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Abstract

We study the magnetic structure of narrow graphene ribbons with patterned

edges. Neglecting interactions, a broad class of edge terminations support

zero-energy states localized at the edges of the ribbon. For the simplest

(zigzag) ribbon supporting these edge states, electron-electron interactions

have been shown to induce ferromagnetic ordering along the edges of the

ribbon. We generalize this argument for such a magnetic edge state to

carbon ribbons with more complex chiral edge terminations.
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This thesis is original work by the author Kevin Pierce, created in collabo-

ration with research supervisor Dr. Ian Affleck.
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Chapter 1

Introduction

Among its many allotropes, carbon forms one atom thick two-dimensional

honeycomb ribbons with a wide variety of edge geometries [4]. The edge

geometry of these ribbons is intimately connected to their electronic and

magnetic properties, and for many of the simplest possible ribbon edges,

it has been shown that electrons with energies exponentially small in the

width of the ribbon will localize near the ribbon edge [1] [2]. Signatures of

magnetic ordering among these zero-energy zigzag edge-localized electrons

has been seen experimentally [5], and it has been rigorously proven that

zigzag graphene ribbons will be ferromagnetic at their edges with an edge-

projected Hubbard model in the limit U/t� 1 [8].

The topic of this thesis is a generalization of this rigorous proof of ferro-

magnetism in zigzag ribbons to a wider class of edge geometries called chiral

ribbons. In chapter 2 we define the zigzag, armchair, and chiral geometries.

In chapter 3 we will review the electronic and magnetic structure of zigzag

ribbons, and in chapter 4 we will discuss the electronic structure of chiral

ribbons in the absense of electron-electron interactions before we include

electron-electron interactions to lowest order by projecting a Hubbard inter-

action onto the localized edge states of the non-interacting spectrum. This

process will indicate a ferromagnetic ordering of localized edge electrons in

several particular chiral graphene ribbons.

Graphene owes its hexagonal structure to the sp2 hybridization of its

carbon atoms. On each atom, the two p-orbitals oriented in the plane of the

graphene sheet mix with the s orbital

One s-orbital and two p-orbitals hybridize in the plane of the graphene

sheet, leading to a trigonal-planar structure bound by σ-bonds in the plane

between neighbouring carbon atoms. The third p-orbital is oriented per-
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Chapter 1. Introduction

pendicular to the plane and forms covalent π-bonds with its neighbours,

generating a π-band. This π-band is half-filled since each π-orbital has one

electron.

Such a half-filled band has strong tight-binding character, justifying the

use of a local approximation. Graphene exhibits a large intra-site Coulomb

interaction, with U/t ≈ 3.5 in such a local approximation [15]. Graphene is

a strongly interacting material. Nevertheless, we hope to glean information

about its electronic and magnetic properties by projecting the interacting

problem onto the non-interacting eigenstates in a small U/t limit. Within

this approach we will show certain minimal chiral graphene ribbons have

ferromagnetic ordering of electrons in their localized edge states.
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Chapter 2

Geometry and Properties of

Graphene Ribbons

The electronic structure of graphene ribbons is highly dependent on edge

geometry. In this chapter we will discuss the geometry of graphene and de-

fine the zigzag, armchair, and minimal chiral edge terminations of graphene

ribbons. The chapter will conclude with summaries of the electric and mag-

netic properties of these different edge geometries.

Graphene is a two-dimensional hexagonal arrangement of carbon atoms.

A honeycomb lattice is not a Bravais lattice, but can be constructed from

a triangular Bravais lattice with a basis of two atoms per unit cell. This

triangular lattice is represented by two vectors as indicated in figure 2.1

which we represent as R1 = (a, 0), R2 = (a/2,
√

3a/2), where a ≈ 2.46Å is

the triangular lattice constant.

When the graphene sheet is terminated to form a ribbon, there are many

possible edge geometries. The two simplest edge geometries are called zigzag

and armchair. The next level of complication one can imagine for the edge

terminations are the so-called minimal chiral ribbons, which are the con-

centration of the rest of the thesis. These chiral edges are combinations of

armchair and zigzag edges. Several minimal chiral terminations can be seen

in figure 2.2.

For any graphene ribbon having a periodic edge, there will be a primitive

translation vector leaving the wavefunction invariant up to a phase. We

denote this vector by T, and project it into the basis indicated indicated in

figure 2.1:

3



Chapter 2. Geometry and Properties of Graphene Ribbons

Figure 2.1: Graphene decomposes into two triangular lattices. Primitive
translation vectors are indicated.

T = nR1 +mR2, (2.1)

where n and m are non-negative integers. For so-called minimal chiral rib-

bons, these integers n and m completely determine the ribbon, and they

represent the number of respective zigzag and armchair components along

the edge of the ribbon unit cell. In the remainder of this thesis we will

concentrate on minimal ribbons, using the notation (n,m) to refer to a par-

ticular minimal chiral ribbon.

The primitive translation vectors of zigzag and armchair ribbons can be

written

TZ = R1 (2.2)

TA = R1 + R2. (2.3)

Comparing with equation 2.1, we see that a zigzag ribbon is a (1, 0) ribbon,

while an armchair ribbon is a (1, 1) ribbon. Instead of characterising a given

4



Chapter 2. Geometry and Properties of Graphene Ribbons

Figure 2.2: A collection of possible minimal edge terminations of graphene.
Grey–zigzag; yellow– armchair; red– (2,1) chiral; blue– (3,2) chiral; green–
(3,1) chiral.

minimal chiral ribbon by (n,m), we can alternatively use the so-called chiral

angle, which is the angle between the translation vector of the (n,m) ribbon

and the translation vector of the zigzag ribbon:

θ = arccos
T ·TZ

|T||TZ |
= arcsin

√
3

4

m2

n2 + nm+m2
. (2.4)

This chiral angle ranges between the zigzag limit θ = 0 and the armchair

limit θ = π/6. We are interested in the intermediate chiralities. The mag-

nitude of the (n,m) translation vector is

T =
√
T ·T = a

√
n2 + nm+m2. (2.5)

5



2.1. Zigzag and armchair

We can project the (n,m) translation vector into the basis of zigzag and

armchair edges:

T = (n−m)TZ +mTA. (2.6)

This representation will later be useful for describing the electronic structure

of chiral ribbons.

2.1 Zigzag and armchair

The two simplest and most-studied graphene ribbons are the zigzag and arm-

chair ribbons. In 1995 Nakata et al. showed that a semi-infinite graphene

sheet with a zigzag edge has a band of states localized to the edge with ex-

actly zero energy, while the armchair ribbon has no edge-localized states. [9]

Analytic studies of finite-width zigzag graphene ribbons in a non-interacting

electron picture have indicated that these edge states persist with confine-

ment, but the two edge states –one at each edge– mix across the ribbon due

to their finite overlap, splitting into bonding and anti-bonding states with a

quantum confinement gap exponentially small in ribbon width. [14]

This exponential dependence of this gap on zigzag ribbon width is in-

consistent with ab initio calculations, and it has been proposed there is an

additional contribution to the energy gap due to magnetic ordering on the

edges of the graphene ribbon [5] [12]. Edge-localized ferromagnetic ordering

was later proven in the local approximation in the limit of small U/t by

Karimi and Affleck in 2010 [8]. This proof of magnetism by Karimi and

Affleck will be reviewed in chapter 3. We will then apply a generalization

of this work to numerically prove edge ferromagnetism on certain chiral rib-

bons in chapter 4. Armchair ribbons in contrast to zigzag have no low energy

localized edge states, and the gap at the Dirac point is due only to quantum

confinement in a finite ribbon. There is no edge-localized ferromagnetism.

6



2.2. Chiral

2.2 Chiral

A minimal chiral ribbon is a ribbon with edges which are a mixture of zigzag

and armchair components. Several studies suggest edge states will persist on

the zigzag components of the chiral edge, leading to some density of zigzag-

like localized edge states near zero energy. Experimentally, these chiral

edge states have been seen in the local density of states obtained through

scanning tunneling experiments [13]. Theoretically, the existence of chiral

edge modes has been proven, and their density has been calculated by a

2D band-structure projection scheme [1]. Additonally, mean-field theory

calculations suggest magnetic ordering the edges of minimal chiral graphene

ribbons [3] [16].

We would like to predict this magnetic ordering on chiral ribbons by

another method, using an edge-projected Hubbard interaction which is valid

in a small U/t limit, generalizing the work of Karimi and Affleck on the

zigzag ribbon [8]. Using this method we will prove edge ferromagnetism on

several particular chiral ribbons.

7



Chapter 3

Electronic and Magnetic

Structure of Zigzag Ribbons

Semi-infinite zigzag ribbons have one localized edge mode per spin on each

edge. These flat bands exist across one-third of the Brillouin zone at exactly

zero energy. In the first section of this chapter, we will show the existence of

these bands and calculate their density. In the second section of this chapter,

following [8], we will prove in an edge-projected Hubbard approximation

that interactions among these localized edge electrons induce ferromagnetic

ordering along the edge in the ground state.

3.1 Electronic structure of zigzag ribbons

In this section we will derive the edge state spectra and wavefunctions on

the zigzag ribbon in the limit of semi-infinite width. We will show the edge

mode bands are dispersionless at exactly zero energy. These edge mode

bands span the Brillouin zone between the so-called Dirac points, where the

bulk bands contact the Fermi level with the linear dispersion characteristic

of massless Dirac fermions [4] [2].

We will not discuss bulk electronic properties in any detail, as they are

not relevant for our present study of edge magnetism. A rough schematic of

the band structure of a semi-infinite zigzag ribbon is indicated in figure 3.1.

8



3.1. Electronic structure of zigzag ribbons

Figure 3.1: A schematic spectrum of the zigzag ribbon with edge mode band
highlighted in red and bulk bands in grey.

3.1.1 Zero energy edge states in zigzag ribbons

With nearest neighbour tight-binding hamiltonian

H = t
∑
〈i,j〉

c†icj + h.c., (3.1)

using the unit cell and labeling scheme indicated in figure 3.2, we obtain

Schrödinger equation

Eαn,m = t(βn−1,m + βn,m + βn,m+1) (3.2)

Eβn,m = t(αn+1,m + αn,m + αn,m−1). (3.3)

Translational invariance over T invites a crystal momentum k ·T = kT with

ψr+T = exp [ikT ]ψr, and the Bloch equation is

Eαm(k) = t((1 + e−ika)βm(k) + βm+1(k) (3.4)

Eβm(k) = t((1 + eika)αm(k) + αm−1(k). (3.5)

We would like to find any modes which may exist at exactly zero energy.

Notice the two sublattices decouple at zero energy. This occurs generally

for more complicated chiral edge terminations as well. Forming the Bloch

9



3.1. Electronic structure of zigzag ribbons

Figure 3.2: A zigzag ribbon segment is shown with the primitive translation
vector indicated. One sublattice is highlighted and our choice of unit cell
is indicated. Several sites are labeled with their wavefunctions to indicate
the αn,m notation. n is the index along the direction of T, while m is the
distance away from the upper edge.

equation at E = 0 and making an exponential ansatz

αm(k) ∝ e−ma/Λ(k), (3.6)

(and similarly for βm(k)) we find eigenstates

αm(k) = [−2 cos ka/2]meikam/2α0(k) (3.7)

βm(k) = [−2 cos ka/2]W−1−me−ikam(W−1−m)/2βW−1(k), (3.8)

where the dimensionless width W − 1 is the largest value m takes on. We

observe that the αm(k) modes decay exponentially away from the m = 0

edge, while the βm(k) decay exponentially away from the m = W − 1 edge.

Considering normalizability, we see these exponentially decaying eigen-

states are only simultaneous eigenstates in the limit of infinite width W →
∞, which is the limit in which the localized edge modes do not overlap across

the ribbon. Because there are no other modes near zero energy these edge

states can mix with, in a finite system these two modes will overlap and split

into bonding and anti-bonding pairs, gapping the edge-mode spectrum away

from E = 0 with a gap exponentially small in W [14]. In the semi-infinite

limit of large W , the edge modes will be approximately dispersionless zero

10



3.1. Electronic structure of zigzag ribbons

energy bands. Since these bands have no curvature, their effective mass is

infinite. Electrons in these bands are localized to the edge of the ribbon and

are delocalized in the direction along T.

From this point onward we concentrate only on semi-infinite ribbons for

which W is large enough that there is no mixing across the ribbon. We have

two zero energy states (per spin). One on each edge or equivalently one per

sublattice. The electron density in these edge modes decays exponentially

into the ribbon away from the edge with a characteristic length Λ(k) =

−a ln |2 cos ka/2|−1:

|αm(k)| =

√
2a

Λ(k)
e−ma/Λ(k)|α0(k)| (3.9)

|βm(k)| =

√
2a

Λ(k)
e−(W−1−m)a/Λ(k)|β0(k)|. (3.10)

This penetration length diverges in the limits ka = 2π/3 and ka = 4π/3–

the location of the Dirac points in the zigzag ribbon spectrum. In the finite

system, the overlap of the edge modes on opposite edges is largest at values

of k for which the correlation length diverges, so we expect the largest finite-

size splitting at the Dirac points.

3.1.2 Density of states in zigzag

The density of localized edge states per length of ribbon and per spin in the

semi-infinite zigzag ribbon is approximately 1/3a:

ρ(E) =
∑

2π/3<ka<4π/3

δ(E) ≈
∫ 4π/3a

2π/3a

dk

2π
δ(E) =

1

3a
δ(E). (3.11)

We see that there is about one edge-localized electron state per 3 unit cells

in the zigzag ribbon.

11



3.2. Magnetic structure of zigzag edge states

3.2 Magnetic structure of zigzag edge states

In order to understand the low energy magnetic structure of zigzag ribbons,

we include local Coulomb repulsion via a Hubbard interaction assumed to

be small relative to the non-interacting hamiltonian. We project this inter-

action into the non-interacting eigenbasis. In the semi-infinite ribbon, the

edge and bulk modes will be well separated in energy– the dispersionless

edge modes being at exactly zero energy. In the low energy limit therefore

only the E = 0 bands will be accessible to scattering processes. In this way

we can justify neglecting bulk-to-bulk (bulk-bulk) scattering and scattering

between bulk modes and edge modes (bulk-edge) [8]. This is the central

approximation which allows an analytical understanding of magnetism in

zigzag ribbons. This edge-projection scheme supports a rigorous proof of

the existence of a unique edge-ferromagnetic ground state, accessible in the

limits of U � t and semi-infinite width.

3.2.1 Edge-projected Hubbard interactions in zigzag

We seek the ground state of the hamiltonian

H = t
∑
〈i,j〉,σ

{c†iσcjσ + c†jσciσ}+HU − µ
∑
i,σ

c†iσciσ, (3.12)

where HU is the Hubbard hamiltonian

HU = U
∑
i

c†i↑ci↑c
†
i↓ci↓, (3.13)

and the last term is included to preserve particle-hole symmetry.

In this section we will review an appproximation to this interacting prob-

lem created by Karimi and Affleck [8] and based on the work of Schmidt

and Loss [11], in which we project the interacting problem onto the non-

interacting eigenstates and neglect bulk-bulk and bulk-edge interactions in

anticipation of an effective theory with all bulk states at negative energy

occupied and all bulk states at positive energy unoccupied. Our neglect

of bulk-edge interactions will be justified in the limit of U/t � 1 because

12



3.2. Magnetic structure of zigzag edge states

the overlap of localized edge states with delocalized bulk states is small.

The neglect of bulk-bulk interactions is justified because the effect of bulk

interactions is marginal [10].

We diagonalize the hamiltonian H = t
∑
c†iσcjσ + h.c. and obtain a set

of non-interacting eigenstates characterized in Bloch space by creation op-

erators c†σ(k). We partition this set of eigenstates into edge states e†σ(k) and

bulk states b†σ(k):

{c†σ(k)} = {e†σ(k)} ∪ {b†σ(k)}. (3.14)

Our central approximation is to work in a low energy limit in which bulk-

edge and bulk-bulk interactions are insignificant. Projecting 3.13 into this

partitioned basis 3.14 we obtain different terms. Some describe scattering

processes between edge modes, while others describe scattering processes

between edge and bulk or exclusively between bulk modes:

HU =
∑

k1k2k3k4

Γ(k1, k2, k3, k4)e†↑(k1)e↑(k2)e†↓(k3)e↓(k4)

+
∑

k1k2k3k4

Γ′(k1, k2, k3, k4)b†↑(k1)b↑(k2)e†↓(k3)e↓(k4) + . . . (3.15)

At this point we perform the aforementioned approximations and neglect all

but the first term describing scattering only among edge states. We concen-

trate on a semi-infinite ribbon so that the zero-energy edge wavefunctions

take the form

αn,m(k) = eika(n+m/2)[−2 cos ka/2]mα0(k) = eiknaαm(k), (3.16)

and the only vertex factor Γ we are concerned with in 3.15 becomes:

13



3.2. Magnetic structure of zigzag edge states

Γ(k1, k2, k3, k4) = U
∑
n,m

α∗n,m(k1)αn,m(k2)α∗n,m(k3)αn,m(k4)

= LUδk1−k2+k3−k4
∑
m

α∗m(k1)αm(k2)α∗m(k3)αm(k4),
(3.17)

where L is the length of the ribbon (the number of unit cells).

Using this interaction function we obtain our edge-projected Hubbard

hamiltonian for the zigzag ribbon:

HU =
∑
kk′q

Γ(k, k′, q)e†↑(k + q)e↑(k)e†↓(k
′ − q)e↓(k′). (3.18)

Here

Γ(k, k′, q) = LU
∑
m

α∗m(k + q)αm(k)α∗m(k′ − q)αm(k′)

= LU
{
[
1− 4 cos2 (k+q)a

2

][
1− 4 cos2 ka

2

][
1− 4 cos2 (k′−q)a

2

][
1− 4 cos2 k′a

2

]
}1/2

1− 16 cos (k+q)a
2 cos ka2 cos (k′−q)a

2 cos k
′a
2

.

(3.19)

The sum over k, k′ and q is restricted to the band in which 2π/3 < (k +

q)a, ka, (k′−q)a, k′a < 4π/3. Incorporating the energy shift−µ
∑

k,σ e
†
σ(k)eσ(k)

into the Hubbard hamiltonian to restore particle-hole symmetry, the edge-

projected Hubbard hamiltonian takes the form

HU =
∑
kk′q

Γ(k, k′, q)
[∑

σ

e†σ(k+q)eσ(k)−δq=0

][∑
σ′

e†σ′(k
′−q)eσ′(k′)−δq=0

]
.

(3.20)

Introducing the operators Om(q) and O†m(q) defined by

O†m(q) =
√
LU

∑
k

α∗m(k + q)αm(k)
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
, (3.21)

14



3.2. Magnetic structure of zigzag edge states

the Hubbard hamiltonian takes positive definite form

HU =
∑
q,m

O†m(q)Om(q). (3.22)

In this form it is obvious that the ground state of our hamiltonian has

E = 0. One can see that a fully spin-polarized state is a zero energy state

and therefore a ground state. Consider for example a state with spin up

electrons at every momentum k. It is clear that Om(q) annihilates this

state, because the spin-up terms in Om(q) try to create a spin-up electron

with momentum k + q in an occupied fermionic state, and the spin-down

terms in Om(q) try to annihilate a spin-down electron with momentum k

in an unoccupied state. It remains to show that this ferromagnetic ground

state is also unique.

3.2.2 Uniqueness of ferromagnetic ground state in zigzag

We now argue that the two fully polarized multiplets of total spin S = L/6

are the unique ground states of 3.12 in our edge-projected approximation.

In order to prove this uniqueness, we need only show that the only ground

states annihilated by the operator Om(q) for all m and q are fully polarized,

i.e. they have maximal total spin. This means the ground state wavefunction

is only expressible as a symmetric combination of Fock states with a single

occupancy at each momentum.

Assume that |ψ〉 is annihilated by Om(q) for all m and q. In symbols,

0 = Om(q)|ψ〉

∝
∑
k

α∗m(k)αm(k + q)
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
|ψ〉. (3.23)

We argue in the Appendix 5 using the Vandermonde theorem that equation

3.25 implies the following condition which we will apply repeatedly in order

to prove ferromagnetism in the ground state:
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3.2. Magnetic structure of zigzag edge states

0 =
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉. (3.24)

In particular, let us choose this equation with q = 0. Then we have

0 =
[∑

σ

{e†σ(k)eσ(k) + e†σ(−k)eσ(−k)} − 2
]
|ψ〉. (3.25)

This equation is satisfied if and only if |ψ〉 is such that

[
n(k) + n(−k)

]
|ψ〉 = 2|ψ〉 (3.26)

for all k. Here n(k) =
∑

σ=↑,↓ e
†
σ(k)eσ(k) is the number operator for the

edge state at momentum k. This restriction leaves us two options for the

occupation of momentum states −k and k: Either n(k) = n(−k) = 1, or

n(−k) = 0 and n(k) = 2 (or vice-versa). We call the second possibility an

excition. Now we will prove that excitons are not permitted in the ground

state of the hamiltonian 3.22.

In general, any state |ψ〉 may be represented as a linear combination of

all possible Fock states

∏
k,σ

e†σ(k)|0〉. (3.27)

Here the product can run over any subset of the momenta k and spins σ

supporting edge modes: 2π/3 < |ka| < 4π/3, of which there are approxi-

mately L/3. Consider a state |φ〉 satisfying n(k) + n(−k) = 2 for all k with

an exciton arbitrarily placed at momentum l. We write this as

|φ〉 = | . . . , 0︸︷︷︸
−l

, . . . , ↓↑︸︷︷︸
l

, . . .〉. (3.28)

We assume this excitonic state |φ〉 may enter the Fock state expansion of our

ground state |ψ〉. That is, we assume 〈φ|ψ〉 6= 0. Now seeking a contradiction

we impose condition 3.24 on |ψ〉 with the particular choice of q = −2l and
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3.2. Magnetic structure of zigzag edge states

k = l. We should then have

∑
σ

e†σ(−l)eσ(l)|ψ〉 = 0. (3.29)

Since we assume the excitonic state |φ〉 enters the expansion of our ground

state |ψ〉, we are led to consider the action of this operator
∑

σ e
†
σ(−l)eσ(l)

on |φ〉:

∑
σ

e†σ(−l)eσ(l)| . . . , 0︸︷︷︸
−l

, . . . , ↓↑︸︷︷︸
l

, . . .〉

= | . . . , ↑︸︷︷︸
−l

, . . . , ↓︸︷︷︸
l

, . . .〉 − | . . . , ↓︸︷︷︸
−l

, . . . , ↑︸︷︷︸
l

, . . .〉 (3.30)

Clearly, this operator acting on |ψ〉 gives a non-zero contribution. There-

fore in order to satisfy the condition 3.29 there must be some other states in

the Fock state representation of the ground state |ψ〉 which together cancel

the excitonic state |φ〉’s non-zero contribution in 3.30. Since the operator∑
σ e
†
σ(−l)eσ(l) only connects momenta l and −l, all other momenta are un-

changed by the operator and there are only three other states which could

cancel the terms generated from the excitonic state |φ〉 in 3.30:

|1〉 = | . . . , ↑↓︸︷︷︸
−l

, . . . , 0︸︷︷︸
l

, . . .〉
∑

σ e
†
σ(−l)eσ(l)|1〉 = 0 (3.31)

|2〉 = | . . . , ↑︸︷︷︸
−l

, . . . , ↓︸︷︷︸
l

, . . .〉
∑

σ e
†
σ(−l)eσ(l)|2〉 = |1〉 (3.32)

|3〉 = | . . . , ↓︸︷︷︸
−l

, . . . , ↑︸︷︷︸
l

, . . .〉
∑

σ e
†
σ(−l)eσ(l)|3〉 = −|1〉. (3.33)

Since
∑

σ e
†
σ(−l)eσ(l)|φ〉 = |2〉 − |3〉, and none of the three possible states

map through
∑

σ e
†
σ(−l)eσ(l) into |2〉 or |3〉, the terms generated by the

excitonic state in 3.30 cannot be canceled by any other allowed kets in the

Fock state expansion of the ground state, and therefore 〈φ|ψ〉 = 0. That is,
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3.2. Magnetic structure of zigzag edge states

we’ve contradicted the assumption that there is an excitonic contribution

to ground state wavefunction of the edge-projected Hubbard hamiltonian.

We’ve now narrowed down the possible states in the Fock state expansion of

the ground state to states with n(k) = n(−k) = 1 at all momenta k. There

are no excitions allowed in the ground state.

Having shown there are no excitonic states, we now show that the allowed

states with n(k) = n(−k) = 1 for all k in the Fock state expansion of the

ground state |ψ〉 always enter symmetrically like

| . . . , ↑︸︷︷︸
k

, . . . , ↓︸︷︷︸
k′

, . . .〉+ | . . . , ↓︸︷︷︸
k

, . . . , ↑︸︷︷︸
k′

, . . .〉 (3.34)

and never anti-symmetrically like

| . . . , ↑︸︷︷︸
k

, . . . , ↓︸︷︷︸
k′

, . . .〉 − | . . . , ↓︸︷︷︸
k

, . . . , ↑︸︷︷︸
k′

, . . .〉. (3.35)

To see this, consider the constraint 3.24 again but with q = k′− k. We have

∑
σ

[
e†σ(k′)eσ(k) + e†σ(−k)eσ(−k′)

]
|ψ〉 = 0. (3.36)

Now assume the expansion of |ψ〉 has a state like | . . . , ↑︸︷︷︸
k

, . . . , ↓︸︷︷︸
k′

, . . .〉 in

it. The action of the operator in 3.36 is

∑
σ

[
e†σ(k′)eσ(k) + e†σ(−k)eσ(−k′)

]
| . . . , ↑︸︷︷︸

k

, . . . , ↓︸︷︷︸
k′

, . . .〉

= | . . . , 0︸︷︷︸
k

, . . . , ↓↑︸︷︷︸
k′

, . . .〉. (3.37)
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3.3. Summary of electronic and magnetic properties of zigzag

We also have

∑
σ

[
e†σ(k′)eσ(k) + e†σ(−k)eσ(−k′)

]
| . . . , ↓︸︷︷︸

k

, . . . , ↑︸︷︷︸
k′

, . . .〉

= −| . . . , 0︸︷︷︸
k

, . . . , ↓↑︸︷︷︸
k′

, . . .〉. (3.38)

Since 3.36 must hold, it’s clear that states must enter symmetrically into the

Fock state expansion of the ground state |ψ〉. Therefore, we have found our

ground state |ψ〉 is a symmetric combination of Fock states with a single

occupancy at each momentum. These allowed ground states are then all

SU(2) rotations of the fully polarized states | ↑, ↑, ↑, . . .〉 (and spin-down)

with total spin S ≈ L/6. This completes the proof of ferromagnetism in the

edge states of the zigzag ribbon in the U/t� 1 limit.

3.3 Summary of electronic and magnetic

properties of zigzag

Zigzag ribbons have been shown to manifest a density of edge-localized states

at exactly zero energy in the limit of semi-infinite width [4]. Using an edge-

projected Hubbard interaction, we have argued following Karimi and Affleck

in [8] that a small on-site Coulomb repulsion drives a ferromagnetic ordering

of electrons localized at the edge in these dispersionless zero energy states.

In the next chapter we will apply a generalization of this argument for

ferromagnetism to certain chiral ribbons.
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Chapter 4

Electronic and Magnetic

Structure of Chiral Ribbons

Chiral ribbons are known experimentally to manifest edge states from STM

and STS experiments [13]. It has been established that there is always some

enhancement of the local density of states due to edge-localized states for

all carbon ribbon edge terminations except for armchair [1]. Several authors

have studied an appropriate Hubbard model in the mean field approximation

and have found ferromagnetic edge state ordering in chiral ribbons [16] [3] [6].

We would like to clarify these findings by calculating edge mode spectra and

showing ferromagnetic ordering in the chiral edge state by a means other

than mean field theory.

4.1 Electronic structure of chiral ribbons

The band structure of any minimal graphene ribbon can be obtained from

projecting the two-dimensional band structure of graphene onto an appro-

priate direction. This projection has been used to derive the density of zero

energy edge states per length and per spin on semi-infinite chiral ribbons [1].

The result is

ρ(θ) =
2

3a
cos(θ + π/3), (4.1)

where θ is the chiral angle which ranges between 0 for zigzag and π/6 for

armchair. We can see the density of edge states decreases as more armchair

components are incorporated into the primitive translation vector. In low

chirality ribbons with a large ratio of zigzag to armchair links, the edge mode
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4.1. Electronic structure of chiral ribbons

bands can become degenerate, with more than one localized edge state at a

given momentum. One group has performed many numerical chiral ribbon

band structure calculations, and they have created a scheme to predict the

degeneracy of edge mode bands from a band-folding argument [7]. Though

these rules do not appear to have a rigorous foundation, we have found them

consistent with every case we’ve checked. In the next section, we will review

this band-folding conjecture.

4.1.1 Degeneracy of chiral edge mode bands

The band folding conjecture of Jaskólski et al. allows one to predict the de-

generacy of chiral edge mode bands without performing calculations. Their

claim is this: The edge mode spectrum of an (n,m) chiral ribbon is the same

as the edge mode spectrum of an (n −m, 0) zigzag ribbon. This supports

a belief that chiral zero mode properties are determined only by the zigzag

segments in the chiral unit cell, and not by armchair segments.

The (n,m) chiral translation vector is

Tn,m = (n−m)TZ +mTA, (4.2)

where the basis is defined in equation 2.2. This decomposition is indicated

for the particular case of a (2, 1) ribbon in figure 4.2. We see there are

n − m zigzag links in the (n,m) chiral unit cell. Jaskólski et al. report

from their numerical calculations that the zero mode spectrum of the (n,m)

chiral ribbon is identical to the zero mode spectrum of the zigzag ribbon

with its unit cell enlarged artificially by a factor of S = n−m, i.e. an (S, 0)

ribbon. Therefore, let us determine the edge mode spectrum of an (S, 0)

ribbon.

With translation vector STZ , the first Brillouin zone has extent |k| ≤
π/aS. We know the edge mode spectrum in an extended zone scheme with

|k| < π/a from our previous calculations in chapter 3. We can then fold the

bands from higher zones into our first Brillouin zone |k| ≤ π/aS to obtain

the band structure of the (S, 0) ribbon. This process is indicated in the

top panels of figure 4.1. Depending on S = n −m, the zero energy bands
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4.1. Electronic structure of chiral ribbons

Figure 4.1: From [7]– Schematic band structures of zigzag (1,0), (2,0) and
general (S,0) edges after folding the (1,0) zigzag edge band, where S =
I + 3M . The shaded areas represent bulk states. Degeneracies of zero-
energy bands (M,M + 1) are indicated in the lower panels.

resulting from this folding process may become degenerate, with multiple

zero energy states at a given momentum. The two Dirac points of the bulk

bands can also become degenerate. Whenever this Dirac degeneracy occurs,

zero energy bands will span the entire Brillouin zone. If the Dirac points are

non-degenerate, zero energy bands will span the segments of the Brillouin

zone between the Dirac points.

The result of folding for a given S is summarized by the following rela-

tionship: S = I + 3M , where I = 1, 2, 3 and M = 0, 1, 2, ...; if I = 1 or 2

in this decomposition of S, the Dirac points are non-degenerate. If I = 3,

they’re degenerate. M then determines the degeneracy of the edge mode

bands according to the lower panels of figure 4.1.
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4.1. Electronic structure of chiral ribbons

Figure 4.2: One division into unit cells and the decomposition of the prim-
itive translation vector for the (2, 1) ribbon into zigzag and armchair com-
ponents. Several sites are labeled with their wavefunction to indicate the
labeling scheme on the (2, 1) ribbon.

4.1.2 (2,1) chiral ribbon edge mode structure

The (2, 1) ribbon has translation vector T2,1 = TZ +TA. The magnitude of

this translation vector is T = a
√

7. Its chiral angle (eq. 2.4) is θ2,1 = 19.1◦.

Since the (2,1) ribbon has one zigzag component per unit cell, following [7]

and noting 2−1 = 3(0)+1, we expect a single band of zero energy states (per

spin) extending between the Dirac points at kT = 2π/3 and kT = 4π/3.

We divide the (2, 1) ribbon into unit cells as shown in figure 4.2. We

label the wavefunction on a given site as αi,n,m. Here n labels the unit cell.

m = 0, 1, 2, ... labels the distance away from the upper edge in each unit cell,

and i = 1, 2, 3 labels the three distinct sites at each m within the unit cell.

At zero energy the two sublattices of the graphene ribbon decouple. Nearest

neighbour hopping on the (2, 1) ribbon leads to the following for the lattice

Schrödinger equation on one of the two sublattices at zero energy. The other

sublattice is accessible by inversion.
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4.1. Electronic structure of chiral ribbons

0 = α1,n,m + α2,n,m + α2,n,m+1 (4.3)

0 = α2,n,m + α3,n,m + α3,n,m+1 (4.4)

0 = α3,n,m + α1,n+1,m + α1,n+1,m−1. (4.5)

Translational invariance along T invites the use of Bloch’s theorem αi,n,m =

eiknTαi,m(k), where T is the magnitude of the primitive translation vector

on the ribbon. The Bloch equations are

α1,m + α2,m + α2,m+1 = 0 (4.6)

α2,m + α3,m + α3,m+1 = 0 (4.7)

e−ikTα3,m + α1,m + α1,m−1 = 0. (4.8)

These equations only hold away from the edge. The boundary condition at

the edge is

0 = α1,m=0 + α2,m=1. (4.9)

We also require that the wavefunctions must be normalizable:

3∑
i=1

∞∑
m=0

|αi,m(k)|2 = 1. (4.10)

Making an exponential ansatz α1,m(k) ∝ ν(k)m in the Bloch equations 4.6

to 4.8 provides a secular equation for the roots ν(k):

ν(k)3 + 3ν(k)2 + (3 + e−ikT )ν(k) + 1 = 0. (4.11)

Note the appearance of the binomial coefficients 1, 3, 3, 1. This equation

has three complex roots ν1(k), ν2(k), ν3(k) which we can find numerically.

Imposing the normalization condition, we find two of the roots are normal-

izable for 2π/3 < |kT | < π, while the third is not normalizable at any k Let

us denote the two normalizable roots ν1(k) and ν2(k).

We’ve found our expected single zero energy mode wavefunctions which
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4.1. Electronic structure of chiral ribbons

are non-zero on 2π/3 < |kT | < π (one-third of the Brillouin zone) with the

form

αi,n,m(k) = eiknT
[
gi(k)ν1(k)m + li(k)ν2(k)m

]
, (4.12)

where i = 1, 2, 3 and the gi(k), li(k) are phase factors fully determined

in terms of the νi(k) by the boundary and normalization conditions. These

three wavefunctions at eachm and k describe a density of electrons at exactly

zero energy which decays away from the (2,1) chiral edge exponentially. This

density is

ρ(θ2,1) ≈
∫ 4π/3T

2π/3T

dk

2π
=

1

3a

1√
7
. (4.13)

We see the (2, 1) edge mode density is suppressed by a factor of 1/
√

7 ≈ 0.38

from zigzag. This result agrees with that obtained from equation 4.1 from

ref. [1] using θ2,1 = 19.1◦. Later in this chapter we demonstrate that the

form of these zero energy edge modes supports ferromagnetic ordering at

the edge of the (2, 1) ribbon.

4.1.3 (s,1) chiral ribbon edge mode structure

Extending the calculation to (s,1) ribbons, where s is an arbitrary integer

larger than 1, since there are s− 1 zigzag links, we expect following [7] that

the degeneracy and location of the Dirac points are determined by M and I

in s−1 = 3I+M which follows from the band-folding scheme those authors

present. The translation vector is given by T = (n − 1)TZ + TA and its

magnitude is T = a
√
s2 + s+ 1.

The s+1 lattice Bloch equations at each choice of m on the upper edge’s

sublattice, using an extension of the unit cell and labeling scheme indicated

for the (2,1) ribbon in figure 4.2, are
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4.1. Electronic structure of chiral ribbons

0 = α1,m + α2,m + α2,m+1 (4.14)

0 = α2,m + α3,m + α3,m+1 (4.15)

... (4.16)

0 = αs,m + αs+1,m + αs+1,m+1 (4.17)

0 = e−ikTαs+1,m + α1,m−1 + α1,m. (4.18)

The boundary condition is

αs−1,0 + αs,1 = 0. (4.19)

We again make the ansatz of an exponentially decaying wave-function into

the lattice Bloch equations: α1,m ∝ ν(k)m, which provides a secular equation

of s+ 1 order:

0 =

(
s+ 1

0

)
ν(k)s+1 +

(
s+ 1

1

)
ν(k)s + . . .+

(
s+ 1

s− 1

)
ν(k)2

+{
(
s+ 1

s

)
+ (−1)se−ikT }ν(k)1 +

(
s+ 1

s+ 1

)
.

(4.20)

Solving this equation numerically for many different values of s we find that

the normalizable solutions are consistent in every case checked with the

degeneracy predicition rules posited in ref. [7]. For example, if s = 16 we

have fifteen zigzag links in the unit cell so that 15 = I + 3M with I = 3 and

M = 4. The folding rules of Jaskólski et al. then indicate we should have a

5-fold degenerate zero energy band across the entire Brillouin zone. We find

equation 4.20 has 7 solutions with |ν(k)| < 1 across the entire Brillouin zone.

The wavefunctions then have seven undetermined coefficients. Since we have

one boundary condition and one normalization condition, we are left with

five undetermined coefficients in the wavefunction, which is consistent with

a degeneracy of five across the whole Brillouin zone. Other cases of (s, 1)

ribbons check out against the folding rules of Jaskólski et al. similarly. We
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4.2. Magnetic structure of chiral ribbons

also find the density of zero modes for all (s, 1) ribbons we have investigated

to be in agreement with the Akhmerov et al. result 4.1 with chiral angle

calculated by equation 2.4.

4.2 Magnetic structure of chiral ribbons

We have found a general proof of magnetism on chiral ribbons inaccessible

thus far. Though minimal chiral ribbons certainly do support localized

edge modes of known density and degeneracy, their wavefunctions cannot

be known in closed form due to our inability to solve secular equations such

as eq. 4.20 exactly. The degeneracy of chiral edge bands is an additional

difficulty. This degeneracy introduces arbitrary coefficients into the zero

energy wavefunctions. Because we need to invert matrices of arbitary size

involving products of these wavefunctions in order to prove magnetism, these

arbitrary coefficients lead to a generally intractable problem.

We have however numerically proven edge ferromagnetism on several

ribbons with non-degenerate edge modes by generalizing the edge-projected

Hubbard scheme developed on zigzag. These numerical calculations show

magnetism on ribbons of a fixed length. We have calculated ferromagnetic

edge ordering for many diferent ribbon lengths, and this suggests this or-

dering is a general property independent of length.

4.2.1 (2,1) magnetism

The (2, 1) ribbon has a single edge state per spin extending across one-third

of its Brillouin zone, exactly like the zigzag ribbon. Our method of showing

edge ferromagnetism proceeds in exact analogy with the zigzag ribbon, ex-

cept one step of the mathematics is more complicated and cannot be done

analytically as before. The process is this: First, we project the Hubbard

interaction into the non-interacting eigenbasis and drop bulk-bulk and edge-

bulk terms on the basis of U � t. Second, we argue the unique ground states

of this edge-projected Hubbard hamiltonian are fully polarized.
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4.2. Magnetic structure of chiral ribbons

The real space wavefunctions are

αi,n,m(k) = eiknT
[
gi(k)ν1(k)m + li(k)ν2(k)m

]
= eiknTαi,m(k),

(4.21)

where T = a
√

7 is the magnitude of the primitive translation vector and

the gi(k) and li(k) are phase factors fully determined by boundary and

normalization conditions in terms of the two normalizable roots ν1(k) and

ν2(k) of the secular equation 4.11. Here there are four distinct sites per unit

cell at a given distance m away from the edge, so i = 1, 2, 3, 4.

In the limit U/t � 1 we can make the approximate transformation

eσ(k) ≈
∑

i,n,m αi,n,m(k)c(i,n,m)σ which corresponds to neglecting bulk-bulk

and edge-bulk interactions, so that

HU = U
∑
i,n,m

c†(i,n,m)↑c(i,n,m)↑c
†
(i,n,m)↓c(i,n,m)↓

≈ U
∑
i,n,m

∑
k1k2k3k4

αi,n,m(k1)α∗i,n,m(k2)αi,n,m(k3)α∗i,n,m(k4)

× e†↑(k1)e↑(k2)e†↓(k3)e↓(k4). (4.22)

Noting that

∑
n

αi,n,m(k1)α∗i,n,m(k2)αi,n,m(k3)α∗i,n,m(k4)

= Lδk1−k2+k3−k4=0αi,m(k1)α∗i,m(k2)αi,m(k3)α∗i,m(k4)

(4.23)

and renaming the momenta, equation 4.22 takes a form exactly analogous

to the Hubbard hamiltonian from the zigzag case equation 3.18:

HU ≈
∑
kk′q

Γ(k, k′, q)e†↑(k + q)e↑(k)e†↓(k
′ − q)e↓(k′), (4.24)

where Γ(k, k′, q) is defined by
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4.2. Magnetic structure of chiral ribbons

Γ(k, k′, q) = LU
∑
i,m

αi,m(k + q)α∗i,m(k)αi,m(k′ − q)α∗i,m(k′). (4.25)

In imitation of the zigzag case we now define the operators

O†i,m(q) =
√
LU

∑
k

α∗i,m(k + q)αi,m(k)
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
, (4.26)

so that the Hubbard hamiltonian takes the positive definite form

HU =
∑
i,m,q

O†i,m(q)Oi,m(q). (4.27)

Here i = 1, 2, 3 is a sum over inequivalent sites at a distance m away from

the edge.

We see again that a fully polarized state is a zero energy ground state.

From here, in order to show this ferromagnetic ground state is the only

possibility, we must show as in the zigzag case that the only states annihi-

lated by Oi,m(q) at every q, m, and i are fully polarized. Suppose Oi,m(q)

annihilates a ground state |ψ〉. We have

0 =
∑
k

α∗i,m(k + q)αi,m(k)
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
|ψ〉. (4.28)

Again we shift the momenta in the sum by π and choose q ≤ 0, putting k

in the convenient range −π/3− qT < kT < π/3, and we note that α∗i,m(k+

q)αi,m(k) = α∗i,m(−k)αi,m(−k− q). We split the sum in 4.28 into two equal

halves −π/3− qT < kT ≤ −qT/2 and −qT/2 ≤ kT < π/3 and restrict our

sum to the upper half at the expense of writing two terms:
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4.2. Magnetic structure of chiral ribbons

0 =
∑

−qT/2≤kT<π/3

α∗i,m(k + q)αi,m(k)

×
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉. (4.29)

Now we argue that the summand vanishes term by term at every k. Had

we the resulting condition

[∑
σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉 = 0, (4.30)

exactly analogous with the zigzag case’s equation 3.24, the ferromagnetism

proof would follow immediately.

In the zigzag case we argued that the summand vanished at each k by

demonstrating the invertibility of a matrix with the Vandermonde theorem,

equation 6 in the Appendix. This hinged upon the zigzag wavefunctions

having an exponentially decaying form with m. An additional complication

with the (2, 1) ribbon is that the wavefunctions decay bi-exponentially with

m. This removes our ability to use the Vandermonde theorem because the

matrix which we need to invert becomes a sum of four Vandermonde matri-

ces, and the determinant of a sum of matrices does not necessarily relate to

the determinants of the individual matrices in the sum. However, we still

need to show 4.30 holds to prove ferromagnetism of the edge state.

To this end, we fix the length of the ribbon to be L unit cells, thereby

fixing the number D + 1 of momenta on the range −qT/2 ≤ kT < π/3 to

be at most L/6 + 1, and we construct a matrix by collating equation 4.29

at the first D + 1 values of m:
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4.2. Magnetic structure of chiral ribbons


M i

0,k0
(q) M i

0,k1
(q) . . . M i

0,kD
(q)

M i
1,k0

(q) M i
1,k1

(q) . . . M i
1,kD

(q)
...

. . .
. . .

...

M i
D,k0

(q) M i
D,k1

(q) . . . M i
D,kD

(q)



|ψqk0〉
|ψqk1〉

...

|ψqkD〉

 =


0

0
...

0

 . (4.31)

Here the matrix elements are defined by

M i
m,k(q) = α∗i,m(k + q)αi,m(k), (4.32)

and the kets by

|ψqk〉 =
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉. (4.33)

In order to derive the condition 4.30 from which ferromagnetism follows,

we need to show this matrix is invertible. Generally, there is no clear way

to do this. However, we have calculated the determinant of this matrix at

every q numerically for each choice of i = 1, 2, 3 and for system sizes up to

L = 192– making at most a 32 × 32 matrix. The determinant is non-zero

and therefore we have proven the matrix in question is invertible in every

case checked. Therefore it holds for L ≤ 192 that

[∑
σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉 = 0. (4.34)

From this relationship it follows by exact recapitulation of the steps outlined

between equations 3.25 to 3.38 that the ground state of the (2, 1) ribbon is

ferromagnetically ordered at the edge. We have thus numerically proven

ferromagnetism of the edge state for L ≤ 192. We expect this magnetism is

also plausible for L > 192.
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4.2. Magnetic structure of chiral ribbons

4.2.2 (3,1) magnetism

Our analysis of magnetism in the (3, 1) chiral ribbon is closely analogous

to that used on the (2, 1)-chiral and (1, 0)-zigzag ribbons. Following the

Jaskólski et al. band-folding argument, noting 3 − 1 = 2 = I + 3M with

I = 2 and M = 0, we expect (see figure 4.1) a single non-degenerate band

of zero energy edge modes extending along −2π/3 < kT < 2π/3, where

T = a
√

13. This is two-thirds of the Brillouin zone.

The lattice Bloch equations at zero energy are

α1,m + α2,m + α2,m+1 = 0 (4.35)

α2,m + α3,m + α3,m+1 = 0 (4.36)

α3,m + α4,m + α4,m+1 = 0 (4.37)

e−ikTα4,m + α1,m−1 + α1,m = 0, (4.38)

and with the ansatz α1,m(k) ∝ ν(k)m they yield the secular equation (com-

pare with equation 4.20)

ν(k)4 + 4ν(k)3 + 6ν(k)2 + {4− e−ikT }ν(k) + 1 = 0. (4.39)

This equation has four complex roots which can be found numerically. Two

of the four are normalizable with |νi(k)| < 1 along the range −2π/3 < kT <

2π/3 in agreement with the Jaskólski band-folding prediction. The density

of zero modes is then

ρ(θ3,1) ≈
∫ 2π/3T

−2π/3T

dk

2π
=

1

3a

2√
13

(4.40)

in agreement with the Akhmerov et al. result 4.1 using θ3,1 = 13.9◦. The

density of zero modes is reduced by a factor of 2/
√

13 ≈ .55 from zigzag.

The real-space zero energy edge mode wavefunctions have the form

αi,n,m = eiknT {gi(k)ν1(k)m + li(k)ν2(k)m} = eiknTαi,m(k), (4.41)
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for i = 1, 2, 3, 4 where the gi(k) and li(k) are phase factors fully determined

in terms of the two normalizable roots ν1(k)andν2(k) from the normalization

and boundary conditions. We again edge-project the Hubbard interaction.

We take the interaction in the site basis HU = U
∑

i c
†
i↑ci↑c

†
i↓ci↓ and project

it into the non-interacting eigenbasis. We neglect bulk-bulk and bulk-edge

correlations, sum over the transverse index n, and rename the momenta,

obtaining

HU ≈
∑
kk′q

Γ(k, k′, q)e†↑(k + q)e↑(k)e†↓(k
′ − q)e↓(k′), (4.42)

valid for U/t � 1, where the vertex factor Γ(k, k′, q) is defined in terms of

the four wavefunctions αi,m(k) by

Γ(k, k′, q) = LU
∑
i,m

αi,m(k + q)α∗i,m(k)αi,m(k′ − q)α∗i,m(k′). (4.43)

Again we define the operators

O†i,m(q) =
√
LU

∑
k

α∗i,m(k + q)αi,m(k)
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
, (4.44)

which bring the hamiltonian into positive definite form, exactly as in the

(2, 1) case but with one additional term in the sum i = 1, 2, 3, 4 over distinct

sites in the unit cell at a chosen m:

HU =
∑
i,m,q

O†i,m(q)Oi,m(q). (4.45)

At this point it is again clear from the definition of Oi,m(q) that a fully

polarized state is annihilated by HU and is therefore a ground state. We

must show these ferromagnetic ground states are the unique ground states.

To this end we again consider the action of Oi,m(q) on a ground state

|ψ〉, setting q ≤ 0 to obtain the condition
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4.2. Magnetic structure of chiral ribbons

0 =
∑

−2π/3−qT<kT<2π/3

α∗i,m(k + q)αi,m(k)
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
|ψ〉.

(4.46)

We note α∗i,m(k + q)αi,m(k) = α∗i,m(−k)αi,m(−k − q) and we break the sum

into two equal halves −2π/3−qT < kT ≤ −qT/2 and −qT/2 ≤ kT < 2π/3.

We restrict the sum to the upper half of the range and write two terms:

0 =
∑

−qT/2≤kT<2π/3

α∗i,m(k + q)αi,m(k)

×
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉. (4.47)

Again, we would like to argue that the summand vanishes at every k. In

the zigzag case we were able to argue this rigorously with the Vandermonde

theorem. For the (2, 1) case the best we can do is show this invertibility

numerically for different choices of L or equivalently different choices of the

number of independent momenta.

Fixing the number of unit cells to be L and defining matrix elements

and kets via

M i
m,k(q) = α∗i,m(k + q)αi,m(k), (4.48)

|ψqk〉 =
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉, (4.49)

we can again construct an analogue of the Vandermonde matrix from the

zigzag case:
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
M i

0,k0
(q) M i

0,k1
(q) . . . M i

0,kD
(q)

M i
1,k0

(q) M i
1,k1

(q) . . . M i
1,kD

(q)
...

. . .
. . .

...

M i
D,k0

(q) M i
D,k1

(q) . . . M i
D,kD

(q)



|ψqk0〉
|ψqk1〉

...

|ψqkD〉

 =


0

0
...

0

 . (4.50)

We note this matrix is not of Vandermonde form, but is instead a sum

of four Vandermonde matrices. Therefore the approach we used to isolate

particular momentum channels for the zigzag ferromagnetism proof does

not work here. Instead we have done this numerically for particular cases.

We have calculated the determinant of these four matrices (one for each i)

to be non-zero at every q for system sizes up to L = 54 unit cells, which

corresponds to at most a 19× 19 matrix. For cases of L ≤ 54 we obtain our

condition

[∑
σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉 = 0, (4.51)

from which the proof of edge ferromagnetism on the (3, 1) minimal chiral

ribbon follows by exact recapitulation of the steps around equations 3.25 to

3.38 in the zigzag proof. We then have a rigorous proof of magnetism for

L ≤ 54. It is plausible that this proof can be done for any L.
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Conclusion

We have reviewed literature relevant to an understanding of confinement-

driven magnetism in carbon ribbons with patterned edges. For the simplest

case of a zigzag edged ribbon, edge ferromagnetism has been rigorously

proven in the small U/t limit by previous authors by projecting a Hubbard

interaction onto the localized edge modes and neglecting certain marginal

interactions. We have built upon this previous work by numerically demon-

strating edge ferromagnetism on minimal chiral ribbons of the (2, 1) and

(3, 1) variety within this edge-projected Hubbard approximation.

Our numerical proof of magnetism within this edge-projected hubbard

interaction becomes more difficult for lower chirality ribbons, since we need

to concentrate on individual momentum channels in order to rigorously prove

magnetism. To isolate individual momentum channels, we must invert a

matrix with elements which are products of the zero-energy edge mode

wavefunctions. In general, these chiral edge mode wavefunctions cannot

be exactly known, and they may also have undetermined coefficients associ-

ated with edge-mode degeneracy. These two complications prevent us from

inverting these matrices and isolating momentum channels in the general

case.

The best we have been able to achieve is show the invertibility of this

matrix numerically for many cases, which provides a strong suggestion of

edge ferromagnetism on (2, 1) and (3, 1) chiral ribbons of any length, and

a numerical proof of edge ferromagnetism on (2, 1) ribbons with L ≤ 192

and (3, 1) ribbons with L ≤ 54. We expect our methodology is sufficient to

numerically demonstrate edge ferromagnetism in any minimal chiral ribbon

of a given length supporting non-degenerate edge modes, given we have

sufficient computational power to calculate the determinant of the resulting
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Chapter 5. Conclusion

matrices analogous to those in equation 4.50.
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The Vandermonde Argument

for Zigzag

Here we will show equation 3.24 holds given equation 3.23.

We begin from equation 3.23, and we set q ≤ 0 so the range of k in the

sum can be written 2π/3− qa < ka < 4π/3:

0 =
∑

2π/3−qa<ka<4π/3

α∗m(k)αm(k + q)

×
[∑

σ

e†σ(k + q)eσ(k)− δq=0

]
|ψ〉. (1)

Now we perform a series of manipulations on this equation. First, we shift all

ka by π so the range of allowed momenta becomes −π/3− qa < ka < π/3–

this is just for convenience. We have

α∗m(k)αm(k + q) ∝ sin {ka/2} sin {(k + q)a/2}

=
1

2
{cos(qa/2)− cos(ka+ qa/2)} (2)

by double-angle formulas. We can see two values of k in the range −π/3−
qa < ka < π/3 will give equal values of α∗m(k)αm(k + q). We determine

these values k, k′ by requiring

cos(ka+ qa/2) = cos(k′a+ qa/2) (3)
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which has the solution

k′ = −k − q. (4)

We would like to manipulate equation 1 into a form whereby each term

in the sum over k must vanish independently. It is convenient to break the

sum into two equal halves −π/3 − qa < ka ≤ −qa/2 and −qa/2 ≤ ka <

π/3. We see that −qa/2 ≤ ka < π/3 places k′ = −k − q into the range

−π/3− qa < k′a ≤ −qa/2. This allows us to restrict the sum in equation 1

to the upper half at the expense of writing two terms:

0 =
∑

−qa/2≤ka<π/3

α∗m(k)αm(k + q)

×
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉. (5)

In writing this, we have used the property α∗m(k)αm(k + q) = α∗m(−k −
q)αm(−k) of the wavefunctions which can be seen from their definition 3.16.

Now we will show that each term in this sum vanishes independently.

Our argument hinges upon the Vandermonde theorem concerning the deter-

minant of a particular (said to be of Vandermonde form) square matrix:∣∣∣∣∣∣∣∣∣∣
x0

0 x0
1 x0

2 . . . x0
n

x1
0 x1

1 x1
2 . . . x1

n
... . . .

. . . . . .
...

xn0 xn1 xn2 . . . xnn

∣∣∣∣∣∣∣∣∣∣
∝
∏
i<j

(xi − xj). (6)

Notice if every xi is distinct, the Vandermonde determinant is necessarily

non-vanishing, meaning the matrix is invertible. Now let us use the explicit

form of the wavefunctions αm(k) from equation 3.7, remembering we have

shifted ka by π, and denoting

|ψqk〉 = eiqam/2α∗0(k)α0(k + q)

×
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉 (7)
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and

Mk(q) = 4 sin
[ka

2

]
sin
[(k + q)a

2

]
. (8)

Equation 5 takes the simple-looking form:

0 =
∑

−qa/2≤ka<π/3

Mk(q)
m|ψqk〉. (9)

Consider a zigzag ribbon of finite length L. There are at most L/3 + 1

allowed momenta k in the range −π/3 − qa < ka < π/3, and at most

L/6 + 1 independent momenta to sum over in 9. Denote the set of momenta

in this range k0, k1, . . .,kD.

Since equation 9 holds for every m, the index describing distance away

from the ribbon edge, which ranges from 0 to∞ in integer steps, we can write

down the equation for the first D+1 values of m and form a (D+1)×(D+1)

square matrix:
Mk0(q)0 Mk1(q)0 . . . MkD(q)0

Mk0(q)1 Mk1(q)1 . . . MkD(q)1

...
. . .

. . .
...

Mk0(q)D Mk1(q)D . . . MkD(q)D



|ψqk0〉
|ψqk1〉

...

|ψqkD〉

 =


0

0
...

0

 . (10)

We note this matrix is of Vandermonde form. We have purposefully manipu-

lated the range of k in the sum in equation 9 to ensure Mk(q) is single-valued

and non-zero with k on this range for any q ≤ 0. Therefore, the Vander-

monde determinant is non-zero, and we can invert the Vandermonde matrix

to obtain

0 =
[∑

σ

{e†σ(k + q)eσ(k) + e†σ(−k)eσ(−k − q)} − 2δq=0

]
|ψ〉 (11)

as claimed in equation 3.24.
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