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Abstract

Incomplete and inconsistent datasets often pose difficulties in multimodal
studies. A common scenario in such studies is where many of the samples
are non-randomly missing a large portion of the most discriminative features.
We introduce the novel concept of scandent decision trees to tackle this issue
in the context of a decision forest classifier. Scandent trees are decision trees
that optimally mimic the partitioning of the data determined by another
decision tree, and crucially, use only a subset of the feature set. We use the
forest resulting from ensembling these trees as a classification model. We
test the proposed method on a real world example of the target scenario,
a prostate cancer dataset with MRI and gene expression modalities. The
dataset is imbalanced with many MRI only samples and few with MRI and
gene expression. Using scandent trees, we train a classifier that benefits
from the large number of MRI samples at training time, and of the presence
of MRI and gene expression features at the time of testing. The results
show that the diagnostic value of the proposed model in terms of detecting
prostate cancer is improved compared to traditional methods of imputation
and missing data removal.

The second major contribution of this work is the concept of tree-based
feature maps in the decision forest paradigm. The tree-based feature maps
enable us to train a classifier on a rich multimodal dataset, and use it to
classify samples with only a subset of features of the training data. This has
important clinical implications: one can benefit from an advanced modality
to train a classifier, but use it in a practical situation when less expensive
modalities are available. We use the proposed methodology to build a model
trained on MRI and PET images of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, and then test it on cases with only MRI data. We
show that our method is significantly more effective in staging of cognitive
impairments compared to a model trained and tested on MRI only, or one
that uses other kinds of feature transform applied to the MRI data.

ii



Preface

The concept of scandent trees was originally introduced by the author in a
paper published in Medical Imaging and Computer Assisted Interventions
conference (MICCAI-2015) titled as “Scandent tree: a random forest learn-
ing method for incomplete multimodal datasets”. This paper is the source
of most of the material used in chapter 3.

Majority of the work discussed in chapter 4 is extracted from a paper
conditionally accepted to the MICCAI special issue on Medical Image Anal-
ysis (MedIA) journal under the title of “Learning in data-limited multimodal
scenarios: scandent decision forests and tree-based features”.

The contribution of the author is development and evaluation of the tech-
niques proposed in these publications and was performed under supervision
of Dr. Mehdi Moradi.

This study has been performed as part of an ethics certificate approved
by UBC research ethics board under the title of “Computational multimodal
radiologic profiling as a prognostic bio-marker for individualized prostate
cancer therapy” with UBC CREB number of H14-00359. Under supervision
of Dr. Peter Black and Dr. Mehdi Moradi.
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Chapter 1

Introduction

1.1 Motivation

In recent years there has been a surge of interest in multimodal data anal-
ysis. Different modalities provide researchers with complementary informa-
tion about diseases and provide the means for more accurate detection and
staging. This can be valuable in the case of progressive illnesses such as
Alzheimer’s disease and certain kinds of cancer. Simultaneous analysis of
multiple modalities could also help us discover novel relations between differ-
ent modalities, such as understanding the relationship of molecular changes
caused by a disease and its imaging signature when both genetics and imag-
ing data are available. Given these potential advantages, there has been a
trend of merging different modalities in biomedical studies. For instance the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), a six year $65 million
study, has focused on using medical imaging modalities like Magnetic Res-
onance Imaging (MRI) and Positron Emission Tomography (PET) together
with genetics and other clinical biomarkers for gaining better understanding
of Alzheimer’s Disease and its progression.

Acquiring multimodal data is generally more costly and time consum-
ing than a single modality. As a result, multimodal datasets usually have
valuable features, but a small set of samples with all features. This makes
it difficult to build classifiers with large training data for highly multimodal
protocols. For instance, in the case of the ADNI dataset, nearly half of
the patients are missing the PET data. PET imaging is expensive and
requires the use of radioactive tracers. As a result, a large number of pa-
tients only receive MRI scans, despite the fact that PET imaging provides
unique brain functional information by quantification of the cerebral blood
flow, metabolism, and receptor binding, which are not measured with MRI.
This is a common scenario in dealing with multimodal data. So designing a
computational model that can be trained on both MRI and PET data (mul-
timodal data), but be deployed in clinical settings where only MRI (single
modal data) is available, is a valuable contribution in this area, provided
that the model outperforms one that is solely trained on MRI data.
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1.1. Motivation

Another common scenario is the case of a new multimodal research pro-
tocol including at least one component which is only obtained in the course
of the study itself. An example of this scenario is our study to understand
the relationship of molecular signature of prostate cancer with the imaging
signature of the disease obtained through multiparametric MRI (mpMRI).
The hope is that the simultaneous analysis of the molecular and imaging
data can provide clues towards building a reliable and affordable clinical
staging test. Since prostate cancer is a multifocal disease with tumors at
different stages in each foci, this study requires tissue samples for molecular
analysis that are obtained from a specific area with known spatial regis-
tration to the MRI images. The steps taken to acquire this data are not
part of the clinical routine and the pace of data acquisition is slow. On
the contrary, we have access to hundreds of samples with only mpMRI data
and known histology. In this scenario, we are building a computational
model that would be studied on the mpMRI+genomics (multimodal) data.
Here, we may benefit from a computational framework that can utilize the
rather large single modal dataset during training, but be able to handle the
multimodal data at the testing stage.

In this thesis we present solutions, within the context of decision tree/forest
paradigm of learning to address the problems posed in the two scenarios de-
scribed above. Recent relevant work includes an investigation of the appli-
cations of imputation methods for dealing with missing values in the ADNI
dataset [6]. The results show that joining a multimodal dataset with a single
modal dataset by imputation of the missing values improves the classifica-
tion accuracy, compared to training a classifier on either the single modal or
the available multimodal data. In our current work, we intend to go beyond
the paradigm of imputation. This is due to the fact that multimodal studies
do not necessarily hold the usual assumptions in imputation that only a
small number of data points are missing at random. We intend to deal with
situations where blocks of data are missing together and the missing values
are not spread randomly.

One trend in dealing with block wise missing values in multimodal datasets
is separately modeling different blocks of data and then joining the resulting
models by using a merging classifier or an ensembling method. One of the
most successful attempts in this field is applying multi-source learning tech-
niques for dealing with block wise missing data in ADNI [38, 39, 42]. The
incomplete Multi-Source Feature learning method (iMSF) proposed by Yuan
et al., models different blocks of data with similar feature sets as different
tasks and learns a joint model by imposing a sparse learning regularisation
on these tasks [42]. The authors also propose a different approach by using

2



1.1. Motivation

a model score completion scheme. This method is based on training inde-
pendent classifiers on different blocks of data, and then using the prediction
scores calculated by each classifier as a new presentation of the data that
can then be imputed using conventional imputation techniques. A recent
paper by Yu et al., proposes a new method based on Multi-task Linear Pro-
gramming Discriminant (MLPD) analysis [41]. This method formulates the
problem as a multi-task learning scenario in a fashion similar to the iMSF
method but does not constraint all of the tasks to share the same set of
features, allowing joint learning of a more flexible model.

As a limitation to these studies, the training and testing datasets are
assumed to have the same distribution and feature sets. Recently, Cheng et
al., addressed this issue and proposed a method for multimodal data analysis
based on multimodal manifold-regularized transfer learning method [9]. This
method enables using data from different domains together with unlabeled
data for multimodal classification. This work uses a kernel based data fusion
approach and includes a sparsity constraint in order to deal with the high
dimensionality issue.

In this thesis we address the same limitations reported in [9], but with
different assumptions that fit our scenarios. We don’t assume that there
is unlabeled data available. We do assume that the feature set of the test
data is a subset of the training data. For instance, in case of the ADNI
dataset, we assume that the training dataset consists of a set of samples
with both MRI and PET data (although incomplete) but the test sample
only consists of MRI data. This scenario is aimed at enabling the use of
multimodal datasets for training of a classifiers that requires only a subset
of modalities for testing.

Another important issue in multimodal classification is the high dimen-
sionality that poses difficulties in feature selection and classifier building.
The majority of the methods in the literature use the multi-kernel SVM
framework for multimodal classification and need to impose sparse condi-
tions on the multimodal feature set in order to avoid over-fitting [9, 20, 43].

However by working within the decision tree/forest paradigm we can ben-
efit from its embedded way of dealing with high dimensional data through
feature bagging [4]. Another motivation for the use of decision forest paradigm
is that it provides the ability to morph the treatment of missing data within
the framework of learning to maximize the classification performance. This
area of work has seen significant contributions in recent years. These in-
clude the state of the art imputation methods embedded in the classification
and regression tree (CART) algorithm and C5.0 algorithm for decision tree
growth [28, 29] and in Random Forests (rfImpute) [4] which we discuss in

3



1.2. Objective

more detail in the next chapter.

1.2 Objective

The objective of this thesis is two fold:
First, developing a classifier in the context of decision forests that ben-

efits from a large single modal dataset and a small multimodal dataset at
the time of training, but is tested on multimodal data. This is motivated
by the work in the area of prostate cancer detection and staging.

Second, developing a method based on the decision forest classifier that
can benefit from a multimodal dataset together with a single modal dataset
at the time of training, but is tested on single modal data. This is motivated
by the work in the area of Alzheimer’s Disease detection and staging.

1.3 Contributions

This thesis reports two specific contributions:

• First, introducing the concept of scandent trees, a novel forest-based
method that can leverage one or more single modal datasets in order
to enhance a multimodal forest. To our knowledge, this is the first
decision-forest based algorithm specifically designed for this purpose.
We provide results for different scenarios by simulation of the missing
value problem on publicly available benchmark datasets. We also com-
pare the scandent tree method to different state of the art methods
for missing value imputation on a prostate cancer dataset which is a
real-world example of the target scenario.

• Second, we develop the idea of scandent tree-based feature transforms
to solve the problem of missing data in the single modal testing sce-
nario. This problem has many clinical applications in areas where
expensive research protocols meet the realities of clinical practice and
high cost. Here, the assumption of a multimodal dataset with block
wise missing values remains. However, there is no multimodal assump-
tion about the test set. Using the proposed approach on the ADNI
dataset, we show that we can use MRI and PET data for training a
classifier that only requires the MRI data for the prediction of differ-
ent stages of Alzheimer’s disease. We show that the inclusion of the
PET data at the time of training results in an improved classification

4
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accuracy, even though the test cases are not subjected to PET imag-
ing. We also examine the proposed method in different scenarios by
simulation of the single modal and multimodal datasets on publicly
available benchmark datasets. To our knowledge this is also the first
method based on decision forests that has been designed specifically
for this purpose.

1.4 Organization of the thesis

In this chapter, we discussed the advantages and limitations of multimodal
studies and the importance of developing a new approach based on the deci-
sion forest classifiers leveraging multimodal datasets with block-wise missing
data for either single modal or multimodal classification tasks. The remain-
der of this thesis is organised as follows:

• In Chapter 2 we explain the basics of the state of the art methods for
growing decision trees and decision forests. Then we present a review
of conventional methods for handling missing data, including general
purpose imputation methods and the methods specific to tree-based
classifiers.

• Chapter 3 describes the concept of scandent trees for multimodal clas-
sification and provides experimental and simulation results as proofs
of concept.

• Chapter 4 introduces the tree-based feature transforms and applica-
tions of the scandent tree model for single modal classification. This
chapter also provides simulation results together with experimental
results.

• Finally, chapter 5 provides the conclusions of the thesis and a discus-
sion about the limitations of this study and the potential for future
work.

5



Chapter 2

Background

2.1 Introduction

In order to gain a better understanding of the missing value handling prob-
lem in tree-based classifiers, we first review tree-based classifiers. In the first
section of this chapter, two of the most well known algorithms for growth of
decision trees named, Classification And Regression Trees (CART) and C5.0
algorithms are introduced and explained in detail. Then an introduction to
the concept of random forests and their theory of operation is presented. In
a separate section, the challenges present in handling the problem of missing
values in a general context are discussed in detail and a brief introduction
to different general approaches to handle data with missing values is pro-
vided. In the next section of this chapter, we investigate the state of the
art imputation methods which are specifically designed for tree-based clas-
sifiers. Detailed information about three of the state of the art embedded
imputation methods for CART, C5.0 and random forests (rfImpute) is also
in this section.

2.2 Decision trees and decision forests

2.2.1 Classification and regression decision trees

In this section the tree growth algorithm known as “Classification And Re-
gression Trees” or in short, the CART algorithm will be explained. This
algorithm was first introduced by Breiman, et al. in 1984 [5]. A CART tree
is a binary tree that is grown based on an iterative process of finding the
binary split point that gives the maximum purity gain at each node and
using this division point to split each node to two child nodes. Let Y be the
dependent variable or outcome class that can be ordinal categorical, nom-
inal categorical or a continuous number. If Y is categorical with k classes,
its class takes values in C = 1, 2, . . . , k. Lets also define F as the set of
features describing the data. Each feature (predictor) can also be ordinal
categorical, nominal categorical or continuous. Assuming this notation, the

6



2.2. Decision trees and decision forests

growing process of a CART tree can be explained as described below.

Tree growing process

As it was mentioned, the CART tree algorithm is an iterative process applied
to each node of the tree starting from the root (the node with all of the
available samples). The aim of this algorithm is to find the best split defined
as the split in data that can result in the maximum purity in the child nodes.
In the basic implementation of CART it is assumed that the splits are uni-
variate. Meaning that each split only depends on the value of one feature and
one feature only. If F is the set of all available features and fi is a nominal
categorical feature in F with ki different categories, there exist 2k−1 − 1
possible splits for this feature. If fi is an ordinal categorical or continuous
variable with ki different values there are ki − 1 different possible splits for
fi. The iterative growth algorithm of CART for each node can be simplified
as:

• Find each predictor’s best split. In case of continuous or ordinal
categorical features, first sort the samples by the given feature. Then
for each possible split from smallest to largest form the two child nodes.
Given the child nodes one can calculate the splitting criterion or purity
function for each split. The splitting criterion will be defined later.
Choose the split with the highest purity. For each nominal categorical
feature, examine all the possible subsets of the categories to find the
purest split. For the sorted predictor, go through each value from top
to examine each candidate split.

• Find the node’s best split. Among the splits selected for each
feature in previous step, select the one with maximum purity (the one
that maximises the splitting criterion).

• Split parent node to child nodes. Use the best split found in
previous step to divide the parent node to the child nodes.

• Iterate. Until the criteria for maximum depth of the tree has not
reached, apply the same algorithm to each child node.

Splitting criteria and impurity measures

For any given node t, and a given split s, the best split is the split that
maximizes the splitting criterion ∆i(s, t). Which corresponds to a decrease
in impurity i.
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2.2. Decision trees and decision forests

For classification tasks (categorical Y ), there are three splitting criteria
defined for CART algorithm: Gini, Twoing, and ordered Twoing.

Let us define P (t) and P (j, t) as the probability that a sample belongs to
node t and the probability that a sample in class j be in node t respectively.
We can estimate these probabilities by :

P (j, t) =
π(j)Nw,j(t)

Nw,j
, (2.1)

P (t) =
∑
j

P (j, t), (2.2)

where π(j) is the prior probability of the outcome class j and by definition

P (j|t) =
P (j, t)

P (t)
=

P (j, t)∑
j P (j, t)

, (2.3)

and

Nw,j(t) =
∑
h(t)

wnfnI(yn = j), (2.4)

in which wn and fn are the case weight and frequency weight associated
with sample n, h(t) is the set of samples at node t and I(j1 = j2) is the
identifier function resulting in 1 when j1 and j2 are equal and is 0 otherwise.

Gini criterion

The Gini impurity measure at node t is defined as:

i(t) =
∑
i,j

C(i|j)P (j|t)P (i|t), (2.5)

in which C(i|j) is the cost of classifying a sample to class i given that it
belongs to class j assuming that C(i|i) is equal to zero. Using the Gini impu-
rity measure we can define one of the most well known splitting criterion’s,
the Gini decrease of impurity, defined as:

∆i = i(t)− PLi(tL)− PRi(tR). (2.6)

in which PL and PR are the probabilities that a sample is sent to the left
child node or the right child node respectively and can be defined as:

PL =
P (tL)

P (t)
, PR =

P (tR)

P (t)
. (2.7)
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It should be noted that if user specified costs are involved, altered priors
can be used instead of the empirical estimations. In this case the altered
prior can be defined as :

π
′
(j) =

C(j)π(j)∑
j C(j)π(j)

, (2.8)

in which

C(j) =
∑
i

C(j|i). (2.9)

Twoing criterion

This Criterion is actually a goodness measure not an impurity measure. So
it should be maximised for each split. The Twoing criterion can be defined
as:

∆i(s, t) = PLPR

[∑
j

|p(j|tL)− P (j|tR)|
]2

(2.10)

Ordered Twoing criterion

In the case of ordinal categorical outcome classes, the ordered Twoing crite-
rion is the purity measure of choice. The algorithm to calculate this measure
is as follows:

• First separate the class C = {1, . . . , k} of Y into two complementary
super-classes C1 and C2 such that C1 is of the form C1 = {1, 2, . . . , k1}
in which, k1 ∈ (1, 2, . . . , k − 1).

• Using the purity measure i(t) = p(C1|t)P (C2|t) find the split that
maximises the Twoing criterion shown in equation 2.10 on C1.

• Find the super class C1 that results in best split (maximum gain in
Twoing measure).

Continuous dependent variable

For continuous outcome variables (regression trees) a splitting criterion sim-
ilar to the equation 2.6 can be used. However, the impurity measure used
in this equation is different. A usual choice for the impurity measure is the
Least Squares Deviation (LSD) measure which can be described as:
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i(t) =

∑
h(t)wnfn(yn − y(t))2∑

h(t)wnfn
, (2.11)

in which

PL =
Nw(tL)

NW (t)
, PR =

Nw(tR)

NW (t)
, (2.12)

and

y(t) =

∑
h(t)wnfnyn

NW (t)
, (2.13)

where

Nw(t) =
∑
h(t)

wnfn. (2.14)

Stopping rules

Stopping rules determine if the growth algorithm should continue on dividing
each child node into two other nodes or should it set the final nodes as leaves.
The stopping roles can be set based on the application. But the ones usually
used in CART are as follows:

• If a node becomes completely pure, the tree growth stops. Meaning
that if in classification trees, all cases in a node belong to the same
outcome class, or in regression trees, all the cases in one node have
the exact same number as the outcome variable, the node will not be
split any further.

• If all samples in a node have the exact same values for all of the
features, the node will not be split any further.

• If the tree depth reaches the predefined maximum limit set by the user,
the tree growth will stop.

• If the sample size at a node is less than the minimum threshold set by
the user the tree growth at this node will stop.

• If in case of splitting the parent node into child nodes, the child node
sample size would be less than the minimum threshold set by the user,
the parent node will not be split.

10



2.2. Decision trees and decision forests

• If for the best split possible at node t, the splitting criterion (∆I(t))
is less than a user specified minimum purity gain, the node will not be
split.

2.2.2 C5.0 decision trees

The C5.0 algorithm is based on the Iterative Dichotomiser 3 (ID3) algo-
rithm first introduced by Ross Quinlan in 1986 [27]. Similar to the CART
algorithm, this algorithm is based on iterative splitting of the sample space
into smaller nodes. However, unlike the CART algorithm, the first versions
of the ID3 algorithm only supported categorical features. Later improve-
ments resulted in C4.5 algorithm which is the most well-known variation
of the ID3 algorithm and in addition to supporting continuous variables,
has several advantages over its ancestor, ID3. In this subsection we start
with a brief explanation of the ID3 algorithm, then we introduce the C4.5
algorithm and finally the latest version of this family of algorithms, C5.0, is
explained.

ID3 algorithm

Similar to the CART algorithm, the Iterative Dichotomiser 3 (ID3) algo-
rithm grows a tree using a top-down greedy search through all the possible
splits of training data for each feature at each node. However it uses in-
formation gain as the measure of goodness for each split. Information and
entropy are measures in information theory that can directly be used as im-
purity measures for tree growth algorithms. In information theory, entropy
of a sample set S that consists of c different classes can be defined as:

Entropy(S) =
c∑

i=1

−pilog2(pi), (2.15)

in which pi is the probability that sample s belongs to class i and can
be estimated by the proportion of samples in class i relative to the whole
population. Given that in the above equation the logarithm function is in
base 2, the unit for entropy is Bits. In this equation if the probability of
a class is too small (pi =̃0) or pi is too large (pi =̃1) the entropy measure
becomes very small. So the entropy measure gives smaller values for pure
subsets of samples. In other words, the more uniform the probability dis-
tribution between classes becomes, the larger the entropy measure. If we
define information simply as “lack of entropy”, information gain can be de-
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fined as an splitting criteria that uses entropy as the impurity measure. The
information gain can be defined as :

∆I(S, F ) = Entropy(S)−
∑
fi∈F

Sfi
S
Entropy(Sfi) (2.16)

In which F is the set of all features of samples in S and the sum on fi is
over the all the values in F . Assuming this function as the splitting criteria,
the algorithm to grow an ID3 tree is as follows:

• Given the samples in node t, calculate the splitting criteria (informa-
tion gain) for all the features,

• Select the feature with the largest information gain (ft) and the rela-
tive splitting point as the optimum division points,

• Use the optimum division points to split the samples at node t to two
child nodes,

• If none of the stopping rules are true, continue growth of the tree on
the child nodes using the remaining features.

The minimum set of stopping rules for ID3 algorithm are:

• If all the cases in one node are from the same class (entropy=0),

• If the Information gain is 0 or smaller than a pre-defined threshold,

• If the number of remaining features is 0.

It should be noted that other limits similar to the ones explained for the
CART algorithm can be put on the number of samples at each node or the
total depth of the tree in order to penalize over-fitting.

C4.5 algorithm

The C4.5 is an improved version of the ID3 algorithm with three major
improvements:

• It can handle continuous features as well as categorical features. C4.5
extends the ID3 algorithm by putting a threshold on the continuous
features and calculation of the Information gain based on the selected
threshold,
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• It has an embedded method for handling missing values (this method
will be explained in detail later),

• It can incorporate user-defined weights for importance or cost of the
features,

• It has an embedded method for pruning the tree.

More information about this method can be found in a recent paper by
Quinlan [28].

C5.0 algorithm

C5.0 algorithm is the latest version of the tree growth algorithms of this
family which has several advantages over the previous implementations, in-
cluding:

• More computationally efficient implementation in comparison to C4.5
resulting in faster performance,

• A more memory efficient implementation,

• Results in smaller trees in comparison to previous versions which usu-
ally results in smaller probability of over fitting,

• Supports boosting. The C5.0 algorithm uses a process similar to ad-
aboost [15]. In this process, first a conventional C5.0 tree is grown.
Then the weights for each sample are calculated and subsequent it-
erations are used to build weighted trees and rule-sets. Then these
rule-sets and trees are used to generate class probabilities. Finally the
average of these class probabilities is reported as the final prediction,

• Supports using different weightings for samples and different mis-
classification measures,

• Supports winnowing, an embedded feature selection method that is
particularly useful if the number of features are large but sample size
is relatively small. This process is done as follows: First the samples
are randomly split in half and one conventional C5.0 forest is grown
using the first half of data. The effect of removing each feature on the
performance of the first tree is determined using the other half of the
data. If there is a feature that it’s removal does not increase the total
error rate, that feature will be removed from the set of features used
for growth of the final tree.
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2.2.3 Decision forests

Decision trees offer a fast and easy-to-interpret classifier for simple classi-
fications tasks but generally result in weak classifiers that easily over-fit,
especially if the sample size is small. An idea to increase the classification
power of decision trees and avoiding over-fitting at the same time is to en-
semble decision trees and form a decision forest. Ensembling is known as a
very effective method that can improve the performance of any single clas-
sifier. In a similar way, the ensemble of decision trees as a forest is expected
to always outperform a single decision tree. The idea of decision forests
became popular after a paper by Ho, et al. in 1995. In [18] they show that
if trees of a forest are trained on a set of randomly selected features, the
accuracy of the forest grows by increasing the number of the trees of the for-
est. This observation that forests get more and more accurate as the model
grows (gets more complex) is in direct contrast to the common belief that
complexity of a classifier can only be increased to a certain point before it
is reduced do to over-fitting. The key for this unique advantage of random
forest over other classifiers is in randomising the basic classifiers to gain an
ensemble of independent estimators of the outcome label. More detail on
the importance of randomisation in random forests can be find in a paper
by Kleinberg, et al [22].

The current state of the art decision forest method is based on the al-
gorithm proposed by Breiman, et al. [4]. In this work Breiman uses two
main tricks in order to ensure a fully randomised forest. First, randomly
selecting a “bag” of samples for each tree, introduced for the first time by
Breiman, et al. And second, randomly sampling a subset of features for each
tree, introduced by Ho, et al in [19]. Breiman also introduced methods for
calculating a feature importance measure based on a forest by calculating a
distance measure between samples and calculation of error rates based on
out of the bag samples. In the original implementation of random forest by
Breiman, the decision trees were grown using an algorithm similar to the
CART algorithm and the randomisation was introduced to each tree using
the bagging and randomised feature selection methods. There exist differ-
ent implementations of random forest that have put more emphasis on the
randomisation of the base classifiers. For instance, an idea introduced by
Dietterich, et al. in [12] is to ignore the optimum division step in CART
algorithm and choose a random split for the data at each node of each tree.
This results in a faster classifier but because it also results in weaker base
trees it may limit the performance of the final forest.
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Algorithm

Decision forests use the general technique of bagging or bootstrap aggrega-
tion with replacement to re-sample nb number of bags. Each one with the
same size as the original training set. For instance if the training set consists
of n samples S = {s1, s2, . . . , sn} described by k features F = {f1, f2, . . . , fk}
and an outcome class C = {c1, c2, . . . , cn}, each bag of samples will also con-
sist of n samples randomly chosen (with replacement) from the same sample
set. We hereby name these samples as Sb. These samples are described by
the same set of features and corresponding outcome classes (Cb). After bag-
ging samples, each bag is used to train a decision tree that is grown solely
based on Sb and uses F to predict Cb. In the testing phase, the predictions
of these trees can be merged either by majority voting or by averaging the
probabilities using the following equation:

P (C) =
1

nb

∑
b∈B

p̂(Sb, C) (2.17)

In which P (C) is the probability of class C predicted by the whole forest
and p̂(Sb) is the probability of class C predicted by the tree trained on bag
b.

If grown too deep, each decision tree will over-fit to the training data
and result in a low-bias but high-variance classifier. The boot strap and
ensemble trick does not have any effect on the bias but reduces the variance
of the final classifier as the number of the trees grow. However, this is
true with the assumption that the resulting decision trees are uncorrelated.
Otherwise the resulting trees will be very similar and averaging the similar
trees does not have significant effect on the variance of the final classifier.
The number of the bags and corresponding trees (nb) is a parameter ranging
from a few hundreds to several thousand trees depending on the nature of
the dataset and the sample size and can be optimised by cross validation or
by observing the out-of-bag error. The decrease in out of bag error seems
to diminish after the number of the trees in the forest becomes large. The
random forest growth algorithm also randomly selects a subset of features
(for classification, usually

√
k, in which k is the total number of features) to

grow each tree of the forest. This process helps in building a larger number
of uncorrelated trees in the random forest.
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Variable importance measure

Breiman also introduces a novel way to measure importance of each fea-
ture embedded in the random forest. The first step in order to measure
importance of a feature is to grow a random forest using the training data
available. Then the out-of-bag errors for each data point is calculated and
averaged over the whole forest. Now for each feature f , we permute values
of this feature from the whole data set (replace it with a randomly generated
value in the same range). Then we re-calculate and average the out-of-bag
error. The importance of each feature is the difference in the total out-of-
bag error before and after permutation normalised by standard deviation of
these differences. The features that result in larger differences are ranked as
the most important features. This method has a few drawbacks, for instance
this method is biased to give higher importance to categorical variables that
have many different levels in comparison with features with fewer levels. A
way to overcome this problem is to use methods like growing unbiased trees
[30] or partial permutations [1].

2.3 Handling missing values

Missing data is a well known problem that if not handled correctly, can
significantly affect the accuracy of any statistical inference performed on a
dataset. This problem might be caused by human factors during the data
acquisition stage. For instance patients that drop out of the study before
the data acquisition is complete. Or it can be a natural possible state for
the target variable. For instance the age of the spouses of patients in case of
single patients. To decide how to handle missing data, it is helpful to first
learn about the usual assumptions about missing data. The missing value
scenarios can be divided into four general types or classes:

• Missing completely at random. A variable is missing completely
at random if the probability of a data point being missing is the same
for all samples. For example, if the decision that each patient should
or should not undergo a specific clinical exam is taken by generating
a random number or rolling a dice. If data is missing completely at
random, then throwing out cases with missing data does not bias the
statistical inference.

• Missing at random. Most of the time data points are not missing
completely at random. For instance, the probability that a patient is
required to undergo additional examinations might be taken based on
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his preliminary clinical test results. As a general assumption in this
scenario, it is assumed that the probability that a variable is missing
depends only on the available information. Thus, if preliminary data
for a patient consists of age, sex and race, then it is assumed that
the probability that each patient will undergo more examinations is
solely dependant on these fully available parameters. In this case it
is reasonable to assume a model for this process. One example is
assumption of a logistic regression model, where the outcome variable
equals 1 for observed cases and 0 for missing. In this scenario, any
data point can be removed from the study as long as it does not affect
the assumed model for probability of the data-point being missing.

• Missing that depends on missing parameters. In this scenario
not only the data is not missing at random, the probability that each
data point is missing depends on the variables that are also missing.
For instance, an example of this scenario is when the probability that a
cancer patient is sent for an MRI scan is dependent on ultrasound pre-
screening results that are not available at the analysis time. Another
familiar example from medical studies is that if a particular experiment
causes discomfort, a patient is more likely to drop out of the study.
These data points are not missing at random (unless discomfort is
measured and observed for all patients). If the data points are not
missing at random, they must be explicitly modeled, otherwise adding
bias to the statistical inference will be inevitable.

• Missing that depends on the missing value itself. This sce-
nario makes handling missing values difficult not only because the data
points are not missing at random, but also because the probability of
missing a data point depends on the data point that might be missing.
For instance in case of heart disease patients, if the blood pressure of
the patients is saved only if it is outside of the normal range, we are
dealing with missing values that are also determining the probability
of them being missing. Another example is the case of censoring of
data. For example in case of financial surveys, people with very high
earnings may be less likely to report their actual salary. In the ex-
treme case (for instance, if all participants earning more than $100k a
year refuse to report their earning) a large part of the dataset will be
missing and the probability of lack of the income variable depends on
the income itself.
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It is correct that when data is not missing at random specially when
it depends on the missing values themselves, it is hard to compensate for
the bias introduced into the inference algorithm. However, this bias can be
mitigated by using the available variables. For instance, available features
like age or sex or preliminary clinical data can be used in order to guess
whether a patient’s blood pressure would be out of the standard range and
if it is higher than average or lower. Or in case of financial surveys, it can
be assumed that if a person has higher education and is above a certain age
he or she will have higher income. We then can use that information to
compensate for relative bias in inference. These methods can not yield in a
good estimation of the missing values but can certainly help in achieving a
better model of the blanks in data.

It should be mentioned that it is in general impossible to prove whether
data is missing at random or not. If it is, the process will be simple because
we can model the probability of data being missing based on the available
features, if the data is not missing at random we try to add as many related
parameters as possible to the model so the missing at random assumption
becomes reasonable. For instance, it is correct that the probability of missing
the blood pressure is dependant on itself, but because the blood pressure
and heart rate are indirectly related, adding the heart rate to the model can
help in modeling the probability of missing of the blood pressure values.

This approach helps in reducing the bias caused by removal of the data
points from a study. The next step will be to fill-in the missing data points
or removing them in a way that has the least negative effect on the final
classifier used on the final completed dataset. This approach is the basis
of the imputation methods introduced in literature. We first investigate
the general imputation methods that do not assume any specific model in
data other than the missing at random assumption. We also introduce the
regression based methods that treat each missing variable as a regression
target, for instance for linear regression. These methods can model complex
relationships in data but are still independent of the final classifier used on
the imputed data so might not yield in the best classification performance.
We also investigate imputation methods that are proposed specifically for
our target classifiers: decision trees and forests.

2.3.1 Data removal methods

The simplest and maybe most common approach in dealing with missing
data is simply ignoring the part of data that is missing one or more of the
features. This can be done in two general ways, removing columns (features)
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or rows (samples) from the data matrix.

Sample removal

This approach is most useful in cases when the number of samples with one
or more missing values is small or a set of samples are missing a large set of
features. This method may decrease the accuracy of the final classification
because it reduces the total sample size but lets us train a more complex
model because it preserves all of the features.

Feature removal

In contrast to the sample removal approach, the feature removal approach is
usually selected when almost all of the samples are missing a set of specific
features. This method decreases the accuracy of the final classifier by re-
moving some of the potentially useful features but it is the simplest method
that can preserve the sample size of the dataset.

2.3.2 General imputation methods

Zero

A simple approach to the imputation problem is to just replace all the
missing values with a constant value: Zero. This approach originates from
the natural assumption that in the absence of input signal in a sensor, the
recorded value should be zero. This method sometimes significantly out-
performs the data removal methods because it preserves both samples and
features but obviously it introduces a bias towards smaller values.

Random guess

Another approach is replacing the missing values with a random guess in the
acceptable range of the missing value. This approach matches a scenario in
which a data acquisition system yields in white noise in the absence of input
signal. This method also makes use of all data by filling in the missing
values. Therefore, it may perform significantly better than data removal
methods. As an advantage of this method, it guarantees that no unwanted
correlation will be added between different features. In other words, the
features that are statistically independent will stay statistically independent
after the imputation. This is a necessity that the constant value replacement
methods usually do not guarantee.
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Replacement with mean

Another well known method that is frequently used for handling missing data
in large datasets is replacement by the mean value. This approach originates
from the statement that without any other knowledge, the average of the
feature over the whole population is the best estimation of the real value and
yields in the smallest average error. Assuming that the sampling population
is balanced and the final classifier uses the deviation from mean as an error
measure (which is the common scenario in regression models), this method is
the simplest method that can introduce a minimum bias into the dataset. In
case of a normalised dataset with mean value of 0 and standard deviation of
one which is the usual scenario in many data analysis problems, this method
is the same as the zero imputation method.

Replacement with median

For very large datasets, this method performs the same as the mean re-
placement method. However, in smaller datasets it results in a more robust
solution which is less dependent on the outliers.

KNN imputation

The mean and median replacement methods might result in a reasonable
estimation of the expected value for missing values over the whole popula-
tion but do not necessarily give the best local estimation. The K-Nearest-
Neighbors (KNN) method is based on replacement of missing values locally
with mean or median of the neighbor data points selected via a distance
function. Although KNN method seems like a very simple and naive ap-
proach, it has some advantages comparing to some advanced imputation
methods. For instance, it can predict both discrete attributes (the most fre-
quent value among the k nearest neighbours) and continuous attributes (the
mean among the k nearest neighbours), so there is no necessity for creating
a predictive model for each attribute that has missing data. But as a major
drawback, it has to compute distance to all the samples in the dataset for
each sample that needs to be imputed. In large datasets this becomes a
major issue. Even with this drawback, the KNN method is used in many
medical data analysis studies (for instance [3] and [21]) and many general
data analysis applications as a simple and robust imputation method.
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Regression based imputation methods

Another approach to the missing value problem which is specifically useful
when the missing values are distributed only between a small set of features
is using regression for imputation. These methods try to predict missing
values of each feature using the other available features. These methods
also make use of all the samples and all the features in order to model
and predict missing values in each feature so they may be more effective
than methods which only use local data for estimation of each missing value
(like KNN). However, assuming a wrong model between features may have
unexpected effects on the final classification. For instance, using a linear
model for regression may introduce correlations between different features
that did not previously exist in the data. The regression methods also can
not guarantee the same error rate for all the predictions because missing
values in each feature are predicted using a potentially very different set of
samples depending on the distribution of missing values among features and
samples. Although these weaknesses limit the power of regression methods
in many applications, these methods are among the most popular methods
used in literature especially in medical applications (for instance [8], [34],
[2]).

2.4 State of the art tree-based imputation
methods

The imputation methods explained in the previous section can be used with
any type of classifier including decision trees or random forests. But it should
be noted that the aim of imputation is not finding the best estimation of
the missing values. It is finding a set of values that cause the minimum
reduction in the accuracy of the final classifier. With this goal in mind, the
imputation methods that are designed to work with a specific classifier, in
our case the tree-based classifiers, are the best choice. The three most well
known methods for this purpose are introduced in this section.

2.4.1 CART embedded imputation method: surrogate
divisions

The missing data problem in CART algorithm can be divided into two
smaller problems. First, finding the optimum division points and second,
assigning samples to child nodes at each division. Let us re-examine the
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information gain equation used for finding the optimum division point:

∆I = I(t)− p(tL)I(tL)− p(tR)I(tR) (2.18)

In which I is the impurity function and P is the probability that a sample in
the parent node belongs to the corresponding child node. Considering that
I(t) is calculated on the parent node, the missing features do not have any
effect on this term of the equation above. However, the left and right child
node impurities and the probability that a sample belongs to these nodes
is affected by the missing features. In the CART algorithm for every given
feature, tested for the impurity gain, these values are calculated using the
samples that are not missing that particular feature.

Given that the division points are calculated using the explained method,
the problem of assigning samples with missing features to each child node
remains unsolved. The method used in the CART algorithm for this purpose
is “surrogate divisions”. This method proposes that for each optimal division
which is found using the method explained above, we find a “surrogate”
division that uses one of the other features to split the data in a similar
way as the original optimal division. In other words, given a known division
of the complete samples in the parent node, lets grow a tree of length one
that can split the samples into the same child nodes using a different feature.
Suppose there are n predictors (x1, x2 . . . xn) included in the CART analysis,
lets assume that there are missing values only for one of the features. In
this case, x1 which happens to be the best predictor chosen to define the
optimal split. The split necessarily defines two categories for x1. This x1

feature now actually becomes a binary response variable that splits the data
into two classes, left and right nodes. Then a tree of depth one (a single
split) is grown that uses x2 . . . xn as potential splitting variables and x1 as
the response variable. The next step is to rank the n− 1 possible predictors
by the proportion of cases that are inevitably misclassified. The surrogate
splits that do no better than the marginal distribution of the missing feature
are ignored and removed from the list of surrogate divisions. The best split
based on this ranking is then used to divide the samples with missing values
into the child nodes. In other words, the class predicted by the surrogate
split is then used in order to split the data similar to the original division
when x1 is not available. If a sample is missing the optimum division feature
(x1 in this example) we then use the best surrogate division instead. If the
best surrogate division is also missing, we use the second best and so on. If
none of the features are available, the sample is assigned to the child node
that the majority of samples have been directed to. In the implementation
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of the CART algorithm in R language (rpart package [33]) there are three
ways to deal with missing data:

• Display only. Samples with missing values are completely ignored and
are not passed to deeper nodes in the tree.

• Use surrogates. Split subjects with missing values according to the
surrogate divisions, if all of the surrogates are missing, ignore the
observation.

• The same as the second option, but if all surrogates are missing, assign
the samples with missing value to the child node with the majority of
complete samples.

In practice when a small portion of data is missing completely at random
(MCAR) or missing at random (MAR), this method provides a robust and
effective solution. However, if a large portion of the data is missing, con-
secutive surrogate divisions will be very likely to completely mis-guide the
decision tree. Another issue that is very common in scenarios with very
small sample size is skewed data. As mentioned in [17] this problem can be
made worse by this imputation method. These weaknesses motivate us to
examine other methods for imputation of the missing values, for instance
the embedded method of C5.0 decision trees.

2.4.2 C5.0 embedded imputation method

C5.0 is the new version of the C4.5 algorithm which is one of the most
well-known decision tree growth methods used today. Besides the basic
differences between a C5.0 decision tree and a CART decision tree, the two
algorithms basically use the same criteria for finding the optimum division
points. However, unlike the CART algorithm that simply ignores the missing
values in calculation of the information gain in equation 2.18, the C5.0
method uses a modified version of the information gain equation as it can
be seen bellow.

∆I =
N −N0

N
∆I(t− t0). (2.19)

In which N is the total sample size, N0 is the number of samples that
are missing the feature tested by the C5.0 algorithm and ∆I(t − t0) is the
impurity decrease assuming that only the samples that possess the respective
feature are present. In simple words, the C5.0 algorithm calculates the
impurity decease in the same fashion as the CART algorithm does, but
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it assigns a smaller weight to the attributes that are missing from a large
portion of data. As the second difference to the CART algorithm, C5.0 does
not use surrogate variables in order to assign samples with missing values
in parent node to the corresponding child nodes. Instead, the samples are
fragmented into fractional cases and then assigned to the corresponding child
nodes. For instance, if child node i has Ni samples, the missing samples in
child node i will have weights equal to Ni/(N−N0). These weights will then
be used in order to weight the class probabilities in the leaves and calculate
the probability of each class at each leaf.

The method used to handle missing data during the training phase of the
C5.0 algorithm is straightforward. However, handling the missing values in
the testing phase is a different story. Let P be the classification result of the
test case Y using a C5.0 tree named T . There are three possible scenarios:

• If T is leaf (a tree of depth 0), P is found by the relative frequency of
training cases that belong to the leaf.

• If T is a tree of depth one or more and all the features used as division
points in T are available for Y , P is found by the relative frequency
of training cases that belong to the same leaf as Y .

• Otherwise, all the possible outcomes of the decision tree (all the leaves
that Y might belong to) are are explored and combined probabilisti-
cally, giving:

P =
k∑

i=1

Ni

N −N0
Pi, (2.20)

in which Pi is the probability of each class given that Y belongs to
leaf i. N is the total training set sample size, Ni is the number of
corresponding training samples at leaf i, N0 is the number of training
samples at leaf i with missing value (each N might be fractional).

When the probability P for each class of the outcome is calculated, the
class with the largest probability is chosen as the classification result. The
C5.0 algorithm has a more sophisticated approach for dealing with missing
data problem. Nonetheless the approach is designed for a single decision
tree. In comparison to a random forest, decision trees are very prone to
over-fitting. In the next section, we investigate the embedded imputation
method for random forests, rfImpute.
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2.4.3 Decision forest embedded imputation method:
rfImpute

There are two main methods for dealing with missing values embedded in
the implementation of random forests by Breiman, et al. [4]. First is the
rough-fix method. This method is a simple and naive approach which uses a
technique similar to the median imputation explained in previous section to
estimate the missing values for continuous variables and assigns the majority
class for the categorical variables.

The state of the art embedded imputation method for random forests
is rfImpute. This method starts with the rough-fix method as an initial
estimation of the missing values, grows a random forest based on the imputed
dataset, calculates the proximity matrix based on the resulting forest and
then updates the missing values relative to the proximity matrix. This
process is repeated for the new imputed values for a few iterations. In
order to explain this method in more detail, let’s first see how the proximity
matrix is formed. The proximity matrix is an intrinsic measure of similarity
between samples in a forest based on the number of times that two samples
land in the same leaf in each tree of the forest. The values in the proximity
matrix are calculated as follows:

Given that all the samples are run down each tree of the forest, for each
tree in the forest add 1 to the proximity measure between i and j if they
both land in the same leaf. Then divide the whole matrix by the number
of the trees in the forest and set the main diagonal of the matrix to 1.
This matrix is embedded within the random forest growth algorithm and as
Breiman, et al., mentioned in [4], the values 1− prox(i, j) can be interpreted
as squared distances in an Euclidean space of high dimension. Each row of
this proximity matrix is then used in order to calculate an estimate of each
missing value based on weighted average of the corresponding feature in
other samples. For the categorical features, each class is weighted relative to
the proximity measures and the most probable class is chosen. This process
is usually repeated for 5 to 6 iterations. Although the method explained
is iterative and therefore slow, it has proven to be an effective imputation
method designed specifically for random forests.

2.5 Summary

In this section we provided a detailed review of the most common tree growth
algorithms, an overview of different types of missing data, and some general
purpose imputation methods. Then we focused on the imputation methods
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designed specifically for tree-based classifiers like decision trees and random
forests.

In the work presented in this thesis, we select the state of the art imputa-
tion method embedded in decision forests (rfImpute) as a natural choice for
a baseline imputation method. In the multimodal test scenario of prostate
cancer we compare the proposed method with two data-discarding methods
in which we simply drop one or the other dataset (the single modal forest and
the multimodal forest), two forest-based imputation methods (C5.0 forest
and rfImpute) and two other general purpose imputation methods, namely
replacing the missing values with zero, and replacing with the weighted av-
erage value of the K nearest neighbors (KNN) [3].
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Chapter 3

Scandent tree: a forest based
method for multimodal
classification

3.1 Introduction

Missing data is a well known problem in data analysis and machine learning,
however missing data handling in a multimodal study is more challenging
because it might not hold some of the basic assumptions in usual missing
data scenarios. For instance, the usual assumption in missing value handling
is that only a subset of features are randomly missing from a subset of
samples (typically 10% to 30% of data). However, in multimodal scenarios
it is common that a large set of samples is missing a large set of features,
often belonging to the same modality.

Incomplete multimodal datasets are common in biomedical experiments,
where a usual scenario is to examine new protocols or new modalities and
the relationship between them. For instance, joint analysis of medical imag-
ing modalities and genetic biomarkers is an attractive subject for biomed-
ical research. However, since clinical analysis of both imaging and genetic
biomarkers is not common, it is hard for biomedical researchers to build
large datasets of this type in a time and cost effective manner. This makes
dealing with very valuable but very small datasets a common scenario.

On the other hand, some of the modalities used in a multimodal study
might be part of the standard clinical procedures separately. For instance,
although it is impractical and expensive to do MRI and genetics analysis on
each and every patient that visits a clinic, the MRI data of a large number
of patients is easily accessible from medical imaging archives of hospitals. So
the missing value problem in multimodal scenarios can usually be formulated
as merging a small valuable multimodal dataset with a large but single modal
dataset for enhancement of a multimodal data analysis task.

In this chapter we intend to introduce a new method named “scandent
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trees” that is based on decision forests and is specifically designed for this
task. In this chapter first we explain the concept and implementation of the
proposed method in detail then evaluate the proposed method in different
sample sizes and feature set sizes by simulation of an incomplete multimodal
scenario using publicly available datasets. Finally, we examine the proposed
method on a real incomplete multimodal dataset, a joint analysis of MRI
and genetics features for prostate cancer detection.

3.2 Method

3.2.1 Mathematical formulation

Let us assume that the training data consists of at least one single modal
dataset defined as S = (s1, . . . , sNs) (in which each si is a single modal
sample) and at least one multimodal dataset defined as M = (m1, . . . ,mNm)
(in which each mi is a multimodal sample). These two datasets are described
respectively by the single modal feature set Fs and the multimodal feature
set Fm, where Fs ⊂ Fm. We do not set conditions on the feature or sample
sizes but in practical scenarios, usually the multimodal dataset has fewer
samples (Nm < Ns). Also the single modal set is missing some of the more
discriminative features. In this section we aim to train a classifier using both
S and M that can predict the outcome class C, for any test data described
by Fm. In other words, we want to make use of a single-modal dataset for
optimisation of a multimodal decision forest.

3.2.2 Intuition

Assuming the decision tree model for a classification task, two main sources
of error can be imagined. First is the error caused by in-efficient partitioning
of the sample space by the decision tree. And second, the error in estimation
of the outcome class probabilities at each leaf. As an advantage of having all
the important features, decision trees formed by the multimodal dataset are
expected to partition the feature space very effectively. However, because of
the low multimodal sample size, the estimation of the outcome probability
at each leaf may not be accurate. The proposed method tries to reduce the
prediction error at each leaf of the multimodal tree by using single modal
samples that are likely to belong to the same leaf.

In order to find these single modal samples, a feature space partitioning
algorithm is needed that can simulate the feature space division of the target
multimodal tree on the single modal dataset. The proposed method is to
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grow single modal trees (trees that only need the available feature set) that
mimic the feature space division structure of the multimodal decision tree
(a tree that needs all of the features for classification). Although it can not
be guaranteed that such tree exists, we try to provide an estimation of the
division boundaries of a multimodal tree by breaking it into smaller sub-
trees and trying to estimate simple division boundaries of these trees using
the set of available features.

This technique is expected to be more effective than the imputation
methods because it eliminates the need to know the exact value of each
missing feature and only relies on predicting the feature-space partition that
each sample belongs to. This can be a much easier task.

By using such a technique we expect that we can use high-level rela-
tionships between modalities in order to merge datasets. For instance, we
know that in usual scenarios the values of two different modalities like MRI
and PET might not be predictable by each other. However, assuming that
they are not statistically independent, the local trees might be able to avoid
prediction of the exact values and instead translate the knowledge of the
missing modality in form of given that a patient belongs to a partition of
the PET feature space, what is the probability that the patient belongs to
a partition in MRI feature space?. For instance, if a patient is similar to
another patient in PET space, is it likely that these patients are also similar
in MRI space ?. We are trying to show that sometimes, the answer to this
question is enough for a more accurate classification and we wont need to
predict exact values of a modality by the other one.

Growing a tree that follows the structure of another tree from the root
to the top brings analogy to the behaviour of “scandent”trees in nature that
climb a stronger “support” tree. Considering this analogy, the proposed
method can be divided into three basic steps: First, division of the sample
space by a multimodal decision tree, called “the support tree”. Second,
forming the single modal trees that mimic the structure of the support tree,
called “the scandent trees”. And third, leaf level inference of outcome label
C, using the multimodal samples in each leaf and the single modal samples
that are most likely to belong to the selected leaf.

3.2.3 Support tree

The first step in the proposed method is growing a decision tree to predict
the outcome class based on the multimodal dataset. This tree can be one
of the trees in a decision forest or an individual tree grown using any of the
well known methods, such as C4.5 [28] and CART [33]. The method used
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in this paper for growth of the support tree is based on the implementation
of CART algorithm in the package “rpart” in R language [32].

Assuming that the tree is grown and optimized using the multi-modal
dataset M , there are two steps that might be the source of classification
error in the tree: Division of sample space at inner branches, and majority
voting at the leaves. The sample space division requires sufficient sample
size at each division point which becomes an issue as the tree gets deeper.
However, ensembling within the forest paradigm compensates for occasional
incorrect divisions at inner branches, leaving majority voting at the leaves
as the critical step to get a precise estimation of probability of the class
label. This error can be compensated for by the scandent trees.

3.2.4 Scandent trees

The second step is to form the scandent trees which enable the assignment
of single modal samples to the leaves of the support tree. The process of
feature space division in the support tree can be considered as grouping the
multimodal data set M to different multimodal subsets. Let us define the
subset of the samples of M in the ith node as Mi and the feature used for
sample space division at node i as fi. For any arbitrary choice of node j, and
it’s immediate parent node i, we define node j as a ’link node’ if fi belongs
to a different feature set from fj , or if node j is either the root node or a
leaf. In other words, node j is a link node if and only if :

Node j is the root node,
or

Node j is a leaf node,
or

fj ∈ Fs and fi /∈ Fs

or
fj /∈ Fs and fi ∈ Fs

Intuitively, the link nodes are the nodes that mark the roots and leaves of
the largest sub-tree that uses only one modality for feature space partition-
ing. For each division node i in the set of the link nodes of the support tree,
there exists a set of nearest child link nodes and child leaves j1, j2, . . . jki. We
define Ti as an optimum tree that can divide the set of multimodal samples
at node i (Mi) to the set of multimodal samples at each child node (Mj)
using the feature set Fs. The pseudo-code for forming a scandent tree is as
follows:
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For each link node i in the support tree,
{

For each sample n in Mi and each node j in set of
nearest child link nodes and child leaves of node i
{

if n ∈Mj ,

C
′
i,n = j

}
Grow Ti, as optimum tree that for each sample n in Mi,

predicts C
′
i,n using only Fs.

}

The above algorithm forms local trees Ti for each node i that divide Mi

to the child subsets Mj , using only the single modal features Fs. Here C
′

is a new categorical label-set defined for the corresponding local tree. For
each sample in the parent node, the C

′
is assigned in a way that the samples

belonging to a specific child node j are mapped to the same category within
C

′
.
For each node i, if fi ∈ Fs, then Ti is expected to divide Mi to the

child subsets (Mj) with perfect accuracy. But if fi /∈ Fs, then Ti will be
optimized to form the smallest tree that can divide the sample space in a
similar manner to the support tree. Using Ti’s for feature space division at
each node, we can form a new tree that consists of the same link nodes as
the support tree but only uses features of a single modal (Fs) for sample
space division, we name this single modal tree, a scandent tree. Since Ti’s
are single modal trees, they can be used to predict the probability that each
single modal sample s belongs to link node j, calculated by:

p(s ∈ Nodej) = p(s ∈ Nodej |s ∈ Nodei)p(s ∈ Nodei)

in which Nodei is the parent link node of Nodej , the term p(s ∈ Nodej |s ∈
Nodei) is estimated by the corresponding sub-tree Ti and p(s ∈ Nodei) is
calculated by recursion.

This method is expected to be generally more accurate than direct esti-
mation of the leaves by other single modal classifiers. Because the scandent
tree only has to predict the division boundaries for features that do not
belong in Fs and other divisions will be perfectly accurate.

Given the small multimodal sample size, the local trees could be prone
to over-fitting if only the few samples in the corresponding link nodes are
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used for training Ti’s. We overcome this problem by using all of the available
multimodal samples (M) for training of each local tree by running the whole
multimodal training set through the corresponding sub-tree of the support
tree. This will give each sample in the multimodal dataset a label from the
set C

′
. This method adds more multimodal samples to the parent link node

(Mi) and each child link node (Mj). This results in better estimation of Ti.
We found that using this trick adds to the robustness of the scandent tree
method. Figure 3.1 shows a simple diagram of the proposed method.

Figure 3.1: Diagram of the proposed method for growing the scandent trees

3.2.5 Leaf level inference

The standard method for leaf level inference is majority voting. However,
if there are a large number of single modal samples misplaced by the scan-
dent tree, they might flood the original multimodal samples. The proposed
method is weighted majority voting by non-uniform re-sampling from each
leaf i and then calculating the probability of outcome C using the resampled
data. We define the re-sampling probability of each sample x in leaf i as:

p(x)re−sample,i =



1/N, x ∈Mi

p(x ∈ Leaf i)/N, x /∈Mi &
p(x ∈ Leaf i) > q

0, x /∈Mi &
p(x ∈ Leaf i) < q

In which q is the selected minimum threshold for the probability that
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a single modal sample belongs to the selected leaf i, and N is the total
number of samples in leaf i (single modal and multimodal). As q value
increases, the probability that a misplaced sample is used in the leaf level
inference is reduced. This may increase the accuracy of the majority voting
but increasing q will also reduce the number of single modal samples at each
leaf resulting in low precision of the probability estimation. This trade-off is
more evident at the two ends of the spectrum, for q = 1 the tree will be the
same as the support tree which suffers from low sample size at the leaves.
For q = 0 all the single modal samples will be used for inference at each leaf.

The optimization of the q parameter for each leaf is essential for optimal
performance of the resulting tree. This can be done by cross validation
over the multimodal dataset, using out of the bag samples in case of a
decision forest. Using non-uniform re-sampling instead of majority voting
ensures that the single modal samples at the leaves are randomized. This
randomization is critical because the single modal samples are not randomly
selected in the scandent tree growth algorithm and without re-sampling,
there is a possibility that many of the scandent trees in the resulting forest
are not independent. This would violate one of the basic requirements of
tree ensembling in a decision forest.

Although the proposed algorithm is explained only for one single modal
dataset, the same method can be applied on different single modal datasets
using the same support tree. As a result, the proposed framework can be
used flexibly when different subsets of features are missing.

3.2.6 Implementation

For building the support trees, we randomly bagged two-third of the mul-
timodal samples and randomly selected the square root of the dimension
of the multimodal feature set as the feature bag. This bootstrapping and
bagging phase is done separately for each of the outcome classes to ensure
balanced class labels. Then the scandent trees are formed and for each leaf
of each support tree in the forest the q parameter is optimised using the
corresponding out of the bag samples.

After growing and optimizing each of the trees, the probability of out-
come class C is calculated by averaging the corresponding probabilities of all
trees in the forest. We use the R package “rpart” [32] both for growing each
support tree and each of the local single modal trees (Ti’s). This package
uses internal cross validation to form the optimal tree. But for the purpose
of controlling the bias-variance of the resulting forest, the depth of support
tree is limited by controlling the minimum of samples needed for each divi-
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sion. The depth of Ti’s in each scandent tree is optimized by internal cross
validation.

3.3 Evaluation

We simulate the missing data scenario using three publicly available datasets.
First is a dermatology dataset which is multimodal in nature, therefore we
only need to simulate the size of the single modal and multimodal datasets.
Second is a heart disease dataset which is formed by subsets that are par-
tially overlapping in terms of features. However, it does not match the
definition of a multimodal dataset in the sense that the missing features do
not belong to separate modalities. For this dataset we simulate modalities
by intentional feature removal from one of the subsets. The third dataset is
a breast cancer dataset which is neither multimodal nor multi-source, so we
should simulate both the modalities and the single modal and multimodal
sub-sets by random sampling and feature removal. A brief description of
each dataset and evaluation method is presented below.

3.3.1 Evaluation using benchmark datasets

Dermatology dataset

In order to test the performance of the proposed method for different sam-
ple sizes we simulate an incomplete multimodal dataset by discarding a set
of features from a complete multimodal dataset. Because the dermatology
dataset is a complete multimodal dataset, we have the opportunity to sim-
ulate the target incomplete multimodal scenario by intentionally removing
one of the modalities from a set of randomly selected samples.

This set is a natural example of a multimodal dataset publicly available
through the University of California Irvine (UCI) database [23]. This dataset
consists of two distinct feature sets, an easily accessible feature set obtained
during clinic visit of each patient (for instance, age of each patient) and
a harder to access feature set that is acquired by further histopathological
tests in a laboratory (eg. Melanin incontinence observed in skin samples).
The total sample size of this dataset is 357, the clinical feature set size is 12,
while the size of the histopathological feature set obtained in the laboratory
is 22. The outcome class is the diagnosis of one of six dermatology diseases.

For this simulation we examine the classification task of one disease class
(Seborrheic Dermatitis) vs other classes. We examine the performance of the
proposed method for different multimodal sample sizes by assuming that the
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histopathological features are missing from a subset of samples. We change
the size of the multimodal sub-set (the set with no missing features) and
report Area Under Curve (AUC) as a function of the multimodal sample
size in comparison to the state of the art imputation method for random
forests (rfImpute). A list of clinical and histopathological features used in
this study is shown in the Table 3.1. The outcome class is selected from
the dermatology diseases shown in the same table.

Table 3.1: List of features and the outcome classes, dermatology dataset

Histopathological features clinical features dermatology diseases

Melanin incontinence Erythema Psoriasis

Eosinophils in the infiltrate Scaling Seboreic dermatitis

PNL infiltrate Definite borders Lichen planus

Fibrosis of the papillary dermis Itching Pityriasis rosea

Exocytosis Koebner phenomenon Cronic dermatitis

Acanthosis Polygonal papules Pityriasis rubra pilaris

Hyperkeratosis Follicular papules

Parakeratosis Oral mucosal involvement

Clubbing of the rete ridges Knee and elbow involvement

Elongation of the rete ridges Scalp involvement

Thinning of the suprapapillary epidermis Family history

Spongiform pustule Age

Munro microabcess

Focal hypergranulosis

Disappearance of the granular layer

Vacuolisation and damage of basal layer

Spongiosis

Saw-tooth appearance of retes

Follicular horn plug

Perifollicular parakeratosis

Inflammatory monoluclear inflitrate

Band-like infiltrate

Heart disease dataset

This set consists of data from two different studies reported in [11]. This
dataset is a natural example of a complete dataset accompanied by a similar
large dataset with non-random missing features. One set (data from the
Hungarian Institute of Cardiology) is missing two out of 14 features. We
use this as the single modal dataset in our experiments while the complete
set (the Cleveland dataset) is used as the multimodal dataset. In real world
problems, such as our prostate cancer study, the single modal dataset is
missing some of the most discriminative features. To simulate this condition
we used a classical random forest feature ranking approach. Moreover we
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study the effect of decreasing the number of features in the single modal
dataset on the overall performance by sweeping from 12 to two features,
always removing the most discriminative ones. The multimodal dataset
in this experiment (the Cleveland dataset) consists of 303 samples. 100
samples were randomly separated and used as the test data. The remaining
samples were used as the multimodal data for training the support trees.
We experimented with scenarios that included 10% to 90% of this data in
training of the support trees. More information about the features used in
this experiment can be found in Table 3.2

Table 3.2: The feature set of the heart disease dataset
Features/Variables Explanation

age Age in years

sex sex (1 = male; 0 = female)
cp chest pain type:

Value 1: typical angina

Value 2: atypical angina
Value 3: non-anginal pain

Value 4: asymptomatic
trestbps resting blood pressure (in mm Hg on admission to the hospital)

chol serum cholestoral in mg/dl

fbs fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
restecg resting electrocardiographic results:

Value 0: normal

Value 1: having ST-T wave abnormality
Value 2: showing left ventricular hypertrophy by Estes’ criteria

thalach maximum heart rate achieved

exang exercise induced angina (1 = yes; 0 = no)
oldpeak ST depression induced by exercise relative to rest

slope the slope of the peak exercise ST segment
Value 1: upsloping

Value 2: flat
Value 3: downsloping

ca Number of major vessels (0-3) colored by flourocsopy

thal 3 = normal; 6 = fixed defect; 7 = reversible defect

outcome class Diagnosis of heart disease (Angiographic disease status)
Value 0: < 50% diameter narrowing

Value 1: > 50% diameter narrowing

Breast cancer dataset

This is a complete set with 569 samples [37]. This dataset consists of 30
features describing the nucleus properties of a breast cancer cell. The sce-
nario of multimodal and single modal datasets was simulated with sampling.
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We change the size of the single modal feature set and report the AUC as
a function of the number of single modal features. In a fashion similar to
the heart disease experiment, we simulate the feature quality disadvantage
of the single modal dataset by removing the top ranked features of this
dataset. More information about this feature set can be found in Table 3.3

Table 3.3: The feature set of the breast cancer dataset
Features/variables Explanation

radius Mean of distances from center to points on the perimeter

texture Standard deviation of gray-scale values
perimeter

area
smoothness Local variation in radius lengths
compactness perimeter2/area - 1

concavity Severity of concave portions of the contour

concave points Number of concave portions of the contour
symmetry

fractal dimension “coastline approximation” - 1

outcome class Cancer diagnosis:
B:Benign

M:Malignant

3.3.2 A real scenario: prostate cancer dataset

This set consists of a small genomics+MRI prostate cancer dataset (Nm =
27) accompanied by a relatively large MRI only dataset (Ns = 428). The
single modal dataset consists of five multi-parametric MRI features from
dynamic contrast enhanced (DCE) MRI and diffusion MRI on a 3 Tesla
scanner. We used the apparent diffusion coefficient (ADC) and fractional
anisotropy (FA) from diffusion MRI, and three pharmacokinetic parameters
from DCE MRI: volume transfer constant, ktrans, fractional volume of ex-
travascular extracellular space, ve, and fractional plasma volume vp [16, 25].

This data is from patients undergoing radical prostatectomy at Vancou-
ver General Hospital and has been collected with informed consent, and
with the approval of the Research Ethics Board of the Vancouver General
Hospital. Imaging is performed a week before the surgery. After the surgery,
the prostate specimens were processed with wholemount cuts that matched
the slices in the MRI scans. A cutting device and the procedure described in
[13] ensured that the cuts matched the MRI slices. An experienced patholo-
gist outlined the area of the tumor/normal from wholemount histopathology
slides ([16, 25]).
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The histopathology slide of each patient was then registered to a T2-
weighted image and corresponding DTI and DCE-MRI slices ([16, 24, 25]).
This registration lets us find the Region Of Interest (ROI) in the DTI and
DCE MRI slices that co-respond to the tumor(please see Figure 3.2). We
took the average of the quantitative MRI features (apparent diffusion coeffi-
cient, ADC, fractional anisotropy, FA, volume transfer constant, ktrans, frac-
tional volume of extravascular extracellular space, ve, and fractional plasma
volume, vp) as the MRI features for each ROI.

Figure 3.2: Registration example: (a) T2-weighted , (b) DTI and (c) DCE-
MRI slice. The green contour represents the boundaries of the prostate
gland. The red contour represents the mapped tumor ROI([16, 25]).

The tissue samples were then obtained by needle biopsy from the corre-
sponding formalin-fixed paraffin-embedded (FFPE) tissue blocks and RNA
was extracted and purified from these samples. The expression level of
39 genes that form the most recent consensus on the genetic signature of
prostate cancer for patients with European ancestry as reported and main-
tained by National Institute of Health [26] were used as features (please see
Table 3.4). Each of the selected genes were mapped to the closest probe
location on an Affimetrix Exon micro-array and the gene expression at each
of these locations were selected as a genetic feature in our study. Figure
3.3 shows a heat-map of the gene expression data for all the patients in our
study. The dendrogram shown in this figure shows clustering of samples and
genes based on the gene expression.

We have 27 samples with gene expression data and registered imaging
data (14 normal, 13 cancer) from 21 patients. The evaluation of the proposed
method on this small dataset was carried out in a leave one out scheme. Each
time, the support trees were trained using 26 samples, with all the single
modal data samples and features used for forming the scandent trees.
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Figure 3.3: Gene expression heat-map of the probes corresponding to the
selected genes for each patient. Each row presents a sample. Each column
presents a gene expression feature. The vertical dendograms show clustering
of samples. The horizontal dendograms show clustering of features. Sample
clustering correctly clusters each patient. This shows that the gene expres-
sion profiles are mostly patient-specific. Although all of the selected genes
are known to be biomarkers of prostate cancer, neither correlations between
features nor cancer-related patterns are visible.
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Table 3.4: List of the genes used in the prostate cancer study
Probe ID Gene name Probe ID Gene name

2376037 MDM4 3947604 BIK
4008427 NUDT11 3956433 CHEK2
2436826 KCNN3 2887633 BOD1
2562343 GGCX 3968303 SHROOM2
3128411 EBF2 2920619 ARMC2
3761737 ZNF652 3286921 08-Mar
3754797 HNF1B 2934521 SLC22A3
2852766 AMACR 2852742 AMACR
2731257 AFM 2652027 CLDN11
2736322 PDLIM5 2949901 NOTCH4
3127978 NKX3-1 3043264 JAZF1
2484970 EHBP1 3349660 HTR3B
2845829 TERT 3359180 TH
3739668 VPS53 3739679 VPS53
2738146 TET2 3014159 LMTK2
2536531 FARP2 3338060 MYEOV
3839538 KLK3 3049522 TNS3
2417390 CTBP2 2469157 GRHL1
3311417 CTBP2 2636483 SIDT1
3413787 TUBA1C
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3.4. Simulation and experimental results

3.4 Simulation and experimental results

In this section we provide simulation and experimental results to verify the
performance of the method explained in the previous sections. The experi-
mental results are on a prostate cancer dataset which is an example of a real
multimodal incomplete dataset which consists of a small but multimodal
dataset with genetics and MRI and a larger single modal dataset with only
MRI. This dataset is a perfect example of our target scenario but because of
the small sample size of the multimodal dataset, it is hard to verify that the
proposed method outperforms the state of the art in imputation of random
forests.

In order to evaluate the performance of the proposed method in different
scenarios we also used three publicly available datasets. We simulated the
missing value scenario for different sample sizes of the multimodal dataset
and different feature set sizes of the single modal dataset. These datasets
are real biomedical datasets and some are even multimodal in nature (for
instance the dermatology dataset). However, we call the results on these
datasets, “simulation results” because these datasets are complete and the
missing values are intentionally removed from each dataset to simulate dif-
ferent missing value scenarios.

3.4.1 Simulation results

Dermatology dataset

Figure 3.4 shows the AUC of the proposed method and the state of the
art embedded imputation method of random forests(rfImpute) in different
multimodal sample sizes. It can be seen that the proposed method outper-
forms the rfimpute method especially in smaller samples sizes. For instance
when the sample size is as small as 51, simulations on this dataset resulted
in average AUC of 0.97 for the proposed method and AUC of 0.92 for the
rfImpute method. This is because in smaller samples sizes the imputation
method is forced to predict a large number of missing values using a very
limited set of available samples and this bias introduced by the imputation
in the training set may mis-guide the random forest classifier. The scan-
dent tree method enhances the performance of the random forest leaf by
leaf, using cross validation instead of trying to predict the missing values.
Therefore, it is expected to be less vulnerable to mis-classifications.

Because the dermatology dataset is multimodal in nature, we can not
examine the performance of the proposed method when a larger number of
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Figure 3.4: AUC vs multimodal sample size for the dermatology dataset
(each box shows variation of AUC values for different randomised training
and test sets)

features are missing. In the next section we use the heart disease dataset
for this purpose.

Heart disease dataset

Figure 3.5 shows the AUC of the proposed method and the rfImpute method
for different multimodal sample sizes. Each box in this figure shows AUC val-
ues for different single modal feature set sizes and a fixed multimodal dataset
sample size. The expected upward trend in AUC vs. multimodal sample
size is evident and it can be seen that the proposed method outperforms
the rfImpute method especially in smaller samples sizes. For example, when
only 14 multimodal samples are available, the rfImpute method results in a
mean AUC of 0.91 whereas the proposed method delivers an AUC of 0.94.
As the number of multimodal samples increases to 112, the performances
increase for rfImpute and scandent tree to 0.96 and 0.97, respectively. In
other words, the scandent tree approach has a clear advantage when the
dataset with multimodal data is significantly smaller.

Figure 3.6 shows the AUC of the proposed method and the rfImpute
method for different single modal feature set sizes. Each box shows changes
of AUC for different sample sizes at a fixed feature set in the single modal
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Figure 3.5: AUC vs multimodal sample size for heart disease dataset (each
box shows AUC values for different single modal feature sets)

data. Smaller variances of the boxes for the proposed method, especially in
smaller feature set sizes, show that the proposed method is on average less
sensitive to the multimodal sample size especially when the single modal
dataset has a large number of missing features. For example, at feature
vector size of 2 for the single modal dataset, the performance of rfImpute
varies from 0.88-0.98, whereas scandent tree shows a performance range of
0.93-0.98. This stable behavior is due to the unique ability of the scandent
trees to predict division points for missing features that only conditionally
depend on the available features.

Breast cancer dataset

Figure 3.7 shows the AUC for the proposed method and the state of the art
imputation method of random forests as a function of multimodal sample
size. Each box in this figure shows AUC of the two methods for a fixed
multimodal sample size and different single modal feature set sizes. Smaller
variances of the boxes for the proposed method, especially in smaller sample
sizes, show that the proposed method is on average less sensitive to the single
modal featureset size. For instance, at sample size of 393 for the multimodal
dataset, the performance of rfImpute varies from 0.978-0.989, (more than
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Figure 3.6: AUC vs single modal feature set size for heart disease dataset
(each box shows AUC values for different multimodal sample sizes)
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Figure 3.7: AUC vs multimodal sample size for breast cancer dataset (each
box shows AUC values for different singlemodal feature sets)
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1%) whereas scandent tree shows a performance range of 0.986-0.988 (less
than 0.3%).
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Figure 3.8: AUC vs single modal feature set size for breast cancer dataset
(each box shows AUC values for different multimodal samples sizes)

Figure 3.8 shows the AUC of the proposed method and the rfImpute
method for different single modal feature set sizes. Each box shows changes
of AUC for different sample sizes at a fixed feature set in the single modal
data. It can be seen that the proposed method outperforms the state of the
art imputation method of random forests (rfImpute) when a large number
of features are missing from the single modal dataset. It also has similar
performance when the single modal feature set is almost complete. Smaller
variances of the boxes for the proposed method, show that the proposed
method is on average less sensitive to the multimodal sample size especially
when the single modal dataset has a large number of missing features.

3.4.2 Experimental results: prostate cancer dataset

Figure 3.9 shows the AUC obtained on this data, for detection of prostate
cancer, for several experiments, namely from left to right the bars show the
distribution of AUC areas for 1) a multimodal decision forest that simply
ignores the existence of archival imaging data, 2) our proposed scandent tree
approach to use the archival data to improve the performance of a forest
trained and testes on multimodal data, 3) the standard rfImpute method
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applied at the forest level to include the single modal data in training, 4)
the standard C5.0 method applied at trees level, 5) training and testing a
tree using only the single modal features of the multimodal set, 6) KNN
imputation, and 7) zeroing of the missing feature values.

multimodal scandent rdImpute C5.0 singlemodal knn zero
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Figure 3.9: AUC for multimodal classification task obtained with different
strategies for handling the missing data issue, prostate cancer dataset

It can be seen that the multimodal forest is performing significantly bet-
ter than the single modal forest even though the sample size of the single
modal dataset is significantly larger than the multimodal dataset. This sug-
gests that the missing modality, in this case the genetic features, is far more
discriminative than the shared modality, MRI. The imputation methods out-
perform a single modal forest, but they fail to outperform the multimodal
forest. This shows that even the state of the art imputation methods may
misguide the decision forest when a large portion of data is missing, to the
extent that a simple imputation method like zero replacement outperforms
the state of the art imputation approaches.

In order to measure the statistical significance of the difference between
AUC values of different methods we use one of the most well-known uni-
variate tests, student’s t-test. The t-test measures the difference between
two populations relative to their variances. This test is commonly used
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when the sample size is small and the variance of the two populations are
unknown. The outcome of a t-test is the p-value: the probability that the
Null hypothesis (in this case, having similar distributions for AUC values) is
true. In other words, the p-value is the probability that we observe a result
similar to what we are observing or more extreme, assuming that the two
distributions are equal. In our experiments we measure the significance of
results by comparison of the AUC values resulting from 100 random runs of
different methods.

In case of the proposed method, scandent forest, the significant advan-
tage over a single modal forest, and each of the imputation methods is
evident. Moreover, the proposed method does not introduce bias into the
prediction like the other imputation methods and as a result, it outper-
forms both the multimodal forest and the single modal forest. However, be-
cause the shared modality is significantly less discriminative than the missing
modality, the improvement in performance is small (mean AUC of 94% for
the scandent forest and 93% AUC for the multimodal forest), although it is
statistically significant (a two sample t-test resulted in p <0.01).

3.5 Summary

In this section we introduced the novel concept of scandent trees, single
modal trees that enable a conventional random forest trained on a small
multimodal dataset to leverage a single modal dataset. Also a detailed
explanation of the proposed method and implementation was presented.

We evaluated the proposed method using three publicly available datasets
by simulation of different incomplete multimodal scenarios. We also com-
pared the proposed method with the state of the art imputation methods on
prostate cancer dataset as a real incomplete multimodal dataset. Using the
dermatology and heart disease datasets we showed that the proposed method
outperforms the state of the art imputation method of random forests if the
multimodal dataset (the block of the dataset that has all of the modalities)
is very small in comparison with the whole dataset. Using the breast cancer
dataset we showed that the proposed method outperforms the state of the
art imputation method for random forests if a large number of features be
missing from the single modal dataset. Moreover, we showed that on all
of the datasets, in comparison with rfImpute, the proposed method is in
general less sensitive to multimodal sample size and single modal feature set
size.

The experimental results on the prostate cancer dataset show that the

47



3.5. Summary

proposed method significantly outperforms the well known imputation meth-
ods, even the state of the art embedded imputation methods of random
forests (rfImpute) or C5.0 trees. Because in this study the missing modality
(genetic features) are far more discriminative than imaging features, a mul-
timodal classifier which is equivalent of using the sample removal method
to handle the missing values was the best method among the conventional
imputation methods. The proposed method outperformed the multimodal
classifier. This improvement was small, but statistically significant.
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Chapter 4

Tree-based feature
transforms: applying
scandent tree model for
single modal classification

4.1 Introduction

In the previous chapter we focused on a scenario in which a small but valu-
able multimodal dataset could be merged with a large and easy to access
dataset in order to improve performance of a multimodal classifier. We
discussed that this is a common scenario in biomedical data analysis lab-
oratories or in data analysis scenarios that deal with very novel or special
multimodal datasets. However, from clinical point of view the reverse prob-
lem is more attractive: leveraging a multimodal dataset in order to enhance
a classifier trained and tested on a single modality.

One of the well-known applications of multimodal data analysis is in
grading of generative diseases like cancer or Alzheimer’s disease. Each
modality provides us with unique information about the patient and is able
to compensate for weaknesses of other modalities. However, the fact that
many modalities are very expensive or are simply not feasible to use for
every patient, limits the clinical applications of multimodal data analysis.

In case of Alzheimer’s disease, the state of the art medical imaging
modalities used are MRI and PET scan. The information provided by a
PET scan is more useful than MRI because it provide information about
cerebral blood flow, metabolism, and receptor binding but PET imaging is
expensive and requires the use of radioactive tracers. As a result, a large
number of patients only receive MRI scans. For example, in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study which is one of the largest
multimodal studies of Alzheimer’s disease worldwide, nearly half of the pa-
tients are missing the PET data. So a very valuable contribution in this
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field would be to use a multimodal dataset together with a single modal
dataset in order to train a classifier that only needs one of the modalities.
This means, training a classifier that uses MRI and PET data to train a
classifier that only needs MRI data for Alzheimer’s disease grading.

In a fashion similar to the previous chapter, we benefit from the embed-
ded way of decision forests for dealing with high dimensional data through
feature bagging [4]. Another motivation for the use of decision forest paradigm
is that it provides the ability to morph the treatment of missing data within
the framework of learning to maximize the classification performance.

In this chapter we focus on applications of tree-based feature maps in
the scandent tree model. A disadvantage of decision forests compared with
SVM is the lack of an embedded framework for kernel-based feature trans-
formation in the case of forests. Using multi-kernel approaches, researchers
have devised solutions for incorporation of various modalities in the SVM
context.

Tree-based feature transforms have recently received some attention. For
example, a recent work by Cao et al., [7] uses stacked decision forests. This
method is based on using the probability values estimated by trees in a
random forest as a feature vector, and using this feature vector for training
of an enhanced decision forest, potentially together with the original feature
set. Inspired by the applications of multi-kernel SVMs in multimodal data
analysis, we apply this concept of tree-based feature maps, for multimodal
data analysis.

In this chapter we intend to develop the idea of scandent tree-based
feature transforms to solve the problem of missing data in the single modal
testing scenario. This problem has many clinical applications in areas where
expensive research protocols meet the realities of clinical practice and high
cost. Here, the assumption of a multimodal dataset with block wise missing
values remains. However, there is no multimodal assumption about the test
set. To solve this problem, we use the idea of tree-based feature transforms
along with the scandent tree. This combination allows us to use tree-based
feature transforms built on one modality to transform the features from a
different modality. Using this approach, we use MRI and PET data in the
ADNI dataset and train a classifier that only requires the MRI data for
the prediction of different stages of Alzheimer’s disease. We show that the
inclusion of the PET data at the time of training results in an improved
classification accuracy, even though the test cases are not subjected to PET
imaging. In order to test the performance of the proposed classifier in differ-
ent scenarios, we also simulate the missing target scenario by intentionally
removing a set of features from two publicly available benchmark datasets,
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The dermatology dataset and The breast cancer dataset introduced in the
previous chapter.

4.2 Method

To obtain a forest that transfers the value of the multimodal dataset into
a single modal environment, it is tempting to simply replace all the trees
in a forest trained on the available multimodal training data with their
corresponding scandent trees. However, this approach fails due to bias and
the fact that many of the multimodal divisions of support trees might not
be predictable by the single modal feature set.

Instead, we choose an approach inspired by the use of decision trees
as feature maps. For this we start with growing a scandent forest using
the method explained in the previous chapter. However, instead of directly
using the scandent trees, we use the set of local trees (Ti’s) from all the
scandent trees of a multimodal forest as tree-based “feature-maps” or “tree-
based feature transforms”. Each Ti is a single modal tree which maps Fs to
a new space defined by the corresponding C

′
set. This means that each Ti

yields a categorical feature to describe each sample. Then we use the single
modal dataset with the extended feature set, including the original and these
tree-based features, to grow an improved single modal forest. Note that
trees trained on single modal features can be directly used as categorical
or continuous (similar to [7]) feature transformers. In the current work,
however, we use the scandent subtrees to link two inconsistent datasets.

Figure 4.1: Extracting tree-based feature transforms from the scandent tree
model

This method has a few advantages compared to the conventional method
for forming a single modal decision forest or directly using the scandent trees
as a new set of trees in a single modal decision forest. First, because at
each split of each tree in the single modal forest, the tree growth algorithm

51



4.2. Method

searches for the best division feature among both the original single modal
features and the new features generated by the local trees (Tis), the resulting
tree is expected to be more accurate than both the scandent tree and the tree
grown using only the original single modal features. Second, although the Tis
are formed by a small multimodal dataset, the feature selection criteria (Gini
impurity or information gain) is calculated based on the large single modal
dataset. In other words, the single modal forest uses the features inspired
by the multimodal forest, but it is completely randomized and optimized
based on the larger single modal dataset.

Figure 4.2: Diagram of the proposed method for training the “multimodal
feature transform” forest

4.2.1 Implementation

The first step is to grow a multimodal forest and the related scandent trees
using the method explained in the previous chapter. Then the local trees
(Tis) are extracted from each tree and each Ti is used as feature generators
for the single modal dataset. Given that each Ti is a single modal classifier,
it can assign labels relative to the local class labels (C

′
) to each single modal

sample. The resulting labels are used as new categorical features which can
be calculated for any test data using the corresponding Ti. We then use a
conventional decision forest growth method similar to what was explained in
the previous chapter to grow a forest using this set of new features together
with the original single modal feature set.

It should be mentioned that because the local trees are trained using
the small multimodal dataset, many of the generated features might not be
useful for the single modal decision forest. Considering the large number
of local trees in a random forest, this can flood the original single modal
features. So we filter the new features by a conventional feature selection
algorithm, namely based on the feature importance measure in a decision
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forest. We apply feature bagging separately to the set of the original single
modal features and the new features, and then merge them together to form
the feature bag used for each single modal tree. Diagrams of the proposed
method for extracting the tree-base feature transforms from the scandent
tree model and using that for single modal classifier design are shown in
figures 4.1 and 4.2.

4.3 Evaluation and results

In this section we evaluate the proposed method for single modal classifica-
tion task. First, we examine the proposed method in different simulated sce-
narios and for different single modal sample sizes using two of the datasets
used in previous chapter: the dermatology dataset and the breast cancer
dataset. Then we test the performance of the proposed method on a real
dataset that exactly matches our scenario, the ADNI dataset.

4.3.1 Evaluation using benchmark datasets

For this simulation task we should simulate the same two simulation parame-
ters that were used in the previous chapter, with the difference that instead
of the multimodal sample size that is assumed to be sufficiently large in
this scenario, we examine the effect of the single modal sample size of the
training set. The dermatology dataset introduced in the previous chapter
is multimodal in nature so it is the perfect benchmark for testing the single
modal sample size. However, because the feature sets for each modality is
fixed, it is not meaningful to simulate the single modal feature size using
this dataset. Instead, we use the breast cancer dataset introduced in the
previous chapter in order to simulate different feature set sizes for single
modal dataset.

Effect of the single modal sample size: dermatology dataset

It is informative to investigate performance of the proposed method for
single modal classification tasks as a function of the single modal sample
size. We design an experiment similar to the previous chapter using the the
dermatology dataset but with the assumption that the test set is also missing
the most discriminative modality. For this experiment we first randomly
select 100 samples from the dermatology dataset as a test set. Then we
discard the histopathological features from this set. Moreover, we form a
multimodal dataset with a fixed size (40 percent of the remaining samples
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in this experiment) and use it to extract the proposed feature transforms.
Finally we evaluate performance of a single modal forest with and without
the new features in different single modal sample sizes.
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Figure 4.3: AUC vs single modal sample size for dermatology dataset

Figure 4.3 shows AUC of a single modal random forest and the enhanced
forest trained on the dermatology dataset for different sample sizes. It can be
seen that the enhanced forest can improve the single modal forest especially
when the single modal dataset is small. For instance at sample size of 71
the single modal classifier gives AUC of 0.78 while the enhanced forest gives
AUC of 0.84. This improvement is also evident in larger sample sizes but is
less significant (AUC of 0.87 and 0.85 for the proposed method and a single
modal forest). The dermatology dataset is multimodal in nature, so the sizes
of the single modal and multimodal feature sets are fixed. On the other hand
the breast cancer dataset does not have a predefined single-modal feature
set so it can be used for simulation of different single modal featuresets.

Effect of the single modal feature set size: The breast cancer
dataset:

For this simulation we first randomly select 100 test samples. We then
change the single modal feature set size from 5 to 29 (the total feature set

54



4.3. Evaluation and results

size is 30) removing the most discriminative features at each step. Then we
observe AUC as a function of feature set size for a single modal forest with
and without the use of the tree-based feature transforms. The tree-based
feature transforms used in each iteration were trained using 30 samples ran-
domly selected from the multimodal dataset. We found that the size of the
multimodal dataset in the breast cancer dataset does not have much effect on
the tree-based feature transforms once the multimodal sample size is more
than or equal to 30. Figure 4.4 shows the AUC of the conventional single
modal forest and the proposed method for different single modal feature
sets.

The expected upward trend in AUC vs. single modal feature set size
is evident, it also can be seen that the proposed method outperforms a
conventional single modal forest method especially in smaller feature set
sizes. For example, when only the 5 least discriminative multimodal features
are available, the conventional single modal random forest results in a mean
AUC of 0.77 whereas the proposed method delivers an AUC of 0.83 while
in larger feature sets the AUC of the two methods methods is almost equal.
This is because at feature set sizes of larger than 20, the AUC of a single
modal forest without using the tree based feature transforms is almost 1.
This eliminates the need for any more improvement on the conventional
classifier.

The breast cancer dataset and the dermatology dataset are complete
datasets that provided us the opportunity to test the performance of the pro-
posed method in different simulated scenarios. Furthermore we test the per-
formance of the proposed method on a real incomplete multimodal dataset,
the ADNI dataset.

4.3.2 A real scenario: ADNI dataset

We test the proposed single modal classification method on a dataset from
Alzheimer’s Disease Neuro-imaging Initiative (ADNI) database. The ADNI
was launched in 2003 as a public-private partnership, led by Dr. Michael
W. Weiner. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimers Disease (AD). The ADNI study is an example of a
multimodal scenario in which a large portion of samples are missing one
of the modalities. In this chapter we take the samples that come from
patients with both MRI and PET scan as multimodal dataset (Nm = 218)
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Figure 4.4: AUC vs single modal feature set size for breast cancer dataset
(each box shows AUC values for different multimodal sample sizes)

accompanied by a relatively large single modal dataset (Ns = 508) consisting
of patients with only MRI data. This includes the MRI data from the 218
multimodal samples.

The single modal dataset consists of MRI volume measurements of six
ROIs in the human brain (ventricles, hippocampus, whole-brain, entorhinal,
fusiform and mid-temporal) and intra-cranial volume (ICV) in mm3. The
multimodal feature set consists of the same MRI features together with two
additional PET scan features, FluoroDeoxyGlucose (FDG) measurement
and AV45 uptake measurement. The outcome labels include cognitively
normal patients (NL), patients with confirmed dementia (AD) and patients
with mild cognitive impairment (MCI). The MCI group can be divided into
progressive (pMCI) that eventually converts to dementia and stable (sMCI).
In this chapter we assume a maximum of 36 month conversion time for the
MCI class to be considered pMCI.

The distribution of different outcome classes in the two datasets is as
follows: for the normal class we have 178 samples in the single modal dataset
versus only 18 samples in the multimodal dataset, for the dementia class we
have 108 single modal samples versus 29 multimodal samples, for the sMCI
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class we have 126 single modal versus 144 multimodal samples and for the
pMCI class we have 96 single modal samples versus 27 multimodal samples.
In other words, not only the multimodal dataset is much smaller than the
single modal dataset, it also does not have the same distribution of outcome
classes. This makes the data fusion between the two datasets extremely
difficult with traditional approaches. We examine the performance of the
proposed method by reporting AUC for three classification scenarios: NL
versus pMCI, sMCI versus AD. and sMCI versus pMCI.

Figure 4.5: Diagram of the method used for forming the PC forest

We take the performance of a single modal forest trained solely on the
original MRI feature set as the baseline. We then compare performance of
this baseline with a forest enhanced using the principal component features
(PC forest) as shown in Figure 4.5, with a similar forest trained using MRI-
based transformed features shown in Figure 4.6, and a transformed feature
set extracted using both MRI and PET using scandent tree approach shown
in Figure 4.2. It should be noted that all of these classifiers are designed
for the single modal classification task, meaning that they only need the
original MRI feature set for classification but may use the other modalities
(PET in this example) for better feature transform design in the training
phase.

5-fold cross-validated ROC curves of the baseline single modal forest,
PC forest, single modal feature-transform forest, and the scandent tree mul-
timodal feature transform forest for NL vs. pMCI classification task are
shown in Figure 4.7.

As it can be seen in Table 4.1, the forests grown based on the tree-
based feature transforms significantly outperform the baseline single modal
forest and the PC forest. The difference between the baseline and the fea-
ture transform methods is statistically significant (p=0.01) for the single
modal feature transforms and (p=0.002) for multimodal feature transforms.
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Figure 4.6: Diagram of the method used for forming a forest based on single
modal tree-based feature transforms
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Figure 4.7: ROC curve for NL vs. progressive MCI classification, single
modal classification task, ADNI dataset
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Table 4.1: Accuracy (Acc), Sensitivity (Sens), Specificity (Spec) and Area
under ROC curve (AUC) of the proposed methods and the baseline forest
for the NL vs. pMCI single modal classification task, ADNI dataset

Acc Sens Spec AUC

Single modal forest 0.744 0.663 0.791 0.779

PC forest 0.774 0.878 0.747 0.781

Single modal feature transform 0.781 0.691 0.844 0.819

Multimodal feature transform 0.788 0.747 0.805 0.837

Table 4.2: Accuracy (Acc), Sensitivity (Sens), Specificity (Spec) and Area
under ROC curve (AUC) of the proposed methods and the baseline forest
for the sMCI vs. AD single modal classification task, ADNI dataset

Acc Sens Spec AUC

Single modal forest 0.731 0.824 0.699 0.814

PC forest 0.752 0.758 0.748 0.836

Single modal feature transform 0.782 0.734 0.863 0.868

Multimodal feature transform 0.795 0.737 0.897 0.892

However, the improvement in the performance achieved by the PC-based
features is not statistically significant (p-value = 0.92). The multimodal
feature transforms are more effective compared to the single modal feature
transforms. This difference is significant (p=0.04).

Another classification problem worth investigating is discrimination of
samples with stable MCI from dementia cases using the MRI feature set.
Figure 4.8 and Table 4.2 show ROC curves and performance measures of
the enhanced and baseline forests for this classification task.

It can be seen that similar to the NL vs. pMCI task, the forests en-
hanced by the new feature sets are outperforming the baseline single modal
forest. The improvement observed in the PC forest is more significant than
the previous task but it still can not be considered statistically significant
(p-value=0.08). On the other hand the proposed tree-based feature trans-
form methods significantly outperform the baseline methods with p-values
of 0.0001 and 3.698e-07 for the single and multimodal feature transforms,
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Figure 4.8: ROC curve for stable MCI vs. AD classification, single modal
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respectively, and the multimodal feature transforms are more effective than
single modal feature transforms (p=0.0003).

The third classification task which separates sMCI from pMCI cases is
potentially the most clinically relevant model. The ROC curves and perfor-
mance measures for this task can be seen in Figure 4.8 and Table 4.2.

Specificity

S
e

n
s
it
iv

it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Single modal forest
PC forest
Single modal feature transform forest
Multi modal feature transform forest

Figure 4.9: ROC curve for stable MCI vs. progressive MCI classification,
single modal classification task, ADNI dataset

The trends remain the same: the tree-based feature transforms out-
perform a simple single modal forest with p=0.01 and and p=0.0002 for the
single modal (MRI-based) and multimodal (MRI+PET) feature transforms,
respectively. It can also be seen that the PC-based features fail to enhance
the baseline forest to a statistically significant level (p=0.672). Similar to
the previous experiments, the multimodal feature transforms yield a larger
AUC than single modal feature transforms with p=0.01.

4.3.3 Comparison with other work on ADNI

The block wise missing value problem is a well-known issue of the ADNI
dataset and it is addressed in many papers in literature. However, none
of them has the same goal and assumptions as our study. For instance,
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Table 4.3: Accuracy (Acc), Sensitivity (Sens), Specificity (Spec) and Area
under ROC curve (AUC) of the proposed methods and the baseline forest
for the sMCI vs. pMCI single modal classification task, ADNI dataset

Acc Sens Spec AUC

Single modal forest 0.743 0.713 0.744 0.810

PC forest 0.757 0.769 0.746 0.815

Single modal feature transform 0.777 0.819 0.750 0.848

Multimodal feature transform 0.815 0.831 0.803 0.872

this paper focuses on improving the performance of decision forests with
the assumption that a decision forest is the classifier of choice for a given
multimodal dataset. However, most of the studies on the ADNI dataset use
other classifiers like multi-kernel SVM for multimodal classification. As a
result, it is difficult to compare our results with the available literature as
any such comparison will be mostly informed by the choice of classification
paradigm.

One other issue that makes the comparison difficult is the different fea-
ture sets and sample sizes impacted by patient selection criteria. A simple
example is the different assumptions on the conversion time for MCI to AD
for differentiating progressive versus stable MCI. In our study, we assumed
a 36 month conversion time for progressive MCI cases and used the sum-
marized set of features extracted by adnimerge R package as our feature set.
This package is accessible from the ADNI website (https://adni.loni.usc.edu).

With all these differences and limitations in mind, we have gathered
a list of comparable methods with performance measures reported in the
literature in Table 4.4. These are all on the sMCI vs pMCI classification
task. As it can be seen, the proposed method matches or surpasses the
performance of the state of the art, even in cases where multimodal data is
available for all cases.
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Table 4.4: Comparison of the proposed single modal method with the state
of the art for sMCI vs. pMCI prediction, ADNI dataset

Method sample size modalities performance

Acc Sens Spec AUC

Proposed method 122 MRI 0.815 0.831 0.803 0.872

[9] 99 MRI, PET, CSF 0.801 0.853 0.733 0.852

[31] 204 MRI, PET 0.759 0.48 0.952 0.746
[6] 397 MRI, PET, CSF 0.732 0.655 0.767 0.786

[14] 388 MRI 0.754 0.705 0.776 0.82

[35] 200 MRI 0.751 - - 0.84
[40] 143 MRI, PET, CSF, APOE 0.741 0.787 0.656 0.795

[43] 91 MRI,PET,CSF 0.739 0.686 0.736 0.797

[10] 405 MRI 0.71 0.7 0.72 -
[36] 162 MRI, CSF 0.685 0.741 0.63 0.76

4.4 Summary

In this chapter a novel application of the scandent tree model as tree-based
feature transforms was introduced. These feature transforms can be used for
leveraging a multimodal dataset for single modal classifier design. A method
to extract these single modal tree feature transforms was explained and a
method to use these feature transforms within the context of a conventional
random forest classifier was provided.

Using two publicly available datasets for simulation and the ADNI dataset
as a real incomplete multimodal dataset, it was shown that the proposed
method can be used to enhance a single modal classifier. The experiments
on the ADNI dataset show if one extracts the proposed feature transforms
from a scandent forest trained on both PET and MRI features and uses them
together with the original set of MRI features for classification of different
stages of Alzheimer’s disease, the resulting classifier can outperform a con-
ventional single modal random forest, a random forest enhanced with PCs
of the MRI features and a random forest enhanced with tree-based feature
transforms solely trained on the MRI data.

We examined the proposed classifier in three different scenarios of nor-
mal vs progressive MCI, stable MCI vs progressive MCI and stable MCI vs
Alzheimer’s disease. It was shown that in all of these scenarios the proposed
method outperforms the conventional single modal forest and the other en-
hanced single modal forests mentioned. The stable MCI vs progressive MCI
classification task was found to be the most clinically valuable classification
task. Comparison of the proposed method and state of the art in this sce-
nario show that the proposed method matches or outperforms the state of
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the art even in case of larger training sets or feature sets.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we addressed the problem of incomplete multimodal datasets in
random forest learning algorithms in a scenario where many of the samples
are non-randomly missing a large portion of the most discriminative features.
This missing value problem in multimodal datasets is different from the
common scenarios in single modal data analysis. In our problem of interest,
features of one specific modality might be missing altogether in training, or
testing. This causes an issue known as block-wise missing data. We showed
that this issue can not be handled by conventional imputation techniques
if the number of samples that include all of the features is small. This is
a common scenario in biomedical data analysis applications. In summary,
this thesis has two major contributions:

• We developed the novel concept of scandent trees for enriching a mul-
timodal classifier with a large training dataset from only a subset of
modalities. The results show that the proposed method for multi-
modal classification outperforms the embedded missing value impu-
tation method of decision forests introduced in [4] and other state
of the art imputation methods, particularly in smaller samples sizes
and when a large portion of features are missing. We showed that
the proposed method enables the integration of a small genomic plus
imaging dataset, with a relatively large imaging dataset. We also
showed that this method is in general less sensitive to the number of
missing features and to the multimodal sample size by simulation of
different missing value scenarios on three publicly available benchmark
datasets.

• We also proposed a novel learning method for training on multiple
modalities and testing on one modality. To this end, we introduced
the concept of tree-based feature transforms. We showed that using
this approach, we can efficiently transfer the discriminative power of
PET imaging into the training phase of building a model that would
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only use the MRI data at the testing phase. By simulation on two pub-
licly available benchmark datasets, we showed that the single modal
features generated by the multimodal model can significantly improve
a single modal forest especially when the single modal dataset is small
or it is missing most of the discriminative features. We also showed
that the model achieved through multimodal data analysis can be used
to form an enhanced random forest that only needs a single modality
for classification.

5.2 Discussions and limitations

In this thesis we have addressed two classification scenarios regarding the
problem of missing values in multimodal datasets: leveraging a single modal
dataset for multimodal classification, and leveraging a multimodal dataset
for single modal classification.

5.2.1 Limitations of the implementated method

There are some limitations to our current implementation of the proposed
method:

As one limitation, it should be mentioned that similar to the other tree-
based imputation methods, we are proposing this algorithm with the as-
sumption that random forest is the classifier of choice. In other words, when
a different classifier outperforms the baseline random forest, the proposed
method might not be the best option.

Another limitation of the current proposed method is that it is based on
optimising each leaf of each tree in a forest separately which is computation-
ally expensive in large forests. Unlike the conventional imputation methods,
the computational time of the proposed method scales with the sample size
of the small multimodal dataset not the large sample size of the single modal
dataset. However, as the multimodal dataset grows the computation time
becomes an issue. The computational complexity of the proposed method
not only depends on the model parameters, but also depends on the dataset
and feature-sets used in the analysis. For instance, if the missing modal-
ities are significantly more discriminative than the available modalities, it
is expected that the link nodes are limited to the root and leaves of the
support forest. As a result, the computational cost of training a scandent
tree forest would be in the same order as training two support forests. A
similar result is also expected if the missing feature set is significantly less
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discriminative. However, the testing phase of the scandent forest is exactly
similar to a conventional random forest.

5.2.2 Discussions and limitations of the multimodal study

We tested the scandent tree method on a prostate cancer dataset as a real
world example of our target scenario. This dataset is an example of the
worst case scenario of missing data: a large non-random portion of the data
is missing the potentially more powerful genomic features resulting in a
very small multimodal dataset. At the same time, the number of features
on the single modal (imaging) side is small. It is, therefore, revealing that
even in this situation, the use of scandent tree methodology provides a clear
advantage against the traditional approaches to deal missing values in a
situation like this, such as simply ignoring one or the other set, or imputation
approaches.

There are a few limitations to our work with prostate cancer data:

• As our experiments show, the missing modality (gene expression) is far
more discriminative than the shared modality (MRI). This makes it
extremely difficult for the proposed method to model the relationships
between the modalities and effectively merge the two datasets.

• The small number of features in the shared modality (MRI) makes the
feature-bagging in the support tree unbalanced between the modali-
ties. As a result, many of the support trees are completely grown based
on the missing modality (gene expression) and scandent trees have to
follow the structure of a whole support tree. This together with small
sample size of the multimodal dataset can cause over-fitting.

• Another limitation is that the small sample size of the multimodal
dataset. It not only makes it hard to train the support forest needed
for the scandent tree method, it also makes it hard to show statistically
significant results in comparison between different methods.

Given these limitations, a more revealing test of the performance of the
solution proposed for the multimodal scenario was achieved by study of the
benchmark datasets. One such study was presented in chapter 3 where we
examined the performance of the scandent tree method for different mut-
limodal sample sizes and different feature sets using benchmark datasets
publicly available from the University of California Irvine (UCI) database
[23]. In comparison with the state of the art imputation method for deci-
sion forests (rfImpute), we observed that in larger multimodal sample sizes
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or when only a small number of features were missing from the single modal
dataset, both of the methods perform very well in handling the missing val-
ues for multimodal classification. However, in smaller multimodal datasets
or when a large portion of features are missing from the single modal sam-
ples, the scandent tree method showed significantly better performance in
comparison with the rfImpute method. Another observation was that for
a fixed sample size, the scandent tree method is less sensitive to the num-
ber of missing features, especially in smaller multimodal sample sizes. This
advantage was also evident from the results on the prostate cancer dataset.

5.2.3 Discussions and limitations of the single modal study

We proposed the tree-based feature transform method in order to leverage
a multimodal dataset for single modal classification. We showed than this
method is very effective in common real-world scenarios when a large number
of samples are missing many of the potentially most discriminative features.
We also succeeded to leverage information from PET scan in ADNI dataset
for enhancement of classification of different stages of Alzheimer’s disease
when only MRI data is available.

Unlike the prostate cancer study we did not have the problem of sample
size in this study but there is one limitation in our results on the ADNI
dataset: The different stages of Alzheimer’s disease are not clearly defined
and vary from one study to another. For instance, the conversion time
between MCI and Alzheimer’s disease which determines whether an MCI
case is stable or progressive is different between different studies. Also the
fact that the ADNI dataset is continuously being updated, makes it hard to
compare results on this dataset.

It should also be mentioned that the current implementation of the pro-
posed method is not computationally efficient. This becomes an issue if the
relationship between the available modalities and the missing modalities is
very complex or the feature set size is very large. This scenario will require a
large scandent forest in order to generate the tree-based feature transforms.
Considering the fact that most of the scandent trees consist of at least 2 or
3 local trees, the number of the tree-based feature transforms becomes very
large. The computation costs of growing a scandent forest for large datasets
may make it computationally unpractical to use in many studies. However,
our experiments show that only around 5% of the feature transform trees
are actually useful in practice. This means that 95% of the computation
time used for training of the scandent forest is not necessary if it is only
grown for the purpose of generating the tree-based feature transforms.
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Moreover, note that a large set of tree-based feature transforms are only
locally discriminant and their number may exceed the original single modal
feature set size by a factor of 5. Therefore, using an off-the-shelf random
forest that does not separately rank and bag the two feature sets may not
result in an improved classifier and even may result in a forest weaker than
the original single modal forest. This is because a large number of artificial
features may flood the set of original features. This becomes an issue in the
forest growth algorithms that use a randomized feature selection approach
at each division of each tree in a forest. The randomized methods may result
in decreased growth time and independence between trees. However, they
may also yield in a large number of trees that are grown solely based on the
transformed features. These trees are very likely to over-fit.

A similar problem is when the scandent trees are not randomised ef-
ficiently. In this scenario, the transformed features are very likely to be
statistically dependent because they are formed using the same feature-set
without bagging. This makes it hard to form independent decision trees and
as a result limits the performance of the resulting decision forest.

5.3 Future work

We can envision four future improvements to the implementation of the
scandent tree method:

• The current implementation of the proposed inference method is based
on the optimization of the scandent trees in a leaf by leaf manner. This
process is computationally expensive and becomes an issue in case
of larger multimodal datasets. An area of improvement will be re-
designing the inference method so that instead of leaf-by-leaf merging
of the scandent and support trees, it can merge the two trees directly
at tree level.

• The second area for continued work is improving the baseline trees.
Because we needed full control over each division of each tree in the for-
est, we could not use the off-the-shelf decision forest packages available
in R. Therefore, the support forest, which is the base of the scandent
tree method, is our in-house implementation. We can improve the
base classifier by using the boosting methods and advanced random-
izing schemes embedded in off-the-shelf random forests.

• The third area that needs more work is the design of the local predic-
tors in each scandent tree. The current implementation uses a very
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simple classification tree while any other machine learning algorithm
that can mimic a local multimodal tree can be used. The current
implementation has the advantage that it automatically results in a
scandent tree, but methods resulting in any single modal rule-set can
also be used.

• The fourth area is adapting the scandent tree model for online learning.
As it was mentioned, one of the main applications of the proposed
method is in data analysis tasks where only a limited set of the samples
are multimodal because of the time constraints. Therefore a natural
step can be to design a mechanism to insert information from new
multimodal samples into the scandent tree model. This way the model
can be iteratively trained as the number of multimodal samples grows.

• Another potential applications of the scandent tree concept that is
worth investigating is relationship finding between modalities. The
scandent tree model provides a unique tool to model the relationship
between two set of features potentially from two modalities. The lo-
cal trees that form each scandent tree are in fact decision trees that
model the relationship between one available feature and a set of fea-
tures in the missing modality. In many applications, for instance in
gene expression studies, a decision tree is a perfect tool to model the
relationships between features in an interpretable fashion. This can
be a very simple but effective way to find relationships between an
imaging modality and a set of genes which may result in finding new
biomarkers for diagnosis of diseases like cancer by finding links between
features.
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