 1 if a user attends an event as indicated by the data, and

0 otherwise. The data includes ground-truth Facebook friendship information, and

thus as in the case of Plancast, we take this underlying social network and compute

the Katz scores for social affinities.

Finally, for all five datasets described above, the user-event innate utility is set

to 1 if the user attends the event indicated by the data, and to 0 otherwise. Also

due to lack of ground-truth data, we generate the maximum and minimum cardi-
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nality constraints on the events as in the basic synthetic case, i.e., let r be the ratio

between the number of users and the number of events, for all a ∈ A, maximum

cardinality constraint δa is sampled from a normal distribution with mean 2r and

variance r, while minimum cardinality γa is sampled uniformly at random from

[1,δa]. Figure 5.2 shows the distributions of social affinity values for all datasets.

Evaluations and Analysis

Social Welfare. We evaluate the various algorithms on our objective, social wel-

fare. Figure 5.3 shows the social welfare (Equation 3.2) obtained by the various

methods considered relative to the welfare obtained using a Random assignment.

Specifically, it shows the ratio between the social welfare yielded by assignments

made by NRMP+, SG, DG, PADG, PCADG and that by Random. PCADG consis-

tently has the highest social welfare, followed by PCADG, DG, SG and NRMP+.

The margin between PCADG and the rest of the algorithms is significant in all

cases, indicting its overall effectiveness. The biggest lead of PCADG is observed

in NYC, 17 times better than Random, while the smallest happens in SIG, in which

it is still 4 times better. On all datasets PADG and DG have similar welfare values,

with PADG outperforming only slightly. This is because the generated minimum

cardinality constraints for events are much smaller than maximum cardinality con-

straints. Recall from Figure 5.1(a) that when γs are high, the gap between PADG

and DG is also high.

Regret Ratio. Figure 5.4 shows the cumulative distribution function (CDF) of

the regret ratio ρ(u) (see Equation 5.1) achieved by the various methods (PADG

skipped for clarity) on the five datasets. The general trend is similar to that of social

welfare, where PCADG outperforms all baselines. For instance, in NYC, 20% of

the users have a regret below 0.8 using PCADG, while only 8% have that regret

with NRMP+. This gap is even more pronounced in CHI and SEA, with the largest

difference in SIG. In particular, 70% of users have a regret ratio below 0.7 using

PCADG, while only 18% have that regret using NRMP+.

In summary, through extensive experiments on both synthetic and real world

data, we have demonstrated the effectiveness (in terms of social welfare and regret)

and efficiency (in terms of running time) of our proposed solution.
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Chapter 6

Conclusions and future work

While there has been considerable work on detecting emerging events from social

media, the related, equally important area of organizing events has received much

less research attention. This thesis provides a first systematic study towards the

novel research direction of Social Event Organization (SEO), motivated by popu-

lar social event organization platforms like Meetup and Plancast and by applica-

tions such as organizing events using these platforms over a wide local area, and

organizing events co-located with large conferences and conventions.

In this thesis, we understand the organziation as the assignment problem, where

we consider two critical factors: innate affinity, which captures a user’s intrinsic

preferences for or interests in the events being offered, and social affinity, which

captures the social connections among the users themselves. We formally define

the overall measure of social welfare in event organization and formalize the SEO

problem as an optimization problem for the social welfare with constraints on the

participation cardinality of the events. We show that this problem is not only NP-

hard, but also hard to approximate. We propose a set of heuristic solutions that

leverage the notion of phantom events and the technique of looking ahead the pote-

nial gain that may accrue as a result of future assignments to the current event for

which a user is being assigned. Using an extensive set of experiments over syn-

thetic datasets and three real datasets including those from the platforms Meetup

and Plancast, we demonstrate that our heuristic algorithms are scalable and fur-

thermore outperform the baseline algorithms significantly in terms of achieving

33



superior social welfare.

Furthermore, we would like to provide an landscape discussion on some inter-

esting future directions to extend our problem formulation.

To start with, we could incorporate interdependency between innate and social

affinities. E.g., Jack and Jill may be close friends but may not like to play poker

together since they know each other’s tells too well. Jill may like going to an ice

hockey game in which she normally has low innate affinity, but with Mike who

is knowledgeable and keeps her engaged with interesting anecdotes. Handling

such interdependent affinities is important. Our framework could be extended by

generalizing the innate affinity beyond what’s between one individual person and

one event, to two or three more person. For the above example, we would have

a high innate affinity value between the event of hockey and the pair of Jill and

Mike. Although strictly more difficult, our phantom community aware dynamic

greedy strategy would still apply in this case, where the community effect is now

conditioned on specific event.

Another natural extention is to extend the weight to the negative case. In terms

of innate affinity, this refers to the case that a person is ”forced” to go a a event that

he doesn’t want to attend. In terms of social affinity, this would mean the two per-

son hate each other so much [7] that they don’t want to appear in the same events.

Mathematically, our phantom community aware dynamic greedy strategy would

still work as usuall and moreover since these negative weights would seldomly pop

up in the priority queue, they would naturally be avoided. However, some better

heuristics can be designed towards the specific case. For example, we may need

to pay special attention and keep track of these retricted assignments to prevent

it from happenning during post processing, or alternatively we could follow the

scheme in the Gale-Shapley matching [10] for NRMP and redistribute the negative

assignment as an after step.

More complex social interaction could be considered in terms of computing

the social affinity. E.g. the Ninja Turtles may want to fight the evil as a group

of Four, missing any of the four would undermine the integrety of the group and

decrease the general social welfare. To handle this, we would not only consider the

affinity based on pair, but also on triplet, quadraplet, etc. Then we would carry on

our dynamic greedy strategy and each time, compute the community effect based
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on different types of social affinity.

On the event side, there are also many factors we can incorporate to empower

our model framework. Various dimensions of an event, e.g. where, when, what

type of event can also be formally studied. We could consider the scenario where

the events spans across a wide area in a metropolitan region, each can only happen

at specific time of day/week, and each person has a set home or office location and

certain busy schedule. Currently our framwork handles these preference in a ”one

fits all” scheme and understand all such preference as a numeric value. However to

make the our solution better applies to these realistic situation, certain optimization

strategy can be employed to accomodate it, e.g. we could preprocess the candidate

assignment to filter out geoloigcally or temporally restricted assignments, or we

could employ the divide and conqueuer scheme and compute assignment in geo-

logical parallelly.

In terms of adding the time dimension to our problem, we could also model

”multiple shot” event participation where each person is allowed to attend more

than one event. This is realistic when we consider performing event assignment on

online event organization platform such as Meetup, where the system could suggest

you an schedule of events over a whole month, or the entire year. A straighforward

solution is to treat the unit assigned to an event as not a person, but a person at

specific time window, which would generates an assignment that will ”remove” the

one shot assumption. Based upon this, we could adjust the length and starting point

of the time window to make personalized prediction to based on one’s frequency

the schedule preference.

More complex interplay along the time dimension may also be considered,

e.g. we could imagine the event assignment as a self adaptive dynamic process

to model more general social or actitivity of human being. During the course of

participating events, people may learn to change their innate and social affinity, to

cooperate and form a group or break up from a group, and act strategically. we

may eventually need to incorporate game theory to model the individual strategic

behavior. For example, we could view the event participation as a repeated game

[20] with specific cost or gains for each individual, and we could study how to

make arrangements that is in accordance with nash equilibrium so that everyone is

satiefied in both individual level while still taking into account the social welfare
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from a global point of view. Although this would extend far beyond our current

model framework.
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