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Abstract

In this thesis, we develop a stability analysis model for the unstructured finite vol-
ume method. This model employs the matrix method to implement stability analy-
sis. For the full discretization, where the temporal discretization employs backward
Euler time-stepping, a linearization is used to construct the model. Both for the full
discretization and semi-discretization, the stability condition is expressed in terms
of eigenvalues. The validity of the stability analysis model is verified for linear
cases and nonlinear cases. The analysis in this thesis also explains the phenomena
that the defined energy can locally increase in the energy stability analysis method.
This model can be applied to both linear problems and nonlinear problems; in this
thesis, we focus on the 2D Euler equations.

We also develop a stabilization methodology. This methodology is aimed at
optimizing the eigenvalues of the Jacobian matrix by changing the coordinates
of interior vertices of a mesh. Specifically, for an unstable spatial discretization,
we can shift the unstable eigenvalues into stability region by changing the mesh.
The stabilization methodology is verified by numerical cases as well. The success
of this stabilization relies on a developed method to change the eigenvalues of a
matrix in a quantitative and controllable way. This method is a general approach
to optimize the eigenvalues of a matrix, which means it can be applied to other
systems as well.
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Chapter 1

Introduction

1.1 Preliminary

The partial differential equations (PDEs) that describe physical phenomena are
usually built on the continuous spatial and temporal domains. The PDEs usually
consist of two parts: temporal terms and spatial terms. We express the PDEs in the
following way:

∂U
∂ t

+
∂ f (U)

∂x
= 0, (1.1)

t ≥ 0 x ∈Ω⊆ Rd , (1.2)

U (x, t) = u0 U (∂Ω, t) =U∂Ω, (1.3)

where U is the conservative variables vector, x is the spatial coordinates, f (U) is
the flux vector, Ω is the spatial domain, ∂Ω is the boundary of the spatial domain,
R denotes real numbers, and d is the dimension of the problem. If the temporal
term ∂u

∂ t is zero, the problem reduces to a steady state problem.
To solve the equations numerically, we must discretize the spatial and temporal

domains. The spatial discretization generates a mesh. There are two categories of
meshes: one is the structured mesh and the other is the unstructured mesh. The
finite difference method, the spectral method, the finite element method, and the
finite volume method are the most common ways to represent the spatial terms on
the discretized spatial domain. Usually the finite difference method and the spectral
method cannot be applied to unstructured meshes while the finite element method
and finite volume method can be applied to both mesh types.

After the spatial discretization, a system of ordinary differential equations cor-
responding to the original partial differential equations (1.1) is generated:

dŪ
dt

= R(Ū , x) . (1.4)

The variable Ū in Equation (1.4) is the computational solution vector or discrete
solution vector:

1



1.1. Preliminary

Ū =


Ū0
Ū1
Ū2
...

Ūn−1

 (1.5)

where Ūi is the component of the discrete solution vector at the ith node or control
volume of the mesh. Equation (1.4) is the semi-discretization to the original equa-
tion, which is also called the method of lines. Semi-discretization is a good model
to isolate the influence of the temporal discretization when studying the spatial dis-
cretization. There are many ways to discretize the temporal terms, for instance, the
explicit Euler temporal discretization and the implicit Euler temporal discretiza-
tion. Applying the explicit Euler temporal discretization to Equation (1.4) yields

Ūn+1−Ūn

∆t
= R(Ūn) (1.6)

where ∆t is the time step. In Equation (1.6) Ūn is the computational solution at
time level n. Suppose Ūn

s is the exact solution to the fully discretized equation
(1.6) at time level n.

Definition 1. The computational error ∆Ūn is the difference between the exact
solution to the fully discretized equation Ūn

s and the computational solution Ūn at
the nth time level:

∆Ūn = Ūn
s −Ūn. (1.7)

∆Ū refers the computational error in general.
Stability, consistency, and convergence are always the most important proper-

ties of numerical schemes. For a well-posed problem, these three properties are
related to each other by the Lax Equivalence Theorem:

Theorem 1. Equivalence Theorem of Lax: For a well-posed initial value prob-
lem and a consistent discretization scheme, stability is the necessary and sufficient
condition for convergence.

This statement is quoted directly from Hirsch (2007) [9]. The Lax equivalence
theorem, also called the Lax-Richtmyer equivalence theorem, was presented orig-
inally by Lax and Ritchtmyer (1956) [12]. A description of this theorem can also
be found in the Richtmyer and Morton (1967) [23].
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1.2. Stability Analysis Methods

Definition 2. A numerical scheme is stable if and only if the norm of the com-
putational solution or the associated computational error remains bounded as the
iteration process marches to infinity, i.e.,

|Ūn| ≤C1 as n → ∞, (1.8)

or

|∆Ūn| ≤C2 as n → ∞, (1.9)

where C1 and C2 are constants independent of n. This is a commonly accepted
definition, but it is not very rigorous. For non-normal operators, Condition (1.8)
and Condition (1.9) are too strict to be satisfied. To remedy this, a weaker condition
that the error grows linearly as the iteration n can be used:

|∆Ūn| ≤ nC3, (1.10)

where C3 is independent of n.

1.2 Stability Analysis Methods

Condition (1.8), Condition (1.9), and Condition (1.10) for stability are quite ab-
stract in that one cannot easily determine under what conditions a scheme is stable.
To deal with this, there are three main methods to simplify the stability analysis:
the von Neumann method, the energy method, and the matrix method. In this
subsection, we give a brief introduction to each method.

1.2.1 The Von Neumann Method

The von Neumann method is the most classical method to study the stability prop-
erty of a numerical scheme. The earliest published description of this method can
be seen in Crank and Nicolson (1947) [4] and Charney et al. (1950) [3]. A com-
prehensive and recent description can be found in Hirsch (2007) [9].

The basic idea of the von Neumann method is to decompose the computational
solution or the computational error into a discrete Fourier series. We take the one
dimensional advection-diffusion equation as an example:

∂u
∂ t

+a
∂u
∂x

= α
∂ 2u
∂ 2x

, (1.11)

x ∈ [−π, π] , u(x,0) = u0, u(−π) = u(π) , (1.12)

3



1.2. Stability Analysis Methods

a > 0, α > 0. (1.13)

The mesh is the one dimensional uniform mesh with ∆x = 2π

K which has K +1
nodes. For K = 10, the mesh is shown in Figure (1.1).

Figure 1.1: 1D uniform mesh with K = 10

The first order upwind finite difference for the advection term, and the second
order central finite difference for the diffusion term are employed to discretize the
spatial terms to yield the semi-discrete equation

dŪi

dt
+a

Ūi−1−Ūi

∆x
= α

Ūi−1−2Ūi +Ūi+1

∆x2 . (1.14)

Explicit Euler temporal discretization is used to discetize temporal terms to obtain
the fully discrete equation

Ūn+1
i −Ūn

i

∆t
+a

Ūn
i−1−Ūn

i

∆x
= α

Ūn
i−1−2Ūn

i +Ūn
i+1

∆x2 . (1.15)

Rearranging Equation (1.15), we have

Ūn+1
i =

(
α

∆t
∆x2 −a

∆t
∆x

)
Ūn

i−1 +

(
1+a

∆t
∆x
−2α

∆t
∆x2

)
Ūn

i +α
∆t

∆x2Ūn
i+1. (1.16)

The discrete solution Ūn can be decomposed into a finite Fourier series. For each
component, we have

Ūn
i =

K

∑
j=0

V n
j eI i jπ

K (1.17)

where I =
√
−1. Substitute Equation (1.17) into Equation (1.16) to get
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1.2. Stability Analysis Methods

K

∑
j=0

V n+1
j eI i jπ

K =

(
α

∆t
∆x2 −a

∆t
∆x

) K

∑
j=0

V n
j eI (i−1) jπ

K

+

(
1+a

∆t
∆x
−2α

∆t
∆x2

) K

∑
j=0

V n
j eI i jπ

K

+α
∆t

∆x2

K

∑
j=0

V n
j eI (i+1) jπ

K . (1.18)

For the jth harmonic, we have

V n+1
j =

(
α

∆t
∆x2 −a

∆t
∆x

)
V n

j eI − jπ
K +

(
1+a

∆t
∆x
−2α

∆t
∆x2

)
V n

j +α
∆t

∆x2V n
j eI jπ

K .

(1.19)
We define the amplification factor

G j ,
V n+1

j

V n
j

. (1.20)

To be stable, the following condition needs to be satisfied:∣∣G j
∣∣≤ 1 for all j = 0, . . .K. (1.21)

This condition is the von Neumann stability condition (Hirsch (2007) [9]). Com-
bining Equation (1.19) and Equation (1.20) gives

G j =

(
α

∆t
∆x2 −a

∆t
∆x

)
eI − jπ

K +

(
1+a

∆t
∆x
−2α

∆t
∆x2

)
+α

∆t
∆x2 eI jπ

K . (1.22)

By Euler’s formula, we have:

G j =

(
α

∆t
∆x2 −a

∆t
∆x

)
cos
(

jπ
K

)
− I
(

α
∆t

∆x2 −a
∆t
∆x

)
sin
(

jπ
K

)
+

(
1+a

∆t
∆x
−2α

∆t
∆x2

)
+α

∆t
∆x2 cos

(
jπ
K

)
+ Iα

∆t
∆x2 sin

(
jπ
K

)
=

(
1+a

∆t
∆x
−2α

∆t
∆x2

)
+

(
2α

∆t
∆x2 −a

∆t
∆x

)
cos
(

jπ
K

)
+Ia

∆t
∆x

sin
(

jπ
K

)
.
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To be stable, |G| ≤ 1, i.e.,

((
1+a

∆t
∆x
−2α

∆t
∆x2

)
+

(
2α

∆t
∆x2 −a

∆t
∆x

)
cos
(

jπ
K

))2

+

(
a

∆t
∆x

sin
(

jπ
K

))2

≤ 1

for j = 0, . . .K. (1.23)

1.2.2 The Energy Method

The energy method has a long history of being used in the stability analysis of
partial differential equations. An early example of the energy method’s application
to numerical methods can be found in Richtmyer and Morton (1967) [23]. The
energy method usually defines a norm of the computational solution as energy and
provides the condition under which the energy monotonically decreases, therefore
resulting in a stable system.

For linear problems and nonlinear problems like the Euler equations that are
homogeneous of degree one, the term R(Ū) in Equation (1.4) can be rewritten as

R(Ū) =
∂R
∂Ū

Ū . (1.24)

Substitute Equation (1.24) into Equation (1.4) to give

dŪ
dt

=
∂R
∂Ū

Ū . (1.25)

We define the standard norm of the computational solution as energy:

E = ŪᵀŪ . (1.26)

Multiply both sides of Equation (1.25) by Uᵀ to give

Ūᵀ dŪ
dt

=
1
2

dE
dt

= Ūᵀ ∂R
∂Ū

Ū . (1.27)

To be stable, the energy E should not increase as time t, i.e., dE
dt ≤ 0. As a result,

we need

Ūᵀ ∂R
∂Ū

Ū ≤ 0. (1.28)

This condition is sufficient for a normal operator. For an ill-conditioned non-
normal operator, this condition is not sufficient. D. Levy and E. Tadmor (1998)
[14] proposed a strengthened condition
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Ūᵀ ∂R
∂Ū

Ū ≤−η

∣∣∣∣ ∂R
∂Ū

Ū
∣∣∣∣ . (1.29)

Lenferink and Spijker (1991) [13] came up with another approach to deal with
ill-conditioned non-normal operators.

1.2.3 The Matrix Method

In general, for a linear problem, the evolution of the computational error between
two successive iterations can be mapped by the following relation:

∆Ūn+1 = M∆Ūn +B, (1.30)

where M is a matrix with size equal to the number of unknowns, and B is a vector
associated with boundary conditions. For some boundary conditions and boundary
condition enforcement methods, B is zero. We do not take B into consideration
here. Suppose the initial computational error is ∆Ū0. For a linear problem, M is
constant; therefore, ∆Ūn = Mn∆Ū0 . To be stable, the norm of the computational
error ∆Ūn needs to be bounded as n becomes infinite:

|∆Ūn|=
∣∣Mn

∆Ū0∣∣≤C as n→ ∞.

we also have:

|∆Ūn|=
∣∣Mn

∆Ū0∣∣≤ |Mn|
∣∣∆Ū0∣∣ .

we can see that the behavior of ∆Ū is determined by M. To have |∆Ūn| be bounded,
the following condition needs to be satisfied (see e.g., Horn and Johnson (1990)
[10]):

1. The largest modulus of the eigenvalues of M should not be larger than one.

2. If the modulus equals one, then the associated eigenvalues must be semisim-
ple.

For a steady flow problem, the solution evolution starts from a guessed solution,
which does not satisfy the discretized equations. To be able to converge to the
solution of the discretized equations, the computational error needs to be machine
zero as n become sufficiently large. Therefore, we need the largest modulus of the
eigenvalues to be smaller than one.

A more detailed description of this method can be found in Hirsch (2007) [9].
For an ill-conditioned operator, though this condition is satisfied, there will

be a large transient growth before the eventual decay. This phenomenon is well
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documented in Reddy and Trefethen (1992) [22], in which an approach to deal
with the non-normality is presented.

For a nonlinear problem, if a linearization is used, we can get the a mapping for
the computational error of two successive iteration with the same form as Equation
(1.30).

1.2.4 Remarks

Among these three methods, the von Neumann method is the most convenient one,
providing information about how various factors affect the stability and accuracy
properties of a numerical scheme. One drawback of the von Neumann method is
that it can only be applied to linear problems with periodic boundary conditions
on uniform structured meshes. However, the von Neumann method can provide
valuable guidelines on stability and accuracy of more general structured mesh cases
as well as including nonlinear problems. In general, the von Neumann method
cannot be applied to unstructured discretizations.

The energy method can be applied both to structured discretizations and un-
structured discretizations. By the energy method, one may figure out general in-
formation about the stability properties of a scheme. One drawback of the energy
method is that its success relies on a suitable form of the defined energy, i.e., a
suitable norm of the computational error or solution. (see, e.g., Giles (1997) [6]
and F. Haider et al. (2009) [7]). In addition, the analysis associated with the en-
ergy method is usually in the manner of functional analysis, which is not easy. It
is also hard to take boundary conditions into consideration for the energy method.
For high order schemes, the analysis is much more complicated than the first and
second order schemes.

Both for the von Neumann method and the energy method, one must study the
structure of the system to perform the analysis. However, for the matrix method,
one just needs to calculate the eigenvalues and in general one does not need to study
the structure of the system. The matrix method can easily incorporate boundary
conditions. One drawback of the matrix method is that the eigenvalue calculation
is in general expensive. Also, it usually does not provide some general guidelines,
like how mesh type, reconstruction, the coordinates of the mesh, etc., affect the
stability.

For a numerical scheme on a structured mesh for a linear problem with periodic
condition, the corresponding matrix is a circulant matrix, and the eigenvalues can
be calculated analytically. For this case, the matrix method is equivalent to the
von Neumann method, suggesting that the von Neumann method is a special case
of the matrix method. Compared with a normal matrix, a non-normal matrix is
much more difficult to deal with. For further information, please see Reddy and
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Trefethen (1992) [22], Giles (1997) [6], and the references therein.
The problem of interest in this thesis is the steady compressible inviscid flow

problem, and we employ a high order (third or fourth) finite volume method to
discretize the spatial terms on unstructured meshes. The Jacobian matrix of the
spatial discretization therefore is non-symmetric and the condition number is usu-
ally large. However, in practice, we do not encounter large transient growth be-
fore the eventual decay, and for a steady problem, the intermediate solution during
time-marching is not of central concern. Though the condition number is large, the
eigenvalue calculation is still reliable. Based on these considerations and observa-
tions, we use the matrix method in this thesis to implement stability analysis and
stabilization due to its convenience.

1.3 Literature Review

By using stability analysis, we can know if a scheme is stable or not, and for a full
discretization, we can find the maximum stable time step. It is also quite valuable
to study how various factors — for instance, the reconstruction method, the mesh
type, etc. — affect the stability properties of a numerical scheme. In this section,
we give a brief review of current literature on the stability analysis of the finite
volume method on unstructured meshes. Please be aware that there are not many
articles on the stability analysis of the unstructured finite volume method.

M. B. Giles (1987) [5] developed a framework of performing energy stabil-
ity analysis for unstructured discretizations. In this article, the author used the
1D convection equation as the model problem. The basic ideas are: first present
the properties that suffice for stability for the PDEs, the semi-discretization, and
the full-discretization respectively; if the corresponding properties are satisfied,
the PDEs, the semi-discretization, and the full discretization are stable automat-
ically. Then prove that the PDEs of interest and semi-discretization satisfy the
designed properties under some assumptions, therefore being stable; for the full-
discretization to satisfy the properties, the time-step limit can then be obtained for
multi-stage explicit time-stepping. The author extended the method to first order
systems of equations and the Euler equations. It is supposed to give more proper
time-steps than classical von Neumann method for the unstructured discretization
employing multi-stage time-stepping. However, the analysis in this article is not
verified by numerical results.

M. B. Giles (1997) [6] developed a method to perform time-step stability anal-
ysis for unstructured discretizations of the Navier-Stokes equations. In this arti-
cle, the energy method is used to obtain the maximum time-step for stability. To
deal with the large transient growth, the algebraic stability condition defined in
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Lenferink and Spijker (1991) [13] is employed. The basic ideas of the approach
is: first, assume the flow is a uniform flow with periodic boundary conditions;
second, prove this flow is stable under small perturbation; third, prove the semi-
discretization is stable as well; fourth, to have a stable full-discretization, the time-
step is obtained to satisfy the algebra stability condition. In this article, the author
obtained the time-step limits both for global and local time-steps for Runge-Kutta
time-stepping for a Galerkin discretization of the Navier-Stokes equations on un-
structured meshes.

P. Moinier and M. B. Giles (2002) [18] implemented stability analysis for the
preconditioned discrete Euler equations with Runge-Kutta time-stepping on un-
structured meshes by the energy method based on the algebraic stability condition
defined in Lenferink and Spijker (1991) [13]. The approach is similar to the ap-
proach in M. B. Giles (1997) [6] . Compared with M. B. Giles (1997) [6], Jacobi
preconditioning and low Mach preconditioning are included in the analysis. In ad-
dition, solid wall boundary conditions are also taken into consideration. Moinier
and Giles implemented numerical tests to show that the presented method can give
a time-step limit close to the actual time-step limit. However, for some cases, the
time-step limit are too large, which may be because the flow has strong shock-
wave, violating the uniform flow assumption.

In the analysis in M. B. Giles (1997) [6] and P. Moinier and M. B. Giles (2002)
[18], uniform flow and periodic boundary conditions are assumed. In practice,
these conditions are usually not satisfied. Therefore, the results given by this
method might not be correct, which is seen in P. Moinier and M. B. Giles (2002). It
is also complicated to extend the energy method to higher order schemes and take
the boundary conditions into consideration.

By using the energy method and combining it with the matrix method, F.
Haider et al. (2009) [7] studied the stability of the MUSCL ([26, 27]) discretization
of the linear advection equation on general unstructured meshes and investigated
the influence of the slope reconstruction method, the mesh type, and the stencil
size on the stability. The authors proposed a new approximate and qualitative cri-
terion to measure how the piecewise linear slope reconstruction affects the stability
of the MUSCL scheme, for two reasons: even if the scheme is stable, the defined
energy can locally increase when using the energy method and the relations be-
tween the slope reconstruction and the eigenvalues are too complicated to analyze
for unstructured discretizations when using the matrix method. The investigation
about stability under this new criterion gives two important conclusions: (1) least
squares slope reconstruction is the most stable method; (2) extending the recon-
struction stencil can increase the stability of a scheme, which is valid at least for
the least squares slope reconstruction scheme. Extensive numerical tests were im-
plemented and verified the two conclusions. The energy stability analysis method
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in this article studies the stability by studying the structure of the reconstruction
in the manner of functional analysis. The conclusions drawn by this approach can
be quite general; however, the analysis is quite hard. It would be harder if this
approach were extended to high order schemes. Also, the success of the energy
method analysis relies on the suitable definition of energy, which led the authors to
seek a new criterion.

The current literature contains no efforts to optimize the spatial discretization
in a quantitative and controllable way, which is one of the topics of this thesis.

1.4 Motivation and Outline

Structured meshes have obvious efficiency and accuracy advantage, but because of
its flexibility and automatic generation, the unstructured mesh is commonly used
in simulations on complex geometry domains. However, in practice failing to con-
verge to the solution happens often, and a long trial and error process is sometimes
required to generate a suitable mesh to reach the converged solution. An approach
to optimize the mesh for stability would be quite valuable. As mentioned previ-
ously, currently the study on the unstructured finite volume method is far from
being sufficient. It is worthy to develop a model to study the stability properties of
the unstructured finite volume method and a model to stabilize the unstable numer-
ical schemes.

In this thesis, we develop a model based on the matrix method to implement
stability analysis for the discretized Euler equations on unstructured meshes. We
also develop a method to optimize the mesh to stabilize unstable spatial discretiza-
tion cases.

The reminder of this thesis is organized in five chapters. Chapter 2 presents
a model to implement stability analysis. Chapter 3 verifies the stability analysis
model. Chapter 4 presents the method to stabilize the unstable spatial discretization
at the fixed point. Chapter 5 presents the results of the stabilization at a non-fixed
point. Chapter 6 summaries the study in this thesis and presents a prospective view
of future work.
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Chapter 2

Essential Background and
Stability Analysis

2.1 Governing Equations and Numerical Methods

The physical problems of interest in this thesis are steady compressible flow prob-
lems, for which the governing equations are the Euler equations for inviscid flows
and the Navier-Stokes equations for viscous flows. As a good starting problem,
only the two dimensional Euler equations are studied in this thesis, for the pre-
sented methods can be easily extended to the two dimensional Navier-Stokes equa-
tions, the three dimensional Euler equations, and the three dimensional Navier-
Stokes equations. In this thesis, the Euler equations are solved numerically by
using a finite volume scheme employing least squares solution reconstruction [19]
and Roe flux difference splitting [24] on unstructured meshes. In this section, a
simple introduction is given that is sufficient for expressing the new ideas presented
in this thesis.

2.1.1 Physical Governing Equations

The Euler equations describe the motion of compressible inviscid flows. For the
convenience of applying the finite volume method, here the conservation form is
given:

d
dt

ˆ
Vi

UdV +

˛
Si

FdS = 0, (2.1)

U =


ρ

ρu
ρv
E

 F =


ρun

ρuun +Pn̂x

ρvun +Pn̂y

(E +P)un

 , (2.2)

where U is the conservative variables vector, V is the control volume, S is the
surface of the control volume, and F is the flux vector. In Equation (2.2), ρ , u,
v, and E are density, velocity in the x-direction, velocity in the y-direction, and
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total energy respectively. Suppose n̂ is the outward unit normal vector. n̂x is the
projection of n̂ on the x-direction and n̂y is the projection of n̂ on the y-direction.
In Equation (2.2), un = un̂x + vn̂y. The pressure P is related to the conservative
variables by the ideal gas equation of state:

P = (γ−1)
(

E− 1
2

ρ
(
u2 + v2)) . (2.3)

2.1.2 Numerical Discretization For Spatial Terms

In this thesis, we consider an unstructured finite volume scheme employing least
squares solution reconstruction and Roe flux difference splitting [24]. The spatial
discretization generates a nonlinear real value vector function as following:

˛
Si

FdS = R(Ū) (2.4)

where the term R(Ū) is the residual term and Ū is the solution vector or compu-
tational solution vector. Detailed information on the spatial discretization can be
found in [19]. A numerical method to solve the steady Euler equations is aimed at
seeking a solution vector Ūs satisfying

R(Ūs) = 0 (2.5)

The residual term R(Ū) can be interpreted as a function of the coordinates of
vertices of the mesh if the mesh’s influence on the system is taken into considera-
tion, which is of central interest to this thesis:

˛
Si

FdS = R(Ū) = R(Ū ,ζ ) (2.6)

where ζ denotes the vector of the coordinates of vertices of the mesh discretizing
the spatial domain.

2.1.3 Temporal Discretization and Time Stepping Methods

Since the problems of interest are steady problems and we expect only one solution
to Equation (2.5), the accuracy of the temporal discretization only affects the tran-
sient procedure to reach the converged solution but does not influence the solution
accuracy. Among many temporal discretization methods, only the backward Euler
method is studied in this thesis.
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Backward Euler Time Stepping Method

The governing equations discretized in space can be written as

dŪ
dt

=−R(Ū) . (2.7)

By applying the backward Euler method to the temporal terms in Equation (2.7),
we have

Ūk−Ūk−1

∆tk =−R
(

Ūk
)
, (2.8)

where k is the iteration count, meaning the kth time level, and ∆t is the time-step.
The term on the right-hand side of Equation (2.8) can be expanded by a Taylor
series in the following way:

R
(

Ūk
)
= R

(
Ūk−1

)
+

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūk−1

(
Ūk−Ūk−1

)
+O

((
Ūk−Ūk−1

)2
)

(2.9)

where the term ∂ R̄
∂Ū

∣∣∣
Ū=Ūk−1

is the Jacobian matrix. By combining Equation (2.8)
and Equation (2.9), and dropping the high order terms, we get the following equa-
tion:

Ūk−Ūk−1

∆tk =−
(

R
(

Ūk−1
)
+

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūk−1

(
Ūk−Ūk−1

))
(2.10)

where the term Ūk−Ūk−1 can be denoted by a variable called the solution update
δŪ . As a result, we obtain a concise form:(

I
∆tk +

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūk−1

)
δŪk =−R

(
Ūk−1

)
(2.11)

where I is the identity matrix. The solution update at the kth iteration δŪk can
be obtained by solving this linear equation. The solution at the kth iteration Ūk is
updated in the following way:

Ūk = Ūk−1 +αδŪk (2.12)

where α is a positive factor, which equals one for the backward Euler method.
α > 1 corresponds to overrelaxiation, and α < 1 to underrelaxation.
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2.1.4 Summary of Numerical Methods

Here we summarize the whole procedure for applying a numerical scheme to solve
the two dimensional Euler equations:

(1) Discretize the spatial terms and discretize the temporal terms with the back-
ward Euler method:(

I
∆tk +

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūk−1

)
δŪk =−R

(
Ūk−1

)
. (2.13)

k starts from k = 1 with an initial guess: Ū = Ū0. We get the solution update δŪk

by solving Equation (2.13).
(2) Update the solution by δŪk:

Ūk = Ūk−1 +αδŪk. (2.14)

If the computational solution satisfies the convergence criterion, for instance, the
L2 norm of R(Ū) is smaller than 10−10, then stop here; otherwise, go to (1).

Hence, the mapping of the computational solutions of two successive iterations
is

Ūk = Ūk−1 +

(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūk−1

)−1(
−R
(

Ūk−1
))

. (2.15)

Therefore, the mapping of the computational solution of the kth iteration and initial
guess is

Ūk = f
(

f
(

f ...
(

f
(
Ū0)))) kth level f , (2.16)

where we apply k iterations of the nonlinear function

f
(
Ū j+1)= Ū j +

(
I

∆t j +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ū j

)−1 (
−R
(
Ū j)) . (2.17)

We can also use a simpler form to denote Equation (2.16):

Ūk = f k (Ū0) . (2.18)

The central focus of this thesis is studying the stability of the solution procedure.
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2.2. Stability Analysis Methodology

2.2 Stability Analysis Methodology

For the Euler equations, Mapping (2.18) is nonlinear. The inherent nonlinearity of
the Euler equations makes analysis much more complicated than a linear system. In
general, for a nonlinear system, analysis around the converged solution (the fixed
point) is applied to study the system. Instead of focusing on the computational
solution, a typical fixed point analysis regards the computational error ∆Ū as the
object to study. If the computational error converges to 0 as k approaches infinity,
the system is stable; otherwise it is unstable. This simplifies the analysis.

In this section, we present in detail the model originally developed in this the-
sis to implement the stability analysis for the discretized systems of physical equa-
tions. The main ideas were obtained from communication in October 2014 with Dr.
Christopher Hill at ANSYS Corporation [8]. The original methodology proposed
by C. Hill is aimed at the stability analysis and stabilization for the dynamical
system coupling the spatial discretization with the temporal discretization, which
includes not only simple temporal discretization methods like the backward Eu-
ler time stepping method, but also sophisticated temporal discretization methods.
Besides presenting the originally proposed model, this thesis focuses on the back-
ward Euler time stepping method and constructs a stability condition solely for
the spatial discretization. One of the remarkable points of the developed model is
that instead of employing the conventional way of implementing the fixed point
analysis, a simpler approach is developed that drops the high order terms.

2.2.1 Mathematical Model to Implement Stability Analysis at Fixed
Point

As the usual way of implementing fixed point analysis, instead of studying the
Mapping (2.16) relating the initial computational solution Ū0 and the computa-
tional solution of the kth iteration Ūk, we focus on the behavior of the compu-
tational error. We start from the mapping of the computational solution between
two successive iterations and then shift to the mapping of the computational error.
Recall Equation (2.13) and Equation (2.12):(

I
∆tk +

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūk−1

)
δŪk =−R

(
Ūk−1

)
, (2.19)

Ūk = Ūk−1 +αδŪk. (2.20)

Suppose for a certain k, Ūk−1 is the converged solution of Equation (2.5) and the
fixed point of time-stepping defined by Equation (2.19) and Equation (2.20); there-
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2.2. Stability Analysis Methodology

fore, we have R
(
Ūk−1

)
= 0, δŪk = 0, and Ūk ≡ Ūk−1.1 A stable system should be

able to recover to the converged solution after a small perturbation. Following this
idea, to investigate stability, we perturb the solution randomly — therefore the per-
turbation is rich in directions — and apply the perturbed solution into the system
to investigate its effects on the time-stepping process:

Ūp = Ūs +∆Ūp (2.21)

where ∆Ūp is the perturbation, Ūs is the steady solution, and Ūp is the computa-
tional solution after perturbation. According to the definition of the computational
error defined in Definition 1, ∆Ūp is also the computational error ∆Ū . To study
the stability of the time-stepping process, we insert the perturbed solution into the
time-stepping process. After k iterations, we can relate the computational solution
to the converged solution at the kth iteration:

Ūk
p = Ūs +∆Ūk. (2.22)

By the definition of the vector norm, we have:∣∣Ūk
p

∣∣= ∣∣Ūs +∆Ūk−1∣∣≤ |Ūs|+
∣∣∆Ūk−1∣∣ (2.23)

where the norm of the fixed point solution Ūs is fixed, which implies that the behav-
ior of the norm of the computational solution Ūp inherits from the computational
error ∆Ū . As a result, we can just focus on the asymptotic behavior of the compu-
tational error ∆Ū . Insert Equation (2.22) into Equation (2.19), and we get:(

I
∆tk+1 +

∂ R̄
∂Ū

k
∣∣∣
Ū=Ūk

p

)
δŪk+1 =−R

(
Ūk

p
)

⇓
,

(
I

∆tk+1 +
∂ R̄
∂Ū

k
∣∣∣∣∣
Ū=Ūs+∆Ūk

)
δŪk+1 =−R

(
Ūs +∆Ūk

)
. (2.24)

The Jacobian matrix on the left-hand side is calculated based on the computational
solution Ūs +∆Ūk. To reduce the complexity of analysis, this Jacobian matrix is
replaced by the Jacobian matrix calculated based on the fixed point solution. The
right-hand terms can be linearized by the Taylor expansion as:

1In the context of scientific computation, there is no real ” 0 ” . Here “ 0 ” is a vector or scalar as
close to 0 as can be reached in the system, constrained by the precision of data and the system itself.
Therefore, we can say after a certain k, Ūk is the fixed point since the changes in Ūk are meaningless
afterward.
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2.2. Stability Analysis Methodology

−R
(

Ūs +∆Ūk
)
=−

(
R(Ūs)+

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk

))
+O

(
∆Ūk

)2
(2.25)

where R(Ūs) = 0. Combining these, an equation with a more clear form can be
generated after some simple algebraic operations:

(
I

∆tk+1 +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk+1 =−

(
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk

))
+O

(
∆Ūk

)2
. (2.26)

Since we aim at studying the asymptotic behavior of the computational error, and
there is another variable δŪk+1 in the equation, we need to express the variable
solution update δŪk+1 in terms of the variable ∆Ūk. Retrieve equation (2.12) and
equation (2.22):

Ūk = Ūk−1 +αδŪk, (2.27)

Ūk
p = Ūs +∆Ūk. (2.28)

Combine these two equations, and we get:

∆Ūk−∆Ūk−1

α
= δŪk. (2.29)

By using Equation (2.29) in Equation (2.26), an equation relating the computa-
tional errors of two successive iterations can be derived :

(
I

∆tk+1 +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk+1 =

(
I

∆tk+1 +(1−α)
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk +O

(
∆Ūk

)2
.

(2.30)
Drop the higher order term O

(
∆Ūk

)2, replace k+1 by k , and we can get a concise
formula :

(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk =

(
I

∆tk +(1−α)
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk−1. (2.31)

If the backward Euler time stepping method is applied, the time step ∆t is constant
and α = 1, resulting in a simpler form of Equation (2.31) as following:
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(
I

∆t
+

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk =

1
∆t

∆Ūk−1. (2.32)

We can easily see that System (2.31) is linear, which simplifies the analysis of the
system dramatically, and as shown by the data in Chapter 3, this linearity is valid
in the neighbor around the converged solution. Assume the matrix on the left-hand
side of equation (2.31) is not singular, which is valid for the problems of interest
in this thesis, then we can have a more direct mapping of ∆Ū of two successive
iterations:

∆Ūk =

(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)−1(
I

∆tk +(1−α)
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk−1. (2.33)

With the help of the recurrence relation of ∆Ū of Equation (2.33), the mapping of
the initial computational error ∆Ū0 and the computational error at the kth iteration
∆Ūk can be deduced as following:

∆Ūk =

( I
∆tk +

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)−1(
I

∆tk +(1−α)
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)k

∆Ū0. (2.34)

Since the term
(

I
∆tk +

∂ R̄
∂Ū

∣∣∣
Ū=Ūs

)−1(
I

∆tk +(1−α) ∂ R̄
∂Ū

∣∣∣
Ū=Ūs

)
is a constant matrix,

we use a letter A to denote it to obtain a concise formulation of Equation (2.31):

∆Ūk = Ak
∆Ū0. (2.35)

We get an approximate mapping relating the initial computational error ∆Ū0 and
the computational error at the kth iteration ∆Ūk. In fact, for the solution update ∆Ū
and flux integral R(Ū), we can also derive mappings similar to Equation (2.35),
the details of which can be seen in Appendix A. Naturally, the next question is
under what circumstances the computational error converges to 0, and therefore
the system is stable; and under what circumstances it diverges.

2.2.2 Eigenanalysis of the Model

A common way to study the behavior of Mapping (2.35) is spectral analysis. In
this subsection, we discuss in detail how we employ spectral analysis to derive the
stability conditions.
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Without loss of generality, suppose matrix A is a n×n square matrix with a set
of eigenvalues (λ0, λ1, λ2, . . . ,λn−1), a set of right eigenvectors (x0, x1, x2, . . . ,xn−1)
and a set of left eigenvectors

(
y∗0, y∗1, y∗2, . . . ,y

∗
n−1
)
, satisfying the following equa-

tions by definition:

Axi = λixi i = 0, 1, 2, . . . ,n−1, (2.36)

yiA = λiyi i = 0, 1, 2, . . . ,n−1. (2.37)

Suppose there are no repeated eigenvalues for matrix A, which always holds for
the problems of interest in this thesis — the discretized equations inherited from
the steady 2D Euler equations. Since the right eigenvectors (x0, x1, x2, . . . ,xn−1)
are linearly independent, they can span a vector space of dimension n. Similar to
the right eigenvectors, the set of left eigenvectors

(
y∗0, y∗1, y∗2, . . . ,y

∗
n−1
)

can span a
vector space of dimension n as well. Therefore, we can decompose ∆U by the right
eigenvectors in the following way:

∆Ū =
i=n−1

∑
i=0

aixi (2.38)

where ai are the eigendecomposition coefficients, calculated with the help of the
left eigenvectors:

y∗k∆Ū = y∗k

(
i=n−1

∑
i=0

aixi

)
k = 0, 1, 2, . . . ,n−1. (2.39)

Applying the orthogonality of the left and the right eigenvectors:

y∗kxi =

{
0 k 6=i

C4 k=i
(2.40)

where C4 is a scalar not equal to zero, we get

ai =
y∗i ∆Ū
y∗i xi

i = 0, 1, 2, . . . ,n−1. (2.41)

Now, we study the behavior of ∆U under Mapping (2.35) in the eigendecom-
position. Multiply Equation (2.38) by the matrix A from the left:

A∆Ū =
i=n−1

∑
i=0

aiAxi. (2.42)

By applying Equation (2.36), we get
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A∆Ū =
i=n−1

∑
i=0

aiAxi =
i=n−1

∑
i=0

aiλixi. (2.43)

Hence, after multiplying k times as in Equation (2.35), We get:

Ak
∆Ū =

i=n−1

∑
i=0

aiAxi =
i=n−1

∑
i=0

aiλ
k
i xi (2.44)

Therefore, the computational error at the kth iteration ∆Ūk can be mapped to the
initial computational error ∆U0 as :

∆Ūk = Ak
∆Ū0 =

i=n−1

∑
i=0

a0
i λ

k
i xi (2.45)

where a0
i are the eigendecomposition coefficients associated with the initial com-

putational error ∆Ū0. If not explicitly stated, a0
i is denoted by ai hereafter.

Next, we will show the behavior of the computational error under Mapping
(2.35) is dominated by the largest eigenvalues in norm and the associated eigen-
vectors. From now on, in this thesis, largest eigenvalue(s) means the largest eigen-
value(s) in norm if not specifically stated. Given a previous assumption that there
are no repeated eigenvalues for matrix A, the largest eigenvalues are either a single-
ton real eigenvalue or a conjugate complex pair. Suppose the eigenvalues are sorted
in the descending order of magnitude with respect to the count i. Because complex
eigenvalues are common for the problems of interest, we use Euler’s formula to
present eigenvalues in a convenient form:

λi = rieIθi (2.46)

where ri is the norm of eigenvalue λi; I is the imaginary unit so that I =
√
−1 ; and

θi is the associated angle in the complex plane. We analyze the behaviors of the
mappings by sorting them into two categories in terms of the characteristics of the
largest eigenvalues.

(1) We suppose the largest eigenvalue of the matrix A is a singleton real scalar.
Rewrite Equation (2.45) and separate the largest eigenvalue from the rest:

∆Ūk = Ak
∆Ū =

i=n−1

∑
i=0

aiλ
k
i xi = λ

k
0

i=n−1

∑
i=0

ai

(
λi

λ0

)k

xi (2.47)

By applying Equation (2.46), we have:

∆Ūk = rk
0

i=n−1

∑
i=0

ai

(
ri

r0

)k

eIkθixi. (2.48)

21



2.2. Stability Analysis Methodology

To study the behavior of the computational error ∆Ūk, an asymptotic analysis is
implemented. For

∣∣∆Ūk
∣∣, we have

∣∣∆Ūk
∣∣ =

∣∣∣∣∣rk
0

i=n−1

∑
i=0

ai

(
ri

r0

)k

eIkθixi

∣∣∣∣∣
=

√√√√((rk
0

(
i=n−1

∑
i=0

ai

(
ri

r0

)k

eIkθixi

))∗
rk

0

(
i=n−1

∑
i=0

ai

(
ri

r0

)k

eIkθixi

))

=

√√√√((rk
0

(
a0x0 +

i=n−1

∑
i=1

ai

(
ri

r0

)k

eIkθixi

))∗
rk

0

(
a0x0 +

i=n−1

∑
i=1

ai

(
ri

r0

)k

eIkθixi

))

=

√√√√(r2k
0

(
a∗0a0x∗0x0 +O

(
r1

r0

)k
))

= rk
0

√√√√(a∗0a0x∗0x0 +O
(

r1

r0

)k
)

(2.49)

For
∣∣∆Ūk−1

∣∣, similarly, we have

∣∣∆Ūk−1∣∣= rk−1
0

√√√√(a∗0a0x∗0x0 +O
(

r1

r0

)k−1
)
. (2.50)

The amplification factor γ is defined as the ratio of the norm of the computational
errors of two successive iterations. Therefore, as k becomes large, the amplification
factor at the kth iteration can be obtained:

γk =

∣∣∆Ūk
∣∣

|∆Ūk−1|
=

rk
0 |a0| |x0|

√(
1+O

(
r1
r0

)k
)

rk−1
0 |a0| |x0|

√(
1+O

(
r1
r0

)k−1
) = r0

(
1+O

(
r1

r0

)k−1
)
.

(2.51)

As k becomes large, the term
(

r1
r0

)k−1
is exponentially small. Hence, we can con-

clude that the amplification factor γk→ r0 as k becomes large. As a result, if r0 is
larger than one, the norm of ∆Ū increases exponentially, resulting in instability and
if is smaller than one, the norm of ∆Ū decreases exponentially, resulting in stabil-
ity. If the norm of r0 is one, convergence is still not feasible. Hence, for solution
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convergence, the norm of the largest eigenvalue needs to be smaller than one for
the case where the largest eigenvalue is real.

We can also calculate the angle between the vector ∆Ūk and the eigenvector
associated with the largest eigenvalue. The angle is defined as

θk = arccos

(
x∗0∆Ūk∣∣x∗0∣∣ |∆Ūk|

)
. (2.52)

According to Appendix B, we have

θk = π or 0+O

((
r1

r0

)k
)

(2.53)

Analogous to the norm, for large k, the angle converges to 0 or π . Therefore, the
two vectors converge to being parallel. Actually, this is the basis of the power
method for eigenpair calculation.

(2) We also need to consider the case where the largest eigenvalues are a conju-
gate pair, which is common for the Jacobian matrices of flow problems, and more
complicated to analyze. We can implement a similar analysis. Suppose the largest
eigenvalues are a conjugate pair:

λ0 = r0eIθ0 ,

λ1 = r0e−Iθ0 .

Since the computational error ∆U is real, the eigendecomposition coefficients as-
sociated with a conjugate pair should be a conjugate pair as well. Here the coeffi-
cients of eigendeomposition associated with the largest eigenvalues are presented
by a0eIα0 and a0e−Iα0 . The associated eigenvectors are a conjugate pair as well.
Recall Equation (2.45) and replace a0

i by a0 to get

∆Ūk = Ak
∆Ū =

i=n−1

∑
i=0

aiλ
k
i xi.

Isolating the largest eigenvalues from the rest, we get

i=n−1

∑
i=0

aiλ
k
i xi = rk

0

(
a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0 +

i=n−1

∑
i=2

ai

(
ri

r0

)k

eIkθixi

)
where x̄0 is the conjugate of x0. We can also calculate the amplification factor of
the norm of the computational error of two successive iterations as we have done
for the case where the largest eigenvalue is real:
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γk =

∣∣∆Ūk
∣∣

|∆Ūk−1|
=∣∣∣∣rk
0

((
a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

)
+

i=n−1

∑
i=2

ai

(
ri
r0

)k
eIkθixi

)∣∣∣∣∣∣∣∣rk−1
0

((
a0eI(α0+(k−1)θ0)x0 +a0e−I(α0+(k−1)θ0)x̄0

)
+

i=n−1

∑
i=2

ai

(
ri
r0

)k−1
eI(k−1)θixi

)∣∣∣∣
= r0

∣∣∣∣(a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0
)
+

i=n−1

∑
i=2

ai

(
ri
r0

)k
eIkθixi

∣∣∣∣∣∣∣∣(a0eI(α0+(k−1)θ0)x0 +a0e−I(α0+(k−1)θ0)x̄0
)
+

i=n−1

∑
i=2

ai

(
ri
r0

)k−1
eI(k−1)θixi

∣∣∣∣ .
Suppose the norm of the eigenvector equals one : |x0|= 1 . Therefore, we have

∣∣∣∣∣(a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

)
+

i=n−1

∑
i=2

a0
i

(
ri

r0

)k

eIkθixi

∣∣∣∣∣
2

=

((
a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

)
+

i=n−1

∑
i=2

a0
i

(
ri

r0

)k

eIkθixi

)∗
((

a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

)
+

i=n−1

∑
i=2

a0
i

(
ri

r0

)k

eIkθixi

)

=
((

a0e−I(α0+kθ0)x̄ᵀ0 +a0eI(α0+kθ0)xᵀ0
)(

a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

))
+O

((
r1

r0

)k
)

=
(

2a2
0 +a2

0e−2I(α0+kθ0)x̄ᵀ0 x̄0 +a2
0e2I(α0+kθ0)xᵀ0x0

)
+O

((
r1

r0

)k
)

(2.54)

where the operator ()ᵀ is getting the transpose of a vector. In Equation (2.54), x̄ᵀ0 x̄0
and xᵀ0x0 are a conjugate pair of complex scalars. Given that |x0|= 1, we have

x̄ᵀ0 x̄0 = e−2Iβ0 ,

xᵀ0x0 = e2Iβ0 .

Consequently, we have
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∣∣∣∣∣(a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

)
+

i=n−1

∑
i=1

a0
i

(
ri

r0

)k

eIkθixi

∣∣∣∣∣
=

√√√√(2a2
0 +a2

0e−2I(α0+kθ0+β0)+a2
0e2I(α0+kθ0+β0)

)
+O

((
r1

r0

)k
)
.

By applying the Euler’s formula, we have

√(
2a2

0 +a2
0e−2I(α0+kθ0+β0)+a2

0e2I(α0+kθ0+β0)
)

=
√(

2a2
0 +2a2

0 cos(2(α0 + kθ0 +β0))
)
.

thus,

∣∣∣∣∣(a0eI(α0+kθ0)x0 +a0e−I(α0+kθ0)x̄0

)
+

i=n−1

∑
i=1

a0
i

(
ri

r0

)k

eIkθixi

∣∣∣∣∣
=
√(

2a2
0 +2a2

0 cos(2(α0 + kθ0 +β0))
)
+O

((
r1

r0

)k
)
. (2.55)

Similarly, for the iteration of k−1, we have

∣∣∣∣∣(a0eI(α0+(k−1)θ0)x0 +a0e−I(α0+(k−1)θ0)x̄0

)
+

i=n−1

∑
i=2

a0
i

(
ri

r0

)k−1

eI(k−1)θixi

∣∣∣∣∣
=
√(

2a2
0 +2a2

0 cos(2(α0 +(k−1)θ0 +β0))
)
+O

((
r1

r0

)k−1
)
. (2.56)

Combing Equation (2.55) and Equation (2.56), we get

γk =

∣∣∆Ūk
∣∣

|∆Ūk−1|
= r0


√(

2a2
0 +2a2

0 cos(2(α0 + kθ0 +β0))
)
+O

((
r1
r0

)k
)

√(
2a2

0 +2a2
0 cos(2(α0 +(k−1)θ0 +β0))

)
+O

((
r1
r0

)k−1
)


= r0

(∣∣∣∣ cos(α0 + kθ0 +β0)

cos(α0 +(k−1)θ0 +β0)

∣∣∣∣+O
(

r1

r0

)k−1
)

(2.57)

= r0

(
|cos(θ0)− sin(θ0) tan(α0 +(k−1)θ0 +β0)|+O

((
r1

r0

)k−1
))

. (2.58)
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Dropping the high order terms in equation (2.58), we have

γk = γ (k,θ0,α0,β0) = r0 |cos(θ0)− sin(θ0) tan(α0 +(k−1)θ0 +β0)| . (2.59)

Unlike the case where the largest eigenvalue is real, in which the amplification fac-
tor of the norm of ∆Ū of two successive iterations converges to the norm of the
largest eigenvalue, in this case, the amplification factor associated with two suc-
cessive iterations also depend on the number of iterations k, and from Equation
(2.59), we can see the amplification factor will oscillate around r0 since tan() is a
periodic function. Since stability describes the asymptotic properties of a scheme,
a small number of iterations is not informative. On the contrary, we must focus on
the asymptotic ratios of the norm of the computational error over a large number
of iterations. With the help of Equation (2.57), we can calculate the amplification
factor of the norm of the computational error of two largely distant iterations. As-
sume that if k > m, the higher order terms in Equation (2.57) can be ignored. We
define

Γk =

∣∣∆Ūk
∣∣

|∆Ū0|
. (2.60)

For a number n > m, we have

Γn =
|∆Ūn|
|∆Ū0|

= Γm

k=n

∏
k=m+1

γk. (2.61)

Recalling Equation (2.57) for γ and dropping the high order terms, we have

Γn = Γm

k=n

∏
k=m+1

∣∣∣∣ cos(α0 + kθ0 +β0)

cos(α0 +(k−1)θ0 +β0)

∣∣∣∣= Γmrn−m
0

∣∣∣∣ cos(α0 +nθ0 +β0)

cos(α0 +mθ0 +β0)

∣∣∣∣ .
(2.62)

From Equation (2.62), we can easily conclude that r0 determines the asymptotic
rate of the growth of the computational error ∆Ū . Therefore, to have a stable
system, the following condition is needed:

r0 < 1. (2.63)

If r0 is smaller than one, the scheme is stable. However, from Equation (2.59), we
expect that the norm of the computational error ∆Ū will increase locally, which
should explain the phenomena mentioned in F. Haider et al (2009) [7] that the
energy might increase locally even if the scheme is stable. For the direction of

26



2.3. Stability of the Method of Lines

the computational error ∆Ū , it is complicated enough that we do not discuss it
here. Though here we only analyze the computational error, for the other two
computational vectors: the flux integral and the solution update, the conclusions
should be the same.

2.3 Stability of the Method of Lines

In Section 2.2, we presented the stability condition for the full discretization and
relates the behavior of the computational vectors to the eigenvalues of the map-
ping. In practice, it is more usual to focus on the stability properties of the spatial
discretization, i.e., the method of lines. In this section, we present the stability
condition for the spatial discretization.

The semi-discretization of the 2D Euler equations can be also written as

dŪ (t)
dt

=−R(Ū (t)) . (2.64)

Since this equation is nonlinear, we focus on the stability of the steady state solu-
tion, i.e., Ūs, which is also the fixed point. For a small perturbation to the steady
solution Ūp = Ūs +∆Ūp, we have

d∆Ūp (t)
dt

=− ∂R
∂Ūs

∆Ūp (t)+h(∆Ūp (t) , t)

where h(∆Ūp (t) , t) is a function representing the difference between d∆Ūp(t)
dt and

− ∂R
∂Ūp

∆Ūp (t) . Theorem 4.3 in [1] is on the stability of a system like Equation
(2.64). We follow this theorem to discuss the stability of the fixed point solution
of Equation (2.64). We assume h(∆Ūp (t) , t) and − ∂R

∂Ūs
are continuous in (t, ∆Ūp)

for 0≤ t < ∞, |∆Ūp|< k where k is a small positive constant. We also assume for
h(∆Ūp (t) , t), the following condition is satisfied:

lim
|∆Ūp|→0

|h(∆Ūp (t) , t)|
|∆Ūp (t)|

= 0, uniformly for t ∈ [0,∞) .

If we need to have a stable fixed point solution, we need all the eigenvalues of
matrix − ∂R

∂Ūs
to be negative, i.e., Re

(
Λ

(
− ∂R

∂Ūs

))
< 0, where Λ

(
− ∂R

∂Ūs

)
means the

spectrum of the Jacobian matrix − ∂R
∂Ūs

.
We need to use the stability condition of semi-discretization for stabilization

at the fixed point and a non-fixed point. For both cases, h(∆Ūp (t) , t) is small;

therefore, it is sufficient to use Re
(

Λ

(
− ∂R

∂Ūs

))
< 0 as stability condition.
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Chapter 3

Numerical Validation for
Stability Methodology

3.1 Numerical Testing Methodology

In this chapter, we test the validity of the stability analysis methodology of Chap-
ter 2 by numerical examples. We use two linear problems: Poisson’s equation and
the advection-diffusion equation; and a nonlinear problem: the two dimensional
Euler equations as test problems. For Poisson’s equation and the advection diffu-
sion equation, least squares solution reconstruction [19] is employed. For the two
dimensional Euler equations, least squares reconstruction [19] and Roe flux differ-
ence splitting [24] are used. The spatial discretization of the PDEs is implemented
by using the Advanced Numerical Simulation Library (ANSLib) [21]. We use the
method in [17] to implement pseudo-timestepping to reach the steady state solu-
tion. The implementation of the time-stepping employs the Portable, Extensible
Toolkit for Scientific Computation [25] (PETSc ), a linear algebra library, to reach
the converged solution. Once the converged solution is reached, we perturb the
solution randomly, and apply backward Euler time-stepping. For mesh generation,
we use the Generation and Refinement of Unstructured, Mixed-Element Meshes in
Parallel (GRUMMP) [20] package.

We also need the explicit formation of the Jacobian matrix and its eigenval-
ues to test the methodology. The Jacobian matrix is calculated analytically by
the method originally developed by Michalak and Olliver-Gooch (2010) [17] and
stored explicitly. The eigenvalue calculation is implemented by the Scalable Li-
brary for Eigenvalue Problem Computations [2] (SLEPc).

The mappings of the solution update, the computational error, and the flux in-
tegral are identical if the backward Euler time stepping method is employed. As
a result, the stability conditions inherited from these three mappings are the same,
which is reasonable. In Chapter 2, we have developed a model for the asymptotic
behavior of three variables: the solution update δŪ , the computational error ∆Ū ,
and the flux integral R(Ū), and also constructed the corresponding stability con-
dition; we have also established a stability condition based solely on the spatial
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3.1. Numerical Testing Methodology

discretization. In this chapter, we test if the prediction of the behavior of those
variables based on the presented model is consistent with their actual behavior. If
the prediction coincides with the actual behavior, the methodology is valid.

The three variables, solution update, computational error, and flux integral,
are all real vectors. As a vector, the norm and the direction are of interest to us.
Mapping (2.33) models how the norm and direction change after a large number of
iterations, i.e., asymptotically. In previous analysis, we have drawn the following
conclusions. (1) If the largest eigenvalue is real, as the iteration becomes a large
number, the amplification factor converges to the norm of the largest eigenvalue
for each variable, and the direction of the three vectors converge to being parallel
to the direction of the eigenvector associated with the largest eigenvalue. (2) If the
largest eigenvalues are a conjugate complex pair, the norm and the direction behave
differently from the case where the largest eigenvalue is real. For this case, neither
the norm nor the direction will go to a constant as the iteration k becomes a large
number. We use a different approach to test the validity indirectly.

Recall Equation (2.62), and take the high order term into consideration:

Γn =
|∆Ūn|
|∆Ū0|

= Γm

(
rn−m

0

∣∣∣∣ cos(α0 +nθ0 +β0)

cos(α0 +mθ0 +β0)

∣∣∣∣+O
(

r1

r0

)m)
. (3.1)

Thus, for two large numbers: j, k, the ratio of the norm of the computational error
of these two iterations is

Γk− j =
∆Ūk

∆Ū j = rk− j
0

∣∣∣∣cos(α0 + kθ0 +β0)

cos(α0 + jθ0 +β0)

∣∣∣∣+O
(

r1

r0

) j

. (3.2)

Suppose (k− j)θ0 = lπ + φ , where l is a integral and |φ | < |θ0| < π . Thus, we
have

Γk− j =
∆Ūk

∆Ū j = rk− j
0

∣∣∣∣cos(α0 + jθ0 +β0 + lπ +φ)

cos(α0 + jθ0 +β0)

∣∣∣∣+O
(

r1

r0

) j

. (3.3)

in which, we have

∣∣∣∣cos(α0 + jθ0 +β0 + lπ +φ)

cos(α0 + jθ0 +β0)

∣∣∣∣ =

∣∣∣∣cos(α0 + jθ0 +β0 +φ)

cos(α0 + jθ0 +β0)

∣∣∣∣
=

∣∣∣∣cos(α0 + jθ0 +β0)cos(φ)− sin(α0 + jθ0 +β0)sin(φ)
cos(α0 + jθ0 +β0)

∣∣∣∣
= |cos(φ)− tan(α0 + jθ0 +β0)sin(φ)|

≈ 1− 1
2

φ
2− tan(α0 + jθ0 +β0)

(
φ − 1

6
φ

3
)
. (3.4)
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3.2. Precision Estimation

Therefore, we have

Γk− j =
∆Ūk

∆Ū j ≈ rk− j
0

(
1− 1

2
φ

2− tan(α0 + jθ0 +β0)φ

)
+O

(
r1

r0

) j

. (3.5)

We define an averaged amplification factor of two successive iterations as

γ̄ = Γ

1
k− j
k− j. (3.6)

The terms, 1
2 φ 2, tan(α0 + jθ0 +β0)φ , and O

(
r1
r0

) j
are small. Substitute Equation

(3.5) into Equation (3.6) to give

γ̄ = r0

(
1+O

(
−1

2 φ 2− tan(α0 + jθ0 +β0)φ

k− j

))
+O

(
1

k− j

(
r1

r0

) j
)
. (3.7)

Given Equation (3.7), we can therefore test if γ̄ matches r0 to test the validity of the
methodology. From Equation (2.59), we can also see that the convergence history
will oscillate, and the amplification factor associated with two successive iterations
will oscillate around the norm of the largest eigenvalues. As it is complicated to
analyze the variation of the direction of the computational error, solution update,
and flux integral for large iteration count, we do not implement numerical tests for
it.

Since the direction of the three vectors is evaluated by the angle between the
vector and the eigenvector associated with the largest eigenvalue, we use the term
angle to replace the term direction.

3.2 Precision Estimation

It would be misleading to state that one set of data matches another set of data,
while the degree of coincidence is not explicitly presented. In this section, we
estimate analytically the extent to which the actual data matches the analytical
value both for the amplification factor and the angle. We begin with estimating the
precision of the model.

For a linear problem, for instance, Poisson’s equation, the derivation of Map-
ping (2.31) does not need to drop the higher order terms; thus, the mapping pre-
cisely describes the relation of the three variables — computational error, solution
update, and flux integral — between two successive iterations. For a nonlinear
problem, specifically the Euler equations in this thesis, the dropped higher order
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3.2. Precision Estimation

terms are of O
((

∆Ūk
)2
)

, which is sufficiently small that it is not the principal
factor that affects the precision.

Next, we need to estimate how close the actual amplification factor will be with
the expected value — the norm of the largest eigenvalue, and estimate how close
the angle will be with the expected value (0 or π) as well. Again, here we divide
the discussion into two categories: one is the case where the largest eigenvalue is
real, and the other is the case where the largest eigenvalues are a conjugate complex
pair.

(1) We consider first the case where the largest eigenvalue is real. Recalling
Equation (2.51), we have

γk = r0

(
1+O

(
r1

r0

)k−1
)
. (3.8)

Seen from this equation, the extent to which the actual amplification factor coin-

cides with r0 is constrained primarily by the term O
(

r1
r0

)k−1
. We use ∆γk to denote

the difference between the actual amplification factor at the kth iteration γk and r0:

∆γk = |γk− r0| . (3.9)

∆γ refers to the difference between the actual amplification factor and r0 when the
iteration is not specifically expressed. From Equation (3.8), we can see that ∆γk

behaves similarly as
(

r1
r0

)k−1
. Simply put if ∆γk is small, which means γk is close

to r0, and the decay rate of ∆γk is close to r1
r0

, Equation (3.8) holds, which verifies
the validity of the stability analysis model.

For the angle, we have similar conclusions. Recall Equation (2.53)

θk = π or 0+O

((
r1

r0

)k
)
.

The difference between the actual angle and π or 0 is denoted by ∆θ , which for the
kth iteration is

∆θk = |θk| or |θk−π|= O

((
r1

r0

)k
)
. (3.10)

Similar to ∆γk, if ∆θk is small and the decay rate is close to r1
r0

, this verifies the va-
lidity of Equation (2.53), and therefore the validity of the stability analysis model.
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3.3. Test Case No. 1 — Poisson’s Equation

(2) We consider the case where the largest eigenvalues are complex. For this
case, we only study the amplification factor. Retrieve Equation (3.7):

γ̄ = r0

(
1+O

(
−1

2 φ 2− tan(α0 + jθ0 +β0)φ

k− j

))
+O

(
1

k− j

(
r1

r0

) j
)

(3.11)

From this equation, We see that the precision in which γ̄ matches r0 is constrained

by the larger term between O
(
− 1

2 φ 2−tan(α0+ jθ0+β0)φ
k− j

)
and O

(
1

k− j

(
r1
r0

) j
)

. Both

terms are complicated to evaluate, but if the difference between γ̄ and r0 is small,
we can be confident of the validity of the model for the case where the largest
eigenvalues are complex.

3.3 Test Case No. 1 — Poisson’s Equation

The form of Poisson’s equation is

∂ 2u
∂x2 +

∂ 2u
∂y2 = S, (3.12)

where

S = 2π
2 sin(πx)sin(πy) . (3.13)

The spatial domain is a unit square. The boundary condition is u = 0 at the bound-
ary.

Due to the inherent linearity, Equation (2.32) holds exactly for Poisson’s equa-
tion since no higher order terms are dropped. The problem is solved on an un-
structured mesh consisting of 784 triangles. Cell-centered control volumes are
employed for flux integration. The fourth order reconstruction scheme is used.

The mesh on that the equation is solved is shown in Figure (3.1), and the so-
lution is shown in Figure (3.2). Once the converged solution is reached, we per-
turb the solution randomly, and then we apply backward Euler time-stepping with
dt = 0.01, starting from the perturbed solution. The first twenty largest eigenval-
ues are shown in Figure (3.3), in which the unit circle is also shown. If all the
eigenvalues lie inside the unit circle, the scheme is stable; otherwise it is not stable.

3.3.1 Numerical Results and Data Analysis

As demonstrated previously, the mappings of the three variables are identical as
long as the backward Euler temporal discretization with a constant time-step is
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3.3. Test Case No. 1 — Poisson’s Equation

Figure 3.1: Mesh for solving Pois-
son’s equation

Figure 3.2: Solution to Poisson’s equa-
tion
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Figure 3.3: First twenty largest eigenvalues for Poisson’s equation case
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3.3. Test Case No. 1 — Poisson’s Equation

applied, and the convergence rate, i.e., the amplification factor, is supposed to be
the norm of the largest eigenvalue. Therefore, we can plot the convergence histories
for all three variables, and the convergence rate predicted by the eigenvalue as
well for comparison. To obtain a sophisticated sense of the convergence rates or
amplification factors, we plot the amplification factors of two successive iterations
as well.

As seen in Figure (3.4), the convergence histories of the flux integral, the com-
putational error, and the solution update are consistent with the convergence rate
predicted by the largest eigenvalue. We also compare the amplification factors as-
sociated with two successive iterations with the norm of the largest eigenvalue in
Figure (3.5). From Figure (3.5), we can see that after the 25th iteration, the am-
plification factors agree well with the norm of the largest eigenvalue for all three
variables. For the flux integral, we can see that the degree of coincidence decreases
after the 40th iteration, as the computational error approaches the machine preci-
sion. Given Equation (A.10) in Appendix A, it is reasonable that the amplification
factor of the flux integral coincides with the amplification factor of the solution
update.

To have more clear understanding of how close the amplification factors are
to the norm of the largest eigenvalue, we calculate ∆γk, and plot this to obtain
Figure (3.6). From Figure (3.6), we can draw the following conclusions: (1) for
all three variables, the norm of ∆γk is small after the 25th iteration. After the 40th
iteration, for the flux integral, the norm of ∆γk increases. The decay rates of ∆γk
are consistent with r1

r0
. However, for the flux integral, the growth rate after the 40th

iteration does not coincide well with r1
r0

.
Similar to the amplification factor, for the angle, we calculate ∆θk to obtain

Figure (3.7) . We can see that for all three variables, ∆θk is small. For the com-
putational error, the decay rate of ∆θk is consistent with r1

r0
from the 25th to the

44th iteration. For the solution update, the decay rate of ∆θk is consistent with r1
r0

from 25th iteration to the 42th iteration. For the flux integral, the decay rate of
∆θk is consistent with r1

r0
from the 25th iteration to the 33th iteration. The preci-

sion of coincidence decreases as the computational error approaches the machine
precision.

We also visualize the eigenvector associated with the largest eigenvalue in Fig-
ure (3.8a). The vector of the flux integral at the 30th iteration is plotted in Figure
(3.8b). Figure (3.8c) is the image of the solution update at the 45th iteration, and
Figure (3.8d) is the image of the vector of the computational error at the 45th iter-
ation. We can observe that their shapes are similar and the direction of the solution
update is opposite from the other three variables, which is expected from Equation
(A.10).
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Figure 3.4: Convergence history for Poisson’s equation
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Figure 3.5: Amplification factors for Poisson’s equation
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The Estimate of Difference by
(

r1

r0

)k−1
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25 30 35 40 45 50
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Iterations

L
og
10

of
D
iff
er
en
ce

The Difference between the Actual Angle and 0 or π ∆θ

for Poisson Problem (4th order, cell-centered, dt=0.01)

 

 

Flux Integral R
(

Ū
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3.3. Test Case No. 1 — Poisson’s Equation

(a) The eigenvector associated with the largest
eigenvalue

(b) The flux integral at the 30th iteration

(c) The solution update at the 45th iteration (d) The computational error at the 45th iteration

Figure 3.8: Comparison among computational vectors and eigenvector for Pois-
son’s equation case
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3.4. Test Case No. 2 — 2D Advection-Diffusion Problem

3.3.2 Summary

The data and analysis above give us the following conclusions:

1. For the amplification factor: ∆γk is small for all three variables and the decay
rate of ∆γk is consistent with r1

r0
for all three variables.

2. For the angle: ∆θk is small for all three variables and the decay rate of ∆γk is
consistent with r1

r0
for all three variables.

Combined with the numerical validation methodology discussed previously, these
conclusions demonstrate the validity of the stability methodology strongly for Pois-
son’s equation. In this case, the largest eigenvalue is real. In the next section, we
consider the case where the largest eigenvalues are complex.

3.4 Test Case No. 2 — 2D Advection-Diffusion Problem

Compared with Poison’s equation, the Jacobian matrix associated with this case
features a conjugate complex pair of largest eigenvalues, which is also often seen
in the Jacobian matrix associated with a flow problem. The equation for the 2D
advevtion-diffusion problem is

∂u
∂ t

+a(x, y)
∂u
∂x

+b(x, y)
∂u
∂y

= α

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (3.14)

where α = 0.005, a(x, y) = 1.0, b(x, y) = 0.0. The spatial domain is a rectangle
with the length L equal to three in the x-direction and with the height H equal to
one in the y-direction. The boundary conditions are

u(0, y) = sin(πy) ,

u(x, 0) = u(x, H) = 0,

∂u(L, y)
∂x

= 0.

Backward Euler time-stepping with dt = 0.01, fourth order reconstruction, and
cell-centered control volumes are employed. The mesh, which is shown in Figure
(3.9), contains 222 triangles. The solution is presented in Figure (3.10). The first
twenty largest eigenvalues are shown in Figure (3.11).
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3.4. Test Case No. 2 — 2D Advection-Diffusion Problem

Figure 3.9: Mesh for advection-diffusion problem

Figure 3.10: Solution to advection-diffusion problem
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Figure 3.11: First twenty largest eigenvalues for the advection-diffusion problem

3.4.1 Numerical Results and Data Analysis

As in the last case, we generate the image of convergence histories in Figure (3.12),
and the visualization of amplification factors in Figure (3.13). Different from the
last case, in this case, we see the convergence history oscillate, which is predicted
in theory, but the asymptotic rates of the convergence are consistent with the rate
predicted by the norm of the largest eigenvalue. From Figure (3.13), we see the
amplification factors oscillate around the norm of the largest eigenvalue, which is
consistent with the previous discussion. Figure (3.14) is a zoom of of the part of
amplification factor from the 580th iteration to the 697th iteration. From Figure
(3.14), we see the amplification factors behave roughly periodically.

According to the previous discussion, we can calculate the period in the fol-
lowing way. First, the angle associated with the largest eigenvalues is

θ = arctan
(

Im(λ0)

Re(λ0)

)
= 0.09193. (3.15)

The approximate period for amplification factor is

T =
π

θ
≈ 34 (3.16)
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3.4. Test Case No. 2 — 2D Advection-Diffusion Problem

This period agrees with period measured in Figure (3.14).
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Solution Update δŪ
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Figure 3.12: Convergence history for the advection-diffusion problem
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Figure 3.13: Amplification factors of two successive iterations for the advection-
diffusion problem

To investigate the asymptotic behavior of the amplification factors, we calculate
the average amplification factors defined by Equation (3.6). The procedure is:
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Figure 3.14: A closeup of Figure (3.13)

1. Calculate the total amplification factors for two iterations k, k+T :

Γtotal =

∣∣∆Ūk+T
∣∣

|∆Ūk|
. (3.17)

2. Calculate the average amplification factor

γ̄ = Γ
1
T
total.

3. Repeat (1) - (2) for a range of k to obtain a mapping of average amplification
factors with respect to the iteration count k, which is visualized in Figure
(3.15), and please note that the scale is different from Figure (3.13) and
Figure (3.14)

In Figure (3.15), k starts from 500, and T = 34. Although the averaged amplifi-
cation factors still oscillate, the difference is much more smaller and the largest
difference is below 0.01. Therefore, the validity of Equation (3.11) is verified.

3.4.2 Summary

Because the largest eigenvalues are complex, we only consider the amplification
factors. From the data and analysis in this section, we can draw the following
conclusions:
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Figure 3.15: The average amplification factors of 34 iterations for the advection
diffusion problem

1. As predicted in theory, the convergence rate of the three variables does not
converge to a constant, but the asymptotic rate is consistent with the norm of
the largest eigenvalue.

2. The amplification factors of two successive iterations oscillate around the
norm of the largest eigenvalue, which coincides with the theoretic prediction.

3. The amplification factors of two successive iterations behave periodically
with the predicted period.

4. The average amplification factor defined in this chapter is close to the norm
of the largest eigenvalue.

For the case where the largest eigenvalues are complex, we have Equation (2.57),
Equation (2.58), and Equation (2.59) to calculate the amplification factors of two
successive iterations. Though we do not have direct evidence of the validity of
these three equations, the conclusions (1) – (4) can show the validity of these three
equations indirectly.

3.5 Test Case No. 3 — One Stable 2D Euler Equations

The previous two cases demonstrate the validity of the methodology for linear
problems, for both real and complex largest eigenvalues. However, the problem of
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interest is the two dimensional Euler equations. In the following sections, we test
the validity of the methodology applied on the discretized time-stepping systems
inherited from the two dimensional Euler equations. We begin with a stable case
where the largest eigenvalue is real.

The governing equations are the 2D Euler equations, which are shown in Equa-
tion (2.1), Equation (2.2), and Equation (2.3). The spatial domain is the NACA
0012 airfoil. Slip boundary condition is applied along the the airfoil; the free
stream is the steady flow with Mach number equal to 0.75; and the attack angle
for the airfoil is 0.5 degrees.

The fourth order reconstruction, Roe flux difference splitting, cell-centered
control volumes, and the backward Euler time stepping with dt = 10 are used.
The mesh, shown in Figure (3.16), contains 3063 triangles and the zoom of the
part around the airfoil is shown in Figure (3.17). The solution in terms of Mach
field is presented in Figure (3.18), and the zoom of the Mach field around the airfoil
is shown in Figure (3.19). The first twenty largest eigenvalues are plotted in Figure
(3.20).

Figure 3.16: Full image of the mesh
for solving the two dimensional Eu-
ler case with Mach=0.75, angle=0.5

Figure 3.17: Zoom of the mesh
around the airfoil for solving the
two dimensional Euler case with
Mach=0.75, angle=0.5

3.5.1 Numerical Results and Data Analysis

Figure (3.21) shows the convergence histories. The amplification factors associated
with two successive iterations are shown in Figure (3.22). Both figures show that
the actual convergence rates coincide well with the norm of the largest eigenvalue.

44



3.5. Test Case No. 3 — One Stable 2D Euler Equations

Figure 3.18: Mach field for the two
dimensional Euler equations with
Mach=0.75, angle=0.5 free stream

Figure 3.19: Zoom of the Mach
field around the airfoil for the two
dimensional Euler equations with
Mach=0.75, angle=0.5 free stream
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Figure 3.20: The first twenty largest eigenvalues for the two dimensional Euler
case with Mach=0.75, angle=0.5
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The difference between the actual amplification factors and the norm of the
largest eigenvalue ∆γ with respect to the iteration count is plotted in Figure (3.23).
From Figure (3.23), We see that the ∆γ is small for all three variables and roughly

it is of O
(

r1
r0

)k−1
. We also see the oscillation of ∆γ in Figure (3.23). The sec-

ond largest eigenvalues are a conjugate pair, which explains the oscillation of ∆γ .
However, the asymptotic decay rates of ∆γ coincide with r1

r0
. For the flux integral,

we see the precision decreases when the computational error approaches machine
precision.

For the angle, we calculate ∆θ to obtain Figure (3.24). We can see ∆θ is small
after the 31th iteration. A pattern of oscillation can be seen in ∆θ for all three
variables but the asymptotic rates are consistent with r1

r0
. Here we also see the

precision of coincidence decreases near convergence.
We also present the visualization of the vectors (Figure (3.25a), Figure (3.25b),

Figure (3.25c), and Figure (3.25d)). There are four variables in each control vol-
ume, but only the density vector is displayed. Since the entries with relatively large
norm are all near the airfoil, only the zoom of the area near the airfoil is presented.
We can see that the shapes are similar and the solution update vector is opposite in
direction to other three vectors.
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Figure 3.21: Convergence history for the two dimensional Euler case with
Mach=0.75, angle=0.5
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Ū
)

Computational Error ∆Ū
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Figure 3.22: Amplification factor comparison for the two dimensional Euler case
with Mach=0.75, angle=0.0

30 35 40 45 50 55
−7

−6

−5

−4

−3

−2

−1

Iterations

L
o
g
1
0
o
f
D
iff
er
en

ce

The Difference between the Actual Amplification Factor and the Norm of the Largest Eigenvalue (∆γ)
for the 2D Euler Case (Mach=0.75, angle=0.5)

 

 

Flux Integral R
(

Ū
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Figure 3.23: The difference between the amplification factor and the norm of the
largest eigenvalue (∆γ) for the two dimensional Euler case with Mach=0.75, an-
gle=0.0
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Figure 3.24: The difference between the actual angle and 0 or π (∆θ ) for the two
dimensional Euler case with Mach=0.75, angle=0.5

3.5.2 Summary

Although the two dimensional Euler equations are nonlinear, the data and analysis
above give us the following conclusions:

1. For the amplification factor: ∆γk is small for all three variables; there is a
pattern of oscillation in ∆γk but the asymptotic rate matches r1

r0
for all three

variables.

2. For the angle: ∆θk is small for all three variables; there is a pattern of os-
cillation in ∆θk but the asymptotic rate is consistent with r1

r0
for all three

variables.

These conclusions demonstrate the methodology is valid for the two dimensional
Euler equations where the largest eigenvalue is real for the associated Jacobian
matrix.

3.6 Test Case No. 4 — Another Stable 2D Euler
Equations

Different from Test Case No. 3, in this case, the Mach number is 1.05, and the
attack angle is 0.5 degrees. Vertex-centered control volumes, and backward Euler
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3.6. Test Case No. 4 — Another Stable 2D Euler Equations

(a) The eigenvector associated with the largest
eigenvalue

(b) The computational error at the 40th iteration

(c) The solution update at the 40th iteration (d) The flux integral at the 40th iteration

Figure 3.25: Comparison for computational vectors and eigenvector for the 2D
Euler case with Mach=0.75, angle=0.5 (density component, rotated for better vi-
sualization)
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time-stepping with dt = 5 are used. Other settings are as same as those in Test
Case No. 3.

The solution in terms of Mach field is presented in Figure (3.26), and the zoom
of the Mach field around the airfoil is shown in Figure (3.27). The first twenty
largest eigenvalues are plotted in Figure (3.28). The largest eigenvalue of the Jaco-
bian matrix in this case are a conjugate complex pair, which is different from Test
Case No. 3.

Figure 3.26: Mach field of 2D Euler
case with Mach=1.05, angle=0.5 free
stream

Figure 3.27: Zoom of the Mach
field around the airfoil of 2D Euler
case with Mach=1.05, angle=0.5 free
stream

3.6.1 Numerical Results and Data Analysis

Figure (3.29) gives the visualization of the actual convergence histories. We can
see from the figure that the asymptotic convergence rates of the three variables are
consistent with the predicted rate from the eigenvalue. In Figure (3.30), amplifica-
tion factors associated with two successive iterations are plotted, and we can see
amplification factors oscillate around the norm of the largest eigenvalue. If we cal-
culate the average amplification factors defined by Equation (3.6), we can see the
results in Figure (3.31). Compared with Figure (3.30), the average amplification
factor shows much less oscillation. The worst case has two digits precision.
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Figure 3.28: First twenty largest eigenvalues for the 2D Euler case with
Mach=1.05, angle=0.5
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Figure 3.29: The convergence history for 2D Euler equations with Mach=1.05,
angle=0.5
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Figure 3.30: The amplification factors of two successive iterations for the 2D Euler
case with Mach=1.05, angle=0.0
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Figure 3.31: The average amplification factors for the two dimensional Euler case
with Mach=1.05, angle=0.5
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3.7. Test Case No. 5 — Unstable 2D Euler Equations

3.6.2 Summary

Though this case is nonlinear, we have similar conclusions as the advection-diffusion
problem, which we do not repeat here.

3.7 Test Case No. 5 — Unstable 2D Euler Equations

The previous cases are all stable. In this section, we present a case of an unstable
discretization system inherited from the 2D Euler equations. Different from Test
Case No. 3, in this case, the Mach number is 1.2, and the attack angle is 0.0.
Cell-centered control volumes, and backward Euler time stepping with dt = 1 are
used. Other settings are as same as those in Test Case No. 3. This case is not
stable for backward Euler time-stepping with some time-steps. However, in this
thesis, we use the pseudo time-stepping method in [17] to reach the first order
scheme solution, then use the first order scheme solution as the initial solution to
implement time-stepping for the fourth order scheme with the same pseudo time-
stepping method. For some of the cases in that the spatial discretization is not
stable, this approach can reach the solution.

The solution in terms of Mach field is presented in Figure (3.32), and the zoom
of the Mach field around the airfoil is shown in Figure (3.33). The first twenty
largest eigenvalues are plotted in Figure (3.34). A zoom of the first two largest
eigenvalues are also shown in Figure (3.35). Figure (3.36) shows first twenty right-
most eigenvalues of the spatial Jacobian matrix. Figure (3.35) shows that two
eigenvalues for the full discretization system are larger than one, which implies the
system is not stable. In Figure (3.36), there are two eigenvalues in the right half
plane, which implies that the semi-discretization is not stable.

3.7.1 Numerical Results and Data Analysis

The convergence histories in Figure (3.37) show that this case is not stable, which
is consistent with the prediction both from the eigenvalues of the full Jacobian
matrix and the spatial Jacobian matrix. We can also see the growth rates of the
three variables coincide well with the rate predicted by the norm of the largest
eigenvalue. Since dt = 1, the convergence history of the flux integral coincides
with the convergence history of the solution update. Figure (3.38) presents the
amplification factors associated with two successive iterations. We can see that
after the 30th iteration, the amplification factors coincide with the norm of the
largest eigenvalue.

As in previous cases, we calculate the difference between the actual amplifi-
cation factors and the norm of the largest eigenvalue ∆γ to generate Figure (3.39).
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Figure 3.32: Mach field for the 2D
Euler case with Mach=1.2, angle=0.0
free stream

Figure 3.33: Zoom of the Mach field
around the airfoil of the 2D Euler
case with Mach=1.2, angle=0.0 free
stream
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Figure 3.34: First twenty largest eigenvalues for the 2D Euler equations with
Mach=1.2, angle=0.0 free stream
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Figure 3.35: Zoom of the first two eigenvalues with for two dimensional Euler
equations with Mach=1.2, angle=0.0 free stream
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Figure 3.36: First twenty rightmost eigenvalues of the spatial Jacobian matrix for
two dimensional Euler case with Mach=1.2, angle=0.0 free stream
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We can see that the ∆γ is below 10−2 for all the three variables between iteration

30 and 74. Even the worst case in the figure is much smaller than
(

r1
r0

)k−1
. For the

decay rates, there is not a similarity between the computed variables and
(

r1
r0

)k−1
.

For the angle, we can implement similar analysis and Figure (3.40) is gener-
ated. Compared with the amplification factors, the difference associated with the

angle is larger but it is still much smaller than
(

r1
r0

)k
. The decay rate of ∆θk is not

consistent with r1
r0

as well. That neither the decay rate of ∆γk nor the decay rate
of ∆θ are consistent with r1

r0
might be caused by the shock wave in the flow field.

However, we still conclude the methodology is valid since both the values of ∆γk
and ∆θk are small.

Figure (3.41a) is the visualization of the density component of the eigenvec-
tor associated with the largest eigenvalue, Figure (3.41b) is the visualization of
the vector of the computational error at 60th iteration in terms of density, Figure
(3.41c) is the visualization of the vector of the solution update at 60th iteration in
terms of density, and Figure (3.41d) is the visualization of the vector of flux inte-
gral at 60th iteration in terms of density. Comparing the shapes of the four vectors
with each other, we can see the shapes are similar and the one associated with the
flux integral is in the opposite direction.
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Solution Update δŪ
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Figure 3.37: The convergence history for the 2D Euler case with Mach=1.2, an-
gle=0.0
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Figure 3.38: The amplification factor for the 2D Euler case with Mach=1.2, an-
gle=0.0

30 40 50 60 70 80 90
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

L
o
g
1
0
o
f
D
iff
er
en

ce

The Difference Between the Actual Amplification Factor and the Norm of the Largest Eigenvalue (∆γ)
(Mach=1.2, angle=0.0)

 

 

Flux Integral R
(

Ū
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Figure 3.39: The difference between actual amplification factors and the norm of
the largest eigenvalue (∆γ) for one unstable Euler equations case with Mach=1.2,
angle=0.0
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Ū
)

Computational Error ∆Ū
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The Estimation of Difference by
(

r1

r0

)k

Figure 3.40: The difference between the actual angle and 0 or π (∆θ ) for one
unstable Euler equations case with Mach=1.2, angle=0.0

3.7.2 Summary

For this unstable nonlinear case, the following conclusions can be drawn from the
data and analysis above:

1. For the amplification: ∆γk is small for all three variables but the decay rate
does not coincide with r1

r0
.

2. For the angle: ∆θk is small for all three variables but the decay rate does not
coincide with r1

r0
.

Though the decay rate does not coincide with r1
r0

, we still think the methodology
holds since the both the values of ∆γk and ∆θk are small.

3.8 Summary of Stability Analysis

In Chapter 2, we developed and presented a new stability analysis methodology
and constructed the corresponding stability condition. In this chapter, by testing
linear problems and the nonlinear 2D Euler equations cases, we have verified the
validity of the stability methodology.
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3.8. Summary of Stability Analysis

(a) The eigenvector associated with the largest
eigenvalue

(b) Density component of the computation error
at 60th iteration

(c) Density component of the solution update at
the 60th iteration

(d) Density component of flux integral at the
60th iteration

Figure 3.41: Comparison among the computational vectors and the eigenvector
associated with the largest eigenvalue (density component) for the 2D Euler case
with Mach=1.2, angle=0.0.
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Chapter 4

Stabilization at Fixed Point

In Chapter 2, we developed a stability analysis model, and constructed the associ-
ated stability condition in terms of eigenvalues. In addition, we also constructed
a stability condition for the semi-discretization, which is independent of time-
stepping. To have a stable ODE system, we need all the eigenvalues to lie in the
left half plane. To stabilize an unstable ODE system, we need shift the eigenvalues
in the right half plane into the left half plane. To reach this objective, we need
change the Jacobian matrix. There are many ways to change the Jacobian matrix,
but an easy and controllable way is to change the coordinates of the vertices of the
mesh. The next question is how the changes of vertices’ coordinates change the
eigenvalues. Can we obtain a quantitative relation?

4.1 Finding the Derivative of the Eigenvalue

To determine how the eigenvalue changes quantitatively corresponding to a change
of the matrix, we need the derivative of the eigenvalue. By the definition of right
eigenvalue, we have

Ax = λx. (4.1)

For the left eigenvalue, we have

y∗A = λy∗. (4.2)

Taking the first derivative of both sides of Equation (4.1), we have

A
′
x+Ax′ = λ

′
x+λx

′
. (4.3)

Multiplying both sides from the left by the left eigenvector yields

y∗A
′
x+ y∗Ax′ = λ

′
y∗x+λy∗x

′
. (4.4)

Multiplying Equation (4.2) from the right by the derivative of the right eigenvector
gives
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y∗Ax′ = λy∗x
′
. (4.5)

Substituting Equation (4.5) into Equation (4.4), we have

y∗A
′
x = λ

′
y∗x. (4.6)

Dividing both sides by y∗x, we have

y∗A
′
x

y∗x
= λ

′
. (4.7)

By Equation (4.7), the derivatives of eigenvalues can be found from the derivative
of the matrix, and the left and right eigenvectors. The earliest published derivation
of Equation (4.6) might be Lancaster (1964) [11].

4.2 Prediction on the Difference of Eigenvalue under the
Difference of a Matrix

We only take the derivative with respect to the coordinates of the mesh’s vertices
into consideration. We use finite differences to approximate the matrix’s derivative
with respect to the coordinate

A
′
=

A(ζ + ε)−A(ζ )
ε

+O(ε). (4.8)

where ζ refers to the vector of the coordinates of vertexes, and ε is a perturbation of
one coordinate of one vertex, which is a good starting point.2 Substituting Equation
(4.8) into Equation (4.7) yields

y∗(A(ζ+ε)−A(ζ )
ε

)x
y∗x

= λ
′
. (4.9)

Equation (4.9) gives a way to approximate the eigenvalue’s derivative approxi-
mately by finite differences. With the eigenvalue’s derivative at hand, we can pre-
dict the eigenvalue of the new Jacobian matrix after mesh perturbation by a Taylor
series, but only the first order derivative is taken into consideration:

λnew = λold +λ
′
oldε +O

(
ε

2) . (4.10)

Rearranging Equation (4.10), the difference of the eigenvalue can be predicted by

2The perturbation ε can be on one coordinate of one vertex or multiple coordinates of multiple
vertices, but here the perturbation is only on one coordinate of one vertex.
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∆λ = λnew−λold = λ
′
ε. (4.11)

For a specific eigenvalue λi, where i is the index, we have

∆λi = λ
new
i −λ

old
i = λ

′
i ε. (4.12)

Substituting Equation (4.9) into Equation (4.11) to have

∆λ = λ
′
ε =

y∗ (A(ζ + ε)−A(ζ ))x
y∗x

=
y∗∆Ax

y∗x
. (4.13)

For a specific eigenvalue λi, we have

y∗i ∆Axi

y∗i xi
= ∆λi. (4.14)

The difference of eigenvalue and the difference of the Jacobian matrix are related
by Equation (4.14). For a certain perturbation to the matrix, there are two ways to
calculate the difference of the eigenvalue. One is applying Equation (4.14) directly,
i.e., the difference of the eigenvalue can be calculated by the difference of the
matrix, and the left and right eigenvector. The other is obtaining the derivative
of eigenvalue λ

′
by Equation (4.9), then gaining the difference of eigenvalue by

Equation (4.12).

4.3 Numerical Verification of the Eigenvalue Difference
Calculation Method

In this section, we are going to test the reliability of Equation (4.11), and determine
the maximum perturbation ε to predict the difference ∆λ within an acceptable tol-
erance. We start directly on the two dimensional Euler equations rather than a
linear problem. For the two dimensional Euler equations, if the coordinates are
changed, the converged solution changes accordingly, and therefore, the Jacobian
matrix changes as well. However, we do not take the change of the converged
solution into consideration. We only take the rightmost eigenvalue λ0 into consid-
eration for testing.

For an irregular mesh, the length of the edges changes with location. Also,
eigenvalues have different sensitivity to the coordinates at different locations. Gen-
erally, the solution changes rapidly where the mesh is dense. Therefore a small
change of the vertex location in those regions can bring significant changes to the
eigenvalues. On the other hand, the solution changes slowly where the mesh is
sparse. A relatively large change of the vertex location does not necessarily change
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the eigenvalues significantly. For clarity, we normalize the change of coordinate ε .
We define the following length.

Definition 3. The unit length at a vertex is defined as 0.1 times the length of the
shortest edge connected to the vertex: Lu = 0.1 |eshortest |.

We normalize the change of the coordinate ε by the unit length :

εs =
ε

Lu
(4.15)

4.3.1 Procedure to Implement Tests

To implement numerical tests, we first calculate the derivative by using finite dif-
ferences. The procedure to calculate the derivative is:

1. Calculate the rightmost eigenvalue, and the associated left and right eigen-
vector of the Jacobian matrix.

2. We use the central finite difference to approximate the derivative. Adjust one
coordinate of one vertex by a small quantity εs to obtain a new Jacobian ma-
trix A(ζ +εs). By Equation (4.14), we obtain the difference for the rightmost
eigenvalue ∆λ0,1.

3. Adjust the same coordinate of the same vertex by an opposite quantity −εs

to obtain another new Jacobian matrix A(ζ − εs). By Equation (4.14), we
obtain another difference for the rightmost eigenvalue ∆λ0,2.

4. Calculate the derivative with respect to the normalized length: λ ′=
∆λ0,1−∆λ0,2

2εs
.

We can construct a linear function of the difference of the rightmost eigen-
value ∆λ0 depending on the perturbation of one coordinate of one vertex:

∆λ0 = λ
′
0εs (4.16)

By Equation (4.16), we can predict the change of an eigenvalue arising from
a perturbation. Besides the perturbations used for constructing Mapping (4.16),
we implement other perturbations to verify the validity of Equation (4.16) and
Equation (4.14). There are three ways to obtain the difference of the eigenvalue, of
which one is by Equation (4.16), and another one is by Equation (4.14). The third
one is by recomputing the eigenvalue of the corresponding new Jacobian matrix
and therefore calculate the difference. We use the third one to evaluate the validity
of the methods associated with Equation (4.14) and Equation (4.16).

For the test, each time we only perturb one coordinate of one vertex. For each
coordinate, there are eight different perturbations. Two vertices are tested. The
results are presented in the following subsection.
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4.3.2 Numerical Results

The red point in Figure (4.1a) is the vertex being perturbed. The number 683 is the
index of the vertex. Figure (4.2) shows the change of the first rightmost eigenvalue
under the perturbation of the x-coordinate of vertex 683. The unit for the x-axis
is the Lu defined at the vertex 683. The perturbation associated with the length
0.01 and -0.01 are used to construct the linear map defined by Equation (4.16).
Table (4.1) presents the relative error of the predicted change to the actual change
associated with the largest four perturbations for both methods. The relative error
of the predicted eigenvalue change is defined as

E∆λ0 =

∣∣∣∆λ
predicted
0 −∆λ actual

0

∣∣∣∣∣∆λ actual
0

∣∣ ×100%. (4.17)

From Table (4.1), we can see if the absolute value of the perturbation is not
larger than one unit length, the prediction from linear Mapping (4.16) coincides
with the actual change, i.e., the linearity is well preserved; (2) the prediction by
Equation (4.14) matches the actual change as well for the absolute value of the
perturbation not larger than one unit length. Even for a perturbation whose absolute
value is 2 unit length, the relative error is still not too large. For this case, both the
linear Mapping (4.16) and Equation (4.14) demonstrate a good prediction.

The red point in Figure (4.1b) is another point being perturbed, of which the
index is 1417. Similar to vertex 683, we also generate Figure (4.3) and Table (4.2).
For this case, we can see that if the absolute value of the change is within one unit
length, the relative error of the prediction from both methods are acceptable. If the
absolute value of the movement is as large as two unit length, the error is relatively
large. However, if a movement within one unit length in absolute value cannot
reach an objective, a larger movement like 1.5 or 2 unit length can also be taken
into consideration.

From the two examples, we can see if a movement is not larger than one unit
length (both positive and negative), both methods have shown good predictions.
For a movement larger than one unit length, the prediction might not be suffi-
ciently accurate, but preserves the correct trend. A movement larger than one unit
length can be used if a smaller movement cannot reach the objective. We assume
this conclusion applies to other eigenvalues, other vertices, and other coordinates.
For a movement that simultaneously changes multiple coordinates, we assume su-
perposition can be applied and do not confirm this by numerical tests.
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(a) Vertex 683 (b) Vertex 1417

Figure 4.1: The perturbed vertices

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

X Coordinate Change Lu

E
ig
en
va

lu
e
C
h
a
n
g
e
∆
λ
0

Comparison of Eigenvalue Change ∆λ0

for the 2D Euler Case (Mach=1.2, angle=0.0)

 

 

Change of Eigenvalue ∆λ0 Calculated from Recomputing Eigenvalue

Change of Eigenvalue ∆λ0 Predicted by
y∗0∆Ax0
y∗
k
x0

= ∆λ0

Change of Eigenvalue ∆λ0 Calculated by Linear Mapping ∆λ0 = λ
′

0ǫ
s

Figure 4.2: Change of eigenvalue when moving vertex 683 in the x-direction for
the 2D Euler case with Mach=1.2, angle=0.0 free stream
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Figure 4.3: Change of eigenvalue when moving vertex 1417 in the x-direction for
the 2D Euler case with Mach=1.2, angle=0.0 free stream

−2lu −Lu Lu 2Lu

Mapping (4.16) 31% 13% 10% 16%
Equation (4.14) 23% 9% 6% 9.5%

Table 4.1: Relative error of the prediction on the rightmost eigenvalue change for
both methods under the movement of vertex 683

−2lu −Lu Lu 2Lu

Mapping (4.16) 25% 14% 18% 38%
Equation (4.14) 31% 14% 14% 29%

Table 4.2: Relative error for the prediction on the rightmost eigenvalue change for
both methods under the movement of vertex 1417
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4.4 Stabilization Methodology

From the last section, we know that if a coordinate’s movement is around one
unit length or even two unit lengths, the eigenvalue’s change can be predicted well
by the linear Mapping (4.16). For multiple-coordinate movement, we can apply
superposition. To stabilize an unstable case, the eigenvalues on the right half plane
need to be shifted into the left half plane and meanwhile, the originally negative
eigenvalues should not be shifted to the right half plane.

4.4.1 Procedure of Systematic Stabilization

The next question is what is the adjustment for each vertex to shift the eigen-
value with positive real part into the left half plane. For each vertex, there are
two coordinates, which we consider independently. Suppose m x-coordinates and
n y-coordinates are adjusted. The adjustment for the x-coordinate is denoted by
δxi, and the adjustment for the y-coordinate is denoted by δy j; as the index to
list the coordinates to be moved, i ranges from zero to m− 1 and j ranges from
zero to n−1. Combine the adjustment for all coordinates of which the adjustment
is not zero as a vector ∆ζ = (δx0, δx1, δx2, . . . ,δxm−1, δy0, δy1, . . . ,δyn−1). To
shift the eigenvalues with positive real part into the left half plane, we need to ob-
tain the corresponding ∆ζ . Suppose the derivatives of the first several rightmost
eigenvalues with respect to the coordinates of each vertex are obtained; we only
need to consider the real part. For the coordinates to be adjusted, we can construct
a matrix. Suppose we take the first l rightmost eigenvalues into consideration:
(λ0, λ1, λ2, . . . ,λl−1). For each eigenvalue λk, the derivative of its real part with
respect to one normalized x-coordinate is dRe(λk)

dxs, i
,3 and its derivative with respect

to one normalized y-coordinate is dRe(λk)
dys, j

. We construct a l× (m+n) matrix

dRe(Λ)
dζ

=


dRe(λ0)

dxs,0

dRe(λ0)
dxs,1

. . . dRe(λ0)
dxs,m−1

dRe(λ0)
dys,0

. . . dRe(λ0)
dys,n−1

dRe(λ1)
dxs,0

dRe(λ1)
dxs,1

. . . dRe(λ1)
dxs,m−1

dRe(λ1)
dys,0

. . . dRe(λ1)
dys,n−1

...
...

...
...

...
...

...
dRe(λl−1)

dxs,0

dRe(λl−1)
dxs,1

. . . dRe(λl−1)
dxs,m−1

dRe(λl−1)
dys,0

. . . dRe(λl−1)
dys,n−1

 .
(4.18)

For convenience, we use D to denote matrix dRe(Λ)
dζ

. For a vertex adjustment op-
eration ∆ζ , the changes of the real parts of the eigenvalues will be approximately
Re(∆λ ) = D∆ζ . In practice, ∆ζ is unknown, and Re(∆λ ) is an objective that is set
in advance such that all the eigenvalues are negative in real part:

3The coordinate is normalized by the unit length; so is the y-coordinate.
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Re(λ )+Re(∆λ )< 0 (4.19)

Therefore, we know D and Re(∆λ ), and ∆ζ is unknown. ∆ζ can be obtained by
solving an optimization problem:

min
∆ζ

1
2

∆ζ
ᵀ
∆ζ such that

{
D∆ζ ≤ Re(∆λ )

lb≤ ∆ζ ≤ ub
(4.20)

We want to minimize the vertex adjustment since a larger adjustment means a
larger divergence to the prediction of the eigenvalues’ change and more chance to
make the mesh invalid. lb and ub are used to bound the adjustment of vertices.
Therefore, we summarize the procedure as:

1. Calculate the derivatives dRe(λk)
dxs, i

and dRe(λk)
dys, j

for the eigenvalues of interest
and all vertices in the mesh.

2. Set Re(∆λ ) such that Condition (4.19) is satisfied.

3. Solve the optimization problem of Equation (4.20) to obtain ∆ζ

4. Apply ∆ζ to the mesh

4.5 Technical Results of Stabilization

In this subsection, we use the procedure above to stabilize two unstable two dimen-
sional Euler equation cases.

4.5.1 Test Case No. 1

This case is the unstable one documented in Chapter 3 with Mach=1.2, angle=0.0
free stream and we do not repeat the description here. The derivatives dRe(λ )

dεs
are

calculated for all the interior vertices and the first thirty rightmost eigenvalues.
Here εs is the normalized x-coordinate or y-coordinate. We do not move the ver-
tices at the boundary since this changes the domain and we set the derivatives
associated with the boundary vertices zero. The derivative with respect to the x-
coordinate or the y-coordinate for all vertices can be interpreted as a vector of the
dimension equal to the number of the vertices. It is normal and common that we
visualize the flow variables, for instance, the density, on the mesh. We can define
a pseudo field variable similar to flow variables for visualization purpose, and we
need the average value of this variable on the vertex centered control volume to
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equal the derivative of the eigenvalue’s real part with respect to the one of the nor-
malized coordinates of this vertex: dRe(λ )

dεs
. Therefore, if we visualize this variable

on the mesh like other flow variables, the color of of each vertex-centered con-
trol volume represent the value of dRe(λ )

dεs
. Other variables that can be mapped to

the mesh can be visualized in this manner as well. As an example, Figure (4.4)
shows the derivatives of the real part of the rightmost eigenvalue with respect to
the x-coordinate of the vertex. We can see that most of the derivatives are close to
zero.

Figure 4.4: The derivative of the rightmost eigenvalue’s real part with respect to the
normalized x-coordinate dRe(λ0)

dxs
for the 2D Euler case with Mach=1.2, angle=0.0

free stream.

The optimization problem is solved by the function quadprog [15] in MATLAB
[16]. The full description of the optimization problem that quadprog solves is
described in [15] as:

min
x

1
2

xᵀHx+ f ᵀx such that


A · x≤ b
Aeq · x = beq
lb≤ x≤ ub

(4.21)

Corresponding to the problem here, we set matrix H to be an identity matrix, matrix
A to be matrix D, function f to be zero, Aeq and beq to be null, x to be ∆ζ in
Equation (4.20), b to be Re(∆λ ) in Equation (4.20), and the meanings of lb and
ub in Equation (4.20) are same as those in Equation (4.21). Specifically, here
we set lb to be a vector with all entries equal -1.5, and ub to be a vector with
all entries equal 1.5, meaning the bound is 1.5 unit length in absolute value. For
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Figure 4.5: The eigenvector associated with the rightmost eigenvalue for the 2D
Euler case with Mach=1.2, angle=0.0 free stream

Re(∆λ ), if the real part of the eigenvalue is larger than zero, we set the associated
component of Re(∆λ ) to be -1.1 times of the real part; if the eigenvalue is smaller
than zero, we set the associated component of Re(∆λ ) to be -0.1 times of the real
part. The objective is to require the real part of the shifted eigenvalue of the original
eigenvalue with positive real part be less than -0.1 times of the original real part
and the real part of the shifted eigenvalue of the eigenvalue with negative real part
be less than 0.9 times of the original real part. If this objective is satisfied, all the
eigenvalues are negative in real part. We take the first 15 rightmost eigenvalues
into consideration; for each coordinate, we have 15 dRe(λi)

dεs
, i.e., i ranges from 0 to

14. For a specific eigenvalue, most of the derivative components are close to zero
so that they cannot be used since a too large movement and too many coordinates
are needed to shift the eigenvalue to a target value. We select those coordinates of
which the derivatives are relatively large. Here the criterion to select one coordinate
is that if among the 15 derivatives, one of the derivatives is larger than 0.0005 but
smaller than 2,4 the coordinate is chosen. Under this criterion, 98 coordinates
among the 3216 coordinates of the mesh are selected. As a result of this, the size
of matrix A is 15×98. However, the function quadprog needs matrix A be a square
matrix. To remedy this, we extend the size to 98×98, and assign all of the extended
entries to be zero. Accordingly, we extend the dimension of vector Re(∆λ ) from

4The reason why we need an upper bound is to avoid possible singularity.
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15 to 98, and assign the extended entries the same value as the 15th entry.
After solving the optimization problem, we get the movement for the x-coordinates

shown in Figure (4.19a) and the movement for the y-coordinates shown in Figure
(4.19b). Both the original mesh and the new mesh after moving are shown in Figure
(4.6) for comparison. The zoom of Figure (4.6) near the airfoil is shown in Figure
(4.7), from which we can see the vertices near the airfoil are not moved. The new
mesh is shown separately in Figure (4.8). We can see that the new mesh looks nor-
mal. Figure (4.9) shows the convergence history both for the time-stepping asso-
ciated with the original mesh and the time-stepping associated with the new mesh.
From the convergence history comparison, we can clearly see the original unstable
time-stepping has been stabilized. Figure (4.10) shows the first twenty rightmost
eigenvalues calculated on the converged solution after the mesh movement; com-
pared with Figure (3.36), we can see that the original eigenvalues with positive real
part have been shifted into left half plane. For those eigenvalues of which the origi-
nal reals part are positive, the corresponding predictions Re(λ )+Re(∆λ ) from the
optimization problem do not coincide well with the actual values of the updated
eigenvalues. We do not study this further.

Figure 4.6: Mesh comparison for the stabilization for the 2D Euler case with
Mach=1.2 and angle=0.0 (The red line is for the new mesh, and the black line
is for the original mesh.)
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Figure 4.7: Zoom of Figure (4.6) near the airfoil

Figure 4.8: The new mesh arising from stabilization for the 2D Euler case with
Mach=1.2 and angel=0.0
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Figure 4.9: Convergence history comparison for the 2D Euler case associated with
different meshes ( Mach=1.2, angle=0.0 )
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Figure 4.10: First twenty rightmost eigenvalues for the 2D Euler case associated
with the new mesh (Mach=1.2, angle=0.0)
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4.5.2 Test Case No. 2

It is also an unstable 2D Euler case. The parameters are all the same as the Test
Case No. 1 except for that Mach number is 1.3 for the free stream. The solu-
tion in terms of Mach field is displayed in Figure (4.11). The density component
of the eigenvector associated with the first rightmost eigenvalue is shown in Fig-
ure (4.20b). The density component of the eigenvector associated with the sec-
ond rightmost eigenvalue is shown in Figure (4.20d). The first twenty rightmost
eigenvalues calculated on the converged solution are plotted in Figure (4.12). The
settings for the optimization problem are the same with the case with Mach=1.2,
except that the first ten eigenvalues are taken into consideration.

The reason why we only take the first ten eigenvalues into consideration is
because the derivatives associated with some eigenvalues from index 11 to index
15 are very large, and may arise from singularities, as shown in Figure (4.13).
This can be studied in future work. After solving the optimization problem, we
get the movement for the x-coordinate, which is shown in Figure (4.21a) and the
movement for the y-coordinate, which is shown in Figure (4.21b). 134 coordinates
among 3216 coordinates are changed. Both the original mesh and the new mesh
after moving are shown in Figure (4.14) for comparison. The vertices near the
airfoil are not moved. The new mesh is shown separately in Figure (4.15). We
can see that the new mesh looks normal. The first twenty rightmost eigenvalues
calculated on the converged solution on the new mesh are shown in Figure (4.16).
Compared with Figure (4.12), we can see that the eigenvalues with positive real
part have been shifted into the left half plane. The convergence history comparison
is shown in Figure (4.17) and we can clearly see that the original unstable time-
stepping has been stabilized.

4.6 The Region That Causes the Instability

In these two stabilization cases, the calculation of derivative dRe(λ )
dεs

goes through
all the vertices of the mesh since we do not know which ones are to be selected in
advance. However, in practice, only a small portion of the coordinates are needed.
For the case with Mach=1.2, only 98 among 3216, i.e. 3.05%, coordinates are used
for stabilization; for the case with Mach=1.3, only 134 among 3216, i.e. 4.17%,
coordinates are used. Less than 5% of coordinates are actually used. The CPU
time cost of mesh optimization for the 2D Euler case with Mach=1.2, angle=0.0 is
presented in Table (4.3). In Table (4.3), Time-stepping means the time-stepping to
reach the converged solution of the fourth order scheme. To calculate the deriva-
tives, we need the eigenvalues, and the left and the right eigenvectors. Since we
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Figure 4.11: Mach field for the 2D Euler case with Mach=1.3, angle=0.0 free
stream
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Figure 4.12: First twenty rightmost eigenvalues for the 2D Euler case associated
with the original mesh (Mach=1.3, angle=0.0)
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Figure 4.13: The derivative of the 14th rightmost eigenvalue’s real part with respect
to the normalized x-coordinate dRe(λ0)

dxs

Figure 4.14: Mesh comparison for the stabilization for the 2D Euler case with
Mach=1.3, angle=0.0 free stream ( The black line is for the original mesh and the
red line is for the new mesh.)
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Figure 4.15: The new mesh after stabilization for the 2D Euler case with Mach=1.3,
angle=0.0 free stream
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Figure 4.16: Rightmost eigenvalues for the 2D Euler case associated with the new
mesh (Mach=1.3, angle=0.0)
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Figure 4.17: Convergence history comparison for the 2D Euler case for different
meshes ( Mach=1.3, angle=0.0 )

cannot calculate the left and right eigenvectors at the same time, we transpose the
Jacobian matrix to calculate the left eigenvectors. The 384s in the table includes
both procedures to solve the right eigenvalue problem and the left eigenvalue prob-
lem. In the derivative calculation, for each coordinate, we calculate the first 30
rightmost eigenvalues’ derivatives with respect to both coordinates of all the ver-
tices. The CPU time used to solve the optimization problem is only 0.2s. In this
case, 98% of CPU time is in derivative calculation. If we only calculate the deriva-
tives for the coordinates which will be used in optimization, much CPU time can
be saved. For instance, if we only calculate 10% of the coordinates, which are
already more than two times the portion of the coordinates used in current cases,
88% of the computation time can be saved. The computation is executed in serial.
If it is run in parallel, it takes much less time to complete the mesh optimization.

Items Time (Second)
Time-Stepping 42

Eigenvalue/Eigenvector Calculation 384
Derivative Calculation 21,748

Table 4.3: Time cost for mesh optimization of the 2D Euler case with Mach=1.2

The question is how can we know that which coordinates will be used and
which ones will not be used. We can see Figure (4.4) shows a similar nonzero
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4.6. The Region That Causes the Instability

pattern as Figure (4.5), suggesting that there might be some relation between them.
Usually the entries of an eigenvector of the Jacobian matrix arising from the spa-
tial discretization of flow problems are not uniform in absolute value. In fact, the
distribution of the entries in terms of absolute value are so far from being uni-
form that most of the entries are small and only a small part of the entries are much
larger than the rest. Combine this fact with Equation (4.7) and Equation (4.14), and
we can conclude that only a small part of the vertices of the mesh have a signifi-
cant influence on the sensitivity of the eigenvalues. These are the vertices which
lie in and around the area with large value in the visualization of the associated
eigenvector. We examine more cases. The derivatives associated with the second
rightmost eigenvalue shown in Figure (4.18a) show a similar nonzero pattern as
the eigenvector associated with the second rightmost eigenvalue shown in Figure
(4.18b), except the area around the airfoil. For the 2D case with Mach=1.3, we
can see that the derivatives of the first rightmost eigenvalue’s real part, shown in
Figure (4.20a), show a similar nonzero pattern as the real part of the eigenvector
associated with the first rightmost eigenvalue, shown in Figure (4.20b); the deriva-
tives of the second rightmost eigenvalue’s real part, shown in Figure (4.20c), show
a similar nonzero pattern as the real part of the eigenvector associated with the
second rightmost eigenvalue,5 visualized in Figure (4.20d). The nonzero pattern
of the derivative of the eigenvalue with respect to the y-coordinate is similar to the
derivative of the eigenvalue with respect to the x-coordinate. From the analysis and
numerical results, we conclude that the nonzero pattern of the eigenvalue’s deriva-
tives with respect to the vertices (x-coordinates and y-coordinates) coincides with
the nonzero pattern of the associated eigenvectors.

Since we primarily move those vertices whose associated derivatives are larger,
we expect the nonzero patterns of the movement both for x-coordinate and y-
coordinate to be similar to the superposition of the nonzero pattern of the asso-
ciated eigenvectors. For the 2D Euler case with Mach=1.2, the x-coordinates’
movement is shown in Figure (4.19a) and the y-coordinates’ movement is shown
in Figure (4.19b), both of which coincide with the superposition of the nonzero
pattern of the eigenvector associated with the first rightmost eigenvalue, shown in
Figure (4.5) and the eigenvector associated with the second rightmost eigenvalue,
shown in Figure (4.18b).6 For the 2D Euler case with Mach=1.3, from Figure
(4.20b), Figure (4.20d), Figure (4.21a), and Figure (4.21b), we can see the same
conclusion. Therefore, the areas with relatively large entries of the eigenvectors

5In this thesis, the unstable eigenvalues are all real. Therefore, the real part of the eigenvector is
equivalent to the eigenvector.

6We take the first 15 eigenvalues into consideration. However, the first two rightmost eigenvalues
are positive in real part and are primary taken to consideration. Therefore, the contribution of the rest
eigenvectors to the pattern of the movement might be trivial.
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associated with the unstable eigenvalues can be interpreted to cause the instability,
since if we move those vertices, the unstable eigenvalues can be shifted to be stable
ones.

As a result, we may just need to consider the vertices that are associated with
the relatively large entries of the eigenvectors of interest.7 We do not take this into
further consideration, though we suggest it be done in future work.

(a) The derivative of the second rightmost eigen-
value’s real part with respect to the x-coordinate

(b) The eigenvector associated with the second
rightmost eigenvalue

Figure 4.18: The nonzero pattern comparison among the derivatives and eigenvec-
tors for the 2D Euler case with Mach=1.2, angle=0.0 free stream

4.7 Summary

From this chapter, we have the following conclusions:

1. The changes in eigenvalues of the Jacobian matrix caused by moving the
vertices of the mesh can be predicted quantitatively.

2. The unstable eigenvalues of the Jacobian matrix can be shifted to be stable
eigenvalues by solving an associated optimization problem for a perturbation
of the mesh.

7Here the eigenvectors of interest are referring to the eigenvectors associated with the eigenvalues
being taken into consideration. Maybe we only need to consider the unstable eigenvalues, though in
practice we take the first 15 or 10 rightmost eigenvalues into consideration.
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(a) X-coordinate movement (b) Y-coordinate movement

Figure 4.19: The coordinates’ movement to stabilize the unstable 2D Euler case
with Mach=1.2, angle=0.0 free stream

3. Only a small area of the whole mesh causes instability. If we only calculate
the derivatives associated with the area primarily contributing to the instabil-
ity, much computation time can be saved.
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4.7. Summary

(a) The derivative of the first rightmost eigen-
value’s real part with respect to the x-coordinate

(b) The density component of the eigenvector as-
sociated with the first rightmost eigenvalue

(c) The derivative of the second rightmost eigen-
value’s real part with respect to the x-coordinate

(d) The density component of the eigenvector as-
sociated with the second rightmost eigenvalue

Figure 4.20: Comparison among the derivatives of eigenvalues and the eigenvec-
tors for the 2D Euler case with Mach=1.3, angle=0.0 free steam
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4.7. Summary

(a) X-coordinate movement (b) Y-coordinate movement

Figure 4.21: The coordinates’ movement to stabilize the unstable 2D Euler case
with Mach=1.3, angle=0.0 free stream
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Chapter 5

Stabilization at Non-fixed Point

In Chapter 2, we developed a stability analysis model and its validity is verified
by numerical tests in Chapter 3. This model is based on the fixed point of the
time-stepping. In Chapter 4, we developed a method to stabilize unstable time-
steppings by shifting the unstable eigenvalues into the stable region. This stabiliza-
tion method is also applied at the fixed point. Fixed point analysis and stabilization
at the fixed point can provide rich information about the system. However, to im-
plement fixed point analysis, the fixed point should be reached. For some cases,
the fixed point might not be feasible. In this chapter, we try to stabilize the unstable
time-stepping at a non-fixed point.

Typically, the first order scheme does not have instability issues. Higher order
schemes like the second, third, fourth order schemes, etc., have instability issues
under some circumstances. To have a good initial solution, we usually set the first
order solution as the initial solution for a high order scheme time-stepping. In this
chapter, we try to stabilize high order schemes at the initial solution, which is the
converged solution of the first order scheme.

We use the same procedure as the stabilization at the fixed point, but here we
implement the stabilization at the initial solution, which is the converged solution
of the first order scheme.

5.1 Test Case No. 1 — the Unstable 2D Euler Case with
Mach=1.2, Angle=0.0 Free Stream

The boundary conditions, the spatial discretization, and time-stepping are as same
as those in the previous 2D Euler case with Mach=1.2, angle=0.0 free stream in
Chapter 4. Different from the stabilization in Chapter 4, in this chapter, we try to
stabilize this unstable fourth order scheme at the initial solution, which is the fixed
point of the first order scheme time-stepping. The first twenty rightmost eigenval-
ues of the Jacobian matrix at the initial solution are shown in Figure (5.1). The
eigenvector associated with the rightmost eigenvalue is shown in Figure (5.2a).
The eigenvector associated with the second rightmost eigenvalue is shown in Fig-
ure (5.2c). The derivative dRe(λ0)

dxs
is shown in Figure (5.2b); the derivative dRe(λ1)

dxs
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5.1. Test Case No. 1 — the Unstable 2D Euler Case with Mach=1.2, Angle=0.0 Free Stream

is shown in Figure (5.2d); here λ0 means the rightmost eigenvalue; λ1 means the
second rightmost eigenvalue.
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Figure 5.1: First twenty rightmost eigenvalues of the Jacobian matrix of the fourth
order scheme at the initial solution for the 2D Euler case with Mach=1.2, angle=0.0
free stream

The settings for the optimization problem are as same as those for the 2D Euler
case with Mach=1.2 in Chapter 4. After solving the optimization problem, the
change in the mesh is obtained. The change in the x-coordinates is shown in Figure
(5.3a) and the change in the y-coordinates is shown in Figure (5.3b). The original
mesh and the new mesh are shown together in Figure (5.4) for comparison. The
new mesh is shown in Figure (5.5). The new mesh looks normal though the largest
movement for a single coordinate is 1.5 unit length.

Once we obtain the updated mesh, we implement time-stepping from the initial
solution, i.e., the solution of the first order scheme. Both the convergence histories
in terms of flux integral for the time-stepping associated with the original mesh
and for the time-stepping associated with the new mesh are shown in Figure (5.6),
from which we can see that the unstable time-stepping has been stabilized. The first
twenty rightmost eigenvalues of the Jacobian matrix calculated on the converged
solution on the new mesh are shown in Figure (5.7). The eigenvalues are all neg-
ative in real part, while there are unstable eigenvalues in the spectrum associated
with the original mesh, which is shown in Figure (3.36).
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5.1. Test Case No. 1 — the Unstable 2D Euler Case with Mach=1.2, Angle=0.0 Free Stream

(a) The density component’s eigenvector associ-
ated with the first rightmost eigenvalue of Jaco-
bian matrix of the fourth order scheme at the ini-
tial solution

(b) The derivatives of the first rightmost eigen-
value’s real part with respect to the normalized
x-coordinate: dRe(λ0)

dxs

(c) The density component’s eigenvector associ-
ated with the second rightmost eigenvalue of the
Jacobian matrix of the fourth order scheme at the
initial solution

(d) The derivatives of the second rightmost
eigenvalue’s real part with respect to the normal-
ized x-coordinate: dRe(λ1)

dxs

Figure 5.2: Eigenvectors and the derivatives for the 2D Euler case with Mach=1.2,
angle=0.0 free stream
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5.1. Test Case No. 1 — the Unstable 2D Euler Case with Mach=1.2, Angle=0.0 Free Stream

(a) X-coordinate change (b) Y-coordinate change

Figure 5.3: The normalized coordinate’s change for the non-fixed point stabiliza-
tion for the 2D Euler case with Mach=1.2, angle=0.0 free stream

Figure 5.4: Mesh comparison for the stabilization at the initial solution for the 2D
Euler case with Mach=1.2, angle=0.0 (The red line is for the new mesh, and the
black line is for the original mesh)
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5.1. Test Case No. 1 — the Unstable 2D Euler Case with Mach=1.2, Angle=0.0 Free Stream

Figure 5.5: New mesh for the stabilization at the initial solution for the 2D Euler
case with Mach=1.2, angle=0.0 free stream
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Figure 5.6: Convergence history comparison for the stabilization at a non-fixed
point for the 2D Euler case (Mach=1.2, angle=0.0)
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5.2. Test Case No. 2 — the Unstable 2D Euler Case with Mach=1.3, Angle=0.0 Free Stream
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Figure 5.7: First twenty rightmost eigenvalues of the Jacobian matrix on the con-
verged solution of the fourth order scheme on the new mesh for the 2D Euler case
with Mach=1.2, angle=0.0 free stream

5.2 Test Case No. 2 — the Unstable 2D Euler Case with
Mach=1.3, Angle=0.0 Free Stream

The boundary conditions, the spatial discretization, and time-stepping are as same
as those in the previous 2D Euler case with Mach=1.3, angle=0.0 free stream in
Chapter 4. We try to stabilize this unstable case at the initial solution, which is the
solution of the first order scheme. The first twenty rightmost eigenvalues of the
Jacobian matrix at the initial solution are shown in Figure (5.8). The eigenvector
associated with the rightmost eigenvalue is shown in Figure (5.9a). The eigenvector
associated with the second rightmost eigenvalue is shown in Figure (5.9c). The
derivatives dRe(λ0)

dxs
are shown in Figure (5.9b); The derivatives dRe(λ1)

dxs
are shown

in Figure (5.9d); here λ0 means the rightmost eigenvalue; λ1 means the second
rightmost eigenvalue.

For the associated optimization problem, we only take the first four rightmost
eigenvalues into consideration.8 The criterion to select a coordinate is that there

8If we take more eigenvalues into consideration, for instance, first ten rightmost eigenvalues, the
derivatives dRe(λ )

dxs
and dRe(λ )

dys
for some eigenvalues may have singularity issues. The singularity may

arise from a shock wave, or the solution may be non-physical since we do not employ any technique
to guarantee the computational solution is valid in physical meaning. Blending stabilization with a
technique to guarantee the computational solution is physically valid is a suggested topic of future
work.
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Figure 5.8: First twenty rightmost eigenvalues of the Jacobian matrix of the fourth
order scheme at the initial solution for the 2D Euler case with Mach=1.3, angle=0.0
free stream

exists a derivative d(λi)
dεs

larger than 0.0001 and smaller than 2 for the first four
eigenvalues, i.e. i = 0, 1, 2, 3. The other settings for the optimization problem are
as same as those for the 2D Euler case with Mach=1.2, angle=0.0 free stream in
Chapter 4.

After solving the optimization problem, we obtain the change in x-coordinates
shown in Figure (5.10a), and the change in y-coordinates shown in Figure (5.10b).
Both the original mesh and the new mesh are shown in Figure (5.11). The new
mesh is shown separately in Figure (5.12), and we see the new mesh looks normal.
By applying the new mesh to the time-stepping where the initial solution is the
solution of the first order scheme, we generate the convergence history shown in
Figure (5.13), from which we can see that the original unstable time-stepping has
been stabilized. We also plot the eigenvalues of the Jacobian matrix based on the
converged solution of the fourth order scheme on the new mesh, shown in Figure
(5.14), and compared with the eigenvalues in Figure (4.12), we can see all the
unstable eigenvalues have been shifted into the left half plane.

5.3 Summary and Further Discussion

In this chapter, by the same method used for the fixed point stabilization, we suc-
cessfully stabilized two unstable fourth order cases at the initial converged first or-
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5.3. Summary and Further Discussion

(a) The density component’s eigenvector associ-
ated with the first rightmost eigenvalue of the Ja-
cobian matrix of the fourth order scheme at the
initial solution

(b) The derivatives of the first rightmost eigen-
value’s real part with respect to the normalized
x-coordinate dRe(λ0)

dxs

(c) The density component’s eigenvector associ-
ated with the second rightmost eigenvalue of the
Jacobian matrix of the fourth order scheme at the
initial solution

(d) The derivatives of the second rightmost
eigenvalue’s real part with respect to the normal-
ized x-coordinate dRe(λ1)

dxs

Figure 5.9: Eigenvectors and derivatives for the 2D Euler case with Mach=1.3,
angle=0.0 free steam
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5.3. Summary and Further Discussion

(a) X-coordinate change (b) Y-coordinate change

Figure 5.10: The normalized coordinates’s change for non-fixed point stabilization
for the 2D Euler case with Mach=1.3, angle=0.0 free stream

Figure 5.11: The mesh comparison for the non-fixed stabilization for the 2D Euler
case with Mach=1.3, angle=0.0 (the red line is for the new mesh, and the black line
is for the original mesh)
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5.3. Summary and Further Discussion

Figure 5.12: The new mesh arising from non-fixed point stabilization for the 2D
Euler case with Mach=1.3, angle=0.0 free stream

0 50 100 150 200 250 300
−12

−10

−8

−6

−4

−2

0

2

4

Iterations

T
h
e
lo
g
1
0
o
f
th
e
N
o
rm

Convergence History Comparison for the Stabilization
at a Non-fixed Point for the 2D Euler Case (Mach=1.3, angle=0.0)

 

 

Flux Integral R
(

Ū
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Figure 5.13: Convergence history comparison for the non-fixed stabilization for
the 2D Euler case with Mach=1.3, angle=0.0 free stream
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Figure 5.14: First twenty rightmost eigenvalues of the Jacobian matrix on the con-
verged solution of the fourth order scheme on the new mesh for the 2D Euler case
with Mach=1.3, angle=0.0 free stream

der solution. In fact, if we compare the results of the non-fixed point stabilization
with the results of the fixed point stabilization, we can see they are quite similar.
We first compare eigenvalues and eigenvectors. Comparing Figure (5.1) with Fig-
ure (3.36), we can see that the first several rightmost eigenvalues of the Jacobian
matrix of the fourth order scheme calculated on the converged solution of the fourth
order scheme are close to those of the Jacobian matrix of the fourth order scheme
calculated on the initial solution. Seen from Figure (4.5), Figure (4.18b), Figure
(5.2a), Figure (5.2c), for the eigenvectors associated with the first two rightmost
eigenvalues, we can draw similar conclusions as those for the eigenvalues. For the
2D Euler case with Mach=1.3, we can draw similar conclusions for the rightmost
eigenvalues and the eigenvectors associated with the first two rightmost eigenval-
ues as well. The Jacobian matrix depends on the solution. The difference between
the converged solution of the fourth order scheme and the converged solution of
the first order scheme is small. Therefore, it is reasonable that the eigenvalues and
the eigenvectors are similar. For both cases, we can also see similarities for the
derivatives of the eigenvalues, the mesh movement, and the first several rightmost
eigenvalues after mesh movement.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we developed a fixed point stability analysis model and verified its
validity.

1. If the largest eigenvalue of the mapping relating the computational error of
two successive iterations is real, the rate of convergence of the norm of com-
putational error converges to the norm of the largest eigenvalue. The direc-
tion of the computational error converges to the direction of the eigenvector
associated with the largest eigenvalue, or the opposite.

2. If the largest eigenvalues of the mapping are a complex conjugate pair, the
rate of convergence of the norm of the computational error oscillates around
the norm of the largest eigenvalues. The asymptotic decrease rate of the
norm of the computational error is consistent with the norm of the largest
eigenvalues.

For the flux integral and the solution update, the conclusions are the same. This
stability model can be applied to both for linear problems and nonlinear problems.

We also developed a methodology to change the eigenvalues of a matrix in
a quantitative and controllable way. Specifically, for the Jacobian matrix arising
from the spatial discretization of the Euler equations on an unstructured mesh, we
demonstrated that if a coordinate’s change is not greater than one-tenth the shortest
incident edge length, the changes of the eigenvalues can be predicted within ac-
ceptable tolerance. In practice, we may need a larger movement for stabilization.

We used this method to change the eigenvalues of the Jacobian matrix by
changing the coordinates of vertices of a mesh. By solving a defined optimiza-
tion problem, we obtained the movement for the mesh and applied the movement
to the time-stepping. The results showed that the unstable cases were successfully
stabilized and the unstable eigenvalues are shifted into the stable region. We im-
plemented this stabilization both at the fixed point and a non-fixed point for two
2D Euler cases.
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6.2 Future Work for Stability and Stabilization

There are several problems which are mentioned in previous chapters but are not
resolved. They are interesting topics for future work.

1. We need to study the reason of the emergence of the singularity of the eigen-
value’s derivatives with respect to the coordinates, and the way to deal with
it.

2. Only a small part of coordinates are needed for stabilization. We could re-
duce the time for stabilization significantly if only the coordinates most re-
sponsible for the instability are considered.

3. We need to find out why eigenvalue’s changes after mesh movement do not
coincide with the changes predicted from the optimization problem. To have
the eigenvalue’s changes predictable, we may need multiple smaller move-
ments for stabilization.

4. For practical application, we may need to blend the stability analysis and
the stabilization method with a technique which guarantees the solution is
physically valid, for instance, a limiter. Similarly, we can blend the stability
analysis and stabilization method with other techniques as well.

It is worth extending the study in this thesis to the 2D Navier-Stokes equations,
the 3D Euler equations, the 3D Navier-Stokes equations, and other reconstruction
schemes, etc.

It is well known that the matrix method is misleading for ill-conditioned op-
erators and the computation of the eigenvalues of an ill-conditioned matrix is not
reliable in finite precision arithmetic. In future work, we may also need to study
how to implement stability and stabilization for ill-conditioned operators.

Qualitatively speaking, stability is determined by three aspects: the physical
problem, the reconstruction method, and the mesh. It would be useful to develop
guidelines for generating a mesh that produces a stable system for a given physical
problem and a given reconstruction method.

It would be promising that we improve the stability of a shock wave capturing
scheme such that a weaker limiter is sufficient, which is good for resolution of the
solution.
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6.3 Open Questions: Spectral Analysis and Optimization
— Beyond Stability and Stabilization

In general, eigenvalues and eigenvectors have a wide application. It would be nat-
ural that the optimization for eigenvalues and eigenvectors will bring wide applica-
tions as well. The approach used in this thesis propose a framework to optimize the
eigenvalues of a matrix. We can implement similar optimization for other purposes
and for other problems as well.
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Appendix A

The Mappings for the Solution
Update and the Flux Integral

A.1 The Mapping for the Solution Update

Recalling Equation (2.26), we have

(
I

∆tk+1 +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk+1 =−

(
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk

))
+O

(
∆Ūk

)2
.

Replace k by k−1 to get

(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk =−

(
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk−1

))
+O

(
∆Ūk−1

)2
.

Combining these two equations and dropping the high order terms yield(
I

∆tk+1 +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk+1−

(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk

=−

((
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk

))
−

(
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk−1

)))
. (A.1)

Retrieve Equation (2.12) and Equation (2.22)

Ūk = Ūk−1 +αδŪk,

Ūk
p = Ūs +∆Ūk.

Combine these two equations to obtain

∆Ūk−∆Ūk−1 = αδŪk. (A.2)
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A.2. The Mapping for the Flux integral

Using Equation (A.2) in Equation (A.1), we have

(
I

∆tk+1 +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk+1 =

(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk−α

(
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
δŪk

))
.

A compound form is

(
I

∆tk+1 +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk+1 =

(
I

∆tk + (1−α)
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk. (A.3)

For backward Euler time-stepping, ∆t is constant, and by replacing k by k−1, we
have

(
I

∆t
+

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk =

(
I

∆t
+ (1−α)

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
δŪk−1. (A.4)

A.2 The Mapping for the Flux integral

The computational solution at the kth iteration is denoted by Ūk, and based on this
solution, the flux integral is

R
(

Ūk
)
. (A.5)

Recall Equation (2.22)

Ūk
p = Ūs +∆Ūk.

Use Equation (2.22) and apply the Taylor explanation to get

R
(

Ūk
)
= R

(
Ūs +∆Ūk

)
= R(Ūs)+

∂ R̄
∂Ū

∣∣∣∣(∆Ūk
)
.

Since R(Ūs) = 0, we have

R
(

Ūk
)
=

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk

)
. (A.6)

Replacing k by k−1, we have

R
(

Ūk−1
)
=

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

(
∆Ūk−1

)
. (A.7)
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A.2. The Mapping for the Flux integral

Recall Equation (2.31)(
I

∆tk +
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Uk =

(
I

∆tk +(1−α)
∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
∆Ūk−1.

Apply Equation (A.6) and Equation (A.7) to obtain(
I

∆tk

)(
∆Uk−∆Ūk−1

)
= (1−α)R

(
Ūk−1

)
−R

(
Ūk
)
. (A.8)

By using equation (A.2) in equation (A.8), we have(
I

∆tk

)(
αδŪk

)
= (1−α)R

(
Ūk−1

)
−R

(
Ūk
)
. (A.9)

In this thesis, α = 1 and ∆t is constant; so we have(
I

∆tk

)(
δŪk

)
=−R

(
Ūk
)
, (A.10)

or (
δŪk

)
=−∆tR

(
Ūk
)
. (A.11)

Substituting Equation (A.11) into Equation (A.4) and applying α = 1, we have(
I

∆t
+

∂ R̄
∂Ū

∣∣∣∣
Ū=Ūs

)
R
(

Ūk
)
=

(
1
∆t

)
R
(

Ūk−1
)
. (A.12)
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Appendix B

Angle Error Estimation

The angle between the computational error and the eigenvector x0 is defined as

θ = arccos

(
x∗0∆Ūk∣∣x∗0∣∣ |∆Ūk|

)
. (B.1)

Applying the decomposition for ∆Ūk by Equation (2.48), for x∗∆Ūk, we have

x∗0∆Ūk = x∗0

(
rk

0

i=n−1

∑
i=0

a0
i

(
ri

r0

)k

eIkθixi

)
= x∗0rk

0

(
x0 +

i=n−1

∑
i=1

a0
i

(
ri

r0

)k

eIkθixi

)

= rk
0

(
x∗0x0 +

i=n−1

∑
i=1

a0
i

(
ri

r0

)k

eIkθix∗0xi

)
. (B.2)

Similarly, for |x∗0|
∣∣∆Ūk

∣∣, we have

|x∗0|
∣∣∆Ūk

∣∣= |x∗0|
∣∣∣∣∣rk

0

i=n−1

∑
i=0

a0
i

(
ri

r0

)k

eIkθixi

∣∣∣∣∣ . (B.3)

Implementing further deduction, we have

|x∗0|

∣∣∣∣∣rk
0

i=n−1

∑
i=0
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i

(
ri
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(B.4)
Therefore, we have
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0
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i
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ri

r0

)k

eIkθixi

∣∣∣∣∣
)2

= x∗0x0

(
rk

0

(
i=n−1

∑
i=0

a0
i

(
ri

r0

)k

eIkθixi

))∗
rk

0

(
i=n−1

∑
i=0

a0
i

(
ri

r0

)k

eIkθixi

)

= r2k
0 (x∗0x0)

(
x0 +

i=n−1

∑
i=1

a0
i

(
ri

r0

)k

eIkθixi

)∗(
x0 +

i=n−1

∑
i=1

a0
i

(
ri

r0

)k

eIkθixi

)
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Appendix B. Angle Error Estimation

= r2k
0 (x∗0x0)
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As a result, for |x∗0|
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ri
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(B.6)
Therefore, we have
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For the angle, we have

θ = arccos
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