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Abstract

In this thesis, two problems relevant to the biological locomotion in inertialess environments

are studied, one is the characteristics of undulatory locomotion in granular media, the other is

the optimal flexibility of a driven microfilament in a viscous fluid.

Undulatory locomotion is ubiquitous in nature and observed in different media, from the

swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land,

or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern,

the swimming characteristics depend on the rheological properties of different media. Analysis

of locomotion in granular materials is relatively less developed compared with fluids partially

due to a lack of validated force models but recently a resistive force theory in granular media has

been proposed and shown useful in studying the locomotion of a sand-swimming lizard. In this

work, we employ the proposed model to investigate the swimming characteristics of a slender

filament, of both finite and infinite length, undulating in a granular medium and compare the

results with swimming in viscous fluids. In particular, we characterize the effects of drifting

and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We

also find that, similar to Lighthill’s results using resistive force theory in viscous fluids, the

sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption

in granular media.

Though it is understood that flexibility can improve the propulsive performance of a fila-

ment in a viscous fluid, the flexibility distribution that generates optimal propulsion remains

largely unexplored. In this work, we employ the resistive force theory combined with the

Euler-Bernoulli beam model to examine the optimal flexibility of a boundary driven filament

in the small oscillation amplitude limit. We show that the optimality qualitatively depends

on the boundary actuation. For large amplitude actuation, our numerics show that complex

asymmetry in the waveforms emerge. The results complement our understanding of inertia-

less locomotion and provide insights into the effective design of locomotive systems in various

environments.
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Chapter 1

Introduction

1.1 Swimming at low Reynolds number

Biological locomotion in fluids is ubiquitous in nature and spans a wide range of length

scales from the undulatory locomotion of flagellated bacteria in a microscopic world to the

swimming of sharks in the vast ocean. It plays a crucial role in predation, avoiding predators or

reproduction throughout the whole lifespan of a swimming animal [1]. Biological locomotion in

fluids have received substantial attention from biologists, engineers and mathematicians alike

in recent decades, among which the study of locomotion at small scales relevant to bacteria or

flagella remains more recent [2, 3].

The physics governing locomotion in fluids at small scales are qualitatively different from

those of the mesoscale or macroscale locomotion. For swimming bacteria or flagella, inertia

plays a negligible role while viscous forces dominate. In general, the motion of a Newtonian

fluid is governed by the Navier-Stokes equation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u (1.1)

where u(x, t) is the velocity of the fluid at x in space and time t, µ is the viscosity of the

fluid, ρ is the density of the fluid and p is the pressure. If we non-dimensionalize the Navier-

Stokes equations with respect to a characteristic length scale of the microorganism L and a

characteristic velocity scale U0, we have the dimensionless equation given by

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇2u (1.2)

where the same variables as the dimensional ones are used and

Re =
ρU0L

µ
(1.3)

is the Reynolds number which compares the relative importance of inertia effects to viscous

forces. For a typical microorganism such as E. Coli (U0 ≈ 30µm/s, L ≈ 10µm) swimming

in water, the Reynolds number is on the order of 3 × 10−4 and thus negligible [4]. In the

mathematical limit of zero Reynolds number, we have the Stokes equations governing the motion

1



1.2. Slender body hydrodynamics

of a fluid,

−∇p+∇2u = 0, ∇ · u = 0. (1.4)

The linearity and time independence of the Stokes equations leads to kinematic reversibility,

which is well-described by Purcell’s famous “scallop theorem” states that a reciprocal motion (a

deformation that exhibits time-reversal symmetry) cannot generate any net propulsive thrust

[5]. In order to break the constraint of time-reversibility, many microorganisms including flag-

ellated bacteria and spermatozoa achieve self-propulsion by passing deformation waves along

their slender flexible bodies [3, 6, 7].

1.2 Slender body hydrodynamics

If the length of a swimming cylindrical body L is much larger than its radius r, r/L � 1.

In this case, instead of solving the Stokes equations in the fluid domain, we can obtain a local

drag law, which is the so-called Resistive Force Theory (RFT)[6, 8, 9]. RFT states that the

viscous force per unit length on the body at a point is related linearly to the local filament

velocity, namely,

fvis = −
(
ξ⊥nn + ξ‖tt

)
· xt, (1.5)

where the hydrodynamics at this order is characterized by the tangential ξ‖ and normal ξ⊥
resistive coefficients, the subscript t indicates differentiation with respect to time and n and t

are the local unit normal and tangent vectors along the body. For a slender, cylindrical rod,

the resistance ratio γ = ξ⊥/ξ‖ → 2 as L/r → ∞. This drag anisotropy (γ 6= 1) is crucial for

locomotion at low Reynolds number [3, 4].

1.3 Thesis outline

This thesis studies the characteristics and optimality in swimming and propulsion of a

slender filament in granular media and viscous fluids.

Chapter 2 examines the characteristics of undulatory locomotion of a slender swimmer

in granular media and compare the results with those for swimming in a viscous fluid. We

characterize the complex kinematics and optimal swimming and discuss the similarities to

swimming in viscous fluids.

Chapter 3 presents a mathematical modeling of the propulsion of a filament with nonuniform

flexibility along the body under a boundary actuation. We explore the optimal flexibility

distribution that maximizes the propulsive force of a driven filament for small amplitude. We

note that the optimality qualitatively depends on the boundary actuation, so that one may not

extend the results of one case to other cases of propulsion where the actuation might differ.

2



1.3. Thesis outline

Chapter 4 investigates the fully nonlinear dynamics of a boundary driven filament using a

numerical approach. For small amplitude, we compare the results from numerics to the small

amplitude asymptotic solution and observe good agreement between them. For large amplitude,

we show that the linear theory breaks down and complex asymmetry in the waveforms emerge.

The results complement our understanding of inertialess locomotion and provide insights into

the effective design of locomotive systems in various environments.

3



Chapter 2

Characteristics of undulatory

locomotion in granular media1

2.1 Introduction

Undulatory locomotion, the self-propulsion of an organism via the passage of deformation

waves along its body, is ubiquitous in nature [10, 11]. Flagellated microorganisms swim in fluids

[5, 8, 9, 12–14], snakes slither on land [15–18]and sandfish lizards (Scincus scincus) undulate in

granular substrates [19–21]. Yet the underlying physics differ: from viscous forces [3] in fluids

to frictional forces [20] in terrestrial media. The investigation of these undulatory mechanisms

in different environments advances our understanding of various biological processes [2, 11] and

provides insights into the effective design of biomimetic robots [22, 23].

The swimming of microorganisms in Newtonian fluids, where viscous forces dominate in-

ertial effects, is governed by the Stokes equations [3]. Despite the linearity of the governing

equation, locomotion problems typically introduce geometric nonlinearity, making the problem

less tractable [24]. For slender bodies such as flagella and cilia, Gray and Hancock [8] exploited

their slenderness to develop a local drag model, called resistive force theory (RFT), which has

been shown useful in modeling flagellar locomotion and the design of synthetic micro-swimmers

[3, 4]. In this local theory, hydrodynamic interactions between different parts of the body are

neglected and the viscous force acting on a part of the body depends only on the local velocity

relative to the fluid. Using RFT, Lighthill showed that, for an undulating filament of infi-

nite length, the sawtooth waveform is the optimal beating pattern maximizing hydrodynamic

efficiency [9].

Locomotion in granular media (GM) is relatively less well understood due to their complex

rheological features [25, 26]. The frictional nature of the particles generates a yield stress, a

threshold above which the grains flow in response to external forcing [26]. Different from viscous

fluids, the resistance experienced by a moving intruder originates from the inhomogeneous and

anisotropic response of the granular force chains, which are narrow areas of strained grains

surrounded by the unstrained bulk of medium [27]. At low locomotion speed, where the granular

matter is in a quasi-static regime, the effect of inertia is negligible compared to frictional and

gravitational forces from granular media [21], which is similar to that of a low Reynolds-number

1A version of Chapter 2 has been published in Physics of Fluids. Peng, Zhiwei, Pak, On Shun and Elfring,
Gwynn J., Characteristics of undulatory locomotion in granular media, Phys. Fluids, 28, 031901 (2016)
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2.2. Mathematical Formulation

fluid. In this regime, studies measuring the drag force of an intruder moving through a GM

reveal that the drag force is independent of the speed of the intruder, but it increases with the

depth of GM and proportional to the size of the intruder [27–31].

Recently, Maladen et al. [20] studied the subsurface locomotion of sandfish in dry granular

substrates. While the crawling and burying motion of a sandfish is driven by its limbs, an

undulatory gait is employed for subsurface locomotion without use of limbs. Using high speed

x-ray imaging, the subsurface undulating pattern of the sandfish body was found to be well de-

scribed by a sinusoidal waveform. A major challenge in the quantitative analysis of locomotion

in granular materials is a lack of validated force models like the Stokes equation in viscous fluids

[25, 26]. But inspired by the success of RFT for locomotion in viscous fluids, Maladen et al. [20]

developed an empirical RFT in dry granular substrates for slender bodies (Sec. 2.2.2), which

was shown effective in modeling the undulatory subsurface locomotion of sandfish [20]. The

proposed force model thus enables theoretical studies to address some fundamental questions

on locomotion in granular media. In this paper we employ the proposed RFT to investigate

the swimming characteristics of a slender filament of finite and infinite length undulating in a

granular medium and compare the results with those in viscous fluids. In particular, previous

analysis using the granular RFT considered only force balance in one direction [20] and hence

a swimmer can only follow a straight swimming trajectory in this simplified scenario. Here

we extend the results by considering a full three-dimensional force and torque balances, result-

ing in more complex kinematics such as pitching, drifting and reorientation. The swimming

performance in relation to these complex kinematics is also discussed.

This chapter is organized as follows. We formulate the problem and review the recently

proposed RFT in granular media in Sec. 2.2. Swimmers of infinite length are first considered

(Sec. 2.3): we determine that the optimal waveform maximizing swimming efficiency, similar to

results in viscous fluids, is a sawtooth (Sec. 2.3.1); we then study the swimming characteristics of

sawtooth and sinusoidal swimmers in granular media and compare the results with swimming in

viscous fluids (Sec. 2.3.2). Next we consider swimmers of finite length (Sec. 2.4) and characterize

the effects of drifting and pitching in terms of propulsion speed and efficiency, before concluding

with remarks in Sec. 2.5.

2.2 Mathematical Formulation

2.2.1 Kinematics

We consider an inextensible cylindrical filament of length L and radius r such that r �
L, and assume that it passes a periodic waveform down along the body to propel itself in

granular substrates. Following Spagnolie and Lauga [32], the waveform is defined as X(s) =

[X(s), Y (s), 0]T, where s ∈ [0, L] is the arc length from the tip. The periodicity of the waveform
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2.2. Mathematical Formulation

can then be described as

X(s+ Λ) = X(s) + λ, Y (s+ Λ) = Y (s), (2.1)

where λ is the wave length and Λ the corresponding arc length along the body. N is the number

of waves passed along the filament. Note that L = NΛ and λ = αΛ, where 0 < α < 1 is due to

the bending of the body [32].

✓
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x(0, t) x(s, t)

t
'(0, t)s
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x(s, t)x(0, t)
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'(0, t)s
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f

u? uk
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fontsize:8

Figure 2.1: Illustration of an undulating slender filament and the resistive force theory in
granular media. The body propagates a prescribed waveform to propel itself. Each element ds
experiences a drag force dF = f ds. The basis vectors {ex, ey} and the position vectors of its
head x(0, t) and a material point x(s, t) on the body in the lab frame are shown (ez = ex×ey).
The angle between the local velocity u and unit tangent vector t is ψ(s, t).

Initially, the filament is oriented along the x-axis of the lab frame with its head at x0. At

time t, the filament is passing the waveform at a phase velocity V (with constant phase speed

V ) along the waveform’s centerline, which is oriented at an angle θ(t) to the x-axis (Fig. 2.1).

In a reference frame moving with the wave phase velocity V, a material point on the filament is

moving tangentially along the body with speed c = V/α, and hence the period of the waveform

is T = λ/V = Λ/c. By defining the position vector of a material point at location s and time t

in the lab frame as x(s, t), we obtain

x(s, t)− x(0, t) = Θ(t) ·R(s, t), (2.2)
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2.2. Mathematical Formulation

where

Θ(t) =

cos θ(t) − sin θ(t) 0

sin θ(t) cos θ(t) 0

0 0 1

 (2.3)

is the rotation matrix, and R(s, t) = X(s, t)−X(0, t), and note that X(s, t) = X(s− ct). Then,

the velocity of each material point in the lab frame would be

u(s, t) = ẋ(0, t) + θ̇Θ ·R⊥ + Θ · Ṙ, (2.4)

where R⊥ = ez ×R, and dot denotes time derivative. The unit tangent vector in the direction

of increasing s is

t = xs = Θ ·Xs(s, t), (2.5)

where the subscript s denotes the derivative with respect to s. The angle between the local

velocity vector u and the local unit tangent vector t is ψ:

cosψ = û · t, û =
u

‖u‖
· (2.6)

Now, to define the waveform we specify the tangent angle made with the centerline of the

waveform

ϕ(s, t) = arctan
Ys
Xs

, (2.7)

or

Xs = [cosϕ, sinϕ, 0]T. (2.8)

Note that we have the following geometric relations:

R =

∫ s

0
Xs ds, Ṙ =

∫ s

0
ϕ̇X⊥s ds, (2.9)

t = Θ ·Rs = Θ ·Xs, (2.10)

where X⊥s = ez ×Xs, and

α =
λ

Λ
=

1

Λ

∫ Λ

0
cosϕds. (2.11)

The inextensibility assumption requires that ∂[xs ·xs]/∂t = 0, and the arc-length parameteriza-

tion of the swimming filament naturally satisfies this constraint. The tangent angle is specified
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2.2. Mathematical Formulation

as a composition of different Fourier modes2:

ϕ(s, t) =

n∗∑
n=1

{
an cos

[
2πn

Λ
(s− ct)

]
+ bn sin

[
2πn

Λ
(s− ct)

]}
, (2.12)

where

an =
2

Λ

∫ Λ

0
ϕ(s, 0) cos

[
2πns

Λ

]
ds, (2.13)

bn =
2

Λ

∫ Λ

0
ϕ(s, 0) sin

[
2πns

Λ

]
ds, n = 1, 2, 3, ... (2.14)

2.2.2 Resistive force theory

In low Reynolds number swimming of a slender filament in a Newtonian fluids, the resistive

forces are linearly dependent on the local velocity. The force per unit length exerted by the

fluid on the swimmer body at location s and time t is given by

f(s, t) = −KTu · tt−KN (u− u · tt), (2.15)

where KN and KT are, respectively, the normal and tangential resistive coefficients. The self-

propulsion of elongated filaments is possible because of drag anisotropy (KN 6= KT ). A detailed

discussion on this property can be found in the review paper by Lauga and Powers [3]. Recent

experimental studies of direct force and motion measurements on undulatory microswimmers in

viscous fluids find excellent agreement with RFT predictions [33, 34]. The ratio rK = KN/KT

varies with the slenderness (L/r) of the body. In the limit of an infinitely slender body, L/r →
∞, rK → 2, which is the value adopted in this study.

For undulatory locomotion in dry granular media, we only consider the slow motion regime

where grain-grain and grain-swimmer frictional forces dominate material inertial forces [20].

The motion of the swimmer is confined to the horizontal plane such that the change of resistance

due to depth is irrelevant. In this regime the granular particles behave like a dense frictional

fluid where the material is constantly stirred by the moving swimmer [25]. The frictional force

acting tangentially everywhere on the surface of a small cylindrical element is characterized

by CF , which is refered to as the flow resistance coefficient [20]. The other contribution to

the resistive forces is the in-plane drag-induced normal force, which is characterized by CS .

Note that CS is a constant because the drag is independent of the velocity magnitude. The

normal resistive coefficient C⊥ depends on the orientation (ψ) of the element with respect to

the direction of motion (Fig. 2.1). In other words, the resistive force exerted by the granular

2For numerical computations, the number of modes n∗ has to be finite. In this chapter, n∗ = 100 as detailed
in Appendix A
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2.2. Mathematical Formulation

material on the swimmer per unit length

f(s, t) = −C‖û · tt− C⊥(û− û · tt), (2.16)

where

C‖ = 2rCF , (2.17)

C⊥(ψ) = 2rCF +
2rCS sinβ0

sinψ
= C‖

(
1 +

CS sinβ0

CF sinψ

)
, (2.18)

tanβ0 = cot γ0 sinψ and γ0 is a constant related to the internal slip angle of the granular

media[20]. Although a complete physical picture of the dependence of C⊥ on the orientation

ψ remains elusive, the application of the granular RFT proves to be effective. Several studies

have applied the granular RFT to study the locomotion of sand-swimming animals and artificial

swimmers and found good agreement with experiments and numerical simulations [23, 25]. A

detailed discussion about the effectiveness of granular RFT on modelling sand-swimming can

be found in a review article by Zhang and Goldman [25].

An important parameter characterizing the response of dry GM to intrusion is the volume

fraction φ, which is defined as the ratio of the total volume of the particles divided by the

occupied volume. The level of compaction affects drag response as closely packed (high φ)

GM expands to flow while loosely packed (low φ) material would consolidate [20]. The drag

parameters CS , CF and γ0 depend on the volume fraction of the GM. In our study, we refer to

the GM with φ = 0.58 as loosely packed (LP) whereas φ = 0.62 as closely packed (CP). The

numerical values of the drag parameters are adopted from the paper by Maladen et al. [20],

where the forces at a fixed depth of 7.62 cm were measured by towing a cylinder of stainless

steel. The drag parameters are presented in Table 2.1.

Packing φ CS ,N/m2 × 10−4 CF ,N/m2 × 10−4 γ0,degree

LP 0.58 0.51 0.28 13.84
CP 0.62 0.77 0.59 12.21

Table 2.1: The parameters of the resistive force model in LP and CP GM as obtained by
Maladen et al. [20]

Without external forcing, the self-propelled filament satisfies force-free and torque-free con-

ditions:

F =

∫ L

0
f(s, t) ds = 0, (2.19)

T =

∫ L

0
[x(s, t)− x(0, t)]× f(s, t) ds = 0. (2.20)

The granular RFT exhibits the symmetry property that u→ −u results in f → −f . Com-
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2.2. Mathematical Formulation

bining this symmetry with the kinematics of the undulatory locomotion (see Sec. 2.2.1), one

can show that the velocities −ẋ(0, t) and −θ̇ are solutions to the instantaneous motion under

a reversal of the actuation direction (c → −c) provided that ẋ(0, t) and θ̇ are solutions to the

original problem (without reversal of the actuation). This symmetry is of course present in

viscous RFT and this commonality, as we shall show, leads to qualitatively similar swimming

behaviors.

2.2.3 Swimming efficiency

The instantaneous swimming speed of the filament is given by ẋ(0, t), and the mean swim-

ming velocity is defined as U = 〈ẋ(0, t)〉 = Uxex + Uyey with the magnitude U = ‖U‖. The

angle brackets 〈...〉 denote time-averaging over one period T . The efficiency of the undulatory

locomotion for a given deformation wave is defined by the ratio of the power required to drag

the straightened filament through the surrounding substance to the power spent to propel the

undulating body at the same velocity [35]. Hence, the efficiency for undulatory swimming of

slender filaments in viscous fluid (ηf ) and granular substance (ηg), respectively, are

ηf =
KTLU

2

P
, ηg =

C‖LU

P
, (2.21)

where

P =

〈∫ L

0
f(s, t) · u(s, t) ds

〉
· (2.22)

The optimal swimming can then be interpreted as either swimming with the maximum speed

at a given power or swimming with the minimum power at a given speed.

2.2.4 Waveforms

We consider two typical planar waveforms that have been well studied in Newtonian swim-

ming: the sinusoidal waveform, and the sawtooth waveform (Fig. 2.2). The sinusoidal waveform

can be described by its Cartesian coordinates3:

Y = b sin k(X +X0), (2.23)

where k = 2π/λ is the wave number, kX0 is the initial phase angle of the waveform, and b the

wave amplitude. The dimensionless wave amplitude is defined as ε = kb.

The sawtooth waveform, which consists of straight links with a bending angle β (ϕ = ±β/2),

3The local tangent ϕ(s, t) of the Cartesian sine can be obtained using the relation ds =
√

1 + Y 2
X dX combined

with Eq. (2.7). Then we obtain the Fourier coefficients of the Cartesian sine using fsolve because the functions
are nonlinear.
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2.3. Bodies of infinite length

can be described as

Y =
2b

π
arcsin[sin k(X +X0)], (2.24)

The dimensionless amplitude ε = kb = (π/2) tan(β/2).

(a) (b)

b b

small

�

Figure 2.2: Undulating filaments with a single wave (N = 1). (a): sinusoid, kX0 = 0; (b)
sawtooth, kX0 = 0

2.3 Bodies of infinite length

For bodies of infinite length (L → ∞), the swimming motion is steady and unidirectional,

and hence ˙θ(t) = 0. Without loss of generality, we assume the filament propagates the defor-

mation wave in the positive x-direction. Then the velocity of a material point on the body can

be written as

u = −Uex + V ex − ct, (2.25)

where U is the swimming speed [35]. For an infinite swimmer, the unidirectional swimming

velocity for a given waveform can be obtained from only the force balance in the x-direction,

F · ex = 0, over a single wavelength,

∫ Λ

0

(
CS sinβ0

sinψ
+ CF

)
û · ex ds−

∫ Λ

0

CS sinβ0

sinψ
(û · t)t · ex ds = 0. (2.26)

The above integral equation can be solved for U numerically for a given waveform in general

but is analytically tractable in certain asymptotic regimes, which we discuss below.

2.3.1 Optimal shape: numerical results

A natural question for swimming organisms is how their swimming gaits evolve under the

pressure of natural selection [36], since being able to swim does not necessarily mean one does it

efficiently. The understanding of optimal swimming may reveal nature’s design principles and

guide the engineering of robots capable of efficient self-propulsion. As a response, the optimal

strategies of several Newtonian swimming configurations have been studied. Becker et al.[37]

determined the optimal strategy of Purcell’s three-link swimmer under constant forcing and
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2.3. Bodies of infinite length

minimum mechanical work. Tam and Hosoi [38] improved the swimming speed and efficiency

of the optimal strategy of Purcell’s three-link swimmer by allowing simultaneous rather than

sequential movement of both hinges (kinematic optimization). Using viscous RFT, Lighthill

showed that the optimal flagellar shape has constant angle between the local tangent to the

flagellum and the swimming direction [9]. In 2D, the sawtooth profile with a tangent angle

ϕ ≈ ±40◦ (bending angle β ≈ 80◦) was found to optimize the swimming efficiency of an infinite

length swimming filament. Alternatively, this solution can be obtained through a variational

approach [32]. In 3D, Lighthill’s solution leads to an optimal shape of a rotating helix. More

recently, Spagnolie and Lauga studied the optimal shapes for both finite and infinite elastic

flagellum by incorporating physical constraints such as bending and sliding costs [32]. Inspired

by the investigations of optimal strategies for Newtonian swimming, we study the optimal shape

for infinite swimmers in granular substrates using resistive force theory.

For bodies of infinite length, the optimal shape is time, scale and phase invariant [32].

Therefore, we take Λ = L = 1 and consider the optimization for t = 0. In other words, the

local tangent angle for the optimization problem would be

ϕ(s, t = 0) =

n∗∑
n=1

an cos(2πns). (2.27)

We consider the optimal filament shape by maximizing the swimming efficiency η defined in

Sec. 2.2.3. Once the local tangent angle is obtained, the shape itself can be recovered by

integration. The numerical methods used in this optimization can be found in Appendix A.1.

0 π/2 π 3π/2 2π

kx

−1

0

1

k
y

Lighthill
LP
CP

Figure 2.3: Optimal shapes in terms of swimming efficiency for an infinite filament in a granular
substrate (LP, CP) and Newtonian fluid. The spatial coordinates are scaled to the same wave
length. For loosely packed granular material, the optimal shape is almost the same as the
analytical result of Lighthill’s in Newtonian fluid.

The optimal shapes found by maximizing the swimming efficiency are presented in Fig. 2.3

for a LP granular substrate (red dashed line), a CP granular substrate (blue dash-dot line), and

12



2.3. Bodies of infinite length

a viscous Newtonian fluid (black solid line) as a comparison. First, it is interesting that the

optimal shape stays as sawtooth despite the nonlinearity in the resistive force model of granular

substrates. The optimal bending angles for LP and CP granular media are, respectively, β ≈ 80◦

and β ≈ 87◦. The associated efficiencies of the optimal shapes are around 0.56 for LP and 0.51

for CP granular substrates, which are much greater than that of Newtonian swimming. In spite

of the difference in the surrounding media, the optimal bending angle for granular substrates

and viscous Newtonian fluids lie within the same range; in particular, the optimal sawtooth in

LP closely resembles that in Newtonian fluids.

We argue that it is not surprising that the sawtooth waveform is optimal in both the viscous

RFT and the nonlinear granular RFT. Given an angle that maximizes the efficiency of a local

element. Without any penalty, the globally optimal shape would be the one that is locally

optimal everywhere along the body. As a result, a local resistive force model should exhibit

an optimal shape of a certain sawtooth waveform. Using this argument, we can simply drop

the integration (or assume it is a sawtooth) in Eq. (2.26) and consider the local optimality.

The local optimal angle obtained is indeed the same as that found using numerical global

optimization (see Sec. 2.3.2).

The existence of a locally optimal tangent angle ϕ originates from the physical picture in-

troduced by the drag-based propulsion model [3] (Fig. 2.1). Let ud = udey be the transverse

deformation velocity of an infinite swimming filament. Then a propulsive force, which is per-

pendicular to the direction of the deformation velocity, generated by this deformation can be

given by

fprop = −(C⊥(ψ)− C‖) sinϕ cosϕex. (2.28)

Therefore, the propulsive force arising from a local deformation of the filament scales with its

orientation as

sinϕ cosϕ√
tan2 γ0 + cos2 ϕ

, (2.29)

the maximum of which is achieved when ϕ ≈ 64◦. However, as the tangent angle increases,

the power consumption of the swimming filament increases. As a result, the swimmer tends to

reduce the tangent angle to decrease the energy expenditure while maintaining a relatively high

propulsive force. It is the interplay of these two factors that determines the optimal tangent

angle.

2.3.2 Sawtooth and sinusoid

The swimming speed of an infinite sawtooth in viscous fluids can be expressed as

U

V
=

1− cosβ

3− cosβ
· (2.30)
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2.3. Bodies of infinite length

For a sawtooth profile in granular substrates, although an explicit analytical solution cannot

be extracted, an implicit algebraic equation for the swimming speed U can be obtained since

the local resistive forces do not vary along the body:(
CS sinβ0

sinψ
+ CF

)
û · ex −

CS sinβ0

sinψ
(û · t)t · ex = 0, (2.31)

where t · ex = cos(β/2). We then solve Eq. (2.31) numerically (see Appendix) with the same

convergence criterion as in the optimization (Sec. 2.3.1). For a sinusoidal wave in granular

media, a simplification like Eq. 2.31 is not available and we therefore directly solve Eq. (2.26)

with the numerical method outlined in the Appendix.

For small amplitude sawtooth waveforms (ε � 1), or small bending angle β, we obtain an

asymptotic solution of the swimming speed U . Note that the swimming speed is invariant under

a phase shift of π, which is equivalent to a sign change in the amplitude: ε→ −ε. Assuming a

regular expansion in ε, this symmetry argument leads to a quadratic scaling of the swimming

speed in the wave amplitude[4]

U

V
∼ 4 cos γ0CS

π2CF
ε2· (2.32)

When the bending angle is large, another asymptotic limit can be obtained. The swimming

speed U/V approaches a constant as β → π and analytically we find that

U

V
∼ CS
CS + CF tan γ0

· (2.33)

One can also show that this large amplitude asymptotic limit for a sawtooth equals that of a

sinusoidal wave. For small amplitude sinusoidal waveforms, however, the nonlinearity of the

shape and the resistive forces results in a non-uniform integral and a slowly converging asymp-

totic series. To leading order, the swimming speed U/V scales as ε2/ ln(1/|ε|), which does not

agree well with the numerical results even for ε < 0.1 as the higher order terms being truncated

are not significantly smaller. We present the small and large amplitude asymptotic solutions

for the granular swimming of a sawtooth profile in Fig. 2.4(a). The asymptotic solutions agree

well with the numerical solutions even for wave amplitudes close to one. Fig. 2.4(b) shows

the efficiency of swimming as a function of the bending angle for an infinite sawtooth in both

granular media and viscous fluids. For swimming efficiency, a global maximum in bending angle

exists for both viscous and granular swimming. Note that the optimal angles obtained here are

equal to those obtained via the global optimization (Sec. 2.3.1).

In Fig. 2.5, we compare the swimming speed and efficiency of sawtooth and sinusoidal

waveforms in both GM and Newtonian fluids as a function of the wave amplitude ε. In both

GM and Newtonian fluids, the swimming speed of a sawtooth is only slightly different from that

of a sinusoid with the same dimensionless amplitude. This small difference indicates that the

effects of the local curvature variations are not significant in both the granular and viscous RFT.
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Figure 2.4: (a): Swimming speed of infinite sawtooth waveforms as a function of amplitude ε
(or bending angle β) in granular material and Newtonian fluids. The dashed lines indicate the
small and large amplitude asymptotic solutions. (b): Efficiency of infinite sawtooth waveforms
as a function of amplitude ε (or bending angle β) in granular material and Newtonian fluids.
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Figure 2.5: A comparison of the swimming speed (a) and efficiency (b), as a function of wave
amplitude ε for sawtooth and sinusoidal waveforms in granular substrates and Newtonian fluids.

Although the sawtooth is found to be the mathematically optimal shape, the undulatory gait

of a sandfish resembles a smooth sinusoidal waveform [20]. The slight difference in swimming

performance between the two waveforms presented in this section might justify the adoption of a

sinusoidal waveform instead of the mathematically optimal sawtooth waveform, since the kinks

in the sawtooth may involve other energetic costs associated with bending and the deformation

of the internal structure of the body [32].
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2.4 Bodies of finite length

The infinite swimmer model only enforces a force balance in one direction and hence a

swimmer is confined to swim only unidirectionally without any rotation. In reality, however, a

swimmer has a finite size and more complex swimming kinematics, including transverse motion

relative to the wave propagation direction and rotation. Previous studies employed slender body

theory to investigate the swimming motion of finite filaments in a viscous Newtonian fluid

and their swimming performance in relation to number of wavelengths and filament length

[14, 32, 39, 40]. In this section, we investigate the swimming characteristics of finite-length

sinusoidal swimmers in a granular medium and compare with their Newtonian counterparts.

The numerical methods implemented to solve the equations of motion of a finite length swimmer

are given in Appendix A.2.

2.4.1 Geometries

(a) (b)
✏ = 0.2

✏ = 1

✏ = 4

Figure 2.6: Shapes of swimming finite length single wave (N = 1) sinusoidal filaments for
different wave amplitude ε. (a): the odd sine configuration, with kX0 = 0, (b): the even cosine
configuration, with kX0 = π/2. The waveforms are rescaled to the same wave length for better
comparison.

For an undulating sinusoidal filament, the initial shape of the swimmer is determined by

the number of waves N , the wave amplitude ε, and the initial phase angle kX0 (Eq. (2.23)).

The two specific categories of shapes that possess odd or even symmetry for a single wave

sinusoidal swimmer are shown in Fig. 2.6. A swimmer in an odd configuration is the one that

has point symmetry about the midpoint of the filament as seen in Fig. 2.6(a), while an even

configuration is the one that possesses mirror symmetry about the vertical line through the

midpoint as in Fig. 2.6(b). In our paper, the shapes shown in Fig. 2.6(a) are referred to as

odd sine swimmers, while even cosine swimmers are those shown in Fig. 2.6(b). Note that an

even sine swimmer would be the one that has the number of waves N ∈ {1/2, 3/2, 5/2, ...} and

a phase angle kX0 ∈ {0,±π,±2π, ...}; an even cosine swimmer is the one that has the number

of waves N ∈ {1, 2, 3, ...} and a phase angle kX0 ∈ {±π/2,±3π/2, ...}.
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2.4. Bodies of finite length

2.4.2 Pitching, drifting and reorientation

Unlike the swimming of an infinite length undulatory swimmer whose motion is steady

and unidirectional, the locomotion of a finite filament may also experience net motion normal

to the initial direction wave propagation direction, also referred to as drifting, and unsteady

rotational motion, known as pitching. Here we characterize in GM the re-orientation of a finite

swimmer that results in drifting, and the dependence of swimming performance on pitching

motion, previously reported to diminish performance in viscous Newtonian media [32, 40].

−4 −3 −2 −1 0 1

x/L

−0.5

0

0.5

1

1.5

y
/
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direction of motion

Figure 2.7: Trajectory of the head x(0, t) (black solid lines) and trajectory of the swimmer
centroid (dotted lines) for swimming finite sinusoidal filaments with N = 1 and ε = 1 that
possess odd/even symmetry at t = 0 in loosely packed GM. The filament swims towards the
left when the wave propagates to the right. If the configuration possesses even symmetry it
does not undergo a net reorientation.

For an even symmetry filament in viscous fluids, Koehler et al. [40] showed that the velocity

of the center of mass is along the centerline of the waveform, hence the net drifting is zero. This

argument relies on the kinematic reversibility of Stokes flow: reflection about the vertical line is

equivalent to a time reversal (or reversing the direction of the actuation), so the instantaneous

swimming is identical to the mirror reflection of its time-reversal, and the linearity requires the

reverse of velocity due to time-reversal, thus one can show that the transverse component of

the velocity is zero. As a result, the net displacement in one period for a filament starts with

the even configuration is along the initial waveform centerline.

Although the granular RFT is nonlinear, the aforementioned symmetry property (u →
−u⇒ f → −f , see Sec. 2.2.2) means that the same argument for an even symmetry swimmer

can be made in GM. Therefore, zero net transverse motion is achieved if the swimmer starts with

an even symmetry, which is also corroborated by the numerical simulation. Fig. 2.7 shows the

head trajectories of two swimming sinusoidal filaments with the same wave amplitude (ε = 1),

one starts with even symmetry while the other starts with odd symmetry. The net displacement

of the even cosine swimmer is in the negative x-direction, which is the opposite direction of the

wave propagation at t = 0. The odd sine swimmer, however, appears to be drifting upwards to
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2.4. Bodies of finite length

the positive y-direction through time.
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Figure 2.8: Parametric plots for the magnitude of the reorientation angle |〈θ〉 − θ0| for a single
wave (N = 1) sinusoid in (a) loosely packed GM, (b) closely packed GM and (c) Newtonian
fluids. (d): Plots of |〈θ〉 − θ0| against the wave amplitude ε for the odd sine configuration in
GM and Newtonian fluids. |〈θ〉 − θ0| is periodic with a period of π.

The swimming behavior presented in Fig. 2.7 can be understood by examining the periodic

instantaneous motion of the swimmer. In the moving frame, or the Lagrangian frame, the

instantaneous motion of the swimmer can be viewed as being pulled through a waveform-shaped

tube [40]. This motion, in turn, causes rotation and translation of the Lagrangian frame. The

instantaneous rotation of the Lagrangian frame is described by θ(t), which is periodic due

to the periodicity of the wave propagation. The average of θ(t) over one period, denoted as

〈θ〉, describes the average swimming direction. This angle 〈θ〉 is the same in every period

which results in a straight line trajectory on average. If a filament, starts with an odd (even)

configuration at t = 0 (if aligned with the x-axis then θ0 = 0), it would possess even (odd)

symmetry at t = T/4. Thus the filament alternates between even symmetry and odd symmetry

after successive time steps of T/4. In this viewpoint, 〈θ〉 − θ0 characterizes the amount of time

t1 required for the filament to reorient itself such that it reaches an even symmetry. After that,

the swimmer would move in the direction of the waveform centerline at t = t1. For a fixed

number of waves N and amplitude ε, the odd configuration requires the largest amount of time

(T/4) to reach an even symmetry, therefore has the largest angle of reorientation. Note that

the angle of reorientation should be distinguished from pitching of the swimmer, which is the

instantaneous rotation of the swimmer about its waveform centerline.
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Figure 2.9: Maximum instantaneous pitching angle θmp as a function of the wave amplitude ε
for single wave (N = 1) sinusoidal swimmers in GM and Newtonian fluids.

In Fig. 2.8, we present parametric plots of absolute value of the angle of reorientation

|〈θ〉 − θ0| by varying the wave phase angle kX0 and the amplitude ε in both GM and viscous

fluids. The number of waves is fixed as N = 1, which approximates the shape of an undulating

sandfish body [20]. Note that a phase shift of π would result in a reversal of the direction

of the transverse motion, hence the sign of 〈θ〉 − θ0. In both GM and Newtonian fluids, the

maximum in |〈θ〉 − θ0| is obtained when the filament possesses an odd symmetry at t = 0, i.e.,

kX0 ∈ {0, π, 2π, ...}. For shapes that possess even symmetry, namely, kX0 ∈ {π/2, 3π/2, ...},
zero transverse motion is observed. Within our parameter range, a maximum in |〈θ〉 − θ0| is

achieved around an intermediate value of the amplitude for a given phase angle. As an example,

the variation of |〈θ〉−θ0| with the amplitude ε for the odd configuration is shown in Fig. 2.8(d).

The largest amount of reorientation of an odd swimmer is achieved when ε ≈ 1 − 1.2 in GM

while ε ≈ 2.2 in viscous fluids. We also note that the angle of reorientation decreases with the

increasing of wave amplitude in the large amplitude region (ε > 2).

Although the transverse motion of the even configuration is minimal, the instantaneous

pitching, θ(t)−〈θ〉, which generally diminishes performance, can be significant. Multiple metrics

have been used to characterize pitching of a swimmer [32, 40], here we use the maximal amount

of instantaneous pitching a swimmer can experience in one cycle of its motion θmp = |θ(t) −
〈θ〉|max. Fig. 2.9 shows the maximal instantaneous pitching angle θmp for single wave sinusoidal

swimmers in GM and Newtonian fluids. The maximal instantaneous pitching angle of a single

wave sinusoid goes up to about 15◦ in loosely packed GM while around 19◦ in closely packed

GM.

The instantaneous pitching of the swimmer results in a tortuous motion with a net swimming

speed smaller than that of an infinite sinusoid. For a fixed number of waves and wave amplitude,

a phase shift only leads to a variation in the direction of swimming. In other words, the velocity

magnitude U is independent of kX0 but the x and y components vary. From a control point of
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2.4. Bodies of finite length

view, one can change the phase angle of an artificial sinusoidal swimmer to obtain the desired

direction of swimming.

2.4.3 Swimming performance

The two typical metrics for swimming performance used in the literature are the dimen-

sionless swimming speed U/V and the swimming efficiency η, see Eq. (2.21). For a sinusoidal

swimmer, the performance depends on the dimensionless amplitude ε and the number of waves

N . Note that the initial phase angle kX0 does not affect the two performance metrics. The

desired motion of a finite swimmer is its translation, therefore the optimization of a finite

sinusoidal filament requires minimizing pitching.
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Figure 2.10: Swimming speed U/V as a function of the dimensionless amplitude ε for different
number of waves N in (a) loosely packed GM and (b) closely packed GM. The solid lines denote
the swimming speed of an infinite sinusoid.

For an undulatory finite filament in viscous fluids, several studies have characterized the

swimming performance and optimal strategies. Spagnolie and Lauga reported that the lo-

cal maxima in swimming efficiency occur for around half-integer number of waves (N ≈
3/2, 5/2, ...,) when the bending cost is small [32]. Later studies by Koehler et al. [40] and

Berman et al. [41] also showed that, for a sinusoidal swimmer, local maxima in performance

are achieved for close to half-integer number of waves where pitching is small.

We first verify that the swimming velocity (Fig. 2.10) and efficiency (Fig. 2.11) of a finite

sinusoidal swimmer in GM both converge to that of an infinite sinusoidal swimmer as the

number of waves N increases. For a single wave sinusoid (N = 1) in loosely packed GM, the

optimal dimensionless amplitude that maximizes the efficiency is ε ≈ 1.68. As the number of

waves increases, the optimal dimensionless amplitude approaches that of an infinite sinusoid

(ε ≈ 1.33). Similar observations can be made for closely packed GM. We also observe that for a

given dimensionless amplitude ε, the difference in the swimming velocity (or efficiency) between

a short swimmer (N = 1) and an infinite swimmer can be associated with the pitching motion:

20



2.4. Bodies of finite length

0 1 2 3 4

ǫ

0

0.1

0.2

0.3

0.4

0.5

0.6

η

LP

(a)

N = 1

N = 2

N = 3

N = ∞

0 1 2 3 4

ǫ

0

0.1

0.2

0.3

0.4

0.5

0.6

η

CP

(b)

N = 1

N = 2

N = 3

N = ∞

Figure 2.11: Swimming efficiency η as a function of the dimensionless amplitude ε for different
number of waves N in (a) loosely packed GM and (b) closely packed GM. The shaded regions
represent the observed values of ε for lizards reported in the literature [20, 21].
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Figure 2.12: (a) Swimming speed as a function of the number of waves in GM. (b) Swimming
efficiency as a function of the number of waves in GM. The dimensionless amplitude is fixed
(ε = 1).

the largest difference in swimming speed (or efficiency) between the N = 1 and N = ∞
swimmers occurs in the region ε ≈ 1 in Figs. 2.10 and 2.11, which is also the region where

pitching is the most significant (Fig. 2.9).

For a given waveform, the amount of pitching can be altered by changing the number of

waves N . We investigate in Fig. 2.12 the dependence of the performance metrics on the number

of waves for a finite sinusoidal swimmer, keeping dimensionless amplitude fixed at ε = 1. Rather

than approaching the swimming velocity (or efficiency) of the corresponding infinite sinusoid

monotonically with increasing number of waves, the swimming speed and efficiency exhibit

local maxima and minima. Similar to the Newtonian case, the local maxima in efficiency and

swimming speed occur for the number of waves close to (but not equal) half-integers. The
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Figure 2.13: Maximum instantaneous pitching angle as a function of the number of waves in
GM. The dimensionless amplitude is fixed (ε = 1).

volume fraction of the GM has no significant influence on the number of waves where local

maxima in swimming performance occur. As shown in Fig. 2.12, the first local maximum in

swimming performance for the number of waves greater than one occurs around N ≈ 1.4. The

maxima in swimming performance are associated with minimal pitching as shown in Fig. 2.13.

Finally we note that although both the first two local maxima have minimal pitching (Fig. 2.13),

the swimmer with more number of waves (N ≈ 2.5) still displays better swimming performance,

which can be attributed to a smaller bobbing motion [40] (the relative motion of the center of

mass of the swimmer to the net swimming direction) for the swimmer with more number of

waves.

Finally, we relate our findings to biological observation; we show, in the shaded regions

of Fig. 2.11, the observed dimensionless amplitude (amplitude-to-wavelength ratio) for lizards

reported in the literature (ε = 1.20−1.38) [20, 21]. We see in the case of both loosely-packed and

closely-packed granular media, that the biologically observed range of wave amplitudes sample

high efficiencies not far from optimal (ε ≈ 1.69 for LP and ε ≈ 1.95 for CP for N = 1). Since

the efficiency peak is broad, a swimmer may adopt a close-to-optimal shape at the expense of

only a modest drop in swimming efficiency to address other constraints (such as bending costs

or internal dissipation).

2.5 Conclusion

In this chapter, we have investigated locomotion of slender filaments in granular media using

a resistive force theory proposed by Maladen et al. [20]. While previous work focused on infinite

swimmers (or 1-D swimming) in reality a swimmer has a finite size, which leads to more complex

swimming motion. By taking into account full force and torque balances, a finite swimmer is

no longer only confined to swim in a straight trajectory. The orientation of the swimmer can be
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2.5. Conclusion

controlled by adjusting the features of the waveform such as the amplitude, phase, and number

of wavelengths, allowing a swimmer to move from an initial position to a final destination via a

more complex, designated trajectory. These degrees of freedom enable the control of swimmers

without the use of any external fields to actively steer the swimmer. Our studies characterize

this complex swimming motion in granular media, which may be useful for the development

of programmable and efficient autonomous locomotive systems in such environments, but also

suggest that swimmers in nature are themselves closely tuned for optimality.

We also find that undulatory locomotion of filaments in granular media is distinctly similar

to that in viscous fluids. We compared a number of observations made for swimming in viscous

fluids with RFT both for finite and infinite swimmers and found qualitatively similar behavior

using granular resistive force theory despite the nonlinearity of the force law. The reason is

largely down to two distinct similarities. The first, is that both laws are still local and thus

ignore interactions of distinct parts of the body through the medium in which they swim.

Ultimately this leads to finding that a sawtooth profile optimizes locomotion in both viscous

fluids and granular media. The second, is that both force laws display the symmetry that

u → −u results in f → −f . This leads to a kinematic reversibility in both cases, where a

reversal of the wave speed leads to a reversal of the translational and rotational motion of the

swimmer, and hence a myriad of qualitatively similar behaviors that we have explored and

quantified in this chapter.
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Chapter 3

Optimal flexibility of a driven

microfilament in a viscous fluid

3.1 Introduction

In many situations of biological locomotion in fluids, such as flapping birds, swimming

fish and beating flagella, propulsive thrust is achieved by periodic motion of a flexible body

or appendage [3, 36, 42]. Elastic deformations of flexible parts on a swimmer due to the

fluid-structure interaction can lead to significantly improved propulsive performance across

Reynolds numbers [4, 43, 44]. However, the physics of swimming at small scales relevant to

microorganisms are fundamentally different from that of the mesoscopic swimming of flexible

bodies.

For swimming microorganisms such as flagella and bacteria, the dominance of viscous forces

over inertial effects leads to the time-reversible Stokes equations governing the fluid motion. In

this low Reynolds number regime, Purcell’s famous “scallop theorem” states that a reciprocal

motion (a deformation that exhibits time-reversal symmetry) cannot generate any net propul-

sive thrust [5]. In order to break the constraint of time-reversibility, many microorganisms

including flagellated bacteria and spermatozoa achieve self-propulsion by passing deformation

waves along their flexible bodies [3, 6, 7]. Advances in fabrication technologies at small scales

allow the recent rapid development of synthetic micro-propellers capable of swimming at speeds

comparable with microorganisms. In particular, slender flexible filaments have been employed

to enable locomotion at small scales [45–48].

A rigid filament driven at one end cannot propel itself because the motion is reciprocal. By

introducing flexibility in the filament, the coupling between the viscous and elastic forces pro-

duces deformation along the filament that can lead to propulsion [49, 50]. For a given actuation

frequency and filament length, an optimal bending stiffness of the filament can be determined

to produce the largest propulsive force [4, 49, 51]. However, the possibility of further improving

the propulsion by allowing variable flexibility along the filament remains largely unexplored.

Flying animals such as hoverflies and hummingbirds exhibit non-uniform flexibility distribution

along their wings, which can potentially enhance the propulsive performance [52, 53]. For a

flapping wing in this high Reynolds number regime, Shoele and Zhu [54] have compared the

performance of several cases of nonuniform flexibility distributions and a recent work by Moore

[55] has shown that optimal propulsion can be achieved by a highly localized flexibility arrange-
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3.2. Mathematical formulation

ment at the front of the wing using a torsional spring. At low Reynolds numbers, Maier et.

al. [48] have constructed a flagellar bundle attached to a magnetic head using DNA tile-tube

assembly where they achieved an exponentially decreasing stiffness profile. They found that

for several starting stiffnesses at the basal end, the swimmer with an exponentially decreasing

stiffness profile outperforms the one that has uniform stiffness down along the flagellum un-

der a rotational actuation using an external magnetic field. However, they did not attempt a

systematic parameter study or an optimization.

In this work, we consider the propulsive force generated by a boundary displacement-driven

passive cantilever filament at low Reynolds number. The mathematical formulation allows vari-

able bending flexibility, and we derive analytically the expressions for the propulsive force of

a filament with two segments of different bending flexibilities connected serially together, a

torsional spring connected to a rigid rod and an arbitrarily continuous distribution of bending

flexibility using asymptotic analysis for small actuation amplitude. We show that, different

from the high Reynolds number case, the torsional spring arrangement does not optimize the

propulsion. From a numerical optimization, we show the optimal linear and quadratic distri-

bution of flexibility. By considering two other different boundary conditions, we show that the

optimal flexibility arrangement can be qualitatively modified so that one can not simply extend

the optimality for one case to other cases where the boundary actuation mechanisms differ.

This Chapter is organized as follows. We formulate the problem and review the classical

results of a boundary-driven passive filament with uniform bending stiffness in Sec. 3.2. A fila-

ment with two segments that have different bending stiffnesses is first considered (Sec. 3.3): we

show that this arrangement can achieve a higher propulsive thrust than the maximum of a uni-

form case. In Sec. 3.4, we calculate the propulsion generated by a torsional spring arrangement.

Then we consider a numerical optimization over several cases of continuous stiffness distribu-

tion in Sec. 3.5. Next, we discuss the effect of boundary conditions by considering two different

mechanisms of actuation in Sec. 3.6, before concluding the work with remarks in Sec. 3.7.

3.2 Mathematical formulation

We consider a slender cylindrical filament of length L and uniform radius a such that a� L

and assume the filament is elastic and inextensible. The deformation of the filament is assumed

to be confined in the x-y plane. We define the position vector of a material point on the

filament neutral line relative to the laboratory frame as x(s, t), where s is the arclength along

the filament with s ∈ [0, L] at time t. It is convenient to describe the shape of the filament by

the local tangent angle made with the x-axis as ψ(s, t) such that

xs = [cosψ, sinψ]T, (3.1)

where the subscript s denotes differentiation with respect to s, namely xs ≡ ∂sx. The local unit

tangent and normal vectors at location s along the filament are defined as t and n respectively,
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3.2. Mathematical formulation

with t = xs. The local geometry is thus characterized by the Frenet-Serret formulas:

ts = xss = κn, ns = −κt, (3.2)

where κ = ‖xss‖ = ψs is the local curvature.

3.2.1 Enthalpy functional

In order to model the dynamics of the driven filament, we start from an enthalpy functional

E =
1

2

∫ L

0
Ax2

ss ds+
1

2

∫ L

0
σ
(
x2
s − 1

)
ds, (3.3)

where A = A(s) = EI is the bending stiffness which we allow to vary along the filament with

E the Young’s modulus and I the second moment of inertia of the cross-section. The local

inextensibility condition xs · xs = 1 is enforced by introducing the Lagrange multiplier σ(s, t).

The internal elastic force density is determined by a variation δE with respect to a variation δx

of the shape x. Noting that

δκ = δ‖xss‖ = δ
(√

x2
ss

)
= n · δxss, (3.4)

we have

δE =

∫ L

0
(Aκn · δxss + σxs · δxs) ds. (3.5)

Upon integration by parts, we obtain

δE =
[
Aκn · δxs

]s=L
s=0
−
[
∂s (Aκn) · δx

]s=L
s=0

+
[
σxs · δx

]s=L
s=0

+

∫ L

0
∂s
[
∂s(Aκ)n− (Aκ2 + σ)t

]
· δx ds. (3.6)

So the internal elastic force density is given by

felastic = −δE
δx

= −∂s [∂s(Aκ)n− τt] , (3.7)

where we have defined τ = σ + Aκ2. The boundary terms in Eq. (3.6) can be interpreted as

external forces and toques applied at the two ends [56]. In other words,

Text = Aκ, Fext = τt− ∂s(Aκ)n at s = L,

Text = −Aκ, Fext = −τt + ∂s(Aκ)n at s = 0. (3.8)
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3.2. Mathematical formulation

3.2.2 Elastohydrodynamics

We describe the hydrodynamics of the viscous fluid by the resistive force theory, which is a

leading-order approximation in the small filament aspect ratio a/L. The theory states that the

viscous force per unit length on the filament is given by

fvis = −
(
ξ⊥nn + ξ‖tt

)
· xt, (3.9)

where the subscript t denotes differentiation with respect to time and ξ⊥ and ξ‖ are the normal

and tangential resistive coefficients respectively. The local balance between the viscous and

elastic forces

fvis + felastic = 0 (3.10)

can be written as

xt =

(
1

ξ⊥
nn +

1

ξ‖
tt

)
· felastic. (3.11)

From the variational formulation in Sec. 3.2.1 it follows that∫ L

s
fvis ds =

∫ L

s

δE
δx

ds = [∂s(Aκ)n− τt] (s = L)− [∂s(Aκ)n− τt] , (3.12)

or

τt− ∂s(Aκ)n =

∫ L

s
fvis + Fext(L). (3.13)

In other words,

τ = t ·
(∫ L

s
fvis ds+ Fext(L)

)
,

∂s(Aκ) = −n ·
(∫ L

s
fvis ds+ Fext(L)

)
. (3.14)

Eq. (3.14) shows that τ acts as the physical tension along the filament. Following Eq. (3.11),

we obtain

xt =
1

ξ⊥
n (−∂ss(Aψs) + ψsτ) +

1

ξ‖
t (ψs∂s(Aψs) + τs) . (3.15)

Noting that

tt = (− sinψ, cosψ)T ψt = ψtn, ns = −ψst, ts = xss = ψsn, (3.16)
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we differentiate Eq. (3.15) with respect to the arclength and obtain

ψtn =
1

ξ⊥
(−ψst) (−∂ss(Aψs) + ψsτ) +

1

ξ‖
t∂s (ψs∂s(Aψs) + τs)

+
1

ξ⊥
n∂s (−∂ss(Aψs) + ψsτ) +

1

ξ‖
ψsn (ψs∂s(Aψs) + τs) . (3.17)

Finally, the equation of motion for the tangent angle ψ(s, t) reads

ψt =
1

ξ⊥
(−∂sss(Aψs) + ∂s(ψsτ)) +

1

ξ‖
ψs (ψs∂s(Aψs) + τs) . (3.18)

Another equation obtained is a partial differential equation (PDE) for tension τ(s, t), or equiv-

alently from the inextensibility condition t · tt = 0:

τss −
ξ‖
ξ⊥
ψ2
sτ = −∂s(ψs∂s(Aψs))−

ξ‖
ξ⊥
ψs∂ss(Aψs). (3.19)

Eqs. (3.18) and (3.19) determine the filament dynamics. Note that (−ψ, τ) satisfies Eqs.

(3.18) and (3.19) if (ψ, τ) is a solution. Once the tangent angle ψ is solved, the filament shape

can be recovered by integration

x(s, t) = x(0, t) +

∫ s

0
(cosψ, sinψ)T ds′, (3.20)

where x(0, t) can be obtained from Eq. (3.15) by integration with respect to time evaluated at

s = 0.

3.2.3 Boundary conditions

The filament dynamics governed by Eqs. (3.18) and (3.19) depends on the prescribed

boundary conditions. In this work, we consider a boundary driven passive filament where one

end is oscillated in a controlled manner while the other end is free to move in the surrounding

fluid. At the free end (s = L), we have force-free and torque-free boundary conditions,

Fext(L) = [τt− ∂s(Aκ)n]s=L = 0, Text(L) = [Aκ]s=L = 0. (3.21)

At the actuation end (s=0), we consider a harmonic oscillation with frequency ω of the trans-

verse position of a cantilevered filament i.e.,

y(0, t) = y0 sinωt, x(0, t) = 0, ψ(0, t) = 0. (3.22)
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3.2.4 Non-dimensionlization

We non-dimensionalize the governing equations with respect to a length scale L, time scale

ω−1, velocity scale Lω and a force scale4 A/L2. The resistance ratio γ, sperm number Sp and

the dimensionless oscillation amplitude ε , respectively, are defined as

γ =
ξ⊥
ξ‖
, Sp = L

(
ξ⊥ω
A

)1/4

, ε =
y0

L
. (3.23)

The sperm number Sp compares the magnitude of viscous and elastic forces. For a given

oscillation frequency ω and length of the filament L, a larger sperm number indicates a more

flexible material. For a rigid filament, the sperm number Sp→ 0. To make analytical progress,

we perform asymptotic analysis in the small amplitude oscillation limit, ε � 1, to determine

the filament shape order by order.

3.2.5 Propulsive thrust

In our study, we are considering the effect of flexibility distribution on the propulsive per-

formance, hence we non-dimensionalize the thrust by L2ξ⊥ω which is hold constant. The

instantaneous propulsive thrust is defined as the total hydrodynamic drag force in the direction

of swimming:

Fx = −ex ·
∫ 1

0
fvis ds (3.24)

where ex is the unit vector in the swimming direction (x-direction in our formulation). The

net propulsive thrust is the time-average of the instantaneous thrust over one period of the

actuation, Fp = 〈Fx〉 with 〈...〉 =
∫ 2π

0 (...) dt/2π.

For small amplitude oscillation, we write the net propulsive force as a regular series expan-

sion in ε,

Fp = ε2F (2)
p +O(ε4). (3.25)

For a continuous stiffness profile A(s) (dimensional), we have

F (2)
p =

γ − 1

γSp4
0

〈∫ 1

0
ψ(1)∂2

s (A∗∂sψ(1)) ds

〉
, (3.26)

where Sp0 = L[ξ⊥ω/A(0)]1/4 is the sperm number evaluated using the stiffness at the basal end,

A∗ = A(s)/A(0) and ψ = εψ(1) +O(ε2). Note that an order ε boundary actuation generates a

propulsive force of O(ε2) to leading order. For A∗ ≡ 1, the propulsive force given by Eq. (3.26)

reduces to the case of a uniform stiffness profile as given by previous work [4, 57].

4Since the bending stiffness A can be varying along the filament, we use the value of A at a certain material
point on the body.
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Figure 3.1: Propulsive thrust generated by a cantilevered filament of uniform bending stiffness
under a displacement actuation at one extremity. The two blue dots indicate two filaments
with different bending stiffnesses generating the same propulsive force.

For the classical case of uniform bending stiffness (A = constant) along the filament, the

variation of propulsive force as a function of the sperm number is shown in Fig. 3.1. In the

low sperm number limit (Sp � 1), the filament becomes a rigid rod undergoing a reciprocal

motion, which produces no net propulsion. For finite values of sperm number, flexibility enables

the propagation of deformation waves along the body, which breaks the constraint of kinematic

reversibility and generates net propulsive force. In the large sperm number limit, the dominance

of viscous force over elastic force suboptimally localizes the deformation of the filament around

the actuation end. Therefore, the propulsive force exhibits a maximum around an intermediate

sperm number Sp ≈ 1.89 and asymptotes to a limiting value for large sperm numbers. The

deforming shapes of a filament with uniform stiffness are shown in Fig. 3.2 for several different

sperm numbers.

As indicated by the two blue dots in the proximity of the maximum propulsive force in

Fig. 3.4, one can have deforming filaments of two different sperm numbers generating the same

propulsive force. In other words, for a given actuation frequency and filament length one can

generate the same propulsive thrust with filaments of two different bending rigidities (A1 and

A2). Then the question is, can we still obtain the same propulsive force by serially connecting

two segments that each individually generates the same propulsion, or can we enhance the

propulsion?

3.3 Two-segment filaments

We probe the potential advantages of non-uniform stiffness by connecting the segments with

bending flexibilities A1 (at the actuation end) and A2 serially as diagrammed in Fig. 3.3. The

relative proportion of the segment with stiffness A1 is denoted as α, 0 ≤ α ≤ 1. We define the
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3.3. Two-segment filaments
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Figure 3.2: Shapes of the displace driven cantilevered filament in different times over a period.
From top to bottom, the sperm number increases (top:Sp = 0.5, middle:Sp = 1.89, bottom:Sp =
8), namely, the filament becomes more flexible.

ratio of stiffness β = A2/A1. In this case, the local tangent ψ(s, t) and tensile force τ(s, t) are

split into two functions for the two segments, with ψnk denoting the tangent angle of the k-th

segment (k = 1, 2) at O(εn). Noting that ψ ∼ ε, from Eqs. (3.18) and (3.19) one can show that

τ ∼ ε2 [4]. This two-segment arrangement considered here is arguably one of the simplest cases

of non-uniform flexibility distribution, and we shall show that the asymptotic analysis reveals

the advantage of this simple non-uniform flexibility arrangement over the uniform case.

In the small amplitude limit, we seek a perturbative solution by using regular series expan-

sions in ε,

ψ1(s, t) = εψ
(1)
1 + ε2ψ

(2)
1 +O(ε3),

τ1(s, t) = τ
(0)
1 + ετ

(1)
1 + ε2τ

(2)
1 +O(ε3),

ψ2(s, t) = εψ
(1)
2 + ε2ψ

(2)
2 +O(ε3),

τ2(s, t) = τ
(0)
2 + ετ

(1)
2 + ε2τ

(2)
2 +O(ε3). (3.27)
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Figure 3.3: Schematic of a serially connected filament. The segment at the actuation end has a
bending flexibility A1 and the segment at the free end has a bending flexibility A2, β = A2/A1.

3.3.1 Elastic-elastic case

In this section, we consider the case where both A1 and A2 are finite. The leading order

equations of motion are written as

Sp4
1∂tψ

(1)
1 + ∂4

sψ
(1)
1 = 0,

Sp4
1∂tψ

(1)
2 + β∂4

sψ
(1)
2 = 0, (3.28)

where Sp1 = L (ξ⊥ω/A1)1/4 is the sperm number of the material at the driven end.

The boundary conditions at the two ends are given by

ψ
(1)
1 (0, t) = 0, ∂3

sψ
(1)
1 (0, t) = −Sp4

1 cos t at s = 0,

∂sψ
(1)
2 (1, t) = 0, ∂2

sψ
(1)
2 (1, t) = 0 at s = 1. (3.29)

In order to solve Eq. (3.28), 4 more boundary conditions are required. Note that the

tangent angle ψ should be continuous, thus we have ψ
(1)
1 (α, t) = ψ

(1)
2 (α, t). Meanwhile, the

internal force and moments are expected to be continuous across the connecting point, i.e.

∂sψ
(1)
1 (α, t) = β∂sψ

(1)
2 (α, t),

∂ssψ
(1)
1 (α, t) = β∂ssψ

(1)
2 (α, t). (3.30)

The last boundary condition is obtained from the continuity of the viscous force density, which

states that ∂sssψ
(1)
1 (α, t) = β∂sssψ

(1)
2 (α, t).

Since we are interested in the steady state solution, we write the solution as

ψ
(1)
1 (s, t) = Re

{
eith1(s)

}
,

ψ
(1)
2 (s, t) = Re

{
eith2(s)

}
, (3.31)

32



3.3. Two-segment filaments

where i =
√
−1 is the imaginary unit. Then Eq. (3.28) reduces to two ordinary differential

equations (ODEs), which can be solved analytically.

The leading order propulsive force in this case is given by

F (2)
p =

γ − 1

2γSp4
1

〈
(∂sψ

(1)
1 (0, t))2 −

[
(∂sψ

(1)
1 (α, t))2 − β(∂sψ

(1)
2 (α, t))2

]〉
. (3.32)

Note that if β = 1, α = 0 or α = 1, the expression for propulsive force reduces to the result for

a filament with uniform stiffness.
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Figure 3.4: Propulsive thrust generated by two-segment filaments as a function of α at different
values of stiffness ratio β. For β = 0.144 (A2 < A1, more flexible materials at the free end),
the maximum propulsive force generated is greater than the maximum achievable thrust of a
filament with any uniform stiffness.

For given sperm numbers of two materials indicated by the blue dots in Fig. 3.1, by varying

the relative proportion of the two segments, a non-monotonic variation of the propulsive force

emerges (Fig. 3.4). The limits α = 0, 1 reduce to the case of uniform stiffness with a propulsive

force F
(2)
p = 0.1358 as indicated by the horizontal dash-dotted line in Fig. 3.4. The solid line

denotes putting the more flexible material at the free end while the dashed line indicates putting

the more flexible material at the driven end. It is interesting to note that the propulsive force

generated by the two-segment filament can be greater than the original uniform case (α = 0, 1)

for both arrangements. For β = 6.959 , the filament outperforms the original uniform case in

the range α . 0.4. For β = 0.144, the two-segment filament outperforms the original uniform

case for almost all α.

Furthermore, by putting a more flexible material at the free end i.e. β < 1 (e.g. β =

0.144, A2 < A1, solid line, Fig. 3.4), the propulsive force generated by such an arrangement can

be greater than the maximum possible propulsive thrust (indicated by the horizontal dotted

line in Fig. 3.4) achievable by a filament with any uniform bending stiffness. This enhancement

in propulsion indicates that the filament prefers to have a more flexible part at the free end
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3.3. Two-segment filaments

with an optimal choice of α.

3.3.2 Rigid-elastic case

The limiting case from the elastic-elastic arrangement would be to consider an rigid-elastic

filament with A1 = ∞. In other words, the segment at the driven end is rigid. For the rigid

part, the local tangent angle is independent of s, i.e.

0 = ψ1 = ψ1(t) = ψ2(α, t). (3.33)

As a result, one only needs to solve the PDE for ψ2. Following similar procedure to the elastic-

elastic case, we solve the governing equations to leading order. The two boundary conditions

at the free end is the same as the elastic-elastic case. The boundary conditions at α are given

by ψ
(1)
2 (α, t) = 0 and ∂3

sψ
(1)
2 (α, t) = −Sp4

2 cos t. Note that Sp2 is the sperm number evaluated

using the stiffness (A2, finite) of the flexible part. The leading order propulsive force in this

case reads

F (2)
p =

γ − 1

2γSp4
2

〈
(∂sψ

(1)
2 (α, t))2

〉
. (3.34)

0 0.2 0.4 0.6 0.8 1

α

0.00

0.05

0.10

0.15

0.20

F
(2)
p

1

2
4 6

Figure 3.5: Propulsive thrust generated by a cantilevered rigid-elastic filament under displace-
ment oscillation as a function of α for different sperm numbers Sp2, which are indicated by
the numeric values around each line. The horizontal dash-dotted line denotes the maximum
propulsion of a filament with uniform stiffness.

In Fig. 3.5, we present the leading order propulsive force as a function of the proportion

of the rigid part for different sperm numbers of the flexible part. For small sperm numbers,

the propulsive force decreases monotonically as α increases because the rigid part does not

contribute. For larger sperm numbers (Sp2 > 2), we observe a non-monotonic variation of

propulsion as α increases from zero to one. It is interesting to note that the optimal propulsion
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3.3. Two-segment filaments

a rigid-elastic filament can achieve is around the maximum propulsion of a filament with uniform

stiffness as indicated by the horizontal dash-dotted line in Fig. 3.5. In other words, a rigid-

elastic filament cannot outperform the optimal uniform case, which means that an optimal

two-segment arrangement should be an elastic-elastic one, i.e., both A1 and A2 remain finite.

3.3.3 Elastic-rigid case

Before discussing a filament with a continuously varying stiffness profile, it is interesting to

investigate an elastic-rigid filament with A2 =∞. In other words, the segment at the free end

is rigid. For the rigid part, the local tangent angle is independent of s, i.e.

ψ2 = ψ2(t) = ψ1(α, t). (3.35)

As a result, one only needs to solve the PDE for ψ1. Following similar procedure to the elastic-

elastic case, we solve the governing equations to leading order. The two boundary conditions at

the driven end is the same as the elastic-elastic case. A force balance on the rigid part requires

that

∂2
sψ

(1)
1 (α, t) = (α− 1)∂3

sψ
(1)
1 (α, t)− ∂4

sψ
(1)
1 (α, t)

(
1

2
− α+

α2

2

)
. (3.36)

The fourth boundary condition is obtained via a torque balance on the rigid filament,

−∂sψ(1)
1 (α, t) +

1

2
(1− α)2∂3

sψ
(1)
1 (α, t) +

1

3
(1− α)3∂4

sψ
(1)
1 (α, t) = 0. (3.37)

The leading order propulsive force is expressed as

F (2)
p =

γ − 1

γSp4
1

〈
ψ

(1)
1 (α, t)∂2

sψ
(1)
1 (α, t)− 1

2
(∂sψ

(1)
1 (α, t))2

+
1

2
(∂sψ

(1)
1 (0, t))2 + (1− α)ψ

(1)
1 (α, t)∂3

sψ
(1)
1 (α, t)

〉
. (3.38)

In Fig. 3.6, we present the variation of propulsive force generated by an elastic-rigid filament

as a function of α for different sperm numbers of the flexible part. We note that the optimal

elastic-rigid filament cannot outperform the maximum of a uniform case. For a relatively small

sperm number (e.g., Sp1 < 2), we observe in general a monotonic increasing of the propulsive

force as the proportion of the flexible part increases from 0 to 1. When α = 0, the filament

becomes a rigid rod so that the propulsion generated is zero due to the time-reversibility of the

non-deforming motion. As α increases, the proportion that can deform due to the interaction

between the viscous force and elastic force increases. As a result, one can observe an increase

in the propulsive performance. However, for a larger sperm number of the flexible part, a

non-monotonic behavior of the propulsive force is observed as α increases. Take Sp1 = 3 as an

example, the maximum propulsive force F
(2)
p ≈ 0.1875, which is achieved when α ≈ 0.039. As
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Figure 3.6: Propulsive thrust generated by an elastic-rigid filament (A2 = ∞) as a function
of α for different sperm numbers of the flexible part. For small sperm numbers, a monotonic
increasing of the propulsive thrust is observed as α increases. For larger sperm numbers,
however, the variation of propulsive thrust is non-monotonic. Note that the sperm number of
the rigid part would be zero. The horizontal dash-dotted line denotes the maximum propulsive
force achievable by a filament with uniform stiffness.

the sperm number Sp1 increases, namely the flexible part becomes more flexible, the optimum

propulsive force is achieved at a smaller α. For sperm numbers larger than 2, the optimal elastic-

rigid arrangement exhibits a localized flexibility around the actuation end while the propulsion

is predominantly generated by the rigid part at the free end. In this scenario, the tiny flexible

bit at the driven end is effectively setting an optimal angle for the rigid part, which maximizes

the propulsion. From fundamental beam theory, we may scale the deflection δ (dimensional) of

the connecting point as

δ ∼ Fl3

A1
, (3.39)

where l = αL is the dimensional length of the flexible bit and F the effective total hydrodynamic

force at this point. Noting that F ∼ L2ξ⊥ω, and the average angle at the connecting point

ψ ∼ δ/l, we recover the physical scaling

ψ ∼ l2L2ξ⊥ω
A1

= Sp4
1α

2. (3.40)

Note that Sp4
1α

2 is the effective sperm number of the flexible part upon a proper scaling of the

elastic force, namely, we have

Spproper =

(
L2ξ⊥ω
A1/l2

)1/4

. (3.41)
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3.4. Torsional spring

These observations presented above lead us to considering the limiting case of an entirely rigid

filament with a torsional spring at the actuation end, which we shall show would be the optimal

elastic-rigid arrangement upon an optimal choice of the spring constant.

3.4 Torsional spring

We consider a rigid filament of length L connected by a torsional spring with a spring

constant C at the actuation end. In this scenario, the local tangent on the entire filament is

independent of s, i.e., ψ(t) = εψ(1) +O(ε2).

The torque balance of the filament reads

ez ·
∫ 1

0
[x(s, t)− x(0, t)]× fvis ds−Kψ = 0, (3.42)

where K = C/L3ξ⊥ω is the dimensionless spring constant. At leading order, we have

1

3
ψ̇(1) +

1

2
cos t+Kψ(1) = 0, (3.43)

with ψ(1)(0) = 0. The long time solution is given by

ψ(1)(t) = − 3

2 + 18K2
(3K cos t+ sin t) . (3.44)

Finally, we obtain a simple analytical expression for the dimensionaless propulsive force

Fp = ε2F
(2)
p +O(ε4):

F (2)
p =

γ − 1

γ

9K

4(1 + 9K2)
(3.45)

We plot the variation of the propulsive force generated by a torsional spring arrangement as

a function of the dimensionless spring constant in Fig. 3.7. As a limiting case of the two-segment

filament, the torsional spring arrangement represents a highly localized flexibility focused at the

actuation end with the rest of the filament being rigid, thus a straight line shape is maintained

during the actuation with the tangent angle ψ(t) adjusted by the torque balance. In other

words, torsional spring is the optimal elastic-rigid arrangement. The leading order velocity of a

local material point along the rigid filament is in the ±ey direction. If we assume a local element

ds at s has a velocity u = uey, the resulting propulsive force density at this point scales with

the geometry as fprop ∼ cosψ sinψ [3], the extremum of which is obtained for ψ = ±45◦. This

physical scaling means that a filament can achieve higher propulsion by spending more time

around the optimal tangent angle in one period (i.e.,
〈
|ψ(1)|

〉
should be close to 45◦). For the

torsional spring arrangement,
〈
|ψ(1)|

〉
= 9K/(π(1 + 9K2)) has a maximum of 3/(2π) (≈ 27◦)

which is obtained exactly at K = 1/3 where the optimal propulsion is also achieved. As K

deviates from this optimal value,
〈
|ψ(1)|

〉
decreases so that the propulsion becomes suboptimal.
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Figure 3.7: Propulsive thrust generated by a torsional spring arrangement at the actuation end
connected to a rigid filament as a function of the spring constant. The optimum propulsive

force is F
(2)
p = 0.1875.

Up to this section, via a discrete approach we have shown that both elastic-rigid and rigid-

elastic cannot outperform the optimal uniform case but an elastic-elastic distribution can ac-

tually enhance the propulsion as compared to the uniform filament. This begs the question:

If we allow the stiffness to vary continuously along the filament, what is the optimum stiffness

profile?

3.5 Continuous optimization

With the cases of two-segment and localized flexibility arrangements understood, we now

allow the bending stiffness to vary continuously along the entire filament. Using Eqs. (3.18)

and (3.19), the asymptotic analysis shows that at order ε we have

Sp4
0∂tψ

(1) + ∂3
s

(
A∗∂sψ(1)

)
= 0, (3.46)

where Sp0 and A∗ > 0 are defined in Sec. 3.2. By writing ψ(1) = Re{eith(s)}, we solve the

resulting ODE for h(s) using Matlab’s build-in bvp4c solver for a given stiffness profile A∗. As

a validation of the algorithm, we solved h(s) using a regularized tanh stiffness profile to approx-

imate an elastic-elastic filament as discussed in Sec. 3.3.1, and the numerical results matched

very well with the analytical solutions. Once the evolution of the filament shape is obtained,

the propulsive force can be evaluated from Eq. (3.26) where Gauss-Legendre quadrature is used

to calculate the numerical integration in space and time.

Now, we want to understand which continuous distribution of stiffness optimizes the propul-

sive performance of a driven filament. Following the procedure obtained by Moore [55] in the

high Reynolds number case, we perform numerical optimization of the propulsive force over a
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3.5. Continuous optimization

linear, quadratic and cubic distribution of bending stiffness, namely A∗ = as3 + bs2 + cs + 1.

As the degree of the polynomial distribution increases, one would expect a better approxima-

tion towards an arbitrary continuous stiffness profile. The optimization is performed using the

fmincon solver in Matlab in the parameter space (Sp0, a, b, c) with the constraint of positivity:

Sp0 > 0, A∗(s) > 0 for any s ∈ [0, 1].

We introduce a theorem [58] of positivity of cubic polynomials on a given interval which

states that the polynomial as3 + bs2 + cs + 1 is nonnegative for all s ∈ [0, 1] if and only if

(m,n, p, q) ∈M ∪N , whereM = {(m,n, p, q) : m ≥ 0, n ≥ 0, p ≥ 0, q ≥ 0} ,

N =
{

(m,n, p, q) : m ≥ 0, q ≥ 0, 4mp3 + 4qn3 + 27m2q2 − 18mnpq − n2p2 ≥ 0
}
.

and m = a+ b+ c+ 1, n = b+ 2c+ 3, p = c+ 3, q = 1. Now, we have the constraints expressed

only in terms of the optimization parameters (a, b, c).
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Figure 3.8: (a) Optimal linear stiffness distribution, Sp0 ≈ 1.77. (b) Optimal quadratic stiffness

distribution denoted by the dashed line (Sp0 ≈ 1.51, F
(2)
p ≈ 0.2224)

Fig. 3.8 shows the optimal linear and quadratic stiffness distributions. Both cases reveal a

less flexible material at the actuation end (s = 0). For example, the optimal linear profile has a

basal sperm number Sp0 ≈ 1.77 and the scaled stiffness A∗ decreases as s increases. An optimal

linear profile improves the propulsive performance by 3% compared with the maximum of the

uniform case. The optimal quadratic profile improves the performance by 13% compared with

the optimal uniform case. The optimal cubic distribution (not shown in Fig. 3.8)only slightly

improves upon the optimal quadratic case.

We note that from a numerical optimization over an exponentially increasing profile, i.e.,

A∗ = exp(as), a ≥ 0, the result would be that of the optimal uniform stiffness with a ≈ 0,Sp0 ≈
1.89. This reduction to a uniform distribution indicates that if you start with an optimal

uniform stiffness, increasing it down along the body would diminish propulsive performance.

On the other hand, the optimal exponentially decreasing stiffness profile (Sp0 ≈ 0.1, a ≈ −20)

improves the propulsion by 13.5% as compared to the maximum of a filament with uniform
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3.6. Effect of boundary conditions

stiffness, which is slightly better than the optimal quadratic distribution.

3.6 Effect of boundary conditions

We have shown that, different from the high Reynolds number case, the torsional spring

does not outperform the maximum propulsion achievable by a filament with uniform stiffness

under a displacement-driven actuation at the cantilevered extremity of the filament. In general,

we observe a trend where a decreasing in stiffness can potentially enhance the propulsive per-

formance of a filament. This result seems to be consistent with the experimental observations

obtained by Maier et. al. [48] where they found that an exponentially decaying stiffness profile

can outperform a filament of uniform stiffness under a rotational actuation. In this section,

by considering a torque-free displacement actuation and an angle-driven actuation, we shall

show that boundary conditions qualitatively affect the optimality of flexibility. As a result, one

cannot simply extend the results by Maier et. al. [48] to other situations of propulsion where

the actuation techniques may differ.

3.6.1 Torque-free displacement oscillation

We consider a boundary driven passive filament where one end is under torque-free harmonic

oscillation while the other end is free [51]. At the actuation end (s = 0), we have

y(0, t) = y0 sinωt, Text(0) = −[Aκ]s=0 = 0, (3.47)

After non-dimensionalization, we have y(0, t) = ε sin t and ψs(0, t) = 0 where ε = y0/L is the

oscillation amplitude.

Following the cantilevered case, we investigate an elastic-elastic filament at small oscillation

amplitude. The governing equations for ψ
(1)
1 and ψ

(1)
2 are the same as those obtained for a

cantilevered filament, but with different boundary conditions. Once the deforming shape is

obtained, the leading order propulsive force is then given by

F (2)
p =

1− γ
γSp4

1

〈
ψ

(1)
1 (0, t)∂2

sψ
(1)
1 (0, t) +

1

2

[
(∂sψ

(1)
1 (α, t))2 − β(∂sψ

(1)
2 (α, t))2

]〉
. (3.48)

For the classical case of uniform bending stiffness along the filament, the variation of propulsive

force as a function of the sperm number is shown in Fig. 3.9(a) [4]. For the two values of

stiffness chosen according to the blue dots in Fig. 3.9(a), varying the relative proportion of

the two segments leads to a non-monotonic variation of the propulsive force (Fig. 3.9(b)). The

limits α = 0, 1 reduce to the case of uniform stiffness with a propulsive force F
(2)
p = 0.09 as

indicated by the horizontal dash-dotted line in Fig. 3.9(b). By putting a more flexible material

at the actuation end i.e. β > 1 (e.g. β = 4.17, dashed line, Fig. 3.9(b)), the propulsive

force generated by such an arrangement can be greater than the maximum possible propulsive
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3.6. Effect of boundary conditions

thrust (indicated by the horizontal dotted line in Fig. 3.9(b)) achievable by a filament with any

uniform bending stiffness. We remark that the proper choice of α is essential because one can

obtain a lower propulsion by putting a more flexible material at the driven end. As an example,

for β = 4.17, α & 0.55, the propulsion achieved using a two-segment filament is worse than

the original uniform profile. The aforementioned enhancement in propulsion indicates that the

filament prefers to have a more flexible part at the actuation end with an optimal choice of α.

It is interesting to note that these behaviors are qualitatively different from those observed

for a displacement-driven cantilevered filament (recall that more flexible material at the driven

end is suboptimal in the cantilevered case).
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Figure 3.9: (a) Propulsive thrust generated by a filament of uniform bending stiffness actuated
at one end [4]. The two blue dots indicate two filaments with different bending stiffnesses
generating the same propulsive force. Propulsive thrust generated by two-segment filaments as
a function of α at different values of stiffness ratio β. For β = 4.17 (A2 > A1, more flexible
materials at the actuation end), the maximum propulsive force generated is greater than the
maximum achievable thrust of a filament with any uniform stiffness.

3.6.2 Angle oscillation

For an angle oscillation, we may write the dimensionless boundary actuation as ψ(0, t) =

ε cos t, x(0, t) = 0 [51, 57]. The method of solutions are similar to those presented in Sec. 3.3

with different boundary conditions which are detailed in Appendix C. For a filament with

uniform stiffness, the optimal propulsive performance can be achieved around Sp ≈ 1.88, see

Fig. 3.10(a). Similar to the displacement actuation of a cantilevered filament, an elastic-rigid

filament under angle actuation cannot outperform the optimum propulsion achievable by a fila-

ment with uniform stiffness. In fact, by doing a two parameter (Sp0, a) numerical optimization

over an exponentially increasing stiffness profile, namely A∗ = exp(as), a ≥ 0, we found that

the optimum converges to the maximum of a uniform stiffness with Sp0 ≈ 1.88, a ≈ 0. This

indicates that if you starts with an optimum uniform stiffness, increasing the stiffness along the

body diminishes your performance.
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3.6. Effect of boundary conditions

0 2 4 6 8 10

Sp

0

0.007

0.014

0.021

0.028

0.035

Fp2

(a)

0 0.2 0.4 0.6 0.8 1

α

0

0.04

0.08

0.12

0.16

Fp2

(b)

Sp2 = 1

Sp2 = 2

Sp2 = 4

Sp2 = 10

Figure 3.10: (a) Propulsive thrust generated by a filament of uniform bending stiffness with
one end under angle oscillation [57]. (b) Propulsive thrust generated by a rigid-elastic filament
(A1 =∞) as a function of α for different sperm numbers (Sp2) of the flexible part.

On the other hand, the rigid-elastic arrangement can significantly improve the propulsion

compared with the uniform case as shown in Fig. 3.10(b) where the leading order propulsive

force is plotted as a function of the relative proportion of the rigid segment for several sperm

numbers of the flexible part. Take Sp2 = 10 as an example, the optimum propulsion this

arrangement can achieve is one magnitude larger than the maximum of the uniform case. For

a rigid-elastic filament, the flexible part is effectively driven by a displacement (rather than an

angle oscillation) of the connecting point (s = α) though the rigid segment does not contribute

to the propulsion. As the length of the flexible part, which contributes to propulsion, decreases

(α increases), the displacement of the connecting point increases which tends to enhance the

performance. A competition between these two factors yields an optimal α for a given sperm

number of the flexible part.

In summary, we’ve shown that though both elastic-rigid and rigid-elastic cannot outperform

the maximum of a uniform case for a displacement-driven cantilevered filament, the rigid-elastic
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3.7. Conclusion

actually can enhance the propulsive performance for an angle-driven filament.

3.7 Conclusion

In this Chapter, we have presented an analytical and numerical treatment of the optimal

propulsive performance of a boundary-driven passive cantilevered filament with variable stiffness

along the body in the small amplitude oscillation limit. This work differs from and improves

upon previous studies by allowing a varying stiffness profile along the filament. In particular, for

the displacement-driven cantilevered filament, we show that different from the high Reynolds

number case, the torsional spring arrangement does not enhance the propulsion as compared to

an optimal filament with uniform stiffness. However, an exponentially decreasing stiffness profile

can improve the propulsion. The rich behavior, particularly the enhancement of propulsion,

revealed by our study may be useful for the development of efficient synthetic micro-propellers

that can swim as fast as, if not outperform microorganisms nature can offer.

To conclude, we have shown that boundary conditions can qualitatively modify the optimal

flexibility arrangement of a driven filament. Therefore, the optimal flexibility distribution may

vary from case to case and one may not extend the results obtained from one case to other

problems of propulsion where the method of actuation might differ.
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Chapter 4

Nonlinear dynamics of a driven

microfilament in a viscous fluid

4.1 Introduction

In Chapter 3, we studied the dynamics and propulsion of a boundary driven microfilament in

a viscous fluid in the small oscillation amplitude regime (ε� 1). For small amplitude, the fully

nonlinear governing equations are linearized thus makes the dynamics analytically tractable.

In this Chapter, we explore the fully nonlinear dynamics by solving the governing equations

numerically for amplitudes that are not necessarily small.

4.2 Mathematical formulation

The governing equation for x(s, t) as derived in Chapter 3 can be given by

ξ⊥xt = −(Axss)ss + (γ − 1)xs (2Asxss · xss + 3Axsss · xss) + γσsxs + σxss. (4.1)

Differentiating Eq. (4.1) with respect to s and taking a dot product with xs, we obtain an

auxiliary PDE for the Lagrange multiplier σ(s, t):

γσss + (xs · xsss)σ = xs · (Axss)sss − (γ − 1)(2Asxss · xss + 3Axsss · xss)s. (4.2)

In order to simplify the above Equation, we successively differentiate the identity xs · xs = 1

and obtain

xs · xss = 0, (4.3)

xsss · xs + xss · xss = 0, (4.4)

xssss · xs + 3xsss · xss = 0, (4.5)

xsssss · xs + 4xssss · xss + 3xsss · xsss = 0. (4.6)
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4.3. Numerical implementation

Using the above identities, we obtain

γσss − (xss · xss)σ =− (1 + 2γ)Assxss · xss − (2 + 7γ)Asxss · xsss
− 3γAxsss · xsss − (1 + 3γ)Axss · xssss. (4.7)

We non-dimensionalize the governing equations with respect to a time scale ω−1, length

scale L and a force scale L2ξ⊥ω. The resulting dimensionless equations are given by

Sp4xt =− (A∗xss)ss + (γ − 1)xs (2A∗sxss · xss −A∗xs · xssss)

+ Sp4γσsxs + Sp4σxss, (4.8)

Sp4 [γσss − (xss · xss)σ] =− (1 + 2γ)A∗ssxss · xss − (2 + 7γ)A∗sxss · xsss
− 3γA∗xsss · xsss − (1 + 3γ)A∗xss · xssss, (4.9)

where the same symbols as the dimensional ones are used and A∗(s) = A(s)/A0 and Sp =

L(ξ⊥ω/A0)1/4 is the sperm number evaluated using the stiffness at the basal end s = 0.

The dimensionless boundary conditions at the free end are given by

σxs − Sp−4(A∗xss)s = 0, A∗xss = 0 (4.10)

The boundary conditions at the driven end s = 0 depends on the mechanisms of actuation. For

a torque free displacement oscillation, we may write

x(0, t) = 0, y(0, t) = ε sin t, xss(0, t) = 0, (4.11)

where ε = y0/L is the oscillation amplitude which is not necessarily small. For an angle

oscillation, we can express the boundary conditions as

ψ(0, t) = ε cos t, x(0, t) = 0. (4.12)

We note that for A∗(s) ≡ 1, the governing equations reduce to the case of a filament with

uniform stiffness as given by previous work [59].

4.3 Numerical implementation

To solve the equations of motion numerically, we implement a finite difference formulation

that combines two different methods suggested by Tornberg and Shelley [60] and Montenegro-

Johnson [61]. In our approach, we treat Eq. (4.8) with a multi-step finite difference in time. In
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4.4. Uniform stiffness

order to derive the numerical method, we write Eq. (4.8) symbolically as

xt = F (xs,xss,xsss,xssss;σ, σs) (4.13)

Now, the finite difference equation is given by

3xn+1 − 4xn + xn−1

2∆t
= Fn+1, (4.14)

where ∆t is the time step, and tn = n∆t. Note that both linear and nonlinear terms in Fn+1

are treated implicitly. In order to solve the nonlinear finite difference equation at tn+1, we use

an iterative approach where at each iteration the implicit terms are linearized as

−Sp−4(A∗xss)ss + Sp−4(γ − 1)x̃s (2A∗sx̃ss · xss −A∗x̃s · xssss) + γσsx̃s + σx̃ss, (4.15)

where variables with tildes indicate values taken from the previous iteration. At the first

iteration of each time step, an extrapolation of the values from previous two time steps (2xn−
xn−1) are used as initial guess. Similarly for the auxiliary equation for tension at tn+1, we have

Sp4 [γσss − (x̃ss · x̃ss)σ] =− (1 + 2γ)A∗ssx̃ss · xss − (2 + 7γ)A∗sx̃ss · xsss
− 3γA∗x̃sss · xsss − (1 + 3γ)A∗x̃ss · xssss
+ λ(1− x̃s · xs), (4.16)

where the term λ(1−x̃s ·xs) is introduced to penalize any length error that might arise from the

numerical approach with λ being the penalty factor. The filament is uniformly discretized into

N segments (h = 1/N) with the nodes (starting from s = 0) denoted as sj = jh, j = 0, 1, ..., N .

Second order accurate centered finite differences as given by Tornberg and Shelley [60] are used

for spatial derivatives in s.

At each iteration in a time step, we solve a linear system of 3(N + 1) equations to obtain

the discrete values of the shape x(sj , t
n+1) and Lagrange multiplier σ(sj , t

n+1) simultaneously.

In general, we terminate the iteration when the relative error of x in two successive iterations

is within 0.5%. To implement the boundary conditions, one-sided finite differences are used.

4.4 Uniform stiffness

For the simple case of a filament with uniform stiffness A∗ ≡ 1, all the terms that have

derivatives of A∗(s) vanish. In Fig. 4.1, we plot the shapes of the deforming filament at differ-

ent times in one period obtained from linear theory (as given in Chapter 3) along with numerical

simulations from the fully nonlinear theory for amplitude ε = 0.1 under a torque free displace-

ment oscillation. As can be seen from Fig. 4.1, the numerical solution matches very well with

those from the small amplitude asymptotic expansion.
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4.4. Uniform stiffness
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Figure 4.1: Shape (not to scale) of a deforming filament with uniform stiffness Sp = 4 at
ε = 0.1 at different times nπ/4, where n = 1, 2, ..., 8, the intensity of color decreases as time
increases. The numerical solution is calculated with N = 160 and ∆t = 5 × 10−4. The red
dashed lines denote the shapes obtained from the small amplitude linear theory [4]. The shape
from numerical simulation matches very well with those from the small amplitude asymptotic
expansion.

In Fig. 4.2, we show the shapes of a deforming filament at different times over one period of

the actuation for ε = 1 and Sp = 4. It is interesting to note that, different from the linear theory

where the waveforms are always symmetric (see Fig. 4.1), complex beating patterns emerge from

the intrinsically symmetric model for large amplitude. These asymmetries in waveforms are due

to buckling instability followed by complex shape perturbations [59, 62].

From our preliminary results, we’ve shown that the nonlinear model predicts that the com-

pression of the filament due to the internal forces leads to a transition to symmetry breaking,

as well as the breakdown of the small amplitude linear theory. In future study, we want to

look at the effect of non-uniform stiffness on the beating pattern for large amplitude oscillation

and also the swimming characteristics by allowing the filament to swim freely under a proper

actuation.
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4.4. Uniform stiffness
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Figure 4.2: Shape of a deforming filament with uniform stiffness Sp = 4 at ε = 1 at different
times nπ/4, where n = 0, 1, 2, ..., 8, the intensity of color decreases as time increases. The
solution is calculated with N = 160 and ∆t = 5× 10−4. Pronounced buckling is observed.
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Christoph Butenweg, and Wolfgang Böhme. Investigating the locomotion of the sand-

fish in desert sand using nmr-imaging. PloS One, 3(10):e3309, 2008.

[20] Ryan D Maladen, Yang Ding, Chen Li, and Daniel I Goldman. Undulatory swimming in

sand: subsurface locomotion of the sandfish lizard. Science, 325(5938):314–318, 2009.

[21] Yang Ding, Sarah S Sharpe, Andrew Masse, and Daniel I Goldman. Mechanics of undula-

tory swimming in a frictional fluid. PLoS Comput. Biol., 8(12):e1002810, 2012.

[22] Brian J Williams, Sandeep V Anand, Jagannathan Rajagopalan, and M Taher A Saif. A

self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun., 5, 2014.

[23] Ryan D Maladen, Yang Ding, Paul B Umbanhowar, and Daniel I Goldman. Undulatory

swimming in sand: experimental and simulation studies of a robotic sandfish. Int. J. Robot.

Res., 30(7):793–805, 2011.

[24] M. Sauzade, G. J. Elfring, and E. Lauga. Taylor’s swimming sheet: Analysis and improve-

ment of the perturbation series. Phys. D, 240:1567 – 1573, 2011.

[25] Tingnan Zhang and Daniel I. Goldman. The effectiveness of resistive force theory in

granular locomotiona). Phys. Fluids, 26(10):101308, 2014.

[26] Daniel I. Goldman. Colloquium : Biophysical principles of undulatory self-propulsion in

granular media. Rev. Mod. Phys., 86:943–958, Jul 2014.

[27] R Albert, MA Pfeifer, A-L Barabási, and P Schiffer. Slow drag in a granular medium.

Phys. Rev. Lett., 82(1):205, 1999.

[28] Glen Hill, Susan Yeung, and Stephan A Koehler. Scaling vertical drag forces in granular

media. Europhys. Lett., 72(1):137, 2005.
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Appendix A

Numerical implementation

In this appendix, we present the numerical methods implemented in the optimization of

infinite filaments and the solution to the equations of motion of finite length filaments.

A.1 Optimization

The numerical optimization (see Sec. 2.3.1) is performed using MATLAB’s built-in fmin-

search function, which implements the Nelder-Mead simplex algorithm. We truncate the Fourier

series by taking n∗ = 100 to have a sufficient spectral accuracy and use m = 1000 points for

the Gauss-Legendre integration scheme. Further increase in spectral and spatial resolution

has a negligible effect on the optimization. The optimization search routine iterates until the

algorithm detects a local solution gradient with a relative error tolerance of 10−14. For each

iteration, the swimming speed U is obtained by solving the force balance in the swimming

direction using MATLAB’s fzero function, which runs until a relative error of 10−16 is reached.

A variety of shapes are provided as the initial guess for the starting of the optimization. The

optimization calculation is iterated by taking the converged shape of the previous calculation

as the initial guess until the shapes acquired in two successive calculations are consistent. The

optimal shape obtained does not vary with the initial guess.

We validate our approach by solving the optimal shape for the Newtonian case. For New-

tonian swimming, the swimming speed U can be obtained by a simple matrix inversion due to

linearity. The optimal shape obtained from our numerical approach agrees with the analytical

solution of Lighthill[35].

A.2 Numerical solution for finite swimmers

The study of swimming characteristics requires solving the force and torque balance of

the finite swimmer as formulated in Sec. 2.2. The force- and torque-free conditions posed in

Eq. (2.19) and (2.20) provide a system of non-linear ordinary differential equations (ODEs)

for the swimmer’s linear and angular velocities in terms of its instantaneous location and ori-

entation. The instantaneous velocities in turn, once obtained, can be integrated over time to

determine the trajectory, location and orientation of the swimmer.

Having assumed that the centerline of the waveform is initially aligned with the x−axis

of the lab frame, we solve the swimming problem numerically. Starting at t = 0 with a time
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A.2. Numerical solution for finite swimmers

step ∆t, we denote ti = i∆t. With this notation, we employ a second order multi-step finite

difference method to discretize the ODEs such that

xi+1 =
4

3
xi −

1

3
xi−1 +

2∆t

3
(2ẋi − ẋi−1). (A.1)

We do similarly for θi+1, and then Θi+1 can be computed. To initialize this numerical scheme,

we need both [x0, θ0] and [x1, θ1]. At the first time step, [x1, θ1] is computed using the Runge-

Kutta fourth order method. At each time step (i ≥ 1), we obtain [ẋi, θ̇i] by solving the integral

equations for force and torque balance using Gauss-Legendre quadrature integration coupled

with MATLAB’s fsolve routine. We use m points along the filament for the Gauss-Legendre

integration method. The fsolve routine in Matlab Optimization Toolbox attempts to solve

a system of equations by minimizing the sum of squares of all the components. We set the

termination tolerance on both the function value and independent variables to 10−14. We

generally use m = 1000 points along the filament and Tm = 500 time steps for one period

T of the motion. The number of Fourier modes is taken as n∗ = 100. Further increasing of

the number of spatial points or time steps have no significant influence on the accuracy of the

results. All the numerical simulations are performed using MATLAB.
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Appendix B

Solution of an elastic-elastic filament

In this section, we derive the solution of an elastic-elastic filament.

B.1 Equations of motion

The dimensionless governing equations are given by

Sp4
1ψ1t = −∂4

sψ1 + ∂s(ψ1sτ1) + γψ1s

(
ψ1s∂

2
sψ1 + τ1s

)
,

τ1ss −
1

γ
ψ2

1sτ1 = −∂s
(
ψ1s∂

2
sψ1

)
− 1

γ
ψ1s∂

3
sψ1,

Sp4
1ψ2t = −β∂4

sψ2 + ∂s(ψ2sτ2) + γψ2s

(
βψ2s∂

2
sψ2 + τ2s

)
,

τ2ss −
1

γ
ψ2

2sτ2 = −β∂s
(
ψ2s∂

2
sψ2

)
− β 1

γ
ψ2s∂

3
sψ2. (B.1)

The force balance on the entire filament is given by

Fext(0, t) +

∫ 1

0
fvis ds = 0, (B.2)

or

−τ1t + ∂ssψ1n = −
∫ 1

0
fvis ds. (B.3)

In other words, we have

τ1(0, t) = t(0, t) ·
∫ 1

0
fvis ds, (B.4)

∂2
sψ1(0, t) = −n(0, t) ·

∫ 1

0
fvis ds, (B.5)

Since we prescribed the displacement of the point of actuation (s = 0), we may write

x(0, t) = [0, ε sin t]T

= x(0, 0) + Sp−4
1

∫ t

0
dt
[
n
(
−∂3

sψ1 + ψ1sτ1

)
+ γt

(
ψ1s∂

2
sψ1 + τ1s

)]
s=0

(B.6)
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B.2. Propulsive force

Differentiating with respect to time, we obtain

0 = − sinψ
(
−∂3

sψ1 + ψ1sτ1

)
+ γ cosψ

(
ψ1s∂

2
sψ1 + τ1s

)
,

εSp4
1 cos t = cosψ

(
−∂3

sψ1 + ψ1sτ1

)
+ γ sinψ

(
ψ1s∂

2
sψ1 + τ1s

)
. (B.7)

The torque-free condition reads ψ1s(0, t) = 0. At the free end, we have τ2(1, t) = 0, ∂ssψ2(1, t) =

0, ψ2s(1, t) = 0. At the connecting point, we have ψ1(α, t) = ψ2(α, t), τ1(α, t) = τ2(α, t), ψ1s(α, t) =

βψ2s(α, t), ∂
2
sψ1(α, t) = β∂2

sψ2(α, t). The last boundary condition is given by the continuity of

the viscous force at s = α.

At zeroth order, we have ∂ssτ1,0 = 0, ∂ssτ2,0 = 0, which have trivial solutions τ1,0(s, t) =

τ2,0(s, t) = 0. At the first order, we also have ∂ssτ1,1 = 0, ∂ssτ2,1 = 0 with zero solutions. This

indicates that tension along the filament τ ∼ O(ε2), which is consistent with previous studies

of uniform stiffness.

Now, expanding the equations for ψ1 and ψ2, we have

Sp4
1∂tψ

(1)
1 + ∂4

sψ
(1)
1 = 0, Sp4

1∂tψ
(1)
2 + β∂4

sψ
(1)
2 = 0. (B.8)

The corresponding B.C.s at s = 1 are ∂sψ
(1)
2 (1, t) = 0, ∂2

sψ
(1)
2 (1, t) = 0. By expanding

Eq. (B.7), one can show that ∂3
sψ

(1)
1 (0, t) = −Sp4

1 cos t. The other corresponding B.C.s are

given by ∂sψ
(1)
1 (0, t) = 0, ψ

(1)
1 (α, t) = ψ

(1)
2 (α, t), ∂sψ

(1)
1 (α, t) = β∂sψ

(1)
2 (α, t), ∂2

sψ
(1)
1 (α, t) =

β∂2
sψ

(1)
2 (α, t), ∂3

sψ
(1)
1 (α, t) = β∂3

sψ
(1)
2 (α, t).

The PDEs for the local tangent can be reduced to two ODEs,

Sp4
1h1(s) + ∂4

sh1 = 0, Sp4
1h1(s) + β∂4

sh1 = 0, (B.9)

with the translated B.C.s given by

h1s(0) = 0, h1sss(0) = −sp4
1, h2s(1) = 0, h2ss(1) = 0, h1(α) = h2(α),

h1s(α) = βh2s(α), h1ss(α) = βh2ss(α), h1sss(α) = βh2sss(α). (B.10)

These two ODEs fall into the type so-called hyper-diffusion equations. By assuming a solution

of the form h1 = ceks, one can obtain its solution.

B.2 Propulsive force

To leading order, the local tangent vector

t1 ∼
[
0, εψ

(1)
1 (s, t)

]T
, t2 ∼

[
0, εψ

(1)
2 (s, t)

]T
. (B.11)
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B.2. Propulsive force

By differentiate x(s, t) with respect to time in Eq. 3.20, we obtain for the first segment

u1(s, t) ∼
[
0, ε cos t+ ε

∫ s

0
∂tψ

(1)
1 ds

]T
. (B.12)

Similarly for the second segment, we have

u2(s, t) ∼
[
0, ε cos t+ ε

∫ α

0
∂tψ

(1)
1 ds+ ε

∫ s

α
∂tψ

(1)
2 ds

]T
. (B.13)

Then we have

fx1 = ex · fvis,1 ∼ −ε2Sp4
1

(
1

γ
− 1

)
ψ

(1)
1

(∫ s

0
∂tψ

(1)
1 ds+ cos t

)
. (B.14)

Noting that ∂tψ
(1)
1 = −Sp−4

1 ∂4
sψ

(1)
1 , we can calculate the integral and obtain

fx1 =

(
1

γ
− 1

)
ε2ψ

(1)
1 (s, t)∂3

sψ
(1)
1 (s, t), (B.15)

where the boundary term ∂3
sψ

(1)
1 (0, t) = −Sp4

1 cos t are used.

Integrating fx1 from 0 to α, we have

Fx1 =

∫ α

0
fx1 ds ∼

(
1

γ
− 1

)
ε2
(
−1

2
∂s(ψ

(1)
1 )2(α, t)

+ ψ
(1)
1 (α, t)∂2

sψ
(1)
1 (α, t)− ψ(1)

1 (0, t)∂2
sψ

(1)
1 (0, t)

)
(B.16)

We do similarly for Fx2, and the propulsive force at a given time t is then Fx ∼ Fx1 + Fx2.

Taking the time average of Fx over a period 2π, we obtain the second order propulsive force:

F (2)
p =

1− γ
γSp4

1

〈
ψ

(1)
1 (0, t)∂2

sψ
(1)
1 (0, t) +

1

2

[
(∂sψ

(1)
1 (α, t))2 − β(∂sψ

(1)
2 (α, t))2

]〉
, (B.17)

where 〈...〉 = (
∫ 2π

0 (...) dt)/2π is the average over one period. We note that terms equate to zero

after integration are neglected along the way.
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Appendix C

Boundary conditions for angle

oscillation

The method of solutions for a two-segment filament under angle oscillation is the same as

those in Appendix B, but with different boundary conditions.

For an elastic-elastic filament, the boundary conditions at the connecting point s = α and

the free end s = 1 are the same as those in Appendix B. However, the boundary conditions at

the actuation end is given by

ψ
(1)
1 (0, t) = cos t, ∂3

sψ
(1)
1 (0, t) = 0. (C.1)

For a rigid-elastic filament, we have ψ1 = ψ1(t). The two boundary conditions at the free

end are the same as the elastic-elastic case. The boundary conditions at the connecting point

are given by

ψ
(1)
2 (α, t) = cos t, ∂3

sψ
(1)
2 (α, t) = α∂4

sψ
(1)
2 (α, t). (C.2)
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