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Abstract

In this thesis, we investigated a set of theoretical models frequently used in

the field of solid state physics. These models describe coupling of charge car-

riers to bosonic modes such as phonons or magnons. In particular, the Hol-

stein model describes coupling of charge carriers to dispersionless phonons,

whereas the Emery model describes coupling of charge carriers to magnons

in hole-doped antiferromagnets.

For the Holstein-like models, we studied how extending the model of the

coupling beyond terms that are merely linear in the lattice distortion affects

the ground state properties. Using appropriate extensions of the momentum

average approximation, we could show that even small nonlinearities have

a dramatic effect on the resulting quasi-particle’s properties. We further

investigated a particular type of nonlinear coupling, the double-well coupling

model. After studying the properties of a single quasi-particle, we also

showed that this system allows the formation of bound states between two

charge carriers and a phonon cloud, the so-called bi-polaron. In contrast to

the linear variation of the Holstein model, the resulting bi-polaron can be

strongly bound yet lightweight.

For the Emery model, we consider an experimentally relevant extension.

The original model describes a single layer of CuO2, relevant for the hole-

doped cuprate superconductors. We consider recently synthesized layers

of CuO, which can be viewed as two intercalated layers of CuO2. The

resulting system is similar to CuO2, but different in important aspects. We

use a variational method similar in spirit to MA but applicable to magnons

instead of phonons to obtain the system’s dispersion and compare it to

that of the original CuO2 layer. We observe a discrepancy between these

dispersions that cannot be accounted for with a single-band model that is
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Abstract

commonly used to model the CuO2 dispersion. However, it has been a

long-standing question whether or not this and other single-band models

are appropriate for the description of cuprate physics. With our study of

CuO, we demonstrated how a careful experimental analysis of this system

can resolve that question.
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Preface

• A version of the work discussed in chapter 2 is published as “C.P.J.

Adolphs and M. Berciu, Europhysics Letters 102, 47003 (2013)”. It

relies on and advances further the techniques introduced previously

by Professor M. Berciu published in [1] as well as techniques jointly

developed in our group by M. Moeller, A. Mukherjee, C.P.J. Adolphs,

D.J.J. Marchand and M. Berciu in [2].

• The work discussed in chapter 3 is published as “C.P.J. Adolphs and

M. Berciu, Physical Review B 89, 035122 (2014). It is based on the

same techniques as cited above.

• The work presented in chapter 4 is published as “C.P.J. Adolphs and

M. Berciu, Physical Review B 90, 085149 (2014). It is based on the

same previous work as cited above.

• A manuscript of the work discussed in 5 has been accepted for publi-

cation by Physical Review Letters and is expected to be published by

the end of February 2016. It presents an extension of the work done

in [3] and [4].

I carried out all the necessary analytical and numerical work for all four

projects. I wrote the first drafts for all the manuscripts. Prof. M. Berciu

assisted in the preparation of the final drafts of these works. The draft for

the final project, currently under review for publication in Physical Review

Letters, was also assisted by S. Moser and G.A.W. Sawatzky.
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Chapter 1

Introduction

Solid states physics is concerned with the physics of many, many particles –

on the order of 1023 – interacting with each other. From a purely theoretical

point of view, this problem is merely one of applied math: The equation gov-

erning most of the phenomena occurring in materials is the non-relativistic

Schrödinger equation,

H |Ψ〉 = E |Ψ〉 (1.1)

for the Hamiltonian of electrons and nuclei,

H = −
Nn∑
α=1

P2
α

2Mα
−
Ne∑
j=1

p2
j

2m
−
Ne∑
j=1

Nn∑
α=1

Zαe
2

|ri −Rα|
+

Ne∑
j<k

e2

|rj − rk|
+

Nn∑
α<β

ZαZβe
2

|Rα −Rβ|
,

(1.2)

where Ne, pj and rj denote number, momentum and position of the elec-

trons, while Nn, Pα and Rα are the number, momentum and position of the

nuclei, whose atomic numbers are the Zα and masses are Mα. The recipe,

then, seems clear enough: Find the eigenvalues and eigenfunctions of the

Hamiltonian (1.2) and then use them to obtain values for all desired observ-

ables of the system. So, in principle, we have a theory of everything for solid

state systems.

There are two problems with this view. First, the vast number of parti-

cles involved makes the effort to solve the equation prohibitively expensive.

In fact, there are not enough atoms in the universe to even store the wave-

function of an atom of Iron on a crude 10 × 10 × 10 grid1. Second, even

1The wavefunction has a positional argument for each of the iron’s 26 electrons, so we
would need to store 100026 = 1078. Assuming 16 bit precision and the ability to store one
bit per atom, we would then need 1079 atoms, which is close to the estimated number of
atoms in the observable universe.
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1.1. Model Hamiltonians

if we were able to calculate and store the wavefunction, it would not pro-

vide a satisfactory answer, because it has no explanatory power. When we

look to explain a phenomenon, we want to be able to find generalized rules

from which we can predict the specific behaviour of a system but also make

extrapolations about the expected behaviour of similar systems. The wave-

function, on the other hand, contains too much information to be useful in

this way. For example, possessing all the eigenfunctions of the superconduc-

tor YBCO would indeed confirm that it was superconducting, but it still

would not explain why. That insight would be hidden in the vast amount of

information contained within the wavefunction.

1.1 Model Hamiltonians

The solid state community attempts to address the aforementioned problems

through the use of approximations and models. These approaches can be

broadly classified as ab-initio methods and model Hamiltonians. An ab-initio

approach applies approximations to the initial Schrödinger equation to allow

for its numerical solution without relying on any extra parameters; the input

is merely the number of particles and type of nuclei. The most prominent

example of an ab-initio method is Density Functional Theory (DFT) [7, 8].

It maps the interacting many-body problem to an effective non-interacting

problem and has found considerable success in describing the ground state

of weakly correlated system. With some caution, it can be used to compute

the band structure of a material.

A model Hamiltonian approach, in contrast, attempts to find a simplified

Hamiltonian which captures the essential physics of the system. The model

Hamiltonian will be considerably easier to solve than the full Hamiltonian,

at the cost of introducing adjustable parameters. They can sometimes be

determined by fitting the model’s predictions to experimental observations,

or calculated using ab-initio methods. The great advantage of describing

systems with simplified model Hamiltonians is that they allow us to study

the importance of certain effects in isolation. As a consequence, model

Hamiltonians have great explanatory power.
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1.2. The Holstein model for electron-phonon coupling

There are, however, certain caveats to keep in mind when working with

model Hamiltonians:

• The particular choice of model Hamiltonian has to be motivated and

informed based on external input such as experiments or ab-initio cal-

culations.

• Balance has to be found between finding the simplest possible Hamilto-

nian and retaining enough of the physics relevant for the phenomenon

to be studied.

• Special attention has to be paid to the origin and initial assump-

tions that went into the derivation or motivation of a particular model

Hamiltonian to make sure it is not used in situations where they do

not actually apply.

In this thesis, we will investigate a few model Hamiltonians that are used

as the standard models for certain systems. In particular, we will study the

effects of seemingly minor extensions to these models. Throughout, we will

discover that even small modifications can often vastly alter the physics of

the system and thereby invalidate generalized assumptions about them. The

remainder of this chapter is devoted to introducing the standard models and

their extensions that we are going to study.

1.2 The Holstein model for electron-phonon

coupling

A universally applied approximation to the general Hamiltonian (1.2) is to

decouple the movement of the electrons from that of the much heavier nu-

clei. This Born-Oppenheimer approximation [9] assumes that the nuclear

coordinates are fixed parameters. The solution of the remaining electronic

problem provides a ground-state energy Eel
0 ({Rα}) that is parameterized by

these nuclear coordinates and thus provides an effective potential for the nu-

clei, the so-called Born-Oppenheimer surface. This surface determines the

lattice structure and its dynamics. A common approximation expands the

3



1.2. The Holstein model for electron-phonon coupling

BO-surface to second order in the nuclear coordinates around the surfaces’

minimum. The resulting Hamiltonian represents a collection of simple har-

monic oscillators and the eigenmodes are the quanta of lattice vibrations,

the so-called phonons.

These phonons interact with the electrons, since they influence the nu-

clear positions within (1.2). Detailed derivations are found in most advanced

textbooks[10]; here we are concerned with a popular model Hamiltonian, the

so-called Holstein model [11]. Its form is

H = Hel +Hph +Hel−ph, (1.3)

with the following components.

• Hel describes electrons in a tight-binding model. It is of the form

Hel = −
∑
i,j

tijc
†
icj

where i and j are generalized indices for single-particle orbitals, and

tij is the hopping matrix-element between them.

• Hph describes the free phonon dispersion. In the Holstein model and

most other standard electron-phonon models, the lattice potential is

treated within the harmonic approximation. The resulting Hamilto-

nian has the form

Hph =
∑
k

ωkb
†
kbk

where b†k creates a phonon of momentum k, which has energy ωk. This

form already contains several simplifying assumptions.

First, the mode is assumed to be optical (finite energy at k = 0) in-

stead of acoustical (energy proportional to |k| for small momenta).

This is not so much an approximation as it is a modeling choice. Op-

tical phonons are those associated with out-of-phase movement of the

atoms. This is relevant, for example, for the longitudinal vibration

of a diatomic molecule, or for the coupling of an ionic crystal – with

4



1.2. The Holstein model for electron-phonon coupling

alternating positive and negative ions – to a charge carrier. Such cou-

pling is usually stronger than to acoustic phonons, where atoms move

in-phase and their relative distances are unchanged. Second, only a

single phonon mode is considered whereas real molecules and crystals

typically have a multitude of vibrational modes. However, often there

is one characteristic mode that has a low energy whereas other modes

have very high energies and are, at low temperatures at least, frozen

out. Additionally, often one mode couples more strongly to the charge

carriers for symmetry reasons.

• Finally, Hph describes how the electrons interact with the phonons. In

the Holstein model, it is given by

Hel−ph = g
∑
i

c†ici (b
†
i + bi ).

where g is the coupling strength. We will now discuss the motivation

behind this form.

Within the tight-binding model, where electrons are confined to a discrete

set of localized orbitals, a motivation of the Holstein electron-phonon cou-

pling term can be performed as follows. We give the explanation for a

one-dimensional potential and one electron orbital per site, but note that it

is easily extended to the more general case.

The argument is sketched in Fig. 1.1. Consider a single lattice site i and

let the potential for a single lattice coordinate be given by Up(x), (p standing

for phonon). Recall that within the Born-Oppenheimer approximation, this

potential is determined by the electronic state. If there is no electron present

on site i, the lattice potential will have a particular form, such as the one

shown as the blue curve I in the figure. If, on the other hand, an electron

is present, the lattice potential will assume another form, such as the one

shown as the red curve II. Now, the blue (no-electron) curve provides us

with the free part, Hph whereas the difference of the red and blue curves

provides us with the electron-phonon interaction part.

The specific form of the Holstein el-ph interaction term is obtained

5



1.2. The Holstein model for electron-phonon coupling

pU (x)

I

II

R

Figure 1.1: Sketch of the origin of the electron-phonon coupling term. With-
out an electron present, the nuclear potential Up(x) is given by the blue curve
I. When an electron is present, the nuclear potential is instead given by the
red curve II.

from this general argument as follows. First, the lattice potentials I and

II are replaced by their harmonic approximations, which have some form

∼ ω2(x− x0)2 with phonon frequency ω and equilibrium position x0. Next,

it is assumed that the presence of an electron only changes the lattice’s equi-

librium position, but not its frequency. With this assumption, the quadratic

terms of both curves I and II have the same coefficient. Therefore, their dif-

ference will be a linear function.

Properties of the linear Holstein model

Before we discuss our extension to the Holstein model, we will first study it

in its simplest form,

H = −t
∑
〈i,j〉

c†icj + Ω
∑
i

b†ibi + g
∑
i

c†ici(b
†
i + bi ). (1.4)
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1.2. The Holstein model for electron-phonon coupling

In this model, we have nearest-neighbor hopping t and dispersionless phonons

with frequency Ω (sometimes called Einstein phonons). As theorists, we set

h̄ = 1, so we will be using the terms frequency and energy interchangeably.

Within this thesis, we will refer to the model (1.4) as the linear Holstein

model.

We will now describe the momentum average approximation (MA) and

how it can be used to provide accurate analytical results for the single-

particle properties of the Holstein model. MA was introduced in [1, 12] and

refined in subsequent work such as [13, 14]. For an in-depth look into MA,

we refer the reader to these works and references therein. We will, however,

provide an introduction to MA here in a formulation that is slightly more

accessible than the initial derivation. It goes as follows.

We are interested in computing the single-particle Green’s function for

(1.4), which is defined as

G(k, ω) = 〈0|ck [ω −H+ iη]−1 c†k|0〉 (1.5)

for momentum k and energy ω where η > 0 is a small convergence factor.

Good introductions to Green’s functions are found in most advanced solid-

state physics textbooks such as [15]. We note here that we are interested in

the interaction of a single carrier with the phonons; therefore, the vacuum

state |0〉 is understood to contain no other carriers, i.e., ci |0〉 = 0. We

introduce the spectral function

A(k, ω) = − 1

π
ImG(k, ω) (1.6)

which is directly related to a quantity accessible to experimentalists via

Angular Resolved Photoemission Spectroscopy (ARPES)2 By inserting a

full set of eigenstates |ψn〉 of H into (1.5), it is a textbook derivation to

2For an in-depth discussion of ARPES, see the excellent review in [16]. For a derivation
of the ARPES intensity expressed through the spectral function, see the PhD Thesis of
Dr. Ebrahimnejad [17].
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1.2. The Holstein model for electron-phonon coupling

show that

A(k, ω) =
∑
n

∣∣∣〈ψn|c†k|0〉∣∣∣2 δ(ω − En(k)). (1.7)

That is, the spectral function is a set of peaks3 located at the Hamiltonian’s

eigenenergies, with their weights given by the overlap of the corresponding

eigenstate with that of a free particle. In particular, the lowest-lying (in

energy) peak tells us where the groundstate of the system is, and its weight

is called the quasi-particle weight Z. This quantity can range from 0 to 1

and indicates how similar to a free particle’s state the ground state is. In a

system where a carrier interacts with bosonic degrees of freedom, we expect

the free carrier to become dressed with a cloud of bosons and thus acquire

a larger effective mass, expressed through a reduced qp weight Z.

Let us at this point introduce another quantity that is often mentioned

in solid state physics, the self-energy. We begin by noting that for a free

particle with dispersion E0(k) the momentum-space Green’s function – also

called the free propagator – is given by

G0(ω,k) =
1

ω − E0(k) + iη

for small convergence factor η > 0. For an interacting particle, the Green’s

function will be modified. Via simple algebra, one can, however, always

write it as

G(ω,k) =
1

ω − E0(k)− Σ(ω,k) + iη

for some complex-valued function Σ, the self-energy. The real part of Σ

renormalizes the energy of the quasi-particle whereas the imaginary part

changes its lifetime.

An advantage of working with the Green’s function G instead of the

Hamiltonian H is that the Green’s function has a diagrammatic expansion

that allows us to separate out the ”easy”, free part from of the Hamiltonian

3The δ-peaks are, in fact, Lorentzians with width given by η
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1.2. The Holstein model for electron-phonon coupling

f+kfyfk+kfyfzfk+kkf{yfkk (1.9)

Figure 1.2: Sketch of the first two orders of the Dyson series represented
by Feynman diagrams. Straight lines represent the free propagator of the
charge carrying fermion. Squiggly lines represent the free propagator of the
boson (the optical phonon in this case). A complete diagram would include
labels at the vertices denoting the energies and momenta (or other relevant
quantum numbers) of the particles.

from the ”hard”, interacting part. If we write this separation as

H = H0 +H1

and introduce the operator version of the Green’s function as Ĝ(ω) = [ω −
H+ iη]−1, then simple algebra shows that

Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)H1Ĝ0(ω) (1.8)

which is the so-called Dyson’s identity and Ĝ0(ω) = [ω −H0 + iη]−1 is the

free propagator. The decomposition of H is ideally chosen such that G0 is

easy to compute.

Dyson’s identity prescribes an iterative way to compute the Green’s func-

tion: By reinserting the identity into itself, an infinite series is obtained

where each term is of the form Ĝ0[H1Ĝ0]n. When going to a particular ba-

sis, such as momentum space, these terms can be represented as Feynman

diagrams, with vertices representing the interaction H1 and edges represent-

ing the free propagator Ĝ0(ω).

A good introduction to the use of Feynman diagrams in many-body

physics is found in [18]. We show a sketch of them in Fig. 1.2. It represents

the first few iterations of Dyson’s identity in a simplified form. In a com-

plete representation, the various propagating lines would be labeled with the

energies and momenta (or other relevant quantum numbers of the particles.
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1.2. The Holstein model for electron-phonon coupling

The first term in Fig. 1.2 describes a carrier propagating freely. The second

term describes the creation and subsequent absorption of a phonon. The

final two terms describe the creation and absorption of two phonons, one

term where the phonons get destroyed in the order they were created and

one term where they get destroyed in the inverse order. For completeness,

we note that if we had defined our vacuum |0〉 as a state with a number

of charge carriers below the Fermi level instead of a state with no carriers

at all, the diagrammatic expansion would also include diagrams where the

carrier creates a phonon and that phonon then creates a carrier-hole pair

by exciting a carrier from below the Fermi level into a state above it. Since

we are only concerned with the physics of a single carrier interacting with a

cloud of bosons, the vacuum is defined to contain no extra carriers and thus

these terms do not arise.

While these diagrams are an excellent tool for visualizing many-body

interaction processes, the sum over the infinite number of diagrams cannot

be carried out except in the most basic cases. Instead, several different

approaches exist:

• If the interactions in H1 are sufficiently weak, the diagrammatic ex-

pansion can be terminated after a reasonably low number of iterations.

This works very well in other fields such as quantum electrodynamics,

but usually fails in many-body physics due to the stronger interactions.

In our specific case, it works if g ≤ Ω and provides the weak-coupling

limit perturbation expansion of the Holstein model.

• More common in solid state physics are approaches that sum an infinite

subset of diagrams. These diagrams are chosen in such a way that the

infinite sum can be carried out analytically. An example relevant for

the Holstein model is the Self-Consistent Born Approximation (SCBA)

[19] where only those diagrams are included where phonon lines do

not overlap (such as the last term shown in Fig. 1.2). While these

approaches are very popular, a common problem is that they are not

controlled because they lack a ”small parameter” and the diagrams

that are omitted may have contributions comparable to the ones that

10



1.2. The Holstein model for electron-phonon coupling

are included.

In short, the first approach sums all diagrams up to a certain order in the

interaction H1 whereas the second approach sums diagrams of all orders,

but only a subset of them. In both approaches, the diagrams that do get in-

cluded are included with their exact contributions. The momentum average

approximation provides a unique third approach: It sums all diagrams of

all orders, but it individually approximates each diagram with a simplified

expression in a way that allows us to analytically carry out the summation.

Let us demonstrate this now. Dyson’s equation for the Holstein model

yields

G(k, ω) = 〈0|ckĜ(ω)c†k|0〉

= 〈0|ck
(
Ĝ0(ω) + Ĝ(ω)H1Ĝ0(ω)

)
c†k|0〉 .

In the following, we will omit the hats and the argument ω whenever this

can be done unambiguously.

The first part of the expansion of G yields just the non-interacting

Green’s function. Since the vacuum has no phonons and c†k only adds a

fermion, this gives just 1/(ω − εk + iη) for η → 0+, where εk is the free

carrier dispersion. It depends of course on the particular form Hel. For

d-dimensional nearest-neighbor hopping in a cubic lattice, the dispersion is

−2t
∑

i∈{x,y,z} cos(kia) where k is the momentum and a the lattice constant.

For the second part, we insert 1 =
∑

k |k〉 〈k| and use the fact that G0 is

diagonal in k. This finally yields

G(k, ω) =
1

ω − εk + iη
·
[
1 + 〈0|ckGH1c

†
k|0〉

]
. (1.10)

To study how H1 acts on c†k |0〉, we transform the momentum to real space

via

c†k =
1√
N

∑
i

eik·ric†i
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and obtain

G(k, ω) =
1

ω − εk + iη
·

[
1 +

1√
N

∑
i

eik·ri 〈0|ckGH1c
†
i |0〉

]
.

Let us focus on just the evaluation of the braket. H1 contains a sum over

sites j; because of the term nj , its contribution is zero except for the site i

where we have created an electron. Since we have no bosons in the system,

only the term with b†i gives a contribution. The resulting state then is

H1c
†
i |0〉 = gc†ib

†
i |0〉 .

The resulting matrix element with the Green’s function gets its own name:

F1(k, i, ω) := 〈0|ckĜ(ω)c†ib
†
i |0〉 (1.11)

where the subscript 1 denotes that there is one phonon in the system.

We use the Dyson equation a second time to derive an equation of motion

(EOM) for F1.

F1(k, i, ω) = 〈0|ckĜ(ω)c†ib
†
i |0〉

= 〈0|ckĜ(ω)Ĥ1Ĝ0(ω)c†ib
†
i |0〉 .

Note that we dropped the single term Ĝ0(ω) from the Dyson expansion.

This is valid because F1 is a matrix element between states with differing

number of phonons (1 and 0); since G0 conserves the phonon number, this

matrix element is 0. As an intermediate result, we obtain

F1(k, i, ω) =
∑
j

G0(j − i, ω − Ω) · 〈0|ckĜ(ω)Ĥ1c
†
jb
†
i |0〉 .

where we have switched the basis representation of G0 from momentum

space to position space,

G0(j − i, ω) = 〈0|cjĜ0(ω)c†i |0〉 .
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1.2. The Holstein model for electron-phonon coupling

Now we have to study the action of H1. This time, both the bosonic anni-

hilation and creation part have a contribution. Let us treat the destruction

part first. Although cumbersome to write down, it should be clear what

happens: We can only destroy a phonon on sites where there is one, and

only if there is also an electron on that site. This introduces a term δij , so

we obtain 〈0|ckĜ(ω)c†i |0〉 = G(k, i, ω), where G(k, i, ω) is just the Green’s

function in mixed basis representation: We add a particle on site i and re-

move it with momentum k. The creation part will create another boson at

the site the electron is at.

Up to this point, the derivation has been exact. Now we introduce the

crucial approximation: Bosons will be allowed only at a single site i. To

get bosons at another site, one has to first get rid of all the bosons at site

i. This approximation leads to a form for the creation part that is similar

to the form for the destruction part, i.e. 〈0|ckĜ(ω)c†i (b
†
i )

2|0〉 =: F2(k, i, ω).

Putting everything together gives us

F1 = gG0(0, ω − Ω) · [G(k, i, ω) + F2(k, i, ω)]

where G0 is given in real space. This is the Fourier transform of G0(k, ω−Ω),

and the dc-value is just the integral over the transformed function, i.e.

G0(0, ω − Ω) =
1

N

∑
k

G0(k, ω − Ω) =: ḡ0(ω − Ω).

In other words, the exact form of the free propagator is replaced by its

momentum-averaged form, giving the method its name. The variational

interpretation of this approximation is that the full Hilbert space is replaced

by a restricted Hilbert space containing only states of the nature

|i, j, n〉 = c†i

(
b†j

)n
|0〉 .

This restriction can be systematically relaxed by allowing states with 1 cloud

and one extra phonon, which gives rise to the first systematic improvement

of MA, called MA(1). In turn, the basic form of MA is called MA(0). Any

13



1.2. The Holstein model for electron-phonon coupling

number of improved versions MA(n) can be formulated, where n gives the

number of additional phonons allowed outside the “main” cloud4. Obviously

in the limit n→∞ the full Hilbert space is recovered and the approximation

converges to the exact result. However, it turns out that for the Holstein

model, adequate accuracy for quasi-particle properties is obtained already

for MA(0). For now, we return to the evaluation of the equations of motion.

We see that the equation of motion for F1 contains G(= F0) and F2. We

can see that an equation of motion for F2 would contain F1 and F3, since

each additional application of H1 will either remove or add a phonon. Thus,

let us now derive the general expression for Fn. It is

Fn(k, i, ω) = 〈0|ckĜ(ω)c†i (b
†
i )
n|0〉

= 〈0|ckĜ(ω)H1Ĝ0(ω)c†i (b
†
i )
n|0〉

=
∑
j

G0(j − i, ω − nΩ) 〈0|Ĝ(ω)Ĥ1c
†
j(b
†
i )
n|0〉

The destruction part ofH1 will give us again a δij . Next, note that [bi , f(b†i )] =

∂/∂b†if(b†i ) for any function f . Hence [bi , (b
†
i )
n] = n(b†i )

n−1. For the creation

part, we make again use of the approximation that additional bosons can

be added only to sites where bosons are already present. It is then straight-

forward to arrive at the recursion relation for Fn,

F0(k, i, ω) = 〈0|ckĜ(ω)c†i |0〉

Fn(k, i, ω) = gḡ0(ω − nΩ) · [n · Fn−1(k, i, ω) + Fn+1(k, i, ω)] . (1.12)

By introducing a cut-off in n, we can find an explicit solution for these

relations. The index n denotes the number of phonons we add to the system.

The quantity Fn(k, i, ω) then is the amplitude for putting n phonons and

4We remark that MA(n) as formulated in, e.g., [13] are not exactly equivalent to
variational models with states c†i b

†
a1
. . . b†an

(b†j)
m; instead, they are defined by how many

orders in the Dyson expansion retain the full form of the free propagator: MA(0) keeps
the free propagator only in the 0-th order and replaces it with its momentum averaged
version beginning at the first order, whereas MA(1) would treat the free propagators in
both the 0-th order and the 1st order exactly and only replace it with the momentum
averaged version beginning at the second order.
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1.2. The Holstein model for electron-phonon coupling

one electron at site i into the system and later having a state where the

electron has momentum k and there are no phonons left in the system. We

can therefore expect that Fn → 0 for n → ∞. For a cut-off N , we set

Fn = 0 for all n > N . How to determine a good value for the cut-off will

be discussed later. Let us for now just see how we can solve the recursion

relations for Fn. With the cut-off, we have

FN (k, i, ω) = gḡ0(ω −NΩ) ·N · FN−1(k, i, ω)

since FN+1 = 0. This means that FN (k, i, ω) is proportional to FN−1(k, i, ω)

and we introduce AN = gḡ0(ω −NΩ) ·N to write

FN (k, i, ω) = AN · FN−1(k, i, ω).

With FN now being given in terms of FN−1 only, we can continue. Let us

omit the arguments (k, i, ω) from the Fn as they do not change anyway. Let

us also introduce the shorthand ḡ0(N) for ḡ0(ω −NΩ).

FN−1 = gḡ0(N − 1) · [(N − 1)FN−2 + FN ]

= gḡ0(N − 1) · [(N − 1)FN−2 +ANFN−1] .

This equation contains only FN−1 and FN−2. It can be rearranged to give

FN−1 = AN−1FN−2. We see that this continues all the way down to F1,

which then will be given as F1 = A1G. Let us derive a general expression

for the An. For AN , we have the explicit expression from above. The other

An are defined via

Fn = g · ḡ0(n) · [nFn−1 + Fn+1]

= g · ḡ0(n) · [nFn−1 +An+1Fn]
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This can be rearranged to

(1− gḡ0(n)An+1) · Fn = gḡ0(n)nFn−1

⇔ Fn =
n · gḡ0(n)

1− gḡ0(n)An+1
· Fn−1.

Thus, by definition,

An =
n · gḡ0(n)

1− gḡ0(n)An+1
. (1.13)

We are interested in A1, because via F1 = A1G, we can obtain an explicit

expression for G. A1 is given in terms of a continued fraction.

A1 =
gḡ0(1)

1− gḡ0(1)
2 · gḡ0(2)

1− gḡ0(2)
3 · gḡ0(3)

1− . . .

We will come back to the evaluation of this expression in an instant, but first

let us see how knowledge of A1 helps us determining the Green’s function.

Inserting what we have derived so far into (1.10) yields

G(k, ω) =
1

ω − εk + iη
·

[
1 +

g√
N

∑
i

eik·riA1G(k, iω)

]

=
1

ω − εk + iη
· [1 + gA1G(k, ω)]

We can rearrange this to obtain

G(k, ω) =
1

ω − εk + iη − gA1(ω)
. (1.14)

A closer look reveals that now we not only have an explicit expression for

G(k, ω) in terms of A1, we also see that gA1 is the self-energy of the system.

Since A1 involves only the momentum-averaged expression g0(ω), the self-

energy is k-independent.

There are several ways to solve the continued fraction. Let us define Ak1
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1.2. The Holstein model for electron-phonon coupling

as the value for A1 that is obtained when choosing N = k as the cut-off,

i.e., all An with n > N are zero. Then one can compute Ak1 for increasing

values of k until the change Ak+1
1 −Ak1 is below a certain threshold. This is

the straight-forward approach. The disadvantage is that it involves a lot of

computation, and to make the step from k to k + 1 one has to repeat the

complete computation as the result from the computation of Ak1 cannot be

used to arrive at Ak+1
1 . A better method is the modified Lentz method as

described in [20]. The advantage of that method is that we do not have to

set a cut-off N in advance. Instead, the n-th convergent can be computed

using the n − 1-th convergent. To use this method, we have to write our

continued fraction in the canonical form,

x = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
.. .

.

In our case, we have

b0 = 0 a1 = gḡ0(1)

bn = 1 an = −g2 · n · ḡ0(n− 1) · ḡ0(n).

The calculation of the bn and an does not require any recursion, so it is trivial

to write a function that returns for a given n the appropriate coefficient an

or bn. The modified Lentz method is given in Alg. 1. The value of 10−30

can be any small value and is needed to avoid division by zero. The value

of ε denotes the desired accuracy of our computation.

Figure 1.3 shows some typical spectral functions of the one-dimensional

Holstein model as obtained via MA. It is customary to introduce the di-

mensionless coupling constant λ = g2/2dtΩ. As we’ll show later, this is the

ratio of the model’s ground state energies in the strong and the weak inter-

action limits. In the first panel, λ = 0, we just recover the free electron’s

dispersion −2t cos(ka), with lattice constant a set to 1. At weak coupling,
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1.2. The Holstein model for electron-phonon coupling

Algorithm 1: Modified Lentz Method

begin
x := b0
if b0 = 0 then

x := 10−30

end
C := x
D := 0
j := 0
∆ := 0
while |∆− 1| > ε do

j := j + 1
b := b(j, ω)
a := a(j, ω)
D := b+ a ·D
if D = 0 then

D := 10−30

end
C := b+ a/C
if C = 0 then

C := 10−30

end
D := 1/D
∆ := C ·D
x = x ·∆

end

end
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1.2. The Holstein model for electron-phonon coupling

(a) λ = 0 (b) λ = 0.2,Ω = 0.5

(c) λ = 1,Ω = −0.5 (d) λ = 10,Ω = 1

Figure 1.3: Spectral function of the one-dimensional Holstein model as ob-
tained with MA. The effective coupling λ = −g2/2dtΩ is a dimensionless
measure for the strength of el-ph interaction. The strong coupling regime
occurs at around λ ∼ 1.
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1.2. The Holstein model for electron-phonon coupling

λ = 0.2, we observe two things: The dispersion of the lowest lying state still

has roughly a cosine shape −2t∗ cos(ka) but with t∗ < t. This is because the

carrier becomes dressed with phonons, which increases its effective mass. In

addition, the spectral function also shows a continuum of energies. These

are the “polaron+1-phonon” states: For some momentum k, the system’s

state can either be a polaron with energy E0(k) or it could be a polaron

with energy E0(k− q) and, far away, a phonon with momentum q and en-

ergy Ω. The energy of this state would be E0(k − q) + Ω. Since q can be

any momentum, at momentum k the polaron + phonon states span all the

energies from min(E0)+Ω to max(E0)+Ω. That is, the continuum starts at

exactly Ω above the polaronic ground state. Close inspection of the spectral

function as obtained from MA, however, shows that the continuum instead

originates at −2t+ Ω, i.e., precisely Ω above the free-electron ground state.

This discrepancy is easiest explained in the variational picture of MA. Re-

call that MA(0) is equivalent to restricting the Hilbert space to states where

all phonons are located on the same site. Therefore, within this Hilbert

space we cannot describe states that have a phonon cloud in one location

and a single phonon in another location. Higher orders of MA obtain more

accurate estimates of the start of the continuum by allowing states where

there are phonons away from the cloud. A more detailed discussion is found

elsewhere [13]. The main observation is that MA(n) predicts the continuum

to start an energy Ω above the polaronic ground state of MA(n−1). Further

increasing the coupling λ leads to a further reduction of the polaronic band-

width and the appearance of additional continua separated by Ω. Finally,

in the very strong interacting limit, the spectrum consists of flat bands with

spacing Ω. In fact, the atomic limit t→ 0 can be solved exactly. We do not

show the derivation here because we will solve a more general case – but

with the same underlying method – in Chapter 2. To summarize, the main

properties observed for the Holstein model are:

• Interaction with phonons leads to a bound state, the polaron.

• The dressing of a free carrier with a cloud of phonons increases its

effective mass
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1.3. The three-band Emery model for a cuprate layer

• The larger the coupling, the larger the effective mass.

• MA works best for ground-state properties.

For more in-depth discussion and some of the finer points of MA, such as its

difference to Dynamical Mean Field Theory (DMFT), we refer the reader to

the literature [1, 12, 13, 21].

These results set the stage for our extensions to the standard (linear)

Holstein model. In our derivation and motivation of the electron-phonon

coupling term, there was no a-priori reason for assuming that the two ionic

potentials I and II in Fig. 1.1 only differ in the equilibrium position but

not in the phonon frequency. Furthermore, the harmonic approximation for

potentials I and II is only valid for small lattice distortions, whereas large

coupling, as we have seen, predicts large lattice distortions. Hence, the linear

model’s predictions at strong coupling invalidate its assumptions and a more

thorough approach is required. In Chapter 2, we study the effect of including

terms up to fourth order in the lattice coordinates. We will show how even

small non-linear terms have a big qualitative and quantitative effect on the

polaron properties. Next, we study a particularly interesting special case

of a non-linear electron-phonon model where the lattice potential contains

only even terms in the phonon coordinates. For certain parameters, this

leads to a model where the carrier’s presence turns the local single-well

lattice potential into a double-well. This is studied in the single-carrier case

in Chapter 3 and for the two-carrier case in Chapter 4. We find that the

peculiar nature of the el-ph interaction leads to quasiparticles and bound

pairs of quasiparticles (so-called bipolarons) that have properties that are

distinctly different from those of linear models.

1.3 The three-band Emery model for a cuprate

layer

One of the longest standing puzzles in solid state physics is the microscopic

origin of high-temperature superconductivity in the cuprates [22]. We show
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1.3. The three-band Emery model for a cuprate layer

Figure 1.4: Phase diagram of the high-temperature superconducting
cuprates for both electron and hole doping. The undoped compounds are an-
tiferromagnetic insulators which become superconducting upon either hole
or electron doping. Here, we focus on the hole-doped side of the phase dia-
gram. Public domain figure from https://en.wikipedia.org/wiki/File:

Cuphasediag.png.
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1.3. The three-band Emery model for a cuprate layer

Copper

(a) YBCO crystal structure

O

Cu

(b) Unit cell of the 3-band Emery model

Figure 1.5: (a) Structure of a typical high-temperature superconducting
cuprate compound, YBCO. Layers of copper and oxygen are contained
within a host structure of rare-earth and transition metal elements. Fig-
ure used under the GFDL, as obtained from https://commons.wikimedia.

org/wiki/File:Ybco002.svg. (b) The most relevant orbitals for cuprate
physics are the copper dx2−y2 orbital (round shapes) and the ligand oxygen
px and py orbitals (lobes), forming a unit cell with three orbitals.
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1.3. The three-band Emery model for a cuprate layer

their crystal structure and typical phase diagram in Fig. 1.4. The par-

ent compounds are antiferromagnetic insulators. Upon doping electrons or

holes into then, they become superconducting. Here, we focus on the case of

doping a single hole into the insulating parent compound. While supercon-

ductivity only arises at finite doping, the “simple” case of having a single

carrier doped into the system is already very complex, as we shall see below.

With the goal of arriving at a model Hamiltonian that is simple enough,

but not too simple, we will discuss the progression of proposed model Hamil-

tonians. Experiments have shown that the important physics happen in two-

dimensional CuO2 layers of copper and oxygen. In the un-doped case, the

relevant orbitals close to the Fermi energy are the copper’s in-plane dx2−y2

orbital and the oxygen’s px and py orbitals. The cuprates are so-called

charge-transfer insulators. This means that inserting an electron (remov-

ing a hole) takes place on the copper sites whereas removing an electron

(inserting a hole) takes place on the oxygen sites [23]. A popular model

Hamiltonian, then, is the so-called p-d or Emery model [24]. We give here

the so-called 3-band version, where as a further approximation we note that

the copper orbital has the largest overlap with those oxygen orbitals that are

aligned with it. A unit cell for this model thus contains three sites and three

orbitals as shown in Fig. 1.5(b). Its Hamiltonian is then given by (compare

also its extensive discussion in [6])

H3B = Tpd+Tpp+∆pd

∑
nl+ε,σ+Upp

∑
nl+ε,↑nl+ε,↓+Udd

∑
nl↑nl↓ (1.15)

with

Tpd = tpd
∑(

−p†l+ε,σ + p†l−ε,σ

)
dlσ + h.c. (1.16)

Tpp = tpp
∑

sδp
†
l+ε+δpl+ε,σ − t

′
pp

∑(
p†l−ε,σ + p†l+3ε,σ

)
pl+ε,σ (1.17)

nl,σ = d†l,σdl,σ (1.18)

nl+ε,σ = p†l+ε,σpl+ε,σ (1.19)

In this Hamiltonian, Tpd describes hopping between oxygen and copper,
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1.3. The three-band Emery model for a cuprate layer

Table 1.1: Relevant parameters for the 3-band Emery model in units of eV.

tpd tpp t′pp ∆pd Upp

1.3 0.65 0.38 3.6 4

Tpp describes oxygen-oxygen nearest (tpp) and next-nearest (t′pp) neighbor

hopping. The next-nearest neighbor hopping is, in fact, mediated by the

copper 4s orbitals. Other hoppings, such as y-direction hopping between

two px orbitals, is neglected. sδ is the sign of the matrix elements between

various oxygen p orbitals. It depends on our arbitrary choice of the orbitals’

phases. We make our choice such that sδ = 1 for hopping along the main

diagonal (upper-right and lower-left) and −1 for the other directions. The

charge-transfer energy, i.e., the energy cost of moving a hole from a copper

to an oxygen site, is given by ∆pd. The on-site Coulomb repulsions are given

by Udd and Upp, respectively. Numerical values for these parameters have

been obtained from ab-initio calculations in [25] and are presented in Table

1.1.

Despite being a relatively simple Hamiltonian, the model in (1.15) al-

ready contains a variety of approximations, such as neglecting longer-range

Coulomb interaction and longer range hopping. Despite this, it is still re-

garded as too complex to be solved directly due to its many degrees of

freedom. Hence, a simpler model Hamiltonian is required. Zhang and Rice,

in their seminal work, argued that although hole insertion occurs on the oxy-

gen sites, a particular linear combination of the four ligand oxygen orbitals

around a copper orbital forms a singlet with that orbital, the so-called Zhang

Rice singlet [26]. By discarding all other linear combinations of the oxygen

orbitals, one arrives at an effective single-band model where the Zhang Rice

singlet (ZRS) combines the hole’s charge degree of freedom with the copper

ion’s spin degree of freedom into a singlet object. This object then hops in

the antiferromagnetic (AFM) background of the copper sites and gives rise

to the so-called tJ-model, where t refers to the single-band hopping and J to

the exchange interaction of the AFM background. As it turns out, the tJ-

model itself does not adequately describe the single-particle dispersion of the
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1.4. Outline

hole-doped cuprates. To obtain agreement with experiments, longer range

hopping is added to the model to arrive at the t-t′-t′′-J model. With this

extended model, quantitative agreement with the experimental dispersion is

reached for a suitable choice of the parameters.

While these models have received considerable attention from the physics

community [26–34], a clear and convincing picture of superconductivity in

the cuprates has still not emerged. There is some evidence that one-band

models fail to capture the essential physics of the cuprates. However, we still

need to simplify the Hamiltonian (1.15). This is achieved in two steps: First,

we apply the Udd →∞ limit to the three-band Emery model instead of the

single-band Hubbard model. The resulting model contains a variety of inter-

esting higher-order effective terms which will be discussed in Chapter 5. It

has been studied numerically via exact diagonalization in Bayo Lau’s disser-

tation [6]. A further significant approximation was made by Hadi Ebrahim-

nejad [3, 5]; it neglects spin-fluctuations between the copper holes. While

these fluctuations are important in the t − J model, he showed that they

play only a very little role in the Emery model. This approximations allows

for a variational approach much like MA in the phonon case, where the vari-

ational space restricts the number of magnons present in the system. Good

qualitative convergence is obtained for even just one magnon, and excellent

quantitative convergence is obtained for two magnons, as demonstrated in

Fig. 1.6.

Curiously, despite being based on vastly differing physics, these single-

and many-band models agree on the single-particle dispersion. It is there-

fore not quite clear which of them more appropriately describes the cuprate

physics. In Chapter5, we consider an extension to the cuprates based on the

newly synthesized tetragonal copper oxide T-CuO. We show how careful ex-

periments with this material can settle this longstanding modeling question.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses

in detail the single-polaron physics of the nonlinear Holstein model. We
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Figure 1.6: E(k) along several cuts of the Brillouin zone for the three-band
model in the variational approximation described in [3, 5] with (a) at most
2 magnons and (b) at most 3 magnons. Circles show exact diagonalization
results from [6] for a cluster of 32 copper and 64 oxygen orbitals. Full
lines show the results from the variational approximation, neglecting spin
fluctuations. The overall agreement is excellent and can be further improved
by including local spin fluctuations [5].
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1.4. Outline

find that at moderate to strong linear coupling, the addition of even small

quadratic terms drastically alters the polaron properties. Chapter 3 intro-

duces a special variation of the nonlinear Holstein model, the double-well

electron-phonon coupling model. In this model, the presence of a charge car-

rier switches the local lattice potential from a single- to a double-well. We

study in detail the single-polaron properties of this model and find that they

cannot be described with an effective linear Holstein model. We continue

the study of this model in Chapter 4, where we investigate the bi-polaron,

a bound state made of two charge carriers and a cloud of phonons. Our

results here indicate that realistic parameter regimes exist for which the bi-

polaron is strongly bound yet lightweight, in contrast to the results of other

el-ph coupling models where the bi-polaron’s mass increases drastically the

stronger it is bound. Finally, in Chapter 5 we study a system where the

relevant bosons are magnons instead of phonons; for a layer of tetragonal

copper oxide (T-CuO) we study the dispersion of a single hole doped into the

oxygen orbitals. Here, our finding is that the small inter-sublattice hopping

sufficiently changes the symmetry properties of the resulting quasiparticle (a

spin-polaron) from those of CuO2 that experimental studies of T-CuO will

be able to settle longstanding questions regarding the single-particle physics

of the underdoped cuprates.
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Chapter 2

Nonlinear Holstein model

In this chapter, we introduce a generalized Holstein model with nonlinear

electron-phonon couplings. The model is then studied with the momentum-

average approximation. We find that the inclusion of even small non-linear

terms can have drastic effects on the properties of the system. This chapter

also provides further review of the momentum average approximation.

2.1 Introduction

Coupling of carriers to phonons and the properties of the resulting quasipar-

ticles, the polarons, are important for many materials, e.g. organic semicon-

ductors [35, 36]. cuprates [37–42], manganites [43], two-gap superconductors

like MgB2 [44–47], etc. In some cases the effective electron-phonon (el-ph)

coupling λ is known quite accurately. For others, like the cuprates, esti-

mates range from very small (λ ∼ 0.3) to very large (λ ∼ 10) [48, 49]. One

possible explanation for this is that, especially for stronger couplings where

simple perturbational expressions are no longer valid, properly fitting the

experimental data to theoretical models can be quite involved [50].

Here we consider another possible explanation, namely that at strong

el-ph coupling, simple theoretical models may not be valid anymore.

As mentioned in the introduction to this thesis, all widely-used models

[11, 51] assume at the outset that the displacements xi of the atoms out

of equilibrium are small enough to justify expanding the electron-lattice in-

teractions to linear order in xi. These linear models generically predict the

formation of small polarons or bipolarons at strong coupling, with the car-

rier(s) surrounded by a robust phonon cloud. As a result, lattice distortions

〈xi〉 are considerable near the carrier(s). Hence, the linear models are based
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2.1. Introduction

on assumptions which are in direct opposition to their predictions.

In this chapter we investigate this issue in the single polaron limit, rele-

vant for the study of weakly doped materials like very underdoped cuprates

[52, 53] and organic semiconductors [35, 36], and for cold atoms/molecules

simulators [54–57]. We study the ground-state (GS) of a single polaron in a

generalized Holstein model including el-ph coupling up to quartic order in

xi to test the importance of the higher order terms. We find that for strong

linear coupling even very small quadratic terms drastically change the prop-

erties of the polaron. Moreover, we show that these effects go beyond a

mere renormalization of the parameters of the linear Holstein model. As a

result, attempts to find effective parameters appropriate for a linear model

by using its predictions to fit the properties of real systems are doomed to

failure, as different values will be obtained from fitting different properties.

This offers another possible explanation for the wide range of estimates of

the el-ph coupling in some materials. More importantly, it means that we

must seriously reconsider how to characterize such interactions when they

are strong. Furthermore, this calls for similar investigations of the validity

of these linear models at finite carrier concentrations, since it is reasonable

to expect that they also fail in the strong coupling limit.

To the best of our knowledge, we present here the first systematic, non-

perturbative study of the importance of higher-order el-ph coupling terms

on single polaron properties. We note that in previous work going beyond

linear models, purely quadratic (no linear term) but weak el-ph coupling

was discussed for organic metals using perturbation theory [58, 59], while

linear and quadratic el-ph coupling was studied in the context of high-TC

superconductivity in Ref. [60]. A semi-classical study of some non-linear

coupling potentials was carried out in Ref. [61].

This chapter is organized as follows: in Section 2.2 we introduce and

motivate the nonlinear Holstein model in more detail than we did in the

introduction. In Section 2.3 we show the modifications to the momentum

average approximation necessary to solve the model. The results are dis-

cussed in Section 2.4. An outlook and concluding remarks are given in

Section 2.5.
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2.2. Model

2.2 Model

We start this section with stating the model Hamiltonian for the generalized

nonlinear Holstein model introduced in [62] and the introduction.

H = Hel +Hph +Hel−ph, (2.1)

The remainder of this section will derive, motivate and explain these terms.

The Holstein Hamiltonian models a charge carrier in a molecular crystal

like the 1D example sketched in Fig. 2.1(a). A charge carrier introduced in

such a crystal hops between “molecules”, as described by

Hel =
∑
k

εkc
†
kck, with εk = −2t

d∑
α=1

cos(kα) (2.2)

for nearest-neighbor hopping on a d-dimensional simple cubic lattice.

Fig. 2.1(b) illustrates how the lattice part is handled. In the absence of

a carrier, the potential has some form (curve I) which is approximated as a

parabola and leads to Hph = Ω
∑

i b
†
ibi . This describes harmonic oscillations

of each “molecule” about its equilibrium distance R. If a carrier is present,

the potential has some other form (curve II). The difference between I and

II leads to Hel−ph. Its details are material specific; here we propose two

models and choose a generic form based on them.

The first model assumes that the carrier occupies an orbital of the ion

with opposite charge. The attraction between them is then some constant,

whereas the Coulomb repulsion between the carrier and the ion of like charge

is

U(xi) =
U0ni

1− xi
R

= U0ni

∞∑
n=0

(xi
R

)n
where ni = 1 (ni = 0) if the carrier is (is not) present and U0 > 0 is the

characteristic energy. Using the expression of the position operator in terms

of the phonon creation and annihilation operators, xi =
√

h̄
2µΩ(bi+b

†
i ) where

µ is the reduced mass of the molecule, and truncating the series at n = 4
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Figure 2.1: (a) Sketch of a 1D chain of polar molecules; (b) The potential
of the pair with (II) or without (I) an extra charge carrier (full lines) is
approximated by a polynomial (thick dashed lines)

leads to:

Hel−ph =

4∑
n=1

H(n)
el−ph =

4∑
n=1

gn
∑
i

c†ici(bi + b†i )
n, (2.3)

where gn = g1ζ
n−1 with ζ = A/R and A =

√
h̄/(2µΩ) the zero-point

amplitude of the harmonic oscillator.

The second model assumes that the carrier is an electron (hole) that

occupies an anti-bonding (bonding) orbital of the molecule; all bonding or-

bitals are initially full since the parent crystal is an insulator. In both cases

the energy increases by an overlap integral which decreases exponentially

with the distance:

U(xi) ∼ nie
−R−xi

aB (2.4)

where aB is the Bohr radius. A Taylor expansion to fourth order in xi leads

again to Eq. (2.3) but now

gn
g1

= 2n−1 ζ
n−1

n!
for ζ =

g2

g1
=

A

2aB
, (2.5)

where again A =
√
h̄/(2µΩ).

We define the following special cases:

Linear model The case where only g1 6= 0. This is the standard Holstein

model.
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Quadratic model The case where only g1 6= 0 and g2 6= 0.

Quartic model The case where all gn 6= 0 for n ≤ 4.

The case with only g4 = 0 is not considered because it is unstable: A

polynomial with degree 3 will always diverge to −∞ for one of the directions

x→ ±∞.

As discussed in the introduction, the linear Holstein model is charac-

terized by two dimensionless parameters: the effective coupling strength

λ = g2
1/(2dtΩ), where d is the dimension of the lattice, and the adiabaticity

ratio Ω/(4dt). As long as the latter is not very small, the former controls

the phenomenology, with the crossover to small polaron physics occurring

for λ ∼ 1 [63]. For ease of comparison, we continue to use these parameters

when characterizing the higher order models. For the quadratic model, the

new energy scale g2 results in a third dimensionless parameter ζ = g2/g1.

For the quartic model there are two more parameters gn/g1, n = 3, 4. Both

scale like ζn−1 but with different prefactors. We use gn/g1 = ζn−1 like in

the first model since for the second model the prefactors are less than 1,

making these terms smaller and thus less important.

For specificity, from now we assume ζ > 0 (ζ < 0 is briefly discussed

at the end of this chapter, and extensively in later chapters). As we show

below, in this case we find that while quadratic terms are important when

the linear coupling is large, addition of the n = 3, 4 terms only leads to

small quantitative changes and can be ignored. This justifies a posteriori

why we do not include anharmonic corrections in Hph and/or higher order

terms with n > 4 in the electron-phonon coupling.

2.2.1 Summary of model assumptions

Recalling the caveat for model Hamiltonians, we summarize here the as-

sumptions that went into the model Hamiltonian and give their justification.

First, quartic terms in the free-phonon part of the Hamiltonian were

neglected. This will be justified a posteriori by the results, which will show

that quartic terms in the el-ph coupling have only a small effect on the

polaron properties.
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Second, the coefficients gn follow a power-law dependence on the linear

coupling, gn ∼ ζn−1g1. This is motivated by observing this relation for two

different physical origins of electron-phonon coupling.

Finally, we assume ζ > 0. This is not so much a model assumptions as

it is a focus on one region of parameter space. The case of ζ < 0 will be

explored in the next chapter.

2.3 Formalism

We now describe in detail the MA solution for the quadratic model. The

calculations for the quartic model are analogous but much more tedious.

We want to find the single particle Green’s function

G(k, ω) = 〈0|ckĜ(ω)c†k|0〉 (2.6)

where Ĝ(ω) = [ω − H + iη]−1 is the resolvent for this Hamiltonian, with

η → 0 a small positive number and |0〉 the vacuum state. From this we

can extract all the polaron’s GS properties [12]. We rewrite the quadratic

Hamiltonian as H = H0 +H1, where

H0 = Hel +Hph + g2

∑
i

c†ici

(
2b†ibi + 1

)
(2.7)

H1 =
∑
i

c†ici

[
g1(b†i + bi ) + g2(b†2i + b2i )

]
. (2.8)

The equation of motion (EOM) for the propagator is obtained recursively

from Dyson’s identity,

Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)H1Ĝ0(ω) (2.9)

where Ĝ0(ω) = [ω −H0 + iη]−1 is the resolvent for H0. Using it in G(k, ω)

yields the EOM

G(k, ω) = G0(k, ω)

[
1 +

2∑
n=1

∑
i

eik·ri√
N
gnFn(k, ω; i)

]
(2.10)
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where Fn(k, ω; i) = 〈0|ckĜ(ω)c†i (b
†
i )
n|0〉, which we call a generalized propa-

gator.

So far, everything has been exact and very similar to the treatment of

the linear Holstein model in Chapter1, with the exception that our H0 is

slightly more complicated, since in addition to free electron propagation it

also contains a potential scattering term off the phonons. Following the

basic steps of the momentum average approximation (MA) [12, 13] we let

g̃0(ω) =
1

N

∑
k

1

ω − εk + iη
(2.11)

denote the momentum averaged propagator of a free particle with dispersion

εk. Now consider the propagator associated with H0 in real space:

G0(i− j, ω;n) =
1

n!
〈0|cib

n
i Ĝ0(ω)(b†i )

nc†i |0〉 . (2.12)

This is the on-site real-space propagator of an otherwise free carrier being

scattered by the on-site potential 2g2n while there are n phonons in the

system, as described by (2.7). We show in B.1 that for i = j, we have

G0(i− j = 0, ω;n) =

[
1

g̃0(ω − nΩ− g2)
− 2g2n

]−1

. (2.13)

The momentum average approximation now consists of setting

G0(i− j, ω;n) ≈ δijG0(i− j, ω;n) = ḡ0(ω;n) for any n ≥ 1. (2.14)

with ḡ0(ω;n) = g̃0(ω − nΩ − g2). In words, the real-space free propagator

appearing in the higher-order iterations of Dyson’s identity is approximated

as being purely on-site. This is justified because the polaron GS energy

lies below the free particle spectrum, and for such energies the free-particle

propagator decreases exponentially with |i− j|. Thus, MA keeps the largest

contribution and ignores the exponentially smaller ones. This becomes exact

in the strong-coupling limit t → 0. Since phonon creation and annihilation

is contained within H1, the effect of this approximation is that new phonons
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2.3. Formalism

can only be created at a site where there already are phonons. At this level

of approximation, MA can be viewed as a variational method where only

states of the form ∑
ij

c†i

(
b†j

)n
|0〉 (2.15)

are considered, i.e., states with at most one single-site phonon cloud.

By eliminating propagators that take the carrier away from the phonon

cloud, MA allows us to obtain a simplified hierarchy of EOM involving only

the generalized Green’s functions Fn. For any n ≥ 1, they read:

Fn(k, ω; i) = ḡ0(ω;n) ·
[
n(n− 1)g2Fn−2(k, ω; i)

+ ng1Fn−1(k, ω; i) + g1Fn+1(k, ω; i) + g2Fn+2(k, ω; i)
]
.

Since the arguments of all Fn propagators are the same, we suppress them

in the following for simplicity. The important achievement is that now each

generalized propagator is linked via its EOM to only a finite set of generalized

propagators.

In the original MA approach for the linear Holstein model, the EOM

coupled the generalized propagator of order n to those of orders n ± 1.

Here, now the connection is to propagators of orders n ± 1, n ± 2. As a

consequence, the EOM cannot be reduced to a simple continued fraction

anymore. Instead, we will obtain a continued matrix fraction: Following the

technique introduced in Ref. [2], we reduce these EOMs to a simple recursive

relation. This is achieved by introducing a vector Wn = (F2n−1, F2n). The

EOM for Wn are γnWn = αnWn−1 + βnWn+1, where the αn, βn and γn

are 2× 2 matrices whose coefficients are read off of the EOM, namely

αn|11 = (2n− 1)(2n− 2)g2ḡ0(ω; 2n− 1), (2.16)

αn|12 = (2n− 1)g1ḡ0(ω; 2n− 1), (2.17)

αn|21 = 0, (2.18)

αn|22 = 2n(2n− 1)g2ḡ0(ω; 2n), (2.19)
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2.3. Formalism

while

βn =

(
g2ḡ0(ω; 2n− 1) 0

g1ḡ0(ω; 2n) g2ḡ0(ω; 2n)

)
, (2.20)

γn =

(
1 −g1ḡ0(ω; 2n− 1)

−2ng1ḡ0(ω; 2n) 1

)
. (2.21)

This simple recursive relation for Wn has the solution Wn = AnWn−1 for

any n ≥ 1, where An are 2×2 matrices obtained from the infinite continued

fraction

An = [γn − βnAn+1]−1 αn. (2.22)

In practice, we start with AN = 0 for a sufficiently large cutoff N , chosen so

that the results are insensitive to further increases in it (N ∼ 100 is usually

sufficient).

We find A1 =

(
0 a12

0 a22

)
, where a12 and a22 are obtained after using

Eq. (2.22) N − 1 times. As a result, F1 = a12F0, F2 = a22F0, where

G(k, ω) =
∑
i

eik·ri√
N
F0(k, ω; i). (2.23)

Using these in Eq. (2.10) leads to a solution of the form

G(k, ω) =
1

ω − εk − Σ(ω) + iη
, (2.24)

with the MA self-energy for the quadratic model:

Σ(ω) = g1a12(ω) + g2a22(ω). (2.25)

The reason why the self-energy is local at this level of MA is the simplic-

ity of this Hamiltonian, whose vertices are momentum independent; this

issue is discussed at length for the linear Holstein model in Ref. [13]. At

this point, we emphasize that MA is not equivalent – let alone inferior – to

Dynamical Mean Field Theory. The latter always leads to a momentum-

independent self-energy, whereas MA – even at its simplest level – achieves
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2.4. Results and discussion

momentum dependence for more complicated models, and becomes momen-

tum dependent for even the simple Holstein model when higher orders of

the approximation are used.

The quartic model is solved analogously. The main difference is that here

the EOM for Fn involves 9 consecutive terms, from Fn−4 to Fn+4. These

can also be rewritten as simple recurrence relations γnWn = αnWn−1 +

βnWn+1, but now αn, βn and γn are 4× 4 matrices. Their expressions are

too long to be listed here, but they can be found in Appendix B.2.

2.4 Results and discussion

To gauge the relevance of the higher-order el-ph coupling terms we plot in

Fig. 2.2 the evolution with ζ of a polaron property that can be directly

measured, namely the quasiparticle weight Z = m/m∗ where m,m∗ are

the carrier and the polaron mass, respectively. We also show the average

phonon number Nph. The results are for a one-dimensional chain. Results

in higher dimensions are qualitatively similar to these 1D results for small

λ, and become quantitatively similar to them in the interesting regime of

large λ where all of them converge towards those of the atomic limit t = 0.

First, we note that the ζ = 0 intercepts trace the predictions of the linear

model: with increased coupling λ, Z decreases while Nph increases as the

polaron acquires a robust phonon cloud [63, 12]. From these intercepts, we

estimate that the linear model predicts the crossover to the small polaron

regime to occur around λ ∼ 1.5 for this adiabaticity ratio and dimension.

The quadratic model, whose predictions are indicated by lines, shows a

very strong dependence of ζ for strong linear coupling λ ≥ 1.5: here both Z

and Nph vary by about an order of magnitude as ζ increases from 0 to 0.1.

For higher ζ, Z and Nph have a slight turnaround towards smaller/larger

values, for reasons explained below, but are still consistent with a large

polaron. These results indicate that the quadratic term can completely

change the behavior of the polaron in the limit of medium and large λ. For

example, in the quadratic model at λ = 1.5 and ζ ∼ 0.1 the polaron is light

and with a small phonon cloud, in total disagreement with the linear model
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2.4. Results and discussion

prediction of a heavy small polaron at this λ.

Of course, this raises the question of how large ζ is. The answer is

material specific, but as an extreme case, let H2 be the unit of the molecular

crystal. This case is described by model two, so ζ ∼ 2A/aB, where aB ≈
0.5Å while A ≈ 0.1Å if we use Ω ≈ 0.5eV appropriate for a H2 molecule

[64]. This leads to a very large ζ ∼ 0.4. Other atoms are heavier but phonon

frequencies are usually much smaller than 0.5eV , so it is not clear whether

A ∼ 1/
√
µΩ changes much. The Bohr radius (or distance R between atoms,

for model 1) is usually larger than 0.5Å but not by a lot, maybe up to a

factor 5 for R; thus we expect smaller ζ in real materials but the change is

likely not by orders of magnitude. Fig. 2.2 shows that values as small as

ζ ∼ 0.05 already lead to significant quantitative changes in m∗.

Inclusion of cubic and quartic terms (the symbols show the results of

the quartic model) further changes Z and Nph, but these changes are much

smaller for all ζ, of up to ∼ 10% when compared to the quadratic model

values, as opposed to order of magnitude changes between the quadratic

and the linear models. Thus, these terms are much less relevant and can

be ignored without losing much accuracy. As discussed, their small effect

explains why we do not consider terms with even higher order n, nor n = 4

anharmonic terms in the phonon Hamiltonian.

2.4.1 Atomic limit

To understand the effects of the quadratic term at large λ, we study it

in the atomic limit t = 0 (λ = ∞) where the carrier remains at one site

and interacts only with the phonons of that site. Focusing on this site, its

quadratic Hamiltonian H(2)
at = Ωb†b+

∑2
n=1 gn(b†+b)n is well-studied in the

field of quantum optics, where it describes so-called squeezed coherent states

[65]. The extra charge changes the origin and spring constant of the original

harmonic oscillator which means that the Hamiltonian is easily diagonalized

by changing to new bosonic operators γ† = ub† + vb+ w, where u, v and w
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number (right panel) vs. ζ, in the quadratic (n = 2, lines) and quartic
(n = 4, symbols) models, for various values of λ and Ω = 0.5t, in one
dimension.
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are such that H(2)
at = Ωatγ

†γ + E
(at)
GS . We find

Ωat =
√

Ω(Ω + 4g2) (2.26)

u =
√

(Ω + 2g2 + Ωat) /(2Ωat) (2.27)

w = g1

√
Ω/Ω3

at (2.28)

v = sgn(g2)
√

(Ω + 2g2 − Ωat) /(2Ωat). (2.29)

From these, we obtain

Eat
GS = −g

2
1Ω

Ω2
at

+
1

2
(Ωat − Ω) (2.30)

N
(at)
ph =

1

2

[
Ω + 2g2

Ωat
− 1

]
+

g2
1

(Ω + 4g2)2
(2.31)

Zat =
1

u
exp

[
−w2

(
1− v

u

)]
. (2.32)

The latter result requires the expansion of the squeezed coherent states in

the number state basis [66].

Figure 2.3 shows Zat and N
(at)
ph vs. ζ (thick lines), which agree well with

the corresponding λ = 2 results of Fig. 2.2. In particular, for ζ → 0 we find

Ωat = Ω + 2g1ζ +O(ζ2) (2.33)

N
(at)
ph =

g2
1

Ω2

[
1− 8g1

Ω
ζ +O(ζ2)

]
(2.34)

explaining their linear increase/decreases for small ζ.

The slight turnaround of the Z and Nph curves at larger values of ζ

is also observed in the atomic limit of the quadratic model. The reason

is that the first term in N
(at)
ph increases whereas the second term decreases

with ζ. As discussed above, for small ζ the second term dominates and

the overall number of phonons decreases. For large ζ, however, the second

term vanishes whereas the first term diverges as
√
g2 =

√
ζg1. Hence, as ζ

increases Nat
ph has a minimum, and then starts to increase with ζ. Basically,

here the g2(b†2+b2) coupling dominates over the linear coupling g1(b†+b) and
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changes the trend. Physically, at small ζ the dominating effect is a narrowing

of the harmonic potential, making phonons more costly to generate. At even

larger ζ, the effect of shifting the origin to a new position dominates.

This leads us to pose the question whether these exact results of the

quadratic atomic model can be fit well by an effective linear model H(1)
at =

Ω̃b†b+ g̃(b†+b), for some appropriate choice of the effective parameters Ω̃, g̃.

One way to achieve this is with a mean-field ansatz

b†2 ≈ 2〈b†〉b† − 〈b†〉2, (2.35)

with 〈b†〉 the GS expectation value of b†. The self-consistency condition

〈b†〉 = −g1 + 2g2〈b†〉
Ω + 2g2

(2.36)

leads to the mean-field estimates

Ω̃MF = Ω + 2g2 g̃MF = g1 −
2g1g2

Ω + 4g2
. (2.37)

Thus, for small ζ = g2/g1, Ω̃MF increases whereas g̃MF decreases with in-

creasing ζ so the effective coupling λ̃ = g̃2/(2dtΩ̃) decreases with ζ. This is

consistent with the observed move away from the small polaron limit with

increasing ζ. Quantitatively, however, these mean-field results (dashed lines

in Fig. 2.3) are not very accurate for small ζ, and fail to capture even qual-

itatively the correct behavior when ζ � 1, since here N
(at)
ph → ∞ while

N
(MF )
ph = g̃2

MF/Ω̃
2
MF → 0.

In fact, there is no choice for effective linear parameters g̃ and Ω̃ that

reproduces the results of the quadratic model. This is because in the linear

model, both Z̃ and Ñph are functions of g̃/Ω̃ only. Fig. 2.3 shows that if one

chooses this ratio so that N
(at)
ph = Ñph, then Z̃ (dot-dashed line in the left

panel) disagrees with Zat, and vice versa. Even more significant is the fact

that even if one could find a way to choose g̃, Ω̃ so that the overall agreement

is satisfactory for all GS properties, the linear model’s prediction for higher

energy features would still be completely wrong. For example, it would
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predict the polaron+one-phonon continuum to occur at EGS + Ω̃ instead

of the proper EGS + Ω threshold. Since in the atomic limit the predictions

of the quadratic model cannot be reproduced with a renormalized linear

model, we conclude that this must hold true at finite hopping t as well, at

least for large λ where the quadratic terms are important.

So far we discussed moderate values of the adiabaticity ratio Ω/t = 0.5,

as well as the anti-adiabatic (atomic) limit. MA predicts similar results in

the adiabatic limit Ω/t → 0 for large λ, where it remains accurate, but is

unsuitable to study small and moderate couplings [13]. We expect that here

the quadratic coupling is essential even for small couplings λ → 0, because

the term 2g2
∑

i b
†
ibi ensures that phonons are gapped even though Ω = 0.

2.4.2 Negative nonlinear term

So far we also only discussed the case ζ > 0. The behavior of models with

ζ < 0 can be glimpsed at from the exact results in the atomic limit. For

small negative ζ, the results listed above show that the average phonon

number N
(at)
ph increases with |ζ| while the qp weight Zat decreases fast, i.e.

the polaron moves more strongly into the small polaron limit. This is in

agreement with the MA predictions for the quadratic model (not shown).

Here, however, we must limit ourselves to values |ζ| < Ω/(4g1) so that Ωat

remains a real quantity (a similar threshold is found for the full quadratic

model. Note that the value of this threshold decreases with increasing λ).

For values of |ζ| above this threshold the quadratic model becomes unsta-

ble. This, of course, is unphysical. In reality, here one is forced to include

higher order (anharmonic) terms in the phonon Hamiltonian Hph since they

guarantee the stability of the lattice if the quadratic terms fail to do so.

Such anharmonic terms may have little to no effect in the absence of the

carrier, but clearly become important in its presence, in this limit. They

can be treated with the same MA formalism we used here. Their effects,

as well as a full analysis of all possible signs of the non-linearities and the

resulting polaron physics will be presented in the next chapter. For now, it

is obvious that in the case ζ < 0, higher order terms in el-ph coupling also
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play a key role in determining the polaron properties unless λ is very small,

and therefore cannot be ignored.

2.4.3 Small carrier concentrations

The results presented so far clearly demonstrate the importance of non-linear

el-ph coupling terms if the linear coupling λ is moderate or large, through

their significant effects on the properties of a single Holstein polaron.

A reasonable follow-up question is whether such dramatic effects are lim-

ited to the single polaron limit or are expected to extend to finite carrier

concentrations. While the limit of large carrier concentrations cannot be

tackled with our approach, here we present strong evidence that quadratic

terms are likely to be equally important at small but finite carrier concen-

trations.

Of course, for finite carrier concentrations one needs to supplement the

Hamiltonian with a term describing carrier-carrier interactions. The sim-

plest such term is an on-site Hubbard repulsion HU = U
∑

i ni↑ni↓, and

gives rise to the Hubbard-Holstein Hamiltonian. The linear version of this

Hamiltonian has been studied extensively by a variety of numerical meth-

ods [63]. In particular, for low carrier concentrations and focusing on the

small polaron/bipolaron limit, the phase diagram has been shown to con-

sist of three regions: (i) for large λ and small U , the deformation energy

favours the formation of on-site bipolarons, also known as the S0 bipolarons;

(ii) increasing U eventually makes having two carriers at the same site too

expensive, and the S0 bipolarons evolve into weakly-bound S1 bipolarons,

where the two carriers sit on neighboring sites. The binding is now provided

by virtual hopping processes which allow each carrier to interact with the

cloud of its neighbor. However, at smaller λ and larger U this binding mech-

anism is insufficient to stabilize the S1 bipolaron, and instead one finds (iii)

a ground state consisting of unbound polarons.

This phase diagram has been found numerically in 1D [67] and 2D [68]

for the linear Hubbard-Holstein model. Some results in 3D have also become

available very recently [69]. In 1D and 2D, the separation lines between the
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various phases are found to be close to those estimated using second order

perturbation theory in the hopping t, starting from the atomic limit [67, 68].

This is expected since for large linear coupling λ, the results always converge

toward those predicted by the atomic limit.

Since the quadratic Hamiltonian can be diagonalized exactly in the

atomic limit, we use second order perturbation theory to estimate the lo-

cation of the separation lines for various values of ζ > 0. The results are

shown in Fig. 2.4. Panel (a) shows the rough phase diagram for ζ = 0, in

agreement with the asymptotic estimates shown in Refs. [67, 68] (note that

the definition of the effective coupling used in those works differs by vari-

ous factors from our definition for λ). Panels (b)-(d) show a very significant

change with increasing ζ. Even the presence of an extremely small quadratic

term ζ = 0.01 moves the two lines to considerably lower U values, as shown

in panel (b), while for ζ = 0.05 and 0.1, the bipolarons are stable only in a

very narrow region with small values of U (note that the vertical axes are

rescaled for panels (c) and (d)).

The dramatic change with increasing ζ in the location of these asymp-

totic estimates for the various bipolaron transitions/crossovers strongly sug-

gests that non-linear el-ph coupling terms remain just as important in the

limit of small carrier concentrations as they have been shown to be in the

single polaron limit. In particular, these results suggest that the presence

of non-linear el-ph coupling terms leads to a significant suppression of the

phonon-mediated interaction between carriers, so that the addition of a small

repulsion U suffices to break the bipolarons into unbound polarons (whose

properties are also strongly affected by the non-linear terms, as already

shown).

Since publication of the work reported in this chapter, research carried

out by Steve Johnston has used quantum Monte Carlo methods to study

the nonlinear Holstein model at finite carrier concentration [70, 71]. They

find that in a two-dimensional Hubbard model, Charge-Density-Wave corre-

lations are dramatically suppressed, even for small non-linear terms. Their

findings confirm our earlier remarks that non-linear terms remain important

at finite carrier concentration.
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2.4.4 Other types of el-ph coupling

The Holstein model is the simplest example of a g(q) model, i.e. a model

where the electron-phonon interaction depends only on the momentum of

the phonon. Physically, such models appear when the coupling to the lattice

manifests itself through a modulation of the on-site energy of the carrier.

The Fröhlich model is another famous example of g(q) coupling. Models

of this type are found to have qualitatively similar behavior, with small

polarons forming when the effective coupling increases. These small polarons

always have robust clouds, with significant distortions of the lattice in their

vicinity. We therefore expect that non-linear terms become important for

all such models at sufficiently large linear coupling.

2.5 Concluding remarks

To summarize, we have shown that non-linear terms in the el-ph coupling

must be included in a Holstein model if the linear coupling is large enough

to predict small polaron formation, and that doing so may very significantly

change the results. We also argued that these changes cannot be accounted

for by a linear Holstein model with renormalized parameters. These results

show that we have to (re)consider carefully how we model interactions with

phonons (more generally, with any bosons) in materials where such inter-

actions are expected to be strong, at least for models where this coupling

modulates the on-site energy of the carriers.
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Chapter 3

Quadratic Holstein model

In this chapter, we show that in crystals where light ions are symmetrically

intercalated between heavy ions, the electron-phonon coupling for carriers

located at the light sites cannot be described by a Holstein model. We

introduce the double-well electron-phonon coupling model to describe the

most interesting parameter regime in such systems, and study it in the single

carrier limit using the momentum average approximation. For sufficiently

strong coupling, a small polaron with a robust phonon cloud appears at low

energies. While some of its properties are similar to those of a Holstein

polaron, we highlight some crucial differences. These prove that the physics

of the double-well electron-phonon coupling model cannot be reproduced

with a linear Holstein model.

3.1 Introduction

We recall that in most standard electron-phonon coupling models, it is as-

sumed that the electron-phonon coupling is linear in the lattice displace-

ments. This is a natural assumption because if the displacements are small,

the linear term is the most important contribution. However, the coefficient

of the linear term of the Holstein-like local electron phonon coupling may

vanish due to symmetries of the crystal. In such cases, the most important

contribution is the quadratic term.

Here we introduce, motivate and study in detail a Hamiltonian describing

such quadratic electron-phonon (e-ph) coupling relevant for many common

crystal structures, consisting of intercalated sublattices of heavy and light

atoms. We focus on the single carrier limit and the parameter regime where

the carrier dynamically changes the effective lattice potential from a single-
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well to a double-well; hence, we call this the double-well e-ph coupling. We

use the momentum-average approximation[1, 12] to compute the properties

of the resulting polaron with high accuracy. We find that although the

polaron shares some similarities with the Holstein polaron, it also differs

in important aspects. Indeed, we show that the physics of the double-well

e-ph coupling model cannot be described by a renormalized linear Holstein

model.

To the best of our knowledge, this is the first systematic, non-perturbative

study of such a quadratic model. In the previous chapter and in [62] we

studied the effect of quadratic (and higher) corrections added to a linear

term. Weak, purely quadratic coupling was studied using perturbation the-

ory in Refs. [58, 59]. Other works considered complicated non-linear lattice

potentials and couplings but treated the oscillators classically,[72, 73, 61]

or discussed anharmonic lattice potentials but for purely linear coupling

[74, 75]. Away from the single-carrier limit, the Holstein-Hubbard model

in infinite dimensions was shown to have parameter regions where the ef-

fective lattice potential has a double-well shape;[76–78] this was then used

to explain ferroelectricity in some rare-earth oxides. See [79] and references

therein. However, the effect of a double-well e-ph coupling on the properties

of a single polaron were not explored in a fully quantum-mechanical model

on a low-dimensional lattice.

This work is organized as follows: in Section 3.2 we introduce the Hamil-

tonian, motivate its use for relevant systems, and discuss all approximations

made in deriving it. In Section 3.3 we review the theoretical means by

which we study our Hamiltonian. In Section 3.4 we present our results, and

in Section 3.5 we give our concluding discussion and an outlook for future

work.

3.2 Model

The crystal structures of interest are illustrated in Fig. 3.1(a) for 1D, and

Fig. 3.1(b) for 2D cases. The 3D crystal would have a perovskite structure

but we do not discuss it explicitly because, as we show below, dimensionality
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ionic potential

no extra carrier with extra carrier

hopping

(a) (b)

Figure 3.1: Sketch of the crystal structures discussed in this work: (a) 1D
chain, and (b) 2D plane, consisting of light atoms (filled circles) interca-
lated between heavy atoms (empty circles). In the absence of carriers, the
ionic potential of a light atom is a simple harmonic well. In the presence
of a carrier, the ionic potential of the light atom hosting it remains an even
function of its longitudinal displacement, so the linear e-ph coupling van-
ishes. In suitable conditions the effective ionic potential becomes a double
well (see text for more details).

plays no strong role in determining the polaron properties.

The undoped compound is an insulator made of light atoms, shown as

filled circles, intercalated between heavy ones, shown as empty circles. To

zeroth order, the vibrations of the heavy atoms can be ignored while those

of the light atoms are described by independent harmonic oscillators Hph =

Ω
∑

i b
†
ibi , where bi annihilates a phonon at the ith light atom. (We set the

mass of the light ions M = 1, and also h̄ = 1). In reality there is weak

coupling between these oscillators giving rise to a dispersive optical phonon

branch. However, the dispersion can be ignored if its bandwidth is small

compared to all other energy scales. We do so in the following.

Consider now the addition of a carrier. If it occupies orbitals centered

on the heavy atoms, its coupling to the oscillations of the light atoms is

described by breathing-mode coupling models [80, 81, 14, 82]. Here we

are instead interested in the case where the carrier is located on the light

atoms. Such is the situation for a CuO2 plane as shown in Fig. 3.1(b),

since the parent compound is a charge-transfer insulator[23] so that upon

doping, the holes reside on the light O sites (of course, there are additional
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complications due to the magnetic order of the Cu spins; we ignore these

degrees of freedom in the following). The carrier moves through nearest-

neighbor hopping between light atoms: T̂ = −t
∑
〈i,j〉

(
c†icj + h.c.

)
, where

ci is the carrier annihilation operator at light atom i.

Given the symmetric equilibrium location of the light ion hosting the

carrier between two heavy ions, it is clear that the on-site e-ph coupling

cannot be linear in the displacement δxi of that light ion: the sign of the

displacement cannot matter. Thus, e-ph coupling in such a material is not

described by a Holstein model. This assertion is supported by detailed mod-

elling. For simplicity, we assume that the interactions with the neighboring

heavy atoms are dominant (longer-range interactions can be easily included

but lead to no qualitative changes). There are, then, two distinct contribu-

tions to the e-ph coupling:

Electrostatic coupling: The carrier changes the total charge of the light

ion it resides on. If the distance between adjacent light and heavy ions is

d, and if U(x) is their additional Coulomb interaction due to the carrier,

then the potential increases by U(d + δxi) + U(d − δxi). This is an even

function and thus has no linear (or any odd) terms in δxi. The coefficient

of the quadratic term (δxi)
2 can be either positive or negative, depending

on the charge of the carrier (electron or hole).

Hybridization: Even though charge transport is assumed to take place

in a light atom band, there is always some hybridization tlh allowing the

carrier to hop onto an adjacent heavy ion. If ∆ is the corresponding energy

increase, assumed to be large, then the carrier can lower its on-site energy

by −t2lh/∆ through virtual hopping to a nearby heavy ion and back. The

hopping tlh depends on the distance between ions; for small displacements

tlh(δx) ≈ tlh(1 + αδx) where α is some material-specific constant. Because

the light ion is centered between two heavy ions, such contributions add

to
−t2lh

∆

[
(1 + αδx)2 + (1− αδx)2

]
=
−2t2lh

∆

[
1 + α2(δx)2

]
. The potential is

again even in δx. In this case, the coefficient of the quadratic term is always

negative.
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Given that δxi ∼ bi + b†i , it follows that the largest (quadratic) contri-

bution to the e-ph coupling for such a crystal has the general form:

H(2)
e-ph = g2

∑
i

c†ici

(
bi + b†i

)2

where all prefactors have been absorbed into the energy scale g2, and the

sum is over all light ions. From the analysis above we know that g2 may

have either sign.

Physically, H(2)
e-ph shows that the presence of a carrier modifies the cur-

vature of its ion’s lattice potential, and thus changes the phonon frequency

at that site from Ω to Ωat =
√

Ω2 + 4Ωg2. If g2 > 0 then Ωat > Ω, making

phonon creation more costly. As we show in Appendix C.3, this leads to a

rather uninteresting large polaron with very weakly renormalized properties.

This is why in the following we focus on the case with g2 < 0.

We note at this point that what we have shown is that the linear term

of a Holstein-like model vanishes in these symmetric cases. The same is not

necessarily true for more complicated models of electron-phonon coupling.

As a simple example, if we include coupling of the carrier on one site to

phonons of the neighboring light atoms, the coupling will not be symmetric

in the neighboring sites’ displacements and thus retains a linear term. Such

linear terms arise whether this coupling is electrostatic in nature or due to

hybridization (see discussion above). These terms, however, are not included

in the original, linear, Holstein model as it is intended for cases where the

on-site terms are dominant. In this case, then, it is valid for us to also not

include them in the non-linear Holstein model. These longer-range terms

are likely to be smaller than the on-site terms we keep given that all these

interactions decrease quickly with distance. In particular, we do not expect

them to change the double-well physics we discuss.

For sufficiently negative g2, Ωat vanishes or becomes imaginary, i.e. the

lattice is unstable. This is unphysical; in reality the bare ionic potential

contains higher order terms that stabilize the lattice. This means that for

g2 < 0 we must include anharmonic (quartic) terms in the phonon Hamil-
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tonian and, for consistency, also in the e-ph coupling, so that

Hph = Ω
∑
i

b†ibi + Θ
∑
i

(b†i + bi )
4

H(4)
el-ph =

∑
n∈{2,4}

gn
∑
i

c†ici (b
†
i + bi )

n,

where Θ is the scale of the anharmonic corrections. In physical situations

Θ � Ω and 0 < g4 � |g2|, or the Taylor expansions would not be sensible

starting points.

The anharmonic terms in Hph make the total Hamiltonian unwieldy, be-

cause the phonon vacuum |0〉 is no longer the undoped ground-state, and

the new undoped ground state |0̃〉 has no simple analytical expression. In

order to be able to proceed with an analytical approximation, we argue that

these terms can be absorbed into the e-ph coupling; this is a key approxi-

mation of the model. The reasoning is as follows: At those lattice sites that

do not have a carrier, the quartic terms have little effect if θ � Ω. This

statement is verified by exact diagonalization of Hph. Results are shown

in Fig. 3.2 where we plot the overlap O = |〈0|0̃〉|2 (per site) between the

undoped ground-states with and without anharmonic corrections, as well as

the average number of phonons at a site of the undoped lattice. Even for

unphysically large values Θ/Ω ∼ 1, the overlap O remains close to 1 while

Nph � 1, showing that the undoped ground-state has not changed signifi-

cantly in the presence of anharmonic corrections. From now we ignore these

corrections at sites without an additional carrier.

However, for sites that have a carrier present, we cannot ignore the

anharmonic term: As discussed, it is crucial for stabilizing the lattice. Since

this term is similar to the quartic term in the e-ph coupling, they can both be

grouped together, resulting in the approximate Hamiltonian for our crystal:

H = T̂ + Ω
∑
i

b†ibi + g2

∑
i

c†ici

(
b†i + bi

)2

+ (g4 + Θ)
∑
i

c†ici

(
b†i + bi

)4
(3.1)
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Figure 3.2: (a) Overlap between the undoped ground-states with and with-
out anharmonic corrections, and (b) the average number of phonons per site
in the undoped system, due to anharmonic corrections, as a function of θ/Ω.
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with an effective quartic e-ph coupling term g4 + Θ, which from now on we

will simply call g4. This is the Hamiltonian that we investigate in this work.

Before proceeding, let us review what we are neglecting when we discard

the anharmonic corrections at the unoccupied sites. Besides ignoring the

change in the undoped ground state from |0〉 to |0̃〉 (which is a reasonable

approximation if θ/Ω� 1, as discussed), we also assume that only the e-ph

coupling can change the number of phonons in the system, whereas in the

full model the phonon number is also changed by anharmonic corrections.

This latter approximation is valid if the timescale for anharmonic phonon

processes τ4 ∼ 1/Θ is much longer than the characteristic polaron timescale

τp ∼ m∗/(mt), where m∗ is the effective polaron mass.

Let us briefly summarize the basic properties of the lattice potential,

which equals Ve(δx) = Ω2(δx)2/2 for sites without an extra carrier, and

Vc(δx) = Ω2
at(δx)2/2 + 4Ω2g4(δx)4 for sites with one carrier. If g2 > −Ω/4,

the first term describes a harmonic well with frequency Ωat and Vc(δx) de-

scribes a single well centered at δx = 0. If g2 < −Ω/4, however, Ωat becomes

purely imaginary. In this case, Vc(δx) becomes a double-well potential with a

local maximum at δx = 0. The two wells are centered at ±xeq = ±
√
−Ω−4g2
16Ωg4

.

For δx ≈ ±xeq we obtain Vc(δx) ≈ V (xeq) − Ω2
at(δx ∓ xeq)2, which locally

describes a harmonic well of frequency Ω2
eff = −2Ω2

at. Interestingly, this is

independent of g4, whose only role is to control the location and depth of

the two wells (they are further apart and deeper for smaller g4).

3.2.1 Summary of model assumptions

As in the previous chapter, we will summarize here the assumptions that

went into the model.

First, quartic terms of the free-phonon part of the Hamiltonian got ab-

sorbed into the el-ph coupling. We justify this by explicitly studying the

effect of quartic terms on the phonons and showing that they do not signifi-

cantly change the free-phonon behaviour, especially in the physical situation

of Θ� Ω.

Second, it is assumed that the timescale of these anharmonic processes
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is much slower than the polaronic timescale. We justify this as follows.

Assuming an overall small anharmonic contribution Θ, a light polaron will

certainly move on a faster timescale than 1/Θ. A heavy polaron, on the

other hand, implies that the carrier cannot travel far from the phonon cloud;

thus, anharmonic effects predominantly occur when the carrier is present,

and again the effect of free-phonon anharmonic terms can be neglected.

Finally, we assume that models exist where the quadratic coupling term

can be sufficiently negative. Since the hybridization term is always negative,

we show here a back-of-the-envelope calculation for the Coulomb term. For

our example, we assume a chain of hydrogen ions intercalated between some

unspecified heavier ions with charge +1, and that the charge carrier is an

electron. Assuming that longer range interactions are screened, the Coulomb

potential experienced by the extra charge carrier is then given by

U(δx) =
−e2

4πε0

[
1

a+ δx
+

1

a− δx

]
.

Here we set a ≈ 1Å, which is slightly larger than the length of a hydrogen

molecule. Expanding the potential to second order in δx provides us with

an estimate for g2. Assuming a phonon frequency of Ω = 0.5eV , just as in

the previous chapter, gives a zero-point amplitude of A ∼ 0.1Å and finally

leads to g2 ≈ −0.14eV , so the condition of g2 > −Ω/4 is satisfied. Again,

parameters will be slightly different in actual materials, but not by orders

of magnitude. It is thus very plausible that the double-well electron-phonon

coupling is realized in some materials.

3.3 Formalism

We want to find the single particle Green’s functionG(k, ω) = 〈0|ckĜ(ω)c†k|0〉,
where Ĝ(ω) = [ω − H + iη]−1 is the resolvent of Hamiltonian (3.1). From

this, we can obtain all the polaron’s ground state properties as well as its

dispersion [12].

Grouping terms in the Hamiltonian according to how they affect the
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phonon number, we rewrite

H = H0 +Hp +H2 +H4 (3.2)

with

H0 = T̂ + Ω
∑
i

b†ibi + g2 + 3g4 (3.3)

Hp =
∑
i

nib
†
ibi(2g2 + 6g4 + 6g4b

†
ibi) (3.4)

H2 =
∑
i

ni

[
(g2 + 6g4)(b†,2i + b2i ) + 4g4(b†,3i bi + b†ib

3
i )
]

(3.5)

H4 = g4

∑
i

ni

(
b†,4i + b4i

)
. (3.6)

We note that H0 and Hp conserve phonon number whereas H2 and H4

change it by ±2 and ±4, respectively. The constant g2 + 3g4 in H0 is

absorbed into ω in the following derivations, but plots of the spectral weight

will show actual energies.

One important property of this Hamiltonian is that it preserves the

phonon number parity on each site: because its terms only change the num-

ber of phonons by multiples of two, any eigenstate is a sum of basis states

having only even (or only odd) number of phonons. The Hilbert space can

thus be divided into an even and an odd (phonon number) sector, which

can be diagonalized separately. We emphasize that this symmetry is dif-

ferent from the parity symmetry under a global lattice inversion r → −r.

The latter has been studied extensively for the linear Holstein model [83],

where it was shown that polaron states with total momentum K = 0, π have

well defined (spatial) parity. The phonon number parity, on the other hand,

corresponds to a unitary transformation b†i → −b
†
i , i.e., a local inversion of

the phonon coordinates. The number parity symmetry also correlates with

the local spatial parity of the ions, since the spatial parity operator for site

i can be written as P̂i = exp(iπb†ibi).
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3.3.1 The even sector

We compute the Green’s function via the same continued matrix fractions

method[2] previously used by us to compute the Green’s function of a gen-

eralized Holstein model with linear and higher-order terms[62] within the

framework of the momentum average (MA) approximation. This approxi-

mation was shown to be highly accurate for models with Holstein coupling

[1, 12]. The reasons for this (such as obeying exact sum rules) can be verified

to hold for this model, too. To be specific, here we implement the MA(2)

flavor which allows us to also locate the continuum lying above the polaron

band. Recall from the introduction that this version of MA means that the

exact form of the free propagator is used for those orders of the Dyson series

where there are at most 2 phonons in the system [13].

We begin our derivation by dividing the Hamiltonian into H = H0 +

H1 with H1 = Hp + H2 + H4. Using Dyson’s identity Ĝ(ω) = Ĝ0(ω) +

Ĝ(ω)H1Ĝ0(ω), where Ĝ0(ω) = [ω −H0 + iη]−1, we obtain

G(k, ω) = G0(k, ω)
[
1+∑
i

eikRi

√
N

(g2 + 6g4)F1(k, ω; i, i) + g4F2(k, ω; i, i)
]

(3.7)

with Fn(k, ω; i, j) = 〈0|ckĜ(ω)ci(b
†
i )

2n−2(b†j)
2|0〉 being the generalized prop-

agator for a system with 2n phonons in total, 2n− 2 of them on site i with

the other two on site j. The difference between MA(2) and the original MA,

which we also call MA(0), is that for F1 we also use its exact equation of

motion (EOM),

F1(k, ω; i, j) = G(k, ω; j)G0(j − i, ω − 2Ω)(2g2 + 12g4)

+ F1(k, ω; j, j)G0(j − i, ω − 2Ω)(4g2 + 36g4)

+ 8g4F2(k, ω; j, j)G0(j − i, ω − 2Ω)+∑
l

G0(l − i, ω − 2Ω) [F2(k, ω; l, j)(g2 + 6g4) + F3(k, ω; l, j)g4] . (3.8)
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which is obtained by applying Dyson’s identity again, and introducing

G(k, ω; j) = 〈0|ckĜ(ω)c†j |0〉 , G0(j − i, ω) = 〈0|cjĜ0(ω)c†i |0〉 .

The equations of motion for the Fn propagators with n ≥ 2 are approximated

by replacing the free propagator G0(j−i, ω−2nΩ)→ δi,j ḡ0(ω−2nΩ), where

ḡ0(ω) = 1
N

∑
kG0(k, ω) is the momentum averaged free propagator. At low

energies this is a good approximation because G0(j − i, ω − 2nΩ) decays

exponentially with the distance |j − i| if ω − 2nΩ < −2dt in d dimensions.

This is also justified by the variational meaning of the MA approximations

already discussed. Essentially, MA(2) assumes that all phonons in the cloud

are at the same site but also allows for a pair of phonons to be created at a

site away from the cloud.

The resulting EOMs are different depending on whether i = j or i 6= j.

If we define F=
n (k, ω; i) = Fn(k, ω; i, i) and F 6=n (k, ω; i, j) = Fn(k, ω; i, j) for

i 6= j, we obtain

F=
n (k, ω; i) =

ḡ0(ω − 2nΩ)
[
F=
n−2(2n)4̄g4 + F=

n−1

(
(g2 + 6g4)(2n)2̄ + 4g4(2n)3̄

)
+

(4ng2 + 12ng4 + 24n2g4)F=
n + (g2 + 6g4 + 8ng4)F=

n+1 + g4F
=
n+2

]
. (3.9)

F 6=n (k, ω; i, j) = ḡ0(ω − 2nΩ)
[
g4(2n− 2)4̄F 6=n−2+(

(g2 + 6g4)(2n− 2)2̄ + (2n− 2)3̄ · 4g4

)
F 6=n−1+[

2(2n− 2)g2 + 12(n− 1)g4 + 6(2n− 2)2g4

]
F 6=n +

[g2 + 6g4 + 4(2n− 2)g4]F 6=n+1 + g4F
6=
n+2

]
(3.10)

where we use the notation xn̄ = x!/(x−n)!. We also omitted the arguments

from the Fn appearing on the right hand sides, as they remain unchanged.

These EOMs connect generalized Green’s functions Fn with Fn±1 and

Fn±2. We reduce this to a first order recurrence relation[62] by introducing
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vectors W=
n = (F=

2n, F
=
2n+1) and analogously for W 6=n . Below, we write Wn

without the index = or 6= for results that apply to both W=
n and W 6=n . By

inserting the EOMs into the definition of Wn, we obtain a matrix EOM for

the Wn,

γnWn = αnWn−1 + βnWn+1. (3.11)

The coefficients of these matrices are read off from the EOM for the Fn.

They are listed in appendix C.1.1.

Using the fact that limn→∞An = 0 we can show[62] that

Wn = AnWn−1, with An = [γn − βnAn+1]−1 αn.

By introducing a suitably large cut-off N where we set AN+1 = 0, we can

compute all An with n ≤ N as continued matrix fractions. Knowledge of

A1 allows us to express F2 and F3 in terms of F1 and F0 = G. Following a

series of steps presented in appendix C.1.2, we obtain a closed equation for

F1 in terms of G, which we then finally use to compute G. The end result

of these manipulations is the self energy

Σ(ω) =
(g2 + 6g4 +A=

1 |12g4)g̃0(ω)a=
0

1− g̃0(ω)(a=
1 − a6=)

+ g4A
=
1 |11.

with g̃0(ω) = ḡ0(ω− 2Ω−a 6=) and the other coefficients defined in appendix

C.1.2. The independence of the self-energy on momentum is the consequence

of the local form of the coupling and of the non-dispersive phonons, similar

to the MA results for the Holstein model [13]. Momentum-dependence would

be acquired in a higher flavor of MA, but is likely to be weak. Finally, the

Green’s function is:

G(k, ω) =
1

ω − εk − Σ(ω) + iη
. (3.12)

One can now use the matrices An to generate the generalized propagators

Fn, which allow one to reconstruct the entire polaron wavefunction (within

this variational space) [84]. For the quantities of interest here, however, the

single-particle Green’s function suffices.

61



3.4. Results

3.3.2 The odd sector

Here we calculate the Green’s function for a state that already has a phonon

in the system. Since the phonon number can only change by 2 or 4, this

single phonon can never be moved to another site, so it is natural to compute

the Green’s function in real space. The most general such real space Green’s

function is:

Gijl(ω) = 〈0|bl cjĜ(ω)c†ib
†
l |0〉 .

Applying the Dyson identity leads to the EOM

Gijl(ω) = G0(j − i, ω − Ω)

+
∑
i′

G0(i′ − i, ω − Ω) 〈0|bl cjĜ(ω)H1c
†
i′b
†
l |0〉 .

We then split the sum over all lattice sites into a term i′ = l where the

electron is on the same site as the extra phonon, and a sum over all the

other sites. The subsequent steps are very similar to those for the even-

sector Green’s function. We summarize them in Appendix C.2, where we

also discuss how various propagators that enforce translational symmetry –

i.e. propagators defined in momentum space – can be obtained from these

real-space Green’s functions.

The end result for the real-space Green’s functions is Gijl(ω) = G0(j −
i, ω̃) + G0(l − i, ω̃)G0(j − l, ω̃)(a=

o − a
6=
o )[1 − ḡ0(ω̃)(a=

o − a
6=
o )]−1 where ω̃ =

ω − a 6=o − Ω. The coefficients a=
o and a 6=o are listed in appendix C.2.

3.4 Results

3.4.1 Atomic limit: t = 0

We begin our analysis with the atomic limit since it is a good starting point

for understanding the properties of the small polaron, which is the more

interesting regime. However, we note an important distinction between the

Holstein model and our double-well model. In the former, the atomic limit is

the infinite-coupling limit. In the latter, g4 sets an additional energy scale.
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Thus, the atomic limit is not the same as the strong coupling limit; the

latter also requires that g4/|g2| be small.

Before doing any computations, we can describe some general features

of the spectrum. As already discussed, the phonon component of the wave-

functions has either even or odd phonon number parity. Since this is due to

the spatial symmetry in the local ionic displacement, in any eigenstate the

ion is equally likely to be found in either well. As usual, the ground state

has even symmetry since it has no nodes in its wavefunction. Subsequent

eigenstates always have one more node than the preceding eigenstate, so

states with even and odd parity alternate. The exception is the limit of

infinite well separation, g4/|g2| → 0+, where the 2nth and 2n + 1st eigen-

states become degenerate. The system can then spontaneously break parity

to have the ion definitely located in the left or in the right well, like in a

ferroelectric. For a finite g4 this is not possible in the single carrier limit,

but it can be achieved at finite carrier concentration through spontaneous

symmetry breaking.

As discussed, our results are obtained with MA. In the atomic limit MA

is exact[1] because for t = 0 the free propagator is diagonal in real-space so

the terms ignored by MA vanish. Thus, MA results must be identical here to

those obtained by other exact means. To check our implementation of MA,

we used exact diagonalization (ED) with up to a few thousand phonons;

this suffices for an accurate computation of the first few eigenstates. ED

and MA results agree, as required.

Figure 3.3 shows the ground-state quasiparticle weight Z (the overlap

between the polaron ground-state and the non-interacting carrier ground-

state), and the ground-state average number of phonons in the cloud, Nph, as

a function of g2 < 0, for various values of g4. Z has an interesting behavior.

At g2 = 0 it is slightly below 1 because of the quartic terms. As |g2| is

increased, Z first rises towards a value close to 1 and then sharply drops.

This turnaround is caused by the terms that involve both g2 and g4, i.e.

(2g2+6g4)
∑

i nib
†
ibi fromHp and (g2+6g4)

∑
i ni(b

†,2
i +b2i ) fromH2. Starting

from g2 = 0 and making it increasingly more negative will at first decrease

these coefficients, thereby renormalizing the ground state less. For even
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Figure 3.3: Polaron ground-state properties in the atomic limit, for several
values of the g4: a) quasiparticle weight, and b) average number of phonons
in the phonon cloud. Other parameters are Ω = 0.5, t = 0.
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more negative g2, however, Z decreases sharply as the absolute value of these

coefficients increases; this is paralleled by a strong increase in Nph. Based on

this argument, the peak in Z should occur for −6g4 < g2 < −3g4, which is

indeed the case. The strong-coupling limit of a small polaron (corresponding

to small Z, large Nph values) is therefore reached either by increasing |g2|
or by lowering g4.

While this allows us to conclude that in the atomic limit the crossover

into the small polaron regime occurs at g2
3g4
≈ −1.5, it also illustrates the

difficulty in defining an effective coupling for this model. For the Hol-

stein model, the dimensionless effective coupling λ is the ratio between the

ground-state energies in the atomic limit and in the free electron limit; the

crossover to the small polaron regime occurs at λ ∼ 1. For the double-well

model the introduction of an effective coupling is not as straightforward,

because the atomic limit has vastly different properties depending on the

ratio g2/g4, so comparing the energy in this limit to that of a free electron

is not sufficient. (Moreover, there is no analytic expression for the ground

state energy of the double well potential). For these reasons, we continue to

use the bare coupling parameters g2 and g4 to characterize our model.

For strong coupling, we can accurately estimate the ground state energy

by using the barrier depth and effective harmonic frequency of the double-

well potential, E0,sc = Vc(xeq) + Ωeff/2. Fig. 3.4 shows the relative error

of this estimate, which indeed decreases as parameters move deeper into

the small polaron regime. Since here the tunnelling between the two wells

also becomes increasingly smaller, one may think that we can describe this

regime accurately by assuming that the carrier becomes localized in one of

the wells (thus breaking parity), i.e. that we can approximate the full lattice

potential as being a single harmonic well centered at either xeq or −xeq. Of

course, the latter situation can be modelled with a linear Holstein model.

It turns out that this is not the case. In the standard Holstein model,

the charge carrier cannot change the curvature of the lattice potential and

thus cannot account for the difference between Ω and Ωeff. To account

for the change in the curvature of the well, one would have to consider at

least a Holstein model with both linear and quadratic e-ph coupling terms.
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Figure 3.4: Relative error in the ground state energy when computed in the
semiclassical approximation (see text for details). The coupling g2 < −Ω/4
is restricted to values for which there is a double-well potential. Other
parameters are like in Fig. 3.3.
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Although it is possible to find effective parameters g1,eff, g2,eff and Ωeff so

that the resulting lattice potential in the presence of the carrier has the same

location and curvature as one of the wells of the double-well potential, the

corresponding quasi-particle weight Zeff severely underestimates Z. This

is because the single well approximation severely overestimates the lattice

potential at x = 0, thereby reducing the overlap between the ground state of

the shifted well and that of the original well. We conclude that the double-

well coupling cannot be accurately described by a (renormalized) Holstein

coupling even in this simplest limit.

3.4.2 Finite hopping

We focus on results from the even sector because it describes states accessible

by injecting the carrier in the undoped ground-state. The odd sector is

accessed only if the carrier is injected into an excited state with an odd

number of phonons present in the undoped system; we briefly discuss this

case at the end of the section.

We begin by plotting the ground-state values of Z and Nph, for 1D and

2D lattices, in Figs. 3.5 and 3.6 respectively. Since the MA self-energy is

local, the effective polaron mass m∗ = m/Z, where m is the free carrier mass;

we therefore do not plot m∗ separately. Apart from t = 1, the parameters

are like in Fig. 3.3. Note that the kinks in the Nph curves for g4 = 0.02 are

not physical; they arise from numerical difficulties in resolving the precise

location of the ground state peak when Z → 0.

Qualitatively, the polaron properties show the same dependence on g2 as

in the atomic limit, but the shape and location of the turnarounds is slightly

modified: As one would expect, the presence of finite hopping counteracts

the formation of a robust polaron cloud and increases the quasi-particle

weight Z for any given g2 and g4 when compared to the atomic limit.

The results in one and two dimensions are strikingly similar. The 2D

Z is slightly larger than the 1D Z, and Nph in 2D is slightly lower than in

1D. This is expected because in higher dimensions, the polaron formation

energy is competing against a larger carrier kinetic energy. These results
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Figure 3.5: (color online) Polaron ground-state properties in one dimen-
sion for various values of the quartic coupling term g4 as a function of the
quadratic coupling g2: a) quasiparticle weight, and b) average number of
phonons in the phonon cloud. Other parameters are t = 1, Ω = 0.5t.
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Figure 3.6: Polaron ground-state properties in two dimensions for various
values of the quartic coupling term g4 as a function of the quadratic coupling
g2: a) quasiparticle weight, and b) average number of phonons in the phonon
cloud. Other parameters are t = 1, Ω = 0.5t.

suggest that dimensionality is not playing a key role for the double-well

model, similar to the situation for the Holstein model. This is why we did

not consider 3D systems explicitly.

We now move on to discuss the evolution of the spectral weight A(k, ω) =

− 1
π ImG(k, ω) with increasing |g2|, at a fixed value of g4. This is shown in

Fig. 3.7 for 1D, and in Fig. 3.8 for 2D. Because the evolution is again qual-

itatively similar in the two cases, we analyze in more detail the 1D results.

Here, at small quadratic coupling g2 = −0.5, we observe the appearance

of a polaron band below a continuum of states. This continuum begins at

E0 + 2Ω, and consists of excited states comprising the polaron plus two

phonons far away from it. (In our MA(2) approximation, the continuum

actually begins at EMA(0)

0 + 2Ω, not at EMA(2)

0 + 2Ω, for reasons detailed in

Ref. [13]).
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Figure 3.7: A(k, ω) in 1D, for g4 = 0.05, Ω = 0.5 and t = 1, for various
values of g2.
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Figure 3.8: A(k, ω) in 2D, for g4 = 0.05, Ω = 0.5 and t = 1, for various
values of g2.
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has a logarithmic scale. The vertical bars indicate the position of Eeven

0 +Ω.

Note that due to the parity-preserving nature of the Hamiltonian there is

no analog of the polaron+one-phonon continuum starting at E0 + Ω, which

is observed in all linear coupling models. Trying to mimic the results of

the double-well coupling with a linear model will, therefore, lead to a wrong

assignment for the value of Ω.

At small |g2|, the polaron band flattens out just below the polaron+two-

phonon continuum. With increasing |g2|, its bandwidth decreases as the

polaron becomes heavier, and additional bound states appear below the

continuum. This is similar to the evolution of the spectrum of a Holstein

polaron when moving towards stronger effective coupling [12]. However, as

already discussed, this does not mean that the two Hamiltonians can be

mapped onto one another.
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For completeness, let us also discuss some of the features of the odd

sector. In particular, we focus on the local Green’s function Giii(ω), which

can be written as

Giii(ω) = ḡ0(ω̃) +
ḡ0(ω̃)2(a= − a6=)

1− ḡ0(ω̃)(a= − a6=)

with ω̃ = ω−Ω−a 6=. One can verify that a 6= equals the MA(0) self-energy for

the even sector, up to a shift by Ω of its frequency. The equation for Giii(ω)

then shows that the odd sector spectral function comprises two parts: (i)

the first term is just the momentum-averaged spectral function of the even-

sector, shifted in energy by Ω due to the presence of the extra phonon. One

can think of these as states where the even-sector polaron does not interact

with the extra phonon. This contribution therefore has weight starting from

E0 + Ω; (ii) the second part describes interactions between the polaron and

the extra phonon. An interesting question is whether these can lead to a

bound state, i.e. to a new polaron with odd numbers of phonons in its cloud.

This question is answered in Fig. 3.9 where we plotAiii(ω) = − 1
π ImGiii(ω)

for different values of |g2| and g4 = 0.05, Ω = 0.5, t = 1, in one dimension.

The vertical bars indicate the position of E0 + Ω, where indeed a contin-

uum begins, as expected from the previous discussion. At sufficiently strong

coupling |g2| we find a discrete bound state below that continuum, showing

that the polaron can bind the extra phonon. In fact, it is more proper to say

that the extra phonon (which is localized somewhere on the lattice) binds

the polaron to itself and therefore localizes it. One can think of this as an

example of “self-trapping”, except here there is an external trapping agent

in the form of the extra phonon.

One might wonder whether this localized bound state in the odd sector

could ever be at an energy below the polaron ground-state energy E0 of

the even sector, i.e. become the true ground-state. This is not the case;

as explained above, in the atomic limit the ionic states alternate between

even and odd symmetry. Introducing a finite hopping allows the polaron to

further lower its energy by delocalizing, but this is only possible in the even

sector. Thus, we always expect the even-sector polaron to have an energy

73



3.5. Summary and discussions

below that of this localized state.

As stated before, the two subspaces with even and odd phonon number

are never mixed, at least at zero temperature. At finite temperature, the

extra charge is inserted not into the phonon vacuum but into a mixed state

containing a number of thermally excited phonons. We therefore expect

the resulting spectral function to show features of both the even and odd

sectors. To be more precise, some spectral weight should be shifted from the

even-sector spectral weight to the odd-sector spectral weight as T increases

and there is a higher probability to find one or more thermal phonons in the

undoped state. We plan to study the temperature depend properties of this

double-well coupling elsewhere.

3.5 Summary and discussions

Here we introduced and motivated a model for purely quadratic e-ph cou-

pling, relevant for certain types of intercalated lattices, wherein the carrier

dynamically changes the on-site lattice potential from a single well into a

double well potential. All the approximations made in deriving this model

were analyzed. In particular, we argued that ignoring the anharmonic lattice

terms at the sites not hosting the carrier should be a good approximation.

However, a more in-depth numerical analysis might be needed to further

validate this assumption.

We used the momentum average approximation to obtain the model’s

ground state properties and its spectral function in the single polaron limit,

in one and two dimensions. We found that for sufficiently strong quadratic

coupling a small polaron forms. Although the polaron behaves somewhat

similarly to the polaron of the linear Holstein model, the double-well model

cannot be mapped onto an effective linear model: apart from the difference

in the location of the continuum in the even sector, the double-well model

also has an odd sector that should be visible at finite T , and which is en-

tirely absent in the Holstein model. This is due to the double-well potential

model’s invariance to local inversions of the ionic coordinate; this symmetry

is not found in the Holstein model. The polaron in this odd sector is also

74



3.5. Summary and discussions

qualitatively different from the Holstein polaron, in that it is localized near

the additional phonon present in the system when the carrier is injected. Of

course, if the assumption of an Einstein mode is relaxed, then the phonon ac-

quires a finite speed and this polaron would become delocalized, as expected

for a system invariant to translations. However, this would still be quali-

tatively different than a regular polaronic solution because this polaron’s

dispersion would be primarily controlled by the phonon bandwidth, not the

carrier hopping.

Our results suggest that researchers interpreting their measurements

from, e.g., angular-resolved photoemission spectroscopy, must carefully con-

sider the nature of their system’s e-ph coupling: if they assume linear cou-

pling where the lattice symmetry calls for a quadratic one, the parameters

extracted from fitting to such models will have wrong values.

While we have laid here the basis for a thorough investigation of the

properties of the double-well e-ph coupling model, much work remains to

be done. We believe that adjusting already existing numerical schemes such

as diagrammatic Monte Carlo to this model is straightforward and look

forward to a comparison of numerically exact results with our MA results.

In addition, there are certain ranges of parameters for which MA is not well-

suited, such as the adiabatic limit Ω→ 0 at weak coupling, or systems with

finite carrier densities. We anticipate that these regimes will be explored

with a range of numerical and analytical tools, especially the finite carrier

regime which should be relevant for modelling ferroelectric materials.

We plan to extend our study of the double-well e-ph coupling beyond

the single-polaron limit. We deem especially interesting the parameter range

where the lattice potential remains a single well if only one carrier is present,

but changes into a double well when a second charge is added. In this case,

we anticipate the appearance of a strongly bound bipolaron while the single

polarons are relatively light. Such states are not possible in the Holstein

model.

Finally, extending our MA treatment to finite temperature should yield

interesting insights into the interplay between the two symmetry sectors

revealed by the spectral weight.
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Chapter 4

Bipolarons in the quadratic

Holstein model

In this chapter, we use the Momentum Average approximation (MA) to

study the ground-state properties of strongly bound bipolarons in the double-

well electron-phonon (el-ph) coupling model, whose single polaron solution

was discussed in the previous chapter. We show that this model predicts the

existence of strongly bound yet lightweight bipolarons in some regions of the

parameter space. This provides a novel mechanism for the appearance of

such bipolarons, in addition to long-range el-ph coupling and special lattice

geometries.

4.1 Introduction

As pointed out in the previous chapters, when a charge carrier becomes

dressed by a cloud of phonons, the quasi-particle that forms – the polaron

– may have quite different properties from the free particle, such as a larger

effective mass and renormalized interactions with other particles. One par-

ticularly interesting effect of the latter is the formation of bipolarons, where

an effective attraction mediated by exchange of phonons binds the carriers

together. If the binding is strong enough, the two phonon clouds merge

into one, resulting in a so-called S0 bipolaron. Weaker binding, where each

polaron maintains its cloud and the binding is mediated by virtual visits

to the other carrier’s cloud, is also possible and results in a S1 bipolaron

[67, 68].

The existence of bipolarons is interesting for many reasons. For in-

stance, it has been suggested that Bose-Einstein condensation of bipolarons
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might be responsible for superconductivity in some high-Tc materials. For

an overview, see [85]. For this to occur, the bipolaron must be strongly

bound so it can survive up to high temperatures. However, such strong

binding generally requires strong electron-phonon coupling. In most simple

models of el-ph coupling such as the Holstein model,[11] this also results

in a large effective mass of the bipolaron[67, 68] which severely reduces its

mobility and makes it likely to become localized by even small amounts of

disorder.

For this reason, much of the theoretical work on bipolarons is focused on

finding models and parameter regimes for which the bipolaron is strongly

bound yet relatively light. So far, successful mechanism are based either

on longer-range electron-phonon interactions[86–88, 69] or on special lattice

geometries such as one-dimensional ladders or triangular lattices [89].

Here we show that the recently proposed (short-range) double-well el-ph

coupling model[90] also predicts the existence of strongly bound bipolarons

with relatively low effective mass in certain regions of the parameter space,

thus revealing another possible mechanism for their appearance. Our study

uses the Momentum Average (MA) approximation,[1, 12, 62, 90] which we

validate with exact diagonalization in an enlarged variational space. Since

in the single-particle case the dimensionality of the underlying lattice had

little qualitative impact, we focus here on the one-dimensional case.

This work is organized as follows. In Section 4.2 we introduce the Hamil-

tonian for the double-well model and in Section 4.3 we discuss the methods

we use to solve it. In Section 4.4 we present results for the bipolaron binding

energy and effective mass, and in Section 4.5 we summarize our conclusions

and an outlook for future work.

4.2 Model

The double-well el-ph coupling model was introduced in the previous chap-

ter, where its single polaron was studied. For ease of reference, we repeat

some of its motivation and introduction here.

The model is relevant for crystals whose structure is such that a sublat-
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tice of light ions is symmetrically intercalated with one of much heavier ions;

the latter are assumed to be immobile. Moreover, charge transport occurs

on the sublattice of the light ions. An example is the one-dimensional inter-

calated chain shown in Fig. 4.1(a). Another example is a two-dimensional

CuO layer, sketched in Fig. 4.1(b), where the doping holes move on the light

oxygen ions placed in between the heavy copper ions. In such structures,

because in equilibrium each light ions is symmetrically placed between two

immobile heavy ions, the potential felt by a carrier located on a light ion

must be an even function of that ion’s longitudinal displacement from equi-

librium, i.e. the first derivative of the local potential must vanish. As a

result, the linear electron-phonon coupling is zero by symmetry, and one

needs to consider the quadratic coupling. This is what the double-well el-ph

coupling model does.

Starting from the single-polaron Hamiltonian describing double-well el-

ph coupling, introduced in Ref. [90], we add the appropriate terms for the

many-electron problem to obtain

H = T̂ + Ω
∑
i

b†ibi + U
∑
i

n̂i↑n̂i↓

+ g2

∑
iσ

c†iσciσ

(
b†i + bi

)2
+
∑
i

g
(ni)
4

(
b†i + bi

)4
. (4.1)

Here, ciσ and bi are annihilation operators for a spin-σ carrier at site i

and a phonon at site i, respectively. T̂ describes hopping of free carriers

on the sublattice of light ions in an intercalated lattice like that sketched

in Fig. 4.1. For simplicity, we consider nearest-neighbor hopping only,

T̂ = −t
∑
〈i,j〉,σ c

†
iσcjσ+h.c., although our method can also treat longer-range

finite hopping [2]. The next two terms describe a single branch of disper-

sionless optical phonons with energy Ω, and the Hubbard on-site Coulomb

repulsion with strength U . The last two terms describe the el-ph coupling

in the double-well model. As mentioned, in lattices like that sketched in

Fig. 4.1, the coupling depends only on even powers of the light-ion displace-

ment δx̂i ∝ b†i +bi (the heavy ions are assumed to be immobile). As a result,
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the lowest order el-ph coupling is the quadratic term whose characteristic en-

ergy g2 can have either sign, depending on modeling details. As discussed at

length in the previous chapter, the interesting physics occurs when g2 < 0

so that the el-ph coupling “softens” the lattice potential. For sufficiently

negative g2 this renders the lattice locally unstable in the harmonic approx-

imation and requires the inclusion of quartic terms in the lattice potential.

For consistency, one should then also include quartic terms in the el-ph

coupling. Under reasonable assumptions the quartic lattice terms can be

combined with the quartic el-ph coupling term on sites hosting a carrier

and ignored on all other sites. Because the resulting quartic term contains

contributions from both the lattice potential and from the el-ph interac-

tion, it should not be assumed to be linear in the carrier number, unlike the

quadratic term which arises purely from el-ph coupling. Instead, we use the

general form

g
(ni)
4 = g4 ·


0, if ni = 0

1, if ni = 1

α, if ni = 2

where ni =
∑

σ c
†
iσciσ is the number of carriers on site i, and α is a constant

between 1 and 2. Setting α = 2 assumes that quartic lattice effects are

negligible compared to the quartic el-ph terms, whereas α = 1 is the opposite

extreme. For the remainder of this article we set α = 1, so that g
(1)
4 = g

(2)
4 =

g4. This case leads to stronger coupling, since a lower g4 results in deeper

wells that are further apart,[90] and thus represents the parameter regime we

are interested in. Physically, this describes the situation where the quartic

lattice terms are much larger than the quartic el-ph coupling; however they

are still negligible compared to the quadratic lattice terms and therefore can

be ignored at sites without a carrier.

4.2.1 Summary of model assumptions

In addition to the assumptions that went into the quadratic Holstein model

from the previous chapter, our assumptions are as follows:
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ionic potential

no extra carrier with extra carrier

hopping

(a) (b)

Figure 4.1: Sketch of the crystal structures discussed in this work: (a) 1D
chain, and (b) 2D plane, consisting of light atoms (filled circles) interca-
lated between heavy atoms (empty circles). In the absence of carriers, the
ionic potential of a light atom is a simple harmonic well. In the presence
of a carrier, the ionic potential of the light atom hosting it remains an even
function of its longitudinal displacement, so the linear e-ph coupling van-
ishes. In suitable conditions the effective ionic potential becomes a double
well. (Reproduced from the previous chapter)

First, the Coulomb interaction between carriers is on-site only. This is

a valid approximation in the presence of reasonable screening, since in the

intercalated lattices we consider, the charge-carrying ions are separated by

a large distance, with another ion in between.

Second, we carry out our calculations for the strongest coupling case

for the quartic coupling term, which is assumed to contain contributions

from both the coupling and the free-phonon part. Using a different case will

change the results only quantitatively, not qualitatively.

4.3 Formalism

We compute the bipolaron binding energy and effective mass using the mo-

mentum average (MA) approximation [1, 12, 62, 90]. Since we are interested

in strongly-bound bipolarons which have a large probability of having both

carriers on the same site, the version of MA used here is the variational

approximation that discounts states where the two carriers occupy differ-

ent sites. This results in an analytic expression of the two-particle Green’s

function which is used to efficiently explore the whole parameter space. The
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accuracy of this flavor of MA is verified by performing exact diagonalization

in a much larger variational subspace (details are provided below). In the

regime of interest the agreement is very favorable, showing that the effort

required to perform the analytical calculation for a flavor of MA describing

a bigger variational space is not warranted.

4.3.1 Momentum average approximation

We define states with both carriers at the same site, |i〉 = c†i↑c
†
i↓ |0〉, and

states of given total momentum k with both carriers at the same site,

|k〉 =
1√
N

∑
i

eik·ri |i〉 .

The bipolaron dispersion Ebp(k) is obtained from the lowest energy pole of

the two-particle Green’s function

G(k, ω) = 〈k|[ω −H+ iη]−1|k〉 ,

where η → 0+ is a small convergence factor. The effective bipolaron mass

is 1/mbp = ∂2Ebp/∂k
2|k=0. Throughout this work we set h̄ = 1, a = 1.

We split the Hamiltonian into H = H0 +H1 with H0 = T̂ + Ω
∑

i b
†
ibi

describing the free system and H1 containing the interaction terms. We

apply Dyson’s identity Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)H1Ĝ0(ω) where

Ĝ0(ω) = [ω −H0 + iη]−1

is the resolvent of H0 and we also define

G0(k, ω) = 〈k|Ĝ0(ω)|k〉 =
1

N

∑
q

1

ω + iη − ε(k− q)− ε(q)

as a non-interacting two-particle propagator, where ε(k) is the free carrier

dispersion. N → ∞ is the number of light-ion sites of the lattice. In 1D,

G0(k, ω) equals the momentum-averaged single-particle free propagator in

one dimension for an effective hopping integral 2t cos(k/2), for which an
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analytic expression is known [91]. In higher dimensions, such propagators

can be calculated as discussed in Ref. [92].

As mentioned, in a variational sense the MA used here amounts to ne-

glecting all states where the carriers are not on the same site. This ap-

proximation is justified for the description of the strongly bound on-site

(S0) bipolaron, which is expected to have most of its weight in the sec-

tor where both carriers are on the same site. Another way to look at

this is that the bipolaron ground-state energy in the strongly-bound case

must be well below the non-interacting two-particle continuum, and the free

two-particle propagator will have vanishingly small off-diagonal matrix el-

ements at such energies. Ignoring them, the equation of motion becomes

G(k, ω) ≈ G0(k, ω) + 〈k|Ĝ(ω)H1|k〉G0(k, ω), and thus:

G(k, ω) =

G0(k, ω)
(

1 +
∑
i

eikRi

√
N

[
(g2 + 6g4)F1(k, ω, i)

+ g4F2(k, ω, i) + UF0(k, ω, i)
])
.

where Fn(k, ω, i) = 〈k|Ĝ(ω)b†,2ni |i〉 is a generalized two-particle propagator.

Equations of motion for the Fn propagators are obtained in the same way,

and read:

Fn(k, ω, i) = ḡ0(ω − 2nΩ)
[
g4(2n)4̄Fn−2(k, ω, i)

+
(
(2g2 + 6g4)(2n)2̄ + 4g4(2n)3̄

)
Fn−1(k, ω, i)

+ (8ng2 + 12ng4 + 24n2g4 + U)Fn(k, ω, i)

+ (2g2 + 6g4 + 8ng4)Fn+1(k, ω, i) + g4Fn+2(k, ω, i)
]
. (4.2)

where we use the shorthand notation xn̄ = x!/(x− n)! and have introduced
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the momentum-averaged free two-carrier propagator,

ḡ0(ω) := 〈i|Ĝ0(ω)|i〉 =
1

N

∑
k

G0(k, ω)

=
1

N2

∑
k,q

1

ω − ε(k− q)− ε(q) + iη
.

In 1D, ḡ0(ω) equals the diagonal element of the free propagator for a particle

in 2D, which can be expressed in terms of elliptical functions and calculated

efficiently [91]. Similar considerations hold in higher dimensions [92].

The equations of motions are then solved following the procedure de-

scribed at length in Refs. [62, 90]. For consistency, we sketch the main steps

here. First, we introduce vectors Wn = (F2n−1, F2n)T for n ≥ 0 (the ar-

guments k, ω, i of the propagators are not written explicitly from now on).

Note that with this definition, W0 = (F−1, F0), yet F−1 is not properly

defined. However, the final result has no dependence on F−1, as we show

below. The equations of motion are then rewritten in terms of Wn to read

γnWn = αnWn−1 + βnWn+1. The matrix elements of the 2 × 2 matrices

αn, βn, γn, are easily read off Eq. (4.2).

Defining An = [γn − βnAn+1]−1αn, the physical solution of these recur-

rence equations is Wn = AnWn−1. Introducing a sufficiently large cut-off

Nc where WNc = 0, we can then compute A1 and have W1 = A1W0, i.e.,(
F1

F2

)
= A1

(
F−1

F0

)
=

(
a11 a12

a21 a22

)(
F−1

F0

)
.

One can easily check that a11 = a21 = 0. Thus, we obtain F1 = a12F0 and

F2 = a22F0. Substituting these results back into the EOM for G we obtain

G(k, ω) = G0(k, ω)
[
1+∑
i

eikRi

√
N

((2g2 + 6g4)a12 + g4a22 + U)F0(k, ω, i)
]
.

Since, by definition, G(k, ω) =
∑

i
eikRi√
N
F0(k, ω, i), and given that a12, a22
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are functions of ω only, we find:

G(k, ω) =
1

G−1
0 (k, ω)− (2g2 + 6g4)a12 − g4a22 − U

. (4.3)

Note that the coefficients a12 and a22 depend on all parameters of the

model, including U . As a result, the position of the lowest pole of Eq. (4.3)

is not simply linear in U , although this is a good approximation for the

strongly bound bipolaron.

We emphasize that this MA expression becomes exact in two limiting

cases. First, in the atomic limit t→ 0 the free propagator has no off-diagonal

terms and thus no error is introduced by dropping them from the equations

of motion. Second, without el-ph interactions (gn = 0) the Hamiltonian

reduces to the Hubbard model which is exactly solvable in the two-particle

case [93]. In both cases MA gives the exact solution.

4.3.2 Exact diagonalization

The results obtained via MA as outlined above are checked against exact

diagonalization results in a bigger variational subspace designed to describe

well the strongly bound S0 bipolaron. Hence, we only consider states where

all the phonons are located on the same lattice site and at least one of the

two electrons is close to this cloud. The basis states are of the form

|k, n, δ1, δ2〉 =
∑
i

eikri√
N
b†,ni c†i+δ1,↑c

†
i+δ2,↓ |0〉

with the constraint that either δ1 or δ2 is below a certain cut-off. In addition,

a global cut-off Nc is imposed on n+ δ1 + δ2. The ground state within the

variational space is then computed using standard eigenvalue techniques.

The main difference between these ED and MA results is that MA dis-

cards contributions from configurations where the carriers are at different

lattice sites. Comparing the two therefore allows us to gauge the impor-

tance of such terms, and to decide whether the speed gained from using the

analytical MA expressions counterbalances the loss of accuracy.
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Figure 4.2: (a) Bipolaron ground-state energy, and (b) inverse effective mass
for t = 1,Ω = 0.5, g4 = 0.1, computed with ED (solid black line) and MA
(red dots).

4.4 Results

From now on we focus on the one-dimensional (1D) case, since our results

from the previous chapter suggests that going to higher dimensions leads to

qualitatively similar results.

Before discussing the MA results, we first compare them to those ob-

tained from ED in the larger variational subspace discussed above. A typical

comparison (for t = 1,Ω = 0.5 and g4 = 0.1) is shown in Fig. 4.2. The left

panel shows the ground state energy and the right panel shows the inverse

effective mass of the bipolaron. In the regime where the bipolaron is strongly

bound, i.e. where its energy decreases fast and its effective mass increases

sharply as |g2| increases, we find excellent agreement for the energy. The

masses also agree reasonably well, but MA systematically overestimates the

bipolaron mass. This is a direct result of the more restrictive nature of the

MA approximation: By discarding configurations where the carriers occupy
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different sites, the mobility of the bipolaron is underestimated and thus the

effective mass is overestimated. Nonetheless, this error is not very large, and

only means that the bipolarons in the double well model are even lighter

than calculated by MA. Due to similarly good agreement in all cases we ver-

ified, for the remainder of this work we only discuss results obtained with

the more efficient MA method.

We emphasize that our approximation for computing the Green’s func-

tion is only valid in the regime of strong binding and does not describe

correctly the physics at weak coupling. Since neither MA nor ED, as im-

plemented here, allow for the formation of two phonon clouds, neither de-

scribes the formation of a weakly bound S1 bipolaron (where polarons form

on neighboring sites and interact with each other’s clouds via virtual hop-

pings), nor the dissociation into two polarons as the coupling is further

decreased [67, 68]. Accuracy in these parameter regimes can be improved

by applying more sophisticated – yet much more tedious – versions of MA

or ED for suitably expanded variational spaces. Here, however, we want to

focus on the strong-coupling regime, where our results are accurate.

We show the ground-state properties of the bipolaron compared to those

of two single polarons in Figs. 4.3, 4.4 for two different values of Ω. In all

those panels, we have set U = 0 for simplicity; the role of finite U will be

discussed at the end of this section.

The ground state energy of the bipolaron behaves qualitatively similar

for all values of Ω and g4 in that it shows a kink at some g2 where the slope

becomes steeper. This signifies the onset of the strong-coupling regime where

the bipolaron energy is well below the energy of two independent polarons,

consistent with a strongly bound bipolaron. At weaker coupling the results

are not accurate since – as explained above – our version of MA cannot

describe the dissociation of the bipolaron.

Consider now the behavior of the effective masses. For all parameters

considered here, we see that the single polaron mass mp starts out slightly

above the free electron mass m, then decreases until it is almost as light as

the free electron, before increasing again. This turnaround in the polaron

mass is due to partial cancellation effects of the quadratic and quartic el-
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Figure 4.3: Ground-state properties (total energy and inverse mass) of the
S0 bipolaron and two independent polarons for t = 1,Ω = 0.5 and g4 = 0.2,
0.1, and 0.05 for a), b), and c), respectively. For all panels, U = 0.

ph coupling terms, as discussed in Ref. [90]. We observe that when the

bipolaron is already quite strongly bound, the single polaron can still be

very light. Empirically, we find that in the strong-coupling regime mp ∼
m exp(−γ∆p/Ω) where ∆p = −2t−Ep is the single-polaron binding energy

and γ is a small numerical prefactor. This behavior is also found in the

Holstein model[11] in the strong-coupling limit, where γ = 1,∆p = −g2/Ω.

The prefactor γ can be much smaller in the double well model because of

the nature of the ionic potential. This was explained in detail in Ref. [90],

and will be discussed in the context of bipolarons later in this section.

The bipolaron effective mass fluctuates around the value of 2m in the

weak coupling regime. As explained above, here our method does not de-

scribe two independent polarons, but two independent free electrons whose

effective mass should just be 2m. However, the two-particle spectral func-

tion in this case does not have a low-energy quasi-particle peak. Instead, it

has a continuum spanning the allowed two-particle continuum.
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Table 4.1: Some example values of the bipolaron binding energy and effective
mass.

Ω g4 |g2| ∆/t mbp/2m

0.5 0.1 0.9 1.25 8.3
0.2 1.3 1.48 4.4

2 0.1 1.3 3.11 5.9
0.2 1.5 1.03 1.8

These issues disappear at stronger coupling where a strongly bound bipo-

laron forms and MA becomes accurate. The figures show that here the bipo-

laron quickly gains mass with increased coupling strength |g2|, and that this

increase is stronger the smaller g4 is. Note that a smaller g4 actually means

stronger coupling, because the wells are deeper and further apart [90].

The same data is displayed in a different way in Fig. 4.5, where we

show the magnitude of the bipolaron binding energy ∆ = 2Ep − Ebp and

the ratio of bipolaron to single-polaron masses, mbp/2mp. The strongly

bound bipolaron regime (where the results are accurate) is reached when

these quantities vary fast with g2. In particular, the results for mbp/2mp

show that here the bipolaron mass increases much more quickly than the

polaron mass. This is not surprising for models like this, where the phonons

modulate the on-site energy of the carrier. At strong coupling the results

can be understood starting from the atomic limit t = 0, treating hopping as

a perturbation. Since both carriers must hop in order for the bipolaron to

move, one expects that mbp/m ∝ (mp/m)2; indeed, we find this relation to

be valid for a wide range of parameters for our model.

Although in this regime the bipolaron quickly gains mass, there are pa-

rameter ranges where its mass is still rather light while the bipolaron is

strongly bound. Examples of such parameters are given in Table 4.1. We

note that qualifiers such as ”strongly bound“ and ”light“ are subjective. In

our case, we take the bipolaron as strongly bound when the binding energy

∆/Ω > 1 and the ratio mbp/2m < 10− 20, consistent with other references

[89, 86].
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single well double-well

potential

ionic wf

Figure 4.6: Ionic potential (above) and ionic ground-state wavefunction (be-
low) in the single-well and double-well models. Solid lines correspond to the
situation without an additional carrier, dashed lines to the situation with
an additional carrier.

Light but strongly bound bipolarons were previously found for long-

range el-ph coupling [86]. The explanation is that in such models, carriers

induce a spatially extended lattice deformation, not one that is located in

the immediate vicinity of the carrier as is the case at strong coupling in

local el-ph coupling models. Because of their extended nature, the overlap

between clouds displaced by one lattice site (which controls the effective

hopping) remains rather large, meaning that the polarons and bipolarons

remain rather light in such models.

Even though it is due to a local el-ph coupling, the mechanism resulting

in light bipolarons in our model is qualitatively similar, as illustrated in

Fig. 4.6. In the linear Holstein model the effect of an additional carrier added

to a lattice site is to shift the equilibrium position of the ionic potential.

The ionic wavefunctions corresponding to an empty and an occupied site

therefore have only small overlap, which strongly reduces the effective carrier

hopping. In the double-well model, in contrast, the ionic wavefunction for

the doubly-occupied site has appreciable overlap with the ionic wavefunction

for an empty or a singly-occupied site and thus does not reduce the effective

hopping as much.

We conclude with a brief discussion of the effects of a finite, repulsive

U . For a very strongly coupled S0 bipolaron, most of the weight is in states
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with both carriers on the same site. In this regime, the binding energy

decreases (nearly) linearly with U , ∆bp(U) ≈ ∆bp(U = 0) − U . However,

increasing U increases the energy cost of the S0 state and thus encourages

hybridization with off-site states, which results in an overall smaller effective

mass. We show results for the bipolaron energy and effective mass as a

function of U in Fig. 4.7. We stay within the regime U < ∆bp where the

bipolaron remains strongly bound. As predicted, the energy of the bipolaron

increases linearly with U , which in turn means that the binding energy ∆bp

decreases linearly with U . The effective mass also decreases (approximately)

linearly with U . This can be demonstrated for the strong coupling limit via

second order perturbation theory in the hopping. Following along the lines

in Refs. [67, 68], the effective hopping of the S0 bipolaron is of the form

m−1
bp ∝ teff ∼

−t2e−γ∆/Ω

2Ep − U

for some constant γ. We see that the mass itself decreases linearly with U ,

with a steeper slope the larger the effective mass at U = 0.

In essence, provided that it is not large enough to break the bonding, a

finite U does not change the overall picture and merely tunes the balance

between the bipolaron binding energy and its effective mass.

4.5 Conclusions and outlook

In conclusion, we have investigated the bipolaron ground-state properties in

the dilute limit of the double-well el-ph coupling model at strong coupling.

We have demonstrated that due to the particular nature of the carrier-

induced ionic potential, the double-well bipolaron can be strongly bound

while remaining light compared to the bipolaron in the Hubbard-Holstein

model. This suggests a new route to stabilizing such bipolarons, in addition

to previously discussed mechanisms based on long-range el-ph coupling or

special lattice geometries. We expect that a combination of these mecha-

nisms will lead to even lighter bipolarons.

In this work, we have used and validated a simple extension of the Mo-
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mentum Average approximation to the two-carrier case. While this general-

ization is appropriate to describe a strongly bound S0 bipolaron, it cannot

describe the off-site (S1) bipolaron that forms at larger Hubbard repulsion

U , or the unbinding of the bipolaron at even larger U . A more sophisticated

version of MA, currently under development, will give us insight into the

full phase diagram of the double-well model.
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Chapter 5

Single-polaron dispersion in

the insulating limit of

tetragonal CuO

We argue that tetragonal CuO (T-CuO) has the potential to finally set-

tle one long-standing modelling issue for cuprate physics. We compare the

one-hole quasiparticle (qp) dispersion of T-CuO to that of cuprates, in the

framework of the strongly-correlated (Udd → ∞) limit of the three-band

Emery model. Unlike in CuO2, magnetic frustration in T-CuO breaks the

C4 rotational symmetry and leads to strong deviations from the Zhang-Rice

singlet picture in parts of the reciprocal space. Our results are consistent

with angle-resolved photoemission spectroscopy data but in sharp contra-

diction to those of a one-band model previously suggested for them. These

differences identify T-CuO as an ideal material to test a variety of scenarios

proposed for explaining cuprate phenomenology.

5.1 Introduction

Understanding the high-temperature superconductivity in cuprates [22] is

one of the biggest challenges in condensed matter physics. These layered

materials contain two-dimensional (2D) CuO2 layers which exhibit antifer-

romagnetic (AFM) order in the undoped limit, and host the superconducting

Cooper pairs upon doping. Consequently, it is widely believed that under-

standing the behaviour of a doped CuO2 layer is the key to understand the

unusual properties of these materials.
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The first step in this quest is to understand the nature and dynamics of

the quasiparticle (qp) that forms when one hole is doped into a CuO2 layer.

Despite huge efforts on the theory side, this issue is not yet fully settled.

The most relevant orbitals for the physics of the CuO2 layer are the

Cu 3dx2−y2 and the O 2p ligand orbitals, and the appropriate model is

the three-band Emery Hamiltonian [24]. Zhang and Rice argued, however,

that the resulting quasiparticle is a Zhang-Rice singlet5 (ZRS) hopping on

the Cu sublattice and is thus well described by the much simpler one-band

t-J or Hubbard Hamiltonians [26–30]. A lot of effort focusing on these

(relatively) simpler one-band models was thus to follow. In the absence

of exact solutions or accurate approximations for these strongly-correlated

2D Hamiltonians, progress was made through numerical studies of finite-

size clusters. These showed that the qp dispersion is strongly influenced

by the quantum fluctuations of the AFM background [94], and that longer-

range hopping is needed to obtain a dispersion in quantitative agreement

with what was measured experimentally [95–97, 16]. Similar results are ob-

tained within Cluster Dynamical Mean Field Theory [31]. The longer-range

hoppings required to achieve this agreement are similar to those calculated

theoretically [32–34]. This was taken as proof that these extended one-band

models provide the correct description, and the focus shifted to studying

them at finite hole concentrations. Surprisingly, a lot of this work discards

the longer-range hopping terms despite their proven relevance. While much

such work was done in the past two decades, the lack even of consensus that

these one-band models support robust, high-temperature superconductivity

raises strong doubts about how appropriate they are to describe the hole-

doped side of the phase diagram. It is much more likely that the one-band

models (with properly adjusted longer-range hopping) describe correctly the

physics of the electron-doped side, because in this case the full O bands are

inert spectators.

There are two reasons why the one-band models might fail to find the

desired physics at finite doping: (i) they may describe the single qp cor-

5We give a proper definition of the ZRS state later in this chapter when discussing the
low-energy effective model. A sketch is given in Fig. 5.3.
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rectly yet fail to appropriately model the effective interactions between qps,

responsible for pairing. This was shown to occur when different degrees

of freedom on different sublattices are mapped onto an effective single band

model [98, 99]. Because in cuprates the doped holes reside on oxygen whereas

the magnons reside on copper sites [100], a one-band model may thus fail to

mimic the correct interaction between them; (ii) they may predict the cor-

rect qp dispersion for the wrong reasons, by describing different physics even

at the single hole level. Support for the latter view comes from our recent

work on the Udd → ∞ limit of the three-band Emery model; the resulting

Hamiltonian has spins at the Cu sites and the doped holes move on the O

sublattice [100]. In stark contrast to one-band models where spin fluctua-

tions are key to obtaining the correct qp dispersion, here it is recovered even

in the absence of spin fluctuations [3]. This qualitative difference shows that

although the quasiparticles of these models have similar dispersion, this is

driven by different physics [5].

To decisively settle the question of whether these one- and three-band

models are equivalent, one must compare them for a material similar enough

to CuO2 that it should be described by similar Hamiltonians, however one

for which they give different predictions so that (at least) one of them can

be falsified experimentally. In this Letter we show that layers of tetragonal

CuO (T-CuO) are precisely such a material, whose careful investigation can

finally resolve these fundamental modeling issues.

Thin films of several unit cells of T-CuO were recently grown epitaxially

on a SrTiO3 substrate [101, 102]. They can be thought of as a stack of

weakly-interacting CuO layers, whose structure is depicted in Fig. 5.1(a)

and consists of two intercalated CuO2 lattices (sharing the same O). A CuO2

layer is sketched in Fig. 5.1(b). Because Cu 3dx2−y2 orbitals only hybridize

with their ligand O 2p orbitals, shown in the same color in Fig. 5.1, the two

CuO2 sublattices would be effectively decoupled if pp hopping between the

two sets of O 2p orbitals was absent.

In this case, a hole doped into one sublattice would evolve just like in

a regular CuO2 layer, and the same (now doubly-degenerate) qp dispersion

would be predicted by both one- and three-band models, as already dis-
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cussed.

However, the CuO2 sublattices are coupled by pp hopping between the

two sets of O 2p orbitals, which lifts this degeneracy. The resulting qp disper-

sion was measured by angle resolved photoemission spectroscopy (ARPES)

[4]. It was found to be overall quite similar to that of CuO2 and seemed to

be well described by a small cluster study of a t-t′-t′′-J model. As we show

next, this conclusion is opposite to the one we find for the Udd → ∞ limit

of the three-band model. We predict a qualitatively different dispersion for

T-CuO and CuO2, but these differences are masked in magnetically twinned

samples.

We give a detailed presentation of the model in section 5.2. In section

5.3 we describe the method we use to solve it. Results and discussions are

given in section 5.4.

5.2 Model

We study the Udd →∞ limit of the Emery model, with spins at the Cu sites

and a single doped hole on the O sublattice. This limit is justified because

Udd is much larger than the other energy scales [25]. For a CuO2 layer, the

corresponding Hamiltonian, see Fig. 5.1(b), is [100]:

Ĥ = T̂pp + T̂swap + ĤJpd + ĤJdd . (5.1)

For simplicity of notation, we provide here the explicit expressions for the

terms in the CuO2 Hamiltonian, assuming that only the ligand O 2p orbitals

are included. Generalization to including both sets of O 2p orbitals, and also

to T-CuO, is straightforward. With the sign of positive/negative lobes as

pictured in Fig. 5.1 and using p†i,σ as the creation operator for a hole in the

ligand O 2p orbital located at i, we have:

Tpp = tpp
∑

i∈O,δ,σ

rδp
†
i,σpi+δ,σ − t′pp

∑
i∈O,σ

p†i,σ(pi−ε,σ + pi+ε,σ). (5.2)
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(a) (b)

tt’pp
Jdd pp

tsw Jpd
tpp
~

(c) (d)

Figure 5.1: Structure of a layer of (a) T-CuO, and (b) CuO2. Full circles are
Cu, empty squares are O. The Cu 3dx2−y2 orbitals are drawn at a few sites,
with white/dark lobes showing our choice for positive/negative signs. The
corresponding ligand O 2p orbitals are also indicated on neighboring O sites.
The T-CuO layer can be thought of as two intercalated CuO2 layers sharing
common O. The coppers of the two sublattices hybridize with different O 2p
orbitals. Panels (c) and (d) show the two degenerate ground-states of the
undoped T-CuO layer. Different colors are used for the Cu spins on the two
sublattices for better visibility.
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The lattice constant is set to a = 1. The vectors δ = ±(0.5, 0.5),±(0.5,−0.5)

are the distances between any O and its four nn O sites, and rδ = ±1 sets

the sign of each nn pp hopping integral in accordance with the overlap of

the 2p orbitals involved. Next nn hopping is included only between O 2p

orbitals pointing toward a common bridging Cu, separated by ε = (1, 0) or

(0, 1); hybridization with the 4s orbital of the bridging Cu further boosts

the value of this hopping integral.

Tswap describes Cu-mediated effective hopping accompanied by a spin-

swap. Specifically, the hole at a Cu site adjacent to the doped hole hops to

one of its other neighbor O sites, followed by the doped hole falling into the

vacated Cu orbital. Because the original doped hole replaces the Cu hole,

their spins are swapped. Thus

Tswap = −tsw
∑

i∈Cu,u6=u′,σ,σ′

su−u′p
†
i+u,σpi+u′,σ′ |iσ′〉〈iσ|, (5.3)

where u,u′ = (±0.5, 0), (0,±0.5) are the distances between a Cu and its

four nn O sites. It shows the change of the Cu spin located at Ri from σ to

σ′ as the doped hole changes its spin from σ′ to σ while moving to another

O. The sign sη = ±1 is due to the overlaps of the orbitals involved in the

process, and the overall minus is because of the interchange in the order of

holes6.

The origin of

ĤJpd = Jpd
∑
i,u

Si · si+u (5.4)

is similar, except that now the Cu hole hops onto the O that is hosting the

doped hole, followed by one of the two holes returning to the Cu. Unlike

for T̂swap, charge is not moved in this process; instead, it gives rise to AFM

exchange between the spin si+u of the doped hole and that of its neighbor

Cu, Si.

6We have not specified a canonical order of fermions in the many-body states because
we only deal with a single explicit charge carrier. However, whatever order for the basis
states we choose, the swap process will exchange an electron on a copper site and an
electron on an oxygen sign, leading to the minus sign.
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Finally,

ĤJdd = Jdd
∑
〈i,j〉′

Si · Sj (5.5)

is the usual AFM coupling between neighbor Cu spins. The sum runs over all

nearest-neighbor copper pairs except the one that has the bridging oxygen

occupied by the doped hole. The energy scale Jdd ∼ 150 meV is taken as

the unit of energy, in terms of which tpp = 4.1, t′pp = 0.6tpp, tsw = 3.0 and

Jpd = 2.8 [25]. Note that the oxygen Hubbard repulsion Upp is not included

in Eq. (5.1) because we consider only the case of a single doped hole.

In CuO2 the important O 2p orbitals are the ligand orbitals, but it is

straightforward to generalize the model to also include the in-plane non-

ligand orbitals [3]. Because they do not hybridize with the Cu 3dx2−y2

orbitals, their addition does not change T̂swap, ĤJpd or ĤJdd , all of which arise

from such hybridization. Only T̂pp must be supplemented accordingly. By

symmetry, nn hopping between two non-ligand orbitals is the same tpp as for

ligand orbitals, with signs dictated by the lobes’ overlap. Hopping between

nn ligand and non-ligand orbitals, which we call T̂mix and is shown by the

black arrow in Fig. 5.1(a), has magnitude t̃pp/tpp = (tpp,σ − tpp,π)/(tpp,σ +

tpp,π) = 0.6 because tpp,σ = 4tpp,π [103]. Thus, adding the non-ligand orbitals

does not introduce new energy scales. For CuO2, their inclusion has a minor

effect on the qp dispersion [3].

The Hamiltonian for T-CuO is a straightforward generalization of Eq.

(5.1). The pp hopping is unchanged and described by the same T̂pp + T̂mix

discussed above. Because of the two intercalated Cu sublattices, there are

two sets of terms T̂swap, ĤJpd and ĤJdd which couple Cu spins on each

sublattice to each other and to the doped hole – if the latter occupies a

2p orbital that has ligand character for that Cu sublattice. We use the

same parameters for T-CuO like for CuO2 (the results remain qualitatively

similar if the parameters are varied within reasonable ranges) and focus on

the effect of T̂mix, which moves the hole between the two sets of 2p orbitals

and changes to which Cu sublattice it is coupled.

For completeness, we note that in Ref. [4] a small nn exchange J̃dd ∼ 0.04

was also included between Cu spins on the different sublattices. We have
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considered this term, as well as a weak J̃pd coupling between the doped hole

occupying a non-ligand orbital and its neighbor Cu spins (FM exchange is

favored by Hund’s coupling when the Cu hole hops into the O orbital or-

thogonal to that hosting the doped hole). None of these terms were found to

lead to qualitative changes, and because of their relatively small magnitude,

their quantitative effects are minor. As a result, we ignore them from now

on.

5.2.1 Summary of model assumptions

There are quite a few assumptions going into the derivation of this model.

For ease of reference, we summarize them here.

The first assumption concern the nature of the hopping terms included

in the Hamiltonian. Longer-range hoppings could be considered, but are

neglected because in the case of CuO2 they were shown to have negligible

effect [17].

The next assumption concerns the degree to which the Udd → ∞ limit

is treated perturbatively. The resulting terms give rise to magnetic interac-

tions and are carried out to leading order. Higher-order terms only serve to

slightly renormalize already present terms [6].

The biggest assumption is in treating the magnetic interaction between

holes on the copper ions with an Ising term instead of a Heisenberg term.

In effect, this means neglecting the copper’s spin fluctuations; the only way

copper spins can get flipped is through their interaction with the oxygen hole.

In essence, this assumption is similar to the assumption made for the double-

well electron-phonon coupling model where quartic free-phonon terms were

absorbed into the quartic el-ph interaction term. The justification, however,

is a different one. The timescale of spin fluctuations would be 1/Jdd, which is

lower than the other timescales in the system. As such, it is not immediately

clear that neglecting these fluctuations is valid. However, the results in [3]

clearly justify this approximation a posteriori.

Additional assumptions concern terms arising from the interaction be-

tween the two intercalated layers. Here, we only explicitly include nearest-
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neighbor hopping between them. Certain higher-order magnetic terms were

found to have little effect on the ground state properties and are therefore

neglected.

5.3 Method

As discussed in Ref. [3], we extract the qp dispersion Eqp(k) from the one-

hole propagator computed variationally in a restricted Hilbert space that

allows up to nm magnons to be created by the doped hole through T̂swap

and ĤJpd processes, assuming that it was injected in a Néel-like background.

Of course, in reality there are spin fluctuations in the AFM background, but

because their energy scale Jdd is small, they occur so slowly as to have little

effect on the qp dispersion: the hole creates and moves its magnon cloud on

a timescale faster than that controlling the spin fluctuations, so the latter

can be ignored [3, 5]. If the T-CuO energy scales are similar, and given the

weak coupling between the two Cu sublattices, this approximation should

remain valid.

In undoped T-CuO, each Cu sublattice has AFM order due to its ĤJdd

term. As a result, any weak coupling J̃dd between the two Cu sublattices

is fully frustrated: a spin on one sublattice interacts with equal numbers

of up and down spins from the other sublattice. Nevertheless, order by

disorder selects one of the two degenerate states depicted in Fig. 5.1(c), (d)

as the ground-state of the undoped system [104–106]. Because they have

FM chains running along either the x = y or x = −y diagonals, they are

related by a C4 rotation so it suffices to study one case. Unlike in CuO2, for

T-CuO in either of these states we expect that the quasiparticle dispersion

Eqp(k) is not invariant to C4 rotations, only to C2 ones.

Let us now discuss our variational method in a bit more detail. For any

given momentum k, our corresponding variational Hilbert space contains all

states with at most nm magnons and with a restriction on the maximum

allowed magnon-hole distances, as discussed next.

Zero-magnon states are the eight Bloch states of momentum k, one for

each of the eight oxygen orbitals in the magnetic unit cell. States with
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magnons are Bloch states of total momentum k for given hole and magnons

configurations with fixed relative distances between holes and magnons. For

example, the one-magnon states have the form

|k, α, δ〉 =
1√
N

∑
i

eik·rip†iα,↓S
+
i+δ |Néel〉

where i runs over the unit cells, iα denotes oxygen orbital α = 1, . . . , 8

within unit cell i, and S+
i+δ is the magnon creation operator for a down-

spin copper of the magnetic unit cell located a distance δ away from unit

cell i. The two-magnon and three-magnon states are constructed similarly

by adding magnons in the units cells located at distances δ2 and δ3 apart,

respectively.

Our restriction is that any |δ| ≤ Nmax. For the 1- and 2-magnon states,

the variational approach together with the Lanczos method [107] can eas-

ily handle distances of up to Nmax = 10, although the low-energy (quasi-

particle) results are converged even for Nmax = 2. This is not surprising

because we are concerned with the physics of the polaronic bound state,

where the magnons are bound close to the hole. For the 3-magnon states,

we set Nmax = 1, i.e. we only include 3-magnon configurations where the

3 magnons are located either in the same unit cell as the hole, or in a unit

cell directly adjacent to it. These are the configurations with the highest

weight in the quasiparticle cloud but, as the results show, they do not lead to

significant changes. Less likely 3-magnon configurations, with the magnons

spread further apart, can therefore be safely ignored at these energies.

We note that this approximation is valid for calculating low-energy prop-

erties. It would fail at describing higher energy features such as the correct

locations for the polaron+one-magnon continuum, since its states necessarily

have a magnon far away from the polaron, so the corresponding configura-

tions need to be included to capture such higher energy features.

This approximation is conceptually similar to the momentum average

approximation: The creation of bosons (phonons or magnons) lowers the

energy available to the charge carrier such that it becomes a good approxi-

mation to restrict the presence of bosons to a final (small) number of lattice
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sites. A difference is that while a lattice site in the Holstein model can har-

bour an arbitrary number of phonons, the number of magnons is limited to

one per lattice site. The result is, depending on the formulation, a finite set

of coupled equations of motion for the propagators or a sparse Hamiltonian

of manageable size.

The resulting Hamiltonian matrix in our basis is sparse, because for each

configuration there are only a few allowed hoppings and spin flips. Thus,

it readily lends itself to the Lanczos method, which provides us with the

spectral function A(k, ω) relying only on computationally cheap matrix-

vector products. The lowest-lying peak in the spectral function then gives

us the qp dispersion.

5.4 Results and discussion

Figures 5.2(a)-(c) show Eqp(k) for the magnetic order of Fig. 5.1(c) ob-

tained with the variational method for nm = 1, 2, 3, respectively, inside the

Brillouin zone (BZ) displayed in Fig. 5.2(d). Full/dashed lines are for T-

CuO/CuO2.

In CuO2, at the points marked by circles and squares there are equiva-

lent nearly isotropic minima [97, 16]. With increasing nm, the bandwidth

narrows and the dispersion flattens below the polaron+one magnon contin-

uum (both these effects are due to standard polaronic physics discussed in

Ref. [3]) but the shape is unchanged. The results are nearly converged at

nm = 3 for CuO2, with a bandwidth of ∼ 2Jdd in agreement with available

exact diagonalization results and with experimental data [3]).

In T-CuO, we verified that for T̂mix = 0 the same (but now doubly-

degenerate) dispersion is obtained. When T̂mix is turned on, this degeneracy

is lifted. Only the low-energy eigenstate is shown in Fig. 5.2. Again,

results are essentially converged for nm = 3. As expected, the dispersion

loses its invariance to C4 rotations because the qp is now evolving in a

magnetic background that lacks this symmetry. The dispersion in the kx =

−ky quadrants again displays deep, isotropic minima around ±(π2 ,−
π
2 ) (full

squares) and is thus rather similar to that in CuO2. The difference, however,
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Figure 5.2: Qp dispersion in units of Jdd for (a) nm = 1, (b) nm = 2, and
(c) nm = 3 with full/dashed lines for T-CuO/CuO2. The Brillouin zone for
the magnetic order of Fig. 5.1(c) is shown in red in (b). The shaded area
is the smaller BZ for CuO2. The points marked by circles and empty/full
squares are equivalent in CuO2 but not in T-CuO. (d) Hopping between two
adjacent ZRSs, and (e) between a ZRS (red) and one with x− y symmetry
(blue). See text for more details.

105



5.4. Results and discussion

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

kx

ky

π

π

(c)

i
i−

(b)(a)

i

Figure 5.3: (a) Unit cell for CuO2, with two Cu spins and four ligand O
orbitals. We use the location i of the down-spin Cu as the reference point.
The white/shaded areas indicate our choice for positive/negative lobs. (b)
Magnetic Brillouin zone (shaded region) vs. full Brillouin zone (unshaded).
(c) ZRS between a hole occupying the linear combination of ligand orbitals
with x2 − y2 symmetry, and the spin of the central Cu. The Bloch state is
obtained from its translations on the corresponding magnetic sublattice.

is significant in the kx = ky quadrants near the ±(π2 ,
π
2 ) points (circles).

Not only are energies here higher than at the ±(π2 ,−
π
2 ) points, but these

minima are shifted toward the Γ point. Note also that the BZ corners (empty

squares) continue to mark local minima, but now lying at high energies just

below the polaron+one magnon continuum.

5.4.1 The ZRS Bloch state

Before we can continue our discussion of the results, we have to describe in

more detail the nature of the Zhang-Rice singlet state. For the CuO2 lattice,

taking into consideration the AFM order of the Cu spins, we can choose the

unit cell as shown in Fig. 5.3(a), with the corresponding magnetic Brillouin

zone shown in Fig. 5.3(b).

To define a ZRS Bloch state, we first introduce:

p†
x2−y2,i,σ =

1

2

[
p†i+x

2
,σ + p†

i+y
2
,σ
− p†i−x

2
,σ − p

†
i−y

2
,σ

]
(5.6)
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which describes the doped hole occupying a linear combination of ligand

orbitals with x2 − y2 symmetry, centered on the Cu located at i. The ZRS

is obtained when a hole occupying such a state is locked in a singlet with

the Cu spin, therefore a ZRS Bloch state can be defined as7:

|d,k〉 =
∑
i∈Cu↓

eik·Ri

√
N

p†
x2−y2,i,↑ − p

†
x2−y2,i,↓S

+
i√

2
|Néel〉. (5.7)

Here, k is any momentum in the magnetic Brillouin zone and the sum is

only over sites in the spin-down Cu sublattice (since a spin-up doped hole

can form a ZRS only with these spins).

Of course, one can also define Bloch states associated with singlets that

have other symmetries for the linear combination of O orbitals. Of all these

states, in CuO2 the ZRS Bloch state is found to have the largest overlap

with the low-energy quasiparticle wavefunction.

Its first excited state, on the other hand, is found to have the largest

overlap with Bloch states based on the singlet with x − y symmetry, i.e.

the singlet obtained using p†x−y,i,σ = 1
2

[
p†i+x

2
,σ + p†

i+y
2
,σ

+ p†i−x
2
,σ + p†

i−y
2
,σ

]
instead of p†

x2−y2,i,σ in Eq. (5.7). We call this state |p,k〉.

5.4.2 Low-energy effective model

We now prove that the unusual dispersion for T-CuO involves physics be-

yond the Zhang-Rice singlet. As such, it cannot be described by one-band

models obtained through a projection onto these states.

We start by estimating the effect of T̂mix on the two CuO2-like degenerate

eigenstates that appear in its absence, and whose energy E0(k) is shown by

the dashed lines in Fig. 5.2. Especially near the (±π
2 ,±

π
2 ) points, the CuO2

quasiparticle indeed has a large overlap with a ZRS Bloch state [5], and

the hole occupies the x2 − y2 linear combination of O 2p ligand orbitals

7On occasion, reviewers have asked whether this expression misses an S−i operator,
corresponding to the S+

i in the second term within the sum. We emphasize that the
expression is correct as it stands and is not lacking a S−i term. It correctly describes a
state that is a superposition of intact AFM order and one-magnon AFM order.
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sketched for two nn sites in Fig. 5.2(e). For T-CuO, these two Bloch states

combine into one Bloch state |d,k〉 with a momentum k in the bigger, T-

CuO Brillouin zone. If we use it as an approximation for the low-energy

eigenstate, then the T-CuO dispersion becomes Eqp(k) ≈ E0(k) + δE(k),

where δE(k) = 〈d,k|T̂mix|d,k〉 is calculated in the following.

Previously, we have viewed T-CuO as two copies of a CuO2 lattice, by

adding two more Cu ions and four more oxygen orbitals to the unit cell

while keeping the same lattice vectors. An alternative view is to use the

same unit cell as for CuO2, i.e., two copper ions and four oxygen orbitals,

but have one of the lattice vectors shortened by a factor 2, depending on the

relative magnetic ordering of the sublattices. If the copper spins are aligned

ferromagnetically along the main diagonal, the proper lattice vectors are

a1 = a(1/2, 1/2)T and a2 = a(−1, 1)T .

While both views are valid, the latter view has the smallest possible unit

cell and thus does not exhibit folding of the true Brillouin zone.

For a very simple effective theory, we use perturbation theory to in-

vestigate the influence of the inter-sublattice hopping T̂mix. Because this

operator moves the hole between the two sets of O orbitals but cannot move

magnons between the different Cu sublattices, only the magnon-free part

of the quasi-particle wavefunction will contribute to matrix elements of this

operator. Consider a two-dimensional Hilbert space containing the d- and

p-wave ZRS states of momentum k. Without T̂mix, we have

H =

(
E0 0

0 E1

)

where E0(k) and E1(k) are the CuO2 dispersions of the groundstate and

the first excited state.

We now apply T̂mix to each of the four oxygen basis states from which

the ZRS-type states are built. Let

|1,k〉 :=
∑
i∈Cu↓

eik·Ri

√
N

p†i+x
2
,↑ |Néel〉 .
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and |2,k〉, |3,k〉 and |4,k〉 defined analogously for the other oxygen orbitals

enumerated counter-clockwise around the same copper ion. Note that here

the sum is over all down-spins in the T-CuO lattice. Taking care of the

proper phases for the hoppings, we have

T̂mix |1,k〉 = −2t̃pp cos(k · a1) |1,k〉 − t̃pp
[
e−ik·a1 + e−ik·(a1−a2)

]
|3,k〉

T̂mix |2,k〉 = −2t̃pp cos(k · a1) |2,k〉 − t̃pp
[
e−ik·a1 + e−ik·(a1+a2)

]
|4,k〉

T̂mix |3,k〉 = −2t̃pp cos(k · a1) |3,k〉 − t̃pp
[
eik·a1 + eik·(a1−a2)

]
|1,k〉

T̂mix |4,k〉 = −2t̃pp cos(k · a1) |4,k〉 − t̃pp
[
eik·a1 + eik·(a1+a2)

]
|2,k〉

From this, we can now compute 〈d/p,k|T̂mix|d/p,k〉.

〈d,k|T̂mix|d,k〉 = t̃pp cos(k · a1) [cos(k · a2)− 1]

〈p,k|T̂mix|p,k〉 = t̃pp cos(k · a1) [cos(k · a2)− 3]

〈p,k|T̂mix|d,k〉 = it̃pp sin(k · a1) [cos(k · a2) + 1]

Strictly speaking, these matrix elements should be weighted by the appro-

priate quasiparticle weights Zk corresponding to projection of the true qp

eigenstate onto these non-interacting Bloch states. However, these weights

are known to be rather featureless near the (π/2, π/2) points that are most

relevant in this discussion, so we ignore them in the following. This will

affect results quantitatively, but not qualitatively.

If we ignore the p-wave states and only take into consideration the d-wave

ZRS state, then the change in energy due to T̂mix becomes

δE(k) = −t̃pp cos
kx + ky

2
[1− cos(kx − ky)] . (5.8)

Because δE(kx = −ky) = −2t̃pp sin2 kx and δE(ky = kx∓π) = −2t̃pp sin |kx|,
the minima at ±(π2 ,−

π
2 ) (full squares) are pushed to lower energies. Sim-

ilarly, the minima at the corners of the BZ (empty squares) are pushed to

high energies, which agrees with the results of Fig. 5.2.

However, things are different near the ±(π2 ,
π
2 ) points (circles). Because
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δE(kx = ky) = 0, here the dispersion should remain unchanged instead of

the minima moving toward the Γ point. Moreover, we find that the overlap

of the T-CuO quasiparticle wavefunction with the ZRS Bloch state |d,k〉
vanishes at k = ±(π2 ,

π
2 ). These facts clearly prove that the changes near

the ±(π2 ,
π
2 ) points cannot be due to Zhang-Rice singlet physics.

Indeed, T̂mix hopping between x2−y2 linear combinations centred at nn

Cu sites is suppressed, see Fig. 5.2(e): eg., a hole at site 1 of the lower Cu

(red) hops into p†1 + p†3 of the upper Cu (blue), which is orthogonal to its

x2− y2 linear combination. Instead, here hopping between adjacent x2− y2

and x−y combinations is enhanced, see Fig. 5.2(f). The shift of the ±(π2 ,
π
2 )

minima toward Γ is due to a large mixing of the singlet with x−y symmetry

into the quasiparticle eigenstate, which thus loses its ZRS nature. Note that

experiments like Refs. [108–110], which are sensitive only to the local singlet

character, cannot distinguish between a ZRS singlet and one of such mixed

symmetry.

Since the d-wave ZRS state alone cannot explain the dispersion of T-

CuO, we now turn our focus to the Hilbert space spanned by the d-wave

and p-wave ZRS states. It turns out that considering T̂mix in this two-

dimensional Hilbert space is already sufficient to explain qualitatively the

quasi-particle physics of T-CuO.

Let us consider the special case of the kx = ky = k line, where k · a2 = 0

and k · a1 = ka. We then have

Tmix(k) =

(
0 −2it̃pp sin(ka)

2it̃pp sin(ka) −2t̃pp cos(ka).

)

The full numerical results showed that the minimum along this line gets

shifted from k = π/2 closer to the Γ-point, and this readily follows from

the simple form here: The off-diagonal elements provide mixing of the d-

and p-states, and the energy −2t̃pp cos(ka) of the p-state then moves the

minimum to a lower k.

On the other hand, for kx = π − ky = k we find that Tdd = Tpp = 0

and Tpd = it̃pp [1 + cos(π − 2k)]. In this case, the Hamiltonian is symmetric
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Figure 5.4: Comparison between the one-magnon numerical dispersion and
the effective calculations involving both the low-energy and first excited
state quasiparticles. The results are in qualitative agreement, in particular
the shift of the minimum along kx = ky. The dashed lines are a guide to
the eye to demonstrate that the peak along Γ −M gets shifted away from
k = (π/2, π/2) yet remains there along X −X ′.

around k = π/2, and thus the minimum gets only shifted down in energy

while remaining at k = π/2. Other directions can be considered similarly.

In Fig. 5.4 we compare the full numerical results to the effective low-

energy results from the 2 × 2 Hamiltonian. The qualitative agreement is

striking, in particular the shift of the minimum from (π2 ,
π
2 ) towards the Γ

point emerges as predicted. Of course, quantitative disagreements result

from the crudeness of our approximation: we neglected the quasiparticle

weights which would narrow the bandwidth for this effective low-energy

result, we ignored other higher-energy eigenstates as well as the fact that the

CuO2 low-energy and first excited quasiparticles are not pure x2−y2- and x−
y ZRS-like Bloch states, respectively. Nonetheless, the results satisfactorily

show that the changes near (π2 ,
π
2 ) arise as a result of mixing between states

with d- and p-symmetry. This mixing, in turn, results from a desire to gain

kinetic energy from hopping between the sublattices, which is not possible

in the pure ZRS subspace: for this relative arrangement of the two Néel
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Figure 5.5: The first two panels show the Brillouin zones corresponding to
the two possible magnetic orders of Fig. 5.1(c) and (d). The symbols mark
the deep minima (full squares), displaced shallower minima (circles) and
very shallow minima (empty squares). The two figures are related by a C4

rotation. The third panel shows the average of these two patterns, where
at each special point the deepest local minimum was selected. This pattern
has a restored C4 symmetry and a Brillouin zone (blue line) corresponding
to one Cu site/unit cell. The pattern of deep/shallower minima is like that
found experimentally.
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Cu sublattices, T̂mix cannot hop a ZRS with momentum kx = ky between

neighbor Cu sites, see Fig. 2(d) of the main text. Higher-energy physics, of

non-ZRS origin, then becomes relevant.

We checked that adding terms like J̃dd and J̃pd has no qualitative effect:

the dispersion remains like in Fig. 5.2. This is expected because their ma-

trix elements are small and/or featureless near (±π
2 ,±

π
2 ). We are therefore

confident that our prediction is robust.

5.4.3 Comparison to ARPES

Angular resolved photoelectron spectroscopy (ARPES) finds the T-CuO qp

dispersion to obey C4 symmetry and to have a large Brillouin zone, corre-

sponding to a unit cell containing one Cu and one O atom [4]. Both features

are very surprising for the long-range magnetic orders of Figs. 5.1(c), (d),

each of which break the C4 symmetry. Moreover, any AFM-type order has

at least two magnetically non-equivalent Cu atoms and thus can have a BZ

like in Fig. 5.2(d) or smaller, not larger. Our results become consistent

with the ARPES data if we assume the presence of magnetic domains in

both ground-states, so that their average is measured experimentally. In-

deed, as shown below, averaging the band-structure of Fig. 5.2(d) with its

counterpart rotated by 90o leads to an apparent doubling of the Brillouin

zone and a new pattern of minima with two different energies, in agreement

with those found experimentally.

The result of averaging over domains with both possible orientations

is demonstrated in Fig. 5.5. Panel (a) shows the T-CuO Brillouin zones

(red rectangles) from Fig. (d) of the main text, which corresponds to the

magnetic order of Fig. 5.1(c). The symbols mark the deep minima (full

squares), displaced shallower minima (circles) and very shallow minima

(empty squares). Panel (b) is obtained by a C4 rotation and corresponds

to the magnetic order of Fig. 5.1(d). Their average is shown in panel (c),

where the symbols now mark the lowest-energy local minimum. The result-

ing pattern agrees with that measured experimentally for T-CuO. The large

Brillouin zones (blue squares) corresponding to a unit cell with one Cu per
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basis emerges naturally, as do the patterns of deep and shallower minima.

Fig. 5.6 shows the quasiparticle dispersion along the same contour dis-

cussed in Fig. 1 of Ref. [4], for both magnetic orientations. Note that our

results are in hole language, so to compare with their ARPES data the en-

ergies should be reversed, Eqp → −Eqp. For ease of comparison, the lower

panel shows the same results in this electron picture, with the symmetry

points also labelled like in Ref. [4].

We predict that a dispersion like in Fig. 5.2 should appear in the ARPES

of “magnetically untwinned” T-CuO films in the insulating limit. This is

very different and therefore easily distinguishable from the one-band model

prediction [4]. The observation of this pattern, with shallower displaced

minima in two of the quadrants, will provide a clear proof of low-energy

physics beyond the ZRS, and of the superiority of three-band models to

model such materials. If T-CuO films can be doped, for example by gating,

this new pattern of minima will open extraordinary opportunities to test

many ideas relating the shape of the Fermi surface, location of “hot spots”

and possibility of nesting, to much of the cuprate phenomenology, including

the symmetry of the pairing and of the superconducting gap, formation of

stripes, appearance and relevance of various other ordered phases, etc.

While the feasibility of such experiments remains to be determined, an

important lesson from this study is that low-energy physics of non-ZRS

nature can arise in such materials in suitable circumstances/symmetries.

The presence of disorder, of other nearby quasiparticles, of stripes, charge-

density wave or other ordered phases may have a similar effect in CuO2

layers.
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Figure 5.6: Quasiparticle dispersion for the two orientations of the magnetic
background, along the contour considered in Ref. [20]. Top panel shows the
results in the hole picture used throughout this work, whereas the low panel
shows the same results in the electron picture relevant for experiments, with
further tuning of the parameters. Also, we note that the slight displacements
of the shallower minima have not been observed experimentally. This may
be because of the very broad widths of the quasiparticle peaks and the loss
of spectral weight on one side of these points, which may mask them. In
“untwinned” samples the scattering rate should be lower, which may make
the observation of these displacements towards Γ more easily visible. Of
course, in that case the lack of C4 symmetry and existence of really shallow
minima should also become visible.
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Chapter 6

Conclusions

6.1 Summary of this work

In this thesis, we have studied a variety of simple extensions to commonly

used model Hamiltonians. Throughout, we have seen that even seemingly

minor alterations can lead to drastic quantitative and, more importantly,

qualitative changes in the system’s behaviour. Our results highlight that

longstanding and commonly held assumptions about certain systems and

models can be wrong when they are based on extrapolations of the simple

standard Hamiltonian.

In Chapter 2, we first introduced higher-order non-linear terms into the

standard Holstein model’s electron-phonon coupling. We demonstrate that

the most dramatic qualitative changes are due to the quadratic term and

thus a-posterio justify that we focus mainly on this case. By accessing

the polaron’s ground-state properties via an extension to the momentum-

average approximation, it is seen that even a small quadratic term leads to

a complete change in the polaron’s characteristics, making it much lighter.

We argue that these results invalidate a large portion of what is commonly

assumed regarding polaronic behaviour: The linear model, by necessity, as-

sumes that lattice deformations are small. In the strong coupling regime,

it then predicts that lattice deformations are large. The quadratic model,

on the other hand, suffers from no such contradiction: By assuming mod-

erate lattice deformations and thus keeping terms up to second order, the

quadratic model predicts only small to moderate lattice deformations and

thus remains internally consistent.

In Chapter 3, we consider a different type of non-linear Holstein model,

one where the linear term is non-existent due to symmetry. We call this
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the double-well electron-phonon coupling model. For this model, we show

that its results cannot be reproduced by an effective linear model. We then

highlighted similarities and differences between this model’s polaron and

that of the linear model.

The double-well model’s bipolaron is studied in Chapter 4, where we

show that the particular nature of the double-well electron-phonon coupling

can lead to bipolarons that are strongly bound yet lightweight. Bound quasi-

particles with this property were previously believed to be restricted to much

more complicated models, either to those with peculiar lattice geometries

or much more complicated electron-phonon interactions. In studying this

problem, we have also introduced a first step to extending the momentum-

average approximation to systems with more than one particle.

Finally, in Chapter 5 we study a novel type of copper-oxide layer, the re-

cently grown tetragonal copper oxide T-CuO. This model can be thought of

as an extension of the thoroughly studied CuO2 layer, extended with a sec-

ond intercalated copy weakly coupled via inter-sublattice hopping. We used

a variational method similar to MA and solved it via exact diagonalization

to study the spectral function and dispersion of the resulting quasi-particle.

We discover that the dispersion is quite significantly changed from that of

CuO2 in a way that cannot be explained by a one-band Zhang-Rice singlet

type of state. Instead, the inclusion of the small inter-band coupling requires

us to use a multi-band description. The importance of this result comes from

the fact that a long-standing theoretical issue regarding the cuprates is pre-

cisely whether the correct model for the cuprates is a single-band model

(where spin-fluctuations play an important part) or a multi-band model

(where spin-fluctuations are relatively unimportant). We demonstrate how

our results establish that T-CuO can be an experimental test case for this

important modelling question.

6.2 Further developments

Our calculations for the non-linear Holstein model in Chapter 2 were per-

formed for the single-polaron case. A follow-up question to our results is
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whether quadratic terms also have a strong impact at finite density. This

requires different techniques. A former member of our group has pursued

this avenue for the two-dimensional Hubbard-Holstein model [70, 71] using

determinant Quantum Monte Carlo methods. Their results confirm that

small non-linear terms remain important, in that they strongly influence

the effective electron-lattice coupling and charge-density-wave correlations.

Similarly, the double-well electron-phonon coupling model should be

studied at finite temperature and density. An open question would be if the

thermoynamic limit shows spontaneous symmetry breaking, which would

manifest itself as (anti-)ferroelectricity. Furthermore, with the results of

Chapter 4 in mind, a study of the superconducting properties would reveal

if the strongly-bound yet lightweight bipolarons of the double-well model

can condensate and give rise to polaronic superconductivity.

The immediate follow-up to our study of T-CuO is clear: Experimental-

ists should aim to grow untwinned samples of T-CuO and carefully study

its dispersion, to answer whether the results of our three-band model or of

a one-band tJ-model are those realized in the material. Another interest-

ing question is whether there are other effects present in CuO2 that can

give rise to similar non-ZRS physics. Such effects would likely be based

on symmetries that are incompatible with a d-wave object, similar to how

the inter-sublattice hopping leads to destructive interference for the d-wave

ZRS.

Another avenue of exploration is to follow up on the premise that it is

three-band models, not one-band models, that correctly capture the inter-

action between quasi-particles. Currently ongoing work in our group stud-

ies the effective interaction between two holes in a CuO2 layer in the same

Udd →∞ limit of the three-band Emery model as we used in our study of T-

CuO. The question is whether this model, in contrast to the tJ-model, shows

an attractive effective interaction between two holes mediated by magnons.

Apart from the particular model Hamiltonians we have studied in this

thesis, our general approach is flexible and can be applied to other models. It

proves particularly useful when studying a small number of carriers coupling

to gapped bosonic modes. The underlying idea of both MA and the various

118



6.2. Further developments

variational approaches is that creation of these bosonic modes costs energy.

In the MA view, this means that the carrier loses energy when it creates

a boson. At energies below the free carrier’s ground state, its real-space

propagator decays exponentially, justifying its replacement by a simplified

version. In the variational view, subspaces with different boson numbers

are well separated, justifying a cut-off at relatively small boson number.

In addition, a combination of the MA and variational arguments justifies

variational approximations where the carrier is forced to stay close to the

bosonic modes it excites.
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Various formal methods
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Appendix B

Appendix for Nonlinear

Holstein Model

B.1 Free propagator for the quadratic model

The Hamiltonian whose diagonal (in real space) Green’s function we need

to compute is

H0 = Hel +Hph + g2

∑
i

c†ici

(
2b†ibi + 1

)
.

We look at the Green’s function

G0(j − i, ω − nΩ) = 〈0|cjb
n
i Ĝ0(ω)(b†i )

nc†i |0〉 ,

which describes free propagation of an electron from the side of the phonon

cloud to another site j. We split the Hamiltonian H0 as

H00 = Hel +Hph + g2, H01 = 2g2

∑
i

c†icib
†
ibi
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B.2. Equations of motion for quartic model

and use Dyson’s identity to obtain

G0(j − i, ω − nΩ) = G00(j − i, ω − nΩ− g2)

+
∑
l

〈0|bni cjĜ0(ω)H1c
†
l (b
†
i )
n|0〉 ·G00(l − i, ω − nΩ− g2)

= G00(j − i, ω − nΩ− g2)

+ 2g2G0(j − i, ω;n)G00(i− i, ω − nΩ− g2)

=
G00(j − i, ω − nΩ− g2)

1− 2g2g̃0(ω − nΩ− g2)
.

G00(j − i, ω) = 1
N

∑
k
eik·(Rj−Ri)

ω−εk+iη is the free propagator for the electron, and

g̃0(ω) = G00(i − i, ω) is a short-hand notation. The only dependence of

G0 on the distance of sites j − i is in the free electron propagator G00.

For energies below the free tight-binding model’s ground state energy, this

quantity decays exponentially with distance j − i, which justifies the MA

approximation [1].

G0(j − i, ω) ≈ δijG0(j − i, ω).

With ḡ0(ω − nΩ) = G0(i− i, ω − nΩ), we obtain

ḡ0(ω, n) =
1

[g̃0(ω − nΩ− g2)]−1 − 2g2n
. (B.1)

We can obtain ḡ0(ω;n) for any lattice model whose single-electron propaga-

tor we can compute. This includes the tight-binding model in any dimension

with next-neighbor and finite-range hopping [2].

B.2 Equations of motion for quartic model

In the quartic model, the el-ph coupling term is given by
∑4

n=1 gn(b+ b†)n.

The equation of motion for the generalized Green’s functions then depends

on the expansion of these terms.

The first two terms have already been treated in the main text; they
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B.2. Equations of motion for quartic model

reproduce the quadratic model. For the third and fourth term, we have to

expand (b + b†)3 and (b + b†)4, respectively. This is a tedious and boring

exercise in correctly applying the bosonic commutation relations to group

all terms together. Once this is done, we see that the third-order term will

link a propagator Fn to propagators Fn±3 as well as Fn±1. The latter comes

from terms such as b†b2 and bb†b from the expansion, which changes the

overall phonon number by −1. Expanding the fourth-order bracket, then,

shows that this term couples Fn to Fn±4, Fn±2 and Fn itself.

Hence, instead of having vectors Wn of size 2 and matrices αn, βn, γn

of size 2 × 2, we now have vectors of size 4 and matrices of size 4 × 4,

with Wn = (F4n−3, F4n−2, F4n−1, F4n). Inserting the expansions for the

various coupling terms into Dyson’s identity then allows us again to collect

the generalized propagators of the appropriate order to obtain an EOM in

matrix form, where we give the matrix elements below, using the following

notational conventions:

• xn̄ = x(x− 1)(x− 2) . . . (x− n+ 1).

• gn0 = g0(ω, n), with

g0(ω, n) =

[
1

ḡ0(ω − nΩ− g2 − 3g4)
− n× (2g2 + 6g4 + 6ng4)

]−1

and ḡ0 being the bare free electron propagator.
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B.2. Equations of motion for quartic model

With this, we can then write the non-zero matrix elements as follows:

α11 = g4n−3
0 · (4n− 3)4̄ · g4

α12 = g4n−3
0 · (4n− 3)3̄ · g3

α13 = g4n−3
0 · (4n− 3)2̄ · (g2 + (16n− 14)g4)

α14 = g4n−3
0 · (4n− 3) · (g1 + (12n− 9)g3)

α22 = g4n−2
0 · (4n− 2)4̄ · g4

α23 = g4n−2
0 · (4n− 2)3̄ · g3

α24 = g4n−2
0 · (4n− 2)2̄ · (g2 + (16n− 10)g4)

α33 = g4n−1
0 · (4n− 1)4̄ · g4

α34 = g4n−1
0 · (4n− 1)3̄ · g3

α44 = g4n
0 · (4n)4̄ · g4

β11 = g4n−3
0 · g4

β21 = g4n−2
0 · g3

β22 = g4n−2
0 · g4

β31 = g4n−1
0 · (g2 + (16n− 4)g4)

β32 = g4n−1
0 · g3

β33 = g4n−1
0 · g4

β41 = g4n
0 · (g1 + (12n+ 3)g3)

β41 = g4n
0 · (g2 + (16n+ 6)g4)

β41 = g4n
0 · g3

β41 = g4n
0 · g4
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B.2. Equations of motion for quartic model

γ11 = 1

γ12 = −g4n−3
0 · (g1 + (12n− 6)g3)

γ13 = −g4n−3
0 · (g2 + (16n− 6)g4)

γ14 = −g4n−3
0 · g3

γ21 = −g4n−2
0 · (4n− 2) · (g1 + (12n− 6)g3)

γ22 = 1

γ23 = −g4n−2
0 · (g1 + (12n− 3)g3)

γ24 = −g4n−2
0 · (g2 + (16n− 2)g4)

γ31 = −g4n−1
0 · (4n− 1)2̄ · (g2 + (16n− 4)g4)

γ32 = −g4n−1
0 · (4n− 1) · (g1 + (12n− 3)g3)

γ33 = 1

γ34 = −g4n−1
0 · (g1 + 12ng3)

γ41 = −g4n
0 · (4n)3̄ · g3

γ42 = −g4n
0 · (4n)2̄ · (g2 + (16n− 2)g4)

γ43 = −g4n
0 · (4n) · (g1 + 12ng3)

γ44 = 1

Then, the recusion defined by γnWn = αnWn−1 + βnWn+1 is solved in

the same manner as outlined in the main text.
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Appendix C

Appendix for Quadratic

Holstein Model

C.1 Details for the even-sector

C.1.1 Coupling matrices

The matrices appearing in Eq. (3.11) are:

γ=
n |11 = 1− ḡ0(ω − 4nΩ)(8ng2 + 24ng4 + 96n2g4)

γ=
n |12 = −ḡ0(ω − 4nΩ)(g2 + 6g4 + 16ng4)

γ=
n |21 = −ḡ0(ω − (4n+ 2)Ω)

(
(g2 + 6g4)(4n+ 2)2̄+

4g4(4n+ 2)3̄
)

γ=
n |22 = 1− ḡ0(ω − (4n+ 2)Ω)

(
(8n+ 4)g2+

(24n+ 12)g4 + 24(2n+ 1)2g4

)

α=
n |11 = ḡ0(ω − 4nΩ)(g4(4n)4̄)

α=
n |12 = ḡ0(ω − 4nΩ)

(
(g2 + 6g4)(4n)2̄ + 4g4(4n)3̄

)
α=
n |21 = 0

α=
n |22 = ḡ0(ω − (4n+ 2)Ω

(
g4(4n+ 2)4̄

)
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C.1. Details for the even-sector

β=
n |11 = ḡ0(ω − 4nΩ)g4

β=
n |12 = 0

β=
n |21 = ḡ0(ω − (4n+ 2)Ω)(g2 + 6g4 + (16n+ 8)g4)

β=
n |22 = ḡ0(ω − (4n+ 2)Ω)g4

The matrices for 6= sector are the same if we substitute n→ n− 1/2 every-

where except in the argument of ḡ0(ω).

C.1.2 Manipulation of the EOMs

We can rewrite the EOM of F1 by inserting the matrices A=
1 and A 6=1 and

collecting terms. This results in

F1(ij) = G0(j − i, ω − 2Ω) [a=
0 G(j) + a=

1 F
=
1 (j)]

+
∑
l 6=j

G0(l − i, ω − 2Ω)a 6=F 6=1 (lj). (C.1)

where we omit the arguments k and ω for shorter notation. We give ex-

pressions for the various coefficients below. For now, we rewrite the EOM

as

F1(ij) = G0(j − i, ω − 2Ω)×
[
a=

0 G(j) + (a=
1 − a

6=
1 )F=

1 (j)
]

+
∑
l

G0(l − i, ω − 2Ω)a6=F1(lj). (C.2)

Defining G0(ω)ij := G0(j − i, ω), we can write this as a matrix product:

∑
l

[
δil − a 6=G0(ω − 2Ω)il

]
F1(lj) =

G0(ω − 2Ω)ij

[
a=

0 G(j) + (a=
1 − a

6=
1 )F1(jj)

]
.
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C.2. Details for the odd-sector

We multiply this from the left with G−1
0 (ω − 2Ω) and obtain

∑
l

[
G−1

0 (ω − 2Ω)rl − a6=δrl
]
F1(lj) = δrj

[
a 6=0 G(j) + (a=

1 − a 6=)F1(jj)
]
.

Next, we use the fact that G−1
0 (ω−2Ω)rl = δrl(ω−2Ω)−Ĥrl, so subtracting

a 6=δrl from this just shifts its frequency to obtain G−1
0 (ω− 2Ω− a 6=)rl. As a

result:

F1(ij) = G0(ω − 2Ω − a 6=)ij ×
[
a=

0 G(j) + (a=
1 − a

6=
1 )F1(jj)

]
.

Since in the EOM for G we only require F1(jj), we solve for that diagonal

element and obtain

F1(jj) =
ḡ0(ω − 2Ω− a 6=)a=

0 G(j)

1− ḡ0(ω − 2Ω− a 6=)(a=
1 − a

6=
1 )
.

The coefficients are obtained by just inserting the appropriate matrices An

into the EOM and collecting terms:

a=
0 = 2g2 + 12g4 + (g2 + 14g4)A=

1 |11 + g4A
=
1 |21

a=
1 = 4g2 + 36g4 + (g2 + 14g4)A=

2 |12 + g4A
=
2 |22

a6= = (g2 + 6g4)A 6=1 |12 + g4A
6=
1 |22

Finally, F1(jj) are used in Eq. (3.7) to obtain G(k, ω).

C.2 Details for the odd-sector

C.2.1 Equations of Motion

Starting from the EOM for Gijl(ω), we let H1 act on the states in those

sums, to find for the diagonal state:

H1c
†
l b
†
l |0〉 = (2g2 + 12g4)c†l b

†
l |0〉 + (g2 + 10g4)c†l b

†,3
l |0〉 + g4c

†
l b
†,5
l |0〉
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C.2. Details for the odd-sector

while for the off-diagonal ones:

H1c
†
i′b
†
l |0〉 = (2g2 + 6g4)c†i′b

†
l |0〉+ (g2 + 6g4)c†i′b

†,2
l b†l |0〉+ g4c

†
i′b
†,4
l b†l |0〉 .

We now define the generalized Green functions as:

Fn(k, i, j, ω) = 〈k|Ĝ(ω)cib
†,2n
i bj |0〉

so we always have the extra phonon at site j. The equation of motion for

G then becomes: Gijl(ω) = G0(j − i, ω − Ω) +
[
(2g2 + 12g4)F=

0 (l) + (g2 +

10g4)F=
1 (l)+g4F

=
2 (l)

]
Gill+

∑
i′ 6=l

[
(2g2 +6g4)F 6=0 (i′, l)+(g2 +6g4)F 6=1 (i′, l)+

g4F
6=
2 (i′, l)

]
G0(i′− i, ω−Ω). Again, we start by separating the cases F=

n and

F 6=n . The resulting equations of motion for F=
n are like those of the even-

sector F=
n with n → n + 1/2, while those for F 6=n are like those of the

even-sector F 6=n with n→ n+ 1.

In the spirit of MA(2), only the EOM for G, which already has one

phonon present, is kept exact, while in the EOMs for all the Fn with n ≥ 1

we approximate G0(i − j, ω) → δij ḡ0(ω). We introduce matrices Wn =

(F2n−1, F2n). Again we obtain an equation like Eq. (3.11), where now:

γ=
11 = 1− ḡ0(ω − (4n− 1)Ω)((4n− 1)(2g2 + 6g4

+ 6g4(4n− 1))

γ=
12 = −ḡ0(ω − (4n− 1)Ω) (g2 + 6g4 + 4g4(4n− 1))

γ=
21 = −ḡ0(ω − (4n+ 1)Ω)

(
(4n+ 1)2̄(g2 + 6g4)

+ (4n+ 1)3̄ · 4g4

)
γ=

22 = 1− ḡ0(ω − (4n+ 1)Ω)(4n+ 1)

× (2g2 + 6g4 + 6g4(4n+ 1))
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C.2. Details for the odd-sector

α=
11 = ḡ0(ω − (4n− 1)Ω)(4n− 1)4̄g4

α=
12 = ḡ0(ω − (4n− 1)Ω)

×
(

(4n− 1)2̄(g2 + 6g4) + (4n− 1)3̄ · 4g4

)
α=

21 = 0

α=
22 = ḡ0(ω − (4n+ 1)Ω)(4n+ 1)4̄g4

β=
11 = ḡ0(ω − (4n− 1)Ω)g4

β=
12 = 0

β=
21 = ḡ0(ω − (4n+ 1)Ω) (g2 + 6g4 + 4g4(4n+ 1))

β=
22 = ḡ0(ω − (4n+ 1)Ω)g4

The matrices for W 6=n are obtained from these by replacing n → n − 1/4

everywhere except in the argument of ḡ0. The remaining steps are in close

analogy to those for obtaining the even-sector Green’s function and not

reproduced here.

The coefficients occurring in the final results for the odd-sector Green’s

function are

a=
o = 2g2 + 12g4 + (g2 + 10g4)A=

1 |1,2 + g4A
=
1 |2,2

a6=o = (g2 + 6g4)A 6=1 |1,2 + g4A
6=
1 |2,2.

C.2.2 Momentum space Green’s functions

Rather than having the phonon present at a lattice site l, we can construct

an electron-phonon state of total momentum K as

|K,n〉 =
∑
i

eiKRi/
√
Nc†ib

†
i+n |0〉

where n is the relative electron-phonon distance. It is easy to show that

〈K,m|Ĝ(ω)|K,n〉 = Gi,i+n−m,i+n(ω) exp(iKa(n−m)) where a is the lattice

constant. In particular, the odd-polaron propagator n = m = 0 is just the
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C.3. Quadratic e-ph coupling with g2 > 0

completely local real space propagator Giii(ω). In other words, the odd-

sector polaron shows no dispersion at all.

Another Green’s function of interest is given by

〈k′, q′|Ĝ(ω)|k, q〉 = 〈0|ck′bq′Ĝ(ω)b†qc
†
k|0〉

where we insert an electron of momentum k into a system where the phonon

has momentum q. Conservation of total momentum demands that k + q =

k′ + q′. It is again easy to show that the resulting propagator is

〈k′, q′|Ĝ(ω)|k, q〉 =

δkk′δqq
′G0(k, ω̃) +

1

N
G0(k′, ω̃)G0(k, ω) · a=

o − a
6=
0

1− ḡ0(ω̃)(a=
o − a

6=
0 )
.

Since the latter term vanishes in the thermodynamic limit N →∞, we are

left with just the even-sector polaron propagator. This is to be expected:

In an infinite system, an electron does not scatter off a single impurity. If

instead we assume a finite but low density np of phonons, the prefactor 1/N

in the scattering term is replaced with np.

This brief analysis shows that the interesting physics of the odd phonon

number sector are best observed in real space.

C.3 Quadratic e-ph coupling with g2 > 0

Fig. C.1 shows that for g2 > 0, g4 = 0, the e-ph coupling has an extremely

weak effect even in the atomic limit t = 0, since the quasiparticle weight Z

remains very close to 1 while the average number of phonons is very small.

An explanation for this behaviour is sketched in Fig. C.2: in the linear

Holstein model, the carrier displaces the harmonic lattice potential of its

site, as sketched in the left panel. The overlap between the ground state

wavefunctions of the original and the displaced potentials is then the overlap

between the tails of two Gaussians with different centers, which decreases

exponentially with increasing displacement. Indeed, in the atomic limit for
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Figure C.1: a) Quasiparticle weight Z, and (b) average number of phonons
for a quadratic model with g2 > 0, g4 = 0 in the atomic limit t = 0, for
Ω = 1.

i) ii) ionic potential

w/o extra charge

with extra charge

ground state wave functions

w/o extra charge

with extra charge

Figure C.2: Sketch of the lattice potential for i) Holstein, and ii) g2 > 0
quadratic models. Full (dashed) lines indicate ionic potential and ground
state wavefunction without (with) an extra charge on the site.
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C.3. Quadratic e-ph coupling with g2 > 0

the linear Holstein model Z ∼ exp[−(g/Ω)2]. In the purely quadratic model

with positive g2, however, the electron merely changes the shape of the well

by increasing Ω to Ωat. The overlap between the ground states of the original

and modified potential is that of two Gaussians with the same center but

different widths. We can calculate this overlap analytically to find

Z =

√
1−

(
Ω− Ωat

Ω + Ω2
at

)2

(C.3)

For Ω = 1.0, even for g2 = 100Ω we still have Z ≈ 0.42. We conclude that a

positive, purely quadratic electron-phonon coupling has negligible effect on

the dynamics of a charge carrier. In particular, no crossover into the small

polaron regime occurs for positive g2 for any reasonable coupling strength.

Finite t results (not shown) fully support this conclusion.
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Appendix D

Appendix for T-CuO

D.1 Exact Diagonalization with Lanczos

The Lanczos algorithm is an efficient method for computing the ground-state

and spectral function of a Hamiltonian, provided that the Hamiltonian is

sparse, i.e., has a low number of matrix elements [107].

As an iterative method, the Hamiltonian H enters the Lanczos method

only in the computation of matrix-vector products H |ψ〉. For many relevant

models, the number of non-zero matrix elements per row is a small constant

that does not grow with the system size. Therefore, the computational cost

of the matrix vector product grows only linearly with the size of the Hilbert

space. In contrast, the diagonalization of a dense matrix has a computational

cost that grows as the third power of the Hilbert space [20]. Here we give

just a very brief introduction to the Lanczos method and refer the reader to

the extensive literature that exists on this algorithm.

At its core, the Lanczos method is a variational approach. Let H denote

the matrix representation of some Hamiltonian H. Then, H is diagonalized

in a specially constructed subspace: We start with an arbitrary, randomly

generated starting vector q0. Then, we set

qi+1 =
Hqi − αiqi − βi−1qi−1

βi

with αi = 〈qi|H|qi〉 , βi = ||Hqi − αiq− βi−1qi−1||2.

One can show that in the basis of the subspace spanned by the qi, the
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D.1. Exact Diagonalization with Lanczos

Hamiltonian has matrix representation T where T is tridiagonal,

T =



α0 β1

β1 α1 β2

. . .
. . .

. . .

βm−1 alpham−1 βm

βm αm


. (D.1)

The advantage of the Lanczos method, then, is that the matrix T can be

diagonalized very efficiently with algorithms specialized for tridiagonal ma-

trices [20], and that the extremal eigenvalues of T converge rapidly towards

those of H, with m much smaller than the size of the full Hilbert space.

The Lanczos method can also be used to compute the spectral function

by using as the starting vector not a randomly generated vector but instead

the vector for which the spectral function is to be computed. Details of this

method can be found in the literature. See for example the lecture notes

from [111].
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